A COMPUTER-AIDED
PERSONALIZED SYSTEM OF INSTRUCTION

by
Yiu-Man Leung

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the degree of
Master of Science
in

Electrical Engineering

Winnipeg, Manitoba, Canada
August 1988
© Yiu-Man Leung, 1988

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has regserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a é&té accordée
4 la Bibliothéque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;

ni la thése ni de 1longs
extraits de celle-ci ne
doivent @&tre imprimés ou

autrement reproduits sans son
autorisation écrite.

ISBN 0-315-48057-2

A COMPUTER-AIDED PERSONALIZED SYSTEM OF INSTRUCTION

by

YIU-MAN LEUNG

A thesis submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1988

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

ABSTRACT

Computer-Aided Personalized System of Instruction (CAPSI) is a
new automated teaching and learning method rooted in the Personalized
Syétem of Instruction (PSI) and the learning-reinforcement theory,
involving highly systematic, interactive, student-participated teaching and
evaluation through (1) structured course material with clear specification of
objectives, (2) frequent and immediate reinforcement through
instructor-student and student-student markings, (3) minimization of
punishment, and (4) self-pacing by the student. CAPSI is a technological
educational innovation with the combination of physical and behavioral
technologies to produce an engineering approach to education. Unlike PSI,
CAPSI adopts computer technology with a finite-state modelling
implementation to free the instructor from administration, promote
individualized learning, and provide tools for the analysis of the dynamicai
educational process and its optimization. Developed and extensively tested
over the past five years at the University of Manitoba, CAPSI has gone
through a natural evolution from a single terminal to multiple terminals,
with direct.and remote links, and electronic mailing and messaging. CAPSI
has been used successfully, effectively, and economically in short-distance
(on campus) and long-distance (off campus) teaching, thus extending the
fundamental concepts of education from a physical classroom to a virtual

classroom and even to a virtual campus which eliminates the need for the

instructor and the students to be at the same place and at the same time.

-ii-

ACKNOWLEDGEMENTS

I would like to extend my sincere thanks and appreciation to
Dr. Witold Kinsner, my advisor, for his supervision, teaching, assistance,
perseverance, and patience during the course of my research and also for his

suggestions of more than one research topics.

Special thanks to Dr. Joseph Pear and Dr. Kinsner who have
contributed the main research ideas to the development of the CAPSI
system. Also thanks go to Frank Herzog for the initial coding of the

program. In addition, thanks to Dr. J. Poltz for his comment on this thesis.

I would like to thank the financial support from the Industrial
Applications of Microelectronics Centre Inc., the University of Manitoba
Academic Development Fund, the Natural Sciences and Engineering

Research Council of Canada, and private funds.

The last but not least, I thank my parents and family for their
financial and emotional support of my stay in Canada, and I finally
acknowledge the Christian faith that carries me through difficulties and

hardship.

- ii -

TABLE OF CONTENTS

ABSTRACT .
ACKNOWLEDGEMENTS .
LIST OF CONTENTS

LIST OF FIGURES

Chapter
I. INTRODUCTION

1.1 Keller's Personalized System of Instruction
1.2 PSI and Reinforcement Theory

1.3 History of PSI

1.4 Research on PSI and its Superiority

1.5 PSI to CAPSI

1.6 The Novelty of CAPSI .

1.7 Motivation

1.8 Thesis Objective

1.9 Thesis Organization

. LEARNING ENVIRONMENTS AND TEACHING METHODS .

2.1 Educational Learning Environments
2.2 Review of other teaching methods
2.2.1 Programmed Instruction (PI)
2.2.2 Self-Paced Instruction (SPI)
2.2.3 Computer-Assisted Instruction (CAI)
2.2.4 Computer-Managed Instruction (CMI) .
2.2.5 Self and Peer Marking .
2.2.6 Guided Design (GD)
2.3 Other Technology-Oriented Techniques
2.3.1 Tutorials on Audio-Cassettes

-iv -

viii

N O N

11
14
14
17
17
19

20
20
21
21
21
21
22
22
22
22
23

oI

Iv.

24

CAPSI: A GENERALIZED COMPUTER-AIDED TEACHING

3.1
3.2

3.3

3.4

2.3.2 Tutorials with Discrete Visuals

and Synchronized Audio

2.3.3 Tutorials on Film or Video Tape or Compact Disc .

2.34 Audio and Video via Communication Satellite

Summary

AND LEARNING METHOD
General Course Structure
The Computer Program
3.2.1 Student-Computer Interaction .
3.2.2 Main Control Menu

Examples in a Course

3.3.1 Instructional Objectives, Frames and Student Responds

3.3.2 Mastery Test .o
3.3.3 The Use of Electronic Mail
3.3.4 Marking Verification

Summary

DESIGN OF CAPSI .

4.1

4.2
4.3

Engineering concepts in CAPSI

4.1.1 Product Specification

4.1.2 Design

4.1.3 Utilization of Technology

4.1.4 Quality Control

4.1.5 Cost Effectiveness

4._‘1.6 Systems Analysis

Problem Specification of CAPSI
Database Design

4.3.1 The Student Record File Design
4.3.2 The System Parameter File Design
4.3.3 The Question Bank File Design

23

24
24

25
25
26
27
30
32

34
35
37
38

39
39
39
39
40
40
40
41
41
48
48
50

4.34 The Transaction Log File Design
4.3.5 Type of Transaction Design
4.4 Finite-State Machine Design
4.4.1 Test-State Transition Design
4.4.2 Proctor-State Transition Design
4.4.3 Formal Definition for the Test-State Transition
4.44 Formal Definition for the Proctor-State Transition

4.5 Summary

CAPSI Implementation
5.1 Hardware System
5.2 Software Implementation
5.2.1 Overview of the CAPSI Software Evolution .
5.2.2 Program Structure of CAPSI with Classroom Setting .
5.2.2.1 Initialization and Terminal Control
5.2.2.2 Student Session Control
5.2.2.3 Student Edit Control
5.22.4 System Parameter Edit Control .
5.2.2.5 Mark Student Control
5.2.2.6 Send Messages Control .
5.2.2.7 Monitor Student Control

54
55
56
56
57
60
63
65

66
66
67
67
70
70
71
73
75
75
76
77

5.2.3 Program Structure of CAPSI without Classroom Setting 88

5.23.1 Initialization and Session Control .
5.2.3.2 Student Transaction Control
5.24 Programming Language Employed
5.24.1 Conventional Features .
5.24.2 Condition-Handling Feature
5.24.3 File-Handling Feature .
5.24.4 Multi-Tasking Feature .
5.24.5 Debugging Feature
5.24.6 Interfacing with Assembler
5247 Interfacing with MANTES File .

-vi -~

88
89
90
90
93
94
95
96
97
97

5.3

5.2.4.8 Interfacing with the System Dynamic
Allocation Routine

Summary

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Subject Taught

Selection of Students for the Program
CAPSI for On-campus Learning
Experience and Evolution of CAPSI
CAPSI for Off-campus Learning
Inclusion of Electronic Mailing and Messaging into CAPSI
CAPSI for Virtual Classroom

Course Statistics

Data Logged by CAPSI

6.9.1 Student Performance

6.9.2 Workload Dynamics

6.10 Problem of Supervision

6.11 Student Reactions to the Method .
6.12 Costs

6.13 Summary

VII. CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

APPENICES .
A: Source Code for CAPSI without Classroom Setting
B: Source Code for CAPSI with Classroom Setting

C: Examples of CAPSI in Classroom Setting .

- vii -

98
100

101
101
101
102
102
105
106
107
108
109
109
112
119
119
122
123

124

127

131

131

157
198

Figure
3.1

3.2
4.1
42
4.3
44
45
S5.1.a-g
5.1.a
51b
S5.1.c
5.1.d
5.1.e
5.1.f
5.1lg
5.2.a-b
5.2.a
52b
6.1
6.2
6.3
6.4
6.5
6.6

LIST OF FIGURES

Page
Student Terminal Prompt Summary 29
Main Program Menu Summary 3]
The Hierarchical Tree Structure of Question Bank File . 53
Test-State Transition Diagram of CAPSI 58
Proctor-State Transition Diagram of CAPSI 59
Finite-State Machine of Test-State Transition Diagram . 62

‘Finite-State Machine of Proctor-State Transition Diagram 64

Structured Chart for CAPSI with Classroom Setting . . 79
Initialization and Terminal Control Modules 79
Student Session Control Module 80
Editing Student Module 81
Editing System Parameter Module 82
Mark Test Module 83
Send Messages Module 84
Monitoring Student Module 85
Structured Chart for CAPSI without Classroom Setting . 86
Initialization and Session Control Modules 86
Student Transaction Module 87
The University of Manitoba Off-Campus Instructional Sites 104
Test & Proctoring Performance of Student #AN 114
Test & Proctoring Performance of Student #SL. 115
Test & Proctoring Performance of Student #JO 116
Average Test & Proctoring Performance 117

Total Proctoring Performance 118

- viii -

CHAPTERI
INTRODUCTION

Human beings have high capacity to both teach and learn knowledge
as well as wisdom in a concatenated process of instruction (i.e., the first
person instructs the second, the second then instructs the third, and so on).
The formal -educational structure preserves the concatenated process of
instruction in such a way that a qualified scholar with more knowledge and
expertise but without any guarantee of effectiveness teaches others. The
process of education by far is only localized both spatially in classroom and

temporally of class period.

The concatenated process of instruction within contemporary
educational institutions has four principles:

1. Knowledge is organized hierarchically from trivial level to advanced
level.

2. Knowledge has no boundary.

3. Learning is not only unidirectional from the scholar to the learner,
but also bidirectional from the learner to the scholar and from the
process of teaching.

4. Peef learning can occur at the same level of knowledge.

Since peer teaching and learning are not commonly recognized and utilized

‘within classes of conventional education, Fred S. Keller [Kell68] introduced

the Personalized System of Instruction (PSI) as a systematic educational

approach to enhance the utilization of peer teaching and learning among

students. Also, PSI is firmly based on the reinforcement theory arose from
the applied and behavioral psychology advocated by B. F. Skinner ([Skin53],
[Skin54], [Skin61]).

1.1 Keller's Personalized System of Instruction

First formally described by Keller in his classic paper "Goodbye,
Teacher ..." [Kell68), this teaching method has come to be recognized as an
important applied contribution of psychology. Keller himself received the
Distinguished Contributions to Education in Psychology Award from the
American Psychological Association in 1970 and received the Association's
Distinguished Contribution for Applications in Psychology Award in 1976.
Since then, thousands of instructors in most parts of the world have givén
PSI courses of almost every discipline; hundreds of thousands of students
have taken them; and hundreds of researchers have published papers on
this teaching method. PSI has been one of the most widely used and

thorough researched forms of instruction in use since 1968.

PSI has usually been associated with five defining characteristics

[Kell68]:

1. The unit perfection requirement (mastery learning) for advance,
which lets the student go ahead to new material only after
demonstrating mastery of that which preceded;

2. The go-at-your-own-pace (self-pacing) feature, which permits a
student to move through the course at a speed commensurate with
his/her ability and other demands upon his/her time;

3. The related stress upon the written word in instructor-student

-2-

communication;

4. The use of proctors, which permits repeated testing, immediate
séoring, almost unavoidable tutoring, and a marked enhancement of
the personal-social aspect of the educational process; and, finally,

5. The use of lectures and demonstrations as vehicles of motivation,

rather than sources of critical information.

Each feature has some natural corollaries.

A mastery requirement means that a student can answer a large
percentage of the questions about the course material. The course material
is broken down into small sequential units with clear specification of
objectives. The unit tests are designed to increase in difficulty gradually so
as to minimize the probability of failing a test. The immediate feedback and
frequent reinforcement, the rough equivalent of reward, on the tests are
provided. In case of not ‘passing a test, the student has the only penalty to
restudy and rewrite another test on that unit. Thus, the minimization of
punishment is achieved by the well designed unit tests and by the
replacement of the word fail from restudy. The student is informed
exactly how mastery of the course material will be assessed, and he/she

must demonstrate mastery of each unit before proceeding to the next one.

Given with the first criterion of mastery requirement, the second
characteristic of go-at-your-own-pace feature is mandatory. Individuals
have different schedules and time requirements to excellently master a
‘given subject matter. In the traditional education, the time required for all
students to achieve their excellence is constant, and this approach produces

the grade distribution normally found. On the contrary, PSI provides an

-3-

alternative to permit individual students to move through the course at
their own rates within' the last day of the course set by the academic

institution.

The last three features follow indirectly from the first two. Once self-
pacing is allowed, it will occur and be incompatible with a lockstep lecture
approach. Written material becomes the major informational source for
the instructor-student communications. The written word allows the
objectives of all unit tests clearly described by the instructor, and allows the

test clearly presented by the students.

Given a number of students who are engaged in working at different
speeds, testing in repetitive fashion, and dealing with a wide range of
material at any point in time, an instructor must find proctors or tutors to
help out during the course. The proctors, who provide nearly limitless
individual attention to the students, also benefit through learning by
teaching, and allow the instructor to devote more time-to those individuals
and problems that require the instructor's level of expertise. The proctor is
not only an essential feature but perhaps the most valuable contribution of

PSIL

Finally, the function of lectures is substantially different. As lecturing
is no longer the major commitment, the instructor can meet individual
‘students when they need help, and becomes the roles of a creator of course
material and a manager of a learning system. Lectures are used to motivate

rather than to supply essential information to students.

In conclusion, PSI has proven superior to the conventional teaching
methods [ShRS82]. Its superiority over conventional methods is accounted
for the three of its five features: the go-at-your-own-pace feature, the unit-
perfection requirement, and the use-of-proctors feature. As well, PSI is
based on well-known principles of positive reinforcement in learning

theory.
1.2 PSI and Reinforcement Theory

Unlike some educational innovations, PSI is rooted in a system:
learning-reinforcement theory. In the language of the psychologist, the
student is reinforced by his/her successes and will tend to continue the
behavior that leads to more successes. More formally, reinforcement is a
process whereby a particular behavior is strengthened, making it likely that
the behavior will occur more frequently. The stimulus that strengthens the
behavior is called a reinforcer, either positive or negative. A positive
reinforcer is something pleasant -- a piece of candy, pérhaps, or a word of
praise. A negative reinforcer is an unpleasant stimulus that is removed
when a parﬁcular behavior is performed, making it likely that the behavior
will be repeated. PSI fully applies the positive reinforcers and possibly
eliminates the negative reinforcers for students to achieve their successes of

learning.

The reinforcement theory applied in PSI holds that a learner's
progress depends on three things:
1. the information, materials, and situation presented;

2. the performance required; and

3. the feedback provided.
All three components are critical and any one of them neglected is

inadequate.

Firstly, the PSI materials are presented accordingly to the
reinforcement theory. Small work units lead to greater density of
reinforcement than do large ones in the lecture system. Since textbooks
usually lack the built-in reinforcements, the PSI study questions and
objectives are arranged in schedule of reinforcements that will encourage
the students to learn the course materials in the allotted time. The
reinforcement theory suggests that the students will lose interest for
infrequent reinforcements and will satiate for too frequent reinforcements.
Basically the function of the unit in PSI is to allow students to see their
progresses through the course and hence be rewarded for learning the

manageable, well-defined materials.

Secdndly, the students are rewarded and fnotivated as their
performance reaching or moving towards the final A. In PSI, each unit
completed Aproduces a fraction of their final A. This token of reward will
directly strengthen their engagement in the testing-grading process, and
indirectly help them with their study. The students are positively
reinforced by a'dvéncing the course in unit by unit to achieve the final A,

and negatively reinforced to restudy rather than to fail an unmastered unit.

Thirdly, immediate grading and feedback of unit tests encourage the
reinstatement of responses made to questions and to strengthen further

those that were correct. As well, students immediately receive close

attention and approval regarding their results and performance. The
students may need to further clarify or defend their answer which may
sharpen their discriminations and lead to a refinement of their concepts.
The immediate response of grading And feedbéck is critical and made

possible by the help of student proctors.

The proctors are also reinforced throughout the process of marking.
The proctors are treated with respect regarding to their approval,
judgement, and advice. Proctors not only receive credit points, but also
benefit from increasing their knowledge through marking and teaching.
Also, proctors are reinforced by the signs of individual student progress,

which can be a measure of the proctors' own success.

At last, the instructor is also reinforced by the successful operation of
the PSI system as a whole and by the satisfaction in the academic progress of

each student.

To conclude, the existence of and reliance upon the reinforcement

theory is the most distinguishing feature of PSI.

1.3 History of PSI

With all the distinguishing features and theoretical foundation, PSI is
a powerful and innovative teaching method, but why it is currently one of
the most outstanding educational innovations in higher education. Hence,

a review of historical background is provided to respond the inquiry.

PSI was developed and implemented by F. Keller for the first time in
1962, together with J. G. Sherman, R. Azzi, and C. Martuscelli, in a course
given at Columbia University, and the following year in Brasilia, within the

context of an introductory course in psychology.

PSI first began to excite interest during 1965-67 when it was tried at
Arizona State University and discussed at conferences such as those of the
American Psychological Association and American Educational Research
Association. Perhaps the most influential publication was Keller's
"Goodbye, Teacher ..." which was read by many people, yet not all of them
psychologists. B. A. Green, Jr., a physicist at Massachusetts Institute of
Technology, and B. V. Koen, a nuclear engineer at the University of Texas at

Austin, started PSI courses and published their experience accounts.

The widespread of PSI usage in physics and engineering courses
might be related to the first large-scale use of PSI in physics took place at
M.LT. — one of the leading engineering schools in the United States. The
M.LT. experience was well publicized in physics journals ([Gree71],
[FHBT76]) énd at professional conferences, which would have attracted the
attention of physicists and engineering instructors. It was possible that
M.LT.'s pioneering effects in PSI might have served as a stimulus to the

diffusion of this innovation.

But PSI attracted people from other disciplines as well. Workshops
and conferences attracted instructors from the diversity of disciplines as well
as the heterogeneous character of the institutions. The wide range of

institutions were from junior and community colleges, vocational schools,

-8-

secondary schools, and educational institutions other than four-year

colleges and universities.

In June 1971 the PSI Newsletter began publication and chronicled the
development of PSI in 31 issues through 1979. It was designed to facilitate
communication between instructors implementing PSI courses.
Furthermore, it led to the establishment of the Center for Personalized

Instruction in September 1973.

The Center served an information clearing-house function,
surveying PSI courses in different disciplines and at all educational levels
throughout the country. Also, the Center organized workshops and
national conferences, published the PSI Newsletter and other publications,
probably the most important publication was the Journal of Personalized

Instruction.

Grants from federal agencies, private foundations, and local
institutions supported a wide range of implementation and research
projects. Literally hundreds of supported projects were reported in the PSI
Newsletter. Simultaneously, national and international agencies
sponsored workshops, conferences, and course development efforts in
Brazil, Venezuela, Chile, Argentina, Mexico, Germany, the Netherlands,

English, Samoa, and India.
The acti\}ity level was high and the documentation of events was
exhaustive. A few numbers should be able to characterize what happened.

In 1972 the PSI Newsletter reported that 190 PSI courses existed; by 1979

-9-

over 5,000 courses existed. The mailing list of those involved with PSI
exceeded 10,000. In 1973, an extensive literature search resulted in just over
300 articles reporting PSI research and/or implementation; by 1979

approximately 3,000 articles of this nature were reported.

Statistics could not convey the diversity of applications that
developed during the '70s. In 1972, 173 of 190 courses reported were in
psychology, physics, engineering, mathematics, chemistry, and biology. The
topics reported at the fifth national conference in 1979 included community
college education; elementary, intermediate, and secondary education;
adult, continuing, and vocational education; health, nursing, and medical
education; home-based instruction and special education; and teaching in
business, prisons, industry, banking, and military. More, papers reported in
the level of four-year college were sciences, social sciences, languages,

humanities, and engineering.

In summary, three major factors have brought about this
extraordinary propagation of PSI activities. Firstly, the Center for
Personalized Instruction, with headquarters in Washington, DC. from 1976
to 1979, publicized the periodicals of the PSI Newsletter and Journal of
Personalized Instruction.. Secondly, a series of yearly conferences was held
~on the subject.of personalized instruction with the aim of encouraging
professionals to share their experience with the method. Finally, certain
authors attempted to integrate and systematize the results of hundreds of
case studies reported in the bibliographies. As described from above, PSI has
widely grown in its popularity and acceptance in higher education because

of its distinguishing features and theoretical foundation as well as its

-10-

supportive research evidences.
1.4 Research on PSI and its Superiority

The original PSI method has a considerable body of research data
supporting its effectiveness. The most noteworthy research efforts were
from the following: Ryan [Ryan74]; Taveggia [Tave76]; Robin [Robi76]; Block
and Burns [BIBu76]; Hursh [Hurs76]; Kulik, Kulik, and Smith [KuKS76];
Johnson and Ruskin [JoRu77]; Kulik, Kulik, and Cohen [KuKC79]:
Sherman [ShRS82a]; and Benaim ([Bena84al], [Bena84b]). These authors did
comparison in the majority of parameters and proved that PSI is superior to

the traditional method.

Ryan [Ryan74] used the grade distribution, dropouts, experimental
comparisons to other methods, and the students' opinions as the

determining criteria of effectiveness.

Taveggia [Tave76] reviewed 14 studies carried out from 1967 to 1974
and compared the effectiveness of PSI in terms of the students' performance
in examinations. The major conclusion suggested that, when evaluated by
average student performance on course content examinations, PSI has
proven superior to the conventional teéching methods with which it has
been compared. Taveggia examined and suggested that three of five
features probably account for the superiority of PSI over the conventional
methods: the go-at-your-own-pace feature, the unit-perfection

requirement, and the use—of-proctors feature.

-11 -

Johnson and Ruskin [JoRu77] referred to the study results of 39
articles reported by Kulik et al. [KuKS76] and adopted the following criteria
for the determination of effectiveness: final grades in the course, retention
and transfer of learning, and an overall evaluation of the course by the

students.

Kulik ef al. [KuKC79] based on a systematic meta-analysis, the
appliéation of statistical methods to results from a large collection of
individual studies, of 75 comparative studies relating to five major types:
final examination scores, instructor-assigned course grades, course ratings,
course completions, and student study time. The analysis established that
PSI generally produces superior student achievement, less variation in
achievement, and higher student ratings in college courses, but does not
affect course withdrawal or student study time in these courses. The
analysis also showed that PSI's superiority can be demonstrated in a variety
of course settings with a number of different research designs. Certain
settings and research designs, however, produce especiaily sharp differences

between PSI and conventional courses.

Furthermore, a collection of 40 comprehensive studies chosen from
more than 3,000 PSI literature was compiled by Sherman et al. [ShRS82a].
The full ranges of research strategies and results for the éomparison of PSI
with traditional and other techniques of teaching and learning were
critically discussed in this volume and literature by Benaim ([Bena84al,
[Bena84b]). In summary, the comparisons were mainly done on the basis of
the following criteria:

1. final grades,

-12-

grade distribution,

dropouts,

cost,

retention of learning,
transfer of learning,

student attitudes or opinions,

instructor attitudes or opinions,

© ® N e oA W N

tutor attitudes or opinions, and
10. cost—benefit.

In general, PSI compares favorably on all of them.

Still, a lot of other PSI studies can be found on the reference lists of
the above mentioned authors and by the search of library databases (e.g.,
Psychological Abstracts, Comprehensive Dissertation Index, and Research
in Education), and recent issues of major disciplinary and interdisciplinary
journals and magazines on teaching (e.g., Journal of Chemical Education,
Journal of College Science Teaching, Journal of Personalized Instruction,
Teaching of Psychology, Proceedings of the 1st, 2nd, 3rd, and 4th National
Conferences, Machine-Mediated Learning, Canadian Journal of
Educational Communication, IEEE Transaction on Education, PSI:41
Germinal Papers and PSI:48 Seminal Papers). Above all, PSI has an
existing body of research indicating that PSI is at least as effective as other
teaching methods in higher education, but PSI still needs to evolve with the
advanced communication and computer technologies and to integrate new

ideas and philosophy to enhance its effectiveness and capabilities.

-13-

1.5 PSI to CAPSI

PSI lends itself well to computerization because it is a highly
systematic procedure. Computer-Aided PSI, CAPS], is an application of

computer as management tools to PSI with highly feasible abilities as

follows:

1. to provide instructional service on a mass scale;

2 to generate test and learning materials;

3. to select proctors, teaching assistant, or instructor for marking;

4 to keep track of each student's scholar or learner state relative to

every other student on a moment-to~-moment basis; and
5. to provide structure for the proctor-learner interactions with records,
thus providing a well-designed research database for the analysis of
dynamical education process and its optimization, and for the answer
of some research questions.
Moreover, CAPSI, like its parent PSI, is inherent with all the outstanding
principles of PSI as described before. Above all, CAPSI is fundamentally
different from PSI with regard to the novelty and philosophy of CAPSI.

1.6 The Novelty of CAPSI

CAPSI is a generalized computer-aided teaching and learning method
in which the computer is involved in the technological innovation process
-of education. This method is a natural evolution of PSI, its variations, and
complementary teaching methods in different educational environments,

with emphasis on engineering concepts embedded in CAPSI. Therefore,

-14-

CAPSI is fully inherited from PSI of the reinforcement theory, in which the
student is not a spectator or sponge but an active and systematic participant,
founded on the concept of behavioral and applied psychology. The success
of CAPSI is due to the explicit incorporation of engineering concepts,

behavioral technology, and physical technology.

CAPSI is a highly-structured form of communications to fully
incorporate and utilize the technology of computer communications. With
the usage of electronic mailing and messaging system of the mainframe
computer that CAPSI is run on, the method shows considerable promise for
effectively and economically delivering on-campus and long-distance
education. CAPSI can be used not only in a physical classroom, but also in a
virtual classroom ([Hilt86], [KiPe88al]), with no scheduled classes and specific‘
location, and even on a virtual campus. Local area networks can also be .
used to further extend CAPSI to allow sténd—alone implementations
[KiPe88a]. In a broad sense, CAPSI can also further exploit all aspects of
computer communications technology such as on-line databases, bulletin

board systems, and computer conferencing systems.

Data obtained by CAPSI is important for answering some research
questions. Providing with a complete and readily accessible record of all
testing and marking interactions, CAPSI makes possible to thoroughly
monitor, analyze, and evaluate a significant portion of the behavior and
learning in the course. Also, CAPSI provides a basis for a more further
formal study [KiPe88a] of the modelling, parameter estimation, and
optimization of the dynamical educational process. This should be useful

in learning how to improve the educational process, including the

-15-

instructional presentation, upgrading of the objective, enhancement of the
students' learning and long-term retention of the material in a given

course.

Based on the engineering approach, CAPSI adopts the modular
approach which does not rule out any device or procedure but ideally
incorporates it in a manner that maximizes its effectiveness. For example,
video tapes, lectures, discussions, laboratories, and term projects are

incorporated and used whenever desirable and feasible.

Finally, CAPSI opens the future of computer-aided instruction into a
new stage, in which the computer will become more intimately involved in
the educational process:

1. by developing of an authorizing system [NATA81] for generating
course material, study objectives, and test questions; and

2. by creating of a knowledge base using the recent approach of
knowledge representation and knowledge engineering for intelligent
tutors [Wool87] to assist in marking tests.

This research in artificial intelligence will extend CAPSI to a new tool for

the teaching and learning of design, as defined by Pear and Kinsner [PeKi87].

In conclusion, CAPSI has demonstrated its novelties and advantages
. over its eiij'cestdl' PSI. Indeed, CAPSI has shown evidences and proven itself
as a powérful, innovative, technological educational mefhod in both
‘teaching and learning. Realizing its full potential, CAPSI is advancing the

technological innovation process of education.

-16 -

1.7 Motivation

The original motivation of implementing the CAPSI program is to
computer manage the PSI course of Behavior Modification Principles at the
University of Manitoba. Since it is inefficient and costly to provide PSI
instructional service on a mass scale, computer is used to solve the
problems and to assist the functions of communications, management,
measurement, quality control, and research. With the availability of
inexpensive computer system, CAPSI is intended to provide high quality
education at a low cost. It was later discovered that CAPSI could be very
effective in providing long-distance education. Thus, students are
provided an easy accessible educational environment in both substantial
learning and teaching at any time and from any place. The implementation
goal of CAPSI is to provide the students with the simplicity and reliability of
using the program and to provide the instructor or programmers with the
flexibility and expansibility of developing the program. By providing new
significantly enhanced features and new research and development tools
and ideas; CAPSI is an attempt to apply the engineering concepts,
behavioral technology, communication technology, and computer

technology to advancing the technological innovation process of education.
1.8 Thesis Objective
The objectives of this thesis are:

1. To identify the limitations of the existing PSI approach.
2. To computerize the PSI into CAPSL

-17-

10.

To develop CAPSI rather than to conduct systematic research on its

effectiveness. |

To exploit the computer communications technology for structuring

man-man interactions as the following sub-objectives:

a) To facilitate long—distance education.

b) To eliminate the spatial and temporal restrictions of both
on—-campus and off-campus education.

o) To provide ability with the formation of virtual classroom and
even virtual campus.

d) To promote individualized learning in time and space.

To utilize the computer technology as a research tool as the following

sub-objectives:

a) To monitor, record, and analyze research data in courses.

b) To provide a basis for modelling, parameter estimation, and
optimization of the dynamical educational process.

To incorporate the engineering concepts, behavioral and physical

technologies into CAPSL

To conceptualize CAPSI as a modular approach to ideally incorporate

other effective tools and procedures that complement to CAPSI.

To present the design and implementation of CAPSI.

To demonstrate CAPSI at least as effective as other techniques and

traditional of teaching and learning.

To A»attempt to enhance the educational process through the

technological innovation.

-18 -

1.9 Thesis Organization

This thesis addresses a generalized computer-aided teaching and
learning method called CAPSL. It is introduced in Chapter I with the
background, philosophy, and superiority of its ancestor PSL. This chapter
also describes the novelty of CAPSI and presents what are the motivation
and objectives behind CAPSI. The next chapter reviews the learning
environments and other teaching methods. It is then followed by
Chapter IIT on how CAPSI is used in courses. In Chapter IV, the design of
CAPSI is described in terms of its engineering concepts, problem
specification, database, and finite-state machine modelling. Furthermore, a
description of its implementation in PL/I language running on the Amdahl
mainframe computer is presented in Chapter V. In the second last chapter,
the experimental results of CAPSI are described along with their
discussions. Finally, conclusions for the CAPSI method are drawn and
recommendations for further research and development are suggested in

the last chapter of the thesis.

-19-

CHAPTERII
LEARNING ENVIRONMENTS AND TEACHING METHODS

With the introduction in the previous chapter, CAPSI is further
described in Chapter II as an innovative teaching method that can be used
in various learning environments. As well, CAPSI is compared with other
educational procedures and devices indicating how they are compatiblé
with CAPSL. Since CAPSI adopts a modular approach, other procedures and
devices should been seen as potential components of and complementary to

CAPSI rather than as being in opposition to it.
2.1 Educational Learning Environments

PSI and CAPSI can be applied in different educational environments

classified in terms of Jung's psychological typology [SiHa80], such as:

1. Sensing-Thinking type ~ students are occupied by organized work in
a instructor-mediated and activity-oriented environment.

2. Sensing-Feeling type - students share and interact with others in a
friendly and supportive environment.

3. Intuitive-Thinking type - students develop their critical thinking in
a stimulating and challenging environment.

4. Intuitive-Feeling type — students create their own learning activities

in a flexible and innovative environment.

-20 -

2.2 Review of other teaching methods

CAPSI is a modular approach which can incorporate rather than

oppose any other approach that can advance the educational goal of CAPSI.
2.2.1 Programmed Instruction (PI)

Programmed instruction is closely related to CAPSI. The material is
presented sequentially in small units, assessment of student program is
frequent, and feedback to the student is immediate. Active responding and
student self-pacing are emphasized. However, no instructor or proctors are

employed.
2.2,2 Self-Paced Instruction (SPI)

Self-paced instruction is another approach closely related to CAPSL.
The structured material is presented in the form of a study guide. The
speeds of students to learn and advance in the course are varied. Proctors

are used to evaluate the tests.

2.2.3 Computer-Assisted Instruction (CAI)

No instructor is required in computer-assisted instruction. A
student interacts with a computer which presents drills, practice exercises,
and tutorial sequences to the student, and perhaps to engage the student in a

dialog about the substance of the instruction. The computer also keeps track

-21-

of the student's progress.
2.2.4 Computer-Managed Instruction (CMI)

The computer-managed instruction is similar to CAIL The roles of
the computer is to assist the instructor in managing instruction and to direct

the entire instructional process.
2.2.5 Self and Peer Marking

The course is prepared by the instructor, but the markings of
assignments, laboratory reports, and the mid-term and final examinations

are done by the students themselves and their peers.
2.2.6 Guided Design (GD)

This is a teaching-learning system approach .based on a set of
open-ended problems for students to study at home and for small groups of
students td make decision in class with the guidance of instructor. The
attributes of Guided Design includes: creating the desire to know,
development of team-work skills, and integration of old and new learning.

2.3 Other Technology—Oriented Techniques
Although the computer is the primarily technological tool of CAPSI,

other tools can be conceptualized as modules to be incorporated into CAPSI

if they advance the educational goal of CAPSI.

-22-

2.3.1 Tutorials on Audio—Cassettes

The audio—cassette recorder is so popular that educational material
can be delivered to and heard by any student. The audio tape can be heard
and replayed at any time and place. Printed and other material may also be

accompanied with the audio tape.
2.3.2 Tutorials with Discrete Visuals and Synchronized Audio

This technique was used commonly for industrial training prior to
the invention of the video tape. While the discrete visuals are being

viewed, a student can hear the sound-track synchronized with the scenes.
2.3.3 Tutorials on Film or Video Tape or Compact Disc

The 8 and 16-mm films have now been replaced by video tape. The
video tape incorporates the advantages of audio~taping and video-based
media. The reasons for using video tape are numerous such as the
popularity of the equipment, the ease of equipment operation, the lack of
processing before viewing, and the reusable nature of the tapes. A compact
disc resembles a phonograph record and is used as an information storage
medium. The information that is stored digitally on a disc can be taken
from a slide, a video tape, a film, an audio tape or a printed text and be

.displayed on a television with the using of a compact disc player.

-23-

2.3.4 Audio and Video via Communication Satellite

Recent developments in satellite communication technology have
provided educators with new opportunities for long-distance education.
Communication satellites are most widely used in long-distance education
because satellites have been in existence for over 25 years. Also, the recent
advances in microelectronics and in launch vehicles have significantly

reduced the costs of communication satellites.
2.4 Summary

CAPSI is a generalized teaching and learning method that can be
applied in various educational environments with any additional
technology-oriented techniques. CAPSI adopts a modular approach and
does not rule out any device or procedure that is useful in the learning
process. For example, audio tapes, video tapes, compact disc, lectures,
discussions, laboratories, and term projects are used whénever desirable. In
fact, the technological voice teleconferencing has been used with CAPSI to
successfuliy deliver courses to distant communities. As a result, the
effective usage of voice teleconferencing can demonstrate that the modular
approach of CAPSI is practical and advisable. In the following chapter, a

presentation of CAPSI course is described with some examples.

-24 -

CHAPTER III
CAPSI: A GENERALIZED COMPUTER-AIDED
TEACHING AND LEARNING METHOD

3.1 General Course Structure

Like PSI course, the instructor using CAPSI prepares the course
materials in advance before the course starts.. The text book and other
additional materials are selected and prepared, and then divided into about
as many units as there are weeks in the course. Next, the instructor writes
study objectives for each unit which are typically in question form requiring
written answers rather than multiple choice or true-false responses.
Typically, each unit consists of 20 to 30 questions in short-essay or
short-answer form. The instructor also writes a description to inform the
students about the course procedures, the use of the computer, the grade
point system, and other requirements in the course, such as a term project, a
mid-term examination, and a final examination. Finally, the instructor
assigns points for passing a unit test, for proctoring a test, for the other

course requirements, and for each final letter grade.

During the course, the instructor has an impossible burden to mark
all the written tests from the students and respond the immediate feedback
to them. Therefore, proctors are used. Since it is usually costly to hire a
‘number of proctors and often unavailable to request students from higher
level courses to proctor, CAPSI adopts a new method and utilizes students

in the course who have passed and mastered a given unit to proctor others

-25-

with units up to that unit. For the purpose of quality control and to increase
the times of proctoring, two proctors are required to mark independently of
a given test. Students within the course benefit from proctoring such as
enhancement of knowledge, retention of the material, reinforcement of

learning, and increment of credit point.

The course may be offered in regular class schedules running the
CAPSI computer program in one or more classrooms. However, it is more
efficient for students to use the computer program outside the regular class
periods.v When this is the case, the class periods may be removed and
changed to other activities such as lectures, discussions, or team-work.
Therefore, the use of CAPSI is suitable for correspondence courses, no
scheduled class is needed, provided that the students can frequently access to
the computer. The computer can be accessed by a terminal or
microcomputer connected to the mainframe computer directly by telephone
or through one of the Canadian data networks such as Datapac. Since
Datapac can be accessed through data networks in many other other
countries, the locations from which a course using CAPSI may be taken

extend well beyond the boundaries of Canada.

3.2 The Computer Program

The CAPSI computer program was implemented in PL/I on the
Amdahl mainframe computer. Each student is given a personal computer
‘account on the mainframe computer which provides electronic mailing and
messaging facilities. Each account contains a mailbox for sending and

receiving electronic mail to and from other accounts. In addition, the

-26-

CAPSI program can be invoked from the accounts of the students enrolled

in the course.
3.2.1 Student-Computer Interaction

Figure 3.1 shows how a student interacts with CAPSI [HeKP84a]. An
identification of a registered student and an associated password are
required for the student to interact with CAPSI. Then the student has the
opportunity to view his/her course standing points earned through by
passing and proctoring tests. If the student has not selected to proctor a test,
he/she has opportunity to volunteer as a proctor. The volunteered student
has the responsibility to check his/her account within 24 hours to see

whether he/she has been selected to proctor a test.

If the student is not writing a test, the student can require the
computer to generate and mail a test by randomly selecting three questions
from the study questions on the student's current unit. After receiving a
test at the mailbox file by the use of an ACCEPT command, the student types
the answefs directly into the file on the mainframe computer, or downloads
the file to his/her microcomputer, logs off the mainframe computer, types
the answers into the downloaded file on his/her microcomputer, again logs

-onto the mainframe computer, and uploads the answered file to the

mainframe computer.
After the student completes the test, he/she starts the CAPSI and

decides whether he/she wants the test cancelled or proctored. If the student

feels the material is not well mastered, CAPSI allows him/her to cancel the

-27-

test and will not issue him/her another test on the same unit for at least
one hour following the test cancellation. If the student wants to have
his/her test proctored, either the instructor or two student proctors will be
selected by CAPSI for marking according to the proctor selection algorithm,
which will be discussed in the later chapter. The program then
electronically mails the answered test to the two designated proctors or to

the instructor if two eligible proctors are not available.

Potential proctors check their computer mailbox files for tests as soon
as they log on to their computer accounts indicated by messages that new
mails arrived from other student accounts. A proctor first marks the
arrived answered test immediately with feedback, then starts the CAPSI
program which mails the marked test with the result mark to the student
who wrote the test and to the instructor for marking verification. The
proctor is verified to mark a given test by entering the unit number and
question numbers of the test. Then, the proctor enters one of the pass,
conditional pass, or restudy result. A pass is entered if the student's test
performance demonstrated clear mastery of the unit; a conditional pass is
entered if the student made a minor error and corrected it after it was
pointed out by the proctor; a restudy is entered if the student made minor
errors on more than one question or any major errors. In order for the
student to pass the unit, both proctors or the instructor must enter a pass or
conditional pass. Otherwise, the student with restudy result must wait at
least an hour before he/she can generate another test on the same unit. The
‘instructor receives and maintains a copy of the answered test from the
student who wrote the test, and copies of the marked tests from both the

two proctors, teaching assistant, or the instructor.

-8 -

‘[ep8IPH wor] Areurnuns jdword reurusy juepnig ‘1-¢ Sig

(3131402 NOILOVSNVHL 0| 31317dWOD NOILOVSNVHL O]
| j

| ;0 's3(A) troLo0Nd |]
; ONIA3D0Hd IHOI3IQ GIHOLOOHd LE3L ANIHEND HUNOA IAVH LSNW NOA

<o 4

‘O(N) SI(A) ¢ATINISSIOONS
G3131dWOD XX HIBWNN NOILSIND SYM(E)

4

-¢0340L00H(d) HO
G377130NV(D) LS3L HNOA LNVYM NOA 04

S3A]
L1INS3IY AGNLS3Y ON [3131dW00 NOLLOVSNYHL %0 |
| 4
‘¢ AGNLS3(H) ‘SSVd TVNOILIGNO(D) ‘SSV(d) ON S3A :
‘O(N) S3(A) LXX LINN NO 1S3 31vHaNID | &
‘IN3GNLS 3HL '
A8 N3LLIHM HIGWNN NOILS3IND V ¥IINI(E) ON
AN3GNLS 3HL A NILLIHM HIBWNN LINN HILN3I
XX INVN SLINIGNLS ¢SHOLO0Hd 03103138 INIANLS SYH =——— ¢183L cz_%c; AN3aNLS
XXXXXXX ‘H3BNNN LNIANLS HOL 1S3L _ .
V HOL1D0Hd OL G31D313S N338 IAVH NOA ;0w 83(0) ¢¥O1D0Hd |
t . ~ ,;
T ¢ HOLOOHd OL omhownum AN3ONLS o
L:0(N) S3(A) LONIGNVLS 3SHNOD LN3HHND HNOA M3IA OL LNVAM]
4
1S3L YHVW < NIV 'QHOMSSVd HILN3 |'
NN3W TOULNOD NIV < YIS’ HIGNON INIANLS YILNI

NIDOT AN3QNLS

3.2.2 Main Control Menu

Figure 3.2 shows the main control menu [After HeKP84b] which is

available only to the instructor for database administration, monitoring

transactions, and statistical analysis. The options of the choices are as

follows:

1.

It enables the instructor to start a session of the regularly scheduled
class, set the cutoff time for it, and decide whether it is a new or
continued session.

It permits the instructor to terminate a session with the unmarked
students listed.

It allows the instructor to create and delete student records in the
class, and to modify the personal data and course data of a student.

It permits the instructor to modify the system parameters of the
course such as the grade point system.

It enables the instructor to mark test and enter the result.

It provides the instructor to send messages to and communicate with
the students.

It ﬁrovides the instructor to centrally monitor all the student
activities.

It disables the computer program.

-30-

BRIHOLIVA 30 BN

®

"[qP8d>IPH 10 V] Arewruums nuswt weiBoid urepy z°€ B

(620394 WepMms 1))
Tiv W3IBUN INBONUS YLNI H_

|@IL

3NTVA M3N BN
XXX XXX -QIOHSIBHL 0 INTVA ANRRIND

]

48> Gim IR0 - : -
o X] o) .Zu.o:uaﬂ._w.;m_zu <
4 ASEUN,
JE1CEP -QZICEDs O LICTD 9001« € xb!#i_ ?
. -3 BCEP D BUEP €D LOEW |,
AT ST B0 SSYd MDUIGKOYSSWE) 7] -8 9Ewr @ 5: £ 43 brEw YIBIW INIONLS 1X BIING
'03)24v4 39 01 YIGLNN INZOMUS BIINI -¥ ECEbr Y ZOEPI OV tEP !

440 N ATROLLVUDLNY S) SRIMDA VA
BA0H NV JTVH NIMIIA ST HAILDY INIONUS ON
'SUUMILI 01 MIHIIA ST LIAIL DV IN30NIS ON
(B8R DT JUSDPME JOTHOW)

SINALLIV INIGNLS HOLVYAM 01 INN INDD
SHIIAILDV INIONLS SNIHD L VA JYVLS

G

XXX ‘GO 9071 WI0L

XX -G31S1 G50I3Y 501

(D030 Boy po1>eies 181

I 3IVE (GOABI/AR) 1Y SNIGND 501 1SN
MUY VO (G0827AA) 1Y 6N LYVES 90T 1SN
HX/XX/XK St A1 V0 1NTHND)

YISN 04 GN3S 10NV IDVSSIH

@

TRI3H MIVEI Of NaNU RS &+ £
BNIHDLVA 430 NI £« L
STIIAILIV INIONUS HOLVYA T >
‘JVI00VAS M 2

|
-GEDASSYd B0 DNl) San yaLINI

Q

NN 1103 01 MRETU R 9D B>
WYXI NI S 6>

‘SINIOD WAL Be ¥ £
"SI0 BCAI0Ud £ ¥ >
SINIOd 1S3 24 b £

JINN INRND 1P €

®

®

(SONBW 405 SITPNIE 161)
‘GLINIS S VL B0 YO IMRILSH!

®

¢

21807 3N YNNI

TTISE XX QNN Y0 1N
MOILIS3MOD LIND 30 3NTWA INRRIND
-YIGINN LINN HAINI

]

YRR 40 INTVA AN
T URY 20 INTYA INRUND

|
"GH0MSSYd 9« €8>

"ALISYIAIND LV BV3IA SCEE»

3000 ALTNIVIBCR S
“HIGHNN INOHI £ E ©
YIGFW INIONUS 2§ £
YN LT D

|
"IN INICUS YN

©

"GBNIVIRIVH SYA 00X o INICAS

"SI WOYY 031380 SYA XIOXXAX 0 1N30NLS
L0V ANIVIL) B0 QLT O) 3901

SOIXHXX (0 INFONUS SiKL INVAM NOL 00

- ‘HIMION INIONUS NI

®

(SHILIVEVHD ©) GYOMSSYd INIUS
HSHILIVHVHD £) ISUNOD M SNULVLS
{SHILIVEVHD T) ALISUIAINN LV BY3A
((SYILIVHVHD T) 300D AL NIVY
(SHILIVYYH) 1) HIGHNN JueHd
(SHALIVEVH) OF O dN) VN LNIOUS
-AN30NUS MIN S0 YIGHNN IN3ONUS WINI

o

(6MP18 1801 15Y))

SINIoNUS

GISFLSN I TV 30 NISN
TV -UISHNN 1N30N1S YAIN3

®

TUUHK 40 3NIVA A
XX S0 INTYA TNRUND
1

REY NIV O1 NSNURS L« b

"SIHAT YIGUNN NOLISIND HIINI 9« &>
"ONIB0L J08d 0 3INTVA YILINI G« b
BNISSYd JINN S0 3NTIVA HIINI D« &>

]

‘YISN 0L ON3S JOVSSIM
[~ 1 3)

sBastow 'L ONDRIVI KOS NS I b« ©»

ebessow |y INONUS YIRIVH £¢'S> "SEIOHSIBHL 30VHO BILATTHIINICe & -
U0 GNIS HIRIVH BOJ SIS ISITZ S "SHIND D SHIGINN WI0) WIINI T b
7T 01 GNIS SNUVAS ONV IS ISIT i< 6 ‘SHIL RIVUVY HIISAS ATA 1« D>

. | |
‘GIDMSSVd HD1 i) SK HALN3 ‘GY0MSSYd 1103 BUNI

& ©

©

RS V0L NN TS O 8

AN30NES 15116 L

‘VivQ 358R0D ARCGON b« >
‘'Viv0 WROSHId ARCGOUH £ €
AN30TUS U330 O
AN30NUS UVYRD LB

-(ROMSSY 1103 YALNI

mv .

‘61531 SMICNYISINO IAVHOHA _w.—ng»w
‘GHOMEE Y B0 ML SNI BBINI

®

AOH I9NG TINJ 01 THILRIZL HOLMS
XKOKX XX 38 TWA 3 J40- 10D INSSH IS
VIS WILINIOL 13€ SIN3ONUS YW

J 1430 AAN YV SHVLS BO NOISSIS 1S¥ T IMMIIRGLD)

HWASAS 01 (BNDISSY BV
MY XM BAEL OGN X000 XX V0 440- 100D
SHL (SS WU M) J50- 1N AIN WBINT

N OH)Y'SIAA) L3H 430-1ND YL TV 0.1 HSIM NOA 0T

JOCKX XX St 381 330- 1N INFHYO
HY XX KX St R ANIRINO

o

N
‘05101 11XIQ ANICTUS BOLINOM ¢
‘S3DVSSIU OIS 9 1S3 vl g
‘S [VEV WILSAS 1103+ ANIOUS 103 €

NOISSIS (N3 T NOISSIS ONLIYVIS |t

-31-

3.3 Examples in a Course
3.3.1 Instructional Objectives, Frames, and Student Responses

The instructional objectives emphasize the understanding of the
subject matter by definition and through its use. The following e*ample
shows the instructional objectives in a behavior modification course:

1. Student should be able to state an acceptable definition of positive
reinforcer, and identify examples in everyday life.

2. Student should be able to identify the basic components of a behavior
modification project, and describe the steps by which such a project

would be carried out.

The instructional frames highlight the personal, aspect in the
communications between the student and the instruction. The following
example shows instructional frames, student responses, and instructor's

comments:

‘Date: Sun, 20 Sep 87 20:35 CDT

To: PEAR

From: [StudentID#GB]

Subject: [ID] 09/20 11:46 Unit 2: 2 6 10 ANSWERED PASS
Result: PASS

17.244 BEHAVIOR MODIFICATION PRINCIPLES
Question 2:
Why would a behavior modifier say that we should
- talk about retarded behavior, not retarded people;
. or autistic behavior, not autistic children.
. Answer 2: ‘
The behavior modifier talks about retarded or autistic

= \D Q0N ON U R W e
h o CRNOU WM

bt el
W N

-32-

14.
15.
16.
17.
18.
19.
20.
21
. procedures which have been shown to be effective in
23.
24.
. Question 6:
26. W
27.
28.
29.
30.
31
32.
33.

35.
36.
37.
38.
39.
40.
41.
42.
43.

45.
47.

49.
50.
51.
52.
53.

behavior because he/she makes a judgment based on observable
behavior and not on invisible mental abnormalities. They
arrive at a decision that behavioral problems are exhibited
when an individual is compared with others of approximately
the same age, training, or background and behavioral deficits,
excesses Or inappropriatenesses are observable in the

particular individual. In such case the behavior modifier
attempts to change the particular behavior by using specific

establishing more desirable behaviors.

What is a behavioral excess. Give two examples.
Answer 6:

A behavioral excess occurs when an individual displays too
much behavior of a certain type. For example, a behavioral
excess occurs when a teenager spends hours talking on the
telephone or a person watches television all evening.

Question 10:
What are some of the objectives of the textbook ?
Answer 10:

By using actual case studies to illustrate behavior
modification principles, the authors attempt to provide
satisfactory answers to concerned individuals (parents,
teachers, etc.) about what can be done to change the behavior
of individuals who are given various labels (retarded, etc.)

-due to their undesirable behaviors be it deficits, excesses,

or inappropriatenesses. The authors also try to provide
students with an understanding of why certain behavior
modification procedures are effective and discuss ethical
issues in their use.

comments: [INSTRUCTOR'S COMMENTS]

Your answers to questions 6 and 2 are good; the answer to
question 10 could have been a bit better, but does cover
what was said about the objectives of the book in Chapter 1.
Therefore, this test is a pass.

However, you might note that a clearer statement of the
objectives occurs on p.xviii of the Preface.

-33-

3.3.2 Mastery Test

An extensive example of mastery test which was evaluated by the

instructor is as following:

VXN LN

D) = e et pd e e pd e
SOPNOOELPNRO

RRBRR

W WWRNNNN
N2 SV ®I&

Date: Fri, 25 Sep 87 14:25 CDT

To: PEAR

From: [StudentName#]S]

Subject: [Name] 09/25 9:20 Unit 4 : 3 6 17 ANSWERED PASS
Result: PASS

17.243 HUMANISTIC AND TRANSPERSONAL PSYCHOLOGY
Question 3:

According to Carl Rogers, what is a "field of experience" ?
Briefly describe the two limitations on awareness

. postulated by Rogers.
. Answer 3:
- A "field of experience" is the envelope surrounding

an organism in which the organism has the potential
to be aware of external stimuli. This field of

- experience includes all stimuli that the organism

can potentially conscious of whether it is or not.
Limitations on awareness include psychological

- limitations (or the willingness of the organism
. to be aware), and biological limitations (or

the capability of the organism to be aware).

Question 6: .
According to Maslow, what is "plateau experience" ?
How is it similar to and how does it differ

. from a peak experience ?

Answer 6:

. A plateau experience is the simultaneous perception of

. the sacred and the ordinary. Maslow

. referred to "plateau experience" as a state of unified

. consciousness. It is similar to peak experience in that the

- miraculous feelings or states are experienced by the individual

-34-

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.

but unlike the peak experience the individual

does not experience a feeling like an atomic blast from
the plateau experience. That is, a peak experience

is a much more intense experience but does not usually
last long (a few minutes to a few hours usually).

Question 17:

Who developed the theory of operationism ?

On whose theory was the doctrine based?

What was the name of this theory ?

Answer 17:

The doctrine of operationism was developed by Bridgman.
His theory was based on Einstein's theory of relativity.

comments: [INSTRUCTOR'S COMMENTS]

Your answers are very good. One minor point - on line

24 you describe an atomic blast. I hope you meant an autonomic
burst. PASS ENTERED.

3.3.3 The Use of Electronic Mail

The following are the two examples of the use of electronic mail. The

first example shows how a student requests help from the instructor about

the current test as following:

o O 00N ON U N e

Date: Wed, 04 Feb 87 20:58 CST
To: JPEAR
From: [Student.ID#NM]

In chapter 18, I was unable to think of examples for 3
categories of question 15. The categories were:

1. inappropriate environmental stimulus control.
2. inappropriate self-generated stimulus control.

3. problematic reenforcement contingencies.

- Could you start me in the "right direction" please ?
. Thanx, [Student.Name#NM].

-35-

To: [Student.ID#NM]
Subject: REPLY TO YOUR QUESTION

[Student.Name#NM],

1. An example of inappropriate environmental stimulus
control might be friends who exert a "bad" influence
on a child by, for example, encouraging him to
engage in trouble-making behavior.

2. An example of inappropriate self-generated stimulus

10. control might be statements the individual makes to

0 XONOG LN

11. him/herself which evoke undesirable behavior;

12. for example, saying to oneself "I have to smoke, drink,
13. and be rowdy or my friends won't like me."

14. 3. An example of problematic reinforcement

15. contingencies might be the contingencies provided

16. by the above individual's friends when they

17. reinforce him/her with their approval for smoking,
18. drinking, and being rowdy. I hope you find these
19. examples helpful in answering the question.

The second example illustrates how a proctor improves the clarity of

a test question as following:

Date: Sun, 27 Sep 87 20:30 CDT
To: PEAR
From: [Student.ID#PA]

Hi... I was proctoring a Unit 3 test and I found an
apparent ambiguity in question #13. It asks
"What two kinds of behavior does thinking
consist of from the perspective of radical behaviorism ?".
It seems that one answer could be "covert speaking and

. covert listening” and another answer could be

- "covert speaking and conditioned seeing";

it depends where in the text you look.

. What should the answer be ?

. [Student.Name#PA]

3 o o 3 e 3 o b o b ok b o 3B o 3 OB o 3 3 08 3 36 e 0

o O Q0 NI O U1 N

bt ped pd)
TN

-36-

16.
17.
18.
19.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

Reply from PEAR:

[Student.Name#PA]

What I had in mind when I wrote the notes was

the latter (except that I would include both covert and
overt verbal behavior under the rubric of "thinking").
You have to recognize, however, that the concept of
conditioned seeing can be broadened to include
conditioned sensing; e.g., conditioned hearing,
conditioned feeling, conditioned smelling.

I'm not sure exactly what you mean by covert listening;
if you mean it in the sense of conditioned hearing,
then it could be considered a type of thinking.

Or you might mean it in the sense of "hearing"

what one is "saying covertly" to oneself. I would
accept any of these as part of the answer

(with covert or overt verbal behavior being the other part)
if the student makes a good case for it.

3.3.4 Marking Verification

The following example shows an illustration of such a marking

verification requested by an instructor. Moreover, proctors may themselves

request verification of their marking.

S I NI

NP W

‘Date: Wed, 23 Sep 87 14:32 CDT

To: [Proctor.ID#BE, Proctor.ID#SI]

From: [Student.id#RN]

{Answers to questions of Test 1}

{Marked and passed by [ID#SI] on Wed, 23 Sep 87 18:33 CDT}

Date: Thu, 24 Sep 87 16:36 CDT
To: [Proctor.ID#SI]
From: PEAR

How do you justify giving this test a pass ?

It's not even clear what the question numbers are,
let alone the answers.

-37-

Date: Thu, 24 Sep 87 21:15 CDT
To: PEAR
From: [Proctor.ID#SI]

The question numbers are 2, 10, 7 and the answers
appear in that order. Although [Student.ID#RN] has
chosen to answer these questions in that order,
it is not a literate way to answer them. The test should be
revised into long answer form with question # headers.
S ek e NN NN

. Reply from PEAR:

OK. Please inform the student of this.

. Please try to give better feedback in the future; otherwise,

the student may do poorly on the midterm and final.

. Thank you.

O —
2S00 NS U0

pod et e ped
U wN

3.4 Summary

This chapter firstly describes how a CAPSI course is structured. The
students are informed in advance exactly how mastery and requirements of
the course will be assessed. Secondly, the general operation of the CAPSI
program which is designed to facilitate any course is -described. The way
students interact with the program and the major controls of the program
are brieﬂy~ described. Finally, there are various examples of the electronic
mails used in courses for the communications among students, proctors,
teaching assistants, and instructor. As will be discussed in the next chapter
on the design of CAPSI, the essential concepts, specification, file systems,

and finite-state modelling of the CAPSI program are addressed.

-38-

CHAPTER IV
DESIGN OF CAPSI

4.1 Engineering Concepts in CAPSI

CAPSI employs the engineering concepts [KiPe88b] of product
specification, design, utilization of technology, quality control, cost

effectiveness, and systems analysis.
4.1.1 Product Specification

In order to apply engineering concepts to education, learning is
considered as the intended product of education and is specified as clearly as
any other product. CAPSI, like PSI, has a clear specification of learning
objectives generally in terms of answering questions about or solving
problems relating to the course material. Hence, CAPSI can ultimately
achieve the specification of educational objectives in terms of student
performance in acquiring the substantive knowledge, conceptual skill, or

attitudes from the intended course.
4.1.2 Design

Firstly, CAPSI involves the design of the course objectives, such as
‘choosing the course material and setting up the student questions.

Secondly, CAPSI involves the design of ensuring the maximum number of

students will come close to meet the course objectives, such as designing a

-39-

self-pacing system for students to have a greater efficiency to master the

course material.
4.1.3 Utilization of Technology

Engineering is most characterized by the use of technology. The main
difference between PSI and CAPSI is the utilization of technology in
computer and its telecommunication capabilities. Essentially, CAPSI adopts
a modular approach to facilitate the integration of various technological

devices into CAPSI to maximize the learning of students.
4.1.4 Quality Control

Similar to any high-quality product, procedures are taken to insure
the highest quality of the student's learning. Firstly, built-in redundancy of
using two proctors is used to evaluate the mastery requirement of each
student's test. Secondly, passed tests evaluated by proétors are sampled by
instructor to ensure maintenance of the mastery criteria and feedback is
provided by instructor to the proctors. Thirdly, supervision is ensured that
students writing tests on terminals do not make unauthorized use of
materials or receive ‘unauthorized help. When unit tests are not
supervised, students are trusted not to cheat and required to write one or

more supervised examinations to insure quality of learning.
- 4.1.5 Cost Effectiveness
Cost effectiveness implies using the cheapest rate to gain the highest

-40 -

quality or using the available resources to the fullest. Firstly, CAPSI fully
utilizes the available students in the course to proctor other students. Thus,
proctor benefits from proctoring in enhancing his/her mastery of the
material and development his/her evaluative skills. Secondly, CAPSI fully
utilizes the computer to facilitate the course efficiently at a low cost. In

addition, further discussion about the cost of using CAPSI is in section 6.12.
4.1.6 Systems Analysis

With the ingredients of CAPSI precisely specified, data collected from
CAPSI can be used for later analysis, the effects of various components of

CAPSI on the student and system performances.
4.2 Problem Specification of CAPSI

CAPSI is programmed to be a computerized PSI with the following
programming requirements: |
1. CAPSI must keep a record on each student. Each student's record will

contain personal data as follows:

a) name,

b) student nuniber or student's computer account identification,

.¢) phone number,

d) faculty code,

e) year at university, and

f) status in course;

and course data as follows:

a) highest test unit the student has passed,

-41 -

b) number of test points earned (i.e., sum of the value of all tests
passed).

¢) number of proctor points earned (i.e., the product of the number
of times the student has proctored and the value of proctoring),

d) points earned on term project,

e) points earned on final examination,

)

total points earned, and

g letter grade (based on transformation from total points to letter

grades as defined by instructor).

CAPSI must keep a system parameter file which contains:

a) the number of units in a course,

b) the letter grade thresholds,

¢ the point value of passing a unit test,

d) the point value of proctoring a test, and

e) a question number limit in every unit test.

CAPSI must permit the instructor to»edit information in the student
and system parameter files at any time. Editing may be done on a
single record or sets of records on the specific field in the records.
CAPSI must regulate all test-assignment, proctor-assignment, and
test-outcome interactions during each class session, or during no
scheduled class: session, virtual classroom. The programming
. requirements and functions of CAPSI with or without the option of
class session are different and will be discussed in turn. Furthermore,
CAPSI continuously updates the information in the student file on
the basis of these interactions.

a) Test-assignment interaction.

i) The student may request a test from CAPSI in a class session

-42-

at any time. Provided that there are at least 20 minutes
remaining in the class period and that the student has not
received a restudy request within the previous 20 minutes,
CAPSI will comply by printing the numbers of three study
questions randomly chosen from the instructor-designated
categories of next unit test in which the student is eligible to
write on (i.e., the unit immediately after the highest unit
passed). The length of the session can be adjusted by
instructor.

ii) For virtual classroom, the student may request a test from
CAPSI at any time of any day. If the student has not received
a restudy within the previous one hour, the computer will
compile and mail the text of the three study questions
randomly chosen from next unit to the student by electronic
mail. Since there is no supervision on the student, he/she
must complete and return the test within one hour.
Otherwise, the test will be automatically cancelled and the
restudy result will be issued by CAPSI.

b) Proctor-assignment interactions.

When the student finishes writing the test, he/she requests

proctors. A eligible proctor is a student who has indicated to

CAPSI that he/she is willing to serve as proctor, who is not

currently proctoring or writing a test, who is still in his/her

restudy period, and who is qualified to proctor that unit by virtue

of having passed a test on the unit. From the list of eligible

proctors, CAPSI then select the two proctors with the lowest

number of proctor points. If more than two qualified and

-43 -

c)

available students have the lowest number of proctor points, the

proctors will be selected from them randomly.

i) If two qualified proctors are not available to proctor a given
test, a teaching assistant or instructor will be selected to mark
it, unless more than N tests are currently assigned to them
within a class session. Therefore, the student required
proctoring needs to wait and try again. For virtual classroom,
there is no limitation of N tests for teaching assistant or
instructor to mark tests.

i) A student who is willing to serve as a proctor in class is
expected to present in class. All proctors are automatically
signed off at the end of the class period, and any test that has
not been proctored by the end of the period is automatically
assigned to the instructor to be marked outside of class. For
virtual classroom, all proctors are expected to mark the tests
within 24 hours; otherwise, the instructor is noticed to mark
the outstanding test. |

iii) If a student decides not to write a test after receiving it,
he/she may cancel the test and it will not be marked. In this
case the outcome is automatically treated as a restudy result.

Test-outcome: interactions.

After the proctors marked a test, the two proctors (or teaching

assistant or instructor) enter the unit number and question

numbers, to verify that the test written was the one that was
assigned, and the result of the test. It will be one of pass,
conditional pass or restudy.

i) If the result is a pass, this is immediately entered in the

- 44-

student's record. The student is then immediately qualified
to proctor for that unit or any below it, and to write a test on
the next unit.

ii) For classroom setting, the pass and conditional pass results
are only functionally different for statistical purposes when
recorded in the log file otherwise they are treated the same.
For virtual classroom, a student has a conditional pass if
he/she make a minor error and corrected it after it was
pointed out by the proctor. The proctor waits for the
student's correction and marks again for the result.

iii) If the result is a restudy, the student must wait for at least 20
minutes of restudying time with class session or one hour of
restudying time without class session before attempting
another test on that unit. No proctoring will be assigned to
students within restudying period.

iv) If the student did not write the appropriate test, the result is
treated as a restudy. ’

v) If the proctor cannot verify the unit number and question
numbers of the test that was assigned for him/her to mark,
he/she can either reenter the result later or issue a restudy
result.

vi). An error correction feature should be available for
test-outcome interactions in case the wrong information is
entered accidentally.

