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Abstract

A high impedance fault (HIF) on a power system distribution line could
be due to a downed conductor, and is a dangerous situation because the
current may be too small to be detected by conventional means. An ener-
gized conductor lying on ground threatens human and live-stock life and
could result in property damage. Such faults do not cause a major problem
for the whole integrity of the electric power system; however, the protection
aspect against HIF comes mainly from a moral point of view: safety of utili-

ties’ customers and personnel.

The University of Manitoba (UM) and Manitoba Hydro (MH) started prob-
lem investigation by conducting staged HIF field tests on a 15 kV distribu-
tion line near Sperling, Manitoba. A high voltage laboratory setup was de-
vised, at UM, to collect high impedance fault data under controlled condi-
tions. The laboratory model results were in agreement not only with the field
test results but also with data published in the literature by other institu-
tions and research groups. The model was validated. The physics underly-

ing the arcing phenomenon was studied.

The ability of HIF relays to not operate under no—fault conditions (securi-
ty) was examined. Waveforms of high impedance faults as well as loads that

behave or appear like high impedance faults were collected and processed.

ii
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The detection parameters used in a number of existing high impedance fault
detection algorithms were extracted. The algorithms’ ability to discriminate
between faults and fault-like loads was tested. It was found that there are
loads that imitate high impedance faults, and that some of the existing de-

tection algorithms lack the security required under these load conditions.

The goal of the study was to develop a reliable prototype HIF detector ca-
pable of providing the required relay dependability (ability to trip when it
should), and security (ability to not trip when it shouldn’t).

High impedance fault detection methods were reviewed. No single detec-
tion method can detect all electrical conditions resulting from downed con-
ductor faults. Quite a few of the detection methods require extensive compu-
tations in the preprocessing stage to extract the features of the input sig-

nal(s). A criterion is then applied to obtain the detection parameters.

Afeed-forward three-layer artificial neural network (ANN) was trained by
high impedance fault, fault-like, and normal load current patterns, using
the back—propagation training algorithm. The neural network parameters
were embodied in a high impedance arcing fault detection algorithm. Line
current zero—crossing, and the width of current conduction period per—cycle
are the preprocessing required by the algorithm. The algorithm was tested
by traces of normal load current disturbed by currents of faults on dry and
wet grassy soil, arc welder, computer, fluorescent light, and sinusoidal
loads. The outcomes of this study indicated that the neural network was
able to reach a general solution of the problem, for the available training pat-
terns. The detector was able to identify fault events distorted by arcing

noise. It was also able to identify the no—fault conditions.
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The study suggests that further training with fault and load patterns
would increase the robustness of the novel detector; other detection meth-
ods operating in parallel with this algorithm would increase the relay reli-
ability; practical implementation would confirm the study results, and
could propose some modification to the detection algorithm(s) and/or the
pattern recognition neural network to suit the actual power system condi-

tions.
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Introduction

1.1. Statement of the Problem [1]2]3]/4]

Public safety and service continuity have been the hallmarks of utilities
operations since the beginning of widespread electric energy distribution.
Risk of public contact with energized conductors will continue as long as
power delivery exists. Human contact with an energized conductor can

cause injury or death.

1.1.1. Effects of Electricity on Humans

The human body, particularly the heart, is very vulnerable to electrical
current. Muscle contraction or paralysis, heart stoppage, and skin burns
can result from current flow through the body. These effects depend upon
the amount of current, length of time, and current path. Figure 1.1 illus-
trates how skin resistance and conductor voltage affect the amount of cur-
rent flow, and the effects of these currents on humans. When a person
touches a downed power line, current flows through his body to ground. De-
pending upon how contact is made, some of the current may flow through
his heart. Skin provides a resistance of 1500 to 5000 ohms. Skin puncture,
resulting from electric current flow burns, reduces the resistance to as low

as 500 ohms. A contact with a 7200 V conductor permits a current flow of

1
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Figure 1.1. Effects of electricity on humans [1].
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approximately 1.4 to 4.8 A. Ventricular fibrillation or cardiac standstill oc-

curs in less than one-sixtieth of a second.

1.1.2. Distribution System Faults
High Current Faults

The most common distribution system fault is the short circuit. This type
of fault involves contact of a phase conductor(s) and the neutral return, or
phase conductors together. The excessive current, resulting from short cir-
cuit faults, pushes the transmission lines above their thermal capabilities.
Possible destruction to the system could occur if the fault is not cleared. Pro-
tection of existing power systems against short circuits is done by relays and

fuses.

Low Current Faults

Faults on a distribution system, not involving normal power carrying
conductors, could produce an undetectable change in current flow in the
circuit. This type of fault is called a high impedance fault (HIF); the imped-
ance at the point of fault is high enough to limit the current flow to a normal
load value rather than to a fault level. High impedance faults often exhibit
arcing phenomena when no solid return path for the current is available.
These faults do not pose a direct threat to the whole integrity of the power
system. On the other hand, they present a source of threat to utilities’ cus-
tomers and personnel. Fire hazard, equipment damage, waste of energy,
service interruption, and the ensuing utility liability are results of such
faults. Figure 1.2 shows the damage resulting from the arcing of a downed
conductor on a wooden pallet. Protection against high impedance faults

comes mainly from a moral point of view, i.e. improving safety to persons.
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Figure 1.2. Damage resulting from arcing faults to a wooden pallet.

Frequent causes of high impedance, or downed conductor, faults are
contact with trees, excessive ice loading, vehicle collisions, people, and con-

tact of covered high voltage conductors with ground (e.g. earth) when a pin-

Figure 1.3. Scenario of a high impedance fault.
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hole break occurs in the conductor cover. A typical scenario of a HIF is
shown in Fig. 1.3 where a conductor of a distribution feeder has separated

and fallen on the earth surface below.

1.1.3. Fault Detection

The difficulty in detecting HIF, by conventional short circuit protection
devices, could be understood from the relationship of HIF current to over-
current device settings shown in Fig. 1.4. For a 1 per-unit maximum antici-
pated full load, the phase-relaying (overcurrent protection) is set at a rea-
sonable increment above the expected full load level: usually 125 to 200 %
of rated line current. Undetected HIF currents lie in the region unprotected
by overcurrent devices. Detection of HIF by lowering the phase-relaying set-
ting, say to operate at 75 to 125 % of expected load current level, would re-
sult in frequent, unnecessary service interruption. Since downed conductor

faults result from the contact of a single conductor to a high impedance

Average Maximum Phase
load level load level relay setting

V V V

———~

Current
k V j level

Unprotected region by overcurrent devices
( High impedance fault current )

Figure 1.4. Relation of high impedance fault current to overcurrent
device settings.
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grounded surface, e.g. earth, the use of phase imbalance protection
(ground-relaying) would shrink the unprotected region by overcurrent de-
vices down to 25 — 50 % of the phase-relaying setting. Sensitive ground-re-
laying, however, is an unreliable means of protection against HIF for sys-

tems with a high degree of imbalance.

High impedance faults could occur in utility systems as well as in indus-
trial power systems. The occurrence of such faults is common at voltages
such as 13.8 kV. The problem is even more acute at 2.4 to 4.8 kV because
the fault current magnitude decreases. Its incidence at distribution voltages
above 20 kV is low; however, downed conductors have been reported at 69

and 115 kV.

1.2. Previous Research Efforts in Arcing Faults
Detection
Arcing high impedance faults are downed conductor faults associated

with arcing. An amount of fault current flows into the system.

Carr [5]
A theoretical analysis by Carr showed that, on a grounded-Y-connected

system, a signal dependent only on the fault could be calculated by sum-
ming fixed proportions of the measured neutral and ground currents. The
proportioning constants were ratios of the line and ground impedances. If
the individual impedances changed due to ambient conditions, he sug-

gested afeedback path to automatically adjust the proportioning constants.

Broken conductors could be detected by monitoring the sequence volt-

ages at the load side of the line. The negative sequence voltage was prefer-
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able to the zero sequence voltage. The former is less dependent on the zero
sequence impedance which is dependent on grounding resistance. Commu-
nication links would be required, from the detection locations back to the

substation, to de-energize the faulted line.

Calhoun et al [6]

The ratio—ground-relay is a ground relay whose pickup level varies in-
versely proportionally to the feeder loading. Since the detection was based
on the imbalance ofline currents, the detection of fallen and broken conduc-

tors was possible.

The relay was commercially introduced in 1981. Later on, utilities which
installed the relay had to either completely remove it, or to put it in an alarm
mode. The problem of maintaining phase balance caused an unacceptable
number of false trips. Some causes of imbalance were single-phase switch-
ing, and blowing capacitor fuses. The use of this relay, even as a monitor,
required frequent phase current balancing, aggressive tree trimming sched-

ules, and a very structured and effective operator response.

Texas A&M University [7][8][9][10][11][12]
The research at Texas A&M University has played a leading role in the

detection of arcing high impedance faults using harmonic components of

the fault current.

® In afaulted system, a persistent increase in the high frequency compo-
nents (above 2 kHz) of the current over that of an unfaulted system was ob-
served [7]. This high frequency component is due to several strikes and re-
strikes in the air gaps, between the conductor and the high impedance

surface, prior to a stable arc being established. The Fast Fourier Transform
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(FFT) of the high frequency components, spikes, of the current over one

sin x

60 Hz cycle period takes a distribution. A spectral estimate, calcu-

lated as the average of each spectral line over a 300 power frequency cycle
record, was found to be unique for an arcing fault. The frequency domain
spectrum was approximately inversely proportional to the frequency. Nor-
mal system noisy loads would cause certain frequencies to be displayed in
their spectral estimate rather than the smooth frequency distribution of the
arcing faults. It was suggested that this method could be used to improve
system security against false trips by running it in the background of a fault

detector that implements more than a detection algorithm.

® In practical implementations [7][8], the summation of three feeder
phase currents was conditioned to sufficiently reject the 60 Hz signal while
also amplifying the 2 to 10 kHz components to a measurable level. The fil-
tered signal was sampled at the rate of 64 samples per—cycle. The raw data
were summed over an entire 60 Hz cycle. The average of these 64 data points
was referred to as the “energy” contained at any time in the high frequency
signal relative to the normal system signal. This method was named the “en-
ergy algorithm”. The term “energy” was not used as an absolute measure
of energy rather than a figure of merit that indicates the cumulative effect
of arc noise. When this average showed a 50 % increase for three out of five
consecutive cycles an event was detected. If 48 of the 260 cycles after an
event indicated a high frequency above threshold, the event was classified
as a fault. The threshold was adapted with ihe base high frequency signal

level on the feeder.
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® Field testing of this algorithm [7][9] showed that, for a given relay set-
tings, the relay effectiveness was much reduced if the level of the high fre-
quency component of the current was not enough to be detected. This oc-
curred when the conductor was on surfaces where the fault current was less
than 20 A peak. The relay also failed to detect faults of short duration: 1 to
2 seconds. Arc noise signal coupled from a faulted feeder to another un-
faulted feeder on the same bus; therefore, it was difficult for the relay to de-
termine the faulted line. The presence of grounded-Y-connected capacitor
banks on the feeder resulted in preventing the noise signal from travelling
to the detector. The use of tuning inductors on the capacitor banks to allow
the arcing fault signal to reach the substation was not effective for

1200 kVAR and larger capacitor banks.

® To overcome the poor propagation of the high frequency components of
the fault current past a capacitor bank, the technique was extended to in-
clude off-harmonic signals near 60 Hz [10]. Arcing causes non-synchro-
nous signals which can be differentiated readily from the synchronous 60
Hz and harmonics signals. While arcing faults produced only subtle
changes in the fundamental current, they caused substantial amplitude
changes in off-harmonic frequency components. Noise activity resulting
from switching transients produced insignificant variations in the off-har-
monic signals. Signal coupling to other feeders was expected to be greatly

attenuated, in contrast to high frequency signals.

Band-pass filters with steep roll-off, or a switched-capacitor comb filter
centered at 30, 90, 150, and 270 Hz was suggested to obtain the signals of

interest. The filter would reject the 60 Hz and harmonics simultaneously.
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The resulting signal would be further filtered to block direct current (dc) and
eliminate high frequency components. The remaining signal would be a wi-
de-band off-harmonic signal with a frequency range 10 to 300 Hz. The ener-
gy algorithm could then be applied to obtain the level of off~harmonic signal

in the system.

® Adetection algorithm [11], based on the random nature of arcing asso-
ciated with HIF, is activated once the 2 to 6 kHz harmonic “energy” in a cycle
deviates from an average by a certain predeﬁned percentage. The number
of transitions from arcing (high level of energy) to non-arcing (low level of
energy) during a short period of time (30 cycles) was counted. During the
same time, the number of adjacent cycles which have energies that differ
from each other by more than a certain threshold was also counted (to detect
faults with longer arcing bursts). If either counter exceeded its threshold
number, a fault was signalled. This algorithm was also sensitive to the level

of high frequency activity in the current signal.

e Theideas discussed above were integrated in [12]. The sampled current
signal was digitally filtered to extract a variety of signals: the high frequency
components (2 to 6 kHz); even, odd, and off-harmonics; and the positive,
negative and zero sequence components at the fundamental power frequen-
cy (60 Hz) of the current. The summation of the square of the filtered current
data samples, over an entire power frequency cycle, was calculated in a digi-
tal signal processor (DSP) chip to determine their “energy” level in that cycle.
The detection algorithm was implemented on a microprocessor based sys-
tem. This system provided time counters, lookup tables for weighting con-

stants, and the logic to update thresholds dynamically. A knowledge-based
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system (expert system) interacted with the microprocessor to combine algo-

rithmic and heuristic approaches for problem identification and solution.

The data analysis of this system showed that the detection parameters
were not only sensitive to the type of ground material but also to the mois-
ture content in the soil. It was also suggested that the faulted phase could
be identified as the high frequency component of the arc current occurred
at certain position on the voltage cycle, i.e. when the system voltage is equal

to the restrike voltage.

Kwon et al [13]

Along the same line, Kwon et al relied on the half-cycle asymmetry in the
high impedance fault current waveform to obtain a detection parameter. The
FFT of a 64 sample-per—cycle of the neutral current signal was taken. The
ratio between the “power” contained in the even harmonics (6% to 3229) to
the “power” contained in the odd harmonics (7% to 33™Y) was calculated:
note that for a sampling rate of 64 sample per cycle the highest harmonic
available would be the 315t[14]. The term “power” is similar to the term “en-
ergy” described earlier. This ratio was used as a detection parameter in an
algorithm similar to the one mentioned above. Testing of this algorithm
showed that its effectiveness dropped to 30 % as the fault current became

less than 20 A.

Ebron et al [15]
Ebron, Lubkeman, and White showed that the problem solution could

be achieved much faster if the detection parameters were parallel processed
by an artificial neural network (ANN) rather than by an expert system. A dis-

tribution feeder, capacitors, and induction motors fed from power electronic
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circuit were simulated using the Electro Magnetic Transient Program
(EMTP). The high impedance faults were simulated by switches connected
to impedance elements (of the order of load impedance). Data generated by
simulation were obtained by varying the size of motor loads, fault imped-
ance, and switching times. Twenty parameters were computed for each 512
sample-per—cycle-per-phase window to represent the status of the system
undergoing a transient. The magnitude of the fundamental, sequence and
harmonic components, as well as the “energy” over ten frequency bands of
the current were calculated, to extract the features of HIF and other switch-
ing transients occurring along the feeder. The results of the simulation are
available in reference [16]. It is doubtful that the simulated transient wave-

forms represents an arcing fault or a typical load-switching transient.

The extracted parameters were input to an ANN of 200 input nodes (20
nodes x 10 cycles), 200 first hidden layer nodes, 400 second hidden layer
nodes, and one output node. The network required 120,400 weights and
601 biases for full interconnection. The network learned from a 50-vector
training set in 38 iterations using the back—propagation algorithm. It is not

clear whether or not fault detection would require this network structure.

Hughes Aircraft Co. [17]

Hughes Aircraft Company designed a high impedance fault detector that
used the third harmonic current as a fault indicator. On a Y-connected sys-
tem, a fault was indicated if the relative phase—angle between one phase and
the other two phases suddenly changed by at least 15° concurrent with an

increase in single-phase fundamental current component of at least 15 A,
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and this condition persisted for at least 5 seconds. Detector evaluation

showed that it could trip under no—fault conditions.

Since phase relationship measurements on a A-connected circuit are
quite difficult, three third harmonic magnitude monitors were built for A-
connected circuits. A fault was indicated if a predetermined percentage in-
crease in the third harmonic current level concurrent with a single phase
increase in fundamental current of at least 15 A for at least 3 seconds. The
detector did not experience false trips in its evaluation period. In the evalua-
tion period of both relays there were no natufally occurring downed conduc-

tor faults.

Jeerings & Linders [4][18][19][20]

Based on their research on the nature of high impedance faults, Jeerings
and Linders characterized HIF as being highly resistive and nonlinear; con-
sequently, the low order harmonic currents generated at the fault will tend
to peak coincident with the voltage peaks, regardless of current magnitude
(the analysis was based on symmetrical waveforms). This characteristic is

not associated with any other single system phenomenon.

The third harmonic component of the fault current was separated from
the fundamental and other harmonics. The phasor value of the 3™ harmon-
ic was measured using magnitude and phase-angle detectors. The phasor
signal was averaged over a short and a long period of time. Short time aver-
aging was used for present signal determination. Long time averaging deter-
mined the 3" harmonic current level in the system. The fault harmonic cur-
rent magnitude may be erratic; therefore the difference between these

averages would contain information of any change in the third harmonic
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current in the network. A fault was indicated when this change lies within

a specific phasor window.

