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Abstract

Incorporating units of measure into a programming language is beneficial for dimensional
analysis and error detection. One of the methods of doing this is to use the abstraction
facilities of an existing programming language. In this thesis, I present the design of a units
package for manipulating units of measure along with numerical values for the Sater_C
language and discuss methods of using partial evaluation to improve the performance of
the units package. This work generalizes and enhances previous work and analysis and
applies the new analysis to the Safer_C programming language. In particular, it examines
the use of partial evaluation to perform dimensional analysis. This work consists of three
parts: 1) A survey of methods for incorporating units of measure into programming
languages and research on partial evaluation for this purpose. 2) A presentation of a
design for a units package and discussion of several important features of the package
namely: dynamic dimensions, computation of rational powers, handling precision, and
handling temperature computations. 3) A presentation of a technique of partial evaluation
to achieve good performance for dimensional analysis. With partial evaluation, the units
checking and computation can be done at compile time. The results of experiments show
that my design of the units package is correct and that existing partial evaluation

technology can be used to improve the efficiency of dimensional analysis.
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Chapter 1

Introduction

1.1. The Problem

Dimensional analysis plays an important role in scientific investigation. In many fields,
such as physics and engineering, it is common practice to associate units of measure with
variables and constants and to carry these units along with computations. Scientific
equations are built not on abstractions but on measurements of actual phenomena. It is
quite possible for an equation to be mathematically correct and yet be scientific nonsense.
Dimensional analysts is the study of measurement and its influence on scientific
relationships. The techniques of dimensional analysis are widely used in science to derive

theoretical relationships.



Unfortunately, most programming languages such as Pascal, C, C++, FORTRAN, and
PL/T do not deal with units of measure. When engineers use computers to solve their
problems, they have to do the dimensional analysis manually. It has become clear that
programs in high-level languages should in some way provide the mechanisms needed to

support dimensional analysis.

1.2. Related Work

1.2.1 Units in Programming Languages

The earliest language which allowed units is the ATLAS language (Abbreviated Test
Language for All Systems) [Ati82]. ATLAS allows only a limited set of units and a limited
language for constructing combinations of units. The ATLAS language is intended to be
used for the writing of test programs for Units Under Test (UUTs), so that these

programs can operate on various makes and models of Automatic Test Equipment (ATE).

Units of measure in general high-level languages are discussed by Gehani [Geh77]. Gehani
describes dimensional analysis for a more general high-level language, Pascal. Gehani
proposes the inclusion of the units of the quantity being represented as an additional
attribute in high-level programming languages. He argues that all or most of the additional

processing required by the units attribute can be done at compile time.



House [Hou83] gives a critique of Gehani's work and proposes a method which can be
completely implemented at compile time. He discusses language syntax issues and efficient
implementation.

In dimensional analysis, an important aspect is units conversion. Karr and Loveman
[KL78] propose the incorporation of units into programming languages; they discuss the
relationship between units conversion and linear algebra, dimensional analysis, and
language syntax issues. Novak [Nov95] presents efficient algorithms for converting units
of measurement from a given form to a desired form. For saving space and increasing
efficiency, Novak discusses the representation of the dimensions. He packs a vector of

eight integers into bit fields within an integer word, and implements units for the GLISP

language.

Gehani, Karr & Loveman, and House, all require that the language definition be changed
to support dimensional analysis. Gehani [Geh85] and Hilfinger ([Hil83] and [Hil88])
describe methods for using Ada'’s abstraction facilities to use an existing programming
language to support dimensional analysis. Hilfinger describes methods for including units
with numeric data using Ada packages, and discusses modifications of Ada compilers that
would be required to make the use of these packages efficient [Hil88]. There are several
other packages which are discussed in [CG88], [Cun92], and [Umr94]. Cmelik and Gehani
gives a package for handling units of measure in C++ using classes. Cunis discusses a

package for handling units of measure in Lisp. Umrigar gives a package for handling units



of measure in C++ using templates. All these packages have some disadvantages, which

we will discuss in chapter 2.

1.2.2 Partial Evaluation

Partial evaluation is a program optimization whereby as much as possible of the
computation specified in the program is carried out before the program is translated to
machine language. Any computation possible on literal constants or relatively stable input
data supplied by the programmer is carried out, and the results are propagated through the
program. The resulting simplification of the final program can lead to a substantial speed
improvement. Partial evaluation has been the subject of a rapidly increasing amount of
activity over the past decade due to recent advances both in theory and practice [BEJ88],

[CD93], and [JGS93].

Partial evaluation has been successfully applied to declarative languages, such as Scheme
and Prolog. Recent years have seen a growth in the study of partial evaluation in
imperative programs [Cha90], [Mey91], [And93a], [WL9S], and [KKZG95]. Anderson
[And93a], [And93b] describes a partial evaluator for a substantial subset of C.
Kleinrubatscher, Kriegshaber, Zochling, and Gluck [KKZG95] describe a partial evaluator

for a substantial subset of Fortran 77.



Baier, Gluck, and Zochling [BGZ94] investigate the application of partial evaluation to
numerically-oriented computation and engineering applications. Salomon [Sal96] uses
partial evaluation to support many important language features and implements a partial

evaluator for Safer_C.

Despite the successful application of partial evaluation to many fields, few attempts have

been made to study the partial evaluation of dimensional analysis [Hil88].

1.3. Research Objectives

In this thesis, I study dimensional analysis in Safer_C and combine it with partial
evaluation to improve the efficiency of programs which use units of measure. I generalize
and extend previous units package and analysis to the Safer_C programming language. I
investigate some problems which are relevant to the features of the dimensional analysis
package, the system, and partial evaluation. For decreasing the size of the implementation,
I make maximum use of the existing features of Safer_C. For example, I use the partial
evaluator which exists in Safer_C. I also suggest improvements to the partial evaluation
techniques that would speed up dimensional analysis, with the goal that any such

improvements would enrich all uses of the language, not just dimensional analysis.



1.3.1 The Method

Basically, there are two methods of supporting dimensional analysis.

a) The programming language itself could support dimensional analysis as a feature. This
method requires changes to the language intended solely for supporting dimensional
analysis. It may be impossible to change existing programming languages to meet this

goal.

b) Use the abstraction facilities of an existing language to construct a units package to
support dimensional analysis. Method b) has several advantages. First, we do not need
to change the source language specifically for dimensional analysis. The standard version
of the language still can be used. Second, the user does not need to learn a new language
for doing dimensional analysis. Finally it is easier to implement. Therefore I intend to use

method b) for dimensional analysis in Safer_C.

Although a predefined units package for dimensional analysis has several benefits, the
units checking would normally have to be done at run time instead of compile time. That
means that the execution of programs which make use of dimensional analysis would be

slow. For tackling this problem, I propose the use of partial evaluation.



There are several reasons for choosing partial evaluation to speed up execution. First,
when units are declared along with variables or constants, the units are static, since we
know the units at compile-time. Thus we can completely deal with these static quantities
at compile time. Second, in Safer_C the partial evaluator already exists. Therefore this
makes the work much easier. We only need to use and perhaps expand the existing partial
evaluator to deal with different units components. Finally, Safer_ C has the same
computational power at translation time as at run time. Thus we can do any necessary

computation at compile-time rather than at run time.

1.3.2 Structure of the System

The system which supports units of measure in Safer_C basically consists of a parser, a
partial evaluator, and a units package. My work principally involves the partial evaluator

and the units package. It includes the following parts:

1) Designing the features of dimensional analysis which support units of measure to
be provided by the system. The features of dimensional analysis directly indicate how

powerful the system is.

2) Designing a convenient notation for specifying units of measure. This is important

because if users feel uncomfortable with the notation they will not use the system.



3) Discovering under which circumstances, and which parts of dimensional analysis can be

carried out during partial evaluation.

4) Implementing a demonstrational units package which supports dimensional analysis.

Whenever the users want to use units, they simply declare the units of each variable and

manipulate these units using ordinary operations. The system will do the units checking.

From the user’s point of view the system should have the following characteristics

[Hil88]:

(1) It must be possible to declare each variable, constant, and parameter to have a

particular unit of measure and to perform the ordinary arithmetic operations

between quantities having the declared units of measure.

(2) There should be some provision for handling conversion of commensurable units.

(3) There should be compile-time checking for dimensional consistency.



The system can be represented by the following diagram

SOURCE | | _
Partial OBJECT
PARSER __.I CODE
UNITS Evaluator
PACKAGE

Figure 1.1 System Diagram

The source is the user’s code which includes some operations using units of measure. The
units package is constructed by using Safer_C abstraction facilities, such as operator
overloading, and parameterized constructor. The source and the units package are sent to
the parser. According to the source and units package, the parser generates the
intermediate code, which is a parse tree. Then the parser tree is sent to the partial
evaluator (PE). According to the annotated evaluation time, the partial evaluator performs
the partial evaluation. The partial evaluator does the units consistency check and units
operations. By partial evaluation, the manipulation of units of measure can be climinated

from the object code as much as possible. Therefore we can get a faster running program.

1.4. Perceived Benefit

The work described here has several benefits. First of all, it offers dimensional analysis.

This is important to scientists and engineers as it gives a check on the correcrness of their



formulas. The checking is similar to that traditionally performed by scientist on their own
hand calculations. In addition, dimensional analysis can accurately perform the conversion
between dimensional quantities in different systems of units. With this feature the users
would need to declare only the units of quantities and the system then would automatically
manipulate the units and do the dimensional analysis. As a brief example, a programmer

could code the following program to compute a speed:

units_package()

<<main>> :: func() void

block
Speed :: Doubleu(0.0, km/hour)
Time :: Doubleu(S, hour)
Distance :: Doubleu(600.0, km)
Speed := Distance/Time
Printu (Speed)

end

When executing the program it will printout: 120(km/hour).

Second, using the information provided by units, more errors can be detected. Third,
thanks to partial evaluation the system would be efficient. Incorporating units of measure
into a programming language would require a lot of space and computation. If a program

runs slowly as a result of the incorporation of units into the program then fewer

10



programmers would want to use the feature of dimensional analysis. Thus the work
described here is an important step towards putting a programming language which
supports units of measure into practical use. Finally, the sysiem demonstrates the

application of some important language features and partial evaluation.

1.5. Thesis Structure

My thesis consists of the following chapters:

1. Introduction

2. Related Work — Survey the related work on units of measure in programming
languages and partial evaluation in imperative languages.

3. Background Knowledge — Discuss some background knowledge which is relevant
to dimensional analysis and partial evaluation.

4. Design — Present a design of the features of dimensional analysis and a convenient
notation.

S. PE units package in Safer_C — Study partial evaluation and a units package which can
efficiently support units of measure.

6. Implementation — Construct a prototype of a units package in C++.

7. Conclusion and future work — Present conclusions, and suggestions for future

work.

11



Chapter 2

Related Work

In this chapter, I survey the existing work on dimensional analysis in programming

languages and on partial evaluation that is directly related to my work.

2.1 Introduction

Programming languages have improved a lot since the earliest high-level languages
appeared in the 1950s. Many new features have been added to programming languages
since then but the design of high-level languages has not yet been perfected. Incorporating
units of measure into programming language is an interesting research area of
programming language design. Such a feature is called dimensional analysis. Units of
measure play an important role not only in scientific investigation but also in our every day

life. Unfortunately, most programming languages such as C, C++, Fortran, and PL/I do

12



not deal with units of measure. It has become clear that programs in a high-level language
should in some way provide physical and mechanical units-e.g. volts, hertz, kgm, dyne,
etc. From the point of view of programming languages, explicit mention of units can not
only enhance readability of programs but also increase the ability of a programming
language to correct errors of inconsistent units. Research into dimensional analysis in
programming languages over the past twenty years has achieved many results. Two
methods have been adopted to incorporate units of measure into programming languages.
One is to modify an existing language to directly incorporate units of measure into the
syntax and semantics of the language. The other is to use the existing high-level features
provided by a programming language to implement dimensional analysis. The following
are the main design problems which we should consider when we incorporate units into a

programming language.

1. How to represent the units themselves in the source code.

2. How to deal with conversion between two commensurate units.
3. How to provide compile time consistency checking.

4. How to permit efficient implementation.

5. How to provide precision control.

13



2.2 Units in Programming Languages

2.2.1 Atlas

The earliest programming language which allowed units of measure was ATLAS language
(Abbreviated Test Language for All Systems) [Atl82]. ATLAS was developed originally
for avionics applications under the auspices of Aeronautical Radio, Inc. (ARINC) and
under the direction of the Airlines Electronic Engineering Committee (AEEC), which
approved the original version on October 10, 1968. ATLAS was approved by the United
States Department of Defense as an interim standard language for automatic test

equipment (1976).

ATLAS is a standard abbreviated English language used in the preparation and
documentation of test procedures which can be implemented either manually or with
automatic or semi-automatic test equipment. The ATLAS language is intended to be used
for the writing of test programs which describe test procedures for a wide class of Units
Under Test (UUTs), so that these programs can operate on various makes and models of

Automatic Test Equipment (ATE).

Since ATLAS is specific for testing, ATLAS allows only a limited set of units of measure

and a limited language for constructing combinations of units.

14



2.2.2 The Early Work of Gehani

In 1977, Gehani [Geh77] discussed the units of measure in the general high-level
programming language Pascal. Gehani's arguments can be summarized as follows. The
basic function of a computer program is manipulating data. An important attribute of a
datum is its type. In a high-level typed language, the type of a variable determines the
range of values which the variable can have and the set of operations that are defined for
variables of that type. Using type information we can enhance the error detection
capabilities of a compiler. A compiler should report an error if an operator is applied to an
incompatible operand; for example, if a pointer variable and a float variable are added
together. Similarly, a units error should be detected when incompatible units are
combined; for example when a value with units of speed is assigned to a variable with
units of volume. Gehani proposes the inclusion of the units of the quantity being
represented as an additional attribute in high-level programming languages. Using the

notation proposed by Gehani we can write down following program segment:
var T real UNITS(*);
V: real UNITS (METER = 3); {METER =3 means V has unit m’ }

W: real UNITS (KILOGRAM);

T=V+W;

15



where UNITS(*) means that the temporary variable T can be used to hold a value having
different units, V is a real and has units attribute meter = 3, and W is a real and has units
attribute kilogram. In the statement T := V + W, the compiler should produce an error
message since V and W have different UNITS attribute. Gehani gives a detailed discussion
of the notation for the units attribute in Pascal, the computation on the new data (which
has value, type attribute, and units attribute ), conversion, and implementation. For
efficient performance, Gehani claims that checking for consistency of units can all be done

at compile time if the following restrictions are made:

(1) Expressions with units may be exponentiated only to constant or compile time

determinable values.

(2) The expressions representing the exponents in the units attribute declaration may be

constants or compile-time determinable values.

(3) Variables with the attribute UNITS(*) are not allowed to be assigned values with

different units depending upon certain conditions (and therefore program flow).

For example, if T has the attribute UNITS(*), then the statement:
ifethenT:=¢, elseT:= ¢,

should not be permitted if e, and e, have different units.

