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Abstrøct

A high impedance fault (UIf¡ on a power system distribution üne could

be due to a downed conductot and is a dangerous situation because the

current may be too small to be detected by conventional means. An ener-

grzed conductor lyrng on ground threatens human and live-stock life and

could result in property damage. Such faults do not cause a major problem

for the whole integrity of the electric power system; howeve¡ the protection

aspect against HIF comes mainly from a moral point of view: safety of utili-

ties' customers and personnel.

The University of Manitoba (UnA¡ and Manitoba Hydro (MH) started prob-

lem investigation by conducting staged HIF field tests on a f 5 kV distribu-

tion line near Sperling, Manitoba. A high voltage laboratory setup was de-

vised, at UM, to collect high impedance fault data under controlled condi-

tions. The laboratory model results were in agreement not onlywith the field

test results but also with data published in the literature by other institu-

tions and research groups. The model was val,idated. The physics underly-

ing the arcing phenomenon \Mas studied.

The ability of HIF relays to not operate under no-fault conditions (secun-

ty) was examÍned. 'Waveforms 
of high impedance faults as well as loads that

behave or appear like high impedance faults \¡/ere collected and processed.

Lt,



Abstract tlt

The detection parameters used in a number of existing high impedance fault

detection algorithms \Mere extracted" The algorithms' ability to discriminate

between faults and fault-like loads was tested. It was found that there are

loads that imitate high impedance faults, and tÌat some of tJle existing de-

tection algorithms lack tIrc securífg required under these load conditions"

The goal of the studywas to develop areLisbleprototytrle HIF detector ca-

pable of providing tl.e required relay dependabíIifg (ability to trip when it
should), arrd securíÍg (abiliff to not trip when it shouldn't).

High impedance fault detection methodswere reviewed. No single detec-

tion method can detect all electrical conditions resulting from downed con-

ductor faults. Quite a few of the detection methods require extensive complt-

tations in the preprocessing stage to extract the features of the input sig-

nal(s). A criterion is then applied to obtain the detection parameters.

A feed-forward three-layer arLificial ner:ral network (ANN) was trained by

high impedance fault, fault-like, and normal load current patterns, using

the back-propagation training algorithm. The neural network parameters

rvere embodied in a high impedance arcing fault detection algorithm. Line

current zero-crossing, and the width of current conduction period per-cycle

are the preprocessing required by the algorithm. The algorithm was tested

by traces of normal load current disturbed by currents of faults on dry and

wet grassy soil, arc welder, computer, fluorescent light, and sinusoidal

Ioads. The outcomes of ttris study indicated that tJle neural network was

able to reach ageneral solution ofthe problem, forthe available trainingpat-

terns. The detector was able to identi$r fault events distorted by arcing

noise. It was also able to identi$z the no-fault conditions.



Abstract ta

The study suggests that further training with fault and load patterns

would increase the robustness of the novel detector; other detecüon meth-

ods operating in parallel vvith this algorithm would increase the relay reli-

ability; practical implementalion would confirm tJle study results, and

could propose some modification to the detection algorithm(s) and/or the

pattern recognition neural network to suit the actual po\¡/er system condi-

tions.
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Introduetíon

7.7. Støtement of the Problem tilt2ltslt4|

Public safety and service continuity have been tJle hallmarks of utilities

operations since the beginning of widespread electric energy distribution.

Risk of public contact \Mith energized conductors will continue as long as

po\Mer delivery exists. Human contact \¡üith an energized conductor can

cause injury or death.

7.7.7. Effects of Electríeíty on Humøns

The human body, particularly the heart, is very vulnerable to electrical

current. Muscle contraction or paralysis, heart stoppage, and skin burns

can result from current flow through the body. These effects depend upon

the amount of current, length of time, and current path. Figure 1. 1 illus-

trates how skjn resistance and conductor voltage affect the amount of cur-

rent flow, and tlle effects of these currents on humans. When a person

touches a downed po\Mer line, current flows through his body to ground. De-

pending upon how contact is made, some of the current may flow through

his heart. Skin provides a resistance of 15OO to SOOO ohms. Skin puncture,

resulting from electric current flow burns, reduces ttre resistance to as low

as 5OO ohms. A contact v¡ith a72OO V conductor permits a current flow of
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VOLTAGE Body resistance (ohms)

5000
C!

sË rr

i EJI_-o ll
sE ll
ÉÉ\
F

500
nunctured
^ skin )

100 v

50v

10v

5V

o.ol o.

A
Pain

.o5 0.r o.5 r.o 5.O 10.O

Current (A)O.ôS€ Resp.iralory
pararysts

Fígure 1.1. Effects of electricity on hutnøns [7].
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approximately 1.4 to 4.8 A. Ventricular fibrillation or cardiac standstill oc-

curs in less than one-sixlieth of a second.

7.L.2. Distríbutíon System Føwlts

Hígh Current Faults

The most common distribution system faultis the short circuit. This type

of fault involves contact of a phase conductor(s) and the neutral return, or

phase conductors together. The excessive current, resulting from short cir-

cuit faults, pushes the transmission lines above their thermal capabilities.

Possible destruction to ttre system could occur if the fault is not cleared. Pro-

tection of existing po\Mer systems against short circuits is done by relays and

fuses.

Low Current Faults

Faults on a distribution system, not involving normal power caryring

conductors, could produce an undetectable change in current flow in the

circuit. This type of fault is called a high impedance fault (HIF); the imped-

ance at the point of fault is high enough to limit the current flow to a normal

load value rather than to a fault level. High impedance faults often extribit

arcing phenomena when no solid return path for the current is available.

These faults do not pose a direct threat to the whole integrity of the power

system. On the other hand, tJley present a source of threat to utilities' crts-

tomers and personnel. Fire hazard, equipment damage, waste of energr,

service intermption, and the ensuing utility liabitity are results of such

faults. Figure 1.2 shows tJle damage resulting from the arcing of a downed

conductor on a wooden pallet. Protection against high impedance faults

comes mainly from a moral point of view, i.e. improving safety to persons.
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Fígure L.2. Da.møge resultíng frorn arcing føults to awooden pallet.

Frequent calrses of high impedance, or downed conductor, faults are

contactwith trees, excessive ice loading, vehicle collisions, people, and con-

tact of covered high voltage conductors with ground (e.g. earth) when a pin-

o

î

Fígure 1-.3" Seenørío of ø hish impedønce føult.
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hole break occurs in tÌle conductor cover. A typical scenario of a HIF is

shown in Fig. 1.3 where a conductor of a distribution feeder has separated

and fallen on the earth surface below.

7.7.3. Føult Detectíon

The difficulty in detecting HIR by conventional short circuit protection

devices, could be understood from the relationship of HIF current to over-

current device settings shown in Fig. 1.4. For a I per-unitmaximum antici-

pated full load, the phase-relaying (overcurrent protection) is set at a rea-

sonable increment above the expected full load level: usually I25 to 2OO o/o

of rated line current. Undetected FIIF currents lie in the region unprotected

by overcurrent devices. D ete ction of HIF by lowering the phas e-relaying s et-

ting, say to operate at75 to 125 o/o of ex¡lected load current level, would re-

sult in frequent, unneces sary s ervice intermption. Since d owned conductor

faults result from tl e contact of a single conductor to a high impedance

Average
load level

V

Maximum Phase
load level relay setting

VV
Current
level

Unprotected region by overcurrent devices
( High impedance fault current )

Figure 7.4. Relation of high impedq.nce fo.ult current to oaereurcent
deaíce settings.
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grounded surface, e.g. earth, the use of phase imbalance protection

(ground-relayin$ would shrink the rmprotected region by overcurrent de-

vices down to 25 - 50 o/o of the phase-relaying setting. Sensitive ground-re-

laying, however, is an unreliable means of protection against HIF for sys-

tems with a high degree of imbalance.

High impedance faults could occur in utility systems as well as in indus-

trial power systems. The occurrence of such faults is common at voltages

such as 13.8 kV. The problem is even more acute at2.4 to 4.8 kV because

the faultcurrentmagnitude decreases. Its incidence atdistributionvoltages

above 20 kV is low; however, downed conductors have been reported at 69

and 115 kV.

7.2. Preaíous Reseørch Efforts ín Arcing Føults
Deteetùon

Arcing high impedance faults are downed conductor faults associated

with arcing. An amount of fault current flows into the system.

Carr [5]

A theoretical ana-lysis by Ca:r showed that, on a grounded-Y-connected

system, a signal dependent only on the fault could be calculated by sum-

ming fìxed proportions of the measured neutral and ground currents. The

proportioning constants \Mere ratios of the line and ground impedances. If
the individual impedances changed due to ambient conditions, he sug-

gested a feedback path to automatically adjust the proporlioning constants.

Broken conductors could be detected by monitoring the sequence volt-

ages at the load side of the line. The negative sequence voltage was prefer-
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able to the zero sequence voltage" The former is less dependent on the zero

sequence impedance which is dependent on gtounding resistance. Commu-

nication links would be required, from the detection locations back to the

substation, to de-energize the faulted line.

Calh,oun et øl [6]

The ratio-ground-relay is a ground relay whose pickup level varies in-

versely proportionally to the feeder loading. Since the detection was based

on the imbalance ofline currents, the detection of fallen and broken conduc-

tors was possible.

The relay \Mas coûtmercially introduced in I g8 I . Later on, utilities which

installed the relay had to either completely remove it, or to put it in an alarm

mode. The problem of maintaining phase balance caused an Lrnacceptable

number of false trips. Some cau.ses of imbalance were single-phase switch-

ing, and blowing capacitor fuses. The use of tJlis relay, even as a monitor,

required frequent phase current balancing, aggressive tree trimming sched-

ules, and a very stmctured and effective operator response.

Terøs A&M Uníaersíty [7][8][9][ 1 O][ 1 l]t I 2l

The research at Texas A&M University has played a leading role in the

detection of arcing high impedance faults using harmonic components of

the fault current.

o In a faulted system, a persistent increase in the high frequency compo-

nents (above 2kHz) of the current over that of an unfaulted system was ob-

served [7]. This high frequency component is due to several strikes and re-

strikes in the air gaps, between the conductor and the high impedance

surface, prior to a stable arc being established. The Fast FourierTransform
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(FFT) of the high frequency components, spikes, of the current over one

60 Hz cycle period takes " "Tt distribution. A spectral estimate, caLcu-x
lated as the average of each spectral line over a 3OO po\Mer frequency cycle

record, was found to be unique for an arcing fault. The frequency domain

spectrum was approximately inversely proporlional to the frequency. Nor-

mal system noisy loads would calrse certain frequencies to be displayed in

their spectral estimate rather ttran the smooth frequency distribution of the

arcing faults. It was suggested that this method could be used to improve

system security against false trips by running it in the background of a fault

detector that implements more than a detection algorithm.

o In practical implementations [7][8], the summation of three feeder

phase currents was conditioned to sufficiently reject tJle 60 Hz signal while

also ampliÛnng the 2 to 1O kHz components to a measurable level. The fil-

tered signal \Mas sampled at the rate of 64 samples per-cycle. The raw data

v/ere summed overan entire 6OHzcycle. The average ofthese 64 datapoints

was referred to as the "energr" contained at any time in the high frequency

signal relative to tJle norma-l system signal. This method \Mas named the "en-

er$¡ algorithm". The term "energy" was not used as an absolute measure

of energy rather than a figure of merit that indicates the cumulative effect

of arc noise. When this average showed a 5O o/o increase for three out of five

consecutive cycles an event was detected. lf 48 of the 260 cycles a-fter a¡r

event indicated a high frequency above threshold, the event was classified

as a fault. The threshold was adapted with the base high frequency signal

level on the feeder.
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. Field testing of tJlis algorithm Í7lfgl showed that, for a given relay set-

tings, tJre relay effectiveness \Mas much reduced if the level of the high fre-

quency component of the current was not enough to be detected. This oc-

curred when the conductorwas on surfaces where the fault currentwas less

than 20 Apeak.The relay also failed to detect faults of short duration: I to
2 seconds. Arc noise signal coupled from a faulted feeder to another un-

faulted feeder on the same bus; therefore, it was difficult for tlle relay to de-

termine tJle faulted Line. The presence of grounded-Y-connected capacitor

banks on the feeder resulted in preventing the noise signal from travelling

to the detector. The use of tuning inductors on the capacitor banks to allow

the arcing fault signal to reach the substation was not effective for

L2OO kVAR and larger capacitor banks.

o To overcome the poor propagation of the high frequency components of

ttre fault current past a capacitor bank, the technique was extended to in-

clude ofËharmonic signals near 60 Hz [1O]. Arcing causes non-s)mchro-

nou.s signals which can be differentiated readily from the synchronous 6O

Hz and harmonics signals. \iVhile arcing faults produced only subtle

changes in the fundamental current, they caused substantial amplitude

changes in ofËharmonic frequency components. Noise activity resulting

from switching transients produced insignificant variations in the off-har-

monic signals. Signal coupling to other feeders u/as expected to be greatly

attenuated, in contrast to high frequency signals.

Band-pass filters with steep roll-off, or a switched-capacitor comb fïlter

centered at 3O, 90, 15O, and 27O Hz was suggested to obtain tJle signals of

interest. The filter would reject the 6O Hz and harmonics simultaneously.
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The resulting signal would be further filtered to block direct current (dc) and

eliminate high frequency components. The remaining signal would be a wi-

de-band off-harmonic signat \¡/ith a frequency r¿mge 10 to 3OO Hz. The ener-

S/ algorithm could then be applied to obtain the level of ofËharmonic signal

in the system.

o A detection algorithm [11], based on the random nature of arcing asso-

ciated v¡ith HIF, is activated once the2 to 6kHz harmonic "energy" in a cycle

deviates from ¿Ln average by a certain predefined percentage. The number

of transitions from arcing (high level of energr) to non-arcing (low level of

energr) during a short period of time (3O cycles) was counted. During tJle

same time, the number of adjacent cycles which have energies that differ

from each otJrer by more than a certain threshold was also counted (to detect

faults \¡/ith longer arcing bursts). If either counter exceeded its threshold

number, afaultwas signalled. This algorithmwas also sensitive to the level

of high frequency activity in the current signal.

. The ideas discussed abovewere integrated in [12]. The sampled current

signal was digitally filtered to extract a variety of signals: the high frequency

components (2 to 6 kHz); even, odd, and off-harmonics; and t]le positive,

negative a¡rd zero seqlrence components at tJle fundamental power frequen-

cy (60 Hz) of the current. The summation of the square of the filtered current

data samples, over an entire power frequency cycle, was calculated in a digi-

tal signal processor (DSP) chip to determine their "energ5r" level in tJlat cycle.

The detection algorithm was implemented on a microprocessor based sys-

tem. This system provided time counters, lookup tables for weighting con-

sta¡rts, and the logic to update thresholds dynamically.A knowledge-based
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system (e>+ert system) interacted \Mith the microprocessor to combine algo -

rithmic and heuristic approaches for problem identification and solution.

The data analysis of this system showed that the detection parameters

were not only sensitive to the type of ground material but aLso to the mois-

ture content in the soil. It was also suggested that the faulted phase could

be identified as the high frequency component of the arc current occurred

at certain position on the voltage cycle, i.e. when the system voltage is equal

to the restrike voltage.

Kuton et øl [13]

Along the same line, Kwon et al relied on the half-cycle as5¡rnmetry in tJ:e

high impedance fault currentwaveform to obtain a detection parameter. The

FFT of a 64 sample-per-cycle of the neutral current signa-l was taken. The

ratio between the "power" contained in the even harmonics (6th to S2nd) to

the "power" contained in the odd harmonics (7th to 33rd) was calculated:

note that for a sampling rate of 64 sample per cycle the highest harmonic

available would be the 3 l st 
[ 1 4]. The term "po'wer" is similar to the term "en-

erry" described earlier. This ratio was used as a detection parameter in a¡r

algorithm similar to the one mentioned above. Testing of this algorithm

showed that its effectiveness dropped to 30 o/o as the fault current became

less than 20 A.

Ebron et øl [15]

Ebron, Lubkeman, artd ü/hite showed that the problem solution could

be achieved much faster if the detection parameters were paraltel processed

by an artificial neural network (ANN) rather tJlan by an expert. system. A dis-

tribution feeder, capacitors, and induction motors fed from power electronic
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circuit \Mere simulated using the Electro Magnetic Transient Program

(EMTP). The high impedance faults were simulated by switches connected

to impedance elements (of the order of load impedance). Data generated by

simulation \¡¡ere obtained by varying the size of motor loads, fault imped-

ance, and switching times. TWenty parameters rvere computed for each 512

sample-per-cycle-per-phase window to represent the status of the system

undergoing a transient. The magnitude of tJle fundamental, sequence and

harmonic components, as well as the "energy'" over ten frequencybands of

the current were calculated, to extract the features of HIF and other switch-

ing transients occurring along the feeder. The results of tJ:e simulation a-re

available in reference [16]. It is doubtful t]rat t]re simulated transient wave-

forms represents an arcing fault or a typical load-switching transient.

The extracted parameters u¡ere input to an ANN of 2OO input nodes (2O

nodes x 10 cycles), 2OO first hidden layer nodes, 4OO second hidden layer

nodes, and one output node. The network required I2O,4OO weights and

60l biases for full interconnection. The network learned from a 5G-vector

training set in 38 iterations using the back-propagation algorithm. It is not

clear whether or not fault detection would require this network structure.

Hughes Aírcraft Co. [17]

Hughes Aircra-ft Company designed a high impedance fault detector that

used the third harmonic current as a fault indicator. On aY-connected sys-

tem, afaultwas indicated if the relative phase-angle between one phase and

the other two phases suddenly changed by at least 15o concurrent with an

increase in single-phase fundamental current component of at least 15 A,
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and tJlis condition persisted for at least 5 seconds. Detector evaluation

showed that it could trip under no-fault conditions.

Since phase relationship measurements on a Á-connected circuit are

quite difficult, three thfd harmonic magnitude monitors were built for Â-

connected circuits. A fault was indicated if a predetermined percentage in-

crease in the third harmonic current level conclurent with a single phase

increase in fundamental current of at least l5 A for at least 3 seconds. The

detector did not ex¡rerience false trips in its evaluation period. In tJle evalua-

tion period ofboth relays there \¡/ere no naturally occurring downed conduc-

tor faults.

Jeeríngs & Linders t4l[18]t19lt2}l

Based on their research on the nature of high impedance faults, Jeerings

and Linders characterized HIF as being highly resistive and nonlinear; con-

sequently, the low order harmonic currents generated at the fault will tend

to peak coincident \¡¡ith the voltage peaks, regardless of current magnitude

(the analysis was based on symmetrical waveforms). This characteristic is

not associated \Ã¡ith any other single system phenomenon.

The third harmonic component of tJle fault current \¡/as separated from

the fundamental and other harmonics. The phasorvalue of the Std harmon-

ic was measured using magnitude and phase-angle detectors. The phasor

signal was averaged over a short and a long period of time. Short time aver-

âging\Mas used for present signal determination. Long time averaging deter-

mined the Std harmonic current level in the system. The fault harmonic cur-

rent magnitude may be erratic; therefore the difference between these

averages would contain information of any change in the third harmonic
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cturent in the network. A fault \Ã/as indicated when ttris change ties within

a specific phasor window.

The third harmonic of the systemvoltagewas processed similarly. Itwas

suggested that the phasor ratio between the change in the third harmonic

system voltage to the change in the third harmonic current, referred to as

the sink impedance, would determine whether the fault occurred upstream

or downstream from the point of measurement, and would add to the securt-

tg (relay's ability to not trip when it shouldn't) of the system. However, even

if the normal power system may contain some nominal level of third har-

monic voltage, the harmonic voltage may not change. The measurement of

the sink impedance will not yield any additional information over that

gained from monitoring the third harmonic current only.

