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Urinary biomarkers of renal transplant outcome
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Purpose of review

Renal allograft loss remains an important cause of morbidity and mortality. The objective of this review was
to provide a rationale for noninvasive monitoring to identify patients at high risk for graft loss; discuss key
steps in prognostic biomarker development from bench-to-bedside; and review promising biomarkers for

late renal allograft outcomes.

Recent findings

In a multicentre prospective cohort, early é-month urinary CCL2 was demonstrated to be associated with
the development of 24-month interstitial fibrosis/tubular atrophy and inflammation (IFTA+i). These findings
were extended to a single centre cohort, which showed that 6-month urinary CCL2 was a predictor of
death-censored graft loss independent of donor-specific antibody and delayed graft function. In a large,
multicentre prospective observational study (CTOT-01), 6-month urinary CXCL9 was significantly associated
with more than 30% decline of graft function at 24 months.

Summary

Urinary chemokines may identify recipients who are at high risk of graft loss. The early detection of high-
risk recipients may allow for more intensive postiransplant surveillance; avoidance of drug minimization/
withdrawal protocols; and the identification of patients who may benefit from enrolment in novel
interventional trials. Prospective trials are needed to demonstrate that urinary chemokine-guided
posttransplant surveillance strategies improve longterm graft outcomes.
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INTRODUCTION

Transplantation is the therapy of choice for many
patients with end-stage renal disease as it enhances
both survival and quality of life. Graft loss, however,
remains a clinically significant problem. Indeed, the
return to dialysis following graft loss is associated
with a three-fold increased risk of death, immuno-
logical sensitization that may impede retransplan-
tation, a lower quality of life, and increased costs
[1,2]. United States Renal Data System (USRDS)
studies demonstrate that adjusted patient survival
after graft loss is less than 40% at 10 years compared
with greater than a 75% 10-year survival with
a functioning renal transplant [2]. Similarly,
Canadian Organ Replacement Registry (CORR) data
also demonstrate that graft loss is an independent
predictor of mortality, with a three-fold increased
risk of death compared with patients who maintain
graft function [1].

Important gains have been made in overall graft
survival. From 1991 to 2007, renal allograft half-life
has improved from 10.1 and 15.8 years, to 14.7 and
26.6 years for the recipients of deceased and living
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donor allografts, respectively [3], and these gains
have remained stable [4]. These observations are
supported by improved long-term renal histology
on protocol biopsies at both 1 and 5 years [5].
Although the majority of these gains is attributable
to improved early outcomes with modern immuno-
suppression, there remains a small but appreciable
improvement in late death-censored graft loss [6].
Nevertheless, improvement of long-term outcomes
remains a major hurdle for the transplantation com-
munity.
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KEY POINTS

e Early, noninvasive prognostic markers would be useful
to identify patients at high risk of graft functional
decline and graft loss.

e Six-month urinary CCL2 predicts the development of
IFTA and inflammation (IFTA+i) at 24 months and
death-censored graft loss in independent cohorts.

e Six-month urinary CXCL9 predicts the decline in eGFR
more than 30% from 6 to 24 months in a multicentre
setting.

e Urinary chemokines are readily measured by ELISA.

e Prospective studies are required to demonstrate that
urinary chemokine-guided monitoring strategies
improve long-ferm graft outcomes.

ARE THE CAUSES OF LATE GRAFT LOSS
PREVENTABLE?

Data demonstrate that the underlying causes of graft
failure are largely identifiable [7,8%] and primarily
immune-mediated [9-12]. In a protocol biopsy
series, El-Zoghby et al. [7] reported that death-cen-
sored graft loss was attributable to glomerular dis-
eases (36.6%, including transplant glomerulopathy);
fibrosis/atrophy (30.7%); medical/surgical con-
ditions (16.3%); acute rejection (11.8%); and unclas-
sifiable (4.6%). These findings are consistent with
Naesens et al. [8"] who recently observed that specific
causes of graft loss were present in 69.4% of indica-
tion biopsies, with T-cell-mediated rejection (TCMR),
antibody-mediated rejection, and transplant glomer-
ulopathy being the dominant features of 52.8%
of indication biopsies prior to graft loss. These
observations give reason for hope, as immune-
mediated causes of graft loss may be treatable if
identified early.