16



2.2.3 The Work of House

House [Hou83] gives a critique of Gehani's work. The main objection by House is that
Gehani's implementation scheme is not capable of performing the type of units checking
required of it. House gave an example which satisfies all the conditions given by Gehani

but cannot check consistency errors. The example given by House is:

Program faulty;
var g: real UNITS(*);
m: real UNITS(KG);
a: real UNITS(M, SEC = -2);
f: real UNITS(M, KG, SEC =-2);
function ratio (x : real UNITS(*); var y : real UNITS(*)) : real UNITS(*);
begin
q:=a;
ratio := x/y
end;
procedure x(function fun(m : real UNITS(*); var n : real UNITS(*)) : real UNITS(*);
begin
a = fun(f, q);
end;
begin
q:=m,;
x(ratio)

end

17



The above program is intended to calculate the ratio of a force to a mass. The result
should be an acceleration (i.e. has units (M, SEC = -2)). By a circuitous route, the ratio of
the variables fand m is computed by function ratio. However, the value of y is changed by
the statement g := a. Thus the units of ratio that we get are (KG = 1). This error cannot
be detected in ratio alone, since we do not know what are the actual parameters. We can
not detect any error in the procedure x either, since in the procedure x it involved function
fun which is the function ratio, but we do not know that yet. The source which causes the
problem is that "if the two parameters should bear some given relation to each other, there
is no syntactic mechanism for specifying so". Thus House proposes a method in which the
relationship between parameters and return value can be specified. Using this mechanism
the consistency checking can be completely implemented at compile ume. He also

discusses language syntax issues and efficient implementation.

2.2.4 The Work of Karr and Loveman

In dimensional analysis, another important aspect is units conversion. Karr and Loveman
[KL78] propose the incorporation of units into programming languages and give a very
interesting method for commensurate units checking and units conversion using linear
algebra. To discuss the main idea of the method, first let us give the concept of units being
commensurate. We say that "two quantities are commensurate if one is a constant muitiple
of the other.” For example feet = 12 inches, thus feet and inches are commensurate. The

basic idea of the conversion method discussed by Loveman is as follows:

18



If A and B are commensurate then we have

A = C*B, 2.1
where A and B are dimensional quantities, and C is a constant. From (2.1) we have

A/B = C*1. 2.2)
The formula (2.2) means that if we want to know whether A and B are commensurate we
only need to check whether A/B is commensurate with 1 or whether A/B is a constant
under condition (2.1). The question of determining whether a quantity is commensurate
with 1 can be answered using pure linear algebra. To make this connection, we will apply

the log to each of the equations describing commensurateness.

Let U be a set which consists of all the units (base or derived) that are used. We may

assume that there are n units. Let D,, D, be dimensional quantities and «’, u” € U be the
units of Dy, D,, respectively, and q,, g, be the measurement of D,, D, respectively. If
D,, D, are commensurate then (2.2) will be true. Taking log on both sides in (2.2) and
using e to denote g,/ g, we get

logu'—logu”—log C=—loge. (2.3)
Suppose that we have equations which describe commensurateness as follows:

Ui =cru;, (2-4)
where ¢, is areal number, I =1, 2, ...k u;, u; € U, i, j=1, 2, ... n. The k denotes the

number of conversion relations.

19



Using a similar method taking log on (2.4) we get
log u; ~log u; =log c;. 2.5
Combining (2.3) and (2.5) we get following systems of linear equations:

logu, — logu; = logg,
(2.6)
logu'

~ logu" - logC = -—loge

wherei, j=1,2,..n.l=1,2, ..,k

Let A be the coefficient matrix of (2.6) (that is a k+1 rows by n+1 columns coetficient
matrix),

X=(x1» Xz0 - Xns Xnet) =Q0gu;, logu,, ... logu,, log O)7,
and

B = (by, bys -.. bss brar)T =(ogc,, l0ge,, ... loge,, ~loge)T
then (2.6) can be written as

AX =B. Q.7

Therefore, if we think of X as unknown then the question of whether a quantty is
commensurate with 1, when translated into linear algebra terms, becomes a question of
whether the systems of linear equations (2.7) has a solution. To solve the system of lincar
equations (2.7), we can use some method given in any linear algebra book. For example,
we can use row operations on the coefficient matrix A to give the row-echelon form. Then

we could get the solution.

20



In general, (2.7) may not have a solution. If d = Al # 0 then system AX = B has a unique
solution. Notice that the matrix is not square but in our case we care only about the
solution of log C. Thus more specifically, we need only to consider whether we can add
multiples of the rows of matrix A to the last row of A in such a way that all entries, except
possibly the last two entries, are zero. If we can find the value of log C then we get the

value of C. Thus we know that D,/ D, is commensurate with 1 and D,/ D, = C*1. Let

us consider an example which is given in [KL78].

Example 2.1. Finding the radius in inches of a circle whose area is one acre. Using the
formula r:Jacrel n, we want to know if Yacre/ x is commensurate with inches, in other

Jacreln

words, if —
inches

is commensurate with 1. Let the units order be (acre, sec, grams,

inches, feet). Then the X will be (log acre, log sec, log grams, log inches, log feet. log

Jacrel T =Cis:

C). The vector for
inches

1 1
~00-10 -1 -log—
G L~

If we give the conversion relations 1 feet =12 inches and 1 acre = 43560 feer® then we
have the following coefficient matrix:
(1 0 0 0 -2 0 log 43560

00 0-11 0 |logl2

1
0 0-1 0 -1 <-log—
\ gV“)

=

21



Using row operation we have

1 0 00 -2 0 logd3560

000-11 0 Ilogli2 .
0000 0 -1 -log12¥433%0
Jr

Thus log C = log 1245350 and the C = 124338021413, Therefore the Vacre/ = is

commensurate with inches and the number of inches of the desired radius is 12 -43%@=

1413.

Notice that:

1. Since a * log x =log x?, log x + log y = log (x * y) we do not need to actually compute
the logarithms in the last columns. Thus in the row operations, if addition is required
multiplication is done, and if the multiplication is required then exponentiation is done. We

can even remove the log notation from the matrix.

2. We do not need to store the column which indicates the variable log C, since in this

column only last entry is non zero, therefore the row operations will not affect its value.

The method discussed above is a very interesting method as it makes a connection

between units commensuration and pure linear algebra. In this method, we have to solve a
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system of linear equations. Normally for solving systems of linear equations the cost is
expensive both for space and time. When the number of units and the conversion relations
become large, the matrix A will become large. Thus another conversion method is

introduced by Novak [Nov95].

2.2.5 The Work of Novak

Novak presents an efficient algorithm for converting units of measure from a given form
to a desired form. The method given by Novak is based on some standard units system.
For example, the standard units system is SI system. Let

u =c*u,,
where «, is a units, u, is a base units in SI system, and c is a real number. Then the c is
called conversion factor of u,. With conversion factor then we can convert units of

measure from a given form to a desired form.

Let D,, D, be dimensional quantities and «’, «” € U be the units of D, D,,
respectively, and ¢,, ¢, be the measurement of D,, D, respectively. If the conversion
factor of u’is f, the conversion factor of u” is f,, and q , is the equivalent quantity of
D,, D, in Sl system i.e.

a*f,=9,=9,*f,

then we can convert ¢, in units &’ to ¢, in units 4.
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q,=q*f/f,
Novak's method saved the space which would be required by Loveman's method. Novak
also discusses the representation of the dimensions for saving space and for efficiency. He
packs a vector of eight integers into bit fields within an integer word, and implemented the

use of units in the GLISP language.

There is a common characteristic in the work of Gehani, Karr & Loveman, and House.
That is they all require that the language definition be changed to support dimensional
analysis. Changing a language is not an easy task. There are many problems we need to
consider. For example, we need to change the compiler, and we need to consider whether
it is easily accepted by users. There is another way to introduce units of measure into
programming language. That is using a high-level language's abstraction facilities to let the
programming language support dimensional analysis. Here when we say high-level
languages, we mean imperative languages. In some languages such as LISP, to define a
units package is relatively easier than in an imperative language because LISP is a
functional language. Basically, you can define anything you want in LISP. In an imperative
language, if the language has no such feature then it is very hard for you to define the

feature using the language itself.
An early discussion of using a high-level language's abstraction facilities to let a

programming language supports dimensional analysis can be found in Hilfinger's book

"Abstraction Mechanisms and Language Design" [Hil83). Although later, Gehani {Geh85]
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and Hilfinger [Hil88] give another Ada package to support dimensional analysis
respectively their emphasis is different. To reduce errors resulting from the inconsistent

usage of objects we can use many methods, such as derived types and units of measure.

2.2.6 The Later Work of Gehani

One of the benefits of incorporating units of measure into a programming language is
helping in detecting errors. In some languages such as Ada, we can use derived type to
help detect errors. In [Geh85], Gehani examined and analyzed the idea of using derived
types and units of measure to specify additional information in Ada. This can be described

as follows:

Let x, y be two FLOAT variables. Normally, we can do any computation on x and y. If x, y
has some practical meaning, for example x denotes a price and y denotes a weight, then
assigning x to y or adding x, y together is not correct. This error can not be detected
automatically. In Ada, we can use derived type to solve this kind of problem. A derived
type introduces a new type which is identical to an existing type except that it is logically

distinct. Using derived type we can declare PRICE and WEIGHT as follows:

type PRICE is new FLOAT

type WEIGHT is new FLOAT



Here PRICE and WEIGHT are two new types. They both have the same range of values,
say FLOAT, but logically they are different type. Mistaken use of variable of type PRICE
for those of type WEIGHT can be detected automatically. Thus if we declare

x : PRICE

y : WEIGHT
then assigning x to y or adding x, y together would violate the typing rule and this
violation would be detected during compilation. The result obtained by Gehani is that the
units of measure approach is better than the derived types approach to specify additional
information. Gehani uses the method of units of measure to define an Ada package to

implement units in Ada.

2.2.7 The Work of Hilfinger

Although Hilfinger [Hil88] describes methods for including units with numeric data using
Ada packages, he emphasizes the modifications of the Ada compilers that would be
required to make the use of these packages efficiently. We will give a more detailed

discussion about Hilfinger’s work in the section 2.4.

2.2.8 Other Work

There are several other packages such as [CG88], [Cun92)}, and [Umr94]. In [CG88],
Cmelik and Gehani use class and operator overloading to give a package for handling units

of measure in C++. But in these packages the dimensional checks have to be done at run
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time. Umrigar also gives a package for handling units of measurement in C++. Umrigar's

method makes use of C++ templates to track the dimensions of quantities at compile-time.

Although Umrigar's package can check some dimensional correctness before run-time

there are some drawbacks in his method.

(1) The method only handle integer demension.

(2) Because all quantities having a particular dimension use the same internal units the
programmer does not have sufficient control over the precision of dimensional
quantities, which may lead to an accumulation of floating-point error.

(3) Errors are not reported in terms of dimensional violations but rather in terms of type
errors.

(4) Since the dimensions are directly incorporated into the template type placehoder, the

dynamic dimensions are not allowed.

From the work of Cmelik, Gehani, and Umrigar we can see that the higher the facilitics

you use the less control over the process you get.

We have mentioned that when we incorporate units of measure into a programming
language (more precisely into an imperative language) an important aspect that we should
consider is compile time consistency checking. Why do we need this? The motivation is
that we want to incorporate units of measure into programming languages, and we also

want to "compile away" any computational overhead associated with handling dimensional
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information at run time. In [Cun92], Cunis gives a different view. Cunis discusses a
package for handling units of measure in Lisp. Most LISP sysiems are interactive
interpreters. The users interact with the LISP interpreter by typing in function invocations.
The LISP system then interpreters them and prints out the result. Therefore Cunis argues
in favour of actually incorporating units of measure information with numeric data objects

in a dynamic and interactive programming environment.

2.3 Safer_C

In this thesis our goal is to add dimensional analysis to Safer_C. Thus in this section we
give a brief introduction to Safer_C. Safer_C is a new language developed by Salomon
[Sal95] in the Department of Computer Science at University of Manitoba. Safer_C is a
modemn descendant of the C language. The popular C language is over 20 years old. The
C language has many syntactic deficiencies that lead to common programming errors.
Some of these errors can persist in 2 program until run time. The primary object in the
design of Safer_C is to produce a language that is more error-resistant than C without
sacrificing any expressiveness or computational power. Safer_C is semantically identical to
C, but has most of the syntactic deficiencies eliminated by using modem conventions.
Safer_C is a unified name of Safer_C/1 and Safer_C/2. Safer_C/1 and Safer_C/2
correspond to C and C++. Safer_C/2 will be equivalent to C++ in expressive power, but

with less of the awkward syntax baggage that C++ inherited from C.
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A simple Safer_C program is given here as a sample:

Safer_C version 3.1
stdio_hQ
<<doit>> :: func(x, y :: int) int
block
sum :: int
sum:=x+y
return sum
end
<<main>> :: func () void
block
printf("The sum is: %d", doit(2, 3))

end

2.4 Partial Evaluation

To understand what partial evaluation is and what research has been done on it is very
important as we will use partial evaluation to improve the performance of our units
package. Partial evaluation is a program optimization technique. It provides a unifying
paradigm for a broad range of work in program optimization, interpretation, and
compilation. Partial evaluation can improve the efficiency of programs by exploiting
known information about the input of a program. Partial evaluation has been the subject of

a rapidly increasing amount of activity over the past decade due to recent advances both in
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theory and practice ([BEJ88], [CD93], and [JGS93]). A more detailed discussion of
partial evaluation will be given in Chapter 3. Here we only outline the basic research which

has been done on partial evaluation.

Partial evaluation has been successfully applied to declarative languages, such as Scheme
and Prolog. In recent years there is a growth in the study of partial evaluation in
imperative programs [Cha90], [Mey91], [And93a], [WL9S], and [KKZG9S]. Anderson
(IAnd93a], [And93b]) describes a partial evaluator for a substantial subset of
Kleinrubatscher, Kriegshaber, Zochling, and Gluck [KKZG9S] describes a partial
evaluator for a substantial subset of Fortran 77. Baier, Gluck, and Zochling [BGZ94]
investigate the application of partial evaluation to numerically-oriented computation and

engineering applications.

Salomon [Sal96] uses partial evaluation to support many important language features and
implements a partial evaluator for Safer_C. The motivation of using partial evaluation in
Safer_C is to replace the functionality of a preprocessor. The greatest obstacle to the
modemization of C that was encountered is its preprocessor phase. Since preprocessors
are used to change source text, the machine translation of C programs into a new version
or a different form can be blocked by even tame preprocessor statements. Sometimes the
actual C program that is being manipulated cannot be known until specific values are
assumed for some of the preprocessor variables, and then only the program generated by

those specific values can be manipulated, not the general form of the program. Since the
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existence of a preprocessor phase impedes even simple source-to-source code
manipulation, it was decided that the preprocessor should be replaced early in the
evolution of Safer_C so that future translation with language evolution would be casy.
The Safer_C translator can be described in figure 2.1. We will discuss some detail partial

evaluation technique used in Safer_C in Chapter 5.

Source

%

Scanner
(Lex)

)

Parser
(Yacc)

)

Partial
Evaluator

L

Code
Generator

|

C-code

Figure 2.1 Safer_C translator
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Despite the successful application of partial evaluation to many fields, few attempts have
been made to study the partial evaluation of dimensional analysis. In [Hil88], Hilfinger
describes an Ada package to support dimensional analysis and argues for good compilers
to efficiently execute the package. In his paper, Hilfinger proposes using a variant record

to define a UNITS. A dimensional quantity is defined by

type QUANT( Do, D1, D2, D3:INTEGER :=0)is
record V : FLOAT;

end record;

Hilfinger proposes that the compiler split the type QUANT into two parts

QUANT _descrim_type and QUANT _value_type:

type QUANT_discrim_type is
record Do, Dy, D2, D;:INTEGER :=0; end record;

type QUANT _value_type is
record v: FLOAT; end record.

Then he extends constant folding [ASU86] to composite objects to handle the units
package efficiently. Using constant folding

X:=X+DELTA X
will become

RETURN_value :=(V = Xo.V+Y,.V);
X :=RETURN. value;
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Note: Hilfinger suggests that a compiler could implement the type QUANT as two types.
From this implementation we got the separation of the static part and the dynamic part of
a record. Therefore Hilfinger further suggests that the compiler apply an optimization
technique such as value propagation, peephole optimization [ASU86], or an expansion of

the inline functions to achieve efficient performance of the units package.