7.3. Summøry of Fa,ult Condítíons q,nd Ðeteetíon
Methods tzl

High impedance faults may not be associated with arcing. To give a com-

plete picture ofthe problem, the possible electrical conditions ofhigh imped-

¿ulce faults and fault detection methods a-re summartzed in this section.

1.3.L. Eleetrica.l Condítions of Hígh Impedønce Føults
A downed conductor can result in eight basic electrical conditions tJlat

can be grouped as follows :

L. Broken Cond,uetors

A broken conductor can result in four types of electrical condi-

tions:

i. no ground contact or a very high impedance to ground.
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ii. ground contact on the load side of t]le breakwith no back

feed.

iii. ground contact on the load side of tlle breal< rrith some

loads beyond tJ'e break connected phase-to-phase.

iv. ground contact on the source side of the break.

2. Søgging or Føllen Conduetors
Abroken pole or pole hardware could result in a sagging conduc-

tor. The line current continues to flow" The conductor could either:

i. have no ground contact or a very high impedance to

ground,

ii. be in contact vùith a low impedance ground.

3. Contaet by Foreígn Objeet

The line is fully operational. The possibilities are:

i. line contact by an insulated or a very high impedance ob-

ject, such as a mbber-tired crane.

ii. low impedance ground contact, such as a tree.

7.3.2. Surnmøry of Deteetion Methods
The detection schemes proposed in the last fewyears could be classified

as follows:

L. Deteetíon Bøsed on 60 Hz Measuretnents

This approach is based on measuring 60 Hz quarrtities on the

source side of tlle fault location. Load and ground current levels,

and sequence voltages and currents are the measured quantities.

Proportional relaying is an example of tJlis category.
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2" Loss ofVoltage

A broken conductor could be detected by monitoring the voltage

on the load side of the break. Communication is required between

the load side and the substation.

3. Deteetíon Bøsed, on nonÅ0 Hz Meøsurem,ents

The noise and harmonics produced by arcing in downed conduc-

tor faults have been used as a signature in many algorithms such

as the 2 to 6 kHz signal, ofËharmonic signaJ.s near 60 Hz, third

harmonic current, and even and odd harmonics.

4" Imposed Signøls

A pulse echo could be used to identiSr the end of a conductor. A

sudden change in the conductor's end location indicates a con-

ductor break. Another approach injects a high frequency signal

and measures the response of the line.

5. Føult Enhancetnent

The method is to turn an undetectable low current fault into a fault

that is detectable by conventional overcurrent devices. One ap-

proach connects 2 to 3 metallic rods, perpendicularly oriented to

the line, to the neutral conductor on each span.Afalling conductor

contact \Mith one of these rods is highly probable. The resulting

high current ground fault is easily detected.

Each detection method is limited to detect only some ty¡les of fault. This

limitation can be understood from Table 1.1; therefore, a multi-technique

high impedance fault detector is expected to be a logical approach to a

successfut high impedance fault relay.
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Ty¡le of Fault Detection Method
6O Hz

Measure-
rn,ents

Voltage
I¿ss

lVoíse 8¿
Hørmon-

Ícs

Imposed.
SÍgnaús

Fault
Dnh,anc-

ement
7. B¡rokenConductors

no ground contact. X X X

load side ground contact. x x x

as above with ph-ph load. x x X x x

source side ground contact. X x x X x
2. Saggíng Conductors

no ground contact. X

ground contact. x x X x
3. Iioreign Contøct

very high impedance. X x x
low impedance. X X X

Tøble 7.7. Limitatíons of fa.ult deteetíon methods to the type of føults
they deteet. (r = deteetíon is probøble) [21.

7.4. Reseørch Objectía e s

The research objectives are to find an alternative approach to tJle detec-

tion of high impedance a-rcing faults, to design an algorithm of tJ:e fault de-

tector, and to write the software that could be practicallyimplemented in an

integrated relaying hardware. The designed detector should be able to dis-

tinguish between faults and other system loads that could mimic arcing

faults.

The following chapters give details of tJle study conducted to achieve the

research goal.
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Impedøn ce Arcíng F aults

To study the nature of high impedance faults, field tests and a series of

high voltage laboratory tests were conducted for data collection of fault cur-

rent and voltage signals.

2.7. Fíeld Tests

2.L.1-. Test Círcuít
The University of Manitoba and Manitoba Hydro conducted staged fault

tests in a field two miles east of Sperling, Manitoba, in September of

f 989 [2 1]. The test arrangement is illustrated in Fig. 2. 1. The source ofpow-

er\Mas the 7.5 MVA, 66/25kV, 65/ 173 Atransformerbank at Carman sub-

station. The bank impedance is 6 o/o.The maximum load at the substation

is 60 A. The fault level at the substation is lOO MVA for a three-phase fault.

The corresponding fault current on the 25 kV side is 23OO A at a lOO MVA

base, considering0.2 per-unit system impedance. Substation protection is

a three-phase oil circuit recloser (OCR). Recloser tripping is activated by

phase overctrrrent relays. The ground overcurrent relay is not in service.

The phase-relaying is set at 2OO A + lO 0/0. On the high voltage side of the

transformer, L25 A fuses are used for backup protection.

The fault site was 32 circuit kilometers east of Carman substation. The

first 20 km of the circuit is a three-phase line. The line normal load curent

78
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32 km Sperling
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Data
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High Tape
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Figure 2.7. Støged high ímpedønee fault fr.eld test ørrangernent.

is 3OA. The remainingpart of the circuitis asingle-phase single-conductor

tine. The normal load cur:rent on this portion of the circuit varies between

O to 1O A. The short circuit level at fault location is 268 A. The line protection

is a 140 A OCR 10 km east of Carman, and a 25 Afuse to protect the single-

phase line. Test circuit data are shown in Fig.2.2.
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Figure 2.2. Test circuit data.

DutW staged Jault tests, the trip level of the substation OCR was

doubled to 4OO A, the 14O A OCR and the 25 A fuse protection were dis-

abled, and an OCR, setto trip at lOOA\Mith one second delay, was installed

at the fault location. Figure 2.3 is a photograph of tJle fault location, at

Sperling, showing the conductor to be dropped to ground to initiate faults.

Fìgure 2.3. Site of the híSh ímpedønce føult fíeld tests.
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2. 1.2. Instrument øtí on

The instrumentation supplied by the University of Manitoba for data ac-

quisition \Mere tape recorders of band width dc (direct current) to 20 kHz,

and oscilloscopes \Mith output amplifiers. The oscilloscope input channels

have a band \Midth (BW of dc to 2O MHz-input signal from a 5O Cf termi-

nated source, inputresistance of I MQ, and input capacitanceof 7.5 pF. The

output channels BV/ is dc to lO l:V,IfJz, and produce 75 mVno/div from ap-

proximately 600 Ç) source. The gain of tlle oscilloscope input amplifïers was

adjusted to adapt the signal level input to the tape recorders. Manitoba Hy-

dro used high speed ultra-violet recorders (IIVR) to record the cur:rent and

voltage waveforms during tests. Figure 2.4 shows a photograph of the Uni-

versit5r of Manitoba data acquisition system at Carman substation.

Figure 2.4. Instrumentatíon øt Cartnan substation.

Currents at tJle substation \¡/ere sensed using tlle 2OO / 5 Acurent trans-

formers (ct's) enclosed in the three-phase OCR. The voltage signals were ob-

tained from the l4,4OO/ l2O V substation service transformers. At the fault
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location a 3OO/5 A current transformer, BW dc to 50 l<Ílz, arrd a

I4,4OO/ 12O Vpotentialtransformer (pt), BWdc to6l<klz, wereused as cur-

rent and voltage transducers respectively" The BW of these transformers

u/ere determined in the laboratory using a signal generator driving a po\Ã/er

amplifier. The amplifïercapabilitywas limited byits transformer. These BV/s

could be exaggerated; however, the BW of interest in data acquisition \Mas

dc to L kHz.

The burdens of the ct's were I2O mY / Acurrent-to-voltage transformers,

B\Ã/ dc to IO l<ÍIz, shown in Fig. 2.5. Voltage sensors of ratio 25:I (4O mV/V

transformers) were used \Mith the pt's: BW'dc to 15 l<Ílz.

Figure 2.5. Current sensors used øs burdens of current trønsþrnr.ers.
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2.7.3. Obseroøtions

The current and voltage waveforms of a fault on the field soil are shown

in Fig. 2.6. The photograph is taken off a dc to 5OO kHz storage scope. The

measured voltage is the voltage between the high voltage conductor and a¡r

earth rod driven at the fault location (pole 3 in Fig. 2.1). The impedance at

the point of faultwas not high enough to limit the fault current to tl:e unpro-

tected region by the lOO A OCR at the fault site. Fault cr:rrent record length

averaged between 6to 12 cycles. The currentwaveforms shown in Fig. 2.6

had an initial value of 55 A peak. The current gradually increased in magni-

tude to I 65 A peak a-fter three cycles. TWo cycles thereafter, the OCR tripped.

It was noticed tJ:at tJle fault voltage decreased and became flat topped as the

current magnitude increased; tJle fault current waveform became nearly si-

nusoidal. The phase relationship was mainlyresistive in contrastwith that

of short circuit faults, where the arc is ignited in a largely inductive circuit.

Fígure 2.6. High ímpedønce øreíng føult eurrent and aoltage
wøueforms.

Top: current 275 Ndia. Bottom: aoltøge 25 kVldía.
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In another test, the energized conductor \Mas dropped on a wooden pallet,

Fig. 1.2, the arc elongated and caused ai.7 cmburn on the wood. This could

be due to magnetic forces (motor action) tending to move the arc away from

ttre source 122L

Considering the substation and line normal loads, and ttre fact that

ground protection is not active, a downed power line on the test circuit is

extremely dangerous; the fault current could vary between O and 2OO A at

medium distribution voltage [1]. This raises a question upon t]re degree of

safety, regarding HIF, at all similar locations of Manitoba Hydro's network.

2.2. Løbora,tory Tests

2.2.7. Setup
A high voltage laboratory setup, Fig. 2.7, was devised at the University

of Manitoba for further investigations and data colle ction of high imp edance

faults under controlled conditions. The 25 kVA, 24O/72OO V, f O5l3.5 A,

L.5 o/o impedance, distribution transformer used in laboratory tests was en-

ergized from a IOO A, 2OB V, 60 Hz supplyvia a starting resistor. Abare con-

ductor-one end connected to the high voltage side of the transformer and

ttre other to an insulated rope-\¡/as dropped to ground to initiate a fault.

The ground was a pile of soil placed on a metal pan. The ground return was

completed through a variable current limiting resistor. The current and volt-

age signals'were delivered to a data acquisition system from a3OO/5 A cur-

rent transformer, and a 10 OOO/f O V high voltage probe: BW dc to I MHz

at20 kv peak-to-peak. A photograph of the laboratory setup is shown in

Fig. 2.8. Arcing associated with HIF resulted in energy dissipation in ttre
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Figure 2.7. Circuít díagrørn of staged híSh impedance f,øult
løboratory tests.

Fígure 2.8. Photogrøph of the hígh aolta.ge laboratory setup.
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form of heat that turned the rnoisture in the soitr into steam and burned the

grass into smoke: Fig. 2.9.

Figure 2.9. ,Lrcing øssoeíøted, wíth HIF.
2.2.2. Døtø Acquísítíon System

The data acquisition systemwas composed of an analog-todigital con-

verter (^/D) , anti-aliasing filters (AAtr.), and an oscilloscope with output am-

plifiers: see Fig. 2.7.

The A/D converter board, installed in a personal computer, is controlled

and activated through Lohts-12,3rv*. 1¡. board was set to sample at a rate

of 32 samples per cycle, i.e. a sampling frequency of Ig2O Hz, which is the

rate applicable to many modern practical microprocessor based relays. The

datawere quantized to+2048bits. Board inputimpedance is L GO. The cur-

rent andvoltage signals were collected simultaneously and stored in awork-

sheet. The personal computerwas able to store 4.3 seconds of dataper-run

at the required sampling rate.

* Lotlrs-723r}.r is a trademark of Lotus Development Corporaüon
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Resistor-capacitor (RC) anti-atiasing fflters, R=47 kÇ2 and C=O.OO3S pF,

'were used to prevent folding of high frequency signals around the Nyquist

frequency as low frequency signals. The ftlters \¡/ere set at 1.O kHz cut-off

frequency and 20 dB/decade attenuation. The input impedance of the A/D

board, and the source impedance of the oscilloscope output channels have

a negligible effect on the filter characteristic" The oscilloscope adapted dif-

ferent transducers to the selected input signal level of the A/D converter

board, provided an on-Iine display of the measured signals, and isolated the

computer from any unex?ected hazard that could occur in the test circuit.

2.2.3. Obseraøtíons

A photograph of a typical fault current waveform obtaine d in a lab oratory

test is shown in Fig. 2.IO. At the passage of current through zeÍo, an off-

current conduction period is obserued for approximately 2 ms until the volt-

age magnitude becomes large enough to break down the small air gaps be-

tween tlle conductor and earth, and initiate arcs.

Fígure 2.70. Løborøtory test fa,ult current utø.aef,orm:2.5 Ndía"
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2.3. Volta.ge - Curcent Chørøeteristic of IIígh
Impedønce Arcúng Føults 2lt2slt24l

The voltage-current (u-ri characteristic of an arc is entirely different from

that of a solid conductor" \Mhereas the u-icharacteristic across a conductor

is linear (the voltage across the condr.lctor is proporti.onal to the curent
through it), the current flow in an arc has a different mechanism. Moreover,

the arcing phenomenon associated \Ã/ith downed porver lines deviates from

that with conductor-to-conductor faults, or across circuit breaker poles.

Compared to conductor-to-conductor faults, arcing in high impedance

faults occLrrs in a largely resistive circuit. It is characterized by short arc

length and small current magnitude. HIF could persist for a long period of

time resulting in a ra¡dom arc behavior. The u-i characteristic of tJle high

impedance arcing fault of Fig. 2.6 is shown in Fig. 2.LL.

Figure 2.77. Voltage (a) - eurrent (í) eha.røcterístic of an ørcing fault.
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2.3. 7. Arcíng Mechønísrn

Consider ¿m energized power tine falling to the earth surface below. At

the initial contact of tÌ.e conductorwith earth, Fig.2.l,2(a),thevoltage gradi-

ent at the condtrctor-soíIínterJaceis large. Local ionization results. The gap

conducts as the voltage across it reaches the breakdown voltage V6 at cur-

rent zero and time T6: Fig. 2.L3. The small contact area, via the arc tÍp in

Fig. 2" L2þ)" accounts for the observed reduced initiat current of HIF. The

conductance of the air decreases as the current of the established arc in-

creases. The voltage drops to V.r.": Fig. 2.13.

A thermionic emission process starts to build up as the electric field be-

tween the electrodes, conductor and earth, emits electrons from the cathode

spot. The liberated electrons ionize neutral molecules electrically. These

ions heat up tJle electrodes as they fly towards both of them under the elec-

tric fìeld strength effect. Tþical values of temperature at tJle arcing spot are

about: 2OOO to 3OOO oC for metallic electrodes; 3OOO to 4OOO oC for carbon

electrodes; and SOOO to SOOO oC in the gas column I2al.The conductive lay-

er of the soil moves away from the conductor. The arc penetrates the earth

between tJle soil particles enlarging the effective contact between the con-

ductor and the ground: Fig. 2.12(c). The increase in the effective contact

area between the conductor and tJle earth is a source of nonlinearity in arc-

ing HIF. It is also accounted as the source of high impedance in these fautts.

The current reaches its maximum, at time T*, as the applied voltage be-

comes equal to the arc voltage: Fig. 2.L3. The current then starts to decrease

and returns to zero as the balance between the rate of heat generation of

arcing, and the heat transferred to ttre environment is disturbed. The volt-
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age between the electrodes of aburning ârc (V'a¡c), Fig. 2.13, drops with this

decreasing current. The arc is extinguished at time T.. At this stage either

the moisture will defuse back into the dry soil and the arc will be re-ignited,

vry-t""
Current

(b)

\u*
(a) prior to gap break

down
(b) initial arc

Energized 1
conductor \

(c) arc extends in soil (d) arc quenched
(silicon carbide tubes)

Figure 2.72..{rc formøtíon ín ø downed, power líne t231.

Figure 2.L3. Physíes of øc øre: (ø) wøueforms. (b) a-i chøracteristíe.
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on a different path than the previolrs, once the front edge of tlle moist (con-

ductive) layeris close enoughto the highvoltage electrode. Or, anotherpoint

which was previously inactive may start arcing if the local fÍeld has in-

creased due to changes in the potential distribution.

The resulting voltage-current characteristic of an arcing HIF, therefore,

consists of a branch for increasing current and another for decreasing cur-

rent: Figures 2.11 and 2.L3. This arc hysteresis is due to the heat capacity

of tJle conductor" earth, and arc gas. The ternperature of arc column and

electrodes, and thus ttre arcvoltage, correspond stilt to preceding conditions

of the current rather than following the instantaneous conditions. Because

of the poor heat conduction of the earth soil, the two branches of tJle charac-

teristic shown in Fig. 2.IL are widely different.

The arc heat is enough to fuse sand and silica in the soil into a glass-like

substance, silicon carbide: Fig.2.I2(d). These glass-like tubes, shown in

Fig. 2.I4, reach alength of 5 cm. Theywere found to have alinearresistance

of the order of 2 to lOO kO/m [231.

Figure 2.L4. Arc fuses sa.nd ønd. sílíeø ínto gløss-líke tubes,
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The nonlinearity of the arc and conductor-soil interface" the develop-

ment of silicon carbide tubes, the generation of smoke and steam, the

bounce of the conductor on the ground surface, tl.e movement of the soil

parlicles, the moisture content in the soil, and the ground material itself in-

teract in a complex arrangement to produce the overall u--ú characteristic.

Føults on Dry ønd. Wet Soil

The shape of the characteristic changes \Mith the arc geometry and the

heat transfer conditions. Both elements are affected by the moisture content

of the soil. Faults on drier soil require higher ignition voltage to ignite tJle

a¡c. The effective air gap length is larger tJlan that of faults on wet soil; there-

fore, the current waveform would be more distorted for faults on dry soil

compared \Mith an ordinary sine curve. The higher the arc voltage becomes

the more distorted the arc current is; the interval through which the current

stays at zero, as shown in Fig. 2.LO, is longer.

On wetter soil, the conductor does almost have a solid contact with the

soil. The fault current starts sinusoidal. As the heat evaporates the moisture

at the soil surface, air gaps are created at the conductor-ground interface

and arcs are triggered. The arc lengttr is short and the arc voltage is small.

As time goes on, the steam increases the soil porosit5r, the arc starts to prop-

agate in the soil, the arc voltage increases, and the current waveform be-

comes distorted.

2.3.2. Føult Curcent,Asymmetry ønd Røndorwless
Behøaíor [2][25]

It has been observed tJlat the magnitude of the fault current may vaÐ/

greatly from one cycle to the other, and that the positive half-cycles of the



ÐÐ.t.t2. Chørøcterústics of Hügh Impedønce Arcing Føults

cr-urent may be greater in magnitude than the negative half-cycles, or vice

versa. Figure 2.L5 illustrates these phenomena.

Figure 2.75. Asyrnmetry ønd rq.ndomness ira HIF eurrent waaeform.

Fault current asymmetry and ra¡rdomness could be oçlained as a result

of arcing at the fault. The heat produced by arcing converts the moisture in

the soil into steam. The steam e>çands and displaces soilwhich rearranges

the characteristics of the air gaps surrounding the downed conductor. As

a result, the current in the next arcing cycle could be quite different from

that in the previous one. Furthermore, the silicon carbide tubes accumulate

around the conductor; in the long run, the conductor could be insulated

from ttre gror-rnd. The fault cur:rent magnitude, therefore, could reduce and

make the situation \Morse. However, the impurity in tJle fused material could
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r)

on the contraÐ¡ provide a solid path for the current, and ttre fault crjurent

would increase instead.

