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Abstract 

hcorporating d t s  of me- into a programming language is beneficial for dimensional 

analysis and e m  detection. One of the methods of doing this is to use the abstraction 

faciüties of an existing prograrnmuig langage. In this thesis. 1 present the design of a units 

package for manipuhbg units of m a u r e  dong with numerical values for the Sater-C 

language and discuss methods of using partial evaluation to improve the performance of 

the uaits package. This work generaiizes and enhaoces pmvious work and malysis and 

applies the new analysis to the Safer-C programming language. In particular, it examuies 

the use of partial evaluation to perfom dimensional anaiysis. 'Ihis work consists of three 

parts: 1) A survey of methods for ~ C O C ~ O C ~ M ~  unïts of measure into programming 

languages and research on partial evaluatioa for this purpose. 2) A presentation of a 

design for a units package and discussion of several important features of the package 

namely: dynamic àirnensions, computation of rational powers, handling precision. and 

handling temperature computations. 3) A presentation of a technique of partial evaluation 

to achieve good perfomaace for dimensional anaiysis. With partial evaluation, the units 

checking and computation can be done at compile tirne. The results of experiments show 

that my design of the units package is correct and that existing partial evaluation 

technology can be used to improve the efficiency of dimensional analysis. 
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Chapter 1 

Introduction 

1.1. The Problem 

Dimensional analysis plays an important role in scientific investigation. In many fields. 

such as physics and engineering, it is common practice to associate units of mesure with 

variables and constants and to carry these uni& dong with computations. Scienac 

equations are built not on abstractions but on measuremenrs of actual phenornana. It à 

quite possibIe for an equation to be mathematicdly correct and yet be scientiîïc nonsense. 

Dimensional analysis is the snidy of measurement and its influence on scientific 

relationships. The techniques of dimensional analysis are widely used in science to derive 

theoretical relationships. 



Udortunately. most programming languages such as Pascai, C. CH. FORTRAN. and 

P M  do not deal with uni& of measure. When engineers use cornputers to solve their 

problerns. they have to do the dimeasional uialysis rnanually. It has becorne clear that 

programs in high-kveL languages should m some way provide the mechanisms needed to 

support dimensionai aiialysis. 

1.2. Related Work 

1.2.1 Units in Prograrmning Languages 

nie earliest language which aliowed units is the ATLAS ianguage (Abbreviated Test 

Language for AU Systems) [At182]. ATLAS allows only a limited set of uni& and a limitai 

languap for consmicting combinations of units. The ATLAS language is intended to t*: 

used for the writing of test pmgrams for Unies Under Test (UUTs), so that these 

programs cm opente on various makes and models of Automatic Test Equipment (ATE). 

Uni& of measure in general hi&-ievel ianguages are discussed by Gehani [Geh77]. Grhani 

describes dimensional analysis for a more general hi@-level language, Pascal. Gehani 

proposes the inclusion of the units of the quantity king represented as an additional 

attribute in hi&-level programming languages. He argues that aU or most of the additional 

pmcessing required by the units auribute can be done at compile tirne. 



House mou831 gives a critique of Gehani's work and proposes a method which cm hr? 

completely implemented at compile the. He discusses Iînguage syntax issues and efncieni 

implementatioa 

rii dimensionai analysis. an important aspect is uni& conversion. Rarr and Loveman 

CI(L781 propose the incorporation of units Uito prograrnrnhg languages; they discuss the 

relationship between units conversion and iinear algebra, dimensional anaiysis. and 

language syntax issues. Novak wov95] presents efficient algonthms for converthg units 

of rneasurement from a given fom to a desired fom. For saving space and increasing 

efficiency, Novak discusses the representation of the dimensions. He packs a vector of 

eight integers into bit fields within anhteger word, and Unplements units for the GLISP 

Language. 

Gehani, Karr & Loveman, and House. all require that the language definition be changed 

to support dimensionai analysis. Gehani [Geh85] and Hilnnger ( w 8 3 ]  and m 8 8 ] )  

describe methods for using Ada9s abstraction facilities to use an existing pmgnmming 

language to support dimensional analysis. Hilnnger describes methods for including units 

with numeric data using Ada packages, and discusses modifications of Ada cornpilers that 

wouid be required to make the use of these packages efficient w 8 8 ] .  There arc: sevenl 

other packages which are discussed in [CG88], [Cun92], and [Umr94]. Cmelik and Gehani 

gives a package for handling unit, of measure in Ctc using classes. Cunis discusses a 

package for handling units of rneasure in Lisp. Umrigar gives a package for handling units 



of measure in C++ using ternplates. AU these packages have some disadvantages. which 

we will discuss in chapter 2. 

1.2.2 Partial Evaluation 

Partial evaluation is a program optimhation whereby as much as possible of the 

computation specined in the program is carried out before the program is uanslated to 

machine language- Any computation possible on Litetat constants or relatively stable input 

data supplied by the programmer is carzied out, and the results are propagated through the 

prograrn. The r e s u l ~ g  simplincation of the nnal prograrn can lead to a substantial speed 

improvement Partial evaluation has been the subject of a rapidly increasuig amount of 

activity over the past decade due to recent advances both in theory and practice PEJ881, 

[CD93], and [JGS93]- 

Partial evaluation has been successfully applied to declarative languages. such as Scheme 

and Prolog. Recent years have seen a growth in the study of partial svaiuation in 

imperabive prograrns [Chaq, Ney9 11, [And93a]. [WL95], and WG953. Anderson 

[And93a], [And93b] describes a partiai evaluator for a substantial subset of  C. 

Kleimbatscher. Kriegshaber, Zochiing, and Gluck -951 describe a partial avaluator 

for a substantiai subset of Fortran 77, 



Baier, Gluck, and ZocFhluig DG2941 investigate the application of partial avaiuation to 

numerically-oriented computation and engineering applications. Salomon [Sa1961 uses 

partial evaluation to support many important language feaaires and implements a partial 

evaiuator for Safer-C. 

Despite the successfd application of partial evaluation to many fields, few attempts have 

been made to sndy the partial evaluation of dimensional analysis (Hi1881. 

1.3. Research Objectives 

In this thesis, 1 study dimensional analysis in Safer-C and combine it with partial 

evaluation to improve the efficiency of programs which use uni& of measure. 1 genenlue 

and extend previous uni& package and analysis to the Safer-C programrning lanpuage. 1 

investigate some problems whicb are relevant to the features of the dimensional analysis 

package, the system, and partiai evaluation. For decmsing the size of the irnplementation. 

1 make maximum use of the existing features of Safer-C. For example, 1 use the partial 

evaluator which exists in Safer-C. 1 also suggest improvements to the partial evaluation 

techniques that would speed up dimensional analysis. with the goal that any such 

improvements wouid e ~ c h  a i i  uses of the hguage, not jus& dimensionai analysis. 



1.3.1 The Method 

Basically, there are two methods of supporthg dimensionai analysis. 

a) The pmgamming lanpage itselfcould support dimensional analysis as a fature. This 

method tequiries changes to the language intended solely for supponing dimensional 

analysis. It may be impossible to change erristing pmgramming languages to meet this 

go& 

b) Use the abstraction facilities of an existing language to constnict a units package to 

support dimensional analysis. Method b) has severai advantages. Fust, we do not need 

to change the source language specincally for dimensional analysis. The standard version 

of the lanpage stil l  can be used. Second, the user does not need to learn a new language 

for doing dimensional analysis. Fïnaliy it is easier to irnplement Therefore I intend to use 

method b) for dimensional analyis in Safer-C. 

Although a predefined units package for dimensional analysis has severai benetits. the 

uni& checking would nomaiiy have to be done at run the instead of compile tirne. That 

means that the execution of programs which make use of dimensional analysis would te 

slow. For tacicihg this problem, 1 propose the use of partial evaluation. 



There are severai cessons for choosing partiai evduation to speed up execution. First. 

w k n  uniis are declad dong Mtb vaziabies or constants, the units are static. sime we 

Lnow the units at compile-tirne. nius we can completely Qal with these static quantities 

at compile time. Second. in Safer-C the partial evaluator already exists. Thexfore lhis 

makes the work much casier. We only need to use and perhaps expand the existing partial 

evaluator to &al with ciiffernt units components. W y ,  Safer-C has the same 

computational power at translation the  as ai nui tirne. Thus we can do any necessary 

computation at compile-tirne rather than at run tirne. 

1.3.2 Structure of the System 

The system which supports uni& of measure in Safer-C basicaily consists of a parser, a 

partial evaluator, and a uni& package. My work principaily involves the partial evaluator 

and the units package. It includes the following parts: 

1) Designing the features of dimensionai analysis which support units of measure to 

be pmvided by the system. The features of dimensionai anaiysis d k t l y  indicate how 

powerful the system is. 

2) Designhg a convenient notation for specifying units of masure. This is important 

because if users feel uncornfortable with the notation they will not use the system. 



3) Discovering under which citcurnsîances, and which parts of dimensionai andysis can be 

carried out during partial evaluation. 

4) Implementing a demonstntional units package which supports dimensional an Jysis. 

Whenever the users want to use Uaits, they simply declare t&e units of each variable and 

manipulate these units using ordiaary operatiom. The system will do the units checking. 

From the user's point of view the system should have the foilowing characteristics 

[Hi188]: 

(1) It must be possible to d e c k  each variable, constant, and parameter to have a 

particular M t  of measure and to perform the ordùiary arithmetic operations 

between quantities having the declareci units of measm. 

(2) There should be some provision for handling conversion of commensurable units. 

(3) There should be compile-time checking for dimensional consistency. 



The system can be representeù by the foliowing diagram 

Figue 1.1 System Diagram 

SOURCE 
J 

The source is the user's code which includes some operations using uni& of measure. The 

units package is constructed by using Safer-C abstraction f a t i e s .  such as operator 

overloading. and parameterhi consauctor. The source and the units package are sent to 

the parser. Accordhg to the source and uni& package, the parser gemntes the 

intermediate code, which is a parse m. Then the parser tree is sent to the panid 

evaluator (PE). According to the annotated evaluation tirne. the partial evaluator perforrns 

the partial evaluation. The p h a i  evaluator does the units consiswicy check and units 

operatiom. By partial evaluation, the manipulation of units of measure can be eiiminated 

from the object code as much as possible. Therefore we can get a faster running program. 

1.4. Perceived Benefit 

The work descnbed here has several benefits. First of ail, it offers dimensional anaiysis. 

This is important to scientists and engineers as it gives a check on the correcmess of k i r  
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formulas. The checking is similar to that tradïtionally pedormed by scientist on their own 

band calculations. In addition, dimensional anaiysis can accurately perform the conversion 

between dimensional quantities in different systems of units. With this feature the users 

would need to declare only the units of quantities and the system then wodd automaticaily 

manipulate the units and do the dimensional dys i s .  As a brief example, a programmer 

could code the following program to compute a speed: 

units-package0 

<anain» :: funco void 

block 

S peed :: Doubleu(O.0, kmhour) 

Thne :: Doubleu(5, hour) 

Distance :: Doubleu(600.0, km) 

Speed := Distance/l"me 

P ~ t u  (Speed) 

end 

When executing the pmgram it wil l  p~tout :  12O(krn/hour). 

Second. using the infornation provided by units, more errors can be detected. Third. 

thanks to partial evaluation the system would be efficient. Incorporating uniîs of measure 

into a programming language would require a lot of space and computation. if a program 

mns slowly as a result of the incorporation of uni& into the program then Dwer 



programmers would want to use the feahue of dimerisional analysh. Thus the work 

describeci heie is an important step towards putting a programming lanpage which 

supports unie of measure into practical use. M y ,  the system demonstrates the 

application of some important language features and partial evaluation 

1.5. Thesis Structure 

My thesis consists of the following chapters: 

1. Introduction 

2. Related Work- Swey che related work on units of measwe in programming 

languages and partial evaluation in imperative languages. 

3. Background Knowledge - Discuss some background knowledge which is relevant 

to dimensionai analysis and partiai evaluation 

4. Design - Fresent a design of the features of dimensional analysis and a convenient 

notation. 

5. PE unit5 package in Safer-C - Study partial evaluation and a units package which can 

efficiently support units of measure. 

6. hplementation - Constnict a prototype of a uni& package in C++. 

7. Conclusion and future work - Resent conclusions, and suggestions for future 

work. 



Chapter 2 

Related Work 

In this chapter. 1 s w e y  the existing work on dimensionai analysis in propamming 

languages and on partial evaluation that is directly related to my w o k  

2.1 Introduction 

Rograrnrning languages have improved a lot since the earliest hi&-level languages 

appeared in the 1950s. Many new features have ben added to programming Ianguages 

since then but the design of high-level languages has not yet been perfected. Incorporating 

uni& of measure into progcamming language is an interesthg research axa of 

programming language design. Such a feature is calleci dimensional analysis. Uni& of 

measure play an important d e  not ody in scient& investigation but also in Our every day 

life. Unfominately, most programming languages such as C.  C++. Fortran. and P M  do 



not ded with wits of measure. It has become clear that prognms in a high-level languagc: 

should in some way provide physicai and mechanical unitse.g. volts, hertz, kgm, dyne, 

etc. From the point of view of programming languages, expücit mention of units c m  not 

only enhance readability of prograrns but &O increase the ability of a programming 

language to correct errors of inconsistent units. Research into dimensionai analysis in 

p r o g d g  languages over the pst twenty years bas acbieved many mults. Two 

methods have been adopted to incorporate units of measure into programming lmguages. 

One is to modify an existing language to directiy incorporate units of measure into the 

syntax and semantics of the language. nie other is to use the existuig high-lrvd features 

provideci by a programming language to hplement dimensional anaiysis. The foliowing 

are the main design problems which we should consider when we incorporate units into a 

programming Language. 

1. How to represent the uniu themselves in the source code. 

2. How to deal with conversion between two cornmensurate units. 

3. How to provide compile tirne consistency checloing. 

4. How to permit efficient implementatioa 

5. How to provide precision contml. 



2.2 Units in Programming Languages 

2.2.1 Atlas 

The eatliest pmgrarnming language which aiiowed uni& of measure was ATLAS ~uiguage 

(Abbreviated Test Language for Ail Systems) [Atl82]. ATLAS was developed origllidly 

for avionics applications under die auspices of Aeronautical Radio, Inc. (ARINC) and 

under the direction of the Airlines Electronic Engineering Cornmittee (AEEC), which 

approved the original version on October 10, 1968. ATLAS was approved by the United 

States Department of Defense as an interim standard language for automatic test 

equipment (1976). 

ATLAS is a standard abbreviated English language used in the preparation and 

documentation of test procedures which can be implemented either manudy or with 

automatic or semi-automatic test equipment. The ATLAS language is intended to be used 

for the writing of test programs which describe test procedures for a wide class of Units 

Under Test (CTUTs), so that these programs can operate on various makes and models of 

Automatic Test Equipment (ATE). 

Since ATLAS is specific for testing, ATLAS ailows only a k t e d  set of units of measurt: 

and a limited language for constructing combinations of units. 



2.2.2 The Early Work of Gehani 

In 1977, Gehani [Geh77] discussed the units of measure in the generai hi&-level 

programming language Pascal. Gehani's arguments cm be sumrnarized as follows. The 

ôasic fimction of a cornputer pmgram ïs manipulating data. An important atmbute of a 

ùatum is its type. In a hi@-level typed language, the type of a variable determines the 

range of values which the variable can bave and the set of operations that are dehed for 

variables of that type. Using type information we can enhance the error detection 

capabilities of a compiler. A compiler should report an error if an operator is applied to an 

incompatible operand; for example, if a pointer variable and a Boat variable are added 

together. Similarly. a units enor should be detected when incompatible uni6 are 

combine& for example when a value with uni& of speed is assigned to a variable with 

uni& of volume. Gehani proposes the inclusion of the uni& of the quantity king 

represented as an additional attribue in high-level programming languages. Using the 

notation proposeci by Gehani we can write d o m  following program segment: 

var T: real UNïïS(*);  

V: real UNITS (METER = 3); (METER =3 means V has unit m3 ) 

W: real UNITS (KILOGRAM); 



where LJNI.TS(*) means that the temporary variable T c m  be used to hold a vdue having 

different units, V is a real and has units attribute meter = 3, and W is a reai and has wiits 

amibute kilogram. In the statement T := V + W. the compiler should produce an m o r  

message since V and W have different U M T S  attribute. Gehani gives a detailed discussion 

of the notation for the units attribute in Pascal. the computation on the new data (which 

ha9 vdue, type attribute. and units amibute ), conversion. and implementation- For 

efficient performance, Ge& ckims that checkhg for consistency of units can all  be done 

at compile time if the following restrictions are made: 

(1) Expmsions with d t s  may be exponentiated only to constant or compile tune 

deteminable values. 

