
Dimensional Analysis and Partial Evaluation

by

Xianbin Long

A Thesis

Present to the Faculty of Graduate Studies

in partial Nfüment of the requirements

for the degree of

Master of Science

Department of Cornputer Science

University of Manitoba

Wkpeg, Manitoba

BXianbin Long, 1997

National Librâry 1 4 OfCamda
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibiiographic Services services bibliogiaphiquas
395WeIliargtoriStteet 395. rue Wai-
-ON KlAONI W O N K 1 A W
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant à la
National Li'brray of Canada to Bibliothèque nafionale du Canada de
reproduce, loan, distn'bute or seil reproduire, prêter, distniuer ou
copies of this thesis in microfonn, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/lnlm, de

reproduction sur papier ou sur f o m t
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantiaî extracts fbm it Ni la thèse ni des extraits substantiels
may be printed or othenivise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

FACULTY OF GRADUATE STUDIES
IL+*+*

COP YRfGEï PERMISSION PAGE

A ThesÏsiPracticum sabmitted to the FPcdty of Graduate Studies of The University

of Muitoba in partiil hilflllment of the rqtiiremcnts of the degree

of

MAS- OF SCIBlecIs

U b i n m g 1997 (c)

Permiuion b.r been grontecl to the Libnuy of The Univenity of Manitoba to lend or seil
copies of this thesis/practicum, to the Natioad L i b r y of Canada to microtllm thlr the&

and to lend or seil copies of the fb, and to Dissertations Abatrricb International to publhb
an abstract of tbis thaWpracticum.

The aathor resewu other pabtica.tln rights, and neither this thcsidpracticum aor
extensive estracts h m it may be priuted or otherwise nprodaced without the author's

written perdsion.

Abstract

hcorporating d t s of me- into a programming language is beneficial for dimensional

analysis and e m detection. One of the methods of doing this is to use the abstraction

faciüties of an existing prograrnmuig langage. In this thesis. 1 present the design of a units

package for manipuhbg units of m a u r e dong with numerical values for the Sater-C

language and discuss methods of using partial evaluation to improve the performance of

the uaits package. This work generaiizes and enhaoces pmvious work and malysis and

applies the new analysis to the Safer-C programming language. In particular, it examuies

the use of partial evaluation to perfom dimensional anaiysis. 'Ihis work consists of three

parts: 1) A survey of methods for ~ C O C ~ O C ~ M ~ unïts of measure into programming

languages and research on partial evaluatioa for this purpose. 2) A presentation of a

design for a units package and discussion of several important features of the package

namely: dynamic àirnensions, computation of rational powers, handling precision. and

handling temperature computations. 3) A presentation of a technique of partial evaluation

to achieve good perfomaace for dimensional anaiysis. With partial evaluation, the units

checking and computation can be done at compile tirne. The results of experiments show

that my design of the units package is correct and that existing partial evaluation

technology can be used to improve the efficiency of dimensional analysis.

Acknowledgments

1 wouki liLe to thank Dt. D. Salomon for suggesting this topic of study to me. for his

invaluable counseling, extensive guidance, and unhesitating willingness to review my

manuscript throughout the evolution anci culmination of this investigation I would also

like to thank professor Dereck Me& for his precious tirne in reading my thesis and his

many valuable comments. Finaiiy, 1 would like to thanL professor George C. Tabisz of the

Department of Physics for providing helpN comments and serving on my examining

cornmittee.

Contents

Abstract
List of Figures and Table

1 . Introduction 1
.. 1 . i The Problem 1

1.2 Related Work ... 2
... 1.2.1 Units in Prograrnming Languages 2

... 1.2.2 Partial Evaluation 4
1.3 Research Objectives .. 5

1 .3.1 The Method .. 6
1.3.2 Structure of the System .. 7

1.4 Perceived Benefit ... 9
1.5 Thesis Structure ... II

2 . Related work 12
... 2.1 Introduction 12

... 2.2 Units in Programming Language 14
2.2.1 Atlas .. 14

... 2.2.2 The Early Work of Gehani 15
2.2.3 The Work of House ... 17

.. 2.2.4 The Work of Karr and Loveman 18
2.2.5 The Work of Novak ... 23
2.2.6 The Later Work of Gehani .. 25
2.2.7 The Work of Hilfuger ... 26
2-23 Mer Work 26

2.3 Safer-C .. 28
2 P d Evaiuation .. 29

3 . Dimensional Analysis and Partial Evaluation 34
3.1 Units System .. 34
3.2 Dimensional Analysis ,,............................. 38

... 3 -3 Partial Evaluation 41
3.3.1 The Principal of Partial Evaluation .. 41

.. 3.3.2 Partial Evaluation in Safer-C 46

4 . Design 47
4.1 An Example ... 48

... 4.2 Dynamic Dimensions 50
... 4.3 Conversion 51

.. 4.4 Precision Control 54
... 4.5 Rational Powers 56

.. 4.6 Units and Unitsi Computation 59
.. 4.7 Consistency and Dim-Quant Computation 63

... 4.7.1 Consistency Check 63
... 4.7.1.1 'Ihe Consistency Check Rules 64

... 4.7.1.2 Iteration 65
... 4.7.2 Conversion of Dimensional Quantities 67

.... 4.7.2.1 Conversion Measurements 67
... 4.7.2.2 Conversion of Temperature 69

... 4.7.2.3 Alternative Techniques 73
4.7.3 Computation Invoving Dimensional Quantities 73

4.8 Notation Design .. 76
4.9 Package Design ... 77

5 . PE for Dimensional Analysis in Safer-C 81
5 . 1 Evaluation Annotation in Safer-C ... 82

... 5.2 Partiai Evaluation of Structure 83
.. 5.3 Compact Representation of Units 85

... 5.4 Function S pecialization 86
5.4.1 Partial Evaluation of Function in Safer-C 86
5.4.2 Partiai Evaluation of Functions with Stnictured Parameters 88
5.4.3 Partial Evaluation for Overloaded Opentors 90

5.4.4 Examples ... 93
5.5 Pointers .. 97

... 5.5.1 Annotation of Pointers 97
5-52 Pointers to Mixed Structures ... 98
5.5.3 Functions with Pointers .. 99

5.6 Summary ... 101

6. hnplementation 103
.. 6.1 Representation of Units 103

...................*.................... . . 6.1.1 Parameterized Constructors ... 104
... 6.1.2 The Representation of Dimensions 105

... 6.1.3 The Units Membet Futlctions 107
... 6.2 Operations Between Units 107

... 6.3 Pnn t out Dim-Quant 111
.. 6.4 Examples IL2

7 . Conclusion 113
.. 7.1 Summary 113

7.2 Future Work ... 115
.. 7.2.1 Developing a Complete Package 115

7.2.2 Estabiishing a Units Conversion Library,........................*. .. 115
......................... 7.2.3 Extending Partial Evaluation for 00-Lanpage 116

Appendix A . Safer-C Declantion Grammar

Appendix Bo Main Functions of Units Package

Appendix C . Examples

References

iii

List of Figures and Table

Chapter 1

Introduction

1.1. The Problem

Dimensional analysis plays an important role in scientific investigation. In many fields.

such as physics and engineering, it is common practice to associate units of mesure with

variables and constants and to carry these uni& dong with computations. Scienac

equations are built not on abstractions but on measuremenrs of actual phenornana. It à

quite possibIe for an equation to be mathematicdly correct and yet be scientiîïc nonsense.

Dimensional analysis is the snidy of measurement and its influence on scientific

relationships. The techniques of dimensional analysis are widely used in science to derive

theoretical relationships.

Udortunately. most programming languages such as Pascai, C. CH. FORTRAN. and

P M do not deal with uni& of measure. When engineers use cornputers to solve their

problerns. they have to do the dimeasional uialysis rnanually. It has becorne clear that

programs in high-kveL languages should m some way provide the mechanisms needed to

support dimensionai aiialysis.

1.2. Related Work

1.2.1 Units in Prograrmning Languages

nie earliest language which aliowed units is the ATLAS ianguage (Abbreviated Test

Language for AU Systems) [At182]. ATLAS allows only a limited set of uni& and a limitai

languap for consmicting combinations of units. The ATLAS language is intended to t*:

used for the writing of test pmgrams for Unies Under Test (UUTs), so that these

programs cm opente on various makes and models of Automatic Test Equipment (ATE).

Uni& of measure in general hi&-ievel ianguages are discussed by Gehani [Geh77]. Grhani

describes dimensional analysis for a more general hi@-level language, Pascal. Gehani

proposes the inclusion of the units of the quantity king represented as an additional

attribute in hi&-level programming languages. He argues that aU or most of the additional

pmcessing required by the units auribute can be done at compile tirne.

House mou831 gives a critique of Gehani's work and proposes a method which cm hr?

completely implemented at compile the. He discusses Iînguage syntax issues and efncieni

implementatioa

rii dimensionai analysis. an important aspect is uni& conversion. Rarr and Loveman

CI(L781 propose the incorporation of units Uito prograrnrnhg languages; they discuss the

relationship between units conversion and iinear algebra, dimensional anaiysis. and

language syntax issues. Novak wov95] presents efficient algonthms for converthg units

of rneasurement from a given fom to a desired fom. For saving space and increasing

efficiency, Novak discusses the representation of the dimensions. He packs a vector of

eight integers into bit fields within anhteger word, and Unplements units for the GLISP

Language.

Gehani, Karr & Loveman, and House. all require that the language definition be changed

to support dimensionai analysis. Gehani [Geh85] and Hilnnger (w 8 3] and m 8 8])

describe methods for using Ada9s abstraction facilities to use an existing pmgnmming

language to support dimensional analysis. Hilnnger describes methods for including units

with numeric data using Ada packages, and discusses modifications of Ada cornpilers that

wouid be required to make the use of these packages efficient w 8 8] . There arc: sevenl

other packages which are discussed in [CG88], [Cun92], and [Umr94]. Cmelik and Gehani

gives a package for handling unit, of measure in Ctc using classes. Cunis discusses a

package for handling units of rneasure in Lisp. Umrigar gives a package for handling units

of measure in C++ using ternplates. AU these packages have some disadvantages. which

we will discuss in chapter 2.

1.2.2 Partial Evaluation

Partial evaluation is a program optimhation whereby as much as possible of the

computation specined in the program is carried out before the program is uanslated to

machine language- Any computation possible on Litetat constants or relatively stable input

data supplied by the programmer is carzied out, and the results are propagated through the

prograrn. The r e s u l ~ g simplincation of the nnal prograrn can lead to a substantial speed

improvement Partial evaluation has been the subject of a rapidly increasuig amount of

activity over the past decade due to recent advances both in theory and practice PEJ881,

[CD93], and [JGS93]-

Partial evaluation has been successfully applied to declarative languages. such as Scheme

and Prolog. Recent years have seen a growth in the study of partial svaiuation in

imperabive prograrns [Chaq, Ney9 11, [And93a]. [WL95], and WG953. Anderson

[And93a], [And93b] describes a partiai evaluator for a substantial subset of C.

Kleimbatscher. Kriegshaber, Zochiing, and Gluck -951 describe a partial avaluator

for a substantiai subset of Fortran 77,

Baier, Gluck, and ZocFhluig DG2941 investigate the application of partial avaiuation to

numerically-oriented computation and engineering applications. Salomon [Sa1961 uses

partial evaluation to support many important language feaaires and implements a partial

evaiuator for Safer-C.

Despite the successfd application of partial evaluation to many fields, few attempts have

been made to sndy the partial evaluation of dimensional analysis (Hi1881.

1.3. Research Objectives

In this thesis, 1 study dimensional analysis in Safer-C and combine it with partial

evaluation to improve the efficiency of programs which use uni& of measure. 1 genenlue

and extend previous uni& package and analysis to the Safer-C programrning lanpuage. 1

investigate some problems whicb are relevant to the features of the dimensional analysis

package, the system, and partiai evaluation. For decmsing the size of the irnplementation.

1 make maximum use of the existing features of Safer-C. For example, 1 use the partial

evaluator which exists in Safer-C. 1 also suggest improvements to the partial evaluation

techniques that would speed up dimensional analysis. with the goal that any such

improvements wouid e ~ c h a i i uses of the hguage, not jus& dimensionai analysis.

1.3.1 The Method

Basically, there are two methods of supporthg dimensionai analysis.

a) The pmgamming lanpage itselfcould support dimensional analysis as a fature. This

method tequiries changes to the language intended solely for supponing dimensional

analysis. It may be impossible to change erristing pmgramming languages to meet this

go&

b) Use the abstraction facilities of an existing language to constnict a units package to

support dimensional analysis. Method b) has severai advantages. Fust, we do not need

to change the source language specincally for dimensional analysis. The standard version

of the lanpage stil l can be used. Second, the user does not need to learn a new language

for doing dimensional analysis. Fïnaliy it is easier to irnplement Therefore I intend to use

method b) for dimensional analyis in Safer-C.

Although a predefined units package for dimensional analysis has severai benetits. the

uni& checking would nomaiiy have to be done at run the instead of compile tirne. That

means that the execution of programs which make use of dimensional analysis would te

slow. For tacicihg this problem, 1 propose the use of partial evaluation.

There are severai cessons for choosing partiai evduation to speed up execution. First.

w k n uniis are declad dong Mtb vaziabies or constants, the units are static. sime we

Lnow the units at compile-tirne. nius we can completely Qal with these static quantities

at compile time. Second. in Safer-C the partial evaluator already exists. Thexfore lhis

makes the work much casier. We only need to use and perhaps expand the existing partial

evaluator to &al with ciiffernt units components. W y , Safer-C has the same

computational power at translation the as ai nui tirne. Thus we can do any necessary

computation at compile-tirne rather than at run tirne.

1.3.2 Structure of the System

The system which supports uni& of measure in Safer-C basicaily consists of a parser, a

partial evaluator, and a uni& package. My work principaily involves the partial evaluator

and the units package. It includes the following parts:

1) Designing the features of dimensionai analysis which support units of measure to

be pmvided by the system. The features of dimensionai anaiysis d k t l y indicate how

powerful the system is.

2) Designhg a convenient notation for specifying units of masure. This is important

because if users feel uncornfortable with the notation they will not use the system.

3) Discovering under which citcurnsîances, and which parts of dimensionai andysis can be

carried out during partial evaluation.

4) Implementing a demonstntional units package which supports dimensional an Jysis.

Whenever the users want to use Uaits, they simply declare t&e units of each variable and

manipulate these units using ordiaary operatiom. The system will do the units checking.

From the user's point of view the system should have the foilowing characteristics

[Hi188]:

(1) It must be possible to d e c k each variable, constant, and parameter to have a

particular M t of measure and to perform the ordùiary arithmetic operations

between quantities having the declareci units of measm.

(2) There should be some provision for handling conversion of commensurable units.

(3) There should be compile-time checking for dimensional consistency.

The system can be representeù by the foliowing diagram

Figue 1.1 System Diagram

SOURCE
J

The source is the user's code which includes some operations using uni& of measure. The

units package is constructed by using Safer-C abstraction f a t i e s . such as operator

overloading. and parameterhi consauctor. The source and the units package are sent to

the parser. Accordhg to the source and uni& package, the parser gemntes the

intermediate code, which is a parse m. Then the parser tree is sent to the panid

evaluator (PE). According to the annotated evaluation tirne. the partial evaluator perforrns

the partial evaluation. The p h a i evaluator does the units consiswicy check and units

operatiom. By partial evaluation, the manipulation of units of measure can be eiiminated

from the object code as much as possible. Therefore we can get a faster running program.

1.4. Perceived Benefit

The work descnbed here has several benefits. First of ail, it offers dimensional anaiysis.

This is important to scientists and engineers as it gives a check on the correcmess of k i r

9

L 7

UNTTS
PACKAGE

L

PARSER

.
Partial

Evaluator
L

' B
OBJECT
CODE

formulas. The checking is similar to that tradïtionally pedormed by scientist on their own

band calculations. In addition, dimensional anaiysis can accurately perform the conversion

between dimensional quantities in different systems of units. With this feature the users

would need to declare only the units of quantities and the system then wodd automaticaily

manipulate the units and do the dimensional dys i s . As a brief example, a programmer

could code the following program to compute a speed:

units-package0

<anain» :: funco void

block

S peed :: Doubleu(O.0, kmhour)

Thne :: Doubleu(5, hour)

Distance :: Doubleu(600.0, km)

Speed := Distance/l"me

P ~ t u (Speed)

end

When executing the pmgram it wil l p~tout : 12O(krn/hour).

Second. using the infornation provided by units, more errors can be detected. Third.

thanks to partial evaluation the system would be efficient. Incorporating uniîs of measure

into a programming language would require a lot of space and computation. if a program

mns slowly as a result of the incorporation of uni& into the program then Dwer

programmers would want to use the feahue of dimerisional analysh. Thus the work

describeci heie is an important step towards putting a programming lanpage which

supports unie of measure into practical use. M y , the system demonstrates the

application of some important language features and partial evaluation

1.5. Thesis Structure

My thesis consists of the following chapters:

1. Introduction

2. Related Work- Swey che related work on units of measwe in programming

languages and partial evaluation in imperative languages.