The as5rmmetry of the fault current in some cases could be as a result

of the recti$ring action exhibited by the soil. The glass-like tubes surround-

ing the conductor act as a hot cathodic spot tÌat ernits electrons. The voltage

drop across the cathode spots is small when the conductor is positive:

Fig. 2.16. The amount ofmoisture in the soil and the packing of its particles

affect tl.e values of tlle break down (onset) voltage of the gaps between the

energized conductor and ttre earth. Less densely packed (drier) soil yields

higher onset voltages and, therefore, a larger degree of as¡rmrnetrSr. Even or-

der harmonics are generated on account of this as5rmmetry.

Voltage

Varc
ua

v
L

t_ ¿_J Gao
length

-*ffi
-!j¡::::::::::::::::::::::ia 

111111111111iiiiii1i1iiii:::l

Anode Arc CatÌode

Fígure 2.76. Voltøge dístríbution betuseett. ørc electrodes.
uo: anode drop, u¡r: cathode drop, q: arc drop [24].

2.3.3. Føults on. Snow Coaered Ground
High voltage lines could be downed in the winter time due to ice loading

on the conductors. The conductor and its supports could experience a me-
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chanical stress beyond their design limits. Staged HIF tests \Mere conducted

in the high voltage laboratory to investigate downed power lines on a snorv

covered ground.

The soil was subjected to the winter climate during the period of Decem-

ber to February, where the temperature falls below -2Ooc.The mobile tray

was brought to tJle laboratory and a downed conductor fault was staged

promptly. The energized conductor lay on the ground showing neither visual

nor measurable indication of arcing. The energized conductor looked quite

harmless: Fig. 2.I7. This indicates how downed conductor faults on snow

covered surfaces could be extremely dangerolrs.

Fígure 2.77. Fa.ult oÍt, cL snow coaered ground.

The cold temperature produced afrozen layer at the surface of the soil;

together with the snow cover, a perfect insulator was formed on top of tJle

soil capable of insulating aT 2OOY conductor. Even if the soil was not frozen,

but tÌle snow cover was thick or densely packed, the phenomenon should

still be e>çected. This situation could last for a long period of time before the

spring comes. Or (if lucþ), a break occurs in the frozenlayer, due to the
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weight of the fallen conductor, and small arcs start to heat the contact area

and puncture the insulation layer" It may take a while before the amo¡nt

of fault curent becomes significant"

2.4. Conclusúon

The results obtained from the high voltage laboratory downed power line

model were in agreement not only with the field test results but also with

data published in the literature by other institutions and research groups.

The power limitation of the test transformer forced the use of current limit-

ing resistor in the fault circuit. However, the arc model was still justified.

This validated the laboratory model, and established a credible source of

data acquisition to launch further investigations toward s olving the high im-

pedance arcing faults problem.



Seeuríty Testíng of Hígh Imped-
ønce Føul,t Detectors

The primar5rmotivation for high impedance fau-lt detection is to improve

safety rather than protecting equipment or enhancing system perforrnance"

The action taken to improve safety may be tle same as that used in overcur-

rent detection: de-energZe tlle affected portion of the circuit. Sensitive fault

detection can impact tJle number and duration of outages on a feeder. One

aspect of utilities' design goals in a high impedance fault detector is correct

operation; especially, the detector should not falsely indicate the presence

of a fault when there is none. A utitity would prefer a detector failing to trip

for some high impedance faults than accepting nuisance trips [2].

In this chapter the susceptance of existing high impedance faults detec-

tion algorithms to operate under no-fault conditions is investigated [25].

The objective of tJlis study is to give a newer insight into improving high im-

pedance fault relaying.

3.7. Introductüon
High impedance faults (HIF) are a persistent problem on power system

disbibution lines because the current may be too small to be detected by

conventional means.

Several high impedance fault detection schemes, mostly involving micro-

processor algorithms, have been proposed or implemented. Many detectors

37
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have been tested for dependabíhífg (abitiry to trip when they should), but few

have been tested for seatrífg (ability to not trip when tJley shouldn't). The

basis for all of the algorithm designs is some kind ofwaveforrn discrimina-

tion, involving for example the Fast FourierTransform (FFT), or a combina-

tion of these interacting with a knowledge-based environment"

It was anticipated that loads such as erc tiselders , comptúers, and.Jhtores-

centlnmps would share some characteristic features with HIF. These loads

a¡e referred to here as "high impedance fault-like loads" (HIFLL).

A variety of such common load waveforms was collected using a com-

puter-based data acquisition system. The seatrífg of two existing algo-

rithms [13]l20l was examined for high impedance faults on dry and wet soil,

arc welding machine, computer, and fluorescent lighting loads.

3.2. Døta, Collectíon

3.2. 7. Løborøtory Tests

High impedance fault data were collected using the modet HIF setup

shown in Fig. 2.7. Tests on dry soil were conducted \¡/ith the current limiting

resistance shorted. In wet soil tests, a 66O Q resistor \Mas inserted in the

fault circuit to limit the fault current to the circuit rating.

The high impedance fault-like loads considered were:

7. Arc Welding Machine. rated 45.5 A, 23O Yyy, 225 A arc curent,

1"
* steel rod type 6013.I

2. Computer, 5.O A, 12O V¡¡,{.

3. lluorescent Light, l5.o A, 2ogYyy.
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Current andvoltage signals of HIFLI-were sensed usinga IOOO/ I clilron
aÍrmeter, B\M 10 Hzto 5olçflz" and a Lo/ L voltage probe, BW dc to lo MHz,

connecting the instmment transformer secondarlr circuits to the data ac-

quisition system shown inFig. 2.7.

3.2.2. Wøaeforrns

The per-unitvalues of the actual phase current and voltage signals were

calculated from the collected data using conversion forrnr:Ias. The conver-

sion factors depend on tlle base values of tJle apparatus used and the dc

offset of the oscilloscope. The current and voltage base values of a load are

the peak rated current and the peak rated phase voltage of that load.

Table 3.1 gives a list of the base values used in each case.

Table 3.7. Current ønd aoltøge bøse aølues.

The nature of high impedance faults and fault-like loads could be under-

stood from the voltage a¡rd currentwaveforms, Fig. 3. 1, and tJre correspond-

ing long-time current traces shown in Fig. 3.2.

The behavior of "high impedance fault crr:rent", Figures 3.1 and 3.2, is

affected by the surface conditions. A fault on dry soil is charactertzed by un-

s5rmmetrical half-cycles, short current flow interval per half cycle, and a

large degree of randomness. This is in contrast to a fault on wet soil. The

Case study Base current (A) Base voltage ({}
HIF 3.5 

^12
7200 42

Arc welder 45.512 ß212
Computer 5.o {2 L20 42

Fluorescent 15.O {2 L20 12
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Figure 3.7. Current a.nd aoltøge waaeforms of HIF and HIFLL.

degree of dryness or rvetness ¿uld the surface conditions \Mould result in a

different combination of these features for a given ground material.

The "a-rc welding machine current" is composed of two components:

namely, the welding transformer magnetizing curent and the arc current.
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Figure 3.2. Current tra.ces of HIF únd HIFLL.

The arc currentlevel modifies the waveform of the totalwelder current. The

curve shape of tJle arc current is simila¡ to tJlat of an a-rcing fault except that

the arc is burning in an inductive circuit. Short arc length is a characteristic

common to both an arc welder and a HIF. Compared to the fault on'wet soil,

Fig. 3. 1, the arc \Melder has a comparable cument flo\M period per halËcycle.
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The "computer ctrrrent", Fig" 3" 1, shows similarity to tJlat of fault on dry

soil. However, the narrower and s)¡mmetrical peaks in each halËcycle are

distinctive. The periodic variation in the current trace is due to the cooling

fan in ttre computer unit.

The "fluorescent lightlng load" represents awidety used non-linear load.

Fluorescent tubes follow the same rules of arcing as in an inductive cir-

cuit 1241. In order to avoid excessive flicker, they should not show any

marked intermption of current as seen in Fig. 3. l. V/aveform distortion sug-

gests tJlat this load contains harmonics used in HIF detection.

3.3. Døta, Processíng

The HIF detection algorithms to be examined were tJle third harmonic

phasor algorithm, and the even-to-odd harmonics porver algorithm.

3.3.L. Thírd Hørrnoníc Phøsor Algoríthm tzol

The third harmonic phasor algorithm responds to tl.e uectoríal change

in the third harmonic current. The vaLue (Vq.Lue) of the third harmonic cur-

rent is calculated each power-frequency cycle. The phasor difference be-

tween a short and a long time exponential average (Aug), of O.1 and O.9 time

constants "T" respectively, equation (3.1), is determined. The relay operates

when the detection signal lies within a predefined phasorwindow. The cur-

rent magnitude window is set depending on the state of the system. The pha-

se-angle window limits are l7O to 335 third harmonic degrees, lagging the

60 þIz substation voltage.

Augrn* = Alsgotd"x t + Vahtent** (L -t) (3.r¡
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3.3.2. Eaen-to4dd Hørrnoni,es Pouser Algoríthrn tls|
The even-to-odd harmonics po\Ã/er algorithm calculates the ratio &-o be-

tween the sum of "powers" P contained in tlre 6tr, 8ft, ... , B2''d harmonic

to the sum of "powers" contained in the Zü, gü, .." , 33rd harmonic, each

po\Mer frequency cycle: equation (3.2). The term o'power" is used as an indi-

cation of arcing rather than an absolute measure of power" The detection

threshold level is 1.5.

R*o =

32

æ6,8 (s.z)
33

æ7,9

The "power" contained in a harmonic per-cycle was calculated by squar-

ing the harmonic magnitude. Considering the sampling rate of 32 samples

per-cycle, equation (3.2) was modified to equation (3.3); the highest har-

monic available is the 15th. Scaling factors of "1OO" are added for data pro-

cessing reasons. To avoid calculation errors, the ratio R.-o was set to "0" if
either the nominator or the denominator of equation (3.3) is less tflan "'I".

2
(re * loo)

R*o =
æ6.8 (3.3)

I4

l5

æ7,9

The necessary data processing required the Fast Fourier Transform tak-

en for the current and the voltage signals each cycle. Appendix B lists tJle

computer program, in MatttCAUM* software and notation, used in testing

x MathCAÚM ls a trademark of MathSoft, Inc.
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the security of HIF detectors. The resulting vector of coefficients c for the

FFT of an n element real data vector u is [26]

1gc¡ = È nT, 
,n &"iu/,ùt' (8.4)
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where i is the imaginary unit, j and kare the indexes of the vector of coeffi-

cients and the datavector respectively. Figure 3.3 is an example illustrating

the time and frequency domain of the signal út) = sín(wt) + O. 5 sín(S (tut - n / 9)) .

In the frequency domain, the FFT uses each harmonic as the 3600 base

when calculating the phase displacement.

The use of RC anti-a-liasing filters, in the laboratory tests, produced a

phase-shift depending on the harmonic order. The amount of phase-shift

compensation for the Std harmonic currentwith respectto tJle fundamental

harmonic of the voltage is + 6.770 at L l<Ílz ftlter cut-off frequency.

The FFTwas calculated for the current waveforms of Fig. 3.1. The fre-

quency spectrum of the high impedance faults, and tJle fault-like loads are

shown in Figures 3.4 and 3.5 respectively. It is clear that tJle dÍstorted cur-

rentwaveforms result in spectrarich in harmonics. Because ofthe changing

magnitude of the current waveform of fault on dry soil, the FFT of the three

cycles shown in Fig. 3.I was calculated; the results are illustrated in

Fig. 3.6.

The arc welder, Fig. 3.4, is difficult to discriminate from arcing faults.

The odd harmonics of fault on wet soil, computer and fluorescent light

loads, Fig. 3.5, are dominating the even harrnonics. This is because of cur-

rent halËcycle symmetry. The Fourier analysis shows for fault on dry soil,

Fig. 3.6, that the frequency spectmm varies from one cycle to the other. This

variation accompanies a phenomenon of a ra¡rdom nature.
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3.4. Results

The current traces illustrated in F''ig" 3.2 were those on u/hich the algo-

rithms \¡/ere tested. Each trace is composed of a 20o/o arlifïcia-l resistive load

plus the fault or the fault-like load crrrent. The arlificial resistive load signal

was obtained by multipþing the voltage samples by O.Z"

3.4.7" Thírd. Hørrnoníe Phø.sor Algorí.thm
The change in the Std harmonic current magnitude and phase is shown

in Figures 3.7 and 3.8 respectively. In tÌe first few cycles of normal load, a

lack of 3rd harmonic current change is observed; the change in Srd harmonic

current component of the arc welder transformer magnettzing current

shrank to a negligible value within half a second.

Asudden change is noticed at tJle instant of fault orfault-like load appti-

cation. Third harmonic current exists in all cases. The use of ttre exponen-

tial averagrng provides adequate follow up of the randomness in tlle'wave-

forms as well as the trends in the Std harmonic ambient. It has also

emphasized that the randomness extribited by the arc welder is more than

that of the fault on wet soil. These results support tlle observations on the

waveforms shown in Figrlres 3.I and 3.2.

In contrast to the fault on wet soil, the random burst nature of the arc

on dry soil results in anoticeable variation in tJle Std harmonic current mag-

nitude change. Once the arc current remains at almost a constant level, the

magnitude change becomes in tl e same order of magnitude as in the re-

maining cases. The ambient Srd harmonic magnitude is in ttre order of I
to 2 o/o of t]le base value of fault or fault-like load current. Unless the fault

has a high degree of ra¡rdomness, the Std harmonic magnitude change is
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Figure 3.7. Magnítude of the 3"d hørrnoníe eurrent chønge.
insignificant; therefore, the use of this quantity as a detection parameter

seems to be unreliable.

The phase* ofthe Std harmonic crurent change, Fig. 3.8, varies erratical-

ly in the HIF and arc welder events. For fault on dry soil, the phase star-ts

*Posltlve degrees are lagglng the reference 60 Hz voltage, and negaflve degrees are leadlng.
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Fígure 3.8. Phase of the 3'd harmoníe eurrent change.

at - I 5Oo, i. e. I 5Oo leading or 2 I Oo lagging the 60 Hz voltage. A few cycles later

the phase begins to vary widely between lSOo lag and 15Oo lead, stays

around Oo for half a second, then back again to its erratÍc variation. A similar

description of phase behavior could be given to tJle fault on wet soil and the

arc welder, where tJle phase variation lies within the same window limits.
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The phase-angle trend of the computer and tÌe fluorescent light loads is

clear. It is reachin$ an average value of lOOo lag for the computer and lOOo

lead, i.e" 2600 lag for the fluorescent light. The phase angle window sug-

gested in [20] would result in relay alarm in aII cases except for the computer

load. In the long rrn, it is ex¡lected that the change in 3td harrnonic current

in the fluorescent light case would diminish. This would still leave the arc

welder as a load likely to be confused with high impedance faults.

3 .4.2. Ea en-t o4 dd H q.rrnoníc s P ow er Alg oríthm

The results of testing the even-to-odd harmonics power algorithm are

shown in Fig. 3.9. The results are in agreement rvith tJle early discussion

of the Fourier Analysis of the current waveforms. A similarity is noticed be-

tween the fault on dry soil and the a¡c welder. Another similarity is observed

between the fault on wet soil, the computer, and the fluorescent light loads.

Since the number of harmonics used in the testing algorithm were less

than tJlat in the original atgorithm, judgement on the performance of this

detection method could not be perfectly justified. Nevertheless, the detec-

tion threshold could be lowered to 0.75, from 1.5 [13], to compensate for the

missing harmonics. The results indicate that it is doubtfirl for a relaybased

on this algorithm to not signal a fault for an arc welder load. It is certain ttrat

a fault on wet soil will not be detected. For a fault on dry soil, if the degree

of halËcycle as5rmmetry is not enough to generate a suitable amount of

even-to-odd harmonics, the fault will not be sensed using this detection cri-

terion.
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Figure 3.9. Eaen-to4dd hørmonics power rq,t¡o.

3.5. Toward ø Solutíon, of the Problern

Patterns for current waveforms, for the various circumstances already

described, a-re distinguishable by the human brain. Therefore, these pat-

terns should be usable by an intelligent system as "fingerprints" for the cor-

responding disturb¿urces in tl.e system. The advances in nelrrocomputing
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in pattern recognition motivated the use of artificial neural networks ap-

proach in designing an arcing fault detector, as described in the following

chapters.



Artíficíøl Neural Netw orhs

Artificial neural networks (Awru¡ a-re computational strrrctures modelled

on the biological nervous system. The research on ANN is motivated by the

fact that the brain outperforms modern digital computers in pattern recog-

nition a¡rd classification of real world data in ttre presence of a noisy and

distorLing environment, and modelling the biological nervoLrs system func-

tion using m¿m-made machines increases understanding of that biological

function. The following sections gives an overvie\ / on tl.e background of arti-

ficial neural networks, details of the high impedance fault pattern identifïca-

tion ANN, and the back-propagation learning algorithm.

4.7. Oaeraíew of the Bíologícøl Neraous Sysúem. tzTlt2sl

4.7.L. Structure
The fundamental building block of the nervolrs system is the neuron:.

Fig. 4. L . The different shapes, sizes and lengths in which a neuron may exist

are important to the function and utility of neurons. Neurons a-re imbedded

in an aqueous solution of small ions. The selective permeability of a neuron

to ttrese ions establishes a negative electrical potential of some tens of milli-

volts. The somøis the round central cell body of the neuron (5 to lOO pm in

diameter).
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(Rètina)
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Spine apparatus
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,t3,fl

I

I
Small biological neural net

Figure 4.7. Fundømental connponents of bíologícal neurq.l networks.
Top: two types of neurons. Bottom left: neuron-tæneuroÍr, eonnection.
Bottom ríght: fiae neurons performíng a smøll neural network t271.

The axonacts as tÌe cell output. The axon, electrica-lly active, is attached

to tJle soma and produ.ces the pulses emitted by the neuron. The electrically

passive dendrífes receive electrochemical input signals from other neuron

axons. Axons and dendrites are of the order of I pm in diameter. The axon

terminals form a connection, sAnclpse, which almost touches the dendrites

of other target nelrrons. Tl:e sgnaptic gap, shown in the bottom left of

Fig. 4.I, is the space between the two cells:.about O.Ol pm.
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4.7.2" Cornmunícøtíon

Neurons corunlrnicate to one another by transferring electricar eners/
along the axon to the ¿¡xon terminals . Netrotransmitters. specific chemicals
released by the pulse on Ûre pre-synaptic side of the s¡mapse, carries the
signa-l across t]le synaptic gap to the next cell. on the receiving or t¡.e post-
synaptic side of the sJmapse, the neurotra¡rsmitters bind to specific receptor
molecules' opening ionic channels and changing the electrochemical poten-
tial' The magnitude of this change is determined bymanyfactors local to the
sJmapse such as the amount of transmitter released on the pre-s¡rnaptic
side' and tl.e number ofreceptor molecules on the post-synaptic side. These
sites of neuron-to-neuron communication are capable of changing a den-
drite's local potential in a positive or negative directions, depending on the
pulse it transmits. These factors can change \¡¡ith time, thus, changing t1.e
effectiveness or "strength" of the sJmapse. This process takes about o.l to
o'2 ms of time, which is along time by electronics standards. It is not known
how ma'y of the thousands of, synapses on a ce,, are strong or even fi:nc-
tional at agiven time. Estimates of tJ.e number of active sJmapses necessary
to cause a ce[ to "fïre" r¿mge from a few to hundreds.