What of the third of biopsies with significant
histological chronicity identified in the absence of a
specific diagnosis [7,8%]? Clearly, the causes for these
findings may be multifactorial in nature and not
necessarily immune-related, such as donor age and
quality. Efforts to characterize chronic, ‘nonspecific’
histological lesions may, however, ultimately con-
tribute to improving long-term graft outcomes [13].
The Banff criteria are a working classification in
evolution, and alloimmune inflammation may exist
that is currently below the threshold to be diagnosed
as rejection, despite having a significant negative
impact on graft survival [14]. Indeed, the successes
of modern immunosuppression may have left a
legacy of subtler forms of alloimmune inflammation
that are currently underrecognized.
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Multiple groups have now demonstrated that
interstitial fibrosis/tubular atrophy + inflammation
(IFTA+i) is a significant prognostic marker for graft
loss [13,15-20]. Even mild degrees of IFTA+i in
which the degree of inflammation does not meet
diagnostic criteria for Banff borderline rejection are
strongly and independently associated with renal
allograft functional decline and death-censored graft
loss [15,16,18]. It is noteworthy that I[IFTA+i is associ-
ated with episodes of acute rejection and increased
levels of HLA mismatch [15,17], as well as a rejection-
like gene expression signature [16,20]. Taken
together, these findings expand upon earlier work
that demonstrates that subclinical TCMR is associ-
ated with poor graft outcomes [21-24] and suggests
that IFTA+i may represent an ongoing, low-grade
cellular rejection state that is not recognized in the
current Banff schema [15,25] and may be amenable
to intervention.

REVIEW

What is the role for urinary biomarkers?

Urinary biomarkers could play a key role in improv-
ing long-term graft survival. Noninvasive monitor-
ing strategies have the potential to identify early
alloimmune inflammation when the injury may
still be reversible. Indeed, the early identification
of such high-risk recipients may call for more inten-
sive posttransplant surveillance, avoidance of drug
minimization/withdrawal protocols, and permit
their enrolment in novel interventional trials, such
as increased immunosuppression for IFTA+i.

Prognostic biomarker development: key
steps from bench to bedside

Biomarker development has been broadly catego-
rized into the following stages: discovery, perform-
ance evaluation, and impact determination [26].
Ideally, a prognostic marker would be as follows:

Discovery

(1) An early marker for late graft outcomes, not a
concomitant marker for established, irreversible
pathologies.

(2) Predict appropriate surrogate outcomes for graft
loss (e.g. histology, graft function).

(3) Possess sufficient power, especially if multiple
biomarkers are being assessed.

(4) Highly sensitive and specific.

Performance evaluation

(1) Correlate with hard, clinically relevant out-
comes — graft loss.
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(2) Validated independently in separate, preferably
multicentre, cohorts to demonstrate reproduci-
bility and generalizability.

(3) Evaluated in unselected patient cohorts to
characterize population-based diagnostic per-
formance.

(4) Have the capacity for high-throughput, inex-
pensive, robust and reproducible assays, with
accessible laboratory equipment that would be
available in clinical laboratories.

(5) Follow Good Laboratory Practice Guidelines.

Impact determination

(1) Exceed clinical prediction models for graft loss
(e.g. serum creatinine, proteinuria).

(2) Demonstrate improvement of long-term allog-
raft outcomes in a prospective interventional
trial.

Many studies have sought to identify novel,
noninvasive urinary biomarkers for concomitant
IFTA or graft dysfunction. These discovery studies
have used many different approaches, including
Luminex multiplex assays, proteomics, and pepti-
domics [27-31]. Although these are helpful for
determining novel targets and mapping the under-
lying pathophysiological pathways activated in
IFTA, this review will focus on biomarkers measured
early in the posttransplant course that correlates
with late outcomes.

There are a number of limitations inherent to
evaluating early prognostic markers for death-cen-
sored graft loss. Specifically, renal allograft half-lives
range between 15.8 and 26.6 years [3]; therefore, the
majority of prospective studies are forced to rely on
surrogate outcomes. Conversely, retrospective stud-
ies with sufficient follow-up to evaluate graft loss
may be confounded by an era effect with immuno-
suppression. This lead time also highlights the dif-
ficulties in performing prospective, interventional
trials to demonstrate the utility of a prognostic
biomarker for improving graft outcomes. With these
limitations in mind, we will discuss promising,
prognostic urinary biomarkers for late graft out-
comes.