In Hilfinger's Ada package, we found the following disadvantages:

1) Because Ada does not allow overloading of assignments, some uses of the Ada units
package are not natural.
2) Hilfinger discusses constant folding only for some simple cases.

a) Hilfinger discusses only how to get the compiler implement QUANT and use
the implementation to improve the efficiency of units checking. Using partial
evaluation we can deal with more general cases.

b) When we expand the units package to handle more complex cases such as rational
powers, the simple constant folding is not enough to handle units computation. Also
from the point of view of partial evaluation it is unreasonable to expect a compiler to
execute static statements since the compiler lacks binding-time information.

3) In the Ada units package, since discriminants are used when we declare dimensional
variables we have to specify discriminants. Thus dynamic units are not allowed in the

Ada units package.

33



Chapter 3

Dimensional Analysis and Partial Evaluation

3.1 Units System

In this section, I present a short review of the units system which one might leamn in a
beginning physics course {Mor69). To ensure accuracy and reproducibility of a physical
quantity, it is first necessary to define units in which the physical quantity is measured. In
general, a unit is a basic physical quantity by which other physical quantitics can be
expressed. There are numerous physical quantities but not all of them are independent
Many physical quantities can be described in terms of a small set of fundamental
quantities. For example, velocity can be described in terms of length and time. In
mechanics, only three fundamental quantities are used. They are length (L), mass (M), and

time (T), or length (L), force (F), and time (T).



We call the units for the three fundamental quantities basic units. A unit which is
described in terms of fundamental units is called a derived unit. The complete set of basic
and derived units that are used to represent all quantities is called a system of units.
According to the fundamental quantities that are used, we can have the following six units

systems.

a) Mass-based systems: Mass-based system are also called absolute systems. In these units

systems, the fundamental quantities are length, mass, and time. They are

1) International System (SI): In the International System, the three fundamental
quantities length, mass, and time are the meter (m), the kilogram mass (kg), and the
second (sec), respectively. Actually, SI has four other basic units for other branches
of physics. They are those for temperature (the degree Kelvin), electric current (the
ampere), luminous intensity (the candela), and the amount of a substance (the mole).
The meter, the kilogram, the second, together with the kelvin, the ampere, the

candela, and the mole form the seven basic SI units.

2) Centimeter-gram-second System (cgs): In this system, the three fundamental

quantities length, mass, and time are the centimeter (cm), gram mass (g), and the

second (sec), respectively.
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3) British Mass System (fps): In British Mass System, the three fundamental quantities
length, mass, and time are the foot (f?), the pound mass (pm), and the second (sec),

respectively.

b) Force-based systems: Force-based systems are also called gravitational systems. In
these units systems, the fundamental quantities are length, force, and time. In a similar
fashion to mass-based systems, we have cgs, mks, and fps system in force-based system
since the length and time units in each system are same. The only difference is the change
from mass to force. But the mass and force can be expressed in terms of each other. The

force-based systems are

1) Meter-kilogram-second Force System (mks): In mks system, the three fundamental
quantities length, force, and time are the meter (m), the kilogram force (kgf), and the

second (sec), respectively.

2) Centimeter-gram-second System (cgs): In this System, the three fundamental
quantities length, force, and time are the centimeter (cm), gram force (gf), and the

second (sec), respectively.

3) American/British Engineering Force System: In this System, the three fundamental
quantities length, force, and time are the foot (f), the pound force (pf), and the second

(sec), respectively.
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Let us summarize these systems in a table

Mass-based system Force-based system

cgs mks fps cgs mks eng.
Length cm m ft cm m ft
Mass gm kgm pm *) ™ slug
Force dyne newton poundal af kgf pf
Time sec sec sec sec sec sec

Table 3.1 Units Systems

Because in absolute systems there are no basic units for force, the dyne, newton, and
poundal are derived units. Similarly, in gravitational systems, there is no basic unit for
mass. The slug is a derived unit. No name has been assigned to the cgs force-based mass.

It is rigorously defined as the mass of a body that accelerates one centimeter per second

per second (1 cm/sec?) when acted upon by a force of one gram force (1 gf). Similarly,

No name has been assigned to the mks force-based mass, but it is rigorously defined as the

mass of a body that accelerates one meter per second per second (1 m/sec®) when acted

upon by a force of one kilogram force (1 gf). For the conversion of these units we have

1m=3.28ft, 1 pm =0.4536 kgm, ldyne = gm*cmi/ sec?,
1 newton = 100000 dynes, 1 poundal = 1.38*10000 dynes,
1 kgm = 1000 gm, 1slug =32.2pm, 1pf=1slug*l fil sec*,

1gf=1gm*981 cm/sec®, 1kgf=1kgm*9.81 m/sec’.
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If a quantity can be expressed as a multiple of another then we call these two quantitics

commensurable. From above we see that feet and meters are commensurable.

Among the six systems, the three most commonly used units systems are the cgs absolute
system, the SI absolute system, and the American/British system. Besides the six systems
we may have some other systems depending on the specific field of application such as
goldsmiths. In addition there are some measurement systems used only in particular

countries. In this paper, however, we are concerned principally with the SI system.

3.2 Dimensional Analysis

In physical science, physical quantities are dimensional quantities. They are represented by
a measure, and its units. The measure is a magnitude of the quantity and the units is a
physical meaning of the quantity. There are a large variety of the definition of dimensions
in physics. There are many books that discuss dimensional analysis [Foc53], [Pan64],
[Isa75], and [Tay74]. In this thesis, we use dimensions to indicate that we are concerned
here only with the nature of the quantity and not with its measure in any particular units.

For example, whether a distance is measured in units of feet or meters, it is a distance. We

say its dimension is length(L). Similarly, we say that the dimensions of area are (len,gth)2

or the dimensions of velocity are length/time. We will often use brackets [ ] to denote the

dimensions. Thus, in this notation, the dimensions of velocity are written as [v] = LT!
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Suppose a, b, c € Q, where Q is the set of rational numbers. If we choose length(L), mass
(M), and time (T) as the basic quantities, then for a given quantity x, its dimensional
representation is given by [x] = L*M®T® or [x] = (@, b, o). Using this notation a
dimensional quantity X is written as X = (x, a, b, c). If we choose a force-based system

then the dimensional representation is [x] = L'F*T°.

There is an important property of dimensions of physical quantities. The dimensions of
physical quantities can be manipulated algebraically and we can interpret the results to
provide a great deal of information about the physical processes involved in the situations
considered. Dimensional analysis is the study of the nature of the relationship between the

various quantities which are involved in a physical problem.

Dimensional analysis plays an important role in physics and engineering. The main benetfits
of dimensional analysis that are pointed out by the majority of authors are: (i) to derive
theoretical relationships; (ii) to check the correctness of the equations involved in the
description of the phenomenon under investigation; (iii) to reduce the number of relevant
dimensional variables to a smaller number of dimensionless variables; and (iv) to serve as a
basis for model laws. Sophisticated study of dimensional analysis can be found in [Mar95]
and [Kay93]. Perhaps the simplest application of dimensional analysis is to provide a
means of checking the dimensional correctness in a mathematical solution of a physical

problem.
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In general, let a and P be dimensional expressions. We define a term as
i)a, or
ii) the product of a and B, or

iii) the quotient of & and p.

In a given units system, let f(x,, x,, ..., x,) =0 be a derived numerical relationship
between the measures of the various quantities. Using dimensional analysis to check the

equation is based on the principle of dimensionally homogeneity, which implies that:

All the terms in the equation must be expressible as the same combination of
dimensions. The exponents and arguments of transcendental functions must have

a dimension of 1.

For example, if a car starts from rest and moves with constant acceleration a, then the
distance traveled by a car in time ¢ can be expressed as d = -&atz. Let us check the validity
of this expression from a dimensional analysis approach. The quantity d on the left side has
the dimensions of length. In order for the equation to be dimensionally correct, the
quantity on the right side must also have the dimensions of length. On the right side the
acceleration g has dimensions L/ T*, and ¢ has dimensions T>. Thus, the dimension form
of the equation d = '&atz is

=-1E‘—2-T2 =L.



Here the units of time have been canceled out. Therefore d = 4ar’ has dimensional

homogeneity.

There is a special quantity, we call a dimensionless quantity. A dimensionless quantity has

dimensions L’M°T® = (0,0,0). For example,  is a dimensionless quantity.

3.3 Partial Evaluation

Since we will use partial evaluation as a tool to improve the performance of our units

package we will give an introduction of partial evaluation in this section.

3.3.1 The Principle of Partial Evaluation

Partial evaluation is a source to source program transformation technique for specializing
programs with respect to part of their input [CD93]. The translator which completes these
tasks is called the partial evaluator, mix, or program specializer. The following diagram

illustrates the process of partial evaluation.
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Figure 3.1 Partial Evaluation Diagram

In general, a program has many inputs called in, . in, . -, in, - If the program is correct
and all the inputs are known then by executing the program with the input, we can get the
output (result). Usually the program is written to be general purpose and some input may
not be known. We can classify these inputs as static inputs and dynamic inputs. Static
inputs are those inputs whose values we know or whose values can be determined at
program specialization time. Whereas the values of dynamic inputs are unknown or their
values cannot be determined at program specialization time. Such a static/dynamic
classification is called a division. The process which computes the division of all program
variables given a division of the input variables is called binding-time analysis (BTA). The
idea of partial evaluation is to execute those calculation of a program that depend only on
its static input, generating code (the residual program) for those calculations that depend

on the as yet unavailable dynamic inputs.
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Formally, using the notation in [JGS93] we have following definition:

Let L-programs denote the set of syntactically correct programs in language L. The

meaning of program p € L-programs is denoted by

“ p“L: input — output.

The result of running the program p on some input data 4 is denoted by

||P||Ld = result or “P“L [d] = result.

We will use L to denote the implementation language, S to denote the source language,

and T to denote the target language.

Definition 3.1: Let p be an L-program taking as input a two-element list, and let 4 €D,

where D is an input set (since partial evaluation accepts both programs and data as input,

we assume that both p and d are drawn from a common set D). Then an L-program r is a

residual program for p with respect to 4, iff“p"L[dl, d,1=|rl, d,. forall 4,eD

Definition 3.2: An L-program mix is a partial evaluator iff for every p, d, € D, the

program
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|p|s[d1’ dz] = Hmix'L[P’dldez, for dzeD.

Example: Consider following function power() which computes base to the n-th power
(written in Safer_C).

<<power>> :: func(base, n :: int) int
block
pow :: int
for (pow :=1;n > 0; n—-)
pow *.= base
endfor
return pow

end

If n is equal to 3 and suppose that base is dynamic input. Then the partial evaluation will
output following residual program.

<<power_3>> :: func(base :: int) int
block
pow:int:=1
pow *:= base
pow *:= base
pow *:= base
return pow

end



This residual program is longer than original program, but actually it is more efficient than
the original one. We can use traditional optimization methods in a good optimizing C, or

C++ compiler to further optimize the residual program *.

There are two kinds of partial evaluations: online partial evaluation and offline partial

evaluation.

In offline partial evaluation, the specialization is divided into two stages. The first stage is
the preprocessing stage which annotates all the variables used in the object program. We
call this stage the binding time analysis (BTA). The second stage is the specialization
stage which generates the residual program according to the biding time analysis. In this

stage the specialization depends on only the binding time not the values of variables.

In online partial evaluation, there is no preprocessing stage. During the specialization, the
values of variables are considered. A detail discussion of online, offline partial evaluation

can be found in [JGS93], or [WCRS91].

* Note that the output of Safer_C is a C or C++ program.
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3.3.2 Partial Evaluation In Safer_C

Partial evaluation in Safer_C [Sol96] is different from normal partial evaluation. For
convenience, we denote the partial evaluation used in Safer_C as PES. PES has features
of both online and offline partial evaluation. The difference between PES and offline
partial evaluation is the first stage in the partial evaluation. In PES, the programmer
annotates each variable with an evaluation time. Safer_C as C is intended for use by
professional programmers. Thus emphasis is placed on programmers being able to predict
what computations will be done at compile time, and being able to control when
computations will be performed. The difference between PES and online partial evaluation
is that PES has annotation, but online PE does not. Therefore in PES the programmer has
more control than in online PE. We will discuss more about how partial evaluation is done

in Safer_C in Chapter 5.



Chapter 4

Design

In this chapter, we design the features of a dimensional analysis package. Our goal is to let
the computer do the dimensional analysis for the user. From the user’s point of view, the
main features of the system are ease of declaration of the units of measure, evaluation of
the ordinary arithmetic operations between quantities that have units of measure,
automatic checking of violation of dimensional consistency, and automatic handling of the
conversion of commensurable units. In 4.1, we first give an example to show how
programming languages use units. Then in 4.2, 4.3, 4.4, and 4.5, we discuss several
important features of the units package. In 4.6, we discuss units and units computation. In
4.7, we discuss consistency and the dim_quant computation. In 4.8 we give the formal
definition of the declaration of dimensional quantities. Finally, in 4.9 we describe the basic

structure of the units package.
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4.1 An Example

In this section we give an example to show how units are used in programming languages.
In dimensional analysis, the first thing is to get the units information from the user.
Variables, constants, and parameters are not just numerical quantities; they also have units,
which the user has to declare. In our system, we require that the user first give the base
units. Then the user can define the derived units, the variables, and describe the algorithm
for the problem. The system then performs the algorithm, does the units conversion, and
units computation according to the base units which are given by the users. For declaring
the fundamental units which will be used in a computation the users can just write the

following

km :: units := "kilometer”

hour :: units := "hours”

With these fundamental units, the user can then declare a variable which has units
consisting of fundamental units. For example, we can declare units foot as:

JSoot ::= units("foot",30.48*cm).
Let us consider a simple example to see how the user can declare variables that have units

of measure.
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Example 4.1. A car travels at a constant speed of 60 km/hour. Assume that it takes 3.5
hours for the car to travel from location A to B. Find the distance from A to B. For solving

the problem, the user may write the following Safer_C main program.

<<main>>::func () void

block
Speed:: doubleu(0.0, km/hour)
Time :: doubleu(3.5, hour)
Distance :: doubleu(0.0, km)
printf("Please input speed in km/hour:")
scanf (Speed.v)
Distance := Speed*Time
printf("The distance is:")
printu(Distance)

end
In this program, doubleu is a new data type which can be used to declare a variable of type
double-precision float that also has units of measure. The function printu is an overloaded

function which is used to output the quantity which has units of measure.

If we run the program, it will print

Please input speed in km/hour:
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If the user types 60 *then the output will be

The distance is 210 (km).

4.2 Dynamic Dimensions

In the normal case, we will specify the particular dimensions of a dimensional quantity.
But in some cases we may want the dimensions of a dimensional quantity are dynamically

changeable. These cases are

(1) Dynamic input

In some applications, each time a program starts to run, it may require the dynamic input
of some dimensional quantities. In this case, if we can dynamically input dimensions then
we do not need to change and recompile the program. Since we are mainly using partial

evaluation to improve efficiency, the dynamic input of units is not treated in this thesis.

(2) Temporary variables
Temporary variables are often used in programs. Whenever the user wants a

dimensional variable to hold values having different units they can use a temporary

* In this particular example, since the input function scanf is used, the user could not enter

any other units.
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variable. Sometimes, in the computation of an expression we also need temporary

variables to hold the intermediate or final result.

(3) Function parameters

Functions are the basic building blocks of a programming language. They are one of the
most important features of programming languages. If a function is to use
arguments, it must declare formal parameters that accept the values of the
arguments. Normally when you declare formal parameters you have to indicate their
types. Similarly in dimensional analysis, when you declare formal parameters, you
should indicate the units of the parameters. However, if we are not allowed to change
the units dynamically then the function will be too restrictive. It would, therefore, be a

valuable feature to allow formal parameters to hold values having different units.

