
Efficient Bulk Data Transfer with the
Phatpackets Protocol

Sheng Huang

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

@ Sheng Huang,2005

by



THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

Efficient Bulk Data Transfer with the
Phatpackets Protocol

BY

Sheng Huang

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The Universify
of

of Manitoba in partial fulfillment of the requirement of the degree

of

Master of Science

SHENG HUANG @ 2OO5

Permission has been granted to the Library of the University of Manitoba to lend or
sell copies of this thesisþracticum, to the National Library of Canada to microfilm

this thesis and to lend or sell copies of the film, and to University Microfilms Inc. to
publish an abstract of this thesisþracticum.

This reproduction or copy of this thesis has been made available by authority of the
copyright owner solely for the purpose of private study and research, and may only
be reproduced and copied as permitted by copyright laws or with express written

authorization from the copyright owner.



ABSTRACT

Transferring files over the Internet is extremely common. The most cornmon application and

protocol for transmitting a file is known as FTP (File Transfer Protocol). However, the

performance of FTP over TCP is far less than optimized. This is evidenced by the continuous

efforl to improve applications such as FTP and protocols such as TCP. Phatpackets ís a term

used to describe an initiative to reliably move large amounts of data more efficiently across the

Internet. This tliesis describes the design, implementation, and experimentation of the

Phatpackets protocol. The Phatpackets protocol attempts to combine the best aspects of a

variety of transpofi and control methods with the objective of developing a near optimal and

robust protocol. The Phatpackets protocol uses multiple connections with multiple server sites

transferring different segments of a file simultaneously to enhance the performance, scalability

and availability. Experiments presented show that the Phatpackets protocol is both efficient and

reliable.

Efficiettl Bulk Data Tronsfer with thc Phatpackets Protocol, @ Sheng Huang



ACKNOWLEDGEMENTS

I would like to take this opportunity to thank all the people who have contributed towards this

thesis.

First of all, I would like to greatly thank my advisor, Dr. Robert D. Mcl.eod, for his guidance,

advice and assistance throughout my academic years as well as his contributions and help with

this thesis. In addition, I would like to express my appreciation for his kind and generous

personality.

Finally, hearlfelt appreciation is due to my family members - my parents, Yue Wan and

Bingyi Huang, and my wife, Zhixin Duan. Their consistent encouragement and support have

made this academic endeavor more enjoyable.

EfJicient Bulk Data Transþr with the Phatpackets Protocol, @ Sheng Huang



TABLE OF CONTENTS

Approval Form

Abstract

Acknowledgements

Table of Contents

List of Figures

Figure 1. Internet Domain Survey Host Count

Figure 2. Basic View of the Phatpackets Protocol

Figure 3. Basic View of the Complete Architecture

Figure 4. The Block Size Illustration

F'igure 5. Server Location Topology

Figure 6. Throughput Graph for Downloading java.sh with ANLB

Figure 7. Throughput Graph for Downloading java.sh with BDP

Figure 8. Throughput Graph for Downloading 360MB.mov under Light Traffic

List of Tables

Table l. Servers Used in Performance Tests

T able 2. Throughput Comparison

Chapter I Introduction

l. I Evolution of lnternet

1.2 File Transfer Application

Eficient Bulk Data Transfer with the Phatpackets Protocol, @ Sheng Huang 1U



1.3 Motivation

1.3.1 Statement of Problems

1.3.2 Objective of the Phatpackets Protocol

Summary

Cliapter 2 Related Work

2.1 File Transfer Protocol

2.1.1 Introduction to FTP

2.1.2 Conmancls and Semantics of FTP

2. 1.3 Improved FTP Products

2.1.4 Web100 Project

2.1.5 GridFTP Project

2.2TCP

2.2.I Large Initial Congestion Window

2.2.2 ssthresh Selection

2.3 UDP

2.4 Load Balancing

Summary

Chapter 3 The Phatpackets Protocol Architecture

3.1 Introduction to the Phatpackets Protocol

3.2 The Phatpackets Protocol Algorithm

3.2.1 Flow and Congestion Control Algorithm

3 .2.2 Integrated Layer Processing Approach

3.2.3 Adaptability

Efficient Bulk Data Transfer with the Phatpackets Protocol, A Sheng Huang tv



3.2.4 Adapfive Network Load Balancing Algorithm

3.3 Flow Charts of the Phatpackets Protocol

3.3.1 PhatClient of the Phatpackets Protocol

3.3.2 Process MORE_CMD command of the Phatpackets Protocol

3.3.3 Process MORE_RPLY command of the Phatpackets Protocol

3.3.4 FSTPClient comrnand of the Phatpackets Protocol

3.3.5 Process Received Packet

3.3.6 PhatServer ofthe Phatpackets Protocol

3.3.7 FSTPServer of the Phatpackets Protocol

Summary

Chapter 4 Tlie Phatpackets Protocol Implementation

4.1 Introduction to the Implementation Tool - Java

4.1.1 Introduction to Java

4.1.2 Java Performance

4.2UDP Socket Buffer

4.3 The Phatpackets Implementation

4.3.1 Introduction to Core Algorithm Implementation

4.3.2Main Classes and Packages

Summary

Chapter 5 Experiments and Data Analysis

5.1 Experiment Design

5.1.1 Experiment Goal

5. 1.2 Experiment Environment

Eflicienl Bulk Data Transfer with the Phatpackets Protocol, @ Shettg Httang



5.2 Perfonnance Test Results

Summary

Chapter 6 Conclusions

References

Appendix A The Phatpackets Protocol Control Command

Efficient Bulk Data Transfer with the Phatpackets Protocol, @ Sheng Huang v1



Chapter I Introduction

Chapter I

INTRODUCTION

This thesis presents an altemative transport layer in the TCP/IP protocol stack called the

Phatpackets protocol. The Phatpackets protocol is an attempt to combine the best aspects of a

variety of transport and control methods with the objective of developing a near optimal and

robust protocol. This thesis describes the algorithm developed, and a file transfer application

illustrating the algorithm's effectiveness.

The Phatpackets protocol is designed to meet the requirements of today's computing

environment. It is a distributed system. It works on a wide geographic distributed network and

heterogeneous systems. It simultaneously transfers a target file from multiple file servers with

multiple corurections from each server. The Phatpackets protocol is based on TCP and IIDP.

The platfonn independent language Java was chosen as the programming language to

irnplement the Phatpackets protocol. With these two features, the Phatpackets protocol can

work on most computers throughout the largest distributed envirorunent, the Intemet.

l.l Evolution of Internet [Tec02]

The Internet started in 1969 as the ARPAnet. Funded by the U.S. govemment, the ARPAnet

became a series of high-speed links between major supercomputer sites and educational and

EJJ|cient Bulk Data Transfer with the PhatpackeÍs Protocol, A Sheng Huang



Chapter I Introduction

research institutions worldwide, although mostly in the U.S. A major part of its backbone was

the National Science Founclation's NFSNet. Along the way, it became known as the "lnternet".

In 1995, the Internet was tumed over to large commercial Internet Service Providers (ISPs),

such as MCI, Sprint and UIINET, who took responsibility for the backbones and have

increasingly enhanced their capacities ever since. Regional ISPs link into these backbones to

provide lines for their subscribers, and smaller ISPs hook either directly into the national

backbones or into the regional ISPs.

The Intemet's surge in growth in the latter half of the 1990s was twofold. As the major online

selices (AOL, CompuServe, etc.) connected to the Internet for e-mail exchange, the Internet

began to function as a central gateway. The lnternet glued the world together for electronic

mail, and today, the Intemet mail protocol is the world standard.

Secondly, with the advent of graphics-based Web browsers such as Mosaic and Netscape

Navigator, and soon after, Microsoft's lntemet Explorer, the World Wide Web took off. The

Web became easily available to users with PCs and Macs rather than only scientists and

hackers at IINIX workstations. Delphi was the first proprietary online service to offer Web

access, and all the rest followed. At the same time, new Internet service providers rose out of

the woodwork to offer access to individuals and companies. As a result, the Web has grown

exponentially providing an information exchange of unprecedented proportion. There has been

rnore activity, excitement and hope over the Internet than any other computer or

conmunications topic that was ever conceived.

Eficient Bulk Datu Transfer with the Phatpackets Protocol, @ Sheng Huang



Chapter I Introduction

Nowadays, the lntemet is made up of more than 285 million computers in more than 100

countries covering commercial, academic and government endeavors while there were only

about 3 .2 million lnternet hosts in July 1994 [ISC05].

lnternet Domain Survey Host Count

3tt0.0ü0.00ü

25 n.0ùû.0t 0

2U0.000.t00

'l 5tl.ü0t1.0û0

1D[.tr]0.0it0

5t.00ü.0t0

Lr) LO r.- @ gt c] t\l cÐ E-tf)6)slFl 6)øEEfElEttttttttttccÊ.ÊcEEcEErúdÉøEúúú0Jd
---l---l--)-ì---l-
5ou¡ce: lnternet Softwa¡e Consortium [www-isc-orgf

Figure l. Internet Domaín Survey Host Count

1.2 File Transfer Application

File Transfer Protocol (FTP) is the application that transfers files between FTP clients and FTP

servers on the Internet. It has been used since 1971. The widely accepted standard of FTP is

defined in RFC959 (Request For Comments) by the Lrternet Engineering Task Force (IETF) in

1985 [PR85]. It specified the application that allows a user to retrieve files from a remote FTP

\-
6)

I
c
d-ì

Eficient Bulk Data Transfer with the Phatpackets Protocol, @ Sheng Huang



Chapter I Introduction

server. FTP relies on TCP and the reliability of TCP provides reliability of FTP itself. Recent

RFCs have developed FTP's security features lHLg7l and FTP over IPv6 [AOM98].

Today, FTP is the second most widely used application on the Internet in terms of traffic.

Nearly every softwale company has their own FTP site for their customers to download the

latest products or patches. Many famous web sites such as www.download.com and

www.tucows.com provide a service that collects popular download files over the lnternet.

Some search engines also have dedicated FTP search engines that search through the Internet

for a file. One example is Lycos's search site. Because the demand for downloading a file is

throughout the Intemet, FTP server mirroring is widely implemented. The mirror sites contain

the same copies of files as on the original server. This approach generally can keep the traffic

local and achieve better perforrnance [Fan00].

1.3 Motivation

1.3.1 Statement of Problems

1.3. l.l Problems with Current FTP Implementation

FTP is widely used and easy to implement. However, it has problems with reliability,

scalability, and performance. First, when a server is brought down for upgrade or maintenance,

all curent users will lose their connections and the FTP sessions will be intemrpted. Secondly,

the load rnay be imbalance. That is, while some servers are quite busy, other mirror sites may

be quite idle in contrast. Thirdly and most importantly, FTP performance is relatively poor

Eflìcient Bulk Data Tronsfer with the Phatpackets Protocol, @ Sheng Huang



Chapter I Introduction

because of TCP's working mechanism. Nowadays, there are a lot of large files such as voice,

rnovies, and applications on Internet, which may be hundreds of Megabytes in size. Traditional

FTP downloading may take an unreasonable time [Fan00].

1.3.1.2 QoS of Internet Applications

The quality of service (QoS) for an lnternet application (especially a real-time application) is

detennitied by packet loss and jitter [Sch97]. The Intemet applications nowadays are

implemented with transport protocols namely TCP and UDP. TCP guarantees zero packet loss

through its builcl-in mechanism and is generally not applicable to real-time application. While

tlie UDP based applications need to implement their own flow control/congestion control and

retransmission mechanisrn.

a) Packet Loss

The packet loss is the fraction of packets that do not arrive at their destination. The reasons for

packet loss are line failures and physical errors, receiver overflow, and network congestion.

Damage to the packet due to a transmission error is becoming less common in modem fiber

networks. If the checksum check fails, the packet is simply discarded. Packets with an

undefined fonnat are also dropped. The packets can also be lost due to link failures.

Another important reason for packet loss is the overflow of end hosts. If the sender can not get

enough feedback information about the receiver's performance, load as well as available buffer

space, packet loss can occur due to overflow ofthe receiver's buffer ifthe server is sending at a

speed faster than the receiver's processing capability.

EfJicient Bulk Data Transfer with the Phatpackets Protocol, A Sheng Huang



Chapter I Introduction

Far more often, packets are dropped at routers because of network congestion. A router usually

has incoming interface buffers, system buffers and outgoing interface buffers. Large queuing

delays are experìenced as the packet-arrival rate nears the link capacity. Depending on where a

packet is dropped, it is called an input drop or an output drop. Input drops usually occur when

the router can't process packets fast enough, while output drops occur when the outgoing link is

too busy. Routers also try to avoid congestion by dropping packets before the queues have

reached their maximum length. This mechanism is called random early detection (RED). It

causes TCP sources to back off and slow-start, thus temporarily reducing the amount of traffic

going through the router. However, as the IIDP portion in Internet traffic becomes larger, this

mechanism becomes less effective and unfair, since only TCP sources back off. When the

amount of data exceeds the capacity of the network, the overflow is stored in router buffers.

The higher the buffer utilization in the network, the higher the probability of packet loss. If

there is not enough buffer space in the routers, queue overflows occur. The main causes for

network congestion are as follows [Wid00]:

Long distance, high-speed connections increase the total amount of data in the network.

Bursts of network traffic can cause temporary congestion even when the average load on

the network is not critical.