During a given class period, a student may leave class before the end
of the period provided that he/she turns off the option of wanting to

be a proctor. A student of virtual classroom can also turn off the

-45 -

10.

proctoring option; otherwise, he/she has to check whether he/she is

assigned to be a proctor within 24 hours. Students violating these

requirements may be penalized by the loss of proctor points and/or
not being permitted to proctor for a certain period.

Students may have their course data printed out at any time for their

own information.

The following security precautions are necessary:

a) The instructor has a password to edit files, to start and terminate
the program during a class session, and to enter the results of
tests.

b) Teaching assistant has a password to enter the results of tests.

¢) Each student has a password to interact with CAPSL

d) The ability for the instructor, the teaching assistant, and the
students to change their passwords at any time.

Communication can be established by sending messages between

students, teaching assistant, and instructor. A message can be sent to

multiple destinations at the same time. ‘

For research purposes, CAPSI must permanently store the date, time,

and specific details of every interaction with it. Easy access to these

data must be available for examination and analysis in any desired

manner.

.CAPSI can be used by multiple users at the same time to access on a

shared database concurrently. In other words, mutual exclusion is
needed to be enforced when two students or more use CAPSI to
access the shared files. Therefore, concurrent programming
techniques and file system with exclusive capabilities are used to

develop CAPSL

- 46 -

11.

12.

13.

For virtual classroom, students, teaching assistants, and instructor
can access the CAPSI program from their computer accounts. CAPSI
can handle all the interactions between students and students,
students and teaching assistants, and students and instructor by
delivering and receiving electronic mails of the students' tests.
Students, if request, will receive fully described tests through
electronic mailbox from CAPSI.

CAPSI has the capability of monitoring the student activities
continuously. The instructor is noticed by descriptive messages from
CAPSI whenever student transactions occur. These descriptive
messages of transactions can accessed by the instructor on-line.

A number of utility programs are used to create, maintain, and
analyze the files. A format utility is used to allocate and initialize the
database for a course. Some maintenance utilities are used to list the
student records and security passwords, to enlarge the database when
it is full, and to archive the database on tape for backup purposes.
Some analytical utilities are used to analyze' the research data

recorded by CAPSI.

CAPSI was originally implemented for Professor Joseph Pear of the

Psychology Department, the University of Manitoba to be used in his course:
Behavior Modification Principles. The development of the CAPSI system

required considerable thought and effort since 1983.

CAPSI was designed to be simple to learn and easy to use especially

for those students who are the first time to use computer system or

computer-aided instruction. The instructions and messages from CAPSI to

-47-

students are descriptive and self-contained. CAPSI has to be efficiency and
low cost to run because high frequent calls are invoked by students. Finally,

high structured and well maintainable coding are required by CAPSL
4.3 Database Design

A database of a course is divided into four separated files which are
student record file, system parameter file, question bank file, and transaction
log file. A file is a collection of individual records which contain

interrelated fields of information.
4.3.1 The Student Record File Design

The student record file contains all records of students' personal and
course information. The key of the file is indexed by the student numbers
or student computer account identifications. A particular record can be
accessed immediately by providing the key of the student identification
using the method of Indexed Direct Access Method; or all the records can be
accessed by the ascending order of the student identifications using the
method of Indexed Sequential Access Method. The methods of direct access
and sequential access through the indexed keys are necessary for CAPSI to
have the following operations on a particular record or the whole records of
the students in a course:

1. Read operation allows CAPSI to retrieve data in a record,

2 Write operation allows CAPSI to create a new record,

3. Update operation allows CAPSI to modify data in a record, and
4

Delete operation allows CAPSI to eliminate a record from the file.

-48 -

Since CAPSI provides multiple users to access the file concurrently, the
above operations must have the exclusive capability to lock the accessing
record by preventing interference from another operation. Any operation
refers to a locked record will wait at that point until the record is unlocked
and then proceed. Multiple read operations on a record are allowed

provided that the operations read, without alter, the data.

There are three additional records stored in the student file with the
special student identifications of INST, EDIT, and TA. These records stored
the passwords for the instructor, editing privilege, and teaching assistant
respectively. All the student records, except the three reserved records, are
not only contain the personal and course data, but also contain the
passwords to log onto CAPSI. In addition, the student records contain their
current test and proctor states for the use of the finite—state machine which

is the heart of CAPSL.

In order to keep track of a student's data, the co‘hceptual structure of
the data dictionary looks like these:
1. Identification of the student by his/her student number or student
computer account identification: seven characters long.
Name of the student: thirty characters long.
‘Phone number of the student: seven characters long.
Faculty code of the student: two characters long.
Year of the student at the university: two characters long.
Status of the student in the course: three characters long.

Unit test that the student is currently reached: a numerical integer.

® N U oR W N

Question number one of the unit test: a numerical integer.

-49-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Question number two of the unit test: a numerical integer.

Question number three of the unit test: a numerical integer.

Test points of the student accumulated: a numerical decimal number.
Proctor points of the student accumulated: a numerical decimal
number. k.

Term project points of the student achieved: a numerical decimal
number.

Examination points of the student achieved: a numerical decimal
number.

Total points of the student accumulated: a numerical decimal
number.

Letter grade assigned according to the total points: two characters
long. |

Password associated with the student: eight characters long.

Proctor state of the student: a numerical integer.

Test state of the student: a numerical integer.

Another student identification whom is being proctored by the
student of this record data: seven characters long.

Resﬁldy time stamp of the student needed to fulfill when he/she is at
the restudy test state, or the test time stamp when he/she generates a

test: a time stamp of six characters long.

4.3.2 The System Parameter File Design

The system parameter contains all the information for a course. It

provides all students of the grading system and the test schedule of the

course. Moreover, CAPSI uses this file as internal storage which is

-50-

transparent to the students, teaching assistants, and instructor. The course

information can be concurrently retrieved by multiple students, but only be

modified by the instructor. There is only one record in thig file; and the

record can be accessed by Direct Access Method.

The conceptual structure of the system parameter record for the

course is as follows:

1.
2.

Number of units in a course: a numerical integer.

An array of question number limits of all units: an array of numerical
integers.

Points credited for passing a unit: a numerical decimal number.
Points credited for proctoring a test: a numerical decimal number.

An array of letter grade thresholds: an array of numerical decimal

numbers.

Other data which are defined to be used internally by CAPSI are as follows:

1.
2.
3.

Date stamp of the last session: a date stamp of six characters long.
Time stamp of the last session: a time stamp of six characters long.
Cutoff time stamp of the last session: a time stamp of six characters
long.

Current number of tests assigned to the teaching assistants and

instructor: a numerical integer.

Pointer to the teaching assistant who did the last marking: a

numerical integer.

Number of log records in the log file: a numerical integer

-51-

4.3.3 The Question Bank File Design

The question bank file contains all the unit tests with typed
descriptive questions. CAPSI randomly retrieves three questions of a unit
from this file when a student is allowed to generate a test. The student will
receive the test, with three questions copied from the question bank,
through electronic mail. When the student completed and hands in the test
through CAPSI, CAPSI will verify the same wording of the questions from

the student with the same questions from the question bank.

The question bank file is organized in a hierarchical tree structure
with all questions of a unit as leaf nodes, the unit as the parent of nodes,
and the course of all units as the root of the tree. This organization
provides quick direct access of questions by students and easy operation and
maintenance by the instructor. Students have no right to modify the
questions of any unit but to read the questions only. Figure 4.1 shows the

hierarchical tree structure of the question bank file.

-52-

Q1

U1

TESTS

u2

Q1

Fig 4.1. The hierarchical tree
structure of question bank file.

-53-

4.3.4 The Transaction Log File Design

The log file is the most important product of CAPSI to do research

work in the behavioral engineering. CAPSI chronologically records all

student transactions by appending the transactions at the end of the log file.

Furthermore, the file can be concurrently acquiring new research

information by as many students using CAPSI at the same time.

U N

10.

11.

The conceptual structure of the log record is as follows:

Type of the transaction record: one character long.

Identification of student being logged: seven characters long.

Test state at the time of transaction: a numerical integer.

Proctor state for the transaction: a numerical integer.

Highest unit test reached for the student at the time of the
transaction: a numerical integer.

Question number one of the current test; if this number is negative, it
indicates the proctor thought the question> was not answered
correctly: a numerical integer.

Quéstion number two of the current test: a numerical integer.
Question number three of the current test: a numerical integer.

Test points of the student at the time of the transaction: a numerical

decimal number.

Proctor points of the student at the time of the transaction: a
numerical decimal number.
Time stamp of the transaction logged: time stamp of six characters

long.

-54 -

12. Another student identification, whom is being proctored by or who is
proctoring the student of this transaction; or date stamp of the
transaction only for some special types of transactions: seven

characters long.

4.3.5 Type of Transaction Design

The type field in the log record determines the nature of the
transaction being logged. There are two basic types of transactions. Firstly,
transactions are caused by CAPSI interacting with students, teaching
assistants, and instructor. Secondly, transactions are written by CAPSI itself
when the log file is created, CAPSI is called and terminated, and a session is

started and terminated.

The types of transactions are designed as follows:

el

Transaction log file is created.
CAPSI is called.

CAPSI is terminated.

New session is started.

A session is terminated.

Test is generated.

‘Test is cancelled.

Test is wanted to be marked.

Proctor is selected to mark a test.

0 ® N e U oe W N

Pass result is entered.

T
- O

Conditional pass result is entered.

-
N

Restudy result is entered.

-55-

4.4 Finite-State Machine Design

The success of CAPSI can be attributed to the finite-state modelling of
all the transactions that take place during the course offered. The process of
course transactions can be described by two state transition diagrams, as
shown in Figures 4.2 and 4.3, representing test state and proctor state of a
student. The test states along with the proctor states determines the CAPS]

behavior once a student has logged on.
4.4.1 Test-State Transition Design

In the test state diagram, there are six distinguishable internal
configurations of CAPSI to identify the student's test statuses represented by
the circles. The directed arcs representing the transitions between the states

are triggered by inputs such as the action keywords in CAPSL

The test state transition diagram describes and summarizes the
process of a student to have his/her test from being generated to being
proctored. When a session started, a student is at an initial test state of not
writing any test. Since the student is not writing a test, he/she has an
optioh to proctor other students. State transition to the state of writing a test
if the student generates a test from CAPSI. The student will be at the
restudy state, of not being allowed to issue a retest until the restudy period

“elapsed, if he/she voluntarily cancels the test or is automatically cancelled
the test by CAPSI for not returning the answered test within an hour. The

state of no mark yet is transited to when the student wants the test to be

-56 -

marked and has proctors assigned but has no result replied. While the
student waits for the result, he/she has the option to proctor other students.
If only one pass result is given by a teaching assistant or instructor, the
student passes the test and will be at the final state, same as the initial state,
of not writing any test. On the other hand, the student does not pass the test
marked by a teaching assistant or instructor and needs to restudy and
rewrite the test again. If the test is marked by the first proctor, the student
will enter the state of having either one pass or one fail. While the student
is waiting for the other result from the second proctor, he/she has the
option to do proctoring for others. In case of the second proctor does not
mark the student in some reasons, the instructor can issue a pass or a fail to
the student for his/her final test result. Otherwise, the student needs both
passes from the first and the second proctors in order to finally pass the test.
The student will be at the restudy state if only one of the proctors fails the
test of the student. In this case, the student is required to restudy his/her
material within the restudy period and then allowed to write the same unit
test. No proctoring is allowed by the student when he/ she is restudying the

material or writing a test.
4.4.2 Proctor-State Transition Design

- In the proctor state diagram, there are three states with the initial
state same as the final state of not proctoring and not available for
proctoring. A student has an option to choose whether he/she is willing or
- not willing for proctoring. The student may be selected to proctor if he/she
is willing and will be at the state of proctoring. Once the student finishes

proctoring, he/she will choose his/her availability for further proctoring.

-57-

PASSED BY,

START

WRITING

. WANT TEST
\MARKED

NOT WRITING NOT MARK

WAITED FOR
RESTUDY

PROCTOR
ANOTHER PASSED PROCTOR
STUDENT BY PROCTOR ANOTHER
STUDENT
FAILED FAILED
- BY
PASSED BYPROCTO PROCTOR
BY INST
PASSED
BY INST

FAILED
BY INST

PASSED
BY INST

Fig 4.2. Test state transition diagram of CAPSI.

-58-

START

WILLING

AVAILABLE
FOR
PROCTORING

PROCTORING

NOT WILLING

FINISHED
AND

FINISHED AND'\ WILLING

NOT WILLING ,
SELECTED

PROCTORING

Fig 4.3. Proctor-state transition diagram of CAPSI.

-59.

4.4.3 Formal Definition for the Test-State Transition

The above two transition diagrams can be mathematically described
by the definitions of finite-state machine. A finite-state machine is
formally defined by a 5~tuple [HoU179]

M=(Q, % 3, qu F),
where Q is a finite set of states,

% is a finite input alphabet,

9o in Q is the initial state,

F is a subset of Q and is the set of final states, and

d is the transition function mapping Qx X to Q (i.e., & (q, a)is the

next state for each state q and input symbol a.)

Let Mt be the formal definition of the test state finite-state machine.
First of all, different test states are assigned with state symbol q as follows:

Qo is the initial state of not writing a test,

q; is the state of writing a test,

q2 is the state of getting no result from any proctor,

qs is the state of getting one pass result from a proctor,

qq Is the state of getting one fail result from a proctor,

gs is the state of getting the restudy result.

Secondly, different causes of each state transition are assigned with a
“finite input letter alphabets as follows:
a is the input symbol of generating a test,

b is the input symbol of wanting a test to be marked,

- 60 -

¢ is the input symbol of cancelling a test,

d is the input symbol of test being passed by a proctor,

e is the input symbol of test being failed by a proctor,

f is the input symbol of the restudy period waited,

g is the input symbol of proctoring another student,

h is the input symbol of test being passed by instructor,

I is the input symbol of test being passed by instructor.
From above, Q, £, and F are known as follows:

Q=1{q 9 @ 9@ 94 g5},
Y =

the set of states,
{a, b c d e f g h i}, thesetofinput;and
F = {qO }l

Therefore, My is formally defined as

the set of final states.

MT= ({qO' q1/ Ch, q3/ CI4, %}, {al b/ < d/ e, f/ g, hli}l 8; qOI {qO})r

where

0(qy b)=q, 8(q, c)=q5, 3(qy e)=gs,
0(qy d)=q3, 8(qy, e)=qq, 3(q, h)=qq,
0(qy i) =q5, &(q, g)=qp, |
0(qs d)=q, 8(qye)=qs, 8(qy h)=qp,
8(qs 1) =q5, 8(qs g)=qs,

5 (qy d5=q5, 6(qy e)=qs, 8(qy h)=qp,
0(qs i) =q5, 8(qy g)=qu,

3(qs, f)=qp

The transition diagram of this finite~state machine is shown in Figure 4.4.

6(qO/ a)qul

5(% g)=q0l

-61 -

Fig 4.4. Finite—state machine of test-state transition diagram.

-62 -

4,44 Formal Definition for the Proctor-State Transition

Let Mp be the formal definition of the proctor state finite—state
machine. The proctor states are assigned as follows:

qo is the state of proctoring not available,

q: is the state of proctoring available,

Q2 is the state of proctoring another student's test.
The input alphabets are assigned as follows:

a is willing to proctor,

b is not willing to proctor,

¢ is selected to proctor,

d is finished proctoring and willing to proctor,

e is finished proctoring and not willing to proctor.

The set of final statesis F = {qq}.

Therefore, Mp is formally defined as
Mp = ({qo, qu @), {a, b, ¢ d e}, § qp {qo))
where |
8(qp a)=qp,
3(qub)=qy, 8(q, c)=q,
8(qy d) =q;, 8(qy e)=qp.

The transition diagram of this finite-state machine is shown in Figure 4.5.

-63-

START

Fig 4.5. Finite-state machine
of proctor-state transition diagram.

-64-

4.5 Summary

Firstly, this chapter presents the engineering concepts embodied in
CAPSI. Starting with learning as the product of education, CAPSI attempts
to enhance the educational process through product specification, design,
utilization of technology, quality control, cost effectiveness, and systems
analysis. Secondly, the problem specification of CAPSI described in this
chapter summarizes the major designs and programming requirements of
the CAPSI program. The program is designed to be simple to learn and easy
to use by students. Thirdly, the design of the major files in CAPSI database
Is characterized by its function and data dictionary. The types of transaction
record determine the nature of the transaction being logged and indicate the
nature of the student activities in course. Finally, the finite-state modelling
of all the transactions taken place in course is described by the state diagram
and by the mathematical definition. The finite-state modelling is the most
essential part in the CAPSI program and contributes the success to the
program. In the next chapter, the actual implemehtation of CAPSI in

hardware and software is presented.

- 65 -

CHAPTER V
CAPSI IMPLEMENTATION

5.1 Hardware System

CAPSI is running on the mainframe computer operated by the
University of Manitoba Computer Services Department. The mainframe is
an Amdahl 580/5870 dual processor CPU with 48 megabytes of main
memory and 26.6 gigabytes of disk storage. The 5870 partitions itself into
two logical CPU domains providing multiple operating environments of
MVS370 (Multiple Virtual Storage) running IBM's MVS SP 1.3.3 with JES
SP 1.3.0 (Job Entry System) and of VM370 (Virtual Machine) running IBM's
VM/SP 5.09 for UTS 580 1.2.1 (Amdahl's UNIX) and CMS (Conversational
Monitor System). The MVS370 provides the environment for the TSO
(Timesharing Option), IMS (Information Management System), Library
on-line systems, batch jobs, all printing and almost all communications

with remote computers.

CAPSI has been implemented in IBM's Optimizing PL/I
(Programming Language I) Release 4.0 programming language on the TSO
operating system which supports up to 450 concurrent users primarily on
ASCII terminals. CAPSI has been developéd on a local editing system called
MANTES (MANitoba Text Editing System) which provides an efficient file
~ structure, editor, query facility, mail facility and also interfaces to the batch
system for job submission and retrieval. All the features of TSO are

available either directly or indirectly through MANTES. TSO users can

- 66 -

interactively access other computer sites on the DATAPAC, TELENET and
TYMNET networks and can also send and receive messages and mail to
many other university and research institutions all over the world via the

NETNORTH (BITNET) system.

CAPSI can be accessed through TSO terminals on campus or by the
telephone dial-up modems operation at 300, 1200, or 2400 baud via the
UMnet, the campus wide data network. On campus, students and staffs can
access CAPSI through 900 ASCII terminals and 250 microcomputers

supplied and maintained by the Computer Services.
5.2 Software Implementation
5.2.1 Overview of the CAPSI Software Evolution

CAPSI was originally coded in 1800 PL/I executable statements by
Frank Herzog for the computer management of PSI course in 1983. At that
time, the program could only be called from one terminal at a classroom to
allow a number of students lining up to access their accounts. This program
performed the basic functions such as managing the student records and the
system parameter record, controlling the student transactions, and logging
down the student activities. This program was tested and amended

extensively for two years.
Since 1985, the author of this thesis has contributed many major

improvements to the code as well as the research in CAPSL. Due to limited

access to CAPSI, it was under major reconstruction of the logic of the

-67 -

program and the structure of the database in order to allow multiple users
accessing the shared database concurrently. The concurrent programming
techniques were integrated into the logic of the program. The PL/I locking
and unlocking features were enforced on the retrieval and modification of

the shared records within the database.

Furthermore, the facility of monitoring student activities was added.
The instructor had the capability of continuously monitoring the student
activities from his terminal even though the instructor might be hundred
of kilometers away from students in the case of distant education. The
instructor could monitor the student activities and work on the CAPSI
simultaneously such as doing some editing or marking. This facility was
made possible by the multi-tasking feature of PL/L Actually, a background
task was invoked and was executing concurrently with the main CAPSI
program to examine the log file periodically. The priority and

synchronization of tasks were also integrated into the program logic.

Another facility of sending messages between CAPSI users was added.
This facility allowed the students in distant education to communicate with
the instructor by sending messages instead of by using the telephone. This
facility was implemented by the interfacing of the high level language PL/1
with the low level language OS/360 Assembler Level G.

The changes from single user to multiple users and the new facilities
- were made at the end of 1985. Hence, the coding of CAPSI was increased to
2800 PL/I and 100 assembler executable statements. The version of CAPSI

was tested extensively and conclusively for two years by actually using it to

-68 -

offer PSI courses.

With the evolution of electronic mail, CAPSI was further extended to
be called from the students' TSO accounts at the rﬁiddle of 1987. A smaller
version of CAPSI was introduced for students to access only the control of
student session. Since the students could access the CAPSI by any time and
any place, the constraints of spatial and temporal limitations of traditional
PSI course were released. At that time, the students typed their answers on
the files and electronically mailed them to the designated proctors, teaching
assistants, or instructor. The test questions of all units in written form were

prescribed to all students at the beginning of the course.

At the end of 1987, the mailing facility was fully integrated into
CAPSI so that the students were no longer needed to mail out the test paper
by themselves. The transparency of the test delivery was handled by CAPSI
through submitting a background batch job interfacing with MANTES for
the electronic postal services. The batch job was made use of the system
dynamic allocation routine, SVC 99, interfacing with the high level

language PL/I and the system reserved file INTRDR for job submission.

Moreover, this version of CAPSI allowed the instructor to have a
question bank to store all the test questions of all units of a course into a
MANTES group file. The students could read the questions on-line. When
a test was requested by and generated for a student, the typed questions were

- included on the electronic test paper. Whenever a test was generated, the
selected questions were retrieved from the MANTES group using the NAM
Access Method (NAMAM) supported by the Computer Services. This

-69 -

version of CAPSI was tested and used heavily throughout a year of courses

offered.
5.2.2 Program Structure of CAPSI with Classroom Setting

There are two main versions of CAPSI: with or without the
classroom setting. The original CAPSI with the main control menu is
designed to be used in a classroom. CAPSI is further extended to even no
classroom setting. First of all, the version with the classroom setting is

described through the structured charts.

The organization of the program using structured charts [Page80] are
illustrated in Figures 5.1.a to 5.1.g. The charts of the program are divided
into groups of activities corresponding to the choices of the main control
menu. The functions of these activities are performed by the following

modules.
5.2,2.1 Initialization and Terminal Control

As shown in Figure 5.1.a, the initialization module first initializes all
the variables and opens the student file, system parameter file, and
transaction log file, then logs down the user identification with date and
time, prints out the welcome messages, and calls the terminal-control
module. Following the initialization, the terminal-control module is
 responsible for displaying the main control menu and performing a
subroutine call according to the choices entered by the teaching assistants or

the instructor. The first two choices are for starting and terminating a

-70 -

session.

A student session can be continued or started by the instructor. The
module of the start session enquires the instructor for the choices of
continuing the old session or starting a new session, and the cutoff time of
the session. If a new session is required, all students will be initialized to
their initial states of not writing or proctoring. Then, the student

transaction processing is handled by the student session control module.

The session is ended by providing the security password protection
from the instructor. The end-session module lists out the unmarked tests,
logs off the proctors by initializing their proctor states, logs down the
end-session date, and records the information that this session is ended.
Finally, exiting to the operating system is provided by the last choice of the

main control menu.
5.2.2.2 Student Session Contrql

The session—control module is shown in Fig. 5.1.b. This module
loops and prompts for valid student identification and associated password.
Once the valid student identification is typed in, the corresponding student
record is retrieved in order to verify the password field in the record with
the logging on password. The instructor or teaching assistants can sign on
with the reserved identification INST or TA to terminate the control of

- session and return to the main control menu. If the reserved identification
MAKER signs on instead, the control of session goes to the module of

marking test by teaching assistants or instructor. It is a convenient and easy

-71-

way to access the marking-test module instead of getting out of the session

and calling the marking-test module through the main control menu.

After a student signs on, the session—control module looks at the test
and proctor states of the student to determine which prompts to be printed
and what actions to be performed. The action table is used to determine
which one of the three actions to be performed. Firstly, the student has no
unmarked test and no restudy restriction; he/she should be prompted to
generate a test. When the student requires a test, three question numbers
from the unit that he/she is writing are randomly selected by method of
pseudo-random technique which is a combination of linear congruential
and shift register techniques. The question numbers are displayed on the

terminal.

Secondly, the student has generated a test but has not selected
proctors; he/she should be prompted to cancel the test or have the test
proctored. If the student cancels the test, the proctor state of the student will
be set to restudy state. When the student requires the test to be proctored, a
teaching assistant or instructor or two student proctors are selected
according to the proctor selection algorithm mentioned before. The names

and the identifications of the proctors will be displayed on the terminal.

Thirdly, the student has been selected to proctor the test of another
student; he/she is prompted to enter the unit number and the question
- numbers of the test for verification and then to enter the result of the
marking. The marking student will be notified if the test he/she supposed

to mark has already been marked by the instructor.

-72-

A transaction log record is built from the type of transaction and the
information of the student record which is conditionally updated with a
processing (transaction) state indicator. Based on the student record and the
type of transaction, the transaction is executed according to a state machine.
During the execution, the student record is updated and the transaction log

record is retained in the log file for future research and analysis.
5.2.2.3 Student Edit Control

Figure 5.1.c shows the student edit-control module. Secure editing
control of students' personal and course information is important in the
academic environment especially for the students' course results. Editing
password is required for the security protection. The module allows the

instructor to create, delete, and list student records.

No duplication of student records with the same student
identification is allowed in the process of creating new students. A new
student record is indexed into the student file in the ascending order by the
student identifications. All the fields of the new student record are entered

by the instructor interactively.

A student record can be permanently deleted from the student file.
Fortunately, a verification is provided for safety in case of deleting the
~ record by mistake.

A student record or all the student records can be listed. If a valid

-73-

student identification is entered, the information of this student is listed.
All the students' information are listed when the reserved identification
ALL is entered. When a student hits the attention button on the terminal
while the information of student records is listing, a choice to continue or

quit the listing is provided.

Moreover, the student edit-control module performs the functions
of editing the student personal information as well as the course
information. Firstly, a student identification is entered for changing the
personal information. After then, a specific field can be selected and altered.
The changing of the personal passwords is much the same is the
replacement of other fields. Except, if it is the password of teaching assistant
or instructor or the password for editing, a validation of instructor password

is performed before any of such passwords to be altered.

Secondly, the function of editing the student course information is
provided since the adjustment of student marks is likely to occur during the
course. After selecting a course field to be altered, all students of this course
field can be altered and stepped through one by one according to the student
identification provided. The total points will be automatically recalculated
and the letter grade will be readjusted when the course information of
proctor points, test points, term points, or examination points is altered.
When the course field of the highest unit reached is altered, the internal test

and proctor states of the student will be initialized.

-74 -

5.2.2.4 System Parameter Edit Control

Figure 5.1.d shows the system parameter edit-control module. To
preserve the system integrity, the system parameters are accessible either to
the instructor or designated teaching assistants only. Edit password
protection is enforced for editing of the system parameters. This module
allows the instructor to change the thresholds of the letter grading system
and to set up the points for passing a unit and proctoring a test. In case of
the threshold of letter grade being altered, the letter grades of all the
students are recalculated. Whenever a student's mark is increased, his/her
letter grade is recalculated as well. The total points of the student is
compared to the system list of threshold values starting at the letter F and
working up the letter A+. The last threshold in the system list which is less
than or equal to the total points determines the new letter grade of the
student. If the points for passing a unit and proctoring a test are altered after
the course has been started for some time, the previously accumulated unit
and proctor points will not be recalculated. However all tests passed and

proctored subsequent to the changes are worth the new values.

5.2.2.5 Mark Student Control

Figure 5.1.e shows the mark-student control module. Illegal
marking is prevented by security password protection. This module can
also be invoked from the student session-control module whenever the
-feaching assistants or instructor signs on using the reserved identification

MAKER.

-75-

This module performs three functions. Firstly, it can list out the test
status of any student, or list out all the students that are writing a test or
waiting for their tests to be marked. Secondly, it lists out the students who
have no student proctors assigned but have the instructor or the teaching
assistants as their markers. The students who are still writing a test will also
be listed. The first two functions of the module facilitate the instructor and
teaching assistants to handle the whole situation of the session as well as to

provide a list of their job duties.

Thirdly, the module allows the instructor or teaching assistants to
have a full control of the marking of any students. The result of pass,
conditional pass, or restudy can be graded by the instructor for the student
who is waiting for the instructor or teaching assistant as the marker, or even
writing a test, or waiting for the first or the second proctor to reply the
result. The instructor or teaching assistants have the full privilege to
override any result previously entered by student proctors, although the
proctors still retain their proctor points. Once the result is entered, the
internal states and course information of the student are updated and a

permanent transaction record is logged. -
5.2.2.6 Send Messages Control

Figure 5.1.f shows the send-messages control module. This module
provides message sending between TSO users. Several user identifications
‘with no embed blank or comma between the user identifications can be
“entered for the designations of the message sending. More than one line of
the message can be entered and terminated by a null or blank line. No user

identification for designation, no message, or pressing an attention button

-76 -

on terminal when a message is entering will terminate this module.
- Otherwise, the message is sent to the designations with the valid TSO user
identifications by an assembler routine. This routine actually uses a TPUT
Macro of the OS/360 Assembler to issue a terminal output to the given
userid designation. An echo message of each delivery is replied for its

success and failure.
5.2.2.7 Monitor Student Control

Figure 5.1.g shows the monitor-student control module. This
module provides facilities to list the log file from a given starting date to an
ending date, and provides turning on and off capabilities to continuously

monitors the students from looking at the log file in every period of time.

Firstly, the transaction log records can be browsed throu.gh and
translated into descriptive form by providing the module with the starting
and ending dates in the syntax of YY/MM/DD. If the ending date is earlier
than the starting date, nothing will be listed. In other case, the whole log
file from the day it created will be listed when the starting date is entered a
zero. If a starting date is given, it should be between the creation date of the
log file and the last date recorded on the log file. Since the log file is usually
large to hold at least 5000 records, an efficient search method is adopted to

locate the records with the specified date.

The search is started from either the beginning or the end of the log
 file depending which end is closer to the starting date. The search uses an
asynchronous file handling to reduce the search time. Since retrieving a

record from a file is slow compared with the computing speed of the CPU,

the asynchronous file handling allows multiple of records to be retrieved
concurrently. Conventionally, a record retrieval is handled one after
another retrieval. The waiting time between the two records actually
accessed is much longer than the accessing time of ‘the records. This waiting
time can be eliminated by retrieving multiple records at the same time
without waiting one retrieval after another. The synchronization of these
asynchronous retrievals is critical. The date comparison in the searching
process can be done right immediately after an asynchronous retrieval is

arrived.

While the transaction log records are listing, a choice to continue or
quit the list is provided by hitting the attention button on the terminal. The

total number of transaction log records is displayed at the end of the listing.

Secondly, the monitor-student control module provides facility to
continuously monitor the student activities. The monitoring is turned on
by calling a background routine which runs simultaneously with the CAPSI
program and monitors continuously the log file in evéry 5 seconds of time
interval. The background routine can be turned off by the instructor
through a switch of a global variable which is shared between the CAPSI
program and the background routine. This background routine will reduce
its priority when no record is written on the log file by every 10 minutes and
will turn itself off when after half an hour of idle time with no record
written on the log file. The synchronization of the turn on and turn off is
critical and accomplished by a built-in function checking the completion
 stage of the background routine. No second times of turn on and turn off is

allowed and controlled by the module.

-78 -

COMMAND PROCESSER

RETURNFROM 7 g |-LOOP
SESSION OR EDIT

INITIALIZE
- INITIALIZE ALL VARIABLES
- OPEN STUD FILE,

TSO/MANTES —1 SYS FILE AND LOG FILE.

- RECORD USER ID,
DATA, TIME
- PRINT SIGNON BANNER
- CALL TERMINAL CONTROL

TERMINAL CONTROL

- GET CHOICE
-DO CASE

- PRINT MAIN CONTROL MENU

“oocel

- READ LAST CUTOFF TIME | |END SESSION
- CHECK OLD/NEW SESS - VALIDATION PASSWORD
- GETNEW CUTOFF TIMe | |- 1S THE SESSION ENDED 2
INITIALIZE - LIST OUTSTANDING TEST]
- CALL SESSION CONTROL | |- LOG OFF PROCTOS
INITIALIZE STUDENT INITIALIZE STUDENT
- RECORD DATE PROCTOR STATE
-OPEN STUDENT FILE || |- RecorD TiME
- UPDATE ALL STUDENT]{ |- OPEN SYSTEM, STUD

TO INITAL STATE FILES

LoG STUD
FILE FILE

STUD
FILE 1

&{ TERMINAL /O

MODULE

DATEBASE

ACCESS CA_L“
o
DATA

S V=N

0 SELECTION

Fig. 5.1.a-g. Structured chart for CAPSI with classroom setting.

(a) Initialization and terminal control modules.

-79-

STUDENT SESSION

CONTROL
- INITIALIZE ACTION TABLE

- LOOP
- GET STUDENT ID
- GET PASSWORD
- GET STUDENT RECORD,
VALIDATE PASSWORD
- DO CASE
CHOCE o=
a STUDENT TRANSACTION ®
- PRINT COURSE INOFORMATION
X - CHOICE TO PROCTOR
<F - ACTION ACCORDING TO STUD STATH
pp—
\1 BUILD
- ACCORDING TO FOR STATE
NFORMATION | [PROGTOR OPTION ACTION TABLE MACHINE
GET REQUEST | |. PRINT CHOICE | | - gﬁfgiﬁ ANS % l
PRINT STUD - GET CHOICE) '
DATA STATE MACHINE
‘ @ - EXECUTE TRANS
- - UPDATE STUD RECORD
@ REQUEST TEST
- CHECK RESTUD SELECT PROCTOR
- GENERATE TEST|{ (E;E'ET TEST MARK STUDEN fL:éGoom l 3STUD
MARKED - VERIFY BY RECORD
) UNIT AND APPEND| |REWRITE
L QUESTION # RECORD| |RECORD

®

b

® &

Fig. 5.1.b. Student session control module.

-80-

STUDENT EDIT

CONTROL
- VALIDATE PASSWORD
- IF NECESSARY
- PRINT MENU
- GET CHOICE
- DO CASE _
CREATE, DELETE, EDIT,
LIST, EXIT

’ IST STUD
REATE STUD DIT PERSONAL L GET ID
L GET INFO r GETID L LIST STUD
L WRITE REC r DO CASE DATA
- EDIT FIELD
EDIT COURSE ¢
DELETE ‘ -GETID
-GETID - DO CASE @
- DEL STUD @ -EDIT EIELD
UPDATE 1/
RECCRD

Fig. 5.1.c. Editing student module.

-81-

- LIST

SYSTEM PARAMETER

EDIT CONTROL
- VALIDATE PASSWORD
- GET CHOICE
- DO CASE

- TOTAL UNIT #

- LETTER GRADE THRESHOLDS
- UNIT POINT
- PROCTORING POINT
- QUESTION LIMITS

STUD
RECORD

SYSTEM
RECORD

- UPDATE
STUDENT
GRADE

- UPDATE
SYSTEM
PARAMETER

Fig. 5.1.d. Edit system parameter module.

-82-

MARK STUDENT
CONTROL
- VALIDATE PASSWORD
- IF NECESSARY
- PRINT MENU
- GET CHOICE
- DO CASE
- LIST TEST & STATUS
- LIST TESTS FOR MARKER
- MARK STUDENT

" GET MARK SE
LIST TEST & -GETSTUD ID FIGa
STATUS - GET MARK
- GET INFORM LIST TESTS
FOR MARKER
¢ ./
1

Fig. 5.1.e. Mark student module.

-83-

SEND MESSAGE

CONTROL
- GET MESSAGE
- GET IDS
- LOOP
- GET LINE
-LooP
- GET IDS
- SEND MESSAGE
- VERIFY SUCESSES

MESSAGE % USERID

BUFFER

O—2
ASSEMBLER ROUTINE

SEND

- PARM ADDR PASSING
- CALL TPUT MACRO
- SET UP RETURN ADDR
- RETURN

Fig. 5.1.f. Send messages module.

-84-

LIST LOG
r GET FROM &
TO DATES

‘_/

MONITOR STUDENT

CONTROL

- IF NECESSARY
- PRINT MENU
- DO CASE
- LIST LOG
- TURN ON WATCH
- TURN OFF WATCH
- EXIT

TURN OFF

WATCH
. : - CHECK
WATCH LOG COMPLETION
- LIST LOG
- PRIORITY
- RUN EVERY
5 SECS

Fig. 5.1.g. Monitoring student module.

-85-

INITIALIZE

- INITIALIZE ALL VARIABLES
- OPEN STUD FILE,

SYS FILE AND LOG FILE.
- READ IN PARM

TA IDS, STUD ID
- PRINT SIGNON BANNER
- CALL SESSION CONTROL

| G

SESSION CONTROL

- INITIALIZE ACTION TABLE
-LOooP

- GETID

- GET PASSWORD (3 TIMES)

- VALIDATE PASSWORD
- DO CASE

- INST, TA, MARKER

- STUDENT

- INCORRECT PASSWORD

REDIRECT
LATE
PROCTORING

N

0 v SE s
»- _ FIG 1.6 FIGb

Fig. 5.2.a-b. Structured chart for CAPSI without classroom setting.

(a) Initialization and session control modules.

STUDENT TRANSACTION
- PRINT COURSE INOFORMATION
- CHOICE TO PROCTOR
- ACTION ACCORDING TO STUD STATE|

\ P T——
BUILD
PERFORM ACTION TRANSACTION
- ACCORDING TO ;?\'QSLPETE
NFORMATION | [PROCTOR OPTION Dgcgg‘é TABLE :
GETREQUEST | . PRINT CHOICE - BUILD TRANS 3
PRINT STUD -GET CHOICE -
DATA STATE MACHINE
L @ L EXECUTE TRANS
- UPDATE STUD RECORD
@ REQUEST TEST
- CHECK RESTUD
 GENERATETES SELECT PROCTOR ARK STUDENT LOG STUD
! L GET TEST
UNIT AND APPEND| |REWRTE
QUESTION # RECORD | |RECORD

® :

GENERATE TEST @ @
-3 QUESTIONS v
ol T
MAIL QUESTION 4 - READ TEST
- READ QUEST . v - BATCH MAIL
- BATCH MAIL
. BATCH MAIL v
- SUBMIT JOB | | gaTCH MAIL
BATCH MAIL - SUBMIT JOB
- SUBMIT JOB

Fig. 5.2.b. Student transaction module.

-87-

5.2.3 Program Structure of CAPSI without Classroom Setting

Another small version of CAPSI is designed and used in virtual
classroom, without classroom setting. The structured charts are illustrated

in Figures 5.2.a and 5.2.b.
5.2.3.1 Initialization and Session Control

As shown in Figure 5.2.a, this control module is a combination of
initialization module and session-control module from the version of
CAPSI with the classroom setting but having many improvements and
modifications. Since this control module can be accessed and called by

students, all the unnecessary and privileged modules are eliminated.

The initialization part of this module is much like the initialization
module from the version of CAPSI with the classroom setting. Except, this
module opens up more internal files for sending and receiving mail, and
for retrieving questions from the question bank. Moreover, the user
identifications of the teaching assistants, the instructor, and the student
invoking this module are passed into the CAPSI through a parameter. The
student identification is used as a sender address of the electronic mail. The
user identifications of the teaching assistants and instructor are used as the
mailing designations of the test when one of these identifications is

-successively selected as a marker.

The session-control part of this module is much like the

-88-

session-control module of the version of CAPSI with classroom setting.
Except, three attempts of a valid student identification and three attempts of
the associated password of a given valid student identification are allowed
in every time this module is invoked; otherwise, the module terminates
itself for preventing further illegal attempts. There is an additional
function that the instructor can list out all the unmarked students who
waited over 24 hours. Finally, this module calls the student-transaction

control module.
5.2.3.2 Student Transaction Control

As shown in Figure 5.2.b, the function of the student transaction
control is like the one in the version of CAPSI with classroom setting, but
the electronic mailing facility is fully implemented into this version of

CAPSL

When a student generates a test, he/she no longer only receives the
three question numbers on the terminal, but receives an electronic test
paper with the three questions typed onto it. The student then types in the
answers of the question onto this electronic test paper. When the student
requests the test to be marked, he/she no longer only receives the proctor
names and identifications on the terminal, but the answered test will be
electronically mailed to the two proctors as well as the instructor. A
validation of the question text is made before mailing out the test to the

- proctors; it avoids the student to change the questions by him/herself.

A student assigned to proctor will receive an answered test through

-89 -

the electronic mailbox. The proctor then makes comment on the test and
calls up the this version of CAPSI to enter the result. After the result is
entered, the marked test will be automatically mailed to the student who

wrote the test as well as to the instructor for test record keeping.

The integration of the mailing facility is implemented by several
modules functioned as mailing out the test questions, mailing out the

answered and marked test, and submitting batch job for mailing services.
5.2.4 The Programming Language Employed

IBM's Optimizing PL/I programming language is utilized to
implement the CAPSI on the TSO operating system. PL/I (Programming
Language I) is the first of the very large and powerful multipurpose
programming language used for both the scientific and business problems.
In 1964, PL/I was attempted to incorporate many notable features and
concepts from Algol 60 (ALGOrithmic Language 1960); COBOL (COmmon
Business-Oriented Language), Fortran (FORmula TRANslation), and other
earliest laﬁguages. Almost all of the conventional and special features of
IBM's Optimizing PL/I are employed to develop and implement the CAPSI

program.
5.2.4.1 Conventional Features
PL/I provides a fixed set of built-in types (i.e., integer, real, boolean,

character, bit) as well as mechanisms for structuring more complex data

types starting from the elementary ones (i.e., record structures, arrays,

-90 -

pointers). The related fields of a student are grouped into a structured
record, so the entire record given a name can be used to refer to the whole

sets of the student fields.

DCL 1 STUDENT,
21D CHAR(?7),
2 NAME CHAR(30),

®

]

2 PASSWORD CHAR(?);

Besides the use of pointers, PL/I allows a variable of any kind of data
type to be dynamically allocated and free whenever it is required in the
program. For example, the unlimited size of the message buffer in
send-messages module is implemented in this way of dynamic allocation.
Whenever the buffer with the preassumed size is full, a larger size of
another buffer is allocated dynamically and then the whole message is
copied back from the full buffer to the new buffer by using a temporary

buffer.

. DCL (SIZE,MORE) INTEGER INIT(100);
DCL BUFFER CHAR(SIZE) VARYING CONTROLLED;

ALLOC BUFFER;

if BUFFER is full
temp=BUFFER;
SIZE=SIZE+MORE,;
FREE BUFFER;
ALLOC BUFFER;
BUFFER=temp;

end if

new buffer with extended size

-91-

The IBM's PL/T allows an argument string of 100 characters or less to
be passed to the PL/I main program while the program is invoked from
TSO. In the case of CAPSI, the important information of the TSO user
identifications of teaching assistants, instructor, and the student invoking

CAPSI are passed into CAPSL

MPSI : PROC(PARM) OPTIONS(MAIN);
DCL PARM CHAR(100) VARYING;
. @

®

retrieve user identifications from the parameter PARM

To pass the parameter string in TSO:

CALL PSLLOAD(member name)' '/argument of

the user identifications'

PL/I provides a full set of built-in function‘é to support all its
conventional and special features. The built-in functions that CAPSI used
can be cléssified into arithmetic, string-handling, condition-handling,
muti-tasking, and miscellaneous. The miscellaneous built-in functions
used are the PLIRETV interfacing with the assembler language, and the
DATE and TIME interfacing with the system clock. The string-handling
built-in functions simplify the processing of bit and character strings. These
functions are used in quite a number of places in CAPSI such as the bit
~manipulation for the pseudo-random number and the character

manipulation for the composition of the electronic test paper.

-92-

Finally, only some important and significant conventional PL/I
features used in CAPSI are highlighted in above, but many more

conventional features used in CAPSI are not described in here.
5.2.4.2 Condition-Handling Feature

When a PL/I program is executed, a number of conditions are
detected if they are raised. These conditions may be errors, such as
zero—division, or may be conditions that are expected, such as the end of an
input file. When a condition is raised, the program will interrupt its flow
and will execute an action either from the on-unit provided by the
programmer or the implicit action provided by the PL/I. There are
condition-handling built-in functions to investigate the cause of the
interrupt and to recover from abending the program execution. In this way,
the behavior of the program becomes totally predictable even in anomalous

situation.

There are several expected conditions in CAPSI are handled such as
handling an end of a file, an invalid index key of a record, and the attention
button hit on the terminal. When all student records are sequentially
browsed through, an end-of-file interrupt occurs and then the end—of-file
on-unit handles the situation and terminates the further retrieval of any

student record.

-93-

ON ENDFILE(STUDFIL) GOTO EOF;

@

-]

loop
retrieve record
end loop
EQF:

continue

When an invalid student identification is entered for logging onto
the CAPSI, the failure of retrieving this non-existent student record from

the student file causes the key on-unit to reject the illegal attempt to log on.

The attention condition is raised when the user signals attention at
the terminal during interactive processing. If no attention on-unit is
provided properly, the program will be terminated and passed control to the
terminal. In the case of CAPSI, an attention at the terminal is only accepted
to continue or quit a long list of information listing out on the terminal, or
to terminate the message sending utility while the message is entering. In
other cases, CAPSI just ignores any attention at the terminal to avoid illegal

termination and damage of the program.
5.2.4.3 File-Handling Feature

PL/I supports a wide range of data set organizations with several
types of data transmission and of accessing methods. First of all, the student
file uses the Index file organization using the accessing methods of Indexed
Direct Access Method, IDAM, and Indexed Sequential Access Method,
ISAM.

-94 -

DCL STUDFIL ENV(INDEXED KEYLOC(2) KEYLENGTH(7)
RECSIZE(107) BLKSIZE(107) F BUFFERS(35));

The key of the file indexed is seven characters long at the second character
position of each record. Each record contains the 107 bytes of student
information. Finally, the rest of other files are similar to the above file, but
some use Regional file organization or Virtual Storage Access Method,

VSAM.
5.2.4.4 Multi-Tasking Feature

PL/I allows some background routines called tasks run
simultaneously with the main program. The execution of such concurrent
tasks is said to be asynchronous. PL/I provides multi-tasking capabilities to
assign priority to each task and to synchronize the execution sequence
among tasks. The multi-tasking feature is used in CAPSI to provide

monitoring purposes.

DCL STAGE EVENT;
DCL WATCH TASK;

L] - .
CALL monitor_routine TASK(WATCH) EVENT(STAGE)
PRIORITY(-200);

executing simultaneously with the monitor routine
@

WAIT(STAGE); .
wait until the monitor routine terminates

The task and the stage of the task are declared. The monitor routine is

-95-

invoked from the main program to execute concurrently with the main
program. The main program will wait for the termination of the monitor
routine routine if the monitor routine is still executing; otherwise, the
main program will continue its execution. PL/I also provides some features
to assign priority to, to check the completion of, and to terminate the

execution of an executing task.
5.2.4.5 Debugging Feature

PL/I provides a large amount of debugging features in both
compilation and execution of program. The Checkout compiler is designed
to provide extensive facilities for program checkout and debugging.
Excellent error and warning diagnostics are provided at both compile time
and execution time. Also, PL/I provides separate compilation to develop
large program such as CAPSIL. In execution time, specific debugging options
can be indicated in the PLIXOPT variable.

DCL PLIXOPT CHAR(50) VARYING STATIC EXTERNAL
‘ INIT(FLOW,COUNT");

For examples, the flow debugging aid produces a tracing output of execution
when an error occurs and the count debugging aid produces the statement
frequency tables used to compare the program with the original design. The
separate compilation and some debugging aids of PL/I give advantages to
_ the development of CAPSL Furthermore, the PL/I Optimizing compiler is
provided to produce efficient object code to improve the performance of a

program at execution time considerably. Therefore, CAPSI uses the

-96 -

optimizing compiler for the final testing and for the production runs.
5.2.4.6 Interfacing with Assembler

PL/I can interface with the low level language OS/360 Assembler

Level G by declaring as following:

DCL SEND EXTERNAL OPTIONS(ASM,INTER, RETCODE)
ENTRY(CHAR(*) VARYING, CHAR(8));

This assembler routine send accepts a message of any length and an userid
with 8 characters long. This assembler routine is coded in
OS/360 Assembler using a TPUT Macro to send a message to the given
userid. The PL/I built-in function PLIRETV returns the completion code of

the message sending.
5.2.4.7 Interfacing with MANTES File

The Computer Services provides a NAM Access Method (NAMAM)
to allow PL/I programs to read and write MANTES file through VSAM.
The NAMAM is used for CAPSI to read questions from the question bank

file and to read tests from students.

DCL TEST FILE KEYED INPUT RECORD
ENV(VSAM KEYLOC(0) KEYLENGTH(255));

Any file record in the MANTES group can be accessed through the VSAM

access method by providing the keys of file name and sequence number of

-97-

the record.
5.2.4.8 Interfacing with the System Dynamic Allocation Routine

The Computer Services provides a DYNAM routine which allows
PL/I to interface with SVC 99, the system dynamic allocation routines. This
DYNAM routine allows system resources to be allocated and free within the
PL/T program rather than outside the program through either JCL (Job
Control Language) or TSQ (Timesharing Option) commands. In fact, CAPSI
uses this routine to dynamically create files like electronic mails and batch
JCL jobs for postal services in MANTES. The JCL job submission within
CAPSI is made possible by writing the JCL commands into the system
reserved file INTRDR which interfaces with the JES (Job Entry System). The
job submitted is a batch MANTES to execute some MANTES commands for

the postal services.

-98 -

DCL DYNAM EXTERNAL OPTIONS(ASM,INTER,RETCODE)

ENTRY;

DCL 1 WORK,
2 WA_LEN FIXED BIN(31) INIT(2000),

2 FILLER CHAR(2000);

]

®

FETCH DYNAM,;

®

-]

CALL DYNAM(WORK,'ALLOC ','DD=MAIL;', oo

operands equivalent to DD (Data Definition) statement in JCL e o)
°

create mail file
]

CALL DYNAM(WORK,'ALLOC ','DD=BATCH;', ee
]

]

create batch job file

]
CALL DYNAM(WORK,'ALLOC ','DD=INTRDR;', eeo);
interface to JES
PUT FILE(INTRDR) EDIT(
'/ / IOB '1
'// EXEC MANTES'
.ee) (SKIP,A);
job submission through INTRDR system file

As a result, all the test deliveries are handled by CAPSI and are transparent
to students. In this way, CAPSI facilitates a highly-structured and global
form of communications and interactions among students, teaching

assistants, and instructor.

-99 -

5.3 Summary

Firstly, the hardware system on which CAPSI runs is described. It
mainly consists an Amdahl mainframe computer and other supportive
peripherals. CAPSI implemented in PL/I runs on the TSO environment.
Secondly, the evolution of the CAPSI program is briefly presented. Thirdly,
the major modules in CAPSI are described through the structured charts of
the program. Finally, the major PL/I features and interfaces employed in
CAPSI are described in details. In the coming chapter, it discusses the

five-year experience and experimental results of CAPSL

-100 -

CHAPTER VI
EXPERIMENTAL RESULTS AND DISCUSSIONS

6.1 Subjects Taught

Since 1983 CAPSI has been an on-going project at the University of

Manitoba [KiPe88a] and the following courses with the range of 20 to 65

students have been taught:

1. Introduction to Psychology with 2 times on campus and 3 times off
campus;
2. Behavior Modification Principles/Applications with 5 times on

campus and twice off;

3. Learning Foundations of Psychology with 5 times on campus;
4. Humanistic and Transpersonal Psychology with 6 times on campus;
and

5. Experimental Child Psychology with 4 times on campus.

Although only psychology courses have been taught by CAPSI, other
disciplines can also be taught. The CAPSI approach is independent of course
content but requires an appropriate set of structured course material.

6.2 Selection of Students for the Program
Students are eligible to enroll a university course by fulfilling the

requirements of the corresponding department. More recently, a statement

is added in the university's general calendar to inform that courses using

-101 -

CAPSI are computer mediated, and that students have an option to their
participation in the computer-mediated courses. Students enrolled in the
long-distance courses are considered highly self-motivated, because they
need to self-study and hardly see the instructor or even other students in

the same course.
6.3 CAPSI for On-Campus Learning

Over the past five years, CAPSI was utilized to teach five on—campus
undergraduate courses in total of 22 times to approximately 600 students at
the University of Manitoba. Almost all of the courses were taught by
Professor J.J. Pear, the Department of Psychology, one by Professor

J.H. Whiteley, the Department of Psychology, and one by both of them.
6.4 Experience and Evolution of CAPSI

The earliest version of CAPSI could be run on only one terminal.
The courses that used CAPSI took place in regular class schedule with a
terminal connected by phone to the university mainframe computer.
Student requested test from CAPSI by receiving three random question
numbers from a unit. Then the student referred the questions from a list of
the study questions on the unit and answered the questions in duplicate
using carbon paper for both the instructor and the student to keep a copy.
The student required his/her test proctored by receiving the names of two
-.proctors or instructor from CAPSI. Then the student located the two
proctors or the instructor and gave each of them a copy of the answers. The

proctors marked the test as the same criteria as by the instructor and entered

-102 -

the results into CAPSI.

Since only one terminal was used in a class, line~up problem
happened and complaint aroused in the courses of more than 50 students.
One way to solve the line-up problem was to divide the class into two
groups and assign each group to a terminal. The disadvantage of this way
was the students in a group could not proctor students in the other group.
Another way was to assign each terminal to one of two different courses and
allows student to work on their courses during the consecutive class
periods. The disadvantage was the unfair between students who could and

could not make the extra class period.

In the beginning of 1986, a multiuser form of CAPSI was available for
students to access both terminals without splitting into groups. However,
line-up problem still happened in large classes, especially near the end of
the course but the magnitude of the problem was reduced a lot.
Furthermore, a third terminal was available mainly for entering the test
results immediately by the instructor and teaching assistants. In addition, a
new command to print out the students who were supposed to write tests in
the class facilitated the supervision of students by the instructor. As well, a
new message sending facility was available in CAPSI for instructor to make
correction suggestions fo students. This multiuser capability also allowed
simultaneous delivery of a course to more than one location, and thus

facilitated off-campus teaching.

- 103 -

__NW TERARITORIES __ .
I .
. -
:k'u.» a %. v Py
A Cnurchill f8
% <3
i Lynn Lake ? & South Indian Lake ,
| B % E
i & g BLeal Rapids S s
i % - oBGitam s
! BNeison House o ke
: p
1 - Th /
ampson
{ g6 /
N - . l/'
; B Snow Lake el 7 /
b ? Fiin Flon 2 B . ,
5 lgCrunberry Portage v W disiand Laké
< : » /
x | } Cross Lake @ 2, g /'
L4 ‘ 5 1 =R
L s The Pas ;-L Ja ‘;,.5 Waasagom ch Oxtord House ONTARIO
= L gNorway HouseM % sren Hil
St. Theresa /'
Point r i
,/'
/
e .
| LEGEND
| .LUN.- Inter-Universities North
Taig { . R
Q al & Sites Offering LUN.
! Program (Credit Courses)
|
| v Sites Offering Courses
: Independent of LUN.
wall K - .
. 4 "951 ¢ Program (Credit Courses)
o8 Arborg @ |
] . .
ussal Lac au! © Sites Offering
' R oozl Teleconference Courses
5 Neepawa @ StanewaliQ) ' (Credit Courses)
"] Detta Flglg”i;aetuon Stony Mt @ Sekirk |
: La Prairie WINNIPEG : @ Sites Offering
| Star LakeOlmd] ~ Non-credit Courses
’. - ' @ Steinbach
| olesev e Morden o O Off-campus Research/
y T — — Instructional Sites
US.A @Kenora

Fig 6.1. The University of Manitoba off~campus instructional sites [From UofM86].

-104 -

6.5 CAPSI ;for Off-Campus Learning

Like most other major universities, the University of Manitoba,
Winnipeg, Manitoba, offers off-campus courses to people in distant
communities as shown in Figure 6.1. With budget cutbacks and high travel
rates, an instructor can economically deliver lectures through voice

teleconferencing in a number of communities simultaneously.

At the beginning of 1985, a full-year course of the Introduction to
Psychology was offered by using CAPSI and voice teleconferencing from
Winnipeg to Thompson, a community over 800 km north of the university.
The classroom in Thompson contained two phone lines with one accessing
an audio-teleconferencing equipment, and the other accessing the CAPSI
program in the university. About 20 students and a supervising teaching
assistant participated in voice contact with the instructor and in computer
contact with the CAPSI program. The instructor marked tests over the
phone and entered the results through the terminal in Winnipeg; student
proctors marked his/her assigned tests and entered the results through the

terminal in Thompson.

Due to the sucéess of the introductory course, a higher level
off-campus CAPSI course on the subject of Behavior Modification
Principles was offered during the May-June intersession of 1985. The
‘course was taught from Winnipeg to Thompson with the enrollment of
eighteen students and to Flin Flon with the enrollment of six students

simultaneously. Differences from previous long-distance CAPSI course

- 105 -

were proctors marked tests from the other location over the phone and the
instructor could listen and make suggestions or corrections during the

marking interchanges.

During the 1986-87 academic year, two half-year off-campus CAPSI
courses were offered on the subjects of Behavior Modification Principles
and its sequel Behavior Modification Applications in six Manitoba
locations: Morden, Lac du Bonnet, St. Boniface, Stonewall, Virden, and
Thompson. Unfortunately, 16 out of 60 students registered for the
first-term course dropped very early because the necessary computer
equipment was not yet set up in the six locations by the time the course
began. However, computer equipment was finally set up at all locations
within a month and 35 students out of the rest 44 students completed the
course successfully. Nevertheless, exira classes were necessary to help
students catch up the leakage caused by the equipment confusion. Since no
supervisor was available at most locations to monitor the way students
wrote their tests, more weight was placed on the mid-term and final

examinations to insure high quality of learning.
6.6 Inclusion of Electronic Mailing and Messaging into CAPSI

At the beginning of the 1986-87 second-term, students in off-campus

course who had access to either terminals or microcomputers with modems

could invoke the CAPSI program at their own schedule and mail their test

-answers to the instructor for marking by the electronic mailing system of

the university computer. About 10 out of 30 students in the course took

advantage of this opportunity on a regular basis. The instructor marked and

- 106 -

mailed back the tests with feedback within 24 hours.

At the beginning of the 1987-88 first-term, CAPSI was upgraded to
include the capabilities of electronic-mail delivery. In other words, the
delivering and receiving unit tests were transparent with respect to the

views of students, proctors, teaching assistants, and instructor.
6.7 CAPSI for Virtual Classroom

The upgraded version of CAPSI without any regular class schedule
has been utilized to offer courses on-campus as well as off-campus. As far
as CAPSI is concerned, there is no distinction between on-campus and
off~campus courses because the function of CAPSI is irrelevant to the
invoking locations. Since the physical boundary of the classroom vanishes,
CAPSI can be used to implement the concept of virtual classroom [Hilt86] in
which the physical classroom may be much smaller than the logical
classroom with the analogy to the concepts of virtual -inemory and virtual
machine. Ideally, the size of the logical classroom is unlimited. With the
existing Canadian and international computer networks, CAPSI can
potentially deliver courses to people distributed over large remote areas,
such as large provinces or across Canada, and courses in international
programs such as the recently announced Commonwealth University
intended to provide education to all the Commonwealth countries. Thus,
CAPSI can contribute to the formation and operation of virtual campus,
'-such as the Commonwealth University. This generalization is based on the
locality principle and can be viewed as an attempt to coordinate local

synchronization with global desynchronization in a complex system, as

- 107 -

defined by Kinsner and Pear [KiPe88c].
6.8 Course Statistics

The number of students completing a course appears to vary as a
function of the previous CAPSI experience of the students, technical
problems of the equipment, and the difficulty of the course material. For
example, in an on-campus course of Behavior Modification Principles
offered during the first-term of the 1986-87, of 70 students who started the
course and wrote at least the first unit test (77 had enrolled), 63 (or 90%)
completed the course with at least a grade of "C." In the sequel of the first
course, Behavior Modification Applications, of 43 students who started the
course (50 had enrolled), 42 (or 98%) completed the course with at least a
grade of "A." In an off-campus counterpart to the first course, of 46
students who started the course (59 had enrolled), 36 (or 78%) completed the
course with at least a grade of "C." This low percentage of students
completing the course was probably due to the technical problem of
equipment not available at the beginning of the course. In an off-campus
counterpari to the sequel of the first off~campus course, of 21 students who
started the course (21 had enrolled), 20 (or 95%) completed it with at least a
grade of "B+." From the above examples, the numbers of students
completing in the sequels of the on-campus and off-campus courses were
increased probably due to the previous experience of the students with the
CAPSI method. On the other hand, in a conceptually more difficult course,
‘-Learning Foundations of Psychology, taught on campus during the
first~term of the 1986-87, of 55 students who started the course (70 had

enrolled), 38 (or 69%) completed it with at least a grade of "C." Thus, it is

- 108 -

evident that percentages of students completing a course can vary widely by
using the CAPSI method as well as the other methods, and probably for the

similar reasons.
6.9 Data Logged by CAPSI

The CAPSI records the interactions of the course, which includes all
marking transactions, the type and result of each transaction, and the date
and time of transaction. The progress of students in the course and
information about the functioning of the course itself are recorded and

analyzed.
6.9.1 Student Performance

The first-term on-campus "Humanistic and Transpersonal
Psychology" course from 16 September 1987 to 15 December 1987 is recorded
[KiPL88]. The test frequencies on units completed and proctor frequencies
are plotted against the time of the course. The course had a total of 14 units,
and the prdctor score for each test marked was half of the unit score for each
test completed. In each graph, successful test attempts are indicated by the
step crawling, while each unsuccessful test attempt by a cross as voluntary
cancel of the test and by a triangle as not passing the test, the word restudy is
used instead; the conditional successful test attempts are indicated by a

square. The dates and day numbers are placed under the graph.

Note from Figure 6.2 that student #AN started the course during

day 7 (22 September), passed units at a high rate, and completed the units

- 109 -

during day 48 (2 November), 5 days after the middle of the course. This
student was self-motivated and worked steadily throughout the course.
He/she even completed unit 3 and 4 at day 10 (25 September). He/she
totally got three conditional passes at the following days: 7 (22 September)
for unit 1, day 19 (4. October) for unit 6, and day 21 (6 October) for unif 7.
Furthermore, he/she voluntarily canceled unit 11 at day 42 (27 October) and
did not get any restudy throughout the course. He/she earned proctor
scores as a result of serving as a proctor at a steady pace. He/she quitted
proctoring 6 days before the last day of the course. He/she could have
earned few more proctor scores, but he/she might spend this period for

studying his/her final examination.

As shown in Figure 6.3, student #SL started the course in a later time
at day 14 (29 September) and struggled through the unit 1 until day 35 (20
October), 9 days before the middle of the course. He got a restudy at day 14
(29 September) for unit 1. Since then, he/she needed another 21 days in
order to conditionally pass the unit 1. This phehomenon could be
interpreted that this student needed a longer period to get used to the
computerized system or he/she was a person that started his/her work late.
Because of his/her late starting, he/she had to work much harder in the
second-half of the course in order to get good results. He/she completed
the rest of the test units in a fast pace w1th only a voluntary cancel at day 63
(17 November) for unit 11. As well, he/she earned proctor scores in a very
fast pace during the second-half of the course. For example, he/she even
-. earned three proctoring per day three times at the following days: day 56 (10
November), day 78 (2 December), and day 79 (3 December); and earned two
proctoring per day at the following two days: day 71 (25 November) and day

-110-

82 (7 December). Even though the students #SL and #AN have achieved
almost the same scores, the time spreads of learning are different, which

produce different qualities of learning.