In our package, cases (2) and (3) are allowed.

4.3 Conversion

In this section we will discuss some basic ideas about conversion. The details of how to

convert dimensional quantities will be discussed in section 4.7.2.
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The reasons we need conversions are:
(1) To check consistency.
(2) To compute dimensional quantities.

(3) To convert traditional or engineering units to SI units.

Normally, engineers perform units computation according their own tradition, then

convert the result to the SI system. For example the units of the thermal conductivity
coefficient are Kcal(m-h-°C)™" in the engineering units system, and the units of the

thermal conductivity coefficient are W/(m-°C) in the SI system.

It is often the case that in a problem the units we are concerned with are not in the
given units system. We need to convert them into the same units system. Even with the
units which are in the same units system, we may still need to do some conversion.
For example, to compute 2cm +3m we need to convert 2cm to 0.2 m then

compute 0.2 m + 3 m, to compute 1 dyne*2 gm we need convert 1 dyne to

gm*cm/sec? then compute (1 gm*cm/sec? )*(2 gm).

(4) To facilitate international trade and technical exchange.

Let x and y be dimensional quantities. And x can be converted to y. To convert x to y we

need to know the relation between their units. For example, x has units u, y has units «,

and the relation between u, and u, is
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u, =au,,

where a is a real number. The a is called the conversion factor of u,.

Using the relation between u, and u, or their conversion factors, we can convert the
measurement between x and y. If m, is the measurement of x and m, is the measurement
of y, then the conversion between the measurement of x and y can be given by a function f
m, =f(m.).
The function f which is commonly used in physics is
m, =am,+b, 4.1)

where a, b are real numbers.

When we deal with conversion, we have two possible strategies:

1) All dimensional quantities are represented internally using only the chosen base units. In
this method, derived units can be used, but internally they are represented in base unilts.

For example, in the cgs system, 3 inches will be represented as 7.62 cm.

2) The second method is to allow that derived units be used in the intermediate
computation. In this method if we want to compute 2 inches + 3 inches then the answer is
S inches. In the computation there is no conversion. Of course if we work in the cgs

system we will ultimately convert 5 inches to 12.7 cm.
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Each of these methods has some advantages and disadvantages which are discussed in the

following sections (4.4).

4.4 Precision Control

We mentioned that there are two strategies which could be used in conversion. a) All
dimensional quantities are represented internally using only chosen base units. b) Derived

units are used in the intermediate computations.

The advantage of the first method is that it is easy to implement. The disadvantage of this
method is that the programmer does not have sufficient control over the precision of
dimensional quantities, which may lead to an accumulation of floating point error. The
discussion of error propagation can be found in some numerical analysis books [Atk89].
Let x; and y; be no error numbers, x, and y, be the approximation of x; and y; ie.

Xy = X4 +E Yr = Y4+,
where € and 1 are errors. The relative error in x, is denoted as:

Rel (x,)=(xy — x,)/ xp.
In general, we have following results [Atk89]:

Rel (x, y,)=Rel(x,) +Rel (y,),

Rel (x,/y,)=Rel(x,) —Rel(y,).

Rel (x,*y,)=Rel (x,) xRel(y,).



A process of computation can be described as follows:

1. Get some initial value,
2. Execute some algorithm to manipulate data,

3. Get results.

In a simple computations, if some of the initial values have a small error the accumulated
etror would not be significant. However, in some computations, especially if large systems
or complex arithmetic are involved, the errors of the initial values are crucial. In this case,

The error of initial values may generate totally wrong results.

Generally speaking, in units computation we cannot avoid conversion (which may cause
some rounding error) but in some cases we can reduce the error as much as possible. For

example:

1) Suppose that all the units we use are in a units system A and we want the results to be
expressed in another units system B. In this case we can do the computation in units
system A first and then convert the results into the units system B. This way is better than
first of converting all the quantities in units system A into units system B and then
performing the computations in units system B. Although ultimately the result of a
computation will be converted to the required base units system the intermediate

computation will not produce any rounding error caused by the initial conversion error.
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2) If there are mixed units in a computation then we cannot avoid conversion. In this case,
allowing the use of derived units is better than not allowing the use of derived units. There
are two advantages: one is that there would be no rounding error since there would be no
conversion; another is that the user could control the order of a computation. For
example, in the expression E, + -~ +E, the user could group the E, (I<i<n) into sets
with identical units, and simply add these expressions together. There is no conversion
necessary. The user can also write E; +E; as E; +E,. The order of computation here
may matter since it may mean different conversions are applied. For the first expression

the system may convert £ ; to E,. For the second expression the system may convert E,
to E;. If we use only the first method then it does not matter in which order the

expression is written. We will get the same results.

4.5 Rational Powers

We know that if x is a dimensional quantity then the dimensions of x are
1= L*M®T = (a, b, ¢).
In the existing papers, a, b, and ¢ can be only integers. This is not enough for practical
work. For example in magnetism, the force between two poles can be written as
f=mmiur?),
where m and m' are the magnetic strength of the two poles, r is the distance between the

two poles, /i is a constant of proportionality and depends on the medium and the units
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chosen. Now let us consider the dimensions of m. If m = m’ and disregard the dimensions

of | then

whence m=r’f.

Force has the dimensions given by [f] = LMT 2.
Also

(r’1=L.
Therefore

%%-l 31 1
[m]=L-M°T -(-2-.-2-.-).

To express such rational numbers we may declare a, b, and c as float or double. Therefore

we will have dimensions such as OaMiT = (15, 0.5, -1). A rational number
represented in the form of a floating-point value has two drawbacks. First, it is hard to
read. Second, it may have some error (for example the value 1/3 can not be stored exactly
as a floating-point value). To make the dimension more readable and eliminate error, we
may use a rational algorithm to manipulate the rational notation of a rational number. This
cannot be done at compile time in any existing dimensional packages.
Let x =a/band y = ¢/d then
x+y=(@*d+c*b)/(b*d), x—y=@*d-c*b)/ (b *d),
x*y=(@*c)/(b*d), x/y=(a*d)/(b*c), and x"=a’/b",

where r is a rational number.
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After some computations we may use the division algorithm to simplify a rational number.

Definition 4.1 An integer x divides an integer y if there exists an integer ¢ such that
gx=y.
We use x | y to denote x divides y. When x | y, we say that y is a multiple of x and x is a

divisor of y.

Definition 4.2 Let a and b be integers, gcd(a, b) = max{c: cla, clb}. The function

ged(a, b) is called greatest-common-divisor (gcd).

Let x = a/b be a rational number. If gcd(a, b) = 1 then x is in a non-reducible form. If

ged(a, b) = c # 1 then x can be simplified as x = (a/c)/(b/c).

Finding the greatest-common-divisor is based on the important algorithm (Euclid’s
algorithm). Using Euclid's algorithm we can easily find the greatest-common-divisor. A

complet discussion of Euclid's algorithm can be found in [Knu81].

Example 4.2 Let a = 525, b = 231. According to the division algorithm we have
525=231*2 +63
231 =63*3 + 42
63 =42*]1 +21

42 =21*%2

S8



Therefore gcd (525, 231) = 21.

4.6 Units and Units Computation

In dimensional analysis, units are the fundamental components. To perform dimensional

analysis we need to have the units information. The main information we should have is:

1) The name of the units such as inches, kilograms, and dollars. The units' name
can be expressed as a string.

2) The conversion factor which is used to convert between dimensional quantities. To
store the conversion factor we need only one floating point or double precision floating
point variable.

3) The dimension of a dimensional quantity. There are two kinds of units: basic units

and derived units. In chapter 3, we have seen that a dimension of given dimensional
quantity x can be denoted as [x] = (a, b, ¢), where a, b, and c are rational numbers.
We have decided to use rational notation to express a, b, and c. Therefore we
should use a two-dimensional array to store the dimensions.

4) The functions which are used to manipulate the units. Normally there are two kinds
of functions: the functions which are used to get information about a unit, and the
functions which are used to manipulate the units. The functions will be introduced

later.
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All the information given above is about units. Therefore we may use the following

structure to represent units.

units_name
conversion_factor

functions

dimensions

Figure 4.1 Units Diagram

Note the dimensions component in the diagram is a two-dimensional array used to hold
the power of each dimension. The frame can be easily expressed by a class or a structure
in an object-oriented programming language. Thus if « denotes a units class then we can
use u.name to denote the field units_name, u.cf to denote the field conversion-factor, and
u.d to denote the dimension of u. Let us consider some examples, the units inch and m/sec

can be stored as

inch velocity
2.54 1
DRpP| D 1 H
1fp 1N
Figure 4.2 Units inch



Note here, in the frame inch, the dimension is stored in the form of ¢m. The units

exponent is stored as a rational number. Since the exponent of cm is 1 it is stored 1/1.

Using this representation of units, we then can discuss computation between two units.

Let u be a unit (base or derived unit), r be a rational number, u, and u, be base units or

derived units. The basic computations on units are y,", u,*u,, and u/u, which are called
composite units. To compute composite units, there are two components which we need

to calculate.

The first component which is needed is the conversion factor. We have mentioned that we
allow our system to automatically perform the conversion of commensurable units. For
example, suppose x = 3.5 cm, y = 2 in we want to compute x + y. The users would not
need to convert the units. They would only need to give the relation 1 in = 2.54 ¢m. Then
the system will automatically do the conversion and perform x + y. To do the conversion
an important thing to know is the conversion factor of the units. We will attach a
conversion factor to each unit. A fundamental unit of the chosen standard units system has
a conversion factor of 1. The derived units have a conversion factor which is given by a
declared relation. For example, if we declare 1 in = 2.54 cm then we set the conversion

factor for in to be 2.54. The conversion factors of composite units are formed as follows.

For u = ;4,", the conversion factor is (u_.cf)’.
1 1

-y * 1 1 *
For u = u*u, , the conversion factor is u,.cf* u, .cf.
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For u = u,/u,, the conversion factor is u,.cf/ u,.cf.

Note here that for the result units of computation, there is no units name assigned.
Because this is an intermediate result we do not need the name. The only thing which we

care about is the conversion factor and the dimension.

The second component which needs to be computed is the dimension which is computed

as follows:

1) For 4,", The dimension is f(r*u,.d),
2) For u,*u,, The dimension is {u,.d + u, .d),

3) For u,/u,, The dimension is fu,.d — u, .d),

where f is a function (a Euclid's algorithm) which simplifies the resulting dimension.

For example, if the base units system is the cgs system, x denotes the unit sec and y

denotes the unit inch then x.cf= 1, [x] =(0, 0, 1/1) and y.cf =2.54, [y] = (1/1, 0, 0).

Therefor (y/x).cf = 1/2.54 = 0.3937, [y/x] = (1/1, 0, -1/1).

Note that in our method we require that if we declare a derived unit which has relevance

to other units then the relevant units have to be previously declared. This requirement is

reasonable since when we declared the derived units the declaration involved some
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computation. For example if we declare x :: units("inch", 2.54*cm) then the system will
want to compute 2.54*cm. If the cm is not declared then the system will complain that cm

is not declared.

4.7 Consistency and Dim_Quant Computation

Having discussed units, let us consider how to check the consistency of dimensional
quantities, how to convert dimensional quantities which have different units, and how to

perform arithmetic operations between dimensional quantities,

4.7.1 Consistency Check

In a statically typed programming language, each variable has a type. Using the type
information we can detect the type errors. Similarly, when we consider computing the
quantities which have units of measure, the system should detect units inconsistency

errors. For example, we cannot add two quantities which have different units of measure.

If ¢ denotes the time in second, s denotes the area in m*, and v denotes the velocity in

km/hour, then the following statements are not correct:

if (¢ < s) printf("Time\n")

else printf("Area")
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endif

v:=s/t

In the condition statement, we cannot compare ¢ with s as they have different units. In the

assignment statement, the dimensions of left side and right side are incommensurable.

4.7.1.1 The Consistency Check Rules

In our system, a consistency check is based on the principle of dimensional homogeneity.
Let x and y be dimensional quantities, and r and p be rational numbers. Then the check is

done as follows:

1) x + y, or x —y if and only if x, y are dimensionally homogeneous.

2) x := y if and only if x, y are dimensionally homogeneous.

3) For function invocations, if the formal parameters and actual parameters have
dimensions then they must be dimensionally homogeneous.

4) x, y are comparable if and only if x and y are dimensionally homogeneous.

5) Exponents and arguments of the transcendental functions (sin, cos, log eic.) must be

dimensionless. It is possible to allow degrees used in these functions.



4.7.1.2 Iteration

The assignment operator should be discussed in more detailed. Let x := y be an
assignment statement in a program. According to the rule, the system will give an error
indication if the x and y are not compatible. In some cases, we may want the assignment to
be forcibly performed. Why would we want this? The reason is that sometimes we want to
use assignment during iterative multiplication or division. Such iteration is a an essential
feature of many important algorithms. We do not want lose this important feature because
of the introduction of units. For example, to compute the base to the n'th power we may

use following iteration (Notice that the base is a dimensional quantity):

<<power>> :: func(base, n :: int) int

block
pow ::int
for (pow :=1; n > 0; n--)
pow := pow * base
endfor
return pow
end

In the assignment pow := pow * base, obviously the left side and the right side have
different dimensions. Thus according to our dimension checking rule, the system will
reject the assignment. Therefore we need a special way to force the assignment to be

performed. There are many ways to do this.
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1) Use a special "=" operator.
2) Use cast. In C/C++ programming language, if x is an integer and y is a float then we
can use () to cast x as follows
(float)x :=y.
Thus a natural way is to use a cast operator. However, in iteration such as x = x * y, the
cast cannot be directly used since the lvalue of x will be used in the right operand. If a
cast used directly then after casting the units in left operand x are changed and the units
of x in the right side will also be changed. Also in cast we have to indicate that what type
we want cast. In dimensional analysis, to indicate the units which we want to cast to we
need to do the computation. To overcome the difficulties we use the overloaded
operator () and introduce another remp variable to do the cast as follows:
temp()
temp :=x *y
x()

X = temp

where () is an overloaded operator which changes a variable accept any dimensions.
4) For some special iteration such as finding the exponentiation we may use following two
methods:
a) Introduce an exponentiation operator **.
The exponentiation operator is provided by many languages such as Ada, Fortran, and

Algol but no exponentiation operator is provided by C or C++ programming language



because these languages were intended principally for systems rather than scientific
programming. We feel that a language intended for scientific computation should
provided an exponentiation.

b) Directly use the operator *:=.

In our package, for exponentiation we use *:= operator.

4.7.2 Conversion of Dimensional Quantities

To perform a computation involving dimensional quantities, a conversion may be involved.
In the following sections, we first discuss how to convert dimensional quantities which do
not involve temperature. For temperature conversion, we need special attention; see

section 4.7.2.2.

4.7.2.1 Conversion Measurements

In this section we discuss how to convert the measurements of dimensional quantities. The

main conversions that need to be considered are:
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A) Conversions for expressions.

Using conversion factors we can convert any measurement in some units to a
measurement in the desired units if their units are commensurable. Let x be a dimensional

quantity, x_ be the measurement of x, x, be the units of x, y be the equivalent dimensional
quantity in the unit y,, and Z be their equivalent dimensional quantity in the standard
system. We have :

x*x,.cf =2, =y, *y,.cf
Thus if we want to convert y to x then

x, =y v, Nl x,.cf
Therefore we can compute x o y as follows (where the symbol o denotes an arithmetic

operator, assignment operator, or relational operator).