3. Background Knowledge - Discuss some background knowledge which is relevant

to dimensionai analysis and partiai evaluation

4. Design - Fresent a design of the features of dimensional analysis and a convenient

notation.

5. PE unit5 package in Safer-C - Study partial evaluation and a units package which can

efficiently support units of measure.

6. hplementation - Constnict a prototype of a uni& package in C++.

7. Conclusion and future work - Resent conclusions, and suggestions for future

work.

Chapter 2

Related Work

In this chapter. 1 s w e y the existing work on dimensionai analysis in propamming

languages and on partial evaluation that is directly related to my w o k

2.1 Introduction

Rograrnrning languages have improved a lot since the earliest hi&-level languages

appeared in the 1950s. Many new features have ben added to programming Ianguages

since then but the design of high-level languages has not yet been perfected. Incorporating

uni& of measure into progcamming language is an interesthg research axa of

programming language design. Such a feature is calleci dimensional analysis. Uni& of

measure play an important d e not ody in scient& investigation but also in Our every day

life. Unfominately, most programming languages such as C. C++. Fortran. and P M do

not ded with wits of measure. It has become clear that prognms in a high-level languagc:

should in some way provide physicai and mechanical unitse.g. volts, hertz, kgm, dyne,

etc. From the point of view of programming languages, expücit mention of units c m not

only enhance readability of prograrns but &O increase the ability of a programming

language to correct errors of inconsistent units. Research into dimensionai analysis in

p r o g d g languages over the pst twenty years bas acbieved many mults. Two

methods have been adopted to incorporate units of measure into programming lmguages.

One is to modify an existing language to directiy incorporate units of measure into the

syntax and semantics of the language. nie other is to use the existuig high-lrvd features

provideci by a programming language to hplement dimensional anaiysis. The foliowing

are the main design problems which we should consider when we incorporate units into a

programming Language.

1. How to represent the uniu themselves in the source code.

2. How to deal with conversion between two cornmensurate units.

3. How to provide compile tirne consistency checloing.

4. How to permit efficient implementatioa

5. How to provide precision contml.

2.2 Units in Programming Languages

2.2.1 Atlas

The eatliest pmgrarnming language which aiiowed uni& of measure was ATLAS ~uiguage

(Abbreviated Test Language for Ail Systems) [Atl82]. ATLAS was developed origllidly

for avionics applications under die auspices of Aeronautical Radio, Inc. (ARINC) and

under the direction of the Airlines Electronic Engineering Cornmittee (AEEC), which

approved the original version on October 10, 1968. ATLAS was approved by the United

States Department of Defense as an interim standard language for automatic test

equipment (1976).

ATLAS is a standard abbreviated English language used in the preparation and

documentation of test procedures which can be implemented either manudy or with

automatic or semi-automatic test equipment. The ATLAS language is intended to be used

for the writing of test programs which describe test procedures for a wide class of Units

Under Test (CTUTs), so that these programs can operate on various makes and models of

Automatic Test Equipment (ATE).

Since ATLAS is specific for testing, ATLAS ailows only a k t e d set of units of measurt:

and a limited language for constructing combinations of units.

2.2.2 The Early Work of Gehani

In 1977, Gehani [Geh77] discussed the units of measure in the generai hi&-level

programming language Pascal. Gehani's arguments cm be sumrnarized as follows. The

ôasic fimction of a cornputer pmgram ïs manipulating data. An important atmbute of a

ùatum is its type. In a hi@-level typed language, the type of a variable determines the

range of values which the variable can bave and the set of operations that are dehed for

variables of that type. Using type information we can enhance the error detection

capabilities of a compiler. A compiler should report an error if an operator is applied to an

incompatible operand; for example, if a pointer variable and a Boat variable are added

together. Similarly. a units enor should be detected when incompatible uni6 are

combine& for example when a value with uni& of speed is assigned to a variable with

uni& of volume. Gehani proposes the inclusion of the uni& of the quantity king

represented as an additional attribue in high-level programming languages. Using the

notation proposeci by Gehani we can write d o m following program segment:

var T: real UNïïS(*);

V: real UNITS (METER = 3); (METER =3 means V has unit m3)

W: real UNITS (KILOGRAM);

where LJNI.TS(*) means that the temporary variable T c m be used to hold a vdue having

different units, V is a real and has units attribute meter = 3, and W is a reai and has wiits

amibute kilogram. In the statement T := V + W. the compiler should produce an m o r

message since V and W have different U M T S attribute. Gehani gives a detailed discussion

of the notation for the units attribute in Pascal. the computation on the new data (which

ha9 vdue, type attribute. and units amibute), conversion. and implementation- For

efficient performance, Ge& ckims that checkhg for consistency of units can all be done

at compile time if the following restrictions are made:

(1) Expmsions with d t s may be exponentiated only to constant or compile tune

deteminable values.

(2) The expressions representing the exponents in the units attribute declaration may lx

constants or compile-time determinable values.

(3) Variables with the attribute UNITS(*) are not aüowed to be assigned values with

different units depending upon certain conditions (and therefore program flow).

For example, if T has the amibute UNITS(*), then the statement:

if e then T := e, else T := e2

should not be permitteci if e, and et have different units.

2.2.3 The Work of House

House [Hou831 gives a critique of G e W s work The main objection by House is that

Gehani's implementation scheme is not capable of perforrning the type of units checking

required of it. House gave an example which satisfies a i i the conditions given by Gehani

but cannot check consisteacy ema. The example given by Houe is:

Program faulty;

var. q: real r n S (*) ;

m: real UNïïS(KG);

a: real UNITS(M, SEC = -2);

fi d UNITS(M. KG, SEC = -2);

function ratio (x : real UNïïS(*); var y : red UNITS(*)) : r d UNlTS(*);

begin

q := a;

ratio := A@

end;

p r d u n x(functionfin(m : real üNiT.S(*); var n : red UNITS(*)) : real UNITS(*):

begin

a :=funw 4);

end;

kgin

q := m;

 ratio)

end

The above program is intended to calculate the ratio of a force to a mass. The result

should be an acceleration Cie. has units (M. SEC = -2)). B y a circuitous route, the ratio o t

the variables f and m is computed by fuaction ratio. However. the value of y is changed by

the statement q := a. Thus the uni& of ratio that we get are (KG = 1). This m o t c m o t

be detected in ratio alone, since we do not know what are the achial parameters. W e can

not detect any error in the pmcedure x either, since in the procedure x it involved hinction

fin which is the function ratio, but we do wt know that yet. The source which causes the

problem is that "if the two parameters should bear some given relation to each other, there

is no syntactic mechanisxn for speafying so". Thus House proposes a method in which the

relationship between parameters and retm value can be specif~ed. Using this mechanism

the consistency checkhg can be completely Unplemented at compile time. He dso

discusses language syntax issues and efficient implementatior

2.2.4 The Work of Karr and Loveman

In dirnensiond analysis, another imporiant aspect is uni& conversion. Karr and Loveman

[KL78] propose the incorporation of units into programming languages and givr a very

interesting rnethod for commensurate units checking and units conversion using Luwar

algebra To discuss the main idea of the method, first let us give the concept of nits king

commensurate. We Say that "two quantities are conunensurate if one is a constant multiple

of the other." For example feet = I2 inches. thus feet and inches are commensunk. The

basic idea of the conversion method discussed by Loveman is as follows:

UA and B are commensurate then we have

A = C*B, (2.1)

wbere A and B are dimensional quantities. and C is a constant From (2.1) we have

Am = Pl, (2.2)

The formula (2.2) means that if we want to know whether A and B are commensurate we

only need to check whether AA9 is commemurate with 1 or whether A B is a constant

under condition (2.1). The question of &tennining whether a quantity is cornmensunte

with 1 cm be answered using pure linear algebn To make this conneciion, we will npply

the log to each of the equatiow describing commensurateness.

Let U be a set which consists of ail the uni& (base or derived) that are used. We may

assume that there are n anits. Let Dl, D, be dimensional quantities and ut, u " E U be the

uni& of Dl. D2, respectiveiy, and q , , q, be the measurement of Dl, D, respectively. if

D l , D, are commensurate then (2.2) will be mie. Taking log on both sides in (2.2) and

using e to denote q , / q , we get

log u'- log u" - log C = -Log e. (2.3)

Suppose that we have equations which describe commensurateness as follows:

ui= CI uj (2.4)

where C, is a d number. 1 = 1,2, ..., k; ui. u j E U, i, j = I r 2 , -.. n. The k denotes the

nurn ber of conversion relations.

Using a similar method t a h g log on (2.4) we get

log ui -Log uj =log ci. (2.5)

Combining (2.3) and (2.5) we get following systems of hear equations:

logu, - 10guj = Logq

logu' - log il" - 10gC = - loge

wherei, j = 1.2 ,... n . l = 1 , 2 ,.... k

Let A be the coefficient maak of (2.6) (that is a &+ l rows by n+ 1 columns coefficient

rnati5.x).

X = (xl. X * . * O - X.. X.*1)' =(logul. logu,. - * * logu,, log aT.

and

then (2.6) can be written as

AX=B. (2.7)

Therefore, if we think of X as unknown then the question of whether a quantity is

cornmensurate with 1, when tmslated into Luiear algebra tenns, becomes a question of

whether the systems of linear equations (2.7) has a solution. To solve the system of linex

equations (2.7), we cm use some method given in any linear algebra book. For examph.

we can use row operations on the coefficient matrix A to give the row-echelon form. Then

we could get the solution.

h general. (2.7) rnay not have a solution. If d = IN + O then system AX = B has a unique

solution. Notice that the ma& is not square but in our case we care only about the

solution of log C. Thus more speciEidy, we need only to consider whether we c m add

multiples of the rows of matrix A to the 1st row of A in such a way that ali entries, except

possibly the k t two entries, are zero. If we can ond the value of log C then we get the

value of C. Thus we know that Dl/ D, is cornmensurate with 1 and DI / D, = CC 1. Let

us consider an example which is given in m78].

ExYnpk 2.1. Fiiding the radius in inches of a circle whose area is one acre. Using the

formula ICG, we want to know i€ J z is cornmensurate with inches, in other

J m e / x
words, if is cornmensurate with 1. Let the units order be (acre, sec, gram,

inches

inches, feet). Then the X wiil be (log acre, log sec, log gram. log Niches. Log feet. log

&me / IC C). The vector for =C is:
inches

If we give the conversion relations 1 feet -12 inches and 1 ocre = 43560 feet' then we

have the following coefficient matrix:

Using row operation we have

43560 commemurate Mth inches and the number of inches of the desired radius û 1 2 4 y -

1413.

Notice that:

1. Since a * log x = log x a , log x + log y = log (x * y) we do not need to actually cornputt:

the logarithms in the 1st columns. Thus in the row operations. if addition is required

multiplication is done, and if the multiplication is required then exponentiation is donc We

can even remove the log notation from the matrix.

2. We do not need to store the column which indicates the variable log C, since in this

column oniy last entry is non zero, thedore the row opentions will not a e c t its value.

The method discussed above is a very interesting method as it rnakes a connection

between units cornmensuration and pure linear algebra In this method, we have to solve a

system of linear equations. Nomaiiy for solving systems of iinear equations the cost is

expensive both for space and the. When the nomber of units and the conversion relations

become krge, the macrin A d l become large. Thus another conversion method is

introduced by Novak [Nov95].

2.2.5 The Work of Novak

Novak pmsents an efficient algorithm for converthg units of rneasure €mm a given fomi

to a desirecl fom. The methd given by Novak is based on some standard uni& sysam.

For example, the standard uni6 system is SI system. Let

U, = C* u,,

where u, is a units, u, is a base units in SI system, and c is a real number. Then the c is

called conversion factor of u, . With conversion factor then we can convert units of

measure €rom a given €om to a desired form.

Let D I . D, be dimensional quantities and u', u" E U be the uni& of D I , 4.

respectively, and q, , q, be the measurement of Dl. D, respectively. If the conversion

factor of u ' is f , , the conversion factor of u " is f ,, and q , is the quivalent quanti ty of

Di . D, in SI system i.e.

q l * f =q i 'q2*f Z s

then we can conven q, in units u' to q, in units u".

4, = 4,*f ,If ,-
Novak's method saved the space which wouid be required by Loveman's rnethod. Novak

also discusses the representation of the dimeasions for swing space and for efficiency. He

packs a vector of eight inlegers into bit fîelds within an integer woni. and implemented the

use of units in the GLISP Ianguage.

There is a common characteristic in the work of Gehani, Karr & Loveman, and House-

That is they all require that the language definition be changed to support dimensionai

analysis. Changing a ianguage is not an easy task. There are many problems we necd to

consider. For example, we need to change the compiler, and we need to consider wheihrr

it is easily acceptai by users. There is another way to introduce uni& of mesure into

progranunhg Ianguage. That is using a high-level language's abstraction facilities to kt the

programming language support dimeosional analysis. Here when we Say high-bel

languages. we mean imperative languages. In some tanguages such as LISP, to detïne a

units package is relatively easier than in an imperative language because LISP is a

huictional language. Basically, you c m define anything you want in LISP. In an irnpentive

ianguage, if the knguage has no such feature then it is very h u d for you to define the

featute using the language itselt

An early discussion of using a high-level language's abstraction faciiities to let a

p r o g d g lanpage supports dimensional analysis c m be found in Wiger's book

"Abstraction Mechanisms and Language Design" m 8 3] . Although later, Gehani [Geh85]

and Hilnnger m88] give another Ada package to support dimensional andysis

respectively theu emphasis is different. To reduce emrs resdting from the inconsistant

usage ofobjects we c m use many metbods, such as &riveci types and units of measure.

2.2.6 The Later Work of Gehani

ûw of the benefits of incorporating units of measure hto a programming language is

helping in detecting errors. In some languages such as Ada, we c m use derived type to

help detect errors. In [GehSq, Gehani examined and analyzed the idea of using derived

types and uni6 of measure to specify additional infornation in Ada This c m be descrihed

as foUows:

Let x, y be two FLOAT variables. Nonndy, we can do any computation on x and y. If x, y

has some practicai meaning, for example x denotes a price and y denotes a weight, then

assigning x to y or adding x, y together is not correct. This error can not be deacted

automaticaliy. in Ada, we can use derived type to solve this kind of problem. A derived

type introduces a new type which is identical to an existing type except that it is logicdiy

distinct Using derived type we can declare PRICE and WEIGHT as foilows:

type PRICE is new FLOAT

type WEIGHT is new FLOAT

Here PRICE and WEIGHT are two new types. They both have the same mge of values.

say FLOAT. but logically they are different type- Mistalcen use of variable of type PEUCE

for those of type WEMjHT can be âetected automatically. Thus if we declare

x : PRICE

y : WEIGHT

then assigning x to y or addllig x, y together would violate the typing d e and this

violation would be detected during compilation. The result obtained by Oehani is that the

units of measure appmach is better thui the derived types approach to spec* additiond

Uifomatiom Gehani uses the method of uni& of measure to dehe an Ada package ta

implement uni& in Ada.

2.2.7 The Work of Hilfinger

Although Hilunger m 8 8] describes meaiods for including units with numenc data using

A& packages, he emphasizes the modifications of the A& compilers that would he

required to rnake the use of these packages eficiently. We wili give a more datded

discussion about Hilhnger's work in the section 2.4.

2.2.8 Other Work

There are several other packages such as [CG88]. [Cun92], and [Umr94]. In [CG88],

Crnelik and Gehani use class and operator overloading to give a package for handling units

of measure in C++. But in these packages the dimensional checks have to be dona at run

time. Umrigar also gives a package for handling uni& of measurement in CH. Umrigar's

method m a k use of CH templates to crack the dimensions of quantities at compile-tima.

Although Umrigar's package can check some dimensionai correctness before run-time

there are some drawbacks in his method.

(1) The methoâ ody haadle integer demension.

(2) Because ail quantities having a particuiar dimension use the same intemal units the

programmer does not have sunicient conml over the precision of duncnsional

quantities, which may lead to an accumulation of floating-point error.

(3) Errors are no< repocted in ternis of dimensional violations but rather in terms of type

errors.

(4) Since the dimensions aie directly incorporatd into the template type placehoder, the

dynamk dimensions are not allowed.

From the work of Cmelik, Gehani, and Umngar we can see that the higher the faciiities

you use the less contcol over the process you get

We have mentioned that when we incorporate units of measure into a progamming

language (more precisely into an imperative lanpge) an irnporîant aspect that wt: should

consider is compile time consistency checlung. Why do we need this? The motivation is

that we want to incorporate units of measure into prograrnming languages. and we also

want to "compile away" any computational overhead associated with handling dimensional

information at nui tirne. h [Cun92], CulYs gives a different view. Cunis discusses a

package for handling uni& of me- in Liip. Most LISP systems are interactive

interpreters. The users Uiteract with the LISP interpieter by typing in function invocations.