EARLY URINARY BIOMARKERS FOR LATE
ALLOGRAFT OUTCOMES

Urinary-cell microRNA

MicroRNAs (miRNAs) are small, noncoding RNAs
that regulate gene expression through posttran-
scriptional repression of their target RNAs [32]. In
a series of nicely designed discovery microarray
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experiments, Maluf et al. [33] identified differen-
tially expressed urinary and renal miRNAs [34] in
several highly selected, cross-sectional, and longi-
tudinal cohorts, and selected targets were confirmed
with RT-QPCR. Twelve miRNA candidates were
identified for evaluation in a prospective, longitudi-
nal cohort (n = 66) with early 3—6-month urines and
24-month outcomes [33]. EFarly posttransplant
urines in patients who developed 24-month poor
graft function (eGFR less than 40 ml/min) and IFTA
on last protocol biopsy (ci>1 ct>1) versus stable
function/normal histology showed that miR-99a
was differentially expressed at 3 months in patients
who developed poor graft function at 24 months
(P=0.03), whereas miR-140-3p, miR-200", and miR-
200b were only borderline significant.

Although these data are informative from a
pathophysiological perspective, there are some
limitations. First, the clinical characteristics of the
longitudinal evaluation group were not reported
separately from the stable function/normal his-
tology versus poor graft function/IFTA groups, so
it is unknown whether renal function or proteinuria
were already different at 3-6 months posttrans-
plant. Therefore, it is not possible to determine
whether urinary miRNAs contribute additional
prognostic information for graft functional dec-
line/IFTA beyond routine clinical measures. They
did demonstrate that concomitant proteinuria and
urinary miRNAs were not correlated at the early time
point, which suggests that urinary miRNAs may add
additional information, but this was not further
characterized. Finally, they evaluated IFTA as a
histological surrogate of poor graft outcomes,
instead of IFTA+i that may provide better prognos-
tic information. Therefore, these findings need to be
evaluated and validated in an independent cohort.

Urinary proteins

Nauta et al. [35] evaluated multiple potential urinary
markers as predictors of long-term renal allograft
outcomes including albuminuria, proteinuria, neu-
trophil gelatinase-associated lipocalin (NGAL),
heart fatty-acid binding protein, kidney injury mol-
ecule-1 (KIM-1), and N-acetyl-B-p-glucosaminidase.
Prevalent patients were enrolled at a median of 5.9
years posttransplant and albuminuria was found to
be an independent predictor of subsequent graft
dystunction and loss, and interestingly outper-
formed total proteinuria [35]. This study did not
account for pretransplant or de-novo donor-specific
antibody (DSA) and histology was not available to
correlate with outcomes. Szeto et al. [36] evaluated
urinary KIM-1, NGAL, and IL-18 expression in a
cross-sectional cohort of prevalent renal transplant
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patients and reported that urine KIM-1 mRNA was a
multivariate predictor for graft loss. These findings
have yet to be independently confirmed and KIM-1
protein was not associated with death-censored
graft loss in Nauta’s study after adjusting for albu-
minuria [35]. These prevalent studies [35,36] may
also be further confounded by survivor bias.

In a prospective, multicentre observational
study of incident deceased donor renal transplant
recipients, Hall et al. [37] showed that urinary NGAL
and interleukin-18 (IL-18) within the first postop-
erative day were associated with composite of poor
allograft function at 1 year (eGFR <30 ml/min) and
return to dialysis. The outcome group had, however,
a higher incidence of delayed graft function (DGF)
(P=0.03) and when DGF was added to the predic-
tion models, both the net reclassification and inte-
grated discrimination index indices dropped 5% or
less (not significant) for NGAL and IL-18, suggesting
that the biomarkers may not contribute significant
additional information to the base clinical model
[371].

In a single centre, prospective observational
study, Amer et al. [38] evaluated the prognostic
value of 1-year posttransplant urinary total protein,
albumin, retinol binding protein, a1-microglobulin,
IgG, and IgM on death-censored graft survival.
These urinary proteins did not distinguish under-
lying 1-year protocol biopsy histology. Urinary
retinol binding protein was found to be an inde-
pendent predictor for death-censored graft loss
(n=12, HR 1.52, P=0.001). The diagnostic charac-
teristics [area under the curve receiver operating
characteristic (AUC)] for graft loss were, however,
not reported; therefore, these findings need to be
independently validated [38].