Unfavorable topologies and mismatching link speeds also contribute to congestion, for

example slow routers that connect several traffic intense hosts to the Internet.

Some protocols do not sufficiently decrease the sending rate when congestion occurs.

Applications using such protocols pose an increasing problem as they become more

+

+

+

+

Efficient Bulk Data Transþr with the Phatpackets Protocol, @ Sheng Huang



Chapter I Introduction

widespread. The úrternet relies on the cooperatíon of communication end-points to prevent

a congestion collapse.

+ The fast growth of the Internet will be a problem if the supporting infrastructure is unable

to keep up with the increase in network traffic. Over the past twenty years, the number of

users and the speed oftheir cor¡rections to the lnternet have increased by several orders of

magnitude. In addition, the usage of the lnternet has grown with an increasing number of

services being replaced or supplemented with their e-counterparts (e.g. e-mail, e-business,

etc.). Existing applications are upgraded to support higher bandwidths. New high volume

applications that were previously possible only in local area networks have been moved to

the Internet.

b) Jitter

Some authors understand jitter as the difference between the longest and the shortest delay ín

some period of time. Others define jitter as the maximum delay difference between two

consecutive packets in some period of time. In [Sch97], jitter is defined as a smoothed function

of the delay differences between consecutive packets over time. Jitter can be introduced by

both hosts and routers. If sending hosts and receiving hosts have more than one task to do as is

common in rnulti-process OS environments, they can also induce jitter. However, the most

common cause for jitter is introduced by routers.

Queues build up in a router or switch whenever the input rate is larger than the bandwidth of

the outgoing link or the processing speed ofthe interface. Ifall packets ofa flow encounter the

same queues and queue lengths on the path, they all wait for about the same time. The end-to-

Efficient Bulk Deta Transfer with the Phatpackets Protocol, A Sheng Huang



Chapter I Invoduction

end delay may be high, but there is no delay variance. Jitter comes into play when consecutive

packets experience different waiting periods in the queues. If packet scheduling is done in strict

first-in first-out manner, a difference in delay means that a queue grew or shrunk between

arrivals of two consecutive packets. Imminent packet loss can be predicted by longer delay and

larger delay variance.

1.3.2 Objective of the Phatpackets Protocol

The Phatpackets protocol is designed to solve these problems. The objective of the Phatpackets

protocol is to improve transmission quality and performance when moving large files across

the Internet or an Intranet. It can achieve reliability, scalability and efficiency by making better

use of all the Phatpackets protocol servers across the lnternet. It may be used with stream

media applications by adopting efficient congestion and flow mechanism in the Phatpackets

protocol to prevent congestion at an early phase thus reduce the possibility ofpacket loss and

jitter.

The Phatpackets protocol is built on top of UDP and TCP and provides a reliable

connectionless protocol for the transfer of large files. The Phatpackets protocol achieves its

goal of improved transmission quality and performance by adapting parameters associated with

the flow of data packets within the process of a file transfer. These include flow rate, packet

size, number of packets sent at once, packet reception rate, analysis window size, number of

connections, and number of collaborating servers.

Efiicient Bulk Dato Trans.fer with rhe Phatpackets Protocol, @ Sheng Huang



Chapter I Introduction

The main goals that the Phatpackets protocol will achieve include:

Efficiency

A client should download multiple segments simultaneously from a group of servers at same

time to improve efficiency.

Adaptability

The Phatpackets protocol should attempt to maximize throughput and minimize packet loss

across all connections for all applications within the resource limits of the hosts by combining

network status probing with server/client host load adaptation, and load balancing techniques.

That is, load should be well distributed as a function of lirtk bandwidth and server/client

performance and load variation.

Scalability

A new server should be able to be added al any time and anywhere. Load can be distributed to

the new server as long as it registers itself with other servers.

Compatibility

The Phatpackets protocol should be compatible with the existing lntemet infrastructure.

Transparency

The file segmentation, load distribution, and failure recovery process should be transparent to

users.

EfficienÍ Bulk Data Transfer with the Phafpackets Protocol, @ Sheng Huang



Chapter I Introduction

Reliability

When solne servers or links are down, the Phatpackets protocol should be able to distribute the

load to other available servers.

Summary

This chapter gave a brief background on evolution of lnternet and file transfer application.

Based on that, the problems of current file transfer application are presented. Some of the

reasons are poor performance and load allocation. Therefore, the Phaþackets protocol is

presented. The last section describes the concepts and the objectives of the Phatpackets

protocol.

Efiicient Bulk Data Transfer with the Phatpackets Protocol, A Sheng Huang 10



Chapter 2 Related Works

Chapter 2

RELATED WORK

This chapter introduces some related work on the efficiency and reliability of bulk data

transfening. Today's Internet potentially offers gigabit-per-second bandwidth. While the

national high-performance network infrastructure has grown tremendously both in bandwidth

and accessibility, it is still common for applications, hosts, and users to be unable to take full

advantage of this new and improved infrastructure. Such network performance problems are

mostly caused by poorly designed and poorly irnplemented commercial host software in Layers

3 through 7 of the Open System lnterconnection (OSf Reference Model IHMl02].

The July 1999 report from the Advanced Networking lnfrastructure Needs in the Atmospheric

and Related Sciences (ANINARS) Workshop stated: "The workhorse networking application

in the atmospheric community is still FTP. FTP is practically the only networking tool used to

construct applications in this scientific discipline. There was also a universal cry for FTP to

actually deliver the available network bandwidth to the end-user. The lament was that the

bandwidth actually obtained is much lower than the apparently available bandwidth." This

same report continued: "Atmospheric science is fundamentally dependent upon networking

technology. Programs should be developed that foster improvement to networking in the

following area: FTP (or FTP-like) bulk data-transfer is the most important networking function

used to construct applications in this scientific discipline, yet failure to achieve effective

Effìcient Bulk Data Transfer with the Phatpackets Protocol, A Sheng Huang 1t



Chapter 2 Related lüorks

bandwidths equal to apparently available bandwidths is most evident with bulk data transfer

applications. A variety of host-software problems contribute to this failure, and programs

should be developed to help solve these problems." This ineff,rciency is not unique to just FTP,

similarly poor results are seen with almost all other out-of-the-box networHng software.

TCP is extensively used and has an impressive track record for reliable communication.

However there is clearly considerable room for improving transport layer performance. This is

evidenced by the continual effort to improve applications such as FTP (e.g. TFTP [Sol92],

WEBl00 FTP [Web02], GridFTP [GriOl]), and protocol improvements within TCP (e.g. per-

destination MTU-discovery [Dee90],"Large Windows" extensions to TCP UBB92]).

2.1 File Transfer Protocol

2.1.1 Introduction to FTP

FTP Sessions maintain two connections between an FTP client and an FTP server. One

connection is control connection and the other is data connection. The control connection is

connected to the well-known TCP port 2l on lhe server end. While the data connection port is

connected to port 20 on the server end.

ln FTP, the packet level error detection and recovery is carried out by TCP. However, at the

application level, FTP lias the checkpoint restart mechanism that user can resume downloading

from a given checkpoint. This is accomplished by using REST command of FTP.

Eficient Bulk Data Trans'fer with the Phatpackefs Protocol, @ Sheng Huang 1.2



Chapter 2 Related Works

2.1.2 Commands and Semantics of FTP

RFC959 defines the widely implemented FTP protocol [PR85]. The commonly used FTP

comnrands include USER, PASS, PORT, TYPE, RETR, REST, SIZE, etc. An FTP reply

consists of a th¡ee-digit number followed by some text. The number is intended for use by

automata to determine what state to enter next; the text is intended for the human user. The

three digits of the reply each have a special significance. This is intended to allow a range of

very simple to very sophisticated responses by the user-process. The first digit denotes whether

the response is good, bad or incomplete. An unsophisticated user-process will be able to

determine its next action (proceed as planned, redo, retrench, etc.) by simply examining this

first digit. A user-process that wants to know approximately what kind of error occurred (e.g.

file system elror, command syntax error) may examine the second digit, reserving the third

digit for the finest gradation of information.

There are five values for the first digit of the reply code:

+ lyz Positive Preliminary reply

+ 2yz Positive Completion reply

+ 3yz Positive Intermecliate reply

+ 4yzTransient Negative Completion reply

+ 5yz Permanent Negative Completion reply

In the second digit the following function groupings are encoded:

+ xOz Syntax - These replies refer to syntax errors, syntactically correct commands that don't

fìt any functional category, unimplemented or superfluous commands.

Efficient Bulk Data Transfer with the Phatpackets Protocol, @ Sheng Huang 13



+

+

Chapter 2 Related Works

+ xlz lnformation - These are replies to requests for information, such as status or help.

+ x2z Connections - Replies referring to the control and data connections.

+ x3z Authentication and accounting - Replies for the login process and accounting

procedures.

x4z Unspecif,red as yet.

x5z File system - These replies indicate the status of the Server file system vis-à-vis the

requested transfer or other file system action.

The third digit gives a finer gradation of meaning in each of the function categories, specified

by the second digit.

2.1.3 Improved FTP Products

The traditional FTP is the command line FTP client and FTP server shipped with the operating

system. There are a lot of improved FTP products in market nowadays. Some of these products

are CuteFTP and WS_FTP on Windows, and NcFTP and gFTP on Linux. They improve

functionality, security and confidentiality, and efficiency of file transfer.

Some products have features such as bookmarks, command histories, support for recursive

gets, downloading entire directories and subdirectories, queues for tasks, automatic resumption,

and automatic logins. Most of them have easy-to-use graphical client. Some products support

HTTP and SSH protocols, fxp third-party file transfers (transferring files between 2 remote

servers via ftp), FTP and HTTP proxy server, passive and non-passive file transfers, and

multithreading to allow for simultaneous downloads. Some products are firewall friendly so

Eff;cient Bulk DaÍa Transfer with the Phøtpackets Protocol, @ Sheng Huang 14



Chapter 2 Related llorks

that tliey can be configured to transfer files through firewall configuration. Some products even

provide synchronization featurc, which allows users to "mirror" directory structures between a

local system and a remote FTP server with minimal intervention.

2.1.4 Web100 Project [Web02]

The Webl00 initiative includes instrumentation allowing the tuning of TCP performance with

considerable effort on better estimating parameters such as the bandwidth delay product and

effècting transport layer performance through the TCP-MIB. Performance diagnoses are made

at the sender and receiver ends of a network connection and at any point along the network

patli. Webl00 achieves TCP performance tuning transparency and thus automates the network

tuning. It refines TCP software in the Linux operating system, through open standard and open

source manner so that they can be ported to other operating systems. Web100 facilitates

adoption by the commercial community by using the IETF standards process to standardize any

modifications to the TCP-MIB. It adopts Automatic Bandwidth Delay Product (BDP)

Discovery, which is used to speciff the simplified maximum TCP window size for each TCP

session.

2.1.5 GriclFTP project [criOl]

The GridFTP project is an initiative aiming to produce a high-perfonnance, secure, reliable

data transfer protocol optirnized for high-bandwidth wide-area networks. The GridFTP

protocol is based on FTP and the researchers implemented a subset of the existing FTP

standard, enhanced it with some extensions defined already in IETF RFCs and added a few

additional features to meet requirements from current data grid projects such as automatic

Efficient Bulk Data Tran,sfer with Íhe Phatpackets Protocol, A Sheng Huang 15



Chapter 2 Related llorks

negotiation of TCP buffer/window sizes, Grid Security Infrastructure (GSI) security on control

and data channels, multiple data channels for parallel transfers, partial file transfers, third-party

transfers, reusable data channels, and support for reliable data transfer.

2.2TCP

TCP (Transmission Control Protocol) is a reliable, connection-oriented transport protocol. TCP

establishes a connection by three-way handshake. TCP provides flow control to its applications

to eliminate the possibility of the sender overflowing the receiver's buffer. TCP provides

congestion control to eliminate the possibility of the sender overflowing of router buffers as the

network becomes congested.

Flow control and congestion control are accomplished by the use of sliding window protocol.

The size is defined in terms of MSS (Maximum Segment Size) segments. MSS is the maximum

amount of data that can be grabbed and placed in a segment. The MSS depends on the TCP

irnplementation (determined by the operating systems) and can often be configurable. The

typical MSS is 536 or 1460 bytes. These segment sizes are chosen in order to avoid IP

fragmentation. The receiver-advertised window value reflects the approximate amount of data

that the receiver is capable of receiving without having its receive buffer overflow. h a full-

duplex connection, the sender at each side of the connection maintains a distinct receive

window. The congestion window is the window used by the sender and it represents the

amount of data the sender can transmit before receiving an acknowledgement. The actual

EfÍìcient Bulk Dala Transfer with the Phatpackets Protocol, @ Sheng Huang 16



Chapter 2 Related Works

window used by the sender is the minimum of the congestion window and the receiver-

advertised window.

The flow control mechanisms employed by TCP are Retransmission Time-out (RTO)

mechanism and the Fast Recovery and Fast Retransmission mechanism with some schemes.

The congestion control mechanisms have two phases: slow start and congestion avoidance.

In slow star1, the congestion window starts off with a small size, typically one MSS. The

congestion window increases in size by one MSS for every acknowledgement received,

resulting in an exponential congestion window growth rate. The sender starts by transmitting

one segment and waiting for its ACK. When that ACK is received, the congestion window is

incremented from one to two, and two segments can be sent. When each of those two segments

is acknowledged, the congestion window is increased to four. This provides an exponential

growth, although it is not exactly exponential because the receiver may delay its ACKs,

typically sending one ACK for every two segments that it receives [Ste97].

