FAST AND RELIABLE
VALIDATION SYSTEM
FOR PRINTED DOCUMENTS

by

Alexis Denis

An M.Sc. Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba, Canada

Thesis Advisor: Prof. W. Kinsner, Ph.D., P.Eng.

(xxi1 + 166 + A124 + B6 =) 319 pp.
© A. Denis; November 2001

I *I National Library
of Canada
Acquisitions and
Bibliographic Services

395 Weliington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your fitg Votre rélérence

Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

B¢l

Canadi

0-612-76927-5

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

Kkdhkk

COPYRIGHT PERMISSION PAGE

FAST AND RELIABLE VALIDATION SYSTEM FOR PRINTED DOCUMENTS

BY

Alexis Denis

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of

MASTER OF SCIENCE

ALEXIS DENIS ©2001

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfil this thesis and
to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this
thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.

Valid. Syst. for Printed Docs

Visual Abstract

Y

Extract Signature

Enhance Edges

Y
Detect Pattern
Boundaries

!

Rotate/Translate Pattern
and Crop Image

Decode

Noise Overlaid

—

Pattern

Pseudo. rand.
Deinterleaver

CSO
Encoder

v

Block
Interleaver

v

Reed-Solomon
Encoder

the Pattern <€

Decrypt
the Pattern

Compare and

> Validate

Central
Key Server

- i o-

Valid. Syst. for Printed Docs Abstract

ABSTRACT

Numerous printed documents, such as passport, paper money, lottery tickets, carry
sensitive and valuable information. This thesis uses techniques from the communications,
cryptography, and image processing domains to detect alterations to the printed document

and prevent the creation of forged documents.

The security of the document is achieved by overlaying a pattern that contains
information about the underlying document using a special ink such as fluorescent ink.
The resilience of the pattern against random and compound errors in the paper channel is
achieved by using a double interleaved concatenation of a Reed-Solomon (RS) code with
a self-orthogonal majority decodable convolutional code. A security system design is pro-
vided which is scalable according to the value of the document. The pattemn is read using a

gray level scanner, and located using an edge filter and a line detection algorithm.

The theoretical performance of the concatenated code is tested under Gaussian
noise showing that-the higher constraint length convolutional codes, larger block length
RS codes, and symbol interleaver perform up to a bit error rate of 107%° at 2 dB. The
demodulation technique locates the pattern with an SNR as low as 2 dB. Under burst
noise, the concatenated pattern handled up to 15% erasure and the pattern with RS alone

up to 34% for RS on the Galois field of characteristic 6 and with input block length 26.

- iv -

Valid. Syst. for Printed Docs Acknowledgments

ACKNOWLEDGMENTS

I dedicate this thesis to my wife Venus and my baby girl Alyssa. Venus’ constant
support over the years has made many of my achievements possible. Venus I could not
have made it through without you. Thank you for coping with all those years of research.
Alyssa, you’ve been an inspiration for the few month you’ve been in my life and a

motivation to finish this thesis.

I would like to thank my advisor, Dr. W. Kinsner, for suggesting the topic of the

thesis and guiding me along the way.

I'would also like to acknowledge everyone in the Delta Research Group, past and
present, ncluding Richard Dansereau, Hongjing Chen, Rasekh Rifaat, Luotao Sun, Tina
Ehtiati, Jonathan Greenberg, Steven Miller, Fan Mo, Reza Fazel, Bin Huang, Jin Chen,
Hong Zhang. All of these people played important roles in my development as a graduate

student, researcher, and friend.

I would also like to thank and acknowledge the support of Pollard Banknote
Limited for their contribution that made this thesis possible, the Natural Sciences and

Engineering Research Council (NSERC) of Canada, and the University of Manitoba.

Valid. Syst. for Printed Docs Table of Contents

TABLE OF CONTENTS

L INTRODUCTION wcceoeetsctecttssseeeseeseinsssstesssesses s e nsseesessesse s s s s s s ssos oo e oo 1
MOTVALION ... 1
Printed Documents SECULILYoo.ovoiiooeoeeeooeeece e 1
Validation SYSteImc.c.ouvuiuiuiiieieieeo oo 5
Thesis OTZaNIZAtIONvovueuiieieiiesieee oo 6

II. BACKGROUND oucoeteteticnssssesensessssssesans s sses s sass e ssessessessssss s s s s s s 8
INtrOQUCTION ... 8
Communication SYSTEIMvueviueieieeoeeeeeeee oo 8

SOUTCE BNCOAING ...cutimeeieeieieie oo 9
Channel ENCOAING.....c.cveveueiueiieeieieeeeeeeeeeeeeeeeeeeeeeeeeoeeeoeeee 9
MOQUIALOT ... 10
Transmission Chanmel........c.oveeveiuuiriiieiececeeeeeeeeeee oo 10
Demodulatorc.cuiiiiieetie et 10
Channel DECOET..........vuiueuieieieteeeeceeeeeeeeeee oo 11
SOUICE DECOET ... e 11
SUIMMATY - e 11
CIYPLOGIAPNY ... 11
COnfIAENtIAIILY ...ceeeeeeieeeii e 12
One-Time Pad CIPheT......coouvvieieeeoeeieeeeeeeeeeeeoeeeoeoe oo 14

- vi -

Valid. Syst. for Printed Docs Table of Contents

Additive Stream CIPherscooooiiiriniiieneece e 14

Data INTEZITLY ..o et 18
Authentication and Identificationccocooiioiiiioiiiiiie e 20
SUIMIMATY .ttt ettt e e e e a e, 26
Forward Error Correcting Codesoovvviruieieieiiieieeee e 27
INtrOAUCTION ..t 27
Algebra of FInite FIElds ...ooooioieiiieiieieeeeieeee e 34
Reed Solomon Codes.... oot 37
ENCOAINEG ..ot 39

DECOAINE .ttt 40
Convolutional CodeS.c.eviiiiiiieieiiis et 41
INtroduction ..ot 41
Self-Orthogonal Convolutional Codesc.ccvovveeiiviiieeeeceeeeeeeeee 45

Threshold Decodingooeveeeeeieeiiiicieecceeeeeee e 47

SUITITIATY «. ettt ettt et ne e en e e e et s ereeeeenen 53
Barcodes.......cooveiiviiiieee, e 53
1D BarCOAes....c..couiviiiieceieeesteee sttt ettt ettt e 56

2D BArCOAES. ...ttt ettt 56
SUIMIMATY ¢ttt ettt ea e ae et e et e e e e ee e e eeeeeeaes 58
Random Number Generatorscc.oeoivuiieieuieieeieiceieteee et eeaeee et 58
Linear Congruential Generatorccoveveureviieeeeeee et 59
Encryption Based RINGccooiiiiieieieiee e 59

- Vil -

Valid. Syst. for Printed Docs Table of Contents

RING Test ProCeAUIESo.ovoveceececeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 60

Chi SQUATe TEStcvviiieuiieieiieeeee e, 60

SPECITAI TESE ..ot 62
Summary.......... e e et e e e e b e e e e e ntntee e e aeeereeaeeneas 62
Digital Image ProCEeSSINGovoveviieeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeeeeeee 62
General Concepts 62
Edge DEeteCtion.coeoiiieiiieieicieee e 63
Gradient OPeratorccooeuieirieueeeie et e, 65

RODEIS OPEIAtOrv.eveieieiiiecietee e 66

Prewitt OPEratoroucveeeeieiiiee et 67

SODET OPEIALOT ...ttt 67

Laplacian OpPeratorc.eceveieirieiriieieeeeceeeeeeee e 68

Canny OPETALOTououeueieeeeireretceeeee et 69

Deriche OPEratorocvevevieeeieeeccecceees e 73

Line Tracking AIGOTItRIMSo.ovoviuiiiiiicieiccccee e, 79
Radon Transform......cccoocoevveeiovecciiii B 79

Hough Transformc.oooeoiiiniieeeeeeeeee e, 82

SUIMIMATY ...ttt e e e e e es e esee e 83

III. SECURITY SYSTEM, CODE, AND PATTERN DESIGN..uvurueeureererereeeresrsssssssssssssssssssesns 84
INErOQUCTION.ot 84
Scalable Security SYStEIMcvouiveiieieieeeecee e 84