The third harmonic of the system voltage was processed similarly. It was
suggested that the phasor ratio between the change in the third harmonic
system voltage to the change in the third harmonic current, referred to as
the sink impedance, would determine whether the fault occurred upstream
or downstream from the point of measurement, and would add to the securi-
ty (relay’s ability to not trip when it shouldn’t) of the system. However, even
if the normal power system may contain some nominal level of third har-
monic voltage, the harmonic voltage may not change. The measurement of
the sink impedance will not yield any additional information over that

gained from monitoring the third harmonic current only.

1.3. Summary of Fault Conditions and Detection
Methods [2] |

High impedance faults may not be associated with arcing. To give a com-
plete picture of the problem, the possible electrical conditions of high imped-

ance faults and fault detection methods are summarized in this section.

1.3.1. Electrical Conditions of High Impedance Faults

A downed conductor can result in eight basic electrical conditions that

can be grouped as follows :

1. Broken Conductors
A broken conductor can result in four types of electrical condi-

tions:

i. no ground contact or a very high impedance to ground.
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ii. ground contact on the load side of the break with no back

feed.

iii. ground contact on the load side of the break with some

loads beyond the break connected phase-to—phase.
iv. ground contact on the source side of the break.
2. Sagging or Fallen Conductors

A broken pole or pole hardware could result in a sagging conduc-

tor. The line current continues to flow. The conductor could either:

i. have no ground contact or a very high impedance to

ground,
ii. be in contact with a low impedance ground.

3. Contact by Foreign Object
The line is fully operational. The possibilities are:

i. line contact by an insulated or a very high impedance ob-

ject, such as a rubber-tired crane.
ii. low impedance ground contact, such as a tree.

1.3.2. Summary of Detection Methods

The detection schemes proposed in the last few years could be classified

as follows:

1. Detection Based on 60 Hz Measurements

This approach is based on measuring 60 Hz quantities on the
source side of the fault location. Load and ground current levels,
and sequence voltages and currents are the measured quantities.

Proportional relaying is an example of this category.
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. Loss of Voltage

A broken conductor could be detected by monitoring the voltage
on the load side of the break. Communication is required between

the load side and the substation. |

. Detection Based on non-60 Hz Measurements

The noise and harmonics produced by arcing in downed conduc-
tor faults have been used as a signature in many algorithms such
as the 2 to 6 kHz signal, off-harmonic signals near 60 Hz, third

harmonic current, and even and odd harmonics.

. Imposed Signals
A pulse echo could be used to identify the end of a conductor. A

sudden change in the conductor’s end location indicates a con-
ductor break. Another approach injects a high frequency signal

and measures the response of the line.

. Fault Enhancement

The method is to turn an undetectable low current fault into a fault
that is detectable by conventional overcurrent devices. One ap-
proach connects 2 to 3 metallic rods, perpendicularly oriented to
the line, to the neutral conductor on each span. A falling conductor
contact with one of these rods is highly probable. The resulting
high current ground fault is easily detected.

Each detection method is limited to detect only some types of fault. This

limitation can be understood from Table 1.1; therefore, a multi-technique

high impedance fault detector is expected to be a logical approach to a

successful high impedance fault relay.
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Type of Fault Detection Method
60 Hz Voltage | Noise & | Imposed | Fault
Measure- Loss Harmon- | Signals | Enhanc-
ments ics ement
1. Broken Conductors
no ground contact. X X X
load side ground contact. X X X
as above with ph-ph load. X X X X
source side ground contact. b:4 b'< X X b4
2. Sagging Conductors
no ground contact. X
ground contact. X X b'e X
3. Foreign Contact
very high impedance. X X X
low impedance. x X b.

Table 1.1. Limitations of fault detection methods to the type of faults
they detect. (x = detection is probable) [2].

1.4. Research Objectives

The research objectives are to find an alternative approach to the detec-
tion of high impedance arcing faults, to design an algorithm of the fault de-
tector, and to write the software that could be practically implemented in an
integrated relaying hardware. The designed detector should be able to dis-
tinguish between faults and other system loads that could mimic arcing

faults.

The following chapters give details of the study conducted to achieve the

research goal.




Characteristics of High
Impedance Arcing Faults

To study the nature of high impedance faults, field tests and a series of
high voltage laboratory tests were conducted for data collection of fault cur-

rent and voltage signals.

2.1. Field Tests

2.1.1. Test Circuit
The University of Manitoba and Manitoba Hydro conducted staged fault

tests in a field two miles east of Sperling, Manitoba, in September of
1989 [21]. The test arrangement is illustrated in Fig. 2.1. The source of pow-
er was the 7.5 MVA, 66/25 kV, 65/173 A transformer bank at Carman sub-
station. The bank impedance is 6 %. The maximum load at the substation
is 60 A. The fault level at the substation is 100 MVA for a three-phase fault.
The corresponding fault current on the 25 kV side is 2300 A at a 100 MVA
base, considering 0.2 per—unit system impedance. Substation protection is
a three-phase oil circuit recloser (OCR). Recloser tripping is activated by
phase overcurrent relays. The ground overcurrent relay is not in service.
The phase-relaying is set at 200 A+ 10 %. On the high voltage side of the

transformer, 125 A fuses are used for backup protection.

The fault site was 32 circuit kilometers east of Carman substation. The

first 20 km of the circuit is a three—phase line. The line normal load current

18
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Figure 2.1. Staged high impedance fault field test arrangement.

is 30 A. The remaining part of the circuit is a single-phase single-conductor

line. The normal load current on this portion of the circuit varies between

Oto 10 A. The short circuit level at fault location is 268 A. The line protection

is a 140 A OCR 10 km east of Carman, and a 25 A fuse to protect the single—

phase line. Test circuit data are shown in Fig. 2.2.
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Figure 2.2, Test circuit data.

During staged fault tests, the trip level of the substation OCR was
doubled to 400 A, the 140 A OCR and the 25 A fuse protection were dis-
abled, and an OCR, set to trip at 100 A with one second delay, was installed
at the fault location. Figure 2.3 is a photograph of the fault location, at
Sperling, showing the conductor to be dropped to ground to initiate faults.

Figure 2.3. Site of the high impedqnce fault field tests.
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2.1.2. Instrumentation

The instrumentation supplied by the University of Manitoba for data ac-
quisition were tape recorders of band width dc (direct current) to 20 kHz,
and oscilloscopes with output amplifiers. The oscilloscope input channels
have a band width (BW) of dc to 20 MHz—input signal from a 50 Q termi-
nated source, inputresistance of 1 MQ, and input capacitance of 7.5 pF. The
output channels BW is dc to 10 MHz, and produce 75 mVy,/div from ap-
proximately 600 Q source. The gain of the oscilloscope input amplifiers was
adjusted to adapt the signal level input to the tape recorders. Manitoba Hy-
dro used high speed ultra-violet recorders (UVR) to record the current and
voltage waveforms during tests. Figure 2.4 shows a photograph of the Uni-

versity of Manitoba data acquisition system at Carman substation.

Figure 2.4. Instrumentation at Carman substation.

Currents at the substation were sensed using the 200/5 A current trans-
formers (ct’s) enclosed in the three-phase OCR. The voltage signals were ob-

tained from the 14,400/120 V substation service transformers. At the fault
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location a 300/5 A current transformer, BW dc to 50 kHz, and a
14,400/120 V potential transformer (pt), BW dc to 6 kHz, were used as cur-
rent and voltage transducers respectively. The BW of these transformers
were determined in the laboratory using a signal generator driving a power
amplifier. The amplifier capability was limited by its transformer. These BWs
could be exaggerated; however, the BW of interest in data acquisition was

dec to 1 kHz.

The burdens of the ct’s were 120 mV /A current-to-voltage transformers,
BW dc to 10 kHz, shown in Fig. 2.5. Voltage sensors of ratio 25:1 (40 mV/V
transformers) were used with the pt’s: BW dc to 15 kHz.

Figure 2.5. Current sensors used as burdens of current transformers.
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2.1.3. Observations

The current and voltage waveforms of a fault on the field soil are shown
in Fig. 2.6. The photograph is taken off a dc to 500 kHz storage scope. The
measured voltage is the voltage between the high voltage conductor and an
earth rod driven at the fault location (pole 3 in Fig. 2.1). The impedance at
the point of fault was not high enough to limit the fault current to the unpro-
tected region by the 100 A OCR at the fault site. Fault current record length
averaged between 6 to 12 cycles. The current waveforms shown in Fig. 2.6
had an initial value of 55 A peak. The current gradually increased in magni-
tude to 165 A peak after three cycles. Two cycles thereafter, the OCR tripped.
It was noticed that the fault voltage decreased and became flat topped as the
current magnitude increased; the fault current waveform became nearly si-
nusoidal. The phase relationship was mainly resistive in contrast with that

of short circuit faults, where the arc is ignited in a largely inductive circuit.

Figure 2.6. High impedance arcing fault current and voltage
waveforms.
Top: current 275 Aldiv. Bottom: voltage 25 EV/div.
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In another test, the energized conductor was dropped on a wooden pallet,
Fig. 1.2, the arc elongated and caused a 17 cm burn on the wood. This could
be due to magnetic forces (motor action) tending to move the arc away from

the source [22].

Considering the substation and line normal loads, and the fact that
ground protection is not active, a downed power line on the test circuit is
extremely dangerous; the fault current could vary between 0 and 200 A at
medium distribution voltage [1]. This raises a question upon the degree of

safety, regarding HIF, at all similar locations of Manitoba Hydro’s network.

2.2. Laboratory Tests

2.2.1. Setup
A high voltage laboratory setup, Fig. 2.7, was devised at the University

of Manitoba for further investigations and data collection of high impedance
faults under controlled conditions. The 25 kVA, 240/7200 V, 105/3.5 A,
1.5 % impedance, distribution transformer used in laboratory tests was en-
ergized from a 100 A, 208V, 60 Hz supply via a starting resistor. A bare con-
ductor—one end connected to the high voltage side of the transformer and
the other to an insulated rope—was dropped to ground to initiate a fault.
The ground was a pile of soil placed on a metal pan. The ground return was
completed through a variable current limiting resistor. The current and volt-
age signals were delivered to a data acquisition system from a 300/5 A cur-
rent transformer, and a 10 000/10 V high voltage probe: BW dc to 1 MHz
at 20 kV peak-to—peak. A photograph of the laboratory setup is shown in
Fig. 2.8. Arcing associated with HIF resulted in energy dissipation in the
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Figure 2.7. Circuit diagram of staged high impedance fault

laboratory tests.

Figure 2.8. Photograph of the high voltage laboratory setup.
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form of heat that turned the moisture in the soil into steam and burned the

grass into smoke: Fig. 2.9.

Figure 2.9. Arcing associated with HIF.,
2.2.2, Data Acquisition System
The data acquisition system was composed of an analog-to—digital con-

verter (A/D), anti-aliasing filters (AAF), and an oscilloscope with output am-
plifiers: see Fig. 2.7.

The A/D converter board, installed in a personal computer, is controlled
and activated through Lotus-123™", The board was set to sample at a rate
of 32 samples per cycle, i.e. a sampling frequency of 1920 Hz, which is the
rate applicable to many modern practical microprocessor based relays. The
data were quantized to + 2048 bits. Board input impedance is 1 GQ. The cur-
rent and voltage signals were collected simultaneously and stored in a work-
sheet. The personal computer was able to store 4.3 seconds of data per-run

at the required sampling rate.

* Lotus—123™ s a trademark of Lotus Development Corporation
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Resistor-capacitor (RC) anti-aliasing filters, R=47 kQ and C=0.0033 pF,
were used to prevent folding of high frequency signals around the Nyquist
frequency as low frequency signals. The filters were set at 1.0 kHz cut-off
frequency and 20 dB/decade attenuation. The input impedance of the A/D
board, and the source impedance of the oscilloscope output channels have
a negligible effect on the filter characteristic. The oscilloscope adapted dif-
ferent transducers to the selected input signal level of the A/D converter
board, provided an on-line display of the measured signals, and isolated the

computer from any unexpected hazard that could occur in the test circuit.

2.2.3. Observations

A photograph of a typical fault current waveform obtained in a laboratory
test is shown in Fig. 2.10. At the passage of current through zero, an off-
current conduction period is observed for approximately 2 ms until the volt-
age magnitude becomes large enough to break down the small air gaps be-

tween the conductor and earth, and initiate arcs.

Figure 2.10. Laboratory test fault current waveform: 2.5 A/div.
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2.3. Voltage — Current Characteristic of High
Impedance Arcing Faults [2]j4][7][22][23][24]

The voltage-current (v-i) characteristic of an arc is entirely different from
that of a solid conductor. Whereas the v—i characteristic across a conductor
is linear (the voltage across the conductor is proportional to the current
through it), the current flow in an arc has a different mechanism. Moreover,
the arcing phenomenon associated with downed power lines deviates from
that with conductor-to-conductor faults, or across circuit breaker poles.
Compared to conductor-to-conductor faults, arcing in high impedance
faults occurs in a largely resistive circuit. It is characterized by short arc
length and small current magnitude. HIF could persist for a long period of
time resulting in a random arc behavior. The v-i characteristic of the high

impedance arcing fault of Fig. 2.6 is shown in Fig. 2.11.

D

Figure 2.11. Voltage (v) — current (i) characteristic of an arcing fault.
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2.3.1. Arcing Mechanism

Consider an energized power line falling to the earth surface below. At
the initial contact of the conductor with earth, Fig. 2.12(a), the voltage gradi-
ent at the conductor-soil interface is large. Local ionization results. The gap
conducts as the voltage across it reaches the breakdown voltage Vi, at cur-
rent zero and time Ty: Fig. 2.13. The small contact area, via the arc tip in
Fig. 2.12(b), accounts for the observed reduced initial current of HIF. The
conductance of the air decreases as the current of the established arc in-

creases. The voltage drops to Vg Fig. 2.13.

A thermionic emission process starts to build up as the electric field be-
tween the electrodes, conductor and earth, emits electrons from the cathode
spot. The liberated electrons ionize neutral molecules electrically. These
ions heat up the electrodes as they fly towards both of them under the elec-
tric field strength effect. Typical values of temperature at the arcing spot are
about: 2000 to 3000 °C for metallic electrodes; 3000 to 4000 °C for carbon
electrodes; and 5000 to 8000 °C in the gas column [24]. The conductive lay-
er of the soil moves away from the conductor. The arc penetrates the earth
between the soil particles enlarging the effective contact between the con-
ductor and the ground: Fig. 2.12(c). The increase in the effective contact
area between the conductor and the earth is a source of nonlinearity in arc-
ing HIF. It is also accounted as the source of high impedance in these faults.
The current reaches its maximum, at time Ty, as the applied voltage be-
comes equal to the arc voltage: Fig. 2.13. The current then starts to decrease
and returns to zero as the balance between the rate of heat generation of

arcing, and the heat transferred to the environment is disturbed. The volt-
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age between the electrodes of a burning arc (Vu), Fig. 2.13, drops with this
decreasing current. The arc is extinguished at time Te. At this stage either
the moisture will defuse back into the dry soil and the arc will be re-ignited,
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Figure 2.12. Arc formation in a downed power line [23].
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Figure 2.13. Physics of ac arc: (a) waveforms. (b) v-i characteristic.
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on a different path than the previous, once the front edge of the moist (con-
ductive) layer is close enough to the high voltage electrode. Or, another point
which was previously inactive may start arcing if the local field has in-

creased due to changes in the potential distribution.

The resulting voltage—current characteristic of an arcing HIF, therefore,
consists of a branch for increasing current and another for decreasing cur-
rent: Figures 2.11 and 2.13. This arc hysteresis is due to the heat capacity
of the conductor, earth, and arc gas. The temperature of arc column and
electrodes, and thus the arc voltage, correspond still to preceding conditions
of the current rather than following the insténtaneous conditions. Because
of the poor heat conduction of the earth soil, the two branches of the charac-
teristic shown in Fig. 2.11 are widely different.

The arc heat is enough to fuse sand and silica in the soil into a glass-like
substance, silicon carbide: Fig. 2.12(d). These glass-like tubes, shown in
Fig. 2.14, reach alength of 5 cm. They were found to have a linear resistance

of the order of 2 to 100 kQ/m [23].

@:

Figure 2.14. Arc fuses sand and silica into glass-like tubes.
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The nonlinearity of the arc and conductor-soil interface, the develop-
ment of silicon carbide tubes, the generation of smoke and steam, the
bounce of the conductor on the ground surface, the movement of the soil
particles, the moisture content in the soil, and the ground material itself in-

teract in a complex arrangement to produce the overall v-i characteristic.

Faults on Dry and Wet Soil

The shape of the characteristic changes with the arc geometry and the
heat transfer conditions. Both elements are affected by the moisture content
of the soil. Faults on drier soil require higher ignition voltage to ignite the
arc. The effective air gap length is larger than that of faults on wet soil; there-
fore, the current waveform would be more distorted for faults on dry soil
compared with an ordinary sine curve. The higher the arc voltage becomes
the more distorted the arc current is; the interval through which the current

stays at zero, as shown in Fig. 2.10, is longer.

On wetter soil, the conductor does almost have a solid contact with the
soil. The fault current starts sinusoidal. As the heat evaporates the moisture
at the soil surface, air gaps are created at the conductor—ground interface
and arcs are triggered. The arc length is short and the arc voltage is small.
As time goes on, the steam increases the soil porosity, the arc starts to prop-
agate in the soil, the arc voltage increases, and the current waveform be-
comes distorted.

2.3.2. Fault Current Asymmetry and Randomness
Behavior [2][23]

It has been observed that the magnitude of the fault current may vary

greatly from one cycle to the other, and that the positive half-cycles of the
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current may be greater in magnitude than the negative half-cycles, or vice

versa. Figure 2.15 illustrates these phenomena.

HIGH IMPEDANCE FAULT

CURRENT (PU)

T T i T | T T
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Figure 2.15. Asymmetry and randomness in HIF current waveform.