4.7.3. Proeessíng

The synaptic potentia-ls are combined in va¡ious ways. when the resr:It-
ing potential is greater tJlan a fixed threshold, the generation of an output
signal is triggered by a special region near the ceu body. The signar, cailsd
actíoruor exonpotentío.t is a large brief purse, approximatery roo mv by r
ms' The pulse propagates without attenuation down the axon a¡d is deliv-
ered to sJmapses ofthe axon branches. Action potential pulses travel atvelo-
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cities up to L2o m/ s, and can be produced at rates varying from o to lSoo

times a second. Many action potential pulses are averaged over tens of milli-

seconds to determine the average firing rate on an ¿ìxon. The resulting neu-

ral element computing time is of the order of tens ofmilliseconds. Neverthe-

less, the massive parallelisrn in the nelwous system counters ttre relative

slowness of individual neurons. Therefore, it is not su4lrising that humans

c¿u1 respond to complex stimuli in fractions of a second where the process

requires hundreds of sequential steps.

This description of neural input/output function is reasonably accurate

for a large number of neurons, but it has been revealed that much more

complicated mechanisms exist. In addition, there are neurons without ax-

ons, s¡rnapses that are bi-directional, s5mapses onto other s5mapses and

onto axons, and non-chemical electrical sSmapses.

The brain has a modular a¡chitecture. It performs its tasks by thousands

of discrete stmctures of neurons. Each structure has its own particular ty¡le

of neurons, pattern of connections, and role in brain firnction. For example,

vision task is performed by systems composed of many interconnected

stmctures, each serving a small specific subtask.

4.1.4. Støtístícs
The human cerebral cortex weighs three pounds, covers about O.15

square meters, and is about two millÍmeters thick. It contains approximate-

ly IOO billion neurons. Each neuron has 1OOO dendrites that form

lOO OOO billion s5mapses. This system functions at 1O OOO billion intercon-

nections per second. Brain capability is beyond anything which can be re-

constmcted or modeled. However, the possibility to understand how the
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brain performs information processing could be modelled and ultimately

implemented in hardware.

4.2. Artúficíq,l Neurq,l, Networhs t2rltzyl

The origin of artificial neural networks, inspired by the biological neruous

system, dates back to the late t95os when agroup of scientists took the ap-

proach of "how the brain did things" in an attempt to build an intelligent

system. Anart{fícíalnetraLnettuork lAlW), or simpLg aneuralnet(NN), is an

information processing system (IFS) that extracts information from its input

and produces an output correspondingto the extracted information. Neural

nets are also called "connectionistmodels", "parallel distributed processing

models", or "neuromorphic systems". Neural networks are distinguished

from other fields \¡/ith similar goals, e.g. artificial intelligence, by incorporat-

ing features of the biological nervous systems into its design. There are two

classes of neural network models:-

7. Neurobíologíeøl madels are computational models of

biological nervous systems. Their object is to surnmartze

and predict existing neurobiological and p sychophysica-l

data and behavior.

2. Computatíonøl modelsare biologically inspired models

of computational devices with technology applications.

4.2.7. AnøLogy to Bíologícøl Neraous Systern

An arlificial neural net is a system composed of many simple neuron-like

processing elements called "artificial nettrons", "nodes", or "units". The unit

receives one or more inputs from other processing elements or from external
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solrrces. These inputs are then modified by some weighting coeffïcients spe-

cific to each input according to a learning algorithm" The unit performs very

IÍttle computation; typically, biasing ttre weighted sunr of its input and pass-

ing the result through a nonlinea-rity. F''igure 4.2 illustrates a single neuron

ANN.

\ü'eight ouþut=J r1*o,-r,

Neuron
to

+J
F{

È
H

In

@
@
@

Output

Fígure 4.2. The learning tnode of ø síngle neuron a,r'tífícial neurøl
network. [2il

The benefits of ANN are high speed and fault tolerance due to massive

parallelism, and adaptivity; i.e. neural nets can be trained, hence, their per-

formance may improve with experience. Adaptation or learning is a high lev-

eI function of an ANN. Vision tasks and speech recognition are low level

functions a neural net can perform. The function of the neural net is deter-

mined by the connection topology and strengths.

4.2.2. Networh Topology

Quite a few different neural network models have been developed to

achieve human-like performance in the fteld of speech, vision and robotics.
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Important models include tÌe Hopfìeld network, single- and rnulti-layer

perceptrons, the cerebellar model arLiculated controller (CMAC) network,

the feature map network, Darwin III, and the silicon retina chip.

Connectivity patterns between nodes vary across ANN models. Nodes

may b e Ia c aLLg -conne cte d to n eighb o r s, fi iLg -conne cte dto all other no d e s, or

sparselg-conrrccted to a few distant nodes" In addition, networks may be

layered \Mith exclusivelyfeed{on-aqrdconnectío¡tsfrom lower to higher layers

as in multi-layer perceptron or provided \Mith recurrentJeedback connec-

tíans as in fully-connected Hopfield network. The design of neural network

feedback loops has implications for the nature of its a.daptiuiÍg/traínabílifg.

The design of a network's interconnections has implications for its paraLleL-

rsrn

4.2.3. Thøíníng Algoríthms
A neural network, as ¿rn information processing system, maps from the

space of all possible inputs to tJle output space. The networkis trained rath-

er than programmed to perform the required processing. ALearníng sgstem

formulate s the mapping function from the training examples pres ente d to it.

T}:e l-earrtírE algoríthmis the functional specification of the transformation

between inputs and outputs.ImpLemerutatíonof the IPS is tlle physical real-

izatton of the processing mechanism that n-rns ¡l¡6 algorithm. One aspect of

neural network research is to design new algorithms as machines that can

solve problems that require "intelligent" analysis for their solution. Adaptive

ANN can be trained using three types of training atgorithms:-

7. Sup eraís ed, tr a,ining requires labelled training data and

an external teacher who knows the desired correct re-
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sponse and provides a feedback error signal. This is

s ometimes called reí4forcement le arnírry or Ie arntng wifh

a crítíc when the teacher does not provide detailed error

information. Multi-layer perceptron is an example of su-

pervised trained networks 
"

Unsup eraí s e d tr a.iníng ( s elf--org aruízotían) us es unla-

belled training data and requires no external teacher.

The feature map neural network, for example, forms in-

ternal clusters that compress the input datainto classifi-

cation categories.

Self-superaísed, trøíníng (Learntng bg doíng or Learruírg

bg experímentatíon) is used by automata which monitor

performance internally and require no external teacher.

An error signal is generated by tlle system and fed back

to itself. The correct response is produced after a number

of iterations: Darwin III.

4.2.4. Ar'tífieía.l Neurøl Network Tasks

Neural networks can perform avariety of tasks. Figure 4.3 illustrates a

number of these major tasks:-

7. Pattern Classífieøtíon

Classifiers are trained rvith supervision using labelled training

data to partition input patterns into a pre-specified number of

groups or classes.

q,

Ð.r.
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* Nonlinear Mapping

*I o].
---+l ANNI-+ -x*2 llor2
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(eye-hand
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Figure 4.3. Illustratíon of ø number of neural network tasks t271.

2. Associøtiae MemorSt

A complete memory item is provided from a key consisting of a par-

tial or cormpted vision of the memory.

3. ComputøtionProblems

Nonlinear analog computation can be customized inANN design
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4.

to solve constraint optimization problems.

Nonlinea.r Mappíng
Avector of analog inputs can be mapped into an output vector us-

ing a nonlinear mapping function that can be learned from train-

ing data. This type of mapping Ís useful in robot control and non-

linear signal processing.

Multi-sensor Automøtø
Objects can be robot manipulated using visual and robot arm in-

puts in a number of complex, multi-module network automata.

4.3. P a,ttern Recognitíon Netusorh

4.3. L. Tbøíníng P øtterns
The high impedance fault pattern recognition neural network was

trained by a set of current patterns of arcing faults on dry and wet soil, com-

pute¡ arcwelder, fluorescentlight, and sinusoidal loads. Figures 4.4to 4.6

illustrate samples of the patterns used to train the network. A total of htsen-

tg-síx patterns were used in training. Síxteen patterns of fault on dry soil

andfitsopatterns of fault onwet soil: Fig. 4.4.The similarityof the computer

current to tJlat of the HIF on dry soil suggested the use of tÌe \Midth of cur-

rent conduction period as a feature tJ'at distinguishes a computer load from

a fault current. The detection algorithm, described in chapter 5, performs

azeÍo current search on the input curent data in the preprocessing stage.

Considering the period where the computer current waveform stays very

close to zero, preprocessing could result in capturing the required zero

crossing at different points on that waveform: Fig. 4.5. Therefore, four

training patterns were used for the ANN to identiff computer current at
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patterns.

different phase displacement. The network was trained by hto patterns of

the arc u/elding machine current, one pattern of fluorescent lighting load,

and a sinusoidal current pattern to reinforce the network experience in dis-

tinguishing faults on wet soil from normal loads: Fig. 4.6.

4. 3. 2 . N etw orh,4r c hit e c t ur e t27 I t2 8l t29 I tS O I t3 I l
The Multí-layer Perceptron

A ruilti-laaer perceptron (or back-propagatíDn networkl-a fully-con-

nected neural net\Ã/ork structured \¡/ith at least three layers of nodes (input,

hidden, and output), and \¡/ith only feedforward connections between the

adjacent layers-has been used to classi$r arcing fault currents as distinct

from fault-Iike and normal load currents. In feedforward nets, all input is

received in one layer, and the resulting signals propagate forward, one layer
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at a time, until the signal reaches the last layer. The hidden layer(s) of the

network extractthefeaturesfound in the input. TheJeahresare the correla-

tion of activities amongdifferentinputnodes. Therefore, an abstracthigher-

level representation of the input information is presented in the hidden lay-

er(s). The output layer responds to the presence of features in the pattern

rather than the pattern itself. As the network becomes able to respond to

the features of different input patterns, it develops the ability to generatíze.

The complex decisions capability an ANN acquires, therefore, is due to the

feature detection and genereliz.attonabilities which are trained into the hid-

den layer(s) nodes.

The Meso-,Structure

The architecture of the pattern recognition network used in arcing faults

detection is shown in Fig. 4.7.T}ae inputvectoris composed of 33 elements.

The fïrst 32 elements are analoginputs, ofvalues between "O" and "1", that

represent the instantaneous values of the sampled line current per cycle,

starling at the current zero crossing of the positive half-cycle. The last ele-

ment in the inputvector holds a binaryvalue. This element carries avalue

of "1" if the \ilidth of the current conduction.period, defined as the number

of current samples of magnitude > 300/o of tlle peak instantaneous current

per-cycle, is less than eight samples per-cycle, otherwise "O".

The hidden layer of the network is composed of six hidden neurons. This

layer undertakes the nonlinear mapping between ttre input and tJle output.

Selection of the optimal number of hidden neurons to provide optimum net-

work performance, taking into account the training patterns and network



684. ,Ar'tífr, c í øl N eur øl N etw o rk s

Width of
current
conduction
period

X

lnput layer

Hidden layer xra

Output layer

Output (0,1)

Figure 4. 7. Architecture of the p q.ttenù recogn¡tíon netw orh "

topology, is still an open issue. Nevertheless, the guidelines for determining

the number of hidden neurons in abinarynetworkwas adopted as a sta-rling

point for this hybrid input network. For an arbitrary training set \Mith lV

training patterns, a multi-layer neural network \¡/ith one hidden layer and

\Mith lv-l hidden layer neurons can exactly implement the training set. A

minimum number of hidden units should be selected such that they re-

spond to the features in the input patterns, and reduce tl.e computational

time needed for training without being too small to not converge. According

to these criteria, the number of hidden layer units should be either "4" oÍ

"5" depending on whether the dry and \Met arcing faults are considered as

one or two different patterns. The process of selecting the number of hidden

neurons started bytraining then testing anetwork of "4" hidden units. The
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results showed that the detection algorithm is confused between the arc

welder load and faults on wet soil" The use of two or three hidden nodes

yielded no advantage. The use of "5" hidden nodes showed a much better

performance than the "4" hidden nodes ANN. Further analysis using differ-

ent number of hidden neurons suggested tJlat the best performance is

achievedwith "6" hiddennodes" The resultswillbe demonstrated inthe next

chapter.

The output layer has one neuron. The target output of the network in the

HIF event is "1", otherwise "O". Since the neuron output function is a sig-

moid, the "network score" would be between these two values.

Neuron T?an sfer fanctíon

The back-propagation learning rule, derived in the following section, re-

quires that the derivative of the neuÍorl transJer fitrcúúon exists. Further-

more, this acfiuatíonjtnctionshould provide athreshold thatif the unit acti-

vation exceeds a threshold by a suffi cient margin it \Mill always attain a value

of "1". If it is far below threshold, it takes the value "0". Therefore the func-

tion should be continuous, nonlinear, a¡rd as5rmptotic for both infinitely

large positive and negative va-lues of actíuatíor¿ (the sum of neuron inputs).

The logætíc or sígmoídal transfer function, equation (4.5)" satisfies ttrese

conditions as shown in Fig. 4.8.

Iv 
1+e ( -a/T)

(4.5)

where o is the neuron output, ais the neuron activation, and Tis the sig-

moid temperature or degree of nonlinearity.
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4.3.3. Leørníng Rule tz?l tB tl tszl tSSl t74l

Ttte learníng nne @lgorífhnù of tJle network is the set of equations that

modifies some of theweights and biases of processing elements in response

to input signals and values supplÍed by the transfer fi-mction " Weight adj ust-

ment is required to reduce the difference between the actual output and tlle

desired output. The response of the processing elements to input signals"

therefore, changes over time" The network converges at a set of connection

\¡/eights which minimizes the error for recognizing all patterns in the train-

ing set. These weights are not unique; there will exist multiple sets, of simi-

lar weight values and infïnite range of connection weights and biases, \Mith

workable answers. There might not be any single best ans\ì¡er.

The multi-layer perceptron, trained with the back-propagation algo-

rithm, undergoes supervised training. Networks undergoing supervised

learning have high performance to recognize patterns similar to those it has

learned. The training sets consist of anumber of trainingvector pairs. Each

training vector pair is composed of the input pattern data (33 elements in

our case), and the desired target for this pattern ("1" for fault, and "O" for

no-fault).

The Generølized, Delta. RuIe

The back-propagatíon algoríÍhm. known as the GenerqLízed Delfa Rule,

is an iterative gradient search algorithm (similar to Newtons method for

finding zero-crossing of curves) that minimizes the cost function equal to

the mean square errorbetween the desired and the actual output of amulti-

layer feedforward perceptron. The total error -Ð is given by
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E = Z+ =*)>,ror-op^2
p op j

(4.6)

where là is the error for pattern p. The indexp ranges over the set of training

patterns andj ranges over the set of output units " The target þ; is the desired

output for thejthoutput node when the ptrpattern has been presented. The

actual output of thejthnode when the ptrpattern has been presented is oo.¡.

Since the neuron transfer function is a sigmoid, the neuron output %; is

opi =#

where the selected sigmoid temperature Tis "l" and ca; is the

of nodej for a given pattern p,

(4.7)

activation

opt+ 0p¡ (4.8)

where wú Te the weights connecting nodes Í to nodej, 0p-¡ is nodejtrbias,

and q = t if node i is an input unit (propagation from input layer nodes is

linear). For the network shown in Fig. 4.7 arñtJle training set used, the in-

dexes are i= O,1,..,38,j = 33,34,..,39 andp =O,I,..,25.

Because there are many different patterns to which the error function

should be minimized, it is not simple to set the derivative of ,Ðwith respect

to *¡ to zero, and solve for ury rmrnj. The search of connection weights that

minimZes the cost function ,Ð can be demonstrated using Fig. 4.9. This fig-

ure simplifies a high-dimensional error space by one dimensional slice. The

tangent to the error curve can be used to change uü so that it approaches

apj = 2*u
i
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the valley of the cost fi-rnction" The system \Mill follow the contour of the error

surface-always moving downhill in the direction of steepest descent. The

resulting glabalminimum (,4"J, where the total error reaches a minimum

for all patterns, depends on the random starling state ofthe trainingweights

and biases. Therefore, it is possible that the system may have different glab-

ølminima. Some of these minima could be deeper than others; the bestpos-

sible solution to the problem may not be at hand. In some instances alaco:t

minimum may occur (E ø"); the connection weights do not minimize the er-

ror of all training patterns, e.g. using "2" oÍ "3" hidden nodes in the HIF pat-

tern recognition network. This problem is common in networks witJ: few

hidden neurons, a¡d rare in networks with many hidden neurons.

Local minimum
/

i \"oat minimum

w'g ¡mtn) W t^ia \I/eight

Fígure 4.9. One d,ímensíonøl slíce of the enor surfaae.
Sea,rch for mínítnun1, surù of squøred errors t28].
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The training rule allocates an error term to each connection weight. The

error is expressed in terms of a function Delta (Á) applied to weight ug after

each presentation of a training pattern. This function is proportional to the

negative of the derivative of the error rrith respect to the connection weight,

(4.e)

The constant of proportionality q is the learning rate, a constant between

zero and one, that affects the step change inweights. This rate is practically

chosen to be as large as possible to offer the most rapid learning without

leading to oscillation. To avoid ttre occurrence of local minima in some prob-

lems, very small values of q could be used (e.g. 0.1).

To calculate the error term, the chain rule from differential calculus is

applied to the partial derivative on the right-hand-side (RHS) of equa-

tion (4.9) ,

From equation (4.8),

Define,

^p 
wg = -rffi

&_ = a+ ôapJ

ôwü ðao¡ ôwg

ôao¡

ãrD;, "Pr
5

A -&-"PJ ôapj

Apply the chain rule to the RHS of equation (4.12),

(4.10)

(4.LL)

(4.L2)

From equation (4.7),

(4.13)
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w
ôapj

For the node(s) in the output layer

tion (4.6),

T

ioottt - %l @.14)

(j = gg ), using $ definition in equa-

(4" 15)

Hence, for the output nodelsì, the difference between tJte ach-trtlvalue of the

output node(s) and the desíredvalue of the output node(s) is used to drive

the change in weights at tJle output layer,

# = -ftp¡-op)

ôp¡ = i*rrt - op)(tp¡- op)

ô4_sðlàðo,pk- sô.Q ð r
-=
ôopj fr ôaorc ôoo¡ 1 Aapkôopj't

.- ð4=+ffiwrc=lð'rcw¡rc

(4.16)

The adjustment in the hidden layer(s) differs from that at the output lay-

er because the target output of tÌe hidden nodes is not known. The values

of õ at tJle output node(s) and ttre hidden-to-output weights are used to

help determine the changes rnade to the input-to-hidden weights.

For the hidden layer nodes (/ - 33,34, . . ,38 ), use the chain rrle again to write

where i = 33,34,..,38, and k = 39 (one output node).

For the hidden nodes, therefore,

1

ô p: = iool1 - opl) ôortu;r.
lc

(4.t7)

(4.18)
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The mathematical expression of the Generalized Delta Rule to change

connection weights for a given pattern p is

^p 
wg = r¡ôpiopt (4.Le)

where Þ; i" ex¡lressed for the output layer nodes by equation (4.16), and for

the hidden neurons by equation (4.18). There is no attributable error to the

input nodes. Figure 4.LO illustrates a block diagram clarifying the General-

ized Delta Rule and tJle back-propagation of error signal during training.

Weights are adjusted either after each pattern has been processed, or after

an entire processing epoch where the total error derivatives are accumu-

lated. In the latter mode the new weights and biases are computed by

and

for t= O,1,..,38, j =33,34,..,39 andp =O,L,..,25.

Impøct of Neuron Actíaa.tíon Functíon on Leørning
The neuron transfer function helps the learning lawwork effectively. The

derivative of the function is always positive, havingits peakvalue at "O" acti-

vation and is close to "0" for large positive and negative inputs: Fig. 4.8 bot-

tom. Since weight change is proportional to activation function derivative,

ttre weight change is large for inputs in ttre mid range (near "O"). The learning

rule is trying to bring the neuron to one of the stable states, "O" or "l", 'where

the derivative of the activation and hence the error are close to "O". However,

some difficulties could arise in learning if a weight change is slower than

desired.

wg(new) = wi/r,tð*)Âo wg(olð
p

?¡(new) = 0¡(olð*IÂo ?¡(otd)
p

(4.2o)

(+.zt)
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Output oo::'

+J

È+,

o
a

,o
oËoz

Activation ajd

ðoo? - O

-.-'7 Output layer (o)

( k neurons)

Forward
propagalion

Back-
propagation
(learnin$

òo1/l ,0"

)<o

o:
C)Ëo2

Activation ¿o!