- vili -

Vahd. Syst. for Printed Docs Table of Contents

System Design for Small Value Documents...............o.ooooooeoeeiieeoe e 84
System Design for Medium Value Documentscooovveeoeeeeeeeeeen 86
System Design for High Value Documents.............oooooveverie oo 87
SUITITIATY ..ttt et et e, 88

Double Interleaved Concatenated RS and Convolutional Self-Orthogonal Code....88

Square Pattern Modulator with Threshold Demodulator............c.ocooveveeeveiee. 92
SUIMMIIATY ..ottt 96

IV. DESIGN OF EXPERIMENTS.cccueeevutineeseereseeessesssssssnesasssessessssssssesssnsssssesssessssssssossssssenns 98
IBETOAUCHION ..o 98
C0de PerfOrmManCE. e 98
Pattern Functional TeStNGcceovieirioieeeiiec e 103
SUIMINATY ..ottt ettt et e et ettt eteaeeeeee e e e eee e e e e e e e s ee e e 105

V. EXPERIMENTAL RESULTS AND DISCUSSION tuueeeereeerurerveerressessasssssssssssesssssresssssseses 106
Random Number Generator TESES «...ooueeeoee oo, 106
Linear Congruential Generatorc.oco.oioieomeoeeeeeeeeeeeeeeeeeeee e 106

Pseudo DES RING ... e 112

Code Under AWGNo e e 112

Non Coded TranSmiISSION.ee.veeeeeeee oo 115
Convolutional Code Performance.oooveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 116

RS PerfOrmMancecc.eueeoeeeeeeeeeeeeeeeeee e e 119

- ix -

Valid. Syst. for Printed Docs Table of Contents

Interleaver Type and Performance..............occoooooivioioios e 123
Code Performance with and without Interleaver............oocoevveeeenn... 123
Random Interleaver vs. Block Interleaver Performance 124
Bit Block Interleaver vs. Symbol Block Interleavercccooveenn..... 128
CSOC and RS ChOTCE ... 128
RS and Concatenated Code Comparisoncocooveieeeeceeoeeeeeeeeeee. 131
Concatenated Code and RS Code Timingccocoovoioveeoieeeeieeeeeee e, 132
SUIMIMATY -ttt e, 133
Decoding Procedure TeSHNEoovvvvieieieiooe e 134
Scanning Resolution of Rotated and Unrotated Patternooovvveveuvenn.... 134
Line Detection TESTS ...o.eieiiiioiieiiieccet e, 137
Demodulation Theory and ChoiCec.ooveviiiveeoii oo 144
Error Altered Pattern TeStING.oeceeiieciieieeeiee et 148
Gaussian Noise TESHNGc.c.veiirieieieieieieiie et 148
BUTSENOISE ...t 151
SUIMIMATY ..ottt et e e e et es oo ee e e e s eseses e e 156
VI. CONCLUSIONS AND RECOMMENDATIONS «.ecveerersasesessrenersssssseserssrssessasssasasssasasanes 158
CONCIUSIONS ..ottt e 158
CONEITDULIONS ..., 159
Recommendations for Future Workcocoooivoimioioeoie oo, 160
BA. SOURCE CODE .ocunerriseeeisiscrcsecsssesssessansassistssssssssssssssesssessssssassssssssnssssesessssssssssmsaens Al
- x -

Valid. Syst. for Printed Docs Table of Contents

DEDUGGET ... e Al
BUITET e, Al
CODIEC e A9
RS e, All
RSENCOET ..., Al4d
RSDECOUET ... et A23
INEETIEAVET ..., A40
INEETIEAVET_TAN ...t A45
deinterleaver rand ... A49
INEETIEAVEIBX ...ttt AS3
CONVOIENCOAET ...ttt AS57
CONVOIDECOAET ...ttt et A6l
Interleav_SYmb........coooiiiiie e A67
TANAOM_ BT, ettt A71
ZASAEY oot A75
FACKOT oottt e, AT76
PALEIMIDII ..o A92
PALEETII] oo e, A9%4
AEPALTEINI] ...t A101
AemOAUIATOT ..., A105
TIOISIEY oot A107
DINTOIMIE .ottt Al110

- X -

Valid. Syst. for Printed Docs Table of Contents

FANA_TEST....oi e, Al13

treat X SQFTIE ..o Al119

SCANNETSIMIUIALOT L..oii oo Al121

B. PATTERNS eetttetteeteceeseeesretesseesteseetsssesmseeseeseeseessesssessessssssessesssesssesmsessees e eeesesees Bl
- X1 -

Valid. Syst. for Printed Docs List of Figures

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

1.2

2.1

2.2

2.3

2.4

2.6

2.5

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

LIST OF FIGURES

Traditional security techniques: (a) ghost printing; (b) embossment; (c)

iridescent inks; (d) holograms; (e) UV printing; () rainbow printing; and (g)

TICTOPITNTIIIG. ...ttt 3
Proposed document validation SyStem.cocoooovovoiioieeeeeeeeoe) 6
Communication system diagram.oooieeeooeeoe oo 9
Confidential (secure) communication SYStEIM.oveveveeeeeeeeeooeeooe 13
OFB mode for block CIpher.ooooooviiieeeeeeeeeeeeeee) 17
Data mtegrity with hash functions and ciphers..........cocoovooveeoeeooeeeoeee . 19

Geometrical representation of the relationship between correcting power and

minimum distance of the code.cocooiivioeeeeeeeeeeeeeo oo 29
Three repetition code geometrical interpretation.cooeveveeeeeereoenn 29
ECC hierarchy........ccouiioiiiieiee e 31
Encoding of (a) block codes and (b) sliding window codes.oooveveveven.. 31
(2,1) N=2 systematic convolutional €ncOder.cooovveveoeooeeoeeoeoo 42
(2) Trellis diagram, (b) FSM for a (2,1) N=2 code.ovvvoereooeeoooo 44
Tree representation of a (2,1) N=2 code.cocooooovomivimieeieeeeeeeeeeeee 44
Threshold decoder CIrCUIL. ..ovoveveiieiiieieteeeeeeeeeeeeee e 52
1D barcode SIUCHUTE.ooueviuriiiriieieiesetee e 54

Sample of 1D barcodes: (a) UPC-A; (b) Code 39; (c) Codabar; (d) Code 11; (e)

EAN 13; () EAN 8; (g) interleaved 2 of 5; (h) UPC-E; (i) Code 39 and; (j) Code

- XHI -

Valid. Syst. for Printed Docs List of Figures

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

3.1

32

33

3.4

3.5

4.1

4.2

5.1

5.2

53

54

L et 55
2D barcodes examples: stacked: (a) 16K; (b) PDF417; (c) SuperCode; matrix:

(d) Aztec; (e) Code 1; (f) UltraCode; (g) DataMatrix; and an example of unique

2D barcode: () 3D1. oo 57
Successive edge AeriVatIVES.oooiieieie e 64
Image matrix for edge detection algorithms. ... 65
Basic gradient approximation convolution matrices.ccocoovveveeoeeveeenn.. 66
Roberts cross-gradient convolution MatriCes.ocoooooveiiioioeee e, 66
Prewitt convolution MatriCes.oo.eovvoiiiereioieeie e 67
Sobel convolution MAatIICES.ouieui oo, 68
Laplacian OPErator.cc.ocieuirieuiiei ettt 69
Cryptosystem schematic for small value documents.ccocooovovcveinnnnnn.., 85
Cryptosystem schematic for medium value documents.ccoveevvvenennnne. 86
Cryptosystem schematic for high value documents.c.ccocooieiinne. 87
Block diagram of the designed code.c.ooviiviiiiiiiiciiieeieeeeeeeeeeeen 91
DECOAING PrOCESS ...ttt e 93
Uniformly spaced 3 bit qUaNtIZer.........ooooviiieiieeieiie e 100
Decoding process with experiments legends.coooveviieiiicoceeeeen . 102
rand48 random bit test, theoretical and experimental results. 107
rand48 mod 3 test, theoretical and experimental results..........ccooevveeveenennn... 108
rand48 3LSB 3-tuples test, theoretical and experimental results.................. 108
rand48 equidistribution test, theoretical and experimental results. 109

- Xy -

Valid. Syst. for Printed Docs List of Figures

Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.5

5.6

5.7

.5.8

12. 5.9

.5.10

.5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

rand48 8LSB pairs test, theoretical and experimental results...................... 109
pDES random bit test, theoretical and experimental results. 113
pDES mod 3 test, theoretical and experimental results.ocoocoooeoo... 113
pDES equidistribution test, theoretical and experimental results. 114
pDES 3LSB 3-tuples test, theoretical and experimental results. 114
pDES 8LSB pairs test, theoretical and experimental results. 115

Non-coded data transmission using bipolar binary modulation theoretical and

SIMulation Performanceo.o.ooooiiiii oo, 116
(2,1) CSOC performance with constraint length 2, 7, and 18. ...c.cocoooooo.... 117
RS performance for RS(7,3), RS(15,7), RS(31,13), and RS(63,27).............. 118

Theoretical bound and simulated RS(63,27) and RS(7,3) performance........ 121
Concatenated codes simulated performance compared to expected performance
with (2,1), N=18 CSOC, and (a) RS(7,3), (b) RS(15,7), (c) RS(31,13), and (d)

RIS(63,27). .., 122
Concatenated codes performance for various block interleavers with (2,1),

N=18 CSOC, and (a) RS(7,3), (b) RS(15,7), (c) RS(31,13), and (d) RS(63,27).