Fault current asymmetry and randomness could be explained as a result
of arcing at the fault. The heat produced by arcing converts the moisture in
the soil into steam. The steam expands and displaces soil which rearranges
the characteristics of the air gaps surrounding the downed conductor. As
a result, the current in the next arcing cycle could be quite different from
that in the previous one. Furthermore, the silicon carbide tubes accumulate
around the conductor; in the long run, the conductor could be insulated
from the ground. The fault current magnitude, therefore, could reduce and

make the situation worse. However, the impurity in the fused material could
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on the contrary provide a solid path for the current, and the fault current

would increase instead.

The asymmetry of the fault current in some cases could be as a result
of the rectifying action exhibited by the soil. The glass-like tubes surround-
ing the conductor act as a hot cathodic spot that emits electrons. The voltage
drop across the cathode spots is small when the conductor is positive:
Fig. 2.16. The amount of moisture in the soil and the packing of its particles
affect the values of the break down (onset) vpltage of the gaps between the
energized conductor and the earth. Less densely packed (drier) soil yields
higher onset voltages and, therefore, a larger degree of asymmetry. Even or-

der harmonics are generated on account of this asymmetry.

Voltage

+

Anode Arc Cathode

Figure 2.16. Voltage distribution between arc electrodes.
U2 anode drop, v.: cathode drop, vi: arc drop [24].

2.3.3. Faults on Snow Covered Ground

High voltage lines could be downed in the winter time due to ice loading

on the conductors. The conductor and its supports could experience a me-
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chanical stress beyond their design limits. Staged HIF tests were conducted
in the high voltage laboratory to investigate downed power lines on a snow

covered ground.

The soil was subjected to the winter climate during the period of Decem-
ber to February, where the temperature falls below —20 °C. The mobile tray
was brought to the laboratory and a downed conductor fault was staged
promptly. The energized conductor lay on the ground showing neither visual
nor measurable indication of arcing. The energized conductor looked quite
harmless: Fig. 2.17. This indicates how downed conductor faults on snow

covered surfaces could be extremely dangerous.

Figure 2.17. Fault on a snow covered ground.

The cold temperature produced a frozen layer at the surface of the soil;
together with the snow cover, a perfect insulator was formed on top of the
soil capable of insulating a 7200 V conductor. Even if the soil was not frozen,
but the snow cover was thick or densely packed, the phenomenon should
still be expected. This situation could last for a long period of time before the

spring comes. Or (if lucky), a break occurs in the frozen layer, due to the
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weight of the fallen conductor, and small arcs start to heat the contact area
and puncture the insulation layer. It may take a while before the amount

of fault current becomes significant.

2.4. Conclusion

The results obtained from the high voltagé laboratory downed power line
model were in agreement not only with the field test results but also with
data published in the literature by other institutions and research groups.
The power limitation of the test transformer forced the use of current limit-
ing resistor in the fault circuit. However, the arc model was still justified.
This validated the laboratory model, and established a credible source of
data acquisition to launch further investigations toward solving the high im-

pedance arcing faults problem.



Security Testing of High Imped-
ance Fault Detectors

The primary motivation for high impedance fault detection is to improve
safety rather than protecting equipment or enhancing system performance.
The action taken to improve safety may be the same as that used in overcur-
rent detection: de-energize the affected portion of the circuit. Sensitive fault
detection can impact the number and duration of outages on a feeder. One
aspect of utilities’ design goals in a high impedance fault detector is correct
operation; especially, the detector should not falsely indicate the presence
of a fault when there is none. A utility would prefer a detector failing to trip

for some high impedance faults than accepting nuisance trips [2].

In this chapter the susceptance of existing high impedance faults detec-
tion algorithms to operate under no-fault conditions is investigated [25].
The objective of this study is to give a newer insight into improving high im-

pedance fault relaying.

3.1. Introduction

High impedance faults (HIF) are a persistent problem on power system
distribution lines because the current may be too small to be detected by

conventional means.

Several high impedance fault detection schemes, mostly involving micro-

processor algorithms, have been proposed or implemented. Many detectors

37
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have been tested for dependability (ability to trip when they should), but few
have been tested for security (ability to not trip when they shouldn’t). The
basis for all of the algorithm designs is some kind of waveform discrimina-
tion, involving for example the Fast Fourier Transform (FFT), or a combina-

tion of these interacting with a knowledge-based environment.

It was anticipated that loads such as arc welders, computers, and fluores-
cent lamps would share some characteristic features with HIF. These loads

are referred to here as “high impedance fault-like loads” (HIFLL).

A variety of such common load waveforms was collected using a com-
puter-based data acquisition system. The security of two existing algo-
rithms [13][20] was examined for high impedance faults on dry and wet soil,

arc welding machine, computer, and fluorescent lighting loads.

3.2. Data Collection

3.2.1. Laboratory Tests

High impedance fault data were collected using the model HIF setup
shown in Fig. 2.7. Tests on dry soil were conducted with the current limiting
resistance shorted. In wet soil tests, a 660 Q resistor was inserted in the

fault circuit to limit the fault current to the circuit rating.

The high impedance fault-like loads considered were:

1. Arc Welding Machine, rated 45.5 A, 230 Vy;, 225 A arc current,

1.
8

2. Computer, 5.0 A, 120 Viy.

steel rod type 6013.

3. Fluorescent Light, 15.0 A, 208 Vy;.
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Current and voltage signals of HIFLL were sensed usinga 1000/ 1 clip—on
ammeter, BW 10 Hz to 50 kHz, and a 10/ 1 voltage probe, BW dc to 10 MHz,
connecting the instrument transformer secondary circuits to the data ac-

quisition system shown in Fig. 2.7.

3.2.2. Waveforms

The per—unit values of the actual phase current and voltage signals were
calculated from the collected data using conversion formulas. The conver-
sion factors depend on the base values of the apparatus used and the dc
offset of the oscilloscope. The current and voltage base values of a load are
the peak rated current and the peak rated phase voltage of that load.

Table 3.1 gives a list of the base values used in each case.

Case study Base current (A) Base voltage (V)
HIF 3.5 V2 7200 V2
Arc welder 45.5 V2 132 V2
Computer 5.0 V2 120 V2
Fluorescent 15.0 V2 120 V2

Table 3.1. Current and voltage base values.

The nature of high impedance faults and fault-like loads could be under-
stood from the voltage and current waveforms, Fig. 3.1, and the correspond-

ing long-time current traces shown in Fig. 3.2.

The behavior of “high impedance fault current”, Figures 3.1 and 3.2, is
affected by the surface conditions. A fault on dry soil is characterized by un-
symmetrical half~cycles, short current flow interval per half cycle, and a

large degree of randomness. This is in contrast to a fault on wet soil. The
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Figure 3.1. Current and voltage waveforms of HIF and HIFLL.

degree of dryness or wetness and the surface conditions would result in a

different combination of these features for a given ground material.

The “arc welding machine current” is composed of two components:

namely, the welding transformer magnetizing current and the arc current.
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Figure 3.2. Current traces of HIF and HIFLL.

The arc current level modifies the waveform of the total welder current. The

curve shape of the arc current is similar to that of an arcing fault except that

the arc is burning in an inductive circuit. Short arc length is a characteristic

common to both an arc welder and a HIF. Compared to the fault on wet soil,

Fig. 3.1, the arc welder has a comparable current flow period per half-cycle.
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The “computer current”, Fig. 3.1, shows similarity to that of fault on dry
soil. However, the narrower and symmetrical peaks in each half-cycle are
distinctive. The periodic variation in the current trace is due to the cooling

fan in the computer unit.

The “fluorescent lighting load” represents a widely used non-linear load.
Fluorescent tubes follow the same rules of arcing as in an inductive cir-
cuit [24]. In order to avoid excessive flicker, they should not show any
marked interruption of current as seen in Fig. 3.1. Waveform distortion sug-

gests that this load contains harmonics used in HIF detection.

3.3. Data Processing

The HIF detection algorithms to be examined were the third harmonic

phasor algorithm, and the even-to-odd harmonics power algorithm.

3.3.1. Third Harmonic Phasor Algorithm [20]

The third harmonic phasor algorithm responds to the vectorial change
in the third harmonic current. The value (Value) of the third harmonic cur-
rent is calculated each power-frequency cycle. The phasor difference be-
tween a short and a long time exponential average (Avg), of 0.1 and 0.9 time
constants “t” respectively, equation (3.1), is determined. The relay operates
when the detection signal lies within a predefined phasor window. The cur-
rent magnitude window is set depending on the state of the system. The pha-
se—angle window limits are 170 to 335 third harmonic degrees, lagging the

60 Hz substation voltage.
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3.3.2. Even-to-Odd Harmonics Power Algorithm [13]
The even—to—odd harmonics power algorithm calculates the ratio R._, be-

tween the sum of “powers” P contained in the 6%, 8t .. 328d harmonic
to the sum of “powers” contained in the 7%, 9t . 33" harmonic, each
power frequency cycle: equation (3.2). The term “power” is used as an indi-
cation of arcing rather than an absolute measure of power. The detection

threshold level is 1.5.

32

> P

Roo = =58 (3.2)
33

DI &
0=7,9
The “power” contained in a harmonic per—cycle was calculated by squar-
ing the harmonic magnitude. Considering the sampling rate of 32 samples
per—cycle, equation (3.2) was modified to equation (3.3); the highest har-
monic available is the 15%, Scaling factors of “100” are added for data pro-

cessing reasons. To avoid calculation errors, the ratio R, , was set to “0” if

either the nominator or the denominator of equation (3.3) is less than “1”.

14
> (e*100

Reo = @‘28 (3.3)
1 .

Y (,*100)°

o=7,9

)2

The necessary data processing required the Fast Fourier Transform tak-
en for the current and the voltage signals each cycle. Appendix B lists the

computer program, in MathCAD™" software and notation, used in testing

* MathCAD™ is a trademark of MathSoft, Inc.
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the security of HIF detectors. The resulting vector of coefficients ¢ for the

FFT of an n element real data vector v is [26]

n
> v erli/mk (3.4)
k=1

O
1
5=
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where i is the imaginary unit, jand k are the indexes of the vector of coeffi-
cients and the data vector respectively. Figure 3.3 is an example illustrating
the time and frequency domain of the signal i(t) = sin(wt) + 0.5sin(3(wt-7 / 9)).
In the frequency domain, the FFT uses each harmonic as the 360° base

when calculating the phase displacement.

The use of RC anti-aliasing filters, in the laboratory tests, produced a
phase-shift depending on the harmonic order. The amount of phase-shift
compensation for the 3™ harmonic current with respect to the fundamental

harmonic of the voltage is + 6.77° at 1 kHz filter cut—off frequency.

The FFT was calculated for the current waveforms of Fig. 3.1. The fre-
quency spectrum of the high impedance faults, and the fault-like loads are
shown in Figures 3.4 and 3.5 respectively. It is clear that the distorted cur-
rent waveforms result in spectrarich in harmonics. Because of the changing
magnitude of the current waveform of fault on dry soil, the FFT of the three
cycles shown in Fig. 3.1 was calculated; the results are illustrated in

Fig. 3.6.

The arc welder, Fig. 3.4, is difficult to discriminate from arcing faults.
The odd harmonics of fault on wet soil, computer and fluorescent light
loads, Fig. 3.5, are dominating the even harmonics. This is because of cur-
rent half-cycle symmetry. The Fourier analysis shows for fault on dry soil,
Fig. 3.6, that the frequency spectrum varies from one cycle to the other. This

variation accompanies a phenomenon of a random nature.
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3.4. Results

The current traces illustrated in Fig. 3.2 were those on which the algo-
rithms were tested. Each trace is composed of a 20 % artificial resistive load
plus the fault or the fault-like load current. The artificial resistive load signal
was obtained by multiplying the voltage samples by 0.2.

3.4.1. Third Harmonic Phasor Algorithm

The change in the 3™ harmonic current magnitude and phase is shown
in Figures 3.7 and 3.8 respectively. In the first few cycles of normal load, a
lack of 3™ harmonic current change is observed; the change in 3" harmonic
current component of the arc welder transformer magnetizing current
shrank to a negligible value within half a second.

A sudden change is noticed at the instant of fault or fault-like load appli-
cation. Third harmonic current exists in all cases. The use of the exponen-
tial averaging provides adequate follow up of the randomness in the wave-
forms as well as the trends in the 3™ harmonic ambient. It has also
emphasized that the randomness exhibited by the arc welder is more than
that of the fault on wet soil. These results sﬁpport the observations on the

waveforms shown in Figures 3.1 and 3.2.

In contrast to the fault on wet soil, the random burst nature of the arc
on dry soil results in a noticeable variation in the 3*¢ harmonic current mag-
nitude change. Once the arc current remains at almost a constant level, the
magnitude change becomes in the same order of magnitude as in the re-
maining cases. The ambient 3™ harmonic magnitude is in the order of 1
to 2 % of the base value of fault or fault-like load current. Unless the fault

has a high degree of randomness, the 3’ harmonic magnitude change is
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Figure 3.7. Magnitude of the 3" harmonic current change.
insignificant; therefore, the use of this quantity as a detection parameter

seems to be unreliable.

The phase” of the 3™ harmonic current change, Fig. 3.8, varies erratical-

ly in the HIF and arc welder events. For fault on dry soil, the phase starts

* Positive degrees are lagging the reference 60 Hz voltage, and negative degrees are leading.
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Figure 3.8. Phase of the 3™ harmonic current change.

at-150°,1i.e. 150°leading or 210°lagging the 60 Hz voltage. A few cycles later
the phase begins to vary widely between 150° lag and 150° lead, stays
around 0° for half a second, then back again to its erratic variation. A similar
description of phase behavior could be given to the fault on wet soil and the

arc welder, where the phase variation lies within the same window limits.
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The phase-angle trend of the computer and the fluorescent light loads is
clear. It is reaching an average value of 100° lag for the computer and 100°
lead, i.e. 260° lag for the fluorescent light. The phase angle window sug-
gested in [20] would result in relay alarm in all cases except for the computer
load. In the long run, it is expected that the change in 3™ harmonic current
in the fluorescent light case would diminish. This would still leave the arc

welder as a load likely to be confused with high impedance faults.

3.4.2. Even-to-Odd Harmonics Power Algorithm

The results of testing the even-to-odd harmonics power algorithm are
shown in Fig. 3.9. The results are in agreement with the early discussion
of the Fourier Analysis of the current waveforms. A similarity is noticed be-
tween the fault on dry soil and the arc welder. Another similarity is observed

between the fault on wet soil, the computer, and the fluorescent light loads.

Since the number of harmonics used in the testing algorithm were less
than that in the original algorithm, judgement on the performance of this
detection method could not be perfectly justified. Nevertheless, the detec-
tion threshold could be lowered to 0.75, from 1.5 [13], to compensate for the
missing harmonics. The results indicate that it is doubtful for a relay based
on this algorithm to not signal a fault for an arc welder load. It is certain that
a fault on wet soil will not be detected. For a fault on dry soil, if the degree
of half-cycle asymmetry is not enough to generate a suitable amount of
even—to—-odd harmonics, the fault will not be sensed using this detection cri-

terion.
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3.5. Toward a Solution of the Problem

Patterns for current waveforms, for the various circumstances already

described, are distinguishable by the human brain. Therefore, these pat-

terns should be usable by an intelligent system as “fingerprints” for the cor-

responding disturbances in the system. The advances in neurocomputing
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in pattern recognition motivated the use of artificial neural networks ap-
proach in designing an arcing fault detector, as described in the following

chapters.



Artificial Neural Networks

Artificial neural networks (ANN) are computational structures modelled
on the biological nervous system. The research on ANN is motivated by the
fact that the brain outperforms modern digital computers in pattern recog-
nition and classification of real world data in the presence of a noisy and
distorting environment, and modelling the biological nervous system func-
tion using man-made machines increases understanding of that biological
function. The following sections gives an overview on the background of arti-
ficial neural networks, details of the high impedance fault pattern identifica-
tion ANN, and the back-propagation learning algorithm.

4.1. Overview of the Biological Nervous System [27][28]

4.1.1. Structure

The fundamental building block of the nervous system is the neuron:
Fig. 4.1. The different shapes, sizes and lengths in which a neuron may exist
are important to the function and utility of neurons. Neurons are imbedded
in an aqueous solution of small ions. The selective permeability of a neuron
to these ions establishes a negative electrical potential of some tens of milli-
volts. The soma is the round central cell body of the neuron (5 to 100 um in

diameter).

55
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(Cortex) (Retina)
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Spine apparatus
Spine
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Figure 4.1. Fundamental components of biological neural networks.
Top: two types of neurons. Bottom left: neuron—to-neuron connection.
Bottom right: five neurons performing a small neural network [27].

The axonacts as the cell output. The axon, electrically active, is attached
to the soma and produces the pulses emitted by the neuron. The electrically
passive dendrites receive electrochemical input signals from other neuron
axons. Axons and dendrites are of the order of 1 um in diameter. The axon
terminals form a connection, synapse, which almost touches the dendrites
of other target neurons. The synaptic gap, shown in the bottom left of
Fig. 4.1, is the space between the two cells:.about 0.01 pum.
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4.1.2. Communication

Neurons communicate to one another by transferring electrical energy
along the axon to the axon terminals. Neurotransmitters, specific chemicals
released by the pulse on the pre-synaptic side of the synapse, carries the
signal across the Synaptic gap to the next cell. On the receiving or the post-—
synaptic side of the synapse, the neurotransmitters bind to specific receptor
molecules, opening ionic channels and changing the electrochemical poten-
tial. The magnitude of this change is determined by many factors local to the
synapse such as the amount of transmitter' released on the pre-synaptic
side, and the number of receptor molecules on the post-synaptic side. These
sites of neuron—to-neuron communication are capable of changing a den-
drite’s local potential in a positive or negative directions, depending on the
pulse it transmits. These factors can change with time, thus, changing the
effectiveness or “strength” of the synapse. This process takes about 0.1 to
0.2 ms of time, which is a long time by electronics standards, Itis not known
how many of the thousands of Synapses on a cell are strong or even func-
tional at a given time. Estimates of the number of active Synapses necessary

to cause a cell to “fire” range from a few to hundreds,.