Once the congestion window size reaches the value of the slow start threshold (ssthresh), slow

start mode terminates and congestion avoidance mode commences. The ssthresh is initially set

to the value of the receiver-advertised window at the start of the connection. Congestion

avoidance phase increases the congestion window size by one for every RTT thus resulting in a

linear sliding window growth rate.

Eflicient Bullr Data Transfer with the Phatpackets Protocol, @ Sheng Huang 17



Chapter 2 Related þI/orks

Every segment sent by TCP has a timer associated with that segment. The timeout value

associated with each TCP segment is a smoothed estimation of the Round Trip Time (RTT)

plus some variation. While duplicate acknowledgements, typically three, trigger fast

retransmission. The congestion window will be halved as opposed to setting it to one MSS as

with slow start, and ssthresh is set to the new congestion window size. This is referred to as fast

recovery.

The topic on TCP performance has been studied quite extensively since the birth of TCP.

Several of the most important proposals and initiatives are as follows:

2.2.1Large Initial Congestion Window IAFP98]

TCP uses slow start algorithni at the beginning ofa new connection, after congestion has been

detected or after long idle periods. Starting from a larger size would improve efficiency during

the startup phase of a connection and an optional initial window size of two has already been

proposed by [APS99]. Experiments have also been done with initial window size of 3 and 4,

which showed improved performance although a small increase in dropped packets was also

observed.

2.2.2 ssthresh Selection

Choosing an appropriate ssthresh value can eliminate the problem of having slow start not end

soon enough leading to congestion ofthe link and dropped packets. One algorithm proposed to

determine appropriate ssthresh values is the packet pair algorithm in combination with the

measured round-trip time proposed by [Hoe96]. The algorithm estimates the link bandwidth by

Efficient Bulk Data Transfer with the Photpackets Protocol, @ Sheng Huang 18



Chapter 2 Related Works

observing the spacing of the ACKs in the reverse link, and together with the estimated RTT.

Then the BDP is used as ssthresh value.

2.3 UDP

UDP (User Datagram Protocol) is the other important transport protocol besides TCP. IIDP is

commonly used with multimedia applications. It is also used in Domain Name Service (DNS),

Simple Network Management Protocol (SNMP), and Network File System 0rffs) version I

and2.

UDP is an unreliable transport protocol. Aside from the multiplexing/demultiplexing function

and some light error checking, UDP adds nothing to IP. ln an lnternet environment, a message

can be duplicated, delayed, lost, comrpted or delivered out of order. UDP is an unreliable

protocol because it has no retransmission facility, nor the sender is informed if failure occurs.

The checksum field in UDP header is calculated over the UDP segment to eliminate the

possibility of wrong delivery. Although IIDP provides error checking, it does not do anything

to recover from an error. Some implementations of IIDP simply discard the damaged segment;

othels pass the darnaged segment to the application with a warning.

UDP is a connectionless protocol. There is no connection establishment and no connection

state. So less resource is needed comparing with TCP. There is small packet header overhead

because UDP has 8 bytes of header whereas TCP segment has 20 bytes of header.

Efficiertt Bulk Data Transfer with the Phatpackets Protocol, A Sheng Huang 19



Chapter 2 Related Lltorks

UDP does not have flow control and congestion control. The speed at which UDP sends data is

only constrained by the rate at which the application generates data, the capability of the source

(CPU speed, memory size, etc.), and the access bandwidth of the Internet. If the sender

overflows the network or receiver, the message will simpty be discarded. For a typical LIDP

implementation, IIDP will append the received segments in a finite-size queue that "precedes"

tlre corresponding socket. The process reads one entire segment at atime from the queue. If the

process does not read the segments fast enough from the queue, the queue will overflow and

segments get lost. Unlike TCP, UDP is a packet protocol because it maintains message

boundaries. It also allows many-to-many communication as in multicast and broadcast.

2.4 Load Balancing

Load balancing in distributed systems has been the subject ofresearch for the last few decades.

A large number of schemes and implementations have been presented since the birth of the

lnternet. The most recent work are mainly in a Web context. A number of approaches have

been developed to provide transparent access to multi-server Intemet services including HTTP

redirect, DNS aliasing, mobile agents, and Active Networks. Network load balancing

algorithms have been incorporated in operating systems (e.g. Windows 2000 Advanced Server

and Datacenter Server ([NLB00]), Web Servers (e.g. Apache fJseggl) and Resource Brokers

(e.g. IBM Websphere Network Dispatcher [IBM02]).

There are four major network load balancing approaches: DNS-based (Constant and Dynamic

TTL algorithnis), client-based (e.g. Smart Client [YCE97] and Client side proxy [BBM97]),

Eff;cient Bulk Data Translèrv'itlt the Phatpackets Protocol, @ Sheng Huang 20



Chapter 2 Related llorks

server-based, and dispatcher-based [Aga01][Eng98]. DNs-based load balancing is affected

adversely by remote and intermediate Domain Name Server caching, hence dispatcher-based,

client-based and server-based approaches are preferable. Performance comparison for several

server selection schemes - round robin, random, weighted capacíty, and nearest cluster as a

function of RTT and server performance/load has been studied in [Aga0l].

Summary

This chapter gave a brief background on FTP, TCP and UDP. The problems associated with

current FTP applications that are unable to deliver the available network bandwidth to the end-

user are presented. Some initiatives to improve the performance of FTP and TCp are briefly

describecl. In section 3, the lightweight and unreliable transport protocol llDp is introduced.

While the national high-perfonnance network infrastructure has grown tremendously both in

bandwidth and accessibility, network performance problems are arguably caused by poorly

designed and poorly implemented commercial host software in Layers 3 through 7 of the OSI

Reference Model. The Phatpackets protocol is an initiative to solve these problems.

Efficient Bulk Data TransJèr with [he phaÍpackets protocol, @ sheng Huang 21



Chapter 3 The Phatpackets Protocol Architecture

Chapter 3

THE PHATPACKETS PROTOCOL ARCHITECTURB

3.1 Introduction to the Phatpackets Protocol [HSM01]

Transmitting a hle from a server to a client requires negotiating a "connection" between the

client and server to determine a number of details prior to actually transmitting the file. These

include establishing port numbers, access, and the name of the file to be transmitted. Once

these parameters are set the actual task of downloading begins. The most common application

and protocol for transmitting a file is known as FTP over TCP. From the application

perspective the server basically writes the file to a socket stream and the client reads from a

stream. TCP takes care of all the network detail such as end-to-end flow control and requesting

the retransmission of any packets that may have been lost or comrpted.

The Phatpackets approach is radically different addressing the issue more explicitly through the

developrnent and experimentation with improving the transport layer directly. This chapter

outlines the basic algoríthms and parameters that are adapted and how they are adapted. The

emphasis is on the algorithm during the actual transfer process as opposed to the procedures for

establishing connections and selecting files to download. It should be noted that in the process

of initializing the actual transfer none of the data received is lost. The Phatpackets protocol

adapts these parameters at the beginning and during a transfer to achieve maximum throughput

Efficient Bulk Data Transfer with the Phatpackets Protocol, @ Sheng Huang 22



Chapter 3 The Phatpackets Protocol Architecture

within the resource limits of the collaborating hosts. If resources permit, it enables the end

hosts to run applications at 100% of the available bandwidth, regardless of the magnitude of a

network's capability. As such it is classif,red as a protocol for end-to-end performance

enhancement.

The Phatpackets algorithm is based on the notion that the network is a black box. End-systems

detemine the network's state by probing for the network state and dynamically adjust the load

on the network. This method is appropriate for pure best-effort data that has little or no

sensitivity to delay or loss of individual packets. ln addition, the Phatpackets protocol tries to

minimize the impact of losses from a throughput perspective. The following parameters are the

most relevant to understanding the Phatpackets protocol:

Flow rate: A basic parameter to adapt to is the flow rate. The flow rate controls the rate at

which a selver delivers packets to a client. This is adapted during transport to ensure a

reasonable reception rate. The client compares the number or packets received with the number

expected within an analysis window. The calculated flow rate is sent back to the server to

adjust the flow to maximize the bandwidth of the connection. ln effect the rate is set such that

packet loss will occur in controlled manner.

Packet size: The packet size is the number of data bytes sent at once. An ideal packet size is

one that adapts to the maximum allowed on a connection without IP fragmentation. This is

accomplished in a sirnilar manner to the adjustment for the block size (see below). The only

Ef.ficient Bulk Data Transfer with the Phatpackets Protocol, @ Sheng Huang 23



Chapter 3 The Phatpackets Protocol Architecture

difference is that once adapted to the optimal packet size no further adjustment is required for

the session.

Block size and block delay: The number of packets sent at once or more precisely the number

of packets sent immediately one after another represents the block size. From here on this is

defined as the block size. Following each burst of packets the server waits a specific amount of

time determined by the flow rate. From here on this is defined as the block delay. The block

size and block delay are adaptive and are adjusted to optimize the effective available

bandwiclth. They are adjusted as a function of packet drop rate, packet reception rate, delay

variance, and ssthresh to acquire maximum bandwidth efficiency. The Phatpackets protocol

avoids creating bursty traffic that degrades network throughput.

Packet reception rate: The packet reception rate is the ratio of the number of received packets

to that of sent packets within a given period. The desired reception rate (alpha) is a value

between 0 and I preset by the user and is adapted during the transfer as a function of alpha

value and current packet reception rate. The reception rate is used to control the flow rate as

well as in determining the block size and the block delay.

Analysis window size: The analysis window impacts performance by allowing the averaging of

more or less data. Control inf'ormation is sent from the client to the server al a rate determined

by the analysis window. The control information should be f,rne-grained enough for efficient

transmission while not introducing feedback implosion problems that affects scalability.

Efficient Bulk Data Transfer with the Phatpackets Protocol, O Sheng Huang 24



Chapter 3 The Phatpackets Protocol Architecture

Figure 2 illustrates the basic process of sending and subsequently retransmitting missing

packets. The figure illustrates the mode where a complete file is transmitted followed by the

rettansmission of missing packets and subsequently the retransmission of any packets dropped

during retransmission. The actual process operates with missing packet notification occurring

asynchronously.

t llrininsll;iI ,.,, . I)l,rilne,.i

Si'll::u:it :',ltrlt i1:l:t il,Jlitulr:ilÌ ctitúrìlúi l.{ I ll |:i_r lr¡irii i

ll:r.¡t.':r::rl ¿il J Ir':,'ìJt r:l.l.i:-.ilci': liitll ¡-.ircIcl lil:r: il n+l ntirlu iì:iill {¡:1Ì,r.
.i 

iit¡isnlii iti ii:i rtii:¡tt;i c r:i.l'r :t¡cfl Ihlr? thu sii-st¡irr.ril iliiclict ltss ls rrr¡ï :':^'iorc Ìh¿r¡: tr'l ì,

Figure 2. Basic View of the Phatpackets Protocol

Figure 3 illustrates another aspect of the protocol. The basic architecture should be flexible

enough for two channels, one control and the other data. The data channel should be as

streamlined as possible. The underlying mode of operation is to send data in as continuous a

streatn as possible recovering from any dropped packets after sending the entire file or a

)itr¡r¡rcri

iì r'-lt:r.cln lr l.'

Ef./icient Bulk Data Transþr with the Phatpackets Protocol, @ Sheng Huang 25



Chapter 3 The Phatpackets Protocol Architecture

considerably large portion of it. To be as flexible as possible the overhead data in the UDP

packet should be minimal. To date, the minimal overhead has been to associate a stream

identifier, segment number (the actual number of the segment as opposed to the byte) with the

actual payload. Tlie actual payload should be as large as possible without requiring

fragmentation and reassembly at the IP layer at end points (VPN gateways) or at any

intervening networks. In the majority of cases this is a limit imposed by the maximum Ethernet

frame size. In order to improve efficiencies across networks where packets are encapsulated

such as for transmission of VPNs the Phatpackets data payload is reduced to prevent

fragmentation. At this tirne the size of the data payload is set as an option for the file transfer

process wiTh 1412 as the default.

lil *i.Ìci lìrr [)Ï:utiultkrrts

I'rrrrllrtl

I I nrrlir,:eiirurli I iria

I 
Ìi::itl 'l lt:¡li

'lrllrlLt'-

iltil r'lrlut
tittllti-:ilI

:ì1ir rFrüttT
¡riz:.it i{r:¡ri:ls

j )itti¡ [ ]iin lrlut:ilt
,1 i¡ t l":

I r:in::l t:
'l'(tci'';:

)at¿¡

I r-:ulilcr
':rlL'i55

Pl:iiL(

Ef/ìcient Bulk Data Transfer with the PhatpackeÍs Protocol, @ Sheng Huang 26



Chapter 3 The Phatpackets Protocol Architecture

Figure 3. Basic View of the Complete Architecture

Figure 4 illustrates the protocol as it relates to the structure of sending packets and the

associated flow control mechanism. The block size is the number of packets streamed out of

the server at one time. Different batches are interspersed by the block delay. An analysis

window is also illustrated providing a basis for analyzing the packet reception rate thereby

providing a feedback mechanism from client to server.