Random interleaver vs. block interleaver.ocoooveeomeooeoeeeoeeeo 125

Concatenated code with a double size random interleaver (512 bits) vs. 16x16

BIOCK IEIICAVET. ...vitiiiiiicc e 126
Symbol interleaver vs. block interleaver for RS(15,7), N=18. ...ocovvevevevenn... 127
Concatenated code performance with RS(15,7), N=7 and N=18. 129

Valid. Syst. for Printed Docs List of Figures

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

(a) conc(m=3,t=2,N=18,I=16,mi=3) with RS(m=3,t=3), (b)
conc(m=4,t=4,N=18,1=16,mi=4) with RS(m=4,t=6), (c)
conc(m=5,t=9,N=18,I=14,mi=5) with RS(m=5,t=11), and (d)

conc(m=6,t=18 N=18,1=8 mi=6) with RS(m=6,t=23).................cocvevrvrie.... 131
Example of patterns: (a) RS(3,1) Conv(18); (b) RS(3,1) Conv(7); (c) RS(6,5)
Conv(2); and (d) RS(4,3) Conv(I8)....cuveeiiieeeeeeeeeeeee e, 135
Scanned patterns at different printing and scanning resolutions: (a) original
pattern printed at 37 ppi; (b) scanned pattern in B&W at 37 dpi; (c) gray level
at 37 dpi; (d) B&W at 75 dpi; (e) gray level at 75 dpi; (f) gray level at 100 dpi;
and (g) gray level at 150dpi. ...ocoooiiiiiiiiii e 136
(a) Scanned rotated image and (b) image after transform.cooovevveeenn.... 137

Hough transform time (a) against number of pixels in the input file and (b)

number of pixels required in the output file.ocoovoieviiiiiieee, 138
Hough transform of rotated pattern.cocoovoveioiieiiiiciie e 141
Hough transform of translated pattern.cccccocooioiiiiiiee e 142

KUIM Iline identification process: (a) original image, (b) after Sobel, (c) Hough
transform, (d) Hough thresholded, (¢) image from (b) after averaging, and (f)
1AENtFIEA HNES..eioviieiiiiiciee e 143

Misaligned pixel and scanning grid when scanning at twice the printing

TESOIULIONL. ..ottt ettt eeee e 144
(a) Scanned pattern and (b) simulated scanning pattern.cccocoomene.... 146
Demodulation grid over the scanned pattern.coocoevevieieiieeeveceeeen. 147

- XVl -

Valid. Syst. for Printed Docs List of Figures

Fig. 5.32

Fig. 5.33

Fig. 5.34

Fig. 5.35

Fig. 5.36

(a) original image, (b) identified lines, and (c) associated Hough transform.

Demodulated patterns after burst noise is applied (a) m=5, t=15, (b) m=6, t=7,
AN =0, 1220, oo 151
Difference between the decoded patterns with and without noise, (a) for the
pattern, (b) after random deinterleaver, (c) after the convolutional decoder, and
(d) after the symbol interleaver.ccccoiiiiiii e, 152
Decoding process of m=5,t=15 (see previous figure), (a) after random
deinterleaver, (b) after the convolutional decoder, and (c) after the symbol
IEETIEAVET. ettt ettt n s 153
RS pattern with symbol interleaver (a) m=6, t=19, (b) m=5, t=11, (c) m=6, t=26,

and without interleaver (d) m=6, t=26.ccooveereriiiiiieieeecee e 155

- Xvil -

Valid. Syst. for Printed Docs List of Tables

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 4.1

Table 5.1

Table 5.2

Table 5.3

LI1ST OF TABLES

Three repetition code MaAPPING. ...c.ooveeviioiiiceee e, 28
Multiplication in GF(2).c..cooiiiiieee e 35
Addition 10 GF(2) cooeeiiiee e 35
GF(8) generated by X3+X+1..oooiiii e 36
Optimum 8-level quantizer; Es/N0=-6.1dB; 18-j=-Ij; for 0<j<4 100
Spectral test results for the BSD LCG ..o 107
. Timing comparison of RS and concatenated code under AWGN. 133

Worst case scratch handled by equivalent rate concatenated and RS codes.

- XVill -

Vahd. Syst. for Printed Docs Definitions

LIST OF ABBREVIATIONS AND ACRONYMS

1D One-dimensional

2D Two-dimensional

ABA American Bankers Association
AWGN Average white Gaussian noise
BSD Berkeley system distribution

B&W Black and white

BCH Bose-Chaudhuri-Hocquenghem
BER Bit error rate

CCD Charge couple devices

CDF Cumulative density function
CMOS Complementary metal oxide semiconductor
CSOC Convolutional self-(;rthogonal code
dB Decibel

DES Data encryption scheme

dpi Dot per inch

ECC Error correcting codes

FEC Forward error correcting codes
FIR Finite impulse response

GF Galois field

GNU GNU i1s not UNIX

- XIX -

Valid. Syst. for Printed Docs

Definitions

LCG

lem

LSB

MAC

MDC

MDS

MSB
OFB
pbm
pdf
pgm
PIP
pixel
PK
pp1

PSK

RS
RSA
SNR

TIFF

Linear congruential generator
Lowest common multiple
Least significant bit

Message authentication code
Modification detection code
Maximum distance separable
Most significant bit

Output feedback mode
Portable bit map

Probability distribution function
Portable gray map

Primitive irreducible polynomial
Picture element

Public key

Pixel per inch

Phase shift keeying

Random number generator
Reed-Solomon

Rivest, Shamin, Adleman
Signal to noise ratio

Tagged image file format

Universal price code

- XX -

Valid. Syst. for Printed Docs Definitions

uv Ultra violet
vel Volume element

ZK Zero knowledge

- XX1 -

Valid. Syst. for Printed Docs List of Symbols

o(x)
vf

S(x,y)
g(x)
In

log

mod

p(x)
Ps
Pp

RS(m, 1)

LIST OF SYMBOLS

Dirac function

Gradient operator

Ciphertext

Ciphertext space

Decryption algorithm in public key encryption
Decryption key

Encryption key

Encryption algorithm in public key encryption

Pixel (x,y) from an image

Generator polynomial for error correcting codes
Natural logarihm, log,

Logarithm base 10, logyg

Cleartext

Modulo function

Convolutional code constraint length

Primitive irreducible polynomial

Probability of symbol error for error correcting codes
Probability of bit error for error correcting codes
Reed-Solomon code with symbol size m and error correction power of t

symbols

- XXl -

Valid. Syst. for Printed Docs List of Symbols

x and y Position axes indicators

- XXl -

Valid. Syst. for Printed Docs Ch. 1 : Introduction

CHAPTER I

INTRODUCTION

1.1 Motivation

Even in a digital age, some valuable information is still printed on paper.
Documents such as paper money, passports, ID, scratch lottery tickets, checks, contracts,
are examples of valuable information printed and transmitted on paper. Forgery of printed
documents is an increasing concem as people have access to low-cost, high quality
reproduction methods (such as color laser printing); over 99.6% of checks can be readily
reproduced on laser printers. Check fraud is to the 90s what credit card fraud was to the
80s. In 1998, bounced checks totaled US$9.9 billion, while in 1999, there were 612
million bounced personal checks written in the U.S., totaling US$19.9 billion [ACAI00].
Attempted check fraud losses exceeded $2.2 billion in 1999, actual dollar losses were
$679 million for the banks alone (not including businesses losses), up from the $512
million in 1997, according to American Bankers Association study [ABAs00]. The
increase from one year to another and the losses incurred to companies and banks show

that printed document security against fraud is a contemporary and important matter.