4.1.3. Processing

The synaptic potentials are combined in various ways. When the result-
ing potential is greater than a fixed threshold, the generation of an output
signal is triggered by a special region near the cell body. The signal, called
action or axon potential, is a large brief pulse, approximately 100 mV by 1
ms. The pulse propagates without attenuation down the axon and is deliv-

~ered to synapses of the axon branches. Action potential pulses travel at velo-
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cities up to 120 m/s, and can be produced at rates varying from O to 1500
times a second. Many action potential pulses are averaged over tens of milli-
seconds to determine the average firing rate on an axon. The resulting neu-
ral element computing time is of the order of tens of milliseconds. Neverthe-
less, the massive parallelism in the nervous system counters the relative
slowness of individual neurons. Therefore, it is not surprising that humans
can respond to complex stimuli in fractions of a second where the process

requires hundreds of sequential steps.

This description of neural input/output function is reasonably accurate
for a large number of neurons, but it has been revealed that much more
complicated mechanisms exist. In addition, there are neurons without ax-
ons, synapses that are bi-directional, synapses onto other synapses and

onto axons, and non-chemical electrical synapses.

The brain has a modular architecture. It performs its tasks by thousands
of discrete structures of neurons. Each structure has its own particular type
of neurons, pattern of connections, and role in brain function. For example,
vision task is performed by systems composed of many interconnected

structures, each serving a small specific subtask.

4.1.4. Statistics

The human cerebral cortex weighs three pounds, covers about 0.15
square meters, and is about two millimeters thick. It contains approximate-
ly 100 billion neurons. Each neuron has 1000 dendrites that form
100 000 billion synapses. This system functions at 10 000 billion intercon-
nections per second. Brain capability is beyond anything which can be re-

constructed or modeled. However, the possibility to understand how the
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brain performs information processing could be modelled and ultimately

implemented in hardware.

4.2. Artificial Neural Networks [27]/28]

The origin of artificial neural networks, inspired by the biological nervous
system, dates back to the late 1950s when a group of scientists took the ap-
proach of “how the brain did things” in an attempt to build an intelligent
system. An artificial neural network (ANN), or simply a neural net (NN), is an
information processing system (IPS) that extracts information from its input
and produces an output corresponding to the extracted information. Neural

1 ¢

nets are also called “connectionist models”, “parallel distributed processing
models”, or “neuromorphic systems”. Neural networks are distinguished
from other fields with similar goals, e.g. artificial intelligence, by incorporat-
ing features of the biological nervous systems into its design. There are two

classes of neural network models:—

1. Neurobiological models are computational models of
biological nervous systems. Their object is to summarize
and predict existing neurobiological and psychophysical

data and behavior.

2. Computational models are biologically inspired models

of computational devices with technology applications.

4.2.1. Analogy to Biological Nervous System

An artificial neural net is a system composed of many simple neuron-like

processing elements called “artificial neurons”, “nodes”, or “units”. The unit

receives one or more inputs from other processing elements or from external
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sources. These inputs are then modified by some weighting coefficients spe-
cific to each input according to a learning algorithm. The unit performs very
little computation; typically, biasing the weighted sum of its input and pass-

ing the result through a nonlinearity. Figure 4.2 illustrates a single neuron

ANN.
Weight Output = f (Z wpg—0)
X () ¢
Neuron
5 ® Output
g © >
e
%, O—
-6
Bias
Adjustment
+
Target

Figure 4.2. The learning mode of a single neuron artificial neural
network. [27]

The benefits of ANN are high speed and fault tolerance due to massive
parallelism, and adaptivity; i.e. neural nets can be trained, hence, their per-
formance may improve with experience. Adaptation or learning is a high lev-
el function of an ANN. Vision tasks and speech recognition are low level
functions a neural net can perform. The function of the neural net is deter-

mined by the connection topology and strengths.

4.2.2. Network Topology

Quite a few different neural network models have been developed to

achieve human-like performance in the field of speech, vision and robotics.
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Important models include the Hopfield network, single- and multi-layer
perceptrons, the cerebellar model articulated controller (CMAC) network,

the feature map network, Darwin III, and the silicon retina chip.

Connectivity patterns between nodes vary across ANN models. Nodes
may be locally-connected to neighbors, fully-connected to all other nodes, or
sparsely—connected to a few distant nodes. In addition, networks may be
layered with exclusively feedforward connections from lower to higher layers
as in multi-layer perceptron or provided with recurrent feedback connec-
tions as in fully-connected Hopfield network. The design of neural network
feedback loops has implications for the nature of its adaptivity/trainability.
The design of a network’s interconnections has implications for its parallel-
ism.

4.2.3. Training Algorithms

A neural network, as an information processing system, maps from the
space of all possible inputs to the output space. The network is trained rath-
er than programmed to perform the required processing. A learning system
formulates the mapping function from the training examples presented to it.
The learning algorithmis the functional specification of the transformation
between inputs and outputs. Implementation of the IPS is the physical real-
ization of the processing mechanism that runs the algorithm. One aspect of
neural network research is to design new algorithms as machines that can
solve problems that require “intelligent” analysis for their solution. Adaptive

ANN can be trained using three types of training algorithms:—

1. Supervised training requires labelled training data and

an external teacher who knows the desired correct re-
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sponse and provides a feedback error signal. This is
sometimes called reinforcement learning or learning with
a critic when the teacher does not provide detailed error
information. Multi-layer perceptron is an example of su-

pervised trained networks.

. Unsupervised training (self-organization) uses unla-
belled training data and requires no external teacher.
The feature map neural network, for example, forms in-
ternal clusters that compress the input data into classifi-

cation categories.

. Self-supervised training (learning by doing or learning
by experimentation) is used by automata which monitor
performance internally and require no external teacher.
An error signal is generated by the system and fed back
toitself. The correct response is produced after anumber

of iterations; Darwin III.

4.2.4. Artificial Neural Network Tasks

number of these major tasks:-

1. Pattern Classification

Neural networks can perform a variety of tasks. Figure 4.3 illustrates a

Classifiers are trained with supervision using labelled training

data to partition input patterns into a pre-specified number of

groups or classes.
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Figure 4.3. Illustration of a number of neural network tasks [27].

2. Associative Memory

A complete memory item is provided from a key consisting of a par-

tial or corrupted vision of the memory.

3. Computation Problems

Nonlinear analog computation can be customized in ANN design
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to solve constraint optimization problems.

4. Nonlinear Mapping
A vector of analog inputs can be mapped into an output vector us-
ing a nonlinear mapping function that can be learned from train-
ing data. This type of mapping is useful in robot control and non-
linear signal processing.

5. Multi-sensor Automata
Objects can be robot manipulated using visual and robot arm in-

puts in a number of complex, multi-module network automata.

4.3. Pattern Recognition Network
4.3.1. Training Patterns

The high impedance fault pattern recognition neural network was
trained by a set of current patterns of arcing faults on dry and wet soil, com-
puter, arc welder, fluorescent light, and sinusoidal loads. Figures 4.4 to 4.6
illustrate samples of the patterns used to train the network. A total of twen-
ty-six patterns were used in training. Sixteen patterns of fault on dry soil
and two patterns of fault on wet soil: Fig. 4.4. The similarity of the computer
current to that of the HIF on dry soil suggested the use of the width of cur-
rent conduction period as a feature that distinguishes a computer load from
a fault current. The detection algorithm, described in chapter 5, performs
a zero current search on the input current data in the preprocessing stage.
Considering the period where the computer current waveform stays very
close to zero, preprocessing could result in capturing the required zero
crossing at different points on that waveform: Fig. 4.5. Therefore, four

training patterns were used for the ANN to identify computer current at
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Figure 4.4. High impedance arcing fault training patterns.
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Figure 4.5. Computer current training patterns.
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Figure 4.6. Sinusoidal, arc welder; and fluorescent light training
patiterns.

different phase displacement. The network was trained by two patterns of
the arc welding machine current, one pattern of fluorescent lighting load,
and a sinusoidal current pattern to reinforce the network experience in dis-

tinguishing faults on wet soil from normal loads: Fig. 4.6.

4.3.2. Network Architecture [27][28][29][30][31]

The Multi-layer Perceptron
A multi-layer perceptron (or back-propagation network)—a fully—con-

nected neural network structured with at least three layers of nodes (input,
hidden, and output), and with only feedforward connections between the
adjacent layers—has been used to classify arcing fault currents as distinct
from fault-like and normal load currents. In feedforward nets, all input is

received in one layer, and the resulting signals propagate forward, one layer
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at a time, until the signal reaches the last layer. The hidden layer(s) of the
network extract the features found in the input. The features are the correla-
tion of activities among different input nodes. Therefore, an abstract higher—
level representation of the input information is presented in the hidden lay-
er(s). The output layer responds to the presence of features in the pattern
rather than the pattern itself. As the network becomes able to respond to
the features of different input patterns, it develops the ability to generalize.
The complex decisions capability an ANN aéquires, therefore, is due to the
feature detection and generalization abilities which are trained into the hid-

den layer(s) nodes.

The Meso-Structure

The architecture of the pattern recognition network used in arcing faults
detection is shown in Fig. 4.7. The input vector is composed of 33 elements.
The first 32 elements are analog inputs, of values between “0” and “1”, that
represent the instantaneous values of the sampled line current per cycle,
starting at the current zero crossing of the positive half-cycle. The last ele-
ment in the input vector holds a binary value. This element carries a value
of “1” if the width of the current conduction period, defined as the number
of current samples of magnitude > 30% of the peak instantaneous current

per—cycle, is less than eight samples per—cycle, otherwise “0”.

The hidden layer of the network is composed of six hidden neurons. This
layer undertakes the nonlinear mapping between the input and the output.
Selection of the optimal number of hidden neurons to provide optimum net-

work performance, taking into account the training patterns and network
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Figure 4.7. Architecture of the pattern recognition network.

topology, is still an open issue. Nevertheless, the guidelines for determining
the number of hidden neurons in a binary network was adopted as a starting
point for this hybrid input network. For an arbitrary training set with N
training patterns, a multi-layer neural network with one hidden layer and
with N-1 hidden layer neurons can exactly implement the training set. A
minimum number of hidden units should be selected such that they re-
spond to the features in the input patterns, and reduce the computational
time needed for training without being too small to not converge. According
to these criteria, the number of hidden layer units should be either “4” or
“5” depending on whether the dry and wet arcing faults are considered as
one or two different patterns. The process of selecting the number of hidden

neurons started by training then testing a network of “4” hidden units. The
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results showed that the detection algorithm is confused between the arc
welder load and faults on wet soil. The use of two or three hidden nodes
yielded no advantage. The use of “5” hidden nodes showed a much better
performance than the “4” hidden nodes ANN. Further analysis using differ-
ent number of hidden neurons suggested that the best performance is
achieved with “6” hidden nodes. The results will be demonstrated in the next

chapter.

The output layer has one neuron. The target output of the network in the
HIF event is “1”, otherwise “0”. Since the neuron output function is a sig-

moid, the “network score” would be between these two values.

Neuron Transfer function

The back-propagation learning rule, derived in the following section, re-
quires that the derivative of the neuron transfer function exists. Further-
more, this activation function should provide a threshold that if the unit acti-
vation exceeds a threshold by a sufficient margin it will always attain a value
of “1”. If it is far below threshold, it takes the value “0”. Therefore the func-
tion should be continuous, nonlinear, and asymptotic for both infinitely
large positive and negative values of activation (the sum of neuron inputs).
The logistic or sigmoidal transfer function, equation (4.5), satisfies these

conditions as shown in Fig. 4.8.

1

T+e (/T (4.5

0O =

where ois the neuron output, ais the neuron activation, and Tis the sig-

moid temperature or degree of nonlinearity.
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Figure 4.8. The neuron sigmoidal transfer function and its de-

rivative.
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4.3.3. Learning Rule [28]/31][32][33]/34]

The learning rule (algorithm) of the network is the set of equations that
modifies some of the weights and biases of processing elements in response
to input signals and values supplied by the transfer function. Weight adjust-
ment is required to reduce the difference between the actual output and the
desired output. The response of the processing elements to input signals,
therefore, changes over time. The network converges at a set of connection
weights which minimizes the error for recognizing all patterns in the train-
ing set. These weights are not unique; there will exist multiple sets, of simi-
lar weight values and infinite range of connection weights and biases, with

workable answers. There might not be any single best answer.

The multi-layer perceptron, trained with the back—propagation algo-
rithm, undergoes supervised training. Networks undergoing supervised
learning have high performance to recognize patterns similar to those it has
learned. The training sets consist of a number of training vector pairs. Each
training vector pair is composed of the input pattern data (33 elements in
our case), and the desired target for this pattern (“1” for fault, and “0” for

no-fault).

The Generalized Delta Rule

The back-propagation algorithm, known as the Generalized Delta Rule,
is an iterative gradient search algorithm (similar to Newtons method for
finding zero-crossing of curves) that minimizes the cost function equal to
the mean square error between the desired and the actual output of a multi—

layer feedforward perceptron. The total error E is given by
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E = 3E = 53 S0y’ (.
p pJ

where E, is the error for pattern p. The index pranges over the set of training
patterns and jranges over the set of output units. The target £, is the desired
output for the j output node when the pTpattern has been presented. The
actual output of the j node when the pfpattern has been presented is op;.

Since the neuron transfer function is a sigmoid, the neuron output g, is

1
v = 1+e (~%/T)

4.7)

where the selected sigmoid temperature T'is “1” and qy; is the activation

of node j for a given pattern p,

apj = Z wy' Opi"'epj (4.8)

i
where wy are the weights connecting nodes i to node j, 6 5; is node jbias,
and ¢ = i if node iis an input unit (propagation from input layer nodes is
linear). For the network shown in Fig. 4.7 and the training set used, the in-

dexes are i=0,1,..,38, j = 33,34,..,39 and p=0,1,..,25.

Because there are many different patterns to which the error function
should be minimized, it is not simple to set the derivative of E with respect
to wy to zero, and solve for wy min). The search of connection weights that
minimizes the cost function E can be demonstrated using Fig. 4.9. This fig-
ure simplifies a high—dimensional error space by one dimensional slice. The

tangent to the error curve can be used to change wy so that it approaches



4. Artificial Neural Networks 73

the valley of the cost function. The system will follow the contour of the error
surface—always moving downhill in the direction of steepest descent. The
resulting global minimum (Ep,;,), where the total error reaches a minimum
for all patterns, depends on the random starting state of the training weights
and biases. Therefore, it is possible that the system may have different glob-
alminima. Some of these minima could be deeper than others; the best pos-
sible solution to the problem may not be at hand. In some instances a local
minimum may occur (E'p;,); the connection weights do not minimize the er-
ror of all training patterns, e.g. using “2” or “3” hidden nodes in the HIF pat-
tern recognition network. This problem is common in networks with few

hidden neurons, and rare in networks with many hidden neurons.

Error

Local minimum

Global minimum

Wy min) Wy min) Weight

Figure 4.9. One dimensional slice of the error surface.
Search for minimum sum of squared errors [28].
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The training rule allocates an error term to each connection weight. The
error is expressed in terms of a function Delta (A) applied to weight wy; after
each presentation of a training pattern. This function is proportional to the
negative of the derivative of the error with respect to the connection weight,

GEE
A Wi = — 4.9
p Wy 15 Wy (4.9)
The constant of proportionality n is the learning rate, a constant between
zero and one, that affects the step change in weights. This rate is practically
chosen to be as large as possible to offer the most rapid learning without
leading to oscillation. To avoid the occurrence of local minima in some prob-

lems, very small values of 1 could be used (e.g. 0.1).

To calculate the error term, the chain rule from differential calculus is

applied to the partial derivative on the right-hand-side (RHS) of equa-

tion (4.9) ,
dwj aapj awy‘
From equation (4.8),
i~ oy (4.11)
awy'

Define,

o (4.12)

o =
joi] day;

Apply the chain rule to the RHS of equation (4.12),

oy = -2 - Eploy (4.13)
dap; d0p; dap;j

From equation (4.7),
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EQBL _ lo {(1-0p) (4.14)
- B ) *
day; T

For the node(s) in the output layer (j = 39 ), using E, definition in equa-
tion (4.6),

0 :
—afp = - (tpj_ Opj) (4 15)
B

Hence, for the output node(s), the difference between the actual value of the
output node(s) and the desired value of the output node(s) is used to drive

the change in weights at the output layer,

1
Opj = TOg(l—-Om)(tI;j*Og) (4.16)

The adjustment in the hidden layer(s) differs from that at the output lay-
er because the target output of the hidden nodes is not known. The values
of 6 at the output node(s) and the hidden-to-output weights are used to

help determine the changes made to the input-to-hidden weights.

For the hidden layer nodes (j = 33,34,..,38), use the chain rule again to write

—a—E—p- = 6Ep aapk = aEp Z WijOpi =
00p; ‘% 0dpic 00p; T ddpi 90p;
d
=5 =S Sprewe (4.17)
1c 90pic K

where i = 33,34,..,38, and k = 39 (one output node).