,\.¡ir i'. s:s \lt I Il.lcri't
It;-i1* t.l*lll.r¿rj
Itrrrrrlil
H

llli¡rlisr,rc ti

lrnirl,rt 5 izt I ;\il;u:;ithit I

Figure 4.The Block Size Illustration

The basic setting of the block delay is accomplished by sending a stream of packets, estimating

a delay that would be required to sustain a cor¡rection at an dyo packet reception rate. Equation

I illustrates a siniplified rate control equation currently implemented. The alpha value is also

srnoothecl (exponentially averaged) using Equation 2.

ri ¡(','.i.:,..,,. rr | ¡ r.. /.1.r'tr.r',7,.r.;r, - [ ##iÏTh i, " ilì

I J {l.r'j.'¡í;t

H
li:rsre l'triril

ili

Efficient Bulk DaIa Transfer wilh the Phatpackets Protocol, @ Sheng Huang 27



Chapter 3 The Phatpackets Protocol Architecture

ln this manner the delay is adapted on the fly. The same basic equation is used recalculating the

delay after x packets are sent or received, where x is also an adjustable parameter known as the

analysis window size. This sirnple control structure has the following desirable property: It

atternpts to maximize flow through the channel if alpha is less than l.

3.2 The Phatpackets Protocol Algorithm

3.2.1 FIow and Congestion Control Algorithm

In environments with lower levels of statistical multiplexing or with per-flow scheduling, the

delay and loss rate experienced by a flow is in part a function of the flow's own sending rate.

Thus, a flow can use end-to-end flow and congestion control to limit the delay or loss

experienced by its own packets [Flo00].

The flow control and congestion control mechanism should be able to adapt to all kinds of

network situations and establish a steady transfer state as fast as possible in order to maximize

tliroughput and rninimize packet loss. It should also be fine-grained enough for efficient

transmission while not introducing feedback implosion problem that affects scalability. An

optimized flow control and congestion control algorithm has been incorporated in the

Phatpackets protocol.

The most relevant parameters to the flow control and congestion control mechanism of the

Phatpackets protocol fol a single "connection" are the block size, block delay, packet reception

rate, alpha, ssthresh, and delay variance. The alpha and ssthresh are preset values and are

Elficient Bulk Data Transfer with the Phatpackets Protocol, A Sheng Huang 28



Chapter 3 The Phatpackets Protocol Architecture

adjusted subsequently as a function of the packet reception rate. The delay variance is a

variable to aggregate the delay variations during the transfer. Imminent packet loss can be

predicted by long delay, and network variation can be observed by large delay variance.

The packet losses should be kept to a minimum because not only must dropped packets be

retransmitted but also packet losses degrade the overall network throughput. The reason for

packet loss may be network congestion as well as client side overflow. To minimize the effect

of packet losses, it is necessary to identify the reason and process with different flow control

techniques. The flow control and congestion control mechanism of the Phatpackets protocol is

used to avoid congesting the network. To avoid overflowing the client's buffer, a customized

buffer can be used if the status of the network VO buffer cannot be acquired. The amount of

data in tlie buffer is used as feedback information to adapt the parameters of the sender in order

not to exceed the maximal output rate allowed. The Phatpackets protocol changes the buffer

size dynamically, transparently, and automatically to use system memory more effectively and

prevent excessive memory consumption.

The Phatpackets protocol has two modes for file transfer; one is Adjust Block Size mode and

the other Adjust Block Delay mode. ln the Adjust Block Size mode, the block size is adjusted

to control the flow rate of tlie sender. In the Adjust Block Delay mode, the block delay of the

sender is adjusted. The Phatpackets algorithm uses the packet reception rate and the delay

variance to adapt to network conditions dynamically. An attempt is made to use these variables

to probe for additional network capability to get the maximum throughput with a minimum loss

rate. In addition, all control parameters are adjusted dynamically to achieve effective rate

Efficient Bulk Da¡a Transfer with the Phatpackets Protocol, O Sheng Huang 29



Chapter j The Phatpackets Protocol Architecture

control. If the reception rate is higher than alpha, and the block size is lower than ssthresh and

the packet reception rate is higher than the previous value, then the algorithm increases the

block size exponentially. If block size is lower than ssthresh but the packet reception rate

begins to drop below the previous value, it decreases the block size linearly. If the block size is

higlter than ssthresh and the packet reception rate is higher than the previous value, the

algorithm increases the block size linearly. If the block size is higher than ssth¡esh but the

packet reception rate drops below the previous value, the algorithm decreases the block size

linearly. Or else, the algorithm decreases the block size exponentially.

The pseudo code for the simplified control algorithm is as follows:

oldRate: previous packet reception rate

uewRate: current packet received rate

IF nervRate > alpha

IF block size < ssth¡esh

IF newRate > oldRate

Increase the block size exponentially

ELSE

Decrease the block size linearly

END IF

ELSE

IF newRate > oldRate

Increase the block size linearly

ELSE

Efficietrt Bulk Data Tran.sfer vtith rhe Phatpaclets Protocol, @ Sheng Httang 30



Chapter 3 The Phatpackets Protocol Architecture

Decrease the block size linearly

END IF

END IF

ELSE

Decrease the block size exponentially

END IF

Adjust the alpha, ssthresh, block delay and delay variance

3 .2.2 Inf.e grated Layer Proces sing Approach (ILP)

As networks proceed to higher speeds, the performance bottleneck is shifting from the

bandwidth of the transmission media to the processing time necessary to execute higher layer

protocols. Efficient transrnission can only be achieved if the unit of control is exactly equal to

the unit of transmission, the unit of transmission is the unit of processing, and the unit of

processing is also the unit of control [DD97].

Protocol processing can be divided into two parts, control functions and data manipulation

functions. In the control part there are functions for control message processing. It has been

detnonstrated that the control part processing can match gigabit network performance for the

most common size of PDUs (Protocol Data Unit) with appropríate implementations [CJR89].

When the control channel is implemented over TCP, the control message is guaranteed to be

delivered. If the control channel is implemented over UDP, the application may need to provide

a mechanism to keep irnportant control messages from being lost. One such method is

irnplemented in NETBLT lCLZ\1l. It reduces control message loss by using a single long-

Efficient Bulk Data Transfer with the Phatpackets Protocol, @ Sheng Huang 31



Chapter 3 The Phatpackets Protocol Architecture

lived control packet; the packet is treated like a FIFO queue, with new control messages added

to tlie end and acknowledged control messages removed from the front. The implementation

places control messages in the control packet and transmits the entire control packet, consisting

of any unacknowledged control messages plus new messages just added. The entire control

packet is also transmitted whenever the control timer expires. Since control packet

transmissions are fairly frequent, unacknowledged messages may be transmitted several times

before they are finally acknowledged. This redundant transmission of control messages

plovides automatic recovery for most control message losses over a noisy channel.

Examples of data manipulation functions are checksumming, compression, encryption and

decryption. Data manipulation functions present a bottleneck. They consist three phases. First a

read phase where data is loaded from physical disks to memory then to cache or registers, then

a ntanipulation or processing phase, followed by a write phase. For very simple functions, e.g.

checksumming or b¡e swapping, the time to read and write to memory dominates the

processing time. For other processing oriented functions, like encryption and some presentation

encodings, the manipulation time dominates the processing time. However, the situation is

expected to change with the increase of processor performance. The memory access will be the

major bottleneck rather than data processing.

The increase of processor speeds and the discrepancy between processor and memory

performance is pushing toward the integration of data manipulation operations. The main

concept behincl ILP is to minimize costly memory read/write operations by combining data

Eflicient Bulk Data Transfer with the Photpackets ProÍocol, @ Sheng Huang 32



Chapter 3 The Phatpackets Protocol Architecture

manipulation oriented functions instead of performing them serially as is most often done today

lDDeTl.

The Phatpackets protocol integrates the layer 4 to layer 7 of the OSI Reference Model into one

layer, thus reducing the overhead for passingdata between protocol stacks and costly memory

opemtions. As regards disk I/O operations, the Phatpackets algorithm avoids accessing the disk

unnecessarily and avoids processing bytes and characters individually.

3.2.3 Adaptability

As the technology progresses, tlie networking conditions are going to become more and more

variable. It should be quite obvious that applications that can gracefully adapt to multiple

enviromnents will outlive those that will have to die when their requirements are not met. It

should also be quite obvious that an application that can automatically characterize its

envirorunent will be more robust and easier to deploy than an application that has to exchange

signaling infonnation with the network for that purpose. Adaptability guarantees that the

application will always use all the available resources and make the most efficient usage of

these resources [DD97]. By combining network status probing with server/client host load

adaptation, and load balancing techniques, the Phatpackets protocol attempts to maximize

throughput and minimize packet loss across all connections for all applications within the

resource limits of the hosts.

3.2.4 Adap|ive Network Load Balancing Algorithm (ANLB)

Efficient Bulk Data TransJÞr with lhe Phalpackefs Prolocol, O Sheng Huang JJ



Chapter 3 The Phatpackets Protocol Architecture

In a heterogeneous network, hosts differ in processing power, memory, and swap space

availability. The load on these hosts also varies over time. The network latency, which is

determined by the total network traffic and not by the load on an individual host also changes

quickly. Thus a good network load balancing algorithm should have at least two properties:

Sensitivity to network latency and Anticipatory load distribution [Mon00].

The Phatpackets protocol utilizes multiple connections from multiple servers simultaneously to

enhance the performance, scalability and availability of mission-critical transport services, such

as Web, Terminal Services, Virtual Private Networking, and streaming media servers

[i]M2021. As such load balancing is essential to the Phatpackets protocol.

The Phatpackets protocol has an Adaptive Network Load Balancing algorithm (ANLB) to

naximize the overall tliroughput for operation in a network of heterogeneous client and server

hosts. ANLB utilizes an approach which is a combination of dispatcher-based, client-based and

server-based approaches in sever selection, and adopts predictive load balancing and

subsequent load rebalancing in achieving effective load balancing. As such the ANLB within

the Phatpackets protocol has a full distributed and autonomous architecture.

Factors such as current Internet traffic conditions, loads and locations of PhatServers, and

locations of PhatClients are critical to server selection. This information should be updated

regularly and naintained in a directory service. The PhatServers exchange load and availability

information with other PliatServers. In partial data replication schemes, the file information is

also exchanged. To avoid feedback implosion problems that affect scalability, PhatServers can

Efficient Bulk Data Transfer with úe Phatpackets Protocol, A Sheng Huang 34



Chapter 3 The Phatpackets Protocol Architecture

be organized into clusters and one cluster elects a PhatServer to delegate the requests and

responses for all its members with other clusters. Since there is always a tradeoff between the

overhead due to collection of system state information and performance gain by use of

available state infbrmation, the Phatpackets protocol tries to strike a balance.

When a PhatClient sends a file transfer rcquest to a PhatServer, the PhatServer replies with the

IP address/fìle information of PhatServers that contain data replicas. The server selection is

based on client inf'onnation, request frequency, and server location, load and availability. By

using the highest 8 bits of the lP address only, the geographical region of the client can be

approximated [HKC96]. For requests from the same PhatClient, the server selection can be

based on a round robin scheduler'. For requests from other clients, a random selection can be

made from the candidate host set based on server locations, relative loads and available

resources. While naking server selections, a heuristic approach is used to ensure that no server

is overloaded.

The PhatClient then tries to establish control connections with these servers and measures the

BDP with each server. The PhatClient uses the BDP approximation to decide the number of

packets to be delivered from each server.

3.2.4.l Appropriate Initial Status Setup with BDP estimation

Prior to the initiation of a file transfer it is important to estimate a number of parameters

associated with the transfer. At the beginning of a transmission through a network with

unknown conditions the client/server hosts need to probe the network to determine the

Efficient Bulk Data Transfer yvith lhe Phatpackets Protocol, tA Sheng Huang 35



Chapter 3 The Phatpackets Protocol Archiþcture

available capability in order to avoid congesting the network with an inappropriate initial large

burst of data. A small closely spaced series of data packets that are sent to probe the network

arrive at the receiver at the rate that approximates the bottleneck link bandwidth [Hoe96].

BDP estimation depends on two major factors, namely network conditions and server

load/perfonllance. If there is a capable seryer system present, but the connectivity of the client

in terms of delay and available bandwidth is not good, a large BDP will be manifested. If the

server system is saturated with requests or has a poor performance in regards to CPU, RAM,

disk and network VO resources, the BDP will also tend to be large [Aga01]. Although the

Phatpackets protocol is inherently rate based and less susceptible to limitations caused by high

BDP within protocols such as TCP it is still a good function for initial load balance estimation.

3.2.4.2 Load Rebalancing

Since the performance of the transfer is heavily affected by the server and client performance,

for example, the averaged throughput for a slow server machine may be only 30%o - 40% of

that of a fast server machine collocated at the same site, and the network traffic and server load

vary over time, load rebalancing during the transfer process is essential. The Phatpackets

protocol utilizes a load rebalancing algorithm based on a round robin scheduler.

The load among the different connections from same server tends to be balanced and normally

does not need to be rebalanced since these connections share the same path and experience

sarne network situations in general. The load among different servers however needs to be

rebalanced on-the-fly during the transfer process.

Efficient Bulk Data Transfer v,ith the Phatpackets Protocol, @ Sheng Huang 36



Chapter 3 The Phatpackets Protocol Architecture

The load rebalancing algorithm determines the reusable priority based on the finished task size.