1.2 Printed Documents Security

Current paper document security is based on techniques that make the documents

more expensive to reproduce than the value of the printed document itself unless the

Valid. Syst. for Printed Docs Ch. 1 : Introduction

document is produced in large quantities. The security techniques are aimed to prevent
forgery with easily accessible reproduction processes (such as laser printing and
photocopying). The techniques involve special paper, inks, pattemns or extra material
added to the document. Some of the techniques are illustrated in Fig. 1.1., and are

described in the following paragraphs [Benb99][Rene98].

Ghost printing technology is used to create a substantial level of tamper-resistance
by adding a lighter reproduction of an image on an identity document, typically in the
same area of the document as personalized data. The second image appears as a light
background to text data, significantly increasing the difficulty of altering the photo image

or the data.

Embossed and indent-printed characters on cards require specialized equipment to
make characters either protrude from or recess into the substrate of a plastic card. These

characteristics provide a tactile feature.

Iridescent inks consist of either metallic or pearlescent inks that cannot be
mimicked by color copiers or reproduced by scanning and reprinting. These inks change

appearance when viewed at different angles.

Valid. Syst. for Printed Docs Ch. 1 : Introduction

(g

Fig. 1.1. Traditional security techniques: (a) ghost printing; (b) embossment; (c) iridescent
inks; (d) holograms; (e) UV printing; (f) rainbow printing; and (g) microprinting.

Hologram security results from an image that shifts position when viewed from

different angles. Holograms are not receptive to photography, photocopying or scanning,

Valid. Syst. for Printed Docs Ch. 1 : Introduction

and they require highly specialized equipment to replicate designs. Metallized holograms
can be added to a pre-printed document. Transparent holograms can be placed over the

photo and date to provide a high level of security.

Ultraviolet (UV) ink is a commonly accepted security feature for identity
documents. This invisible printing can be viewed under a long-wave UV light source, and

can be produced in a range of colors. UV text or images can be printed on a document.

Rambow printing enhances document security with an extremely subtle shift in
color across an identity document. This color shift cannot be produced accurately by a

color copier or scanner.

Microprinting is created by high-resolution printing to create extremely fine, small
characters that cannot be replicated with a traditional color copier or scanner. With
microprinting in place, counterfeited documents can easily be detected with a standard

magnifying glass.

Zero-order grating microstructures (ZOGM) are diffractive structures that change
color from red to green as they are rotated about their own axis. Those structures cannot be
replicated with a photocopier. The manufacturing capability for these structures is far

more expensive than the one used to duplicate hologram.

Kinegrams are optically variable graphics (OVG) that animate as the angle of view

to the kinegram changes. This obviously cannot be photographically copied.

Valid. Syst. for Printed Docs Ch. 1 : Introduction

The techniques described in this section are all static: once forgers find a way to
reproduce the technique for little cost or a way to fake the technique, they can produce
new documents or modify existing ones. Furthermore, a new technique has to be used to

secure forthcoming documents reliably.

1.3 Validation System

To complement the classical static techniques, a dynamic system must be
introduced. The system should identify altered documents and be dynamic so that the
compromise of a set of documents does not affect upcoming documents produced with the
same system. The system should also be automated and resilient to the noise produced on

the paper channel.

The validation system developed in this thesis is based on unique document
information encoded and engrypted with the document itself (see Fig. 1.2. for a visual
representation of the procedure). This unique information could be the serial number of a
banknote or a check, the characteristics of a person's fingerprint, a low resolution version
of a person's ID picture, the dollar amount of a contract. The unique information from the
document can be extracted by hand (visualized and keyed in) or by scanning portion of the
document and extracting a unique feature from the sca;nned portion (e.g., OCR for serial
numbers, edge location for a picture.) The unique information from the document (the
signature of the document) is encrypted and encoded and is overlaid on top of the

document using an ink that cannot be seen under normal lighting (such as fluorescent or

Valid. Syst. for Printed Docs Ch. 1 : Introduction

ultraviolet ink.) The document is validated by scanning the overlay pattern, decrypting it,

and comparing it to the document signature.

Electronic Printed Received
Document Document Noise Document
S \ Analysis &
— Reconstruction
— g\ erification
Signatures ‘ Alterations
Watermarks

Fig. 1.2. Proposed document validation system.

Questions of speed, resilience to the noise on the printed document, limitation of
the compromised documents and choice of encryption technique will be dealt with in the

following chapters.

1.4 Thesis Organization

Chapter II provides the necessary background on encryption (confidentiality, data
integrity, authentication), image processing (edge enhancement operator and‘ line
transforms), forward error correcting codes (convolutional, RS, and concatenated codes),
barcodes (1D and 2D), and random number generators (RNG) both linear congruential

generators (LCG) and cryptographic.

The system 1s designed in Ch. III with the choice of different levels of security, the

design of code components, and the structure of the pattern.

Valid. Syst. for Printed Docs Ch. 1 : Introduction

Chapter IV describes the setup of the experiments performed on the code, the

RNG, and the pattern.

Chapter V presents the results of the performance of the code under the average
white Gaussian noise (AWGN) with different component sizes and types, the performance
of the pattern location algorithm under Gaussian noise, the RNGs randomness test, and the

pattern under burst noise with both RS alone and with the concatenated pattern.

Chapter VI concludes the thesis with recommendations for future work.

Valid. Syst. for Printed Docs Ch. 2 : Background

CHAPTER II

BACKGROUND

2.1 Introduction

The goal of this thesis is to design a secure and reliable communication system for
the physical paper channel. The first section of this chapter defines the communication
system and its components. Next a background on cryptography is developed as part of
the source encoding. The third section describes forward error correcting codes used to
protect the information against noise. Since random number generators (RNGs) are used
in both simulation of noise and pseudo-random interleaving, a section describes two kinds
of generators and the tests to evaluate the quality of random number generators. The final
section gives a background on the image processing techniques used during the

demodulation of the pattern.

2.2 Communication System

The elements of a one-way communication system are illustrated in Figure 2.1,

and are described next.

Valid. Syst. for Printed Docs Ch. 2 : Background

Source Channel

Encoder B Bncoder | % Modulator —l

Source

Source 3

Noise —A\ - Encoding

Source Channel
Decoder

Sink , ¢a—— Demodulator |«

Decoder

Fig. 2.1. Communication system diagram.

2.2.1 Source Encoding

The source information can be provided in an analog (continuous) or in a discrete
form (etther infinite or quantized). The source encoding deals with the transformation of
the source information into a series of discrete symbols. This stage involves digitization of
the source if it is in analog format, removal of source redundancy through compression
techniques, and securing of the transmitted source with encryption techniques. This thesis
assumes that the digitization and compression are already performed so that the

information processed by the encrypter is already in symbolic form.

2.2.2 Channel Encoding

The channel encoder transforms the source stream from the source encoder and
adds redundancy through error correcting codes as well as prepares the data in the desired
format for the modulator (e.g., the channel encoder makes groups of eight bits for an 8-ary

PSK modulator).

Valid. Syst. for Printed Docs Ch. 2 : Background

2.2.3 Modulator

The modulator involves converting the encoder output to a format suitable for
transmission on the channel. A binary modulator matches bits to waveforms of equal

duration.

2.2.4 Transmission Channel

The transmission channel includes the introduction of the modulated waveform
into the channel, the transmission medium, and the receiving operation required to bring

to the point just prior to demodulation.

The characterization of the transmission channel is important as it influences the
design of the components of the communication system. The characteristics of the channel

are power, bandwidth and noise.

2.2.5 Demodulator

The demodulator matches the received waveforms to a set of values to be fed to
the channel decoder. The demodulator can output a definite decision on the received
waveform such as a 0 or a 1 for binary data (this case is referred to as a hard-decision
demodulator) or a decision with a confidence rating (soft-decision demodulator). The
rating associated to the decision can, for example, be output by a matched waveform filter.
In the case of symmetric binary modulation, the matched filter outputs the average of the

received signal over a signal period.