(m)

Hidden layer (h)

(o) ! (1) r II Input layer

Figure 4.70. Block díøgrørn íllustrøtíng error ølloeation in the
b ach-prop øg q,tíon network t 341.
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T?ainíng Proced.ure

The software of the back-propagation program [33] has been used to ob-

tain tJle weights and biases of the pattern recognition network. Small ran-

dom weights and biases are initially selected as illustrated from the screen

display shown in Fig. 4.LL. A factor of "lOO" is included in the weights and

the nodes output at each layer. The network is trained by presenting all

training data repeatedly" \Meight adjustment is done after processing each

pattern. Once the connection weights between the hidden and the output

layers, alongwith the bias of tle outputnode, were adjusted, the connection

weights between the input and the hidden layers, along \Mith the biases in

the hidden layer, are adjusted.

Learning by pattern \¡/as the selected mode of training. This training

mode showed better results and performance over learningby epoch. Itwas

concluded that tl.e pattern learningmode is more suitable for learning cur-

rent waveform shapes than the epoch learning mode.

The suitable learning rate was selected by mnning the training algorithm

atlearningrates of O.l, O.25, O.5, and O.TÚ.Trainingwithrl = O.75 produced

oscillation during the learning process: the error function was maximized

rather than minimized; the weights remained unchanged; and the system

did not learn. The same observation was valid when the network was epoch

trained at a learning rate of O.5. Reducing the learning rate escaped this

problem: the network reached a global minimum, and the network perform-

ance was almost identical in all cases. The training time required to reach

a total error of O.OOI was found to be 3188, LO24 and 52O for q = O.I, O.25

and O.5 respectively-the average learning time for a back-propagation
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disp/ exarn/ get/ save/ set/ clear cycle do log newstart ptrain quit
reset run strain tall test

epoch 0 tss 0.0000 pattern 0 gcor 0.0000
cpname pss 0.0000

INPUT:

xo xl x2 x3 x4 x5 x6 x7 
--x32000000000

0000000000
0000000000
0 0 0t o I

HIDDEN :

x33 38
000000

OUTPUT:
x39

0
TARGET:

o

WEIGHTS :

Input - Hidden (not all)

-40 36 48 26 -34 -44 2 16 8 22

23 -22 -2L -46 -13 -40 40 -47 -7 23

10 -r4 20 -26 24 L4 -15 44 48 -29
14-9-1923-32343733

-2681602744930-8-43
45 29 6 42 6 -44 31 11 -37 42

32 4 10 t7 10 -28 -24 -28 -26 2t
4 -26 -43 -8 -6 27 39 -48 25 -9

Hidden - Output

44r9399-9

Figure 4.LL. Størtup of networh traíníng.
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network is between IOO to lO OOO tirnes. As a result of this comparison

î = O.5 was selected as tfre Learning rate of the network to calculate the

weights and biases.

Network training with different initial weights showed that the network

comes to optimum settings, wittrin 4oo to 7oo processing steps, when the

total sum of squared errors is in the range between O.OO2 to O.OOI, at the

specified q . Figure 4.L2 shows some of the weights of the trained network.

It is noticed that the hidden-to-output weights of nodes 33, 34, 36 and 38

dominate the others in the same connection. The network is now trained

and ready for operation. The connection weights are fixed. Back-propaga-

tion refers only to the learning stage. No information is passed backward

during network operation.

Input Pøttern Features

The activityofthe hiddenlayernodes is examined in Figures 4.I2to 4.L7

to determine hidden nodes response to different input patterns. For high

impedance faults, nodes 33, 36 and 38 are highly active; particularly \¡/ith

fault on dry soil. The same nodes are also active, to a much lesser extent,

to arc welder current pattern: Fig. 4.14. In each case, the output of these

nodes is almost equal to one another.

Nodes 34 and 36 are the active hidden units when the input pattern is

tlre computer current: Fig. 4.I5. The weight connecting node 34 to the out-

put node is highly negative, Fig. 4.12, inhibiting the total output of the net-

work. The activation of node 34 and de-activation of nodes 33 and 38 could

be due to the logic incorporated in the last element in the inputvectorwhich
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disp/ exarn/ get/ save/ set/ clear cycle do log newstart ptrain quit
reset run straln tall test

epoch 52O tss 0.0000 pattern 0 gcor 0.0000
cpname d_O pss 0.0000

INPUT:

xo xl x2 x3 x4 x5 x6 x7 ___x32
51 52 52 52 52 54 56 60 65

7t 79 85 r00 90 72 55 50 48 48

48 48 46 44 41 38 31 24 15 11

21 38 4el o 
I

HIDDEN :

x33 38
970599898

OUTPUT:
x39

99
TARGET:

r00

WEIGHTS :

Input - Hidden (not all)

-5 -205 -302 -266 -190 -167 -105 65 254 359
48 t82 203 272 239 159 111 -67 -25r -312
-2 -38 I -5r 0 -9 -9 27 -23 -38

-40 -202 -263 -219 -21r -222 -165 -69 r97 280

-24 -74 -4r -23 -65 I -40 -1 39 19

4 -259 -235 -20r -217 -776 -161 30 158 275

93 -rO7 -106 -215 -270 -205 -60 r58 253 322

275 246 27r 135 4 -70 193 310 367 478

Hidden - Output

413 -673 59 520 93 484

Fígure 4.72. End of netusork training a.nd result for a føult on dry soil.
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INPI-]"I:

x0 xl x2 x3 x4 x5 x6 x7 _--x32
51 53 62 72 80 87 92 96 99

100 96 88 78 68 59 5r, 47 44 36
2718t273004L222
32 41 481 0 I

HIDDEN :

x33 8
732476973

OUTPUT:

TARGET:

x39
98

100

Fígure 4.73. Networh response to a pattern of føult on wet soil.

INPUT:

x0 xI x2 x3 x4 x5 x6 x7 ____x32
52 58 65 71 78 85 91 95 98

99 97 94 a7 79 68 57 50 42 35

27191161002713
21 31 42Ã

HIDDEN:
x33 8
1673t4615

OUTPUT:

TARGET:

x39
I

Fígure 4.1-4. Networh response to ø pøttern of d.rc weld,er current.
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INPUT:

x0 xl x2 x3 x4 x5 x6 x7 ____x32
50 50 56 95 98 66 51 50 50

50 49 50 50 50 49 48 48 48 42
403247494949494949

50 50 50 lEõ-ltt

HIDDEN :

x33 8
09926757

OUTPUT:
x39

0
TARGET:

0

Fígure 4.75. Networh response to ø pøttern of cornputer eurcent.

accounts for the \Midth of the current conduction period per-cycle. Without

this feature having been presented, the network might have responded to

the computer current as to the HIF.

The activity of node 34 and the associated hidden-to--output weight ap-

pears to be important in separating fault-like and normal loads from fault

current. This ca¡r be observed for the fluorescent light, Fig. 4.16, and the

sinusoidal load: Fig. 4.17. For the latter load, the activity of node 34 de-

creased. This could be due to the close similarity to the fault on wet soil wa-

veform.

It is concluded that nodes 33, 36 and 38 describe features local to cur-

rent waveforms having ofËcurrent flow periods, as HIF, arcing loads, and

some electronic devices. The other hidden nodes may carry other aspects
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INPUT:

x0 xl x2 x3 x4 x5 x6 x7 __x32
57 74 89 97 100 98 94 90 86

80 72 65 62 67 65 57 43 26 11

3t2610L420283538
s4 35 431 0 I

HIDDEN:
x3 38

3854363

OUTPUT:

TARGET:

x39
0

Figure 4.16. Network response to øpattern of fluorescent líght loa.d.

INPUT :

x0 xl x2 x3 x4 x5 x6 x7 

-x32
50 59 69 77 85 91 96 99 100

99 96 91 85 77 69 59 50 40 30
22148300038r4
22 30 4ol o I

HIDDEN :

x33 38
6183455

OUTPUT:

TARGET:

x39
o

Figure 4.77. Network response to ø pøttern of sínusoidøl load..
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of the overall patterns. The exact features presented in the hidden layer are

difficult to figure out.



Arcíng Føults Deteetor

The review on high impedance faults detection, chapter 1, showed that

no single detection method can detect all electrical conditions resultingfrom

downed conductor faults. Furthermore, there are loads that imitate high

impedance faults. Some detection methods might not distinguish between

faults and fault-like loads: chapter 3. Quite a few of the detection methods

require extensive computations in the preprocessing stage to extract the

features of tJle input signal(s). A criterion is then applied to obtain the detec-

tion parameters.

The design of a reLíable high impedance fault detector would include a

number of detection methods to provide the required dependabíIífg, as well

as the proper means to ensure its securÍty. This chapter proposes a novel

algorithm to detect high impedance arcing faults [35], motivated by the ad-

vances in neurocomputing in pattern recognition, that uses a simple pre-

processing algorithm.

5.7. Reløy Pløtfonn ß61

The proposed arcing fault relay will be a part of an integrated relaying

scheme that carries out a number of protective and line monitoring tasks.

The general layout of this integrated system is illustrated in Fig. 5.1. Input

analog signals are conditioned and ftltered. The signals a-re sampled at a

86
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Analog inputs:
V ,I ,othersa,b,c a,b,c

Transducers &
Analog filtereing

Sampling &
Signa-l processing

oo
O'!-1
¡ì c)(dc)

-Èr +JØo
ãä

l{o
c)
C)

o

h.'.
H
ilr

b0
Éh0

a'E
õ..3
:'ã
Þ3

-l-J

oø

Communication

Figure 5.7. Integrated reløying ønd monitoring system t361.
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preselected sampling rate. A digital signal processing (DSe¡ chip performs

calculations on the sampled signals to obtain information such as the root-

me¿ul-square (rms) value, seqlrence components, and harmonics. The relay

designer may use these data in full or in part in his/her relay algorithm. The

different relaying functions are implernented as subroutines in a software

package. The main software resides in a computer. At the occurrence of a

system disturbance the systern performs the required relaying to identiff

the type of disturbance. Digital signals are sent through the input/output
g/O) port for tripping or blocking functions. Information could be trans-

mitted via communication links to the dispatch and control center. The arc-

ing fault detector is one algorithm among others in this system. The follow-

ing sections reveal the details of design and testing of this algorittrm.

5.2. Deteetíon Algoríthm

The flow diagram of the high impedance arcing fault detection algorithm

is shown in Fig. 5.2. The analog line current is low-pass filtered a¡rd

sampled at the rate of 32 samples-per-cycle. The algorithm processes the

data as follows :-

Størtup

One cycle of ttre normal load curent is stored in abuffer as the reference

load current pattern. Its rmsvalue is calculated: .[.r*r.

Disturba.nce TYígger

The algorithm compares the rms value of the following cycles to Ir,ro,,r.

When the new value is sufficiently different from the reference value, the
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A.A" FILTER &
A,/D CONYERSION

OBTAIN CURRENT
DIFFERENCE FOR
THE NEXT "2O" CYCLES
iaflt) = i1¡¡-¡,01r¡

NEURAL NET PRE-PROCESSOR

DETECTOR OUTPUT
= r/(I + ST) + N.N.

DE"IECTOR OUTPUT > -
DETESTIONTHRESHOLD

Figure 5.2. Flow diagrann of the ørcíng fault detecton
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detector starts to take twenty-cycle snapshots of the input current. Current

fluctuationwithin + 2Oo/o of Ir t,.ris considered normal, otherwise the algo-

rithm is triggered. The excess current wçft) , as shown in Fig. 5.3, is calcu-

lated as the difference between the input current t(/) and ttre reference cur-

rent ír"Jft) patterns, i.e.

íaf,t¡ = út)-U"lt) (5.r)

Preproeessing

Neural network processing requires the input pattern samples to start

at the zero crossing of the positive half-cycle. The search for this condition

is carried out in tlle first snapshot. An adjustable number of cycles are

FAULT ON DRY SOIL

INPUT CURRENT
FAULT CURRENT
NEURAL NET INPUT

-g
frl
a
ÞF
zo
\=a
É.z
Êl
ú
ú
Þ
O

2400 2450 2:Ð00
SAMPLE NUMBER

Fígure 5.3. Dísturbønee eøIeula,tion a.nd neurøI networh
prepro e e s s e d ut øu eforrn.
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skipped to escape initial high frequency oscillations of other porver system

events (two cycles \Mere used). On a cycle-to-cycle basis, the sampled values

of tJle difference current are adjusted to analogvalues between "O" arì.d "L",

to suit the network input level: see Fig. 5.3. In the same time the width of

current conduction period above 3Oo/o of the peak current is determined.

The resulting input vectors are passed one-by-one to the arlificial neural

network (Af,lN) for pattern identification.

Output
The trained networkmaps the inputto its decision region. The algorithm

integrates the ANN "scores" to obtain the detector "output": equation (5.2);

this is called output fìltering.

ôt,
outputn"* = outputo¡¿* T* (scoren"* - outputo¡¿) (5.2)

where " öt " is the integration time step (1 cycle), and " T " is the integration

time constant (l second). The detector outputis compared with a detection

threshold (O.75) to classiÛzwhether or not tÌe disturbance is due to an arc-

ing fault. The process is then repeated for the next snapshots. The number

of snapshots was limited by the length of test data arrays to 10 sets.

5.3. Results
The arcing fault detection algorittrm was tested by four second traces of

normal load current disturbed by currents of faults on dry and wet soil, arc

weldet computer, fluorescent light, and sinusoidal loads.

Areíng Fa.ults
Training pattern sets, section 4.3.L., supplied to the neural network for

faults on dry and wet soil were obtained from the fautt current data shown
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in Fig. 5"4. This is the reason why tJle ANN has high scores for these faults.

For the fault on dry soil, Fig. 5.4top" when arcing is almost off near time 3.2

seconds, one would expect a no-fault response; the ANN score went down.

Left: curcent traces. Right: results.

When the soil is verywet, the fault currentpattern is very close to a sinu-

soid. Therefore, the ANN shows a relatively low score in the first O.3 seconds

of tJle fault on wet soil: Fig. 5.4 bottom right. As the dissipated energr in

the fault bakes the soil, it dries the surface. The current waveform becomes

a typical HIF pattern which is easily identified by the ANN"

FAULT ON DRY SOIL FAULT ON DRY SOIL

I
Ê
e1 (J'5

ñ0É
Ð -0.5
O

-1

- t.5

1.5

t
Ð ^_0. u.b,
tio
ú
Ð -0.5
U

-t

-I.5

i I IIF-Ëfi,
:.,,.,,..t4,..,,,,..:::,1'i::::

: : i-)' : : : : :::y-:::::
: : y: : : : : :

f-*--t-l-{--f-': i . .. j........r....... {'....... :........:::::::::
: : : : : l:*¡"ot^"¡" 'ì' "'i"""':'""':" "'¡ l--r'- omemon 

I

o.5 I 1.5 2 2.5 3 3.5 4
SECONDS

FAULÎ ONWElSOIL

...t NEURAI-
--F- DETECîOR

t.5 2 2.5
SECONDS

Fígure 5.4. Areing føults on dry (top¡, ønd, utet soíl (bottotn).
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To examine the dependabíhfu of the detection algorithm, several fallen

conductorfaultswere staged on dryandwetgrassysoil: Figures 5.5 and 5.6

respectively. The collected waveforms contained arc generated noise. In all

tests, the results show that the detector output exceeds 75o/o in less than

4 seconds, indicating a possible fault: see Fig. 5.7.

The results show good promise of applying the neural networks ap-

proach in recognizing high impedance fault current patterns. The algorithm

needs to be tested for faults on different ground materials. This may require

additional training patterns, and could require different ANN architecture

or even anottrer network model. Certainly, on-line testing of the algorithm

is required. The combination of differenttestresults, and detectorhardware

would determine the optimum size and number of snapshots, detection

threshold level, and decision time required to determine whether the exist-

ing disturbance is a permanent or a tempora-qy HIF.

Føult-lihe and Normøl Load,s

Arcing loads, such as arc welders and arc furnaces, are loads likely to

be confused with high impedance arcing faults. Testing the algorithm with

¿u1 arc welder load, Fig. 5.8 top, shows how far the above possibility is a

problem for the detection algorithm. The detector estimation for this event

as a fault was less tllan 2Oo/o. The results of testing the computer, the fluo-

rescent light, and the sinusoidal loads, from second to bottom of Fig. 5.8,

indicate that the algorithm will also be seure in these events.

Training the ANN with more patterns of non-linear loads that may or may

not mimic fault conditions would add to the detector reliabíIiÍy.
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Anølysís of Neurøl Network Performønee

Snapshots were selected from Figures 5.5, 5.6 and 5.8 to studytheANN

performance as shown in Fig. 5.9. It is seen that the presence of arc noise

on top of the positive half-cycle of the current in faults on dry grassy soil is

more tha¡r its presence on the negative half-cycle: Fig" 5.9 top. This could
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Figure 5.9. Study of the neural net perforrÍ,øtùce on d. cycle-to<3tcle bøsís.
Left: hígh performdrtce. Rùght: low perform,ønee.
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be due to an absorption ability extribited bythe soil itself. This noise appears

when the fault cr:rrent is small, approximately I A, and decreases as the

fault current magnitude increases as seen u¡ith faults on wet grassy soil:

middle of F'ig. 5.9. However, the network scores are insignificantly affected

by the noise as long as the current waveform takes the typical HIF current

pattern. Once the waveform is significantly distorted or comes close to the

boundarythat separates arcingfaults from other events, theANNwould ei-

ther indicate no-fault condition, top and middte of Fig. 5.9 right, orbe con-

fused as seen in bottom of Fig. 5.9 right.

5.4. Selection of the Number of H¡dden Nodes crnd
the Leørn¡ng Mode

The selection of six hidden neLrrons and pattern mode training, sec-

tton 4.3.2., was based on the ability of the network to distinguish between

HIF, fault-like and sinusoidal loads, and the detector output dufing con-

ducted tests.

5.4.7. Number of Hídden Nod.es

Networks of "4" and "5" hidden neurons have been trained, with the

training set described in section 4.3.L., in the pattern learning mode at

learning rates of O. L and O.5 respectively. Though the four hidden node net-

work has a good performance in identiffing most of the HIF, the arc welder

load presented a diffìculty to the network: Fig. 5. f O. The five hidden nodes

network did have agood response in all tests; however, when testedwith HIF

on wet grassy soil test (2), Fig. 5" I1, the performance of both the "4" and "5"

hidden node networks was low cornpared to the used "6" hidden node net-

work. The selection of six hidden nodes was based on these results.
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loød,: pøttern leqrning mode, \ = O.7.

Figure 5.77. Stud,y of the neura.I net perform.øtùce using díffirent
nutnber of hídden nodes. Six ønd fiae hidden nodes Tl = O.5, four

híddennodes \ = O.7.
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5.4.2. Leørníng Mode
The epoch learning mode was used to train the six hidden neuron net-

work at a learning rate of O.25. The network suffered tlle same drawbacks
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Fígure 5.72. Ferformønce of a six hídden Íùeuron Á^/ r to arc welder
load: epoeh leørníng m,ode, q = O.25.

Figure 5.73. Study of the neurøI net perfornl.ønÆe usíng six hidden
nod.es at d,íffirent leørníng modes and, røtes"
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as the four hidden nodes network: Fig. 5. 12. Itwas thought that the network

was stuck in a local minimum. The learning rate r'¡ was decreased to O.I in

hope to improve the performance; however, the results became worse:

Fig. 5.13. Learning by pattern was therefore used instead.