The data downloading comection that finished the largest task size is given the highest

priority- Then the connections that finish their task parts are queued for reuse purposes. If there

are sonle connections that haven't downloaded a reasonable part, the connections in the queue

can take over part or all their task parts. The slowest connection is given the highest priority for

rebalancing purpose. The switch should be as smooth as possible. Test results for predictive

load balancing approaches such as BDP estimation without and with later round robin

rebalancing are discussed in Chapter 5.

3.3 FIow Charts of the Phatpackets Protocol

Efficient Bulk Data Transfèr yuith lhe Phatpackets Protocol, @ Sheng Huang J,/



Chapter 3 The Phatpackets Protoco! Architecture

3.3.1 PhatClient of the Phatpackets Protocol

fileSize <= 500K?

fileSize <--2M?

fileSize <= 40M?

Prel¡ales FSTPCIient and requests
sending (PORT_CMD and

Elficient ßulk Data Transþr with the Phatpackets proÍocol, A Sheng Huang 38



Chapter 3 The Phatpackets Protocol Architecture

3.3.2 Process MORE_CMD command of the Phatpackets protocol

The Phatpackets Protocol control commands are listed in Appendix A.

Receives MORE_CN4D

3.3.3 Process MORE_RPLY command of the Phatpackets Protocol

The basic work principle is as follou,s:

If a server is dorvn or there is connection error with a seryer, or if the BDP value with a server is

larger than ten times the minimum BDP value, this server is ignored. And at most four

connections with a given server are used.

Checks directoly clatabase for file
narne/version

serverNuln >:
dcsircdNunr - l?

Gets desiredNum - 1 servers' and
this server's name/ directory

records
Gets serverNum servers' ancl
this server's nan're/directory

records

Sends MORE RPLY

EJficienr Bullc Data Transfer vtíth the Phatpackets Protocol, @ Sheng Huang 39



Chapter 3 The Phatpackets Protocol Architecture

Receives
MORE RPLY

Establishes Control Connections
with each server

Can't Conncct? Yes

No
serverNum - 1

Tests RTT of each conh'ol
connection (NOOP_CN,ID)

The file part for the first server
firstParFexpPackets/ sum

Connection brv:O
or brv >

l0+minBW?

Tests bandwidth of each control
connection (sends 4 BW_CMD)

Assigns part =baseBW/ bw"firstPart to
each server that is not the last server,

and the rest to the last serverDetermines bandw idth with BW_RPLY,
sets bw= bandr,r'idth*R'IT. Use the

product to assign file segrrrents

Sets rninBW as the n.rinilnum bw value,
and baseBW as the first comection bw

Eficient Bulk Data 1i'ansfer witlt the Phatpackets Protocol, @ Sheng Huang 40



Chapter 3 The Phatpackets Protocol Architecture

3.3.4 FSTPClient of the Phatpackets Protocol

alplra = 0.95, adjus6ize = 32,
BlockSize =4, ssthresh = 8,

rtt = 250. firstTrans = true

Sends
DONE-RECEIVING_CMD

FirstTrans : true
and leceived

Dercentage <: 0.3?

Timeout = MAX(2*blockDelay, 50)

timeout += rtt

Sets data Comrection

Receives packet
beforc limeout?

Retransmitting = true
RequestMocle = true

IìirstTrans = false

lterates loss packets,
retransmission request

Is Complete?

Yes

No

Notifies PhaClient
receiving is
complete

Notifies PhaClient
'eceiving is stoppec

Exit

IIJìcient Bulk Data Transfer vith the Phatpackets Protocol, @ Sheng Huang 41



Chapter 3 The Phatpackets Protocol Architecture

3.3.5 Process Received Packet

lates blockDelay according
to the time to receive the four

packets, sends
ADJUST_DELAY_CMD

Stores this

Seqld >
AdiustSize?

End of first

Loss rate is
lorver than last

haf¡lr')

Rcceived packet is one
ofthe first 4

retransmission
packets?

Cancels retransmission
request (Sends empty
retransqlission packet)

alpha/newRate

Ad.iusts block
sizc state?

factor<=l.I *alpha?

blockDelay = factor * blockDelay
Sends ADJUST_DELAY_CMD

nlncrease = false

Adjusts pace (block size
irrcrenrent unit) accorcling to

currBlockSize

currBlockSize +: pace

Changes to AdjustNo (Adjust delay rnode)

Efficient Bulk Data 1i'ansJèr vith the Phatpackets Protoco[ @ Sheng Huang



Chapter 3 The Phatpackets Protocol Architecture

No (high loss rate)

nervRate > alnha)?

CurrBlockSize
< ssthresh?

locksize = currBlockSi
currBlockSize =
currBlockSize/2

sstlrresh = currBLockSize /2
rBlockSize = currBlockSi

upperBlocksize += pace
lowerBlockSize += pace
cun'BlockSize += pace

Adjust ssthresh to a higher
CurrBlockSizc*

2< ssthrcsh?

Changes to Adjust Delay State

= O.7"alpha * 0.3*newlowerBlockSize = currBlockSize
rrBlockSize = currBlockSize*

upperBlocksize = currBlockSize

currBlockSize >3?

upperBlocksize -= pace
currBlockSize -= pace
IowerBlockSize -= pace

currBlockSize = ssthlesh
upperBlocksize = ssthresh

upperBlockSize <=
lowerBlockSize?

upperBlocksize = sstlrresh
lowerBlockSize=currBlockSize+p

IowerBlockSizc<

Changes to Adjust Delay State
Mode

currBlockSize:
(lowerBlockSize + upperBlockSize) / 2

cunBlockSize:
upperBlockSize?

Changes to Adjust
Delay State Mode

Phatpackets Protocol, @ ShengEJficient



Chapter 3 The Phatpacl,cts Protocol Architecture

3.3.6 PhatServer of the Phatpackets Protocol

When a PhatServer is stafted, the Internet address of other started PhatServers can

so tllat this server can join the server cluster. Directory information is sorted using

for the purpose offàster directory requests and processing using a binary search.

be inputted

Merge Sort

Starts directory servel'

Directory
Requester starts

Stopped?

I ru.,

Yes

Ends

Sleeps requester
fi rnpnr r f

AII directory control
connections send

DIR_CMD command

Receives DIR_RPLY in
Directory connection

timeout?

No

Yes
Assumes ser
heavy conge
this directon

and remol

ver stops or
stion, closes
¡ connection
'es related

Updates directory/file
records in database

Starts Directory
Requester thread

Starts Phat Server
socket threar{

Has file transfèr
request?

Starts an FSTPServer
tlrread

Eficienl Bulk Data'lransfer v'ith the Phatpackets Protocol, @ Sheng Huang 44



Chapter 3 The Phatpackcts Protocol Architecture

3.3.7 FSTPServer of the Phatpackets Protocol

Trarrsfers a packet
Have packets
to retransmit?

I-lave translèrred
blockSize packets?

Rebransmits requested
packets, and inserts block

delay every block size
packets

Sleeps block delay tirne

Finishes sending?

Sleeps rtt+MAX(2*blockDelay, 50)

SIeeps rtt+400

ELficient Bulk Data Ti'ansfer with the Phatpackets Protocol, @ Sheng Huang 45



Chapter 3 The Phatpackets Protocol Architecture

Summary

This chapter presented an architecture for improving the waiting time to download files from

the Intemet and a set of methods. The basic model effectively represents an alternative

transport layer in the TCP/IP protocol stack. The Phatpackets protocol attempts to combine the

best aspects of a variety of transport and control methods with the objective of developing a

near optimal and robust protocol. The flow control and congestion control mechanism for a

single "connection" uses parameters such as block size, block delay, packet reception rate,

alplra, ssthresh, ancl delay variance to realize efficient rate control. The Phatpackets protocol

utilizes multiple corutections from multiple servers simultaneously to enhance the performance,

scalability and availability. The Phatpackets protocol uses a predictive load balancing approach

namely BDP estiruation at the beginning of transfer for initial load balancing and it uses a load

rebalancing apploaclr based on round robin algorithm during the transfer to dynamically adjust

the load on all connections from all servers.

Eficient Bulk Duta Trans.fcr with the Phatpackets Protocol, @ Sheng Huang 46



Chapter 4 The Phatpackets Protocol Implementation

THE PHATPACKETS

Chapter 4

PROTOCOL IMPLEMBNTATION

4.1 Introduction to the Implementation Tool - Java

Java was introduced by Sun Microsystems in i995 as a cross-platform environment for

building arid deploying business applications. Java stafed as a client-side player and rapidly

moved to the enterprise server. In 2000, Java moved back to "modern clients" - digital

assistants, cell phones, and global positioning systems in cars, etc.. During the late 1990s, as

Java for the enterprise matured, culminating with the release of Java 2 Platform Enterprise

Edition (J2EE) in 1999, the power of Java was able to bring together disparate operating

environments in the server space. The concern about using Java as a server-side language

because of performance issues has really gone a\ /ay since the last several releases of the JDK

have shown dramatic improvement in performance with a lot of the just-in-time compilation

technology. As Java's ties to XML are strengthened, more Java based Web services will be

seen on the Internet.

Java is selected as the development tool for several reasons. First, Java is platform independent.

Java lias the virtue of "compile once, run everywhere". Second, the applications are more

neatly and cleanly rvritten in Java than in other languages. Third, client/server programming in

Java is becoming increasingly popular, and may even become the norm in the upcoming years.

Efficient Bulk Data Transfer with the Phatpackets Protocol, @ Sheng Huang 47



Chapter 4 The Phatpackets Protocol Implementation

Its networking related packages provide powerful APIs for implementations. It has exception

mechanisms for lobust handling of common problems that occur during VO and networking

operations. And its threading facilities provide a way to easily implement powerful client and

server programs.

4.1.1 Introduction to Java

The Java platform has two components: the Java Virtual Machine (Java VM) and the Java

Application Progr-amming Interface (Java API). The Java VM is the base for the Java platform

and is ported onto various hardware-based platforms. It mediates between Java applications

and the underlying hardware platform 
-executing 

application b¡ecodes, managing system

memot'y, ploviding system security, and juggling multiple execution th¡eads. The Java API is a

large collection of ready-rnade software components that provide many useful capabílities,

such as graphical user interfàce (GIJI) widgets. The Java API is grouped into libraries of

related classes and interfaces; these libraries are known as packages. Java's APIs are among the

most well-documented and complete APIs in all programming languages.

The JavarM 2 Platfom, Standard Edition 1.4 has introduced several new features and

enhancements fol Object Serialization, Remote Method Invocation (RMI), Common Object

Request Broker Architecture (CORBA), and networking in general [Mah02]. New Features and

Enhancements in Networking are:

+ IPv6: lnternet Protocol version 6 support for TCP and UDP application (including

rnulticast).

Efficient Bulk Duta Transfer with the Phatpackets Protocol, @ Sheng Httang 48



Chapter 4 The Phatpackets Protocol Implementation

<¡

+

HTTP Digest Authentication: The HTTP digest authentication implementation has been

updated to supporl proxies and origin servers.

Unconnected/Unbound Socket: This allows more flexible socket creation, binding, and

connection and enables manipulation of socket options before establishing or accepting

connections. In addition a timeout can be specif,red when establishing a connection. A new

class, javax.net.ssl.SSLSocket, which is a subclass of java.net.Socket has been added to

provide security for data sent through sockets through encryption.

Connected UDP Socket: The IIDP protocol is a connectionless protocol, however, the

DatagramSocket connect method now establishes the address association at the native

level' Where supported, this allows an application to have visibility of ICMp port

unreachable messages as an indication that the remote application is unavailable.

Uniform Resource Identifier (IIRI): The java.net.URl is a new class that allows IIRI

construction ancl parsing without the presence of a protocol handler, which is not possible

with tlie URL class. JNDI DNS Service Provider in InetAddress: This enhancement in

class java'net.lnetAddress enables applications to configure a pure Java name service

provider by using a DNS name service provider through JNDL

URlEncoder and URlDecoder: These have been added to enable applications to use other

character encoding/decoding schemes.

TCP Out-of-Band Data: New niethods in class java.net.Socket have been added to provide

Iimited support for TCP urgent data for support certain legacy applications. Urgent data

may be sent on any TCP socket. However, only partial support for receiving urgent data is

provided.

+

+

<>

+

Elficient Bulk Data Transfcr with the Phatpackets Protocol, @ Sheng Huang 49



Chapter 4 The Phatpackets Protocol Implementation

+ SOCKS: Full V5 and V4 TCP support with auto-negotiation with the proxy of which

version to use.

+ Networklnterface: The java.net.Networklnterface class allows enumeration of interfaces

and addresses and can be used in applications deployed on machines with multiple network

interfaces.

4.1.2 Java Performance [Mel99]

The Java VM has three generations: Interpreter (JDK 1.0 - 1.1.5), Just-ln-Time (JIT) Compiler

(JDK 1.1.6+, JDK 1.2) and Dynamic optimizing compiler (e.g., JDK 1.2.2 with Java HotSpot

1.01, JDKI.3). Older interpreter-style VMs are the slowest of all of these. Costs in running

Java applications are byte-code execution, memory allocation/garbage collection, th¡ead

synchronization, tnethod dispatch, and other factors. JIT compiles b¡e codes to native

instructions on-the-fly so it has faster byte code execution and faster method dispatch. But it

may use more RAM than the lnterpreters and could hurt performance on low memory

machines.