The LJSP system then iaterpreters them and prinîs out the result. Therefore C h argues

in favour of actually incorporating n i t s of measme information with numeric data ohjects

in a dynamic and intetactive prograrnming environment

h this thesis our goal is to add dimensional analysis to Safer-C. Thus in this section we

give a brief introduction to Safer-C. Safer-C is a new language developwl by Salomon

[Sa1951 in the Department of Cornputer Science at University of Manitoba Safe- is a

modem descendant of the C language. The popdar C language is over 20 years old. The

C ianguage has many syntactic deficiencies that lead to common programming mors.

Some of these enors can psist in a program until run the. The primary object in the

design of Safer-C is to produce a hguage that is more error-resistant thm C without

sacfificing any expressiveness or computational power. Safer-C is semanticdy identical to

C, but has most of the syntactic deficiencies eliminated by using modem conventions.

Safer-C is a unified name of Safer-Cl1 and Safer-U2. Safer-C/1 and Safer-Cl2

correspond to C and C++. Safer-Cl2 will be equivalent to C.H in expressive power. but

with less of the awkwd syntax baggage that C++ inherited from C.

A simple Safer-C program is given here as a sample:

Safer-C version 3.1

stdio-ho

<<doit>> :: func(x. y :: ht) int

block

sum :: int

surn:=x+y

cetum sum

end

<anain» :: func 0 void

block

printf("The sum is: %dn, doit(2,3))

end

2.4 Partial Evaluation

To un&rstand what partial evaluation is and what research has been done on it is very

importani as we wül use partial evaluation to improve the performance of Our units

package. Pûrtial evaluation is a program optimhion technique. It provides a uniQing

paradigm for a broad range of work in program optimization. interpretation, and

compilation. Partial evduation can improve the eniciency of programs by exploithg

known information about the input of a program. Partial evaluation has k e n the subject of

a rapidly increasing amount of activity over the p u t decade due to recent advances h t h in

theory and practice (pU88]. [CD93], and [JGS93]). A more detailed discussion of

partial evaluation wiU be given in Chapter 3. Here we only outline the basic reseûrch which

bas been done on pactial evaluation.

Partial evaluation has been successfiilly applied to declarative languages, such as Scheme

and Prolog. In recent years there is a growth in the study of partial evaluation in

imperative programs [Cha90], wey9 11, [And93a]. m953 . and [KRZG95]. Anderson

([And93a], [And93bJ) describes a partial evaiuator for a substantiai subset of

Kleinrubatscher. Kriegshaber. Zochling, and Gluck [KKZG95] describes a partial

evaluator for a substantial subset of Fortran 77. Baier, Gluck, and Zochling [B G W

investigate the application of partial evaluation to numericdiy-orienteci computation and

enginee~g applications.

Salomon [Sa1961 uses partial evaluation to support many important language hatures and

implements a partiai evaluator for Safer-C. The motivation of whg partial evaluation in

Safer-C is to replace the fiinctionality of a preprocessor. The greatest obstacle to the

modemization of C that was encountered is its preprocessor phase. Since preprocessors

are used to change source text, the machine translation of C programs into a new version

or a dinerent fom cm be blocked by even tame preprocessor statements. Sometimes the

actuai C program that is king manipulated cannot be known until specific values are

assumed for some of the preprocessor viuiabIes, and then only the program generated by

those specinc values can be manipulated, not the general fom of the pmgram. Since the

existence of a preprocessor phase impedes even simple source-to-source code

manipulation, it was decided that the preprocessor should be replaced early in the

evolution of Safer-C so that fiiture translation with language evolution would be =y.

The Safer-C translator can be describeci in figure 2.1. W e will discuss some detaii partid

evaiuation technique used in Safer-C in Chapter 5.

Source

Parser

Partial
Evaluator

w

I

Generator 0
Figure 2.1 Safer-C translator

Despite the suaessN application of partial evaluation to many fields, lew attempts have

been made to sady the @al evaluaiion of dimensional analysis. In m 8 8] , Hilnnger

describes an A& package to support dimensional anaiysis and argues for good cornpilm

to efficiently execute the package. In his paper, HiIfkget proposes using a variant record

to define a UNlTS. A dimensional quantity is dehed by

typeQUANT(&. a, &, &:INTEGER:=O)is

record V : FLOAT;

end record;

Hilnnger proposes that the compiler split the type QUANT into two parts

QUANTANTdescrim&pe and QUANT-valuealtype:

type QUM-discrim-type is

record , a, fi, : INTEGER := O ; end record;

type QUANT-valueuetype is

record v: FLOAT; end record.

Tben he extends constant folding [ASU86] to composite objefts to hancile the units

package efficientiy. Using constant folding

X := X + DELTA-X

Note: Hünager suggests that a compiler could implement the type QUANT as two types.

From this implementation we got the sept ion of the static part and tbe dynamic part of

a record. Therefoce Hilfinger m e r suggests that the compiler apply an optimization

technique such as value propagation. peephoie optimization [ASU86]. or an expansion of

the h h e functions to achieve efficient pedocmance of the uni& package.

In Hünnger's Ada package, we found the following disadvantages:

1) Because Ada does not d o w overloading of assignments, some uses of the Ada units

package are not natural.

2) Winger âiscusses constant folding only for some simple cases.

a) W i g e r dixusses only how to get the compiler implement QUANT and use

the implementation to improve che eficiency of units checking. Using partial

evaluation we can deal with more general cases.

b) m e n we expand the units package to handle more complex cases such as rationai

powers, the simple constant folding is not enough to hande units cornputation. Also

from the point of view of partial evaluation it is unreasonable to expect a compiler to

execute static statements since the compiler lacks binding-tirne information.

3) In the Ada units package. since discriminants are used when we declare dimensional

variables we have to specify discriminants. Thus dynamic units are not allowd in the

Ada units package.

Chapter 3

Dimensional Analysis and Partial Evaluation

3.1 Units System

In this section, 1 present a short review of the units system which one might k m in ü

beginning physics course mor69]. To ensure accuracy and reproducibility of a physical

quantity, it is f m t necessary to define units in which the physical quantity is measured- in

general. a unit is a basic physical quantity by which other physicd quantities can k

expresseci. There are numerous physical quantities but not ail of them are independent

Many physicd quantities cm be described in tems of a srnail set of fundamental

quantities. For example, velocity can be described in terms of length and tirne. In

mechanics, only thme fundamentai quantities are used They are length (L), mass (M). and

tirne (T), or length (L), force 0, and thne 0.

We c d the units for the three huidamentai quantities basic units. A unit which is

describeci in terms of fundamental uni& is d e d a derfved unit. The cornpiete set of basic

and &rivai uni& that are used to represent alI quantities is d e d a system of units.

According to the fundamental quantities h t are used, we can have the following six uniu

systems.

a) Mass-based systems: Mass-based system are &O cailed absolute system. In these units

systems. the fundamental quantities are hgth. mas, and the. They are

1) hiemational System (SI): In the International System. the three fundamentai

quantitics length, mass, and time are the meter (m), the kilogram mass (kg), and the

second (sec), respectively. Actually, SI has four other basic uni& for other branches

of physics. They are those for temperature (the degree Kelvin), elecuic current (the

ampere). luminous intensity (the candela), and the amount of a substance (the mole).

The meter, the kilogram, the second, together with the kelvin. the ampere, the

candela, and the mole form the seven basic SI units-

2) Centimeter-gramsecond System (cgs): In this system, the three fundamental

quantities length, mass, and the are the centimeter (cm), gram mass (g), and the

second (sec), respectively.

3) British Mass Sysiem (fps): In British Mass System, the three Fundamenial quantities

length. mas. and t h e are the fwt (fi). the pound m a s @nt), and the second (sec).

tespeaively.

b) Force-based systems: Force-based systems are &O calied gravitational system. In

these units systems, the hdamental quantities are length. force, and time. In a sirnil;ir

fashion to mas-based systems. we have cgs. k. and fps system in force-based system

sinoe the length and the uni& in each system are same. The only Merence is the change

h m m a s to force. But the mass and force c m be expresseci Li ternis of each other. The

force-based sys tems are

1) Meter-kilogram-second Force System (mks): In mks system, the three fundamentai

quantities length, force, and t h e are the meter (m). the kilogram force (kgB, and the

second (sec). respectively.

2) Centimeter-gram-second System (cgs): In this System, the three fundamental

quantities length. force. and time are the centimeter (cm), gram force (gn. and the

second (sec). respectively.

3) AmencanlBritish Engineering Force System: In this System. the three fundamentai

quantities length. force. and t h e are the foot (fi). the pound force (pf), and the second

(sec), respectiveiy.

Let us summarh these systems in a table

1 Mass-based systern 1 Force-based system
I
- -- -

cgs m k s fps 1 cgs mks eng.

Table 3.1 ITnits Sys tems

Length cm m ft
Mass gm kgm pm
Force dyne newton poundal
Time sec sec sec

Because in absolute system there are no basic units for focce, the &ze. newton. and

poruidol are &riveci units. Similarly. in gravitational systemr. there is no basic unit for

mus. The slug U a derived unit. No name bas been assigned to the cgs force-bastd musPr.

It is rigorously defmed as the mass of a body that accelerates one centimeter prr second

per second (1 cmlsec2) when acted upon by a force of one gram force (1 gB. Similady,

No name has been assigned to the rnkr force-based mars, but it is rigorously defmed as the

mass of a body that accelerates one meter per second per second (1 dsec') when actrd

upon by a force of one kilogram foxce (1 a. For the conversion of these units we have

cm m ft

(7 (7 SIUS

@ kgf ~f

sec sec sec

1 m = 3.28fr. 1 pn = 0.4536 kgm. ldyne = gm*cm/sec2.

1 newton = 1ûûûûû dynes. 1 powdal= 1.38*10000 dynes.

1 kgm = 1ûûû gm, lslug=32.2prn. lpf=ls lug*~frlsec' ,

1 g f = l g m * 9 8 1 c d s e c 2 . lkgf=lkgm*9.81m/sec2.

If a quantity can be exprwed as a multiple of another then we c d these two quantities

commensurable- From above we see that €&et and meters are commensurable.

Among the six systems, the three most commonly used units systems are the cgs absolute

system, the SI absolute system, and the American/Bntish system. Besides the six systems

we may have some other systems depending on the qe&c field of application such as

goldsmiths. h addition the* are some measurement systems used oniy in particuiar

counuies. In this paper, however. we are concerned principaliy with the SI system.

3.2 Dimensional Analysis

In physical science, physical quantities are dimensional quantities. They are represrnted by

a measure. and its units. The measure is a magnitude of the quantity and the units is a

physical meaning of the quantity. There are a large variety of the definition of dimensions

in physics There are many books that discuss dimensional analysis [Foc53], [Pan64],

ma75], and ray74]. In this thesis, we use dimensions to indicate that we are concerned

here only with the nature of the quantity and not with its measure in any p&cuIar units.

For example, whether a distance is measured in units of feet or meters. it is a distance. We

say its dimension is lengtha). Similady, we say that the dimensions of area are (length)'

or the dimensions of velocity are lengthltime. We will often use brackets [] to denote the

dimensions. Thus, in this notation. the dimensions of velocity are written as [v] = LT- '

Suppose a. b, c E Q, where Q is the set of rationai numbers. If we choose length(L), mas

(M). aod the O as the bsic quantities, then for a given quantity x. its dimensionai

b c representation is given by [XI = LaM T or [x] = (a, b, c). Ushg this notation a

dimensional quantity X is Wntten as E = (x, a, 6, c). E we choose a force-based system

then the dirnensional representation is [x] = L'F b ~ c .

There is an imporiant property of dimensions of physical quantities. The âimensions of

physical quantities can be manipuIated dgebraicaily and we c m interpret the rrsults to

provide a great deal of infoxmation about the physical processes involvecl in the situations

considered. Dimellslunaf murlysîr is the study of the nature of the relationship between the

various quantities which are involved in a physicai problem.

Dimensional analysis plays an important d e in physics and engineering. The main knetits

of dirnensional anaiysk that are pointai out by the majority of authors are: (i) to derive

theoretical relationships; (ii) to check the correcmess of the equations involved in the

description of the phenornenon under investigation; (iii) to reduce the number of relevant

dirnensional variables to a smder number of dimensionles variables; and (iv) to serve as a

bais for mode1 laws. Sophisticated study of dimensional analysis can be found in Mar951

and [Kay93]. Perhaps the simplest application of duoensional analysis is to provide a

means of checking the dimensional correcmess in a mathematical solution of a physicd

problern.

In general. let a and B be dimensional expressions. W e de- a term as

i) a, or

ii) the product of a and B. or

üi) the quotient of a and B.

In a given mi ts system. let f(x,. x, x,) = O be a &riveci numerical relationship

between the measures of the various quatities. Using dimensional analysis to check the

equation is based on the principle of dimensionally homogeneity, which im plies tha t :

Ail the terns in the equation must be expressible as the same combination of

dimensions. The exponents and arguments of transcendental functions must have

a dimension of 1.

For example, if a car starts fmm rest and moves with constant acceleration u. then the

distance traveled by a car in tirne t can be expressed as d = *a2. Let us check the validity

of this expression from a dimensional analysis approach. The quantity d on the left side h a

the dimensions of length. In order for the equation to be dimensionaily correct. the

quantity on the nght side must also have the dimensions of length. On the right side the

acceleration a has dimensions UT^, and t2 has dimensions T2. Thus. the dimension forrn

of the equation d = *at2 is

Here the uni& of tïme bave been cançeled out. Therefore d = *ut2 has dimensional

homogeneity.

There is a special quantity, we call a dimensiodess quantity- A dimensionless quantity has

dimensions L'MOTO = (0,0,0). For exampie, n is a dimensionless quantity.

3.3 Partial Evaluation

Since we will use partial evaluation as a tool to impcove the performance of our units

package we wiU give an introduction of partial evaluation in this section.

3.3.1 The Principle of Partial Evaluation

Partial evaluation is a source to source program transformation technique for specializing

pmgrams with respect to part of dieir input [CD93]. The uanslator which compbtes these

tasks is called the partial evaluator, mU; or program specializer. The following diagram

illustrates the pmess of partial evaluation.

Static input (7)
Subject)
LI- I - - Partial evaluator

6ynarnic input
L

Residual program
Pin 1 output

in2

Figure 3.1 Partial Evaluaaon Diagram

In gened, a program has many inputs calied in, . in, , --.. in, . If the program is correct

and all the inputs are known then by e x e c u ~ g the pmgram with the input, we c m get the

output (result). Usually the program is written to be general purpose and some input may

not be known. W e can classi.@ these inputs as static inputs and dynamic inputs. Sutic

inputs are those inputs whose values we know or whose values can be determined at

program speciabation the. Whereas the values of dynamic inputs are unknown or thair

values cannot be detennined at program specialization the. Such a statiddynamic

classincation is called a division. The prwess which cornputes the division of di pmgram

variables given a division of the input variables is called binding-tirne analysis (BTA). The

idea of partial evaluation is to execute those calculation of a program that depend only on

its static input, generating code (the residual program) for those calculations that depend

on the as yet mavailable dynamic inputs.

Fomaiiy. using the notation in [JGS93] we have foilowing detinition:

Let Gprograms denote the set of syntactidy comxt programs in language L. The

meaning of program p E L-programs is denoted by

'Ihe result of ~ n n u i g the program p on some input data d is denoted by

W e will use L to denote the implementation language, S to denote the source ianguage.

and T to denote the target language.

Definirion 3.1: Let p be an L-program taking as input a two-eiement Lisk and kt d , ~ D.

where D is an input set (since partial evaluation accepts both prograrns and data as input,

we assume that both p and d are drawn fimm a common set D). Then an L-prograrn r is a

residualprogromforp with respect to d , ïffllpllL[d,. d2] = IldlLd2. for dl

Definition 3.2: An L-program mix is a partial evaluator if€ for every p, J , E D, the

P*gram

Example: Consider following hiaction powero which cornputes base to the n-th power

«<poweo> :: func(bare, n :: ht) int

block

pow :: int

for (pow := 1; n > O; n-)

pow *:= base

endfor

retum pow

end

If n is equal to 3 and suppose that base is dynamic input. Then the partiai evaluation will

output following residual pmgram.

c c p o w e d m :: func(bare :: int) int

bloçk

pow :: int := 1

pow *:= buse

pow *:= base

pow *:= base

retum pow

end

This residual program is longer than original program. but acniaily it is more efficient than

the origînai one. We can use traditional optimization methods in a good optllnizing C, or

Ci+ compiler to further optimire the residual program *.