1) Check if the dimensions of x and y are the same. If they are same then the units of x
and y are commensurable otherwise they are not commensurable.
2) If the units of x and y are commensurable then convert the measurement of y to the
measurement of x and perform xOy
ie.

yll 'cf
x. .cf

)s

(xoy)q:xqo(yq *

where x ¢ y has units of x.
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If unit x, belongs to base system then x,.cf = 1. Thus

(xoy),=x,°(y, *y, cf)

B) Conversion for function calls

In general, we do not require that the user indicate the units of the formal parameters.
However, if the formal parameters have their units specified then the actual parameters
should be converted to the units of the formal parameters. For function calls, the

consistency checking and conversion should be done at partial evaluation time.

4.7.2.2 Conversion of Temperature

In many cases, the conversion functions for measurements involve only one constant
factor such as the case b = 0 in formula (4.1). In this case it does not matter what
conversions are done. We can always compare the results of computations in different
systems. In some cases, however, the conversion is somewhat more complicated, as, tor
example the conversion between degrees Celsius and Fahrenheit. In this case, we cannot
do the conversion arbitrarily during computation since we cannot compare the computed

result in different systems.
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Let us consider the example of computation ¢, / t,, where ¢, = 3°C denotes a
temperature in degrees Celsius, ¢, = 41°F denotes the temperature in degrees Fahrenheit.

The conversion function between degrees Celsius and Fahrenheit is

t, =ft,)=18¢ + 32.

If the computation is done in Celsius then we have

3°C/41°F=3°C/5°C =0.6.

If the computation is done in Fahrenheit then we have

3°C/ 41°F = 37.4°F/ 41°F = 0.912.

The reason why the results are different is that the results are in different scale systems.
There are two differences between the two scale systems. First, the origins are different. In
Celsius, the freezing point of water is 0, but in Fahrenheit the freezing point is 32. Second,
the size of degrees is different. We use C° to indicate the size of degrees in Celsius.
Similarly, we use F° to indicate the size of degrees in Fahrenheit. The size of one degree

between Celsius and Fahrenheit satisfies the relation

5C°=9F-.
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To make sure the correct computation is performed between quantities which belong to
different temperature-scale systems we could use the following strategy. Before doing any
computations, we convert all the temperature quantities into the same scale system (For
example Kelvin). Then we perform the computations with no conversion on temperatures.

The conversion between different temperatures can be done by means of a function call.

For example, in a computation if there is a quantity which is Celsius degrees and the
temperature unit used in the base system is Kelvin degrees, we then can define the function
c_to_k which converts Celsius degrees to Kelvin degrees as follows:

<<c_to_k >> :: func (¢, :: float)
block
return (¢, + 273)

end

Using this function then we can say x = doubleu(c_to_k(23.4), K_D), where K_D denote

degree in Kelvin.

We have seen that there is a distinction between indicating the size of the degree or
temperature interval, C°, and the temperature °C. Since there are 100C° corresponding to
180F° the size of one F° must be 5/9 times the size of one C°, or

5C° =9F°.
Notice also that the size of one degree C° is same as the size of one degree K° i.c.

O= KO-

7



Since the conversions between C°, F°, and K°only involves one conversion factor, we

could treat the size of degree (C°, F°, or K°) as normal units such as c¢m, in, and m.

Let us consider an example in which the size of the degree is used.

Example 4.3 An aluminum plate at 68.5°F has an 8.00-inch-diameter hole in it. What is

the diameter of the hole when the plate is heated to a temperature of 150°F? [Mor69].

Solution: To solve the problem, we may apply following equation
D*=D}(1 +2 a A»),
where the a is the linear expansion coefficient of aluminum that is 23.8 * 10~ / C°, D,

and D are respectively the initial and expanded diameters of the hole, and Az is the

temperature difference. Here we have

a=238*10°/C°=132*10°/F°, (C°=1.8F°)
At = (150 — 68.5)F°,
and D? =8.0in*8.0 in*[1 + 2*13.2*10™°*Ar / F°]

D =80l in.
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4.7.2.3 Alternative Techniques

It has been suggested by professor Meek* that a dimensional analysis system should forbid
the programmer from coding some operations on units with an arbitrary origin, such as
temperatures and dates. For instance, the system should forbid the addition of 21°C and
15°C or of 1970AD and 1990AD. Such a restriction would, however, prohibit simple
computations such as finding average temperatures, (7; +7; )/2, or interpolating dates,
(3*D, +5* D, )/8. The question of how computations on units with arbitrary origins
should be restricted is not at all simple, and is beyond the scope of this thesis. Meek

x‘-y

himself has shown that recognizing the equivalence of such formulae as x-y and

is beyond the capabilities of pure dimensional analysis.

4.7.3 Computation Involving Dimensional Quantities

Now let us consider computations involving dimensional quantities. From the discussion
given above, we have seen that the system should have the ability to perform ordinary
arithmetic operations between quantities that have units of measure. Velocity multiplied by

time should give us distance. Kilograms plus kilograms should give kilograms.

* Dereck Meek, in personal communications.
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Let x and y be dimensional quantities, and r be a rational number. The operation xoy can

be computed as follows:
(1) If - denotes "+" or "-":

If x and y are commensurable
then {

a) temp = x_¢(y, *ﬂ)

x,.cf

b) return temp , x,

}

else (report error in +, —).

(2) If o denotes "*" or "/":

If x and y are commensurable
then {

Yu-¢f
a) temp, = x, °(y, * x,,-cf)

b) temp, = x, °x,
}

else {
a) temp = x oy,

b) temp, = x,0y,
}

return temp ., temp,
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For example, if x =3 in, y =2 m, and the base system is cgs then x has the units in with

conversion factor 2.54. y has units m with conversion factor 100. Thus

x*y =236.22 in?,
where temp_ =236.22, temp,.cf = 6.4516, and temp,.d = cm’.

Note that each unit has a conversion factor, therefore it does not matter what units x and y

have; the computation of units is automatically done in the standard units system.

3) For the operation x" :
temp, = x,’

temp, = x,"

return temp _, temp,

4) For the operation r*x, where r has no units:

temp =r*x,

temp = x,

return temp,, temp,

Since r has no units, the units of the result are the same as the units of x.

5) For the assignment x := y:

if (x,.d==0) 1! ie. x is dimensionless

thenx=y

75



else if x and y are commensurable

Yo-<f

then {x =x_o(y *—),x,=y,}

else error(" Assignment :=")

(in our package we should implement all the operators including —:=, *:=, +:=, ++, --, and

relational operators which are defined in Safer_C)

4.8 Notation Design

In the dimensional analysis package, the units are declared by member functions. The
syntax for declaring units is given by the following context-free grammar rules. Note that
These grammar rules show how to use units of measure, they are not actually part of the

Safer_C grammar. In particular units and doubleu are type names not reserved words.

units - base_units :: units := "units_name"
| derived_units :: units ( "'units_name"', c_units )
r_number — rational_number
c_units =  units_t * units_t | units_t / units_t | units_t » r_number
| float_number * units_t

units_t — base_uniis | derived_units
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To declare a dimensional quantity we use the following syntax:

d_quant = identifier :: doubleu ( double_number, c_units ).

Example 4.4 Sample use of units:
cm :: units :="cm"
sec :: units = "sec"

in :: units("inch", 2.54*cm)

x :: doubleu (23.4, cm/sec)

4.9 Package Design

The units package is designed for Safer_C to support dimensional analysis. In our method,
we could use structures or classes to represent the units quantities, use parameterized
types to initialize the objects, use operator overloading to perform the computation
between quantities with units, and use partial evaluation to perform the dimensional
consistency check and units computation at compile time. Basically, in the dimensional
analysis package there are two kinds of classes: the units class and the doubleu class. The
units class is used to express basic units and derived units. The doubleu class is used to
express all the double precision quantities which have units. Similarly we can define floatu
to express float quantities which have units. In our system, there is a difference between
pure quantities (that means no units) and dimensionless quantities since pure quantities and

dimensionless quantities are of different data types.
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The structure of the units class is as follows. We define the maximum dimension
(MaxDim) as 7 because the international system only has seven fundamental quantities.
We can freely define MaxDim according to the specific use. In the units class, the u_name
is the printable name of the unit and u_exp is a two-dimensional integer array used to store

the exponents of the units. The field u_factor is the conversion factor.

For example, if we use a class to denote inch then in the class inch the u_name is "inch",

the u_factor is 2.54, and the u_exp is cm.

MaxDim :: const int ;=7
:: class units(
u_name :: ~> char
u_exp :: [2](MaxDim] int

u_factor :: float

public:

1! Constructors —>char

<<units>> :: func(—>char) void
<<units>> :: func(—>char, units) void
1! Destructor

<<~units>> :: func() void

.....

:: class doubleu{
v :: double

u :: units
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public:

1! Constructors
<<doubleu>> :: func () void
<<doubleu>> :: func(double; units) void

By default the constructor for doubleu will initialize the dimension of object doubleu as
zero. Using operator overloading we can define operators to perform computations on

doubleu as follows

<<op *>> :: func(ref a :: doubleu; ref b :: doubleu) doubleu

block
temp=ao-bh (we need to fill the body which is given in 4.7.3)
return temp

end

When we perform operations such as multiplication, addition and subtraction etc. we need

to check dimensional consistency. The compatible function is defined as follows:

<<compatible>> :: func(ref a :: units, ref b :: units) int
block
izint
for(i = 0; i <« MaxDim; i++)
if(a.u_exp[0][i] =/= b.u_exp[0]{i) and
a.u_exp[1][i] =/= b.u_exp[1][i])

return 0
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endif
endfor
return |

end



Chapter §

Partial Evaluation for Dimensional

Analysis in Safer_C

We have seen that partial evaluation is a program specialization technique which computes
the static part of the program and generates a residual program for the dynamic part. In
this chapter, we will investigate how partial evaluation can be applied to dimensional
analysis. In particular, we are interested in using, the techniques for the Safer_C language.
The aim is to use partial evaluation to improve the efficiency of a dimensional analysis
package. The discussion focuses on partial evaluation of static structures and pointers. An
important technique that can be used for the partial evaluation of a dimensional analysis

package is presented.
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5.1 Evaluation Annotation in Safer_C

The evaluation time plays an important role in Safer_C. For example, i can be a translation
time integer, sum can be a run time float, etc. In Safer_C, several features that are

important for partial evaluation are present:

1) Symbols can be annotated at their declaration with a designation of their evaluation
time.

2) The evaluation time of symbols is propagated through a program to determine the
evaluation time of expressions, and control structures.

3) Control structures can be additionally annotated with an evaluation time to assist the
compiler, or to clarify the programmer’s intentions.

4) Declaration are treated as compile-time “executable” statements.

More details about Safer_C can be found in [Sal96].
In this chapter, we will consider the terms static or known equivalent for translation time

data, and the terms dynamic or unknown equivalent for run-time data. Pointers are an

exceptional case which is discussed in section 5.5.
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5.2 Partial Evaluation of Structures

In dimensional analysis, a dimensional quantity has two parts: measure and units. The
computation between dimensional quantities has two parts: computation on their measure
and computation on their units. In many cases, the measure of a dimensional quantity is
dynamic but its units are static. Therefore the question is whether we can remove the static
computation part and leave only the dynamic computation part at run-time. If we can do
this then we will get a fast run-time program. A dimensional quantity can be expressed by
a structure. If we treat the whole structure as single entity then we will lose the static
information. To do the partial evaluation, we need to discover the static information. In
the following, we show how this can be done by annotating different evaluation times tor

different fields and using a splitting technique to discover the static information.

A structure is a heterogeneous aggregate of data elements. For example we can declare a

structure as

s o struct {
i,j:int
k, 1 :: double
}

In a structure, if some fields are static and some fields are dynamic then the structure is
called a partially static structure or mixed structure. In Safer_C we need to annotate a
structure with an evaluation. If all the fields of a structure are static then we can annotate

the structure as a tran-time structure. If all the fields of a structure are dynamic then we
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can annotate the structure as a run-time structure. However how should a partially static
structure be annotated? We cannot annotate it as tran-time since there are some fields that
are dynamic. If we annotate it as being run-time then the information in the static fields
will be lost. The proper choice is to annotate mixed structure with a mixed-evaluation

time.

Conceptually, we say that if some fields of a structure are translation-time tields and
others are run-time fields then the structure has an evaluation time of both run-time and
translation time denoted as (T x---x T), where T is the evaluation time of structure's ficlds.
For example, a structure {x :: tran int; y :: float} could have evaluation time (r X r)

meaning that x is a translation time field but y is a run time field.

Normally, a tran-time variable exists only at compile-time. After compile-time the tran-
time variable will be removed. To do partial evaluation for partially static structures we

could use a splitting technique. This is because if we define

s 32 struct {
i, j :: tran int
k, ! :: runint

}.

then the definition of s would be equivalent to the following two definitions:

st :: tran struct {i, j :: int}
and
sr :: run struct {k, [ :: int}



The object st would exist only at translation-time, and the object sr would exist only at
run-time. Their treatment would be same as for other purely tran-time or run-time objects.
Therefore we can split a structure s into two structures: st which contains the dynamic
fields and sr which contains the static fields. All the accesses to the dynamic fields of s will
be changed to accesses to the corresponding fields of sz. All the accesses to the static

fields of s will be changed to accesses to the corresponding fields of sr.

By splitting we separate the static part and dynamic part of a partial static structure. Thus

we can use normal partial evaluation to perform relevant operations on the static fields.

5.3 Compact Representation of Units

By splitting we can also save some space. For example, the powers of units that are
encountered in practice are not very large. One can assume that they are between -128 and
127 [Hil88]. To store the units we need seven 8-bit bytes since in SI there are seven base
units. For handling rational powers, we add seven more 8-bit bytes. The units then can be
compacted into fourteen 8-bit bytes. Although the space used by several units are not
large when we use an array of dimensional quantities, the space used for units will become
noticeable. In many cases, all the units used by the dimensional quantities in an array are
the same. In these cases, there is no reason to allocate space for the units of each

dimensional quantity. For example,
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struct dim_quant {
v :: double
u z: struct units
}
y :: {0..100] struct dim_quant

By using the spitting technique we will get

yv :: [0..100] double
yu :: [0..100] struct units

If all the units are the same, we do not need to save all the same units in an array yu. We

can compact yu into one variable cyu :: struct units.

5.4 Function Specialization

In our dimensional analysis package, all operations are overloaded operator functions,
therefore the main problem to be considered in using partial evaluation for dimensional

analysis is the specialization of the functions for structures with some tran-time members.

5.4.1 Partial Evaluation of Function in Safer_C

Because the basic structure of Safer_C is the same as that of C and C++, a Safer_C
program can be seen as a set of modules. Safer_C’s main structural component is the

function. All Safer_C programs consist of one or more functions. Therefore partial
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evaluation of a Safer_C program means the specialization of Safer_C functions. Safer_C

provides three kinds of partial evaluation of functions [Sal96].

1. Replacement by Result.
This kind of partial evaluation is done if:
a) The values of all of the actual arguments and external variables accessed by the
function are known at translation-time.
b) Either the source code for the function is available at translation-time, or the object
code for the function is available and a dynamic loader is provided to the translator.

c) The function has no side effects.

2. In-Line Expansion.
This kind of partial evaluation is done if:
a) The source code for the function is available at translation-time.

b) The function is declared to have translation-time evaluation.

3. Function Specialization.
This kind of partial evaluation is done if:
a) The source code for the function is available at translation-time.
b) The function is declared to have run-time evaluation.
c) Some of the formal parameters of the function are declared to have translation-time

evaluation.
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5.4.2 Partial Evaluation of Functions
with Structured Parameters*

When a function has structures as its parameters we can also split the parameters.