Using the Java 2 platform's new pluggable architecture, Java HotSpot can be seamlessly

dropped into the platform, replacing both the classic Interpreter and the JIT compiler. Once this

new perfonnance engine is installed, any application or applet processed with the Java 2

runtime environment (application launcher, plug-in, or applet viewer) will by default use the

Java HotSpot performance engine.

Eflìcient Bulk Data Transfer with lhe Phatpackets Protocol, @ Sheng Huang 50



Chapter 4 The Phatpackets Protocol Implementation

The Java HotSpot performance engine concentrates on several key areas to achieve its state-of-

the-art perfomance enhancement. These areas include on-the-fly "adaptive" compilation,

method inliriing, improved and redesigned object layout, fast and fully accurate garbage

collection. and ultra-fäst tliread synchronization. Such enhancements are typically most

effective on selver side applications. JDK1.3 has versions of Hotspot for client (fast execution

on first pass) and server (faster execution on later pass).

Perfonnance of an application wdtten in the Java programming language generally depends

upon four factors: the overall design of the application, the speed at which the Java bytecodes

are executed, the speed at which the libraries execute (in native code), the speed of the

underlying hardware and operating system. The typical client side application's performance

(particularly graphics applications) is rnost heavily impacted by native libraries, whereas the

typical server side application stresses the speed of bytecode execution-which is where the

new VM shines.

For adaptive compilation, rather than compiling an entire program when it first starts, or

compiling each method as it is called (as does the JIT compiler), the performance engine

initially runs the program using an interpreter, and then analyzes it as it runs, looking for

performance "ltot spots." It then compiles and optimizes only those performance-critical areas

of code. This monitoring process continues dynamically throughout the life of the program,

with the performance engine adapting on-the-fly to the ongoing performance needs of the

application.

Ef./ìcient Bullc Data Transfer with the Phatpackets Protocol, @ Sheng Huang 51



Chapter 4 The Phatpackets Protocol Implementation

4.2UDP Socket Buffer

Since the situation where the sender overwhelms the receiver's buffer should not be interpreted

as network congestion and thus curb the sending speed of the server, the receiver's buffer

slrould be reasonably large. On SunOs 5.7,the default TCP send buffer size is 8K, the default

TCP receive buffer size is 32K. The default IIDP send buffer and receive buffer size are both

8K. On Windows 2000, all the four default sizes are 8K. The Java code snippet below shows

how to probe the underlying operating system to get the system allowed, up to 450K8 receive

buffer size. The send buffer size can be set in a similar way.

private void setMaxReceiveBufferSize0 throws lllegalArgumentException {
irrt bufferSize : 450000;

int pace: 0;

boolean done;

do{

if (bufferSize <: 75000) {

pace: 1500;

)

else if(bufferSize <: I50000) {

pace : 7500;

ì
J

else if (bufferSize <:250000) {
pace: 15000;

)

else {

pace:37500;

)

Efficienr Bulk Data Transfer with Ilrc Phatpackets Protocol, @ Sheng Huang 52



Chapter 4 The Phatpackets Protocol Implementation

try {

udp Socket. setReceiveBufferS ize(bufferS ize);

done: true;

) catcli (SocketException se) {

bufferSize _: pace;

done : false;

)

) while (!done):

)

4.3 The Phatpackets Implementation

4.3.1 Introduction to Cole Algorithm Implementation

This section outlines some of the actual implementation of the Phatpackets architecture

cliscussed above. The implementation tool utilized is JDK J2SE 1.4.2. The control connection

is implernented using TCP, and the data connection is implemented over UDP. Since the

performance of the implementation is heavily affected by network IIO and disk file VO, these

VO operations at'e extensively optimized. For networking I/O, some TCP socket options such

as Nagling and UDP socket options such as buffer size are modified [Nag84]. For disk fìle I/O,

random access and data buffering are optimized. To speed up VO, the Phatpackets algorithm

tries to avoid excessive method calls, accessing the disk unnecessarily, accessing the

underlying operating system unnecessarily, and avoid processing bytes and characters

individually [Mcc02] [Zuk0 I ].

Ef/ìcie nt Bulk Data Transfer wilh the Phatpackets Protocol, @ Sheng Huang 53



Chapter 4 The Phatpackets Protocol Intplementation

Nagle's algorithm is enabled by default on all known OS implementations [Nag84]. It instructs

the sender to buffer data if any unacknowledged data is outstanding. Any data sent

subsequently is held until the outstanding data is acknowledged or until there is a full packet to

send. This algorithrn was developed in 1984 for heavily loaded networks such as Ford

Aerospace and Communications Corporation's at that time. It is undesirable in highly

interactive environments, such as this client/server application. As regards the TCp control

connection, the Phatpackets algorithm disables Nagle's algorithm through the use of

TCP_NODELAY sockets option.

Since the situation that the sender overwhelms the receiver's buffer should not be interpreted as

network congestion, the receiver's buffer should be reasonably large however the default llDp

send and receive buffer sizes are no larger than32K in all known operating systems. Otherwise

the efíèct is that the client implicitly curbs the flow rate of the server. The socket buffer size

should be one to two times tlie product of bandwidth and round trip delay. Automatic buffer

tuning algorithm has been proposed to use system memory more effectively and prevent

lnemory starvation [Web02][SMM98]. For the implementation discussed here, the buffers are

set to a maximutn of 450K8 or the maximum value allowed by the underlying OS using the

sinrple algorithm discussed in 4.2.

At this time, the Phatpackets protocol uses a CRC (Cyclic Redundancy Check) to guarantee the

file received is integrity protected. The CRC also acts as a signature to ensure file version

integrity in a distributed server environment.

Eficient Bulk Data Tran.sþr with the Phatpackets Protocol, @ Sheng Huang 54



Chapter 4 The Phatpackets Protocol ltnplementation

When a PhatServer is started, the Internet addresses or names of other ruilring PhatServers can

be declared. These PhatSer.v-ers then exchange directory information and store the directory

information of other servers in their local databases. The directory information has fields of file

naüre, file directory, file length and CRC.

The Phatpackets protocol uses BDP estimation at the beginning of transfer for initial load

balancing. The PhatClient calculates the number of servers it wants according to a file size

heuristic function. When a PhatServer receives a file transfer request with a desired number of

seruers larger than one, it will check its local database for this specific file. The reply message

contains the PhatServer name/directory pairs. The PhatClient then tries to establish control

connections with these servers and measures the BDP by calculating the time to receive the

first four full size data packets. Note the link bandwidth of the server to client is utilized instead

of tl.re link bandwidth from client to server since the bandwidth may be asymmetric. The full

size data packets represent a real approximation of the actual file transfer. This approach is

more appropriate than ICMP based Automatic Bandwidth Delay Product Discovery, which

requires the cooperation of at least one router vendor [Web02].

The PhatClient uses the BDP approximation to decide the number of packets to be delivered

from each selver. Then it sets up multiple connections with each server. Each connection is

inlplemented with one independent Java thread. The current implementation ignores

connections whose speed is slower than l/10th of that of the fastest connection. Based on

experimental results, the maximum connection number per server is set to four.

Eflìcient Bulk Data Transþr with the Plntpackets Protocol, @ Sheng Huang 55



Chapter 4 The Phatpackets Protocol Implementatíon

The Phatpackets protocol uses a load rebalancing approach based on round robin algorithm

during tlle transfer. The load among the different connections from the same server tends to be

balanced and normally does not need to be rebalanced since these connections share the same

path and experience salne network situations in general. However the load among different

sel'vers needs to be rebalanced on-the-fly during the transfer process. In the current

implementation, a client controller monitors the transfer process of all downloading threads and

carries out load rebalancing with round robin scheduling.

4.3.2Main Classes and Packages

This sectio¡r describes main classes in the Phatpackets protocol implementation [Sil00].

4.3.2.1 Package Structure

I

I

Elficient Bulk Data Trtrns.fer y,ith tlrc PhaÍpackets Protocol, @ Sheng Huang 56



Chapter 4 The Phatpackets Protocol Intplententation

4.3.2.2 Main Classes in the Phatpackets hnplementation

a) phatpackets.fstp

AbstlactHandler --- arl abstract class that implements TCP control connection nessage transfer

CommandConstants --- an interface that contains a collection of control command constants

DataConsumer --- the interface that declares methods for data consumers (queue or disk write)

DataQueue --- the class that uses queue implementation of DataConsumer

DataSource --- the interface that declares methods for data provider

DataStorage --- the interface that declares methods for storing packet data into storage (such as

packet data size, total size, ancl push method)

FSTPClient --- the client class that handles one requested file or file segment

FSTPException --- the top level class of the Phatpackets protocol specific exceptions

FSTPPeeT --- the abstract superclass of FSTPClient and FSTPServer that implements a

Datagram Socket and its relevant operations (packet size, stream id, port setting, connection

ancl close)

FSTPServer --- the server class that handles one requested file or file segment

MalfbrmedPacketException --- the subclass of FSTPException indicating IIDP data packet

parsing eror

PacketSizeException --- tlie subclass of FSTPException indicating unexpected packet size error

EfÍìcient Bullt Data Transþr yyith the Phatpackets Protocol, A Sheng Huang 57



Chapter 4 The Phatpackets Protocol Intplementation

PacketTracker --- the interface that defines methods for tracking received packets

PhatPacket --- the class that wraps UDP Datagram Packet, providing methods for inserting

strean id (unique to evety file request), sequence id (unique to every packet in a hle request),

calculating header size and data size when using dynamic header size approach for efficiency

purpose, and relatecl get methods

b) Classes in phatpackets.fstp.client.ui

ClientOption --- the class for user to set up preferred transfer related parameters (adjust size,

alpha, block size, packet size, client UDP porl, dynamic block size or not, logging or not)

ClientOptionWindow --- the GUI program implernented with Swing Dialog for users to set up

ClientOption.

DirectoryEntry --- the class that compares two Java file object (file or directory) for listing

orcler purpose in PhatClient's remote directory

DirectoryEntryRenderer --- the class that renders different outlook for directories (with

directory icon) and files in PhatClient remote directory

DirectoryTable --- the table for remote directory display implemented with Swing Table

DirectoryTableModel --- the table model for DirectoryTable

FileQueueWindow --- the class that implements a dialog window for displaying multiple files

to be received in a table

MultiReceiveWindow --- the class that implements a Swing Dialog for displaying receiving

inf-ormation for multiple files in a table

PhatClient --- the GUI main program for the client to view remote directory information, set up

client options and transfer hles.

Ellicient Bulk Dttta Trans.fer with the Phatpackets Protocol, @ Sheng Huang 58



Chapter 4 The Phatpackets Protocol ltnplementation

ReceiveWindow --- the GUI class that implements the FSTPCIient Clientlistener interface for

displaying insight of downloading process (transfer râte, timeout, block size, and total

downloading tirne)

c) phatpackets. fstp.client

BitSetPacketTlacker --- the class that implements the PacketTracker interface using Java BitSet

to track received packets

RandomAccessStorage --- the class that implements DataStorage interface using Java

RandornAccessFile class for single-threaded downloading

MultiRandomAccessStorage --- the class that implements DataStorage interface using Java

RandornAccessFile class for multi{lireaded downloading

d) The classes in phatpackets.fstp.serwer

AbstractCommand an abstract superclass that implements Command and

CommandConstants interfaces for processing control commands

AdjustBlockSizeCommand the class that processes ADJUST BLOCK SIZE CMD

command

AdjustDelayCommand --- the class that executes ADruST DELAY CMD command

BlockDelayComrnand --- the class that executes BLOCK_DELAY_CMD command

BlockSizeCommand --- the class that executes BLOCK_SIZE_CMD command

CdUpCommand --- the class that executes CDIIP_CMD command

Command --- the interface that dehnes operations for executing commands

Efficient Bulk Data Trunsfer v,ith lhe Phatpackets Protocol, @ Sheng Huang 59



Chapter 4 The Phatpackets Protocol Inxplententation

CommanclFactory --- the class that generates a singleton object which generates and stores

comrnand processing objects on the fly

CwclCommand --- the class that executes CWD_CMD command.

DoneReceivingCommand --- the class that executes DONE_RECEIVING_CMD command

KillServerCommand --- the class that executes KILLSERVER command

ListCornmand --- the class that executes LIST_CMD command

NoOpCornmand --- the class that executes NOOP_CMD command

PacketSizecommand --- the class that executes PACKET_SLZE_]MD command

PhatServer --- the rnain prograrn for the server side application

PingReplyCornmand --- the class that executes PING_REPLY_CMD command

PorlCommand --- the class that executes PORT_CMD command

PrvdCommand --- the class that executes PWD_CMD command

QuitCon-unand --- the class that executes QUIT_CMD command

RTTCommancl --- the class that executes RTT_CMD command

RandomDelayCommand --- the class that executes RANDOM_DELAY_CMD command

ResendPacketsCommand --- the class that executes RESEND_PACKETS_CMD command

SendCommand --- the class that executes SEND_CMD command

RandomAccessFileSource --- the class that implements DataSource interface using Java Ran-

domAccessFile class

e) phatpackets.fstp. log

Clienflogger --- the class that implements FSTPClient Clientlistener interface for logging

session, timeout, exception, block size adjustment, complete and stop information

Eficient Bulk Data Transfer n,ith the Plntpackets Protocol, @ Sheng Huang 60



Chapter 4 The Phatpackets Protocol ltnplententation

FSTPClientlogger --- the class that implements FSTPClient Statslistener for logging total

expected packets, timeout, control command, and detailed FSTPClient working information

during receiving process

FSTPServerlogger --- the class that implements FSTPServer Serverlistener for logging

timeout, exception, and detailed FSTPServer working information during sending process

Serverlogger --- the class that implements PhatServer Serverlistener for logging sessions and

control messages

f) phatpackets. fstp. util

CRC32 --- the class that implements 32 bits CRC checking for a file

MessageUtil --- the class that parses control message to extract fìle name

RandomTimeGen --- the class that generates random time interval used in PhatClient to avoid

resoul'ce competition frorn multiple downloading threads

Summary

This chapter gave a brief introduction to Java implementation tool, IIDP socket buffer, and the

Phatpackets implententation. The Phatpackets related Java features and perforrnance issues

were presented. Tlie package architecture and main classes were presented in the last section.