(2) The expressions representing the exponents in the units attribute declaration may lx 

constants or compile-time determinable values. 

(3) Variables with the attribute UNITS(*) are not aüowed to be assigned values with 

different units depending upon certain conditions (and therefore program flow). 

For example, if T has the amibute UNITS(*), then the statement: 

if e then T := e, else T := e2 

should not be permitteci if e, and et have different units. 



2.2.3 The Work of House 

House [Hou831 gives a critique of G e W s  work The main objection by House is that 

Gehani's implementation scheme is not capable of perforrning the type of units checking 

required of it. House gave an example which satisfies a i i  the conditions given by Gehani 

but cannot check consisteacy ema. The example given by Houe is: 

Program faulty; 

var. q: real r n S ( * ) ;  

m: real UNïïS(KG); 

a: real UNITS(M, SEC = -2); 

fi d UNITS(M. KG, SEC = -2); 

function ratio (x : real UNïïS(*); var y : red UNITS(*)) : r d  UNlTS(*); 

begin 

q := a; 

ratio := A@ 

end; 

p r d u n  x(functionfin(m : real üNiT.S(*); var n : red UNITS(*)) : real UNITS(*): 

begin 

a :=funw 4); 

end; 

kgin 

q := m; 

 ratio) 

end 



The above program is intended to calculate the ratio of a force to a mass. The result 

should be an acceleration Cie. has units (M. SEC = -2)). B y a circuitous route, the ratio o t 

the variables f and m is computed by fuaction ratio. However. the value of y is changed by 

the statement q := a. Thus the uni& of ratio that we get are (KG = 1). This m o t  c m o t  

be detected in ratio alone, since we do not know what are the achial parameters. W e  can 

not detect any error in the pmcedure x either, since in the procedure x it involved hinction 

fin which is the function ratio, but we do wt know that yet. The source which causes the 

problem is that "if the two parameters should bear some given relation to each other, there 

is no syntactic mechanisxn for speafying so". Thus House proposes a method in which the 

relationship between parameters and retm value can be specif~ed. Using this mechanism 

the consistency checkhg can be completely Unplemented at compile time. He dso 

discusses language syntax issues and efficient implementatior 

2.2.4 The Work of Karr and Loveman 

In dirnensiond analysis, another imporiant aspect is uni& conversion. Karr and Loveman 

[KL78] propose the incorporation of units into programming languages and givr a very 

interesting rnethod for commensurate units checking and units conversion using Luwar 

algebra To discuss the main idea of the method, first let us give the concept of nits king 

commensurate. We Say that "two quantities are conunensurate if one is a constant multiple 

of the other." For example feet = I2 inches. thus feet and inches are commensunk. The 

basic idea of the conversion method discussed by Loveman is as follows: 



UA and B are commensurate then we have 

A = C*B, (2.1) 

wbere A and B are dimensional quantities. and C is a constant From (2.1) we have 

Am = Pl, (2.2) 

The formula (2.2) means that if we want to know whether A and B are commensurate we 

only need to check whether AA9 is commemurate with 1 or whether A B  is a constant 

under condition (2.1). The question of &tennining whether a quantity is cornmensunte 

with 1 cm be answered using pure linear algebn To make this conneciion, we will npply 

the log to each of the equatiow describing commensurateness. 

Let U be a set which consists of ail the uni& (base or derived) that are used. We may 

assume that there are n anits. Let Dl, D, be dimensional quantities and ut, u " E U be the 

uni& of Dl. D2, respectiveiy, and q ,  , q, be the measurement of Dl, D, respectively. if 

D l ,  D, are commensurate then (2.2) will be mie. Taking log on both sides in (2.2) and 

using e to denote q , / q , we get 

log u'- log u" - log C = -Log e. (2.3) 

Suppose that we have equations which describe commensurateness as follows: 

ui= CI uj (2.4) 

where C, is a d number. 1 = 1,2, ..., k; ui. u j  E U, i, j = I r 2 ,  -.. n. The k denotes the 

nurn ber of conversion relations. 



Using a similar method t a h g  log on (2.4) we get 

log ui -Log uj  =log ci. (2.5) 

Combining (2.3) and (2.5) we get following systems of hear  equations: 

logu, - 10guj = Logq 

logu' - log il" - 10gC = - loge 

wherei, j =  1.2 ,... n . l = 1 , 2  ,.... k 

Let A be the coefficient maak of (2.6) (that is a &+ l rows by n+ 1 columns coefficient 

rnati5.x). 

X =  (xl. X * .  * O -  X.. X.*1 )' =(logul. logu,. - * *  logu,, log aT. 

and 

then (2.6) can be written as 

AX=B. (2.7) 

Therefore, if we think of X as unknown then the question of whether a quantity is 

cornmensurate with 1, when tmslated into Luiear algebra tenns, becomes a question of 

whether the systems of linear equations (2.7) has a solution. To solve the system of linex 

equations (2.7), we cm use some method given in any linear algebra book. For examph. 

we can use row operations on the coefficient matrix A to give the row-echelon form. Then 

we could get the solution. 



h general. (2.7) rnay not have a solution. If d = IN + O then system AX = B has a unique 

solution. Notice that the ma& is not square but in our case we care only about the 

solution of log C. Thus more speciEidy, we need only to consider whether we c m  add 

multiples of the rows of matrix A to the 1st  row of A in such a way that ali entries, except 

possibly the k t  two entries, are zero. If we can ond the value of log C then we get the 

value of C. Thus we know that Dl/ D, is cornmensurate with 1 and DI / D, = CC 1. Let 

us consider an example which is given in m78]. 

ExYnpk 2.1. Fiiding the radius in inches of a circle whose area is one acre. Using the 

formula ICG, we want to know i€ J z  is cornmensurate with inches, in other 

J m e  / x 
words, if is cornmensurate with 1. Let the units order be (acre, sec, gram, 

inches 

inches, feet). Then the X wiil be (log acre, log sec, log gram. log Niches. Log feet. log 

&me / IC C). The vector for =C is: 
inches 

If we give the conversion relations 1 feet -12 inches and 1 ocre = 43560 feet' then we 

have the following coefficient matrix: 



Using row operation we have 

43560 commemurate Mth inches and the number of inches of the desired radius û 1 2 4 y -  

1413. 

Notice that: 

1. Since a * log x = log x a  , log x + log y = log (x * y) we do not need to actually cornputt: 

the logarithms in the 1st columns. Thus in the row operations. if addition is required 

multiplication is done, and if the multiplication is required then exponentiation is donc We 

can even remove the log notation from the matrix. 

2. We do not need to store the column which indicates the variable log C, since in this 

column oniy last entry is non zero, thedore the row opentions will not a e c t  its value. 

The method discussed above is a very interesting method as it rnakes a connection 

between units cornmensuration and pure linear algebra In this method, we have to solve a 



system of linear equations. Nomaiiy for solving systems of iinear equations the cost is 

expensive both for space and the. When the nomber of units and the conversion relations 

become krge, the macrin A d l  become large. Thus another conversion method is 

introduced by Novak [Nov95]. 

2.2.5 The Work of Novak 

Novak pmsents an efficient algorithm for converthg units of rneasure €mm a given fomi 

to a desirecl fom. The methd given by Novak is based on some standard uni& sysam. 

For example, the standard uni6 system is SI system. Let 

U,  = C* u,, 

where u, is a units, u, is a base units in SI system, and c is a real number. Then the c is 

called conversion factor of u, . With conversion factor then we can convert units of 

measure €rom a given €om to a desired form. 

Let D I .  D, be dimensional quantities and u', u" E U be the uni& of D I ,  4. 

respectively, and q, , q, be the measurement of Dl. D, respectively. If the conversion 

factor of u ' is f , , the conversion factor of u " is f ,, and q ,  is the quivalent quanti ty of 

Di . D, in SI system i.e. 

q l * f  =q i  'q2*f Z s  

then we can conven q, in units u' to q, in units u". 



4, = 4,*f ,If ,- 
Novak's method saved the space which wouid be required by Loveman's rnethod. Novak 

also discusses the representation of the dimeasions for swing space and for efficiency. He 

packs a vector of eight inlegers into bit fîelds within an integer woni. and implemented the 

use of units in the GLISP Ianguage. 

There is a common characteristic in the work of Gehani, Karr & Loveman, and House- 

That is they all require that the language definition be changed to support dimensionai 

analysis. Changing a ianguage is not an easy task. There are many problems we necd to 

consider. For example, we need to change the compiler, and we need to consider wheihrr 

it is easily acceptai by users. There is another way to introduce uni& of mesure into 

progranunhg Ianguage. That is using a high-level language's abstraction facilities to kt the 

programming language support dimeosional analysis. Here when we Say high-bel 

languages. we mean imperative languages. In some tanguages such as LISP, to detïne a 

units package is relatively easier than in an imperative language because LISP is a 

huictional language. Basically, you c m  define anything you want in LISP. In an irnpentive 

ianguage, if the knguage has no such feature then it is very h u d  for you to define the 

featute using the language itselt 

An early discussion of using a high-level language's abstraction faciiities to let a 

p r o g d g  lanpage supports dimensional analysis c m  be found in Wiger's book 

"Abstraction Mechanisms and Language Design" m 8 3 ] .  Although later, Gehani [Geh85] 



and Hilnnger m88] give another Ada package to support dimensional andysis 

respectively theu emphasis is different. To reduce emrs resdting from the inconsistant 

usage ofobjects we c m  use many metbods, such as &riveci types and units of measure. 

2.2.6 The Later Work of Gehani 

ûw of the benefits of incorporating units of measure hto a programming language is 

helping in detecting errors. In some languages such as Ada, we c m  use derived type to 

help detect errors. In [GehSq, Gehani examined and analyzed the idea of using derived 

types and uni6 of measure to specify additional infornation in Ada This c m  be descrihed 

as foUows: 

Let x, y be two FLOAT variables. Nonndy, we can do any computation on x and y. If x, y 

has some practicai meaning, for example x denotes a price and y denotes a weight, then 

assigning x to y or adding x, y together is not correct. This error can not be deacted 

automaticaliy. in Ada, we can use derived type to solve this kind of problem. A derived 

type introduces a new type which is identical to an existing type except that it is logicdiy 

distinct Using derived type we can declare PRICE and WEIGHT as foilows: 

type PRICE is new FLOAT 

type WEIGHT is new FLOAT 



Here PRICE and WEIGHT are two new types. They both have the same mge of values. 

say FLOAT. but logically they are different type- Mistalcen use of variable of type PEUCE 

for those of type WEMjHT can be âetected automatically. Thus if we declare 

x : PRICE 

y : WEIGHT 

then assigning x to y or addllig x, y together would violate the typing d e  and this 

violation would be detected during compilation. The result obtained by Oehani is that the 

units of measure appmach is better thui the derived types approach to spec* additiond 

Uifomatiom Gehani uses the method of uni& of measure to dehe an Ada package ta 

implement uni& in Ada. 

2.2.7 The Work of Hilfinger 

Although Hilunger m 8 8 ]  describes meaiods for including units with numenc data using 

A& packages, he emphasizes the modifications of the A& compilers that would he 

required to rnake the use of these packages eficiently. We wili give a more datded 

discussion about Hilhnger's work in the section 2.4. 

2.2.8 Other Work 

There are several other packages such as [CG88]. [Cun92], and [Umr94]. In [CG88], 

Crnelik and Gehani use class and operator overloading to give a package for handling units 

of measure in C++. But in these packages the dimensional checks have to be dona at run 



time. Umrigar also gives a package for handling uni& of measurement in CH. Umrigar's 

method m a k  use of CH templates to crack the dimensions of quantities at compile-tima. 

Although Umrigar's package can check some dimensionai correctness before run-time 

there are some drawbacks in his method. 

(1) The methoâ ody haadle integer demension. 

(2) Because ail  quantities having a particuiar dimension use the same intemal units the 

programmer does not have sunicient conml over the precision of duncnsional 

quantities, which may lead to an accumulation of floating-point error. 

(3) Errors are no< repocted in ternis of dimensional violations but rather in terms of type 

errors. 

(4) Since the dimensions aie directly incorporatd into the template type placehoder, the 

dynamk dimensions are not allowed. 

From the work of Cmelik, Gehani, and Umngar we can see that the higher the faciiities 

you use the less contcol over the process you get 

We have mentioned that when we incorporate units of measure into a progamming 

language (more precisely into an imperative lanpge) an irnporîant aspect that wt: should 

consider is compile time consistency checlung. Why do we need this? The motivation is 

that we want to incorporate units of measure into prograrnming languages. and we also 

want to "compile away" any computational overhead associated with handling dimensional 



information at nui tirne. h [Cun92], CulYs gives a different view. Cunis discusses a 

package for handling uni& of me- in Liip. Most LISP systems are interactive 

interpreters. The users Uiteract with the LISP interpieter by typing in function invocations. 

The LJSP system then iaterpreters them and prinîs out the result. Therefore C h  argues 

in favour of actually incorporating n i t s  of measme information with numeric data ohjects 

in a dynamic and intetactive prograrnming environment 

h this thesis our goal is to add dimensional analysis to Safer-C. Thus in this section we 

give a brief introduction to Safer-C. Safer-C is a new language developwl by Salomon 

[Sa1951 in the Department of Cornputer Science at University of Manitoba Safe- is a 

modem descendant of the C language. The popdar C language is over 20 years old. The 

C ianguage has many syntactic deficiencies that lead to common programming mors. 

Some of these enors can psist in a program until run the. The primary object in the 

design of Safer-C is to produce a hguage that is more error-resistant thm C without 

sacfificing any expressiveness or computational power. Safer-C is semanticdy identical to 

C, but has most of the syntactic deficiencies eliminated by using modem conventions. 

Safer-C is a unified name of Safer-Cl1 and Safer-U2. Safer-C/1 and Safer-Cl2 

correspond to C and C++. Safer-Cl2 will be equivalent to C.H in expressive power. but 

with less of the awkwd syntax baggage that C++ inherited from C. 



A simple Safer-C program is given here as a sample: 

Safer-C version 3.1 

stdio-ho 

<<doit>> :: func(x. y :: ht) int 

block 

sum :: int 

surn:=x+y 

cetum sum 

end 

<anain» :: func 0 void 

block 

printf("The sum is: %dn, doit(2,3)) 

end 

2.4 Partial Evaluation 

To un&rstand what partial evaluation is and what research has been done on it is very 

importani as we wül use partial evaluation to improve the performance of Our units 

package. Pûrtial evaluation is a program optimhion technique. It provides a uniQing 

paradigm for a broad range of work in program optimization. interpretation, and 

compilation. Partial evduation can improve the eniciency of programs by exploithg 

known information about the input of a program. Partial evaluation has k e n  the subject of 

a rapidly increasing amount of activity over the p u t  decade due to recent advances h t h  in 



theory and practice (pU88]. [CD93], and [JGS93]). A more detailed discussion of 

partial evaluation wiU be given in Chapter 3. Here we only outline the basic reseûrch which 

bas been done on pactial evaluation. 

Partial evaluation has been successfiilly applied to declarative languages, such as Scheme 

and Prolog. In recent years there is a growth in the study of partial evaluation in 

imperative programs [Cha90], wey9 11, [And93a]. m953 .  and [KRZG95]. Anderson 

([And93a], [And93bJ) describes a partial evaiuator for a substantiai subset of 

Kleinrubatscher. Kriegshaber. Zochling, and Gluck [KKZG95] describes a partial 

evaluator for a substantial subset of Fortran 77. Baier, Gluck, and Zochling [ B G W  

investigate the application of partial evaluation to numericdiy-orienteci computation and 

enginee~g applications. 