'Lhere are two kinds of partial evduatioos: oniine partial evaluation and of ie p d a l

evaîuation,

In oftline partial evaluation, the specialization is divided into two stages. The tkst stage is

the preprocessing stage which annotates ai i the variables used in the object program. WG

call dus stage the binding time analysis (BTA). The second stage is the speci;ilimtion

stage which generates the residual program according to the biding time analysis. in this

stage the specialization depends on only the binding tirne not the values of variables.

In online partial evaluation, there is no preprocessing stage. During the speciaiization. the

values of variables are considered. A detail discussion of online, otfiine partid evduation

can be found in [JGS93], or w R S 9 11.

* Note that the output of Safer-C is a C or C++ program.

33.2 Partial Evaluation In Safer-C

Partial evaluation in Safer-C [Soi961 is digemnt h m normal partiai evaiuation. For

convenieaœ. we denote the partiai evaluation used i~ Safer-C as PES. PES has features

of b th ooline and o h partiai evaluati~n~ The ciifference beiween PES and offht:

partial evaluation is the k t stage in the partial evaluation. In PES, the programmer

annotates each variable with an evaluation tirne. Safer-C as C is intended for use by

professional programmerS. Thus emphasis is placed on programmers behg able to predict

what computations will be done at compile time, and king able to control when

computations will be perfomed. The difference between PES and o b partial evaiuation

is that PES has annotation. but online PE does not Therefore in PES the pmgnmmcr has

more control than in online PE. We will discuss more about how partial evaluation is dona

in Safer-C in Chapter 5.

Chapter 4

Design

In this chapter, we design the features of a dimensional analysis package. Our goal is to let

the cornputer do the dimensional analysis for the user. From the user's point of view. the

main feaaires of the system are ease of declaration of the uni& of measure, evaiuation of

the ordinaxy arithmetic operatioas between quantities that have unïts of measure,

automatic checking of violation of dimensional coasistency, and automatic handling of the

conversion of commensurable units. In 4.1. we fust give an example to show how

programming languages use units. T'en in 4.2. 4.3. 4.4, and 4.5. we discuss severai

important features of the uni& package. In 4.6, we discuss mi ts and units computation. In

4.7, we discuss consisteacy and the dim-quant computation. In 4.8 we give the fornial

dennition of the declaration of dimensionai quantities. Finally, in 4.9 we describe the basic

structure of the units package.

4.1 An Example

In this section we give an example to show how units are used in programming languages.

In dimensional analysis, the first thing is to get the units information from the user.

Variables, constants, and parameters are not just numerical quantities; they also have units.

which the user has to declare. In Our system, we cequite that the user î k s t give the base

units. Then the user can de6ne the derivecl units, the variables. and descnbe the algorithm

for the problem. The system then perfoms the algorithm. does the uni& conversion, and

units computation accordhg to the base unit. which are given by the users. For declaring

the fiindamental units which will be used in a computation the users can just write the

following

km :: units := "kilometer"

hour :: units := tt hours"

With these fundamental units, the user can then declare a variable which h a units

consisting of fundamentai units. For example, we can declare units foor as:

foot ::= units("foot".30.48*cm).

Let us consider a simple example to see how the user can declare variables that have units

of measure.

Exampk 4.1. A car travels at a constant speed of 60 knhour. Assume that it talces 3.5

hours for the car to travel from location A to B. Fimd the distance from A to B. For solvïng

the problem. the user may Mite the following Safer-C main program.

cunain»::func () void

block

Speed:: doubleu(0.0, honiour)

Time :: doubleu(3-5, hour)

Distance :: doubleu(O.0~ km)

printf("P1ease input speed in kmlhouc")

scanf (Speed-v)

Distance := SpeePTime

printf("The distance is: ")

prinni(Dis tance)

end

In this program, doubleu is a new data type which can be useci to declare a variable of type

double-precision float that also has units of measure. The hurtion printu is an overloaded

f'unction which is used to output the quantity which has units of maure .

If we nui the program. it will print

Please input speed in kntlhour:

If the user types *then the output WU be

The distance is 2 f 0 (km).

4.2 Dynamic Dimensions

In the normai case. we wiIL specify the particular dimensions of a dimensional quantity.

But in some cases we rnay want the dimensions of a dimensional quantity are dynamically

changeable. These cases are

(1) Dynamic input

In some applications. each time a program starts to run, it may require the dynarnic input

of some dimensional quantities. In this case, if we can dynamicdy input dimensions then

we do not need to change and recompile the program. Since we are mainly using partial

evduation to improve eficiency. the dynamic input of units is not treated in this thesis.

(2) Temporary variables

Temporary variables are often used in programs. Whenever the user wants a

dimensional variable to hold values having different uni& they c m use a temporary

* In this pacticular example, since the input function scanf is used, the user could not enter

any other units.

variabIe. Sometimes, in the cornputarion of an expression we also need temporary

variables to hold the intermediate or final result,

(3) Function parameters

Functions are the basic building blocks of a programming language. They are one of the

most important features of programming languages. If a hinction is to use

arguments, it mut declare formal parameters that accept the values of the

arguments. NomiaJly when you declare fonaal parameters you have to inâicate their

types. Simüarly in dimensional anaiysis. when you declare formal parameters. you

should indicate the unin of the parameters. However, if we are not aiiowed to change

the units dynamically then the function wiU be too restrictive. It would, therefore, be a

valuable feature to ailow fonnal parameters to hold values having different units.

In our package, cases (2) and (3) are aUowed.

4.3 Conversion

In this section we will discuss some basic ideas about conversion, The details of how to

convert dimensional quantities will be discussed in section 4.7.2.

The reasons we need conversions are:

(1) To check consistency.

(2) To compute dimensional quantities.

(3) To convert traditionai or engineering uaits to SI units.

Nonnally, engineers perfocm uni& computaaon according their own tradition. then

conven the mult to the SI system. For example the uni& of the thermal conductivity

coefficient are Kcal(m - heoc)-' in the engineering uni@ system, and the units of the

themal conductivity coefficient are W/(m°C) in the SI system.

It is often the case that in a problem the units we are concemed with are not in the

given units system. We need to convert them into the same unifs system. Even with the

units which are in the same uni& system, we may stiU need to do some conwrsioa

For example, to compuie 2 cm + 3 nz we need to convert 2 cm to 0.2 m then

compute 0.2 m + 3 m to compute 1 dyne*2 gm we need convert 1 dyne to

gm*cm/sec2 then compute (1 grntcm/sec2)*(2 gm).

(4) To facilitate international trade and technical exchange.

Let x and y be dimensional quantities. And x can be converted to y. To convert x to y wt:

need to know the relation between their units. For example, x has uni& u,. y hm units r d , -

and the relation beoveen u, and u, is

U, =a%.

where a is a real nmber. The a is called the conversion factor of u,.

Using the dation between u, and y or their conversion factors, we can convert the

meamernent benveen x and y. If m, is the meamernent of x and m, is the measurement

of y, then the conversion between tbe measurement of x and y can be given by a fiction f

"i =A-).

nie huiction f which is commonly used in physics is

m, =an++b, (4- 1)

where a, b are red numbers.

When we deal with conversion, we have two possible strategies:

1) AU dimensionai quantities are represented internally ushg only the chosen base units. In

this method, derived uni& can be used. but htanally they are represented in base uni&.

For example, in the cgs system, 3 inches WU be represented as 7.62 cm.

2) The second method is to allow that denved units be used in the intemediate

computation. In this method if we want to compute 2 inches + 3 inches then the answer is

5 inches. In the computation there is no conversion. Of course if we work in the cgs

system we wi l l ultimately convert 5 inches to 12.7 cm.

Each of these mediods has some advantages and disadvantages which are discussed in the

foilowing sections (4.4).

4.4 Precision Control

W e mentioned that there are two stratepies which could be used in conversion. a) Ali

dimensional quantities are represented intemdly using only chosen base units. b) Derived

units are used in the intermediate computations.

The advantage of the fist methocl is that it is easy to implement The disadvantage of this

method is that the programmer does not have sufflcient control over the precision of

dimensional quantities. which may lead to an accumulation of floating point error. The

discussion of error propagation can be found in some numerical analysis books [Atk89].

Let x, and y, be no error numbers, x, and y, be the approximation of x, and y, Le.

XT = X* + C r y* = y* +q,

where e and q are errors. The rehtive error in x, is denoted as:

e l () (X - X I XT.

In general, we have foilowing results [Atlr89]:

ReUx, y,) =ReUx,) +ReUy,).

Re1 (x,ly,) =Re1 (x ,) -Re1 (y,).

Rel(x,f y,)=Rel(x,)f Rel(y,).

A process of computation can be descrïbed as foiiows:

1, Get some initial value,

2. Execute some algorithm to manipulate data,

3, Get resuits,

In a simple cornputations. if some of the initial values have a snall error the accwnulated

emor would not be SigniFicant However, in some computations. especiaiiy if large systems

or cornplex arithmetic are involveci, the errors of the initial values are crucial. In this c m .

The emur of initial values may generate totally wrong results.

Genedly speaking, in units computation we cannot avoid conversion (which may cause

some munding error) but in some cases we can reduce the error as much as possibh. For

example:

1) Suppose that ail the uni& we use are in a units systern A and we want the results to te

expressed in another units system B. In this case we can do the computation in uni&

system A first and then convert the results inb the rmits system B. Thk way is better than

first of converting ail the quantities in units system A into uni& system B and thrn

perfoming the cornputations in uniu system B. Although ultimately the result of a

computation will be converted to the q u i r e d base units system the intemediate

computation will not produce any roundhg emor caused by the initial conversion arror.

2) If there are mixed uni& in a computation then we c m o t avoid conversion. In this case.

dowing the use of derived units is better t h not allowing the use of derived units. Theil:

are two advantages: one is that there would be no muading error since there would he no

conversion; another is that the user could control the order of a computation. For

example, in the expression E, + --O +En the user could group the E~ (leut) into sets

with identicai units. and simply add these expressions togethet. There is no conversion

necessary. The user can also write E~ +E as E~ +E, . The order of computation here

may matter since it may mean different conversions are appiied. For the first expression

the systexn may convert E to E , . For the second expression the system may convert E~

to E ~ . If we use only the k s t method then it does not matter in which ordar the

expression is written. We wiil get the same resuits.

4.5 Rational Powers

We know ihat if x is a dimensional quantity then the dimensions of x are

[x] = ta i U b f = (a, b, c).

In the existing papers, a. 6. a d c can be only integers. This is not enough for practical

work. For example in magnetism, the force between two poles c m be written as

f = r ').

where m and m' are the magnetic strength of the two poles, r is the distance between the

two poles. 1Ip is a constant of proportionality and depends on the medium and the units

chosen. Now let us consider the dimensions of m. If m = m' and disregard the dimensions

whenœ ni=,/-.

Force has the dimensions given by V] = L M T - ~ .

Therefore

To express such rationai numbers we may declare a. 6. and c as Boat or doubk Therefore

3 1

we will have dimensions such as L'M'T-' = (L5, 0.5, - 1). A rational number

represented in the fom of a floating-point vdue has two drawbacks. First, it is hard to

read. Second. it may have some emr (for example the value 113 can not be stored exactly

as a floating-point value). To make the dimension more readable and eliminate rrror. wc:

may use a rationd aigorithm to manipulate the rationai notation of a cational number. This

cannot be done at compile tirne in any existing dimensional packages.

Let x = a/b and y = c/d then

x + y = (a * d + c * b) / (b * d) , x - y = (a * d - c * b) I (b *d),

x * y = (a * c) / (b *d) , x / y = (a * d) / (b *c) , and xr=ar/b'.

where r is a rational number.

After some computations we may use the division aigorithm to simplify a rationai numkr.

Dennition 4-1 An integer x divides an integer y if the= exists an integer q such that

q-x = y.

W e use x I y to denote x divides y. When x I y. we say that y is a multiple of x and x is a

divisor of y.

Definition 4-2 Let a and 6 be integers, gcd(u, 6) = max{c: cla. db). The Cunction

gcd(a. 6) is called greatest-contnwn-divisor @cd).

Let x = a/b be a rationd nurnber. If gcd(a, 6) = 1 then x is in a non-reducible form. If

gcd(a, b) = c + 1 then x cm be simplifiecl as x = (o/cyb/c).

F i g the greatest-common-divisor is based on the important algofith (Euclid's

algorithm). Using Euclids algorithm we can easily h d the greatest-common-divisor- A

complet discussion of Euclid's algorithm can be found in mu8 11.

Example 4.2 Let a = 525, b = 231. According to the division algorithm we have

525 = 23 1*2 + 63

231 = 63'3 + 42

63 = 42*l+ 21

42 = 21*2

Therefore gcd (525.23 1) = 2 1.

4.6 Units and Units Computation

In dimensional analysis, uni& are the hindamental components. To perfonn dimensional

analysis we need to have the units infocmation. The main Monnation we should have is:

1) The name of the units such as inches, kilogram. and dbllars. The units' nme

can be expresseci as a string.

2) The conversion factor which is used to convert between dimensionai quantities. To

store the conversion factor we ne& only one floatïng point or double precision floating

point variable.

3) nie dimension of a dimensional quantity. There are two kinds of units: basic units

and deriveci uni&. In chapter 3. we have seen that a dimension of given dimensional

quantity x can be denotexi as [x] = (a, b, c), where a, b. and c are rationd numbers.

We have decided to use rational notation to express a, 6, and c. Therefore wr

should use a two-dimensional array to store the dimensions.

4) The huictions which am used to manipulate the units. Normally there are two kinds

of functions: the hinctions which are used to get idormation about a unit, and the

fuactions which are used to manipulate the units. The functions will be introduced

la ter.

AU the idormation given above is about units. T h e r e f o ~ we may use the foilowing

structure to replesent units.

1 conversion-factor 1

f unctions

dimensions 1
Figure 4.1 Units Diagram

Note the dimensions component in the diagram is a two-dimensional array used to hold

the power of each dimension. The trame c m be easily expressed by a class or a structure

in an object-orientai programming language Thus if u denotes a units class then we c m

use u.name to denote the field units-name, u-cf to denote the field conversion-factor. and

a d to denote the dimension of u. Let us consider some examples, the units inch and d s e c

can be s tored as

1 inch 1 1 velocity

Figure 4.2 Units inch

Note here, in the ftame inch, the dimension is stored in the fonn of cm. The units

exponent is stored as a rational number. Since the exponent of cm is 1 it is storrd L/ 1.

Using this representation of units. we then can discuss computation between two units.

Let u be a unit (base or derived unit), r be a rational number, u, and u, be base units or

denved units. The ôasic computations on units are u,r, el*%, and u/u, which are called

composite witr. To compute composite uni& there are two components which we n e d

to calculate.

The first component which is needed is the conversion factor. We have mentioned that we

allow Our systern to automatically perforrn the conversion of commensurable units. For

example, suppose x = 3.5 cm. y = 2 in we want to compute x + y. The users would not

need to converî the units. They would only need to give the relation 1 in = 2.54 cm. Then

the system will automatically do the conversion and perform x + y. To do the conversion

an important thing to laiow is the conversion factor of the units. We will mach a

conversion factor to each unit. A fundamentai unit of the chosen standard units system has

a conversion factor of 1. nie derived units have a conversion factor which is given by a

declared relation. For example. if we declare 1 in = 2.54 cm then we set the conversion

factor for B to be 2.54. The conversion factors of composite unifi are fomed as foilows.

For u = U , ', the conversion factor is (u, -cf)' .

For u = ul* u, , the conversion factor is ul.cf * u, .cf.

For u = ul/%. the conversion frtor is u,.cfl% -6

Note hece that for the cesult units of computation. there is no uniu name assignd

Because this is an intermediate riesult we do not need the name. The only thing which we

care about is the conversion factor and the dimension.

The second component which needs to be computed is the dimension which is computed

as foIlows:

1) For u,r.Thedimensionis f(r*u,.d).

2) For ul *g . The dimension is ffu,.d + u, .d),

3) For u,lu,. The dimension is Ku, .d - u, .d).

where f is a function (a Euclid's algonthm) which simplifies the resulting dimension.

For example, if the base units system is the cgs system. x denotes the unit sec and y

denotes the unit inch then x-cf = 1. [x] = (0,O. 111) and y.cf = 2.54, M = (lI1. O. 0).

Therefor (y/x).cf = 1/2-54 = 0.3937, Ly/x] = (111, O, -1/1).

Note that in Our meihod we require that if we declare a derived unit which hm devance

to other uni6 then the relevant units have to be previously declared. This requirement is

reasonabIe since when we declared the derived units the declaration involved some

computation. For example if we declare x :: units("uichl', 2.54*cm) then the system will

want to compute 2 . 5 4 + a If the cm is not declared tben the system wiU cornplain that cm

is not declared-

4.7 Consistency and Dim-Quant Computation

IEaving discussed units. let us consider how to check the consistency of dimensional

quantities. how to convert dimensional quantities which have different units. and how to

perfonn aithmetic operations between dimensional quantities,

4.7.1 Consistency Check

In a staticaily typed programming language, each variable has a type. Using the type

information we can detect the type errors. Sunilarly, when we consider computing the

quantities which have units of measure. the system should detect uni& inconsistency

errors. For example, we cannot add two quantities which have ciifferent units of measure.