Elficient Bulk Data Transfer yvith tlrc Phatpackets Protocol, @ Sheng Huang 61



Chapter 5 Experimentation and Data Anal)tsis

Chapter 5

EXPERIMENTS AND DATA ANALYSIS

5.1 Experirnent Design

5.1.1 Experiment Goal

'Ihe experimentation should cover all typical test scenarios. The servers selected should

represent a good cross section of hosts and a reasonable WAN environment. The hosts should

have different resoutces such as CPU, memory, and access bandwidth. They are preferred to

have different Operating Systems. The tests should be carried on different network load

scenarios. The FTP products used for performance comparison should be typical and cover

rnajor platforms such as Solaris, Linux, and Windows. Performance, adaptability and

robustness should be tested.

5. I.2 Experiment Environment

An attempt is made to cover typical test scenarios in the test. The tests were conducted on

clifïerent clays of the week and different times of day. Test files of different size ranged from a

few hundreds b¡es up to 360M b¡es. An attempt is also made to experience different network

loads, competing with network traffic or under light network traffic conditions. This represents

a good cross section of hosts and a reasonable WAN environnent.

Efficient Bulk Data Ttrmsfer with the PhaÍpackets Protocol, @ Sheng Huang 62



Chapter 5 Experimentation and Data Analysis

A file named test.mov that is 15,032,348 bytes, a file named java.sh that is 35,618,816 bytes, a

file named l00MB.mov that is 121,606,580 bytes, and a file named 360MB.mov that is

377,487,360 bytes are used for perfonlance comparison illustrated here.

In these tests, four servers are used as PhatServers. They are galois.csc.uvic.ca (University of

Victoria, Victoria, BC), herzberg.physics.mun.ca (Memorial University of Newfoundland, St.

John's, Newfoundland), latvia.doe.carleton.ca (University of Carleton, Carleton, Ontario), and

hp05.ee.ualbefia.ca (University of Albeña, Edmonton, Alberta). The client machine is

galliano.ee.umanitoba.ca (University of Manitoba, Winnipeg, Manitoba) which is an Ultra60

machine witli SUN O55.8.

The traclitional ftp application selected is WS FTP LE 5.08 on Windows, command line FTP on

Unix and gFTP on Linux.

5.2 Performance Test Results

This section presents some perforrnance test results as compared with traditional ftp

applications. Parameters gathered are ANLB throughput, BDP throughput, and FTP throughput.

Elficient Bulk Data Trans'fer with the Phatp(tckets ProÍocol, A Sheng Huang 63



Chapter 5 Experimentation and Data Analysis

Server Name

galois.csc.uvic.ca

herzberg.plrys ics. uìun.ca

latv ia.doe.carl eton.ca

hp05.ee.ualb erta.ca

Server Location

Victoria, BC

St. John's, NF

Cal'leton, ON

Edmonton, AB
Table L Servers Used

Distance to clienf
(no. ofrouters)

1I

16

1l

7

in Performance Tests

Server Performance

Sun Ultra5_10

28 CPU SGI ONYX

Sun UltraS_10

HP Linux

Ð.1 ll is,csf .Uv i':.f:a
VirtÉria - British Columbiå

11? I

" 
---Æ[ Server

a. ca
låtv ia.doe "cðrleltrrn "c¿
Ott¿rv¿, Ontario

hpû5.re.r.lalÞÈrtð.ca
Edrnûnton- Alberta --, router hoFs

galliano. ee. umanitoba. c
dhû091 2û. eng. umanitob
Winnipeg, Manitoba

hÊrzbÊrg.physics.mun.rã
5t. Júhn's. f'ler¡+found land

Server Ef¿æF W
?

Figure 5. Server Location Topology

The tests were perfortned under light traffic conditions (weekend), medium traffic conditions

(ordinary day dLrrin-e school hours), and lreavy traffic conditions (Monday during school hours

and with competing network traffic). Groups of data within the same test scenario were

gathered under the same test condition. Table 2 clearly illustrates throughput improvements

Ser*¡er E- r;\-.¿aË: -\ '* " ./1U0MbpS (aggregate)/'ã\ -*..Y ^

Efficienl Bulk Data T'anqfer with tÌrc Phatpackels ProÍocol, @ Sheng Huang 64



Chapter 5 Experimentation and Data Anal)tsis

\ /ith tlie ANLB approach. lt seerns that the galois connection is the slowest, so the download

time for FTP from clifferent servers varies considerably while Phatpackets protocol is both

robust and efficient and most impressive in situations where ftp over TCP is not.

i r:s¡ lril,; { ¿rt ¡rlc,:il ,-'r:
\1.5 l; I'l'

lìr'rrirgtt¡Lr:1:,i
,l\ l" l:i

I'fi l'LrLt.1 lr:-r.Lrt l.:; !

lJf)lr
Ih*r'>t:,'hpr.rt{:;}

ì: r l'. iìIittì:i I i:,"¡ ::ì. -1t ) r! Ì\1

iir:i1:l:'.,'( l¡rt ¡-ht'l: {i: I :.1¡i \ {t ¡

;ì:írr l:'l 1-) -ì.tr.l N.?$

itr:ì1:lt'.!ì ii ¡'rit I t: f !¡: ír Jri

t:i'..1 :.1ì lt,.itl r lì | :,1. ¡ I ¡,!1

l:tlil 11,:l I i.'r'L l i,.'r',,: Il:ì iä ìÍJ l.llì.¡

l,i',;l :'ì t't)l', il I I tJ .l -.,

l:!l:l:r:l li¡rli1 -r() I-i :ii
Itjlì\'liJ. nrr,' lrcr.,rhEr'',r -j N(Ì ir.:. -if fi:l 1.,.ì. + J

I iiIl\'ìttr ¡t-¡r.r'. l.li\ til -ì l;i ¡ ..ì,t (i+ i$ì

I lì[1L,lIj rt¡c,r Itlliì1 iii, l(¡ !ù í'J lil

T able 2. Throughput Comparison

Figure 6, Figure 7 and Figure 8 provide an example and insight into the file transfer process.

Eacli line in the fìgure represents an individual connection. The red, yellow, blue and green

lines represent four connections from one server. The black, pink, cyan and magenta lines

represent four connections from another server.

Eflicient Bttlk Dota Transfer with the Phatpackets Protocol, @ Sheng Huang 65



Chapter 5 Experimentation and Data Analysis

tz ttt.tllitittF¡ï:.:lr"¡i: !;r'i:;, i:
t úîÐ3.?i r::)Ít

I 1tS û. ¡tj

3fi59¡.?¡

itlr!J?.r

?¿ 3.r1t. ilì

1g !1¿3.r,1

1218.1.:8

ù0?8 5.t

Figure 6. Throughput Graph for Downloading java.sh with ANLB

Figure 7. Throughput Graph for Downloading java.sh v/ith BDP

:.6 s

',,7.9 Ë

I

lt, -.

. ¿\ril -algJÊgi{li ,L*,ru$rpui

ti \t ,r
,lfì¡,1 l^ôX

I
I
I

T
.-bztu ing r,,iñ B p

! li ,,,
I

I

ll:,
iit,.ì
l¡t,i

ll'"r_lt F'
- . 1.,-¿.
¿,-l
!i

_*.__-,.-,<i_i

t.. .:ì- ..i'- ''-'--

-\/:.: t__ i ill r¡'
iiìi .4H1 ] load æca n61'rg

i '1 ,'1,t

tf, , '']á .r.;'l j.: -'1' líTJ/:j¿:'vir4\,þ. a-..._,_.-.

Elficienl Bulk Data Trunsfer wiÍh the Phatpuckets Pr-otocol, @ Shetrg Huang 66



Chapter 5 Experimentation and Data Analysis

ï1 038.ã4

lrt:tJt: i .Jz

frj7(,t; t

.tûùt.r.zt

.3C.1 5 J. õ8

'?f 31i2 44

'' n, r. ) ¿ i-l*¡",;
Elap*erl Tirne

Figure 8. Throughput Graph for Downloading 360MB.mov under Light Traffic

ln Figure 6, four connections 5, J, 6,8 took over the tasks of cor¡rections 2,3,4, l. This

illustrates that the ANLB approach experiences a much better load balancing than the BDP

approach illustrated in Figure 7. The implication is that the ANLB approach is fairly effective.

In both cases the data rate varies considerably illustrating the need for rebalancing or more

sophisticated and accurate initial allocation prediction. Specially, in Figure 7 the BDP allocation

schema alone clearly illustrates the bottleneck as one connection degrades from its initial value

of over TMbps to less than 2Mbps within the initial few seconds and remains atthat rate for the

duration ofthe transfer process.

Figure 8 gives an example of downloading the 360MB.mov file with four connections from a

single server under light network traffic. It indicates that load among connections from the same

server tend to be well balanced.

From the test, it can be seen that FTP over TCP is more sensitive to distance and traffic load

while the Phatpackets protocol adapts well to both network traffic and distance. The downioad

Elficient Bulk Data Transfer v,ilh the Phatpackets Protocol, @ Sheng Huang 67



Chapter 5 Experintentation and Data Analysis

time for FTP from different servers varies considerably while the Phatpackets throughputs for

all PhatServers are almost the same. Irrespective of which server the PhatClient chooses to

connect to, it takes almost the same time to download with the Phatpackets implementation. The

server selection and task assignment are transparent to client. From the test, it can be seen that

the Phatpackets protocol is both robust and efficient and more impressive in situations where

FTP over TCP is not.

There are additional implementations of FTP supporting multiple connections that would

improve the throughput of FTP as compared to those presented here. The FTP comparison

presented here however represents an effective baseline under the most common scenario.

Enhanced FTP servers were not available as they are required to run as daemon processes and

would not represênt scenarios available to the typical user.

Summary

An architecture for improving the waiting time to download files from the Internet and a set of

methods were presented. The basic model effectively represents an alternative "transport" layer

in the TCP/IP protocol stack that better captures end-to-end performance improvements.

Reasonably impressive results have been obtained under a variety of experimental conditions

providing additional evidence for research into improving transport layer protocols or

application layers that directly influence transport layer processes. Experimental results

Efficient Bulk Data Tran,sfer with the Plmtpackets Protocol, @ Sheng Huang 68



Chapter 5 Experimentation and Data Analysis

preserlted here show that the Phatpackets protocol is capable of sustaining an 80 Mbps

connection across a WAN from one campus area network to another.

Efficient Bulk Data Transfer y)ith the Phatpackets Protocol, O Sheng Huang 69



Chapter 6 Conclusions

Chapter 6

CONCLUSIONS

An architecture for improving the waiting time to download files from the lnternet and a set of

methods are presentecl. The basic model effectively represents an alternative "transpoft" layer

in the TCP/IP protocol stack that better captures end-to-end performance improvements.

Reasonably impressive results have been obtained under a variety of experimental conditions

providing additional evidence for research into improving transport layer protocols or

application layers that directly influence transport layer processes. Experimental results

presented show that the Phatpackets protocol is capable of sustaining an 80 Mbps connection

across a WAN fi'om one campus area network to another.

Eficient Bulk Data Transfer with the Phatpackets Protocol, A Sheng Huang 70



References

REFERENCBS

[AFP98] M.Allman, S. Floyd, C.Partridge, Increasing TCP's Initial Window, WC 2414,

Network Working Group, September 1998

[Aga0l ] P. Agarwal, A Test-bed for Performance Evaluation of Load Balancing Strategies for

Web Server Systems, obtained via http://www.cse.iitk.ac.inlresearch,/mtechi999/99lll28l

991I l28.htm1, May 2001

[AOM98] M. Allman, S. Ostermann and C. Metz, FTP Extensions for IPv6 and NATs, RFC

2428, Network Working Group, September 1998

[APS99] M.Allman, V.Paxson, W.Stevens, TCP Congestion Control, RFC 2581, Network

Workin-e Group, April 1999

[BBM97] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, P. Sturm, Enhancing the Web's

Infrastructure: From Caching to Replication, University of Kaiserslautern, 1997

[CJR89] D. D. Clark, V. Jacobson, J. Romkey, H. Salwen, An analysis of TCP processing

overhead, IEEE Conrnunications Magazine, June 1989, pp.23-29.

lCLZSll D. D. Clark, M. L. Lambert, L. Zhang, NETBLT: A Bulk Data Transfer Protocol,

Request for Comments 998, March 1987

[DD97] W. Dabbous, C. Diot, High Performance Protocol Architecture, obtained via

http: //cite-seer.nj.nec. co ml correct/ 5 0220

[Dee90] J. Mogul, S. Deering, Path MTU Discovery, Request For Comments: I191, November

1990

Efficient Bulk Da¡a Transfer with lhe Photpackets Protocol, A Sheng Huang 71



References

[Eng9B] R. S. Engelschall, Practical Approaches for Distributing HTTP Traff,rc, New Architect

Magazine, obtained via http://www.webtechniques.com/archives/1998/05/engelschalll,}y'ray

1 998

[Fan00] X. Fang, Reliable File Transfer on the Internet using Distributed File Transfer (DFT),

Master Thesjs of University of Manitoba, 2000

[Flo00] S. Floyd, Congestion Control Principles, Request For Comments:2914, September

2000

[Gri0l ] GridFTP: Protocol Extensions to FTP for the Grid, the Globus Project, obtained via

http : //www. globus. org/d atagr id/ gndft p. html, March 200 I

[HL97] M.Horowitz and S. Lunt, FTP Security Extensions, WC 2228,Network Working

Group, October 1997

[HKC96] lntemet Registry IP Allocation Guidelines, K. Hubbard, M. Kosters, D. Conrad, D.