Salomon [Sa1961 uses partial evaluation to support many important language hatures and 

implements a partiai evaluator for Safer-C. The motivation of whg partial evaluation in 

Safer-C is to replace the fiinctionality of a preprocessor. The greatest obstacle to the 

modemization of C that was encountered is its preprocessor phase. Since preprocessors 

are used to change source text, the machine translation of C programs into a new version 

or a dinerent fom cm be blocked by even tame preprocessor statements. Sometimes the 

actuai C program that is king manipulated cannot be known until specific values are 

assumed for some of the preprocessor viuiabIes, and then only the program generated by 

those specinc values can be manipulated, not the general fom of the pmgram. Since the 



existence of a preprocessor phase impedes even simple source-to-source code 

manipulation, it was decided that the preprocessor should be replaced early in the 

evolution of Safer-C so that fiiture translation with language evolution would be =y. 

The Safer-C translator can be describeci in figure 2.1. W e  will discuss some detaii partid 

evaiuation technique used in Safer-C in Chapter 5. 

Source 

Parser 

Partial 
Evaluator 

w 

I 

Generator 0 
Figure 2.1 Safer-C translator 



Despite the suaessN application of partial evaluation to many fields, lew attempts have 

been made to sady the @al evaluaiion of dimensional analysis. In m 8 8 ] ,  Hilnnger 

describes an A& package to support dimensional anaiysis and argues for good cornpilm 

to efficiently execute the package. In his paper, HiIfkget proposes using a variant record 

to define a UNlTS. A dimensional quantity is dehed by 

typeQUANT(&. a, &, &:INTEGER:=O)is 

record V : FLOAT; 

end record; 

Hilnnger proposes that the compiler split the type QUANT into two parts 

QUANTANTdescrim&pe and QUANT-valuealtype: 

type QUM-discrim-type is 

record , a, fi, : INTEGER := O ; end record; 

type QUANT-valueuetype is 

record v: FLOAT; end record. 

Tben he extends constant folding [ASU86] to composite objefts to hancile the units 

package efficientiy. Using constant folding 

X := X + DELTA-X 



Note: Hünager suggests that a compiler could implement the type QUANT as two types. 

From this implementation we got the sept ion of the static part and tbe dynamic part of 

a record. Therefoce Hilfinger m e r  suggests that the compiler apply an optimization 

technique such as value propagation. peephoie optimization [ASU86]. or an expansion of 

the h h e  functions to achieve efficient pedocmance of the uni& package. 

In Hünnger's Ada package, we found the following disadvantages: 

1) Because Ada does not d o w  overloading of assignments, some uses of the Ada units 

package are not natural. 

2) Winger âiscusses constant folding only for some simple cases. 

a) W i g e r  dixusses only how to get the compiler implement QUANT and use 

the implementation to improve che eficiency of units checking. Using partial 

evaluation we can deal with more general cases. 

b) m e n  we expand the units package to handle more complex cases such as rationai 

powers, the simple constant folding is not enough to hande units cornputation. Also 

from the point of view of partial evaluation it is unreasonable to expect a compiler to 

execute static statements since the compiler lacks binding-tirne information. 

3) In the Ada units package. since discriminants are used when we declare dimensional 

variables we have to specify discriminants. Thus dynamic units are not allowd in the 

Ada units package. 



Chapter 3 

Dimensional Analysis and Partial Evaluation 

3.1 Units System 

In this section, 1 present a short review of the units system which one might k m  in ü 

beginning physics course mor69]. To ensure accuracy and reproducibility of a physical 

quantity, it is f m t  necessary to define units in which the physical quantity is measured- in 

general. a unit is a basic physical quantity by which other physicd quantities can k 

expresseci. There are numerous physical quantities but not ail of them are independent 

Many physicd quantities cm be described in tems of a srnail set of fundamental 

quantities. For example, velocity can be described in terms of length and tirne. In 

mechanics, only thme fundamentai quantities are used They are length (L), mass (M). and 

tirne (T), or length (L), force 0, and thne 0. 



We c d  the units for the three huidamentai quantities basic units. A unit which is 

describeci in terms of fundamental uni& is d e d  a derfved unit. The cornpiete set of basic 

and &rivai uni& that are used to represent alI quantities is d e d  a system of units. 

According to the fundamental quantities h t  are used, we can have the following six uniu 

systems. 

a) Mass-based systems: Mass-based system are &O cailed absolute system. In these units 

systems. the fundamental quantities are hgth. mas, and the. They are 

1) hiemational System (SI): In the International System. the three fundamentai 

quantitics length, mass, and time are the meter (m), the kilogram mass (kg), and the 

second (sec), respectively. Actually, SI has four other basic uni& for other branches 

of physics. They are those for temperature (the degree Kelvin), elecuic current (the 

ampere). luminous intensity (the candela), and the amount of a substance (the mole). 

The meter, the kilogram, the second, together with the kelvin. the ampere, the 

candela, and the mole form the seven basic SI units- 

2) Centimeter-gramsecond System (cgs): In this system, the three fundamental 

quantities length, mass, and the  are the centimeter (cm), gram mass (g), and the 

second (sec), respectively. 



3) British Mass Sysiem (fps): In British Mass System, the three Fundamenial quantities 

length. mas.  and t h e  are the fwt (fi). the pound m a s  @nt), and the second (sec). 

tespeaively. 

b) Force-based systems: Force-based systems are &O calied gravitational system. In 

these units systems, the hdamental quantities are length. force, and time. In a sirnil;ir 

fashion to mas-based systems. we have cgs. k. and fps  system in force-based system 

sinoe the length and the uni& in each system are same. The only Merence is the change 

h m  m a s  to force. But the mass and force c m  be expresseci Li ternis of each other. The 

force-based sys tems are 

1) Meter-kilogram-second Force System (mks): In mks system, the three fundamentai 

quantities length, force, and t h e  are the meter (m). the kilogram force (kgB, and the 

second (sec). respectively. 

2) Centimeter-gram-second System (cgs): In this System, the three fundamental 

quantities length. force. and time are the centimeter (cm), gram force (gn. and the 

second (sec). respectively. 

3) AmencanlBritish Engineering Force System: In this System. the three fundamentai 

quantities length. force. and t h e  are the foot (fi). the pound force (pf), and the second 

(sec), respectiveiy. 



Let us summarh these systems in a table 

1 Mass-based systern 1 Force-based system 
I 
- -- - 

cgs m k s  fps 1 cgs mks eng. 

Table 3.1 ITnits Sys tems 

Length cm m ft 
Mass gm kgm pm 
Force dyne newton poundal 
Time sec sec sec 

Because in absolute system there are no basic units for focce, the &ze. newton. and 

poruidol are &riveci units. Similarly. in gravitational systemr. there is no basic unit for 

mus. The slug U a derived unit. No name bas been assigned to the cgs force-bastd musPr. 

It is rigorously defmed as the mass of a body that accelerates one centimeter prr second 

per second (1 cmlsec2 ) when acted upon by a force of one gram force (1 gB. Similady, 

No name has been assigned to the rnkr force-based mars, but it is rigorously defmed as the 

mass of a body that accelerates one meter per second per second (1 dsec' ) when actrd 

upon by a force of one kilogram foxce (1 a. For the conversion of these units we have 

cm m ft 

(7 (7 SIUS 

@ kgf ~f 

sec sec sec 

1 m = 3.28fr. 1 pn = 0.4536 kgm. ldyne = gm*cm/sec2. 

1 newton = 1ûûûûû dynes. 1 powdal= 1.38*10000 dynes. 

1 kgm = 1ûûû gm, lslug=32.2prn. lpf=ls lug*~frlsec' ,  

1 g f = l g m * 9 8 1 c d s e c 2 .  lkgf=lkgm*9.81m/sec2. 



If a quantity can be exprwed as a multiple of another then we c d  these two quantities 

commensurable- From above we see that €&et and meters are commensurable. 

Among the six systems, the three most commonly used units systems are the cgs absolute 

system, the SI absolute system, and the American/Bntish system. Besides the six systems 

we may have some other systems depending on the qe&c field of application such as 

goldsmiths. h addition the* are some measurement systems used oniy in particuiar 

counuies. In this paper, however. we are concerned principaliy with the SI system. 

3.2 Dimensional Analysis 

In physical science, physical quantities are dimensional quantities. They are represrnted by 

a measure. and its units. The measure is a magnitude of the quantity and the units is a 

physical meaning of the quantity. There are a large variety of the definition of dimensions 

in physics There are many books that discuss dimensional analysis [Foc53], [Pan64], 

ma75], and ray74]. In this thesis, we use dimensions to indicate that we are concerned 

here only with the nature of the quantity and not with its measure in any p&cuIar units. 

For example, whether a distance is measured in units of feet or meters. it is a distance. We 

say its dimension is lengtha). Similady, we say that the dimensions of area are (length)' 

or the dimensions of velocity are lengthltime. We will often use brackets [ ] to denote the 

dimensions. Thus, in this notation. the dimensions of velocity are written as [v] = LT- ' 



Suppose a. b, c E Q, where Q is the set of rationai numbers. If we choose length(L), mas 

(M). aod the O as the bsic quantities, then for a given quantity x. its dimensionai 

b c representation is given by [XI = LaM T or [x] = (a, b, c). Ushg this notation a 

dimensional quantity X is Wntten as E = (x, a, 6, c). E we choose a force-based system 

then the dirnensional representation is [x] = L'F b ~ c  . 

There is an imporiant property of dimensions of physical quantities. The âimensions of 

physical quantities can be manipuIated dgebraicaily and we c m  interpret the rrsults to 

provide a great deal of infoxmation about the physical processes involvecl in the situations 

considered. Dimellslunaf murlysîr is the study of the nature of the relationship between the 

various quantities which are involved in a physicai problem. 

Dimensional analysis plays an important d e  in physics and engineering. The main knetits 

of dirnensional anaiysk that are pointai out by the majority of authors are: (i) to derive 

theoretical relationships; (ii) to check the correcmess of the equations involved in the 

description of the phenornenon under investigation; (iii) to reduce the number of relevant 

dirnensional variables to a smder number of dimensionles variables; and (iv) to serve as a 

bais for mode1 laws. Sophisticated study of dimensional analysis can be found in Mar951 

and [Kay93]. Perhaps the simplest application of duoensional analysis is to provide a 

means of checking the dimensional correcmess in a mathematical solution of a physicd 

problern. 



In general. let a and B be dimensional expressions. W e  de- a term as 

i) a, or 

ii) the product of a and B. or 

üi) the quotient of a and B. 

In a given mi ts  system. let f(x,. x, . . ... x, ) = O be a &riveci numerical relationship 

between the measures of the various quatities. Using dimensional analysis to check the 

equation is based on the principle of dimensionally homogeneity, which im plies tha t : 

Ail the terns in the equation must be expressible as the same combination of 

dimensions. The exponents and arguments of transcendental functions must have 

a dimension of 1. 

For example, if a car starts fmm rest and moves with constant acceleration u. then the 

distance traveled by a car in tirne t can be expressed as d = *a2. Let us check the validity 

of this expression from a dimensional analysis approach. The quantity d on the left side h a  

the dimensions of length. In order for the equation to be dimensionaily correct. the 

quantity on the nght side must also have the dimensions of length. On the right side the 

acceleration a has dimensions  UT^, and t2  has dimensions T2. Thus. the dimension forrn 

of the equation d = *at2 is 



Here the uni& of tïme bave been cançeled out. Therefore d = *ut2 has dimensional 

homogeneity. 

There is a special quantity, we call a dimensiodess quantity- A dimensionless quantity has 

dimensions L'MOTO = (0,0,0). For exampie, n is a dimensionless quantity. 

3.3 Partial Evaluation 

Since we will use partial evaluation as a tool to impcove the performance of our units 

package we wiU give an introduction of partial evaluation in this section. 

3.3.1 The Principle of Partial Evaluation 

Partial evaluation is a source to source program transformation technique for specializing 

pmgrams with respect to part of  dieir input [CD93]. The uanslator which compbtes these 

tasks is called the partial evaluator, mU; or program specializer. The following diagram 

illustrates the pmess of partial evaluation. 



Static input (7) 
Subject ) 
LI- I -  - Partial evaluator 

6ynarnic input 
L 

Residual program 
Pin 1 output 

in2 

Figure 3.1 Partial Evaluaaon Diagram 

In gened, a program has many inputs calied in, . in, , --.. in, . If the program is correct 

and all the inputs are known then by e x e c u ~ g  the pmgram with the input, we c m  get the 

output (result). Usually the program is written to be general purpose and some input may 

not be known. W e  can classi.@ these inputs as static inputs and dynamic inputs. Sutic 

inputs are those inputs whose values we know or whose values can be determined at 

program speciabation the.  Whereas the values of dynamic inputs are unknown or thair 

values cannot be detennined at program specialization the. Such a statiddynamic 

classincation is called a division. The prwess which cornputes the division of di pmgram 

variables given a division of the input variables is called binding-tirne analysis (BTA). The 

idea of partial evaluation is to execute those calculation of a program that depend only on 

its static input, generating code (the residual program) for those calculations that depend 

on the as yet mavailable dynamic inputs. 



Fomaiiy. using the notation in [JGS93] we have foilowing detinition: 

Let Gprograms denote the set of syntactidy comxt programs in language L. The 

meaning of program p E L-programs is denoted by 

'Ihe result of ~ n n u i g  the program p on some input data d is denoted by 

W e  will use L to denote the implementation language, S to denote the source ianguage. 

and T to denote the target language. 

Definirion 3.1: Let p be an L-program taking as input a two-eiement Lisk and kt d , ~  D. 

where D is an input set (since partial evaluation accepts both prograrns and data as input, 

we assume that both p and d are drawn fimm a common set D). Then an L-prograrn r is a 

residualprogromforp with respect to d ,  ïffllpllL[d,. d2]  = IldlLd2. for dl 

Definition 3.2: An L-program mix is a partial evaluator if€ for every p, J , E D, the 

P*gram 



Example: Consider following hiaction powero which cornputes base to the n-th power 

«<poweo> :: func(bare, n :: ht) int 

block 

pow :: int 

for (pow := 1; n > O; n-) 

pow *:= base 

endfor 

retum pow 

end 

If n is equal to 3 and suppose that base is dynamic input. Then the partiai evaluation will 

output following residual pmgram. 

c c p o w e d m  :: func(bare :: int) int 

bloçk 

pow :: int := 1 

pow *:= buse 

pow *:= base 

pow *:= base 

retum pow 

end 



This residual program is longer than original program. but acniaily it is more efficient than 

the origînai one. We can use traditional optimization methods in a good optllnizing C, or 

Ci+ compiler to further optimire the residual program *. 

'Lhere are two kinds of partial evduatioos: oniine partial evaluation and of ie  p d a l  

evaîuation, 

In oftline partial evaluation, the specialization is divided into two stages. The tkst stage is 

the preprocessing stage which annotates ai i  the variables used in the object program. WG 

call dus stage the binding time analysis (BTA). The second stage is the speci;ilimtion 

stage which generates the residual program according to the biding time analysis. in this 

stage the specialization depends on only the binding tirne not the values of variables. 

In online partial evaluation, there is no preprocessing stage. During the speciaiization. the 

values of variables are considered. A detail discussion of online, otfiine partid evduation 

can be found in [JGS93], or w R S 9  11. 

* Note that the output of Safer-C is a C or C++ program. 



33.2 Partial Evaluation In Safer-C 

Partial evaluation in Safer-C [Soi961 is digemnt h m  normal partiai evaiuation. For 

convenieaœ. we denote the partiai evaluation used i~ Safer-C as PES. PES has features 

of b th  ooline and o h  partiai evaluati~n~ The ciifference beiween PES and offht: 

partial evaluation is the k t  stage in the partial evaluation. In PES, the programmer 

annotates each variable with an evaluation tirne. Safer-C as C is intended for use by 

professional programmerS. Thus emphasis is placed on programmers behg able to predict 

what computations will be done at compile time, and king able to control when 

computations will be perfomed. The difference between PES and o b  partial evaiuation 

is that PES has annotation. but online PE does not Therefore in PES the pmgnmmcr has 

more control than in online PE. We will discuss more about how partial evaluation is dona 

in Safer-C in Chapter 5. 