Conclusíons

Field tests on the Manitoba Hydro system have confirmed the levels and

waveshapes associated with downed conductor faults.

An arcing high impedance fault laboratory model was validated in the

high voltage laboratory at the University of Manitoba" The laboratory fault

current proved to be a credible source of data acquisition for use in solving

the arcing faults detection problem.

Existing detection methods have lirnitations as to the type of high imped-

¿u1ce fault that can be detected; furthermore, there are loads that mimic

fault currents, e.g. arcing loads. Some existing detection methods ca¡r fail

to distinguish between faults and fault-like loads. Fault-like loads thatwere

investigated included arc welders, computers, and fluorescent lamps. Thus

the sectrífg (relay's ability to not trip when it shouldn't) of a new detection

method could be tested.

A high impedance arcing faults detection algorithm was designed, using

an artificial neural network (ANttl). The algorithm was tested by signals con-

sisting of normal load current disturbed by currents of faults on dry and wet

grassy soil, arc welder, computer, fluorescent light, and sinusoidal loads.

The detectorwas successful in separating arcing faults from arcing and nor-

703
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mal loads. The detector performance was outstanding even under noisy sig-

nal conditions.



Future Worh

A reLía.bLe high impedance fault (HIF) detector is a relay that trips only

under the existence of a HIF. The relay retíabíIífg is a compromise between

dependabíLífg (relay's ability to trip when it should) and securífg (relay's abil-

ityto not trip when it shouldn't). The unpredictable behavior of high imped-

ance fault current suggests the use of other detection methods to work in

parallel with the proposed algorithm to increase the relay reliability. The

variation in current magnitude each cycle (randomness), and from one halË

cycle to the other (asymmetry/flicker) could be used as features input to an

artificial neural network (ANN), or in a detection algorithm to indicate arc-

ing.

On-line testing is required to confïrm the algorithm applicability. The

outcome from algorithm implementation could demand:

a different neural network architectr-rre (e.9. different

number of hidden neurons),

more training patterns of faults on different ground ma-

terials and surface conditions as well as fault-like and

normal loads,

a different learning procedure (learning rate, mode, or

degree of neuron transfer function non-linearity), and

1.05
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the suitable values of detection thresholds.

The ANN approach is not only promising in high impedance fault detec-

tion but also for abnormal events identification and classification, though

a different neural network model may be required.
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Ð eteetí.on Algoríthm: Progrøm

#lnclude <stdlo.h>
#lnclude <sHnd.h>
#tnclude <ctrceih>
#lnclude <stäù-h>
#tnclude <mth.h>
#lnclude <malloc.h>

/* PROGRAM TO EXTRACT THE

majn0

{
menu 0;

âgah: pfntf("\n);
opuore 0;

/' new.c

FEATURES OF THE LINE CURRDTTT ìMAVEFORM t/
May 491'/

swuch(chfOì) f
cæe'1':

cæe'2'l

.ll 0;
brea-lc:

øe'3':
read_oct 0;

read-oct 0;
tfne=SEC_PER_SAMPLD;
Þrlnú f'tirne=góf \n",Ume)i
ilTlte-data 0;
break

ræd-oct 0;
trme=SEC-PER-CYCLE;

time=SEC_PER_CYCLE:
rodom 0;
break

read-dat 0;
trme=SEC_PER_SAMPLE;
ETlt€-data 0;
time=1.0;
wrtte-mbplot 0;
tlme=32.0i
all 0;
bre¡Jq

read-dat 0;
tlme=SEC-PER-CYCLE;

6e'4:

cæe '5:

mdom 0;
brea_lq

cæe '6':

6e'7:

read-lotus-2 0;
proc#_lotus_2 frecord I,æv .l);
ij¡n e=sE-c-PE-R-SAMPLË:
wrlte_data_2 0;
rodom [;
brealq

read-oct [;
tlme=SEC_PER_SAMPLE;
break
cæe'8:
ræd-dat 0;
tlme=SEC_PER_SAMPLE;
test 0;
break;

6e'9':
tlme=SEC-PER-SAMPLE;
read-lotus-out 0;
t6t 0;
break

default:
Ðdt 0;

)
prlntf (",............ DoNE .............');
Þrtntf ("\n');
goto agalr¡;

772



A- D ete ctíon Alg orüthm: P rogra.m Lúst 773

else

)

optlons 0

/'dlsplay

rf [chtol : '2)

n4l^U f***** rHE END "'+*'."*. \n,).

)

return;

{

MayZ 9L'/

\r);
\t );

\r);
\r );

\nl;

prt¡rd.(" \n);
Þrlnd{"| omoNs I \n');

nthñ l' \ 
-nì.

Þrlntf{"1 1 TFæfereæO9IALflletoadataflle. l\n");
nrñÉ fr \ -nì.
prtnú-Cl! 2. Extract dc, ac, æd rodomess starüng from OCIAL fìle. I \n);'
ntñd l" \ -"ì,
prtntf ['l 3. Calculate R.ANDOMNESS stafüng from OCTAL fìle. l\n);'-prl¡¡f l' : \ñì;
Þrtntl-(]'.! 4. Extract dc, ac, æd mdomess staröng from data file. l\n'); "
prln{_(" \n');
Þrlntf-("| 5. Calculate RANDOMNESS starHng from data flle. l\n'); -

Prlnu (' \n').
Þrlntf_(" I 6. Procæs a T OTUS-123 flle. l\n');prln{.('l \n);
Þrlntf-[" I 7. Tst curent charge tn m OCIAL flle. l\n');pdnq.t" \n');
prfntf-(" I 8. Test curent charge tn æ dâta fìle. I \n'l;

ñánfl ¡tt \ 
-"ì.

prlntf-("1 9.TætcurentchagetnmLOTUSflle. l\n');prlng.(" \n');
trlnú("| e. End. l\n);
ñnnÍ ¡' \--r.

prlnd ('' Enter Your Cholce: 'l;
lcanf ¡rr64t","¡¡'
prtntf ['\n");- lf (ch¡6¡ =='e')
t
prlntt cE*...ffi.. THE END '..+......* \n')'
Ðdt{;

)
else

retum;
)
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/'w¡labl* July 8 91 '/

/* PROGRAM TO EXTRACT THE FEÁTURES OF THE LINE CURR.ENIV/AVEFORM I/

FILE 'ln-f, *outJ 'fopen [, 'fclose 0;

lnfl=t'.1¡¡");
rec[=['.rec"];
hqll=f".hex');
prnll=f".prn"h
ôctll=[".oìt"]:
datll={".zdat");
dcfll={".zdc"};
acfll=[".æ"];
mfl=[".2m"];
rmfll=[".2rro"];

float
float

float
float
float
float
float
float
float

fl oat SedARRAY_SIZE_CYCLESì;
fl oat dffJARRAY:SIZE_CYCLESh

double record_3[CHECK_SAMPLESI,æy_3ICHECK_SAMPLES];

*avere.Ée yalue Der rycle'/
'rro vá.lue per þcle-'lrrre value per cycle'/

cha nme[SlRI NG_L-ENGTH],tn_|1me[SrRING_LENGTH],out_me[SIRING_LENGTHh
chæ str[SIRING_LENGTH] ;

cha
chd
cha
cha
cha
chã
cha
cha
cha
chæ
chæ dtffll={".zdf'};
cha¡ dc_dlffll=t'.zdif_dc"ì;
cha ac-dlffl l=[l.zd[ac");
cha m_dffl l=[".zdil_n"];
chã rndfll=(".zrnd"Ì;
cha dc-mdfl l={".zrnd_dc"};
chæ ac_rndfl l=(".zrnd_ac");
chæ n-rndfl j=[".zrnd_n"];
chæ chlll;

lntllj; . /'lndq of smple number'/
lnt Po: /'lndex of fìret data ltner/
lnt Pn,Pnn; / 'tndex of læt data lfne./
lnt c; /'tndex ofcycle number¡/
tnt Co; /*hdex of nßt cycle'/
tnt Cn; /'tndex of læt circle*/
lnt ca¡ 7.chæcær ø trídtcaie EOF/
lnt row-,column,rows,columre,step,læt_record, tãgeti
ht Nf6l=[ a, 8, 16, s2, 64, i28];
lnt Tl32l={o, r,2,s,4,5,6,7,a,7,6,5,4,3,2,7,o,-7,-2,-3,4,-5,-6,-7,-a,-7,-6,-5.4,-s,-z,-t}

lnt qumtlzed_data[.ARRALSIZE_2];

lnt wldthIARRAY:SIZElSAMPLES_PER_CYCLEì ;
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/' calculaør

float absoluæ [a)
float ai
{
float b;
lf [[Do.o)ll(a:0.0))
b=a;
else
b=ai
return b;
)

øp [ab)
fnt a,b;
(
lnt ræult,c;
cao,ób;
lf(c:O)
Í6ulFa/b;
else
r6ult</b+I;

return [ræultJ;
ì

dlfference {aray,ræultl
float a¡rayÛ,ræultll;
t

float *p,*p-end;
tnt l4

Co=O;
for (column=0; columnccolums; ++column)
{
step=Cn*coluru;
forleCo;c<Cn;++cì
{

v=steD+c+Ì:
ir=eraimvfv-tl;
b_end=Eiar¿vgl;

-resultþl=*p-dn?-*p;
I
)
)

lntegEte {æy,result)
fl oat æI,4RRAY-SØEI,ræuItIARRALSIZEI;
t

float'p,*p-end,tp2,*p2-end, tc=0-00333;
fnt v:
for 

-(colum=O;colum<columre; ++colum)

May 15 9r */

{
steD=Cn'colum:
resi:ltlstepl=O.O;
for (c=Co;'c<Cn;++cì
f

v=steD+c+1:
þ_end=sa+ð/g¡.
p=p_end_I;

ræult(yl=resúlt&-r ì+tc'('p-end - 16ultly-lll:
lf (i6ultþl i900)
resultlyl=-999.0;

I
)
)

dc-ac (record,dc,ac,m)
float recordfl:
lloat dcfl,æll,mll;
{
/' Evaluate the "dC', "ac", æd "n" valuæ of the mve"/
fnt colum,vi
float'p,*p-énd:
float ¡polnteß *polnær_end;
Co=0;
l=0:'for (column=O ;column<colums; ++column)
{
step=row colum:
for'[c=Co;ccCn;++c)
t

lHtep +c'SAMPLES_PER_CYCLE;
p=6rècordM:
D end=p +SAMPLES-PER-CYCLE;

dclil=O.O:
acfil=0.0;
ralil=o.o;- for (;p<p-end;++p)

{
dcItl+=.p;
ac[l+=sþuAIìE 1't¡'
Ì

dcfJl= dclll /s{úPLEs-PER-cYcLE;
ac[il= ac[j l/S ANrPLES-PER-CYCLE;
acli]= sqrt(acflìì;
f (ãcltl ; r.o)-
m[jl=äcltì/acltì;
t+J;
I
Ì
Ì
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segrna [ar¿y,seg)
/' needs some adlNEnent '/

float ar¿yfl,-segll;
{

tnt l=0,leO,column,v,Co=0:
Iloat x,.p,*p_end; -

for (columñ=O;colum<columre;++colum)
{
steP=Cn'colum'

k=NIllstep;
for (eCo+itllll;c<=Cn: ++cì
{
lÈstep+c;
p=&amyfv-NIlll;
p end=Aarayþl;
sedkl=O.O:- for (;p<p-endJ

t
x=tp++;
segfkl+=rox;
Ì

seglkl=sqrt{sedkì /NI ll) ;
++k:
)

k-l;
)
l

oct-dectmal (l,array)
tnt Ifì;
float arayil;
(
FILÞ'ln_f, *outJ'fopen 0, 'fclose 0;
tnt *qlrofnter,'p I,.p2,.p3,.p4,countI,count2,k;
lloat'polnter,'polnter_end;

qJohteF[tnt *) calloc(ARRAy_SzE_2,stzeof{tnt));
ü l(q-pofnter == NULL))
{
prlnd f'Memory a-llocauon ts not successful.\n');
retum;
)

J=o;
countl=O;
polnteFæy;

qJotnteFl;
p,l=qlr o jnter;
p1=p4;

starL V2=PI+BI,OCK_SIZE_2-Li
{or [;Pt<P2;J++,P4++)
t
tf ((J ==ARRAy_stzE) I I ((æ-getc(t¡r_0) == EoF))
gotó end;
p3=pt+I; -fscånf (tn_f,'960 0/60",p I,p3ì ;rp¿l=(.pr).o.rO0+(.p3); -

Pl+=2'
I
++countl:
pz=p7+7i

lor (;Pl<P2t
{
t-f ((¡ == a¡ç¡qy_5¡29) I I ((cægetc(l¡¡_0) : EoF))
goto end;
fsmf [rr_f,'n¿s",t1¡'
Pl+=1'
I

goto start;
end; Po=O:

lF(countl)TBLOCK_SlZÐ;
5=1_1;
Iæt_record=(k/BLOCK_SIZE);

prlntf ('J=%7d, Pn4,67d, læt-record=pó7d\n'J,Pn,lâst_record);
_ lor U=O;J<Pn;++J)
t
!f ((r[Jl & 04000) l= 0)
t
tUf =-(t(ll I o37T7T774oooJi
¡Ut={rUl+t);
Ì
else
tlJl=tÍJl e 07777;
* p otrtcÉt[l'264 / lÙ24l
++pofrter;

I
- free (q¡¡ol¡rter);
I

hex-dectmal (l,a¡rål¡)
tnr tfli
float arrayll;{-
FILE'ln_f, 'outj .fopen 0, *fclose 0;
,nt'pI,'p2,'p3,countl,coun¿,k=I0;
lloat'polnt€r, *polnter_end;
J=o;
countl=0;
polntewy;

coun@=l;
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starg
I

p 1=l;
Þ2=p 1+k;
Ior (lp1<p2;++pt)

lf ((ff-getc(tn_f)) == EoF)
goto end:
Iscæf (tn_f,'96¡',p1¡'

,
Pl-h
p2=pt+k;

stÂrt2,i for (countl=0;pl<p2;++p1)
f

tf (('p1) & 0d00o) == 0)
++countli

Ì
tf (countl : k)
{
p l-=lc
19¡ (;pIcp2:++pl,++1)
rUl='Þr; -

goto r€d;
I
++countz;

ü ([cægetcûn_Ð) : EoF)
goto end;

++D2i
fsúnf (Ín_f,'þóx',p1);
p1=p2-þ
Éoto stârt2:

ræd: F3=p2+BI,OCK_SIZE-k;
for (;p1<p3i++J,++p1)
I
lf ((J == ARRAY_SIZE) I I [[cr-getc(rn_fl) : EoF))
goto endi
fscalf (tn_f,'"76¡",0 1¡t
r[ll=.p1;
ì
pz=pI+k;
Éoto stare

end: Po=O:
pr¡=l;
Iast_record=(PnlBLOCK_SIZE);

prlntf ("JJó7d, Pn4/67 d, I"lt_record=oá7d\n",J,pn,last_record);
for (l=0;1çP¡'aa1¡

t
lf ((lUl & 0xo800) l= o)
{
tf li=-(tt,ì | o)dffff8oo);
iúl={r0+1);
I
else
t[lì=t[lì & oxOfff:
*ÞolIiteFltJ 1t264l Io24;
++polnteç

)
)

rodom detect læv.resultl
floãt a¡rayll,16-ül{l;

float *p,*p_end, rp2,.p2_end,tempIARRAY_SfZEl,tc=O.OO 1667 ;lnty;
Co=O;
for (column=O;columnccolums; ++column)
{
step=Cn'colum;
for'[eCo;c<Cn;++c)
{

V=st€D+c:
i=aaimvtvl;

ü ['Þ < o.ol
tçnþlyl=-'p;
else
templyl='p;
I
)

for (colum=O;colum<columm;++colum)
{
steÞ=Cn'colum:
resültlstepl=O.O:
for [æCo;è<Cn;++c)
t

y€t€p+c+1;
P end=&temPb'l;
p=p_eno_t;

ræultlyl=¡s5rilt[y-I | +æ'['p-end-ræultly-I l);
lf (ræultþi j900)
resultlYl=999.0;

l-
)
Ì

procs_lotus (aray,record)
tntmvfl:
float reðordfl:
{
f nt'polnter,'polnter_end;
lloat 'p;
polnteFarral¡;
P=record;
pofnter_end=polnter+Pn;
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prlnd ("Enter offset : ');
søf(' d",&tãAet);
prlntf ['\n');

for (; polntercpolnter_end; ++pof nteB ++Þ).p=((fl oat) ((.Þofnter)-tageU)7800. 0;
l

procffi_lohls_2 (æy,record)
float arrav0:
Iloat reco;dfl;
{
fl oat rpolnter,'pof nter_end;
float'p:
pofnteËæy;
Þ=record;
pof nter_end=polnter+Pn;

prlnd ("Enter factor : ");
scmf ('þ/6d",&tãged;
prtntf ['\n');

for (;polnter<pofnter-end;++pof nter, ++p)
.p=(.þornær) /((noat)-tag;t);'
,

feature(dlsturb, avg, rm)
double dlstuibll;

float avgfl,rms[];
{
double 'p,'p_end;
fìoat.pa".p¡.;
P=dlsturb;
p_end=p +SAMPLES_PER_CYC LE;
pa=avg;
pFms;

Co=O;
for [eCo;ccCHECK_CYCLDS;c++)
{*pa=0.O;

'ÞËO.O;
for (;p<p-end;p++)
t
'Pa+='ot¡Pr+=SOUARE (*P);
I
'pa=¡palSAMPLES_PER_CYCLE;
'pr'pr/SAMPLES_PER_CYCLE;
'pËsqrt(*pr);

PA++;
pf++;
p_end=p+SAMPLES_PER_CYCLE;ì ^-

)

lloat root meæ souae lscleÌ
floaFcyclef:h ' ' '
{
float 'p,'p_end, r;
rO.O;
P=cYcle;
p_end=p+SAMPLES PER CYCLE;
foi (;p.þ-end;**p) -
t
f+=s0UARE('p);
I
Fsq rt(r/SAMPLES_PER_CYCLE) ;

f pdñt{"r 461o.3f \n",r); .7
return E

)

lnteger_order (number)
lnt number;
{
l¡rt l=0, ordeeO,-number;
whlle (l<6)
Ipx/1O;
lf{x == o)
return(order)i
else
++orde¡;
I
return order;
)

lnteger_to_strlng (number,order,str)
lnt number,ordeE
chry strlì;
{
lnt l=order;
whtle 0>=O)
{
st¡lll=(chæ) (numberõl,l 0+48);
numbeenumber/ 10;
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-t,l
str[order+tl='\0';
)
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/' tÉt AUE 12 I99L '/

t$t 0
{

F¡LE 'in_f, 'outJ *fopen 0, .fclose 0;
double ["TF)0;
extem double Stgrnotd0;

lnt countl,count2,l,n,æ0,num=l,step,klesh=0,besO,berO;
lnt cJ¡kl,y,t,polnts=O,order,delay=O, rem,buf,se=O,target=1 ;

fl oâ.1'p,'p,end,'p I,rp l_end,'p2,¡p2_end,.p3,.p3_end,.p4,.p4_end;
double'polnter,'polnter_end:

fl oat rl,¿.k=O.05,m=0.00 I,tc=O.O 167;

double drsturbITOTAL+TOTAL/SAMPLES_PER_CYCLEl,ouÞutlCHECK_CYCLESl,wetghts[t¡EIì,norIÎOTÁL+TOTAL/S/qM.
PLES-PER-CYCLEl,mITOTAL],ræultlCHECK_CYCLESI,têmp,4ngerlARRAy_SIZEIi

fl oat aVgICHECK_CYCLESI¡roICHECK-CYõLÈSI;

prFrq ("Enter patt€ms ta¡get : ');
scffrl ('96d',&.ttrgetJ ;