Karrenberg, and J. Postel, Request for Comments 896, November 1996

[Hoe96] J. C. Hoe, Improving tlie Startup Behavior of a Congestion Control Scheme for TCp,

ACM SIGCOMM, 1996

IHMl02] S. Huang, and R.D. Mcleod, Phatpackets For Data Transport Within An IIPC

Network, IASTED Intemational Conference on Parallel and Distributed Computing and

Systems (PDCS), 2002

[HM202] S. Huang, and R.D. Mcleod, Adaptive Network Load Balancing in Phatpackets,

IA S TED lntemational C onference Communications, Intemet and lnformation Technolo gy

(CIIT),2002

IHSMOl] S. Huang, S. Silverman, and R.D. Mcleod, Implementation and Experimentation,

lnternet Innovation Centre, University of Manitoba ,2001

ElJicient Bulk Data Transfer with the Phatpackets Prorocol, @ Sheng Huang 72



References

lIBMO2l IBM WebSphere Application Server, fBM, obtained via http://www-

3.ibm.com/software/webservers/appserv/doc/v35 laelinfocenter/was/0 l040202.html

|ISC05] Intemet Software Consortium, http://www.isc.orgl, Internet Software Consortium,

2005

UBB92] V. Jacobson, R. Braden, D. Borman, TCP Extensions for Hígh Performance, Request

For Comments: 1323, }l.day 1992

[Jse99] Apache JServ Features, Java Apache Project, obtained viahttp:lljava.apache.org/jserv/,

t999

[KR99] J. F. Kurose and K. w. Ross, computerNetworking: A Top-Down Approach

Featuring the Intemet, Addison Wesley, 1999

[Mah02] Q. Mahmoud, New and Enhanced Networking Features in the JavaTM 2 Platform,

Standard Edition 1.4, obtained via

http://developerjava.sun.com/developer/technicalArticlesÀ{et-working/newfeatures 14.html,

April2002

[Mcc02] G. McCluskey, Tuning JavaUO Performance, JavaDeveloper Connection, obtained

via http : I I develop er j ava. sun. com, J anuary 2002

[Mel99] S. Meloan, The Java HotSpotrM Performance Engine: An In-Depth Look, obtained via

http://java.sun.com/developer/technicalArticles/l.tretworkingÆIotSpot/, June 1999

[Mon00] A. S. Mondal, An intelligent load balancing tool, obtained via

www.infy.com/knowledge_capital/thought-papers/CRN-0001-0l.pdf, Syslab, January l,2000

[Nag8a] J. Nagle, Congestion Control in IP/TCP Internetworks, Request for Comments 896,

January 1984

Efficient Bttlk Data Trans.þr with the Phatpackets Protocol, @ Sheng Huang 73



References

[NLB00] Network Load Balancing Technical Overview, Wíndows 2000 White Paper,

http://www.microsoft.com/windows2000/techinfo/howitworks/cluster/nlb.asp

[PHI0l] S. Philopoulos, Improving the Performance of TCP over Satellite Channels, Master

Thesis of University of Manitoba, 2001

[PR85] J. Postel, J. Reytolds, File Transfer Protocol, RFC 959, Network Working Group,

October 1985

[Sch97] U. Schwantag, An Analysis of the Applicability of RSVP, http://ns.uoregon.edu/

ursula/thesis/thesis.html

[Sil00] S. Silverman, First version of Phatpackets design and implementation, the University of

Manitoba.

[SMM98] J. Semke, J. Mahdavi, M. Mathis, Automatic TCP Buffer Tuning, obtained via

http://www.psc.edu/networking/projects/auto/, Pittsburgh Supercomputing Center, September

r 998

[Sol92] K. Sollins, THE TFTP PROTOCOL (REVISION 2, Request Fo¡ Comments: 1350,

July 1992

lSte97] W. Stevens, TCP Slow Starl, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms, Request For Comments: 2001, Network Working Group, January 1997

[Tec02] TechWeb: The Business Technology Network, obtained via htþ://www.techweb.com/

encycl opedia/defìnetenn?term:internet

[Web02] Webl00 Concept Paper, obtained via

http://www.web I 00. org/docs/concept3aper.php

[Wid00] J. Widmer, Equation-Based Congestion Control, Diploma Thesis, Department of

Eficienl Bulk Data Trunsfer u,ith the Phatpackets Protocol, @ Sheng Huang 74



References

Mathematics and computer Science, university of Marurheim, February 2000,

http : //www. icsi. berkeley. edu/-widrner/tfrclthesis/thesis.html

[YCE97] c. Yoshikawa, B. chun, P. Eastham, A. vabdat, T. Anderson, and D. culler, using

SmaÍ clients to Build scalable services, university of californi a, 1997

[Zuk0l] J. Zukowski, New VO Functionality for Java2 Standard Edition I.4,JavaDeveloper

connection, obtai ned v ia http: I / developerj ava. sun. com, December 200 I

Efficient Bulk Data Transfer u,ith rhe phatpackets protocol, @ Sheng Huang 75



Appendix A: The Phatpackets Protocol Control Commands

Appendix A

THE PHATPACKETS PROTOCOL CONTROL

COMMAND

(using BNF notation)

ADJUST_BLO CK_S IZB_CMD

ADJUSTBLOCKSIZE<SP><streamid><SP><blocksize><CRlF>

Adjust the block size to ner.v block size in packets.

ADJUST_DBLAY_CMD

ADJUSTDELAY<SP><str eamid><SP><blockdelay><CRlF>

Adjust the block delay to new block delay in milliseconds.

BLOCK-STZE_CM'D

BLOCKSIZE<SP><blocksize><CRlF>

Set the block size to block size in packets.

BLOCK-DELAY_CMD

BLOCKDELAY< SPxblockdelay><CRlF>

Set the block delay to block delay in milliseconds.

BW_CMD

TESTBANDWIDTH<CRLF>

Eficient Bulk Data Transfer with úe Phatpackets Protocol, @ Sheng Huang 76



Appendix A: The Phatpackets Protocol Control Commands

The client requests the server to send four full size test packets to calculate downlink

bandwidth.

CDUP-CMD

CDUP<CRLF>

Change to parent directory.

CWD_CMD

CWD<SP><pathname><CRLF>

Change working directory to pathname.

DIR_CMD

DIR<CRLF>

Request directory infonnation of other sen/ers.

DONB RECETVING CMD

DONERECEIVING< SP><streamid><CRLF>

Send to indicate done receiving with the specific steam id.

LIST_CMD

LIST<CRLF>

Request the seruel'to send a list of files in current directory.

MORE_CMD

MORE<SP><fi lename><SP><fi lesize>< SP><segment><CRLF>

The client requests the server to send the specifìc file with specific length and suggests the

server to send using the specific number of con¡ections.

NOOP*CMD

NOOP<CRLF>

Efiicient Bulk Duta Transfer u¡ith the Phutpackets Protocol, @ Sheng Huang 77



Appendix A: The Phatpackets Protocol Control Commands

The client sends this conrmand and keeps the sending time, and calculates the Round Trip

Delay Time (RTT) after rcceiving NOOP_RPLY.

PACKET_SIZE_CMD

PACKETSIZE<SP><packetsize><CRLF>

The client sends the preferred packet size in bytes.

PING-CMD

PING<SP><streamid><CRLF>

The server pings client to see if the client is still alive.

PORT_CMD

PORT<SP><localport><CRlF>

The client sends its local UDP port number.

QUIT_CMD

QUIT<CRLF>

The client sends this command to terminate the control connection.

RANDOM DELAY CMD

RAND OMDELAY<SP><delay><CRLF>

The client sends this command to request the server to delay the specific milliseconds before

sending next batch.

RESEND PACKBTS CMD

RESENDPACKETS< SP><streamid> {<SP><sequenceid> } <CRLF>

The client requests the loss packets with sequence numbers of the specific stream id.

RTT_CMD

ROLINDTRIPDELAY< SP><roundtripdelay><CRlF>

Efficient Bulk Data Tronsfer with the Phatpackets Protocol, A Sheng Huang 78



Appendix A: The Phatpackets Protocol Control Commands

The client sends its RTT in milliseconds to the server so that the server can adjust its

retransmission timeout timer

SBND*CMD

SEND<SP><filename><SP><startposition><SP><expectedpackets><SP>[newStreamld][oldS

treamldl<CRLF>

The client requests a file segment of specif,rc file name that starts from start position in packets,

and has expected number of packets. If this SEND_CMD is the first SEND_CMD for multiple

connections from same servel', then use newStreamld to request for a new stream id, or else use

oldStrearnld.

BW_RPLY

22 8< SP><testdata><CRlF>

The server sends four full packet size packets in response to BW_CMD. The client then

calculates the time interval from receiving first packet to the fourth packet, and uses this time

as downlink bandwidth.

CONNECTION ERROR RPLY

420<SP>Control corurection error.<CRLF>

The server sends this message if there are some errors during control connection operations.

The server then temrinates all related data connections and this control connection.

COMMAND UNRECOGNISED RPLY

500<SP><command><SP>is an unrecognized command.<CRlF>

The server replies rvith the message if the command is not a valid command.

COMMAND-OKAY_RPLY

200< SP><rnessage><CRLF>

Eficient Bulk Data Transfer with the Phatpackets Protocol, @ Sheng Huang 79



Appendix A: The Phatpackets Protocol Control Commands

The server replies with the suitable message after executing the requested coÍrmand.

DIR_RPLY

229<SP> {<LF><filepatl/filename><HT><filesize><HT><lastmodified>}<CRLF>

The seruer replies with the information of all the files in directory and subdirectory managed

by the PhatServer.

FILE ERROR RPLY

5 5O<SP>fi le<SP><f,ilename><SP>not found.<CRLF>

The seryer replies with this message if the requested file with file name is not a valid frle in

current directory.

FILE_INFO_RPLY

251<SP>FILESIZE<SP><filesize><SP>CRC<SP><crc><SP>STREAMID<Sp><streamid><S

P> SERVERPORT<SP><localport>

The server replies client's SEND_CMD command with the specific file's length, 32 bits Cyclic

Redundancy Clieck (CRC), stream id, and server's UDP port number.

FILB UNAVAILABLE RPLY

450< SP>Thre is a problern with preparing the local file.<CRLF>

The server replies with this message if the requested file of file name can't be found in current

directory.

GOODBYE_RPLY

221<SP>Thank you for using this server. Be phat.<CRLF>

The server sends this message when receiving client's QUIT_CMD and terminates the related

control connection.

LOGGED_IN_RPLY

Efficient Bulk Data Transfer with the Phatpackets Protocol, @ Sheng Huang 80



Appendix A: The Phatpackets Protocol Control Commands

230<SP>User logged in, proceed with style.<CRLF>

The server sends this message when the client logs in.

MORE_R}LY

225 {< SP><servernamex SP><directory><fi lenam*} <CRLF>

The server checks its database for known servers' directories about the specific file of the

specific version (same file size), then retums server name/directorylfile name pairs.

NOOP_RPLY

227<CRLF>

The seruer sends NOOP RPLY irnmediately after receiving NOOP_CMD.

NOT IMPLEMENTED RPLY

5 02< SP><message><CRLF>

The server sends the message if the requested function has not been implemented yet.

NOT SENDING ERROR RPLY

520<SP>Not cunently sending data.<CRLF>

Reply the client RESEND_PACKETS_CMD request with this reply if the data connection with

this stream id is not sending.

SENDING_DIR_RPLY

1 5 2<SÞLISTING<SP><pathname>[<LF><fi lename><HT><length><HT><lastmodifred>] [ {

<LF>[/]<fi lename><HT><length><HT><lastmodified> ] l

The server replies with LIST_CMD. If the requested name is a file, then replies with file

information. If the requested name is a directory, list the contents in this directory. Note, to

distinguish file with directory, a "/" is put in front of file name to indicate it is a directory.

SENDING_FILE_RPLY

E/ficient Bulk Dctta h'ansfer yvith the Phatpackets Protocol, @ Sheng Httang 81



Appendix A: The Phatpackets Protocol Control Commands

I 5 0<SP>SendingcSP><filename><SP><clientport><CRlF>

The server replies the SEND_CMD with the requested file name, and the client LIDP port.

SYNTAX ERROR PARAMS RPLY

501<SP><message>

The serv'er replies with the message if the client's command is not in correct format (missing

pararneters, wrong data types, etc.).

Effìcient Bulk Data Transfe.r vvith the Phatpackets ProÍocol, @ Sheng Huang 82