Chapter 4 

Design 

In this chapter, we design the features of a dimensional analysis package. Our goal is to let 

the cornputer do the dimensional analysis for the user. From the user's point of view. the 

main feaaires of the system are ease of declaration of the uni& of measure, evaiuation of 

the ordinaxy arithmetic operatioas between quantities that have unïts of measure, 

automatic checking of violation of dimensional coasistency, and automatic handling of the 

conversion of commensurable units. In 4.1. we fust give an example to show how 

programming languages use units. T'en in 4.2. 4.3. 4.4, and 4.5. we discuss severai 

important features of the uni& package. In 4.6, we discuss mi ts  and units computation. In 

4.7, we discuss consisteacy and the dim-quant computation. In 4.8 we give the fornial 

dennition of the declaration of dimensionai quantities. Finally, in 4.9 we describe the basic 

structure of the units package. 



4.1 An Example 

In this section we give an example to show how units are used in programming languages. 

In dimensional analysis, the first thing is to get the units information from the user. 

Variables, constants, and parameters are not just numerical quantities; they also have units. 

which the user has to declare. In Our system, we cequite that the user î k s t  give the base 

units. Then the user can de6ne the derivecl units, the variables. and descnbe the algorithm 

for the problem. The system then perfoms the algorithm. does the uni& conversion, and 

units computation accordhg to the base unit. which are given by the users. For declaring 

the fiindamental units which will be used in a computation the users can just write the 

following 

km :: units := "kilometer" 

hour :: units := tt hours" 

With these fundamental units, the user can then declare a variable which h a  units 

consisting of fundamentai units. For example, we can declare units foor as: 

foot ::= units("foot".30.48*cm). 

Let us consider a simple example to see how the user can declare variables that have units 

of measure. 



Exampk 4.1. A car travels at a constant speed of 60 knhour. Assume that it talces 3.5 

hours for the car to travel from location A to B. Fimd the distance from A to B. For solvïng 

the problem. the user may Mite the following Safer-C main program. 

cunain»::func ( ) void 

block 

Speed:: doubleu(0.0, honiour) 

Time :: doubleu(3-5, hour) 

Distance :: doubleu(O.0~ km) 

printf("P1ease input speed in kmlhouc") 

scanf (Speed-v) 

Distance := SpeePTime 

printf("The distance is: ") 

prinni(Dis tance) 

end 

In this program, doubleu is a new data type which can be useci to declare a variable of type 

double-precision float that also has units of measure. The hurtion printu is an overloaded 

f'unction which is used to output the quantity which has units of maure .  

If we nui the program. it will print 

Please input speed in kntlhour: 



If the user types *then the output WU be 

The distance is 2 f 0 (km). 

4.2 Dynamic Dimensions 

In the normai case. we wiIL specify the particular dimensions of a dimensional quantity. 

But in some cases we rnay want the dimensions of a dimensional quantity are dynamically 

changeable. These cases are 

(1) Dynamic input 

In some applications. each time a program starts to run, it may require the dynarnic input 

of some dimensional quantities. In this case, if we can dynamicdy input dimensions then 

we do not need to change and recompile the program. Since we are mainly using partial 

evduation to improve eficiency. the dynamic input of units is not treated in this thesis. 

(2) Temporary variables 

Temporary variables are often used in programs. Whenever the user wants a 

dimensional variable to hold values having different uni& they c m  use a temporary 

* In this pacticular example, since the input function scanf is used, the user could not enter 

any other units. 



variabIe. Sometimes, in the cornputarion of an expression we also need temporary 

variables to hold the intermediate or final result, 

(3) Function parameters 

Functions are the basic building blocks of a programming language. They are one of the 

most important features of programming languages. If a hinction is to use 

arguments, it mut  declare formal parameters that accept the values of the 

arguments. NomiaJly when you declare fonaal parameters you have to inâicate their 

types. Simüarly in dimensional anaiysis. when you declare formal parameters. you 

should indicate the unin of the parameters. However, if we are not aiiowed to change 

the units dynamically then the function wiU be too restrictive. It would, therefore, be a 

valuable feature to ailow fonnal parameters to hold values having different units. 

In our package, cases (2) and (3) are aUowed. 

4.3 Conversion 

In this section we will discuss some basic ideas about conversion, The details of how to 

convert dimensional quantities will be discussed in section 4.7.2. 



The reasons we need conversions are: 

(1) To check consistency. 

(2) To compute dimensional quantities. 

(3) To convert traditionai or engineering uaits to SI units. 

Nonnally, engineers perfocm uni& computaaon according their own tradition. then 

conven the mult to the SI system. For example the uni& of the thermal conductivity 

coefficient are Kcal(m - heoc)-' in the engineering uni@ system, and the units of the 

themal conductivity coefficient are W/(m°C) in the SI system. 

It is often the case that in a problem the units we are concemed with are not in the 

given units system. We need to convert them into the same unifs system. Even with the 

units which are in the same uni& system, we may stiU need to do some conwrsioa 

For example, to compuie 2 cm + 3 nz we need to convert 2 cm to 0.2 m then 

compute 0.2 m + 3 m to compute 1 dyne*2 gm we need convert 1 dyne to 

gm*cm/sec2 then compute (1 grntcm/sec2 )*(2 gm). 

(4) To facilitate international trade and technical exchange. 

Let x and y be dimensional quantities. And x can be converted to y. To convert x to y wt: 

need to know the relation between their units. For example, x has uni& u,. y hm units r d ,  - 

and the relation beoveen u, and u, is 



U, =a%. 

where a is a real nmber. The a is called the conversion factor of u,. 

Using the dation between u, and y or their conversion factors, we can convert the 

meamernent benveen x and y. If m, is the meamernent of x and m, is the measurement 

of y, then the conversion between tbe measurement of x and y can be given by a fiction f 

"i =A-). 

nie huiction f which is commonly used in physics is 

m, =an++b, (4- 1) 

where a, b are red numbers. 

When we deal with conversion, we have two possible strategies: 

1) AU dimensionai quantities are represented internally ushg only the chosen base units. In 

this method, derived uni& can be used. but htanally they are represented in base uni&. 

For example, in the cgs system, 3 inches WU be represented as 7.62 cm. 

2) The second method is to allow that denved units be used in the intemediate 

computation. In this method if we want to compute 2 inches + 3 inches then the answer is 

5 inches. In the computation there is no conversion. Of course if we work in the cgs 

system we wi l l  ultimately convert 5 inches to 12.7 cm. 



Each of these mediods has some advantages and disadvantages which are discussed in the 

foilowing sections (4.4). 

4.4 Precision Control 

W e  mentioned that there are two stratepies which could be used in conversion. a) Ali 

dimensional quantities are represented intemdly using only chosen base units. b) Derived 

units are used in the intermediate computations. 

The advantage of the fist methocl is that it is easy to implement The disadvantage of this 

method is that the programmer does not have sufflcient control over the precision of 

dimensional quantities. which may lead to an accumulation of floating point error. The 

discussion of error propagation can be found in some numerical analysis books [Atk89]. 

Let x, and y, be no error numbers, x, and y, be the approximation of x, and y, Le. 

XT = X* + C r  y* = y* +q, 

where e and q are errors. The rehtive error in x, is denoted as: 

e l ( )  ( X  - X I  XT. 

In general, we have foilowing results [Atlr89]: 

ReUx, y,) =ReUx,) +ReUy,). 

Re1 (x,ly,) =Re1 ( x , )  -Re1 (y,). 

Rel(x,f y,)=Rel(x,)f Rel(y,). 



A process of computation can be descrïbed as foiiows: 

1, Get some initial value, 

2. Execute some algorithm to manipulate data, 

3, Get resuits, 

In a simple cornputations. if some of the initial values have a snall error the accwnulated 

emor would not be SigniFicant However, in some computations. especiaiiy if large systems 

or cornplex arithmetic are involveci, the errors of the initial values are crucial. In this c m .  

The emur of initial values may generate totally wrong results. 

Genedly speaking, in units computation we cannot avoid conversion (which may cause 

some munding error) but in some cases we can reduce the error as much as possibh. For 

example: 

1) Suppose that ail the uni& we use are in a units systern A and we want the results to te 

expressed in another units system B. In this case we can do the computation in uni& 

system A first and then convert the results inb the rmits system B. Thk way is better than 

first of converting ail the quantities in units system A into uni& system B and thrn 

perfoming the cornputations in uniu system B. Although ultimately the result of a 

computation will be converted to the q u i r e d  base units system the intemediate 

computation will not produce any roundhg emor caused by the initial conversion arror. 



2) If there are mixed uni& in a computation then we c m o t  avoid conversion. In this case. 

dowing the use of derived units is better t h  not allowing the use of derived units. Theil: 

are two advantages: one is that there would be no muading error since there would he no 

conversion; another is that the user could control the order of a computation. For 

example, in the expression E,  + --O +En the user could group the E~ (leut) into sets 

with identicai units. and simply add these expressions togethet. There is no conversion 

necessary. The user can also write E~ +E as E~ +E, .  The order of computation here 

may matter since it may mean different conversions are appiied. For the first expression 

the systexn may convert E to E ,  . For the second expression the system may convert E~ 

to E ~ .  If we use only the k s t  method then it does not matter in which ordar the 

expression is written. We wiil get the same resuits. 

4.5 Rational Powers 

We know ihat if x is a dimensional quantity then the dimensions of x are 

[x] = ta i U b f =  (a, b, c). 

In the existing papers, a. 6. a d  c can be only integers. This is not enough for practical 

work. For example in magnetism, the force between two poles c m  be written as 

f = r '). 

where m and m' are the magnetic strength of the two poles, r is the distance between the 

two poles. 1Ip is a constant of proportionality and depends on the medium and the units 



chosen. Now let us consider the dimensions of m. If m = m' and disregard the dimensions 

whenœ ni=,/-. 

Force has the dimensions given by V] = L M T - ~ .  

Therefore 

To express such rationai numbers we may declare a. 6. and c as Boat or doubk Therefore 

3 1 

we will have dimensions such as L'M'T-' = (L5, 0.5, - 1). A rational number 

represented in the fom of a floating-point vdue has two drawbacks. First, it is hard to 

read. Second. it may have some emr (for example the value 113 can not be stored exactly 

as  a floating-point value). To make the dimension more readable and eliminate rrror. wc: 

may use a rationd aigorithm to manipulate the rationai notation of a cational number. This 

cannot be done at compile tirne in any existing dimensional packages. 

Let x = a/b and y  = c/d then 

x + y = ( a  * d + c * b ) / ( b * d ) ,  x - y = ( a  * d - c * b ) I ( b  *d), 

x * y = ( a  * c ) / ( b  *d ) ,  x / y  = (a * d ) / ( b  *c) ,  and xr=ar/b'. 

where r is a rational number. 



After some computations we may use the division aigorithm to simplify a rationai numkr. 

Dennition 4-1 An integer x divides an integer y if the= exists an integer q such that 

q-x = y. 

W e  use x I y to denote x divides y. When x I y. we say that y is a multiple of x and x is a 

divisor of y. 

Definition 4-2 Let a and 6 be integers, gcd(u, 6)  = max{c: cla. db). The Cunction 

gcd(a. 6) is called greatest-contnwn-divisor @cd). 

Let x = a/b be a rationd nurnber. If gcd(a, 6) = 1 then x is in a non-reducible form. If 

gcd(a, b) = c + 1 then x cm be simplifiecl as x = (o/cyb/c). 

F i g  the greatest-common-divisor is based on the important algofith (Euclid's 

algorithm). Using Euclids algorithm we can easily h d  the greatest-common-divisor- A 

complet discussion of Euclid's algorithm can be found in mu8 11. 

Example 4.2 Let a = 525, b = 231. According to the division algorithm we have 

525 = 23 1*2 + 63 

231 = 63'3 + 42 

63 = 42*l+ 21 

42 = 21*2 



Therefore gcd (525.23 1) = 2 1. 

4.6 Units and Units Computation 

In dimensional analysis, uni& are the hindamental components. To perfonn dimensional 

analysis we need to have the units infocmation. The main Monnation we should have is: 

1) The name of the units such as inches, kilogram. and dbllars. The units' nme 

can be expresseci as a string. 

2) The conversion factor which is used to convert between dimensionai quantities. To 

store the conversion factor we ne& only one floatïng point or double precision floating 

point variable. 

3) nie dimension of a dimensional quantity. There are two kinds of units: basic units 

and deriveci uni&. In chapter 3. we have seen that a dimension of given dimensional 

quantity x can be denotexi as [x] = (a, b, c), where a, b. and c are rationd numbers. 

We have decided to use rational notation to express a, 6, and c. Therefore wr 

should use a two-dimensional array to store the dimensions. 

4) The huictions which am used to manipulate the units. Normally there are two kinds 

of functions: the hinctions which are used to get idormation about a unit, and the 

fuactions which are used to manipulate the units. The functions will be introduced 

la ter. 



AU the idormation given above is about units. T h e r e f o ~  we may use the foilowing 

structure to replesent units. 

1 conversion-factor 1 

f unctions 

dimensions 1 
Figure 4.1 Units Diagram 

Note the dimensions component in the diagram is a two-dimensional array used to hold 

the power of each dimension. The trame c m  be easily expressed by a class or a structure 

in an object-orientai programming language Thus if u denotes a units class then we c m  

use u.name to denote the field units-name, u-cf to denote the field conversion-factor. and 

a d  to denote the dimension of u. Let us consider some examples, the units inch and d s e c  

can be s tored as 

1 inch 1 1 velocity 

Figure 4.2 Units inch 



Note here, in the ftame inch, the dimension is stored in the fonn of cm. The units 

exponent is stored as a rational number. Since the exponent of cm is 1 it is storrd L/ 1. 

Using this representation of units. we then can discuss computation between two units. 

Let u be a unit (base or derived unit), r be a rational number, u, and u, be base units or 

denved units. The ôasic computations on units are u,r, el*%, and u/u,  which are called 

composite witr. To compute composite uni& there are two components which we n e d  

to calculate. 

The first component which is needed is the conversion factor. We have mentioned that we 

allow Our systern to automatically perforrn the conversion of commensurable units. For 

example, suppose x = 3.5 cm. y = 2 in we want to compute x + y. The users would not 

need to converî the units. They would only need to give the relation 1 in = 2.54 cm. Then 

the system will automatically do the conversion and perform x + y. To do the conversion 

an important thing to laiow is the conversion factor of the units. We will mach a 

conversion factor to each unit. A fundamentai unit of the chosen standard units system has 

a conversion factor of 1. nie derived units have a conversion factor which is given by a 

declared relation. For example. if we declare 1 in = 2.54 cm then we set the conversion 

factor for B to be 2.54. The conversion factors of composite unifi are fomed as foilows. 

For u = U ,  ', the conversion factor is (u, -cf)' .  

For u = ul* u, , the conversion factor is ul.cf * u, .cf. 



For u = ul/%. the conversion frtor is u,.cfl% -6 

Note hece that for the cesult units of computation. there is no uniu name assignd 

Because this is an intermediate riesult we do not need the name. The only thing which we 

care about is the conversion factor and the dimension. 

The second component which needs to be computed is the dimension which is computed 

as foIlows: 

1) For u,r.Thedimensionis f(r*u,.d). 

2) For ul *g . The dimension is ffu,.d + u, .d), 

3) For u,lu,. The dimension is Ku, .d - u, .d). 

where f is a function (a Euclid's algonthm) which simplifies the resulting dimension. 

For example, if the base units system is the cgs system. x denotes the unit sec and y 

denotes the unit inch then x-cf = 1. [x] = (0,O. 111) and y.cf = 2.54, M = (lI1. O. 0). 

Therefor (y/x).cf = 1/2-54 = 0.3937, Ly/x] = (111, O, -1/1). 