URINARY CHEMOKINES

Urinary CCL2

CCL2 is a CCR2 receptor chemokine produced by
renal tubular and glomerular epithelial cells, and
infiltrating leukocytes. CCL2 is chemoattractant
for monocytes/macrophages, T-lymphocytes, and
natural killer cells [39,40], and may contribute to
generating memory CD8" T-lymphocytes [41]. In a
prospective, multicentre study of adult renal trans-
plant recipients with serial protocol biopsies and
urine samples, we evaluated early predictors for
24-month histological outcomes [42]. Interestingly,
6-month urinary CCL2:Cr was associated with the
development of worsening allograft function and
IFTA at 24 months, and indeed was an independent
predictor of 24-month IFTA [odds ratio (OR) 1.049,
P=0.024] after adjusting for donor age, DGF,
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deceased donation, and ACEi/ARB exposure [42].
Emerging data, however, indicate that IFTA alone
is not prognostically significant, whereas IFTA+i is
an important predictor for graft loss [13,15-20].
Therefore, we confirmed that 6-month urinary
CCL2:Cr was an independent predictor for the
development of 24-month IFTA+i (OR 1.88, AUC
0.641, P=0.01) in this cohort of patients [43™"].

Even though IFTA+i is a more appropriate sur-
rogate for graft loss than IFTA alone, it still remains a
surrogate. Therefore, in a single centre, prospective
observational cohort, we evaluated the association
between 6-month urinary CCL2:Cr and graft loss
[44]. Notably, we confirmed that CCL2 is an inde-
pendent predictor for death-censored graft loss (HR
2.20, P=0.01) after adjustment for pretransplant
de-novo DSA and DGF, and outperformed renal
function and proteinuria. Furthermore, in a multi-
variate model using variables known to a clinician at
6 months posttransplant (CCL2, recipient age, and
DGF) yielded an AUC 0.87 for predicting death-
censored graft loss with a positive predictive value
0.96 [44]. These findings need to be validated in an
independent patient population with follow-up for
graft loss.

Urinary CXCL9

CXCR3 is a chemokine receptor that is expressed by
activated T cells and natural killer cells and binds
CXCL9, CXCL10, and CXCL11 [45]. CXCL9 and
CXCL10 are secreted by infiltrating inflammatory
cells, renal tubular, and mesangial cells, and recruit
leukocytes to mediate the Th1 response [46,47]. In a
prospective, multicentre observational study of
adult and pediatric renal transplant recipients, the
CTOT-01 group evaluated multiple biomarkers, and
validated urinary CXCL9 as a noninvasive marker
for biopsy-proven acute rejection with a negative
predictive value 0.92 [48]. Interestingly, they found
that 6-month urinary CXCL9 levels were associated
with the risk of subsequent 6—-24-month acute rejec-
tion (OR 4.695, AUC 0.88, P=0.005). Furthermore,
they established that 6-month urinary CXCL9 pre-
dicted a decline in eGFR more than 30% between 6
and 24 months (AUC 0.68, P=0.001, NPV 0.925)
(48].

This work builds on previous data that
demonstrate urinary CXCR3 chemokines (CXCL9,
CXCL10) are sensitive, noninvasive markers of sub-
clinical and clinical TCMR [27,49-59] and validates
it in a large, unselected multicentre cohort [48].
Notably, in a prospective, observational single
centre study Matz et al. described that elevated
urinary CXCL10 within the first month posttrans-
plant was associated with GFR <45ml/min at

www.co-transplantation.com 479

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.



Histocompatibility

6 months (AUC 0.68). The CTOT-01 study extends
these findings to urinary CXCL9 in a multicentre
study setting with longer follow-up.

CONCLUSION

Taken together, these data suggest that urinary
chemokines, CCL2 and CXCL9/10, are significantly
associated with the development of worsening
histology, graft functional decline, and death-cen-
sored graft loss. Critically, CCL2 is independent of
DSA suggesting that it predicts alternate pathways to
graft loss from antibody-mediated rejection. These
findings need to be independently validated to
determine if the early interaction of CCL2,
CXCL9/10, and DSA combines to provide an overall
stronger prediction model for graft loss.

Interestingly, urinary chemokines measured at
6 months have been remarkably consistent for pre-
dicting late graft outcomes. We speculate that this
may be due to a combination of factors. The earlier
time points may be confounded with noise due to
ischaemia-reperfusion injury and early acute rejec-
tion. Furthermore, immunosuppression minimiz-
ation or withdrawal frequently reaches its nadir at
6 months posttransplant. Low-grade alloimmune
inflammation that persists in the setting of stable,
reduced immunosuppression may be most predic-
tive for long-term outcomes, so the recipient
immune profile at this time may be most predictive,
and be characterized in part by elevated urinary
chemokine levels.

Finally, urinary CCL2, CXCL9/10 are readily
measured by ELISA, which is a straightforward assay
for translating from bench to bedside. Ultimately,
prospective interventional trials are required to
demonstrate that posttransplant monitoring strat-
egies utilizing wurinary chemokine monitoring
improve long-term graft outcomes.
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