If t denotes the tirne in second. s denotes the area in m2. and v denotes the velocity in

km/hour, then the following statements are not correct:

in the condition statement, we cannot compare t with s as they have dinerent units. In the

assigrnent statement, the dimensions of lett side and nght side are incommensurable.

4.7.1.1 The Comistency Check Rules

In our system. a consistency check is based on the principle of dimensionai homogeneity.

Let x and y be dimensional quantities, and r and p be rational numbers. Then the check is

done as foUows:

1) x + y, or x - y if and only Ex. y are dimensïonally homogeneous.

2) x := y if and only i f x , y are dimensiondy homogeneous.

3) For function invocations, if the fomal parameters and actual parameters have

dimensions then they must be dimensionaiiy homogeneous.

4) x, y are comparable if and only i€x and y are dimensionally homogeneous.

5) Exponents and arguments of the tramendental Cunctions (sin. cos, log etc.) must be

dimensionless. It is possible to allow degrees used in these functions.

4.7.1.2 Iteration

The assignment operator should be discussed in more àetailed. Let x := y bc: an

assignment statement in a program. According to the d e , the system wiU give an error

indication if the x and y are not compatible. In some cases. we may want the assignment to

be foccibly perfomed. Why would we want this? The reason is that sometimes we want to

use assignment d u ~ g iterative multiplication or division, Such iteration is a an essential

feahire of many important algorithm. W e do not want lose this important Ceam because

of the introduction of units. For example. to compute the base to the n'th power we may

use folîowing iteration (Notice that the buse is a dimensional quantity):

e p o w e r r s :: func(baie. n :: int) int

block

pow :: int

for @ow := 1; n >O; n-)

pow :=pow * base

endfor

mum pav

end

In the assignment pow := pow * base, obviously the left side and the right side have

ciifferent dimensions. Thus accordhg to our dimension checking de. the system will

reject the assigrment. Thecefore we need a special way to force the assignment to k

perfonned. There are many ways to do this.

1) Use a special "=" operator.

2) Use cast In UC++ programming language, if x is an integer and y is a Boat then we

can use 0 to cast x as foUows

(float)x := y.

Thus a natural way is to use a cast operator. However, in iteration such as x = x * y. the

cast c a ~ o t be directly used since the lvalue of x will be used in the cight operand. If a

cast ued diriectly then &ter casting the units in left operand x are changed and the units

of x in the nght side will also be changed. Also in cast we have to indicate that what type

we want cast. Xn dimemional analysis. to indicate the units which we want to cast to we

need to do the computation To overcorne the difficulties we use the overloaded

operator 0 and introduce another temp variable to do the cast as follows:

tempo

temp := x * y

xo

x := temp

where 0 is an overloadeâ operator which changes a variable accept any dimensions.

4) For some special iteration such as f i n g the exponentiation we may use following two

me th&:

a) Introduce an exponentiation operator **.

The exponentiation operator is provided by many languages such as Ada. Fortran. and

Algol but no exponentiation operator is provided by C or C t t programming language

because these hguages were intended principdiy for systems rather than scieniifc

programming. We feel that a language intended for scienafic computation should

provided an exponentiation.

b) Duectly use the operator *:=.

h our package. for exponentiation we use *:= operator.

4.7.2 Conversion of Dimensional Quantities

To perfonn a computation involving dimensional quantities, a conversion may be involved.

In the following sections. we fmt dÏscuss how to conven dimensional quantities which do

not involve temperature. For temperature conversion, we need special attention; see

section 4.7.2.2.

4.7.2.1 Conversion Measurements

In this section we discuss how to convert the measurements of dimensional qrüuitities. The

main conversions that need to be cons ided are:

A) Conversions for expressions.

Usïng conversion factors we can convert any measurement in some unïts to r

measurement in the desired uni& if their units are commensurable- Let x be ri dimensional

quantity, x, be the measurement of x, x, be ihe uni& of x y be the equivaient dimensional

quantity in the unit y,, and z be their equivalent dimensional quantity in the standard

system. W e bave :

x,*x,.cf = zq = yq*yu.Cf.

Thus if we want to convea y to x then

Therefore we can cornpute x 0 y as foilows (where the symbol 0 denotes an arithmetic

operator. assignment operator, or relational operator).

1) Check if the dimensions o f x and y are the same. If they are same then the units ofr

and y are commensurable otherwise they are not commensurable.

2) If the units of x and y are commensurable then convert the measurement of y to the

measurement of x and perform xo y

Le.

where x 0 y has uni& of x.

If unit x, belongs to base system then xu.cf= 1. Thus

(x 0 y I q =xq O (Y * *yu-cf)

B) Conversion for function calls

In gened, we do not require that the user indicate the units of the formai parameters.

However. if the fomal parLimeters have their units spc i f î ed then the actud parameters

should be converted to the uni& of the fomal parameters. For function calls. the

consisiency checkhg and conversion should be done at partial evaluation tïme.

4*7.2.2 Conversion of Temperature

In many cases, the conversion fwictions for measurements involve only one constant

factor such as the case b = O in formula (4.1). In this case it does not matter what

conversions are done. We cm always compare the results of computations in different

systems. In some cases, however, the conversion is sornewhat more complicated. as, for

example the conversion between degrees Celsius and Fahrenheit In this case. we cannor

do the conversion arbitrarily during cornputation since we cannot compare the computed

result in different systems.

Let us consider the example of computation t, I tf, where t, = 3°C denotes a

temperature in deg~es Celsius, t, = 41°F denotes the temperature in degrew Fahrenheit

The conversion function between degnxs Celsius and Fahrenheit is

If the cornputation is done in Celsius then we have

If the computation is done in Fahrenheit then we have

The reason why the iesults are different is that the cesulu are in different scale systems.

There are two ciifferences between the two scale systems. First, the ongins are different. In

Celsius, the freezing point of water is 0, but in Fahrenheit the freezing point is 32. Second.

the size of degrees is different. We use Co to indicate the siu: of degrees in Celsius.

Similady, we use F to indicate the size of degrees in Fahrenheit The size of one degret:

between Celsius and Fahrenheit satisfies the relation

To make sure the correct computation is performed between quantities which klong to

diffezent temperature-sale systems we could use the following strateW. Before doing any

computations, we convert a l l the temperature quantities into the same scale system (For

example KeIvin)- Then we perfonn the computations with no conversion on tempentures.

The conversion between different temperatures c m be done by means of a function c d .

For example, in a computation if there is a quantity which is Celsius degrees and the

temperature unit used in the base system is Kelvin degrees, we then cm define the function

c-CO-k which converts Celsius degrees to Kelvin degrees as follows:

<~cctotok >> :: func (t , :: float)

block

r e m (t , + 273)

end

Ushg this huiction then we c m say x = doubleu(c-to-k(23.4)- K-D), where K-D denote

degree in Kelvin.

We have seen that there is a distinction between indicating the size of the degree or

temperature interval, Co. and the temperature OC. Since there are 100CO corresponding to

180FO the size of one F" must be 5/9 times the size of one Cot or

SC0 = 9P.

Notice also that the size of one degree Co is same as the size of one degree K0 i.r.

Co= KO.

Since the conversions between C'. P. and KOonly involves one conversion factor, we

could treat the size ofdegree (Co. P. or KO) as normal units such as cm, in, and m.

Let us consider an example in which the size of the degree is used.

Exampk 4.3 An aluminum plate at 68.S°F has an 8.00-inchdiameter hole in it What is

the diameter of the hole when the plate is heated to a temperature of 150°F? wor69].

Solution: To solve the problem. we may apply following equation

D2 = Di(1 + 2 a At),

where the a is the ünear expansion coefficient of aiuminum that is 23.8 * 1 o4 1 Co. D,,

and D are respectively the initial and expanded diameters of the hole, and At is the

temperature difference. Here we have

a = 23.8 * 10d /Co = 13.2 * IO4 1 P, (Co = 1.8FO)

At = (150 - 68.S)P,

and D' = 8.0 in*8.0 in*[l + 2*13.2*10d*~t / PI

D = 8.01 in,

4m7m23 Alternative Techniques

It has been suggested by professor Meek* that a dimensional analysis system should forbid

the programmer h m coding some operations on units with an arbitrary origin. such as

temperatures and dates. For instance, the system should forbid the addition of 21'C and

15T or of 1970AD aad 1990AD. Such a restriction wouid, however, prohibit simple

computations such as nndiog average temperatures, (T, + T,)/2, or interpolating dates,

(3 * 4 +5* D2)/8. The question of how computations on uni& with arbitrary ongins

should be restricted is not at ail simple, and is beyond the scope of this thesis. Meek

x 2 - y2
hunself has shown bat recognizing the equivdence of such formdae as x-y and

X + Y

is beyond the capabilities of pure dimensional analysis.

4.7.3 Computation Involving Dimensionai Quantities

Now let us consider computations involving dimensional quantities. From the discussion

given above, we have seen that the system should have the ability to perform ordinary

arithmetic operations between quantities that have units of measure. Velocity multipliai by

time should give us distance. Kilognms plus kilograms should give kilograms.

* Dereck Meek, in personal communications.

Let x and y be dimensional quantities, and r be a rational number. The operation xoy c m

be computed as foliows:

(1) If 0 denotes "+" or I":

If x and y are commensurable

then (

b) retum temp,. xy

1
else (report error in +, -).

(2) I f 0 denotes "*" or "/" :

If x and y are commensurable

then (

b) temp, = xU0x,

1
else (

a) temps = x,oy,

For example. i lx = 3 in. y = 2 na, and the base system is cgs then x has the units in with

conversion factor 2.54. y bas units m with conversion factor 100. Thus

xS, = 236.22 in2,

2 where temp, = 236.22, temp,,.cf = 6,4516. and temp,.d = cm .

Note that each unit has a conversion factor, therefore it does not matter what uni& x and y

have; the computation of units is automatically done in the standard uni& system.

4) For the operation r7F. where r has no uni&:

Since r has no units. the units of the result are the sme as the units of x.

5) For the assignment x := y:

eise i f x and y are commensurable

Y" -S then { x , = x, 0 (y , *- 1, x. = Y,}
x, -cf

(in our package we should implement aU the operators including -:=, *:=. +:=. ++. --. and

relational operators which are defined in Safer-C)

4.8 Notation Design

In the dimensional analysis package, the unis are declard by member Eunctions. The

syntax for declaring units is given by the foliowing context-free grammar rules. Note that

These grammar des show how to use unis of measure, they are not actuaily pan of the

Safer-C grammar. In particular units and doubleu are type names not reserved words.

units + b-units :: units := "units-name"

I derived-mits :: units (%nits-name", c-mirs)

rational-number

unii3-t * unh-t 1 units_t / uriib-t 1 units-t A r_number

I float-number * units-t

base-units 1 derived-unifi

To declve a dimensional quantity we use the following syntax:

Example A4 Sample use of units:

cm :: units := "cm"

sec :: units := "sec"

in :: units("inchW ,2.54*cm)

x :: doubleu (23.4, cdsec)

4.9 Package Design

The mi ts package is designeci for Safer-C to support dimensional analysis. In our method.

we could use structures or classes to represent the uni& quantities. use panmeterized

types to initia1i;re the objects. use operator overloading to perform the computation

between quantities with uni&, and use partial evaluation to perî'onn the dimensional

consistency check and units computation at compile time. Basically. in the dimensionai

analysis package there are two kinds of classes: the uni& class and the doubleu class. The

unis class is used to express ôasic uni& and derived units. The doubleu class is used to

express aU the double precision quantities which have units. Similarly we c m define Boaru

to express float quantities which have units. In our system, there is a ciifference between

pure quantities (that means no units) and dimensionless quantities since pure quantities and

dimensionless quantities are of different data types.

The structure of the units class is as foliows, W e define the maximum dimension

(MaxDim) as 7 because the international system oniy has seven fundamental quanuitities.

We cm fieely define MaxDUn according to the specific use. In the units class, the u-nams

is the printable name of thz unit aad u-exp is a two-dimensional integer may used to store

the exponents of the units. The field u-factor is the conversion factor.

For example, if we use a class to denote hch then in the class inch the u-name is "inch".

the u-fxtor is 2.54, and the u-exp is cm.

MaxDim :: const int := 7

:: class units{

u-nme :: -> char

u-exp :: [Z] WaxDim] int

u-factor :: fioat

public:

! ! Cons tructors ->char

«wi i ts» :: func(->char) void

«units» :: func(->char, units) void

! ! Destructor

<<-units» :: func() void

:: class doubleu {

v :: double

u :: uni&

public:

! ! Constructors

<<doubleu» :: func 0 void

<<doubleu>> :: funç(doubie; units) void

-9.9

1

By default the constnictor for doubleu wül initidk the dimension of object doubleu as

zero. Using operator overloading we can dehe operators to perform computaticms on

doubleu as foUows

«<op O>> :: €unc(rel a :: doubleu; ref b :: doubleu) doubleu

blwk

temp = a 0 b (we need to f2.l the body which is given in 4.7.3)

tetuni temp

end

When we perform operations such as multiplication, addition and subtracûon etc. we need

to check dimensional consistency. The compatible function is defmed as follows:

«compatible» :: func(re€ a :: units. ref b :: uni&) int

block

i :: int

€or(i = O; i < MaxDim; i++)

if(a.u-exp[0] [il =/= b.u-exp[O][i J and

a-u-exp [i] [il =/= b.u-exp[1] [i J)

return O

endif

endfor

return I

end

Chapter 5

Partial Evaluation for Dimensional

Analysis in Safer-C

We have seen that partial evaluation is a program specialization technique which cornputes

the static part of the program and generates a residual program for the dynamic part- In

this chapter, we will investigate how partial evaluation can be applied to dimensionai

analysis. h particular, we are interested in using, the techniques for the Safer-C languap.

The aim is to use partial evaluation to irnpmve the efficiency of a dimensional analysis

package. The discussion focuses on partial evaluation of static stnictures and pointers. An

important technique that c m be used for the partial evaluation of a dimensional analysis

package is presented.

5.1 Evaluation Annotation in Safer-c

The evaluation thne plays an important d e in Safer-,. For example. i can be a translation

the integer. swn can be a nui tirne float, etc. In Safer-C. several features that are

important for partiai evaluation are present:

1) Symbois cm be annotated at their dechration with a designation of their evaluation

time.

2) The evaluation t h e of symbols is propagated through a program to determine the

evaluation time of expressions, and control st~~ctures.

3) Control structures c m be additionally annotated with an evaluation time to assist the

compiler, or to clvify the programmer's intentions.

4) Declaration are treated as compile-the "executable" statements.

More details about Safer-C can be found in [Salgq.

In this chapter, we will consider the tenns static or known equivalent for translation time

data, and the tenns dynamramrc or unkmwn equivalent for mn-time data Pointers are an

exceptional case which is dimissecl in section 5.5.

5.2 Partial Evduation of Sîructmes

In dimensional analysis, a dimensional quantity has two parts: measure and units. The

computation behveen dimensional quantities has two paris: computation on their measure

and computation on their units. In rnany cases, the measure of a dimensionai quantity is

dynamic but its uni& are static. Therefore the question is whether we can remove the static

computation part and leave only the dyoamic computation part at run-tirne. If we c m do

this then we wiil get a fast nin-the program. A dimensional quantity cm be expresseci by

a structure. If we treat the whole structure as single entity then we d lose the static

information. To do the partial evaluation, we need to discover the static infomation. in

the foliowing, we show how this can be done by annotating different evaluation times for

different fields and using a splitting technique to discover the static information.

A structure is a heterogeneous aggregate of data elements. For example we c m declare a

s :: stmct {
i, j :: int
k, 1 :: double

1

In a structure, if some fields are static and some fields are dynamic then the structure is

called a pamàlly static structure or mixed sîmciirre. In Safer-C we need to annotate a

structure with an evaluation. If ali the fields of a structure are static then we can annotate

the structure as a man-tirne structure. If al1 the fields of a structure are dynmïc then we

c m annotate the structure as a nui-the structure. However how should a p d d y statiç

structure be annotateci? We cannot annotate it as tran-time since there are some tields that

are dynamic. If we annotate it as behg nui-time then the information in the static fields

will be lost. The proper choice is to annotate mixed structure with a mùced-evaluation

the.

Concephiaily, we say that if some fields of a stnicture are translation-the tields and

others are mn-the fields then the structure has an evaluation cime of both run-time and

translation tirne denoted as (T x-x T), where T is the evaluation rime of structuii='s fields.