For the hidden nodes, therefore,

1
6pj = ?Opj(l—()pj)zapkujjk (4.18)

k
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The mathematical expression of the Generalized Delta Rule to change

connection weights for a given pattern p is

where &y is expressed for the output layer nodes by equation (4.16), and for
the hidden neurons by equation (4.18). There is no attributable error to the
input nodes. Figure 4.10 illustrates a block diagram clarifying the General-
ized Delta Rule and the back-propagation of error signal during training,.
Weights are adjusted either after each pattern has been processed, or after
an entire processing epoch where the total error derivatives are accumu-

lated. In the latter mode the new weights and biases are computed by

wilnew) = wylold) + Y Ap wylold) (4.20)
p
and
8iinew) = 6jlold) + > Ap 6jlold) 4.21)
p

for i=0,1,..,38, j = 33,34,...39 and p = 0,1,..,25.

Impact of Neuron Activation Function on Learning

The neuron transfer function helps the learning law work effectively. The
derivative of the function is always positive, having its peak value at “0” acti-
vation and is close to “0” for large positive and negative inputs: Fig. 4.8 bot-
tom. Since weight change is proportional to activation function derivative,
the weight change is large for inputs in the mid range (near “0”). The learning
rule is trying to bring the neuron to one of the stable states, “0” or “1”, where
the derivative of the activation and hence the error are close to “0”. However,
some difficulties could arise in learning if a weight change is slower than

desired.
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Training Procedure

The software of the back-propagation program [33] has been used to ob-
tain the weights and biases of the pattern recognition network. Small ran-
dom weights and biases are initially selected as illustrated from the screen
display shown in Fig. 4.11. A factor of “100” is included in the weights and
the nodes output at each layer. The network is trained by presenting all
training data repeatedly. Weight adjustment is done after processing each
pattern. Once the connection weights between the hidden and the output
layers, along with the bias of the output node, were adjusted, the connection
weights between the input and the hidden layers, along with the biases in
the hidden layer, are adjusted.

Learning by pattern was the selected mode of training. This training
mode showed better results and performance over learning by epoch. It was
concluded that the pattern learning mode is more suitable for learning cur-

rent waveform shapes than the epoch learning mode.

The suitable learning rate was selected by running the training algorithm
atlearning rates of 0.1, 0.25, 0.5, and 0.75. Training with n = 0.75 produced
oscillation during the learning process: the error function was maximized
rather than minimized; the weights remained unchanged; and the system
did not learn. The same observation was valid when the network was epoch
trained at a learning rate of 0.5. Reducing the learning rate escaped this
problem: the network reached a global minimum, and the network perform-
ance was almost identical in all cases. The training time required to reach
a total error of 0.001 was found to be 3188, 1024 and 520 forn = 0.1, 0.25

and 0.5 respectively—the average learning time for a back—propagation
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disp/ exam/ get/ save/ set/ clear cycle do log newstart ptrain quit
reset run strain tall test

epoch 0 tss 0.0000 pattern O gcor 0.0000

cpname pss 0.0000
INPUT :
X0 X1 X2 X3 X4 X5 X6 X7 X32
0 0 0 0] 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0
HIDDEN :
X33 X38
0 0 0 0 0 0
OUTPUT :
X39
0
TARGET :
0

WEIGHTS :

Input — Hidden (not all)

-40 36 48 26 -34 -44 2 16 8 22
23 -22 -21 -46 -13 -40 40 -47 -7 23
10 -14 20 -26 24 14 -15 44 48 -29
14 -9 -19 23 -3 2 34 3 7 33

-26 8 16 0 27 44 9 30 -8 -43

~45 29 6 42 6 ~-44 31 11 -37 42
32 4 10 17 10 -28 -24 -28 -26 21

4 -26 ~43 -8 -6 27 39 -48 25 -9

Hidden — Output

44 1 9 39 9 -9

Figure 4.11. Startup of network training.
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network is between 100 to 10 000 times. As a result of this comparison
N = 0.5 was selected as the learning rate of the network to calculate the

weights and biases.

Network training with different initial weights showed that the network
comes to optimum settings, within 400 to 700 processing steps, when the
total sum of squared errors is in the range between 0.002 to 0.001, at the
specified 1 . Figure 4.12 shows some of the weights of the trained network.
It is noticed that the hidden—to—output weights of nodes 33, 34, 36 and 38
dominate the others in the same connection. The network is now trained
and ready for operation. The connection weights are fixed. Back—propaga-
tion refers only to the learning stage. No information is passed backward

during network operation.

Input Pattern Features

The activity of the hidden layer nodes is examined in Figures 4.12t04.17
to determine hidden nodes response to different input patterns. For high
impedance faults, nodes 33, 36 and 38 are highly active; particularly with
fault on dry soil. The same nodes are also active, to a much lesser extent,
to arc welder current pattern: Fig. 4.14. In each case, the output of these

nodes is almost equal to one another.

Nodes 34 and 36 are the active hidden units when the input pattern is
the computer current: Fig. 4.15. The weight connecting node 34 to the out-
put node is highly negative, Fig. 4.12, inhibiting the total output of the net-
work. The activation of node 34 and de-activation of nodes 33 and 38 could

be due to the logic incorporated in the last element in the input vector which
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disp/ exam/ get/ save/ set/ clear cycle do log newstart ptrain quit
reset run strain tall test

epoch 520 tss 0.0000 pattern O gcor 0.0000
cpnamed_O0 pss 0.0000

INPUT :

X0 X1 X2 X3 X4 X5 X6 X7
51 52 52 52 b2 54 56 60 65
71 79 85 100 90 72 5B5 B0 48 48
48 48 46 44 41 38 31 24 15 11
21 38 49 0

X32

HIDDEN :
X33 X38
97 0 5 99 8 98
OUTPUT :
X39
99
TARGET :
100
WEIGHTS :

Input — Hidden (not all)

-5 -205 -302 -266 -190 -167 -105 65 254 359
48 182 203 272 239 159 111 -67 -251 -312

-2 -38 1 -51 0 -9 -9 27 -23 -38
-40 -202 -263 -219 -211 -222 -165 -69 197 280
-24 ~74 -41 -23 -65 1 -40 -1 39 19

4 -259 -235 -201 -217 -176 -161 30 158 275
93 -107 -106 -215 -270 -205 ~60 158 253 322
275 246 271 135 4 =70 193 310 367 478

Hidden — Output

413 -673 59 520 93 484

Figure 4.12. End of network iraining and result for a fault on dry soil.
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INPUT :
X0 X1 X2 X3 X4 X5 X6 X7 X32
51 53 62 72 80 87 92 96 99
100 96 88 78 68 59 51 47 44 36
27 18 12 7 3 0 0 4 12 22
32 41 48 0
HIDDEN :
X33 X38
73 2 4 76 9 73
OUTPUT :
X39
98
TARGET :
100

Figure 4.13. Network response to a pattern of fault on wet soil.

INPUT :

X0

52

99 97

27 19

21 31
HIDDEN :
OUTPUT :
TARGET :

X1 X2 X3 X4 X5 X6 X7 X32
58 65 71 78 85 91 95 98
94 87 79 68 57 b0 42 35
11 6 1 0 0 2 7 13
42 0
X33 X38
16 7 3 14 6 15
X39
1
0

Figure 4.14. Network response to a pattern of arc welder current.
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INPUT :

X0 X1 X2 X3 X4 X5 X6 X7
50 50 56 95 98 66 b1 50 50
50 49 50 50 50 49 48 48 48 42
4 0 32 47 49 49 49 49 49 49
50 50 50 | 100

X32

HIDDEN :
X33 X38
0 99 2 67 5 7

OUTPUT :
X39
0

TARGET :
0

Figure 4.15. Network response to a pattern of computer current.
accounts for the width of the current conduction period per—cycle. Without
this feature having been presented, the network might have responded to

the computer current as to the HIF.

The activity of node 34 and the associated hidden-to-output weight ap-
pears to be important in separating fault-like and normal loads from fault
current. This can be observed for the fluorescent light, Fig. 4.16, and the
sinusoidal load: Fig. 4.17. For the latter load, the activity of node 34 de-

creased. This could be due to the close similarity to the fault on wet soil wa-

veform.

It is concluded that nodes 33, 36 and 38 describe features local to cur-
rent waveforms having off-current flow periods, as HIF, arcing loads, and

some electronic devices. The other hidden nodes may carry other aspects
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INPUT :

X0 X1 X2 X3 X4 X5 X6 X7
57 74 89 97 100 98 94 90 86
80 72 65 62 67 65 57 43 26 11

3 1 2 6 10 14 20 28 35 38
34 35 43 0

X32

HIDDEN :
X33 -X38
3 85 4 3 6 3

OUTPUT :
X39
0

TARGET :
0

Figure 4.16. Network response to a pattern of fluorescent light load.

INPUT :

X0 X1 X2 X3 X4 X5 X6 X7
50 59 69 77 85 91 96 99 100
99 96 91 85 77 69 59 B0 40 30
22 14 8 3 0 0 0 3 8 14
22 30 40 0

-X32

HIDDEN :
X33 X38
6 18 3 4 5 5
OUTPUT :
X39
0]
TARGET :

0

Figure 4.17. Network response to a pattern of sinusoidal load.
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of the overall patterns. The exact features presented in the hidden layer are

difficult to figure out.



Arcing Faults Detector

The review on high impedance faults detection, chapter 1, showed that
no single detection method can detect all electrical conditions resulting from
downed conductor faults. Furthermore, there are loads that imitate high
impedance faults. Some detection methods might not distinguish between
faults and fault-like loads: chapter 3. Quite a few of the detection methods
require extensive computations in the preprocessing stage to extract the
features of the input signal(s). A criterion is then applied to obtain the detec-

tion parameters.

The design of a reliable high impedance fault detector would include a
number of detection methods to provide the required dependability, as well
as the proper means to ensure its security. This chapter proposes a novel
algorithm to detect high impedance arcing faults [35], motivated by the ad-
vances in neurocomputing in pattern recognition, that uses a simple pre-

processing algorithm.

5.1. Relay Platform [36]

The proposed arcing fault relay will be a part of an integrated relaying
scheme that carries out a number of protective and line monitoring tasks.
The general layout of this integrated system is illustrated in Fig. 5.1. Input

analog signals are conditioned and filtered. The signals are sampled at a
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Figure 5.1. Integrated relaying and monitoring system [36].
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preselected sampling rate. A digital signal processing (DSP) chip performs
calculations on the sampled signals to obtain information such as the root-
mean-square (rms) value, sequence components, and harmonics. The relay
designer may use these data in full or in part in his/her relay algorithm. The
different relaying functions are implemented as subroutines in a software
package. The main software resides in a computer. At the occurrence of a
system disturbance the system performs the required relaying to identify
the type of disturbance. Digital signals are sent through the input/output
(I/0) port for tripping or blocking functions. Information could be trans-
mitted via communication links to the dispatch and control center. The arc-
ing fault detector is one algorithm among others in this system. The follow-

ing sections reveal the details of design and testing of this algorithm.

5.2. Detection Algorithm

The flow diagram of the high impedance arcing fault detection algorithm
is shown in Fig. 5.2. The analog line current is low-pass filtered and
sampled at the rate of 32 samples—per—cycle. The algorithm processes the

data as follows :~

Startup

One cycle of the normal load current is stored in a buffer as the reference

load current pattern. Its rms value is calculated: Ims,,.

Disturbance Trigger
The algorithm compares the rms value of the following cycles to Irns,,.

When the new value is sufficiently different from the reference value, the
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detector starts to take twenty—cycle snapshots of the input current. Current
fluctuation within £20% of Irns,,, is considered normal, otherwise the algo-

rithm is triggered. The excess current igf(t) , as shown in Fig. 5.3, is calcu-

lated as the difference between the input current i(¢) and the reference cur-

rent i.f(t) patterns, i.e.

iai(t) = i) ~ frefdt) (5.1)

Preprocessing

Neural network processing requires the input pattern samples to start
at the zero crossing of the positive half-cycle. The search for this condition

is carried out in the first snapshot. An adjustable number of cycles are
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Figure 5.3. Disturbance calculation and neural network
Dpreprocessed waveform.
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skipped to escape initial high frequency oscillations of other power system
events (two cycles were used). On a cycle-to—cycle basis, the sampled values
of the difference current are adjusted to analog values between “0” and “1”,
to suit the network input level: see Fig. 5.3. In the same time the width of
current conduction period above 30% of the peak current is determined.
The resulting input vectors are passed one-by-one to the artificial neural
network (ANN) for pattern identification.
Output

The trained network maps the input to its decision region. The algorithm
integrates the ANN “scores” to obtain the detector “output”: equation (5.2);

this is called output filtering.
ot
OUIPUL ey = OUIPUL 1y + ~ * (SCOTepgy — OULDUL 51g) (5.2)

where “ 8t ” is the integration time step (1 cycle), and “ t ” is the integration
time constant (1 second). The detector output is compared with a detection
threshold (0.75) to classify whether or not the disturbance is due to an arc-
ing fault. The process is then repeated for the next snapshots. The number

of snapshots was limited by the length of test data arrays to 10 sets.

5.3. Results

The arcing fault detection algorithm was tested by four second traces of
normal load current disturbed by currents of faults on dry and wet soil, arc

welder, computer, fluorescent light, and sinusoidal loads.

Arcing Faults
Training pattern sets, section 4.3.1., supplied to the neural network for

faults on dry and wet soil were obtained from the fault current data shown
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in Fig. 5.4. This is the reason why the ANN has high scores for these faults.

For the fault on dry soil, Fig. 5.4 top, when arcing is almost off near time 3.2

seconds, one would expect a no—fault response; the ANN score went down.

FAULT ON DRY SOIL FAULT ON DRY SOIL
1_ ...................... e ‘v o - T
: : -t
: : et :
: T o : :
S 05_ ...... "_.{’ ............... ........ ........
& o LA : :
E S : : ,y’;'r : : : : :
g 0—'——+—+—.§*—’—4_—?——}.‘\”§ ........ ? ........ : ......... : ......A.E ........ :
2 N N
g : : : : ¢ [~o— NEURAL NET
0.5400nen \ ........ : ........ ‘ ........ ___'__ DETECTOR
-1+ —r———————————————
2 0 0.5 1 1.5 2 2.5 3 3.5 4
SECONDS SECONDS
FAULT ON WET SOIL FAULT ON WET SOIL
1B peeeeennn S Y ey, - ettt s
: 7 ; RIS F e
1 : : T : :
...... : : et : :
_ : TS0 SO S SRS
B 054 : :
é +_.}__.l’ .......................................................
8 LT e . B .
‘}—o— NEURAL NET

|-+~ DETECTOR

o o5 1 15 2
SECONDS

2.5 3 3.5 4 0

o5 1 15 2 25 3 35 4
SECONDS

Figure 5.4. Arcing faults on dry (top), and wet soil (bottom).
Left: current traces. Right: results.

When the soil is very wet, the fault current pattern is very close to a sinu-

soid. Therefore, the ANN shows a relatively low score in the first 0.3 seconds

of the fault on wet soil: Fig. 5.4 bottom right. As the dissipated energy in

the fault bakes the soil, it dries the surface. The current waveform becomes

a typical HIF pattern which is easily identified by the ANN.
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To examine the dependability of the detection algorithm, several fallen
conductor faults were staged on dry and wet grassy soil: Figures 5.5 and 5.6
respectively. The collected waveforms contained arc generated noise. In all
tests, the results show that the detector output exceeds 75% in less than

4 seconds, indicating a possible fault: see Fig. 5.7.

The results show good promise of applying the neural networks ap-
proach in recognizing high impedance fault current patterns. The algorithm
needs to be tested for faults on different ground materials. This may require
additional training patterns, and could require different ANN architecture
or even another network model. Certainly, on-line testing of the algorithm
is required. The combination of different test results, and detector hardware
would determine the optimum size and number of snapshots, detection
threshold level, and decision time required to determine whether the exist-

ing disturbance is a permanent or a temporary HIF,

Fault-like and Normal Loads

Arcing loads, such as arc welders and arc furnaces, are loads likely to
be confused with high impedance arcing faults. Testing the algorithm with
an arc welder load, Fig. 5.8 top, shows how far the above possibility is a
problem for the detection algorithm. The detector estimation for this event
as a fault was less than 20%. The results of testing the computer, the fluo-
rescent light, and the sinusoidal loads, from second to bottom of Fig. 5.8,

indicate that the algorithm will also be secure in these events.

Training the ANN with more patterns of non-linear loads that may or may

not mimic fault conditions would add to the detector reliability.
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be due to an absorption ability exhibited by the soil itself. This noise appears
when the fault current is small, approximately 1 A, and decreases as the
fault current magnitude increases as seen with faults on wet grassy soil:
middle of Fig. 5.9. However, the network scores are insignificantly affected
by the noise as long as the current waveform takes the typical HIF current
pattern. Once the waveform is significantly distorted or comes close to the
boundary that separates arcing faults from other events, the ANN would ei-
ther indicate no—fault condition, top and middle of Fig. 5.9 right, or be con-
fused as seen in bottom of Fig. 5.9 right.

5.4. Selection of the Number of Hidden Nodes and
the Learning Mode

The selection of six hidden neurons and pattern mode training, sec-
tion 4.3.2., was based on the ability of the network to distinguish between
HIF, fault-like and sinusoidal loads, and the detector output during con-

ducted tests.

5.4.1. Number of Hidden Nodes

Networks of “4” and “5” hidden neurons have been trained, with the
training set described in section 4.3.1., in the pattern learning mode at
learning rates of 0.1 and 0.5 respectively. Though the four hidden node net-
work has a good performance in identifying most of the HIF, the arc welder
load presented a difficulty to the network: Fig. 5.10. The five hidden nodes
network did have a good response in all tests; however, when tested with HIF
on wet grassy soil test (2), Fig. 5.11, the performance of both the “4” and “5”
hidden node networks was low compared to the used “6” hidden node net-

work. The selection of six hidden nodes was based on these results.
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5.4.2. Learning Mode

The epoch learning mode was used to train the six hidden neuron net-

work at a learning rate of 0.25. The network suffered the same drawbacks
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Figure 5.12. Performance of a six hidden neuron ANN to arc welder

load: epoch learning mode, n = 0.25.