Note that in Our meihod we require that if we declare a derived unit which hm devance 

to other uni6 then the relevant units have to be previously declared. This requirement is 

reasonabIe since when we declared the derived units the declaration involved some 



computation. For example if we declare x :: units("uichl', 2.54*cm) then the system will 

want to compute 2 . 5 4 + a  If the cm is not declared tben the system wiU cornplain that cm 

is not declared- 

4.7 Consistency and Dim-Quant Computation 

IEaving discussed units. let us consider how to check the consistency of dimensional 

quantities. how to convert dimensional quantities which have different units. and how to 

perfonn aithmetic operations between dimensional quantities, 

4.7.1 Consistency Check 

In a staticaily typed programming language, each variable has a type. Using the type 

information we can detect the type errors. Sunilarly, when we consider computing the 

quantities which have units of measure. the system should detect uni& inconsistency 

errors. For example, we cannot add two quantities which have ciifferent units of measure. 

If t denotes the tirne in second. s denotes the area in m2. and v denotes the velocity in 

km/hour, then the following statements are not correct: 



in the condition statement, we cannot compare t with s as they have dinerent units. In the 

assigrnent statement, the dimensions of lett side and nght side are incommensurable. 

4.7.1.1 The Comistency Check Rules 

In our system. a consistency check is based on the principle of dimensionai homogeneity. 

Let x and y be dimensional quantities, and r and p be rational numbers. Then the check is 

done as foUows: 

1) x + y, or x - y if and only Ex. y are dimensïonally homogeneous. 

2) x := y if and only i f x ,  y are dimensiondy homogeneous. 

3) For function invocations, if the fomal parameters and actual parameters have 

dimensions then they must be dimensionaiiy homogeneous. 

4) x, y are comparable if and only i€x and y are dimensionally homogeneous. 

5) Exponents and arguments of the tramendental Cunctions (sin. cos, log etc.) must be 

dimensionless. It is possible to allow degrees used in these functions. 



4.7.1.2 Iteration 

The assignment operator should be discussed in more àetailed. Let x := y bc: an 

assignment statement in a program. According to the d e ,  the system wiU give an error 

indication if the x and y are not compatible. In some cases. we may want the assignment to 

be foccibly perfomed. Why would we want this? The reason is that sometimes we want to 

use assignment d u ~ g  iterative multiplication or division, Such iteration is a an essential 

feahire of many important algorithm. W e  do not want lose this important Ceam because 

of the introduction of units. For example. to compute the base to the n'th power we may 

use folîowing iteration (Notice that the buse is a dimensional quantity): 

e p o w e r r s  :: func(baie. n :: int) int 

block 

pow :: int 

for @ow := 1; n >O; n-) 

pow :=pow * base 

endfor 

mum pav 

end 

In the assignment pow := pow * base, obviously the left side and the right side have 

ciifferent dimensions. Thus accordhg to our dimension checking de. the system will 

reject the assigrment. Thecefore we need a special way to force the assignment to k 

perfonned. There are many ways to do this. 



1) Use a special "=" operator. 

2) Use cast In UC++ programming language, if x is an integer and y is a Boat then we 

can use 0 to cast x as foUows 

(float)x := y. 

Thus a natural way is to use a cast operator. However, in iteration such as x = x * y. the 

cast c a ~ o t  be directly used since the lvalue of x will be used in the cight operand. If a 

cast ued diriectly then &ter casting the units in left operand x are changed and the units 

of x in the nght side will also be changed. Also in cast we have to indicate that what type 

we want cast. Xn dimemional analysis. to indicate the units which we want to cast to we 

need to do the computation To overcorne the difficulties we use the overloaded 

operator 0 and introduce another temp variable to do the cast as follows: 

tempo 

temp := x * y 

xo 

x := temp 

where 0 is an overloadeâ operator which changes a variable accept any dimensions. 

4) For some special iteration such as f i n g  the exponentiation we may use following two 

me th&: 

a) Introduce an exponentiation operator **. 

The exponentiation operator is provided by many languages such as Ada. Fortran. and 

Algol but no exponentiation operator is provided by C or C t t  programming language 



because these hguages were intended principdiy for systems rather than scieniifc 

programming. We feel that a language intended for scienafic computation should 

provided an exponentiation. 

b) Duectly use the operator *:=. 

h our package. for exponentiation we use *:= operator. 

4.7.2 Conversion of Dimensional Quantities 

To perfonn a computation involving dimensional quantities, a conversion may be involved. 

In the following sections. we fmt dÏscuss how to conven dimensional quantities which do 

not involve temperature. For temperature conversion, we need special attention; see 

section 4.7.2.2. 

4.7.2.1 Conversion Measurements 

In this section we discuss how to convert the measurements of dimensional qrüuitities. The 

main conversions that need to be cons ided  are: 



A) Conversions for expressions. 

Usïng conversion factors we can convert any measurement in some unïts to r 

measurement in the desired uni& if their units are commensurable- Let x be ri dimensional 

quantity, x, be the measurement of x, x, be ihe uni& of x y be the equivaient dimensional 

quantity in the unit y,, and z be their equivalent dimensional quantity in the standard 

system. W e  bave : 

x,*x,.cf = zq = yq*yu.Cf. 

Thus if we want to convea y to x then 

Therefore we can cornpute x 0 y as foilows (where the symbol 0 denotes an arithmetic 

operator. assignment operator, or relational operator). 

1) Check if the dimensions o f x  and y are the same. If they are same then the units ofr  

and y are commensurable otherwise they are not commensurable. 

2 )  If the units of x and y are commensurable then convert the measurement of y to the 

measurement of x and perform xo y 

Le. 

where x 0 y has uni& of x. 



If unit x, belongs to base system then xu.cf= 1. Thus 

( x 0 y I q  =xq O ( Y *  *yu-cf) 

B) Conversion for function calls 

In gened, we do not require that the user indicate the units of the formai parameters. 

However. if the fomal parLimeters have their units spc i f î ed  then the actud parameters 

should be converted to the uni& of the fomal parameters. For function calls. the 

consisiency checkhg and conversion should be done at partial evaluation tïme. 

4*7.2.2 Conversion of Temperature 

In many cases, the conversion fwictions for measurements involve only one constant 

factor such as the case b = O in formula (4.1). In this case it does not matter what 

conversions are done. We cm always compare the results of computations in different 

systems. In some cases, however, the conversion is sornewhat more complicated. as, for 

example the conversion between degrees Celsius and Fahrenheit In this case. we cannor 

do the conversion arbitrarily during cornputation since we cannot compare the computed 

result in different systems. 



Let us consider the example of computation t, I tf, where t,  = 3°C denotes a 

temperature in deg~es Celsius, t, = 41°F denotes the temperature in degrew Fahrenheit 

The conversion function between degnxs Celsius and Fahrenheit is 

If the cornputation is done in Celsius then we have 

If the computation is done in Fahrenheit then we have 

The reason why the iesults are different is that the cesulu are in different scale systems. 

There are two ciifferences between the two scale systems. First, the ongins are different. In 

Celsius, the freezing point of water is 0, but in Fahrenheit the freezing point is 32. Second. 

the size of degrees is different. We use Co to indicate the siu: of degrees in Celsius. 

Similady, we use F to indicate the size of degrees in Fahrenheit The size of one degret: 

between Celsius and Fahrenheit satisfies the relation 



To make sure the correct computation is performed between quantities which klong to 

diffezent temperature-sale systems we could use the following strateW. Before doing any 

computations, we convert a l l  the temperature quantities into the same scale system (For 

example KeIvin)- Then we perfonn the computations with no conversion on tempentures. 

The conversion between different temperatures c m  be done by means of a function c d .  

For example, in a computation if there is a quantity which is Celsius degrees and the 

temperature unit used in the base system is Kelvin degrees, we then cm define the function 

c-CO-k which converts Celsius degrees to Kelvin degrees as follows: 

<~cctotok >> :: func ( t ,  :: float) 

block 

r e m  ( t ,  + 273) 

end 

Ushg this huiction then we c m  say x = doubleu(c-to-k(23.4)- K-D), where K-D denote 

degree in Kelvin. 

We have seen that there is a distinction between indicating the size of the degree or 

temperature interval, Co. and the temperature OC. Since there are 100CO corresponding to 

180FO the size of one F" must be 5/9 times the size of one Cot or 

SC0 = 9P. 

Notice also that the size of one degree Co is same as the size of one degree K0 i.r. 

Co= KO. 



Since the conversions between C'. P. and KOonly involves one conversion factor, we 

could treat the size ofdegree (Co. P. or KO) as normal units such as cm, in, and m. 

Let us consider an example in which the size of the degree is used. 

Exampk 4.3 An aluminum plate at 68.S°F has an 8.00-inchdiameter hole in it What is 

the diameter of the hole when the plate is heated to a temperature of 150°F? wor69]. 

Solution: To solve the problem. we may apply following equation 

D2 = Di(1 + 2 a At), 

where the a is the ünear expansion coefficient of aiuminum that is 23.8 * 1 o4 1 Co. D,, 

and D are respectively the initial and expanded diameters of the hole, and At is the 

temperature difference. Here we have 

a = 23.8 * 10d /Co = 13.2 * IO4 1 P, (Co = 1.8FO) 

At = (150 - 68.S)P, 

and D' = 8.0 in*8.0 in*[l + 2*13.2*10d*~t / PI 

D = 8.01 in, 



4m7m23 Alternative Techniques 

It has been suggested by professor Meek* that a dimensional analysis system should forbid 

the programmer h m  coding some operations on units with an arbitrary origin. such as 

temperatures and dates. For instance, the system should forbid the addition of 21'C and 

15T or of 1970AD aad 1990AD. Such a restriction wouid, however, prohibit simple 

computations such as nndiog average temperatures, ( T, + T, )/2, or interpolating dates, 

( 3 * 4  +5* D2)/8. The question of how computations on uni& with arbitrary ongins 

should be restricted is not at ail simple, and is beyond the scope of this thesis. Meek 

x 2  - y2 
hunself has shown bat recognizing the equivdence of such formdae as x-y and 

X + Y  

is beyond the capabilities of pure dimensional analysis. 

4.7.3 Computation Involving Dimensionai Quantities 

Now let us consider computations involving dimensional quantities. From the discussion 

given above, we have seen that the system should have the ability to perform ordinary 

arithmetic operations between quantities that have units of measure. Velocity multipliai by 

time should give us distance. Kilognms plus kilograms should give kilograms. 

* Dereck Meek, in personal communications. 



Let x and y be dimensional quantities, and r be a rational number. The operation xoy c m  

be computed as foliows: 

(1) If 0 denotes "+" or I": 

If x and y are commensurable 

then ( 

b) retum temp,. xy 

1 
else (report error in +, -). 

(2) I f  0 denotes "*" or "/" : 

If x and y are commensurable 

then ( 

b) temp, = xU0x, 

1 
else ( 

a) temps = x,oy, 



For example. i lx  = 3 in. y = 2 na, and the base system is  cgs then x has the units in with 

conversion factor 2.54. y bas units m with conversion factor 100. Thus 

xS, = 236.22 in2, 

2 where temp, = 236.22, temp,,.cf = 6,4516. and temp,.d = cm . 

Note that each unit has a conversion factor, therefore it does not matter what uni& x and y 

have; the computation of units is automatically done in the standard uni& system. 

4) For the operation r7F. where r has no uni&: 

Since r has no units. the units of the result are the sme as the units of x. 

5) For the assignment x := y: 



eise i f x  and y are commensurable 

Y" -S then { x ,  = x, 0 ( y ,  *- 1, x. = Y,} 
x, -cf 

(in our package we should implement aU the operators including -:=, *:=. +:=. ++. --. and 

relational operators which are defined in Safer-C) 

4.8 Notation Design 

In the dimensional analysis package, the unis  are declard by member Eunctions. The 

syntax for declaring units is given by the foliowing context-free grammar rules. Note that 

These grammar des show how to use unis of measure, they are not actuaily pan of the 

Safer-C grammar. In particular units and doubleu are type names not reserved words. 

units + b-units :: units := "units-name" 

I derived-mits :: units ( %nits-name", c-mirs ) 

rational-number 

unii3-t * unh-t 1 units_t / uriib-t 1 units-t A r_number 

I float-number * units-t 

base-units 1 derived-unifi 



To declve a dimensional quantity we use the following syntax: 

Example A4 Sample use of units: 

cm :: units := "cm" 

sec :: units := "sec" 

in :: units("inchW ,2.54*cm) 

x :: doubleu (23.4, cdsec) 

4.9 Package Design 

The mi ts  package is designeci for Safer-C to support dimensional analysis. In our method. 

we could use structures or classes to represent the uni& quantities. use panmeterized 

types to initia1i;re the objects. use operator overloading to perform the computation 

between quantities with uni&, and use partial evaluation to perî'onn the dimensional 

consistency check and units computation at compile time. Basically. in the dimensionai 

analysis package there are two kinds of classes: the uni& class and the doubleu class. The 

unis class is used to express ôasic uni& and derived units. The doubleu class is used to 

express aU the double precision quantities which have units. Similarly we c m  define Boaru 

to express float quantities which have units. In our system, there is a ciifference between 

pure quantities (that means no units) and dimensionless quantities since pure quantities and 

dimensionless quantities are of different data types. 



The structure of the units class is as foliows, W e  define the maximum dimension 

(MaxDim) as 7 because the international system oniy has seven fundamental quanuitities. 

We cm fieely define MaxDUn according to the specific use. In the units class, the u-nams 

is the printable name of thz unit aad u-exp is a two-dimensional integer may used to store 

the exponents of the units. The field u-factor is the conversion factor. 

For example, if we use a class to denote hch then in the class inch the u-name is "inch". 

the u-fxtor is 2.54, and the u-exp is cm. 

MaxDim :: const int := 7 

:: class units{ 

u-nme :: -> char 

u-exp :: [Z] WaxDim] int 

u-factor :: fioat 

public: 

! ! Cons tructors ->char 

«wi i ts» :: func(->char) void 

«units» :: func(->char, units) void 

! ! Destructor 

<<-units» :: func() void 

:: class doubleu { 

v :: double 

u :: uni& 



public: 

! ! Constructors 

<<doubleu» :: func 0 void 

<<doubleu>> :: funç(doubie; units) void 

-9.9 

1 

By default the constnictor for doubleu wül initidk the dimension of object doubleu as 

zero. Using operator overloading we can dehe operators to perform computaticms on 

doubleu as foUows 

«<op O>> :: €unc(rel a :: doubleu; ref b :: doubleu) doubleu 

blwk 

temp = a 0 b (we need to f2.l the body which is given in 4.7.3) 

tetuni temp 

end 

When we perform operations such as multiplication, addition and subtracûon etc. we need 

to check dimensional consistency. The compatible function is defmed as follows: 

«compatible» :: func(re€ a :: units. ref b :: uni&) int 

block 

i :: int 

€or(i = O; i < MaxDim; i++) 

if(a.u-exp[0] [il =/= b.u-exp[O][i J and 

a-u-exp [ i] [il =/= b.u-exp[ 1 ] [i J) 

return O 



endif 

endfor 

return I 

end 



Chapter 5 

Partial Evaluation for Dimensional 

Analysis in Safer-C 

We have seen that partial evaluation is a program specialization technique which cornputes 

the static part of the program and generates a residual program for the dynamic part- In 

this chapter, we will investigate how partial evaluation can be applied to dimensionai 

analysis. h particular, we are interested in using, the techniques for the Safer-C languap. 

The aim is to use partial evaluation to irnpmve the efficiency of a dimensional analysis 

package. The discussion focuses on partial evaluation of static stnictures and pointers. An 

important technique that c m  be used for the partial evaluation of a dimensional analysis 

package is presented. 



5.1 Evaluation Annotation in Safer-c 

The evaluation thne plays an important d e  in Safer-,. For example. i can be a translation 

the integer. swn can be a nui tirne float, etc. In Safer-C. several features that are 

important for partiai evaluation are present: 

1) Symbois cm be annotated at their dechration with a designation of their evaluation 

time. 

2) The evaluation t h e  of symbols is propagated through a program to determine the 

evaluation time of expressions, and control st~~ctures. 

3) Control structures c m  be additionally annotated with an evaluation time to assist the 

compiler, or to clvify the programmer's intentions. 

4) Declaration are treated as compile-the "executable" statements. 

More details about Safer-C can be found in [Salgq. 

In this chapter, we will consider the tenns static or known equivalent for translation time 

data, and the tenns dynamramrc or unkmwn equivalent for mn-time data Pointers are an 

exceptional case which is dimissecl in section 5.5. 