For example, a structure {x :: uan in^ y :: float} could have evaluation time (t x r)

meaning that x is a translation thne field but y is a nui time field

NorrnaUy, a tran-time variable exïsts ody at compile-the. Afkr compile-tirne the trian-

time variable will be removeci. To do partial evalution For paRiaiiy static structures wc:

could use a splitting technique. This is because if we define

s :: stnict {
i, j :: tran int
k, 1 :: run int

1-

then the definition of s would be equivalent to the foiiowing two definitions:

st :: tran stnict { i , j :: kt)

and
sr :: run struct {k, 1 :: int}

The object st would exist only at translation-the, anâ the object a would exist only at

cm-time. Their treatment would be same as for other purely tran-thne or run-time objects

Therefoie we cm split a structure s into two stnicnires: st which contains the dynamic

fields and sr which con- the static fields. AU the accesses to the dynamic fields of s will

be changed to accesses to the corresponding fields of st. Ali the accesses to the static

fields of s wiU be changed to accesses to the correspondhg fields of sr.

By splitting we separate the static part and dynamic part of a partial static structure. Thus

we can use normal partial evaiuation to perfonn relevant opentions on the static feids.

5.3 Compact Representation of Units

By splitting we can &O Save some space. For example. the powers of units that arr:

encountered in practice are not very large. One can assume that they are between - 128 and

127 [Hi188]. To store the units we need seven 8-bit bytes since in SI there are seven base

units. For handling rationai powers, we add seven more 8-bit bytes. The units then cm hr

compacted into fourteen 8-bit bytes. Although the space used by several units are not

large when we use an array of dimensional quantities. the space used for units will kcomr

noticeable. In many cases, aii the units used by the climensional quantities in an array ;ire

the same. In these cases. there is no reason to aiiocate space for the units of =ch

dimensional quantity. For example.

smct clicquant (
v :: double
u :: smct uni&

1
y :: [0..100] struct dim-quant

By using the spitting technique we wil l get

yv :: [O..lûû] double
yu :: [O..lûû] smct units

If aU the units are the same, we do not need to Save all the same units in an array yu, We

can compact yu into one variable cyu :: stnict units.

5.4 Function Specialization

In our dimensional analysis package, ai l operations are overloaded operator hinctions.

therefore the main problem to be considered in using partial evaluation for dimensional

analysis is the specialization of the functions for structures with some tran-the memkrs.

5.4.1 Partial Evaluation of Function in Safer-C

Because the basic structure of Safer-C is the sme as that of C and C++, a Saîkr-C

program can be seen as a set of modules. Safer-C's main structural component is the

hinction. AU Sder-C programs consist of one or more huictions. Therefore partial

evaluation of a Safer-C program means the specialization of Sder-C functions. Saiix-C

provides three Lia& of partial evduation of f'tions [S21%].

1. Replacement by Result.

This LUid of partial evaluation is done if:

a) The values of all of the %tuai arguments and e x t e d variables accessed by the

fimction are known at translation-tirne.

b) Either the sou= code for the function is available at translation- tirne, or the object

code for the huiction is avdable and a dynamic loader is provided to the translater.

C) The function has no side effects-

2 In-Line Expansion.

This kind of partial evaluation is done if:

a) The source code for the function is available at translation-time.

b) The function is declared to have translation-time evduation-

3. Function Specialization.

This kind of partial evaluation is done if:

a) The source code for the function is available at translation-tirne.

b) The function is declared to have run-time evaluation,

C) Some of the fonnal parameters of the function are declared to have translation-tirne

evaluation.

5.4.2 Partial Evaluation of Functioos

with Structnred Parameters*

Wben a huntion has stnicaires as its parameters we can also split the parameters.

C o d e r a structure type with mixed-time fields such as:

MixedTme :: type := struct {i, j :: tran int
k, 1 :: run int

1

Such a type declaration would be the same as declaring two types that are dways usd

togethet:

MixedT'met : : type := tran smic t { i, j : : int }

MixedTmer :: type := run smct {k, 1 :: int}

With such a mixed-time type dechation, the declaration of object s given in section 5.2

would be the same as the following declaration:

s :: Mixedmme

Consider also a function m w v tûat accepts a parameter of type MixedTime and retums

type void:

conrfwtv» :: func @ :: MixedT'ime) void

* In other partial evaluation systems, a parîiaily static structure is not split but specialized

for its static fields [And93a]-

Such a function declaration wodd be the same as the Function declaration

«en#hm> :: fmc (Pt :: MixedTimet; pr :: MixedTimer) void

Since the formai parameter pt is a translation-time value. each invocation of function

mrfunv wouiâ be changed into an invocation of a newly created function rntfhvj t that

has been Speciaiid for the value of pt at each invocation. This is the same ueatment that

is currently given to functions with tran-tïme fonnal parameters. Thus the invocation of a

functioa with a parameter of a mixed-time struct type is the same as the invocation of a

hiaction with two corresponding stnict parameters. each with the tran and mn parts

respectively of the original parameter.

When a function retums a cesuit of a mixeci-time struct type we can usa Mowing

technique to deal with. In this technique, eveiy huiction returning a partidiy static result is

split into two fuactions. one rehuning the static part, and one rehiming the dynamic p a n

The static part depends only on static arguments and thus c m be M y computed at

spialilation tirne. For example:

<--m~> :: tran func (i :: MixedT'me) MixedT'ie

The function c d :

s :=fimc_mt

wodd be the same as the two calls:

St :=fUnnmt-t (fi) !! Cornpute tran-time part of S

Sr :=firnnmttr Ur) !! Compute nin-time part of S

Since the tran-time part of S could not depend on any m-the parts of j, the specialized

functi~nfiur~rnt-t codd be created to compute those tran-time parts using only the an-

time parts of j. The fimction fwr-mt-r wouid be a version of h m ? , bat h t been

specialid for the pactïcular values for the tran-the parts of j and accepts the run-tirne

parts as arguments,

5.4.3. Partial Evaluation for Overloaded Operators

For nocmai arithmetic operations and hmction calls on stnictures, there is no prohlem with

splining a structure. However when we consider bct ion cas , especially an overloaded

operator huiction. and pass structures to the function, the situation is somewhat more

complicated. One of Our goals is to use partial evaluation for dimensional analysis. In

dimensional analysis. the functions mainly used are overloaded operator huictions. Thus to

apply partial evaluation to dimensional analysis there are three new features which we

shodd deal wiih. One, the dimensional quatities are pda l ly static objects. Two. the

function calls require that whole structures be passed to the function and requirt: the return

of whole structures. Third, the operators have precedence. Let's consider an exampb *:

Exampie 5.1 To compute z = x +y. we can defuie operator + as follows:

Mixdime:: type := structA {i, j :: int

k, 1 :: tran float

x, y* z

* In this and later examples, if the evaluation tirne is omiaed it defauits to "run".

« o p +» :: tran hnc(a :: MixedTbne, 6 :: MureaT'ie) MureciTime
block

temp :: MixeàTie
.-.- ! ! Perfonn a+b
r e m temp

end

From the example we see that the bction falls and fur~tion retums both use the whole

structure. By using the evaluation-time splitting technique discussed above, the dynamic

part and static part are separatea. Thus nomal partial evaluaaon techniques c m k

applied Notice that &ter partial evaluation the overloaded operator huiction h a been

spefialized. We cannot use the operator notation (such as + and +) anymore.

For example, in example 5.1, if we split smct x, y, z as foilows

xij{i. j :: ht}. y i j (i , j :: ht) , and rij{i, j :: int}

xkl{k, 1 :: tran float), yW{k, 1 :: tran float}, and &(k, 1 :: tran float}

zv := xly + yïj
d l : = xkl + ykl.

then we cannot find the operator + for xij. yij and operator + for zkl. ykl since the oparator

function + has been spececialized

To satisS the requirements of overloading operators and to do p h a l evaluation we use

the following technique.

In an arithmetic expression, whenever an overloaded operator is executed we inuoducc: a

aew local variable to store the mult of the residuai function. If an operator has highrr

precedence it will be execoted earlier. Using this method the overloaded operator is

~placed by a residual fiinction. nie preceûenœ of the operator is solved by introducing a

new local variable,

Using the techniques discussed above. we can descnbe partial evaluation processing as

having two phases as follows:

The pre-processing phase (splitting stage)

In this phase, we spiit Safer-C's structures according to their evaluation-tirne hascd on the

techniques which we discussed above. The parameters are spüt Ail structure variables are

split the assignrnent statements are ~piaced by two staternents. the accesses of

structure members are replaced accordhg to the split type structures.

Partial evaluation phase

During this stage we do normal p h a l evaluation Le. calculate, remove the static parts and

generate residual code for the dynafnic parts. Note that afier partial evduation overloaded

opentors are replaced by Rsidual functions. The precedence of operators cm be resolved

by the introduction of new local vanables if necessary.

Example 5.2 Consider the foiîowing program:

<UII W> :: funCo void
block

Doubleu :: type := smct {

v :: nin double
u :: tran uni&

1
s, x, y, z :: Doubleu
s :=x + y42

prinm (d
end

To perfonn partial evaluation on the program we tirst split the program as foihws:

<anain» :: funco void

block
Doubleut :: type := tran struct {u:: units}
Doubleur :: type := cun stnict { v :: double)
st, xt, yt, zt, newlt, new2t :: Doubleut
sr, xr, yr, u, newlr, new2r :: Doubleur

newlt :=flt(yt, a)
newlr :=flr(yr, r)
new2t :=fSt(xt, newlt)
new2r :=flr(xr. newlr)
st :=flt(riew2t)

sr := pr(new2r)
pcintu2(sr, st)

end

w h e ~ flr is the residual hurtion of the operatoi* with respect to yt and zt. f2r is the

residual hinction of operator+ with respect to the static parts a and newlt. f3r is the

residual hurtion of operatoc= with respect to the static parts st and newtt. flt. Pt. and

Pt are obtained by cemoving al l the dynamic parts h m operator+, operator+. and

operator:= respectively.

« o p +» :: tran hnc(a :: Doubleu. b :: Doubleu) Doubleu
block

temp :: Doubleu
x :: tran double
x := compatibIe(au. 6.u)

if@)
temp. v := a v+x*b. v

ternpu :=au
retum temp

else error ("Operator +")

endif
end

where error is a uan-time hinction which generates a compile-the error message,

<-f2h> :: tran €unc(ut :: Doubleut. bt :: Doubleut) Doubleut
block

tentpt :: Doubleut
x :: tran double
x := compatible(au. b. u)

ifw
tempt-u := ut-u

return tempt

end

andPr will be (if the units is compatible and x is 2.5):

<QrLn> :: b c (ar :: Doubleur, br :: Doubleur) Doubleur
block

tempr :: Doubleur
tenrpr.v := ar.v+2S*br.v
return tempr

end

Note that:

1) The above discussion shows the logical process of partial evaluation. It is possible to

obtainflt andPr at same the. For example. during partial evaluationflt and flr

can be obtained at the same the. This is becausejir is a residual program. Therefore

when we derive the residual program we have already cornputed the result ofPt.

2) A postprocessing phase can remove singleton structs such as struct (v :: double).

3) For efficiency c o n s i d d o n we could use i n . hurctions instead function c&.

Suppose yt = zt = cm xr = cm2. After partiai evaluation, we have

<anauin> :: hnco void
block

sr, xr, yr, zr, newl r, new2r :: double
newlr :=yr * 4

new2r := xr + newl r
sr := new2r
printu-cn2 (sr)

end

This program can be m e r optimized via traditionai opthbation. Thus eventuaiiy we

will get a := xr + yr * S. Notice that in fact the Rsidual function is a C++ program. For

ease of understanding we stiu use Safer-C notation.

Example 5.3 The function which computes base to the n'th is &hed as follows:

<(power)> :: tran func(baFc :: doubleu, n :: tran int) doubleu
block

i :: tran int
pow :: doubleu(l.0, u :: tran units)

for (i := 1; n > O; n-)
pow *:= base

e d o r

=mm
end

If the bue has units cm after hnction invocation and power is to be specialized with

respect to the units of buse and n = 3 then &ter speciaüzation the residuai program wilI te:

<~wer-3-crnmr>> : : huic(6aser :: double) double
block

powr :: double := 1.0
powr *:= huer
powr *:=baser
powr *:= hnser
return powr

end

nie function power-3-cm-t which computes static part will has value cm3.

Pointers

Pointers are one of C's and C++'s strongest feanires. Pointers are closely ~ l a t e d to

anays. We can use both pointer arithmetic and array udexùig to access may elements.

We can use the ref operator to get the address of its operand and use a huiction pointer to

call a hction. Perhaps the most important use of pointers is to dynamicdiy allocate

memory. ActuaUy the only way to refer to heapallocated objects is via pointer variables.

On the one hanci, pointers are very important in C and Ctt . They give you tremendous

power and are necessary for many programs. On the other hand. nothing will get you into

monz trouble than a wild pointer! Pointers are very hard to control since pointers c m

points to any thing. We agree that without detailed idornation about pointers, the

annotation of pointers must be overly conservative [And93b]. In this section. we discuss

only some basic aspects of pointers in our partial evaluation for dimensional analysis.

5.5.1 Annotation of Pointers

In this section we wili discuss what is the meaning of partidy evaluathg a pointer and

what is the meaning of the evaluation time of a pointer. In the foilowing pangraphs. we

first discuss what is the meaning of translation-time pointers and nui-time pointers. Wr

will. then discuss pointer splitting technique for dimensional anaiysis.

h Safer-C, since, a variable annotated as a translation time variable will exïst only rit

translation time, we will assume that ail tran-the pointers point at purely tramtirne

objects. and a l l ru-time pointers point at purely mtime objects.

The evaluation-the of a pointer c m be denoted by *T. For example, if a pointer p points

to the structure A. then p has evaluation-tirne T where T is the evaluation-the of A.

If a pointer p is deçlared as a run-time pointer then during partial evaluation ail the

computation associated 4 t h pointer p will be suspendeci.

If a pointer is a translation-time pointer then d u ~ g partial evaluation all the operations on

the pointer can be done at compile the.

5.5.2 Pointers to Mixed Structures

A pointer p may point to a mixeci structure. Since we use spiitting technique to split a

mixed structure, therefore if a pointer points to a mixed structure then we would use

similar meihod to deal with pointers. For example if a pointer p is declared as

p :: -> stnlct{
i, j :: tran int
k, 1 :: float

1

The above declaration of p would be equivalent to the foilowing declarations:

pt :: -z stnict{i, j :: tran int)
and

pr :: -> stmct{k, 1 :: nui float}

The pointer pt would exist ody at translation tirne, and the pointer sr would exist only at

nui tirne. nieir treatment would be the same as for other purely mm-time or nui-time

pointers.

5.5.3 Functions with Pointers

Sometitnes we may want to use pointers as the parameters of a Function. The meaning of

spechkation with respect to a pointer is given as follows [And93a].

Suppose a function foo@ :: tran -> kt) has a translation-time formal parameter of pointer

type, and is to be specialized due to a call foo(e) givhg the residual function fool(). The

specialization must be with respect to both the address (of e) and the indirection, that is .
the content of al l the locations that p legaily can point to when the actual parameter

expression is e. For example, if e is a where a is a translation-time array int u(lO], then p

can refer to a[O], a[l], ..., a[9]. After partial evaluation ail the operations on the pointer

disappear and the objects pointed to by the pointer and ai i the indirection are absorbed.

For a hiirtion call whidi has pointers as its parameters and the pointers point at mixai

time structures the considerations are similar with the case where mixed structures are

passed to a huictioa Consider following example, if we have a function:

<dun-rno> :: tran func @ :: -> MixeciTime) MixedTœie

Then function c d :

S := fiinfiinmi@)

would be the same as the two cab:

St := mmt-t@t) !! Compute tran-tirne part of S

Sr := fun_mt_r@r) !! Compute cm-the part of S

Since the tran-time part of S could not depend on any nui-cime parts of p. the specialized

function fim-mt-t codd be created to cornpute those tran-tirne parts using only the uan-

tirne parts of p. The fuction fiin-mt-r would be a version of fun-mt, that was specialurd

for the pdcuiar values for the apn-time parts of p and accepted the m-time parts as an

argurnen t.

Using the splitting technique, pointers are split, all dereferencing of origind pointers arc

replaced by split pointers. For example, kt d i ~ q u a n t be a structure { v :: double. u :: tran

d t s). According to our meuiod the dim-quant will be split as dim-quantv { v :: double }

and dim-quantu {u :: tran units}. If we declare p :: -> struct dim-quant then during panid

evduation p wiU be teplaced by pr :: -> dim-quantv and pt :: -> dim-quantu. Suice v is

nui-tirne variable and u is tran-the variable pr will be a mn-time pointer and pt is a uün-

t h e pointer. p->v wiU be replaced by pr->v and p->u wül be replaced by dim-quuitu.