Consider a structure type with mixed-time fields such as:

MixedTime :: type := struct {i, j :: tran int
k,l: runint

}

Such a type declaration would be the same as declaring two types that are always used

together:

MixedTimet :: type := tran struct {i, j :: int}

MixedTimer :: type := run struct {k, [ :: int}

With such a mixed-time type declaration, the declaration of object s given in section 5.2
would be the same as the following declaration:
s :: MixedTime
Consider also a function mtfunv that accepts a parameter of type MixedTime and retumns
type void:
<<mifunv>> :: func (p :: MixedTime) void

* In other partial evaluation systems, a partially static structure is not split but specialized

for its static fields [And93a].
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Such a function declaration would be the same as the function declaration
<<mifunv>> :: func (pt :: MixedTimet; pr :: MixedTimer) void

Since the formal parameter pt is a translation-time value, each invocation of function
mitfunv would be changed into an invocation of a newly created function mtfunv_pt that
has been specialized for the value of pt at each invocation. This is the same treatment that
is currently given to functions with tran-time formal parameters. Thus the invocation of a
function with a parameter of a mixed-time struct type is the same as the invocation of a
function with two comresponding struct parameters, each with the tran and run parts

respectively of the original parameter.

When a function returns a result of a mixed-time struct type we can use following
technique to deal with. In this technique, every function refurning a partially static result is
split into two functions, one retuming the static part, and one retuming the dynamic part.
The static part depends only on static arguments and thus can be fully computed at
specialization ime. For example:

<<fun_mr>> :: tran func (i :: MixedTime) MixedTime

The function call:
S = func_mt (j)
would be the same as the two calls:
St:=fun_mt_t(jt) !! Compute tran-time part of §

Sr:=fun_mt_r (jr) !! Compute run-time part of §
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Since the tran-time part of S could not depend on any run-time parts of j, the specialized
function fun_mt_t could be created to compute those tran-time parts using only the tran-
time parts of j. The function fun_mt_r would be a version of fun_mt, that has been
specialized for the particular values for the tran-time parts of j and accepts the run-time

parts as arguments.

5.4.3. Partial Evaluation for Overloaded Operators

For normal arithmetic operations and function calls on structures, there is no problem with
splitting a structure. However when we consider function calls, especially an overloaded
operator function, and pass structures to the function, the situation is somewhat more
complicated. One of our goals is to use partial evaluation for dimensional analysis. In
dimensional analysis, the functions mainly used are overloaded operator functions. Thus to
apply partial evaluation to dimensional analysis there are three new features which we
should deal with. One, the dimensional quantities are partially static objects. Two, the
function calls require that whole structures be passed to the function and require the return

of whole structures. Third, the operators have precedence. Let's consider an example *:

Example 5.1 To compute z = x + y. we can define operator + as follows:

MixedTime:: type := struct A {i, j :: int
k, 1 :: tran float
} x’ yy Z

* In this and later examples, if the evaluation time is omitted it defauits to "run”.



<<op +>> :: tran func( a :: MixedTime, b :: MixedTime) MixedTime
block
temp :: MixedTime
I! Perform a+b
return temp
end
From the example we see that the function calls and function returns both use the whole
structure. By using the evaluation-time splitting technique discussed above, the dynamic
part and static part are separated. Thus normal partial evaluation techniques can be

applied. Notice that after partial evaluation the overloaded operator function has been

specialized. We cannot use the operator notation (such as + and *) anymore.

For example, in example 5.1, if we split struct x, y, z as follows

xij{i, j :: int}, ygj{i, j :: int}, and zij{i, j :: int}

xkl{k, I :: tran float}, yki{k, [ :: tran float}, and zki{k, [ :: tran float}
and z = x + y be split as

2if == xij + Yij
2kl := xkl + yki.

then we cannot find the operator + for xij, yij and operator + for zkl, ykl since the operator

function + has been specialized.

To satisfy the requirements of overloading operators and to do partial evaluation we use

the following technique.
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In an arithmetic expression, whenever an overloaded operator is executed we introduce a
new local variable to store the result of the residual function. If an operator has higher
precedence it will be executed earlier. Using this method the overloaded operator is
replaced by a residual function. The precedence of the operator is solved by introducing a

new local variable.

Using the techniques discussed above, we can describe partial evaluation processing as

having two phases as follows:

o The pre-processing phase (splitting stage)

In this phase, we split Safer_C’s structures according to their evaluation-time based on the
techniques which we discussed above. The parameters are split. All structure variables are
split. All the assignment statements are replaced by two statements. All the accesses of

structure members are replaced according to the split type structures.

o Partial evaluation phase

During this stage we do normal partial evaluation i.e. calculate, remove the static parts and
generate residual code for the dynamic parts. Note that after partial evaluation overloaded
operators are replaced by residual functions. The precedence of operators can be resolved

by the introduction of new local variables if necessary.
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5.4.4 Examples

Example 5.2 Consider the following program:

<<main>> :: func() void
block
Doubleu :: type := struct {
v :: run double
u :: tran units
}
5, X, y, 2 :: Doubleu
s:=Xx+y*z
printu (s)
end

To perform partial evaluation on the program we first split the program as follows:

<<main>> :: func() void

block
Doubleut :: type := tran struct {u:: units}
Doubleur :: type := run struct {v :: double}
st, xt, yt, zt, newlt, new2t :: Doubleut
sr, xr, yr, zr, newlr, new2r :: Doubleur

newlt := fli(yt, zt)
newlr := flr(yr, zr)
new2t := f2t(xt, newlt)
new2r := f2r(xr, newlr)
st := f3t(new2r)
sr := f3r(new2r)
printu2(sr, st)

end
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where fIr is the residual function of the operator* with respect to yz and zr. f2r is the
residual function of operator+ with respect to the static parts xz and newlr. f3r is the
residual function of operator:= with respect to the static parts st and new2t. fIt, f2t. and
f3t are obtained by removing all the dynamic parts from operator*, operator+, and

operator:= respectively.

If operator+ is defined as

<<op +>> :: tran func( a :: Doubleu, b :: Doubleu) Doubleu
block
temp :: Doubleu
x :: tran double
x :=compatible(a.u, b.u)
if(x)
temp.v := a.v+x*b.v
temp.u :=a.u
return temp
else error ("Operator +")
endif
end

where error is a tran-time function which generates a compile-time error message,
then f2t will be

<<f2r>> :: tran func( at :: Doubleut, bt :: Doubleut) Doubleut
block
tempt :: Doubleut
x :: tran double
x :=compatible(a.u, b.u)
if(x)
tempt.u := at.u
return tempt
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else error ("Operator +")
endif
end

and f2r will be (if the units is compatible and x is 2.5):

<<f2r>> :: func( gr :: Doubleur, br :: Doubleur) Doubleur
block

tempr :: Doubleur

tempr.v ;= ar.v+2.5*br.v

return tempr
end

Note that:

1) The above discussion shows the logical process of partial evaluation. It is possible to
obtain f2¢ and f2r at same time. For example, during partial evaluation f2¢ and f2r
can be obtained at the same time. This is because f2r is a residual program. Therefore
when we derive the residual program we have already computed the result of f2:.

2) A postprocessing phase can remove singleton structs such as struct {v :: double}.

3) For efficiency consideration we could use inline functions instead function calls.
Suppose yt = zt = cm, xr = cm> . After partial evaluation, we have

<<mainr>> :: func() void

block
sr, xr, yr, zr, newlr, new2r :: double
newlr :=yr* zr
new2r := xr + newlr
ST = new2r
printu_cm2 (sr)
end
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This program can be further optimized via traditional optimization. Thus eventually we
will get sr := xr + yr * zr. Notice that in fact the residual function is a C++ program. For

ease of understanding we still use Safer_C notation.

Example 5.3 The function which computes base to the n’th is defined as follows:

<<power>> :: tran func(base :: doubleu, 7 :: tran int) doubleu
block
i :: tran int
pow :: doubleu(1.0, u :: tran units)
for(i:=1;n>0;n--)
pow *:=base
endfor
return pow
end

If the base has units cm after function invocation and power is to be specialized with

respect to the units of base and n = 3 then after specialization the residual program will be:

<<power_3_cm_r>> :: func(baser :: double) double
block
powr :: double := 1.0
powr *:= baser
powr *:= baser
powr *:= baser
return powr
end

The function power_3_cm_t which computes static part will has value cm®.
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5.5 Pointers

Pointers are one of C’s and C++’s strongest features. Pointers are closely related to
arrays. We can use both pointer arithmetic and array indexing to access array clements.
We can use the ref operator to get the address of its operand and use a function pointer to
call a function. Perhaps the most important use of pointers is to dynamically allocate
memory. Actually the only way to refer to heap-allocated objects is via pointer variables.
On the one hand, pointers are very important in C and C++. They give you tremendous
power and are necessary for many programs. On the other hand, nothing will get you into
more trouble than a wild pointer! Pointers are very hard to control since pointers can
points to any thing. We agree that without detailed information about pointers, the
annotation of pointers must be overly conservative [And93b]. In this section, we discuss

only some basic aspects of pointers in our partial evaluation for dimensional analysis.

5.5.1 Annotation of Pointers

In this section we will discuss what is the meaning of partially evaluating a pointer and
what is the meaning of the evaluation time of a pointer. In the following paragraphs, we
first discuss what is the meaning of translation-time pointers and run-time pointers. We

will, then discuss pointer splitting technique for dimensional analysis.
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In Safer_C, since, a variable annotated as a translation time variable will exist only at
translation time, we will assume that all tran-time pointers point at purely tran-time

objects, and all run-time pointers point at purely run-time objects.

The evaluation-time of a pointer can be denoted by *T. For example, if a pointer p points

to the structure A, then p has evaluation-time *T where T is the evaluation-time of A.

If a pointer p is declared as a run-time pointer then during partial evaluation all the

computation associated with pointer p will be suspended.

If a pointer is a translation-time pointer then during partial evaluation all the operations on

the pointer can be done at compile time.

5.5.2 Pointers to Mixed Structures

A pointer p may point to a mixed structure. Since we use splitting technique to split a
mixed structure, therefore if a pointer points to a mixed structure then we would use

similar method to deal with pointers. For example if a pointer p is declared as
p :: -> struct{
i, j:: tran int
k, I :: float
}

The above declaration of p would be equivalent to the following declarations:
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pt =2 -> struct{i, j :: tran int}
and
pr : => struct{k, [ :: run float}

The pointer pt would exist only at translation time, and the pointer sr would exist only at
run time. Their treatment would be the same as for other purely tran-time or run-time

pointers.

5.5.3 Functions with Pointers

Sometimes we may want to use pointers as the parameters of a function. The meaning of

specialization with respect to a pointer is given as follows [And93a],

Suppose a function foo(p :: tran -> int) has a translation-time formal parameter of pointer
type, and is to be specialized due to a call foo(e) giving the residual function foo'(). The
specialization must be with respect to both the address (of e) and the indirection, that is ,
the content of all the locations that p legally can point to when the actual parameter
expression is e. For example, if e is a where a is a translation-time array int ¢[10], then p
can refer to a[0], a[l], ..., a[9]. After partial evaluation all the operations on the pointer

disappear and the objects pointed to by the pointer and all the indirection are absorbed.

For a function call which has pointers as its parameters and the pointers point at mixed
time structures the considerations are similar with the case where mixed structures are

passed to a function. Consider following example, if we have a function:



<<fun_mt>> :: tran func (p :: -> MixedTime) MixedTime

Then function call:
§ := fun_mt(p)
would be the same as the two calls:
St := fun_mt_t(p1) 1! Compute tran-time part of §

Sr:=fun_mt_r(pr) !! Compute run-time part of S
Since the tran-time part of S could not depend on any run-time parts of p, the specialized
function fun_mt_t could be created to compute those tran-time parts using only the tran-
time parts of p. The function fun_mt_r would be a version of fun_mt, that was specialized

for the particular values for the tran-time parts of p and accepted the run-time parts as an

argument.

Using the splitting technique, pointers are split, all dereferencing of original pointers are
replaced by split pointers. For example, let dim_quant be a structure {v :: double, « :: tran
units}. According to our method the dim_quant will be split as dim_quantv {v :: double}
and dim_quantu {« :: tran units}. If we declare p :: -> struct dim_quant then during partial
evaluation p will be replaced by pr :: -> dim_quantv and pr :: -> dim_quantu. Since v is
run-time variable and u is tran-time variable pr will be a run-time pointer and pt is a tran-
time pointer. p->v will be replaced by pr->v and p->u will be replaced by dim_quantu.
Notice that pr is a run-time pointer. Thus we do not evaluate pr, but replace p->v by pr-

>v. Since pt is a tran-time pointer we replace p->u by pt->u which can then be evaluated
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as dim_quantu. If there is a function call f{p :: -> dim_quant) we will get f{pr, tran pr).

Furthermore, since pt is translation variable after partial evaluation, we will get fr(pr).

We already annotated a pointer as either a translation time or a run time pointer, and if a
pointer points to a mixed structure we use the splitting technique to split the pointer
according to the tran-time and run-time fields of the structure. Therefore in our method

we do not need global analysis of pointers.

5.6 Summary

From the above discussion we see that partial evaluation can be used to improve the
execution of a dimensional analysis package. During partial evaluation most of the static
units consistency checking and computation can be removed, and only the dynamic
computations are left for run-time. To ensure that partial evaluation can be done, we have

to have the source code of our units package available.

In a dimensional analysis package, there are two kinds of structures. One is the structure
units another is the structure doubleu. For the operators on the structure units, all the
fields are static and satisfy the conditions of replacement by result. Thus we can use
replacing by result to specialize the operators on units. For example we only need to

annotate operator* as follows:
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units :: type := tran struct {
u_name :: {0..20] char
u_factor :: double
u_exp :: [1..2][0..7] int
}

<<op *>> :: tran func(a :: tran units, b :: tran units) units

block
temp :: tran units
!! units computation part.
return temp

end

For the operators on doubleu, since the operands are partially static we will use the

method discussed above to specialize the operator functions on doubleu.
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Chapter 6

Implementation

Safer_C is an ongoing project in the Department of Computer Science at University of
Manitoba. Our units package is one of the new features of Safer_C. In our package, we
used some features which are still in their developmental stages and thus we cannot fully
implement the dimensional analysis feature in Safer_C as of yet. Nevertheless I have
performed some experiments in C++ to demonstrate that my design is correct. In this
chapter, I discuss some implementation problems which are mainly based on the

experiments in C++.

6.1 Representation of Units

In chapter 4 and 5, we discussed our package in its general form. We showed that the

units can be expressed as either a structure or a class. Using different data structures will
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cause the implementation to be different. Since our experiments are done in C++ on a

UNIX system we will use a class to express the units.

6.1.1 Parameterized Constructors

An important feature that we used to express our units is parameterized constructors. In
C++ it is possible to pass arguments to coastructor functions. Typically, these arguments
are used to help initialize an object when it is created. To create a parameterized
constructor, simply add parameters to it the way you would to any other function. For

example, if we have demo_2p class which has two parameters as follows:

class demo_2p{

inta, b;
public:

demo_2p(int i, intj) { a=i; b =j;}
b

then the statement
demo_2p myobject(2, 3)

will create an object called myobject and pass the arguments 2 and 3 to the / and j
parameters of demo_2p( ). There is another way to define the object myobject. That is
demo_2p myobject = demo_2p (2, 3).

When a constructor function has only one parameter, then there is a third way to pass an

initial value to that constructor. For example,
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class demo_Ip{
int a;
public:
demo_Ip(intj) { a =j;}
int get_a() { return a;}
B

main(){
demo_lp myob =99; //pass 99 10 )
cout << myob.get_a();

return O;

As this example shows, in cases where the constructor takes only one argument, you can
simply use the normal initialization form. The C++ compiler will automatically assign the
value on the right of = to the constructor's parameter. Using this feature we can easily
declare our units as

units cm = "cm";
units gm = "gm".
We found that this form is more intuitive than the first methods. Thus we use this form in

our units package.