As shown in Figure 6.4, student #]JO started two weeks later,
conditionally completed the first unit at day 16 (1 October), and then did no
further work in 20 days. Until day 37 (22 October) and day 41 (26 October),
he/she completed unit 2 and unit 3 respectively, and then again did no
further work in 20 days until day 62 (16 November), only 24 days left before
the last day of the course. Finally, he/she completed other eleven unit tests
in such a rush within this period of 24 days with one conditional pass of
unit 5 at day 64 (18 November), and one voluntary cancel of unit 8 at day 72
(26 November). He/she passed unit tests at a very high rate and just
managed to complete all the units by the very end of the course. However,
he/she did not earn any proctor points in the course, which was probably
due to his/her choice not to proctor, his/her personal reasons, his/her slow
pace in advancing the units, or insufficient time to mark tests during the
last four weeks of the course. Unfortunately, he/she did not gain or

reinforce his/her course knowledge through the process of proctoring.

As shown in Figure 6.5, the class average performance regarding the
frequencies of test and proctoring by all students without considering the
dropped students is plotted. The diagram indicates how an average student
should achieve throughout the course. From the statistics of the course, 61
'Astudents registered for the course and 5 students dropped out from the
course. When the course started, the number of the unit test generated was

more than the number of proctoring until tests generated was more than

-111-

the number of proctoring until at day 14 (29 September). From that day, the
number of number was far more than the number of unit tests generated. It
is because each test requires to be proctored twice by two students. The
number of proctoring on the diagram is not exactly twice the number of the
tests generated because some tests are marked by teaching assistants or the

instructor. The two curves show the steady pace of advancing in the course.
6.9.2 Workload Dynamics

Figure 6.6 shows the frequency of tests marked by teaching assistants
or instructor and the frequency of tests marked by student proctors. The two
curves crossed at the frequency unit 50 at day 13 (28 September) which
indicate that the teaching assistants or instructor marked most of the tests at
the first two weeks of the course. This can be explained that the students
must pass the units before being selected as proctors. On the other hand, the
curves indicate that almost all the marking was done by proctors near the
end of the course. It is because students were able to mark more tests as they
completed more units and credited more scores from proctoring. Thus, the
instructor Waé very busy in marking tests near the beginning of the term,
but had more time to supervise the marking by others and to have more
interaction with students as the course went by. The number of tests
marked (workload) transited from the teaching assistants and instructor to
the students during the course. At the end of the course, the number of
tests marked by students is six times of the tests marked by teaching

- assistants or instructor. It is understandable that a test is marked only once
by either a teaching assistant or instructor but twice by two student proctors.

The workload transition is dependent on a number of factors such as the

-112-

number of students, number of days in a course, and number of teaching
assistants. This relation shows the dynamics of the transactions, and
provides the foundation for a more formal study of course efficiency

optimization.

-113-

‘NV# Wuspnis jo soueunrojrad Surropoad 2 31531, "z'9 31
SSUd MYNDILIONDD - @ “L1aNLS3Y - ¢ “7IINH] - x

J3d AON 130 1d43S
E_____-________—____._.-_._-_____.______._____.___________.-____-____—______—_-___..___.___
sigd
26 08 69 LS gh S€ €2 21 s
i
-
T
. ©
|
T]
{
A _.Ll .‘.,;L .
SLINQ - —T -
15)] —t
i m
pdmed ()
e u o
S | m
ol =
- o)
=1 ==
i
i
! j
INIHOLI0YY w
n
o=
(]

"IS# Iuspnis jo souewrroyrad Surropoad 1y 3s9]. ‘€9 811

SSUd TUNOILIONGD - @ ‘410NL1S3Y - < *IIINHD - x

J3d AON 130 1438
-_.__~_____—__—b_._____-_.______________-—__—_____-__-_____—_p_____-_-____-—»-___.___b____-
sidgd
26 08 69 LS qh Ge €2 21 s
AT v
=T |
_ |
“L.._ 0
_J
m-l-L
bl
_Ll..L
'S1IN [N %
.h..., g.l.Hu i
f m
JT o
5 [
m
| o
)
= —
X L
! «)
n
o
Q

"Of# 1uspnis jo souewrroyrad Surniopoid 2 391, ‘$'9 811
SSHd TUNDILIONDD - @ “Lanisiy - e “13INHD - x

330 ADN 130
FP#-.--.—..-—.-.-._—_______.___w-_______—__-__—__—____________—_-_.—__—-____—-______-—___-
Siyd
m4m7 08 69 LS ah 5 g2 21 Io
INIHDLI0Y di
T T
i
] ®
SLIN .
oD
m
(7]
_
m
=
)
o=
w
n

0h

- 116 -

"sduewioyrad Surioypoid 19 3593 98eraAy ‘g9 31y

J3da AON 130 1438
______.______________________._________.__.______________.__________._._.____:.__._..._..:
Ssigd
26 08 69 LS 9h 15 €e N__ s
et S |
s of 4
|111|1|.LLl|.h..sl...H.-.
I.nLl.ll.xllLl .-.._L. o
\.lLLLll_...
lLL-.\L ._....l._.........w
il
= -~ P
ElIN .1.._.
...\I...h. - T}
m i oD
L m
il 2
\ LT m
’ =
INTHODLIDHY O
=
w
n)
=
o

-117 -

‘Pduewrioyrad Surropoxd [e101, ‘99 Si4

00h

008
-118-

AIN3IND3IHS

330 AON 130 '1d3S
;____-_________n_-___-_-___-_.-_-___.__—-—-L—___—__—-_____-__-_______——_b__—_-______._-__—_
sidgd _
26 08 69 LS 9h G€ g2 21
- _|;i1uﬁ
HHH\IN
{mmob;:mhmﬂ_ ¥
———d
.-..n.
Fd
...1..-...
!\.l.—-.\l
LT
hs;sa
H_L.
ST
haax\g
" Wi
mhzuﬁzhm

00cl

0031

0002

6.10 Problem of Supervision

Unsupervised tests written by students outside the regular class
periods raises the possibility of not learning the material well by using
unauthorized aid. Several ways are used to deal with the problem of
supervision. Firstly, high-weighted and supervised mid-term and final
examinations are ensured that students need to learn the test material well
in order to pass the examinations. Secondly, the instructor periodically
checks the performance of student proctors to ensure that these students

learn the material well in order to perform adequately as proctors.
6.11 Student Reactions to the Method

Overall, most CAPSI students appear to react favorably to the
teaching method. Some of the positive comments made on a recent CAPSI

course evaluated by students taking it with teleconferencing were:

The self taught aspect of the course allowed me to retain a greater
amount of the material discussed in the chapter.

You have to really know the material. If you do all the work you
should get a good mark.

It [the PSI method] really makes you understand the material.
I found by teaching myself & rewarding myself for good grades, it kept
my interest up and urged me to go further than I had in many other

courses.

The chapter tests forced me to learn each chapter well. Therefore I
was more ready to write the final exam (and mid-term).

-119-

You can get a very good mark — it's guaranteed, if you work hard !
There are no surprises or trick questions. You already have a pass
before you write your final exam.

The methods are concise and sensible. I felt I covered and learned the
material probably as well or better than any other method I have
experienced.

No need for babysitters or to pay for gas. Can do course at own leisure
in privacy of own home and still get feedback immediately through
computer terminal. Can ask questions through computer terminal
vs. correspondence [where you] have to wait a few weeks for a reply.
I've had to work harder than in some other courses, but I'll also end

up with a good mark !

Negative comments were mainly focused on technical problems,
absence of lectures and class discussions, and the amount of work
required for the course. For example,

The weakness of the course was the delay in the arrival of the text
book and the delay in the availability of the computer.

Would appreciate a question and answer session with professor at
end of each class. A lecture or two would be nice.

I prefer at least some lectures to help explain some concepts.
Not enough class discussion or student/professor interaction.

Would like a change in the system which allows for some discussion
of the material.

Maybe a little more lecturing on the course might help.
It seemed to be alot of material to cover in the amount of time.

There is a great deal of reading.

- 120 -

The positive comments consolidate the previous research that PSI is
a highly effective teaching method ([ShRS82b], [KuKC79]). Most students
with the CAPSI courses completed rate the CAPSI courses are at least as
good or better than any other courses using other approaches and feel that
they learn better with CAPSI approach than with the lecture approach. As
well most CAPSI students consider the self-pacing and proctoring to be the

major strengths of CAPSIL

The negative comments point out the deficiencies of CAPSI courses,
which should not be difficult to correct. With regard to the computer
equipment, it becomes more convenient that most school divisions with
the equipment generously permit it to be used for college and university
courses in their communities. Moreover, home computers or office
computers with permission to be used in course work are other sources of
the computer equipment. The course textual material can be immediately

delivered by electronic mail once the equipment is available.

Regarding to the absence of lectures, the students should be informed
and explained beforehand that lectures will not be given and the reasons for
this, because students often tend to equate teaching with lecturing. The
reasons lectures are ﬁnnecessary and achieved in other means are:

1. CAPSI uses well-defined study objectives with minimized
clarification in order to master the material, and

-‘2. students can inquiry and discuss the material with the instructor and
other students through computer facilities of mailing and messaging.

If it is really desirable, audio- or video-taped lectures could be mailed to

-121-

student and occasional lectures or discussions could be even provided

through teleconference equipment.

Regarding to the amount of course work, most students seem to
understand that a good deal of work can virtually guarantee a good grade
with high quality of learning. Sometimes, it is easy to overestimate the
amount of student work, but an instructor with previous CAPSI experience

can set a reasonable workload for students in a CAPSI course.
6.12 Costs

The University of Manitoba Computer Services Department provides
free of charge computer equipment, computer accounts, and computing
time for students in a course to utilize the mainframe computer by the
recommendation of the corresponding academic department. As a result,

no computer or equipment cost is required to offer any on~campus course.

An off-campus CAPSI course can be offered at no greater cost than a
standard teleconference with lecturing approach. CAPSI can be invoked
elsewhere in Canada and the United States through computer networks,
such as Datapac; the costs of the Datapac connection is assumed by the
university. Moreover, ﬁo charged long-distance calls to Datapac ports from
anywhere within Manitoba are provided by the Manitoba Telephone
Systems. Hence, long-distance charges for the use of CAPSI at the
-'universify are nil within Manitoba, and nil or minimal outside Manitoba.
Even though long-distance calls are charged for the teleconference when it

is used in conjunction with CAPSI, the cost is certainly less than the one in

-122-

a standard teleconference course because CAPSI course does not require as

much lecture and discussion time as in a lecture course.

The CAPSI is also economical because the way student proctors from
the course are utilized. Indeed, one instructor, possibly one or more
teaching assistants to help out in the course, can teach many more students
without sacrificing the quality of learning than any other instructor does in
conventional courses. Finally, a cost formula for calculating the total cost of
on-campus and off-campus courses using CAPSI is formally defined by

Pear and Kinsner [PeKi87].
6.13 Summary

The five-year experience with CAPSI suggests that it is a powerful
teaching method with wide generality. Although by far only psychology
course has been taught, there is no reason that it could not also be
successfully used with other subjects, just as has been the case with PSIL
This chapter describes how CAPSI is used for on-campus and off-campus
education, how the students perform in courses and react to the CAPSI
method, héw CAPSI can be generalized for virtual classroom, and how the
data obtained in courses is analyzed. In the analysis of data, different
performances among students and the dynamics of marking workload
between instructor and proctors are discussed. Finally, the cost to offer
CAPSI on~campus and off-campus courses is described. In the following

last chapter, the conclusions are drawn and recommendations are suggested.

-123 -

CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

Over the past five years, the experience with CAPSI suggests that it is
a powerful teaching method with high versatility: it can be used in a
number of different ways in a variety of courses. Base on the experience
that CAPSI has offered a total of 26 times and taught an approximate total of
700 students at the University of Manitoba, CAPSI shows considerable
promise for effectively and economically delivering on-campus and
long-distance education. In addition, CAPSI eliminates the spatial and
temporal restrictions of both on-campus and off-campus education. CAPSI
can be used not only in a physical classroom, but also in a virtual claésroom,
with no scheduled classes and specific location. Thus, CAPSI can contribute

to the formation and operation of virtual campus.

The success of CAPSI is due to the explicit incorporation of
engineering concepts and behavioral psychology. In keeping with the
engineering approach on which it is based, CAPSI is conceptualized as a
modular ~approach to ideally incorporate other effective devices or
procedures that complement to CAPSI. Furthermore, CAPSI founded on
the concept of behaviorai and applied psychology is rooted in the system of
learning-reinforcement theory. In CAPSI, positive reinforcement is
immediately, frequently, repeatedly applied to students and proctors
‘throughout the course to achieve and reinforce their successes of learning.
As a result, CAPSI brings to the forefront a number of commonalities

between engineering, behavioral psychology, and educational psychology

- 124 -

thus indicating the potential for fruitful cooperation between those three
fields in order to develop a unified method for teaching and learning in

diverse areas.

CAPSI is a technological educational innovation in which
technologies are utilized and exploited to the fullest. Engineering is most
characterized by the utilization of technology. CAPSI utilizes the
communications and computer technologies. Since CAPSI is a
highly-structured form of communications, CAPSI exploit the computer
communications technology for structuring and facilitating the man-man

interactions.

Moreover, the utilization of computer technology assists CAPSI the
functions of communications, manégement, measurement, quality control,
and research. With its well-designed research database, CAPSI provides a
complete and readily accessible record of all testing and marking
interactions in the course. Thus, CAPSI makes possible to thoroughly
monitor, analyze, and evaluate a significant portion of the behavior and

learning in the course.

In conclusion, CAPSI is a powerful technological educational
innovation. Also, CAPSI has demonstrated its novelties and
improvements over its ancestor PSI. Realizing its full potential, CAPSI is

advancing the technological innovation process of education.

The research done and the conclusions drawn from it are important

to education and engineering. CAPSI is the product of the collaboration

-125-

between engineering concepts and software engineering to improve the
educationai instructions especially the personalized instruction of both
teaching and learning. Since CAPSI is still young and under development,
it has many areas to be further improved and developed. The following

areas are recommended to do further research and development:

1. To conduct systematic research on the effectiveness of CAPSI [PeKi87].

2. To formally study of the modelling, parameter estimation, and
optimization of the dynamical educational process from the research
data obtained in courses [KiPe88a].

3. To study how to enhance the students' learning and long-term
retention of the material in a given course; such studies could utilize
concepts from control and automata theory, including fuzzy and
probabilistic automata, recommended by Kinsner and Pear [KiPe88a].

4. To allow stand-alone implementations of CAPSI [KiPe88a].

5. To exploit all aspects of computer communications technology such
as on-line databases, bulletin board systems, and computer
conferencing systems [KiPe88a]. |

6. To develop an authorizing system ([NATAS1], [PeKi87]) for
genérating course material, study objectives, and test questions.

7. To create a knowledge base using the recent approach of knowledge
representation a;ﬁd knowledge engineering for intelligent tutors
(IWo0l87], [PeKi87]) to assist in marking tests.

8. To develop a simple natural language translator to allow
international use of CAPSI in projects such as the Commonwealth

University and CIDA educational activities.

- 126 -

[Bena84a]

[Bena84b]

[BIBu76]

[FHBT76]

[Gree71]

REFERENCES

Benaim, M. (1984a). A model for the evaluation of instructional
methods. IEEE Trans. Educ., E-27 (2) 105-108.

Benaim, M. (1984b). P.S.I. versus traditional method criteria for
comparison and results (1969-1979). IEEE Trans. Educ., E-27 (1)
41-46.

Block, J. H. & Burns, R. B. (1976). Mastery learning In
L.S. Shulman (Ed.), Review of research in education tasca (I1L.):
Peacock, 4.

Friedman, C. P., Hirschi, S., Parlett, M., and Taylor, E. F. (1976).
The rise and fall of physics at M.LT. American Journal of Physics
44(3) 204-211.

Green, B. A. (1971). Physics teaching by the Keller Plan at M.L.T.
American Jorunal of Physics 39(7) 71-81.

[HeKP84a] Herzog, F., Kinsner, W., and Pear, J. J. (1984a). Personalized

System of Instruction: User manual. Technical Report,
Industrial Applications of Microelectronics Centre and
Department of Electrical Engineering, University of Manitoba,
Winnipeg, Manitoba, 36 pp.

[HeKP84b] Herzog, F., Kinsner, W., and Pear, J. J. (1984b). Personalized

[Hilt86]

[HoU179]

System of Instruction: System reference manual. Technical
Report, Industrial Applications of Microelectronics Centre and
Department of Electrical Engineering, University of Manitoba,
Winnipeg, Manitoba, 163 pp.

Hiltz, S. R. (1986). The ‘"virtual classroom": Using
computer-mediated communication for university teaching.
Journal of Communication. 36, 2, 95-104.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to

Automata Theory, Languages, and Computation. Reading (MA):
Addison-Wesley, 418 pp.

-127 -

[Hurs76]

[JoRu77]

[Kell68]

[KiPe88a]

[KiPe88b]

[KiPe88c]

[KiPL88]

[KuKC79]

[KuKS76]

Hursh, D. E. (1976). Personalized system of instruction: What do
the data indicate? Journal of Personalized Instruction, 1, 91-105.

Johnson, K. R., & Ruskin, R. S. (1977) Behavioral instruction:
An evaluative review. Washington, D.C.: American
Psychological Association.

Keller, F. S. (1968). "Good-bye, teacher" Journal of Applied
Behavior Analysis, 1, 79-89.

Kinsner, W. and Pear, J.J. (1988a). Computer-aided personalized
system of instruction for the virtual classroom. Caxn. J.
Educational Communic., 17(1), 21-36.

Kinsner, W. and Pear, J.]J. (1988b). Computer-aided personalized
system of instruction: A method incorportating engineering
concepts for higher education in engineering. Proc. Can. Conf.
Engineering Education, Winnipeg, Manitoba, Canada; May
16-17.

Kinsner, W. and Pear,].J. (1988c). Dynamical Educational System
for the Virtual Campus. Technological Innovation and Human
Resources, 2 (in review).

Kinsner, W., Pear,].J., .and Leung, Y.M. (1988). Community
involvement in higher education through CAPSI. Proc. Soc.

.Study Higher Education, Windsor, Ontario, Canada; June 2-5 (in

preparation).

Kulik, J. A,, Kulik, C. C., & Cohen, P. A. (1979). Meta-analysis of
outcome studies of Keller's personalized system of instruction.
American Psychologist, 34, 307-318.

Kulik, J. A., Kulik, C.-L. C., & Smith, B. B. (1976). Research on the
personalized system of instruction. Journal of Programmed
Learning and Educational Technology, 13, 23-30.

[NATAB81] A National Authoring Language. (1981). Honeywell Information

Systems and National Research Council.

-128-

[Page80]

[PeKi87]

[Robi76]

[Ryan74]

Page-Jones, M. (1980). The Practical Guide to Structured Systems
Design. Englewood Cliffs (NY): Yourdon Press (Prentice Hall),
354 pp.

Pear, J.J. and Kinsner, W. (1987). Computer-Aided Personalized
System of Instruction: An effective and economical method for
short- and long-distance education. Machine—Medicated
Learning.

Robin, A. R. (1976). Behavioral instruction in the college
classroom. Review of Educational Research, 46, 313-354.

Ryan, B. (1974). P.S.I. Keller's personalized system of instruction:
An appraisal. Amer. Psychol. Ass..

[ShRS82a] Sherman, J. G., Ruskin, R. S. & Semb, G. B. (eds.) (1982). The

personalized system of instruction: 48 seminal papers. Lawrence
(KS): TRI Publications.

[ShRS82b] Sherman J. G. (1982b). "PSI today," in Sherman, J. G., Ruskin, R.

[SiHa80]

[Skin53]
[Skin54]
[Skin61]

' [Tave76]

S. & Semb, G. B. (eds.) (1982). The personalized system of
instruction: 48 seminal papers. Lawrence (KS): TRI Publications.

Silver, H. and Hanson,]. (1980). The learning preference
inventory: User's manual. Moorestown (NJ): Hanson Silver and
Associates.

Skinner, B. F. (1953). Scoemce and human behavior. New York:

The Macmillan Company.

Skinner, B. F. (1954). The science of learning and the art of
teaching. Harvard Educational Review, 24, 86-97.

Skinner, B. F. (1961). Teaching machines. Scientific American,
205, 90-102.

Taveggia, T. (1976). Personalized instruction: A summary of

comparative research, 1967-74. American Journal of Physics,
44(11) 1028-1033.

-129-

[UofM86] Institutional Statistics Book. (1985-86). Office of Institutional
Analysis, The University of Manitoba.

[Wool87] Woolf, B. P. (1987). Representing complex knowledge in an
intelligent machine tutor. Computational Intelligence, 3, 45-55.

- 130 -

APPENDIX A

SOURCE CODE FOR CAPSI

WITHOUT CLASSROOM SETTING

-131 -

//PSIJ0B JOB’ CO=2, F=DA| 1,T=30,L=10, |=120°",
/! EXEC ASHGC
//ASN.SYSIN DD *
™
* CALL BY PL1
* CALL SCN(BUFFER);
* DCL BUFFER CHARC®) VARYING;
"
DUMREC!1 CSECT
ENTRY SCN
DC C'SCN’
(4 ALICS)
SCH Ds OH
sTh 14, 11, 12¢13)
BALR 10,0
USING *, 10
LA 4, SRVEARREA
ST 13, SAVEAREA+4
ST 4,8C13)
LA 13, SAVERREA

L 4,001
LA 6,2¢4>
LH 4,0¢4)
TPUT (6), (4>, CONTROL
L 13,4¢13>
B 14,11, 12¢13)
BR 14

SAVEAREA DC 20F'0Q°
END

GET ADDR OF BUFFER
GET ACTUAL BUFFER ADOR
GET LENGTH OF BUFFER

/7 EXEC PLIOCL,CSIZE=512K, IS=NIS, STG=NSTG, AP="F(|), INT*, X=X, A=A

//PLY.SYSIN DD »
/* PERSONALIZED SYSTEM INSTRUCTION s/

‘PSISAIN', HSGLEVEL=(1, 1)

/ /
L #y
/" PSS MAIN PROGRAN. »/
lhs */
lae AUTHOR FRANK HERZ0G {ANC. »/
lhd DATE KRITTEN JAN. 15 1984 */
id AUTHOR HANIX LEUNG, YIU-HAN. */
Iad LAST UPDATE FEB. 15 1984. */
lad OCT. 15 1985 */
/* SEPT. 1 1987 */
s */
/ /
% */
Vhd VERSION 3.0 */
/% ALLOKS STUDENTS TO CALL PS| FRON THEIR TSO ACCOUNTS »/
o VERSION 2.0 */
i CHANGES FROM SINGLE USER TO MULTIPLE USERS THAT CAN RCCESS »/
/% ON A SHARED DATA BASE CONCURRENTLY. THE STUDENT DATABASE =/
/* HAS MODIFIED FROM REGIONALC1) FILE TO INDEX FILE */
/” ORGANIZATION. THE FACILITIES OF FMONITORING STUDENT */

/* ACTIVITIES AND SENDING HESSAGES ARE ADDED . L4
/* w*/
/ /
I o
/e */
Tad THIS PROGRANM PERFORMS THE INTERACT!VE EDITING AND STUDENT /
Iad TRANSACT 10N CONTROL FUNCTIONS OF THE SYSTEMN. THREE FILES »/
T ARE USED BY THIS PROGRAN. THE FIRST IS THE SYSTEN PARA- #/
Fad METER FILE , A SINGLE RECORD DIRECT ACCESS FILE, T CONTAINS *»/
1A THE VALUES WHICH DETERMINE THE NUMBER OF UNITS IN THE COURSE®/
. ETC. THE SECOND IS THE STUDENT RECORD FILE (STUDFIL)Y »/
/* IT IS ALSO A DIRECT INDEX ACCESS FILE. THREE RECORDS ARE =/
TAd PREALLOCATED TO STORE INFORMATION RELATED TO THE SPECIAL w/
/” STUDENT NUMBERS EDIT, INST,TA. (ONLY THE PASSHORD FIELD IS »/
/* USED IN THESE RECORDS.). THE THIRD FILE IS A TRANSACT ION »/
/* LOG FILE WHICH KEEPS A RECORD OF STUDENT TRANSACTIONS RS */
/*. THEY OCCUR, FOR STATISTICAL PURPOSES. THIS PROGRAH IS w/
fad DIVIDED INTO ROUTINES HHICH ROUGHLY PARALLEL THE MENU w/
Vs OPTIONS. THE FIRST ROUTINE WHICH IS PERFORMED IS AN */
lad INITIALIZATION ROUTINE MHICH SETS UP THE DIRECT INDEX FILE %/
Vs T0 ACCESS STUDENT RECORDS AND ALSO HRITES A LOG RECORD HITH ®/
/% A TRANSACTION TYPE OF 2. AFTER INITIALIZATION . THE nAamn w/
/¥ CONTROL. MENU ROUTINE IS CALLED. (T IN TURN CALLS SUB-ROUT INE%/
/" HHICH EDIT STUDENT RECORDS , START SESSION . . . EYC. w/
IAd DEPENDING ON THE CHOICES MADE BY THE USER. */
Vad */
/ /
/ /
/% #*/
/" GLOBAL DATA DICTIONARY =/
lad — wy
lad w/
Tad LOGFiL THIS IS THE LOG FILE. FOR A DESCRIPTION SEE %/
/™ THE SECTION IN THE SYSTEM REFERENCE MANUAL %/
TAd ON DATA FILES. */
/* SYSPF IL THE SYSTEN PARAMETER FILE~ DESCRIBED IN THE =/
lad REFERENCE MANUAL. . 4
Vad STUDF L STUDENT RECORD FILE , DESCRIBED IN THE "/
A SYSTEM REFERENCE MANUAL . w/
Va4 TST. ... THESE ARE THE DENOTATIONS FOR TEST STATES, =»/
% SEE THE SYSTEM REFERENCE MANUAL FOR A */
fad HERNING OF THE CODES. LY
Vad PST.. . THESE ARE THE DENOTATIONS FOR PROCTOR STATES®*/
" CUTOFF THIS |S THE TEST CUTOFF TIME LIMIT. w/
/% CURLI_TEST THIS IS THE COUNTER CONTAINING THE NUMBER »/
/7~ OF TESTS CURRENTLY ASSIGNED TO THE »/
o INSTRUCTOR OR TA. w/
Vad I..TEST.LIM THIS IS THE LIMIT TO THE NUMBER OF TESTS w/
lad HHICH CAN BE ASSIGNED TO THE INSTRUCTOR OR
/= TA. 4
Vid CURDATE A VARIABLE CONTAINING THE CURRENT DATE. w7
" */
/ /

-132 -

HPS| :PROCCPARND OPTIONSCHAINY; DCL 1 SAVE LIKE STUD;
DCL PARN CHAR(256) VARYING; DCL 1 sysP ,
DCL SYSIN FILE STREAH INPUT; 2 DELKEY BIT(8),
DCL. SYSPRINT FILE STREAN GUTPUT PRINT 2 NUNIT FIXED BINCIS),
ENVCRECS | 2E€132)); 2 UNITLC99) FIXED BINC1S),
DCL LOGFIL FILE RECORD EXCLUSIVE KEYED 2 UpAss FIXED DEC(?,3),
UNBUFFERED ENV(F RECS|ZE(42) BLKSIZEC42) REGIONALC1)); 2 UPROC FIXED DEC(?,3),
DCL. SYSPFIL FILE RECORD EXCLUSIVE KEVED 2 LGTHRESH(13) FIXED DEC(?,3),
UNBUFFERED ENV(F RECSIZE(285) BLKSIZE(285) REGIONALC1) »; 2 SESSDATE PICTURE "999999°,
DCL. STUDFIL FILE RECORD KEYED 2 SESSTIME PICTURE '999999°,
ENVCINDEXED KEYLOC(2) KEVLENGTH(7) RECSIZEC107) 2 SESSCUTOFF PICTURE '999999°
BLKSIZEC107) F BUFFERS(35)); 2 CUR.I_TEST FIXED BINCIS),
DCL TESTIN FILE KEYED INPUT RECORD 2 ASSIGN_TA FIXED BINCIS),
ENV(USAI KEVLOCCO) KEVLENGTH(255)); 2 NLOGREC FIXED BINCIS);
DCL MAILIN FILE KEVED iNPUT RECORD DCL 1 SYST LIKE SYSP;
ENVCUSAN KEYLOC(O) KEVLENGTH(255)); DCL 1 LOGREC,
DCL HAILOUT FILE STREAN QUTPUT 2 DELKEY BIT(8),
ENV(RECS | ZE(255)); 2 TVPE CHARC 1),
DCL COMouT FILE STREAN OUTPUT 21D CHAR(?),
ENVCRECS | ZEC72)); 27Ts FIXED BINC15),
DCL INTROR EXTERNAL FILE STREAN GUTPUT 2 ps FIXED BINCIS),
ENUCFB RECSIZE(80) BLKSIZE(6080)); 2 uNIT FIXED BINC15),
DCL INTFILE FILE EXTERNAL STREAN 2 Q1 FIXED BINCIS),
ENVCRECSIZEC72)); 2Q FIXED BINC1S),
DCL. DYNft EXTERNAL OPTIONSCASH, |NTER, RETCODE) 2 Q3 FIXED BINC1S),
ENTRY; 271P FIXED DEC(?,3),
DCL SCN EXTERNAL OPT | ONSCASH, INTER) 2 ppP FIXED DEC(7,3),
ENTRY(CHARC®) VRAYING); 2 CTINE PICTURE ‘999999,
DCL 1 STWD 2 sip CHAR(?);
2 DELKEY BIT(8), DCL 1 HORK,
21D CHAR(?) INITC '), 2 HALEN FIXED BINC31)> INITC2000),
2 NANE CHAR(30) INITC' '), 2 FILLER CHARC2000);
2 PHONE CHARC?) INITC *), DCL (LSTUD, LSTUDHMORE > FIXED BINCIS) INITC100);
2 FACULTY CHARC2) INITC), DCL 1 PINDXCLSTUD) CONTROLLED,
2 YEAR CHARC2) INITC *), 21D CHAR(?),
2 STATUS CHAR(3) INITC *), 2 PROCTOR FIXED DECC?7, 3);
2 UNIT FIXED BINCIS) INIT(O), DCL STEND FIXED BINC1S);
2 FIXED BINCIS) INIT(O), DCL (LST, LSTMORE) FIXED BINCIS) INITC200);
2 Q2 FIXED BINCIS) INITCO), BCL 1 STCLST> CONTROLLED,
2 Q3 FIXED BINCIS) INITCO), g 21D CHAR(?),
2 TEST FIXED DECC7 ,3) INITCO), 2 NAfE CHAR(30);
2 PROCTOR FIXED DECC7 3> INITCO). DCL L_TST FIXED BINCIS) INITCH1);
2 TeRN FIXED DECC? 3> INITCO> DCL OUTSTAND INGCL_TST) BITCH INITC
. . "0°B,"1°B,°0°B,"1'B,"1'B," 1'B,"0"B, " 1'B," 1B, ' 1'B, ' 1'B);
2 Exant FIXED DEC(7 ,3) INIT(O), BCL L_SPEC FIXED BINCIS) INITCS):
2 TOTARL FIXED DEC(? ,3) INITCO) ;
.3 . DCL SPEC..IDCL_SPEC) CHAR(?) INIT(
2 LETIER CHAR(2) INITC'), “INST', “TA", "EDIT", "ALL", HARKER 5,
2 PASSHORD CHARCB) INITC), DCL L_PST FIXED BINCIS) INITC4);
2 PSTATE FIXED BINC15) 1NITCO), DCL PSCC(L_PST) CHARC13) INIT(C
2 TSTATE FIXED BINCIS) INIT(O), “INITIAL, "AVAILABLE ", 'NOT AVAILABLE', "PROCTORING" >;
2 s CHARC?) INITC *), DCL TSC(L._TST) CHARCT1)> INITC

ATIME PICTURE '999999° ;

2 CINITIAL, "HRITING', 'NOT HRITING', 'NO MARK YET', 'ONE PASS ",
DCL 1 TSTUD LIKE STUD;

‘ONE FAIL', "RESTUDY' , ' O-11ARK W/ C',"1-PASS /U C', ' I~FAIL /4 C°

-133 -

"O-HRK W7 2C°);
DCL LOLITC13)

B, BT, 0, e
DCL TAS
DCL TA(S0)

DCL (DATE, TIIME, LENGTH, SUBSTR, VERIFY, ABS, MOD, HBOUND)
DCL (TRANSLATE, INDEX, UNSPEC, ONSOURCE, REPEAT)

DCL (BOOL, STRING, PLIRETY)

CHARC2) INITC'A+",'A *,"A-",

LUC=t,DE, Dt D=, F ')

FIXED BINCIS) INITCO),
CHAR(?) VARYING;

DCL TST.I FIXED BINCIS) INITCY);

OCL TST.T FIXED BINCIS) INIT(2);

DCL TST.NT FIXED BINCIS) INIT(3);
OCL TST.RO FIXED BINCIS) INIT(4);
DCL TST_R1 FIXED BINCIS)Y INITCS);
DCL. TST_R2 FIXED BINCIS) INIT(6);

DCL TST.R3 FIXED BINCIS) INITC(?);
DCL TST.CRO FIXED BINCIS) INIT(8);

DCL TST.CR!Y FIXED BINCIS) INIT(9);
DCL TST.CR2 FIXED BINCIS) INITC10);
DCL TST.CR3 FIXED BINCIS) INMITCH);
DCL. PST_i FIXED BINCIS) INITC1);
DCL PST_PR FIXED BINCIS) INIT(2);
DCL. PST_PNA FIXED BINCIS)Y INITC3);
DCL PST.P FIXED BINCIS) INITC(4);

DCL I_TESTLIN FIXED BINCIS) INIT(99);
DCL TRUE BITC INITC 1'B);
OCL FALSE BITCEH) INITCO'B);
DCL YN(2)> CHARC(1) INITC'Y, "'N');

DCL CQc2)> CHARC 1) INITC'C', 'Q");
DCL RESP FIXED BINC1S);)
OCL. PROF CHAR(8) VARYING INITC PEAR');
DCL. PREFIX CHAR(8) VUARYING;
DCL. USERIDS CHAR(256) VARYING;
DCL (RECORD, RECORD2) CHAR(S10) VARVING;
DCL LINE CHAR(255)> VARYING;
DCL RSTYTHE PICTURE °'999999' INITC100);
DCL TSTHITHIN PICTURE 999999 INITC100);
BCL. REDIRHR PICTURE '999999° INITC10000);
DCL. CURTINE PICTURE ‘999999 ;
DCL. CUTOFF PICTURE '999999";
DCL. CURDATE CHAR(G);

DG OUTDATE CHAR(S);
DBCL. UPPERCASE CHARC26)> INITC

' ABCDEFGH | KLMNOPQRSTUVHXYZ ');
DCL LOMERCASE CHAR(26) INIT(
‘abedefghijkirnopgrstuvexyz’ 2
DCL <BEL,BS, OFF,0N)> CHARC 1),

/*#***“*”" MAIN PROGRAM /
CALL INIT;

CALL SESSION_CONTROL;

/ /
~* */

BUILTIN;
BUILTIN;
BUILTIN;

-134 -

Vid
Vil
Vil
Vid
Vad
Vad
"

THIS PROCEDURE 1S THE LOMEST LEVEL TERMINAL INPUT
ROUTINE. THE PARAMETER CIN IS FILLED WITH L
CHARACTERS FROM THE KEYBOARD WHEN THIS ROUTINE s
CALLED. ALL LOWERCASE ALPHRBETIC CHARACTERS ARE
TRANSLATED TO UPPERCASE BY THIS ROUTINE.

*/
»/
=/
*/
»/
*/
*/

/
TGET : PROCCCIN, L, PROTECT);

DCL CIN

DCL L

DCL PROTECT

DCL TS50

DCL BSS2

OCL C60

BeL <1,

ON ENDF ILECSYSIN) BEGIN;

CHARC*);

FIXED BINCIS);
BITC1);
CHAR(S0);
CHAR(S2);
CHAR(60);
FIXED BINC1S);

CLOSE FILECSYSIND;
OPEN FILEC(SYSIN);
PUT FILECSYSPRINT) SKIP;
END;
IF (PROTECT)> THEN DO;
BSS2=REPEAT(BS,52);
COO=REPEAT(' #¥8%@", 12);
J=H0DCRAND, 5)+1;
DO (=1 TO 2;
PUT FILECSYSPRINT) EDIT(SUBSTR(C60, |+J,L),
SUBSTR(BSS2, 1,L)) (A,A);
END;
PUT FILECSYSPRINT) EDITC' ' SUBSTR(BSSZ2, 1,L+2)>, ' :
CACL),A,A);
CALL SCNCSTRINGC(OFF));
END;
GET FILE(SYSIN) EDIT(TS0) (ACS0));
IF (PROTECT)> THEN
CALL SCN(STRINGC(ON));
CIN=SUBSTR(TSO, 1,L);
CIN=TRANSLATE (C | N, UPPERCASE, LOMERCASE) ;

END, /* TGET =/

/

D

/
Vad
Vil
%
Vad

THIS PROCEDURE PRINTS THE VALUE OF A PASSWORD
AND ERASES IT FROM THE SCREEN.

*/
*/
*/
*/

4

ECHOPASS : PROCCCIND;

bCL CIN

BCL BS8
BS8=REPEAT(BS, 8);
CALL TPUTC'PASSHORD: = [|CiN]|' "', 1);
DELAYC1000);

CHARC(*);
CHAR(S);

PUT FILECSYSPRINT) EDIT(BS, BSS, ‘aX*0MuIN" ,BS8, ' COMENIXS ', BSS,

"HHIME1=*@0 ", BS8, 'IfteXesd , BS8, ' XA,
END; /% ECHOPASS #/
/ /
/= w7
Fhd THIS PROCEDURE RETURNS A BOOLEAN UALUE TRUE IF ®/
hd THE STUDENT NUIBER PASSED IN PRRAMETER Cip ®/
/% HATCHES ANY OF THE SPECIAL STUDENT NUMBERS »/
Vhd RECOGN2ED BY THE SYSTEH. CIE, INST,EDIT,TA,ALL, */
Thd HMARKER). =/
il */
/ /
SPECIAL_ID:PROC(CID) RETURNS(BITC1));
DCL CID CHARAR(?);
DCL | FIXED BINC1S);
DCL SPEC BITC1),;
SPEC = FALSE; o
DO I=1 YO0 L.SPEC;
IF CSPEC_IDC} »=CID> THEN SPEC>TRUE ;
END;
RETURN(SPEC);
END; /* SPECIAL 1D »/
/ /
/* wy
Vad THIS PROCEDURE TAKES THE CHARACTERS PASSED IN COUT AND */
Vs HRITES THEM TO THE TERMINAL AFTER SKIPPING L LINES. »/
/* */
/ /
TPUT:PROCCCOUT,L);
DCL L FIXED BINC1S);
DCL CouT CHRRA(®);
SELECT(L);

KHENC1)> PUT FILECSYSPRINT) EDIT(COUT) (COLC1), A);

HHENCO) PUT FILECSYSPRINT) SKIPCL)> EDIT(COUT) (COLC1), A);
OTHERMISE PUT FILECSYSPRINT) ED|TCCOUT) (COLC1), SKIPCL~1), A);
END;

END; /* TPUT %/

/

/
7~ W/
lhad THE RAND PROCEDURE GENERATES A RANDON 32 BIT INTEGER #/
"™ THE PSUEDORANDOM TECHNIQUE USED 1S A COMBINATION OF »/
/* LINEAR CONGRUENTIAL AND SHIFT REGISTER TECHNIQUES. “f
/"‘ */
/ /

<NOF | XEDOVERFLOM > : C(NOZEROD [VIDE):
RAND :PROC RETURNS(F IXED BIN(31));

DCL SEED
DCL. (T1,T2)
SEED=69069*SEED*T INE ;

FIXED BINC31) INITC1?) STATIC;
FIXED BIN(31);

UNSPEC(T1)=¢ ¢15>'0'B »| | SUBSTRCUNSPEC (SEED), 1,17);

T1=T 1+SEED;

T2=(T ¥ 131072)4T1;

SEED=SEED+T2;

RETURN(SEED);
END; /* RAND »/
/ /
/* »/

lae THE GENRAND PROCEDURE GENERATES A RANDOM INTEGER (N */
/* RANGE 1~LIM WHICH EXCLUDES THE NUMBERS IN Q1,02,03. =/
lad IT IS USED TO GENERATE THE QUESTION NUMBERS FOR TESTS*/
lid AND IN THE PROCTOR SELECTION ALGOR!THIT WHERE IT IS */
lad USED TO SELECT PROCTORS IF THERE ARE MORE THAN ONE */
/" HITH THE LOHEST NUMBER OF POINTS. w/
7~ w/
/

4
GERAAND :PROCCLIN, @1,02,Q3) RETURNSCF IXED BINCIS));
DCL (LIN,Q1,Q2,03) FIXED BINCIS);
DCL AGEN FIXED BINC15);
DOl EQ BITCH);
IF (LIM<2)> THEN RETURNC1);
ROEN=MODCRAND, LIN>+1;
IF <LIM=2) THEN RETURNCRGEN);
EQ=TRUE;
DO HHILECEQ);
IF C(CRGEN=Q1)>| (RGEN=Q2)>) THEN BO;
IF CRGEN<LIM) THEN

RGEN=RGEN+1;
ELSE
RGEN=1;
END;
ELSE EQ=FALSE;

END;

RETURNCRGEN > ;
END; /% GENRAND %/
/ /
s */
/* THIS PROCEDURE HRITES OUT THE MESSAGE THAT THE STUDENT =/
/% NUNBER HAS JUST BEEN MODIFIED OR DELETED. */
r* 4
/ /
REC.NO_FOUND : PROC;

CALL TPUTC'ERROR 1S FOUND IN ' || STUD. 1D, 1;

CALL TPUTC'YOUR USERID HAS JUST BEEN MODIF IED OR', 1);

CALL TPUT('YOUR STUDENT RECORD HAS JUST BEEN DELETED. t,o0;

CALL TPUTC ' TRANSACTION CANCELLED. ', 1);

CALL TPUT(C'PLEASE CONTACT TO YOUR INSTRUCTOR o1
END; /% REC_NO_FOUND %/
/ /
/" */

- 135 -

lad THIS PROCEDURE READS ONE STUDENT RECORD GIVEN THE */
Y iad STUDENT NUMBER IN PARAMETER CID. THE PARAMETER FOURD »/
/* IS RETURNED AS A BOOLEAN TRUE VALUE IF THE RECORD ®/
las CORRESSPOND ING TO STUDENT NUMBER CID HAS FOUND. ®/
~ =/
/ /
READ_STUD :PROC(CID, FOUND);
DCt. CID CHRR(?);
DCL FOUND BITC1);
ON KEV(STUDFIL) FOUND=FALSE;
FOUND=TRUE ;
RERD NOLOCK FILE(STUDFIL) INTOCSTUD) KEY(CID);
END; /% READ_STUD =/
/ /
lad ®/
/® THIS PROCEDURE READS AND HRITES ONE STUDENT RECORD w/
/* GIVEN THE STUDENT NUMBER iN STUD.ID. THE PAARMETER b4
/* FOUND 1S RETURNED AS A BOOLEAN TRUE VALUE IF THE RECORD =/
/% CORRESSPONDING TO STUDENT NUMBER CID HAS FOUND. w/
lad ®/
/ /
READ_STUD_L.OCK : PROCCFOUND ;
DCL. FOUND BITC(1),;
ON KEY(STUDFIL) BEGIN;
FOUND=FALSE ;
CALL REC.NO_FOUND;
END;
FOUND=TRUE ;
READ FILECSTUDFIL) INTOC(STUD) KEYCSTUD. 10);
END; /* READ_STUD.LOCK */
/ /
la »/
= THIS PROCEDURE REMRITES THE STUDENT RECORD ASSOCi- »/
Vi ATED HITH STUDENT NUMBER PRSSED IN CID. FOUND S THE®*/
i BOOLEAN VALUE RETURNED TRUE IF THE RECORD HAS FOUND . %/
~ =/
/ /
UPDATE_STUD : PROC(CID, FOUND) ; o
DCL CiD CHARC?);
DCLL FOUND BITC(1,
ON KEYCSTUDF IL) FOUND=FALSE ;
FOUND = TRUE;
REHRITE FILECSTUDFIL > FRON(STUD) KEY(CID);
END; /* UPDATE_STUD %/
/ /
/* */
4l THIS ROUTINE CLOSES THE FILE OF THE SYSTEN. w/
" IF SOME RECORDS ARE LOCKED BY ANOTHER TASK, THEN w/
Al THE ERROR CONDITION MILL BE RAISED. IF SO, DELAY A »/
/* WHILE AND TRY TO CLOSE THE FILE RGAIN. */

lad %/

I
CLOSE_FILE:PROC(INFILE >;
DCL INFILE FILE VARIABLE;
ON ERROR BEGIN;
DELAY(10);
GOTO RGAIN;
END,
RGAIN: CLOSE FILECINFILE);
END; /* CLOSE.FILE »/

/ /
7% */
/* THIS ROUTINE ACCEPTS A 6 CHARACTER UALUE REPRESENT ING w/
/% A TIRE AS HHEMSS AND RETURANS THE SAME TINME UALUE WITH b4
Thd THE HOURS, HINUTES SECONDS SEPARATED BY COLONS . HH: Mit: SS% /
/% »/
/

4
SEPARATE : PROCCT HMEARG) RETURNSCCHARCS));
DCL TiIMEARG PICTURE ‘999999 ;
RETURNCSUBSTRCTIHEARG, 1,2>1 | " : * | | SUBSTRCT INEARG, 3,2) |
"1 | ISUBSTRCTIMERRG,S,2));
END; /* SEPARATE »/

/ /
/‘ */
/% THIS ROUTINE TAKES AN INTEGER AND RETURNS »/
/* THE DIGITS OnLY. 4
ad =/
/ /
COMPRESS : PROCCNUM) RETURNS(CHAR(I5) VARYING),
DCL Nult FIXED BINC1S);
DCL STRNUM CHRR(15) VARYING;
STRNUM=NUH;
RETURN(SUBSTR(STRNUN, VERIFYC(STRNUN, * ')));
END;
/ /
g >/

/% THIS ROUTINE TAKES THO 6 DIGIT DAY-TIME VALYES™/
/* BREPRESENT IN DDHHMN AND RETURNS A UALUE WHICH w/
/* IS THE SUM OF THE DAYS, HOURS AND MINUTES. */

” =/
/ /
RODTD :PROCCTD1, TD2> RETURNS(P ICTURE ' 999999 °),

OCL <TD1,7D2) PICTURE '999999";

DCL Ci,CARRY) FIXED BINC1S);

DCL. (DD, M, HHD> PICTURE '99°;

l"SUBSTR(TDI,S,Z)+SUB$TR(TD2,5,2);

H1=1100<1,60);

CARAVY=(/60;

I=SUBSTR(TD1, 3, 2)+SUBSTR(TD2, 3, 2 +CARRY;

- 136 -

HH=MODC(1,24);

CARRY=| /24;

{=SUBSTR(TD1, 1,2)+SUBSTR(TD2, 1,2 +CARRY;
DO= 1 ;

RETURNCDDI] [HHI |1g1);

END; /* ADDTD */

f
1
Y
r*
I
o
Ve

THIS ROUTINE TAKES THO 6 DIGIT DAY~TIME UALUES®/

REPRESENT |N DDHHIf AND RETURNS A VALUE,
THE SUBTRACTION OF TD2 FRONM TD1 MHICH IS
ALHAYS GREATER THAN TD2.

/
=/

wf
=/
=/
*/

L4

$SUBTD:PROCCTD1, TD2) RETURNS(PICTURE ' 999999°);

BCL <TD{,TD2) PICTURE °999999";
DCL (i,CARRY) FIXED BINC15);
DCL (DD, MM, HH) PICTURE °‘99°;
I-SUBSTR(TDI,S,Z)—SLBSTR(TD2,5,2);
IF €1<0)> THEN DO;

CARRY=~1;

|=1460;

END;
ELSE

CARRY=O0;
M= ;
I-CRRRV+SUB$TR(TD1,3,2)—$UBSTR(TD2,3,2);
IF C1<0) THEN DO,

CARRY=-1;

I=}+24;

END;
ELSE

CARRY=0;
Hitm | ;
| =CRRARY+SUBSTR(TD 1, 1,2)-SUBSTR(TD2, 1,2);
DO=1{;
RETURNCDD| {HH| [181);

END; /% SuUBTD =/

/

/

/
*
V&
Vi
Vi
Vid
1%
/*
Vil
Vil

THIS PROCEDURE BUILDS AND MAITES A LOG RECORD.THE CID
AND TRANS PARAMETERS DEFINE THE SID AND TYPE FIELDS T0
BE HRITTEN HHILE THE REST OF THE FIELDS OF THE LOG
ARE GLEANED FROM THE CURRENT UALUES IN THE STUDENT

RECORD.

*/
*/
=/
»/
*/
*/

FOR A DESCRIPTION OF THE LOG RECORD FIELDS SEE THE REF-#=/

ERANCE MANUAL .

A
»/

14

LGG :PROCKTRANS,CID);
DCL TRANS CHARC 1);

/

DCL CID CHAR(?);
ON KEYCLOGFIL) BEGIN;

CALL READ..SYSP_LOCK;
SYSP . NLOGREC=SYSP . NLOGREC—1;
CALL UPDATE_SYSP;

CALL TPUTC'PLEASE CONTACT TO YOUR INSTRUCTOR L P
CALL TPUTC'THE LOG FILE IS FULL AND NO RECORD CAN BE

‘HRITTEN ON IT.', 1);

CALL TPUTC'THE LOG FILE 1S NEEDED TO BE ENLARGED 0,

GOTO OUT;
END;

CALL READ_SYSP_LOCK;

SYSP . NLOGREC=SYSP . RLOGREC+1;
CALL UPDATE_SYSP;

RERD FILECLOGFIL) INTOCLOGREC) KEY(SYSP . NLOGREC),
LOGREC . DELKEY=(8)>'0'B;

LOGREC. TYPE=TRANS ;
LOGREC.CTIME=SUBSTR(TINE, 1,6);
LOGREC.SID=CiD;

IF CTRANS='2" | TRANS="3 " | TRANS="4" | TRANS="5") THEN Do;

END;
ELSE DO;

LOGREC. TS=TST_I ;
LOGREC . PS=PST_{;
LOGREC. |D="

LOGREC.UNIT, LOGREC.Q1, LOGREC .Q2, LOGREC . Q3, LOGREC. TP,

LOGREC .PP=Q;

LOGREC. TS=STUD . TSTATE;
LOGREC. PS=STUD . PSTATE;
LOGREC. ID=STUD. ID;
LOGREC. UNI T=STUD . UNI T;
LOGREC.Q1=STUD.Q1;
LOGREC.Q2=STUD .Q2;
LOGREC.Q3=STUD.Q3;
LOGREC. TP=STUD . TEST;
LOGREC . PP=STUD. PROCTOR;

END;
REURITE FILECLOGFIL)> FROMCLOGREC) KEY(SYSP .NLOGREC);

ouT:;

ERD; /% LOG »/

/ /
Thd w/
/® THIS PROCEDURE |S CALLED WHEN THERE IS A SER{QUS =/
/% INCONSISTANCY IN THE INTERNAL RECORDS. AN ERAOR NUNMBER =/
/® DEFINED IN THE TABLE BELOW IS WRITTEN TO THE TERMINAL. =/
1% w/
/* ERROR CAUSE LOCATION w/
[e—— ———— wy
/* 1 STUDENT NUMBER IN ST ARRAY SESSION CONTROL, w7/
Vad NOT FOUND N STUDENT FILE. PROCTOR SELECTION., =/
/+ 2 INVAL ID CASE CHOICE. SESSION CONTROL, */

- 137 -

o PROCTOR SELECTION »/
/” 3 SECONDARY 1D NOT FOUND.

SESSION CONTROL , ®/
lad HARK TEST ®/
/* 4 STUDENT HRITING TEST AND SESSI10M CONTROL */
/ PROCTORING AT THE SAME TIME b4
FAdi -] ~SAE AS ERROR 2. SESSION CONTROL nAIN*/
lad SELECT STATHENT. w/
/* 6 ~STUDENT NUIBER NOT FOUND -STUDENT LOGIN. #/
” 7 -SAME AS ERROR 6. ~GET_PROC_STATUS ®/
FAJNEE - ~SAME AS ERROR 2. ~GET.PROC.STATUS =/
/9 ~SAME RS ERROR 2. ~GET_HARK ®/
/10 ~SPECIAL STUDENT NUMBER NOT -GET_EDIT_PRSS ®/
lhd FOUND . Wy
FAn B | ~SAME AS ERROR 1. ~START_SESSION. */
/™ 12 -SAME AS ERROR 1. -END SESSION, b4
/# 13 -SAME AS ERROR 6. ~ED I T_PERSONAL =/
/* 14 =SAME AS ERROR 1. —£0 | T_PERSONAL w/
15 -SAME AS ERAROR 10. . -ED I T.PERSONAL ®/
/# 16 -SAME AS ERROR 10. ~GET..INST_PASS ®/
” 17 ~SAME AS ERROR 6. ~ED i T_COURSE =/
/& 18 ~SAME AS ERROR 1. “LIST_STUD ®/
19 ~SAE AS ERROR 6. ~SESSION CONTROL., TEST#/
il GENERATE. . ®/
/* 20 ~SAME AS ERROR 6. -STATE_MACH */
#21 -SAME AS ERROR 5. ~STATE_NACH =/
/# 22 ~SAIE AS ERROR 1. -RENOV_STUD w/
/* 23 ~SAME AS ERROR 1. ~EDIT..SYSP, CHANGE ®/
Vad THRESHOLDS . */
/% 24 -SAME AS ERROR 6. ~GENTEST #/
/* 25 =SAME AS ERROR 6. ~GET..NARK w/
” A
/ /
INTERNAL_ERR: PROCCENUN);
DCL ENUN FIXED BINC15);
OCL couT CHAR(24);
PUT STRINGKCOUT > EDIT(*%=|NTERNAL ERROR: 'L, ERUNI(A,F(6,0));
CALL TPUTCCOUT, 1);

END; /* INTERNAL_ERR =/
/ /
lhd ®/

/= THIS ROUTINE CONTAINS THE COMON CODE REQUIRED TO =/
IAd HRITE A PROMPT TO THE TERMINAL, GET A SINGLE CHARACTER=/
lad RESPONSE BACK AND MATCH TO A KNOWN SET OF RESPONSES ®/
TAd THE PRRANETER MES CONTAINS THE PROMPT TO BE LISTED. 4
/* THE PARANMETER RA IS AN ARRAY OF SINGLE CHARACTER VALID*/
lad RESPONSES. RETVAL 1S THE RETURN VALUE: AN INDEX INTO »/
/% THE RA ARRAY INDICATING WHICH ONE OF THE RESPONSES HAS®/
” TYPED IN. RETVAL 1S SET TO O IF A BLANK OR RETURN HAS */
ad TYPED IN. THE PROGRAM WILL LOOP REQUESTING A RESPONSE =/

Vs UNTIL A VAL ID ONE 1S TYPED IN. ®/
e) »/
/ /

GET_RESP :PROCCHES, RA, RETVAL., DEFAULT);

DCL MES CHARC*) ;

DCL RACH) CHARC(1);

ODCL CRETVAL,DEFAULT, I ,LIN)> FIXED BINC 15);
DCL CONT BITC1);

DCL TEHP CHARC 1);

CONT = TRUE;

RETUAL = O ;

LINM = HBOUND(RA, 1);
DO HHILECCONT);

TERP=" *;
IF (DEFAULT"=0> THEN

CALL TPUTCHES| |RACDEFAULT| IBS|IBS| |BS]] ! L0
ELSE

CALL TPUT(HES, 1);
CALL. TGETCTENP, 1,FALSE);
DO i=1 TO LIN;
IF CRACI)=TEIP) THEN DO;
RETVAL= ;
CONT=FAL SE ;
END;
END;
IF CTENP=" ") THEN DO;
RETVUAL=Q,
CONT=FALSE ;
END;
ELSE DO;
IF <CONT)> THEN DO;
CALL. TPUTC' INVALID RESPONSE, TRY AGAIN.', 1);
END;
END;
END; /* WHILE =/
END; /% GET RESPONSE %/

/ /
IAd . w/
Vhd THIS PROCEDURE IS EXECUTED BEFORE THE CONTROL MENU */
/% IS DISPLAYED. |T PRINTS THE SIGN-ON BANNER AND PRINES */
lad THE CURDATE. THE PROCEDURE WRITES A LOG RECORD HITH =#/
/* TRANSACTION TYPE=3 w/
/% w/
/ /
INIT:PROC;
DCL v FIXED BINC1S);

CURDATE= DATE;

OUTDATE= SUBSTR(CURDATE, 1,2>| "/ | ISUBSTRCCURDATE, 3,2)] |
'/ | ISUBSTRCCURDATE, S, 2>; :

CURTIHE=SUBSTR(TINE, 1,6);

CALL TPUTC'PERSONAL IZED SYSTEM INSTRUCTION. ', 1);

CALL TPUTC'VERSION 3.0 : SEPT 1,1987°,1);

CALL TPUT(OUTDATE|| " 1 ISEPARATECCURTIME), 1);

UNSPEC(BEL >="00101§11°'8;

-138 -

UNSPECCOFF)= 00001110'B;
UNSPECCON) ="00001111'8;
UNSPEC(BS) ='00010110°B;

UNSPEC(HORK . HA_LEN »=BOOL.C ' 1'B, UNSPECCHORK. HALLEN), ‘0111* B>;

FETCH DvhaN;

CALL DYNANMCHORK, 'ALLOC *, ‘DD=INTFILE; ", '‘PREF=" | |
PREFIX||"; ", "DSK=INTFILE VOL=HORK F DSO=pPS °
'LRECL=72 BLKSIZE=72 TRK PRilt=1 SEC=1

‘UNIT=DISK NEMW DEL CDEL;');

OPEN FILE(STUDFIL) EXCLUSHE UPDATE DIRECT UNBUFFERED,

FILECSYSPFIL) UPDATE DIRECT,
FILECLOGF iL) UPDATE DIRECT,
FILECSYSIND,

FILECSYSPRINT) LINESIZEC132),
FILECTESTIND,

FILECHAILIND,

FILECINTFILE) QUTPUT LII‘ESIZE(?Z)

ALLOC PINDX,ST;

IF (PARN=")I(INOEX(PMH, ')-0) THEN DO;
CARLL TPUTC' INVALID PRRAMETERS. ', 1);

CALL SCNC(STRING(BEL));
STOP;
END;
J= INDEXCPARM, © ");
USERIDS=SUBSTR(PAAN, 1,J-1);
PARM=SUBSTR(PAAN, J+1);
J=INDEXCPARIMI L °,° '),
PREFiX-‘SlBSTR(Pﬁm, |,J—I);
DO KHILECUSERIDS =" *);
J=NDEXCUSERIDSI |, ", ", ');

TACTAS+1)=SUBSTR(USERIDS, 1,U-1);

IF (J+1LENGTHC(USERIDS») THEN
USERIDSs " *;

ELSE
USER|DS=SUBSTR(USERIDS, J+1);

IF CTACTAS+1)™=" *) THEN
TAS=TAS+1;

END,

CALL READ_SYSP;

IF SYSP.SESSDATE “=CURDATE THEN DO;
CALL LOGC'3' ,CURDATE| " *);
SYSP . SESSDATE=CURDATE ;

CALL UPDATE._SYSP;

END;
END; 7# INIT »/

/ /
lad »/
lhd THIS PROCEDURE REWRITES THE SYSTEM PRRAMETER RECORD* /
lid IT IS CALLED AFTER EVERY MODIFICATION TO A SYSTEN w7
/* PARANETER. =/
/% »/
/ /

UPDATE_SYSP : PROC;

RENRITE FILE(SYSPFIL) FROM(SYSP) KEY(O) ;

END; /* UPDATE..SYSP =/

/ /
Thd */
/* THIS PROCEDURE IS USED TO RERD THE SYSTEM PARAMETER */
7* RECORD . »/
T »/
/ /
READ_SYSP :PROC;
READ NOLOCK FILECSYSPFIL) INTO(SYSP) KEY(O) ;
END; /& RERD_SYSP #/
/ /
lad */
Vad THIS PROCEDURE IS USED TO READ AND LOCK THE SYSTEN =/
lad PRRAMETER RECORD. LV
/% */
/ /
READ_SYSP_LOCK : PROC;
RERD FlLE(SYSPFIL) INTOCSYSP) KEY(O) ;
END; /* READ_SYSP_LOCK %/
/ /
lad */
/* THIS PROCEDURE CONTAINS THE COMMON CODE REQUIRED*/
lad TO PROMPT THE TERMINAL FOR A STUDENT NUMBER AND */
Tad THEN RECIEVE R REPLY. PRRANETER STNPRMPT IS THE ®*/
Vi INPUT STRING THE ROUTINE WILL WRITE TO THE TER~ */
Tad HINAL AS A PROMPT. CID CONTAINS THE STUDENT w/
lid NUMBER WHICH IS TYPED IN. FOUND, SPEC, BLANKF ARE */
~* BOOLEAN VALUES RETURNED MHICH INDICHTE {F THE »/
Vhd STUDENT NUMBER TYPED IN WAS FOUND IN THE RECORDS®/
Vad LHAS A SPECIAL STUDENT NUMBER (L IKE EDIT, INST ..%/
Tad .. .ETC.>0R WAS TYPED IN AS A BARE KETURN(AL w7
Vg BLANK) . #/
/"‘ */
/
GTID PROC(CID,FOUND, SPEC, BLANKF , STNPRIMPT, DEFAULT);
DCcL STNPR!PT CHAR(»);
DCL CID CHAR(?);
DCL (FOUND, SPEC, BLANKF , DEFRULT) BIT(I)
[+ o | FIXED BINC1S);
FOUND=FALSE;
SPEC=FALSE ;
BLANKF=FALSE ;
IF (DEFRULT=TRUE Y& (PREF | X=PROF) THEN
DEFAULT=FALSE ;

- 139 -

IF (DEFARULT=TRUE) THEN
DO |=1 TO TAS WHILECDEFAULT);
IF (PREF | X=TACTAS)) THEN
DEFAULT=FALSE ;
END;

IF (DEFAULT=TRUE) THEN DO;

CALL TPUT(STNPRIPT| {PREFIX,2);

CALL TPUT(STNPRMPT,0);
CALL TGET(CID,?7,FALSE);

IF CCID=" ') THEN
CID=PREFiX;
END;
ELSE DO;

CALL TPUT(STHPRIPT,2);

CALL TGET(CID,7,FALSE);

END;

IF <CiD=" ') THEN DO;
BLANKF=TRUE;
RETURN;

Em.