Notice that pr is a run-the pointer. 'Ihw we do not evaiuate pr. but replace p->v by pr-

>v. Since pt is a tran-time pointer we replace p->u by pt+u which can then be evduated

as dim-quantu. If there is a fbnction caîl j@ :: -z di-quant) we will get Apr, trm pt).

Furthemore. since pt is translation variable after partial evaluation. we wiu getmr).

W e already amotated a pointer as either a translation the or a run t h e pointer, and if a

pointer points to a mixed structure we use the splitting technique to split the pointer

according to the tran-the and run-time fields of the structure. Therefore in our method

we do not need global analysis of pointers.

5.6 Summary

From the above discussion we see that partial evaluation c m be used to impmve the

execution of a dimensionai analysis package. During panid evaluation most of the static

units consistency checking and computation can be removed, and only the dynamic

computatioos are Mt for run-tirne. To ensure that partial evaluation cm be done, we have

to have the source code of our uni& package available.

In a dimensional analysis package, there are nvo Ends of structures. One is the structure

unifs another is the structure doubleu. For the operators on the structure units, di the

fields are static and satisfy the conditions of replacement by result. Thus we c m use

replacing by result to specialize the operators on unîts. For exarnple we only n e d to

annotate operator+ as foilows:

unia :: type := tran struct {

u-name :: [0..20] char

u-fxtor :: double
u-exp :: [1..2][0..7] int

1

« o p *» :: tran h c (a :: tran units. b :: tcan units) uni&
block

.... !! units computation part.
return temp

end

method discussed above to specialize the operator fwctions on doubleu.

Chapter 6

Implementation

Safer-C is an ongoing project in the Department of Cornputer Science at University of

Manitoba Our units package is one of the new features of Safer-C. In our package. we

used some features which are still in their developmental stages and thus we cannot fuily

implement the dimensional analysis feature in Safer-C as of yet NevenheIess 1 have

perfomred some experiments in Ci-+ to demonstrate that my design is correct ui this

chapter, 1 discuss some implementation problems which are mainly based on the

experiments in C++.

6.1 Representation of Units

In chapter 4 and 5, we discussed our package in its general fom. We showed that the

units can be expressed as either a structure or a class. Using different data structures wiil

cause the implementation to be dflerent. Since our experiments are done in C u on a

UNIX system we wiU use a class to expiess the units.

6.1.1 Pararneterized Constnictors

An important feature that we used to express our units is parameterized constructors. In

Ctç it is possible to pass arguments to constnictor hinctions. Typicdy, these arguments

are used to help initiah an object when it is created. To create a p;irarneterized

consuuctor, simply add parameters to it the way you would to any other function. For

example, if we have derno-2p class which has nuo parameters as foilows:

ciass dem-2p {

int a, 6;

public:

denio_2p(int i, int JI (a = i; b = j ; }

1;

then the statement

&momo2p myobject(2.3)

wül create an object cailed myobject and pass the arguments 2 and 3 to the i and j

parameters of denro_2p(). There is another way to d e f i e the object myobject. mat is

derno-2p myobject = derno-2p (2,3).

When a constructor function has only one parameter, then there is a third way to p u s an

initial value to that constructor. For example,

class &moJp{

int a;

public:

&momoIp(int j3 { a =fi}
int get-a() { r e m a;}

As this example shows, in cases where the constructor takes only one argument, you can

simply use the normal initialization fom. The C++ compiler wili autornatically assign the

value on the right of = to the constructor's parameter. Using this feature we cm &y

declare our units as

UIUts cm = "cm";

units gm = "gm".

W e found that this fom is more intuitive than the fast methods, Thus we use this form in

our units package.

6.1.2 The Representation of Dimensions

In this experiment, since we are concentrathg on Our methodology we do not cornpress

the representation of dimensions (base units). In SI. there are 7 base uni& and we permit

the use of fractions as uni& powers thus we ixnplement dimensions as a two-dimensional

vray denoteci by u_exp[2][7]. Notice that although we use 7, the standard base uni&

system is not constrained to the SI system.

Because different base uni& represent different dimensions we need to represent the b u e

uni@ in Merent classes. Also. for reporthg the units m e in printouts we use an a m y

name(?] to store the name of the declared base units, and use a static variable clim to

record how many buse mits we have used. Thus if we &fine units cm = "cm", then we

have dim = 1 and u-exp is

Figure 6.1 Base units cm

If we define another base mit such as units gm = "gm" then we have rlim = 2 and u-exp is

Figure 6.2 Base units gm

If needed, we can cut off the space used for base units. For example we can detine the

base units as class bunits:

class bunits {

char u,name[20] ;

int u-factor;

int u-dim;

1
where u-dim = 0, 1, 6. Since in base units the u-factor is aiways equal to 1, thc

the u-factor cari be omitted from the class bunits.

6.13 The Units Member Functions

'Iheoretically, al l the fanctions (member or niends) can be used by the user. However,

only coastnictos and overioaded operators are used by the user. The rest are used by the

package for intemal communication anâ debugging. The main functions c m be specifd

as one of three kinds. The first LUid is used to define the units. second one is used to get

information on the uni& and the thud one is used to do computation on the units. For the

first kind, since we aiiow the user to define dimensioaless variables and derived units, we

have overloaded the constructor function. The operations between unit. are overloaded

operators. Operator overloading is smilar to function overloading. An operator function

can be either a member or a nonmember of the class that it will operate on. In Our package

we use fkiend functions, Since a fnend is not a member of the cIass, it does not have a this

pointer. Therefore. the operands of an overloaded fiend operator hinction are passed

explicitly.

6.2 Operations between Units

Nomally, we may thinlc that the operations. addition. subtraction. multiplication, and

division between numbers. are very simple. However. in dimensional malysis. we ntxd not

only to consider the mesure but also the units. For example, conventiondy zero

multiplieci by any number is zero. In dimensional analysis. zero can have units. The

definiton of zen, in our package is def~ned as:

A dimensional quantity is caîied zero if its value is zero and it is dirnensionless.

For identifying the ciifference behueen dimensioned zero and d zero, we sometimes cd1

the real zero pure zero.

Some algorithms on dimensional quantities are given as foilows.

Units multiplication

Let x and y be dimensional quantities. Then the units ofx and y can be expressed as

Let xi = b /a. y, = d / c then xi + y, = b / a + d / c = (b*c + a*d) l (a*c), where a, 6. c.

and d are integers. Let xi + yi = e / f , where e. f are integers and are initialid to pure

zero. Then e = b*c + a*d, f = a*c. In pseudocode, the computation is performrd as

follows

retum e /fi
endfor;

End

Units power

NomaUy, we wouid like to use ** or A to denote the exponentiation operator. However,

we codd not use them because ** is not an operator in Safer-CC Only e x i s ~ g operators

can be overloaded to handle new types. Aiiowing the &finition of new operators is a new

feature which is stül under development for Safer-C. We cannot use the operator A either

shce A bas the wrong precedence for exponentiation. Operator preçedence cannot te

changed in Safer-C.

In [CG88]. Gehani chose the submipt operator 0 for exponentiation. Technicdy, the

parameter does not have to be of type integer. but an operatorfl() function is typicdy

used to provide array subscnption. and as such. an integer value is genedy used. In our

package we will compute rationai powers. Therefore the operator 0 cannot be used. We

adopt the convention of using a hurtion caü to deal witb exponentiation. Thus to

cornpute xr we use poweflx. r), where r is a rationai.

Compatible Units

The fwiction compatible is used to determine whether two units are dirnensionaiiy

consistent, The argument to the hurction is two units. Shce we have expressed all units in

a certain uni& system, we can check whether two units are same. or consistent. Even

though the uni& of dimensional quantities are consistent the opentions on the dimensional

quantities may not be performed directly. To do the operation on dimensionai quantities a

and b which have consistent units we may have to convert thek measurement In each

conversion we need to compute b.61 a.& If we do conversion then the consistency check

must already be done. 'Iherefore we do not need to put the computation b.cfl n.cf in each

overloaded operator. We can put the computation in the consistency checking function. In

this way we can shorten our uni& package.

Let a, b be two units, then the algorithm for the function compatible(a. b) is described as

follows:

kgin
if a and b are same

then return b.cfl a.cf

else retum 0;

End

Corn putation between dimensional quantities

To do the corn putations between dimensional quanti ties the main consideration is w hether

the dimensional quantities are compatible. If they are compatible then we rnay need to do a

conversion. In the following, we take addition as an example to demonstrate the

algorithm. Let a and b be dimensional quantities. The algorithm is as follows:

Begin

x = corn patible(au, b.u);

if x =/= O then

{ 1. conversion;

2. addition;

3. retum value;

1
else emr("a and b are not compatible")

End

The Lût of the main fiinceions used in our dimensional-analysis package are given in

6.3 Print Out Dim-Qmt

To p ~ t out a dimensional quantity we need pnnt out two parts: one is the measure.

another is the units. We will use the following form for printing a dimensional quantity:

cvalue>(u_namelA~, u_nameZAa>, ..., u-nanenA<n),

where <value> is the measlue, a> is the rational power of unit.

For example, if x = 45 &sec then in our prototype it wiIi be printed out as:

45 (mA 1, sec"(-1)).

If a dimensional quantity x has a spified units name then we cm simply print out its

value x-v and its units name. For example. if x = 3 in. y = 5 in. z is declared as dimensional

quantity which has uni& in, and z = x+ y then the output of z wiii be

z v(z KU-name) = 5 (in).

If a dimensional quantity x bas dynamic units then the output units nonnally will be given

in the user def3-d base units system, that is rv%.ucf(base units). For example, if a user

specines that the base units system is cgs, x = 3 in, y = 5 in. z is r doubleu, and z = x * y

then the output is:

96.774 (cmA2).

Note that it is possible to give a more mdable p ~ t o u t fonn such as 45 mlsec.

6.4 Examples

W e have nui some test programs to test our uni6 package. The exampiai are taken h m

different sources. The examples. programs, and ninning results are given in appendix C.

Chapter 7

Conclusion

This chapter wili summaxize the main contributions of the research work presented in this

thesis. Further. it wilI discuss possible future work in three aspects:

Developing and improving a complete units package.

Estabiishing a uni& conversion library-

Doing partial evaluation for Object-Onented Programrning Languages such as

C++.

Dimensional analysis plays an important role in the mechanical and physical sciences and

some other areas. Some cesearchers have used the abstraction facilities of high-level

ianguage to let programming languages support dimensional analysis w 8 8 1 , [Geh85].

and [Um&4]. These pcevious attempts have some of the following drawbacks:

1. They entail some nui-time overhead.

2 They tequire the substantial modification of an exïsting programming languap.

3. The dimension can take only integer value.

4. Usen do not have much p d o n control over the computation.

5. They do not aüow dynamic dimensions.

AU these problems are very important in practice. In this thesis, 1 have designed a uni&

package that uses pariid evaluation to eiiminate the nui-thne overhead. This package c m

handle rational powers, some pteçision contml, error ~porting. dynamic dimension and

iteration. and fully compile-the checks and computatiow for static units. 1 have descnkd

the spliaing algorithm for Safer-C to efficiently perfom dimensionai analysis.

The expaiments show that our package design is correct Using the splitting algorithm.

we can do the entire computation for static uni& at compile-the. This resuit demonstrates

that existing partial-evaluation technoiogy can be used to improve the efficiency of

dimensional analysis.

Notice that the package does not require any change to the existing Safer-C language.

The package is not constrained to a particular standard base uni& system. This package

can be used for any units system.

7.2 Future Work

Some experience was gained nom this experiment including the discovery that providing a

units package to support dimensional analysis is not as easy as we tust thought Based on

current work, M e r ~ s e v r h will airn at three aspects: Developing a complete units

package, establishing a uni& conversion library, and extendhg partial evaluation for

Object-(Xiented programming languages.

7.2.1 Developing a Complete Package

At the pcesent stage, 1 have implemented only the main body of the uni& package (or

c a k d a prototype). To develop a more practical units package there is more work that

needs to be done. This work includes:

1. Adding more huictions such as *:=* +:=. ++. -- etc.

2 Improving the package such as reducing memory usage and handling more compbx

prac tical pro blems.

3. Trying out more complex examples to test the packages.

7.2.2 Establishing a Units Conversion Library

From the test examples we see that in a dimensional analysis program there is quite a big

section used to denne units relations. If these units relations can be put into a units

package as a library module then it would be very convenient for usea. To put uni&

relations into the uni& package, the big problem is how to deal with multipk relations

such as 1 m e = 100 cm 1 mtre = 3.28 foot. Although House mou83] gave a critique

of Gehanis work [Geh77], some questions are very impocîant and need to be considerul.

For example. 1) In practice, sometimes we may use 1 metre = 1 0 cm. or

1 mem = 3.28 fmt. 'Ibis should be haadled in a units package as we expect 2) If we give

the relations, 1 ailomem = 3280 foot, 1 m e = 3.28 foot, later when foot are

encoaniered whkh f o d a should be used? If thme problems can be solved then we cm

add dl the commensurate units into our uni& package. Thus when the users use the

package they do not need to &fine the commensurate units. The package will

automatically do the conversion according to the relations in its libnry.

7.2.3 Extending Partial Evaluation for 00-Language

From ihis research, we developed another concept that is extendhg e x i s ~ g partial

evaluation for Object-Oriented progtamming language such as CH. There are two main

problem that we rnay encounter. The first is that partial evaluation for irnpentivr
'

languages is still in its research stages. The second problem cornes from the advanced

features of object-oriented languages The signiticant features of C++ in this regard arr:

classes, which have private parts. inheritance which has protected parts. operator

overloading, and polymorphism. In this thesis, 1 discussed oniy how to deal with operator

overloading. It seems that there are other promishg areas in which to handie partiai

evaluation for object-onented programming languages such as C++.

Appendix A. Safer-C Declaration Grammar

name-list ":: " propeq-speciif r [":=" initia fizer] EUS
I name-list "::" "type" ":=" type-expression EOS
I ": : " struct-ot-uniun-specijier EOS
I ":: " enumspecifier EOS

name-list = identifier I nance-list ", " idenrijir

property-specifier = type-erpression
I storage-chs-specifier type-expression

storage-class-specifier =
"auto" l "register" l "static" l "extem"

type-expression = [type-qualifier] type-specificr
I "[0.. " [comtant-expression] '7 " type-expression
l "func " "(" [var-len-pam-üst] '7 " type-expression
I [rype-qualifier] "->" type-expression

typezrpecifier = llvoid" l I #Pint l 8 I Wfloat#8

1 s~uct-or-mion-specifier
l enum-specifier
i type-identifier
I type-modifir ope-specifer

type-modifier = "short" 1 "long " l "signed " l "unsigneci "

type-qualifier = "const " l "volatile" 1 "volatile" "cons t "

struct-or-union-specifier =
struct-or-mion [identifier] "(" struct-declurution-list ") "
I struct-or-union identifier

sîruct-or-union = "stnict" l "union "

var-len-pam-List = parameter-proto-List I parameter-proto-List EOS 'Lw

parcuiter-proto-List = parameter-putos I paramter-proto-Iisr EOS parumeter-protas

paramter-protos = fonnaf-paneters sl 7:" propeny-specper

formal-pamrneters = name- fist ":: " property-specjrier

jÙnctrctronn&f?nition = "CC" designator *'> > " ":: " properîy-speciier EûS block-ar-body

designator = #-identifier I "op" opsign "UKE" oper I ' b p " opsign

opsign = n-identifer I oper

f f+f8 1 68-ff [W*f f 1 W/W 1 88:=ff oper = .- 1 ..-

Appendix B. Main Functions of

Units Package

This package is written in C++. The purpose of the package is to illusvate that the design
idea of a dimensional maiysis package for Safer-C is correct

struct uni& [
cbar u,name[20] ;
double u-factor;
h t u,exp[2J~,NDIMS];
static int dim;

public:
uoitso;
units(ctiar *string);
units(char *a, uni& b);
- d t s O O

friend int gcd(in t a, in t b);

fnend double compati'ble(uaits a, uni& b);
1:

units powerQmits a, int num, int den)
{ ututs temp;

int i=0,t2=;

tenip.u,fac~pow(afact0ftOfof0, (flaat)numklea);
if(num -- 0)

f M i d ; id-NDIMS; i++)
(if(a.u,exp[O][iJ !=O)

[temp.u,exp[O] [il= 1;
temp.u,exp[l][i]=l;

1
1

else
for(i=Qi<U-NDIMS;i++)

(if(au,exp[O] [il !=O)
{ temp.u,exp[O] [ilau-exp[O] [il *mm;
temp.u,exp[l] [i]=a.u-exp[1] [i]*&n;
Q=gcd(temp.u,exp[Ol [a, temp-u,exp[l 1 [il);
ternp.u,exp[O] [q=temp.u-exp[O] [r]/t2;
temp.u,exp[l] [fl=temp-u,exp[l][iJ/t2;