_ prt¡lúC'\n');

ïf'= Slgmotd;
J=o;
l=O;
countl=1;
P=æY-l;

p_end=p+Pn;
Ior (;p<Þ-endJ
Í

baclc ff (absolute('p)dHRESHOLD)
f

f Prnd['rJ=o/6d, P=o,6f,P1+z6f\n"J,-P,'(P+1));'/
++p;
++J;
++se;
tf [se >= 32)
{
p 1--store_l;

p l_end=p I +SAMPLES_PER_CYCLE;
for (:P1<Pr-endj
{
lP 1++=6'g'
I
rro_I=0.0;
¡t=k
tz=k/2.o;
goto agâtn;
I
goto baclq
I

f -. prlntf ("2.Jr,&, p+z6f , pl=o,6f\n",1,'p,'(p+1));'/
tf ( ( 'P == o) && ('(P+i) > 0.o J )
øoto câl l:
Ë1..
lf ( (tp < m) && ((*p > 0.o) && ('(p+1) > 0.o )) )
goto ca.l_l;
else

get_r ++p;
++l;

/' Prlnd("3J=p,6d, P=o/6f, P1=oóf\n"J,'p,'(P+1));'/
tf [ ( rp : o) 

-&& ('(p+i) > o.o I )
goto cal_l:
else
tf( (((rp)'('(p-t)) < o.o) I I (*p< m) ) &&('p >0.0) )
goto cal_l;
else
goto get_v;
I

ca.l_f: p 1=store_1;
p1_end=pl+SAMPLES PER CYCLE;
bGstore3;
lor {;p l<p l_end;J++,p 1 ++,p++,p4++)
trPI='P;
.pzt=.p 1i
'(p4tSAMPLES_PER_CYCLE)=rp 1 ;
I

for(l=O;kSAMPLES_PER_CYCLE; l++)
prlnd['kr467.4f,s3J/67.4f,s3s=p/67.4f\n",store_IlU,store_3ul,store_3ll+SAMpLÐS_pER_CyCLÐj);

rm_I=root_m@_squile (store_l);

prlnd ("NOISE:+,Í,f rms_l=o,6f\n",NOISD,rms_t);

tf [ms_IcNOISE)
goto get_vÌ

prlrÉ ('ztz4Âd, num=96d\n',2ø,num);
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aga.lni

+PZei
tf (zø<num)
goto get_q
rt=[t+ld.rms t;
¿=(1-k).rre_I;

prfnÉ CJ.4ó7d, rms_1=o/6lO.3f , rl=fólo.gf , ¿JólO.3f\n J,rm_l,r1,¿);

pz$tore_21
p 2_end=p2 +SAMPLÞS_PER_CYC LE;
for (;p2<Þ2-end;J++)
t
rf(t : (Pn))
goto end;
'p2++='p++i
l

rm_2=root_meæ_squãe (store_2];

Prtnd [J=p/67d , rms-2+61O.3f , coune Td\n"J,ms_2,countl++);

!f (m< 2<NOISE)
goto agaln;

/* add tf ms_l or ms_z < notse_threshold => neglegt store_z ./

tf ((rms_2< r l) &&(r rc _2> r2))
goto agaln;

p=¡SAMPLES_PE R_CYCLE;

for fl =9; lqSAI4p¡tS_PÞR_CYCLE;l++)
prlnd Cl==9ó7d , store_i=oÃtO.3f, sto;e_2=o,ó1O.gf, p_ró1O.3f\n"J,store_tlll,store 2[ll,.p++);

p=p-SAM PLES_PER_CYCLE;
delaf-l -SAMPLES_PE R_CYCLE;
cyld=l/SAMPLES_PER_CYCLE;

prl ntf l"cykl=P,6d f n'l cyHi ;
for (l=0;l<crytd;lt+)

Stngerlll=o'o'n_seE polnærdlsturb;
Co=0;
n=O;
buf=delay;
++l;
for (c=Co;ccCHECK_CYCLES; ++c)
(
p I=store_l i
polnter_end=potnter+SAMPLES_PER_CYCLE;
for [;polnter<Þolnter_end; potnter++,p++,p 1 ++J++,n++,potnts+r)
t

- rf0:Pn)
goto end;

*p oln teË'p-'p I ;

prlnÚ ('J467d , É,67d, , dlsturb=o,óIo.3f , p=oó1o.3f , p1=oó10.3f\n'J,n,.potntea.p,.pI);

)
)

prlnú("\n I m here\n');
prlnd['JJ,ó7d , delay+674, polnts=p/67d, p4ó1o.3f , pl=oó10.3f \n"J,delay,potnts,.p,*pt);

feature (dish:rb, avg, m);

rows=TOTAL;columÉl;

time=1.0;

üme=SEC_PER_SAMPLE;
rem=0i

ordeetnteger_order(l) :
tnt€ger_to_sb1ng [l,order,str):
con€temte C',dlsturb_",str, ln_nme) ;

con€t€nate [l:ìme, ln_me,out_nme);

open_erlt€_flle (out_meJ ;
prlnt_colum_matrlx_double (dlsturb, rows, columre,delay, rem);
èlose_wrtte_fìle fout llameì ;
prlntf ("\n');

concatenate (nme,".dIs",out_nme) ;
lf (f==1)
open-wrlte_flle (out_nme) ;
else open_append_flle (out_we) ;
prtnt-colum_matrlx_double (dlsturb,rows,columre, delay,rem) ;
tf (t:1)
close-wrlte_fìle (out_we) ;
else close_append_fìle (out_nme);
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for (l=O;IcCHECK_SAMPLES;l++)
record-3Ul=dlshrrblU+DC;

lf (r:1 A&Hæh:O)
{
Eet ocle d lrecord 3.æv 3ì:
5eÍorru-l;
beFPnn'SAMPLES_PER CYCLE-Il ;
prlnf ("\n cutrent z-ero oõtatned Ëê+¿a beo-¿Sd\n",bæ,bev);
p=Ftsb6;
klæh++:

-l;J=J-b6;
polnts=O;
ä elay=J-SAMPLES-PE R-CYCLE;

prtnf (:J=oó7d , del4¡J,67d , polnts=4,4í7d., p:*u61o.3f , p r+,610.3f \n "J,delay,potnts,.p,'p l);

pzl=&store-3[SAMPLES-PER-CYCLEå ev] ;
p I =store_1;
Þ 1-end=p I +SAMPLES_PER_CYCLE;
lor-[;p l.þ r-"rd;p I ++,þ+++)-
t*p1=*p4;

prlnq"s I+67.4^n','p 1) ;

)

)
else
t

for 0=0;l<CHECK_SAMPLES;l++)
æy-3[l]=record-3lU;

Pm=0;
I
tf (t==0)
goto n_set:
CN=CHECK-CYCLES;
prtnd ("tilósd cn+/ósd Pmaósd\n",l,cn,pm);

nor mallze -d2 (æy-3, no r, n n) ;
prlnd ["\n tnput normalzed. \n );

/* adjust forlJ '/

¡em=0;
rows=1OîAL;

colums=1;

tlme=1.o;

concat€nate (",nn_",str,ln_nme);
concatenate (me,tn_l]me,out_nme);
open_wrlte_fìle [out_me) ;
prlnt-colum_matrlx_double (m,rows,colmre,buf,rem);
close_wrlte flle fout l:ìffieì;
prtntf ("\n"h

6ps=[fl oat) SAMPLES_PER_CYCLE;
ren=SAMPLES_PER_CYCLE- I ;

/' Pattern recognttlon '/

open-rad-fìle ('\/6.wef ');
ræd-weghts (welghts):
close-rad-fìle [')¡6.wel");

v=0:
for 0=o;t<Cn'l++)
{
tf (BP3tayer(lNPUT, 6, 1, (double ') welghts,(double ') Emor[y], (double .) &outputlll, TF))
{
prlntf["\nEnor occuF tn'BPslayer' funcüon\n');
è)d(-1);
)

) 
y+=INPUT

rom=Cn,columFl'

concatenate (nme,". m",out_nme) ;
tf (t:I)
open_wrlte_fìle (out_we);
else open-append-tle (out-me) ;
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con€tenat€ ['.rs6_",str,f n_l]ame);
con€t€nate (nme, ln_nme,out_ì:ìme) ;
op en-Ertte_fìle (out_t:læe) ;
prlnt_column_muix_double (output, rows,columre,delay,rem) ;
¿lose_wflte fìle [out we):
prtntf ['\n'):

con€temte [¡:ìme,",ræ",out_l.ìme) ;
tf {f==I)
open-çTlte_flle (out_me) ;
else open_append_fìle (out_we);
prlnt_column_mElx double (outpuLrows,columm,delay,rem);
if (r==l)
close_wrlte_flle (out_me) ;
else close_append_flle (out_nme);

conetemte (¡:lme,-.res",out_l:ìme) ;
¡¡ ¡==1)
open_Mttc_flle (out_mel ;
else open_append_fìle (out_r:me);
prlnt_column-mtrlÃ double_tlrne (ouÞuL rows,columre,delay, rem);
if (r=i)
close_wrlæ_flle [out_me);
else close_append_flle (out_nme);

for (column=0;column<colums;++column)
{
steP=Cn'column'

lf (l:l)

. roult{stepl=eqtputlstepl;

resultlstepl=0.O;
else ræult{stepl=temp ;

for (eCo;ccCn-l;++c)

EsteD+c+l:

l¡¡,:1,[]íl=nlf :'ì:H;rl+tc'(outputlyl-resurtly-11);
resultlyljl.0;

open_append_flle (out_me);
prlnt_column_mtdx double tlme fræulÇrow,colums,delay,rem);
if (r:r)
close_wrtte_flle (out_we) ;
else close_append_tle (out_nme);

temP=rsultlyl'

prlnú ("\ny465d , output=pólf , result+,ólf , t€mp46lf\n",y,outputþl,result{yl,temp);

l

concatemte (ì:ìæe,",f nt",out_me);
ff [l-1)
{

open-wrtte_fì.le [out_r:me) ;
for (l=O;l<l;l++)
fprlnd [ou¡_¡'t67.3e \t 0.0\n",I"TIME_C);

prlnt_column_mu-fx_double (ræult, rows,columm,delay, rem) ;
)
else open_append_fìle (out_roe);

prlnt_column mblx double fræult,rows,columre,dela¡rem);
if (r:-r)
close-wflte-fìle [out-r:rme) ;

else close_append_tle [out_nme);

con€tenate (n4e,"-lnf ',out_nme);
ff (f-1)

{
open-wite-flle [out_we) ;

prlnt_column_matrlx_double_tlme [$nger,cyld, I,0,0);

rf (r<ri,sl_sEî)
{
J=buf+CHECK-SAMPLES;
delay:J;

Foto 
n_seg

else
t
prlnd ("Læt set\n");
return;
]
prlnd IEnd of ftle.\n');
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)

normallze_d (æy,record)
double arayll, recordll;
{
double *p 1,¡pI_end,*p2,max:
p1æ],;
p2=record;
Co=O;

for (eCo;ccCn;c++)
{
p 1_end=P I +SAMPLES_PER_CyCLE;
mx=0-0;
for (¡=o;p1.01-.td;P I ++J++)
t
a='p 1;
b=aùrsoluæ[a);
,f (b>mu)
mu=b;
Ì
pl=p 1_end-SAMPLES PER CYCLE;
for [=o-;p1.01-"nd;p1i+,p21+¡++)'
t
*p2=('p t+ma)/(2.o'mæ);

prlnÚ (\4,65d, p1+u61O.5f , P2s,10.sf\n"J,'pl,'p2);
)
)
ì

no mallze _ð2 fara¡r, record, m)
double æyll,recordl l,nnll;
{
double'pl,*pl_end,'p2,'p3,md;
p1=æJ¡;
p2=reærd:
p3=m;

Co=0;

for [eOo;ccOn;c++)
{
p I_end=p I +SAMPLES_PER_CYCLE;
mu=O.O;
{or (1=o;p1.0 1-"td;P t ++J++)
t

b=absolute(a);
lf [b>mu)
ma=b;
)

p I =p l-end-SAMPLES_PER_CYCLE;

{for 
ú=0;p1<pI end;p l++J++)

a='p I:
lf fabsolutelal >=LEVEL'maì
++wtdthlcì:
)
tf (wtdthlcì<=s)
wldthfcl=tl
else qldthlcl=0;

p I =p 1-end-SAMPLES_PER_CYCLE;
for [=g-;p 1 qt 1 -..d;p ri+,p21+, p3+i,1 ++)
I
'p2=('p I+mu)/(2.0'ma);

rp3=.p2;
prlntf ('J=pósid , pI+261O.5f , p2+t6r9.5î , crósd , wldth4,óSd\n'J,tp1,*p2,c,ç'tdth[cD;

ì .p2++=((doubte)wf dth Icì);
I

)

get-cycle-d (aray, reco rd)
double ara¡r[], recordll ;
{

double'p 1,'p l_end,'p2,m=0.Ol,n=O.O000 1;
ll=2'SAMPLES-PER-CYCLE;
Þ1=&amvllll;
p 1_end=p I +CHECK_SAMPLÐS;
p2=record;
Ior (;p1<p1-endJ
I
tf ( ('pl : q) && (.(pr+r) > o.0 ) )
goto câl_l;
else
lf ( ('pI_< m) && (('pr > 0.0) && ['(pI+I) > 0.0 )) )
goto cal_l;
else
tf ( [abs_olute('pl) < m) && UJ >= SAMPLES_PER_CYCLE) )
goto câl_l;
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else
get_E ++pl;

++ll;
rf ( (.pr: o) && (.(p1f r) > 0.o ))
goto €l-l;
else
tf ( ( (('pt)'('þt-t)) < o.0) | I ('pI < m)) &&{*pI >0.0) )
Poto cal l:
Ëtr"
goto get_v;
I

cal-t: if(Pnn'SAMPLES-PER-CYCLE ==ll)
toto cd l2l
ã1."
tlnc_lj: ++pl;++JJ;

- prlntf ('lJ<Pmrsmples...pl+ólf m=p,6f \n',*p1,m);
il(['pl<m))

t
prlnd ("pl<m');

. If(Pnn*SAMPLES-PER_CYCLE:lJ)
éoto cal l2r- - else

prtnÉ f'sttll < Pm.....\n');
goto tnclJ;
I
else
{
prlntf ("sorry pl>m rehrrn back. IJJó5d\n",JJ);
-p1:-lJ;l
l
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/'opüore

mdom I
t
rows=Pn;columæ1;

Cn=rom/SAMPLES_PER_CYCLE;

dc-ac (ara¡r-l,dc,ac,m);

dlfference [dc,dc_dtJ) ;
dlllerence (ac,ac_dil);

rudom_detect [dc_dlf,dc_rnd);
Hdom_detect [ac_dliac_md) ;

concatenate [nme,dc_rndf,out_¡]me) ;
open_wrlte_fl.le (out_r:me) ;
prlnt_colum_matrlK (dc_rnd,Cn,columre);
close_srlte flle [out nme):
prtntf C'\n");

concatemte (rue,ac_mdf,out_nme);
open_wrtte_fì.le (out_we) ;
prlnt_colum_matrlx (ac_md,Cn,columre);
close_wrlte_fìle (out l:mel ;
prlntf ("\n");

Apr 26 9l'/

all 0
{

rowFPn;columE=1;
C n=roffi /SAMPLES_PER_CYCLE:

dc_ac (ara¡r_l,dc,ac,m) ;

dlfference (dc,dc_dÍ) ;
dlflerence (ac,ac_dfl ;

rodom_detect (dc_dlf,dc_rnd);
rodom_detect (ac_dlfiac_md) ;

con€tenate (nme, dcf,out_nme);
open-wrlte_flle (out_nme) ;
prlnt_colum_matrlx (dc,Cn,columre) ;
close-wrlte_flle {out_me) ;
prlntf ['\n');
con€tenate (nme,acf,out_lme) ;
open-wrtte-flle (out_rme) ;
prlnt-colum_matrix (ac,Cn,colums);
close_wrlte_flle [out_¡1me)i
printf ['\n');

concat€nate (nme,dc_rndf,out_lme);
open_wrlte_flle (out_me) ;
prlnt_colum_matrfx (dc_rnd,Cn,columre) ¡
close_wrlte_flle [out me) ;
prlntf C'\n');

concat€nate (me,ac_rndf,out_nme);
open-ETlte-fìle (out_me);
prlnt_colum_matrlx (ac_rnd,Cn,columre) ;
close_wrlte_fi le (out lme);
prlntf ("\n');

)
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/* Thls fs the header fìle for the BackPropagaüon ANNS funcuon.

Thls funcEon slmulates the one hldden layer BackPropagãuon algortthm.
Only fomæd calculatlon ls f mplemented. 

-

The funcuon needs number of lnput neuroro, number of hldden neurons,
number of output neurons, a oofñter to the wefsht data record. a Dolnter
to the lnput veitor data record, a Dofnter to tle'outout vector datá
record, æd a polnter to a trosfef funcLfon, æ t¡e input ilguments,
æd ç'1ll returñ æ enor value-

It will return (-1) tf there ts il tnt€rnal enor, or [O) tf eveqrt]rfng
ls okay.