FAULTS ON WET GRASSY SOIL

1 Y S S :
0.8 oo e TN ROSRNN W e ol
0.6 rrrverrerrboons S - ——
0.4 e L ................ A : :

g 47|~ Pattern 0.50

1 ,f@_,_,;.»’; --0-- Epoch 0.25
0.2 e ................ ......... /,/,’r"'" ...... ______ Hoe EpOCh 0.10
0
0 0.5 1 1.5 2 2.5 3 3.5 4

" SECONDS

Figure 5.13. Study of the neural net performance using six hidden

nodes at different learning modes and rates.




5. Arcing Faults Detector 102

as the four hidden nodes network: Fig. 5.12. It was thought that the network
was stuck in a local minimum. The learning rate n was decreased to 0.1 in
hope to improve the performance; however, the results became worse:

Fig. 5.13. Learning by pattern was therefore used instead.



Conclusions

Field tests on the Manitoba Hydro system have confirmed the levels and

waveshapes associated with downed conductor faults.

An arcing high impedance fault laboratory model was validated in the
high voltage laboratory at the University of Manitoba. The laboratory fault
current proved to be a credible source of data acquisition for use in solving

the arcing faults detection problem.

Existing detection methods have limitations as to the type of high imped-
ance fault that can be detected; furthermore, there are loads that mimic
fault currents, e.g. arcing loads. Some existing detection methods can fail
to distinguish between faults and fault-like loads. Fault-like loads that were
investigated included arc welders, computers, and fluorescent lamps. Thus
the security (relay’s ability to not trip when it shouldn’t) of a new detection
method could be tested.

Ahigh impedance arcing faults detection algorithm was designed, using
an artificial neural network (ANN). The algorithm was tested by signals con-
sisting of normal load current disturbed by currents of faults on dry and wet
grassy soil, arc welder, computer, fluorescent light, and sinusoidal loads.

The detector was successful in separating arcing faults from arcing and nor-
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mal loads. The detector performance was outstanding even under noisy sig-

nal conditions.



Future Work

A reliable high impedance fault (HIF) detector is a relay that trips only
under the existence of a HIF. The relay reliability is a compromise between
dependability (relay’s ability to trip when it should) and security (relay’s abil-
ity to not trip when it shouldn’t). The unpredictable behavior of high imped-
ance fault current suggests the use of other detection methods to work in
parallel with the proposed algorithm to increase the relay reliability. The
variation in current magnitude each cycle (randomness), and from one half-
cycle to the other (asymmetry/flicker) could be used as features input to an
artificial neural network (ANN), or in a detection algorithm to indicate arc-

ing.

On-line testing is required to confirm the algorithm applicability. The

outcome from algorithm implementation could demand:

— a different neural network architecture (e.g. different

number of hidden neurons),

— more training patterns of faults on different ground ma-
terials and surface conditions as well as fault-like and

normal loads,

— a different learning procedure (learning rate, mode, or

degree of neuron transfer function non-linearity), and
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— the suitable values of detection thresholds.

The ANN approach is not only promising in high impedance fault detec-
tion but also for abnormal events identification and classification, though

a different neural network model may be required.
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Detection Algorithm: Program
List

#include <stdio.h>
#include <string h>
#include <ctype.h>
#include <stdlib.h>
#include <math.h>
#nclude <malloc.h>

/* new.c May 4 91*/
/* PROGRAM TO EXTRACT THE FEATURES OF THE LINE CURRENT WAVEFORM */
main(}

{

menu (J;
again: printf ("\n");
optlons ();

switch{ch{0)) {
ase "1

read_oct ();
time=SEC_PER_SAMPLE;
printf ("time=%f \n",time};
write_ data 0
br

case "2":
read_oct ();
t_I.me—SEC _PER_CYCLE;

bregk.

read_oct };
time=SEC _PER_CYCLE;
random {;

break;

read_dat ();
time=SEC_PER_SAMPLE;
wrlte data 0;

e=1.0
wrlte mbglot 0;

case '3

case "4

s

all
breal;

read_dat ();
time=SEC, _PER_CYCLE;
random (;

break;

read_lotus_2 ();

process_lotus_2 (record_l,array_1);
time=SEC_PER_SAMPLE;
write_data_2 {;

random (;

break;

case '5':

case '6":

case '7":
read_oct ();
time=SEC_PER_SAMPLE;
break;
case ‘8"
read_dat {;
time=SEC _PER_SAMPLE;
test ();
break;

time=SEC_PER_SAMPLE;
read_lotus_out ();
test {J;

break;
default:
) exit (;

printf { DONE ....ccoevens WH
prmtf "\n");
goto again;

case 'O

112
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/* display May 2 91 */

printf (* \n';
printf ("1 MENU I \n");
printf (" \n");
printf ("I 1. Extract Features. 1\n");
printf (* \n7);
printf ("l 2. Exit. \n);

rintf ( \n";

p
printf {"  Enter Your Choice: *);
scanf ("%4s”,ch);
printf ("\n"};
if {ch[0] =="2")

printf ( THE END \n");
exitl); )
else
return;
}
printf (* \n");
printf {*1 OPTIONS \n");
printf (" \n');
pﬂnt& ('(‘l 1. Transfere an OCTAL file to a data file. \n"); )
rintf (* n’);
pprlnt:t‘:f (‘(‘I 2. Extract de, ac, and randomness starting from OCTAL file. I\n“);)
rintf (* n);
ppﬂntf (‘(I 3. Calculate RANDOMNESS starting from OCTAL file. - \n%);

N

rintf n
printf (I 4. Extract de, ac, and randomness starting from data file. {\n"); N

printf ( -

printf ("1 5. Calculate RANDOMNESS starting from data file. I\n“);\ )
" )

g)rlntf ("l 6. Process a LOTUS-123 flle. )

printf { \n);

prntf (*| 7. Test current change in an OCTAL file. \n);

printf ( )

printf ("] 8. Test current change In an data file. N\n");

printf ( )

printf ("1 9. Test current change in an LOTUS file. N\n7);

printf { \n);

printf (" e. End. I\n");

printf \m);

printf (* Enter Your Cholee: );

scanf ("%4s",ch};

printf ("\n"]

k if (chl0] =="¢)

Pﬂnd (“sttttt!t‘#t THE END **#tssttxss \n"):
exit(;
}

else

}

return;
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/* constant July 891 */

#define ARRAY_SIZE 81920

#define SAMPLES_PER_CYCLE 32

#define BLOCK_SIZE 2048

#define ARRAY_SIZE_2 2*ARRAY. SIZE

#define BIJOCK SIZE_2 2*BLOCK_S!

#define ARRAY_SIZE_CYCLES ARRAY. SIZE/SAMPLES PER_CYCLE
#deflne JUNK 2056

#deflne NULL O

#define STRING_LENGTH 30

#define Pl 3.14159265359

#define TWO_P! 2.0*PL

#define TIME_STEP TWO_P1/ (float)SAMPLES_PER_CYCLE

#define SQUARE(x) (x)*(x)

#define FREQUENCY 60.0

#define SEC_PER_CYCLE 1.0/FREQUENCY

#define SEC_PER_SAMPLE SEC_PER_CYCLE/(float}SAMPLES_PER_CYCLE
#define CHECK CYCLES 20

#define TIME_C SEC _PER_CYCLE

#define TIME_S SEC_PER_SAMPLE

#define SECONDS ((float) CHECK _CYCLES)*SEC_PER_CYCLE
#define CHECK_SAMPLES CHECK_CYCLES*SAMPLES | PER_CYCLE
#define TOTAL_1 ARRAY_SIZE/CHECK_SAMPLES

#define TOTAL CHECK CYCLES‘SAMPLES PER_CYCLE

#define THRESHOLD 0.01

#define NOISE 0.1

#define DC 0.0

#define LAST SET 20

#define WEI 500

#define LEVEL 0.3

#define INPUT SAMPLES_PER_CYCLE+1
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/* variables July 8 91 */

/* PROGRAM TO EXTRACT THE FEATURES OF THE LINE CURRENT WAVEFORM */

FILE *in_f{, *out_f, *fopen (), *fclose ();

char name[STRING_LENGTH],in_name[STRING_LENGTH],out_name|STRING_LENGTH];
char str[STRING_LENGTH];

char
char
char
char
char
char
char
char
char
char 3
char de_diffl]={". zdlf dc").
char ac_diff]|={".zdif_ac"};
char ra_diffl]=(". zdif )
char rndﬂ]-(“ zrnd'};
char de_rndf]}={".zrnd_dc"};
char ac_rndfl]={".zrnd_ac”};
char rz;1 il]’xdﬂ]:(".zrnd_ra"):
Ci H

char in[|= (ii .in"}

int §,1J; /*index of sample number*/
int Po; /*index of first data line*/

int Pn,Pnn; /*Index of last data line*/
int ¢; /*index of chle number*/

int Co; /*index of first cycle*/

int Cn; /*index of last cycle*/

int car; /*character to indicate EOF*/

int row.column.rows columns,step,last_record, target;
int N[6]={ 4, 8, 16, 32, 64, 128};
int T(32]=(0,1,2,3,4,5,6,7,8,7,6,5,4,3,2,1,0,-1 -2,~-3,~4,~5,~6,~7,-8,~7,-6,-5,~4,-3,-2,-1};

int quantized_datal[ARRAY_SIZE_2];

float time,rms_}1,rms_2,rms_3,r,a,b,m;
float record_1JARRAY_SIZE[array. 1|ARRA _SIZE];
float record_2[ARRAY’ _SIZE],array_2|ARRAY_SIZE];
float store_ 1[SAMPLES PER_CYCLE]|,store_2[SAMPLES_PER_CYCLE];
float store_3[2*SAMPLES_PER_CYCLE];

int width{ARRAY_SIZE/SAMPLES_PER_CYCLE);

float dc|ARRAY_SIZE_CYCLES]; /*average value per cycle*/
float ac|lARRAY_SIZE_CYCLES); /*rms value per cycle*/
float ra]ARRAY_SIZE_CYCLES]; /*rms value per cycle*/
float dc dlﬂARRAY SIZE_CYCLES|;

float ac_difARRAY_SIZE_CYCLES];

float dc_rnd[ARRAY_SIZE_CYCLES];

float ac_rnd]ARRAY_SIZE_CYCLES];

float segl ARRAY_SIZE_CYCLES];
float dIffARRAY_SIZE_CYCLES};

double record_3[CHECK_SAMPLES],array_3[CHECK_SAMPLES};
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/* caleulator May 15691 */

float absolute (a)
float a;

float b;
{)f ((a'1>0.0) 1 | {a==0.0))

else
b=-a;
;‘eturn b;

top (a,b)
int a,b;

int result,c;

c=a%b;

if (c==0)

result=a/b;

else

result=a/b+1;
retur;x {result);

difference {array,result)
float arrayl(f,result]];

float *p,*p_end;
inty;
Co=0;
{for (column=0;column<columns;++column)

step=Cn*column;
for {c=Co;c<Cn;++¢)

y=step+c+l;

p:&aarray{y—l]iy )

_end=&arraylyl;
;’esult[y]:‘p—e%d—'p;

}
}

integrate {array,result)
?oat array|ARRAY_SIZE], result{ ARRAY_SIZE};

float *p,*p_end,*p2,*p2_end, tc=0.00333;
inty:;
for (column=0;column<columns;++column)

step=Cn*column;
result[step}=0.0;
for {c=Co;c<Cn;++c¢)

y=step+c+l;

_en: =§tarrayh/]:

=p_end-1;
resultlyl=resultfy-1]+tc*(*p_end - resultly-11);
if {resultly] > 900)
resultly]=999.0;

}
}
}

de_ac (record,dc,ac,ra)
float record[];
float dcf},acl),rall;

/* Evaluate the “d¢", "ac”, and "ra” values of the wave*/
int column,y;

float *p,*p_end;

float *pointer, *pointer_end;

Co=0;

1=0;
for (column=0;column<columns;++column)

step=rows*column;
{for (c=Co;c<Cn;++c)

y=step+c*SAMPLES_PER_CYCLE;
p=8&recordly];
_end=p+SAMPLES_PER_CYCLE;
dc[j]=0.0;
ac| ]]:0.0;

{or Gp<p_end;++p)

defjj+=*p;
ac[jl+=SQUARE (*p);

deljl= dclj]/SAMPLES_PER_CYCLE;
aclj]= ac[j|/SAMPLES_PER_CYCLE;
acljl= sqrtfacljl);

if (aclj} > 1.0}

ralfl=dcljl/aclih

+4;

}
}
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gma (array,seg)
/‘ needs some adfustment */
{loat arrayl(],segll;
int 1=0,k=0,column,y,Co=0;
float x,*p,*p_end;
for (column=0; column<columns ++columny)
step=Cn*column;

k=N[l}+sf
for (c—Co+N[l] c<=Cn; ++¢}

segi 1=0.0;
for(p<p end;)

x—“ +4;
seglkl+=x*x;

se, k}:sqrt(seglk]/NU])Z
++k;
k—=1;

}
}

oct_dectmal (1,array)
int {f};

?oat arrayll;
FILE *In_{, *out_f, *fopen (), *{close ();

int *q_pointer, pl *p2,*p3,*p4,countl,count2,k;
float *polnter, *pointer,_end;

q_pointer={int *) calloc{ARRAY_SIZE_2,sizeoflint}};
if ((q_potnter == NULL))

printf ("Memory aliocation is not successful \n");

return;
1=0;
countl=0;
pointer=array;
q_pointer=i{;
p‘ll—q . pointer;
p =]
start: }J 1+BDOCK SIZE 2-1;
or (;pl<p2;j++,pd++)
lf ((j == ARRAY_SIZE) | | ({car=getc(in_{)} == EOF))
g%to end
=pl1+
canf(m f,"%0 %o0",p1,p3);
p4-(*p1)'o400+('p3f
o
++countl;
p2=pl+7;
{or (;pi<p2;)

if ((j = ARRAY ”_SIZE) | | ((car=getc(in_f)} == EOF))
?canf (!n f,"%0",pl);

Fl-{»—
goto start;
k—(countl)'BDOCK SIZE;
Pn=j-1;
last record—(k/ BLOCK_SIZE);
printf (j=%7d , Pn=%7d , last_record=%7d\n",J,Pn,last_record);
( for U-O,_|<Pn +4)
%f ({13} & 04000) 1= 0)

ljl=~(l} | 037777774000);
iH]=—((ll[le+1); )

end:

else

111=1j] & 07777;
pointer—l[j]‘264-/1024
++pointer;

y free {q_pointer);

hex_decimal (,array)
inti{l;
?oat arrayl(l;

FILE *in_f, *out_f, *fopen (), *fclose ();
int *pl,*p2, ‘p3 .countl,count2,k=10;
float *pointer, *pointer_t ‘end;

cou'ntl =0;
pointer=array;
count2=1;



A. Detection Algorithm: Program List

118

pl—-l
start: E)r p1<p2 ++pl)
1f {{car=, etc(ln f)) == EOF)
0to en
scanf (m f, ‘°/)6x "pl);
pl—=lk
2- l+kg
start2: or countl=0;pl<p2;++pl)}
if ({(*p1) & OxfOOO) ==
++countl;

if {countl == k)

Fr [ p1<p2 +4p1,+4)

oto read

unt2;
if ((car=, getc(m_f]) == EOF)
goto en

fscanf (in_f,"%x",p1);
pl=p2-k;
goto start2;
read: F 2+BLOCK_SIZE-k;
or (;pl<p3;++,++pl)

1f {(j == ARRAY_SIZE)1 ] ((car=getc(in_{)} == EOF))
oto end;

scanf [in f,°%x",p1);

1[1 *pl

p2—p 1+k;
goto start;
end: Po=0;

lastjrecord =(Pn/BLOCK_SIZE);
printf (}=%7d , Pn=%7d , last_record=%7d\n",j,Pn,last_record);
for (]—0 1J<Pr;++)

if {(ilj} & 0x0800) != 0)
i[fl=~{1]j] 1 Ox{ffff800);
l =—élg]]+1: )

1[]]-1[]] & OxOfff;
pomnerl[]l‘264/1024
++pointer;

}

random_detect a.rray,result)
?oata.rray] Jresult(];

float *p,*p_end,*p2,*p2_end, temp[ARRAY_SIZE], tc=0.001667;
inty;

Co=0;

for (column=0;column<columns; ++column)

step=Cn*column;
for {c=Co;c<Cn;++c)

y=step+c;
p=&arraylyl;
if (*p < 0.0)
templyl=-*p;
else
)templyl=‘p;

}
{

step=Cn*column;
result[step] 0.0;
for (c=Co;c<Cry; ++c)

for {column=0;column<columns;++column)

y=step+c+l;
p_en &temply]

result[y]-resu]t[?r—l]ﬂc‘(‘p end—result[y—l]]
if (resultly] > 900}
result]y]=999.0;

}
}
}

process_lotus (array,record
int arrayl];
float recordl};

int *pointer,*pointer_end;
float *p;

pointer=array;

p=record;
pointer_end=pointer+Pn;
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printf ("Enter offset : ™);
scanf {"%d", &target);
printf {"\n");

for (;Holnterolnter__end;++pointer.++p)
)‘p:(( oat) ((*pointer)-target))/800.0;

process_lotus_2 (array,record)

feature(disturb,av;

float arrayl];
float record|];

float *pointer,*pointer_end;
float *p;

pointer=array;

p=record;
pointer_end=pointer+Pn;

printf {"Enter factor : ");
scanf ("%d",&target);
printf ("\n"});

for (;pointer<pointer_end;++pointer, ++p)
;p:('polnter) }]((ﬂoat) target);

,rms)
double dlstugb[]:
float avgll,rmsl];