1
1

cemm temp;
1

units powef(units a, float b)
{

uni& temp;
int i=OTj=O&0,1=û,t=0,t2==
float s 2;
ternp.u,facto~pow(afactofOfof0, b);
j=(bt)b;
x=b-j;
k=l;
for(ir0; i d ; i++)
{k=k*lO;
l=(iit)(x* k);
z=(float)Yk;
if(- x)

break;
1

t = g a w ;
if(l==O&&j=O)

forli=û; id-NDMS ; i++)
{if(au,exp[O][i] !=O)

{temp.u,exp[O] [il=@
teriip.u,exp[l] [i]=l;

1
1

else
for(i=O;i<U-NDIMS;i++)

(if(au,exp[O] [il !=û)
{temp.u,exp[O] (i]=a.u,exp[O] [il *(j *(k/t)+Ut);
temp.u,exp[l] [i]=a.u,exp[l] [iJs(k/t);
t2=gcri(temp.u,exp[O][i], temp*u,exp[l] [il);
temp.u,exp[O] [i]=temp.u,exp[O] [i]/t2;

D, U *
units operat&(double a, uni& b) (

units temp;
int i, ûag*
fos(i=Q i<U-NDIMS; i++)

if(b.u-exp[O] [il !=O)
[flag=l; break;)

if(flag)
(
temp.u-fact0~b.u-factorCa;

DEFENE DOUBLEU UASS

stmct doubleu (
double v;
uni& u;

public:
dou bleu();
doubleu(double a, uni& b);
doubleu(doub1e a);

double value-ofo (rehirn v;}
void u-aame0 (unam-ofO;) ;
double factor,of() (r e t m u.factot,of();)
void units-of0;

doubleu operatw=(doubleu&);
dou bleu operat~~+=(cEoubleu&);
hou bleu aperator-=(doubleu&):
doubleu operat~=(doubleu&);

doubleu operator()(units a);

niend void prin tu(doubleu&);
fiiend doubleu puwer(cl0ubleu a, double b);
Head doubleu power(doub1eu a, int n);

fiiend double toclou ble(doubleu&);
fnend double sin(doubleu&),

cos(doubleu&),
tan(doubleu&),

fiienû cioubleu operator-(cioubleu&),
operatoc+(doubleu,daoibleu),
opemloP(doubleu,Qubleu),
qmaî&(dQu ble,dou bleu),
opetatot/(doubleu,doub1eu),

fiend int qeratace(dwbleu, doubleu),
operator>(dou bleuQubleu),
-doubleudou bleu),
operatrn!=(doubleu,doubleu);

fnend double toduble(doubleu);
1;

dou bleu doub1eu::operat-(&bleu& a) (
int i;
int flag;
double z;
u-u,exp-ofo;
for(i=O;i<U,NDIMS ; i++)

if(tempdim[O][iJ = O)
mg*?

else { flag=l; break;)
if(!hg != 1)

{ v=a.v;
u=a.u;

1
else (

double x=compatible(u, au);
if00 {

z=a.factorofO;
z=z/tbis->factorf of();
V=a.vSz;
retum *this;

1
e b cout«"ueROT(=) dimension is not correct*;

1
1

doubleu power(doub1eu a, double b)
{

cioubleu temp;
int i=0 ~=û,k=û,l=û,t=û, numeratofto, denomiaator-0;
float x, 2;
if@ != O)

{
j=(m t)b;
x=b-j;
k=l;

for(i=O;i<S;i++)
(
k**10;
l=(int)(xSk);
=4float)l/lr,
if(- x)

brealr;
1

t=gdOJr);
numeratot=jf(k/t)+Ut;
Qnomiaator=Wt;
if(&value,of0<0 && numeraW2 && !(denominator9b2))

(cout<d"'egative number's sqrtw;
tout<<%";)

else
(temp.v=pow(av* b);
temp.u=power(~u, numerator. denominator);

1
1

else
(temp.v=l;
temp.u=power(a& O, 0);

1
retum temp;

1

COMPUTE THE POWER OF UQ

dwbieu power(doubleu a, int nrtm, int den)
{ doubleu temp;

if(a.value,ofO<O && num%2 && !(den%2))
(cout<ennegative numbeis sqrtn;
cout«"\nn; r e t m ternp;}

(temp.v=pow(av, (float)num/den);
temp.u=power(au, num, den);
return temp;

1
1

COMPüTE THE PO- OF UQ

doubleu power(doub1eu a, int n)
{ int i;

doubleu temp=doubleu(l .O);
for (i=l; a; n-)

temp* a;
~ t u m temp;

1

UQ CONDITION e

int operaîorc(doubleu a, doubleu b)
{ double x;

CONVERT A DIMENSIONLES QUANT TO DOUBLE

double todouble(ckwbleu&b)

int 4 fhg;
double a;
b.units,ofo;
for(i=O;i<U-NDIMS; i++)

if(tem pdim [O] [il == 0)
flag=l;

e k (mg* break;)
if(£@ .= 1)

{ a=b.v;
r e t m a;

1
else cout«"uermr(=): A units quantity assign to a double."c<"\nn;

1

COMPUTE SIN

double sin(doubleu&b)
{
int i, flag;
double a;
b.units,ofo;
for(iai<U-NDIMS ; i++)

if(tempctim[O] [il = 0)
flag=l;

else (flagtO* break;)
if(mg = 1)

{ a=sin(b.v);
retum a;

1
else cout«"uemr(=): A uni& quantity assign to a douh1e."«"\nw;

ASSIGNMENT +

doubleu dou bieu::operator+=(dou bleu &a) (
doubleu temp;
tempe* thissa;
v=temp.v;

Qubleu operator+(âoubieu a Qubleu b) {
doubleu temp;
double x=compati%le(au. b-u);
if (XI

(temp.m~v+x*b.v;
temp.u=a.u;
rem temp;

1
e k coutcd uenw(+) dimesion emrwcc "in";

1

chbleu operaW(dou bleu a, doubleu b) (
doubleu temp;
double x;
x=compatt'ble(a.u, b-u);
if(x)

temp.v=a-v* xSb.v;
temp.u=a-u*au;

1
else { temp.v=a.v*b.v;

temp.u=a.u*b.u;
}

remm temp;
1

Appendix C. Examples

Exampie 1. If a body is projected horizontally with a velocity of 80.0 ftkec from the top
of the tower which is 160 ft high. F i d the t h e of flight to reach the ground.

Q 2 Solution: Using formula -t + vol - s = O . Wbere s460fS vo = O,; a = g = -
2 32/1 - ~ h e stan<hnl answer

sec2
is t=3.l6sec. (mis example îs token f b m University Physics wot69]. page 44-46. Using the English
graviratid system.)

Tbe program is given as below

dou
Qu
Qu
Qu
dou
dou
Qu
dou
dou

,leu ~ubleu(-160 .0 , ft);
,leu v(lsdoubleu(0, ftlsec);
)leu grloubleu(32.0, fwwer(sec, 2));
)leu t=doubleu(O, sec);
>lm a=@;
)leu b=vO;
,leu e s ;
>leu y;
,leu zeru=doubleu(O,power(ft/sec, 2));

y=pow-2)-4*a*c;
wp=-zen,)

{
t=(-b+power(y, 05))/(2* a);
cout«"lhe answer is:";
prin W) ;
1

else cout«"There are cumplex solution."«lnn;
cout<<"\an;

coutc<"End of example 1. "«"\nn;

The output is:

Tbe answer is:3.16228(~~=1).

End of example 1.

Example 2. What is the speed of a transverse wave traveluig dong a cord that has a Linear
density of 2 9 1oD3 pounds-mdfmt and is under a tension of 15.0 pounds force?

Soiwion: Ushg formuia v==rt(F/mu), wbere F45.OpC. mu= (2.5 / 32.0) * 10 " sluglft The standard

answer is v=438 ftfsec. (W example is Loken hm University Physics Wor69]. page 460. Using the gcï
sys-.)

The program is:

âoubleu kdoubleu(l5.0, pf);
doubleu m ~ b l e u (2 5 / 3 2 . 0 , pow(l0, -3)* slug/ft);
doubleu v;

The output is:

The speed is=13355.7(cm=l, s--1)

End of example 2,
Example 3. The example is same as example 2 but we directly use ft, slugs, and pf as
computation units. Thus we could get more accurate results than example 2.

The program is:

Qubleu kloubleu(l5.0, pf);
Qubleu mu=doubleu(25/32.0, pow(l0, -3)*slug/ft);
Qubleu v;

The output is:

The speed is=1438.178(ft=l, sec=-1)

End of example 3.

Example 4. A stone is projected from the surface of a flat field with a speed of 20ds at
an angle 53.1 degree above the horizontal. Find the stone's velocity and position at any
instant.

Solution: Using formula:
dbc=vOfcos(angle); v0=20mls, angle=53.1 degree.
vOy=vO*sin(angle);
vx=*
vy=*-gSt;
v=sqtt(vxA2+vyA2);
x=voX*t;
y=wt-g*rA2/2,
angle=atan(vy/vx)* 180B. 14;

The program is:

doubb vO=doubleu(20, mlsec);
doubleu vûx=doubleu(O, mfsec);
dwbieu vqYbubIeu(0, dsec);
Qubleu m=dwbIeu(O, dsec);
doubleu vy=doubleu(O, misec);
Qubleu v=doubleu(O, mlsec);
âouMeu ~ = û o u b l e u (3 S , sec);
doubleu c=doubleu(O, sec);
&leu deùat=Qubleu(:.2, sec);
Qubleu g=doubIeu(9.807, m~powet(sec,2));
duubleu y=doubIeu(O, m);
Qoubleu zem=doubleu(-0.00001, m);
doubleu x;
double angle=O;

anglez0.926769817; //ü.9î67698lî=S.l clegree.
vOx=vO*cos(angle);
vûy=vO*sm(aagle);
while OI>aro) /Ku C 0.0fi.0 is rnie thus we put zerœ-.00001.

{
x=**c
y=vOy*t-g*powef(r, 2)/2.0;
vx=*;

t=t+delta,t;
1;

cout«"End of example 4. "«"\nn;
1
me output is:

Tbe t, x, y, v are:

The t, x, y, v are:

The t, x, y, v are:

The t, x, y, v are:

The t, x, y, v are:

The t, x, y, v are:

The t, x, y, v are:

The t, x, y, v are:

The t, x, y, v are:

End of example 4-

References

[And93aJ Lars Ole Andersen, ParCial Evaluation for the C Language, in Panicrl

Evaiuation and Au~matic Program Generation. p p. 229-258.1993.

[And93b] Lars Ole Andersen. Bùding-tirne analysis and the taming of C pointers,

Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation und

Semantics-Based Program Mmipuiatïon. pp. 48-58. 1993.

[ASU8a] Alfred V. Aho, Ravi Sethi. Je&y D. ULlman. Compilersr Principles,

Techniques, and Toois. Reading Mass., Addison-Wesley hbiishing

Company. 1986.

Kendall E. Atkinson, An Introduction to Numerical Analysis. John Wiiey

& Sons Inc. 1989.

IEEE Stanrlard C/ATLAS, IEEE Standard 7 16- 1982.

D-Bjorner, AP. Ershov, and N.D. Jones. Partial Evaluation and M h d

Cornpufation, North-HoUand: Amsterdam 1988.

[BGZ94] Romana Baier, Robert Gluck, and Robert Zochling, Partial evaluation of

n d c a l programs in Fortran. ACM STGPLAN Workshop on Partial

Evahatian and Seniantics-Based Program Mmipulation, pp. 1 19- 1 32, 1994.

[CD931 C. Consel and O. Danvy. Tutoriai notes on partial evaluation. Conference

Record of the Twentieth Symposium on Principles of Programrtung

hguages . Charlston, South Carolina pp. 493-501, ACM Ress, L993.

[CG881 Robert F- Cmelik and Narain H. Gehani. Dimensional analysis with C t t . IEEE

S o m r e , pp. 21-27. May 1988.

[Cha90] David R Chase. Andysis of pointers and structures, Proceedings of the ACM

SIGPLAN Conference on Progranunhg Language Design and

Implernentarion. White Plains. New York. June 20-22. pp. 296-3 10, 1990.

[Cd21 RCunis. A Package for handling uni& of measure in Lisp. ACM Lisp Pointers.

Vol. 5, No. 2, 1992-

Foc531 C.M. Focken. Dimensional MethodF and Iheir Applications, Edward Arnold,

London, 1953.

[Geh77] Narain Gehani. Units of Measure as a data attribute. Cornputer Lmguuges.

Vol. 2. NO 3. pp. 93-1 1 1.1977.

@eh851 Narain Gehani, Ada's derived type and units of measure, Sofrw. Prut. Exper.

15.6. pp. 555-569. 1985.

m 8 3] Paul N. Hilfmger, Abstraction Mechanismi and Lunguage design. ACM

Distinguished Dissertations.. MIT Ress. Cambridge. Mm. 1983.

[Hü88] Paul N. Hilonger, An Ada package for dimensional analysis. ACM

Transactions on ProgrMvning h g u a g e s and Systems. Vol. 10. No. 2. pp.

189-203, 1988.

[Hou831 R.T. House. A proposal for an extended form of type checking of expressions.

Cornputer Joumal, Vol. 26. No. 4. pp. 366-374, 1983.

ma751 E de St Q. Iswcson and M. de St Q. Isaacson, Dirnensionul Methoh in

Engineering md Physics, Edward Arnold, London. 1975.

[JGS93] N.D. Jones, C.K. Gomard, and P. Sestoft, Partial Evaluation und Automatic

Program Generation, Prentice Hd International Series in Computer Science.

Prentice Hall: New York, London, Toronto, 1993.

D y 9 3 1 AL Kayssi A methodology br the construction of accurate timing

macromodels for digital circuits, PhD. Thesis. University of Michigan. 1993.

-9S] Paul Kleinrubatscher. Albert Rriegshaber, Robert Zochling, and Robert Gluck.

Fortran program specialization, ACM SIGPLAN Notice. Volume 30, No.4.

pp. 6 1-70. 1995.

m 7 8] Michael Karr and David B. Loveman III, Incorporation of units into

programming lûnguages, Conunmications of the ACM, Vol. 2 1, NOS,

pp. 385-391, 1978.

m u 8 11 Donald E. Knuth. nie A n of Compurer ProgrMMing, Addison-Wesley

Publishg Company. Reading, Massachusetts. 198 1.

war9a S.A. Marinov. Reversed dimensional analysis, Report. Department of

Mechanical and Industrial Engineering, The University of Manitoba, 1995.

w e y 9 1] Uwe Meyer, Techniques for partial evaluation of imperative languages.

Proceedings of the Symposium on Partial Evaluation and Sernantics-Bued

Program Manipulation PEPM'91 New Haven. SIGPLAN Notices Vol. 26.

No. 9 , pp. 94-105. 1991.

w o r 6 9] Joseph Morgan, In~odkction to Vniversily Physics, AUyn and Bacon, Inc.,

Boston, 1969.

Fov95J Gordon S. Novak. Conversion of uni& of measurement, IEEE Trunsuctiuns on

s o m r e engineering. Vol. 21, No. 8, pp. 65 1-66 1, 1995.

[Pan641 RC. Pankhurst, Dimenrional Anulysis und Scale Factors. Chapmûn & Hail,

London, 1964.

[Sa1951 DJ. Salomon. Safer-C: SyntacticaUy impmvhg die C language for error

cesistance, Technical Report 95/07, Department of Cornputer Science.

University of Manitoba, 1995.

[SaBq DJ. Salomon, Using partial evaluation in support of portability, reusability.

and maintainability. 6th International Conference on Compiler Conrmtction

CC'96, Moping Sweden, April24-26, LNCS 1060, S p ~ g i e r , pp. 208-222.

1996.

rïay741 Edward S. Taylor, Dimensional Analysis for Engineers, Clarendon Press.

Oxford University Press, Ely House. London. 1974.

ri791 Dondd E. Tilley. Conteniporary CoUege Physics, The Benjamin/ Cummings

hblishing Company, Inc. 2727 Sand Road, Men10 Park, California, 1979.

Dm1943 Z D. Umrigar, Fully static dimensional analysis with C++, SIGPLAN Notices,

VOL 29. Iss:~, pp. 135439. 1994.

WCRS911 D. Weise, R Conybeare. E Ruf, and S. Seligman, Automatic online partial

evaluation, FPCA'91,Sth International Conference on FuncBonal

Progrummïng kuiguages and Compter Architecture, nurnber 523 in

Lecture Notes in Cornputer Science, pp. 165- 19 1 , 199 1 .

[WL95] Robert P. Wilson and Monica S. Lam. Efncient context-sensitive pointer

analysis for C programs, ACM SIGPLAN Notices. Conference on

Progranunthg Language Design and Implementation. La Jolla. CA, lune

18-21, pp. 1-12,1995.