IF (SPECIAL.ID(CID)>> THEN DO;

SPEC=TRUE;
RETURN;
END;
FOUND=TRUE ;
CALL RERD..STUD(CID, FOUND);

END; /% GET ID »/

/ /
Vad »/
lhd THIS PROCEDURE CONTAINS THE COMMON CODE »/
e REQUIRED TO READ iN AN INTEGER FROM THE wy
* TERMINAL. IT RETURNS A BINARY VALUE OF THE w/
™ CHARACTERS TYPED IN AND STORES IN THE w/
" PRRAMETER ITEMP. ®/
~ THE BOOLEAN VALUES RETURNED IN ERR AND BLANKF »/
lid INDICATE WHETHER THE VALUE TYPED IN COULD BE »/
= CONVERTED CORRECTLY RND IF IT HAS TYPED IN AS w/
Tad BRRE RETURNCALL BLANKS)> OR NOT b4
Vad ®/
/ /

GET..INT:PROCC | TENP, ERR, BLANKF);

DCL I TEMP
DCL. (ERR, BLANKF)
DCL. TEMPIN
ON CONVERSION BEGIN;
ERR = TRUE;
TEMPIN= ‘0’ ;
I TEMP=0;
ONSOQURCE="0" ;
END;
ON SIZE
ERR=Ffi SE ;
BLANKF=FALSE ;
| TENP=O;
CALL TGETCTEMPIN, 7, FALSE);
IF CTEMPIN=" ') THEN DO;

ERR=TRUE ;

FIXED BINCIS);
BITC1);
CHAR(7);

BLANKF=TRUE ;

RETURN;

END;

(SIZE): |ITENP=TEMPIN;
END; /* GET INT*/
/ /
lad */
Vas THIS PROCEDURE LOOKS AT THE TEST,PROCTOR, TERN AND */
id EXAM POINT FIELDS OF THE CURRENT STUDENT RECORD w/
Vi FORHING R SUM AND PLACING IT IN THE TOTAL POINTS =/
lad FIELD. AFTER THAT A NEW LETTER GRADE IS CALCULATED*/
/® AND ASSIGNED DEPENDING ON THE TOTAL POINT VALUE., =/
/* THIS PROCEDURE 1S CALLED EVERY TINE THE MARKS OF A%/
/* STUDENT IS CHANGED OR THE LETTER GRADES THRESHOLDS®/
las ARE CHANGED . W/
s */
/

- 140 -

£
CNOS | ZE >: TOTAL HARKS : PROC;
ocL |

FIXED BINCIS);

CALL READ_SYSP;
STUD. TOTAL=STUD. TEST+STUD .PROCTOR+STUD . TERI+STUD . EXAN;
STUD.LETTER=LGL [TC13);

DO 1=13 TO 1 BY ~1;
IF (STUD.TOTAL>=SYSP.LGTHRESH(|)) THEN
STUD.LETTER=LGLITC |);
END;
END; /% TOTAL MARKS */
/ /
’» A
/* THIS IS A SUBROUTINE OF LISTING OUT THE STUDENT »/
/* PROCTORS OF THE INPUT STUDENT 1D, IF NO STUDENT %/
/* PROCTOAS FOR HIM IS ASSIGNED, THE STUD_PROC WILL */
/* RETURNS A FALSE. PRINT IS TO TURN ON OR OFF w7
/* THE LISTING OF THE STUDENT PROCTOR. w/
/* */

4

STUD_PROCTORS :PROCCCID, DIRECT, PRINT, STUD_PROC);
DCL CiD CHARCT);
DCL (DIRECT,PRINT,STUD_PROC) BITC1);
STUD_PROC=FRALSE ;
ON ENDF ILECSTUDFIL) GOTO EGF;
CALL CLOSE_FILE(STUDFIL);
OPEN FILECSTUDFIL) INPUT SEQUENTIAL BUFFERED;
DO HHILEC 1'B);
READ FILECSTUDFIL) INTOC(STUD);
IF (CSTUD.PSTATE=PST_P)&(STUD.SID=CID)) THEN DO;
IF <PRINT) THEN
CALL TPUTC'PROCTOR HAS NOT ENTERED RESULTS,
I1"USERID: " |{STUD.ID||", NAME: ‘||
STUD . NAIE, 1);
STUD.PROC=TRUE;

: END; OPEN FILECSTUDFIL) EXCL UPDATE DIRECT UNBUF;
END; END; /* REDIRECT */

EOF: CALL CLOSEFILECSTUDFIL);
IF (DIRECT) THEN / /
OPEN FILE(STUDF L) EXCL UPDATE DIRECT UNBUFFERED; * "/
ELSE DO; /* THIS IS R SUBROUTINE OF THE LIST STUDENT STATUS =/
OPEN FILECSTUDFIL) INPUT SEQUENTIAL BUFFERED; /% IT CONTAINS THE CODE KHICH FORMATS ONE LINE OF
READ FILE(STUDFIL) INTOCSTUD) KEVCCID); /% OQUTPUT. */
END; Ved wy
END; /* STUD.PROCTORS %/ / /
ONE_STATUS_OUT : PROC(CID, D IRECT)
/ / DCL CID CHARCT);
” =/ DCL DIRECT BITCH);
/* THIS PROCEDURE LISTS ALL THE UMARKED STUDENTS »/ DCL STUD_PROC BITC1),
/* HHO HAITED OVER 24 HOURS. »/ DCL OUT_UNIT PICTURE 229" ;
~ w/ DCL. (OUT_Q1, 0UT_Q2,0UT_Q3> PICTURE *2229°;
/ . / DCL OUTY CHARC38);
REDIRECT:PROC; . DCL QUT2 CHAR(49):
DCL HERDR1 CHAR(38) INITC QUT_QI=ABS(STUD.Q1);
‘STUD.® NAME'); OUT_Q2=ABS(STUD. Q2>
DCL HERDR2 CHARC48) INIT(OUT_Q3=ABS(STUD. Q3),
"UNITS QUESTIONS TEST STATE PROCTOR STATE TIME'); OUT1sSTUD. IDI | * * | [STUD. NANE;
DCL CiD CHAR(?); oun-wr.mllour_nznour.qall 11 TSCCSTUD. TSTATE)| |
DCL <NOW, ADDED > PICTURE 999999 ; " “1IPSC(STUD.PSTATED | |* ' | ISUBSTRCSTUD.RTIHE, 1,2) |
CALL TPUTC'LISTING OF ALL THE UMHARKED H [/ | ISUBSTR(STUD RT I1E, 3,2 |
‘ STUDENTS HHO PASSED OVER 24 HOURS. ‘ *| ISUBSTR(STUD .RTIIE, 5, 2);
CALL TPUTCHEADR1| |HERDR2, 1); IF COUTSTANDING(STUD . TSTATE > THEN DO;
CALL CLOSE_FILECSTUDFIL); OUT_UNITaSTUD . UN I T+1;
OPEN FILECSTUDFIL) INPUT SEQUENTIAL BUF; CALL TPUTCOUT 1] [OUT_UNIT| |0UT2, 1
ON ENDFILECSTUDFIL) GOTO EOF; IF (STUD.TSTATE"=TST_T) THEN DO;
ON ATTENTION BEGIN; CALL STUD.PROCTORS(C1D, DIRECT, TRUE, STUD_PROC
ON ATTENTION SYSTEN; IF (“STUD_PROC) THEN
CRLL GET_RESP('(C)ONTINUE OR CQWIT : °, CALL TPUT(PROCTOR SELECTED 1S INSTRUCTOR' | |
ca, RESP, 1); CORTA.T,1);
IF (RESP=2) THEN GOTO EOF; END;
ELSE GOTO CONT; ELSE DO;
END; CALL TPUTC'STUDENT IS HRITING A TEST. ", 1);
DO HHILEC' 1°B); END;
CONT: READ FILECSTUDFIL) INTO(STUD) KEYTO(CID); | END;
IF ¢“SPECIAL_IDC(STUD. 1D)& : ELSE DO;
(OUTSTANDING(STUD. TSTATE>>> THEN DO; é‘ﬁ:ﬂ;zﬁml?%a WITI U2, 13;
ADDED=RODTD(STUD . AT INE, RED IRHA); -)
NOU=SUBSTRC(DATE, 5, 2| | SUBSTRCTIIE, 1,4); CALL TPUTC'STUDENT HAS NO UNHARKED TEST.", 1);
IF (CNOW<ADDED >&(SUBTDCADDED, NOM > RED IRHR)Y > THEN CﬁLLE"‘I)'PUT(1>
NON=CSUBSTRCNOM, 1,2)~1+SUBSTRCADDED, 1,255} | END; /% om..smrbs ouT =/
SUBSTRCNOM, 3,4); ‘ =
IF CNOW>ADDED) THEN / /
CALL ONE_STATUS..OUT(CID, FALSE); /o Ny
END; " THIS IS A SUBROUTINE THAT PROMPTS "/
END; /% THE INSTRUCTOR OR TA FOR THE »/
EOF: ON ATTENTION SYSTEM; 7% NEXT STUDENT HUMBER TO BE MARKED (3 WRONG =/
CALL CLOSE_FILEC(STUDFIL); 1% TRIALS OR A BARE RETURN CAUSES |T TO TERMINATE*/

- 141 -

Vil
Vil
Vil

4

>: THEN PRONPTS HIN FOR A MARK IN THE SAIE w/
HANNER STUDENT PROCTORS ARE PROMPTED. w/
*/
/
HARK_STUD : PROC;
®ee confidential procedure oee
END; /» MAAK_STUD =/
/ /
Y2 */
/* THIS PAOCEDURE IS THE MAIN ROUTINE WHICH »/
Al HANDLES STUDENT TRANSACT ION PROCESS ING. */
/® THIS ROUTINE LOOPS SEVERAL TINES CALLING %/
1* THE STUD.LOGIN SUBROUTINE TO LOGIN THE */
Al STUDENT. NEXT AFTER SIGNING ON THE b4
Tad NEXT STUDENT THIS ROUTINE LOOKS AT HIS ®/
* INTERNAL STATE TO DETERMINE HHICH PROMPTS */
/® ARE PRINTED. THE RARAY CASE..TBL IS USED TO %/
lad DETERMINE WHICH OF THE THREE ALTERNATIVES */
T4d OF THE SELECT STATEMENT INTERNAL TO THIS %/
lad ROUTINE IS CHOSEN. ONE ALTERNATIVE IS THAT */
Tad THE STUDENT HAS NO UNMARKED TEST AND HE */
Iad SHOULD BE PROMPTED TO GENERATE THE NEXT ONE%/
TAd THE NEXT ALTERNATIVE IS TAKEN IF HE HAS */
% GENERATED A TEST BUT NOT SELECTED PROCTORS.*/
ad THE THIRD ALTERNITIVE IS THAT HE HAS BEEN %/
/% SELECTED TO PROCTOR SOMEONE ELSES TEST AND %/
Tad HE MUST NOW ENTER IN THE MARK. THE NULPROC %/
TAd VARIABLE IS SET TO TRUE IF THE CURRENT =/
Tad STUDENT HAS BEEN SELECTED AS A PROCTOR BUT %/
lad THE TEST HE HAS BEEN ASKED TO PROCTER HAS */
/% RLREADY BEEN MARKED BY THE INSTRUCTOR OR =/
Tad HAS BEEN CANCELLED. THIS CAUSE THE STUDENT #/
I LOGIN PROCEDURE TO BE SKIPPED THE NEXT TINE*/
/% THROUGH THE LOOP AND ALLOWS THE CURRENTLY */
Iad LOGGED IN STUDENT TO PERFORM ANOTHER TYPE */
TAd OF TRANSACTION. */
lad wy
/ /
SESS1ON_CONTROL : PROC; '

DCL (BLANKF, FOUND, NOTHMARKER) BITC1);

DAL CASE.TBL(L_PST,L_TST> CHARCT) INITC
TLPLT, P, P, PLTL, PP, P, P,
TLUPLT PP P, CTY L P, P, PP,
TP T, P, P, LT, PP, P, P,
LUE, R, e e, BN L R R R) Y RS

DA CID CHAR(?)>;

REPEAT:

DOL (VAL D, PROCEDE, NULL_PROC,NONE> BIT(1);
NULL. PROC=FALSE;

NOTHARKER=TRUE ;
IF C"NULL_PROC) THEN DO;

-142 -

CALL STUD_LOGINCCID, VAL 1D);

IF “UALID THEN RETURN;

IF CCID="INST') THEN DO;
CALL REDIRECT;
CALL MARK_STUD;
NOTHARKER=FALSE ;

END;
ELSE IF ((CID="TA'> | (CID="MARKER'>> THEN DO
CALL MARK_STUD;
NOTHARKER=FALSE

END;
ELSE DO;
CALL PRINT_INFOCFOUND »;
IF ("FOUND> THEN GOTO REPEAT;
END;
END;

IF NOTHMARKER THEN DO;

IF (STUD.PSTATE"=PST_P & “NULL_PROC) THEN DO;
CALL GET._PROC_STATUS(FOUND);
IF C"FOUND)> THEN GOTO REPEAT;
END;
NULL. PROC=FALSE ;
CALL READ.STUD(STUD. ID,FOUND);
IF ("FOUND> THEN DO;
CALL REC_NO_FOUND;
GOTO REPEAT;
END;
SELECT(CASE_TBL(STUD.PSTATE, STUD. TSTATE »»;
HHENC'T') CALL ASK_TEST, /TEST ASK*/
HHENC'P') CALL SELECT.PROC; /*PROCTOR SELECT */
HHENC'H' > CALL MARK, /*MARK TEST*/
OTHERWISE CALL INTERNAL_ERR(S); /*ERROR */
END; /*SELECT*/
IF C"MULL_PROC) THEN DO;
CALL TPUTC'OK TRANSACTION COMPLETE.®, 1);
CRLL TPUTC'ENDING AT: * ||
SEPARATE(SUBSTACTINE, 1,6)), 1);
ELSE
GOTO REPEAT;
END; /* IF #/

/% LOGICAL END OF SESSION CONTROL */

/ /

Vi 'Ol/

/% ASKS FOR TEST GENERATION "/

Vid »/

/ /

ASK_TEST :PROC;
DCL TisG CHARC22)> INITC
‘GENERATE TEST ON UNIT '),
DCL THSG2 CHARC19) INIT(
' CYIES, (N)0? T

- PCL 1ouT PICTURE '2229°; ’ IF C(STUD. TSTATE=TST_T) THEN 0O;

DCL YN(2) CHARCT) IMITC'Y','N'); ADDED=ADDTDCSTUD. ATIME, TSTHITHINY;
DCL TRESP FIXED BINC1S); NOW=SUBSTR(DATE, 5, 2) | [SUBSTR(TIME. 1, 4y,
PROCEDE = TRUE; IF (NOH<ADDED)% CSUBTD(ADDED JNOH>TSTUITHING THEN
CALL READ_SYSP; NOH=(SUBSTRCNOM, 1, 2~ 1+SUBSTR(ADDED, 1,2))] |
IF (STUD.TSTATE=TST_R3) THEN SUBSTR(NOM, 3, 4);
CALL RESTUDY_CHECK(PROCEDE); IF (NOW>=ADDED)> THEN DO;
IF (PROCEDE) THEN DO;] CALL TPUTC'VOUR TEST IS AUTOMATICALLY | |
10UT=STUD. UNI T+1; ‘CANCELLED. ', 1);
CALL GET.BESP(T"SGIHOUTIITHSGZ YN, TRESP, 2); CALL TPUT('YOU HAVE PASSED | HOUR OF ||
IF (TRESP=1) THEN DO; /*GEN TEST*/ *TEST PERIOD. *, 1);
CALL READ_STUD(STUD. ID, FOUND; CALL TPUTC'YOU HAVE TO WAIT FOR 1 HOUR OF | |
IF C"FOUND)> THEN DO; " RESTUDYING TIME FROM THE TIME VOUR ||
CALL REC_H0.FOUND; “TEST EXPIRED. ", 1)
RETURN; CALL STATEMACHC'E',CID)Y,;
END; NULL_PROC=TRUE;
IF (CASE_TBL(STUD.PSTATE, STUD. TSTATE)*="T" > RETURN;
THEN DO; - END;
NULL _PROC=TRUE; CALL GET_RESP(PHNSG1,CP,PRESP,0);
RETURN; CALL READ_STUD(STUD. ID, FOUND);
| END; IF ¢"FOUWD) THEN DO;
CALL GENTESTCFOUND); CALL REC_NO_FOUND;
END; RETURN;
END; END;
END; /* ASK_TEST %/ IF ¢"(CASE..TBL(STUD.PSTATE,STUD. TSTATE)="P" &
(STUD. TSTATE=TST_T>))
/ / THEN DO;
/" "/ NULL_PROC=TRUE;
/% REQUIRES FOR PROCTORS w/ RETURN;
/% */ END;
/ / IF (PRESP=1)> THEN DO;
SELECT.PROC :PROC; CALL STATE_MACHC'C*,CID);
DCL <PID1,PID2) CHAR(?); END;
DCL TALKANE CHARC?) VARYING; IF (PRESP=2) THEN DO;
DCL JOBID CHAR(S) VARYING; CALL VAL ID_IN_ANSHERED(VALID);
DCL HHERE CHARC 100) UARYING; IF "UALID THEN RETURN;
DCL VALID BITC; CALL FIND_PROCTORS(PIDI,PID2, NONE >;
DCL cP(2)> CHARC 1) INITC'C', P*); CARLL REHD-STUD-LOCK(FO‘-N))
DCL PISG1 CHAR(S6) INIT(IF C"FOUND) THEN RETURN;
‘DO YOU HANT YOUR TEST (C)ANCELLED OR (P)RGCTORED? T); 13 ("(CﬂSE_TBL(STUD.PSTﬂTE,STUD.TSTHTE)“'P' &
OCL PHSG2 CHARCG0) INIT((STUD. TSTATE=TST..T>)>
"YOU MUST HAVE YOUR CURRENT TEST PROCTORED BEFORE PROCEEDING.); THEN DO;
DCL IPROCNSG CHARC3Z) INITC mﬂgﬁgg‘fw:u KEY(STUD. [D>;
‘PROCTOR SELECTED IS INSTRUCTOR OR TA.'); m—:rug:
DCL PS1A CHARC(32) INIT¢ £1D;
"FIRST PROCTOR SELECTED, USERID: '); IF CHONE> THEN DO;
DCL Ps2A CHAR(33) INITC CALL TPUTC'ALL AVAILABLE PROCTORS'
"SECOND PROCTOR SELECTED, USERID: '); I1* ARE BUSY. TRY AGAIN LATER.
DCL PRESP FIXED BINC1S); UNLOCK FILECSTUDF IL) KEY(STUD. ID>
DCL (NOM, ADDED)> PICTURE '€6)9"; END;
DCL CORDITIONALCL_TST) BITCH) INITC ELSE 00;
'0°'B,°0°8,'0°B,"0'B,°0'B,'0°B, 0B, ' 1'B, " 1'B, " 1'B, ' 1°8); CALL STATE_MACHC' [',CID);

- 143 -

JOBID=STUD. ID;
WHERE=PROF ;
IF (PiDi="INST')> THEN DO;
CALL TPUTCIPROCISG, 1);
TALNANE=TACSYSP. assuen.rmn
CALL TPUTC'TA: | ITANANE, 1);
IF TA_NANE “=PROF THEN
WHERE=IHERE | | *, ' |1 TA_NANE;
END; :
ELSE DO;
STUD. I1D=P{D1;
CALL READ..STUD_LOCK(FOUND);
IF ¢*FOUND) THEN
CALL INTERNAL_ERR(1);
NOU=SUBSTR(DATE, 5, 2)| lsuesmmnc 1,4);
IF CKNOH<STUD, RTIHE S
(SUBTDC(STUD.RTINE, NOH »>RSTYTHE >> THEN
NOM=(SUBSTR(NOH, 1,2)~1+
SUBSTR(STUD .RTINE, 1,2))] |
SUBSTR(NOH, 3, 4);
IF C(STUD.PSTATE=PST_PA)%
(STUD. TSTRTE*=TST_T &
C"C(STUD. TSTATE=TST_R3)>%
(NOH<STUD .RTINE>)>))
THEN DO;
CALL STATE_MACHC'P’,CID);

CALL TPUT(PSIA|IPIDI, 1);
HHERE=MHERE!| ', ' |ISUBSTRC(PIDI, 1,
INDEXCPIDEL|* ¢, " *)=1);

STUD. ID=PID2;

CALL RERD.STUD_LOCK(FOUND);

IF (“FOUND) THEN
CALL INTERNAL_ERR(1);

IF ((STUD.PSTATE=PST_PA)&
(STUD. TSTATE“=TST_T &
C~C(STUD, TSTATE=TST._R3)&
CNOHCSTUD .RTIME)))

THEN DO,
CALL TPUT(PS2A| IPID2, 15;
HHERE=UHERE| | *, ' [ISUBSTRC(PID2, 1,

IRDEXCPID2L] " *, ¢ *»-1);
CALL STATEMACHC'P',CID);
END;
ELSE DO;

UNLOCK FILECSTUDFIL) KEY(PID2);
CALL READ_STUDCPID1, FOUND);
CALL STATE_MACHC'N',PID1);
CALL TPUTC'USERID: ‘||
PIDI|]" IS CANCELLED ‘||
“TO BE A PROCTOR. ', 1);
WHERE=PROF ;
CALL RERD_SYSP_L OCK;
IF SYSP.CURL|_TEST<|_TEST_L I}

-144 -

THEN DO;
CALL TPUTCIPROCHSG, 1);
SYSP.CURLI_TEST=
SYSP. CUR_I_TEST+1;
SYSP .ASSIGN_TAR=
MOD(SYSP .ASSIGN_TA+1 ,TASY;
TANANE=TACSYSP . HSSIGN_TFH 1;
CALL TPUTC'TA: " | | TANAIE, 1;
IF TA_NANE"=PROF THEN
HHERE=WRHERE | |, * | | TALNANE,
END;
ELSE DO,
CALL RERD_STUD(CID, FOUHD)
CALL STATE_MACH('T* N
CALL TPUT(' ALL ﬂUﬂILﬂBE ||
* PROCTORS ARE ‘||
'BUSY. TRY AGAIN LATER.
HHERE=" ' ;
END;
CALL UPDATE_SYSP;
END,
END;
ELSE DO;
UNLOCK FILECSTUDFIL)> KEY<PID1);
KHERE=PROF ;
CALL READ_SYSP_LOCK;
IF (SYSP.CUR_|_TEST<I_TEST_L IM>
THEN DO;
CARLL TPUTCIPROCHSG, 1;
SYSP.CUR_| _TEST=SYSP . CUR_I _TEST+1 ;
SYSP.ASSIGN_TA=
HOD{SYSP .ASSIGN_TA+1 LTAS);
TA-NANE=TA(SYSP. ﬂSSIGN_Tﬂ'H)
CALL TPUTC'TA: "1 I TA_NAME, 1;
IF TA_NANE "=PROF THEN
HHERE=HHERE| |, *||TA_NANE;
END;
ELSE DO;
CALL BEPD.STUD(CID,FOUND);
CALL STATEMACHC'T*, " *);
CALL TPUTC'ALL AVAILABLE' | |
' PROCTORS ARE ||
'BUSY. TRY AGAIN LATER. .
WHERE="*;
END;
CALL UPDATE_SYSP;
END;
END; /*ELSE*/
END; /*ELSE*/
IF HHERE"="" THEN
CALL MAIL_OUTCHHERE, JOBID, PREF | X,
*ANSHERED ');

END; /*THEN®/
END;
ELSE DO; /* PROCTORS ALREADY SELECTED%/
IF (CONDITIONAL (STUD. TSTATE)Y) THEN DO;
CALL VAL ID.IN_CONDITIONALCVUAL 1D, JOBID,CID,
HHERE >,
IF “VUALID THEN
RETURN, .
CALL STATE_MACHC'R®, STRING(HHERE >);
IF (HHERE“=PROF) THEN
HHERE=PROF | | *, ' | |KHERE;
CALL. MAIL_OUT(KHERE, JOBID, PREFIX, 'REVISED");

END;
ELSE .
CALL TPUT(PISG2, 1);
END;
END; /* SELECT.PROC %/
/ /
Iad */
/* A PROCTOR MARKS A STUDENT =/
/% */
/ /
HARK :PROC;
DCL RESP FIXED BINC1S);
DCL SELNMSG CHARCS3) INITC
'YOU HAVE BEEN SELECTED 10 PROCTOR A TEST FOR USERID: °);
DOCL MULNSG 1 CHAR(S9) INITC
‘R TEST YOU HAVE BEEN SELECTED TO PROCTOR HAS BEEN CANCELLED*)»;
DCL NULHSG2 CHARC43) INIT(
'BY THE STUDENT OR MARKED BY THE INSTRUCTOR. ' >
DCL. MARKSTATEC(L..TST) BITC1) INITC

‘0'8,'0'B,'0'8,"1'8,°1'B,"1'B, '0'B, " 1'B,"1'B,"1'B, ' 1'B);

IF (STUD.SID"=" ') THEN DO;
SAVE=STUD;
CALL READ_STUDCSTUD.SID, FOUND)>;
IF C°FOUND)> THEN DO;
CALL |INTERNAL_ERR(3);
END;
CALL TPUTCSELMSG] [SRVE.SID, 1);
IF (HARKSTATECSTUD. TSTATE>) THEN DO;
/* CALL GET.QUES_NUM(BLANKF) */
BLANKF=FALSE;
CALL GET_MARK(BLANKF, SAVE. |D, FOUND, RESP,
MARKSTATE);
IF (“FOUND) THEN DO;
STUD=SAVE;
CALL TPUT(NULMSGL, 1);
CARLL TPUT(NULNSG2, 1);
NULL_PROC=TRUE ;
CALL STATE.MACHC'N',CiD);
RETURN,;
END;

’

- 145 -

IF (" (BLANKF | CRESP=2))) THEN bo;

STUD=SAVE ;
CALL STATE_MACH('N1*,CID);

CALL GET_PROC_STATUSCFOUND);

IF ¢*FOUND)> THEN RETURN;
END;
END;
ELSE DBO;
STUD=SAVE ;
CALL TPUTCNULMSGT, 1);
CALL TPUT(NULMSGZ, 1);
NULL._PROC=TRUE ;
CALL STATE_MACHC'N',CiD);
END;
END;
ELSE DO;
CALL TPUTCNULNSGI, 1);
CALL TPUTCNULISG2, 1);
NULL_PROC=TRUE ;
CALL STATE_MACHC'N*,CID);
END:

END; /% MARK */

4
/™

TAd THIS PROCEDURE PROMPTS THE TERMINAL FOR

r” A STUDENT ID AND A PASSWORD AND

lhd RETURNS ONCE A VALID STUDENT NUMBER ,
lad PASSHORD PAIR HAS BEEN ENTERED. THE

/* STUDENT NUMBER OF THE JUST LOGGED IN
Tad STUDENT IS RETURN IN THE PARAMETER CID.
/* PARAMETER VALID INDICATES MHETHER THE

/® STUDENT NUMBER IS VALID OR NOT.
Vi

*/
*/
*/

*/
*/
»/
*/
»/

/
STUD_LOGIN:PROC(CID,UBLID);

©0¢ confidential procedure ooo
END,; /*STUDENT LOGIN*/

{
Vi

/¥ THIS PROCEDURE |S CALLED TO PRINT THE

/
*/
*/

lae <D0 YOU HISH TO VIEM YOUR CURRENT COURSE*/

,

/* STRNDING> PROMPT AND 1T DISPLAYS THE /
/® DATA IF THE RESPONSE 1S RFFIRMATIVE. w/
lad »/
/ /
PRINT..INFO:PROC(FOUN));

DCL FOUND BITC1);

DCL DRESP FIXED BiNC1S);

DCL vh(2) CHARC 1> INITCY', "N),

DCL DH1SG CHARCG0) INIT(

"HANT 10’

VIEW YOUR CURRENT COURSE STANDING? CYIES, (N0

DCL COUT? CHAR(G1);
DCL CouT2 CHH!(‘%O);
DCL COUT3 CHRR(38);

CARLL GET._RESP(DNSG, YH, DRESP, 2);
CALL BEH)_STLD(STlD 10, FOLND)
IF (*FOUMD)> THEN DO;

CALL FEC.NO..FOUI)

RETURN;

END;

IF (DRESP=1) THEN DO,

PUT STRING(COUT 1) EDIT(' CURRENT UNIT: *

STUD.UNIY, ', TEST POINTS:® ,STUD, TEST
', PROCTOR POINTS:',STUD. PﬂOCTOﬂ)
<A,P'229',2 (A,F(7, 2)))

CARLL TPUT(COUTI 0,

PUT STHING(COUT2) EDIT(TERN PROJECT:®
STUD. TER, ‘, FINAL EXAN:',STUD. EXﬂﬂ)
(R,FC7,2));

CALL TPUT(COUTZ 12;

PUT STRING(COUTG) EDITC TOTAL PO!NTS

STUD.TOTAL, ', LETTER GRADE: *,STUD. LETTER)
(R,F(?7,2),R,AC2));
CALL TPUT(COUT3, 1;
END;
END; /% PRINT INFO %/
/ /
/” w7
Vi THIS ROUTINE MRITES THE <PROCTOR? > PROMPT %/
* TO THE TERMINAL AND ALLOHS THE STUDENT TO o/
Vad CHANGE HIS PROCTOR AVAILABLITY STATUS. »/
” >/
/ /

GET_PROC_STATUS : PROCCFOUND);

DCL. YNC2)> CHARCT) INITC'Y:, "N)
DCL. 1156 CHARC26) INIT(
'PROCTOR? (Y)ES, (N»0 M B

DCL ROTMSG(4) CHARC4)> VARYING
INITC NOT®, ', NOT', "');
DCL. RESP FIXED BINCI1S);
DCL FOUND BITC1);
CALL GET_RESP(MSG,YN,RESP,0);
CALL RERD.ST(D(STLD 1D, FOU‘D)
IF C"FOUND) THEN DO;
CALL REC.NO_FOUND
RETURN;
END;
SELECT(RESP);
HHENC1)D0; /* CHANGE TO PA */
IF (STUD.PSTATE"=PST_PA) THEN DO;
cAaLL READ_STUD_LOCK(FOUND »;
IF ("FOUND)> THEN RETURN;

’

- 146 -

STUD.PSTATE= PST.PA;
CALL UPDﬂTE_STUD(STUD ID,FOQUND Y;
IF C°FOUND)> THEN
CALL INTERNAL_ERR(?);
END;
END;
HHENC2)> DO; /* CHANGE TO PNA %/
IF ((STUD .PSTATE*=PST..PNA)|
(STUD.PSTATE“=PST_| > THEN DG;
CALL RERD_STUD_LOCK(FOUND »;
IF ("FOUND) THEN RETURN;
STUD. PSTATE=PST_PNA;
CALL UPDﬁ'IE_,STUD(STUD 1D, FOUND >,
IF C“FOUND)> THEN
CALL INTERNAL_ERR(?);
END;
END;
HHENCO) DO; /* LEARVE UNALTERED »/
END,
OTHERHISE DO;
CALL INTERNAL_ERR(8);
RETURN;
END;
END; /* SELECT®/
CALL TPUTC'USERID: " |{STUD.IDI|" 1S*]]|
NOTHSG(STUD .PSTATE) | | * AVAILABLE FOR PROCTORING .

END; /* GET PROC STATUS #/

/ /
ld /
lad THIS PROCEDURE 1S CALLED IF A STUDENT IS IN */
ol THE RESTUDY STATE TO CHECK |F HE HAS COM- #/
/* PLETED ALL OF HIS RESTUDY TIME. THE BOOLEAN »/
/* ARGUMENT PROCEDE 1S RETURNED WITH THE VALUE */
/* FALSE IF THE STUDENT HASNT FINNISHED HIS 60 */
/% HINUTES OF RESTUDY TIME. */
/7 4
/ /
RESTUDY_CHECK : PROCCPROCEDE » N
DCL. PROCEDE BITCH;
DCL. Nou PICTURE ‘(6)9°;

PROCEDE = TRUE;

NOK=SUBSTR(DATE, S, 2>| |SUBSTR(TIIE, 1,4);

IF CCNOW<STUD .RT INE %
(SUBTD(STUD . RTIME, NOW)>RSTYTHE>) THEN
NOW=(SUBSTRINON, 1,2 1+

SUBSTR(STUD.RTINE, 1,2))] |
SUBSTR(NOW, 3, 4);
IF <STUD.RTIME>NOH) THEN DO;
PROCEDE = FALSE;
CALL TPUT('YOU HAVE NOT COMPLETED 1 HOUR 1
"OF RESTUDYING TIME. ", 1);

L1

o END,;
END; /# RESTUDY CHECK »/

/ /
s "/
” THIS PROCEDURE GENERATES A TEST ON THE NEXT #/
" UNIT AND PRINTS THE NUMBER OF QUESTIONS ON */
/*® THE TERMINAL . */
" . T */
/ /
GENTEST : PROC(FOUND) ;

OCL. FOuND ’ BITC1);

DCL <1, d, TEMP,LIN) FIXED BINC1S);

DCL QUESTIONS(3)» FIXED BINCIS) INIT(3)X0);

DCL couT CHAR(72);

CALL RERD_SYSP;

IF (STUD.UNIT >= SYSP.NUNIT) THEN bo;

CALL TPUT('YOU HAVE CONMPLETED ALL THE UNITS. LD,

END;
ELSE DO;

LIN=SYSP UNITL(STUD. UNIT+1);

IF C(LIN<3) THEN DO;

CALL TPUTC'TEST CANNOT BE GENERATED. ', 1);

CALL TPUTC'UNIT MUST HAVE RT LEAST 3 CHOICES’
AR

CALL TPUTC'SEE INSTRUCTCR., 1);

RETURN;

END;

DO i=1 TO 3;

QUEST!ONSC 1)=GENRANDCL. I 1, QUEST I ONSC 1),
QUEST IONS(2), QUESTIONS(3));
END;
DO i=1 TO 2;
D0 J=2 TO 3;
IF QUESTIONSC1 »>QUESTIONSCJ) THEN DO;
TEMP=QUESTIONS());
QUESTIONSC | >=QUESTIONSCJ);
QUESTIONSCJ)=TERP;
END;
END,;

END;

CALL READ_STUD_LOCK(FOWND);

IF ("FOUND)> THEN RETURN;

IF (CASE._TBL(STUD.PSTATE, STUD. TSTATE > ="T")
THEN DO; .
NULL PROC=TRUE;

UNLOCK FILECSTUDFIL) KEY(STUD. 1D);
RETURN;
END;

STUD. G 1=QUEST IONS(1);

STUD. Q2=QUEST I ONS(2);

STUD. Q3=QUEST I ONS(3);

STUD. TSTATE=TST..T;

+

- 147 -

CALL UPDATE_STUD(STUD. §D, FOUND);
IF_("FOUND> THEN CALL [NTERNAL_ERR(24);

PUT STRING(COUT> EDITC TEST GENERATED ON UN|T: -
,STUD.UNIT+1,, AT TIE: *,SEPARATECSUBSTRC
TINE, 1,6),', QUESTIONS:*,STuD.qt, ", -,
$TUD.Q2, *, *,STUD.Q3)

(A ,F(4,0),R,8,A,3 (F(4,00,A01)))

CALL TPUT(COUT, 1);

CALL STATE_MACHC'T',C1D)Y;

CALL MAIL_QUESTIONSCSTRINGCSTUD. ID), 'PS| -,

PREF 1X);
END;

END; /% GENTEST */
/ /
/™ »/
Vi THIS PROCEDURE VAL IDATES THE |NPUT ANSWUERED =/
/* PAPER IHETHER IT IS CORRECT SYNTAX AND w/
VA RIGHT QUESTIONS. ®/
las */
/ /
Uﬂ.ID_IN_f’NS“EEDZPROC(UFlID);

DCL vALID BITC1);

DCL QUESTIONS(3)> FIXED BINCI1S);

DCL FIXED BIN(C15);

DCL REPEAT BUILTIN;

ON KEYC(MAILIN) GOTO EOF;

ON ENDFILECHAILIN) GOTO EOF;
VAL ID=TRUE;

IF VALID THEN DO;

READ FILECMAILINY INTOCRECORD) KEY(' 14° 2;

READ FILECHAILIN) INTOCRECORD);

LI NE=SUBSTR(RECORD, 256) ;

IF CINDEXCLINE, ‘To:) = §)]
CINDEX(L INE, SUBSTR(STUD. 1D, 1,
INDEXCSTUD. IDI " *, " " >=1>)=0) THEN
VAL | D=FALSE ;

END;
IF VALID THEN DO;

READ FILECHAILIN) INTOCRECORD);

L INE=SUBSTR(RECORD, 256);

IF CINDEXCLINE, ‘From: *)*=1))

CINDEXCLINE, 'PS1°)=0) THEN
VAL | D=FALSE ;
END;
IF VALID THEN DO;

READ FILECMAILIND INTOCRECORD);

LINE=SUBSTR(RECORD, 256);

IF CINDEXCLINE, "Unit ' | [COMPRESS(STUD .UNIT+1 2¥=0)]
CINDEX(L INE, COMPRESS(STUD . Q1) |* ']
CONPRESS(STUD.Q2>} | " * | ICOMPRESS(STUD.Q3))=0)
THEN
VAL | D=FALSE ;

IF

END;

VALID THEN DO;

RERD FILECHAILIND;

READ FILECHAILIND INTOCRECORD);

ON KEY(TESTIN) RECORD2=REPEATC' *,254)]
"CONTRCT YOUR INSTRUCTOR '||
‘THAT THE FILE "HEADER" WAS NOT FOUND. *;

RERD FILECTESTIN) INTOCRECORD2) KEY('HEADER');

IF (SUBSTR(RECORD, 256)" =SUBSTR(RECORD2, 256 > THEMN
VAL | D=FALSE;

END;

VALID THEN DO;

QUESTIONSC 1)=STUD.Q1;

QUEST IONS(2)=STUD. Q2;

QUESTIONS(3)=STUD.Q3;

READ FILECMAILIND INTOCRECORD);

ON KEY(TESTiN) RECORD2=REPEATC' *,254)])
'CONTACT YOUR INSTRUCTOR THAT UMIT ‘||
COMPRESS(STUD.UNIT+1>])" QUESTION '||
COMPRESS(QUESTIONSCI 2| |* 1AS NOT FOUND. °;

ON ENDFILECTESTIN) GOTO EOF2;

DO =1 TO0 3 KHILECVALID);

IF CINDEX(SUBSTR(RECORD,256), 'Question ‘||
COMPRESSCQUESTIONSC 1) | ' >*=1) THEN
VAL | D=FALSE ;
IF VALID THEN DO;
READ FILECTESTINY INTOCRECORD2)
KEYC' TESTS.U' | |COMPRESS(STUD .UNIT+1)|] " .q"
| |COMPRESSC(QUESTIONSC 13|} FIRST);
READ FILE(HAILINY INTOCRECORD);
IF (SUBSTR(RECORD, 256)" =SUBSTR(RECORDZ2, 256)
THEN
VAL | D=FALSE ;
END;
DO WHILECVALID);
RERD FILECTESTIN) INTOCRECORD2);
READ FILECMAILIND INTOCRECOAD);
IF (SUBSTR(RECORD, 256 >*=SUBSTR(RECORD2, 256)
THEN
VAL ID=FALSE ;
Bm.

EOF2: IF vALID THEN DO;

READ FILECMAILIN) INTOCRECORD »;
IF CINDEX(SUBSTR(RECORD, 256), 'Answer ' ||
COMPRESSCQUESTIONSC 1)) ' ;" >*=1) THEN
VAL | D=FALSE;
END;
IF VALID & C1<3)> THEN DO;
DO HHILECINDEXCSUBSTACRECORD, 256, ‘Question °
| |CONPRESS CQUESTIONSC +1))] | * =),
READ FILECHMAILINY INTOCRECORD);
END;

- 148 -

END;
END; /* DO WHILE */
IF "VALID THEN DO;
CALL TPUTC'YQUR TEST UNIT ' | [COMPRESS(STUD.UNIT
+1>11° QUESTION ° } | COMPRESS CQUESTIONSC1~1))] |
* 1S DIFFERENT FROM THE SYSTEM' *S.", I»;
CALL TPUT('NO PROCTOR SELECTED. ", 1);
VAL | D=FALSE ;
RETURN;
END;
END; /* IF »/

IF "VALID THEN DO;

EOF: CALL TPUTC'POINT TO THE ANSWERED PAPER '||

'BEFORE YOU EXECUTE THE PS| PROGRAN. ', 1;
CALL TPUTC'NO PROCTOR SELECTED. ', 1);

VAL 1D=FALSE ;
END;
END; /¢ VALID._IN.ANSHERED =/
/ /
lhd */
fad THIS PROCEDURE SCANS THE STUDENT FILE FOR w/
/* STUDENTS HHO ARE AVAILABLE FOR PROCTORING */
/* THE CURRENTLY LOGGED IN STUDENTS AND SELECTS*/
i THO OF THEM CIF POSSIBLE) TO PROCTOR THE 4
Vas STUDENY. THE PARAMETERS PID1,PID2 ARE USED */
/* TO RETURN THE STUDENT NUMBERS OF THE TWO */
/* PROCTORS AFTER THEY ARE FOUND. <IF STUDENTS w/
lad ARE NOT AVAILABLE THE INSTRUCTOR MILL BE w/
el SELECTED, AND IF MORE THAN |_TEST.LIM TEST »/
/* CURRENTLY ASSIGNED TO THE INSTRUCTOR THEN w7
Vo THE RETURN ARGUMENT NONE IS SET TO TRUE. THE®™/
lad FOLLOWING ALGORITH IS USED TO SELECT */
/® PROCTORS: THE ARRAY PINDX USED TO KEEP RLL %/
lad THAT ARE ELIGIBLE TO PROCTOR THE CURRENT w/
/= STUDENT. ¢ A STUDENT |S ELIGABLE |F HE HAS */
Ad PASSED THE UNIT THE CURRENT STUDENT TEST IS w/
I 1S OGN AND {F HIS PROCTOR STATE IS PROCTOR */
lad AVAILABLE AND HE IS NOT WRITING A TEST OR »/
Tad STILL HAITING OUT HIS 60 HINUTES OF RESTUDY =/
lad THIE. > A STUDENT IS INSERTED INTO PINDX x/
lad THROUGH A CALL TO INSRTP SUBROUTINE.IF LESS */
Vad THAN THO STUDENTS ARE AVAILABLE THE INST- #/
lad RUCTOR |S SELECTED. OTHERHISE THE STUDENTS =/
/™" HITH THE LOHEST NUMBER OF PROCTOR POINTS IS %/
Vad SELECTED. ¢ THE NOT_EQ SUBROUTINE IS USED */
lad TO DEVERMINE THE NUMBER OF STUDENTS WITH THE*/
/* LOWEST PROCTOR POINTS.) IF MORE THAN ONE w/
/* STUDENT HAS THE LOMEST PROCTOR POINTS (OH ®/
Vid SECOND LOMEST) THEN THE GENRAND SUBRQUT INE *#/
Vad IS CALLED TO RANDOMLY SELECT FRONM AHONG THEM*/
lhd w/

/

' F iIND_PROCTORS: PROCCP ID1,P1D2,NONE);

EOF :

DCL (NONE,AVALL) BITC1);

ocL <PID1,PID2) CHAR(?);

DCL <Y, |, PEND,PEND1) FIXED BINC1S);
DCL 1 TEMP LIKE PINDX;

DCL. NoW PICTURE '<6)9°;
PEND=Q;

ON ENDF ILECSTUDFIL) GOTO EOF;)

CALL CLOSE.FILE(STUDFIL); ‘

OPEN FILECSTUDFIL) INPUT SEQUENTIAL BUFFERED;
D0 WHILEC 1'B);

READ FILE(STUDFIL) INTOCTSTUD);

NOW=SUBSTR(DATE, S, 2>| |SUBSTRCTINE, 1,4);

IF C{NOH<TSTUD.RTIME)S
CSUBTOCTSTUD .RTINE, NOH »>RSTYTHE) > THEN
NON=(SUBSTR(NOW, 1,2)-1+

SUBSTR(TSTUD.RTINE, 1,201}
SUBSTAC(NOU, 3,4);

IF ((TSTUD.PSTATE=PST.PA&CTSTUD. TSTATE =TST_T)&

CTSTUD .UNI T>STUD .UNIT)&
C(CTSTUD. TSTATE=TST_R3)&CNOH<TSTUD . RTINE))>)
THEN
CALL INSRTP;
END;
CALL CLOSE FILECSTUDFIL);
OPEN FILEC(STUDFIL) EXCL UPDATE DIRECT UNBUFFERED;
NONE=FALSE;
IF (PEND<2) THEN DO; /* SELECT INSTR.*/

CALL READ_SYSP_LOCK;

IF (SYSP.CUR..I_TEST>=)_TEST.L I11) THEN DO;
NONE=TRUE;
END;

ELSE DO;
PIDI=" INST';
P102=P|D1;
SYSP.CUR_I..TEST=SVYSP .CUA.| _TEST+1;
SYSP.HSSIGN_Tﬁ-ﬂOD(SYSP.ﬂSSIGN_TﬁH,TﬂS);
END;

CALL UPDATE_SYSP;

END;

ELSE DO;

PEND1=NOT..EQC 1, PEND);

1=GENAANDCPEND1,0,0,0);

PID1=PINDXC1).1D;

TENP = PINDXC1);

PINDXC1)=P INDXC |);

PINDXC1 »=TENP;

PEND 1=NOT_EQ(2, PEND);

{=GENRAND(PEND 1-1,0,0, 0);

PiD2=P INDXCI+1).1D;

END;

/*LOGICAL END OF FIND PROCTORS. »/

- 149 -

/ /
/% */
/% THIS 1S A SUBROUTINE OF THE FIND_PROCTORS ®/
fad PROCEDURE WHICH TAKES THE PROCTOR NAME AND */
/* PROCTOR VALUE AND INSERTS THE RECORD T0 THE »/
/% PINDX RRRAY IN SUCH AS THAT ALL THE w®/
/* IN PINDX ARE IN ASCENDING ORDER OF PROCTOR */
/% POINTS. */
/® */
/ */

INSRTP : PROC;
DCL 1 CARRY LIKE PINDX;
DCL (K, L) FIXED BINC15);
DCL INSRTD BITC1),;
DCL tBL LABEL ;

ON SUBSCRIPTRANGE BEGIN;
DCL 1 TEMPCLSTUD) LIKE PINDX;
DCL N FIXED BINC1S);
TEMP=P |NDX;
LSTUD=LSTUDH.STUDNMORE ;
FREE PINDX;
ALLOC PINDX;
DO M=1 TO PEND;
PINDXCH)=TENP (M)
END;

END;

INSRTD=F fit_SE ;

LBL=A;

DO K=1 TO PEND HHILEC" INSRTD);
IF (TSTUD.PROCTOR <P INDX<K).PROCTOR) THEN DO;
A: DO L=PEND TO K BY -1;

(SUBSCRIPTRANGE) : PINDXCL+1)=PINDXCL);

END;

PINDXCK)=TSTUD, BY NAME;
INSRTD=TRUE ;

END;
END;
PEND=PEND+1;
LBL=B;

(SUBRG): B: IF (“{NSRTD)> THEN PINDX(PEND >=TSTUD, BY NAME;
END; /* INSRTP*/

/ /
/= #/
Vi THIS IS A SUBROUTINE OF THE FIND_PROCTORS w/
/% PROCEDURE. T 1S USED TO SCAN THE PINDX w/
T ARAAY FOR A CONTIGUOUS SET OF STUDENTS HHICH*/
lad THE SAME PROCTOR POINTS. SINCE THE PINDX *®/
/* ARRAY BUILT IN SORTED ORDER THIS ROUT INE ¥4
/* ACCEPTS TWO ARGUMENTS: A SCAN START POSITION*/
/% AND END POSITION. THE INDEX OF THE LAST w/

/* STUBENT , IN THE RANGE OF THE SCAN, WHO HAS */
/* SAHE ANOUNT OF PROCTOR POINTS AS THE STUDENT*/
/* INDEXED AT THE START LOCATION 1S RETURNED TO*/
lad TO THE CALLING PROGRAM. THIS INFORMATION IS */
o TO DETERMINE IF THERE ARE MORE THAN ONE */
o STUDENT HITH THE LOHEST (OR SECOND LOMEST) »/

/* PROCTOR POINTS. */
* . W/
/ /

NOT_EQ: PROCCSTRT,END > RETURNSCF IXED BINC 153;
DCL (STRT, END, MARKER) FIXED BINC15);

DCL K FIXED BINC1S);
DCL EQ BITC1);
EQ=TRUE;

MARKER=END;

DO K=STRT+! TO END WHILECEQ);
tF (PINDX(STRT).PROCTOR =P INDX(K). PROCTOR)

THEN DO; :
EQ-FALSE;
HARKERwK~1;
ERD;

END;

RETURNCHARKER);

END; /* NOT EQ */
END; /® FIND PROCTORS =/

/ /
/" */
/* THIS PROCEDURE IS CALLED TO PROHMPT PROCTORS #/
/% BEFORE THEY ENTER THEIR MARK TO ENTER THE w/
Fhd UNIT AND QUESTION NUMBERS HRITYEN BY THE =/
/* STUDENT BEING PROCTORED TO VERIFY THAT HE */
lhd HROTE THE SAME TEST HHICH WAS GIVEN TO HIN. #/
/® IF THE PROCTOR RESPONDS HITH A BARE RETURN TO*/

/® ANY OF THE PROIMPTS THE RETURN ARGUMENT- */
/% DONTKNOM 1S SET TO TRUE. IT ALLOHS ANOTHER */
/* 3 TRIALS OF ENTERING UNIT NUMBERS. »/
% */

/ %)
GET..QUES_NUM : PROCCDONTKNOH 2; ’
DCL ¢(BLANKF, NGOOD, EQ, CONT, DONTKNO) BITC1),;

DCL QARRY(3) BITC1);

DCL (VAL,TGOOD, | ,K, TRIAL) FIXED BINCIS);

DCL TRY FIXED BINCIS) INIT(3);
DCL VUALOUT PICTURE '2229°;
DONTKNOW=F AL SE;

CONT=TRUE;

DO 1=0 TO TRY MHILECCONT);
CALL TPUTC'ENTER UNIT NUMBER WMRITTEN BY THE' ||
* STUDENT HERVE P 54
CALL GET_INTCVAL, HGOOD, BLANKF);
IF (BLANKF) THEN

- 150 -

CONT=FALSE ;
ELSE DO;
IF (NGOOD)> THEN
CALL TPUTC' INVALID NUMBER, RE-ENTER. A P
ELSE DO;
IF C(STUD .UNIT+1)>"=UAL > THEN DO;
VALOUT=VUAL ;
CALL TPUT(STUDENT DID NOT WRITE TEST' i
" ON UNIT:' | lvALouT, 1);

ELSE CONT=FALSE;
END;
END;
END;
QARRY=FALSE;
CONT=TRUE ;
TGO0D=0 ;
IF (BLANKF | CI>TRY)) THEN DO;
DONTKNOW=TRUE ;
CONT=FALSE ;
EnD;
TRIAL=0;
DO HHILECCONT&(TRIAL<=TRY));
CALL TPUTC'ENTER A QUESTION NUMBER MRITTEN BY THE" ||
* STUDENT HERE DX
CALL GET_INT(UAL, NGOOD, BLANKF) ;
IF (BLANKF > THEN
CONT=FALSE ;
ELSE DO;
IF (NGOOD> THEN
CALL TPUTC' INVALID NUMBER, RE-ENTER. L1
ELSE DO;
TRIAL=TRIAL+1;
K=0,
SELECT(VAL);
HHENCABS(STUD . Q1)) K=1;
HHENCABS(STUD . Q2)) K=2;
HHENCABS(STUD.Q3)) K=3;
OTHERWISE K=0;
END; /* SELECT »/
IF (K=0) THEN 00;
VALOUT=VAL ;
CALL TPUTC'STUDENT WAS NOT ISSUED ' |
'QUESTION NUMBER: ' | |URLOUT, 1);
END;
ELSE DO;
IF (QARRY(K)) THEN DO;
VALOUT=VAL ;
CALL TPUTC"QUESTION NUMBER: * | |VALOUT] |
' HAS ALREADY BEEN VERIFIED. ', 1);
END;
ELSE DO;
TRIAL=0;

TGOOD=TGOOD+1;
QARRY (K)=TRUE ;
END;
END;
END;
Em.
iF (TGOOD=3) THEN CONT=FALSE ;
END; /HHILES/
IF (BLANKF | CTRIAL>TRY)) THEN DOHTKNON-TR&E
END; /* GET QUES NuUit =/

END; /% SESSION CONTROL »/

/ /
r* %/
lad THIS PROCEDURE VALIDATES THE INPUT MARKED %/
% PAPER IHETHER IT IS CORRECT SYNTAX. ®/
/"‘ =/
/

UﬂLlD_m_MRKED PROCCVALID, JOBID,CID);

DCL VALID BITC1);

DCL JoB!1D CHPB(") VARY ING;

DCL CiD CHARC(?);

ON KEY(MAILINY GOTO EOF;
ON ENDFILECMAILIN) GOTO EOF;
VAL 1D=TRUE ;
IF VALID THEN DO;
READ FILE(NH!LIN) INTOCRECORD) KEY(' 14°);
RERAD FILECHAILIND INTOCRECORD);
L INE=SUBSTRCRECORD, 256);
IF <CID=" INST')T}EH
IF CINDEXCLINE, "To: ' >*=1)] CINDEX(LINE, PROF y=0)
THEN
VAL ID=FALSE ;
ELSE
JOB |D=PREF | X;
ELSE
IF CINDEXCLINE, 'To: ' >*=1)] CINDEX(LINE, PROF)=0)
| CINDEXCL INE, SUBSTR(CID, 1, INDEXCCID] | LU0
>=0) THEN
VAL ID=FALSE;
ELSE
JOBID=SUBSTR(CID, 1, INDEXCCIDI{" *,* *)=1);
END;
IF VALID THEN DO;
READ FILECHAILINY INTOCRECORD);
L INE=SUBSTR(RECORD, 256) ;
IF CINDEXCLINE, 'From: * >*=1)| CINDEXCL INE, SUBSTR(
STUD.ID, 1, INDEXCSTUD. ID| | * *,* *)=1))=0) THEN
VAL |D=FALSE ;
END;
IF VALID THEN DO;
READ FILECMAILINY INTOCRECORD);

- 151 -

L INE=SUBSTRC(RECORD, 256 >;

IF CINDEXCLINE, *Uni t HCOﬁPHESS(STUD UNIT+1))=0)]
CINDEXCLINE, COMPRESS(STUD. Q1)) |* * ||
COMPRESS(STUD.Q2>||* ' | |COMPRESS(STUD.Q3) =0)
THEN

VAL ID=FALSE;
END;
IF “UALID THEN DO;
EOF: CALL TPUTC'POINT TO THE MARKED PAPER ' ||
'BEFORE YOU EXECUTE THE PS| PROGRAN.
CALL TPUT('NO RESULT ENTERED. ', 1);

VAL ID=FALSE ;
END;
END; /* UARLID_IN.MARKED */
/ /
lad Wy
/" THIS PROCEDURE VAL IDATES THE INPUT CONDITIONAL w7
/* PAPER HHETHER IT IS CORRECT SYNTAX. w/
/:u */
/
Uﬂ.ID IN_CONDITIONAL : PROC(VALID,J0BID, CID,HHERE >;
DCL VAL ID BITC1);
DCL CJOBID, MHERE) CHARC*) VARYING;
DCL CID CHAR(?);

ON KEYCMAILIN) GOTO EOF;
ONf ENDF ILECHAILIN) GOTO EOF;
VAL ID=TRUE ;
IF VALID THEN DO;
READ FILECHAILIN> INTOCRECORD) KEYC 1+);
RERD FILECMAILIND INTOCRECORD);
L INE=SUBSTRCRECORD, 256);
IF ¢CID="INST" > THEN
IF CINDEXCLINE, 'To: " >*=1> THEN
VAL ID=FALSE;
ELSE
JOB ID=PREF | X;
ELSE
IF CINDEXCLINE, *To: >"=1>| C INDEXCL INE,
SUBSTRCCID, 1, INDEXCCIDII" *,* *)-1)>)=0) THEN
VAL 1D=FALSE ;
ELSE
JOBI1D=SUBSTR(CID, 1, INDEXCCID} | * *,* ")=1);
END;
IF VALID THEN DO;
RERD FILECMAILINY INTOCRECORD);
L INE=SUBSTRCRECORD, 256) ;
IF CINDEXCLINE, ‘From: ')»"=1) THEN
VAL ID=FALSE;
ELSE
HHERE=SUBSTR(L INE, 10);

END;
IF VALID THEN DO;

"READ FILECHAILIND INTOCRECORD);

L INE=SUBSTR(RECORD, 256 ;

IF CINDEXCLIRE, "Unit " || COMPRESS¢STUD.UNIT+12)=0)]
CINDEX(L INE, COMPRESS(STUD.Q1>]]" *}|
COMPRESS(STUD.Q2)>1 | ' | |COMPRESS(STUD.Q3))=0)>
THEN
VAL ID=FRLSE ;

END;
IF “VALID THEN DO;

EOF: CALL TPUTC'POINT TO THE C(XfDlTIONﬁL PﬂPER H

"BEFORE YOU EXECUTE THE PS! PROGRAM. ', 1);
CALL. TPUTC'NO CONDITIONAL PAPER MAILED. ', l),‘
VAL 1D=FALSE;

END; /”'l VAL IDLIN.CONDITIONAL =/

/ /
/” =/
/% THIS PROCEDURE IS USED TO ENTER A PROCTOR RE-%/
/% SULT. THE INPUT RRGUMENT CID CONTAINS THE w/
/% STUDENT NUMBER OF THE PROCTOR ENTERING THE »/
/® RESULT. THE INPUT ARGUNMENT BLANKF 1S SET TO */
/% TRUE IF THE PROCTOR RESPONDED HITH R RETURN »/
/* TO ONE OF THE PRONPTS IN THE GET.QUES_NUN w/
/% PROCEDURE. |F BLANKF IS SET TO TRUE THE */
/% PROCTOR |S ONLY ALLOMED TO ENTER A RESTUDY w/
/® RESULT C(OR NO RESULT AT ALL). =/
lad =/
/ /
GET_ﬂmK:PROC(BLW,CID,FOWD,RESP,PERNIT);
DCL CID CHARC?);
DCL (BLANKF, NOPASS,FOUND > BITC1);
DCL. PERMIT(®) BITC1);
DCL. RESP FIXED BINC1S);
DCL HMSG CHAR(38) INIT(
"C(POASS, (CYONDITIONAL , CRIESTUDY? HERS N
DCL PCR(3) CHARC1) INITC'P', 'C’ ,'R*);
DCL (R1,R2,R3) FIXED BINC1S);
DCL oUTVAL PICTURE '2229',’
DCL. QiSG1 CHAR(20)> INIT(
'HAS QUESTION NUMBER: *);
DCL QMSG2 CHARC42> INITC

' COMPLETED SUCCESSFULLY (Y)ES, (N)0? R

DCL WHERE CHAR(100) UMVING

DCL J0B1ID CHAR(8) VARYING;

DCL vALID BITC1);

DCL MISSED CHAR(20) UARYING INITC ');
HOPASS=BLANKF ;

CALL GET_RESP(MSG, PCR, RESP, 0);

BLANKF=FALSE ;

CALL READ_STUD_LOCK(FOUND »;
IF (°"FOUND) THEN RETURN;
IF C"PERMIT(STUD. TSTATE) THEN DO;

CALL TPUTC'USERID: ' ||STUD. 1D} |
"HAS JUST BEEN MARKED, NO RESULT ENTERED .
FOUND=FALSE ;
UNLOCK FILEC(STUDFIL) KEY(STUD.),
RETURN;
END;
STUD.Q!-HBS(STW.QI);
STUD.Q2=ABS(STUD .Q2);
STUD.Q3I=ABS(STUD.Q3);
CALL UPDﬂTE.STUD(STUD ID,FOUND)>;
IF (*FOUND)> THEN CALL lNTERNﬁL_ERR(ZS)
SELECTCRESP);
HHENC 1) DO;
IF (NOPﬂSS> THEN DO;
CALL TPUTC'NOT ALLOWED TO PASS. NO RESULT
' ENTERED. ', 1);
BLANKF=TRUE;
END;
ELSE DO;
CALL VAL ID..IN_MARKEDCVAL 1D, JOBID,CiD);
tF "VUALID THEN DO;
BLANKF=TRUE;
RETURN;
END;
CALL STATE_MACHC'U',CIDY; /* PRSS ’°‘/
CALL TPUT('PASS RESULT ENTERED
PUT FILECINTFILE) EDITC Resul t:
RHERE=PROF | | *, IISUBSTR(STUD D, 1,
HDEX(STUD DL, =1
CALL MAIL_OUTCHHERE, JOBID, PREFIX, 'PASS" >,
END;
END; /"‘WEN*/
HHENC(2) DO;
IF (NOPASS> THEN DO;
CALL TPUTC'NOT ALLOMED TO "CONDITIONAL" .
‘N0 RESULT ENTERED. *, 1)
BLANKF=TRUE;
END;
ELSE DO;

CALL vALID.. IN.COND [T 1 ONAL (VAL 1D, JOBID, CID, HHERE) ;

IF “VUALID THEN DO;
BLANKF=TRUE;
RETURN;

END;

CALL STATE_NACHC'K',CID); /FCONDIT IONAL* /

CALL TPUTC'CONDITIONAL RESULT ENTERED. ", 1)
CALL TPUTC'ENTER PASS OR RESTUDY LATER. i
CONDITIONAL" >

PUT FILECINTFILE) EDITC Resul t:
(SKIP,A);

CALL MAIL_OUT(HHERE, J0B 1D, PREF | X, ‘CONDITIONAL ");

END;
END; /4lHEN=/

-152 -

PHSS MSKIP,AY;

HHEN(3> DO; /* RESTUDY */
CALL. VAL ID_IN.MARKEDCVALID, JOBID,CID?;
IF "VALID THEN DO;
BLANKF=TRUE;
RETURN;
END;
QUTVAL = STUD.QI;
CALL GET.RESP(QMSG1] [OUTVAL| QMSG2, YN,R1, 1);
OUTVAL=STUD.Q2;
CALL GET_RESP(QNSG 1] |OUTVAL] |QNSG2, v, A2, 1);
UTUAL=STUD.Q3;
CALL GET_RESP(QNSG1]| |OUTVAL] | QMS62, YN,R3, 1);
CALL READ_STUD_LOCK (FOUND »;
IF (*FOUND> THEN RETURN;
IF C"PERMITCSTUD. TSTATE >> THEN DO;
CALL TPUTC'USERID: *||STUD.ID]|

"HAS JUST BEEN MARKED, NO RESULT ENTERED.', 1;

FOUND=FALSE;
UNLOCK FILECSTUDFIL) KEY(STUD. ID);
RETURN;
END;
IF (R1=2) THEN DO;
MISSED=MISSEDI | * | | COMPRESS(STUD.Q1);
STUD.Q1=-STUD.Q1;
END;
IF (R2=2) THEN DO;
MISSED=HISSED| | * ' | |COMPRESSCSTUD.Q2);
STUD.Q2=-STUD.Q2;
END;
IF (R3=2) THEN DO;
MISSED=NISSED| | * ' | |COMPRESS(STUD.Q3);
STUD. Q3=-STUD.Q3;
END;
CALL UPDATE_STUD(STUD. 1D, FOUND);
IF ("FOUND) THEN CALL |INTERNAL_ERR(25);
CALL STATE_MACHC‘L’,CID);
CALL TPUTC'RESTUDY RESULT ENTERED. ', 1);

PUT FILECINTFILE> EDITC Missed: "1 IMISSED,
‘Result: RESTUDY' >(SKIP,A);
HHERE=PROF || ', "||SUBSTR(STUD. D, 1,
INDEXCSTUD. ID] " ', * 1),
CALL MAIL_GUT(HHERE, JOBID, PREF I X, 'RESTUDY" 2,
END;
HHENCO)> DO;
- BLANKF=TRUE;
END;
OTHERHWISE DO;
BLANKF=TRUE;
CALL INTERNAL_ERR(9);
END;
END;

END; /* GET MARK */

- 153 -

4

% */
/™ THIS PROCEDURE MAILS QUESTIONS TO THE »*/
Vi STUDENT THROUGH BATCH ELECTRONIC HAIL. */
% . w/
/ /

HAIL_QUEST |ONS: PROCCHHERE, JOB D, PREF 1X);

DCL WHERE CHARC*) VARYING;

DCL (JOBID,PREF|X) CHARC*) URRYING;

DCL QUESTIONS(3) FIXED BINC15);

DL | FIXED BINC1S);

DCL REPEAT BUILTIN;

CALL DYNAMCHORK, 'ALLOC °, 'DD=MAILOVT; *, 'PREF=PSI ; ',
"DSN=" | |PREF I1X] | ' . #MAIL . #0UT VOL=MORK F DSO=PS | |
'LRECL=25S BLKS|ZE=255 TRK PRIH=10 SEC=10 '||
"UNIT=DISK NEW CAT CDEL CLOSE;')>;

IF (PLIRETU"=0) THEN
CALL DYNAMCWORK, 'ALLOC *, 'DD=MAILOUT; ', 'PREF=PS]; ',

"DSN="| |PREF [X| | ' .#MAIL.®QUT OLD CDEL CLOSE;');

OPEN FILECHAILOUT) LINESIZE(255);

PUT FILECMAILOUT)> EDITC
‘To: * | IMHERE,

‘From: ‘|lJoBiD,

‘Subject: ‘f|

SUBSTR(STUD. ID, 1, INDEX(STUD.ID{}" *,* “»1>[]" *]]

SUBSTRCOUTDATE, 4>[" (|

SUBSTR(SEPARATE (SUBSTRCTIME, 1,63), 1,5}’ Unit °

I ICOMPRESS(STUD . UNIT+I>[1* : *|]

COMPRESS(STUD.Q1>[|* '] {COMPRESS(STUD.Q2>|]* ‘||

COMPRESS(STUD.Q3),

PXSKIP,A);