Progmmed by: Adl Indrayæø
Ffrst veßlon : 11 /29 / l99O
Cunent vere. : 2,0
I¿st modlflc. : -

fnt BP3laj¡er0ong nlnput, long nHtdden, long noutput, double .wetghæ,
double'hputvector, double .outputvector,

double (*trsFunc)(double data)):

double Stgmotd[double data);

/' Thls ts the BPlhreelayer funcdon code

Progmmed by : Adl Indraj¡æto
Ftrst verclon I Ll/29/1990
Curentveß.:2.O
Iast modltc, ; -

#lnclude "BP3Iayer.h'

#lnclude <stdlo.h>
#lnclude <mth.h>
#tnclude <stdllb.h>

tnt Bpsr,ayer0ong nlnput, long nHldden, tong nouÞuh"tttt:#ii+sd.r, 
double *outputvector,

t 
double [.tmsFunc)(double data))

double *hlddenNeurons;
lonÉ lx, tv:
lon! ofIB-ras 1, offBlæ2, offBtæ3, ofu,telgþa;

ff ((hlddenNeurons = (double.) calloc(nHtdden, stzeofldouble))) == NULL)
return[-l);

offWeløh€ = nlnDut I nHldden'
ãäÈrãíi= .nwåì'ehb ;i;iHrãä¿" ' nouÞut);
offBlæ2 = offBtæ-l + rrl¡ìpuq
offBlæ3 = offBlæ2 + nHtdden:

for (lx = 0; lx < nHldden; tx+r)
{

hfddenNeurorellxl = welehtsloflBtasz + txh
, for (tY = 0; tY < nJnpuq ry1+)
t

fu ddenNeurons[Lr] += wetghtsILx*nlnput+lyl * tnputvectorlty];
l

lf (tmsFunc l= NULL)
. hlddenNeurons[tx] = ('tmsFunc)(hlddenNeuronslfx]);
)

for (lx = 0; lx < noutpuq LK++)
t

outputvectorlt-xl = wetghtsloffBtas3 + lxì:
fqr (tY = 9; tY < nHldde;; tY++)
{

- outPutvectorllxl += welghtsloffvr'efghtz + lx*nHldden + lyl 'htddeñNeurons[9; -
)

lf (trusFìrnc l= NULL)
- ouÞutvectorltxl = (.trasFìrnc)(outpuwectorltx]);
I

free(trtddenNeurons);
return(0);

)
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/' The slgnold trarufer functton wed for BPThreelãver funcuon.
Pæsed thts funcuon æ the ugument of the BPThréelãyer funcdon,

double Slgrnotd(double data)
{

reglster double ræul!

r6ult= r/(I + exp((-1)'data));
return(ræult);

Ì
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/. ftle_marlpuauon

con€t€nate (strl,str2,to)
chã *sh'1,'sb2,'to;
{
while (*strl)
Ito++=¡st¡'l++'
whrle ('srr2)
'to++='st¡2++'*ø=.\0';
)

copy_strlng (from,to)
chil ¿from,.to;
(
whtle ('from)
*to++='from++'
¡toj\o';
)

open_read_fìle (fllerme)
chæ fllemeil;
t
FILE nn_f, 'out_f, 'fopen 0, 'fclose 0;
ln-f=fopen (fìleme,'î'ì;
tI (ln-f == NULL)
prlntf ("Cæ't open %s fìle\n',íìlenmeh
else
prlntf ("Ftle 0/66 ls open\n",flle¡]me);
I

close-read_flle (fllenme)
chæftle¡mell;
{
FILE 'ln_f, 'out_f, *fopen [, 'fclose 0;
fclose (tn 0:
prlnú ("Flle oz6s ls closed\n',fllerme);
I

open_wrtte_flle (fìlerme)
chafìlewelh
{
FILE'ln_i 'outJ'fopen 0, 'fclose 0;
out-f=foPen (fìle¡1ae-,"w"h
ff (out_f : NULL)
p-rtntf ("Cæ't open oz6s flle\n",fìlenme);
else
prhtf ("Ftle 016 ls open\n",fìIellæe);
l

close_erf te_flle (fìlenme)
chafllewell;
{
FILE *ln_f, 'outJ 'fopen [, 'fclose 0;
fclose (out 0;
prtnd ("Flle o,6s ls closed\n",fllelme);
J

open-append_fìle (fìlenme)
chafì.lemell;
f
FILE'ln-f, 'outJ *fopen [, 'fclose [;
out-f=foPen (fllenme,'äl;
lf(out-f;= NULL)
prlntf ("Cil't open ou6s file\n",fllenme);
else
prtntf ("Flle 0á6 ls open\n",flleme);
I

close-append_fìle [filemelcha.fìlemefll
{
FILE 'ln_f, *outJ *fopen 0, 'fclose 0;
fclose (out 0;
prl¡rd ("Flle o,6s ls closed\n",fì.leIrme);
I

AugT 9t'/
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/. file_rad

read-hex I
{

prtnd ("ENÎER FILE NAME: ');
søf (t'624s", me);
prtntf ("\n');
con€tenat€ (me,hsc,l¡r_nme);
open_ræd_fìle (t¡r_nme);
hex_decl mal^ {quætlzed_d ata, array_1 ) ;
close_r€o_lile lln ì:ìmel:
prntf ("\n');

)

read_dat I
{

prlnd I'ENTER FILE NAME: ');
søf fþ2624s", me);
prlntf f'\n');
concatenate (nme,"",ln_nme);
open_read_lìle [tn_nme);
r€d_lnput (a¡Taj¡_t);
close read fìle ffn ¡meì:
prlntf-['\nji

ì

read-lotus 0
{

prlnd I'ENTER FILE NAME; ');
scæf ('þó24s", rme);
prlntf ['\n');
con€tcnate (nme,prn,ln_nue);
open_ræd_fì.le (tr_n-me);
ræd_lnput_lotus (quætlzed_datåJ ;
close_read_ftle [tn we):
prtntf ['\n"h
I

read-lotus_2 [
{
PTInÚ I"ENTER FILE NAME: '.);
scartf [t2624s", we);
prlntf ['\n");
concatenate (nme,daqln_me);
open_read_flle (ln_nme);
read_lnput_lotus_2 lrecord_11;
closelràdlfìle (tinàme);'
prlntf ("\n');
l

read_lotus_out I
{
prln{ ("ENTER FILE NIAME: ');
scalt ('þl624s", r:me);
prtntf ("\n');
concatenate (nme,",ouf ',tn_¡:ìme) ;
open_read_flle (ln_nme);
read_lnput_lo hrs_2 (ar¿y_l 

) ;
close_read_flle (tn l:lmeì;
prlntf ("\n");
I

read-oct I
t
prlnd ("ENTER FILE NAME: ');
scmf CE/624s", llme);
prtntf ("\n');
concatenate (nme, oct,ln_ì]âae) ;
open_read_flle (tn_nme);
oct_declmal-[quÐtfzed_data,a¡m]¡_l );
close_read_fllè [tn ¡ræe) :
prlntf ['\n");
I

rad l¡rout lævì
îoàt aìmyfÍ'
t
FÍLE'ln_f, 'outJ 'fopen 0, .fclose 0;
lloat'polnteç
lnt a;
J=o;polnteffiy;
do
(
fscæf [ln_f,' f',polnter);
++polnter;
++l:
) wtrrle ((cægetc(tn-0) l= EOF);
Po=0;
Pn=l-1;
last_record=(Pn/BLOCK_SIZE);
. prlnd ['Pn+,óSd , last_record=p/65d\n",Pn,last_record);
I

ræd_lnpuq_lotus (array)
tnt arEl¡ll;
{

July 8 91 '/
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FILE'in_f, 'out_f, 'fopen [, 'fclose [;
lnt 'polnten
l=o;

åotntelæJr
(
fsøf (lr¡_f,s,6d',polf¡ter);
++polnter;
++f:
) wtrlle ((ægetc[tn-0) t= EOF);
Po=O;
pn=l_t;
last_record=[PnlBLOCK_SIZE);
- prtnÉ ("Pn+óSd , last_recordJ,65d\n",pn,last_record);
I

read lr¡Dut lotus 2 fæv)
ïoät arayth -'
t
FILE.tn_f, .outj 'fopen 0, .fclose 0;
float'potnter;
J=o;

å:lnteFæÍ
t

. fsca¡rf (tn_lì' td o/6f',potnter);

fsmf (tn_¡,'96rs o6f ',potnter);
++polnte¡;
++l;
) dt|lle ((cr-getc(rn_0) t= ÞoF);
Po=O;
pn=J-t;
Iast-record=(PnlBLOCK_SIZE);
prlnd ("Pn:+1,5d, last_record.p,65d\n",Pn,last_record);
I

read-welglræ (æy)
double æyfl:
t
F¡LE'h_f, 'outJ 'fopen 0, .fclose 0;
double'polnter;
lnt q=0;

åotnteFæJ';
{
fscæf (ln_f,'!ólf ',potnter) ;
++polnt€¡.;

i*Tul" (("--e,"(rn-fl) r= EoF);
Prf ntf ['q:+ó5d\n",q-1)'
I
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/' file-write

wrlte_data 0
f

con€temte (me,dat,out_we);
rowgPr¡;colum¡el;

open_urtte_fìle (out_me) ;
prlnt_colum_matrfx [æy_t,rom,colums);
close_wrlte_nle (out_me) ;
prfntf ['\n'J;

)

wrlùe_dar"? 0
{
concatemtc (¡:lme,".x',out_nme);
row=Pn;columFl;
open-wf te_flle [out_l]me) ;
p¡tnt-colunUr_matrb( (æy_1, rom,colums);
close_wlte_fìle (out_we) ;
prlntf t'\n');
I

Mlt€-mbplot 0
f
con€tenate (nme,".mb",out_¡:ìme);
row=Pn;colums= I;

Cn=PnlSAMPLES-PER-CYCLE;Co=0lPo=O;
open_wrlte_flle (out_meli
pifnt_mbplo!_(a¡my_I,row,colums);
close_wrlte_llle [out_ì:ìmel ;
prlntf ("\n');
I

wrlte-mge 0
t

concatemt€ (ì:ìme,rec,out_we) ;
open_wrlte_flle (out_l:tæe) :- for ll=0:l<Pn:++lì
. -Þ¡nf (öut_f,'þ,õ7.3e oó10.3f\n",J*ume,my_I[Jì];

ctose_Erlte_llle lout me);
prlntf ['\n");

)

prlnt-colum_ma!4x_double_3 (æy,rows,columre,de,rem)
double æyll;
I¡rt rows.columm.de.rem:
{
FILE 'tn_f, *out_f, 

'fopen 0, 'fclose 0;
lnt row.column.d:
double .p,*p_end;
D=æay:
Ior (roú=O;row<row;++row)
{
fprlntf (out-¡'u67.3e ",de'dme+row'SAMPLES-PER_CYCLE+rem);
for (column=0;column<colums;++column)
{
d=colum*rows+row¡
p=&amv[dl;
Ïprlntf (outj' io.3lg",'p)i
I
fprlntf (out-f,"\n');
I
Ì

prlnt¡olum_matrix_double (arraJ¡,rcws,columre,de,rem)- double æyll;
,nt rows,columre,de,rem:
{
FILE ¡ln_f, 'outj 'fopen 0, *fclose 0;
lnt row,column,d;
double 'p,*p-end;p=æãyi
lor (roú=O; rowcrom; ++row)
{
fprlntf {outJ'þ/67.3e ",(de+row)'ñme+rem);
for (column=0;column<colums;++column)
{
d=colum'rows+row;
p=&amvfdì;
IPrrntf [<iut-i'þÁt O.3lg','P) ;
I
fprtntf [oulf,"\n');
ì
I

prlnt golum_matdx_double_üme (ara¡r,rcws,columre,de,rem)
double ævll;
lnt rows,colümro,de,rem;
{
FILE'tn_f, routJ *fopen 0, .fclose 0;
Int row,column,d:
double *p,'p-end;
P=ardl/;

Aug 12 91 '/
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for (row=O;rowcrom;++row)
{
Þrq¡d (out_f,'9(,7.3e ",de+TIMD_S+(row+1).TIME_C);
for [column=0;columnccolum; ++column)
f
d=columafows+row;
p=&amvldl:
ÎpÉntf (óut_f,'961o.319',.p)i
I
fprtntf (out_f."\n');
I
)

prlnt_colum_matr¡(_dls (æy, rows,columre,de,rem)
float aravfl;-

lnt rows,columre,de,rém;
t
FILE ¡tn_f, *oulf, 'fopen 0, .fclose 0;
lnt row.column:
float *p,*p_end;
Þ=æav;
Ior (roú=O;rowcrore; ++row)
t
þrtntf (outJ''%7.3e",de+roúttrne+rem);
for (column=O;columccolums; ++column)
{
J=co[um'rows+row;
p=&amvllì;
Iprtntf 1õut_¡-¿ 1 9.3¡',*t¡'
l
fprt ntI (out-f,'\n');
I
Ì

prf nt_colum_matrlx (ara¡r, rows, columm)
Uoat ara]¡U;
lnt rows,columre;
t
FILE 'tn-l 'outJ *fopen [, .fclose 0;
,nt row,column;
float *p,rp-end;
Þ=arEy;
Ior (row=O;rowcrom;++row)
f
þrlntf (ouq_¡,'"67.3e", row' dme) :
for (column=O;columnccolums; ++column)
{
J=colum'rows+row;
p=&amv[ll;
Iprtntf [<iul_f,'þáI0.3f',.p);
I
fprlntf [outJ"\n');
l
)

prtntJow_matrlx (ara¡r,rows,columre)
float aFãyÛ;
lnt rows,columre;
(

FILE'tn-f, 'outJ 'fopen 0, 'fclose 0;
lnt row,column:
float'p,+p_end;
D=æ:
for (roú=O;rowccolums; ++row)
t
fprlntf (out_f,'!ó7d", row);
for (colum=0;columcrom; ++colum)
{
fprtntf (out_l'96 1 0.3f ',.p) ;

lP+t;
I
fprlntf [outJ" 1\n");
l
l

prlnt_row_matrlx_m (aralr,rows,columro)
float arayll;
lnt rows,columre;
I

/' Prlnts tn NN Tmrnlng Formt ./

FILE 'fn_f, 'ouq_f, 'fopen 0, 'fclose 0;
lt¡t row,column:
float *p,'p-end;
pardy;
for (rcuo;rowccolums;++row)
{
fprlnd (out_f,'t¡s_o76g2d ",tn_ì:lme,row);
f-or (colum=0;colum<rom; ++colum)
t
fprlntf (out-f,'þÁ6.4f ",'p);
lp++;
I
fPrlntf (oqt-f' " o¿¿\n",taget);
I
)
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prlnt_row_matrlx_m2 (æy,wldth,rcm,colu¡]m)- float aravlh
t¡rt rcrc,ðolums,wldthll;
{

/* Prlnts ln NN Tmlnrng Formt./
FILE 'tn_f, 'outJ *fopen [, 'fclose 0;
lnt row,columni
float *p,*p_end;
p=æay:
lor [roú=O; rowccolums; ++row)
{
fprlnú (out_f,'þ/66_o/6o2d ",ln_we,row);
for (colum=0;colum<rom; ++colum)
{
fprlntf (outJ't¿6.4¡ ",'n¡'
lp++:
I
fprlntf (outj" oád 9ód\n",wtdth[rcw],ttrget];
I
l

prlnLJoq-matrlx_m3 (a¡raJ¡, taJget"rows,columre)
double æylJ;
tnt row,colüm,target;
t

/' Prlnts tn NN TErrllng Formt */

FILE .ln_i 'oulf, .fopen 0, .fclose 0;
lnt row,column:
double 'p,+p-end;
Þ=ffi:
lor (roú=0; rowccolums; ++row)
f
fprlnÉ (outJ't¡6_or662d ",ln_¡]€me,row);
f-or (colum=O; columcrore; ++colum)
{
fprhtf (outj'!ó6.49 ",'p);
lp*+;
l
fprlnÉ (out-f," o,ód\n',tãge$;
I
l

prlnt_mbplot (æy,row,colums)
float arrayll;

lnt rows,columre:
(

FILE'rn_f,'outJ'fopen 0, .fclose 0;
llrt row,column:
float tp,'p-end;
p--ñðli

fDrtnd
fo¡nd
forlnú
f'prmú

for (eCo;c<Cn:c++)
{

for (row=o;roW<SAMPLES_PER_CYCLE;++row)
(
fprlntf [out_f,'þ/67d 0/602d %1O.3f\n',c,row,*p);
'p++;
ì
)
)

remge-æy-(æy, record, rore,colums,step)
floatmyÛ;
float recordll;
lnt rows,columru,steÞ;
{
FILE'tn_i'outj'fopen 0,'fclose 0;
lnt row,column,lunk.Í,t:
float'p,rp-end;-
float'Þolilter,'polnter-end ;

J=o;
D=record:
junlePn<olumre'rom;

Y=o;
È0;

for (column=0;colum<colums; ++column)
t

potnteF&a¡raylyl;
pofnter_end=polnter+rows;
Ior (;polnær<þolnter-end J
t

tf ú+Junk <= Pn)
t*p++='polnter++;
J++;
I

else
break
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)
y=y+roreàJUNK-t++;

Ì
l
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=ã===È====ËEE=È=E=E==È=E=E==E===É=ÉrË=ÈE=EEËE=3E
= TEE TESTING OF IfICROPROCESSOR ÀIJGORITSUS FOR =- EIGE IIiIPEDÀ¡ICE FÀIJIJT/IJOÀD DISCRIUINÀTION E
EEÈÉ==E==AãEg-ËEBEEÉB=EE=EEE=ETÉEgTÈE=r-EE¡EE==E

Uelng l.lathCN) goftsare aud NotatloD
ú tiú ú t tt ú * tttù*útú ú * ù * tt* ú ú ittrt tt !t t

I,lathCÀD FILE : Dcad-Drog

IV := RE"ADPRN(daÈa)

n ¡= roqra(fV) ¡t E

s¿=32

1 := 0 ..s
lnl

c :- floorl-l c =
LFJ

J := 1 ..c
<0> <1>

I:=IV V¡=IV

FFT OF TEE CI'RRENT SIGNÀIJ
==== = ===t =E== = = =E= È= = ====

2

r\¡s
À := I
J,L 1+32.(J-1)

B := ÀT

read curreuÈ & voltage aa.mplee

total Dì¡mber of aaùglea

aa¡0Dles Der cyc16

- 1 counter of sanDle nr¡x0b6r ln a cycle

nu¡ober of cycles

couuter of cycle number

curr€nt and voltage vgctors

= DÀTÀ PROCESSING =
r-E-E---=

factor to geÈ actual anplltud,e of Èhe ha¡monlcs

matrLx of cyclee(rorc) x eanglea(colun¡)

Èranapos€ f,or perallel proceøslng

take FFT for each cycle

ludex of lagÈ elenent 1u the FFT

couater of b,er¡nonLcs Der sysl€

<J> I l.rtl Irdfr ,= ltrr[a J.¡.J

f <r>l
x : = la8È Lldft l
y:= 0 ..x

:::=::=::: =:::::::= : :::*
C :=V
J,l 1+32'(J-1)

D:=CT

<J>
Vdft := [,,["1.*1
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BAÊ-AEEEEEEBE=EgEA=gE=ÈEAAÊE

- TEIRD EÀRMONIC ÀI¡GORITEÌÍ -
=EE= =Ê ==E==E=EËÈ===== = EE====

TSIRD SARMONIC CTIRRENI I.ÍÀCNITI'DE .À¡ID PEASE PER CYCIJE
Eg====E==gE==E==Ag==g=gEEEÊ=EE=É=EAÊE===E=EEEgEE=rEE

I .Jtl
rof3 := llatt I ghlrd, ha¡monÍc curreut magmltuder I 3l

|. <J> i .J' ll0 := tflldfÈ = O,O,arglrdft I I'J -- 
L 
--- 3 -' 

3JJ

thlrd hamonl,c curreut phaee

13 ¡= mr3 'coa[ar3 I + I .ror3 .elnfar3 I tblrd ha¡monfc curre¿t vêcrorr r L lJ ---: ---L---:J
anglee are ln ba¡monlcg radg.
uagaJ,tudeø are ln psr uult

::i-=:ii::::
Short Èlme avêrag€

Ke := 0.1

Àe := 0.9'I3
tlue conetaut

lnlt,tal value

tlme conetant,

l¡ltlal value

lnltlal value

change Ln ¡¡agmLÈude

cbauge lu pbase

11
ÀB_ := tf F > l,Às .KB + 13 .(1 - Ke),Às I curr€at, averaglngJLJ-1J1J
Long tJ.me averagg

Kl := 0.9

A1 ¡= 0.1.f3
11

PEÀSOR CEÀÈ¡GE

DI3 := AB
11

Al, r- tt[, t t,oar_r'Kl + r3J'(1 - Kr),at1] currêBr averasÍus

DI3, := t.[, r t,o", - otr_r,otrr]

aDI3, := tt[ott, = o,o,""o[otrr]]
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=== == - = E=====g Ê=====cÉ===E

= POWER RÀTIO ÀI¡GORITEIf =
= == == == E=g======i======-=E

sdfr := I lrattl . lraæl I

€ := 618 ..x - 2

ot=7r9..x-1

<J> ¿
€e za > edft .10

J''e
€

-r 
<J> 4

oe :=
J¿_ro

o t.'

even-to-odd ba::mo¡lcs Dow6r

lt
r := l¡lqs < 1.0,0,1f |oeJ IJ IJLL

ludlvtdual ba¡:monlc Doc¡er

couDfer of even be¡monl.ce

couDtêr of odd ha¡monlcg

guD of eveu b,a¡:ao[lca power D€r cyclê

su¡n of odd, ha¡monice gower per cycle

Et==E==A==EE=E=E==E

- RESIII¡TS STORÀGE -
EEEE====E=E EE=EE===

ratlo per cycle La

ee l'l
,.o,o,_:ll

""r.J i

R

7,0

R
J,t

R
J'2

'= lott, I

,= rr[¡u 3 I < o.oo1,o,aDr3 'tto *
Jl t r

,.rr]

cycle nu.nber

cbauge la tblrd ba¡nonlc
currêuE uagmltude (pu)

chauge ln thlrd ba¡monie
currerÈ pbaee (degrees)

6ven-to- odd, har¡oouic a
Doc¡er ratlo

wrLËe rEBulÈE to dlec

R :e E
J,3 J

WRITEPRN(reøulte) ¡= R
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