- 10 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.2.6 Channel Decoder

Channel decoder transforms the digital demodulator output and uses the
redundancy introduced at the coding stage to remove the noise from the signal. When
designing the decoder, the main trade-off is between correcting power and speed. The
error correcting power determines the desired number of errors that the code can correct in
a certain frame. However, increased correction power means increased bandwidth and

increased decoder complexity (thus slower decoding speed).

2.2.7 Source Decoder

The final stage reconstructs the original signal from the symbols received from the
channel decoder. The signal might have been altered by digitization errors or noise over

the channel that could not be corrected by the channel decoder.

2.2.8 Summary

The communication system has been introduced. The following sections give the

necessary theoretical background for each component used in our communication system.

2.3 Cryptography

From the greek crypto (“hidden”) and graphein (“writing”), cryptography is the art and
science of transforming information into an intermediate form which secures that

information while in storage or in transit.

Valid. Syst. for Printed Docs Ch. 2 : Background

There are four cryptographic goals [MOVa96]:

(1) confidentiality;

(11) data integrity;

(111) authentication and identification; and

(1iv) non-repudiation.

This thesis uses the first three goals of cryptography to secure the paper
information. This section on cryptography is based on material from Schneier [Schn96]

and Menezes et al. [MOVa96].

2.3.1 Confidentiality

The confidentiality of a message is achieved by encrypting a cleartext, m (the
message) into a ciphertext, ¢, using an encryption scheme that only the intended user can
mvert to decrypt the ciphertext into the cleartext. The pair of encryption, decryption
algorithms are called an encryption scheme or cipher. Figure 2.2 provides a simple model

of a two-party confidential communication using encryption.

- 12 -

Valid. Syst. for Printed Docs

Ch. 2 : Background

encryption
E(m)=c

oY

Am

Plaintext

Fig. 2.2. Confidential (secure) communication system.

Adversary

A

decryption
D(c)=m

+m

plaintext

The class of encryption and decryption transformations can be kept secret, but the

security of the entire scheme should not be based on this approach. History has shown that

maintaining the secrecy of the transformations is very difficult indeed. A better approach

1s to base the system on algorithms that are functions of a key (i.e., E. for encryption € in

K, key space, and Dy for decryption d in K). The algorithms are then public but the keys

are kept secure. A fundamental premise in cryptography is that the sets M (message

space); C (ciphertext space); E, (encryption algorithm); Dy (decryption algorithm), are

public knowledge. When two parties wish to communicate securely using an encryption

scheme, the only thing that they keep secret is the particular key pair (e,d) which they are

using, and which they must select. Some of the key based algorithms are described in the

remainder of this section.

- 13 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.3.1.1 One-Time Pad Cipher

The only unconditionally secure encryption scheme is the one-time pad scheme
where the message 1s XORed with a random key string (a string of random characters, or
one-time pad), the receiver has a copy of the one-time pad and XORs it with the received
ciphertext. Each one-time pad can only be used once. The one-time pad cipher can be
shown to be theoretically unbreakable. If a cryptanalyst (person who tries to break the
encryption scheme) has a ciphertext string c;c,...c, encrypted using a one-time pad which
has been used only once, the cryptanalyst can do no better than guess at the plaintext being
any binary string of length t (i.e., t-bit binary strings are equally likely as plaintext). It has
been proven that to realize an unbreakable system requires a random key of the same
length as the message. This reduces the practicality of the system in all but a few
specialized situations. Reportedly, until very recently the communication line between
Moscow and Washington was secured by a one-time pad. Transport of the key was done

by trusted courier.

One-time pads are part of a family of algorithms called additive stream cipher. The
next section describes additive stream ciphers with key sizes smaller than the one-time

pad cipher.

2.3.1.2 Additive Stream Ciphers

Stream ciphers encrypt individual characters (usually binary digits or bytes) of a

plaintext message one at a time, using an encryption transformation which varies with

- 14 -

Valid. Syst. for Printed Docs Ch. 2 : Background

time. Additive stream ciphers XOR a string of symbols with the message. The variability
comes from a different string every time a message is encrypted. By contrast, block
ciphers encrypt groups of characters of a plaintext message using a fixed encryption
transformation. The additive stream cipher's security depends entirely on the string
generator. If the string is constant or periodic with a period less than the message, the
security of the system is negligible; e.g., if the string 1s constant and an attacker has access
to a cleartext and a ciphertext, the attacker only needs to XOR the cleartext and the cipher
text to recover the string and decode any other incoming message. If the string generator
creates a series of random numbers with infinite period, the stream cipher is then a one-
time pad cipher and has perfect security. A realizable string generator that has good
security lies in between those two extremes: it outputs a string that looks random over a
long period but is actually a deterministic string that can be reproduced at decryption time.
The closer the string generator's output is to random, the harder time cryptanalists will

have breaking it.

In situations where transmission errors are highly probable, stream ciphers are
advantageous because they have no error propagation. They can also be used when the
data must be processed one symbol at a time (e.g., if the equipment has no memory or
buffering of data is limited). To make stream ciphers more tractable than the one-time pad,
a “pseudo-random” pad is generated using an encryption algorithm and a key. The
recetver only needs the key to generate the whole pad and decrypt the message. Of course
the stream cipher is only as secure as the encryption algorithm that generates the pseudo-

random pad.

- 15 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.3.1.2.1 Block Cipher in Output Feedback (OFB) Mode

A block cipher is a function which maps n-bit plaintext blocks to n-bit cipher-text
blocks, where n is called the block length. The function is parameterized by a k-bit key K,
taking values from a subset K (the key spaée) of the set of all k-bit vectors V. It is
generally.assumed that the key is chosen at random. Use of plaintext and ciphertext blocks

of equal size avoids data expansion.

If a message is encrypted r bits at a time, the cipher works onn bits (1 <» < n), the

output feedback (OFB) mode works in the following way (see Fig. 2.3.) [MOVa96]:
INPUT: k-bit key K; n-bit IV; r-bit plaintext blocks x;..x, | <r<n.
Encryption: I} <— IV . For 1 <j < u, given plaintext block Xj:
(a) Oj «—F k(IJ.) (Compute the block cipher output.)
(b) Assign t; the r leftmost bits of O;(Assume the left most is identified as bit 1.)
(©) ;X @® t (Transmit the r-bit ciphertext block c.)

@1,

;41 < O;(Update the block cipher input for the next block.)

- 16 -

Valid. Syst. for Printed Docs Ch. 2 : Background

I,=IV & Ii=IV &
IJ 41 IJ n
n n
O;4 # Oi4
key —# E key — E
n

j G

Fig. 2.3. OFB mode for block cipher.

Decryption: I, <— IV For 1 <j <u, upon receiving ¢j:

;< X; @ L ,where ti, OJ-, and Ij are computed as above.

The top part of Fig. 2.3. is the string generator whose result gets XORed with the
message. The string is totally independent from the message and the encryption of the
message changes with the IV which is the variability property of stream ciphers. The OFB
mode does not self synchronize after the loss of bits, additional framing information has to
be provided in this mode. If » = n, the throughput of the algorithm is the same as the

throughput of the block cipher it is based on.

- 17 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.3.2 Data Integrity

Data integrity is the property whereby data has not been altered in an unauthorized
manner since the time it was created, transmitted, or stored by an authorized source.
Cryptographic techniques for data integrity rely on specific types of hash functions. A
hash function (in the unrestricted sense) i1s a function h which has, as a minimum, the

following two properties:

P1. Compression — h maps an input x of arbitrary finite bitlength, to an output

h(x) of fixed bitlength n.

P2. Ease of computation — given h and an input x, h(x) is easy to compute.

The hash functions can be used as:

C1. modification detection codes (MDCs)
MDCs are a subclass of unkeyed hash functions, with the following additional
properties:
(1) one-way hash functions (OWHFs): for which, finding an input that hashes
to a pre-specified hash-value is difficult; and
(11) collision resistant hash functions (CRHFs): for which, finding any two

mputs having the same hash-value is difficult.

C2. message authentication codes (MACs)
The purpose of a MAC is (informally) to facilitate, without the use of any

additional mechanisms, assurances regarding both the source of a message and

. 18 -

Valid. Syst. for Printed Docs

Ch. 2 : Background

its integrity. MACs are a subclass of keyed hash functions.

Encrypted
(b) MDC with encipherment

Fig. 2.4. Data integrity with hash functions and ciphers.