ON KEYCTESTIN> RECORD=REPEAT(' ',2545||'CONTACT YOUR °
[1" INSTRUCTOR THAT THE FILE "HEADER" WAS NOT FOUND.';

READ FILECTESTIN) INTOCRECORD) KEY('HEADER');

PUT FILECHAILOUT > EDIT(SUBSTRCRECORD, 256)>(SKIP,A);

QUESTIONSC1)=STUD.Q1;

QUESTIONS(2)=STUD.Q2;

QUESTIONS(3)=STUD.Q3;

ON KEYCTESTIN> RECORD=REPEAT(" ',254)]|‘'CONTACT YOUR'
1" INSTRUCTOR THAT UNIT '||COMPRESS(STUD.UNIT+1)||
' QUESTION | |COMPRESSCQUESTIONSCI]}

' HAS NOT FOUND. *;

ON ENDF (LECTESTINY GOTO EOF;

DO I=1 TO 3;

READ FILECTESTIND INTOCRECORD> KEYC'TESTS.U' | |
COMPRESS(STUD.UNIT+1>1{'.qQ" ||
COMPRESSCQUESTIONSCI)| 1 FIRST');

PUT FILECHAILOUT) EDIT('Question ‘||
COMPRESS(QUEST IONSCI] : *,
SUBSTR(RECORD, 256))(SKIP,A);

DO WHILEC' 1'B);

READ FILECTESTIN) INTOCRECORDY;

PUT FILECMAILOUT > EDITC(SUBSTRCRECORD, 256 >) DO WHILEC' 1'B);

(SKIP,A); READ FILECHAILIN) INTOCRECORD);
END; PUT FILECMAILOUT) EDITCSUBSTRCRECORD, 256))
EOF: PUT FILECMAILOUT) EDITC 'Answer || (SKIP,A);
COMPRESS(QUESTIONSCI 2])" END;
' U)CSKIP,RY; EOF: CLOSE FILECMAILOUT);
END; CALL BATCH.MAILCJOBID, PREF|X);
PUT FILECHAILOUT) EDIT(Comments: °, CALL TPUTCMSG|| ' TEST PAPER IS MAILED FROM "HiJoBiDI |
*UXCSKIP,AD; ' TO ' |IKHERE, 1»;
CLOSE FILECHAILOUT); END; /* MAIL.OUT */.
CALL BATCH-MAIL_PS|(JOBID,PREFIX);
CALL TPUTC'TEST PAPER 1S MAILED FRON ' ||JoBID] | / /
* TO | IMHERE, 1); /% w/
END; /* MAIL_QUESTIONS */ /% THIS PROCEDURE SUBHITS A BATCH MANTES TO w/
/* MAIL TESTS. w/
/ / * ®/
V& »/ / /
/% THIS PROCEDURE MAILS OUT THE FILE MAILIN TO */ BATCH_MAIL :PROCCJOBID, PREF I X);
VAl THE STUDENT THROUGH BATCH ELECTRONIC MAIL. %/ DCL <JOBID,PREFIX)> CHARC*) VARYING;
lad w/ : CALL DYNAMCHORK, 'ALLOC *, 'DD=COMMOUT; *, 'PREF=" | |
/ / PREFIXI|"; ", 'DSN=#MAIL. %COHN VOL=HORK F DSO=PS ' ||
HAIL_OUT: PROC(HHERE, JOBID, PREF 1 X, MSG); "LRECL=72 BLKSIZE=72 TRK PRIM=1 SEC=1 ']|
DCL WHERE CHARC*> VARYING; "UNIT=DISK NEW CAT CDEL CLOSE; '),
DCL <JOBID,PREFIX)> CHARC*) VARYING; IF CPLIRETVU"=0) THEN
DCL. MSG CHAR(*); CALL DVNAMCHORK, "ALLOC *, 'DD=COMMOUT; *, ‘PREF="]|
CALL DYNAMCHORK, 'ALLOC ', ‘DD=MAILOUT; *, ‘PREF=" || PREFIX||*; ", 'DSN=®MAIL.#COMM OLD CDEL CLOSE; ' »;
PREFIX]|"; ", 'DSN=8MAIL.S0UT VOL=HORK F DSO=PS ‘|| OPEN FILECCOMMOUT) LINESIZE(72);
'LRECL=255 BLKS|ZE=255 TRK PRIM=10 SEC=10 ‘|| PUT FILECCOMMOUT > EDIT(
'UNIT=DISK NEW CAT CDEL CLOSE; *); 060 confidential MANTES commands ¢ee YSKIP,RAY;
IF <PLIRETVU"=0) THEN CLOSE FILECCOMIMOUT);
CALL DYNAMCHORK, 'ALLOC *, 'DD=MAILOUT; ', 'PREF="]| CALL DYNAMCWORK, 'ALLGC ', "DD=INTRDR REMOTE=LOCAL ‘||
PREFIX]|"; ", 'DSH=%MAIL.®0UT OLD CDEL CLOSE; '»; 'SYSOUT=A CLOSE SYSOPROG=INTRDR; * »;
OPEN FILEC(MAILOUT) LINESIZE(255); OPEN FILECINTRDR)> LINESIZE(80);
PUT FILECMAILOUT) EBITC PUT FILECINTRDRY EDIT¢
‘To: * | IMHERE, "
'From: ‘11J0B1D)> '//' ¢80 confidental JCL commands for batch job ece
(SKIP,A); 7 \
ON KEY(MAILIN) GOTO EOF; (SKiP,A>;

ON ENDF ILECHMAILIN) GOTO EOF;

RERD FILECMAILIN) INTOCRECORD) KEYC' 1+°);
READ FILECHAILINY IGNORE(2);

RERD FILECHRILINY INTOCRECORD);

CLOSE FILECINTRDR)Y;
END; /* BATCH.MAIL %/

PUT FILECMAILOUT) EDITC(SUBSTRCRECORD, 256!] ' ||MSG) ;* *;
CLO;ZK;T'LEE'WHLE); /% THIS PROCEDURE SUBMITS A BATCH MANTES TO %/
ON ENDF ILECINTFILE) GOTO EOF 1; /% MRIL TESTS BY PSI USERID. */
OPEN FILECINTFILE> INPUT; / */
DO BHILEC' 1'B); / /
GET FILECINTFILE) EDITCRECORD CAC72)); BATCH.JAIL_PS| : PROCCJOBID, PREF IX);
PUT FILECHAILOUT) EDITCRECORDY(SKIP,A); DCL (JOBID,PREFIX) CHARC* > URAYING;
END; CALL DYNAMCHORK, ‘ALLOC *, DD=COMMOUT; *, ‘PREF=PSI ; ',
EOF1: CLOSE FILECINTFILE); "DSN="| [PREF IX[| *. #MAIL . %COMM UOL=WORK F DSO=PS * | |
OPEN FILECINTFILE) OUTPUT LINESIZE(72); "LRECL=72 BLKS|ZE=72 TRK PRIM=1 SEC=| ‘||

-154 -

'UNIT=DISK NEH CAT CDEL CLOSE;‘);
IF (PLIRETV*=0) THEN

CALL DYNAMCHORK, 'ALLOC , 'DD=COMMOUT; 'PREF=PSI; *,

'DSN=" | [PREFIX] | * *nﬁlL #COMM OLD CDEL CLOSE; ‘);

OPEN FILECCOMMOUT) LINESIZE(72);
PUT FILECCOMMOUT) EDIT(

eeo confidential MANTES compmands eee Y(SKIP,A);
CLOSE FILECCOHMOUT);
CALL DYNAMCHORK, 'ALLOC *, ‘DD=INTRDR REMOTE=LOCAL ‘||

'SYSOUT=A CLOSE SYSOPROG=INTROR; *);

OPEN FILECINTRDR) LINESIZE(80);
PUT FILECINTRDR) EDIT(®0e confidential JCL commands oece)

(SKIP,A);
CLOSE FILECINTRDR);

END; /* BATCH.MAIL.PS| %/

/ /
fad w/
i THIS PROCEDURE IS THE STATE MACHINE FOR THE */
/* THE STUDENT TRANSACTIONS. R TRANSACTION TYPE*/
/* IS PASSED IN ARGUMENT TRANS AND IT IS USED #/
Vid ALONG WITH THE STUDENTS CURRENT STATE TO w/
/% GIVE THE STUDENT HIS NEW STATE. THE */
T TRANSACTION 1S THEN LOGGED BY A CALL TO THE */
Vi LOG..TRANS ROUTINE. */
/* -
/ /
STATE.MACH: PROCCTRANS,CID);

DCL CiD CHARC?)>;

DCL TRANS CHAR(1),

DCL (FOUND, STUD.PROC) BIT(1);

CALL READ_SYSP;
CALL RERD_STUD.LOCK(FOUND);
IF ("FOUND)> THEN RETURN;
SELECT(TRANS);
HHENC'T* > DO; /* GENERATE TEST */
STUD. TSTATE=TST..T;
IF CCID*=' ') THEN
STUD . RT IME=SUBSTR(DATE, 5, 2| |SUBSTR(TINE, 1, 4>,
CALL UPDATE_STUD(STUD. 1D, FOUND);
IF (“FOUND)> THEN CALL IHTERNHL_ERR<20),
CALL LOGCTRANS,CID);
END;
HHENC'C')DO; /% CANCEL TEST */
STUD. TSTATE=TST_R3;
STUD. RTIrE-ﬂDDTD(SUBSTH(DﬁTE 5,2 ISUBSTRCTINE, 1,4),
RSTYTHE);
CALL UPDATE.STUD(STUD. ID, FOUND >;
IF ¢°FOUND)> THEN CALL INTEMHL_ERRQO)
CALL LOGCTRANS,CID);
END;
HHEN(‘E')DO; /* TEST EXPIRED */
STUD. TSTATE=TST_R3;

- 155 -

STUD.RTINE=ADDTD(STUD.RTIHE, TSTHITHINY;

STUD .RT IME=ADDTD(STUD. RTINE, RSTYTHE);

CALL UPDATE..STUDC(STUD. ID, FOUND);

IF (*FOUND> THEN CALL INTERNAL.ERR(20);

CALL LOG(TRANS,CID);

END;

HHENC' 1)D0; /* MARK TEST */

STUD. TSTATE=TST_RO;

STUD. RT{ME=SUBSTR(DATE, S, 2> | ISUBSTRC(TINE, 1,4);

CALL UPDATE_STUDCSTUD. ID,FOUND);

IF ("FOUND)> THEN CALL INTERNAL_ERR(20);

CALL LOGC(TRANS,CID);

END;

HHENC'P ' 3D0; /* PROCTOR SELECT */

STUD . PSTATE=PST.P;

STUD.SID=CID;

CALL UPDATE_STUDCSTUD. IB, FOUND);

IF ("FOUND> THEN CALL |NTERNAL_ERR(20);

CALL LOGCTRANS,CID);

END;

HHENC'M°)DO;

STUD. PSTATE=PST_PA;

STUD. PROCTOR=STUD . PROCTOR+SYSP . UPROC ;

CALL TOTAL_MARKS;

CALL UPDATE_STUDC(STUD. ID, FOUND);

IF ("FOUND)> THEN CALL INTERNAL_ERR¢20);

END;

HHENC "N’ XDO;

STUD.PSTATE=PST._PA;

CALL UPDATE_STUD(STUD. ID, FOUND»;

IF ("FOUND)> THEN CALL INTERNAL_ERR(20);

END;

HHENC K’)DO; /* CONDITIONAL */

DCL CPTBLCL_TST? FIXED BINCIS) INITC
TST.1, TST_T, TST_NT, TST_CRO, TST_CR1, TST_CR2, TST_R3,
TST_CBG TST.CR1, TST_CR2, TST_CR3);

STUD. TSTﬂTEﬂCPTBL(STUD TSTHTE)

STUD . AT INE=SUBSTR(DATE, 5,2} !SUBSTR(T!HE 1,45,

CALL UPDATE._STUDCSTUD. ID FOUND)>;

IF ("FOUND)> THEN CALL INTERNAL_ERR(20);

CALL LOG(TRANS,CID);

END;

HHENC'R')DO; /* REVISION */

DCL RPTBLC(L_TST> FIXED BINCISY> INIT(
TST.1,TST..T, TST.NT, TST_RO, TST.R1, TST_R2, TST.R3,
TST_RO, TST_R1, TST_R2, TST_CRO);

STUD. TSTATE=RPTBL(STUD. TSTATE);

STUD.RTIME=SUBSTR(DATE, S, 2>] | SUBSTR(TIME, 1,4);

CALL UPDATE.STUD(STUD. |D,FOUND);

IF ¢"FOUND) THEN CALL INTERNAL._ERR(20);

CALL LOGCTRANS,CID);

END;

HHENC'J'ODO; /* PASS RESULT */

DCL PPTBLCL.TST?> FIXED BINCIS) INITC
TST_1,TST_I, TST..1, TST_R1, TST_NT, TST.R3, TST_R3,
TST_CR1, TST_NT, TST.R3, TST.LR1);

IF C({C1D="INST" >} (CID="TA" »> THEN DO;

IF (STUD.TSTATE*=TST_T> THEN DO;
SAVE=STUD; :
CALL STUD_PROCTORS(SAVE. |D, TRUE,FALSE,
STUD.PROC);
STUD=SAVE ;
IF "STUD_PROC & (SYSP.CUR_I_TEST>0) THEN DO;
CALL READ_SYSP_LOCK;
SYSP.CUR_I .TEST=SYSP ,CUR_|..TEST~1;
CALL UPDATE_SYSP;
END,;
END;
STUD. TSTATE=TST_NT;
END;
ELSE DO;
STUD. TSTRTE=PPTBL(STUD. TSTATE;
END;
IF (STUD.TSTATE=TST..R3) THEN
STUD . RTINE=ADDTD(SUBSTRCDATE,S, 2> |
SUBSTR(TIME, 1,4),RSTYTHE);
IF (STUD. TSTATE=TST_NT) THEN DO;
STUD. TEST=STUD . TEST+SYSP . UPASS ;
STUD.UNIT=STUD . UNIT+1;
CALL TOTAL._MARKS;
END,;

CALL UPDATE.STUDC(STUD. iD,FOUNDY;

IF ¢"FOUND> THEN CALL INTERNAL_ERR(20);

CALL LOGCTRANS,CID);

END;

HWHENC L')DO; /* RESTUDY RESULT */

DCL SPTBLCL_TST)> FIXED BINCIS) INITC
TST.I,TST..T, TST.NT, TST.R2, TST_R3, TST-R3, TST-R3,
TST-CR2, TST_R3, TST.R3, TST.CR2);

IF C(CID="INST' >ICCID="TA" > THEN DO;
IF (STUD.TSTATE*=TST_T> THEN DO;
SAVE=STUD;
CALL STUD_PROCTORS(SAVE. |D, TRUE, FALSE,
STUD.PROC);
STUD=SAVE ;
IF “STUD_PROC & (SYSP.CUR..I_TEST>0) THEN Do;
CALL READ_SYSP_LOCK;
SYSP.CUR_1..TEST=SYSP .CUR..I _TEST-1;
CALL UPDATE_SYSP;
END;
END;
STUD. TSTATE=TST_R3;
END;
ELSE DO;
STUD. TSTRTE=SPTBL(STUD . TSTATE);

END;
IF (STUD.TSTATE=TST.R3)> THEN
STUD.RT IME=ADDTD(SUBSTR(DATE, S, 2> |
SUBSTRCTIME, 1,4),RSTYTHE);
CALL UPDARTE_STUDCSTUD. ID,FOUND);
IF ("FOUND> THEN CALL INTERNAL_ERR(20);
CALL LOGCTRANS,CID);
END;
OTHERWISE DO;
UNLOCK FILECSTUDF IL) KEY(STUD. ID);
CALL INTERNAL_ERR(21);

END;
END;
END; /% STATE_MACH */
I
lia
Vis END OF PROGRAMN
/*

*/
*/

'
END; /* MAIN PROGRAH */
//LKED .SYSLIB DD
17 DD DSN=SYS2.PL1.OPT.PLITASK,D}SP=SHR

//LKED.SYSLMOD DD DSN=ee¢e the location of the production runs eee,D|SP=0LD

- 156 -

APPENDIX B

SOURCE CODE FOR CAPSI

WITH CLASSROOM SETTING

-157 -

//PSIJOB JOB 'F=DAl1,T=20,L=8, |=120", 'PSI_MAIN' , MSGLEVEL=(1, 1) LtH 4,004 GET LENGTH OF BUFFER
7 EXEC ASMGC TPUT ¢6), (4),CONTROL, USER IDL=(5)

//RSH.SYSIN DD * L 13,4¢13)

- L 14, 12¢13)

= CALL BY PL1 LW 0,11,20¢13)

* CALL SCNCBUFFER); BR 14

* DCL BUFFER- CHARC*)> URAYING; SAVEAREA DC 20F'0"

- END

DUMREC1 CSECT // EXEC PL1OCL,CSIZEsS12K, IS=NIS, STG=NSTG, AP="F (|), INT®, X=X, A=A

ENTRY SCN //PL1.SYSIN DD *
OC s’ /* PERSONALIZED SYSTEM INSTRUCTION »/
DC ALICS) / /
scn DS OH 7% w/
STH 14, 11, 12¢13) 7% PSI| MAIN PROGRAM. w7
BALR 10,0 /* *7
USING *, 10 " AUTHOR FRANK HERZ0G [AMC. "/
LA 4, SAVEAREA /% DATE WRITTEN JAN. 15 1984, ®/
ST 13, SAVEAREA+4 7 AUTHOR MANIX LEUNG, YIU-MAN. =/
ST 4,8013) % LAST UPDATE FEB. 15 1984, "/
LA 13, SAVEAREA /% OCT. 15 1985 */
L 4,0¢1)> GET ADDR OF BUFFER "]
LA 6,2¢4) GET ACTUAL BUFFER ADDR / /
LH 4,004 GET LENGTH OF BUFFER 7% #/
TPUT (6), (4), CONTROL. /* VERSION 2.0 w/
L 13,4¢13) 7 CHANGES FROM SINGLE USER TO MULTIPLE USERS THAT CAN ACCESS */
14, 11, 12013) I O A SHARED DATA BASE CONCURRENTLY. THE STUDENT DATABASE %/
BR 14 /” HAS MODIFIED FROM REGIONALC1) FILE TO INDEX FILE #/
SAVEAREA DC 20F‘0° /* OAGANIZATION. THE FACILITIES OF MONITORING STUDENT w/
END ” ACTIVITIES AND SENDING MESSAGES ARE ADDED. "/
7 EXEC ASMGC % #/
//ASM.SYSIN DD * / /
] /* */
* CALL BY PL1 / w/
* CALL SENDCBUFFER,USERID); I THIS PROGRAN PERFORNS THE INTERACTIVE EDITING AND STUDENT */
» DCL BUFFER CHARC*)> UARYING; ” TRANACTION CONTROL FUNCTIONS OF THE SYSTEN. THREE FILES wy
® DCL USERID CHAR(S); % RRE USED BY THIS PROGRAM. THE FIRST (S THE SYSTEM PARA- w/
" 7 METER FILE , A SINGLE RECORD DIRECT ACCESS FILE,|T CONTAINS */
DUMREC2 CSECT ,* THE VALUES WHICH DETERHINE THE NUMBER OF UNITS IN THE COURSE*/
ENTRY SEND e ETC. THE SECOND IS THE STUDENT RECORD FILE (STUDFIL) */
DC C'SEND’ ' ” IT IS ALSO A DIRECT INDEX ACCESS FILE. THREE RECORDS ARE %/
BC ALIS) /* PREALLOCATED TO STORE [NFORMATION RELATED TO THE SPECIAL */
SEND ps o o~ STUDENT NUMBERS EDIT, INST,TA. (ONLY THE PASSHORD FIELD IS */
STH 14,11, 12013) % USED IN THESE RECORDS.). THE THIRD FILE IS At TRANSACTION */
BALR 10.0 * LOG FILE WHICH KEEPS A RECORD OF STUDENT TRANSACTIONS AS #/
USING *, 10 " THEY OCCUR, FOR STATISTICAL PURPOSES. THIS PROGRAN |S #/
‘ * DIVIDED INTO ROUTINES WHICH ROUGHLY PARALLEL THE MENU #y
LA 4,SAVEAREA /* OPTIONS. THE FIRST ROUTINE WHICH IS PERFORMED IS AN "/
ST 13, SAVEAREA+4 I INITIALIZATION ROUTINE HHICH SETS UP THE DIRECT INDEX FILE %/
ST 4,8013) 1* TG ACCESS STUDENT RECORDS AND ALSO WRITES A LOG RECORD MITH */
LA 13, SAVEAREA 7% A TRANSACTION TYPE OF 2. AFTER INITIALIZATION , THE MAIN #*/
L 4,0¢1) GET ADDRESS OF BUFFER ™ CONTROL. MENU ROUTINE IS CALLED. IT IN TURN CALLS SUB-ROUTINE*/
L 5,4¢1) GET ADDRESS OF USERID 7 WHICH EDIT STUDENT RECORDS , START SESSION . . . EiC. */
LA 6,2¢4)> GET ACTUAL BUFFER ADDRESS ,* DEPENDING ON THE CHOICES MADE BY THE USER. */

- 158 -

” #/
/ /
/ /
r* */
/> GLOBAL DATA DICTIONARY w/
/¥ — #/
/* b4
™ LOGFIL THIS IS THE LOG FILE. FOR A DESCRIPTION SEE */
”* THE SECTION IN THE SYSTEM REFERENCE MANUAL */
Al ON DATA FILES. */
/* SYSPFIL THE SYSTEM PARAMETER FILE- DESCRIBED IN THE %/
/™ REFERENCE MANUAL . »/
™ STUDF IL. STUDENT RECORD FILE , DESCRIBED IN THE */
% SYSTEN REFERENCE MANUAL . =/
I STAT..TBL_END_SESS THIS IS A TABLE OF TEST AND PROCTOR STATE®/
”* USED IN THE END SEESION ROUTINE. =/
/7 TST. ... THESE ARE THE DENOTATIONS FOR TEST STATES, */
/" SEE THE SYSTEM REFERENCE MANUAL FOR A w/
Vi HEANING OF THE CODES. */
% PST_. . . THESE ARE THE DENOTATIONS FOR PROCTOR STATES*/
Ve CUTOFF THIS |S THE TEST CUTOFF TIME LIMIT. */
e CUR_I _TEST THIS IS THE COUNTER CONTAINING THE NUMBER %/
I OF TESTS CURRENTLY ASSIGNED TO THE w/
Vad INSTRUCTOR OR TA. %/
/* I_TEST_LIN THIS IS THE LIMIT TO THE NUMBER OF TESTS */
/” HHICH CAN BE ASSIGNED TO THE INSTRUCTOR OR */
% TA. »/
” CURDATE A VARIABLE CONTAINING THE CURRENT DATE. */
/* ®/
/ /
HPS| :PROCCPARM > OPTIONSCHAIND;
DCL PAARM CHAR(100> VARYING;
DCL USERID CHAR(8> INITC(PARM);
DCL. SYSIN FILE STREAf1 INPUT;
DCL SYSPRINT FILE STREAM OUTPUT PRINT
ENVCRECS|ZEC 132));
DCL LOGFIL FILE RECORD EXCLUSIVE KEYED
UNBUFFERED ENV(F RECSIZE(42)> BLKSIZE(42) REGIONALC1));
DCL. SYSPFIL FILE RECORD EXCLUSIVE KEVED
UNBUFFERED ENUCF RECS|ZE(285) BLKSI(ZE(285) REGIONALC 1));
DCL STUDF IL FILE RECORD KEVED
ENVCINDEXED KEVLOCC2) KEYLENGTH(?7)> RECSIZE(107)
BLKSIZEC 107> F BUFFERS(35));
DeL seN EXTERNAL OPTIONS(ASH, INTER)
ENTRY(CHARC*) UARYING);
DCL SEND EXTERNAL OPTIONS(ASM, | NTER, RETCODE >
ENTRY(CHARC* > UARYING, CHAR(8));
DCL 1 STUD
2 DELKEY BIT(8),
21D CHARC?)> INITC),
2 NAME CHARC30) INITC"),
2 PHONE CHARC?)> INITC *),

FACULTY
YEAR
STATUS
UNIT

Qi

Q2

Q3

TEST
PROCTOR
TERN
EXAH
TOTAL
LETTER
PASSHORD
PSTATE
TSTATE
SiD
RTIME

NRNNNNNNRENNNNNNNNRNN

DCcL
DCL
DCL 1 SYsp

DELKEY
NUNIT

UPASS
VPROC

SESSDATE
SESSTINE

NRNPMNMNRRNRNNRNRON

MNL.OGREC

DCL 1 SYST LIKE SYSP;

BCL 1 LOGREC,
DELKEY
TYPE

NNNNNOMNNNRNONRNMNN
o

DCL LPTR

DCL 1 LOGS(LPTR) LIKE LOGREC;
DCL (L.STUD, LSTUDMORE >

DCL 1 PINDXCLSTUD)>
21D
2 PROCTOR

- 159 -

TSTUD LIKE STUD;
SAVE LIKE STUD;

UNITLC100)

LGTHRESH(13)>

SESSCUTOFF
CUR..| _TEST

CHARC2Y INITC ',
CHARC2) INITC'),
CHARC3) INITC),
FIXED BINCIS) INITCO),
FIXED BINCIS) INITCO),
FIXED BINCISY INITCO)Y,
FIXED BINCIS) INITCO),
FIXED DECC? ,3) INITCO),
FIXED DEC(?7 ,3) INITCO),
FIXED DECC? ,3) INITCO),
FIXED DECC? ,3) INITCO),
FIXED DEC(? ,3) INITCO),
CHAR(2) INITC),
CHAR(8) INITC '),
FIXED BINCIS) INITCO),
FIXED BINCIS) INITCO),
CHAR(?) INITC '),
PICTURE '999999"

’

BIT(8),
FIXED BINCIS),
FIXED BINC1S),
FIXED DEC(?,3),
FIXED DEC(?7,3),
FIXED DEC(7,3),
PICTURE '999999°
PICTURE '999999"
PICTURE '999999°
FIXED BINCIS),
FIXED BINC1S);

.~

BIT(8),
CHARC 1),

CHARC?),

FIXED BINCIS),

FIXED BINCIS),

FIXED BINCIS),

FIXED BINCIS),

FIXED BINCIS),

FIXED BINCIS),

FIXED DEC(7,3),

FIXED DEC(7,3),

PICTURE *999999°,
CHAR(7);

FIXED BINCIS) INITC10);

FIXED BINCIS) INITC100);
CONTROLLED,

CHAR(?),

FIXED DEC(?, 3);

DCL

STEND

FIXED BINC1S);

DCL. UPPERCASE

CHAR(26) INIT(

DCL (LST,LSTMORE)> FIXED BINCIS) INITC200); ' ABCDEFGH | JKLMNOPQRSTUVMXYZ®);
DCL 1 STCLST) CONTROLLED, DCL LOHERCASE CHARC26) INITC
21D CHARC?), ‘abedefghi jkimnopgrstuvexyz');
2 NAME CHAR(30)>; DCL. <BEL,LF,CR,BS,OFF,ON) CHARC 1);
DCL. (LBUF ,LLBUFMORE > FIXED BINC1S)> 1HIT(2000); DCL TURNOFF BITCE INITC 1°B);
DCL BUFFER CHARCLBUF > VARY!NG CONTROLLED; DCL ALLOW BITC1) INITC'0'BY EXTERNAL ;
DCL 1 STAT..TBL.END_SESS, DCL HATCH TASK;
2 TSTATEC10) FIXED BINC1S> INIT(1,8,1,9,9,9, DCL STAGE EVENT;
1,8,9, 1), Lremisicimes HA TN PROGRANM
2 PSTATE(4) FIXED BINCIS) INITC1,1,1,4); CALL INIT,;
DCL L_SPEC FIXED BINCIS) INIT(S); CALL TERM.CONTROL;
DCL. SPEC_IDCL_SPEC) CHRR(?) INIT(
‘IH$T',‘Tﬂ','EDIT','ﬁLL','MN(EH'); /
DCL PSCCL.PST) CHARC13) INITC */
CINITIAL', "AVAILABLE ', 'NOT AVAILABLE', 'PROCTORING '); THIS PROCEDURE 1S THE LOHEST LEVEL TERMINAL INPUT "/
DCL TSCCL_TST» CHARC11) INITC ROUTINE. THE PARAMETER CIN IS FILLED HITH L w7

CHARACTERS FROM THE KEVBOARD WHEN THIS ROUTINE IS %/
CALLED. ALL LONERCASE ALPHABETIC CHARACTERS ARE */

CINITIAL®, "HRITING', "NOT MRITING', *NO MARK YET', 'ONE PASS",
'ONE FAIL', "RESTUDY", "OUT. TEST', 'OUT. MARK ", 'CANCELLED');

FIETEFREEY

DCL LOLITC13) CHAR(2) INITC'A+,'A *, ‘A=, TRANSLATED TO UPPERCASE BY THIS ROUTINE. s
‘B+,'B ', 'B=','C4','C ', "C~",'D+’,'D *, D", F ') */
DCL (DATE, TIME, LENGTH, SUBSTR, VERIFY, ABS, MOD, HBOUND > BUILTIN; */

DCL CTRANSLATE, INDEX, UNSPEC, ONSOURCE, REPEAT, TRUNC) BUILTIN; / /

DCL (STRING, FLOOR, COMPLET ION, PRIORITY, PLIRETV) BUILTIN; TGET:PROC(CIN, L, PROTECT);

DCL L.TST FIXED BINCIS) INITC10); DCL CIN CHARC*);

DCL TST_| FIXED BINCIS) INITC); DCL L FIXED BINCIS);

DCL TST_Y FIXED BINCIS) INIT(2); DCL PROTECT BITC1;

DCL TST_NT FIXED BINCIS) INIT(3); DCL TS0 CHAR(S0);

DCL TST_RO FIXED BINCIS) INIT(4); DCL BSS2 CHAR(S2);

DCL TST_R1 FIXED BINCIS) INIT(S); DCL €60 CHARCE0);

DCL TST_R2 FIXED BINCIS) INIT(6); DCL <1, FIXED BINCIS);

DCL TST_R3 FIXED BINCIS) INITC?); ON ENDF ILECSYSIN) BEGIN;

DCL TST_OT FIXED BINCIS) INIT(8); T50="

DCL. TST.OM FIXED BINCISY INIT(9); CLOSE FILECSYSIND;

DCL TST.RC FIXED BINCIS) INITC10); OPEN FILECSYSIND;

DCL L.PST FIXED BINCIS) INIT¢4); PUT FILECSYSPRINT) SKIP;

DCL PST_I FIXED BINCIS) INITC1); END;

DCL PST_PA FIXED BINCIS) INIT(2); IF (PROTECT> THEN DO;

DCL PST_PNA FIXED BINCIS) INIT(3); BSS2=REPEAT(BS, 52);

DCL PST.P FIXED BINCIS) INIT(4); C60=REPEAT('##88@ ", 12);

DCL |_TEST-Lin FIXED BINCIS) INIT(S); fw‘"?fjﬂ%”f”'i

ga‘ ;23:5 S:I::; :sm;g; PUT FILECSYSPRINT) EDITCSUBSTR(C60, | +J,L),
’ SUBSTR(BSS2, 1,1.)) (A,A);

DCL YN(2) CHARCTY INITC'Y', 'N'); END; r o

DL cac2) CHARC1) INITC'C, 'Q"); PUT FILECSYSPRINT) EDITC' *,SUBSTR(BSS2, 1,L42), : ')

DCL RESP FIXED BINCIS); (ACL)Y,A,A);

DCL THENTYM PICTURE '999999° INIT(C1000); CALL SCNCSTRINGCOFF »);

DCL CURTIME PICTURE ‘999999 ; END;

DCL CUTOFF PICTURE '999999°; GET FILE(SYSIN) EDITCTS0)> (ACS0));

DCL. CURDATE CHARKS; IF (PROTECT)> THEN

DCL OUTDATE CHARCB); CALL SCNCSTRINGC(ON))Y;

DCL NUMER{C CHARC10)> INIT(' 0123456789°); CIN=SUBSTR(TSO, 1,L);

- 160 -

CIN=TRANSLATE(CIN, UPPERCASE, LONERCASE);

END; /% TGET */

/ /
r o
/% THIS PROCEDURE PRINTS THE VALUE OF A PASSHORD */
/* AND ERASES |T FROM THE SCREEN. *f
T »*/
/ /
ECHOPASS : PROC(CINY;

DCL CIN CHARC*®);

DCL. BS8 CHAR(8);

BS8=REPEAT(BS, 8);

CALL TPUTC'PASSHORD: "' |ICIN}I ", 1);

DELAYC1000);

PUT FILECSYSPRINT) EDIT(BS, BS8, '#X*0lMN" ,BSS, ' COHMIHX® ', BSS,

‘HHMM®#@0° ,BS8, ' Mi*Xesll’ ,BSs, XA,
END; /* ECHOPASS */
/ /
% */
Vid THIS PROCEDURE RETURNS A BOOLEAN URLUE TRUE IF =/
/* THE STUDENT NUMBER PASSED [N PARAMETER CID ®/
/* MATCHES ANY OF THE SPECIAL STUDENT NUMBERS */
/% RECOGN IZED BY THE SYSTEM. (IE INST,EDIT,TA,ALL, */
/* MARKER). hd'4
" */
/ /
SPECIAL.ID:PROCCCID)> RETURNS(BIT(1));
DCL CiD CHAR(?>;
DCL | FIXED BINC1S);
DCL SPEC BITCt);
SPEC = FALSE;
DO =1 TO L_SPEC;
IF (SPEC_IDC|)=CID> THEN SPEC=TRUE;
END;
RETURN(SPEC);
END; /% SPECIAL ID »/
/ 2
* */
/" THIS PROCEDURE TAKES THE CHARACTERS PASSED IN COUT AND »*/
lad WRITES THEM TO THE TERMINAL AFTER SKIPPING L LINES. »/
% LY
/ /
TPUT:PROCCCOUT,L);
DCL L FIXED BINC1S);
DCL CouT CHAR(*);
SELECT(L);

HWHENC1)> PUT FILECSYSPRINT)Y EDITCCOUT) (COLC1), R);
WHENCO)> PUT FILECSYSPRINT) SKIPC(L) EDITC(COUT) <COL(1), A);
OTHERHISE PUT FILECSYSPRINT) EDITCCOUT) CCOLC1), SKIPCL~1), A,

END;
END; /* TPUT */

/ /
/% »/
/* THE RAND PROCEDURE GENERATES A RANDON 32 BIT INTEGER %/
/* THE PSUEDORANDOM TECHNIQUE USED IS A COMBINATION OF *®/
Tad LINEAR CONGRUENT IAL AND SHIFT REGISTER TECHNIQUES. ¥
/* */
/

/
CNOF | XEDOVERFLOW >: (NOZEROD 1V DE) :
RAND:PROC RETURNS(FIXED BIN(31));
DCL SEED FIXED BINC31)> INITC17) STATIC;
BCL (T1,T2) FIXED BINC(31);
SEED=63069*SEED*T |ME ;
UNSPECCT 1)=¢ (15)°0°B)| | SUBSTRCUNSPEC(SEED), 1, 17);

T =T 1+SEED;

T2=(T 1*1310724T1;

SEED=SEED+T2;

RETURNCSEED »;
END; /* RAND */
/ /
% */

/1 THE GENRAND PROCEDURE GENERATES A RANDOM INTEGER IN */
lad BANGE 1-LIM WHICH EXCLUDES THE NUMBERS IN G1,Q2,Q3. */
~” IT IS USED TO GENERATE THE QUESTION NUMBERS FOR TESTS*/
/= AND IN THE PROCTOR SELECTION ALGORITHM WHERE |T 1S #/
/* USED TO SELECT PROCTORS |F THERE ARE MORE THAN ONE */
las HiTH THE LOMEST NUMBER OF POINTS. */
1% %/
/

/
GENRAND : PROCCL.IM, Q1,Q2,Q3) RETURNS(F IXED BINC1S));
DCL <LINM,Q1,Q2,Q3> FIXED BINCIS);
DCL RGEN FIXED BINCiS),;
bCL EQ BITC1);
IF (LIM<2) THEN RETURN(1);
RGEN=MODCRAND, L IN)>+1;
IF CLiM=2> THEN RETURNCRGEN);
EQ=TRUE ;
DO HHILECEQ);
IF ((RGEN=Q1)] (RGEN=Q2)> THEN DO;
IF (RGEN<LIM) THEN
RGEN=RGEM+1;
ELSE
RGEN=1,;
END;
ELSE EQ=FRALSE;
END;
RETURNCRGEN) ;

END; /*GENRAND*/

{

- 161 -

Ved
Fad
r*
*

»/
THIS PROCEDURE WRITES OUT THE MESSAGE THAT THE STUDENT #/
NUMBER HAS JUST BEEN MODIFIED OR DELETED. */
*/

L4

REC_NO..FOUND : PROC ;
CALL TPUTC'ERROR IS FOUND N * || STUD.ID, 1);
CALL TPUTC'YOUR STUDENT NUMBER HAS JUST BEEN HODIFIED OR', 1);
CALL TPUTC'VOUR STUDENT RECORD HAS JUST BEEN DELETED.', 1);
CALL TPUTC TRANSACTION CANCELLED.', 1);
CALL TPUTC'PLEASE CONTACT TO YOUR INSTRUCTOR !°, 1);

/

’

’

»

END; /* REC.NO.FOUND »/

/ /
r~ »/
% THIS PROCEDURE READS ONE STUDENT RECORD GIVEN THE »/
r* STUDENT NUMBER IN PARAMETER CID. THE PARAMETER FOUND */
Fad IS RETURNED IS A BOOLEAN TRUE VALUE IF THE RECORD w/
Vil CORRESSPONDING TO STUDENT NUMBER CID WAS FOUND. w/
r* »/
/ /
RERD._STUD :PROC(CID, FOUND ;
pcL Cip CHARC?);
DCL. FOUND BITC1);
ON KEY(STUDFIL > FOUND=FALSE;
FOUND=TRUE ;
READ NOLOCK FILECSTUDFIL)Y INTOCSTUD) KEY(CID);
END; /* READ_STUD %/
/ /
Vi */
/% THIS PROCEDURE READS AND HRITES ONE STUDENT RECORD */
/% GIVEN THE STUDENT NUMBER IN STUD.ID. THE PARANETER w/
/* FOUND 1S RETURNED AS A BOOLEAN TRUE VALUE (F THE RECORD %/
/* CORRESSPONDING TO STUDENT NUMBER CID HAS FOUND. */
Ve */
/ /
RERD_STUD_LOCK : PROC (FOUND);
DCL FOUND BITC1);
ON KEY(STUDFIL> BEGIN;
FOUND=FALSE;
CALL REC_NO.FOUND;
END;
FOUND=TRUE ;
READ FILECSTUDFIL) INTOCSTUD) KEY(STUD. 1D>;
END; /* READ.STUD_LOCK */
/ /
& */
/¥ THIS PROCEDURE REWRITES THE STUDENT RECORD ASSOC!- w/
/¥ ATED WITH STUDENT NUMBER PASSED IN CID. FOUND IS THE*/
A BOOLEAN UALUE RETURNED TRUE IF THE BRECORD WAS FOUND . %/
i */

/
UPDATE_.STUD : PROC(CID,FOUND);

bDcL CID CHAR(?);
DCL. FOUND BITC1);
ON KEY(STUDFIL)> FOUND=FALSE;
FOUND = TRUE;

REHRITE FILECSTUDFIL) FROM(STUD> KEY(CID);

END; /* UPDATE_STUD */

/ /
Vi »/
Vad THIS PROCEDURE REMOVES A STUDENT RECORD FROM THE */
/* THE STUDENT FILES. CID CONTAINS THE STUDENT NUMBER w/
id TO BE REMOVED, FOUND IS RETURNED TRUE IF THE RECORD »/
/¥ TO BE DELETED WAS FOUND. #/
Vs w/
/ /
REMOU_STUD: PROC(CID, FOUND);
DCL CID CHARC?>;
DCL FOUND BITC1);
ON KEY(STUDFIL> FOUND=FALSE;
FOUND=TRUE;
DELETE FILECSTUDFIL) KEY(CID);
END; /* REMOVE.STUD */
/ /
la */
Vid THIS PROCEDURE WRITES A NEM STUDENT RECORD TO THE */
Vhd FILE. THE STUDENT NUMBER OF THE NEW RECORD S w/
% CONTAINED N CID. FOUND IS RETURNED MWITH THE w/
/* VALUE TRUE IF A RECORD WITH THIS STUDENT NUMBER w7
/™ ALREADY EXIST. w*/
/* %/
/ /
HRITE.STUD: PROCCCID,FOUND);
DCL CID CHARC);
DCL FOUND BITC1),;
ON KEV(STUDFIL > FOUND=TRUE;
FOUND=FALSE ;
HRITE FILE(STUDFIL > FROM(STUD) KEYFROMCCID);
END; /* HRITE_STUD %/
/ /
™ A
/% THIS ROUTINE CLOSES THE FILE OF THE SYSTEN. ®w/
/7 IF SOME RECORDS ARE LOCKED BY ANOTHER TASK, THEN w/
/* THE ERROR CONDITION Witl BE RAISED. IF SO, DELAY A w/
/* HHILE AND TRY TO CLOSE THE FILE AGAIN. */
lae */
/ /

CLOSE_FILE :PROCCINFILE);

- 162 -

DCL INFILE FILE VARIABLE;

ON ERROR BEGIN;

DELAY(10);
GOTO AGAIN;

END;
AGAIN: CLOSE FILECINFILE);
END; /* CLOSE.FILE #»/

/ /
& */
/* THIS ROUTINE ACCEPTS A 6 CHARACTER VALUE REPRESENT NG w/
/*® A TINE AS HHMMSS AND RETURNS THE SAME TIME VALUE HITH %/
/* THE HOURS,MINUTES SECONDS SEPARATED BY COLONS . HH : 191 55/
* o/
/ /
SEPARATE : PROC(T IMEARG > RETURNS(CHAR(S));
DCL TINERRG PICTURE '999999";
RETURNCSUBSTRCTIMEARG, 1,2)[11| | SUBSTRCT IMEARG, 3,2)1 |
' | ISUBSTRCTIMERRG, S,2));

END; /* SEPARATE =/

/ /

% */

/% THIS ROUTINE TAKES THO 6 DIGIT TIME VALUES ®/

/* REPRESENTIN HHMMSS AND RETURNS A VALUE WHICH */

/% 1S THE SUNM OF THE HOURS AND MINUTES WITH THE */

/% SECONDS SET TO ZERO. w/

/* */

/

/
ADDT IME:PROCCTIM1, TIN2)> RETURNS(PICTURE ‘999999);

DCL (TIM1,TIM2)
DCL <I,CARRY, IM)

PICTURE '999999°;
FIXED BINC31);

peL MoD BUILTIN;

DCL (MM, HH)> PICTURE '98°;
|=SUBSTR(TIN1,3,2+SUBSTR(TINM2,3,2);
IM=MOD(|,60);

M=,

CARRY=| /60;

1=SUBSTR(TIMI1, 1,2 +SUBSTR(T 1112, 1,2);
HH=MODC | +CARRY, 24);
RETURNCHHI It | '00°»;

END; /* RDDTIME »/

/ /
/* #/
/% THIS ROUTINE TRKES A 6 DIGIT DATE VALUES ®*/
/* REPRESENTING YYHHDD AND RETURNS THE NEXT DATE */
i IN THE GENERAL CALENDAR. */
Vad */
/ /

INCRDATE: PROCCINDATE) RETURNS(P |CTURE ' 999999);

DCL. INDATE PICTURE ‘999999 ;
DCL <YV, 1M1, 0D) PICTURE '99°;
YY=SUBSTRC INDATE, 1,2);

MH=SUBSTAC INDATE, 3,2);
DD=SUBSTRC INDATE, 5,2)+1;
IF DD>SUBSTR(312931303 1303131303 13031, M1*2~1,2) |
(M1=2 & DD>28 & YY/4>FLOORCYY/4)>) THEN DO;
DD=1;
M=HODCIEH+ 1, 13);
IF MM=0 THEN DO;

M=,

YY=HOD(YY+1, 100);

END;

END;
RETURNCYY| [t | jDD);
END,
/ /
% *®/
/* THIS PROCEDURE BUILDS AND WRITES A LOG RECORD.THE CID %/
/* AND TRANS PARAMETERS DEFINE THE SID AND TYPE FIELDS TO %/
/* BE MRITTEN WHILE THE REST OF THE FIELDS OF THE LOG */
/* ARE GLEANED FROM THE CURRENT VALUES IN THE STUDENT */
Vad RECORD. b4
/* FOR A DESCRIPTION OF THE LOG RECORD FIELDS SEE THE REF-»/
/* ERANCE MANUAL . w/
/% */
/ /
LOG:PROCCTRANS, CID)»;
DCL TRANS CHARC1);
DCL CID CHAR(7?);

-163 -

Of KEYCLOGFIL)> BEGIN;
CALL READ_SYSP_LOCK;
SYSP . NLOGREC=SVSP . NLOGREC- 1;
CALL UPDATE_SYSP;
CALL TPUTC'PLERSE CONTACT TO YOUR [NSTRUCTOR !',1);
CALL TPUT('THE LOG FILE IS FULL AND NO RECORD CAN BE
"HRITTEN ON IT.", 1),

CALL TPUTC'THE LOG FILE 1S NEEDED TO BE ENLARGED L1,

GOTO OUT;
END;
CALL RERD..SYSP._LOCK;
SYSP . BLOGREC=SYSP . NLLOGREC+1 ;
CALL UPDATE.SYSP;
READ FILECLOGFIL) INTOCLOGRECY KEY<SYSP.NLOGREC >
LOGREC . DELKEY=(8)'0"'B;
LOGREC, TYPE=TRANS ;
LOGREC.CTIHE‘SUBSTR(TME, 1,6),;
LOGREC.SID=C|D;
IF CTRANS='2" [TRANS='3' | TRANS="4" | TRANS="'5"') THEN Do;
LOGREC. TS=TST...| ;
LOGREC . PS=PST...| ;
LOGREC . ID=USER(D;
LOGREC.UNIT,LOGREC.Q1, LOGREC . Q2 ,LOGREC.Q3,LOGREC., TP,
LOGREC . PP=0);

END;
ELSE DO;

LOGREC. TS=STUD. TSTATE;
LOGREC. PS=STUD. PSTATE;

LOGREC . ID=STUD.

1D;

LOGREC.UN| TeSTUD. UNIT;

LOGREC.Q1=STUD.
LOGREC . GR=STUD.
LOGREC . Q3=STUD.
LOGREC. TP=STUD.

Qt;
Qz;
Q3;
TEST;

LOGREC. PP=STUD . PROCTOR;

END;
RENRITE FILEC(LOGFIL)> FROM(LOGREC) KEY(SYSP.NLOGREC);

OuUT: ;

END; /% LOG %/

/ /
las 4
/% THIS PROCEDURE 1S CALLED WHEN THERE 1S A SERIOUS »/
/% INCONSISTANCY IN THE INTERNAL RECORDS. AN ERROR NUMBER %/
/* DEFINED IN THE TRBLE BELOW IS HRITTEN TO THE TERMINAL. */
/* *f
/* ERROR CAUSE LOCATION */
2, %/
VA | STUDENT NUMBER [N ST ARRAY SESSION CONTROL, »/
” NOT FOUND IN STUDENT FILE. PROCTOR SELECTION. =#/
” 2 INVALID CASE CHOICE. SESSION CONTROL, */
lad PROCTOR SELECTION %/
/7 3 SECONDARY 1D NOT FOUND. SESSION CONTROL, */
/% MARK TEST */
” 4 STUDENT WRITING TEST AND SESSION CONTROL »/
Vad PROCTORING AT THE SAME TIME */
/* S ~SAME AS ERROR 2. SESSION CONTROL MAIN%/
/* SELECT STATMENT. */
/™ 6 ~STUDENT NUMBER NOT FOUND —STUDENT LOGIN. */
" 7 ~SAME AS ERROR 6. -GET_PROC_STATUS w/
/* 8 ~SAME AS ERROR 2. ~GET_PROC_STATUS w/
™9 ~SAME AS ERAROR 2 ~GET.HARK ®/
* 10 ~SPECIAL. STUDENT NUMBER NOT -GET_ED!T_PASS =/
” FOUND, */
FAR | ~SANE AS ERROR 1. ~START_SESS ION, */
VAd 12 =SAME AS ERROR 1. —-END SESSION. w/
¥ 13 ~SAME AS ERROR 6, ~E01T_PERSONAL w/
/14 —SAME AS ERROR 1. ~ED 1 T_PERSONAL */
VA 1 ~SAME AS ERROR 10. ~ED| T-PERSONAL. w/
/» 16 ~SAME AS ERROR 10. ~GET..INST_PASS wf
VA i ~SAME AS ERROR 6. -EDIT..COURSE #/
/* 18 -SAME AS ERROR 1. -LIST_STUD w/
/%19 —SAME AS ERROR 6. ~SESSION CONTROL, TEST*/
/* GENERATE. */
/* 20 ~SAME AS ERROR 6. -STATE_MACH ®/
/* 21 ~SAME AS ERROR 5, ~STATE_MACH »/
/* 22 -SAME AS ERROR 1. ~REMOV_STUD *f

/"™ 23 -SAME AS ERROR 1. ~EDIT..SYSP, CHANGE

*/
*/
*/
*/
*/

1% THRESHOLDS .

/% 24 ~SAME AS ERROR 6. ~GENTEST

/¥ 25 =~SAME AS ERROR 6. =GET_MARK

I

/

INTERNAL.ERR: PROCCENUM) ;
DCL ENUM FIXED BINC15);
DCL couT CHAR(24);

PUT STRING(COUT> EDIT(" ##% | NTERNAL ERROR: ', ENUM)(A,F(6,0));

CALL TPUT(COUT, 1>;
END; /* INTERNAL.ERR #/

f/

ad
* THIS ROUTINE CONTAINS THE COMMON CODE REQUIRED TO

/
w/
*/

lae HRITE A PROMPT TO THE TERMINAL, GET A SINGLE CHARACTER®/

Vad RESPONSE BACK AND MATCH TO A KNOWN SET OF RESPONSES

” THE PARAMETER MES CONTAINS THE PROMPT TO BE LISTED.

*/
*/

/" THE PARAMETER RA |S AN ARRAY OF SINGLE CHARACTER VAL 1D*/
* BESPONSES. RETUAL |S THE RETURN VALUE: AN INDEX |INTO */
i THE RA ARRAY INDICATING WHICH ONE OF THE RESPONSES HAS*/
* TYPED IN. RETVAL IS SET T0 O IF A BLANK OR RETURN WAS */
* TYPED [N. THE PROGRAM WILL 1.00P REQUESTING A RESPONSE */

o UNTIL A VALID ONE IS TYPED IN.

*/
*/

r~
/
GET_RESP :PROCCHES, RA, RETVAL, DEFAULTY;
DCL MES CHARC*);
DCL RAC*) CHARC 1);
DCL CRETUAL,DEFAULT, [,LIN> FIXED BINCIS);
BCL CONT BITC1);
DCL TEMP CHARC1);
CONT = TRUE;
RETUAL = 0 ;

LiM = HBOUND(RA, 1);
DO HHILECCONT);

TEMP=" *;
IF (DEFAULT"=0) THEN

CALL TPUTCMES| [RACDEFAULT>] |BSI IBSTIBSI| ! L1,
ELSE

CALL TPUT(MES, 1);
CAaLL TGETCTEMP, 1,FALSE);
DO I=1 TO LI,

IF (RACI)=TEMP) THEN DO;
RETVUAL=| ;
CONT=FALSE ;

END;
END;
IF (TEMP=' ‘) THEN DO;

RETUAL=Q;

CONT=FALSE ;

- 164 -

/

END;
ELSE DO,
IF <CONT)> THEN DO;
CALL TPUTC'INVALID RESPONSE, TRY AGAIN. L1,
END;
END;
END; /#* WHILE */

END; /% GET RESPONSE =#/

/ /
™ A
Vid THIS PROCEDURE |S EXECUTED BEFORE THE CONTROL MENU x/
Vad IS DISPLAYED. IT PRINTS THE SIGN-ON BANNER AND PRINES w/
il THE CURDATE. THE PROCEDURE HRITES A LOG RECORD WiTH */
VA TRANSACTION TYPE=2 */
/* ®/
/ /
INIT:PROC;

DCL EI EVENT;

CURDATE= DATE;

OPEN FILECSTUDFIL > EXCLUSIVE UPDATE DIRECT UNBUFFERED,
FILECSYSPFIL)> UPDATE DIRECT,
FILECLOGFIL> UPDATE DIRECT;

CALL LOGC'2',CURDATE}|" ') EVENTCE1);

UNSPEC(BEL »='00101111'B;

UNSPEC(LF) =°'00100101'B;

UNSPEC(CR)> ='00001101'B;

UNSPECCOFF)='00001110'B;

UNSPECC(ON) ='00001111'B;

UNSPEC(BS) ='00010110'B;

IF (USERID=" ') THEN DO;

CALL TPUTC'UNIDENTIFIED USER IS NOT ALLOMED TO USE PSI. L1

CALL SCHN(STRING(BEL)>>;

HAITCED);

STOP;

END;
ALLOC PINDX, ST, BUFFER;
COMPLET IONCSTAGE)="1'B;
OUTDATE= SUBSTR(CURDATE, 1,2>]]' /| |SUBSTRC(CURDATE, 3, 2>/

' /* | | SUBSTRCCURDATE, S,2);

CURTIME=SUBSTR(TINE, 1,6);
CALL TPUTC'PERSONALI1ZED SYSTEM INSTRUCTION. ‘,12;
CALL TPUTC'VERSION 2.0 : OCT 15, 1985, 1,
CALL TPUTCOUTDATE] | " | |SEPARATECCURT I ME), 12,
CALL TPUT('STARTING INITIALIZATION NOH. ', 1>;
HAITCEL),;

END; »/* [INIT »/

/ /
Vs */
/* THIS PROCEDURE REWRITES THE SYSTEM PARAMETER RECORD*/
/¥ IT IS CALLED AFTER EVERY MODIFICATION TO A SYSTEN b4
* PARAMETER. */

o */
/ /
UPDATE_SYSP : PROC;

REWRITE FILECSYSPFIL) FROMCSYSP) KEY(O) ;
END; /% UPDATE_SYSP %/
/ /
” #/
/* THIS PROCEDURE IS USED TO RERD THE SYSTEM PARAMETER */
/% RECORD . »*/
/* */
/ /
READ_SYSP :PROC;

READ NOLOCK FILECSYSPFIL) INTOCSYSP)Y KEY(O) .
END; /* READ.SYSP */
/ /
/* w/
% THIS PROCEDURE 1S USED 70 READ AND LOCK THE SYSTEM %/
/% PARAMETER RECORD. w/
1% 74
/ /
READ_SYSP..LOCK : PROC;

READ FILECSYSPFIL) INTOCSYSP) KEY(O) ;
END; /* READ_SYSP.LOCK %/
/ /
’» o
/* THIS PROCEDURE IS USED TO DISCOVER WHICH MENU w7/
/* CHOICE WAS MADE. SINCE A USER 1S ALLOHED TO ENTER */
/% MULTIPLE MENU CHOICES ON A LINE HHICH MILL MOVE =/
/* DOWNWARD THROUGH THE MENU HIERARCHY HITHOUT THE %/
/% PRINTING OF INTERVENING MENUS THIS ROUTINE */
/™ EXTRACTS THE FIRST CHOICE FROM THE OTHERS. (THE */
Vi CHOICES MUST BE SEPARATED BY PERIODS.) THE PARA- */
* METER SOURCE CONTRINS THE SOURCE STRING TYPED IN #%/
/% BY THE USER, THE PARAMETER FIRST IS THE FIRST */
Vi CHOICE IN THE LINE, THE PARAMETER REST {S THE REST*/
Vi OF THE LINE HITH THE FIRST CHOICE REMOVED AND THE =/
/% BOOLEAN VARIABLE ERR IS USED TO INDICATED A SYNTAX*/
/* ERROR IN THE INPUT. ®/
% %/

/

/
EXTRACT_CHO | CE : PROC(SOURCE, FIRST, REST, ERR);

- 165 -

DCL (SOURCE,FIRST,REST)> CHAR(®);

DCL ERR BITC1);

baL <1, FIXED BINCIS);
ERR = FALSE;

FIRST=' *;

REST=" *;

IF ¢ VERIFY(SOURCE,NUMERIC]|'. *>*=0)> THEN

ERR = TRUE; /*SOURCE CONTRINS INUVALID CHARS*/

ELSE DO;

J=UERIFY(SOURCE, ' '); /* J=FIRST NON-BLANK */

IF (J=0)> THEN DO;
ERR = TRUE; /* SOURCE EMPTY */
END;

ELSE DO;
FIRST = SUBSTR(SOURCE, J);
| = VERIFY(FIRST, NUMERIC);
REST = SUBSTR(FIRST, I+1);
SUBSTR(FIRST, 1> = * *;
IF Cl=1) THEN ERR=TRUE;

END; /*ELSE %/

END; /% ELSE %/
END; /* EXTRACT CHOICE */

/ /
™ */
/% THIS PROCEDURE 1S THE ROUTINE WHICH DISPLAYS THE MAIN */
/* CONTROL MENU AND PERFORMS A CALL TO A SUBROUTINE w/
lhd DEPENDING ON THE MENU CHOICE MADE. */
Ve */

/

/
TERM.CONTROL : PROC;
DCL L._CHOICE FIXED BINCIS) INITC10);
DCL (CHOICE, CHOICE_FIRST, CHOICE_REST)
CHARCL.CHOICED;

DCL (ERR,CONTINUE)> BITC1),;

DCL ENTERSTNUM CHARC27> INIT¢
'ENTER STUDENT NUMBER IS S

DCL ENTERNEXT CHAR(32> INIT¢
"ENTER NEXT STUDENT NUMBER .