5.2 Partial Evduation of Sîructmes 

In dimensional analysis, a dimensional quantity has two parts: measure and units. The 

computation behveen dimensional quantities has two paris: computation on their measure 

and computation on their units. In rnany cases, the measure of a dimensionai quantity is 

dynamic but its uni& are static. Therefore the question is whether we can remove the static 

computation part and leave only the dyoamic computation part at run-tirne. If we c m  do 

this then we wiil get a fast nin-the program. A dimensional quantity cm be expresseci by 

a structure. If we treat the whole structure as single entity then we d lose the static 

information. To do the partial evaluation, we need to discover the static infomation. in 

the foliowing, we show how this can be done by annotating different evaluation times for 

different fields and using a splitting technique to discover the static information. 

A structure is a heterogeneous aggregate of data elements. For example we c m  declare a 

s :: stmct { 
i, j :: int 
k, 1 :: double 

1 

In a structure, if some fields are static and some fields are dynamic then the structure is 

called a pamàlly static structure or mixed sîmciirre. In Safer-C we need to annotate a 

structure with an evaluation. If ali the fields of a structure are static then we can annotate 

the structure as a man-tirne structure. If al1 the fields of a structure are dynmïc then we 



c m  annotate the structure as a nui-the structure. However how should a p d d y  statiç 

structure be annotateci? We cannot annotate it as tran-time since there are some tields that 

are dynamic. If we annotate it as behg nui-time then the information in the static fields 

will be lost. The proper choice is to annotate mixed structure with a mùced-evaluation 

the. 

Concephiaily, we say that if some fields of a stnicture are translation-the tields and 

others are mn-the fields then the structure has an evaluation cime of both run-time and 

translation tirne denoted as (T x-x T), where T is the evaluation rime of structuii='s fields. 

For example, a structure {x :: uan  in^ y :: float} could have evaluation time ( t  x r) 

meaning that x is a translation thne field but y is a nui time field 

NorrnaUy, a tran-time variable exïsts ody at compile-the. Afkr compile-tirne the trian- 

time variable will be removeci. To do partial evalution For paRiaiiy static structures wc: 

could use a splitting technique. This is because if we define 

s :: stnict { 
i, j :: tran int 
k, 1 :: run int 

1- 

then the definition of s would be equivalent to the foiiowing two definitions: 

st :: tran stnict { i ,  j :: kt) 

and 
sr :: run struct {k, 1 :: int} 



The object st would exist only at translation-the, anâ the object a would exist only at 

cm-time. Their treatment would be same as for other purely tran-thne or run-time objects 

Therefoie we cm split a structure s into two stnicnires: st which contains the dynamic 

fields and sr which con- the static fields. AU the accesses to the dynamic fields of s will 

be changed to accesses to the corresponding fields of st. Ali the accesses to the static 

fields of s wiU be changed to accesses to the correspondhg fields of sr. 

By splitting we separate the static part and dynamic part of a partial static structure. Thus 

we can use normal partial evaiuation to perfonn relevant opentions on the static feids. 

5.3 Compact Representation of Units 

By splitting we can &O Save some space. For example. the powers of units that arr: 

encountered in practice are not very large. One can assume that they are between - 128 and 

127 [Hi188]. To store the units we need seven 8-bit bytes since in SI there are seven base 

units. For handling rationai powers, we add seven more 8-bit bytes. The units then cm hr 

compacted into fourteen 8-bit bytes. Although the space used by several units are not 

large when we use an array of dimensional quantities. the space used for units will kcomr 

noticeable. In many cases, aii the units used by the climensional quantities in an array ;ire 

the same. In these cases. there is no reason to aiiocate space for the units of =ch 

dimensional quantity. For example. 



smct clicquant ( 
v :: double 
u :: smct uni& 

1 
y :: [0..100] struct dim-quant 

By using the spitting technique we wil l  get 

yv :: [O..lûû] double 
yu :: [O..lûû] smct units 

If aU the units are the same, we do not need to Save all the same units in an array yu, We 

can compact yu into one variable cyu :: stnict units. 

5.4 Function Specialization 

In our dimensional analysis package, ai l  operations are overloaded operator hinctions. 

therefore the main problem to be considered in using partial evaluation for dimensional 

analysis is the specialization of the functions for structures with some tran-the memkrs. 

5.4.1 Partial Evaluation of Function in Safer-C 

Because the basic structure of Safer-C is the sme as that of C and C++, a Saîkr-C 

program can be seen as a set of modules. Safer-C's main structural component is the 

hinction. AU Sder-C programs consist of one or more huictions. Therefore partial 



evaluation of a Safer-C program means the specialization of Sder-C functions. Saiix-C 

provides three Lia& of partial evduation of f'tions [S21%]. 

1. Replacement by Result. 

This LUid of partial evaluation is done if: 

a) The values of all of the %tuai arguments and e x t e d  variables accessed by the 

fimction are known at translation-tirne. 

b) Either the sou= code for the function is available at translation- tirne, or the object 

code for the huiction is avdable and a dynamic loader is provided to the translater. 

C) The function has no side effects- 

2 In-Line Expansion. 

This kind of partial evaluation is done if: 

a) The source code for the function is available at translation-time. 

b) The function is declared to have translation-time evduation- 

3. Function Specialization. 

This kind of partial evaluation is done if: 

a) The source code for the function is available at translation-tirne. 

b) The function is declared to have run-time evaluation, 

C) Some of the fonnal parameters of the function are declared to have translation-tirne 

evaluation. 



5.4.2 Partial Evaluation of Functioos 

with Structnred Parameters* 

Wben a huntion has stnicaires as its parameters we can also split the parameters. 

C o d e r  a structure type with mixed-time fields such as: 

MixedTme :: type := struct {i,  j :: tran int 
k, 1 :: run int 

1 

Such a type declaration would be the same as declaring two types that are dways usd 

togethet: 

MixedT'met : : type := tran smic t { i, j : : int } 

MixedTmer :: type := run smct {k, 1 :: int} 

With such a mixed-time type dechation, the declaration of object s given in section 5.2 

would be the same as the following declaration: 

s :: Mixedmme 

Consider also a function m w v  tûat accepts a parameter of type MixedTime and retums 

type void: 

conrfwtv» :: func @ :: MixedT'ime) void 

* In other partial evaluation systems, a parîiaily static structure is not split but specialized 

for its static fields [And93a]- 



Such a function declaration wodd be the same as the Function declaration 

«en#hm> :: fmc (Pt :: MixedTimet; pr :: MixedTimer) void 

Since the formai parameter pt is a translation-time value. each invocation of function 

mrfunv wouiâ be changed into an invocation of a newly created function rntfhvj t  that 

has been Speciaiid for the value of pt at each invocation. This is the same ueatment that 

is currently given to functions with tran-tïme fonnal parameters. Thus the invocation of a 

functioa with a parameter of a mixed-time struct type is the same as the invocation of a 

hiaction with two corresponding stnict parameters. each with the tran and mn parts 

respectively of the original parameter. 

When a function retums a cesuit of a mixeci-time struct type we can usa Mowing 

technique to deal with. In this technique, eveiy huiction returning a partidiy static result is 

split into two fuactions. one rehuning the static part, and one rehiming the dynamic p a n  

The static part depends only on static arguments and thus c m  be M y  computed at 

spialilation tirne. For example: 

<--m~> :: tran func (i :: MixedT'me) MixedT'ie 

The function c d :  

s :=fimc_mt 

wodd be the same as the two calls: 

St :=fUnnmt-t (fi) !! Cornpute tran-time part of S 

Sr :=firnnmttr Ur) !! Compute nin-time part of S 



Since the tran-time part of S could not depend on any m-the parts of j, the specialized 

functi~nfiur~rnt-t codd be created to compute those tran-time parts using only the an- 

time parts of j. The fimction fwr-mt-r wouid be a version of h m ? ,  bat h t  been 

specialid for the pactïcular values for the tran-the parts of j and accepts the run-tirne 

parts as arguments, 

5.4.3. Partial Evaluation for Overloaded Operators 

For nocmai arithmetic operations and hmction calls on stnictures, there is no prohlem with 

splining a structure. However when we consider bct ion cas ,  especially an overloaded 

operator huiction. and pass structures to the function, the situation is somewhat more 

complicated. One of Our goals is to use partial evaluation for dimensional analysis. In 

dimensional analysis. the functions mainly used are overloaded operator huictions. Thus to 

apply partial evaluation to dimensional analysis there are three new features which we 

shodd deal wiih. One, the dimensional quatities are pda l ly  static objects. Two. the 

function calls require that whole structures be passed to the function and requirt: the return 

of whole structures. Third, the operators have precedence. Let's consider an exampb *: 

Exampie 5.1 To compute z = x +y. we can defuie operator + as follows: 

Mixdime:: type := structA {i,  j :: int 

k, 1 :: tran float 

x, y* z 

* In this and later examples, if the evaluation tirne is omiaed it defauits to "run". 



« o p  +» :: tran hnc( a :: MixedTbne, 6 :: MureaT'ie) MureciTime 
block 

temp :: MixeàTie 
.-.- ! ! Perfonn a+b 
r e m  temp 

end 

From the example we see that the bction falls and fur~tion retums both use the whole 

structure. By using the evaluation-time splitting technique discussed above, the dynamic 

part and static part are separatea. Thus nomal partial evaluaaon techniques c m  k 

applied Notice that &ter partial evaluation the overloaded operator huiction h a  been 

spefialized. We cannot use the operator notation (such as + and +) anymore. 

For example, in example 5.1, if we split smct x, y, z as foilows 

xij{i. j :: ht}. y i j ( i ,  j :: ht) ,  and rij{i, j :: int} 

xkl{k, 1 :: tran float), yW{k, 1 :: tran float}, and &(k, 1 :: tran float} 

zv := xly + yïj 
d l : =  xkl + ykl. 

then we cannot find the operator + for xij. yij and operator + for zkl. ykl since the oparator 

function + has been spececialized 

To satisS the requirements of overloading operators and to do p h a l  evaluation we use 

the following technique. 



In an arithmetic expression, whenever an overloaded operator is executed we inuoducc: a 

aew local variable to store the mult of the residuai function. If an operator has highrr 

precedence it will be execoted earlier. Using this method the overloaded operator is 

~placed by a residual fiinction. nie preceûenœ of the operator is solved by introducing a 

new local variable, 

Using the techniques discussed above. we can descnbe partial evaluation processing as 

having two phases as follows: 

The pre-processing phase (splitting stage) 

In this phase, we spiit Safer-C's structures according to their evaluation-tirne hascd on the 

techniques which we discussed above. The parameters are spüt  Ail structure variables are 

split the assignrnent statements are ~piaced by two staternents. the accesses of 

structure members are replaced accordhg to the split type structures. 

Partial evaluation phase 

During this stage we do normal p h a l  evaluation Le. calculate, remove the static parts and 

generate residual code for the dynafnic parts. Note that afier partial evduation overloaded 

opentors are replaced by Rsidual functions. The precedence of operators cm be resolved 

by the introduction of new local vanables if necessary. 



Example 5.2 Consider the foiîowing program: 

<UII W> :: funCo void 
block 

Doubleu :: type := smct { 

v :: nin double 
u :: tran uni& 

1 
s, x, y, z :: Doubleu 
s :=x + y42 

prinm (d 
end 

To perfonn partial evaluation on the program we tirst split the program as foihws: 

<anain» :: funco void 

block 
Doubleut :: type := tran struct {u:: units} 
Doubleur :: type := cun stnict { v  :: double) 
st, xt, yt, zt, newlt, new2t :: Doubleut 
sr, xr, yr, u, newlr, new2r :: Doubleur 

newlt :=flt(yt, a) 
newlr :=flr(yr, r) 
new2t :=fSt(xt, newlt) 
new2r :=flr(xr. newlr) 
st :=flt(riew2t) 

sr := pr(new2r) 
pcintu2(sr, st) 

end 



w h e ~  flr is the residual hurtion of the operatoi* with respect to yt and zt. f2r is the 

residual hinction of operator+ with respect to the static parts a and newlt. f3r is the 

residual hurtion of operatoc= with respect to the static parts st and newtt. flt. Pt. and 

Pt are obtained by cemoving al l  the dynamic parts h m  operator+, operator+. and 

operator:= respectively. 

« o p  +» :: tran hnc( a :: Doubleu. b :: Doubleu) Doubleu 
block 

temp :: Doubleu 
x :: tran double 
x := compatibIe(au. 6.u) 

if@) 
temp. v := a v+x*b. v 

ternpu :=au 
retum temp 

else error ("Operator +") 

endif 
end 

where error is a uan-time hinction which generates a compile-the error message, 

<-f2h> :: tran €unc( ut :: Doubleut. bt :: Doubleut) Doubleut 
block 

tentpt :: Doubleut 
x :: tran double 
x := compatible(au. b. u) 

ifw 
tempt-u := ut-u 

return tempt 



end 

andPr will be (if the units is compatible and x is 2.5): 

<QrLn> :: b c (  ar :: Doubleur, br :: Doubleur) Doubleur 
block 

tempr :: Doubleur 
tenrpr.v := ar.v+2S*br.v 
return tempr 

end 

Note that: 

1) The above discussion shows the logical process of partial evaluation. It is possible to 

obtainflt andPr at same the.  For example. during partial evaluationflt and flr 

can be obtained at the same the. This is becausejir is a residual program. Therefore 

when we derive the residual program we have already cornputed the result ofPt. 

2) A postprocessing phase can remove singleton structs such as struct ( v :: double). 

3) For efficiency c o n s i d d o n  we could use i n .  hurctions instead function c&. 

Suppose yt = zt = cm xr = cm2. After partiai evaluation, we have 

<anauin> :: hnco void 
block 

sr, xr, yr, zr, newl r, new2r :: double 
newlr :=yr * 4 

new2r := xr + newl r 
sr := new2r 
printu-cn2 (sr) 

end 



This program can be m e r  optimized via traditionai opthbation. Thus eventuaiiy we 

will get a := xr + yr * S. Notice that in fact the Rsidual function is a C++ program. For 

ease of understanding we stiu use Safer-C notation. 

Example 5.3 The function which computes base to the n'th is &hed as follows: 

<(power)> :: tran func(baFc :: doubleu, n :: tran int) doubleu 
block 

i :: tran int 
pow :: doubleu(l.0, u :: tran units) 

for (i := 1; n > O; n-) 
pow *:= base 

e d o r  

=mm 
end 

If the bue has units cm after hnction invocation and power is to be specialized with 

respect to the units of buse and n = 3 then &ter speciaüzation the residuai program wilI te: 

<~wer-3-crnmr>> : : huic(6aser :: double) double 
block 

powr :: double := 1.0 
powr *:= huer 
powr *:=baser 
powr *:= hnser 
return powr 

end 

nie function power-3-cm-t which computes static part will has value cm3. 



Pointers 

Pointers are one of C's and C++'s strongest feanires. Pointers are closely ~ l a t e d  to 

anays. We can use both pointer arithmetic and array udexùig to access may elements. 

We can use the ref operator to get the address of its operand and use a huiction pointer to 

call a hction. Perhaps the most important use of pointers is to dynamicdiy allocate 

memory. ActuaUy the only way to refer to heapallocated objects is via pointer variables. 

On the one hanci, pointers are very important in C and Ctt .  They give you tremendous 

power and are necessary for many programs. On the other hand. nothing will get you into 

monz trouble than a wild pointer! Pointers are very hard to control since pointers c m  

points to any thing. We agree that without detailed idornation about pointers, the 

annotation of pointers must be overly conservative [And93b]. In this section. we discuss 

only some basic aspects of pointers in our partial evaluation for dimensional analysis. 

5.5.1 Annotation of Pointers 

In this section we wili discuss what is the meaning of partidy evaluathg a pointer and 

what is the meaning of the evaluation time of a pointer. In the foilowing pangraphs. we 

first discuss what is the meaning of translation-time pointers and nui-time pointers. Wr 

will. then discuss pointer splitting technique for dimensional anaiysis. 



h Safer-C, since, a variable annotated as a translation time variable will exïst only rit 

translation time, we will assume that ail tran-the pointers point at purely tramtirne 

objects. and a l l  ru-time pointers point at purely mtime objects. 