Secret Key
Message MAC
* Algorithm
Message | MACF — — — — — B
¢ M.AC Insecure Channel
(2) MAC only
Secret Key
Message MDC
‘ Algorithm Secret Key
Encryption
Message MAC e .
Algorithm

Insecure Channel

It 1s generally assumed that the algorithmic specification of a hash function is

public knowledge. Thus in the case of MDCs, given a message as input,

anyone may compute the hash-result; and in the case of MACs, given a

message as input, anyone with knowledge of the key may compute the hash

result. MDCs and MACs used for encryption have the following properties:

(P1) MDCs and MACs are used for data authentication in several ways, two of

them are described in Fig. 2.4.. The goal is to create additional data based on

Valid. Syst. for Printed Docs Ch. 2 : Background

the message that is different if recomputed once the message is altered.
(P11) The reproduction of the additional data should only be possible with the

knowledge of a secret key.

The MAC has the required properties. The MDC changes with the message and it
1s hard to find two messages that compute to the same MDC. However, anybody who
knows the MDC algorithm can change the message, recompute the MDC and send the
changed message with the new MDC. If the MDC and the message are encrypted using a

key cipher, the MDC becomes a MAC.

MACs and MDCs are specially important when using stream ciphers. As the message is
XORed with the encryption string, if an attacker flips a bit in the transmitted stream, the
same bit will be flipped in the decrypted message as the encryption string is not changed.
Without breaking the cipher, the attacker is capable of modifying the received message. If
the attacker knows the message format, he is able to alter specific data such as the dollar

amount on a check.

2.3.3 Authentication and Identification

Authentication and identification allows two parties to gain assurance of the
identity of the other to prevent impersonation. The techniques are based on the owning of
a secret by the claimant that allows the verifier to identify it. There are two types of
identification schemes: fixed password schemes and challenge-response scheme.
Password schemes are referred to as weak authentication scheme and are not reviewed in

this thesis.

- 20 -

Valid. Syst. for Printed Docs Ch. 2 : Background

The idea of cryptographic challenge-response protocols is that one entity (the
claimant) “proves” its identity to another entity (the verifier) by demonstrating knowledge
of a secret known to be associated with that entity, without revealing the secret itself to the

verifier during the protocol.

One technique is base on symmetric key algorithm. Both users share a common
secret key. For each message sent from one to another, a timestamp concatenated with the
a user identification token (e.g, its name) is sent on the channel with the message. The
timestamp prevents replay of the user identifier by a different user. The user token allows
for identification of the message sender. This technique uses symmetric key ciphers which
provide faster encryption. However, both the sender and the receiver have to share a secret

key.

A second technique is based on public-key ciphers. The secret owned by the
claimant is its private key. The verifier uses the claimant's public key to send it some
challenges that can only be answered by someone with the secret. To prove its identity, the

claimant can solve two kind of challenges:

* the claimant decrypts a challenge encrypted under its public key;

* the claimant digitally signs a challenge.

An example of a protocol based on public-key ciphers for identification is a

modified Needham-Schroeder PK protocol:

- 21 -

Valid. Syst. for Printed Docs Ch. 2 : Background

1. A-?BPB(I'],A)

2. A< B:Px(ry;1p)

~

3. A—->B:n

where P, and Py are both public key encryption with A's and B's key respectively
and ry, ry are random numbers generated during the protocol. The use of public key is
advantageous when a number of users need to identify each other as each user needs only
his private and a central server can store the public keys of each user. The database can be
publicly readable but has to have write access privileges. In the case of private key
algorithm, all users have to have all other user's private keys and can impersonate any user

at any time by just using their private key.

The third and final technique is based on zero-knowledge (ZK) protocols. A zero-
knowledge protocol allows a proof of the truth of an assertion, while conveying no
information (this notion can be quantified in a rigorous sense) about the assertion itself
other than its actual truth. In this sense, a zero-knowledge proof is similar to an answer
obtained from a (trusted) oracle. The zero-knowledge property implies that a prover
executing the protocol does not release any information that cannot be computed in
polynomial time from public information alone. Thus, participation does not increase the
chances of subsequent impersonation. A recorded ZK interactive proof conveys no
guarantees upon playback (which is a flaw of a basic key based identification that do not

include timestamps to prevent playback). Interactive proofs convey knowledge only to

- 22 -

Valid. Syst. for Printed Docs Ch. 2 : Background

(interactive) verifiers able to select their own random challenges. The properties of the ZK
protocol makes it interesting compared to other public-key protocols for the following

reasons:

1. no degradation with uéage: protbcols proven to have the ZK property do not
suffer degradation of security with repeated use, and resist chosen-text attacks. This is
perhaps the most appealing practical feature of ZK techniques. A ZK technique which is
not provably secure may or may not be viewed as more desirable than a PK technique

which is provably secure (e.g., as difficult as factoring).

2. encryption avoided: many ZK techniques avoid use of explicit encryption

algorithms. This may offer political advantages (e.g., with respect to export controls).

3. efficiency: while some ZK-based techniques are extremely efficient (e.g.,
Fiat-Shamir uses from about 11 to about 30 steps where full exponentiation in
unoptimized RSA takes 768 steps), protocols which formally have the zero-knowledge
property typically have higher communications and/or computational overheads than PK
protocols which do not. The computational efficiency of the more practical ZK-based
schemes arises from their nature as interactive proofs, rather than their zero-knowledge

aspect.

4. unproven assumptions: many ZK protocols (“proofs of knowledge”)
themselves rely on the same unproven assumptions as PK techniques (e.g., the

mtractability of factoring or quadratic residuosity).

Valid. Syst. for Printed Docs Ch. 2 : Background

5. ZK-based vs. ZK: although supported by prudent underlying principles, many
techniques based on zero-knowledge concepts fall short of formally being zero-
knowledge and/or formally sound in practice, due to parameter selection for reasons of
efficiency, or for other technical reasons. In fact, many such concepts are asymptotic, and

do not apply directly to practical protocols.
Most practical ZK-based protocols are three-move zero-knowledge protocols:
* A — B:witness
* A<« B:challenge
* A — B:response

The following Fiat-Shamir protocol is not practically used because of its

communication inefficiency, however it illustrates the ZK protocol concepts very clearly:
1. One-time setup.

(a) A trusted center T selects and publishes an RSA-like modulus n = pq but keeps

primes p and q secret.

(b) Each claimant A selects a secret s coprime to n, 1 <s<n—1, computes

2 : : i .
v = s modn , and registers v with T as its public key.

2. Protocol actions. The following steps are iterated t times (sequentially and

independently). B accepts the proof if all t rounds succeed.

24 -

Valid. Syst. for Printed Docs Ch. 2 : Background

(a) Commitment: A chooses a random r, 1 <r<n—1, and sends (the witness)

x = rzmodn to B.
(b) Challenge: B randomly selects abite=0ore =1, and sends e to A.

(c) Response: A computes and sends y to B, either y = » (if e = 0) or

y = r-smodn (ife=1).

(d) B rejects the proof if y = 0, and otherwise accepts upon verifying that y2 =x
(ife=0)or y2 = xvmodn (if e = 1), since v = s’modn . Note that checking for y =0

precludes the case r = 0.

The claimant proves his knowledge of the secret s without ever revealing the value

of the secret. This protocol security is based on the assumption that it is hard to find a
2 . . .

square root modulo n: an adversary can send x = ¥ modr with an r of his choice,

however, he is not able to answer the challenge when e = 1 as it is equivalent to finding

N

the square root of v. Or he could send x = % and answer the challenge for e = 1 but he
could not answer e = 0 as it is equivalent to finding the square root of x. So every time
the adversary receives a challenge, he has a probability of % to being able to answer it. In
one case r 1s revealed but no information about the square root of x is disclosed and in the
other case the square root of x is sent but the r used in the witness is unknown to the
attacker. If t rounds are performed, the probability that the adversary answers all the
challenges right without knowing the secret is 2~" which decreases exponentially with t.

The data that was exchanged in previous identifications does not give the adversary any

- 25 -

Valid. Syst. for Printed Docs Ch. 2 : Background

more information to guess subsequent challenges. The adversary cannot replay the
protocol as it is based on the random interactive choice by the verifier of a series of bits
and the claimant (here the attacker) has no control over the choice which changes every

time a new identification is performed.