CONTINUE = TRUE;
DO HHILECCONTINUE);

CALL PRINT.MAIN.MENUY;

CALL TGET(CHOICE, L_CHOICE,FALSE);

CALL EXTRACT_CHOICE(CHOICE, CHOICEF IRST, CHO ICE.REST, ERR);

IF CERR) THEN CHOICE_FIRST = 'X';

SELECT(CHOICE_FIRST);

HHENC 1'> BO; /* START SESSION */
CALL START_SESSION(CHOICE_REST?);
END;

WHENC'2') DO; /* END SESSION */
CALL GET_INST_PASSCERR);
IF (ERR) THEN CALL END_SESSION(CHOICE.REST);
END;

HHENC'3')> DO; /* EDIT STUDENT */
CALL GET_EDIT_PASS(ERR);
IF (*ERR)> THEN CALL EDIT_STUDCCHOICE.REST);
END;

HHENC'4°)D0; /* EDIT SYSTEM PARAMETRS. */
CALL GET.EDIT.PASSCERR);
IF ("ERR)> THEN CALL EDIT_SYSP(CHOICE_REST);
END;

HHENC'S')DO; /* MARK TEST #*/
CALL GET.INST.PASSCERR)>;
IF CERR> THEN CALL HMARK_TEST(CHOICE_REST);
END;
HHENC'6°) DO; /* SEND MESSAGES */
CALL SEND.MESS(CHOICE_REST);
END;
HWHENC'?') DO; /* HONITOR STUDENT »/
CALL GET.INST.PASSCERR);
IF (ERRY THEN DO;
CALL MONITOR(CHOICE. REST);
IF CALLOM & “TURNOFF) THEN DO;
CALL TPUTC'HATCHING IS STILL ON. ', 1,
WAITCSTAGE),
CALL HATCH.LOG TASKCHATCH) EVENT(STAGE)
PRIORITY(~200);

Em:
END;
END;
HHENC'8') DO; /* RETURN TO TSO %/
CALL LOGC'S',DATE||" '),
CONTINUE = FALSE;
END;
OTHERHISE DO; /* INVALID INPUT %/
CALL TPUTC' INVALID CHOICE: ' [ICHOICE, 1);
END;

END; /* SELECT */
END; /* HHILE »/

/* LOGICAL END OF TERM_CONT */

/ /
/* oy
/* THIS PROCEDURE SIMPLY LISTS THE MEAN CONTROL MENU »/
/¥ ON THE TERMINAL. w/
I */
/ /
PRINT.MAIN_MENU: PROC;

CALL. TPUTC' 1.START SESSION. 2.END SESSION. ", 1);

CALL TPUTC'3.EDIT STUDENT. 4.EDIT SYSTEM PRRAMETERS. ® , 1

CALL TPUTC'S.MARK TEST. 6.SEND MESSAGES. ', 1);

CALL TPUTC'7.MONITOR STUDENT. 8.EXIT TO TSO. VS P

CALL TPUTC'ENTER CHO|CEm=)> R B
END; /* PRINT MAIN HENU %/
/ /
la */
Vi THIS PROCEDURE CONTAINS THE COMMON CODE REQUIRED*/
” TG PROMPT THE TERMINAL FOR A STUDENT NUMBER AND w/
Vi THEN RECIEVE A REPLY. PARAMETER STNPRMPT IS THE */
Vi INPUT STRING THE ROUTINE HILL WRITE TO THE TER- w/
* HINAL AS A PROMPT. CID CONTAINS THE STUDENT w/
1% NUMBER HHICH S TYPED IN. FOUND, SPEC, BLANKF ARE */

* BOOLEAN VALUES RETURNED WHICH INDICATE IF THE %/

r* STUDENT NUMBER TYPED IN HAS FOUND IN THE RECORDS*/

Vid ,HAS A SPECIAL STUDENT NUMBER (LIKE EDIT, INST ..%/
id .. .ETC.>0R HRS TYPED IN AS A BARE RETURN(ALL =/
Vi BLANK). #/
1* */
/ /
GETID:PROC(CID, FOUND, SPEC, BLANKF , STNPRMPT);

DCL STNPRMPT CHARC®);

DCL CID CHAR(Y?);

DCL <FOUND, SPEC, BLANKF > BITC1);

FOUND= FALSE;

SPEC=FALSE;

BLANKF=FALSE ;

CALL TPUT(STHPRMPT,2);
CALL TGET(CID,?, FALSE);
IF (CiD=" ') THEN DO;
BLANKF=TRUE;
RETURN;
END,
IF (SPECIAL_IDCCID>> THEN DO;
SPEC=TRUE;
RETURN;
END;
FOUND=TRUE ;
CALL READ..STUD(CID,FOUND);
END; /* GET (D */

/ /
lad x/
/* THIS PROCEDURE CONTAINS THE COMMON CODE w/
= REQUIRED TO READ IN AN INTEGER FROM THE */
id TERMINAL. 1T RETURNS A BINARY VALUE OF THE ®/
Vad CHARACTERS TYPED IN AND STORES IN THE */
/% PARAMETER | TEMP. */
™ THE BOOLEAN UALUES RETURNED IN ERR AND BLANKF #*/
Vad INDICATE WHETHER THE VALUE TYPED IN COULD BE =»/
Vad CONVERTED CORRECTLY AMND IF IT WAS TYPED IN AS =/
Vad BAARE RETURNCALL BLANKS)> OR NOT *®/
i */
/ /
GET..INT:PROCCI TENP,ERR, BLANKF) ;
DCL {TENP FIXED BINC1S);
DCL <ERR, BLANKF > BITC1);
DCL TEMPIN CHARC?);
ON CONVERSION BEGIN;
ERR = TRUE;
TEMPIN= '0°;
ITEHP=0;
ONSQURCE="Q";
END;
ON SIZE ERR=TRUE ;
ERR=FALSE;

(SI2E):

BLANKF=FALSE ;

I TEMP=0;

CALL TGETCTEMPIN,?7,FALSE);
IF CTEMPIN=" ') THEM DO;

BLANKF=TRUE;

RETURN,;

END;

I TEMP=TEMP IN;

END; /% GET INT*/
/ /
lad */
r* THIS PROCEDURE IS THE REAL VALUE ANARLOG %/
Vad OF GET_INT. IT INPUTS A REAL VALUE IN */
r* CHARACTER FORM AND RETURNS A FIXED DECIMAL*/
e TRANSLATION IN THE PARAMETER RTEMP. AS */
r* BEFORE THE PARANETERS ERR, AND BLANKF ARE */
i RETURNED TO INDICATE THE INPUT OF BAD DATA*/
r~ OR A BARE RETURN. */
lad */
/ /

GET_REAL.: PROCCRTEMP, ERR, BLANKF);

DCL. RTEMP
DCL (ERR, BLANKF >
DCL. TEMPIN
ON CONVERSION BEGIN;
ERR=TRUE;
TEMPIN="0";
RTEMP=0;
ONSOURCE='0Q" ;
END;
ON SIZE
ERR=FAL SE ;
BLANKF=FALSE ;
RTEMP=0;
CALL TGETCTENMPIN,8,FALSE);
IF CTEMPIN=' ') THEN DO;
BLANKF=TRUE;
RETURN;
END;

FIXED DEC(?,3);
BITC1);
CHAR(S);

ERR=TRUE;

(SIZE>: RTEMP=TEMPIN;
END, /* GET REAL */

- 167 -

FTERFFIFTREEED

/

*/
THIS PROCEDURE LOOKS AT THE TEST,PROCTOR,TERM AND */
EXANM POINT FIELDS OF THE CURRENT STUDENT RECORD »/
FORMING A SUM AND PLACING IT IN THE TOTAL POINTS */
FIELD. AFTER THAT A NEW LETTER GRADE IS CALCULATED*/
AND ASSIGNED DEPENDING ON THE TOTAL POINT VALUE, »*/
THIS PROCEDURE IS CALLED EVERY TIME THE MARKS OF A%/
STUDENT IS CHANGED OR THE LETTER GRADES THRESHOLDS*/
ARE CHANGED . */

e */ VAL = TVAL;

/ / END;
¢NOS | ZE >: TOTAL_MARKS : PROC; END,;
DCL | FIXED BINC1S); IF (ERR> THEN CALL TPUTC'INVALID NUMBER, RE-ENTER.',1);
CALL READ_SYSP; END;
STUD. TOTAL=STUD . TEST+STUD. PROCTOR+STUD , TERM+STUD . EXAN; END; /* FPROMPT_NUMI =/
STUD.LETTER=LGL 1T 13);
DO 1=13 TO 1 BY -1; / /
IF ¢STUD.TOTAL>=SYSP LGTHRESHC! >> THEN r 7
STUD.LETTER=LGLIT(| ; o THIS ROUTINE IS THE ANALOG OF FPROMPT.NUMI w/
END; * EXCEPT THAT IT IS USED TO GET A REPLACEMENT %/
END; /* TOTAL MARKS »/ -~ VALUE FOR A REAL NUMBER FIELD. THERE IS NO w7
” RANGE PARAMETER. 0/
/ / ~ ®/
/*® ®/ / /
~ THIS IS A LOM LEVEL ROUTINE CALLED FROM MANY */ FPROMPT_NUMR: PROCCVAL , MSG, BLANKF) ;
* PLACES IN THE ECITOR TO PROMPT FOR AND REPLACE*/ DCL ¢VAL, TVAL) FIXED DEC(7,3);
/* AN INTEGER VALUED FIELD IN A RECORD. THE #/ DCL HSG CHARC™);
”* CALLING ROUTINE PLACES A FIELD IDENTIFIER w/ DCL (ERR, BLANKF) BITC1);
~* STRING IN THE PRRAMETER MSG WHICH IS TACKED ON*/ DCL RTEMPO PICTURE 'Z22Z9V.999° ;
” TO THE PART OF THE PROMPT WHICH IS COMMON FOR */ ERR = TRUE;
7 ALL FIELDS CIE CURRENT VALUE OF ...NSG..., %/ RTEMPO=UAL ;
7 ENTER NEW VALUE OFMSG....). THE PROCEDURE*/ CALL TPUTC'CURRENT VALUE OF ' | INSG]|": " | IRTENPO, 1);
”» LOOPS REQUESTING A REPLACEMENT VALUE UNTIL A */ DO WHILECERR);
7 VALID ONE IS ENTERED. THE PARAMETER VAL wy CALL TPUTC'ENTER NEM VALUE OF | [MSG||" S,
~ THE BINARY REPRESENTAT|ON OF THE REPLACEMENT */ CALL GET-REALCTUAL,ERR, BLANKF);
” VALUE WHICH |S RETURNED TO THE CALLING PRO- %/ (F <C*ERR> & (“BLANKF) > THEN DO;
% CEDURE , RANGE IS THE UAL!D RANGE ALLOWED FOR */ VAL=TUAL ;
1 THE NUMBER BEING TYPED IN (1<= REPLACEMENT */ END;
/* VRLUE <= RANGE). "y IF CERR> THEN CALL TPUT ¢'INVALID NUMBER, RE-ENTER.',1);
7 BLANKF 1S RETURNED TRUE IF A RETURN WAS TYPED */ END; /% WHILE */
/* AS A REPLACEMENT VALUE. w/ END; /* FPROMPT.NUMR #/
/* */
/ / ! /
FPROMPT._NUI : PROCCUAL., HSG, RANGE, BLANKF) o */
DCL HSG CHARCH > /* THIS PROCEDURE |S USED TO PROMPT FOR AND VERIFY %/
DOL. CERR, BLANKF) BITCH, /* THE EDIT PASSHORD WHEN IT 1S ENTERED FROM THE w/
. ; M TERMINAL g
DCL CUAL, I TENP, TUAL, RANGE) FIXED BINC15); - .
DCL 1 TEMPO PICTURE '2229°; / ’
ERR=_ TRUE; GET_EDIT_PASS: PROCCERR);
I TEMPO=UAL ; @00 confidential procedure oee
CALL TPUTC'CURRENT VALUE OF ' [IMSGII* IS:'|[ITEMPO, 1); END; /* GET EDIT PASS */
DO MHILECERR);
CALL TPUTC'ENTER NEW VALUE OF ‘| |MSG||" DL / /
CALL GET_iNT(TUAL,ERR, BLANKF); * =/
IF ¢*ERR) THEN DO; /* THIS PROCEDURE PROMPTS THE TERMINAL FOR THE "/
IF C*BLANKF)> THEM /* INST PASSHORD AND THEN VERIFYS IT. IF THE USER #/
IF <CTUAL<1) | (TUAL>RANGE>> THEN DO; /% HAS ENTERED THE CORRECT PASSMORD THE AUTH PARA~ */
CALL TPUTC'NUMBER OUT OF RANGE.', 1); Vi METER IS SET TO TRUE. (FALSE OTHERWISE). */
ERR=TRUE; ” */
END; / /
ELSE DO;

- 168 -

GET..INST_PASS :PROCCAUTH);
©0¢ confidential procedure oce
END; /* GET INST PASS »/

/ /
* */
il THIS PROCEDURE PERFORMS THE START SESSION FUNCT!ON®/
lis OF THE MAIN CONTROL MENU. IT DISPLAYS THE CURRENT %/
= TEST CUTOFF TIME AND ALLOWS THE USER TO CHANGE IT */
lad AND T ALLONS THE USER TO RESET ALL STUDENTS TO */
Fid THEIR INITIAL STATE CNEM SESSION)> OR RETARIN THEIR */
lad OLD STATUS (CONTINUE OLD SESSION> BEFORE IT */
Viad INVOKES THE ROUTINE HHICH CONTROLS STUDENT TRANS- */
las ACTION HANDLING. IF A NEW SESSION IS CHOSEN ALL */
/* EXISTING TESTS HETHER PARTIALLY MARKED OR UNMARKED*/
i HILL BE DISCARDED AND ALL PROCTORS WILL BE LOGGED */
* OFF . */
r* */
/ /
START_SESS |ON: PROCC(CHOICE »;

DCL CHOICE CHARC*);

DCL <ERR, TLOOP,FOUND) BITC1);

DCL (CCURT IME, COFFTIME) CHAR(8);

DCL NEWCUTOFF CHAR(8) INITC' ');

DCL YNC2) CHARCE) INITC' 'Y, 'N');

DCL COMsG CHAR(S2> INIT(

‘DO YOU HISH TO ALTER CUT-OFF TIME? (Y)ES,(N)O D N

DCL CNC2) CHARCT) INITC'C', 'N')»;

DCL CHhMSG CHAR(S2> INITC

"C(COONTINUE LAST SESSION OR START A (N)EMU ONE? L N

DCL RESP FIXED BINC1S);

DCL (START,NOW, STOP) PICTURE ‘(12)9°;

DCL. (SAVE_DATE, SAVE_T I ME, SAVE..OFF > PICTURE '999999";

DCL EN EVENT;

CURDATE=DATE ;

CURT IME=SUBSTR(TIME, 1,6);

CALL READ_SYSP;

SAVE._DATE=SYSP . SESSDATE ;

SAVE_TIME=SYSP . SESSTIME;

SAVE..OFF=SYSP , SESSCUTOFF ;

IF (SYSP.SESSTINME>SYSP.SESSCUTOFF » THEN

STOP=(SYSP . SESSDATE+1>] |SYSP . SESSCUTOFF;
ELSE

S

TOP=SYSP . SESSDATE | | SYSP . SESSCUTOFF ;

START=SYSP . SESSDATE| [SYSP . SESSTIHE;

NOW=CURDATE | | CURT IHE;
IF (START<=NOW)> & (NOW<STOP)> THEN DO;
CUTOFF=SYSP . SESSCUTOFF ;
CALL TPUTC'THIS 1S A CONTINUATION OF LAST SESSION.', 1)
END;
ELSE DO;
CUTOFF=ADDT | MHE(CURT IHE, 20000);

- 169 -

CALL TPUTC'A NEW SESSION HAS NOT BEEN STARTED. ', 1)
END;
CCURT I ME=SEPARATECCURT IME);
COFFTIME=SEPARATE (CUTOFF);
CALL TPUTC'CURRENT TIME IS: ' |[CCURTIE, 1);
CALL TPUTC'CURRENT CUT-OFF TIME IS: '||COFFTINE, 1);
CALL GET_RESP(CONSG, YN,RESP,2);
IF (RESP=1)> THEN DO;
TLOOP=TRUE ;
DO HHILECTLOOP); .
CALL TPUTC'ENTER NEW CUT-OFF (HH:MM:SS) TIHE
CALL TGET(NEWCUTOFF, 8, FALSE;
IF (VERIFY(NEHCUTOFF, " ')=0)> THEN DO;
TLOOP = FALSE; /*STOP INPUT LOOP*/
END;
ELSE DO;
CALL PARSE..TIME(NENCUTOFF,ERR);
IF ("ERR) THEN DO;
CUTOFF=SUBSTR(NEUCUTOFF, 1,2)] |
SUBSTRC(NEHCUTOFF, 4,21 |
SUBSTR(NEHCUTOFF, 7,2);
IF (SYSP.SESSTINE>CUTOFF > THEN
CALL TPUT('CUT-OFF DATE [}

’

SEPARRATE_DATEC | NCRDATECSYSP . SESSDATE ») |

*11'AND TIME | ISEPARATECCUTOFF)| |
* ARE ASSIGNED TO SYSTEM., 1);
ELSE
CALL TPUT('CUT-OFF DATE ‘||
SEPARATE_DATE (SYSP. SESSDATE) | |
"11'AND TIME | |SEPARATECCUTOFF)| |
' ARE ASSIGNED TO SYSTEM.', 1);
TLOOP=FALSE;
END;
END; /% ELSE*/
END; /% HHILE #/

END; /*iF »/
ERR = FALSE;

CALL READ.SYSP_LOCK;
IF SYSP.SESSCUTOFF*=SAVE_OFF THEN DO;

CALL TPUTC KARNING: SESSION CUT-OFF TIME HAS JUST BEEN

“CHANGED, ', 1);

CALL TPUT('THE ABOVE CUT-OFF TIME IS ASSIGNED TO THE

'SYSTEM. ', 1);
END,;
SYSP . SESSDATE=CURDATE ;

SYSP . SESSTIHME=CURT | IE ;

SYSP . SESSCUTOFF=CUTGFF ;

CALL UPDATE_SYSP;

CALL GET_RESP(CNMSG,CN,RESP, 1);

IF (RESP=2) THEN DO; /* START NEW SESSION. */
CALL LOGC'3* ,CURDATE||* > EVENTCE1);
CALL READ._SYSP_LOCK;
SYSP.CUR_| _TEST=Q;

“H

EOF:

CALL UPDATE_SYSP;
ON ENDF ILECSTUDFIL) GOTO EOF;
CALL CLOSE.FILECSTUDFIL);
OPEN FILECSTUDF IL) UPDATE SEQUENTIAL BUFFERED;
DO HHILES 1'B»;
READ FILECSTUDFIL) INTO(STUD);
STUD. TSTATE=TST. | ;
STUD.PSTATE=PST_I;
STUD.RT H1E=0;
REWRITE FILECSTUDFIL)> FROMCSTUD)?;
END;
CALL CLOSE_F ILECSTUDFIL);
OPEN FILE(STUDFIL)> EXCLUSIVE UPDATE DIRECT UNBUFFERED;
CALL TPUTC'ALL STUDENTS SET TO INITIAL STATE. ', 1);
HAITCED),;

ERD; /* IF %/

COFFTIME = SEPARATECCUTOFF);

CALL TPUTC'TEST ISSUE CUT-OFF TIME WILL BE: "I ICOFFTINE, 1);
CALL TPUTC'SWITCH TERMINAL TO FULL DUPLEX NOM.',1);

CALL SESSION.CONTROL;

/% LOGICAL END OF START SESSION #/
/ /
¥ w7
/" THIS PROCEDURE IS CALLED FROM START SESSION AFTER*/
/* A NEW CUTOFF TIME IS ENTERED TO VERIFY THAT THE #/
™ TIME TYPED IN A CORRECT FORMAT. THE TIME VALUE TO*/
/* BE VERIFIED IS PASSED IN TIMEARG WHILST THE ®/
/* BOOLERN VALUE ERR IS RETURNED INDICATING IF AN %/
/% ERROR KAS DISCOVERED. */
/% »/
/ /
PARSE_T INE: PROCCTIMEARRG, ERR);

DCL TIMEARG CHAR(8);

DCL ERR BITC;

OCL TINME CHAR(8)> VARYING;

TIME=TIMEARG;

IF CINDEX(TIME, *: *)=0) THEN DO;
IF (SUBSTRCTIME,2)=" ') THEN
TINE='O' | | TINE;
SUBSTR(T IME,3)=":00:00";
END;
ELSE DO;
IF (SUBSTR(TIME, 2, 1)=":')> THEN
TIME="0" | | TINE;
IF CINDEXCSUBSTRC(TIME,4), ' ;')=0) THEN DO;
IF (SUBSTRCTIME,S)=' ‘> THEN
TINE=SUBSTR(TIME, 1,3){]'0" | ISUBSTRC(TINE, 4);
SUBSTR(TINE,6)=":00";
END;
ELSE DO;

-170 -

IF (SUBSTR(TINE,S, 1>=":"') THEN
TIHE=SUBSTR(TIME, 1,3>11 0" | |SUBSTRCTINE, 4);

IF (SUBSTRCTINE,8>=" ') THEN

TIHE=SUBSTRCTINE, 1,610’ | |ISUBSTRCTINE, 7);

END;
END;

ERR=fAL SE;

ERR = CHECK_DIG(SUBSTRC(TINE, 1,2), '24');

ERR = EAR | CHECK.DIG(SUBSTR(TIMNE,4,2), '60° >;

ERR = ERR | CHECK_DIG(SUBSTRC(TINE, 7,2, 60")

ERR = ERR [(SUBSTR(TIME,3, 1)"=":"') |

(SUBSTR(TINE, 6, 1>"=":),

‘

IF (ERR) THEN
CALL TPUTC'INVALID TINE: ') |TINEARG, 1);
ELSE
TIMEARG=T | ME;
CHECK_DIG:PROC(DIG2,L.IM)> RETURNSCBIT(1));
DCL <DIG2,LiM) CHAR(2),;
DCL. ERR BITC1);
ERR = FALSE;

IF (VERIFY(DIG2,NUMERIC)>=0 > THEN DO;
IF (DIG2 >= LIt > THEN DO;
ERR = TRUE;
END;
END;
ELSE ERR= TRUE;
RETURNCERR);
END; /* CHECK_DIG =/
END; /*PARSE TIME*/
END; /% START SESSION */

/ /
/* */
/* THIS PROCEDURE PERFORMS THE END SESSION FUNCTION */
/* OF THE MAIN CONTROL MENU. THE ROUTINE GOES THROUGH* /
/% ALL THE STUDENT RECORDS PRINTING A LIST OF STUDENT*/
ad HHO HAVE A TEST HHICH HAS NOT BEEN COMPLETELY - W/
fad MARKED. ALSC ALL STUDENTS HHO HAVE INDICATED THEY */
/* ARE AVAILABLE FOR PROCTORING ARE SET TO THE NOT %/

Vad AVAILABLE STATE. w®/
™ #/
/ /
END._SESS 10N :PROC(CHOICE);

DCL QUTUNIT PICTURE '229°;

DCL <OUT_Q1,0UT.Q2,0UT_Q3> PICTURE 'Z229°;

DCL CHOICE CHARC*);

DCL OUTST FIXED BINC1S);

DCL. E1 EVENT;

DCL. FOUND BITC1);

CALL. RERD_SYSP;
I|F SYSP.SESSTIME=SYSP, SESSCUTOFF THEN

CALL TPUTC'THIS SESSION HAS ALREADY BEEN ENDED. ', 1);
ELSE DO;

CURTIME=SUBSTR(TINE, 1,6); DO HHILEC(CONT INUE>;

CALL READ_SYSP_LOCK; IF ("SKIPIN> THEN DO;
SYSP . SESST IME=CURT | HE; CALL PRINT.MAIN.EDIT_MENY;
SYSP. SESSCUTOFF=CURT | ME; CALL TGETC(CHOICE,L.CHOICE, FALSE);
SYSP.CUR_I _TEST=0; IF (TURNOFF & (CHOICE=" *)) THEN RETURN;
CALL UPDATE.SYSP; END;
CALL TPUTC'STUDENTS HHICH HAVE UNMARKED TESTS.',1); SKIP IN=FALSE ;
CALL LOGC'4*,DATE]|" ') EVENTCEL); CALL EXTRACT..CHOICE(CHOICE, F IRST, REST, ERR);
ON ENDFILECSTUDF IL)> GOTO EOF; IF CERRY THEN FIAST="X";
CALL CLOSE.FILECSTUDFIL)Y; SELECT(FIRST);
OPEN FILE(STUDFIL) UPDATE SEQUENTIAL BUFFERED; WHENC' 1) DO; /* CREATE =/
DO WHILEC'1°B); CALL CREAT-STUD(REST);
READ FILECSTUDFIL)Y INTO(STUD); END;
OUTST=STAT.TBL_END..SESS . TSTATECSTUD . TSTATE; WHENC'2') DO; /*DELETE#/
STUD . PSTATE=STAT_TBL-END.-SESS . PSTATE(STUD . PSTATE ; CALL DELETE_STUDCREST);
IF CCOUTST=TST_OT > (QUTST=TST.OM>> THEN DO; END;
OUT_UNIT = STUD.UNIT+1; WHENC'3')> DO; /* EDIT PERSONAL */
OUT_Q! = ABS(STUD.Q1); CALL EDIT_PERSONAL(REST);
WT_Q2 = ABS(STUD.Q2); END;
OUT.Q3 = ABS(STUD.Q3); WHENC'4*) DO; /* EDIT COURSE */
CALL TPUTC'STUDENT: '||STUD.NAME!|', STUDENT®: ° CALL EDIT..COURSECREST);
11sTUD. ID| ", UNIT®: '|[OUT-UNITI]|®, QUESTIONS: ‘|| END;
out.atil-, tlour.qz2li-, 1louT—Q3|1", AT TIME: '}| WHENC'S') DO; /# LIST STUD %/
SEPARATE(STUD .RTINE), 1); CALL LIST_STUDCREST);
END; /* IF »/ END;
ELSE DO; HHENC'O', 6" > DO; /* EXIT TO MAIN MENU */
STUD.RTIME=0; CONTINVE = FALSE;
END; END;
RENRITE FILECSTUDFIL) FROM(STUD); OTHERWISE DO; /* BAD CHOICE */
END; CALL TPUTC' INVALID CHOICE: ' ||CHOICE, 1);
EOF: CALL CLOSE._FILEC(STUDFIL)Y; END;
OPEN FILECSTUDF L) EXCLUSIVE UPDATE DIRECT UNBUFFERED; END; /*SELECT */
HAITCED); CALL TPUTC'ENDING AT: ' ||SEPARATECSUBSTRCTINE, 1,6>), 1);
END; END; /* DO LOOP %/
END; /% END SESSION */
/ /
/ / /* w/
7% w/ /* THIS IS A SUBROUTINE OF THE EDIT_STUD PRO- w/
/% THIS PROCEDURE DISPLAYS THE EDIT STUDENT SUB-HENU */ /* CEDURE. IRT SIMPLY PRINTS OUT THE MENU . */
7 AND THEN CALLS THE REQUIRED SUBROUTINE TO PERFORM */ ' */
”* THE MENU CHOICE MADE. wg /)
- y PRINT..MAIN.ED I T_MENU: PROC;
y ; CALL TPUT('<3.>1 CREATE STUDENT. 14
*<3.>2 DELETE STUDENT.',1);
EDIT_STUD:PROC(CHOICE); s CALL TPUTC'<3.>3 MODIFY PERSONAL DATA. 'l
DCL CHOICE CHARC; *<3.>4 MODIFY COURSE DATA. ", 1);
DCL (CONTINUE, SKIP N, ERR) BITC1); CALL TPUTC'<3.>5 LIST STUDENT. o
DCL (FIRST,REST) CHARCL_CHOICE); "<3.>6 RETURN TO MAIN MENU.®, 1);
SKIPIN = FALSE; CALL TPUTC'ENTER CHOICE==> : ', 1);
IF (CHOICE"= * ") THEN DO, END; /* PRINT MAIN EDIT MENU */
SK{P IN=TRUE;
END; / /
CONTINUE = TRUE; /% w/

-171 -

T THIS ROUTINE PERFORMS THE STUDENT RECORD ®/
Vi CREATION FURCTION OF THE STUDENT EDITOR. ®/
FAd IT GOES INTO A LOOP , PROMPTING FOR A NEW w®/
/% STUDENT NUMBER (FOR THE NEW RECORD) AND ALL */
/% THE STUDENT PERSONAL DATA FIELDS. THE COURSE */
TAd DATA FIELDS ARE ALL SET TO O AND THEN THE NEW *»/
/% RECORD 1S HRITTEN. THE PROCEDURE CONTINUES w7
44 LOOPING UNTIL A BARE RETURN IS ENTERED AS A %/
/* NEW STUDENT NUMBER. 4
”* w/
/ /
CREAT_STUD : PROC(CHOICE);
DCL. CHOICE CHRAR(*®);
DCL (CONT,ERR,FOUND)> BITC1);
DCL CID CHARC?7);
CONT = TRUE;
DO WHILECCONT);
ERR= FALSE;
CALL TPUTC'ENTER NEW STUDENT NUMBER 0,2,

CALL TGET(CID,?,FALSE?;
IF ¢CID = * ') THEN DO;
CONT = FALSE;
ERR = TRUE;
END;
ELSE DO;
IF (SPECIAL_1DCCID>> THEN DO;
CALL TPUTC STUDENT®: *|[CID||' 1S RESERVED'!|
' FOR INTERNAL USE.', 1);
ERR = TRUE,
END;
ELSE DO;
FOUND = FALSE;
CALL READ_STUD(CID,FOUND);
IF (FOUND)> THEN DO;
CALL TPUT('STUDENT RECORD ALREADY EXISTS, ‘||
* CANNOT BE CREATED.', 1);
ERR = TRUE;
END;
END;
END; /* ELSE »/
IF (CONT &(“ERR)>> THEN DO;
CALL TPUTC'STUDENT NAMECUP TO 30 CHARACTERS)' ||
' L1,
CALL TGET(STUD.NAME,30,FALSE);
CALL TPUTC'PHONE NUMBER(?7 CHRRACTERS) HERS D
CALL TGETC(STUD.PHONE, 7, FALSE);
CALL TPUTC'FACULTY CODE <2 CHARARCTERS) HERNS B
CALL TGET(STUD.FACULTY,2,FALSE);
CALL TPUTC'YEAR AT UNIVERSITY(2 CHARACTERS) ||
: s
CALL TGET(STUD.YEAR,2,FALSE;
CALL TPUT('STATUS IN COURSE(3 CHARACTERS) A

12,
CALL TGET(STUD.STATUS,3,FALSE);
CALL TPUT('STUDENT PASSHORD L,
CALL TGET(STUD.PASSHORD, 8, TRUE);
CALL ECHOPASS(STUD.PASSHORD;
STUD.UNIT,STUD. TEST, STUD. PROCTOR, STUD. TERM,
STUD.EXAN, STUD, TOTAL, STUD.Q1,STUD.Q2,STUD.Q3=0;
STUD .RTINE=0 ;
STUD.LETTER,STUD.SID=" *;
STUD. TSTATE=TST_I ;
STUD . PSTATE=PST.| ;
STUD. |D=CID;
CALL HRITE..STUDCCID, FOUND);
END; /* IF¥/
END; /*WHILE®/

END; /* CREATE STUDENT */

/ /
/= */
% THIS PROCEDURE REMOVES STUDENT RECORDS FROM ®/
Vid FILE. THE PROCEDURE LOOPS , DELETING STUDENT ®%/
IAd RECORDS UNTIL A BARE RETURN 1S ENTERED AS A w7
/% STUDENT NUMBER. */
1% »*/
/ /
DELETE_STUD:PROC(CHOICE>;

DCL CHOICE CHAR(*);

DCL CID CHARC?);

OCL (FOUND, ERR, BLANKF > BITC1D,;

DCL MSG CHARC27> INIT(

‘DO YOU WANT THIS STUDENT®: *);

DCL MSG2 CHAR(40)> INIT(
* TG BE (DJELETED OR (M)AINTAINED? A
DCL DH(2> CHARAC 1> INITC'D, 'H');

DCL RESP FIXED BiNC1S);
CALL GETIDCCID,FOUND,ERR, BLANKF ,ENTERSTNUM);

IF (FOUND & ("ERR)> % ("BLANKF>)> THEN DO;
CALL GET.RESP(MSG|ICID||NSG2,DM,RESP,2);
IF CRESP=1) THEN DO,
CALL REMOV_STUD(CID,FOUND);

CALL TPUTC'STUDENT®: “|ICID||' WAS DELETED FROM
‘FILES.", 1);
END;
ELSE DO;
CALL TPUTC STUDENT®: ' ||CID||' WAS MAINTAINED. ',
END;
END;

ELSE IF (C°FOUND)> & ("BLANKF)>> THEN DO;
CALL TPUTC'STUDENT®#: °[ICID|[‘ NOT FOUND.', 1);
END;
ELSE |F (ERR) THEN

CALL TPUTCCIDI|® 1S A SPECIAL RESERVED STUDENT“', 1

/* LOGICAL END OF DELETE STUD. */

1

1>;

),

END; /* DELETE STUD */

/ /
Fe */
/% THIS PROCEDURE GENERATES THE MENU SHOWMING THE */
/% PERSONAL DATA FIELDS OF THE STUDENT RECORDS */
/% HHICH MAY BE ALTERED.THE PROCEDURE LOOPS GETING */
/* THE STUDENT NUMBER OF THE NEXT STUDENT RECORD TO*/
/* BE ALTERED (UNTIL A BARE RETURN 1S ENTERED). w/
/” AFTER A MENU CHOICE 1S MADE THE USER |S PROMPTED®/
/®* FOR THE REPLACEMENT VALUE OF THE SPECIFIC FIELD »/
/% TO BE ALTERED. THE CHANGING OF PASSHORDS 1S MUCH*/
/% THE SAME AS THE REPLACEMENT OF OTHER F|ELDS w/
/* EXCEPT THAT IF IT IS THE INST OR EDIT PASSHORD */
/% BEING ALTERED THEN THE USER IS FIRST PROMPTED TO*/
/% ENTER THE EXISTING INST PASSHORD BEFORE HE IS */
/* ALLOMED TO ENTER A NEW PASSHORD. */
> */
/ /

ED| T..PERSONAL :PROC(CHOICE);

DCL CHOICE CHARC*)>;
DCL <FIRST,REST) CHARCL..CHOICE);
DCL (FOUND, SPEC, BLANKF , CONTINUE, SKIPIN,ERR, RUTH>

BITC1),
DCL <CID,NEHID)> CHARC?);
DCL. TEIPIN CHARC(30);
baL 1 FIXED BINC1S);

SKIPIN = FALSE;
IF (CHOICE "= ' ') THEN SKIPIN=TRUE;
CONT INUE=TRUE ;

REPEAT: DO HHILECCONTINUE);

ERR=FALSE;
CALL GETID(CID,FOUND, SPEC, BLANKF , ENTERSTNUM);
IF ¢(BLANKF> THEN DO;
CONT INUE=FALSE ;
ERR = TRUE;
END,
ELSE DO;
IF ("FOUND & “SPEC)> THEN DO;
ERR=TRUE;
CALL TPUTC'STUDENT®: *|ICIDI|' NOT FOUND.
END;
ELSE DO;
IF (*"SKIPIN> THEN DO;
CALL TPUT('<¢3.3.>1 NAME.
'¢3.3.>2 STUDENT NUMBER. ', 1);
CALL TPUT('<¢3.3.>3 PHONE NUMBER.
'¢3.3.24 FACULTY CODE. ', 1);
CALL TPUTC'<3.3.>S YEAR AT UNIVERSITY.
'<3.3
CALL TPUT('<3.3.>7 PASSHORD. ', 1);
CALL TPUTC('ENTER CHOICE==> IR P
CALL TGETC(CHOICE,L_CHOICE,FALSE);

L;

.>6 STATUS IN COURSE. ", 1);

END; /*THEN*/
SKIPIN=FALSE;
CALL EXTRACT_CHOICE(CHOICE,F IRST,REST,ERR);
IF ("ERR & SPEC & (FIRST"="'7')) THEN DO;
ERR=TRUE;
CALL TPUTC' INVALID CHOICE, ONLY ' ||
'PASSUORDS MAY BE MODIFIED FOR ‘||
"SPECIAL STUDENT NUMBERS. ', 1);
END;
END;
END;
{F ("ERR)> THEN DO;
SELECTCFIRST);
HHENC 1°) DO; /* NAME */
CALL TPUTC'CURRENT VALUE OF NAME FIELD: ||
STUD.NAME, 1);
CALL TPUTC'ENTER NEH NAME IR P
CALL TGETCTEMPIN,30,FALSE);
IF CTEMPIN"=' ') THEN DO;
CALL READ_STUD_LOCK(FOUND);
IF C*FOUND)> THEN GOTO REPEAT;
STUD .NAME=TEMPIN;
CALL UPDATE_STUD(C|D,FOUND);
IF (*FOUND> THEN CALL INTERNAL.ERRC13);
END;
END; /*dHEN */
HHENC'2') DO; /* STUDENT iD.*/
CALL TPUT('CURRENT VALUE OF STUDENT NUMBER:
1IsTUD. ID, 1);
CALL TPUTC'ENTER NEW NUMBER(7? CHARACTERS)' ||

HER P)
CALL TGETCTENPIN,?7,FALSE>;
IF (TEMPIN =" ') THEN DO;

IF (SPECIAL._IDCSUBSTRC(TENPIN, 1,7))>)> THEN
CALL TPUTC'STUDENT®#: ' ||SUBSTRCTEMPIN,
1,7>] ' RESERVED FOR INTERNAL USE.', 1);

ELSE DO;

CALL READ._STUD(SUBSTR(TENPIN, 1,7,
FOUND);
IF CFOUND)> THEN DO;
CALL TPUTC'A STUDENT RECORD WITH ']
‘THIS 1D ALREADY EXISTS.', 1);
END;
ELSE DO;
CALL READ_STUD(CID,FOUND;
IF (*FOUND)> THEN
CALL INTERNAL_ERR(14);
STUD. ID=TENMPIN;
CALL WRITE_STUDCSTUD. ID,FOUND)>;
CALL REMOV_STUD(CID,FOUND)>;
{F ("FOUND)> THEN
CALL INTERNAL_ERRC13);

END; /% ELSE %/
END; /*ELSE »/
END; /*IF*®/
END; /% WHEN */
KHENC'3') DO; /* PHONE */
CALL TPUTC CURRENT VALUE OF PHONE NUMBER: '
| | STUD.PHONE, 1);
CALL TPUTC'ENTER NEH VALUEC? CHARACTERS)' ||
* HERS DX
CALL TGETCTEMPIN, ?,FALSE>;

CALL READ_STUD_LOCK(FOUND>;
IF ("FOUND) THEN GOTO REPEAT;
STUD . STATUS=TENPIN;
CALL UPDATE..STUD(CID,FOUND);
IF ("FOUND> THEN CALL INTERNAL_ERR(13);
END; .

END; /*UHEN®/

HHENC'7') DO; /* PASSHORD */
o¢e confidential procedure ¢¢o
END; /*HHEN®/

IF (TEMPIN*="' ') THEN DO; OTHERWISE DO;
CALL READ_STUD.L.OCKC(FOUND)>; CALL TPUTC' INVALID CHOICE: '|ICHOICE, t);
IF (*FOUND)> THEN GOTO REPEAT; END;
STUD . PHONE=TENP IN; END; /* QUTER SELECT %/
CALL UPDATE.STUD(CID,FOUND); END; /¢ |F ®/

IF ("FOUND)> THEN CALL INTERNAL.ERR(13);
END;

END; /* DO WHILE */
END; /* EDIT PERSONAL */

END; /% LOGICAL END OF EDIT PERSONAL */
HHENC'4°)DO; /* FACULTY CODE */

CALL TPUTC ' CURRENT VALUE OF FACULTY CODE: / /
| ISTUD.FACULTY, 1); FAd */
CALL TPUTC'ENTER NEW VALUE(2 CHARARCTERS)' || /* THIS PROCEDURE |S CALLED IF THE EDIT COURSE */
' A b3 /* DATA SELECTION WAS MADE FROM THE ED!TOR MENU*/
CALL TGET(TEMPIN,2,FALSE); ,* IT DISPLAYS A MENU OF THE COURSE DATA FIELDS*/
IF CTEMPIN"=" ') THEN DO; /* WUHICH CAN BE ALTERED AND THEN ALLONS -/
CALL READ_STUD.LOCK(FOUND); /% TO POSITION TC A FIELD TO BE REPLACED. THIS =/
IF ("FOUND)> THEN GOTO REPEAT; /* PROCEDURE THEN MAKES USE OF A SUBROUTINE %/
STUD . FACULTY=TEIP | N; /* WHICH CONTAINS THE CODE FOR FIELD REPLACE- */
CALL UPDATE_STUD(CID, FOUND); /% HENTC(COM_R_EDIT). THIS SUBROUTINE LOOPS x/
IF ("FOUND)> THEN CALL INTERNAL.ERRC13); /% ASKING FOR THE STUDENT NUMBER OF THE NEXT »/
END; /* RECORD TO BE MODIFIED. THE F{ELD TO BE ®/
END; /% WHEN */ /* MODIFIED IS THE ONE PREVIOUSLY CHOSEN */
WHENC'S')DO; /* YEAR AT UNIV. %/ /* THROUGH THE MENU. */
CALL TPUTC'CURRENT VALUE OF VEAR AT UNIV,: ° /* */
11STUD. VERR, 1); / /
CALL TPUT('ENTER NEW UARLUEC2 CHARACTERS)' || ED1 T.COURSE : PROC(CHO I CE);
' A P DCL CHOICE CHARC*);
CALL TGET(TEMPIN,2,FALSE>; DCL <FIRST,REST)> CHAR(L_CHOICE);
IF (TENPIN®=" ‘) THEN DO; DCL TEMPIN CHARC10);
CALL. READ..STUD_LOCK(FOUND); pCL CID CHAR(?);

IF (“FOUND> THEN GOTO REPEAT;

DCL. (SKIPIN, CONTINUE,ERR, FOUND, SPEC, BLANKF > BIT(1);
STUD . YEAR=TEIPIN;

DCL I TERPO PICTURE 'ZZZ8';
CALL UPDATE_STUD(CID, FOUND); Dol I‘TI'EHPI FIXED BINC15);
IF ("FOUND) THEN CALL INTERNALERRC13); DL RTEHP | FIXED DECC7.3%;

END; /HEN */ pCL CLOOP BITC1);
HHENC'6°) DO; /* STATUS (N COURSE */ bct. suni T FIXED BINCIS);
CALL TPUT('CURRENT VALUE OF STATUS IN'|| OCL IDERRMNSG CHARCZS) INITC

' COURSE: '||STUD.STATUS, 1); IS NOT A VALID STUDENT®.');

CALL TPUTC'ENTER NEM VARLUE(3 CHARACTERS)' ||
! NS D

CALL TGETCTEMPIN,3,FALSE);

IF (TEMPIN"=' ') THEN DO;

-174 -

SKIP IN=FALSE ;

IF (CHOICE"="

"> THEN SKIPIN=TRUE;

CONT INUE=TRUE;
DO HHILECCONTINUE);

ERR=FALSE ;
IF ¢*SKIPIN)> THEN DO;
CALL TPUT('<3.4.>1 CURRENT UNIT. "1
'¢3.4.>2 TEST POINTS.', 1);
CALL TPUT('<3.4.>3 PROCTOR POINTS. ‘||
‘<3.4.>4 TERN POINTS.", 1);
CALL TPUT('<3.4.>S FINAL EXAN. "1
'<3.4.>6 RETURN TO EDIT HENV. ', 1);
CALL TPUTC'ENTER CHOICE==> : ', 1);
CALL TGET(CHOICE,L..CHOICE,FALSE);
IF CTURNOFF & (CHOICE=' ')) THEN RETURN;
END;
SKIP IN=FALSE;
CALL EXTRACT.CHOICE(CHOICE,FIRST,REST,ERR);
IF ("ERR)> THEN DO;
SELECTCFIRST?;
KHENC® 1°) DO; /*HIGHEST UNIT*/
DCL. HMSG CHARC21)> INIT(
‘HIGHEST UNIT REACHED.');
CLOOP=TRUE;
BLANKF=FALSE ;

REPEAT: DO KHILECCLOOP);

CALL GETIDCCID,FOUND, SPEC, BLANKF , ENTERNEXT);
IF C(SPEC|C("FOUND>> & (“BLANKF)> > THEN DO;
CALL TPUTCCID] | IDERRNSG, 1);
END;
ELSE DO;
IF (BLANKF)> THEN
CLOOP=FALSE ;
ELSE DO;
CALL READ_SYSP;
CALL FPROMPT..NUMIC(STUD.UNIT,HIMSG,
SYSP .NUNIT, BLANKF > ;
IF ("BLANKF > THEN DO;
SUNIT=$TUD.UNIT;
CALL READ_STUD_L.OCK(FOUND >,
IF ("FOUND)> THEN GOTO REPEAT;
STUD.UNIT=SUNIT;
STUD.TSTATE=TST..| ;
STUD .PSTATE=PST..| ;
CALL UPDATE..STUD(CID, FOUND »;

IF ("FOUND) THEN CALL INTERNAL_ERRC17);

END;
END; /* ELSE *»/
END; /% ELSE */
END; /% HHILE »/

END; /*dHEN®/
WHENC'2° > DO; /* TEST POINTS */
DCL THSG CHARC12)> INITC

"TEST POINTS');
CALL COM_R_EDIT(STUD.TEST, THSG);
END; /* WHEN */

HHENC*3' > DO; /% PROCTOR POINTS */

-175 -

DCL PHSG
‘PROCTOR POINTS');
CALL COM_R_ED|T(STUD.PROCTOR, PHSG);
END;

KHENC'4') DO; /* TERM POINTS */
DCL RMSG
‘TERM POINTS');
CALL COM_R_EDIT(STUD.TERM, RMSG);
END;

HHENC'S' » DO;
DCL ENSG
‘EXANM POINTS '),
CALL COM.R_EDIT(STUD.EXAM,EMSG);
END;

WHEN €'0’,'6°') DO;
CONT INUE=FALSE ;
END;

OTHERKISE DO;
CALL TPUTC' INVALID CHOICE: ' {[CHOICE, 1);
END;

END; /*SELECT*/

END; /*IF*/
ELSE DO;
CALL TPUTC' INVALID CHOICE: ‘||CHOICE, 1);
END;
END; /* WHILE */

CHARC 14> INITC

CHARC11) INITC

CHARC 11> INITC

/* LOGICAL END OF EDIT COURSE */

/ /
iz /7
/* THIS PROCEDURE CONTAINS THE COMMON CODE w7
/* REQUIRED BY THE EDIT COURSE PROCEDURE TO w/
/% MODIFY THE COURSE DATA FIELDS. RVAL IS THE */
/* ARGUMENT WHICH ISOLATES THE FIELD TO BE w/
/* MODIFIED WHILE HMSG 1S THE CHARACTER STRING */
Vi TACKED ON TO THE COMMON PART OF THE PROMPTS*/
/* HHICH IDENTIFY TO THE USER THE FIELD BEING */
Vd EDITED. THE PROCEDURE LOGPS, POSiTIONING TOx/
lad A NEN STUDENT RECORD UNTIL A BARE RETURN |S%/
Al ENTERED FOR A STUDENT NUMBER. */
Ve !
/ /
COM_R_EDIT:PROCCRVAL,MSG);

DCL MSG CHARC*);

DCL. C(RVAL ,REAL) FIXED DEC(7,3);

DCL (CLOOP, BLANKF , FOUND » BITC1>;

CLOOP=TRUE;

BLANKF=FALSE;

REPEAT:

DO HHILECCLOOP)>;
CALL GETID(CID,FOUND, SPEC, BLANKF, ENTERNEXT);
IF (CSPEC| ¢ *FOUND > >&¢ “BLANKF >> THEN Bo;
CALL TPUT(CID]| {DERRMSG, 1);

END;
ELSE DO;
IF (BLANKF> THEN
CLOOP=FALSE ;
ELSE DO;
CALL FPROMPT..NUMRCRVAL , MSG, BLANKF);
IF C"BLANKF > THEN DO;
REAL=RVAL ;
CALL READ_STUD_LOCK(FOUND);
IF ("FOUND> THEN GOTO REPEAT;
RUAL=REAL ;
CALL TOTAL_MARKS;
CALL. UPDATE_STUD(CID, FOUND)»;
IF (*FOUND)> THEN CALL INTERNAL_ERRC17);
END;
END;
END;
END, /*dHILE®/
END; /* COM.R_EDIT */
END; /¥ EDIT COURSE %/

/ /
Vo »*/
/™ THIS PROCEDURE PERFORMS THE LIST FUNCTION OF THE */
r* STUDENT RECORD EDITOR. 1T LOOPS ASKING FOR A w/
lad STUDENT NUMBER TO BE ENTERED. A LIST OF DATA FOR */
/* THAT STUDENT 1S THEN PRINTED. IF <ALL> S THE 74
% STUDENT NUMBER ENTERED THEN THE PROCEDURE LISTS »/
I ALL THE STUDENTS ON FILE. IF A BARE RETURN IS w/
* THE STUDENT NUMBER ENTERED THEN THE PROCEDURE w/
% RETURNS CONTROL TO EDIT.STUD. */
i */
/ /
LiIST.STUD:PROC(CHOICE>;
DCL CHOICE CHAR(*);
DCL CID CHARC?);

DCL (FOUND, SPEC, BLANKF, CONTINUE)Y BIT(1);

DCL HEADR1 CHAR(4S) INIT(
‘STUD.® NANE PHONE '),
DCL HEADR2 CHAR(46)> INIT(

' FAC YR STAT UNIT TEST PRCOCTOR TERN EXAN' >;

DCL HEADR3 CHARC 14> INIT(

' TOTAL GRADE');

DCL. REC FIXED BINC1S);
DCL quUTVUAL PICTURE '22229°';

CONTINUE = TRUE;
DO HHILECCONTINUE);
CALL GETID(CID,FOUND, SPEC, BLANKF , ENTERSTNUM);
IF (BLANKF)> THEN
CONTINUE = FALSE;
ELSE DO;
IF (C°FOUND)> & (CID*="ALL'> > THEN DO;
CALL TPUTCCIDI[' 1S A SPECIAL OR NON-EXISTANT'

11" STUDENT NUMBER. DATA CANNOT BE LISTED. ', 1);
END;
ELSE DO;
CALL TPUT(HEADR 1| |HEADR2| |HEADRS, 1);
IF <CID="fiLL.") THEN DO;
CALL CLOSE.FILECSTUDFIL);
OPEN FILECSTUDFIL) INPUT SEQUENTIAL BUF;
ON ENDF ILECSTUDFIL> GOTO EOF;
ON ATTENTION BEGIN;
ON ATTENT ION SYSTEN;
CALL GET.RESP('(COONTINUE OR <QOUIT : ',
CQ,RESP, 1);
IF (RESP=2) THEN GOTO OUT;
ELSE GOTO CONT;
END;
REC=0;
DO HHILEC' 1°B);
CONT: READ FILECSTUDFIL) INTO(STUD);
IF ("SPECIAL.IDCSTUD. ID>> THEN DO;
REC=REC+1;
CALL ONE_OUT;
END;
END;
EOF: ON ATTENTION SYSTEN;
OUTVAL=REC;
CALL TPUTC'TOTAL® OF STUDENTS: '||OUTUAL, 1);
QUT: CALL CLOSE FILE(STUDFIL);
OPEN FILECSTUDFIL) EXCL UPDATE DIRECT UNBUF;
END;
ELSE CALL ONE_OUT;
END; /*ELSE*/
END; /*ELSE*/
END; /*HHILE®/
/% LOGICAL END OF LIST STUD */

/ /
* w7
/% THIS IS A SUBROUTINE OF THE LIST.STUD PROCEDURE. %/
/% 1T CONTAINS THE CODE WHICH FORMATS ONE LINE OF »/
/% OUTPUT. */
™ A
" w7
/ /
ONE..OUT : PROC;
DCL. CouT CHAR(104);

PUT STRING(COUT> EDIT(STUD. ID, STUD .NAME, STUD. PHONE,
STUD.FACULTY, STUD. YEAR, STUD . STATUS, STUD . UNIT,
STUD.TEST, STUD.PROCTOR, STUD. TERM, STUD . EXRH,
STUD. TOTAL, STUD.LETTER)
(S5¢A,XC1)),A,F(3,0),5(F(8,3)),X(3),A(2));

CALL TPUTCCOUT, 1);

END; /* ONE OUT %/

END; /* LIST.STUD */

-176 -

END; /*EDIT STUD*/ END;
WHENC'2°)D0; /*ENTER TOTAL UNITS*/

/ / DCL T2MSG CHARC21)> INIT(
" */ ‘TOTAL NUMBER OF UNITS');
* THIS PROCEDURE PERFORMS THE FUNCTION OF THE EDIT*/ SYST.NUNIT=SYSP . NUNIT;
las SYSTEN PARARMETER CHOICE FROM THE MAIN CONTROL */ CALL FPROMPT_NUMICSYST.NUNIT, T2MSG, 100, BLANKF);
"= MENU. 4 IF C*BLANKF & (SYST.NUNIT =SYSP.NUNIT)> THEN DO;
e */ CALL READ.SYSP_LOCK;
/ / SYSP . NUN | T=SYST. NUNIT;
EDIT_SYSP:PROC(CHOICE); CALL UPDATE_SYSP;

DCL. CHOICE CHAR(*); END;

DCL. ¢FIRST,REST> CHARCL_CHOICE); END;

DCL (CONTINUE, SKIPIN,ERR, BLANKF ,FOUND) BIT(1); WHENC'3')> DO, /* LETTER GRADE THRESHOLD. */

DL | FIXED BINC1S); DCL L.3MSG CHARC1T1) INITC

DCL (THRSHLOOP,FIRSTIME)> BITC1),; " THRESHOLD. ');

DCL couT CHAR(87); THRSHLOOP=TRUE ;

SKIPIN = FALSE;
IF (CHOICE*=' ') THEN SKIPIN=TRUE;
CONT | NUE=TRUE ;
DO HHILECCONTINUE);
IF (*SKIPIN> THEN DO;

FIRSTIME=TRUE;
DO HHILECTHRSHLOO0P
ERR=FALSE;
IF CFIRSTIME) THEN DO;
CALL TPUT('<4.3.51 A+ <4.3.52 A <4.3.>3 A-"

CALL TPUTC'<4.>1 VEIH SYSTEM PARAMETERS. "H 13;

'<¢4.>2 ENTER TOTAL NUMBER OF UNITS.', 1); CALL TPUT('<4.3.54 B+ <4.3.>5 B <4.3.>6 B-',
CALL TPUT('<4.>3 ENTER LETTER GRADE THRESHOLDS. ‘1| 13;

‘<4.>4 ENTER VALUE OF UNIT PASSING.', 1); CALL TPUT('<4.3.>7 C+ <¢4.3.58 C <4.3.59 (-,

CALL TPUTC' <4.>S ENTER VALUE OF PROCTORING. 11 1

"<4.>6 ENTER QUESTION NUMBER LIMITS.',1); CALL TPUTC'¢4.3.>10 D+ <4.3.>11 D <4.3.>12 p~'
CALL TPUTC'<4.>7 RETURN TO MAIN MENU.', 1); 1" <4.3513F',1);
CALL TPUTC'ENTER CHOICE==> : ', 1); END;

CALL TGET(CHOICE,L_CHOICE,FALSE);

IF (TURNOFF & (CHOICE=' ‘)> THEN RETURN;

END;
CALL EXTRACT_CHOICE(CHOICE,FIRST,REST,ERR);
IF CERR) THEN FIRST='X’;
SKIPIN=FALSE;
BLANKF=FALSE ;
SELECTC(FIRST)Y;
WHENC 1) DO;

CALL READ_SYSP;

PUT STRING(COUT) EDITC'TOTAL NUMBER OF UNITS: ',

SYSP.NUNIT, ", VALUE OF UNIT PASSING:',SYSP.UPASS,

*, VALUE OF PROCTORING: ', SYSP.UPROC)
(A,F(3,0),A,F(8,3),A,F(8,3));

CALL TPUTCCOUT, 1);

CALL TPUTC'LETTER GRADE THRESHOLDS: ', 1);

PUT FILECSYSPRINTY EDITCCLGLITC!I), SYSP LGTHRESHC | >

DO I=1 TO 13>
(SKIP,COLC1),5 (AC2),X(1),F(8,3),X¢4)));
CALL TPUTC'UNIT QUESTION NUMBER LINITS: ', 1);

PUT FILECSYSPRINT) EDITCCI,SYSP.UNITLCI) DO I=1 TO

SYSP.NUNITY)
(SKIP,COLC1),5 (P'229. " ,P'229" ,X(5)) »;

-177 -

CALL TPUT('ENTER LETTER CHOICE(1~13)a=> S B3
CALL GET_INTC|,ERR, BLANKF);
FIRST IME=FALSE;
IF (BLANKF > THEN THRSHLOOP=FALSE;
ELSE DO;
IF ("ERR)> THEN DO;
IF CC1>13) | Ci<1>> THEN DO;
CALL TPUT('CHOICE OF OPTION' ||
' OUT OF RANGEC1-13)", 1);
ERR=TRUE;
END;
ELSE DO;
SYST.LGTHRESH(|)=SYSP . LGTHRESH(|);

CALL FPROMPT_NUMR(SYST.LGTHRESHCI »,LGLIT(1)

| |L3MSG, BLANKF »;
IF ("BLANKF) &
(SYST.LGTHRESH(| >"=SYSP .LGTHRESH(| »)
THEN DO;
CALL READ_SYSP_LOCK;
SYSP.LGTHRESHC | >=SYST . LGTHRESH(|);
CALL. UPDATE_SYSP;
ON ENDFILECSTUDF L) GOTO EOF;
CALL CLOSE_FILECSTUDFIL);
OPEN FILEC(STUDFIL) UPDATE SEGL BUF;

DO HHILEC' 1'B);
RERD FILECSTUDFIL) INTO(STUD);
CALL TOTAL_MARKS;
REWRITE FILECSTUDFIL)> FROMCSTUD);
END;
EOF: CALL CLOSE_FILE(STUDFIL);
OPEN FILEC(STUDFIL> EXCL UPDATE DIRECT UNBUF;
END;
END;
END;
IF CERR> THEN CALL TPUTC' INVALID ENTRY. ', 1);
END;

END; /*WHILE*/

END; /HHEN*/

HHENC*4°)D0; /ENTER VALUE OF UNIT PASSING*/

DCL U4MSG CHARC12)> INIT(

‘UNIT PASSING');

SYST.UPASS=SYSP . UPASS;

CALL FPROMPT_NUMR(SYST.UPASS, U4MSG, BLANKF) ;

IF ("BLANKF & (SYST.UPASS =SYSP.UPASS)) THEN DO;
CALL READ_SYSP_LOCK;
SYSP . UPASS=SYST. UPASS;
CALL UPDATE_SYSP;

END;

END;

WHENC'S ') DO;

DCL PSHSG

* PROCTORING*);

SYST. UPROC=SYSP . UPROC;

CALL FPROMPT_NUMR(SYST.UPROC, PSMSG, BLANKF »;

IF ("BLANKF & (SYST.UPROC"=SYSP.UPROC)) THEN DO;
CALL READ_SYSP_LOCK;

SYSP.UPROC=SYST . UPROC;
CALL UPDATE_SYSP;
END;
END;
KHENC ') DO;

DCL. CITEMPI,J)

DCL ITEMPO

BLANKF=FALSE ;

DO HHILEC"BLANKF);
CALL READ..SYSP;
ERR=FALSE ;

CALL TPUTC'ENTER UNIT NUMBER L,
CALL GET..INTCITEMP!,ERR, BLANKF ;
IF (C*ERR) &("BLANKF))> THEN DO;
IF CCOTENP I>Q)&CI TEMP I <=SYSP .NUNIT)> THEN DO;
J=SYSP . UNITLCITENP |);
ITEMPO=ITENP ;
CALL FPROMPT.NUNICJ, "UNIT QUESTION LIMIT ||
‘FOR UNITCIITEMPOL | ' >*, 999, BLANKF);
IF (J<3> THEN DO;

CHARC11)> INITC

FIXED BINC1S5);
PICTURE '229°;

-178 -

CALL TPUTC'UNIT MUST HAVE AT LEAST 3°||
' QUESTIONS. ", 1);
ERR=TRUE;
END;
IF (C"BLANKF) & ("ERR>) THEN DO;
CALL READ._SYSP_1.0CK;
SYSP.UNITLCITENP |)=y;
CALL UPDATE..SYSP;
END;

END,
IF ¢ERR) THEN
CALL TPUTC'UNIT NUMBER |S OUT OF RANGE', 1);
END; /% WHILE */
END; /UHEN®/
HHENC'O®, *?') DO; /* EXIT TO CONTROL HENU */
CONT INUE=FALSE;
END;
OTHERKISE DO;
ERR=TRUE;
CALL TPUTC' INVALID CHOICE: ‘| |CHOICE, 1);
END;
END; /* SELECT =/
CALL TPUTC'ENDING AT: | | SEPARATECSUBSTRCTINE, 1,6)), 1);

END; /*UHILE*/

END; /* EDIT SYSP. %/

/ /
” A
/* THIS 1S A SUBROUTINE OF LISTING OUT THE STUDENT »*/
/% PROCTORS OF THE INPUT STUDENT ID. IF NO STUDENT #*/
/* PROCTORS FOR HIM IS ASSIGNED, THE STUD_PROC WILL */
/* RETURNS A FALSE. PRINT IS TO TURN ON OR OFF =/
/% THE LISTING OF THE STUDENT PROCTOR. */
* "‘/
/ /

STUD..PROCTORS :PROC(C D, DIRECT, PRINT, STUD_PROC);
DCL CID CHAR(?);
DCL (DIRECT,PRINT, STUDPROC) BITC1);
STUD_PROC=FALSE ;
ON ENDF ILECSTUDF IL) GOTO EOF;
CALL CLOSE.FILECSTUDFIL);
OPEN FILE(STUDFIL) INPUT SEQUENTIAL BUFFERED;
DO WHILEC' 1'B);
READ FILECSTUDFIL) INTGCSTUD);

IF ((STUD.PSTATE=PST.P)&(STUD.SID=CID)>) THEN bo;

IF CPRINT> THEN

CALL TPUT('PROCTOR HAS NOT ENTERED RESULTS,

{1 "STUDENT®: *||STUD.ID!!", NAME:
STUD.NAME][', AT TINE: '[!
SEPARATE(STUD .RTINEY, 1);

1l

STUD_PROC=TRUE; CALL L IST_MRAKER(REST);

END; END;
END; HHENC'3°) DO; /* MARKING */
EOF: CALL CLOSE_FILECSTUDFIL); CALL MARK_STUD(REST);
IF (DIRECT) THEN END;
OPEN FILE(STUDFIL> EXCL UPDATE DIRECT UNBUFFERED; HHENC'O*, *4°)> DO; /* EXIT %/
ELSE DO; CONTINUE = FALSE;
OPEN FILE(STUDFIL) INPUT SEQUENTIAL BUFFERED; END;
READ FILE(STUDFIL) INTOCSTUD) KEY(CID); OTHERHISE DO; /* BAD CHOICE */
END; CALL TPUTC‘INVALID CHOICE: '|ICHOICE, 1);
END; /* STUD_PROCTORS */ END;
END; /*SELECT %/
/ 7 CALL TPUTC'ENDING AT: ' | ISEPARATECSUBSTRCTINE, 1,6)), 1);
7 wy END; /* DO LOOP */
”* THIS PROCEDURE 1S THE ONE INVOKED AFTER THE */
/% MARK TEST CHOICE FROM THE MAIN CONTROL MENU |S%/ / /
" SELECTED. IT IS ALSO INVUOKED FROM THE w/ o~ */
" SESS | ON_CONTROL PROCEDURE WHEN EVER THE "y 7% THIS PROCEDURE PERFORMS THE LIST STATUS AND TEST */
/* INSTRUCTOR OR TA SIGNS ON AS <HARKER> . #/ /* OF THE STUDENT RECORD. IT LOOPS ASKING FOR A w/
” w/ /4 STUDENT NUMBER TO BE ENTERED. A LIST OF DATA FOR %/
/ / M THAT STUDENT IS THEN PRINTED. IF <ALL> IS THE %/
MARK_TEST :PROC(CHOICE); / STUDENT NUMBER ENTERED THEN THE PROCEDURE LISTS %/
DCL CHOICE CHARC®); M ALL THE STUDENTS ON FILE. IF A BARE RETURN IS »/
DCL (CONTINUE,SKIPIN, ERR) BITC(H); /% THE STUDENT NUMBER ENTERED THEN THE PROCEDURE %/
DCL (FIRST,REST) CHARCL..CHOICE); /# RETURNS CONTROL TO THE MARKING MENU. %/
DCL HEADR1 CHAR(38) INITC / /
'STUD.® NANE®); LIST_PROC..TEST:PROCCCHO I CE>;
DCL HEADR2 CHARCSO) INITC DCL. CHOICE CHARC*);
"UNIT# QUESTIONS TEST STATE PROCTOR STATE TINE'); DCL CID CHAR(?);
SKIPIN = FALSE; DCL C(FOUND, SPEC, BLANKF, CONTINUVE> BITC1);
IF (CHOICE*= * ') THEN DO; DCL OUTST FIXED BINC15);
SKIPIN=TRUE; CONTINUE = TRUE;
END; DO HHILECCONT INVE);
CONTINUE = TRUE; CALL GETID(CID, FOUND, SPEC, BLANKF ,ENTERSTIUM 3;
DO WHILE (CONT [NUE); IF (BLANKF> THEN
IF (“SKIPIN)> THEN DO; CONTINUE = FALSE;
CALL TPUTC'<5.>1 LIST TEST AND STATUS. '} ELSE DO;
¢5.>2 LIST TESTS FOR MARKER.',1); IF CC'FOUND)> & (CID"='ALL')> > THEN DO;
CALL TPUT('<5.>3 MARK STUDENT. 11 CALL TPUTCCIDI|' iS A SPECIAL OR NON-EXISTANT'
‘<5.>4 RETURN FROM MARKING.', 1); : I STUDENT NUMBER. DATA CAMNOT BE LISTED.',1);
CALL TPUTC'ENTER CHOICE==> : °, 1); EnD,
CALL TGET(CHOICE,L_CHOICE,FALSE); E‘STFD?E;ID,- ALL" > THEN DO
IF' CTURNOFF & (CHOICE=" ")) THEN RETURN; CALL TPUTC'LISTING OF ALL THE UNMARKED * ||
END; _ "STUDENTS. *, 1);
SKIPIN=FALSE ; CALL TPUTC(HEADR!| |HEADRZ, 1);
CALL EXTRACT..CHOICE(CHOICE,F IRST,REST,ERR); CALL CLOSE_F ILECSTUDFIL).
IF CERR> THEN FIRST='X"; OPEN FILECSTUDFIL> INPUT SEQUENT (AL BUF;
SELECTCFIRST); ON ENDF ILECSTUDFIL)> GOTO EOF;
HHENC' 1°> BO; /% LIST PROCTOR AND TEST %/ ON ATTENTION BEGIN;
CALL LIST_PROC_TEST(REST); ON ATTENTION SYSTEN;
END; CALL GET.RESP(' (C)ONTINUE OR (QOUIT : °,
HHENC'2') DO; /* LIST TESTS FOR MARKER */ €Q, RESP,1);

-179 -

IF (RESP=2) THEN GOTO EOF;
ELSE GOTO CONT;
END;
DO KHILEC 1°'B);

CONT: READ FILECSTUDFIL) INTO(STUD)> KEYTOCCID)Y;

OUTST=STAT.TBL_END..SESS . TSTATE(
STUD. TSTATE),
IF (*SPECIAL.ID(STUD. ID)&

CCOUTSTRTSTOT > | COUTST=TST_OM)>>> THEN

CALL ONE_STATUS_OUT(CID,FALSE);

END;
EOF: ON ATTENTION SYSTEN;
CALL CLOSE_F ILECSTUDFIL);

OPEN FILE(STUDFIL) EXCL UPDATE DIRECT UNBUF;

END;

ELSE DO;
CALL TPUTCHERDR 1| |HERDR2, 1);
CALL ONE_STATUS.OUT(CID, TRUE);
END;

END; /*ELSE*/

END, /*ELSE*/
END; /UHILE®/
END; /* LIST.PROC_TEST */

/ /
/* W/
/% THIS 1S A SUBROUTINE OF THE LIST STUDENT STATUS %/
/% IT CONTAINS THE CODE WHICH FORMATS ONE LINE OF %/
/% OUTPUT. */
/% */
/ /
ONE_STATUS..OUT : PROCCCID, DIRECT);

DCL €D CHAR(?);

DCL DIRECT BITC1);

DCL STUD_PROC BITC1);

DCL OUT.UNIT PICTURE '229°;

DCL (OUT_Q1,0UT_Q2,0UT_Q3> PICTURE 'ZZ29';

DCL. OUTT CHAR(38);

DCL. OUT2 CHAR(49);

DCL OUTST FIXED BINC1S);

OUT_Q1=ABS(STUD.Q1);

OUT_Q2=ABS(STUD.Q2;

OUT_Q3=ABS(STUD.Q3);

OUT1=STUD. 1D} ' |ISTUD.NANE;

OUT2=0UT._Q1] 10UT_ Q21 [OUT.Q31|" ' || TSC(STUD. TSTATE| |

"1 IPSCCSTUD .PSTATED || ' ' | |SEPARATECSTUD.RTINE);

OUTST=STAT_TBL.END_SESS . TSTATEC(STUD. TSTATE);
IF (COUTST=TST_OT)| (QUTST=TST.OM>> THEN DO;
QUT_UNIT=STUD .UNIT+1;
CALL TPUTCOUT1| |OUT_UNIT] |OUT2, 1);
IF (STUD.TSTATE"=TST.T> THEN DO;
CALL STUD_PROCTORS(CID,DIRECT, TRUE, STUD_PROC);

- 180 -

IF ("STUD.PROC)> THEN

CALL TPUT('PROCTOR SELECTED IS INSTRUCTOR' ||

‘' OR TA.*, 1);
END;
ELSE DO;

CALL TPUTC'STUDENT IS WRITING A TEST.",

END;
END;
ELSE DO;
OUT.UNIT=STUD.UNIT;
CALL TPUTCOUT1] [QUT.UNIT] [OuT2, 1);

CALL TPUT('STUDENT HAS NO UNMARKED TEST.', 1)

1);

’