The evaluation-the of a pointer c m  be denoted by *T. For example, if a pointer p points 

to the structure A. then p has evaluation-tirne T where T is the evaluation-the of A. 

If a pointer p is deçlared as a run-time pointer then during partial evaluation ail the 

computation associated 4 t h  pointer p will be suspendeci. 

If a pointer is a translation-time pointer then d u ~ g  partial evaluation all  the operations on 

the pointer can be done at compile the. 

5.5.2 Pointers to Mixed Structures 

A pointer p may point to a mixeci structure. Since we use spiitting technique to split a 

mixed structure, therefore if a pointer points to a mixed structure then we would use 

similar meihod to deal with pointers. For example if a pointer p is declared as 

p :: -> stnlct{ 
i, j :: tran int 
k, 1 :: float 

1 

The above declaration of p would be equivalent to the foilowing declarations: 



pt :: -z stnict{i, j :: tran int) 
and 

pr :: -> stmct{k, 1 :: nui float} 

The pointer pt would exist ody at translation tirne, and the pointer sr would exist only at 

nui tirne. nieir treatment would be the same as for other purely mm-time or nui-time 

pointers. 

5.5.3 Functions with Pointers 

Sometitnes we may want to use pointers as the parameters of a Function. The meaning of 

spechkation with respect to a pointer is given as follows [And93a]. 

Suppose a function foo@ :: tran -> kt) has a translation-time formal parameter of pointer 

type, and is to be specialized due to a call foo(e) givhg the residual function fool(). The 

specialization must be with respect to both the address (of e) and the indirection, that is . 
the content of al l  the locations that p legaily can point to when the actual parameter 

expression is e. For example, if e is a where a is a translation-time array int u(lO], then p 

can refer to a[O], a[l], ..., a[9]. After partial evaluation ail the operations on the pointer 

disappear and the objects pointed to by the pointer and ai i  the indirection are absorbed. 

For a hiirtion call whidi has pointers as its parameters and the pointers point at mixai 

time structures the considerations are similar with the case where mixed structures are 

passed to a huictioa Consider following example, if we have a function: 



<dun-rno> :: tran func @ :: -> MixeciTime) MixedTœie 

Then function c d :  

S := fiinfiinmi@) 

would be the same as the two cab: 

St := mmt-t@t) !! Compute tran-tirne part of S 

Sr := fun_mt_r@r) !! Compute cm-the part of S 

Since the tran-time part of S could not depend on any nui-cime parts of p. the specialized 

function fim-mt-t codd be created to cornpute those tran-tirne parts using only the uan- 

tirne parts of p. The fuction fiin-mt-r would be a version of fun-mt, that was specialurd 

for the pdcuiar values for the apn-time parts of p and accepted the m-time parts as an 

argurnen t. 

Using the splitting technique, pointers are split, all dereferencing of origind pointers arc 

replaced by split pointers. For example, kt d i ~ q u a n t  be a structure { v :: double. u :: tran 

d t s  ). According to our meuiod the dim-quant will be split as dim-quantv { v :: double } 

and dim-quantu {u  :: tran units}. If we declare p :: -> struct dim-quant then during panid 

evduation p wiU be teplaced by pr :: -> dim-quantv and pt :: -> dim-quantu. Suice v is 

nui-tirne variable and u is tran-the variable pr will be a mn-time pointer and pt is a uün- 

t h e  pointer. p->v wiU be replaced by pr->v and p->u wül be replaced by dim-quuitu. 

Notice that pr is a run-the pointer. 'Ihw we do not evaiuate pr. but replace p->v by pr- 

>v. Since pt is a tran-time pointer we replace p->u by pt+u which can then be evduated 



as dim-quantu. If there is a fbnction caîl j@ :: -z di-quant) we will get Apr, trm pt). 

Furthemore. since pt is translation variable after partial evaluation. we wiu getmr). 

W e  already amotated a pointer as either a translation the or a run t h e  pointer, and if a 

pointer points to a mixed structure we use the splitting technique to split the pointer 

according to the tran-the and run-time fields of the structure. Therefore in our method 

we do not need global analysis of pointers. 

5.6 Summary 

From the above discussion we see that partial evaluation c m  be used to impmve the 

execution of a dimensionai analysis package. During panid evaluation most of the static 

units consistency checking and computation can be removed, and only the dynamic 

computatioos are Mt for run-tirne. To ensure that partial evaluation cm be done, we have 

to have the source code of our uni& package available. 

In a dimensional analysis package, there are nvo Ends of structures. One is the structure 

unifs another is the structure doubleu. For the operators on the structure units, di the 

fields are static and satisfy the conditions of replacement by result. Thus we c m  use 

replacing by result to specialize the operators on unîts. For exarnple we only n e d  to 

annotate operator+ as foilows: 



unia :: type := tran struct { 

u-name :: [0..20] char 

u-fxtor :: double 
u-exp :: [1..2][0..7] int 

1 

« o p  *» :: tran h c ( a  :: tran units. b :: tcan units) uni& 
block 

.... !! units computation part. 
return temp 

end 

method discussed above to specialize the operator fwctions on doubleu. 



Chapter 6 

Implementation 

Safer-C is an ongoing project in the Department of Cornputer Science at University of 

Manitoba Our units package is one of the new features of Safer-C. In our package. we 

used some features which are still in their developmental stages and thus we cannot fuily 

implement the dimensional analysis feature in Safer-C as of yet NevenheIess 1 have 

perfomred some experiments in Ci-+ to demonstrate that my design is correct ui this 

chapter, 1 discuss some implementation problems which are mainly based on the 

experiments in C++. 

6.1 Representation of Units 

In chapter 4 and 5, we discussed our package in its general fom. We showed that the 

units can be expressed as either a structure or a class. Using different data structures wiil 



cause the implementation to be dflerent. Since our experiments are done in C u  on a 

UNIX system we wiU use a class to expiess the units. 

6.1.1 Pararneterized Constnictors 

An important feature that we used to express our units is parameterized constructors. In 

Ctç it is possible to pass arguments to constnictor hinctions. Typicdy, these arguments 

are used to help initiah an object when it is created. To create a p;irarneterized 

consuuctor, simply add parameters to it the way you would to any other function. For 

example, if we have derno-2p class which has nuo parameters as foilows: 

ciass dem-2p { 

int a, 6; 

public: 

denio_2p(int i, int JI ( a = i; b = j ; }  

1; 

then the statement 

&momo2p myobject(2.3) 

wül create an object cailed myobject and pass the arguments 2 and 3 to the i and j 

parameters of denro_2p( ). There is another way to d e f i e  the object myobject. mat is 

derno-2p myobject = derno-2p (2,3). 

When a constructor function has only one parameter, then there is a third way to p u s  an 

initial value to that constructor. For example, 



class &moJp{ 

int a; 

public: 

&momoIp(int j3 { a =fi} 
int get-a() { r e m  a;} 

As this example shows, in cases where the constructor takes only one argument, you can 

simply use the normal initialization fom. The C++ compiler wili autornatically assign the 

value on the right of = to the constructor's parameter. Using this feature we cm &y 

declare our units as 

UIUts cm = "cm"; 

units gm = "gm". 

W e  found that this fom is more intuitive than the fast methods, Thus we use this form in 

our units package. 

6.1.2 The Representation of Dimensions 

In this experiment, since we are concentrathg on Our methodology we do not cornpress 

the representation of dimensions (base units). In SI. there are 7 base uni& and we permit 

the use of fractions as uni& powers thus we ixnplement dimensions as a two-dimensional 



vray denoteci by u_exp[2][7]. Notice that although we use 7, the standard base uni& 

system is not constrained to the SI system. 

Because different base uni& represent different dimensions we need to represent the b u e  

uni@ in Merent classes. Also. for reporthg the units m e  in printouts we use an a m y  

name(?] to store the name of the declared base units, and use a static variable clim to 

record how many buse mits we have used. Thus if we &fine units cm = "cm", then we 

have dim = 1 and u-exp is 

Figure 6.1 Base units cm 

If we define another base mit such as units gm = "gm" then we have rlim = 2 and u-exp is 

Figure 6.2 Base units gm 

If needed, we can cut off the space used for base units. For example we can detine the 

base units as class bunits: 

class bunits { 

char u,name[20] ; 

int u-factor; 

int u-dim; 

1 
where u-dim = 0, 1, .... 6. Since in base units the u-factor is aiways equal to 1, thc 

the u-factor cari be omitted from the class bunits. 



6.13 The Units Member Functions 

'Iheoretically, al l  the fanctions (member or niends) can be used by the user. However, 

only coastnictos and overioaded operators are used by the user. The rest are used by the 

package for intemal communication anâ debugging. The main functions c m  be specifd 

as one of three kinds. The first LUid is used to define the units. second one is used to get 

information on the uni& and the thud one is used to do computation on the units. For the 

first kind, since we aiiow the user to define dimensioaless variables and derived units, we 

have overloaded the constructor function. The operations between unit. are overloaded 

operators. Operator overloading is smilar to function overloading. An operator function 

can be either a member or a nonmember of the class that it will operate on. In Our package 

we use fkiend functions, Since a fnend is not a member of the cIass, it does not have a this 

pointer. Therefore. the operands of an overloaded fiend operator hinction are passed 

explicitly. 

6.2 Operations between Units 

Nomally, we may thinlc that the operations. addition. subtraction. multiplication, and 

division between numbers. are very simple. However. in dimensional malysis. we ntxd not 

only to consider the mesure but also the units. For example, conventiondy zero 

multiplieci by any number is zero. In dimensional analysis. zero can have units. The 

definiton of zen, in our package is def~ned as: 

A dimensional quantity is caîied zero if its value is zero and it is dirnensionless. 



For identifying the ciifference behueen dimensioned zero and d zero, we sometimes cd1 

the real zero pure zero. 

Some algorithms on dimensional quantities are given as foilows. 

Units multiplication 

Let x and y be dimensional quantities. Then the units ofx and y can be expressed as 

Let xi = b /a. y, = d / c  then xi + y, = b / a  + d / c  = (b*c + a*d) l (a*c), where a, 6. c. 

and d are integers. Let xi + yi = e / f ,  where e. f are integers and are initialid to pure 

zero. Then e = b*c + a*d, f = a*c. In pseudocode, the computation is performrd as 

follows 



retum e /fi 
endfor; 

End 

Units power 

NomaUy, we wouid like to use ** or A to denote the exponentiation operator. However, 

we codd not use them because ** is not an operator in Safer-CC Only e x i s ~ g  operators 

can be overloaded to handle new types. Aiiowing the &finition of new operators is a new 

feature which is stül under development for Safer-C. We cannot use the operator A either 

shce A bas the wrong precedence for exponentiation. Operator preçedence cannot te 

changed in Safer-C. 

In [CG88]. Gehani chose the submipt operator 0 for exponentiation. Technicdy, the 

parameter does not have to be of type integer. but an operatorfl( ) function is typicdy 

used to provide array subscnption. and as such. an integer value is genedy used. In our 

package we will compute rationai powers. Therefore the operator 0 cannot be used. We 

adopt the convention of using a hurtion caü to deal witb exponentiation. Thus to 

cornpute xr we use poweflx. r), where r is a rationai. 

Compatible Units 

The fwiction compatible is used to determine whether two units are dirnensionaiiy 

consistent, The argument to the hurction is two units. Shce we have expressed all units in 

a certain uni& system, we can check whether two units are same. or consistent. Even 



though the uni& of dimensional quantities are consistent the opentions on the dimensional 

quantities may not be performed directly. To do the operation on dimensionai quantities a 

and b which have consistent units we may have to convert thek measurement In each 

conversion we need to compute b.61 a.& If we do conversion then the consistency check 

must already be done. 'Iherefore we do not need to put the computation b.cfl n.cf in each 

overloaded operator. We can put the computation in the consistency checking function. In 

this way we can shorten our uni& package. 

Let a, b be two units, then the algorithm for the function compatible(a. b) is described as 

follows: 

kgin 
if a and b are same 

then return b.cfl a.cf 

else retum 0; 

End 

Corn putation between dimensional quantities 

To do the corn putations between dimensional quanti ties the main consideration is w hether 

the dimensional quantities are compatible. If they are compatible then we rnay need to do a 

conversion. In the following, we take addition as an example to demonstrate the 

algorithm. Let a and b be dimensional quantities. The algorithm is as follows: 

Begin 

x = corn patible(au, b.u); 

if x =/= O then 



{ 1. conversion; 

2. addition; 

3. retum value; 

1 
else emr("a and b are not compatible") 

End 

The Lût of the main fiinceions used in our dimensional-analysis package are given in 

6.3 Print Out Dim-Qmt 

To p ~ t  out a dimensional quantity we need pnnt out two parts: one is the measure. 

another is the units. We will use the following form for printing a dimensional quantity: 

cvalue>(u_namelA~, u_nameZAa>, ..., u-nanenA<n), 

where <value> is the measlue, a> is the rational power of unit. 

For example, if x = 45 &sec then in our prototype it wiIi be printed out as: 

45 (mA 1, sec"( -1)). 

If a dimensional quantity x has a spified units name then we cm simply print out its 

value x-v and its units name. For example. if x = 3 in. y = 5 in. z is declared as dimensional 

quantity which has uni& in, and z = x+ y then the output of z wiii be 

z v(z KU-name) = 5 (in). 



If a dimensional quantity x bas dynamic units then the output units nonnally will be given 

in the user def3-d base units system, that is rv%.ucf(base units). For example, if a user 

specines that the base units system is cgs, x = 3 in, y = 5 in. z is r doubleu, and z = x * y 

then the output is: 

96.774 (cmA2). 

Note that it is possible to give a more mdable p ~ t o u t  fonn such as 45 mlsec. 

6.4 Examples 

W e  have nui some test programs to test our uni6 package. The exampiai are taken h m  

different sources. The examples. programs, and ninning results are given in appendix C.  



Chapter 7 

Conclusion 

This chapter wili summaxize the main contributions of the research work presented in this 

thesis. Further. it wilI discuss possible future work in three aspects: 

Developing and improving a complete units package. 

Estabiishing a uni& conversion library- 

Doing partial evaluation for Object-Onented Programrning Languages such as 

C++. 

Dimensional analysis plays an important role in the mechanical and physical sciences and 

some other areas. Some cesearchers have used the abstraction facilities of high-level 

ianguage to let programming languages support dimensional analysis w 8 8 1 ,  [Geh85]. 

and [Um&4]. These pcevious attempts have some of the following drawbacks: 



1. They entail some nui-time overhead. 

2 They tequire the substantial modification of an exïsting programming languap. 

3. The dimension can take only integer value. 

4. Usen do not have much p d o n  control over the computation. 

5. They do not aüow dynamic dimensions. 

AU these problems are very important in practice. In this thesis, 1 have designed a uni& 

package that uses pariid evaluation to eiiminate the nui-thne overhead. This package c m  

handle rational powers, some pteçision contml, error ~porting. dynamic dimension and 

iteration. and fully compile-the checks and computatiow for static units. 1 have descnkd 

the spliaing algorithm for Safer-C to efficiently perfom dimensionai analysis. 

The expaiments show that our package design is correct Using the splitting algorithm. 

we can do the entire computation for static uni& at compile-the. This resuit demonstrates 

that existing partial-evaluation technoiogy can be used to improve the efficiency of 

dimensional analysis. 

Notice that the package does not require any change to the existing Safer-C language. 

The package is not constrained to a particular standard base uni& system. This package 

can be used for any units system. 



7.2 Future Work 

Some experience was gained nom this experiment including the discovery that providing a 

units package to support dimensional analysis is not as easy as we tust thought Based on 

current work, M e r  ~ s e v r h  will airn at three aspects: Developing a complete units 

package, establishing a uni& conversion library, and extendhg partial evaluation for 

Object-(Xiented programming languages. 

7.2.1 Developing a Complete Package 

At the pcesent stage, 1 have implemented only the main body of the uni& package (or 

c a k d  a prototype). To develop a more practical units package there is more work that 

needs to be done. This work includes: 

1. Adding more huictions such as *:=* +:=. ++. -- etc. 

2 Improving the package such as reducing memory usage and handling more compbx 

prac tical pro blems. 