6.1.2 The Representation of Dimensions

In this experiment, since we are concentrating on our methodology we do not compress
the representation of dimensions (base units). In SI, there are 7 base units and we permit

the use of fractions as units powers thus we implement dimensions as a two-dimensional
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array denoted by u_exp[2]{7]. Notice that although we use 7, the standard base units

system is not constrained to the SI system.

Because different base units represent different dimensions we need to represent the base
units in different classes. Also, for reporting the units name in printouts we use an array
name(7] to store the name of the declared base units, and use a static variable dim to
record how many base units we have used. Thus if we define units cm = "cm”, then we

have dim = 1 and u_exp is

11010]0]0]0]|0O
IERERERIRERER

Figure 6.1 Base units cm

If we define another base unit such as units gm = "gm" then we have dim =2 and u_exp is

0j1j010|0j0}|0
1111111

Figure 6.2 Base units gm

If needed, we can cut off the space used for base units. For example we can define the
base units as class bunits:
class bunits{
char u_name[20];
int u_factor;
int u_dim;
}
where u_dim =0, 1, ..., 6. Since in base units the u_factor is always equal to 1, therefore

the u_factor can be omitted from the class bunits.
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6.1.3 The Units Member Functions

Theoretically, all the functions (member or friends) can be used by the user. However,
only constructors and overloaded operators are used by the user. The rest are used by the
package for intemal communication and debugging. The main functions can be specified
as one of three kinds. The first kind is used to define the units, second one is used to get
information on the units, and the third one is used to do computation on the units. For the
first kind, since we allow the user to define dimensionless variables and derived units, we
have overloaded the constructor function. The operations between units are overloaded
operators. Operator overloading is similar to function overloading. An operator function
can be either a member or a nonmember of the class that it will operate on. In our package
we use friend functions. Since a friend is not a member of the class, it does not have a this
pointer. Therefore, the operands of an overloaded friend operator function are passed

explicitly.
6.2 Operations between Units

Normally, we may think that the operations, addition, subtraction, multiplication, and
division between numbers, are very simple. However, in dimensional analysis, we need not
only to consider the measure but also the units. For example, conventionally zero
multiplied by any number is zero. In dimensional analysis, zero can have units. The

definition of zero in our package is defined as:

A dimensional quantity is called zero if its value is zero and it is dimensionless.
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For identifying the difference between dimensioned zero and real zero, we sometimes call

the real zero pure zero.

Some algorithms on dimensional quantities are given as follows.

o Units multiplication

Let x and y be dimensional quantities. Then the units of x and y can be expressed as

xu=dXod*1d*2d*3d*sd*sd*s,
] 1 2 3 4 S 6
yu=dYodYidY2dYsdY«dYsds.
1] 1 2 3 4 5 6
7
Therefore x.u*y.u= [I g% *7;.
i=0
Let x; =b/a, y; =d/cthen x; + y; =b/a + d/c = (b*c + a*d) / (a*c), where a, b, ¢,
and d are integers. Let x; + y; = e /f, where e, f are integers and are initialized to pure

zero. Then e = b*c + a*d, f = a*c. In pseudo-code, the computation is performed as

follows
Begin
fori:=0to 6do
if b=0and d+#0 then

e/f:=d/c; ""Meanse:=d f:=c
else if b # 0 and =0 then

e/f=b/a;
else if b # 0 and d = 0 then

e/f:=(b*c + a*d)/ (a*c);
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return e/ f;
endfor;
End

¢ Units power

Normally, we would like to use ** or * to denote the exponentiation operator. However,
we could not use them because ** is not an operator in Safer_C. Only existing operators
can be overloaded to handle new types. Allowing the definition of new operators is a new
feature which is still under development for Safer_C. We cannot use the operator » either
since A has the wrong precedence for exponentiation. Operator precedence cannot be

changed in Safer_C.

In [CG88], Gehani chose the subscript operator [] for exponentiation. Technically, the
parameter does not have to be of type integer, but an operator{]( ) function is typically
used to provide array subscription, and as such, an integer value is generally used. In our
package we will compute rational powers. Therefore the operator [] cannot be used. We

adopt the convention of using a function call to deal with exponentiation. Thus to

compute x” we use power(x, r), where r is a rational.

¢ Compatible Units
The function compatible is used to determine whether two units are dimensionally
consistent. The argument to the function is two units. Since we have expressed all units in

a certain units system, we can check whether two units are same, or consistent. Even
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though the units of dimensional quantities are consistent the operations on the dimensional
quantities may not be performed directly. To do the operation on dimensional quantties a
and b which have consistent units we may have to convert their measurement. In each
conversion we need to compute b.cf/ a.cf. If we do conversion then the consistency check
must already be done. Therefore we do not need to put the computation b.cf/ a.cf in each
overloaded operator. We can put the computation in the consistency checking function. In

this way we can shorten our units package.

Let a, b be two units, then the algorithm for the function compatible(a, b) is described as
follows:

Begin
if a and b are same
then return b.cf/ a.cf
else retumn O;
End

o Computation between dimensional quantities

To do the computations between dimensional quantities the main consideration is whether
the dimensional quantities are compatible. If they are compatible then we may need to do a
conversion. In the following, we take addition as an example to demonstrate the
algorithm. Let a and b be dimensional quantities. The algorithm is as follows:

Begin
x = compatible(a.u, b.u);
if x =/=0 then
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{ 1. conversion;
2. addition;
3. returmn value;

}

else error("a and b are not compatible”)
End

The list of the main functions used in our dimensional-analysis package are given in

Appendix B.

6.3 Print Out Dim_Qunt

To print out a dimensional quantity we need print out two parts: one is the measure,
another is the units. We will use the following form for printing a dimensional quantity:
<value>(u_namel*<r>, u_name2~<r>, ..., u_namen<r>),

where <value> is the measure, <r> is the rational power of unit.

For example, if x = 45 m/sec then in our prototype it will be printed out as:

45 (m*1, sec™( -1)).
If a dimensional quantity x has a specified units name then we can simply print out its
value x.v and its units name. For example, if x = 3 in, y = § in, z is declared as dimensional
quantity which has units in, and z = x+ y then the output of z will be

zv(zu.u_name) = 5 (in).
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If a dimensional quantity x has dynamic units then the output units normally will be given
in the user defined base units system, that is x.v*x.u.cf (base units). For example, if a user
specifies that the base units system is cgs, x = 3in, y=5in, zisadoubleu,and z=x *y
then the output is:

96.774 (cm”2).

Note that it is possible to give a more readable printout form such as 45 m/sec.

6.4 Examples

We have run some test programs to test our units package. The examples are taken from

different sources. The examples, programs, and running results are given in appendix C.
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Chapter 7

Conclusion

This chapter will summarize the main contributions of the research work presented in this
thesis. Further, it will discuss possible future work in three aspects:

¢ Developing and improving a complete units package.

o Establishing a units conversion library.

¢ Doing partial evaluation for Object-Oriented Programming Languages such as

C++.

7.1 Summary

Dimensional analysis plays an important role in the mechanical and physical sciences and
some other areas. Some researchers have used the abstraction facilities of high-level
language to let programming languages support dimensional analysis [Hil88], [Geh85],

and [Umr94]. These previous attempts have some of the following drawbacks:
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1. They entail some run-time overhead.

2. They require the substantial modification of an existing programming language.
3. The dimension can take only integer value.

4. Users do not have much precision control over the computation.

5. They do not allow dynamic dimensions.

All these problems are very important in practice. In this thesis, I have designed a units
package that uses partial evaluation to eliminate the run-time overhead. This package can
handle rational powers, some precision control, error reporting, dynamic dimension and
iteration, and fully compile-time checks and computations for static units. I have described

the splitting algorithm for Safer_C to efficiently perform dimensional analysis.

The experiments show that our package design is correct. Using the splitting algorithm,
we can do the entire computation for static units at compile-time. This result demonstrates
that existing partial-evaluation technology can be used to improve the efficiency of

dimensional analysis.

Notice that the package does not require any change to the existing Safer_C language.

The package is not constrained to a particular standard base units system. This package

can be used for any units system.
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7.2 Future Work

Some experience was gained from this experiment including the discovery that providing a
units package to support dimensional analysis is not as easy as we first thought. Based on
current work, further research will aim at three aspects: Developing a complete units
package, establishing a units conversion library, and extending partial evaluation for
Object-Oriented programming languages.

7.2.1 Developing a Complete Package

At the present stage, I have implemented only the main body of the units package (or
called a prototype). To develop a more practical units package there is more work that

needs to be done. This work includes:

1. Adding more functions such as *:=, +:=, ++, -- etc.
2. Improving the package such as reducing memory usage and handling more complex
practical problems.

3. Trying out more complex examples to test the packages.

7.2.2 Establishing a Units Conversion Library

From the test examples we see that in a dimensional analysis program there is quite a big
section used to define units relations. If these units relations can be put into a units

package as a library module then it would be very convenient for users. To put units
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relations into the units package, the big problem is how to deal with multiple relations
such as 1 metre = 100 cm, 1 metre = 3.28 foot. Although House [Hou83] gave a critique
of Gehani's work [Geh77], some questions are very important and need to be considered.
For example, 1) In practice, sometimes we may use 1 metre = 100 cm, or
1 metre = 3.28 foot. This should be handled in a units package as we expect. 2) If we give
the relations, 1 kilometre = 3280 foot, 1 metre = 3.28 foot, later when foot are
encountered which formula should be used? If these problems can be solved then we can
add all the commensurate units into our units package. Thus when the users use the
package they do not need to define the commensurate units. The package will

automatically do the conversion according to the relations in its library.

7.2.3 Extending Partial Evaluation for OO-Language

From this research, we developed another concept that is extending existing partial
evaluation for Object-Oriented programming language such as C++. There are two main
problems that we may encounter. The first is that partial evaluation for imperative
languages is still in its research stages. The second problem comes from the advanced
features of object-oriented languages. The significant features of C++ in this regard are
classes, which have private parts, inheritance which has protected parts, operator
overloading, and polymorphism. In this thesis, I discussed only how to deal with operator
overloading. It seems that there are other promising areas in which to handle partial

evaluation for object-oriented programming languages such as C++.
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Appendix A. Safer_C Declaration Grammar

declaration = name-list ::" property-specifier [ ":=" initializer] EOS
| name-list "::" "type" ":=" type-expression EOS
| "::" struct-or-union-specifier EOS
| "::" enum-specifier EOS

”n "

name-list = identifier | name-list "," identifier

property-specifier = type-expression
| storage-class-specifier type-expression

storage-class-specifier =
“auto” | "register” | "static” | "extern”

type-expression =  [type-qualifier] type-specifier
| “[0.." [constant-expression] “1" type-expression
| "func” “(" [var-len-parm-list] )" type-expression
| [type-qualifier] "->" type-expression

type-specifier = “void” | “char” [ "int" | "float”
| struct-or-union-specifier
| enum-specifier
| type-identifier
| type-modifier type-specifier

type-modifier = “short” | “long” | "signed” | "unsigned”

” "

type-qualifier = “const” | "volatile” | "volatile” "const”

struct-or-union-specifier =

struct-or-union [identifier] "{ " struct-declaration-list "}"
| struct-or-union identifier
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struct-or-union = “struct” | “union”

var-len-parm-list = parameter-proto-list | parameter-proto-list EOS “..."
pararieter-proto-list = parameter-protos | parameter-proto-list EOS parameter-protos
parameter-protos = formal-parameters | "'::" property-specifier

formal-parameters = name-list "::" property-specifier

function_definition = "<<" designator ">>" "::" property_specifier EOS block_or_body

designator = 1t_identifier | “op” opsign "LIKE" oper | "op"” opsign
opsign = 1_identifier | oper
oper - I'+ ” l II.I' I "*ll I‘ l'/" I II:=I' l ll*:=fl I .
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Appendix B. Main Functions of

Units Package

This package is written in C++. The purpose of the package is to illustrate that the design
idea of a dimensional analysis package for Safer_C is correct.

#include <iostream.h>
#include <string.h>
#include <math.h>

#define U_NDIMS 7

char *name[U_NDIMS];
char dname(20];

int tempdim[2][U_NDIMS];

DEFINE UNITS CLASS

struct units {
char u_name[20];
double u_factor;
int u_exp[2](U_NDIMS];
static int dim;

public:
unitsQ;
units(char *string);
units(char *a, units b);
~unitsQ {}
void name_of() {strcpy(dname, u_name);}
double factor_of() {return u_factor;}

void u_exp_of();
void printu_exp(Q;

friend int gcd(int a, int b);
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friend units power(units a, int num, int den);

friend units power(units a, float b);

friend units operator*(units&, units&),
operator/(units&, units&),
operator*(double a, units b),

friend double compatible(units a, units b);
|5

UNITS CONSTRUCTOR 1

units::units()
{inti;
strcpy(u_name, "");
u_factor=1;
for (i=0; icU_NDIMS; i++)
{u_exp[0][i]l=0; u_exp[1](il=1;};
}

UNITS CONSTRUCTOR 2

units::units(char *string)
{inti;
name[dim]=string;
strcpy(u_name, string);
u_factor=1;
for(i=0; i<U_NDIMS; i++)
if(i==dim) {u_exp[0](i]=1;
u_exp[1]{il=1;
}
else { u_exp(0][i]=0;
u_exp(1][i]=1;

dim++;
}
UNITS CONSTRUCTOR 3
units::units(char *a, units b)
{inti;

strcpy(u_name, a);

u_factor=b.u_factor;

for(i=0; icU_NDIMS; i++)
{u_exp[0](i]=b.u_exp[0](i];

u_exp(1][i]=b.u_exp(1]{il;

b

}

—_ COMPUTEUNITSPOWER _ ____
units power(units a, int num, int den)

{ units temp;
int i=0,2=0;
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temp.u_factor=pow(a.factor_of(), (float)num/den);
if(num ==0)
for(i=0; i<U_NDIMS; i++)
{if(a.u_exp[0][i] !=0)
( temp.u_exp{0][il=1;
temp.u_expf1](il=1;
}
}
else
for(i=0;i<U_NDIMS;i++)
{if(a.u_exp{0](i] !=0)
{temp.u_exp[0]{i]=a.u_exp[0][i]*num;
temp.u_expf1](i}=a.u_exp[1](i]*den;
2=gcd(temp.u_exp[0](i], temp.u_exp([1](i]);
temp.u_exp[0][i]=temp.u_exp[0][i}/2;
temp.u_exp[1][i]=temp.u_exp(1][i]/2;
}
}
retum temp;

}
COMPUTE UNITS POWER

units power(units a, float b)
{
units temp;
int i=0,j=0,k=0,1=0,1=0,12=0;
float x, z;
temp.u_factor=pow(a.factor_of(), b);
j=(int)b;
x=b-j;
k=1;
for(i=0;i<8;i++)
{k=k*10;
I=(int)(x*k);
z=(float)l/k;
if(z==x)
break;
}
t=gcd(.k);
ifl=0&&j==0)
for(i=0; i<U_NDIMS; i++)
(if(a-u_exp[0][i] !=0)
{temp.u_exp(0}(i]=0;
temp.u_exp[13[il=1;
}
}
else
for(i=0;i<U_NDIMS;i++)
{if(a.u_exp[0][i] !=0)
{temp.u_exp[0][i]=a.u_exp[0][i]*(*(k/)+I/t);
temp.u_exp[1][i]=a.u_exp[1][i]*(k/t);
R=gcd(temp.u_exp[0][i], temp.u_exp[1](i]);
temp.u_exp[O][i]=temp.u_exp[O][i}/12;
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temp.u_exp[1]{i]=temp.u_exp[1]{i}/12;
}
}
return temp;