END;
END; /* ONE_STATUS.OUT */
/ /
/% *f
/* THIS IS A SUBROUTINE OF LISTING OF THE STUDENTS */
/% THAT HAS NO STUDENT PROCTORS AND MERE ASSIGNED */
/% TO TA OR INSTRUCTOR FOR MARKING. */
ad */
/ /
LIST_MARKER: PROC(CHOICE>;
DCL CHOICE CHARC*);
DCL CiD CHARC?);
DCL. STUD_PROC BITC1);
DCL QUT_UNIT PICTURE '229';

DCL (OUT_Q1,0U7T_Q2,0UT.Q3> PICTURE 'Z229";
DCL OUTST FIXED BINC15);
CALL TPUTC' INSTRUCTOR OR TA IS SELECTED.®.2);
CALL TPUTCHERDR1| [HEADRZ, 15;
CALL CLOSE_FILECSTUDFIL).
OPEN FILE(STUDFIL)> INPUT SEQUENT!AL BUFFERED;
ON ENDF ILECSTUDF IL> GOTO EOF;
ON ATTENTION BEGIN;

ON ATTENTION SYSTEM;

CALL GET.RESP('CCOONTINUE OR (QWIT : ',cq, -

RESP, 1);

IF (RESP=2)> THEN GOTO EOF;

ELSE GOTO CONT;
END;
DO KHILEC' 1'8B);
CONT: RERD FILECSTUDFIL)Y INTOC(STUD) KEYTOCCID);

OUTST=STAT._TBL_END..SESS. TSTATE(

STUD . TSTATE);

IF (*SPECIAL_ID(STUD. ID)&
CCOUTST=TST_OT > | (OUTST=TST_OM)>) THEN DO;
CALL STUD_PROCTORS(C D, FALSE, FALSE, STUD_PROC),
IF ¢*STUD.PROC)> THEN DO;
OUT_Q1=ABS(STUD.Q1);
OUT_Q2=ABS(STUD.Q2);
QUT_Q3=ABS(STUD.Q3);
QUT_UNIT=STUD.UNIT+1;

CALL TPUTCSTUD. ID]1* * 1 ISTUD.NAME] [OUT.UNIT] | 1=0;

ouT_Qt]jouT_Q2|louT_Q3f}* 1} DO UNTILCINDEXCTRIMCTENPINDI |, ¢ *)=0);
TSCCSTUD. TSTATED | |* * | | PSCCSTUD .PSTATE)| | I=|+1;
* ' 1ISEPARATECSTUD.RTIMEY, 1); IF C1>1)> THEN
END; CALL TPUT('INVALID SYNTAX, RE-ENTER.,1);
END; CALL TPUT('SEND TO ' [IUSERIDS, 1);
END; /* WHILE */ CALL TPUTC'SEND TO : ', 0);

EOF: ON ATTENTION SYSTEN; CALL TGETLCTEMPIN,256);
CALL CLOSE_FILE(STUDFIL); TEMP IN=TRANSLATECTEMP | N, UPPERCASE , LOMERCASE);
OPEN FILECSTUDFIL) EXCLUS{VE UPDATE DIRECT UNBUFFERED; END,
END; /* LIST.MARKER */ IF CTEMPIN"=" ') THEN
USERIDS=TRINCTEMPINY;

/ IF CUSERIDS="") THEN RETURN;
/% w/ CALL TPUT('SEND FROM ' {FROM,0);
/* THIS IS A SUBROUTINE THAT GOES INTO A LOOP w/ CALL TPUTC'SEND FROM : ',0);
Vhd PROMPTING THE INSTRUCTOR OR TA FOR THE »/ CALL TGETLCTEMPIN,256);
/= NEXT STUDENT NUMBER TO BE MARKED »/ IF CTEMPIN*=' ') THEN
fad ¢ A BARE RETURN CAUSE IT TO TERNINATE). AND */ FROM=TRINCTEMPIN);
/* THEN PROMPTS HiM FOR A MARK IN THE SAME MANNER*/ ON ATTENTION BEGIN;
Fad STUDENT PROCTORS ARE PROMPTED. *®/ BUFFER=" *;
/* ®/ CALL TPUT('SEND MESSAGES CANCELLED.', 1);
/ / GOTO OUT,
MARK_STUD : PROC(CHOICE); END;
000 confidential procedure oce ON STRINGSIZE BEGIN;
END; /% MARK_STUD %/ DCL TEMP CHAR(LBUF > VARYING;
END; /% MARK_TEST */ TEMP=SUBSTR(BUFFER, 1,K);
LBUF=LBUF+LBUFMORE ;
/ / FREE BUFFER;
/% »f ALLOC BUFFER;
/% THIS PROCEDURE PROVIDES MESSAGES SENDING “/ BUFFER=TENP;
/% BETHEEN USERS. A USER LIST ¢I.E. MORE THAN */ GOTO AGAIN;
i 1 USER) CAN BE ENTERED HITH THE SYNTAX OF *®/ END,
/* NO BLANK EMBBED AND COMMA BETHEEN USER NAMES . %/ BUFFER=""';
/% THE USER LIST WILL MAINTAIN IN THE SYSTEN */ CALL TPUTC'M: ',0);
/* UNTIL THE PROGRANM RETURNS TO TSO. THE w/ CALL TGETLC(TEMPIN, 256);
Vid INCORRECT USER NAME OR THE USER WAS NOT »/ DO HHILECTEMPIN =" ')>;
/* SIGNED ON WILL BE DELETED FROM THE LIST. w»/ KaLENGTH(BUFFER);
/% NO USER NAME OR NO MESSAGE WILL RETURN FROM */ (STRINGS|ZE>:AGAIN :BUFFER=BUFFER| | TRINCTEMPIND} ICR| [LF;
/% PROGRAM. IN ORDER TO SEND MESSAGE IT NEEDS ®/ CALL TPUTC'M: ',0);
/% A NULL OR BLANK LINE AT THE LAST LINE. /- CALL TGETLCTEMPIN,256);
Vil w/ END;
/ / . .
SEND..HE(S:S:PRgC(CHOICE);] our: ?2 ?Eg:g;ozszs;ig” 0o
DCL. CHOIC CHAR(*); ’ .
DCL USER CHARCS). BUFFER=BEL | |CR| |LF| |BUFFER;

DCL COLLECTIDS
DCL (USERIDS, FROM)>

CHARC256)> VARVYING;
CHAR(2S6)> VARYING
STATIC INITC" *);

DCL TEMPIN CHAR(256);
pcL <1,4,K> FIXED BINC1S);
DCL. CONT BITC1);
CONT=TRUE;

DO HHILECCONT;

- 181 -

COLLECTIDS="";

DO HHILECUSERIDS =" ");
J=INDEXCUSERIDS] |, ", *, ");
USER=SUBSTR(USERIDS, 1, J-1);

IF (H+1>LENGTH(USERIDS) THEN
USERIDS=" " ;

ELSE
USER|IDS=SUBSTRCUSER DS, J+1);

IF CUSER*=' ‘) THEN DO;
CALL SENDCCR!ILF|ILF|| 'MESSAGE FROM: (' ||
TRIMCUSERIDO[|*> *|IFROM] " * ,USER);
CALL SEND(BUFFER] {CRI |LF,USER);
IF (PLIRETV*=0) THEN
CALL TPUT('MESSAGE CANNOT SEND TO USER:
| USER, 1);
ELSE DO;
CALL TPUT('MESSRGE SENT TO USER: '||USER,
1;
COLLECTIDS=COLLECTIDS| | TRIMCUSERY I | *, *;

END;
END,;
END;
USER | DS=SUBSTR(COLLECTIDS, 1, LENGTHC(COLLECTIDS)~1);
END;
ELSE CONT=FALSE;
END,;
/ /
o */
/% THIS SUBROUTINE WILL TRIM OFF THE */
/% TRAILING BLANKS OF A STRING */
T »/
/ /
TRIM:PROCCIN) RETURNS(CHAR(256) UARYING);
DCL (N CHARC(*);
DCL | FIXED BINCIS);
DO 1=LENGTHCIN) TO 1 BY -1
UNTILCSUBSTRCIN, |, 1)*a° '),
END;
RETURN(SUBSTRCIN, 1, 12);
END; /* TRIM »/
/ /
Fad */
Fas THIS PROCEDURE |S THE LOMEST LEVEL TERMINAL INPUT %/
I ROUTINE. THE PARAMETER CIN IS FILLED HITH L */
i CHARACTERS FROM THE KEYBOARD MHEN THIS ROUTINE IS %/
r* CALLED. co®/
L3 %/
/ /
TGETL.: PROCCCIN,L.>;
DCL CiIN CHAR(*),
DCL 7256 CHAR(256;
DCL L FIXED BINCI1S);
ON ENDFILEC(SYSIN) BEGIN;
T256=" *;

CLOSE FILECSYSIND;
OPEN FILE(SYSIN);
PUT FILECSYSPRINTY SKIP;
END;
GET FILECSYSIN) EDIT(T256) C(A(256));

CIN=SUBSTR(T256, 1,L);
END; /* TGETL *»/
END; /* SEND.MESS */

/ /
” */
/M THIS PROCEDURE GETS A LOG RECORD FROM LOG */
/* FILE AND KEEPS TRACK OF THE SESSION DATE. */
lae IT RETURNS THE INDEX NUMBER OF NEXT LOG #*/
/* RECORD. Y
r* *

{
GET_LOG: PROCCLOGNUM, LOGDATE);

DCL L.OGNUN FIXED BINCIS);

DCL LOGDATE PICTURE ‘999999°;

READ NOLOCK FILECLOGFIL)> INTO(LOGREC) KEY(LOGNUM 7;

LOGNUM=LOGNUM+1;

IF (LOGREC.DELKEY"=(8)" 1 'B)&(LOGREC. TYPE="1" |
LOGREC . TYPE="'2" |LOGREC. TYPE="3" | LOGREC. TYPE="4" |
LOGREC.TYPE='5" > THEN

LOGDATE=LOGREC.SID;
END; /* GET_LOG */

/ /
/% */
Vad THIS ROUTINE ACCEPTS A 6 CHARRACTER VALUE REPRESENTING */
/% A DATE AS YYMMDD AND RETURNS THE SAME DATE VALUE HITH =/
/% THE YEARS, MONTHS,DAYS SEPARATED BY SLASH. YY/MM/DD w7
” -
/ /

- 182 -

SEPARATE_DATE :PROCCDATEARG) RETURNS (CHAR(8));
DCL. DATEARG PICTURE ‘999999
RETURNCSUBSTR(DATEARG, 1,2>1 | * /* | | SUBSTR(DATEARG, 3,2 |
“7" | |ISUBSTRCDATEARG, 5,2));
END; /* SEPRRATE_DATE */

/ /
’# £y
/* THIS PROCEDURE DECODES A LOG RECORD INTO w/
/* DESCRIPTIVE FORM AND HANDLES THE SPECIAL w/
/* LOG RECORD TYPE (I.E. 1,2,3,4) ®/
lad */
/ /
ONE..OUT: PROCCLOGDATE) ;
DCL. L.OGDATE PICTURE '999999';
DCL FouND BITC1);
DCL COUT CHARC 122);
ON CONVERS|ON BEGIN;
GOTO OUT;
END;

IF (LLOGREC.TYPE="1"|LOGREC. TYPE="'2" |LOGREC. TYPE="3" |
LOGREC. TYPE="4" |LOGREC. TYPE="5" > THEN DO;

PUT STRING(COUT)> EDIT(TYPECLOGREC . TYPE>||* ‘||
LOGREC. ID| |* * | | SEPARATE_DATECLOGDATE),
SEPARATECLOGREC.CTIME> (A, X(81),A);

CALL TPUTC(COUT, 1);

END;

ELSE DO;

PUT STRING(COUT> EDITCTYPECLOGREC. TYPE), LOGREC. 1D,
NAME(LOGREC. ID>, TSC(LLOGREC. TS), PSC(LOGREC.PS),

LOGREC.UNIT,LOGREC.Q1,L.OGREC.Q2,LOGREC. Q3,
LOGREC. TP, LOGREC . PP, SEPARATE(LOGREC. CTINE >
(54A,X(12),F(3,0),3 F(4,0),2 F(8,3>,X(1),A);
CALL TPUTCCOUT, 1); -
IF (LOGREC.TYPE='J' |LOGREC. TYPE='K" |
LOGREC .TYPE='L ') THEN DO;

CALL. TPUTC'MARKED BY ‘1 ILOGREC.S1D} | *
NAMECLOGREC.S1D), 1);
END,;
END;
OuUT:;
/ /
I w/
/% THIS SUBROUTINE RETURNS A NAME */
/* FROM HIS/HER STUDENT 1D. w7
las */
/ /
NAME:PROCCID)> RETURNS(CHAR(30));
DCL (D CHARC?);
DCL <LOW,HID,HI)> FIXED BINC1S);
LOU=1,;
HI=STEND;
DO HHILECLOW<=H]);
M D=(LOW+H] >/2;
IF (ST(1ID>.|D=1D) THEN
RETURNC(ST(MID) .NAME);
IF (STCHID)>.1D>ID) THEN
Hi=HiD-1;
ELSE
LOW=MID+1;
END; /* WHILE %/
RETURNC ' UNKNOWN STUDENT' »;
END; 7/ NAME */
/ /
/% */
/% THIS SUBROUTINE RETURNS A DESCRIPTIVE */
/* FORH OF LOG TYPE BY DECODING THE LOG */
/¥ TYPE. w®/
/" #
/ /
TYPE:PROC(C> RETURNSC(CHAR(16));
bcL C CHARC1);
SELECT(C);

HHENC' 1') RETURNC 'CREATE LOG');
HHENC'2°) RETURNC 'START PSI*);
HHENC'3*' > RETURNC "NEW SESSION');

KRHENC'4') RETURNC'END SESSION' »;
HHENC'S® > RETURNC'END PS1');

HHENC' T' > RETURNC 'GENERATE TEST')»;
WHENC'C' > RETURNC 'CANCEL TEST');
HHENC' | ') RETURNC'HANT TEST MARKED');
HHENC'P') RETURNC 'PROCTOR SELECTED®);

HHENC'J' > RETURNC'PASS');
HHENC'K' > RETURNC'CONDITIONAL PASS®);
HHENC 'L > RETURNC "RESTUDY *);
OTHERW1SE RETURNC *UNKNOMN TYPE');
END,;
END; /* TYPE %/
END; /% ONE.OUT »/

/ /
1~ *®/
Vad THIS SUBROUTINE CONTINOUSLY MONITORS THE */
Vid STUDENT ACTIVITIES ACCORDING TO THE TRANSACTIONS */
/¥ ONTO THE LOG FILE. 1T HILL HATCH THE LOG FILE IN %/
/™ IN EVERY 5 SECONDS OF TIME INTERVAL. */
" THIS SUBROUTINE CAN BE STOPPED BY TURNING OFF w7
/* THE WATCHING FROM THE MONITOR MENU. */
/% THIS SUBROUTINE WILL START HATCHING THE STUDENT %/
/% ACTIVITIES FROM LAST CALL OR FROM THE SESSION w7
/* OF THE CURRENT DATE IF THIS SUBROUTINE 1S FIRST */
/* CALLED RIGHT AFTER PS| IS EXECUTED. THIS */
/% SUBROUTINE WILL REDUCE TS PRIORITY KHEN w/
/% NO RECORD WRITTEN ON THHE LOG FILE BY EVERY */
* 10 MINUTES AND TURN ITSELF OFF WHEN RFTER HALF w*/
/* AN HOUR OF IDLE TIME. */
/* */
/ /
HATCH.L.OG: PROC;

DCL. HHERE FiXED BINC1S) EXTERNAL ;

DCL. ALLONW BITC1) EXTERNAL ;

DCL LOGDATE PICTURE '999999";

DCL CHH1,HMI,HH2,HM2) PICTURE '99°;

DCL <HAIT, TINES) FIXED BINC1S);

DCL. HERDR1 CHAR(S6) INITC

*TYPE STUD.® STUDENT NAME');
DCL HEADR2 CHAR(64)> INIT(

‘TEST STATE PROCTOR STATE UNIT QUESTIONS TEST PROCTOR TIME');

- 183 -

CALL TPUTC'CONTINUE TO WATCH STUDENT ACTIVITIES. ', 1);
CALL TPUTC' ', 1);
HH1=SUBSTR(TIME, 1,2);
MM 1=SUBSTRCTINE, 3,2);
TIMES=0;
DO MHILECALLOW);
CALL READ_SYSP;

IF C(HHERE<=SYSP .NLOGREC> THEN DO;
HH1=SUBSTR(TINE, 1,2);
HM1=SUBSTR(TINE, 3,2);

TIMES=0;

CALL SCN(STRINGCBEL.)»;

IF (SYSP.NLOGREC-MHERE > 10> THEN
CALL TPUTCHEADR1I| |HEADRZ2, 1);

DO WHILECHHERE <=SYSP . NLOGREC);
CALL GET._LOGCHHERE, LOGDATE »;
CALL ONE.OUT(LOGDATE);

END;

CALL TPUTC ", 1);

END;

HH2=SUBSTRCTINE, 1,2);

MM2=SUBSTR(TINE, 3,2);

HAI T=(HH2-HH 1 Y*60+H1M2-1%11 ;

IF CHAIT>=10)> THEN DO;

CALL SCNC(STRINGCBEL));
TIHES=T IMES+1;
IF (TIMES=3) THEN DO;
CALL TPUTC'NO STUDENT ACTIVITIES HITHIN HALF *
I1"AN HOUR. ', 1);
CALL TPUTC'HATCHING 1S AUTOMATICALLY"
Il* TURN OFF.',1);
ALLOW="'0"B;
END;
ELSE DO,
CALL TPUTC('NO STUDENT ACTIVITIES WITHIN 10 ‘||
HINUTES. ', 1);
IF C(TIMES=2> THEN
CALL TPUTC'HATCHING WILL BE TURN OFF'
I1' AFTER 10 MINUTES. ', 1);
PRIORI TYCHATCH)=-50;
CALL SCN(STRING(BEL »);
HH1=SUBSTR(TINE, 1,2);
M11=SUBSTR(TINE, 3,2);
END;
CALL TPUTC' ", 1);
END;
DELAY(S000>;

END; /* WATCH.LOG »/

/ /
/# */
/% THIS PROCEDURE PROVIDES FACILITIES TO LIST =/
/% THE LOG FILE FROM A GIVEN START DATE TO AN ®/
/% END DATE AND CONTINUOUSLY MONITORS THE STUDENTS %/
/% FROM LOOKING AT THE LLOG FILE CONTINUOGUSLY. */
/= */
/ /

FMONITOR: PROCCCHOICE),
DCL CHOICE CHARC®);

DCL (CONTINUE,SKIPIN,ERR) BITC1);
DCL (FIRST,REST) CHARC 10);
DCL. HEADR1 CHAR(S6) INIT(
"TYPE STUD.® STUDENT NAME');
DCL. HEADR2 CHAR(64)> INIT(
"TEST STATE PROCTOR STATE UNIT QUESTIONS TEST PROCTOR TIHE');
DCL. LOGDATE PICTURE '999999";
DCL. WHERE FIXED BINC1S) EXTERNAL ;
DCL. punp BITC1) STATIC INITC'Q'BY;
DCL. GETNAME BITC1)> STATIC INITC'0'BY;

;

ON SUBSCRIPTRANGE BEGIN;
DCL 1 TEMPCLST) LIKE ST;
DCL M FIXED BINC1S);
TEMP=ST;
LST=L.ST+LSTHORE ;
FREE ST;
ALLOC ST;
DO t=1 TO STEND-1;
STCD=TEMP(N),;
END;
GOTO AGAIN;
END;
SKIPIN = FALSE;
IFC CHOICE*= ' ')THEN DO;
SKIPIN=TRUE;
END,
CONTINUE = TRUE;
DO HHILECCONT INUE);
IFCSKIiPINY THEN DO;
CALL TPUTC'<7.>1 LIST LOG FILE, 1l
'¢7.>2 HATCH STUDENT ACTIVITIES. ", 1);
CALL TPUTC'<7.>3 TURN OFF WATCHING. ']|
. '<7.>4 RETURN TO MAIN MENU. ', 1);
CALL TPUTC'ENTER CHO|CE==> HER D
CALL TGET(CHOICE,L_CHOICE,FALSE);
IF CTURNOFF & (CHOICE=" ‘'))> THEN RETURN;
END;
SKIPIN=FALSE ;
CALL EXTRACT_CHOICECCHOICE,FIRST,REST,ERR);
IFCERR)THEN FIRST="X";
IF ¢"GETNAME)> THEN DO;
GETHAME="1'B;
ON ENDF ILECSTUDF IL) GOTO EOF;
CALL CLOSE_FILECSTUDFIL);
OPEN FILECSTUDFIL) INPUT SEQL BUFFERED;
STEND=0; :
DO HHILEC 1'B);
READ FILECSTUDFIL)> INTO(STUD);
STEND=STEND+1;

(SUBRG)>: AGAIN: ST(STEND)=STUD, BY NAME;

END;
EOF: CALL CLOSE_FILECSTUDFIL);
OPEN FILE(STUDFIL) EXCL UPDATE DIRECT UNBUF ;

END;
SELECT(FIRST),;
HHENC' 1') DO; /* LIST LOG FILE */
CALL LIST_LOG(REST);
END;
KHENC 2") DO; /* WATCH LOG FILE */
IF ¢*DUMP> THEN DO;
DUMP="1'B;
CALL READ._SYSP;
KHERE=F |ND_LOG_REC(CURDATE, SYSP.NLOGREC, 1,-1);
CALL TPUTCHEADR1| [HEADR2, 1);
ON ATTENTION BEGIN;
ON ATTENTION SYSTEN;
CALL GET.RESP('(C)OONTINUE OR (QWIT : *,
CQ,RESP, 1);
IF (RESP=2) THEN GOTO OUT;
ELSE GOTO CONT;

END;
DO HHILEC(HHERE <=SYSP .NLOGREC»;
CALL GET_LOG(HHERE, LOGDATE);
CALL ONE_OUT(LOGDATE?;
CONT:;
END;
END;
IF (TUBNOFF)> THEN
IF COMPLETIONCSTAGE > THEN DO;
ALLOW="1'B;
CALL HATCH_LOG TASKC(KATCH> EVENT(STAGE)
PRIORITY(~200);
CALL TPUTC'START WATCHING STUDENT 'I|
‘ACTIVITIES. ", 1);
TURNOFF='0'B;
END;
ELSE
CALL TPUTC'HATCHING IS TURNING OFF, '||
‘TRY TURN ON LATER.', 1);
ELSE
IF COMPLETIONC(STAGE> THEN 0O;
IF CALLOW) THEN .
CALL TPUTC'UATCHING 1S TURNING ON, ‘1]
‘BE PATIENT. ', 1);
ELSE DO;
CALL TPUTC'NO STUDENT ACTIVITIES HITHIN '

'HALF AN HOUR, HATCHING IS TURN OFF BY *

11 ITSELF. ", 1);
TURNOFF='1'B;
END;
ERD;
ELSE
CALL TPUTC'HATCHING IS ALREADY ON. ', 1);
OUT: ON ATTENTION SYSTEM;
END,;

HHENC'3')> DO; /* TURN OFF HATCHING */
IF ("TURNOFF > THEN DO;

IF C"COMPLET IONCSTAGE)> THEN DO;
CALL TPUTC' TURNING OFF WATCHING.', 1);
ALLOK="0'B;
END;

ELSE
CALL TPUTC'NO STUDENT ACTIVITIES WHITHIN

“ITSELF. ", 1);
TURNOFF="1'B;
END,;
ELSE

IF ("COMPLETIONCSTAGE > > THEN
CALL TPUTC'HATCHING 1S TURNING OFF, '[|
"SECOND TURN OFF IS REJECTED.', 1);
ELSE
CALL TPUTC'HATCHING 1S ALREADY OFF.', 1);
END;
WHENC 0, "4') DO; /* EXIT %/
CONTINUE = FALSE;
END;
OTHERWISE DO, /* BAD CHOICE #/
CALL TPUTC' INVALID CHOICE: ' |ICHOICE, 1);
END;
END; /*SELECT */

1
"HALF AN HOUR, WATCHING IS TURN OFF BY

CALL TPUTC'ENDING AT: * | ISEPARATECSUBSTRC(TIME, 1,6)), 1);

END; /% DO LOOP */

/ /
Vi w/
/¥ THIS SUBROUTINE ASKS FOR A STARTING DATE AND *®/
/¥ AN ENDING DATE IN ORDER TO LIST OUT THE LOG w/
/* RECORDS. THE DATE SYNTAX IS YY/HM/DD WHICH IS w/
/® FROM 00/01/01 TO 99/12/31. |F THE END DATE IS w/
/* SHALLER THAN THE START DATE, NOTHING WILL BE */
/* LISTED. THE DEFAULT OF END DATE IS THE CURRENT wj
/* DATE WHICH IS THE LAST DATE RECORDED ON THE LOG */
* FILE. w/
/% »/
/ /

LiST_LOG:PROC(CHOICE);
DCL CHOICE CHAR(*);
DCL (STRT_DATE, END_DATE,LOGDATE) PICTURE '999999" ;
DCL MSGSTART CHAR(44)> INIT(

‘LIST LOG STARTING AT (YY/MM/DD> DATE HE

DCL HSGEND CHARC42> INITC
‘LIST LOG ENDING AT (Yv/hMM/DD> DATE D
DCL. (LOGNUM,REC) FIXED BINC1S);
BDCL ouTuAL PICTURE "222279";
CALL TPUTC'CURRENT DATE IS: ‘||
SEPARATE_DATE (CURDATE), 1);
CALL PROMPT.DATE(NMSGSTART, 0, STRT.DATE);

IF (STRT.DATE=0) THEN RETURN;
CALL PROMPT_DATECMSGEND, CURDATE, END_DATE);
CALL READ_SYSP;
LOGNUI=F IND_LOG(STRT..DATE, END_DATE,, CURDATE y;
REC=0;
CALL GET_LOG(LOGNUM,LOGDATE);
ON ATTENTION BEGIN;
ON ATTENTION SYSTENM;
CALL GET_RESP(' (COONTINUE OR <Q)UIT
IF (RESP=2) THEN GOTO OUT;
ELSE GOTO CONT;

*,CQ,RESP, 1);

END;
CALL TPUTCHERDR1| [HERDR2, 1);
DO WHILE(STRT_DATE<=LOGDATE & END_DATE>=LOGDATE &
LOGNUN<=SYSP . NLOGREC+1);
REC=REC+1;
CALL ONE.OUTCLOGDATE);

CONT: CALL GET_LOG(LOGNUM,LOGDATE);

END;
OUTUAL=REC;
CALL TPUT('LOG RECORD LISTED: ‘| |OUTVAL, 1);

OUT: ON ATTENTION SYSTEN;
OUTUAL=SYSP . NLOGREC+1 ;
CALL TPUTC'TOTAL LOG RECORD: * | |QUTUAL, 1);

/ /
” A
/* THIS SUBROUTINE WILL PROMPT FOR A DATE w/
/* AND VERIFY THE SYNTAX. SYNTAX IS YY/MH/DD. *»/
e =/
/ /
PROMPT_DATE : PROCCISG, |NDATE,, OUTBATE);

DCL. MSG CHARC®),

DCL CINDATE, OUTDATE) PICTURE '99999%9";

DCL (TLOOP,ERR> BITC1);

DCL TEMPIN CHAR(S>;

TLOGP=TRUE;

DO UHILECTLOOP);

IF CINDATE=O)> THEN
CALL. TPUT(NSG, 1);

ELSE DO;
CALL TPUTCMSG | SEPARATE_DATEC INDATE), 1);
CALL TPUT1SG,0);
END;

CALL TGET(TEMPIN,8,FALSE);

IF (VERIFYC(TEMPIN, * ')=0) THEN DO;
TLOOP=FALSE ;
OUTDATE= I NDATE ;
END;

ELSE DO;
CALL PARSE_DATECTEMPIN,ERR);
IF ¢"ERR> THEN DO;

- 186 -

OQUTDATE=SUBSTRC(TEMPIN, 1,2>] |
SUBSTRCTENP IN, 4, 25| ISUBSTRCTEMPIN,7,2);
TLOOP=FALSE ;
END;
ELSE
CALL TPUTC' INVALID DATE SYNTAX, RE-ENTER. '
212
END;
END; /* HHILE */
END; /* PROMPT_DATE */

/ /
/% w7
lid THIS SUBROUTINE VERIFIES THAT THE DATE TYPED (N =/
* A CORRECT FORMAT. THE DATE VALUE TO BE VERIFIED %/
/= IS PASSED IN DATEARG WHILE THE ERR INDICATING ®/
* AN ERROR WAS DISCOVERED. */
la */
/ /
PARSE_DATE : PROC(DATEARG, ERR);

DCL DATEARG CHAR(8)>;

DCL ERR BITC1);

DCL DATE CHARR(8) VARYING;

DATE=DATEARG;

IF CINDEXCDATE, ' /' >=0) THEN DO;
IF (SUBSTR(DATE,2)="' ') THEN
DATE="0" | |DATE;
SUBSTR(DATE,3)=' /01/01";
END;
ELSE DO;
IF (SUBSTRC(DATE, 2, 1)=" /' > THEN

DATE='0" | |DATE;

IF CINDEX(SUBSTR(DATE, 4>, ' /' >=0) THEN DO;

IF (SUBSTRC(DATE,S5)>=' ') THEN
DATE=SUBSTR(DATE, 1,3>] | '0" | | SUBSTR(DATE, 4);
SUBSTRCDATE,6)>="' /01" ;

END;

ELSE DO,

IF (SUBSTR(DATE,S, 1=’ /') THEN
DATE=SUBSTR(DATE, 1,3>| | ‘0" | |SUBSTRCDATE, 4);

IF (SUBSTR(DATE,8>="' ') THEN

DATE=SUBSTR(DATE, 1,6>| | "0 | |ISUBSTR(DATE, 7);
END;
END;

ERR=FALSE ;

EAR = CHECK.DIG(SUBSTR(DATE, 1,2, '99");

ERR = ERR | CHECK_DIG(SUBSTR(DATE,4,2>, '13")
| *00°'=SUBSTRCDATE,4,2);

ERR = ERR | CHECK_DIG(SUBSTR(DATE,?,2),°'32")
| '00'=SUBSTR(DATE,?,2);

ERR = ERR | (SUBSTR(DATE,3,1)'='/')
| (SUBSTR(DATE,6, 1>'="'/');

IF ¢ERR> THEN

CALL TPUTC' INVALID DATE: ' ||DATEARG, 1); /% OF THE LOG FILE, IT HILL START WITH »/

ELSE /% THE BEGINNING OF THE LOG, OTHERHISE */
DATEARG=DATE; /* FROM THE END TO THE BEGINNING. THIS %/
CHECK.D1G:PROC(D1G2,L IM> RETURNSCBIT(1)); /% SUBROUTINE USES ASYNCHROUS FILE w/
DCL (DIG2,LIM) CHAR(2); /* HANDLING TO REDUCE THE SEARCH TIME. »/
DCL ERR BITC1)Y; /* WHEN INCR IS 1, INDICATES THE SEARCH */
ERR = FALSE; /* IS FROM BEGINNING, -1 INDICATES FRON */
IF (VERIFY(DIG2,NUHERIC)>=0) THEN DO; /% END TO THE BEGINNING. "y
IF <DIG2 »= LIM > THEN DO; ™ w/
ERR = TRUE,; / /
END; F IND_LOG_REC : PROCCDATE,, FROHM, END, INCR >
END; RETURNSCFIXED BINC15));
ELSE ERR= TRUE; DCL DATE PICTURE '999999" ;
RETURN(ERR); DCL (FROM,END, INCR > FIXED BINC1S);
END; /* CHECK.DIG */ DCL <1, J,PTR) FIXED BINC1S);
END; /*PARSE DATE®/ DCL TYPE CHARC1);
DCL ECLPTR) EVENT;
/ / IF LPTR > SYSP.NLOGREC THEN
% ®/ PTR=SYSP .NLOGREC+1;
/% THIS SUBROUTINE FINDS THE INDEX OF THE */ ELSE
/% LOG RECORD WITH THE STARTING DATE OF #/ PTR=LPTR;
/% 'START'. THIS SUBROUTINE MILL CHECK FOR =/ DO i=FROM TO END BY INCR*PTR;
/* THE RANGE OF 'START' DATE. 1T SHOUWLD BE */ DO J=1 TO PTR;
/* BETHMEEN THE CREATION DATE OF LOG FILE »/ READ NOLOCK FILECLOGFIL) INTOCLOGSCJ))
/* AND THE LAST DATE USED ON THE LOG FILE. %/ KEYC1+¢J~ 1% INCR) EVENTCE(J));
/* IF NOT, IT RETURNS 0. »/ END;
* »/ DO J=1 T0 PTR;
/ / HAITCECYD);
FIND_LOG: PROCC(START, END, CURDATE > RETURNS(F IXED BINC15)); TYPE=LOGS(J) . TYPE;
DCL (START,END,CURDATE) PICTURE '999999"; IF (TYPE='2' | TYPE="3" | TYPE='4" | TYPE="S") THEN DO;
DCL (CREATDATE,MIDDATE) PICTURE '999999"; IF CINCR>O & LOGSCJ).$1D>=DATE> THEN
IF (START>END) THEN RETURNCO); RETURNC | +¢J—1 2 |NCR);
READ NOLOCK FILECLOGFIL)> INTOCLOGREC) KEY(O); IF CINCR<O & LOGSCJ).SID<DATE? THEN
CREATDATE=LOGREC.S1D; RETURNCF I ND_LLOG_REC (DATE, | +(uJ~1* | NCR,
IF ~(CREATDATE<START & START<=CURDATE> THEN FROM, 1));
RETURNCO); END;
ELSE DO; END; /* WHILE */
MIDDATE=CCREATDATE+CURDATE) /2; END;
IF (STRRT<=MIDDATE > THEN DO J=|~INCR*PTR TO END BY [NCR;
RETURNCF |ND_LOG_RECCSTART , 1, SYSP .NLOGREC, 1)); READ NOLOCK FILECLOGFILY INTOCLOGREC> KEY(Y);
ELSE TYPE=LOGREC. T.'PE; | I
sy IF CTYPE='2' | TYPE='3" [TYPE="4"' | TYPE='5"'> THEN DO;
RETURNCF IND_LOG_REC(START, SYSP.NLOGREC, 1,-1)); IF CINCRY0 & LOGREC $1Do=BATE S Tien
) E"f_ 06 * RETURN(J);
Em?"}; CISTIS;*/ / IF CINCR<O & LOGREC.SID<DATE> THEN
; RETURNCF | ND_LOG_REC(DATE, J, FROM, 1));
END;
/ / END; /* HHILE */
I* */ RETURNCO);
/* THIS SUBROUTINE SCANS THE LOG FILE */ END; /* FIND_LOG_REC */
/% FROM THE BEGINNING OR FROM THE END #/ END; /* MONITOR */
/% UNTIL THE GIVEN DATE IS FOUND. IF ®/
/% THE GIVEN DATE 1S AT THE LOHER PART #/ / /

- 187 -

/% #*/ NOTHRRKER=FALSE ;

/ THIS PROCEDURE IS THE MAIN ROUTINE WHICH 7 END;
I HANDLES STUDENT TRANSACTION PROCESSING. */ ELSE DO;
,* THIS ROUTINE LOOPS CALLING THE STUDLOGIN */ CALL PRINT_INFOCFOUND);
/ SUBROUTINE TO LOGIN THE NEXT STUDENT. (IF */ IF ¢*FQUND> THEN GOTO REPEAT;
” THE INST,TA,OR MARKER SIGNS ON AS THE NEXT */ END;
/" STUDENT THEN CONTROL IS TRANSFERED OUT OF #/ END;
/* THIS ROUTINE TO THE MAIN CONTROL MENU OR */ IF (SLOOPSNOTMARKER) THEN DO;
” MARK TEST SUBROUTINE). AFTER SIGNING ON THE*/ IF (STUD.PSTATE"=PST_P & -NULL_PROC) THEN DO;
~ NEXT STUDENT THIS ROUTINE LOOKS AT HIS wy CALL GET_PROC_STATUSCFOUND);
/ INTERNAL STATE TO DETERMINE WHICH PROMPTS s/ IF ¢*FOUND> THEN GOTO REPEAT;
/% ARE PRINTED. THE ARRAY CASE_TBL IS USED TO #/ Eno;
/* DETERHINE WHICH OF THE THREE ALTERNATIVES */ NULL_PROC=FALSE;
7 OF THE SELECT STATEMENT INTERNAL TO THIS =/ CALL READ_STUDCSTUD. ID, FOUND);
7% ROUTINE IS CHOSEN. ONE ALTERNATIVE IS THAT */ IF C"FOUND)> THEN DO;
” THE STUDENT HAS NO UNHARKED TEST AND HE = »/ CALL REC_NO_FOUND;
/* SHOULD BE PROMPTED TO GENERATE THE NEXT ONE*/ GOTG REPEAT;
P THE NEXT ALTERNATIVE IS TAKEN IF HE HAS %/ END;
/* GENERATED A TEST BUT NOT SELECTED PROCTORS.*/ SELECT(CASE_TBL(STUD . PSTATE, STUD. TSTATE >);
7 THE THIRD ALTERNITIVE IS THAT HE HAS BEEN %/ BHENC'T* > CALL ASK_TEST; /*TEST ASK*/
I SELECTED TO PROCTOR SOMEONE ELSES TEST AND */ HHENC'P' > CALL SELECT_PROC; /*PROCTOR SELECT */
” HE MUST NOM ENTER IN THE MARK. THE NULPROC */ WHENC'M' > CALL MARK; /*MARK TEST*/
0 VARIABLE IS SET TO TRUE IF THE CURRENT wy OTHERWISE CALL INTERNAL-ERR(S); /*ERROR */
- STUDENT HAS BEEN SELECTED AS A PROCTOR BUT */ END; /*SELECT*/
™ THE TEST HE HAS BEEN ASKED TO PROCTER HAS */ IF (“NULL_PROC) THEN DO;
” ALREADY BEEN MARKED BY THE INSTRUCTOR OR */ CALL TPUTC'OK TRANSACTION COMPLETE. ", 1);
m HAS BEEN CANCELLED. THIS CAUSE THE STUDENT %/ CALL TPUTC'ENDING AT: ||
/ LOGIN PROCEDURE TO BE SKIPPED THE NEXT TIME®/ SEPARATEC(SUBSTR(TIMNE, 1,6)), 1);
7% THROUGH THE LOOP AND AILLOWS THE CURRENTLY »/ END;
/- LOGGED IN STUDENT TO PERFORM ANOTHER TYPE =/ END; /% IF %/
/ OF TRANSACTION. "y END; PUHILE*/
” */ /% LOGICAL END OF SESSION CONTROL */
/ /
SESS|ON_CONTROL :PROC; / /
DCL CBLANKF , FOUND, NOTHARKER > BITC1); 7% */
DCL CASE_TBL(L_PST,L._TST) CHARC1> INITC /* ASKS FOR TEST GENERATION #/
TP TP, PP, T, P, P, T, ” */
TLPLT R PR T PR T / /
TP, TR, PP, T, P, P, T ASK_TEST :PROC;
M ET LR H R M E N : DCL THSG CHAR(22)> INITC
DCL CID cmn(7); 'GENERATE TEST ON UNIT '),‘
DCL (SLOOP, PROCEDE, HULL_PROC, NONE > BITC1); DCL THSG2) CHARC19) INITC
SLOGP=TRUE, ©(YIES, (N)0? Y
A pCL I0UT PICTURE ‘2229’ ;
NULL_PROC=FALSE ; s,
OCL YNC2) CHARCT) INITC'Y', "N »;
REPEAT: DO HHILECSLOOP); DCL CNOM, STOP> PICTURE '€12)9";
NOTMARKER=TRUE ; DCL TRESP FIXED BINCIS);
IF ("NULL_PROC> THEN DO} PROCEDE = TRUE;
CALL STUD_LOGINCCID); CALL READ_SVYSP;
IF <((CID="INST*> | <CID="TA"'>> THEN IF (STUD.TSTATE=TST_R3>| (STUD. TSTATE=TST_RC) THEN
SLOOP = FALSE; CALL RESTUDY_CHECK(PROCEDE);
ELSE IF (CID='MARKER') THEN DO; IF (SYSP.SESSTIME>SYSP.SESSCUTOFF) THEN
CALL MARK_TESTC' *); STOP=(SYSP . SESSDATE+ 13| | SYSP , SESSCUTOFF;

- 188 -

ELSE
STOP=SYSP SESSDATE| | SYSP. SESSCUTOFF;
NOW=DATE | ISUBSTR(TINE, 1,6);
IF (NOW>STOP) THEN DO;
PROCEDE=FALSE ;
CALL TPUTC'TEST CUT-OFF TIME REACHED, ', 1);
CALL TPUTC'NO MORE TESTS WILL BE '||
' ISSUED FOR THE REMAINDING CLASS. ', 1);
END;
IF (PROCEDE) THEN DO,
1OUT=STUD. UNIT+1;
CALL GET.RESPC(TMSG|]IOUT| | TMSG2, YN, TRESP,2);
IF (TRESP=1) THEN DO; /*GEN TEST*/
CALL READ..STUD(STUD. |D,FOUND);
{F ¢*FOUND)> THEN DO;
CALL REC_NO_FOUND;

RETURN;
END,
IF (CASE..TBL(STUD.PSTATE, STUD.TSTATE > ='T')
THEN DO;
NULL.PROC=TRUE;
RETURN;
END;
CALL GENTESTCFOUND)>;
END;
END;
END; /*® ASK_TEST #/
/ /
/% #/
/* REQUIRES FOR PROCTORS */
* 4
/ /
SELECT.PROC:PROC;
DCL <PID1,PID2) CHAR(??;
DCL CP¢2)> CHARC1) INITC'C','P');
DCL PHSGH CHRR(S6> INIT(
‘DO YOU UANT YOUR TEST (C)ANCELLED OR (P)ROCTORED? HE 34
DCL PNMSG2 CHARC60> INITC
'YOU MUST HAVE YOUR CURRENT TEST PROCTORED BEFORE PROCEEDING.');
DCL IPROCHSG CHAR(37?)> INITC
'PROCTOR SELECTED IS INSTRUCTOR OR TR.')>;
DCL PS1A CHAR(34 > INITC
‘FIRST PROCTOR SELECTED, STUDENTS: *);
DCL PS2A CHAR(3S)> INITC
'SECOND PROCTOR SELECTED, STUDENT®: ');
DCL PRESP FIXED BINCIS);
DCL (NOM, STOP) PICTURE '(12)9°;

IF (STUD. TSTATE=TST.T>{ (STUD. TSTATE=TST_OT> THEN DO;
CALL GET_RESP(PNMSG1,CP,PRESP,0);
CALL READ_STUD(STUD. I1D,FOUND);
IF ¢*"FOUND> THEN DO;
CALL REC_NO_FOUND;

- 189 -

RETURN;
END;
€ (CASE.TBL(STUD.PSTATE,STUD . TSTATE)="P" &
(STUD. TSTATE=TST_T| STUD. TSTATE=TST_OT)))
THEN DO;
NULL_PROC=TRUE;
RETURN;
END;
(PRESP=1)> THEN DO;
CALL STATE_MACHC'C',CID);
END;
C(PRESP=2) THEN DO;
CALL FIND_PROCTORSC(PID1,PID2,NONE);
CALL READ._STUD_LOCKC(FOUND;
IF ¢*FOUND> THEN DO;
CALL REC_NO_FOUND;
RETURN;
END;
IF (“(CASE_TBL(STUD.PSTATE, STUD . TSTATE)="P" &
(STUD. TSTATE=TST_T|STUD. TSTATE=TST_OT>))
THEN DO,
RULL..PROC=TRUE ;
UNLOCK FILECSTUDFIL) KEY(STUD. ID);
RETURN;
END;
If C(NHONE> THEN DO;
CALL TPUT('ALL. AVAILABLE PROCTORS®
Il' ARE BUSY. TRY AGAIN LATER. ", 1;
UNLOCK FILECSTUDFIL)> KEY(STUD. |D);
END;
ELSE DO;
CALL STATE-MACHC'1',CIDY;
IF CPID1="INST')> THEN DO;
CALL TPUTCIPROCHMSG, 1);
END;
ELSE DO;
STUD. 1D=P(D1;

CALL REARD_STUD_LOCK(FOUND »;

IF ¢*FOUND> THEN
CALL INTERNAL_ERRC(1);

IF (SYSP.SESSDATE<DATE)&C(STUD.RTIME>Q) &
(STUD.RTIME<=THENTYH)>> THEN
STOP=(SYSP .SESSDATE+1)>| [STUD .RTINE;

ELSE
STOP=SYSP . SESSDATE | | STUD.RTIME;

NOW=DATE| | SUBSTR(TIME, 1,6);

IF ((STUD.PSTATE=PST.PA)&

(STUD . TSTATE =TST_T &
(STUD. TSTATE "=TST_0T)%
(" C(STUD. TSTATE=TST.R3 »%
C(NOH<STOP)))
THEN DO;

CALL STATE.MACHC'P',CID);
CALL TPUTCPSIA]IPIDI] |
*, NANE: '||STUD.NANE, 1);

STUD. ID=P1D2;

CALL RERD_STUD_LOCKCFOUND);

IF ("FOUND)> THEN
CALL INTERNAL_ERR(1);

IF (SYSP.SESSDATE<DATE Y&C(STUD.RTIME>O
Y&(STUD .RTIME<=THENTYI))> THEN
STOP=(SYSP .SESSDATE+1)>| |STUD .RTINME;

ELSE
STOP=SYSP . SESSDATE| | STUD. RTINE;

IF ¢((STUD.PSTATE=PST.PA &

(STUD. TSTATE*=TST_T)&
(STUD. TSTATE *=TST..0T &
€ <<STUD, TSTATE=TST_R3)&
CNOHCSTOP) >)
THEN DO;
CALL TPUT(PS2A1 |P1D2] |

', NAME: ' ||STUD.NAME, 1);
CALL STATE_MACHC'P',CID);
END;

ELSE DO;

UNLOCK FILECSTUDFIL) KEYCPID2);
CALL READ.STUDCPID1,FOUND);
CALL STATE_MACHC'N',PID1);
CALL TPUTC'STUDENT®: '}]
PIDHI |’ IS CANCELLED ']|
*TO BE A PROCTOR. ", 1);
CALL READ_SYSP_LOCK;
IF SYSP.CUR_I..TEST<|._TEST.LIM
THEN DO;
CALL TPUTCIPROCNSG, 1);
SYSP.CUR_I _TEST=
SYSP.CUR.I TEST+1;
END;
ELSE DO;
CALL. READ.STUD(CID, FOUND);
CALL STATE.MRCHC'T',CID);
CALL TPUTC ALL AVAILRBE'| |
* PROCTORS ARE '] |
‘BUSY. TRY AGAIN LATER.', 1);
END;
CALL UPDATE_SYSP;
END;
END;

ELSE DO;

UNLOCK FILECSTUDFIL) KEY(PID1);
CALL READ_SYSP_LOCK;
IF (SYSP.CUR..I_TEST<I_TEST_LIM)
THEN DO;
CALL TPUT(IPROCHSG, 1);
SYSP.CUR.| _TEST=SYSP.CUR..| _TEST+1;

- 190 -

END;
ELSE DO; :
CALL READ_STUD(CID,FOUND?;
CALL STATE.NMACHC'T',CID);
CALL TPUTC'ALL AVARILABLE ||
* PROCTORS ARE ||
'BUSY. TRY AGAIN LATER.', 1);
END;
CALL UPDATE_SYSP;
END;
END; /*ELSE®/
END; /*ELSE%/
END; /%THEN*/
END;
ELSE DO; /* PROCTORS ALREADY SELECTED*/
CALL TPUTCPIMSG2, 1);
END;
END; /% SELECT_PROC */

/ /
/* */
/* A PROCTOR MARKS A STUDENT #*/
lad ®/
/ /
MARK: PROC;
DCL SELMSG CHARCG 1) INITC

'YOU HAVE BEEN SELECTED TO PROCTOR A TEST FOR STUDENT NUMBER: '»;

DCL NULMSG1 CHAR(S3) INITC
'A TEST YOU HAVE BEEN SELECTED TO PROCTOR HAS BEEN CAN' >;
DCL NULMSG2 CHARCSO)> INITC
'CELLED BY THE STUDENT OR MARKED BY THE INSTRUCTOR.' >
DCL MARKSTATECL_TST)> BITC1)> INITC
'0'8,'0'8,'0'8,°1'8,'1'B,'1'B,°0'B, '0'B, ' 1'B, ‘0°B;
IF (STUD.SID ="' ') THEN DQ;
SAVE=STUD;
CALL READ._STUDCSTUD.SID,FOUND);
IF ("FOUND)> THEN DO;
CALL INTERNAL_ERR(3);
END;
CALL TPUT(SELMSG| ISAVE.SID, 1);
CALL TPUT('STUDENT NAME: | |STUD.NANE, 1);
IF (MARKSTATE(STUD.TSTATEY> THEN DO;
CALL GET.QUES_NUM(BLANKF»;
CALL GET_MARK(BLANKF, SAVE. |D, FOUND, HARKSTATE 2;
IF <*FOUND) THEN DO;
STUD=SAVE;
CALL TPUTCNULMSG 1] INULMSG2, 1);
NULL..PROC=TRUE;
CALL STATE_MACH('N',CID);
RETURN;
END;

.

IF ("BLANKF) THEN DO;

STUD=SAVE; CALL REC_NO_FOUND;

CALL STATE_MACHC'N',CIDY; RETURN;
CALL GET_PROC_STATUS(FOUND); END,;
IF ¢"FOUND)> THEN RETURN; IF (DRESP=1) THEN DO;
END; PUT STRING(COUT1)> EDITC CURRENT UNIT: ",
END; STUD.UNIT, ', TEST POINTS:',STUD.TEST,
ELSE DO, *, PROCTOR POINTS:',STUD.PROCTOR, ', TERM PROJECT:®,
STUD=SAVE; STUD.TERM, ', FINAL EXAM:‘,STUD.EXAM)
CALL TPUT(RULMSG!| INULNSG2, 1); (AP 229°',4 (A,FC?,2)»;
RULL..PROC=TRUE ; CALL TPUTCCOUTI, 1);
CALL STATE_MACH('N',CID); PUT STRING(COUT2) EDITC TOTAL POINTS:*,
END; STUD.TOTAL, ', LETTER GRADE: ',STUD.LETTER)
END; . (A,FC(?,2),R,AC2));
ELSE DO; CALL TPUT(COUTZ, 1);
CALL. TPUTCNULNMSG1] INULNSG2, 1); END;
NULL..PROCaTRUE ; END; /7* PRINT INFQ #/
CALL STATE_MACH('N',CID);
END; / /
END; /* MARK =/ Vad w/
* THIS ROUTINE WRITES THE <PROCTOR? > PROMPT #/
/ / /* TO THE TERMINAL AND ALLOWS THE STUDENT TO w/
/* w/ /* CHANGE HIS PROCTOR AVAILABLITY STATUS. */
lad THiIS PROCEDURE PROMPTS THE TERMINAL FOR */ r* */
/* A STUDENT NUMBER AND A PASSHORD AND ®/ / /
Tad AETURNS ONCE A VALID STUDENT NUMBER , w/ GET_PROC_STATUS: PROC(FOUND >;
/* PASSHORD PAIR HAS BEEN ENTERED. THE w/ DCL YN(¢2)> CHARC1) INITC'Y','N');
fad STUDENT NUMBER OF THE JUST LOGGED IN */ DCL MSG CHAR(26)> INIT(
Vad STUDENT IS RETURN IN THE PARAMETER CID. */ 'PROCTOR? (Y)ES, (N>0 A 5
/* w/ DCL NOTHSG(4)> CHAR(4)> VARYING
/ / INITC HOT', ' ", NOT', ' *»;
STUD_LOGIN:PROC(CID); DCL RESP FIXED BINC1S);
©00 confidential procedure ooo DCL FOUND BIT(t);

END; /*STUDENT LOGIN®/ CALL GET_RESP(MSG,YN,RESP,0);

CALL READ_STUDC(STUD. ID,FOUND);

/ / IF ¢*FOUND) THEN DO;
* w/ CALL REC_NO_FOUND;
/* THIS PROCEDURE 1S CALLED TO PRINT THE */ RETURN;
/% <DO YOU WISH TO VIEM YOUR CURRENT COURSE*/ END;
/% STANDING> PROMPT AND IT DISPLAYS THE */ SELECTCRESP);
/* DATA IF THE RESPONSE IS AFF IRMATIVE. 2 HHENC1)D0; /* CHANGE TO PR */
* */ IF (STUD.PSTATE*=PST_PA> THEN DO;
/ / CALL READ.STUD_LOCKCFOUND);
PRINT_INFO:PROC(FOUrD); IF ¢"FOUND)> THEN RETURN;
DL pREsh FIXED BINC1S; STUD PSTATE= PSTPA;
A CALL UPDATE..STUD(STUD. 1D, FOUND);
DCL YNC2) CHARC1) INITC'Y', "N); IF CFOUND> THEN
DCL DMSG CHARC60)> INITC
"HANT 70 VIEM YOUR CURRENT COURSE STANDING? (Y)ES, (N>0 C CALL INTERNAL_ERR(?),
DCL COUT1 CHARC 103); END;
DCL COUT2 CHAR(38); END;

CALL GET_RESP(DISG, YN, DRESP,2);
CALL READ_STUD(STUD. ID,FOUND);
IF ("FOUND) THEN DO;

HHEN(2> DO; /* CHANGE TO PNA */
IF <(STUD.PSTATE "=PST_PNA |
(STUD.PSTATE"=PST_!>> THEN DO;

-191 -

CALL READ_STUD.LOCK(FOUND);
IF ¢*FOUND)> THEN RETURN;
STUD . PSTATE=PST_PNA;
CALL UPDATE_STUDCSTUD. 1D, FOUND);
IF ("FOUND) THEN
CALL INTERNAL_ERR(7);
END;
END;
HHENCO) DO, /» LEAVE UNARLTERED */

Eml
OTHERWISE DO;
CALL INTERNAL_ERR(8);
RETURN,;
END;
END; /* SELECT®/
CALL. TPUTC'STUDENT®: ' ||STUD.IDI|" IS°']|
NOTHSG(STUD .PSTATE> || * AVAILABLE FOR PROCTORING.', 1);

END; /* GET PROC STATUS */

/ /
* A
Vhd THIS PROCEDURE S CALLED IF A STUDENT IS IN #»/
/% THE RESTUDY STATE TO CHECK |F HE HAS COM~ %/
/% PLETED ALL OF HIS RESTUDY TIME. THE BOOLEAN *»/
/% ARGUNMENT PROCEDE 1S RETURNED WITH THE VALUE %/
Tad FALSE IF THE STUDENT HASNT FINNISHED HIS 10 »/
Iad MINUTES OF RESTUDY TIME. w/
* w/
/ /
RESTUDY..CHECK : PROCC(PROCEDE>;
DCL. PROCEDE BITC,;
DCL <NOU, STOP) PICTURE '(12)>9°;
PROCEDE = TRUE;
IF (SYSP SESSDATE<DATE) &
((STUD .RTIME>0)&(STUD . RTINE<=TUHENTYM) > THEN
STOP=(SYSP.SESSDATE+1>| ISTUD.RTINE;
ELSE
STOP=SYSP . SESSDATE | | STUD .RTIME;
NOW=DATE| |SUBSTRCTIME, 1,6);
IF (STOP>NOM) THEN DO;
PROCEDE = FALSE;
CALL TPUT('YOU HAVE NOT COMPLETED 10 ||
'MINUTES OF RESTUDYING TIME. ', 1);
END,;
END; /*RESTUDY CHECK */
/ /
Vil */
/* THIS PROCEDURE GENERATES A TEST ON THE NEXT %/
lad UNIT AND PRINTS IT ON THE TERMINAL. w*/
/* »/
/

4
GENTEST: PROCCFOUND »;

DCL FOUND BITC1);
DCL (TQ1,7TQ2,7TQ3,LiN) FIXED BINC1S);
DCL COUT CHAR(72);

CALL READ._SYSP;
IF (STUD.UNIT >= SYSP.NUNIT> THEN DO;
CALL TPUT('YOU HAVE COMPLETED ALL THE UNITS.', 1);
END;
ELSE DO,
TQI=TQR=TQ3=0 ;
L IM=SYSP . UNITL(STUD .UNIT+1);
IF <LIM<3)> THEN DO;
CALL TPUTC'TEST CANNOT BE GENERATED.', 1);
CALL TPUTC'UNIT MUST HAVE AT LEAST 3 CHOICES'
s 1)
CALL TPUTC'SEE INSTRUCTOR. ', 1);
RETURN;
END;
TQi=GENRANDCLIN, TQ1, TQ2, TQ3);
TQ2=GENRANDCL IN, TQ1,TQ2, TQ3);
TQ3=GENRANDCL.IM, TQ1, TQ2, TQ3);
CALL READ_STUD_LOCK(FOUND>;
IF ¢"FOUND) THEN DO;
CALL REC_NO_FOUND;
RETURN,
END;
IF CCASE..TBL(STUD.PSTATE, STUD. TSTATE) ="'T")
THEN DO;
NULL..PROC=TRUE;
UNLOCK FILECSTUDFIL) KEYCSTUD. ID);
RETURN;
END;
STUD.Q1=TQ1;
STUD. Q2=TQ2;
STUD. Q3=TQ3;
STUD. TSTATE=TST..T;
CALL UPDATE_STUD(STUD. |D, FOUND)>;
IF (“FOUND)> THEN CALL |INTERNAL_ERR(24);
PUT STRING(COUT) EDITC TEST GENERATED ON UNIT: "
,STUD.UNITHY, ', AT TINE: °,SEPARATE(SUBSTR(
THE, 1,6)),", QUESTIONS:',TQ1,",",TG2,", ", TQ3»
(A ,F(4,0>,A,A,A,3 (F(4,0),AC1)> »;
CALL TPUTCCOUT, 1),
CALL STATE.MACHC'T',CIDY;

END;
END; /* GENTEST »/
/ /
/* */
Al THIS PROCEDURE SCANS THE STUDENT FILE FOR %/
/” STUDENTS KHO ARE AVAILABLE FOR PROCTORING */
/* THE CURRENTLY LOGGED IN STUDENTS AND SELECTS*/
/% THO OF THEM <|F POSSIBLE)> TO PROCTOR THE #/
/* STUDENT. THE PARAMETERS PID1,PID2 ARE USED */

-192 -

/* TO RETURN THE STUDENT NUMBERS OF THE THO w/
* PROCTORS AFTER THEY ARE FOUND. CIF STUDENTS */
/* ARE NOT AVAILABLE THE INSTRUCTOR KILL BE]
r* SELECTED, AND IF MORE THAN |_TEST_LIN TEST =/
* CURRENTLY ASSIGNED TO THE INSTRUCTOR THEN %/
/* THE RETURN ARGUMENT NONE IS SET TO TRUE. THE®/
/* FOLLOWING ALGORITHM 1S USED TO SELECT w/
Vi PROCTORS: THE ARRAY PINDX USED TO KEEP ALL */
Vid THAT ARE ELIGIBLE TO PROCTOR THE CURRENT */
/% STUDENT. ¢ AR STUDENT IS ELIGABLE |F HE HAS =/
/* PASSED THE UNIT THE CURRENT STUDENT TEST IS %/
lad IS ON AND IF HIS PROCTOR STATE IS PROCTOR =/
” AVAILABLE AND HE 1S NOT WRITING A TEST OR %/
/= STILL HAITING OUT HIS 10 MINUTES OF RESTUDY */
/* TIME. > A STUDENT {S INSERTED INTO PINDX */
Vi THROUGH A CALL TO INSRTP SUBROUTINE.IF LESS %/
/* THAN THO STUDENTS ARE AVAILABLE THE INST- *=/
/% RUCTOR IS SELECTED. OTHERKISE THE STUDENTS »/
/* HITH THE LOKEST NUMBER OF PROCTOR POINTS IS %/
/* SELECTED. ¢ THE NOT_EQ SUBROUTINE IS USED =%/
lid TO DETERMINE THE NUMBER OF STUDENTS WITH THE*/
/* LOKEST PROCTOR POINTS. > IF MORE THAN ONE */
Vad STUDENT HAS THE LOWEST PROCTOR POINTS (OR »/
* SECOND LOMEST> THEN THE GENRAND SUBROUTINE %/
Fiad 1S CALLED TO RANDOMLY SELECT FROH AMONG THEM®/
/% #/
/ /
FIND_PROCTORS :PROCC(PID1,PI1D2,NONE);
DCL (NONE,AvAIL)> BITC(1);
DCL <PIDI1,PID2) CHRARC?),;

DCL <J, |, PEND,PEND 1)
DCL 1 TEMP LIKE PINDX;
DCL CNOW, STOP)
PEND=0;
ON ENDFILECSTUDFIL) GOTO EOF;
CALL CLOSE.FILECSTUDFIL);
NOU=DATE} | SUBSTRCTINE, 1,6);
OPEN FILECSTUDFIL)Y INPUT SEQUENTIAL BUFFERED;
DO WHILEC' 1'BY;

READ FILE(STUDFIL) INTOCTSTUD);

IF (SYSP.SESSDATE<DATE) &

FIXED BINCIS);

PICTURE '(12)9°;

CCTSTUD AT IHEY0)&CTSTUD . RT IME <= THENTYH) > THEN

STOP=(SYSP.SESSUATE+1)| | TSTUD.RTIME;
ELSE
STOP=SYSP .SESSDATE| | TSTUD.RTIME;

IF <(TSTUD .PSTATE=PST.PA)&(TSTUD. TSTATE =TST..T>
&(TSTUD. TSTATE "=TST_OT) & (TSTUD.UNIT>
STUD.UNIT 8" C(TSTUD. TSTATE=TST..R3>&
CNOW<STOP »)>)>)> THEN
CALL INSRTP;

END;

EOF: CALL CLOSE_FILECSTUDFIL);

-193 -

OPEN FILECSTUDFIL)> EXCL UPDATE DIRECT UNBUFFERED;
NONE=FALSE;
IF (PEND<2)> THEN DO; /* SELECT INSTR.*/

CALL READ_SYSP_LOCK;

IF (SYSP.CUR_I_TEST>=| _TEST_LIN> THEN DO;

NONE=TRUE;
END;

ELSE DO;
PIDI="INST";
PID2=P 1D},
SYSP.CUR..| .TEST=SYSP .CUR_I . TEST+1;
END;

CALL UPDATE_SYSP,

END;

ELSE DO;

PEND 1=NOT.EQC1,PEND);
I =GENRAND(PEND 1,0,0,0>;
PID1=PINDXC1>.1D;
TEMP = PINDXC1);
PINDXC1)=P INDXC1);
PINDX (1)=TEMP;
PEND 1=NOT..EQ(2, PEND;
1 =GENRANDCPEND 1-1,0,0,0);
PID2=PINDXCI+1).ID;
END;

/*.0GICAL END OF FIND PROCTORS. */

/ /
/* */
/% THIS IS A SUBROUTINE OF THE FIND_PROCTORS w/
/* PROCEDURE WHICH TAKES THE PROCTOR NAME RND »*/
/% PROCTOR VALUE AND INSERTS THE RECORD TO THE */
/* PINDX ARRAY IN SUCH AS THAT ALL THE */
/* IN PINDX ARE IN ASCENDING ORDER OF PROCTOR */
e POINTS. */
/% */
/ /
INSRTP: PROC;

DCL. 1 CARRY LIKE PINDX;

peL <K, L) FIXED BINCIS);
DCL INSRTD BITC1);
DCL LBL LABEL

ON SUBSCRIPTRANGE BEGIN;
DCL 1 TEMPC(LSTUD) LIKE PINDX;
DCL M FIXED BIN(15);
TEMP=P INDX;
LSTUD=LSTUD+H. STUDHORE ;
FREE PINDX;

ALLOC PINDX;

DO M=1 TO PEND;
PINDX<H)>=TEMP(M);

END;

GOTO LBL;