3. Trying out more complex examples to test the packages. 

7.2.2 Establishing a Units Conversion Library 

From the test examples we see that in a dimensional analysis program there is quite a big 

section used to denne units relations. If these units relations can be put into a units 

package as a library module then it would be very convenient for usea. To put uni& 



relations into the uni& package, the big problem is how to deal with multipk relations 

such as 1 m e  = 100 cm 1 mtre = 3.28 foot. Although House mou83] gave a critique 

of Gehanis work [Geh77], some questions are very impocîant and need to be considerul. 

For example. 1) In practice, sometimes we may use 1 metre = 1 0  cm. or 

1 mem = 3.28 fmt. 'Ibis should be haadled in a units package as we expect 2) If we give 

the relations, 1 ailomem = 3280 foot, 1 m e  = 3.28 foot, later when foot are 

encoaniered whkh f o d a  should be used? If thme problems can be solved then we cm 

add dl the commensurate units into our uni& package. Thus when the users use the 

package they do not need to &fine the commensurate units. The package will 

automatically do the conversion according to the relations in its libnry. 

7.2.3 Extending Partial Evaluation for 00-Language 

From ihis research, we developed another concept that is extendhg e x i s ~ g  partial 

evaluation for Object-Oriented progtamming language such as CH. There are two main 

problem that we rnay encounter. The first is that partial evaluation for irnpentivr 
' 

languages is still in its research stages. The second problem cornes from the advanced 

features of object-oriented languages The signiticant features of C++ in this regard arr: 

classes, which have private parts. inheritance which has protected parts. operator 

overloading, and polymorphism. In this thesis, 1 discussed oniy how to deal with operator 

overloading. It seems that there are other promishg areas in which to handie partiai 

evaluation for object-onented programming languages such as C++. 



Appendix A. Safer-C Declaration Grammar 

name-list ":: " propeq-speciif r [":=" initia fizer] EUS 
I name-list "::" "type" ":=" type-expression EOS 
I ": : " struct-ot-uniun-specijier EOS 
I ":: " enumspecifier EOS 

name-list = identifier I nance-list ", " idenrijir 

property-specifier = type-erpression 
I storage-chs-specifier type-expression 

storage-class-specifier = 
"auto" l "register" l "static" l "extem" 

type-expression = [type-qualifier] type-specificr 
I "[0.. " [comtant-expression] '7 " type-expression 
l "func " "( " [var-len-pam-üst] '7 " type-expression 
I [rype-qualifier] "->" type-expression 

typezrpecifier = llvoid" l I #Pint l 8  I Wfloat#8 

1 s~uct-or-mion-specifier 
l enum-specifier 
i type-identifier 
I type-modifir ope-specifer 

type-modifier = "short" 1 "long " l "signed " l "unsigneci " 

type-qualifier = "const " l "volatile" 1 "volatile" "cons t " 

struct-or-union-specifier = 
struct-or-mion [identifier] "( " struct-declurution-list ") " 
I struct-or-union identifier 



sîruct-or-union = "stnict" l "union " 

var-len-pam-List = parameter-proto-List I parameter-proto-List EOS 'Lw 

parcuiter-proto-List = parameter-putos I paramter-proto-Iisr EOS parumeter-protas 

paramter-protos = fonnaf-paneters sl 7:" propeny-specper 

formal-pamrneters = name- fist ":: " property-specjrier 

jÙnctrctronn&f?nition = "CC" designator *'> > " ":: " properîy-speciier EûS block-ar-body 

designator = #-identifier I "op" opsign "UKE" oper I ' b p  " opsign 

opsign = n-identifer I oper 

f f+f8 1 68-ff [ W*f f  1 W/W 1 88:=ff oper = .- 1 ..- 



Appendix B. Main Functions of 

Units Package 

This package is written in C++. The purpose of the package is to illusvate that the design 
idea of a dimensional maiysis package for Safer-C is correct 

struct uni& [ 
cbar u,name[20] ; 
double u-factor; 
h t  u,exp[2J~,NDIMS]; 
static int dim; 

public: 
uoitso; 
units(ctiar *string); 
units(char *a, uni& b); 
- d t s O  O 

friend int gcd(in t a, in t b); 



fnend double compati'ble(uaits a, uni& b); 
1: 

units powerQmits a, int num, int den) 
{ ututs temp; 

int i=0,t2=; 



tenip.u,fac~pow(afact0ftOfof0, (flaat)numklea); 
if(num -- 0) 

f M i d ;  id-NDIMS; i++) 
(if(a.u,exp[O][iJ !=O) 

[ temp.u,exp[O] [il= 1; 
temp.u,exp[l][i]=l; 

1 
1 

else 
for(i=Qi<U-NDIMS;i++) 

(if(au,exp[O] [il !=O) 
{ temp.u,exp[O ] [ilau-exp[O] [il *mm; 
temp.u,exp[l] [i]=a.u-exp[1] [i]*&n; 
Q=gcd(temp.u,exp[Ol [a, temp-u,exp[l 1 [il); 
ternp.u,exp[O] [q=temp.u-exp[O] [r]/t2; 
temp.u,exp[l] [fl=temp-u,exp[l][iJ/t2; 

1 
1 

cemm temp; 
1 

units powef(units a, float b) 
{ 

uni& temp; 
int i=OTj=O&0,1=û,t=0,t2== 
float s 2; 
ternp.u,facto~pow(afactofOfof0, b); 
j=(bt)b; 
x=b-j; 
k=l; 
for(ir0; i d ;  i++) 
{k=k*lO; 
l=(iit)(x* k); 
z=(float)Yk; 
if(- x) 

break; 
1 

t = g a w ;  
if(l==O&&j=O) 

forli=û; id-NDMS ; i++) 
{if(au,exp[O][i] !=O) 

{temp.u,exp[O] [il=@ 
teriip.u,exp[l] [i]=l; 

1 
1 

else 
for(i=O;i<U-NDIMS;i++) 

( if(au,exp[O] [il !=û) 
{temp.u,exp[O] (i]=a.u,exp[O] [il *(j *(k/t)+Ut); 
temp.u,exp[l] [i]=a.u,exp[l] [iJs(k/t); 
t2=gcri(temp.u,exp[O][i], temp*u,exp[l ] [il); 
temp.u,exp[O] [i]=temp.u,exp[O] [i]/t2; 



D, U * 
units operat&(double a, uni& b) ( 

units temp; 
int i, ûag* 
fos(i=Q i<U-NDIMS; i++) 

if(b.u-exp[O] [il !=O) 
[ flag=l; break;) 

if(flag) 
( 
temp.u-fact0~b.u-factorCa; 



DEFENE DOUBLEU UASS 

stmct doubleu ( 
double v; 
uni& u; 

public: 
dou bleu(); 
doubleu(double a, uni& b); 
doubleu(doub1e a); 

double value-ofo (rehirn v;} 
void u-aame0 ( unam-ofO; ) ; 
double factor,of() ( r e t m  u.factot,of();) 
void units-of0; 

doubleu operatw=(doubleu&); 
dou bleu operat~~+=(cEoubleu&); 
hou bleu aperator-=(doubleu&): 
doubleu operat~=(doubleu&); 

doubleu operator()(units a); 

niend void prin tu(doubleu&); 
fiiend doubleu puwer(cl0ubleu a, double b); 
Head doubleu power(doub1eu a, int n); 

fiiend double toclou ble(doubleu&); 
fnend double sin(doubleu&), 

cos(doubleu&), 
tan(doubleu&), 



fiienû cioubleu operator-(cioubleu&), 
operatoc+(doubleu,daoibleu), 
opemloP(doubleu,Qubleu), 
qmaî&(dQu ble,dou bleu), 
opetatot/(doubleu,doub1eu), 

fiend int qeratace(dwbleu, doubleu), 
operator>(dou bleuQubleu), 
-doubleudou bleu), 
operatrn!=(doubleu,doubleu); 

fnend double toduble(doubleu); 
1; 

dou bleu doub1eu::operat-(&bleu& a) ( 
int i; 
int flag; 
double z; 
u-u,exp-ofo; 
for(i=O;i<U,NDIMS ; i++) 

if(tempdim[O][iJ = O) 
mg*? 

else { flag=l; break;) 
if(!hg != 1) 

{ v=a.v; 
u=a.u; 

1 
else ( 

double x=compatible(u, au); 
if00 { 

z=a.factorofO; 
z=z/tbis->factorf of(); 
V=a.vSz; 
retum *this; 

1 
e b  cout«"ueROT(=) dimension is not correct*; 

1 
1 

doubleu power(doub1eu a, double b) 
{ 

cioubleu temp; 
int i=0 ~=û,k=û,l=û,t=û, numeratofto, denomiaator-0; 
float x, 2; 
if@ != O) 

{ 
j=(m t)b; 
x=b-j; 
k=l; 



for(i=O;i<S;i++) 
( 
k**10; 
l=(int)(xSk); 
=4float)l/lr, 
if(- x) 

brealr; 
1 

t=gdOJr); 
numeratot=jf(k/t)+Ut; 
Qnomiaator=Wt; 
if(&value,of0<0 && numeraW2 && !(denominator9b2)) 

(cout<d"'egative number's sqrtw; 
tout<<%";) 

else 
(temp.v=pow(av* b); 
temp.u=power(~u, numerator. denominator); 

1 
1 

else 
(temp.v=l; 
temp.u=power(a& O, 0); 

1 
retum temp; 

1 

COMPUTE THE POWER OF UQ 

dwbieu power(doubleu a, int nrtm, int den) 
{ doubleu temp; 

if(a.value,ofO<O && num%2 && !(den%2)) 
(cout<ennegative numbeis sqrtn; 
cout«"\nn; r e t m  ternp;} 

(temp.v=pow(av, (float)num/den); 
temp.u=power(au, num, den); 
return temp; 

1 
1 

COMPüTE THE PO- OF UQ 

doubleu power(doub1eu a, int n) 
{ int i; 

doubleu temp=doubleu(l .O); 
for (i=l; a; n-) 

temp* a; 
~ t u m  temp; 

1 

UQ CONDITION e 

int operaîorc(doubleu a, doubleu b) 
{ double x; 



CONVERT A DIMENSIONLES QUANT TO DOUBLE 

double todouble(ckwbleu&b) 

int 4 fhg; 
double a; 
b.units,ofo; 
for(i=O;i<U-NDIMS; i++) 

if(tem pdim [O] [il == 0) 
flag=l; 

e k  (mg* break;) 
if(£@ .= 1) 

{ a=b.v; 
r e t m  a; 

1 
else cout«"uermr(=): A units quantity assign to a double."c<"\nn; 

1 

COMPUTE SIN 

double sin(doubleu&b) 
{ 
int i, flag; 
double a; 
b.units,ofo; 
for(iai<U-NDIMS ; i++) 

if(tempctim[O] [il = 0)  
flag=l; 

else (flagtO* break;) 
if(mg = 1) 

{ a=sin(b.v); 
retum a; 

1 
else cout«"uemr(=): A uni& quantity assign to a douh1e."«"\nw; 

ASSIGNMENT + 

doubleu dou bieu::operator+=(dou bleu &a) ( 
doubleu temp; 
tempe* thissa; 
v=temp.v; 



Qubleu operator+(âoubieu a Qubleu b) { 
doubleu temp; 
double x=compati%le(au. b-u); 
if (XI 

(temp.m~v+x*b.v; 
temp.u=a.u; 
rem temp; 

1 
e k  coutcd uenw(+) dimesion emrwcc  "in"; 

1 

chbleu operaW(dou bleu a, doubleu b) ( 
doubleu temp; 
double x; 
x=compatt'ble(a.u, b-u); 
if(x) 

temp.v=a-v* xSb.v; 
temp.u=a-u*au; 

1 
else { temp.v=a.v*b.v; 

temp.u=a.u*b.u; 
} 

remm temp; 
1 



Appendix C. Examples 

Exampie 1. If a body is projected horizontally with a velocity of 80.0 ftkec from the top 
of the tower which is 160 ft high. F i d  the t h e  of flight to reach the ground. 

Q 2 Solution: Using formula -t + vol  - s = O . Wbere s460fS vo = O,; a = g = - 
2 32/1 - ~ h e  stan<hnl answer 

sec2 
is t=3.l6sec. (mis example îs token f b m  University Physics wot69]. page 44-46. Using the English 
graviratid system.) 

Tbe program is given as below 

dou 
Qu 
Qu 
Qu 
dou 
dou 
Qu 
dou 
dou 

,leu ~ubleu( -160 .0 ,  ft); 
,leu v(lsdoubleu(0, ftlsec); 
)leu grloubleu(32.0, fwwer(sec, 2)); 
)leu t=doubleu(O, sec); 
>lm a=@; 
)leu b=vO; 
,leu e s ;  
>leu y; 
,leu zeru=doubleu(O,power(ft/sec, 2)); 

y=pow-2)-4*a*c; 
wp=-zen,) 

{ 
t=(-b+power(y, 05))/(2* a); 
cout«"lhe answer is:"; 
prin W ) ;  
1 

else cout«"There are cumplex solution."«lnn; 
cout<<"\an; 

coutc<"End of example 1. "«"\nn; 



The output is: 

Tbe answer is:3.16228(~~=1). 

End of example 1. 

Example 2. What is the speed of a transverse wave traveluig dong a cord that has a Linear 
density of 2 9  1oD3 pounds-mdfmt and is under a tension of 15.0 pounds force? 

Soiwion: Ushg formuia v==rt(F/mu), wbere F45.OpC. mu= (2.5 / 32.0) * 10 " sluglft The standard 

answer is v=438 ftfsec. (W example is Loken hm University Physics Wor69]. page 460. Using the gcï 
sys-.) 

The program is: 

âoubleu kdoubleu(l5.0, pf); 
doubleu m ~ b l e u ( 2 5 / 3 2 . 0 ,  pow(l0, -3)* slug/ft); 
doubleu v; 

The output is: 

The speed is=13355.7(cm=l, s--1) 

End of example 2, 
Example 3. The example is same as example 2 but we directly use ft, slugs, and pf as 
computation units. Thus we could get more accurate results than example 2. 



The program is: 

Qubleu kloubleu(l5.0, pf); 
Qubleu mu=doubleu(25/32.0, pow(l0, -3)*slug/ft); 
Qubleu v; 

The output is: 

The speed is=1438.178(ft=l, sec=-1) 

End of example 3. 

Example 4. A stone is projected from the surface of a flat field with a speed of 20ds at 
an angle 53.1 degree above the horizontal. Find the stone's velocity and position at any 
instant. 

Solution: Using formula: 
dbc=vOfcos(angle); v0=20mls, angle=53.1 degree. 
vOy=vO*sin(angle); 
vx=* 
vy=*-gSt; 
v=sqtt(vxA2+vyA2); 
x=voX*t; 
y=wt-g*rA2/2, 
angle=atan(vy/vx)* 180B. 14; 

The program is: 



doubb vO=doubleu(20, mlsec); 
doubleu vûx=doubleu(O, mfsec); 
dwbieu vqYbubIeu(0, dsec); 
Qubleu m=dwbIeu(O, dsec); 
doubleu vy=doubleu(O, misec); 
Qubleu v=doubleu(O, mlsec); 
âouMeu ~ = û o u b l e u ( 3 S ,  sec); 
doubleu c=doubleu(O, sec); 
&leu deùat=Qubleu(:.2, sec); 
Qubleu g=doubIeu(9.807, m~powet(sec,2)); 
duubleu y=doubIeu(O, m); 
Qoubleu zem=doubleu(-0.00001, m); 
doubleu x; 
double angle=O; 

anglez0.926769817; //ü.9î67698lî=S.l clegree. 
vOx=vO*cos(angle); 
vûy=vO*sm(aagle); 
while OI>aro) /Ku C 0.0fi.0 is rnie thus we put zerœ-.00001. 

{ 
x=**c 
y=vOy*t-g*powef(r, 2)/2.0; 
vx=*; 

t=t+delta,t; 
1; 

cout«"End of example 4. "«"\nn; 
1 
me output is: 

Tbe t, x, y, v are: 



The t, x, y, v are: 

The t, x, y, v are: 

The t, x, y, v are: 



The t, x, y, v are: 

The t, x, y, v are: 



The t, x, y, v are: 

The t, x, y, v are: 

The t, x, y, v are: 

End of example 4- 
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