}
COMPUTE GCD

int gcd(int a, int b)
{
int x;
while (b!=0)
{x=a%b; a=b; b=x;};
if(a>0)
return a;
else retum -a;
}

UNITS *

units operator*(units&a, units&b){
units temp;
int i;
temp.u_factor=a.u_factor*b.u_factor;
for(i=0; ic<U_NDIMS; i++)
{if(a.u_exp[0][i] ==0 && b.u_exp[0][i] !=0)
{temp.u_exp[0][il=b.u_exp[0](i];
temp.u_exp{1][il=b.u_exp{1][i];
}
else if (b.u_exp[0][i] ==0 && a.u_exp{0][i] !=0)
{temp.u_exp[0][i]=a.u_exp[O][i};
temp.u_exp[1](il=a.u_exp(1](i};

}
else if(a.u_exp[0][i] '=0 && b.u_exp[0][i] 1=0)

{
temp.u_exp[0][i]=a.u_exp[0][i]*b.u_exp[1][i]+a.u_exp{1][i]*b.u_exp[0][i);
temp.u_exp[1](i]=a.u_exp[1]{i]*b.u_exp{1](i};
temp.u_exp[0](i]=temp.u_exp[0](i})/gcd(temp.u_exp{0][i], temp.u_exp[11{i]);
temp.u_exp[1]{i]=temp.u_exp(1])(il/gcd(temp.u_exp{0][i], temp.u_exp{1][i});

}

}

return temp;

}

—___D,u=>
units operator*(double a, units b){
units temp;
int i, flag=0;
for(i=0; i<U_NDIMS; i++)
if(b.u_exp{0][i] !=0)
{ flag=1; break;}

if(flag)
{
temp.u_factor=b.u_factor*a;
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for(i=0; i<U_NDIMS; i++)
(temp.u_exp(0][il=b.u_exp(0](i];
temp.u_exp(1]{i]=b.u_exp(1][il;
|5
}
else temp=b;
retumn temp;
}

UNITS COMPANTIBLE

double compatible(units a, units b){
int i,flag=1;
for(i=0; i<U_NDIMS; i++)
if(a.u_exp[0]{i] != b.u_exp[0][i] Il a.u_exp[1][i] != b.u_exp[1][i])
{flag=0;break;}
if(flag)
return b.factor_of()/a.factor_of();
else return 0;

}
DEFINE DOUBLEU CLASS

struct doubleu {
double v;
units u;

public:
doubleu();
doubleu(double a, units b);
doubleu(double a);

double value_of() {returm v;}

void u_name() {u.name_of();};

double factor_of() { retum u.factor_of();}
void units_of(Q);

void change_units(units uu) {u=uu;}

doubleu cperator=(doubleu&);

doubleu operator+=(doubleu&);
doubleu operator-=(doubleu&);
doubleu operator*=(doubleu&);

doubleu operator()(units a);

friend void printu(doubleu&);
friend doubleu power(doubleu a, double b);
friend doubleu power(doubleu a, int n);

friend double todouble(doubleu&);

friend double sin(doubleud),
cos(doubleu&),
tan(doubleu&),
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friend doubleu operator-(doubleu&),
operator+(doubleu,doubleu),
operator*(doubleu,doubleu),
operator*{doubie,doubleu),
operator/(doubleu,doubleu),

friend int operator<(doubleu, doubleu),
operator>(doubleu,doubleu),

operator==(doubleu,doubleu),
operator!=(doubleu,doubleu);

friend double toduble(doubleu);
b

OVERLOADED OPERATOR =

doubleu doubleu::operator=(doubleué& a){
inti;
int flag;
double z;
v.u_exp_of();
for(i=0;icU_NDIMS; i++)
if(tempdim[0](i} == 0)
flag=0;
else {flag=1; break;}
if(flag !=1)
{ v=a.v;
u=a.u;
}
else
double x=compatible(u, a.u);
if (x) {
z=a.factor_of();
z=z/this->factor_of();
v=a.v¥z;
return *this;
}
else cout<<"uerror(=) dimension is not correct”;

}

COMPUTE THE POWER OF UQ

doubleu power(doubleu a, double b)
{

doubleu temp;
int i=0,j=0,k=0,1=0,t=0, numerator=0, denominator=0;
float x, z;
if(b !=0)
{
j=(int)b;
x=b-j;
k=1;
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for(i=0;i<8:i++)

(
k=k*10;
I=(int)(x*k);
z=(float)l/k;
if(z==x)
break;
}

t=gcd(Lk);
numerator=§*(k/t)+1/t;
denominator=k/t;
if(a.value_of(Q<0 && numerator%2 && '(denominator%2))
{coutc<"negative number’s sqrt”;
cout<<™n";}
else
(temp.v=pow(a.v, b);
temp.u=power(a.u, numerator, denominator);
}

}
else

{temp.v=1;
temp.u=power(a.u, 0, 0);
}
return temp;
}

COMPUTE THE POWER OF UQ

doubleu power(doubleu a, int num, int den)
{ doubleu temp;
if(a.value_of()<0 && num%2 && '(den%2))
{cout<<"negative number’s sqrt”;
cout<<™\n"; return temp; }
else
{temp.v=pow(a.v, (float)num/den);
temp.u=power(a.u, num, den);
return temp;
}

COMPUTE THE POWER OF UQ

doubleu power(doubleu a, int n)
{ inti;
doubleu temp=doubleu(1.0);
for (i=1: n; n--)
temp*= a;
retum temp;

}
UQ CONDITION <

int operator<(doubleu a, doubleu b)
{ double x;
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x=compatible(a.u, b.u);
if(x)
{
x=b.v*x;
if(a.v < x)
reum 1;
else return 0;
}
else cout<<"uverror(<)";
}

CONVERT A DIMENSIONLESS QUANT TODOUBLE ______

double todouble(doubleud&b)
{
int i, flag;
doyble a;
b.units_of(Q;
for(i=0;i<U_NDIMS; i++)
if(tempdim([0](i] == 0)
flag=1;
else {flag=0; break;}
if(flag==1)
{ a=b.v;
return a;
}
else cout<<"uerror(=): A units quantity assign to a double."<<™\n";

}
COMPUTE SIN

double sin(doubleu&b)
{
int i, flag;
double a;
b.units_of();
for(i=0;i<U_NDIMS; i++)
if(tempdim([0](i] == 0)
flag=1;
else {flag=0; break;)
if(flag == 1)
{ a=sin(b.v);
return a;
}
else cout<<"uerror(=): A units quantity assign 10 a double."<<"\n";

}
ASSIGNMENT *=

doubleu doubleu::operator+=(doubleu &a){
doubleu temp;
temp=*this*a;
v=temp.v;
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u=temp.u;
return *this;

QU+

doubleu operator+(doubleu a, doubleu b) {
doubleu temp;
double x=compatible(a.u, b.u);
if (x)
{temp.v=a.v+x*b.v;
emp.u=a.u;
return temp;
}
else cout<<"uerror(+) dimesion error"<< "\n";

}
Qu*

doubleu operator*(doubleu a, doublen b){
doubleu temp;
double x;
x=compatible(a.u, b.u);
if(x)
{

temp.v=a.v*x*b.v;
temp.u=a.u*a.u;
}
else { temp.v=a.v*b.v;
temp.u=a.u*b.u;
}
return temp;
}
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Appendix C. Examples

Example 1. If a body is projected horizontally with a velocity of 80.0 fvsec from the top
of the tower which is 160 ft high. Find the time of flight to reach the ground.

3
Solution: Using formula %‘z + vyt =5 = 0. Where s=160ft, v,= O;a=g= i’f— The standard answer
sec
is 1=3.16sec. (This example is token from University Physics [Mor69]. page 44-46. Using the English

gravitational system.)
The program is given as below:

main()

{
units ft="ft";
units pound="pound"”;
units sec="sec";

doubleu s=doubleu(-160.0, ft);

doubleu v0=doubleu(0, ft/sec);

doubleu g=doubleu(32.0, ft/power(sec, 2));
doubleu t=doubleu(0, sec);

doubleu a=g/2;

doubleu b=v0;

doubleu c=s;

doubleu y;

doubleu zero=doubleu(0,power(ft/sec, 2));

y=power(b,2)-4*a*c;
if(y>=zero)
{
t=(-b+power(y, 0.5))/(2*a);
cout<<"The answer is:";
printu(t);
}
else cout<<"There are complex solution."<<™\n";
cout<<™\n";
cout<<"End of example 1. "<<™n";
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The output is:

The answer is:3.16228(sec=1).
End of example I.

Example 2. What is the speed of a transverse wave traveling along a cord that has a linear
density of 2.5*10~> pounds-mass/foot and is under a tension of 15.0 pounds force?

Solution: Using formula v=sqri(F/mu), where F=15.0pf, mu=(2.5/32.0) * 10 = slug/ft. The standard

answer is v=438 fv/sec. (This example is token from University Physics [Mor69]. page 460. Using the gcs
system.)

The program is:

main()

{
lmits gmgn gmn;
units cm="cm";
units sec="sec”;
units in=("in", 2.54*cm);
units fi=("ft", 12¥in);
units kgm=("kgm", 1000*gm);
units pm=""pm", 0.454*kgm);
units slug=("slug", 32.3*pm);
units pf=("pf”, slug*ft/power(sec, 2));

doubleu f=doubleu(15.0, pf);
doubleu mu=doubleu(2.5/32.0, pow(10, -3)*slug/ft);
doubleu v;

v=power(f/mu, 0.5);
cout<<"The time is=";
printu(v);
cout<<™\n";
cout<<"End of example 2. "<<"\n";

}
The output is:
The speed is=13355.7(cm=1, sec=-1)

End of example 2.
Example 3. The example is same as example 2 but we directly use ft, slugs, and pf as
computation units. Thus we could get more accurate results than example 2.
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The program is:

main()
{
units ft="f";
units sec="sec";
units slug="slug";
units pf=("pf”, slug*ft/power(sec, 2));

doubleu f=doubleu(15.0, pf);
doubleu mu=doubleu(2.5/32.0, pow(10, -3)*slug/ft);
doubleu v;

v=power(f/mu, 0.5);
cout<<"The speed is=";
printu(v);
cout<<™n";
cout<<"End of example 3. "<<"\n";

}

The output is:
The speed is=438.178(ft=1, sec=-1)

End of example 3.

Example 4. A stone is projected from the surface of a flat field with a speed of 20m/s at
an angle 53.1 degree above the horizontal. Find the stone's velocity and position at any
instant.

Solution: Using formula:
vOx=v0*cos(angle); v0=20m/s, angle=53.1 degree.
vOy=v0*sin(angle);
=vOx;
vy=vly-g*i;
v=sqri(vx2+vy 2);
x=v0x*t;
y=vOy*t-g*1°2/2;
angle=atan(vy/vx)*180/3.14;

(The example is based on a similar example on pp 42-43 in (Til79].)
The program is:

main()
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{
units m="m";
units kg="kg";
unils sec="sec";

doublea v0=doubleu(20, m/sec);
doubleu v0x=doubleu(0, m/sec);
doubieu vly=doubleu(0, m/sec);
doubleu vx=doubleu(0, m/sec);
doubleu vy=doubleu(0, m/sec);
doublen v=doubleu(0, m/sec);
doubleu t_max=doubleu(3.5, sec);
doubleu t=doubleu(0, sec);

doubleu delta_t=doubleu(.2, sec);
doubleu g=doubleu(9.807, m/power(sec,2));
doublen y=doubleu(0, m);

doubleu zero=doubleu(-0.00001, m);
doubleu x;

double angle=0;

angle=0.926769817;  //0.926769817=53.1 degree.
vOx=v0*cos(angle);
vOy=v(*sin(angle);
while (y>zero) //In C 0.0>0.0 is true thus we put zero=-.00001.
{
x=vOx*t;
y=v0y*t-g*power(t, 2)/12.0;
vx=v0x;
vy=vly-g*t;
v=power(power(vx,2)+power(vy, 2), 1/2.0);
angle=atan(todouble(vy/vx));
cout<<"The ¢, x, ¥, v are:"<<"\n";
cout<<” "<<"\n";
couts<"t=";
printu(t);
coutle<"n"<<"x=";
printu(x);
cout<<"\n"<<"y=";
printu(y);
cout<<"™m"<<"v=";
printu(v);
cout<<"\n"<<"angle= ";
cout<<angle*180/3.14;
cout<<™\n";
t=t+delta_t;
|
cout<<"End of example 4. "<<"\n";
}
The output is:

Thet, x, y, v are:

131



t= O(sec=1)

x= 0(m=1)
y=0m=1)
v=20(m=1, sec=-1)
angle= 53.1269

Thet, x, y, vare:

t= 0.2(sec=1)

x= 2.40168(m=1)
y=3.0026(m=1)

v= 18.4691(m=1, sec=-1)
angle= 49.4692

Thet, x, y, v are:

t= 0.4(sec=1)
x=4.80336(m=1)
y=5.61292(m=1)
v=17.0267(m=1, sec=-1)
angle= 45.1716

Thet, x, y, v are:

t= 0.6(sec=1)
x=7.20504(m=1)
y=7.83096(m=1)
v=15.6972(m=1, sec=-1)
angle=40.1133

Thet, x, y, v are:

t= 0.8(sec=1)
x=9.60672(m=1)
y=9.65671(m=1)
v=14.5118(m=1, sec=-1)
angle= 34.1755

Thet, x, y, v are:

t= I(sec=1)

x= 12.0084(m=1)

y= 11.0902(m=1)
v=13.5084(m=1, sec=-1)
angle= 27.2712

Thet, x, y, v are:

t=1.2(sec=1)

x= 14.4101(m=1)
y=12.1314(m=1)
v=12.7301(m=1, sec=-1)
angle= 19.3948
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Thet, x,y, v are:

t= 1.4(sec=1)
x=16.8118(m=1)

y= 12.7803(m=1)
v=12.2199(m=1, sec=-1)
angle= 10.6818

Thet, x, y, v are:

t= 1.6(sec=1)
x=19.2134(m=1)

y= 13.036%(m=1)
v=12.0122(m=1, sec=-1)
angle= 1.44371

The t, x, y, v are:

t= 1.8(sec=1)
x=21.6151(m=1)
y=12.9013(m=1)
v=12.1224(m=1, sec=-1)
angle= -7.86936

Thet, x, y, v are:

t= 2(sec=1)

x= 24.0168(m=1)
y=12.3734(m=1)
v=12.5423(m=1, sec=-1)
angle= -16.7856

The t, x, y, v are:

t= 2.2(sec=1)
x=26.4185(m=1)
y=11.4532(m=1)
v=13.2423(m=1, sec=-1)
angle= -24.9424

Thet, x, y, v are:

t= 2.4(sec=1)

x= 28.8202(m=1)

y= 10.1407(m=1)

v= 14.181(m=1, sec=-1)
angle=-32.1514

The t, x, y, v are:
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t= 2.6(sec=1)
x=31.221%m=1)

y= 8.43594(m=1)

v= 15.3146(m=1, sec=-1)
angle= -38.3806

Thet x,y, vare:

t= 2.8(sec=1)

x= 33.6235(m=1)
y=6338%(m=1)

v= 16.6033(m=1, sec=-1)
angle= -43.6983

The t, X, y, v are:

t= 3(sec=1)

x= 36.0252(m=1)
y=3.84958(m=1)
v=18.0137(m=1, sec=-1)
angle= -48.2173

The t, x, y, v are:

t=3.2(sec=1)
x=38.4269(m=1)
y=0.967978(m=1)
v=19.5196(m=1, sec=-1)
angle= -52.0601

The t, x, y, v are:

t= 3.4(sec=1)
x=40.8286(m=1)
y=-2.3059(m=1)
v=21.1004(m=1, sec=-1)
angle= -55.3401

End of example 4.
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