Zero-knowledge interactive protocols thus combine the ideas of cut-and-choose
protocols (this terminology results from the standard method by which two children share
a piece of cake: one cuts, the other chooses) and challenge-response protocols. A responds
to at most one challenge (question) for a given witness, and should not reuse any witness;
in many protocols, security (possibly of long-term keying material) may be compromised
if either of these conditions is violated: as there is only two possible answers for a given
witness, if a witness is reused and both possible answers are given, the adversary can go

through a round with a 100% chance of success.

[MOVa96] describes the Feige-Fiat-Shamir, Guillou-Quisquater, and Schnorr ZK-

based protocols.

2.3.4 Summary

Cryptographic techniques are used in a large number of secure transaction and

applications. The techniques described in this section allow for:

* confidentiality through additive stream ciphers,

* data integrity using MAC and MDC with encryption,

- 26 -

Valid. Syst. for Printed Docs Ch. 2 : Background

= and 1dentification with private key, public key, and zero-knowledge protocols.

The use of each technique is described in the design section which gives
recommendations on which techniques to use according to the level of security and the

lifetime of the printed material.

2.4 Forward Error Correcting Codes

2.4.1 Introduction

Error correcting codes (ECCs) involves the addition of redundancy to the
transmitted data to provide the means for detecting and correcting errors. Forward error
correcting codes (FEC) are ECC that assume no retransmission of the data. The channel is

unidirectional: no feedback can be transmitted from the sink back to the source.

A word 1s a group of consecutive symbols from a specific alphabet going through
the communication system. It can be of finite length (e.g., 1011, a binary word of length 4)
or semi-infinite length (e.g., ABAB...., a semi-infinite length hexadecimal word). ECC
take a source word and map it to a longer codeword (thus adding redundancy) so that if
errors occur in the limit of the error correction capacity of the code, the original source
word can be reconstructed using the introduced redundancy. A geometrical interpretation
of how an ECC works can be developed using Hamming distance. The Hamming distance
between two codewords of same length is the number of positions in which they differ.

For example: the Hamming distance between 10011 and 01011 is d;;(10011,01011)=2.

- 27 -

Valid. Syst. for Printed Docs Ch. 2 : Background

Table 2.1 Three repetition code mapping.

Source Codeword
word
0 000
1 111

The goal of an ECC is to build a set of codewords which have maximum minimum
Hamming distance between each other. The minimum distance of a code is the smallest
distance that can be found between all pairs of codewords generated by the code. One of
the simplest codes is the 3 repetition code. The binary 3 repetition code takes single bits as

~source words and outputs three bits identical to the source bit as codewords (see Table

2.1).

The geometrical interpretation of the code is shown in Fig. 2.5.. If only one error
occurs in the transmission of the channel codeword, the closest codeword (in term of
Hamming distance) is the transmitted codeword. However, if two errors occur on distinct
‘bits, the minimum distance decoder will make a decoding error. This code is a one error
correcting code which means that all single error can be corrected correctly. Even though
the code can correct some double and triple errors (e.g., if two errors occur on the same

bit) it cannot correct all double and triple errors. The error correcting power of a code is:

[= [dmi;_ 1J (2.1)

where d;, 1s the minimum distance of the code.

- 28 -

Valid. Syst. for Printed Docs Ch. 2 : Background

001 »

Fig. 2.5. Three repetition code geometrical interpretation.

A geometrical illustration of this rule is in Fig. 2.6.. The central dot represents the
codeword. Each circle are words of distance D from the codeword (D is the number under
the line), they also correspond to received words with D errors. We see that if a number of
errors less or equal to [g””’é__l} happen, the code is still able to identify the closest
codeword and thus decode the source word correctly. As an example, the three repetition
code has a minimum distance of d;,(000,111)=3 so its correcting power should be

[%J = 1 which was verified geometrically.

Fig. 2.6. Geometrical representation of the relationship between correcting power and
minimum distance of the code.

- 20 .

Valid. Syst. for Printed Docs Ch. 2 : Background

Coming back to our definition of how ECCs work in the light of our example:
ECC take a source word (e.g., a single bit) and map it to a longer codeword (thus adding
redundancy, e.g., 0 to 000, 1 to 111) so that if errors occur in the limit of the error
correction capacity of the code (e.g., t=1), the original source word can be reconstructed

using the introduced redundancy.

A graphical 1llustration of the relationship between various classes of ECC is
shown in Fig. 2.7.. The down arrow specifies a subclassing relationship. For example, tree
codes are FEC but not all FEC are tree codes. The label on the arrow represent the
additional property for the subclass. There are several ways to see ECC hierarchy, this is

only one of them.

A tree code 1s defined by the following property: for any M, if two semi infinite
sequences agree In their first Mk components, then their images agree in the first Mn
components. Block codes have a memoryless encoder that takes finite k-length word and
map them to finite n-length codeword. The ratio k/n is called the rate of the code and
determines the bandwidth expansion due to the code. Sliding window codes operate on
semi-infinite source words by encoding data contained in a window sliding along the
word. The number of additional symbols in the sliding window at each iteration is named
k and the number of output symbols is named n. The ratio k/n is the rate of the sliding
window code. Even though sliding window code rates and block code rates are not

identical, they both represent the channel bandwidth expansion due to the code.

- 30 -

Valid. Syst. for Printed Docs Ch. 2 : Background

ECC

Y No Feedback

FEC

¥ Constant Ratio Mapping

Tree Codes

¥ Finite Constraint Length

Trellis Codes
Time Invariant Not Time Invariant
Shiding Window Block Codes
Codes
V Linear ¥ Linear
Convolutional Linear Block
Codes Codes
V¥ Self Orthogonal ¥ Cyclic
Self Or.thogonal Cyclic Codes
Convolutional Codes

Fig. 2.7. ECC hierarchy.

[

—— —
b 4
sliding window length N \ \\‘
I Lt T T |

LT 1 LT T

(b) Sliding Window Code

Fig. 2.8. Encoding of (a) block codes and (b) sliding window codes.

- 31 -

Vahd. Syst. for Printed Docs Ch. 2 : Background

Each codeword in a block code depends only on the k input symbols and is
independent from any other codeword (memoryless encoder). For a sliding window code,
the sliding window generates a continuous dependence of the length of the window

between the input symbols and the generated codeword (see Fig. 2.8.).

The constraint length of a code is the number of input symbols on which an output
symbol is dependent. In the case of block codes, the constraint length is the size of the
input word. For a sliding window code, the constraint length is the size of the sliding

window,

A code is linear if the codewords form a linear vector space. This property
simplifies the coding scheme as any codeword is a linear combination of a small set of
reference codewords called a vector basis. It also simplifies the calculation of the
performance by making the distance between two codewords equivalent to the distance
between the all zero codeword and the difference of the two codewords. The minimum
distance 1s then equal to the minimum weight of the codewords (the weight of a codeword
1s the number of non zero elements in the codeword). If the input of the code is also a
linear vector space, the code mapping between the two spaces can be expressed in the

form of a matrix. The code is then completely defined by the matrix.

A cyclic code is a linear block code C with the following property: if the codeword
(C-C1s--Cn2-Cno1) 18 In C then (c,_1,Cq,-.-,.Chp) 15 also in C. As a consequence of this
property, as all rows in the code matrix are also codewords (multiplying (1,0,...,0) by the

matrix generates a codeword, the result is the first line of the matrix), they are all cyclic

- 32 -

Valid. Syst. for Printed Docs Ch. 2 : Background

shifts of each other. Thus only one line is necessary to represent the complete code. This
one line can be interpreted as a polynomial called the generator polynomial and the
encoding process as the multiplication of the generator polynomial with the source

polynomial.

An ECC can be systematic or nonsystematic. A systematic ECC is one that starts
each codeword with the information symbols unmodified. The remaining symbols are
called parity symbols. The systematic property is not included in the diagram because
there are systematic codes at each level of the diagram (systematic convolutional codes,
systematic trellis codes). For example every linear code is equivalent to a systematic linear

code.

ECCs are characterized by their encoding algorithm, decoding algorithm, and their
rate. As was stated in Section 2.2, the choice of an ECC is governed by the complexity of
its decoding algorithm (speed, memory requirements), its allowable rate (bandwidth), and
the targeted error correcting power (according to the noise characteristics of the

transmission channel).