{
double *p,*p_end;
float *pa,*pr;
p=disturb;
p.end=p+SAMPLES_PER_CYCLE;
pa=avg;
pr=rms;
Co=0;
{or {c=Co;c<CHECK_CYCLES;c++)
*pa=0.0;

*pr=0.0;
{gr (ip<p_end;p++)

*pat+=*p;
‘gri-: o UARE (*p);

*pa=*pa/SAMPLES_PER_CYCLE;
*pr=*pr/SAMPLES_PER_CYCLE;
*pr=sqrt{*pr);
pat+;
r++;
} p_end=p+SAMPLES_PER_CYCLE;
}

float root_mean_square (cycle}

/*

float cyclel};

float *p,*p_end,r;
ﬁ0.0;p P

p=cycle;
F_end:p-l»SAMPLES_PER_CYCLE;
{or (;p<p_end;++p)

}r+=SgUARE(‘p):
r=sqrt(r/SAMPLES_PER_CYCLE};

printf(’r  =%10.3f \n",1); */
) return r;

integer_order (number)

int number;

{
int 1=0,order=0,x=number;
while (1<6)

return(order);
else
++order;

return order;

integer_to_string {number,order,str)

int number,order;
char strll;

{
int I=order;
whtle {1>=0)

strill=(char)(number%10+48);
number=number/10;
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—5
}
}str[order+1]=‘\0':
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/* test Aug 12 1991 */
test ) (
FILE *in_{, ‘out f, ‘foFenO *fclose ();
doub] C

extern double Sigmoid();

int countl,count2,1,n,zoz=0,num=1,step,kiesh=0,bes=0,bev=0;
int cykly,i,points=0, order, delay—O rem,buf,se=0 target=1;

float ‘p p_end, ‘pl *pl_end,*p2,*p2_end,*p3,*p3_end,*p4,*p4_end;
double *pointer,*pointer,_ end;
float r1,12,k=0.05,m=0. 001,tc=0.0167;

double  disturb[TOTAL+TOTAL/SAMPLES_PER_CYCLE],output{CHECK_CYCLES],weights[WEI},nor{ TOTAL+TOTAL/SAM-

PLES_PER_CYCLE],nn|TOTAL],result| CHECK_CYCLES], temp, gingerJARRAY SIZE],
float avgl CHECK_CYCLES],rms|CHECK_CYCLES];

/’
print{ {"Enter patterns target : ");
scanf ("%d",&target);
printf ("\n");

*/

TF = Sigmoid;
1=0;
1=0;
countl=l;

=array_1;
F _end=p+Pn; pamay.
or( p<p_end;)

back 1f {absolute{*p)<THRESHOLD)

/* printf {"1.J=%d , p=%f, p1=96f\n"},*p,*(p+1)); */

+p;
++ﬁ
++3€;
if {se >=32)
pl=store_l;
pl_end=pl+SAMPLES] PER CYCLE;
for (;pl<pl_end;)
*p1++=0.0;
rms_1=0.0;
rl=k;
r2=k/2.0;
oto again;
oto back;
/* printf ("2.§=96d , p=%f, p1=%6f\n",,*p,*(p+1)); */
(" P 0) &&(‘(p+1)>00¥ P
goto cal
else
if ( (‘p < m) && {{*p > 0.0) &X {*(p+1) > 0.0)))
goto cal_i
else

get_vi ++p;
++_1;

/* rintf (3.3 =%f, p1=%f\n",j,*p,*(p+1)}; */

i£((*p == 0) '8 (lp D) 0.0 )

goto cal_{;

!f((((af)‘(‘(P 1)} <0.0) H (*p<m)) && (*p > 0.0) )
else

?oto get_v;

cal_i: pl=store_1;

pl_ end—p1+SAMPLES PER_CYCLE;
4=store_3

or (p1<p1 end;j++,pl++,p++,pd++)
t 1—.

F4+SAMPLES PER_CYCLE)=*

/t
for(i=0;1<SAMPLES_PER_CYCLE;1++)

/ printf{"s1=%7.4f , $3=9%67.4f , s3s=9%7.4\n" ,store_1[l],store_3[l],store_3[l+SAMPLES_PER_CYCLE]);

*

/ rms_l=root_mean_square {store_l1);

*
y printf ("NOISE=96{ rms_1=%f\n",NOISE,rms_1};

*
if (rms_1<NOISE)

/' goto get_v;

printf ("zoz=%d , num=%d\n",zoz,num);



Detection Algorithm: Program List 122

*/

/‘
*/

again:

/*

*

+4+202;

if (zoz<num)
goto get_v;
rl=(1+k)*rms_1;
r2=(1-k)*rms_1;

printf (§=%7d , rms_1=%10.3f, r1=%10.3f, r2=%10.3f\n"j,rms_1,r1,r2);

p2=store_2;
2_end=p2+SAMPLES_PER_CYCLE;
or ;p2<p2_end;j++)

if (| == (Pn))
oto

enda;
P2++=*p++;

rms_2=root_mean_square (store_2);

printf (j=%7d , rms_2=%10.3f, count=%7d\n",{,rms_2,countl++);

if (rms_2<NOISE)

goto again;

*/

cykl=
printf{"cykl=%d \n", kJ);

goto again;
/*add if rms_1 or rms_2 < noise_threshold => neglegt store_2 */

1f {(rms_2<r1)&&(rms_2>12)}

p=p-SAMPLES_PER_CYCLE;

for (1=0;l<SAMPLES_PER_CYCLE;1++)
printf (j=%7d , store_1=9%10.3f, store_2=%10.3f , p=9610.3f\n"},store_1[l],store_2[l],*p++);

p=p-SAMPLES PER_CYCLE;
delay=j-SAMPLES_PER_CYCLE;
SAMPLES_PER_CYCLE;

for {I=0;l<cykl;1++)

n_set:

goto end;
/t
*/

there:

/t
*/

/*

gingerll]=0.0;

pointer=disturb;

Co=0;

n=0;

buf=delay;

++;

{or (c=Co;c<CHECK_CYCLES;++c)

pl=store_1;

Folnter_end:polnter+SAMPLES_PER_CYCLE;

{or (;pointer<pointer_end;pointer++,p++,pl++,j++n++ points++)
if{§ ==Pn)

*pointer=*p-*pl;

printf (J=%7d , n=%7d , disturb=9%10.3f , p=%10.3f, p1=9610.3{\n"J,nn,*pointer,*p,*p1);

}
}

printf ("\n { am here\n "});
printf (4=%7d , delay=967d , points=%7d , p=2610.3f, p1=%610.3f \n ",§,delay, points,*p,*p1);

feature (disturb,avg,rms);

rows=TOTAL;columns=1;
time=1.0;

time=SEC_PER_SAMPLE;
rem=0;

order=integer_order({t);
integer_to_string (i,order,str);
concatenate (".disturb_",str,in_name);

concatenate (narme,in_name,out_name);

open_write_file (out_name});
print_column_matrix_double (disturb,rows,columns,delay,rem};
close_write_{flle (out_name);

printf ("\n");
*

1cfoncatenate {name,”.dis",out_name};

==

ogen,_vmte_ﬁle {out_name);
else open_append_file {out_name);
H_rlnt_colunm_matrbc_double {disturb, rows, columns,delay, rem);

(1=

close_write_flle (out_name);
else close_append_file (out_name);
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/.
*/

for (1=0;1<CHECK_SAMPLES;1++)
record_3[l|=disturb[l}+DC;

if (f==1 && kiesh==0)

%et_cycle_d (record_3,array_3);
es=TOTALHJ;

bev=Pnn*SAMPLES_PER_CYCLE-{;

printf ("\n current zero obtained bes=%d bev=%5d\n",bes,bev);

=p-bes;
Eg;l"'*;

J=)-bes;
points=0;
delay=j-SAMPLES_PER_CYCLE;

printf ("=%7d , delay=%7d , points=%7d , p=%10.3f, p1=%10.3f \n ",§,delay, points,*p,*p1);

pd=&store_3[SAMPLES_PER_CYCLE-bev];
pl=store_1;

F 1_end=p1+SAMPLES_PER_CYCLE;

(or (ipl<pl_end;pl++,pd++)

*pl=*p4;

printf{"s1=967.4\n",*p1);
}

}

else

for (1=0;1<CHECK_SAMPLES;1++}
array_3|ll=record_3[1};
Pnn=0;

if (1==0)

goto n_set;

Cn=CHECK_CYCLES;

printf ("-%5d Cn=%5d Prn=9%65d\n",1,Cn,Pnn);

normalize_d2 (arréy 3,nor,nn);
(

printf ("\n input normalized. \n};

/* adjust for jj */

/t
*/

*/

/*

*/

rem=0;
rows=TOTAL;
columns:=1;

time=1.0;

concatenate {".nn_"str,in_name);

concatenate (name,in_name,out_name);

open_write_flle (out_name);

print_column_matrix_double (nn,rows,columns,buf,rem);
close_write_file {out_name);

printf (\n'};

=
o&en_write_ﬂle (out_name};
else open_append_file (out_name);
gr(int_c]olunm_matﬂx_doub]e (nn,rows,columns,buf,rem);
{==1
close_wrlte_file {out_name);
else close_append_file (out_name);

concatt;.nate {name,”.nn",out_name);

time=(float) SAMPLES_PER_CYCLE;
rem=SAMPLES_PER_CYCLE-1;

/* Pattern recognition */

open_read_file ("y6.wet");
read_weights {welghts);
close_read_file ("y6.wel");

=0;
for (1=0;l<Cn;Y++)

if (BP3Layer(INPUT, 6, 1, (double *) weights,{double *) &norly], (double *) &outputll], TF))

print{{"\nError occurs in 'BP3Layer’ function\n"};
)emt(-l):

) y+=INPUT;

rows=Cn,columns=1;
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/*

*/

/‘
*/

/*
*/

/*

*/

/x

end:

concatenate (".res6_",str,in_name);

concatenate (name,in_name,out_name);

open_write_file (out_name);

print_column_matrix_double (output,rows,columns,delay,rem);
close_write_file {out_name);

printf {"\n");

co(ncatenate {name,”.res",out_name);

O]
e

en_write_file (out_name);
e open_append_flle {out_name});

print_column_matrix_double (output,rows,columns,delay,rem);

if (1==1}

close,_write_file (out_name);
else close_append_file (out_name);

;:foncatenate (name,”.res",out_name);

ok

n_write_file {out_name);
e open_append_file (out_name);

print_column_matrix_double_time (output,rows,columns,delay,rem);

if {
close_write_file (out_name);
else close_append_file (out_name);

for {column=0;column<columns;++column)

step:Cn‘colux;m;
1

{t==1)

result[step]=outputlstepl;

result[step]=0.0;

else result{stepl=temp;

for {c=Co;c<Cri-1;44¢)

y=step+c+1;

L
resull?M:result[y—l J+te*outputlyl-resultly-11);

if It 1.0
fe(s‘;.lelst}lyliyll .S: )

temp=resultly];
printf ("\ny=%5d , output=%If , result=%1f , temp=9%IN\n"y,outputly} resultyl,temp);

concatenate (name,”.int",out_name);
tf (i==1)

open_write_flle {out_name);

for {1=0;1<{;1++)
fprintf {out_f,"%7.3e \t 0.0\n",*TIME_C);

P
print_column)_matrix_double {result,rows,columns,delay,rem);

px?nt_column_matrlx_dou
{==]

else open_apgend__ﬁ]e (out_name);
le (result,rows,columns,delay,rem);

close_write_file {out_name);

else close_append_file {out_name);

;’:foncatenate {name,”.int",out_name);

open_write_file (out_name);

else

print_column_matrix_double_time {ginger,cykl], 1,0,0);

}

open_append_file (out_name);

Eﬂnt_column_maMx_double_ﬂme (result,rows,columns,delay, rem);

close_write_file {out_name};
else close_append_file (out_name);

%f (I<LAST_SET)
j=buf+CHECK_SAMPLES;
delay=|;

oto n_set;
else

{
printf ("Last set\n");
return;

}
printf ('End of file.\n"};
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}

normalize_d (array,record)

/t
*

iioub e arrayl],record];

double *pl,*pl_end,*p2,max;
pl=array;

p2=record;

Co=0;

{or (c=Co;c<Cn;c++)
pl_end=pl+SAMPLES_PER_CYCLE;

max=0.
{or {1=0; p1<p1 end;pl++,]++)

b-agsolute (a)
(b>max)
max—b

? =pl_end-SAMPLES_PER_CYCLE;
or 6’ =0;pl<pl_end;pl++,p2++,J++)

p2 {*pi+max)/(2.0*max);
printf ("j=%5d , p1=%10.5f , p2=%10.5\n",},*p1,*p2);
p J*pl*p

[v——

normalize_d2 (a.rraf' ,record,nn)

double array] record[],nn[]

double *p1,*pl_end,*p2,*p3,max;
pl=array;
p2=record;
p3=nm;
Co=0;

for {c=Co;c<Cn;c++)

rl end—p1+SAMPLES PER_CYCLE;
maxs=

{for (]—0 p1<p1 end;pl++,j++)

a=*pl;

b=a%solute(a);

if (b>max)

max=b;

}

F 1_end-SAMPLES_PER_CYCLE;
ord) =0;pl<pl_end;ple+,]++)

a='
if {al solute(a]>-LEVEL‘max)
++widthicl;

if {width[c]<=8)

width[c]=1;
else widthlc]=0;

1_end-SAMPLES_PER_CYCLE;
=0;pl<pl_end;pl++,p2i+, p3++,_|++)

pZ [‘p1+max)/(2 O‘max).

printfp(“j—%sd pl=9%10.5f, p2=9610.5f, c=0%5d , width=%5d\n",j,*p1,*p2.c,widthic]);

*p2++={(double}widthic]);

get_cycle_d (array,record)

ziouble arrayl},record(];

double *pl,*p1_end,*p2,m=0.01,n=0.00001;
{j=2*SAMPLES_PER_CYCLE;
p1=&arrayl)jl;
pl_ end—pl+CHECK SAMPLES;
2=record;
or (:p1<p1_end;)

if 1==0) &% (*{pi+l1)>0.0
go(t((’cr;“ ) (*{p1+1) >0.0))
1f( (‘pl < m) && ((*pl > 0.0) &X (*(p1+1) >0.0)))
goto ¢
else
if { (absolute[‘pl) < m) && (fj >= SAMPLES_PER_CYCLE) )
goto
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else
get_vi ++pl;
++J:
if ((*pl ==0) && (*(p1+1)>0.0})
goto cal_t;
else
if({ [(;!l:l]‘(‘(m_l)) <0.0) 1 (*pl < m}} && (*pl > 0.0))
goto cal_{;
else
?oto get v,
cal_t: if (Pnn*SAMPLES_PER_CYCLE == |j)
goto cal_i2;
else
inc_{j: ++pl;++j;
rintf {"{{<Pnn*samples...p1=%Ilf m=%f \n",*pl,m);
if((p1 < m) f
printf (“gl<m"):
if (Prn*SAMPLES_PER_CYCLE == jj)
goto cal_i2;
else
printf ("still < Pnn*....\n");
oto Inc_jj;
else

priritf ("sorry pl>m return back. §j=%5d\n",jj);
—pLi~—if;
}

}
cal 12: for {;pl<pl_end;pl++,p2+4)
‘P2=tp1;

Pnn=top({j, SAMPLES_PER_CYCLE);
)prmt_f ("\n }j=%5d Pnn=9%%5d \n",j},Pnn);
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/* options Apr26 91 %/

random {

{
rows=Pn;columns=1;
Cn=rows/SAMPLES_PER_CYCLE;

de_ac (array_1,dc,ac,ra);

difference (dc,dc_dif);
difference (ac,ac_dt);

random_detect {dc_dlf.dc_rnd):
random_detect {ac_dif,ac_md);

concatenate (name,dc_rndf,out_name);
open_write_file (out_name);
print_column_matrix (dec_rnd,Cn,columns});
close_write_file (out_name);

printf ("\n");

concatenate (name,ac_rndf,out_name);
open_write_flle {out_name);
print_column_matrix (ac_rnd,Cn,columns);
close_write_file (out_name);

printf ("\n");

{

rows=Pn;columns=1;
Cn=rows/SAMPLES_PER_CYCLE;

de_ac (array_l,dc,ac,ra);

difference {dc,dc_dif);
difference (ac,ac_dif);

random_detect (dc_dif,dc_rnd);
random_detect (ac_dif,ac_rnd);

concatenate (name,dcf,out_name);
open_write_file (out_name);
print_column_matrix {de¢,Cn,columns);
close_write_file {out_name};

printt ("\n");

concatenate (name,acf,out_name);
open_write_file (out_name);
print_column_matrix (ac,Cn,columns);
close_write_file (out_name);

printf ("\n");

concatenate (name,dc_rndf,out_name);
open_write_file (out_name);
print_column_matrix (dc_rnd,Cn,columns);
close_write_file (out_name);

printf ("\n"};

concatenate (name,ac_rndf,out_narme);
open_write_flle (out_name});
print_column_matrix (ac_rnd,Cn,columns);
close_write_{file (out_name);

printf ("\n"};

}
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/* This {s the header file for the BackPropagation ANNs function.

This function simulates the one hidden layer BackPropagation algorithm.
Only forward calculation {s implemented.

The function needs number of input neurons, number of hidden neurons,
number of ocutput neurons, a lixol.nte:r to the weight data record, a pointer
to the input vector data record, a pointer to the output vector data

record, and a pointer to a transfer function, as the input arguments,

and will return an error value.

It will return (-1} if there is an internal error, or (0) if everything
is okay.