END; ! /
INSRTD=FALSE ; /™ w/
LBL=A; /* THIS PROCEDURE IS CALLED TO PROMPT PROCTORS w/
DO K=1 TO PEND WHILEC" INSRTD?; /% BEFORE THEY ENTER THEIR MARK TO ENTER THE w/
IF CTSTUD.PROCTOR<PINDX<K)>.PROCTOR> THEN DO; /% UNIT AND QUESTION NUMBERS WRITTEN BY THE #/
A: DO L=PEND TO K BY ~1; /% STUDENT BEING PROCTORED TO VERIFY THAT HE */
(SUBSCRIPTRANGE >: PINDXCL+1)=P|NDX{L); /% WRAOTE THE SAME TEST WHICH HAS GIVEN TO HIM. %/
END; /% IF THE PROCTOR RESPONDS WITH R BARE RETURN To*/
PIRDXCO=TSTUD, BY NAME; /% ANY OF THE PROMPTS THE RETURN ARGUMENT- w/
INSRTD=TRUE; /% DONTKNOH IS SET TO TRUE. ALLON ANOTHER =/
END; /% 3 TRIALS OF ENTERING UNIT NUMBERS. w/
END; /% w/
PEND=PEND+1; / /

LBL=B; GET_QUES_NUHN : PROC(DONTKNOH) ;

CSUBRG>: B: IF (“INSRTD> THEN PINDX(PEND)=TSTUD, BY NAME; OCL (BLANKF,NGOOD, EQ, CONT, DONTKNON » BITCD;
END; /* INSRTP*/ DCL QARRY(3)> BITC1);

DCL (VAL, TGOOD, 1 ,K, TRIAL > FIXED BINCIS);

/ / DCL TRY FIXED BINCIS) INITC(3);
/* »/ DCL VALOUT PICTURE '2229°;

Al THIS IS A SUBROUTINE OF THE FIND_PROCTORS %/ DONTKNOW=FALSE;

/* PROCEDURE. IT IS USED TO SCAN THE PINDX */ CONT=TRUE;

/* ARRAY FOR A CONTIGUOUS SET OF STUDENTS WHICH®/ DO 1=0 TO TRY HHILECCONT);

/% THE SAME PROCTOR POINTS. SINCE THE PINDX
lae ARRAY BUILT IN SORTED ORDER THIS ROUTINE

*/
*/

”* ACCEPTS THO ARGUMENTS: A SCAN START POSITION®/

CALL TPUTC'ENTER UNIT NUMBER WRITTEN BY THE'| |
* STUDENT S
CALL GET_INTCVAL,NGOOD, BLANKF)

/% AND END POSITION. THE INDEX OF THE LAST */ IF (BLANKF > THEN
/* STUDENT , IN THE RANGE OF THE SCAN, WHO HAS */ CONT=FALSE;
/* SAME AMOUNT OF PROCTOR POINTS AS THE STUDENT*/ ELSE 0O;

/* INDEXED AT THE STAAT LOCATION IS RETURNED TO*/
/* TO THE CALLING PROGRAM. THIS INFORMATION IS */

IF <NGOOD)> THEN
CALL TPUTC' INVALID NUNBER, RE-ENTER.',1);

/* TO DETERMINE IF THERE ARE MORE THAN ONE »/ ELSE DO;
/* STUDENT WITH THE LOHEST COR SECOND LOMEST) */ IF C(STUD.UNIT+1)>"=VAL)> THEN DO;
/* PROCTOR POINTS. "/ VALOUT=VAL ;
1% ®/ CALL TPUTC'STUDENT DID NOT WRITE TEST' |}
/ / * ON UNIT:' | [UALOUT, 1);
NOT_EQ:PROC(STRT,END> RETURNSCFIXED BINC15)); END ;

DCL (STRT, END, MARKER) FIXED BINCIS); ELSE CONT=FALSE;

DeL K FIXED BINCIS); END;

DCL EQ BITC1); END;

EQ=TRUE; : END;

MARKER=END; QARRY=FALSE;

CONT=TRUE ;

DO K=STRT+1 TO END WHILECEQ>;

: T600D=0;
IF ;séim;ﬁmn.mocma =P NDXCK> . PROCTOR) IF CBLANKF| C1>TRY>> THEN DO;
EQ=FALSE; DONTKNOH=TRUE;
; CONT=FALSE
MARKER=K-1; END;
END; TRIAL=0;
END; DO HHILECCONT&(TRIAL<=TRY)>);
RETURNCMARKER); CALL TPUTC'ENTER A QUESTION NUMBER MR|TTEN BY THE!|
END; /% NOT EQ */ ' STUDENT TS

END; /* FIND PROCTORS */ CALL GET_INTCVAL, NGOOD, BLANKF);

IF (BLANKF) THEN

-194 -

CONT=FALSE;
ELSE DO;
IF (NGOOD)> THEN

CALL TPUTC' INVALID NUMBER, RE-ENTER.',1);

ELSE DO;
TRIAL=TRIAL+1;
Ke);
SELECT(VAL);
HHENCABS(STUD. Q1)) Km1;
HHENCABS(STUD. Q2)) K=2;
HHENCABS(STUD . Q3)) K=3;
OTHERHISE K=Q;
END; /% SELECT */
IF <(K=0) THEN DO;
VALOUT=VAL ;
CALL TPUTC'STUDENT WAS NOT ISSUED ‘||
'QUESTION NUNBER: ' | {uaLoUT, 1);
END;
ELSE DO;
IF ¢QARRRY<K>> THEN DO,
VALOUT=VAL ;

CALL TPUTC'QUESTION NUMBER: ' | VALOUT] |

' HAS ALREADY BEEN VERIFIED.', 1);
END,;
ELSE DO;
TRIAL=0;
TGOOD=TGOO0D+1;
QARRY (K)=TRUE ;
END;
END;
END;
END;
IF (TGOOD=3) THEN CONT=FALSE;
END; /HUHILE®/
IF (BLANKF | C(TRIAL>TRY) THEN DONTKNOW=TRUE;
END; /* GET QUES NuM */
END; /* SESSION CONTROL */

/ /
" »
/* THIS PROCEDURE |S USED TO ENTER A PROCTOR RE-*/
/% SULT. THE INPUT ARGUMENT CID CONTAINS THE 4
/% STUDENT NUMBER OF THE PROCTOR ENTERING THE */
/* RESULT. THE INPUT ARGUMENT BLANKF 1S SET T0 »/
/% TRUE |F THE PROCTOR RESPONDED WITH A RETURN */
/% TO0 ONE OF THE PROMPTS IN THE GET_QUES_NUH */

/* PROCEDURE. IF BLANKF IS SET TO TRUE THE #/
/* PROCTOR IS ONLY ALLOWED TO ENTER A RESTUDY */
/®* BRESULT (OR NO RESULT AT ALL). */
* */
/ /

GET_MARK: PROC(BLANKF , C1D, FOUND, PERHIT;

DCL CID CHAR(?);
DCL. (BLANKF, NOPASS,FOUNDY BIT(1);

DCL PERMITC*) BITC1);
DCL MMSG CHARC43) INITC

*CPIASS, CCYONDITIONAL PASS, CRIESTUDY? Y

DCL PCR(3) CHARC1) INITC'P','C',"R');
DCL (RESP,R1,R2,R3> FIXED BINC1S);

DCL GUTVAL PICTURE ‘Z229°;

DCL QHSG1 CHARC20) INITC

‘HAS QUESTION NUMBER: ');

DCL QiSG2 CHARC42)> INITC

* COMPLETED SUCCESSFULLY (VY)ES, (N)0? Dy
NOPASS=BLANKF ;

CALL GET.RESP(MMSG,PCR,RESP,0);

BLANKF=FALSE;

CALL READ_STUD.LOCK(FOUND);
IF ("FOUND)> THEN RETURN;
IF C“PERMITC(STUD. TSTATE >) THEN DO;
CALL TPUT('STUDENT®: ‘| |STUD.1D(|
"HAS JUST BEEN HARKED, NO RESULT ENTERED.', 1);
FOUND=FAL SE;
UNLOCK FILECSTUDFIL) KEV(STUD. ID);
RETURN;
END;
STUD. Q1=ABS(STUD.Q1);
STUD.Q2=ABS(STUD.Q2);
STUD.Q3=ABS(STUD.Q3);
CARLL UPDATE..STUD(STUD. ID,FOUND);
IF ("FOWD)> THEN CALL [NTERNAL_ERR(2S);
SELECTC(RESP);
HHENC 1) DO,
IF (NOPASS)> THEN DO;
CALL TPUTC'NOT ALLOWED TO PASS. NO RESULT ‘||
' ENTERED. *, 1);
BLANKF=TRUE;
END;
ELSE DO;
CALL STATEMACHC'J',CID); /* PASS */
CALL TPUT('PASS RESULT ENTERED.', 1);
END;
END; /*WHEN*/
WHEN(2) DO,
IF CNOPASS) THEN DO;
CALL TPUTC'NOT ALLOMED TO PASS. NO RESULT ‘||
'ENTERED. *, 1);
BLANKF=TRUE;
END;
ELSE DO;
CALL STATE.MACH('K',CID)Y; /*CONDITIONAL PASS*/
CALL TPUTC'CONDITIONAL PASS ENTERED. ', 1);
END;
END; /*WHEN*/
HHEN(3)> DO; /* RESTUDY */

OUTUAL = STUD.QI;
CALL GET_RESP(QMSG1]]QUTVAL| | QNSG2, YN, R, 1);
QUTUAL=STUD.Q2;
CALL GET_RESP(QNMSG 1] |GUTVAL | | 81562, YN,R2, 1);
QUTUAL=STUD.Q3;
CALL GET.RESP(QMSG1] |OUTVAL| | QNsG2,YN,R3, 1);
* CALL READ_STUD_LOCK(FOUND);
IF ("FOUND) THEN RETURN;
IF ("PERMIT(STUD.TSTATE)>)> THEN DO;
CALL TPUTC'STUDENT®: ' ||STUD.IDI|
'HAS JUST BEEN MARKED, NO RESULT ENTERED.', 1);
FOURD=FALSE;
UNLOCK FILECSTUDF IL) KEY(STUD. I1D);
RETURN,
END;
IF (R1=2) THEN
STUD.Q1=-STUD.Qt;
IF (R2=2) THEN
STUD.Q2=-STUD.Q2;
IF (A3=2) THEN
STUD.Q3=-STUD.Q3;
CALL UPDATE_STUD(STUD. |D, FOUND>;
IF ("FOUND) THEN CALL INTERNAL_ERR(25);
CALL STATE.MACHC'L',CID);

END;
HHENC(O) DO;
BLANKF=TRUE;
END;
OTHERMISE DO;
BLANKF=TRUE;
CALL INTERNAL_ERR(9);
END,;
END;
END; /% GET MARK */
/ /
/* */
/* THIS PROCEDURE IS THE STATE MACHINE FOR THE */
/% THE STUDENT TRANSACTIONS. A TRANSACTION TYPE*/
Thd IS PASSED IN ARGUMENT TRANS AND IT IS USED */
/% ALONG WITH THE STUDENTS CURRENT STATE TO w/
* GIVE THE STUDENT HIS NEW STATE. THE */
/™ TRANSACTION 1S THEN LOGGED BY A CALL TO THE */
T4d LOG..TRANS ROUT INE. */
” >
/ /
STATE_NMACH: PROCCTRANS,CI1D);
DCL CID CHAR(?);
DCL TRANS CHARC1);
DCL (FOUND, STUD_PROC) BITC1;

CALL READ_SYSP;
CALL READ_STUD_LOCK(FOUND);

- 196 -

IF ("FOUND> THEN RETURN;
SELECT(TRANS;
HHENC'T') DO; /* GENERATE TEST %/
STUD. TSTATE=TST..T;
STUD.RTIME=SUBSTR(TINE, 1,6);
CALL UPDATE_STUD(STUD. ID, FOUND);
IF ("FOUND> THEN CALL INTERNAL.ERR(20);
CALL LOGCTRANS,CID);
END;
HHENC'C*IDO; /* CANCEL TEST »/
STUD. TSTATE=TST.R3;
STUD.RT IHE=ADDT INECCSUBSTRCT IIE, 1,65, THENTYM);
CALL UPDATE..STUD(STUD. ID, FOUND)>;
IF (“FOUND)> THEN CALL INTERNAL_ERR(20);
CALL LOGCTRANS,CID)>;
END;
HHENC' 1°)D0; /* MARK TEST */
STUD. TSTATE=TST.RO;
CALL UPDATE..STUD(STUD. ID, FOUND >;
IF (*FOUND) THEN CALL INTERNAL.ERR(20);
CALL LOGCTRANS,CID);
END;
HWHENC'P*ODO; /* PROCTOR SELECT */
STUD.PSTATE=PST_P;
STUD.SID=CID;
STUD.RTIME=SUBSTR(TINE, 1,6);
CALL UPDATE..STUD(STUD. ID, FOUND);
IF (*FOUND> THEN CALL |INTERNAL.ERRC20);
CALL LOGCTRANS,CID);
END;
HHENC "1)DO;
STUD.PSTATE=PST_PA;
STUD .PROCTOR=STUD . PROCTOR+SYSP . UPROC;
CALL TOTAL.JMARKS;
CALL UPDATE..STUD(STUD. ID,FOUND»;
IF ("FOUND> THEN CALL [NTERNAL_ERR(20);
END;
HHENS "N)DO;
STUD. PSTATE=PST_PA;
CALL UPDATE.STUD(STUD. |D,FOUND);
IF (*FOUND> THEN CALL |NTERNAL_ERR(20);
END;
KHENC'J', ‘"K')DO; /* PASS RESULT */
DCL PPTBLCL_TST) FIXED BINCIS) INITC
TST.1, TST_I, TST..|, TST_A1, TST_NT, TST_R3, TST_R3,
TST.OT, TST_OM, TST.RC);
IF C(CID="INST" | CCID="TA"'>> THEN DO;
tF (STUD. TSTATE*=TST_T)> THEN DO;
SAVE=STUD;
CALL STUD_PROCTORS(SAVE. 1D, TRUE,FALSE,
STUD_PROC);
STUD=SAVE ;
IF “STUD_PROC & (SYSP.CUR_I_TEST>0) THEN Do;

CALL READ.SYSP_LOCK; END;

SYSP .CUR..|_TEST=SYSP.CUR_I_TEST~1; END;
CALL. UPDATE_SYSP; END; /* STATE_MACH */
END; / /
END; /* */
STUD. TSTATE=TST_NT; lhd END OF PROGRAMN w/
END; % w
ELSE DO; / /
STUD. TSTATE=PPTBL(STUD. TSTATE); END; /* TERM CONTROL =/
END; END; /* MAIN PROGRAN */
IF (STUD.TSTATE=TST_R3) THEN DO; //LKED.SYSLIB DD DSN=SYS2.PL|.OPT.PLITASK,D|SP=SHRA
STUD.RT INE=ADDT IMEC (SUBSTRCTINE, 1,65), 1 DD DSN=SYS1.PL IBASE. DISP=SHA
THENTVID); ERND; //LKED SYSLMOD DD DSN=0ee location of the product ©0e,D|SP=0LD

IF (STUD.TSTATE=TST_NT)> THEN DO;
STUD. TEST=STUD . TEST+SYSP . UPASS;
STUD.UNI T=STUD .UNI T+1;
CALL TOTAL_HARKS;
END;
CALL UPDATE..STUD(STUD. ID,FOUND);
IF {"FOUND)> THEN CALL INTERNAL_ERR(20);
CALL LOGC(TRANS,CID)?;
END;
HHENC'L ')DO; /* RESTUDY RESULT */
DCL SPTBLCL.TST> FIXED BINC1S) INITC
TST-I, TST_T, TST.NT, TST..R2, TST-R3, TST_R3, TST_R3,
TST.OT, TST..0M, TST_RC);
IF C(CCID="INST"' >[<CID="TA"' ») THEN DO;
IF (STUD.TSTATE =TST_T> THEN DO;
SAVE=STUD;
CALL STUD.PROCTORS(SAVE. 1D, TRUE, FALSE,
STUD_PROC);
STUD=SAVE;
IF “STUD_PROC & (SYSP.CUR_I_TEST>0) THEN DO;
CALL READ_SYSP.1.OCK;
SYSP .CUR..I _TEST=SYSP .CUR_| _TEST~1;
CALL UPDATE_SYSP;
END,;
END;
STUD. TSTATE=TST_R3;
END;
ELSE DO;
STUD. TSTATE=SPTBL(STUD . TSTATE);
END;
IF (STUD.TSTATE=TST.R3> THEN DO;
STUD.RTINME=ADDT IMECCSUBSTR(TINE, 1,6)),
THENTYM); END;
CALL UPDATE_STUD(STUD. ID, FOUND ;
IF ("FOUND)> THEN CALL INTERNAL_ERR(20);
CALL LOGC(TRANS,CID);
END;
OTHERWISE DO;
UNLOCK FILE(STUDFIL)> KEY(STUD, ID);
CALL INTERNAL_ERRC21);

-197 -

APPENDIX C

EXAMPLES OF CAPSI

IN CLASSROOM SETTING

-198 -

C: lo g=.jpear.psi-r ~= Start PS| from mantes
C: execute psi

PERSONAL IZED SYSTEM INSTRUCTION.
VERSION 2.0 : OCT 15, 1985
86/06/04 14:32:53

STARTING INITIALIZATION NOM.

1.START SESSION. 2.END SESSION.

3.EDIT STUDENT. 4 .EDIT SYSTEM PARRMETERS.

S.MARK TEST. 6.SEND MESSAGES.

7.MONITOR STUDENT. 8.EXIT TO TSO.

ENTER CHOICE==> : 3.5 -— Position directly to list student

ENTER EDIT PASSHORD : <cr>
STARTING AT: 14:33:03

ENTER STUDENT NUMBER :oall

STUD.# NAME PHONE FAC YR STAT UNIT TEST PROCTOR TERM EXAM TOTAL GRADE
1 STUDENT NAME 1 2699620 01 86 BSC O© 0.000 0.000 0.000 0.000 0.000
2 STUDENT NAME 2 4771111 07 835 XXX O 0.000 0.000 0.000 0.000 0.000
3 STUDENT NAME 3 0002222 02 85 s88 0 0.000 0.000 0.000 0.000 0.000
4 NAME 4 1234567 10 80 &&& O 0.000 0.000 0.000 0.000 0.000
S STUDENT 5 0000000 00 00 000 O 0.000 0.000 0.000 0.000 0.000
6 LONG NAME. 8888888 88 88 888 O 0.000 0.000 0.000 0.000 0.000
7 0 0.000 0.000 0.000 0.000 0.000
8 0 0.000 0.000 0.000 0.000 0.000
9 0 0.000 0.000 0.000 0.000 0.000
TOTAL® OF STUDENTS: 9 -- The total number of students

ENTER STUDENT NUMBER T <er .

ENDING AT: 14:33:26

<3.>1 CREATE STUDENT. <3.>2 DELETE STUDENT.

<3.>3 MODIFY PERSONAL DATA. <3.>4 MODIFY COURSE DATA.

<3.>5 LIST STUDENT. <3.>6 RETURN TO MAIN MENU.

ENTER CHO|CE==> 0 3

-199 -

ENTER STUDENT NUMBER o edit
<3.3.>1 NAME. <3.3.
<3.3.>3 PHONE NUMBER. <3.3.
<3.3.>5 YEAR AT UNIVERSITY. <3.3.
<3.3.>7 PASSWORD.

ENTER CHOICE==> 4

ENTER INSTRUCTOR PASSHORD D o<er

STARTING AT: 14:33:53
CURRENT VALUE OF

PASSHORD: " "

ENTER NEW PASSWORD . editpass
PASSWHORD: "EDITPASS”

ENTER STUDENT NUMBER ! inst
<3.3.>1 NAME. <3.3.
<3.3.>3 PHONE NUMBER. <3.3.

<3.3.>5 YEAR AT UNIVERSITY. <3.3.
<3.3.>7 PASSHORD.
ENTER CHOICE==> : 7

ENTER INSTRUCTOR PASSWORD D <er

STARTING AT: 14:34:23
CURRENT VALUE OF

PASSHORD: * "

ENTER NEW PASSWORD : INSTpass
PASSHORD: " INSTPASS"

ENTER STUDENT NUMBER : ta
<3.3.>1 NAME. <3.3.
<3.3.>3 PHONE NUMBER. <3.3.

<3.3.>5 YEAR AT UNIVERSITY. <3.3.
<3.3.>7 PASSHORD.
ENTER CHOICE==> 7

CURRENT VALUE OF

PASSWORD: “ “

ENTER NEW PASSWORD : tapass
PASSHORD: "TAPASS "

>2
>4
>6

>2
>4
>6

>2
>4
>6

Change EDIT password
STUDENT NUMBER.
FACULTY CODE.

STATUS IN COURSE.

—-- Need INST password to change EDIT password
Current INST password was blank

New value of EDIT password

Change INST password
STUDENT NUMBER.
FACULTY CODE.

STATUS IN COURSE.

-— Need INST password to change INST password
Upper or lower case can be used

STUDENT NUMBER.
FACULTY CODE.
STATUS IN COURSE.

No INST password is needed to change TA/student password

- 200 -

ENTER STUDENT NUMBER : <er
ENDING AT: 14:35:04

<3.>1 CREATE STUDENT. <3.>2 DELETE STUDENT.
<3.>3 MODIFY PERSONAL DATA. <3.>4 MODIFY COURSE DATA.
<3.>5 LIST STUDENT. <3.>6 RETURN TO MAIN MENU.
ENTER CHOICE==> 4

<3.4.>1 CURRENT UNIT. <3.4.>2
<3.4.>3 PROCTOR POINTS. <3.4.>4
<3.4.>5 FINAL EXAM. <3.4.>6
ENTER CHO[|CE==> : 9

ENTER NEXT STUDENT NUMBER
CURRENT VALUE OF EXAM POINTS:
ENTER NEW VALUE OF EXAM POINTS

ENTER NEXT STUDENT NUMBER

CURRENT VALUE OF EXAM POINTS:
ENTER NEW VALUE OF EXAM POINTS
ENTER NEXT STUDENT NUMBER :

<3.4.>1 CURRENT UNIT. <3.4.>2
<3.4.>3 PROCTOR POINTS. <3.4.>4
<3.4.>5 FINAL EXAM. <3.4.>6
ENTER CHOI|CE==> D <er?

ENDING AT: 14:36: 11

TEST POINTS.

TERM POINTS.

RETURN TO EDIT MENU.

-~ Change a student's exam points

12 =-Give a student with a new exam points

0.000
. 75.0

13 =- Give another student with a new exam points

0.000
: 69.34
<cr» -- Return to the edit course menu

TEST POINTS.
TERM POINTS.
RETURN TO EDIT MENU.

<3.>1 CREATE STUDENT. <3.>2 DELETE STUDENT.
<3.>3 MODIFY PERSONAL DATA. <3.>4 MODIFY COURSE DATA.
<3.>5 LIST STUDENT. <3.>6 RETURN TO MAIN MENU.

ENTER CHOICE==> LoLer

1.START SESSION. 2.END SESSION. :
3.EDIT STUDENT. 4.EDIT SYSTEM PARAMETERS.
S.MARK TEST. 6.SEND MESSAGES.
7.MONITOR STUDENT. 8.EXIT TO TSO.

ENTER CHOICE==> 4
ENTER EDIT PASSWORD : EDITpass

-201 -

STARTING AT: 14:36:22
<4.>1 VEIW SYSTEM PARAMETERS.

<4.>3 ENTER LETTER GRADE THRESHOLDS.

<4.>3 ENTER VALUE OF PROCTORING.
<4.>7 RETURN TO MAIN MENU.
ENTER CHOICE==> 1

TOTAL NUMBER OF UNITS: O, VALUE OF
LETTER GRADE THRESHOLDS:

A+ 0.000 A 0.000 A-
B~ 0.000 C+ 0.000 c
D 0.000 D~ 0.000 F

UNIT QUESTION NUMBER LIMITS: -
ENDING AT: 14:36:25

<4.>1 VEIW SYSTEM PARAMETERS.

<4.>3 ENTER LETTER GRADE THRESHOLDS.

<4.>35 ENTER VALUE OF PROCTORING.
<4.>7 RETURN TO MAIN MENU.
ENTER CHOICE==> 2 -

<4.>2 ENTER TOTAL NUMBER OF UNITS.
<4.>4 ENTER VRALUE OF UNIT PASSING.
<4.>6 ENTER QUESTION NUMBER LIMITS.

UNIT PASSING: 0.000, VALUE OF PROCTORING:
0.000 B+ 0.000 B 0.000

0.000 c- 0.000 D+ 0.000

0.000

Current total unit number is 0

<4.>2 ENTER TOTAL NUMBER OF UNITS.
<4.>4 ENTER VALUE OF UNIT PASSING.
<4.>6 ENTER QUESTION NUMBER LIMITS.

Change total unit number

CURRENT VALUE OF TOTAL NUMBER OF UNITS IS: 0
ENTER NEW VALUE OF TOTAL NUMBER OF UNITS : 10

ENDING AT: 14:36:36
<4.>1 VEIW SYSTEM PARAMETERS.

<4.>3 ENTER LETTER GRADE THRESHOLDS.

<4.>3 ENTER VALUE OF PROCTORING.
<4.>7 RETURN TO MAIN MENU.

<4.>2 ENTER TOTAL NUMBER OF UNITS.
<4.>4 ENTER VALUE OF UNIT PASSING.
<4.>6 ENTER QUESTION NUMBER LIMITS.

ENTER CHOICE==> . 6 == Assign question limit to an unit
ENTER UNIT NUMBER i1

CURRENT VALUE OF UNIT QUESTION LIMIT FOR UNITC 1) IS: 3

ENTER NEW VALUE OF UNIT QUESTION LIMIT FOR UNITC 1) : S

ENTER UNIT NUMBER 12

CURRENT VALUE OF UNIT QUESTION LIMIT FOR UNITC 2> 1IS: 3
ENTER NEW VALUE OF UNIT QUESTION LIMIT FOR UNITC 2> M)

-202 -

0.000

ENTER UNIT NUMBER .3
CURRENT VALUE OF UNIT QUESTION LIMIT FOR UNITC 3) IS: 3
ENTER NEN VALUE OF UNIT QUESTION LIMIT FOR UNITC 3) : 9

ENTER UNIT NUMBER ©ocer?
ENDING AT: 14:36:54

<4.>1 VEIW SYSTEM PARAMETERS. <4.>2 ENTER TOTAL NUMBER OF UNITS.
<4.>3 ENTER LETTER GRADE THRESHOLDS. <4.>4 ENTER VALUE OF UNIT PASSING.
<4.>5 ENTER VALUE OF PROCTORING. <4.>6 ENTER QUESTION NUMBER LIMITS.
<4.>7 RETURN TO MAIN MENU.

ENTER CHOICE==> : 3 —— Change letter grade thresholds

<4.3.>1 A+ <4.3.>2
<4.3.>4 B+ <4.3.>5
<4.3.>7 C+ <4.3.»>8
<4.3.>10 D+ <4.3.> 11

<4.3.>3 A-
<4.3.>6 B-
.3.29 C-
<4.3.212 D~ <4.3.>13 F

SCOwWD
A
N
W

ENTER LETTER CHOICE(1-13)==> 1
CURRENT VALUE OF A+ THRESHOLD. : 0.000
ENTER NEHW VALUE OF A+ THRESHOLD. : 100

ENTER LETTER CHOICE(1-13)==> 2
CURRENT VALUE OF A THRESHOLD. : 0.000
ENTER NEW VALUE OF A THRESHOLD. 95

ENTER LETTER CHOICE(1-13)==> 03
CURRENT VALUE OF A- THRESHOLD. : 0.000
ENTER NEW VALUE OF A~ THRESHOLD. : 90

ENTER LETTER CHOICE(1-13)==> DoLer?
ENDING AT: 14:37:59

<4.>1 VEIN SYSTEM PARAMETERS. <4.>2 ENTER TOTAL NUMBER OF UNITS.
<4.>3 ENTER LETTER GRADE THRESHOLDS. <4.>4 ENTER VUALUE OF UNIT PASSING.
<4.>5 ENTER VALUE OF PROCTORING. <4.>6 ENTER QUESTION NUMBER LIMITS.
<4.>7 RETURN TO MAIN MENU.

ENTER CHOICE==> 1

- 203 -

TOTAL NUMBER OF UNITS: 10, VALUE OF UNIT PASSING: 0.000, VALUE OF PROCTORING: 0.000
LETTER GRADE THRESHOLDS:
A+ 100.000 A 95.000 A- 90.000 B+ 0.000 B 0.000
B- 0.000 Cc+ 0.000 c 0.000 c- 0.000 D+ 0.000
D 0.000 D- 0.000 F 0.000
UNIT QUESTION NUMBER LIMITS:
1. S 2. 5 3. 5 4. 3 5. 3
6. 3 7. 3 8. 3 9. 3 1i0. 3
ENDING AT: 14:38:02
<4.>1 VEIN SYSTEM PARAMETERS. <4.>2 ENTER TOTAL NUMBER OF UNITS.
<4.>3 ENTER LETTER GRADE THRESHOLDS. <4.>4 ENTER VALUE OF UNIT PASSING.
<4.>5 ENTER VALUE OF PROCTORING. <4.>6 ENTER QUESTION NUMBER LIMITS.
<4.>7 RETURN TO MAIN MENU.
ENTER CHOICE==> D <er?
- 1.START SESSION. 2.END SESSION.
3.EDIT STUDENT. 4.EDIT SYSTEM PARAMETERS.
S.MARK TEST. 6.SEND MESSAGES.
7.MONITOR STUDENT. 8.EXIT TO TSO.
ENTER CHOICE==> o1 -~ Starting a new session
A NEW SESSION HAS NOT BEEN STARTED.
CURRENT TIME I1S: 14:38:08
CURRENT CUT-OFF TIME 1S: 16:38:00
DO YOU WISH TO ALTER CUT-OFF TIME? (Y)ES,(N>0 : y—— Default is "No"
ENTER NEH CUT-OFF (HH:MM:SS> TIME : 18:00:00
CUT-OFF DATE 86/06/04 AND TIME 18:00:00 ARE ASSIGNED TO SYSTEM.
(COONTINUE LAST SESSION OR START A (N)>EW ONE? : n—— Default is "Continue"
ALL STUDENTS SET TO INITIAL STATE.
TEST ISSUE CUT-OFF TIME WILL BE: 18:00:00
SHITCH TERMINAL TO FULL DUPLEX NOW.
ENTER STUDENT NUMBER 1 -~ |t is ready to handle student transactions
ENTER PASSWORD ! wrongpass
INVALID
PASSHORD: "WRONGPAS"
ENTER PASSHORD : <Ler? == Re-enter password, the current password is blank

-204 -

STARTING AT: 14:38:53
WANT TO VIEW YOUR CURRENT COURSE STANDING? (Y)ES, (N>0O iy == Default is "No"

CURRENT UNIT: O, TEST POINTS: 0.00, PROCTOR POINTS: 0.00, TERM PROJECT: 0.00, FINAL EXAM:

TOTAL POINTS: 0.00, LETTER GRADE: B+

PROCTOR? (Y)ES, (N>0 :

STUDENT®: 1 IS RVAILABLE FOR PROCTORING.

GENERATE TEST ON UNIT 1 (YOES, (N)0? iy = Default is "No"

TEST GENERATED ON UNIT: 1, AT TIME: 14:39:02, QUESTIONS: 2, 5, 1
OK TRANSACTION COMPLETE.

ENDING AT: 14:39:02

ENTER STUDENT NUMBER 1

ENTER PASSWORD D o<er?

STARTING AT: 14:39:15

PROCTOR? (VY)ES, <(N)>0 : <er> . =~ Default is nothing

STUDENT®#: 1 IS AVAILABLE FOR PROCTORING.

DO YOU WANT YOUR TEST (C)ANCELLED OR <P)>ROCTORED? : p ~= Default is nothing

PROCTOR SELECTED 1S INSTRUCTOR OR TA.
OK TRANSACTION COMPLETE.
ENDING AT: 14:39:26

ENTER STUDENT NUMBER : 8
ENTER PASSWORD Po<er? == Current password is blank

STARTING AT: 14:39:34
HANT TO VIEW YOUR CURRENT COURSE STANDING? (Y)ES, <(N>0

CURRENT UNIT: 0, TEST POINTS: 0.00, PROCTOR POINTS: 0:00, TERM PROJECT: 0.00, FINAL EXAM:

TOTAL POINTS: 0.00, LETTER GRADE: B+ '

PROCTOR? (Y)ES, (N>O :

STUDENT#: 8 IS AVAILABLE FOR PROCTORING.

GENERATE TEST ON UNIT 1 (YIES, (N>0? :

TEST GENERATED ON UNIT: 1, AT TIME: 14:39:41, QUESTIONS: 2, 4, S
OK TRANSACTION COMPLETE.

ENDING AT: 14:39:42

ENTER STUDENT NUMBER : marker -~ Marking without going out of this session
ENTER PASSHORD . instpass ~= TA or INST password can be used

- 205 -

0.00

0.00

STARTING AT: 14:39:57

<3.>1 LIST TEST AND STATUS. <5.>2 LIST TESTS FOR MARKER.
<5.23 MARK STUDENT. <3.>4 RETURN FROM MARKING.
ENTER CHOICE==> 1

ENTER STUDENT NUMBER Doall =- List all who are writing a test or proctor(s) assigned
LISTING OF ALL THE UNMARKED STUDENTS.

STUD.# NAME UNIT# QUESTIONS TEST STATE PROCTOR STATE TIiNE

1 STUDENT NAME 1 i 2 5 1 NO MARK YET AVAILABLE 14:39:02
PROCTOR SELECTED IS INSTRUCTOR OR TR.

8 T2 4 S URITING AVAILABLE 14:39:41
STUDENT IS WRITING A TEST.

ENTER STUDENT NUMBER : 5

STUD.#® NAME UNIT# QUESTIONS TEST STATE PROCTOR STATE TIME
5 STUDENT S 0 O O O INITIAL INITIAL 00:00:00
STUDENT HAS NO UNMARKED TEST.

ENTER STUDENT NUMBER : 0
0 IS A SPECIAL OR NON-EXISTANT STUDENT NUMBER. DATA CANNOT BE LISTED.

ENTER STUDENT NUMBER : <er
ENDING AT: 14:40:28

<3.>1 LIST TEST AND STATUS. <5.>2 LIST TESTS FOR MARKER.

<5.>3 MARK STUDENT. <5.>4 RETURN FROM MARKING.

ENTER CHOiCE==> > 2 == List all who are writing a test or TA/INST is proctor
INSTRUCTOR OR TA |S SELECTED. ‘

STUD.# NAME UNIT# QUESTIONS TEST STATE PROCTOR STATE TIME

1 STUDENT NAME 1 i 2 S 1 NO MARK YET AVAILABLE 14:39:02
8 1 2 4 5 WRITING AVAILABLE 14:39:41

ENDING AT: 14:40:36
<3.>1 LIST TEST AND STATUS. <5.>2 LIST TESTS FOR MARKER.

<3.>3 MARK STUDENT. <5.>4 RETURN FROM MARKING.
ENTER CHOICE==> : 3 == Mark student

- 206 -

ENTER STUDENT NUMBER TO BE MARKED N

STUDENT#: 1 , CURRENT TEST QUESTIONS: 2 S 1, ON UNIT:
(POASS, (COONDITIONAL PASS, (RIESTUDY? : p~= Default is nothing
PASS RESULT ENTERED.

ENTER STUDENT NUMBER TO BE MARKED Do<er
ENDING AT: 14:40:54

<3.>1 LIST TEST AND STATUS. <5.>2 LIST TESTS FOR MARKER.
<5.>3 MARK STUDENT. <3.>4 RETURN FROM MARKING.

ENTER CHOICE== IR o
ENTER STUDENT NUMBER : ta -= Get out of this session, TA/INST can be used
ENTER PASSWORD . tapass

STARTING AT: 14:42: 14
1.START SESSION. 2.END SESSION.

3.EDIT STUDENT. 4 .EDIT SYSTEM PARAMETERS.

5.MARK TEST. 6.SEND MESSAGES.

7.MONITOR STUDENT. 8.EXIT TO TSO.

ENTER CHOICE==> 2 -- End current session

ENTER INSTRUCTOR PASSWORD . instpass

STARTING AT: 14:42:24
STUDENTS HWHICH HAVE UNMARKED TESTS.

STUDENT: , STUDENT#®: 8 , UNIT®: 1, QUESTIONS:
1.START SESSION. 2.END SESSION.

3.EDIT STUDENT. 4.EDIT SYSTEM PARAMETERS. -

S.MARK TEST. ©.SEND MESSAGES.

7.MONITOR STUDENT. 8.EXIT TO TSO.

ENTER CHOICE==> : 3

ENTER EDIT PASSHORD : editpass

STARTING AT: 14:42:39

<3.>1 CREATE STUDENT. <3.>2 DELETE STUDENT.
<3.>3 MODIFY PERSONAL DATA. <3.>4 MODIFY COURSE DATA.
<3.>35 LIST STUDENT. <3.>6 RETURN TO MAIN MENU.
ENTER CHOICE==> o1

-207 -

5, AT TIME:

14:39:41

ENTER NEW STUDENT NUMBER : 0 =~ Create a new student

STUDENT NAMECUP TO 30 CHARACTERS): student # O
PHONE NUMBER(? CHRRACTERS)> D 777077
FACULTY CODE (2 CHARACTERS) : 03

YEAR AT UNIVERS1TY(2 CHRRACTERS)> : 84
STATUS IN COURSE(3 CHARACTERS) DOXXX
STUDENT PASSWORD : Opass

PASSWORD: "OPASS "

ENTER NEW STUDENT NUMBER D <er?

ENDING AT: 14:43:19

<3.>1 CREATE STUDENT. <3.>2 DELETE STUDENT.

<3.>3 MODIFY PERSONAL DATA. <3.>4 MODIFY COURSE DATA.

<3.>3 LIST STUDENT.

ENTER CHOICE==> 12

ENTER STUDENT NUMBER : 9

DO YOU UANT THIS STUDENT#: 9 TO BE (DJELETED OR <M>AINTAINED?
STUDENT#: 9 WAS DELETED FROM FILES.

ENDING AT: 14:43:31

<3.>1 CREATE STUDENT. <3.>2 DELETE STUDENT.

<3.>6 RETURN TO MAIN MENU.

<3.>3 MODIFY PERSONAL DATA. <3.>4 MODIFY COURSE DATA.

<3.>3 LIST STUDENT.

<3.>6 RETURN TO MAIN MENU.

Make changes on this student

ENTER CHOICE==> : 3

ENTER STUDENT NUMBER 1 -

<3.3.>1 NAME. <3.3.>2 STUDENT NUMBER.
<3.3.>3 PHONE NUMBER. <3.3.>4 FACULTY CODE.
<3.3.>5 YEAR AT UNIVERSITY. <3.3.>6 STATUS IN COURSE.

<3.3.>7 PASSHORD.

ENTER CHOICE==> oo —- Change student name

CURRENT VALUE OF NAME FIELD: STUDENT NAME 1
ENTER NEW NAME . new name 1

- 208 -

. d

-- Default is "Maintained"

ENTER STUDENT NUMBER 1

<3.3.>1 NAME. <3.3.>2 STUDENT NUMBER.
<3.3.>3 PHONE NUMBER. <3.3.>4 FACULTY CODE.
<3.3.>5 YEAR AT UNIVERSITY. <3.3.>6 STATUS IN COURSE.
<3.3.>7 PASSHORD.

ENTER CHOICE==> 7 ~= Change password

CURRENT VALUE OF

PASSHORD: * "

ENTER NEW PASSHORD : lpass
PASSHORD: "1PASS "

ENTER STUDENT NUMBER 1 <er?
ENDING AT: 14:44:41

<3.>1 CREATE STUDENT. <3.>2 DELETE STUDENT.
<3.>3 MODIFY PERSONAL DATA. <3.>4 MODIFY COURSE DATA.
<3.>3 LIST STUDENT. <3.26 RETURN TO MAIN MENU.
ENTER CHOICE==> 4

<3.4.>1 CURRENT UNIT. <3.4.>2 TEST POINTS.
<3.4.>3 PROCTOR POINTS. <3.4.>4 TERM POINTS.

<3.4.>5 FINAL EXAM. <3.4.>6 RETURN TO EDIT MENU.

ENTER CHOICE==> HIS) == Change final exam points
ENTER NEXT STUDENT NUMBER 12

CURRENT VALUE OF EXAM POINTS: 0.000

ENTER NEW VALUE OF EXAM POINTS : 10

ENTER NEXT STUDENT NUMBER 7

CURRENT VALUE OF EXAM POINTS: 0.000

ENTER NEW VALUE OF EXAM POINTS]

ENTER NEXT STUDENT NUMBER :o<er

<3.4.>1 CURRENT UNIT. <3.4.>2 TEST POINTS.

<3.4.>3 PROCTOR POINTS. <3.4.>4 TERM POINTS.

<3.4.>3 FINAL EXAM. <3.4.>6 RETURN TO EDIT MENU.
ENTER CHOICE==> I <er?

ENDING AT: 14:45:29

-209 -

<3.>1 CREATE STUDENT. <3.>2 DELETE STUDENT.
<3.>3 MODIFY PERSONAL DATA. <3.>4 MODIFY COURSE DATA.

<3.>5 LIST STUDENT. <3.>6 RETURN TO MAIN MENU.

ENTER CHOICE==> : S

ENTER STUDENT NUMBER : ALL

STUD.# NAME PHONE FAC YR STAT UNIT TEST PROCTOR TERHM EXAM TOTAL GRADE
0 STUDENT & 0 7707777 03 84 XXX 0O 0.000 0,000 0.000 0.000 0.000

i NEW NAME 1 2699620 01 86 BSC 1 0.000 0.000 0.000 0.000 0.000 B+
2 STUDENT NAME 2 4771111 07 85 XXX O 0.000 75.000 0.000 10.000 85.000 B+
<break>

(COONTINUE OR <QWIT : ¢ -- After hitting a break key, default is "Continue"

TOTAL# OF STUDENTS: 9

ENTER STUDENT NUMBER :o<er

ENDING AT: 14:45:50

<3.>1 CREATE STUDENT. <3.>2 DELETE STUDENT.

<3.>3 MODIFY PERSONAL DATA. <3.>4 MODIFY COURSE DATA.

<3.>5 LIST STUDENT. <3.>6 RETURN TO MRIN MENU.

ENTER CHOICE==> : Ler?

1.START SESSION. 2.END SESSION.

3.EDIT STUDENT. 4 .EDIT SYSTEM PARAMETERS.

5.MARK TEST. 6.SEND MESSAGES.

7.MONITOR STUDENT. 8.EXIT TO TSO.

ENTER CHOICE==> S ~-— Same as MARKER logging in during a session

ENTER INSTRUCTOR PASSWORD : instpass

STARTING AT: 14:45:55 '
<5.>1 LIST TEST AND STATUS. <5.>2 LIST TESTS FOR MARKER.

<35.>3 MARK STUDENT. <5.>4 RETURN FROM MARKING.

ENTER CHOICE==> D2

INSTRUCTOR OR TA IS SELECTED.

STUD.# NAME UNIT® QUESTIONS TEST STATE PROCTOR STATE
8 i1 2 4 35 HRITING INITIAL

ENDING AT: 14:46:09

-210 -

TIME
14:39:41

<5.>1 LIST TEST AND STATUS. <5.»>2 LIST TESTS FOR MARKER.

<3.>3 MARK STUDENT. <5.>4 RETURN FROM MARKING.

ENTER CHOICE==> : 3

ENTER STUDENT NUMBER TO BE MARKED . 8

STUDENT#: 8 , CURRENT TEST QUESTIONS: 2 4 S, ON UNIT: 1
(PIASS, (COONDITIONAL PASS, (ROESTUDY? e

CONDITIONAL PASS ENTERED.

ENTER STUDENT NUMBER TO BE MARKED D o<er?
ENDING AT: 14:46:23

<3.>1 LIST TEST AND STATUS. <5.»>2 LIST TESTS FOR MARKER.

<5.>3 MARK STUDENT. <5.>4 RETURN FROM MARKING.

ENTER CHOI|CE==> 1 <er?

1.START SESSION. 2.END SESSION.

3.EDIT STUDENT. 4 .EDIT SYSTEM PARAMETERS.

5.MARK TEST. 6.SEND MESSAGES.

7.MONITOR STUDENT. 8.EXIT TO TSO.

ENTER CHOICE==> : 6

SEND TO : jpear04 -= Enter userid list

SEND FROM : nobody -- A personal identification

M: this is a message...

M: continue...

M: <er> -~ Use <cr> or blank line to send message
MESSAGE SENT TO USER: JPERRO4

SEND TO : jpear,pear -~ Qver-write the default string by re-type the userid list

SEND FROM : nobody ——- Default is the string before

M: another message -—— Hit a break key will terminate the sending facility
iM: <ero>

MESSAGE SENT TO USER: JPEAR

MESSAGE CANNOT SEND TO USER: PEAR =-- Userid is incorrect or not signed on

SEND TO : JPEAR
SEND FROM : nobody
M: <ecr> -

Terminate the message sending facility

-211-

1.START SESSION. 2.END
3.EDIT STUDENT.
S5.MARK TEST.
7.MONITOR STUDENT. 8.EXIT
ENTER CHOICE==> 7
ENTER INSTRUCTOR PASSWORD

STARTING AT: 14:48:12
<?7.>1 LIST LOG FILE.
<7?.>3 TURN OFF HATCHING.
ENTER CHOICE==> 1

CURRENT DATE |S: 86/06/04

LIST LOG STARTING AT <YY/MM/DD> DATE
LIST LOG ENDING AT <YY/MM/DD) DATE

TYPE STUD.®
CREATE LOG

START PS| JPEAR
NEH SESSION JPEAR

GENERATE TEST 1

HANT TEST MARKED 1
GENERATE TEST 8

PASS 1
MARKED BY INST
END SESSION JPEAR
CONDITIONAL PASS 8
MARKED BY INST
LOG RECORD LISTED: 9
TOTAL LOG RECORD: 9
ENDING AT: 14:48:36

<?7.>1 LIST LOG FILE.
<7.>3 TURN OFF HWATCHING.
ENTER CHOICE==> o

CURRENT DATE 1S: 86/06/04

LIST LOG STARTING AT <(YY/MM/DD)> DATE
LIST LOG ENDING AT <YY/MM/DD)> DATE

SESSION.

TO TSO.

4.EDIT SYSTEM PARAMETERS.
6.SEND MESSRAGES.

instpass

<?.>2 HATCH STUDENT ACTIVITIES.
<7.>4 RETURN TO MAIN MENU.

: 0 =-List the whole log file
: 86/06/04-— Default is the current date

STUDENT NAME TEST STATE PROCTOR STATE UNIT

86/06/04
86/06/04
86/06/04
NEH NAME
NEH NAME

NEH NAME

86/06/04

HRITING AVAILABLE
NO MARK YET AVAILABLE
HRITING AVAILABLE

NOT HRITING AVAILABLE

NOT WRITING INITIAL

<7.>2 HATCH STUDENT ACTIVITIES.
<7.>4 RETURN TO MAIN MENU.

: 86/06/04 -- List log records between two dates

: 86/06/04

-212 -

-0 00

QUESTIONS

NNNN

AU

—_ Ul - -

TEST PROCTOR

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

12:
14 ;
14
14:
14
14
14 :

14

TIME
46:
32:
38:
39
39
39:;
40

42:

08
S3
27

:02
126

42

151

25

QUESTIONS
2 S 1
2 5 1

QUEST IONS

NNNN

(4 R

s CJ] b -

TEST PROCTOR

0.000
G.000

0.000
0.000

TEST PROCTOR

0.000
0.000
0.000
0.000

TYPE STUD.® STUDENT NAME TEST STATE PROCTOR STATE UNIT
CREATE LOG 86/06 /04

START PSI JPEAR 86/06/04

NEW SESSION JPEAR 86/06/04

GENERATE TEST i NEW NAME 1 HRITING AVAILABLE 0
WANT TEST MARKED 1 NEW NAME 1 NO MARK YET AVAILABLE 0
<break>

(COONTINUE OR C(QMWIT : q -=- After hitting a break key, default is "Continue"
. TOTAL LOG RECORD: 9 == The total number of records in log file
ENDING AT: 14:48:59

<7.>1 LIST LOG FILE. <7.>2 WATCH STUDENT ACTIVITIES.

<7.>3 TURN OFF HATCHING. <7.>4 RETURN TO MAIN MENU.

ENTER CHOICE==> 12

TYPE STUD.® STUDENT NAME TEST STATE PROCTOR STATE UNIT
CREATE LOG 86/06 /04

START PSI JPEAR 86/06/04

NEW SESSION JPEAR 86/06/04

GENERATE TEST 1 NEW NAME 1 WRITING AVAILABLE 0
HANT TEST MARKED 1 NEW NAME 1 NO MARK YET AVAILABLE 0
GENERATE TEST 8 HRITING AVAILABLE 0
PASS 1 NEH NAME 1 NOT WRITING AVRILABLE 1
MARKED BY INST

END SESSION JPEAR 86/06/04

CONDITIONAL PASS 8 NOT WRITING INITIAL

MARKED BY INST
START WATCHING STUDENT ACTIVITIES.
ENDING AT: 17:19:33

<?.>1 LIST LOG FILE. <7.>2 WATCH STUDENT RCTIVITIES.
<7.>3 TURN OFF WATCHING. <7.>4 RETURN TO MAIN MENU.
ENTER CHOI|CE==> R« o/

CONTINUE TO WATCH STUDENT ACTIVITIES.

INVALID CHOICE:
ENDING AT: 17:19:43

-213 -

-= <cr> is not allowed because the watching is on

0.000
0.000
0.000
0.000

TIME
12:46:08
14:32:53
14:38:27
14:39:02
14:39:26

<7.>1 LIST LOG FILE. <7.>2 HWATCH STUDENT ACTIVITIES.
<7.>3 TURN OFF WATCHING. <7.>4 RETURN TO MAIN MENUY.

ENTER CHOICE==> 4 == Need to type in the exact number for selection

ENDING AT: 17:19:56
WATCHING 1S STILL ON.
1.START SESSION. 2.END SESSION.

3.EDIT STUDENT. 4.EDIT SYSTEM PARAMETERS.
S5.MARK TEST. 6.SEND MESSAGES.
7.MONITOR STUDENT. 8.EXIT TO TSO.

ENTER CHOICE==> 1

CONTINUE TO WATCH STUDENT ACTIVITIES.

A NEW SESSION HAS NOT BEEN STARTED.
CURRENT TIME IS: 17:20:07
CURRENT CUT-OFF TIME 1S: 19:20:00

DO YOU UISH TO ALTER CUT-OFF TIME? (VY)ES, (N)O : N=- Default is "No"
(COONTINUE LAST SESSION OR START A <(N)EH ONE? : C== Default is "Continue"

TEST ISSUE CUT-OFF TIME WILL BE: 19:20:00
SHITCH TERMINAL TO FULL DUPLEX NOW.

ENTER STUDENT NUMBER 4
ENTER PASSHORD Do<er
STARTING AT: 17:20:15

PROCTOR? (Y)ES, (N>0 Ty
STUDENT®: 4 1S AVAILABLE FOR PROCTORING.
GENERATE TEST ON UNIT 1 (YIES, (N>0? Y

TEST GENERATED ON UNIT: i, AT TIME: 17:20:19, QUESTIONS: S,
OK TRANSACTION COMPLETE.
ENDING AT: 17:20:20

. ENTER STUDENT NUMBER : 6
ENTER PASSHORD Do<er?
STARTING AT: 17:20:27
PROCTOR? (Y)ES, (N>0

STUDENT®: 6 s ﬁUﬁiLHBLE FOR PROCTORING.
GENERATE TEST ON UNIT 1 (YJES, (N>0? Y
TEST GENERATED ON UNIT: 1, AT TIME: 17:20:34, QUESTIONS: 5,

-214 -

OK TRANSACTION COMPLETE.
ENDING AT: 17:20:35

== The messages from watching in every 5 seconds

GENERATE TEST 4 NAME 4 HRITING AVAILABLE 0 S5 4
GENERATE TEST 6 WRITING AVAILABLE 0 5 2
ENTER STUDENT NUMBER : TR

ENTER PASSWORD :oLer -- Wrong password is rejected

ENTER STUDENT NUMBER : ta

ENTER PASSWORD . tapass

STARTING AT: 17:20:52
1.START SESSION. 2.END SESSION.

3.EDIT STUDENT. 4.EDIT SYSTEM PARAMETERS.
S5.MARK TEST. 6.SEND MESSAGES.
7.MONITOR STUDENT. 8.EXIT TO TSO.

ENTER CHOICE==> g

ENTER INSTRUCTOR PASSWORD . instpass

STARTING AT: 17:21:02

<?7.>1 LIST LOG FILE. <7.>2 WATCH STUDENT ACTIVITIES.

<7.>3 TURN OFF WATCHING. <7.>4 RETURN TO MAIN MENU.
== Turn off watching

ENTER CHOICE==> ;3

TURNING OFF WATCHING.
ENDING AT: 17:21:08

<?7.>1 LIST LOG FILE. <7.>2 WATCH STUDENT ACTIVITIES.

<7.>3 TUBRN OFF HATCHING. <7.>4 RETURN TO MAIN MENU.
-- Do not allow second turn off

ENTER CHOICE==> : 3

WATCHING IS ALREADY OFF.
ENDING AT: 17:21:18

<?7.>1 LIST LOG FILE. <7.>2 WATCH STUDENT ACTIVITIES.

<7.>3 TURN OFF HATCHING. <7.>4 RETURN TO MAIN MENU.
== <cr> is allowed because the watching is off

ENTER CHOICE==> P o<er

-215-

3
3

0.000
0.000

0.000 17:20:20
0.000 17:20:35

1.START SESSION. 2.END SESSION.
3.EDIT STUDENT. 4.EDIT SYSTEM PARAMETERS.

S.MARK TEST. 6.SEND MESSAGES.
7.MONITOR STUDENT. 8.EXIT TO TSO.
ENTER CHOICE==> o

THIS IS A CONTINUATION OF LAST SESSION.

CURRENT TIME IS: 17:22:07

CURRENT CUT-OFF TIME IS: 19:20:00

DO YOU WISH TO ALTER CUT-OFF TIME? (Y)ES,(N>O : N~- Default is "No"
(CXONTINUE LAST SESSION OR START A (N)EW ONE? : C== Default is "Continue"
TEST ISSUE CUT-OFF TIME WILL BE: 19:20:00

SHITCH TERMINAL TO FULL DUPLEX NOW.

ENTER STUDENT NUMBER : 3

ENTER PASSWORD Do<er

STARTING AT: 17:23:36

HANT TO VIEW YOUR CURRENT COURSE STANDING? (Y)ES, <(N>0 oy

CURRENT UNIT: O, TEST POINTS: 0.00, PROCTOR POINTS: 0.00, TERM PROJECT: 0.00, FINAL EXAM: 0.00
TOTAL POINTS: 0.00, LETTER GRADE:

PROCTOR? (Y)ES, (N>O :

STUDENT#: 3 IS AVAILABLE FOR PROCTORING.

CENERATE TEST ON UNIT 1 (Y)IES, (N>0? :

TEST GENERATED ON UNIT: 1, AT TIME: 17:23:36, QUESTIONS: 3, 1, 4
0K TRANSACTION COMPLETE. .

ENDING AT: 17:23:37

ENTER STUDENT NUMBER : 3

ENTER PASSHORD Do<er>

STARTING AT: 17:23:37

HANT TO VIEW YOUR CURRENT COURSE STANDING? (Y)ES,<(N>0 N
PROCTOR? (Y)ES,<(N>0 :o<er?

STUDENT®#: 3 IS AVAILABLE FOR PROCTORING.

DO YOU WANT YOUR TEST (C>ANCELLED OR <P >ROCTORED? P

FIRST PROCTOR SELECTED, STUDENT#: 8 , NAME:

SECOND PROCTOR SELECTED, STUDENT#: 1 , NAME: STUDENT NAME 1

OK TRANSACTION COMPLETE.
ENDING AT: 17:23:38

-216 -

ENTER STUDENT NUMBER : 3

ENTER PASSWORD DoLer

STARTING AT: 17:23:38

HANT TO VIEHW YOUR CURRENT COURSE STANDING? (Y>ES,<(N>0 N
PROCTOR? (Y)JES,<(N>0 1 o<er?

STUDENT®: 3 IS AVAILABLE FOR PROCTORING.

YOU MUST HAVE YOUR CURRENT TEST PROCTORED BEFORE PROCEEDING.
OK TRANSACTION COMPLETE.

ENDING AT: 17:23:38

ENTER STUDENT NUMBER 1

ENTER PASSWORD : 1pass

STARTING AT: 17:23:39

HANT TO VIEW YOUR CURRENT COURSE STANDING? (VY)ES,(N>0 N
YOU HAVE BEEN SELECTED TO PROCTOR A TEST FOR STUDENT NUMBER: 3
STUDENT NAME:STUDENT NAME 3

ENTER UNIT NUMBER WRITTEN BY THE STUDENT 1

ENTER A QUESTION NUMBER WRITTEN BY THE STUDENT : 3
ENTER A QUESTION NUMBER WRITTEN BY THE STUDENT o1
ENTER A QUESTION NUMBER WRITTEN BY THE STUDENT D7
STUDENT WAS NOT ISSUED QUESTION NUMBER: K¢

ENTER A QUESTION NUMBER WRITTEN BY THE STUDENT : 8
STUDENT WAS NOT ISSUED QUESTION NUMBER: 8

ENTER A QUESTION NUMBER WRITTEN BY THE STUDENT P4
(P>ASS, (CHXONDITIONAL PASS, (RIESTUDY? P

PASS RESULT ENTERED.

PROCTOR? (Y)ES, (N>0 Ty

STUDENT®: 1 IS AVAILABLE FOR PROCTORING.

0K TRANSACTION COMPLETE. :

ENDING AT: 17:23:40

ENTER STUDENT NUMBER : 8

ENTER PASSHORD ;o<er>

STARTING AT: 17:23:41

HANT TO VIEW YOUR CURRENT COURSE STANDING? (Y)ES, (N>0 N

YOU HAVE BEEN SELECTED TO PROCTOR A TEST FOR STUDENT NUMBER: 3
STUDENT NAME:STUDENT NAME 3

ENTER UNIT NUMBER WRITTEN BY THE STUDENT : 2
STUDENT DID NOT WRITE TEST ON UNIT: 2
ENTER UNIT NUMBER WRITTEN BY THE STUDENT 12 == 3 extra trials

-217 -

STUDENT DID NOT WRITE TEST ON UNIT: 2

ENTER UNIT NUMBER HRITTEN BY THE STUDENT 4

STUDENT DID NOT WRITE TEST ON UNIT: 4

ENTER UNIT NUMBER WRITTEN BY THE STUDENT 5

STUDENT DID NOT WRITE TEST ON UNIT: 5

(POASS, (CHONDITIONAL PASS, (RIESTUDY? : p-— Do not accept, wrong guess

NOT ALL.OWED TO PASS. NO RESULT ENTERED.
OK TRANSACTION COMPLETE.
ENDING AT: 17:23:41

ENTER STUDENT NUMBER ;8

ENTER - PASSHORD D o<er

STARTING AT: 17:23:42

HANT TO VIEW YOUR CURRENT COURSE STANDING? (VY)ES, (N>O N
YOU HAVE BEEN SELECTED TO PROCTOR A TEST FOR STUDENT NUMBER: 3
STUDENT NAME:STUDENT NAME 3

ENTER UNIT NUMBER WRITTEN BY THE STUDENT i1

ENTER A QUESTION NUMBER WRITTEN BY THE STUDENT : 7 =~ Hrong guess
STUDENT WAS NOT ISSUED QUESTION NUMBER: . 7

ENTER A QUESTION NUMBER WRITTEN BY THE STUDENT . 8

STUDENT WAS NOT ISSUED QUESTION NUMBER: 8

ENTER A QUESTION NUMBER WRITTEN BY THE STUDENT 19

STUDENT WAS NOT ISSUED QUESTION NUMBER: S

(P)ASS, (COONDITIONAL PASS, (RIESTUDY? e

NOT ALLOWED TO PASS. NO RESULT ENTERED.

0K TRANSACTION COMPLETE.

ENDING AT: 17:23:42

ENTER STUDENT NUMBER . 8

ENTER PASSHWORD Docer?

STARTING AT: 17:25:43

HANT TO VIEW YOUR CURRENT COURSE STANDING? (Y)ES, (N)>0 : N
YOU HAVE BEEN SELECTED TO PROCTOR A TEST FOR STUDENT NUMBER: 3
STUDENT NAME:STUDENT NAME 3

ENTER UNIT NUMBER WRITTEN BY THE STUDENT ! <er> -=- Do not accept, no guess
(P>ASS, CCXONDITIONAL PASS, (RIESTUDY? :

NOT ALLOWED TO PASS. NO RESULT ENTERED.

OK TRANSACTION COMPLETE.

ENDING AT: 17:25:43

-218 -

ENTER STUDENT NUMBER : 8

ENTER PRASSHORD Do<er?

STARTING AT: 17:25:44

HANT TO VIEW YOUR CURRENT COURSE STANDING? (Y)ES,(N>0 N
YOU HAVE BEEN SELECTED TO PROCTOR AR TEST FOR STUDENT MNUMBER: 3
STUDENT NAME:STUDENT NAME 3

ENTER UNIT NUMBER HRITTEN BY THE STUDENT D o<er?

(PJASS, (COONDITIONAL PASS, (RXESTUDY? r

HAS QUESTION NUMBER: 3 COMPLETED SUCCESSFULLY (Y)JES, (N>0?
WAS QUESTION NUMBER: 1 COMPLETED SUCCESSFULLY (Y)ES, (N>0?
HAS QUESTION NUMBER: 4 COMPLETED SUCCESSFULLY (Y)ES, (N>0?
PROCTOR? (Y)ES,<(N>0 :

STUDENT#: 8 IS AVAILABLE FOR PROCTORING.

OK TRANSACTION COMPLETE.

ENDING AT: 17:25:44

< <3

ENTER STUDENT NUMBER : 3

ENTER PASSWORD D o<er

HANT TO VIEW YOUR CURRENT COURSE STANDING? (Y)ES, (N>0 : N
PROCTOR? (Y)JES, (N>O To<er?

STUDENT®: 3 IS AVAILABLE FOR PROCTORING.

YOU HAVE NOT COMPLETED 20 MINUTES OF RESTUDYING TIME.

OK TRANSACTION COMPLETE.

ENDING AT: 17:25:44

ENTER STUDENT NUMBER 7

ENTER PASSHORD Do<er?

STARTING AT: 17:25:45 :

HANT TO VIEH YOUR CURRENT COURSE STANDING? (Y)ES,(N)>0 N
PROCTOR? (Y)ES,<(N)O Ty

STUDENT®: 7 1S AVAILABLE FOR PROCTORING.

CENERATE TEST ON UNIT 1 (YOIES, (N>0? Ty

TEST GENERATED ON UNIT: 1, AT TIME: 17:25:45, QUESTIONS: 2, 3,
OK TRANSACTION COMPLETE.

ENDING AT: 17:25:46

ENTER STUDENT NUMBER 27
ENTER PASSWORD I o<er?

-219 -

STARTING AT: 17:28:46

HANT TO VIEW YOUR CURRENT COURSE STANDING? (VY)ES, (N>0
PROCTOR? (Y)ES, (N>0 Doferm

STUDENT#®: ? IS AVAILABLE FOR PROCTORING.

DO YOU HANT YOUR TEST (C)ANCELLED OR (P >ROCTORED? ¢
OK TRANSACTION COMPLETE.

ENDING AT: 17:28:47

ENTER STUDENT NUMBER P 7

ENTER PASSWORD Do<er?

STARTING AT: 17:28:47

HANT TO VIEW YOUR CURRENT COURSE STANDING? (Y)ES,<N>0
PROCTOR? (YJES, (N>0 Do<er?

STUDENT®: 7 IS AVAILABLE FOR PROCTORING.

YOU HAVE NOT COMPLETED 20 MINUTES OF RESTUDYING TIME.
OK TRANSACTION COMPLETE.

ENDING AT: 17:28:48

ENTER STUDENT NUMBER : ta
ENTER PASSWORD : tapass
STARTING AT: 17:30:52

1.START SESSION. 2.END SESSION.

3.EDIT STUDENT. 4 .EDIT SYSTEM PRRAMETERS.

S5.MARK TEST. 6.SEND MESSAGES.

7.MONITOR STUDENT. 8.EXIT TO TSO.

ENTER CHO|CE==> . 8 -- Return to mantes
C:

-220 -