Programmed by : Adl Indrayanto
First version : 11/29/1990
Current vers. : 2.0

Last modific. : -
*/
int BP3Layer(long ninput, long nHidden, long nOutput, double *weights,
double *inputVector, double *outputVector,
double {*transFunc){double data));
double Sigmotd(double data);

/* This Is the BPThreeLayer function code

Programmed by : Adt Indrayanto
First version : 11/29/1990
Current vers. : 2.0

Last modific. : —

*/
#nclude "BP3Layer.h"

#nclude <stdio.h>
#include <math.h>
#include <stditb.h>

int BP3Layer(long ninput, long nHidden, long nOutput, double *weights,
double *inputVector, double *outputVector,
double E'JtransFunc)(doubIe data))

{
double *hiddenNeurons;

long ix, iy;
long offSiasi, offBias2, offBias3, offWelght2;

if {{hiddenNeurons = {double*) calloc{nHidden, sizeofldouble))) == NULL)
return(~1);

offWelght2 = ninput * nHidden;

offBias] = offWeight2 + (nHidden * nOutput);
offBias2 = offBlasl + nlnput;

offBias3 = offBlas2 + nHidden;

f?r (1x = 0; ix < nHidden; tx++) o

hiddenNeuronslix] = weights{ofiBlas2 + (x};
for (fy = 0; ly < ninput; ty++)

hiddenNeuronslix] += welghtslix*nInput+y] * inputVectorliyl;

if (transFunc != NULL)
hiddenNeurons[ix] = (*transFunc)(hiddenNeurons{ix]};

f?r (ix = 0; 1x < nOutput; ix++)

outputVectorlix] = weights[ofiBias3 + ix];
f?r Fiy = 0; iy < nHidden; iy++)

outputVectorlix] += weights[offWeight2 + ix*nHidden + iy *
)hiddenNeurons[iy];

if (transFunc 1= NULL)
} outputVectorlix] = (*transFunc){outputVector{ix]);

free(hiddenNeurons);
return{0};

}
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/* The Sigmold transfer function used for BPThreeLayer function.
Passed this function as the argument of the BPThreeLayer function.

*/
c}ouble Sigmotd(double data}

register double result;

result = 1/{1 + exp{(-1) * data));
return(result);
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/* file_manipuation

concatenate (strl,str2,to)
char *strl,*str2,*to;

while {*strl)
*to++="strl++;
while (*str2)
*to+4=*str2++;
;to:‘\O‘:

copy._ stdng {from, to)
char *from,*to;

{

while (*from)
*to++=*{rom++;
;to:'\O‘;

open_read_file {filename}
char fllename]];

FILE *in_{, *out_f{, ‘fopen 0, *fclose {;
in_f=| fcpen {filename,"r

if (in_f == NULL)

prlntf ("Can t open %s file\n",fllename);

}mntf ("Flle %s is open\n" filename);

close_read_flile (filename)
char filenamef}];

FILE *in_f, ‘out f, *fopen (), *fclose ();
fclose (ir_
}Jri.ntf & Flle %s is closed\n" fllename);

open_write_file (filename)
char filenamef];

FILE *in_{, *out_f, ‘fopen 0, *fclose ();
out_f= fopen (ﬂ]ename "w');

if (out_f == NULL)

printf ("Can't open %s file\n",filename);

else
Frintf ("File %s is open\n",filename});

close_write_file (fllename)
char filenamel];

" FILE *In_f, ‘out f, *fopen (), *fclose ();
fclose {out
}Jrintf “File %s is closed\n”, filename);

open_append_file (fllename)
P chl’)al;;~ fllenamel];

FILE *in_{, *out_f, ‘fopen 0, *fclose ();
out, f-fopen (ﬁlename, a”);

if (out_f == NULL)

printf {"Can’t open %s flle\n",fllename);

else
}Jrlnt.f ("File %s is open\n",filename);

close_append_file (filename)
cl enamell;

{

FILE *in_f, ‘out f, *fopen (), *fclose ();
fclose {out
Frintf "File %s is closed\n",fllename);

Aug791%/
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/* file_read July 891 */

read_hex )

printf {"ENTER FILE NAME: ");

scanf {"%24s", name);

printf ("\n");

concatenate (name,hex,in_name);
open_read_file (in_name});
hex_decimal (quantized_data,array_1);
close_read_file {in_name);

printf {"\n"); }

read_dat ()

printf CENTER FILE NAME: ");
scanf ("%24s", name};

printf ("\n");

concatenate (name,™,in_name);
open_read_flle (In_name});
read_input }] _1);
close_read_file (in_name};

printf "\n"); }

read_lotus ()

{
printf "ENTER FILE NAME: ");
scan{ ("%24s", name};
printf {"\n");
concatenate {name,prn,in_name};
open_read_file (in_name);
read_input_lotus (quantized_data);
close_read_{file (in_name);
}arintf "\n"};

read_lotus_2 ()

printf C"ENTER FILE NAME: ");
scanf ("%24s", name);

printf ("\n");

concatenate {name,dat,in_name);
open_read_file {tn_name);
read_input_lotus_2 (record_1);
close_read_file (in_name);

Frintf "\n");

read_lotus_out ()

printf {"ENTER FILE NAME: “);
scanf ("%24s", name);

printf ("\n");

concatenate (name,”.out”,in_name);
opeél_read_{llle (ln__nzame; )
read_input_lotus_2 (array_1);
close_re%d_ﬁle {in_name);

Frlntf {"\n");

read_oct {)

printf "ENTER FILE NAME: ");

scanf ("%24s", name);

printf ("\n");

concatenate (name,oct,in_name);
open_read,_file (in_name);
oct_decimal (quantized_data,array_1);
close_read_file (in_name);

}arlntf "\n");

ead_input (array)
r pu [K

float array]

FILE *in_f, *out_f{, *fopen {}, *{close ();
float *pointer;

int a;

=0

pointer=array;

do

{

fscanf (in_f,"%f", pointer};

++pointer;

+4;

}thﬂe {{car=getc{in_f)) 1= EOF);
0=0;

Pn=|-1;
bstirecord:(Pn /BLOCK_SIZE);
} printf ("Pn=9%5d , last,_record=%5d\n",Pn,last_record);

read_input_lotus (array)
int arrayil;
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FILE *in_f, *out_f, *fopen (), *fclose ();
int *pointer;

polﬁter::array;
do

{
fscanf (in_f,"%d", pointer);
++pointer;

+4;
} while {{car=getc(in_f)) 1= EOF};
Po=0;

Pn=j-1;
last_record=(Pn/BLOCK_SIZE);
) printf {"Pn=065d , last_record=%5d\n",Pn,last_record);

read_jnput_lotus_2 (array)
float arrayl};

FILE *in_{, *out_{, *fopen (), *fclose ();
float *pointer;

polhtet:array;

do

{

fscanf (in_f,"%*d %f",pointer);

fscanf (in_f,"%*e %{",pointer);
++pointer;

/‘l
*/

+4;
} while ((car=getc(in_f}} I= EOF);
Po=0;

Pri=j~1;
hstirecord:(?n/ BLOCK_SIZE);
Frtntf ("Pn=965d , last_record=%5d\n",Pn,last_record);

read_welghts (array)
uble array(];

FILE *in_{, *out_f, *fopen (), *fclose [);
double *pointer;

int g=0;

pointer=array;

do

{
fscanf (in_f,"%lf", pointer);
++pointer;

+4+q;
} w(iule ((car=getc(in_{)) 1= EOF);
})rmtf ("q=%65d\n",q-1);
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/* flle_write Aug 12 91 */

write_data ()

concatenate (name,dat,out_name};
rows=Pn;columns=1;

open_write_file (out_name);

print_column_matrix (array_I,rows,columns);

close_write_file (out_namej;

printf ("\n"); }

write_data_2 (
1

concatenate (name,”.x",out_name);
rows=Pn;columns=1;

open_write_file {out_name);
print_column_matrix {array_l,rows,columns);
close_write_flle {out_name};

Frlntf \n');

wrlteTmbp]ot 0

concatenate (name,”.mb",out_name);

rows=Pn;columns=1;
Cn=Pn/SAMPLES_PER_CYCLE;Co=0;Po=0;

open_write_flle (out_name};

print_mbplot (array_1,rows,columns);

close_write_file (out_name);

Frlntf "\n");

write_arrange ()

concatenate (name,rec,out_name);
open_write_file (out_name);
for ()=0;j<Pn;++j)
fprintf {out_f,"%7.3¢ %10.3\n" j*time,array_1{ji};
close_write_file (out_name);
printf (\n"; )

print_column_matrix_double_3 (array,rows,columns,de,rem)

double array]l;
%nt rows,columns,de,rem;

FILE *in_f, *out_f{, *fopen {), *fclose ();
int row,column,d;

double *p,*p_end;

F:a.rray;

or (row=0;row<rows;++row)

{
t;prlntf (out_£,"%7.3e ",de*time+row*SAMPLES_PER_CYCLE+rem);
(or {column=0;column<columns; ++column}

d=column*rows+row;
F:&a.rray[d] H

printf (out_{,"9610.31g",*p};
{printf fout_f;"\n");

}

print_column_matrix_double (array,rows,columns,de,rem}

double arrayl];
int rows,columns,de,rem;

FILE *In_{, *out_{, *fopen (), *fclose (};

int row,column,d;

double *p,*p_end;

for trow:

{or {row=0;row<rows;++row)

ii:prlntf {out_f,"%7.3e ",(de+row)*time+rem);
{or (column=0;column<columns;++column)
d=column*rows+row;

F:&amy{d];

printf (out_f,"%10.31g",*p);

{pnntf fout_f,"\n");

}

print_column_matrix_double_time {array,rows,columns,de,rem)

double arrayl];
int rows,columns,de,rem;

FILE *n_{, *out_f, *fopen (), *{close {);
int row,column,d;

double *p,*p_end;

p=array;
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for (row=0;row<rows;++row)

i‘prlntf (Out_f,"?ﬁ7.3e ",de”I'lME_'S+(roW+l)‘TlME_C);
or {column=0;column<columns;++column)
Ei:column‘rowsﬂow;

Fp=rlntf (ou?_;f.'%l 0.31g",*p);

{printf (out_f,"\n");

}

print_column_matrix_dis (array,rows,columns,de,rem)

float arrayl];
int rows,columns,de,rem;

FILE *in_f{, *out_f, *fopen (), *{close {;
int row,column;
float *p,*p_end;
F:an-ay;
{or {row=0;row<rows;++row)
ti'prlntf {out_f,"%7.3e",de+row*time+rem);
{or (column=0;column<columns;++column)
J=column*rows+row;
=&arrayl]l;
?pnntf (out, £,"%10.3",*p);
]fprintf fout_f,"\n");
}

print_column_matrix {array,rows,columns)

float arrayl];
int rows,columns;

FILE *in_{, *out_{, *fopen (), *close {;
int row,column;
float *p,*p_end;

F:array;
{or {row=0;row<rows;++row)

{prlntf {out_f,"%7.3e",row*time);

or (column=0;column<columns;++column)

{

J=column*rows+row;
=&arrayl]l;

Fprmtf (out_f,"%610.3f",*p);

{prlntf {out_f,"\n");

}

print, Tlmw__maﬂ:rlx {array,rows,columns)

oat arrayl];
(mt rows,columns;

FILE *in_{, *out_f, *fopen {), *fclose (;
int row,column;
float *p,*p_end;

F:array,
{or (row=0;row<columns;++row)
¥pr1ntf (out_f,"%7d", row);

o

] r (column=0;column<rows;++column)
fprintf (out_f,"%10.3{",*p);

*pedy

{prlntf fout_f," 1\n");

}

print_row_matrix_nn (array,rows,columns)

float arrayl];
int rows,columns;

/* Prints in NN Training Format */

FILE *in_f, *out_f, *fopen (), *{close ();
int row,column;
float *p,*p_end;
F:array;
or (row=0;row<columns;++row)

{
fprintf (out_f,"%s_%02d ",in_name,row});
{gr {column=0;column<rows; ++column)

fprintf {out_f,"%6.4f ",*p);
*padg

;‘pr!.ntf {out_{,” %d\n", target);
}
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print_row_matrix nn2 {array,width,rows,columns)
float arrayl];
%nt rows,columns,widthl];

/* Prints in NN Training Format */

FILE *in_{, *out_{, *fopen (), *fclose ();
int row, column.
float *p,*p_end;

F—a.rray;
or (row=0;row<columns;++row}

fprlntf (out_f,"%s_%02d ",in_name,row});
or {column=0; column<rows; ++column]

fprintf (out_f,"%6.4{ ",*p);
*pi+;

{prlntf (out_f," %d %d\n",width{row), target);
}

print_row_matrix_nn3 (array, target,rows,columns)
double arrayl};
{nt rows,columns, ,target;

/* Prints in NN Training Format */

FILE *in_f, *out_f, *fopen (), *{close ();
int row,column,
double *p,*p_end;

F " frow
or (row-O row<columns;++row)

tprim:f (out_f,"%s_%02d ",in_name,row);
or (column=0;column<rows;++column)

{
fprintf (out_f,"%6.4g ",*p);
pt;

}
{prlnti’ {out_f,” 96d\n", target);
}

print_mbplot (arraﬁ ,rows,columns)

oat array[]
int rows,columns;

FILE *in_{, *out_f, *fopen (), *fclose {;
int row, column,
float *p,* p end;
P fprintf (out_f,"%s\n",in_name);
f[:u‘lntf out_{,"%7d %7d %7d CYCLES\n",Cn,Co, 1};
rprmt:f out_| f "%7d %7d %7d SAMPLES\n", SAMPLES PER_CYCLE,Po,1);
rintf (out_f f "a b c\n”);

for {c=Co;c<Cn;c++)
for (row=0;row<SAMPLES_PER_CYCLE;++row)

fprlntf (out_f,"%7d %02d %10.3f\n",c,row,*p);
*p

}
}

rearrange_array (array,record,rows,columns,step)
float arrayl];
float record|);
int rows,columns,step;

{
FILE *in_{, *out_f, ‘fopen 0, *fclose §;
int row,column,junk,y, t;
float *p,*p_end;
float ‘pointer, *pointer_end;
1=0;
p=record;
Jjunk=Pn-columns*rows;
y=0;

t=0;
{or {column=0; column<columns;++column)

pointer=&arraylyl;
Fomter end-pointer«i-rows,
or {;pointer<pointer_end;)

if (J+junk <= Pn)

*p++=*pointer++;

by

else

break;
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y=y+rows-+JUNK~t++;
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Bt ot g 3 111

oo m o=

= THE TESTING OF MICROPROCESSOR ALGORITHMS FOR =
= HIGH IMPEDANCE FAULT/LOAD DISCRIMINATION =

R RSN N I R I R R R I SRR I S T RSN R R E =S

Using MathCAD Software and Notation
LA A2 A2 L T 222 I R R R T R Y R L]

MathCAD FILE : mcad-prog

IV := READPRN(data)

read current & voltage samples

n := rows(lv) n = total number of samples
8 = 32 samples per cycle
1:=0..8-1 counter of sample number in a cycle
C := floorfq c = number of cycles
F 3 =1 ..c counter of cycle number
<0> <1>
I:=1IV V= IV current and voltage vectors

FFT OF THE CURRENT SIGNAL

_____ e ===z
k t= —
8
A t= I
3.1 1+32-(3-1)
B := AT

Icalft<j> = [fft [B<j>] -k]

[ <1>
X := last|Idft

Yy := 0 ..x

FFT OF THE VOLTAGE SIGNAL

(o] 1=V
9,1 1+32-(3-1)
D :=cCV

RPN
vastt = [fft|D 'k

====
= DATA PROCESSING

===

factor to get actual amplitude of the harmonics

matrix of cycles(row) x samples(column)

transpose for parallel processing

take FFT for each cycle

index of last element in the FFT

counter of harmonics per cycle
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momm mesax

= THIRD HARMONIC ALGORITHM

SEREzzmmE

P

THIRD HARMONIC CURRENT MAGNITUDE AND PHASE PER CYCLE

P R R I R S R O R I R S R SN S SN NN R S T S S ST

<>
nI3 := |Idft
b} 3

<J> <j>
¢ := 1f|Idft = 0,0,arg|Idft
] L 3 3

<J>
al3 := arg{Vdft ] -0
b 1 ]

I3 := mI3 -cos[aIB] + 1 mI3 -sin[aIB]
h ] 3 Jj J h|

SIGNAL AVERAGING

Short time average

As := 0.9°13
1 1

As := 1f[j >1,A8 ‘Ks + I3 (1 ~ Ks),As]
J h! 1

-1

Long time average

Kl := 0.9

Al := 0.1-I3
1 1

Al := if[j >1,A1 Kl + I3 -(1 - K1),Al
b 3 1

j-1
PHASOR CHANGE

PI3 := if{j >1,A8 - Al ,DI3 ]
-1 1

b
aDI3 := if [st = 0,0,arg[DIE! ]]
3 h 3

third harmonic current magnitude

third harmonic current phase

third harmonic current vector

angles are in harmonics rads.
magnitudes are in per unit

time constant

initial value

current averagling

time constant

initial value

current averaging

initial value

change in magnitude

change in phase
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= POWER RATIO ALGORITHM =

sdft := (|rdft|-|14aft|) individual harmonic power
e :1= 6,8 ..x - 2 counter of even harmonics
o:=17,9 ..x -1 counter of odd harmonics
<> 4 '
ee = E sdft +10 sum of even harmonics power per cycle
3 e
e
<3> 4
oce := E sdft -10 sum of odd harmonics power per cycle
b} ()
oV

even-to-odd harmonics power ratlo per cycle is

ee

]
r :=1fjee < 1.0,0,ifloce < 1.0,0,—
3 h | h | oej

= RESULTS STORAGE =

= s

180
R i= Af Inxa l < 0.001,0,aDI3 ~— + 6.77
b i=n

WRITEPRN(results) := R

cycle number

change in third harmonic
current magnitude (pu)

change in third harmonic
current phase (degrees)

even-to-odd harmonics
power ratio

write results to disc
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