This section gave a broad overview of ECCs, their characteristics and families.
The following sections describe the codes used in this thesis: Reed-Solomon codes and

self-orthogonal convolutional codes with their theoretical background.

- 33 .

Valid. Syst. for Printed Docs Ch. 2 : Background

2.4.2 Algebra of Finite Fields

A fiite field also called Galois Fields and written GF(q) is a set of q elements for

which the following arithmetic rules are defined:

R1. There are two operations defined on the elements of the field addition (+) and

rﬁultiplication ();

R2. The two operations are closed which means that the result of addition and

multiplication on the elements of the field is an element of the field;

R3. The field has one and only one multiplicative identity (1) and one addition

identity (0);

R4. All elements have an additive and a multiplicative inverse (except O for the

multiplication);

RS5. Associativity: at(b+c)=(atb)+c and (a.b).c=a.(b.c); commutativity: a+b=b+a

and a.b=b.a; distributivity of over +: a.(b+c)=a.b+a.c.

If q 1s a prime integer GF(q) is the set of integers from 0 to g, + is the addition
modulo g, . is the multiplication modulo q. GF(q) is called a prime field. For example, for

q=2, GF(2) is the binary field as shown in Table 2.2 and Table 2.3.

Valid. Syst. for Printed Docs Ch. 2 : Background

Table 2.2 Multiplication in GF(2) Table 2.3 Addition in GF(2)
011 +110 41
0(o]0 011071
1o 1 11110

If q is a power of a prime number (e.g., g=p™), then the field elements are all
possible polynomials of degree m-1 where the coefficients are from the prime field GF(p)
(polynomials over GF(p)). Addition and multiplication are defined modulo p(x) where
p(x) is an irreducible polynomial (it cannot be divided by any polynomial with factors in
GF(q)). GF(p™) is called the extension field of GF(p) and p is called the characteristic of

GF(p™).

This thesis deals with the GF(2™) Galois fields as they are represented by
polynomials of degree m-1 over the binary field. In other words, elements in GF(2™) are

strings of bits of length less than m-1.

Another representation for finite fields is through power of primitive elements. Itis -
a property of finite fields that there exists at least one element o, called generator or
primitive element, such that every non zero element in the field can be expressed as a
power of this element. Polynomial representation is convenient for addition of elements
while the power representation is better for multiplication (equivalent to adding the

powers).

- 35 -

Valid. Syst. for Printed Docs Ch. 2 : Background

Theorem 2.1 [Lid184]: All polynomials over GF(p) have at least one extension field

GF(p™) which contains all the roots of the polynomials (this extension field is called the

splitting field of the polynomial).

A primitive irreducible polynomial (PIP) p(x) is an irreducible polynomial over
GF(p) having a primitive element oo for GF(p™) as one of its roots. PIP of every degree
exist over GF(p) and they have the additional property that in the extension field
constructed modulo p(x), the field element represented by x is primitive. All these
properties are proven in [Blah83]. We will now describe how to generate both polynomial

and power representations for a given Galois field.

Table 2.4 GF(8) generated by X +x+1.

Zero & Polynomial Vectors
powers of x || over GF(2) | over GF(2)
0 0 000
x0 1 001
x! X 010
x2 x? 100
x> x+1 011
x* X2+x 110
X x2+x+1 111
x5 x2+1 101

Starting with the unity polynomial (0...001) and successively multiplying it by x
(0...010) modulo p(x), where p(x) is a PIP for GF(p™), we generate a translation table

between the powers of x and the polynomial representation over GF(p). The generation

- 36 -

Valid. Syst. for Printed Docs Ch. 2 : Background

stops when the power of x equals 1. As p(x) is a PIP, x is a primitive element so the powers
of x generate all elements of GF(p™). See Table 2.4 for the generation of GF(8) with the

PIP x> +x+1.
2.4.3 Reed Solomon Codes

Reed Solomon Codes (RS’ codes) are a subclass of BCH codes (Bose-Chauhuri-
Hocquenghem codes) for which the locator field GF(q™) is the same as the symbol field

GF(g).

A BCH code over F=GF(q) of block length n and designed distance 0 is a cyclic
code generated by a polynomial g(x) = lem{m(x);a<i<a+0d-2} e F[x] whose

. .. a a+tl a+o-2 . ..
root set contains 0 — 1 distinct elements o, o yeeey O where o 1s a primitive

n' root of unity and @ some integer. m;(x), minimal polynomials, are the smallest degree
irreducible polynomial in ,F that have o as a root in GF(q™. The lcm is the least common
multiple of all the polynomials which explains the statement regarding the roots of g(x). A
cyclic code of block length n is formed from any polynomial g(x) that divides x"-1

[MiLe85]. BCH codes are cyclic as all m;(x) divide x"-1 (oci s are n' root of unity and m;(x)

is the smallest degree irreducible polynomial over F, thus m;(x) divides x"-1).

For RS codes, because the symbol field and the splitting field are the same, all
minimal polynomials are of degree 1. For a t-error correcting code, the generator

polynomial for an RS code is:

1 211
g(x) = (x-a"Yx—a™)

) 2.2)

- 37 -

Valid. Syst. for Printed Docs Ch. 2 : Background

where mg is 0 or 1. This polynomial is always of degree 2t.

Theorem 2.2: RS codes are maximum distance separable (MDS), i.e. d=n-k+1.

Proof: The number of parity symbol is equal to the degree of the generator polynomial,
hence n-k=2t. The designed distance is defined as = 2¢+ 1 and we know that < d (d
is the minimum distance of the code) i.e. the code cannot correct more errors than the
number assigned by its minimum distance. So 2r+1<d, and n—k+1<d. The
minimum distance is equal to the smallest weight codeword. The information symbol
smallest weight is 1 (the only part that we can minimize) but the parity symbols can have

weights as high asn-k so d <n -k + 1 Hence for RS codes, d = n—k+ 10
RS codes have been used extensively for many reasons:
- Provided the block length is not excessive, there are good codes in this class;

- Relatively simple and instrumentable encoding and decoding techniques are

known;
- They have a well understood distance structure;
- They have a flexible error correcting power capacity.
- They are maximum distance separable (MDS) codes

After the definition of RS codes and their general properties, we now go through

their encoding and decoding procedures.

- 38 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.4.3.1 Encoding

Any codeword in a cyclic code is the sum of cyclic shifts of the generator
polynomial [MiLe85] or equivalently, codewords are generated by multiplying the source
words with the generator polynomial mod x"-1 (multiplying a codeword by x modulo x"-1

is equivalent to a cyclic shift):

c(x) = i(x)g(x)mod(x" — 1) (2.3)
where i(x) is the source word and c(x) is the codeword. As g(x) divides both i(x).g(x) and
x"-1, g(x) divides all the codewords. If g(x) divides a(x) then a(x)=u(x)g(x)mod(x"-1) and
a(x) is a codeword associated to u(x). Thus a word c(x) is a codeword if and only if g(x)

divides c(x). An alternative way to generate codewords is:

c(x) = x'i(x) + [x i(x)modg(x)] (2.4)

where 1 is the degree of g(x). Indeed, the Euclidean division of x"i(x) by g(x) is:
xi(x) = d(x)g(x) + [x i(x)modg(x)] (2.5)
and, in GF(2), x=-x, hence
d(x)g(x) = x"i(x) + [x"i(x)modg(x)] = c(x) (2.6)

So, g(x) divides all ¢(x). Furthermore, all ¢(x) are distinct (through the x"i(x) term)

so Eq. (2.4) generates a systematic code equivalent to the one generated by Eq. (2.3).

- 39 .

Valid. Syst. for Printed Docs Ch. 2 : Background

2.4.3.2 Decoding
The general procedure is:
1. Generate the syndromes from the received word 1 <k<d-1.

2. Calculate the error locator polynomial o(x) using the syndrome values. Exit

if the error cannot be corrected.
3. Solve o(x) = 0, the resulting roots are the error locators.
4. Determine the error values using the error locators.
5. Correct the received word.

After the channel, the received word is the codeword plus the error word:
7(x) = ¢(x) + e(x). To generate the syndromes one must evaluate the received word at
x = of (1<k<0-1)as o are the roots of the generator polynomial and all codewords
are multiple of g(x). Hence §, = e(ock) . The error locator polynomial is calcu]ated using
the Berlekamp-Massey algorithm, see [Blah83] for more details. The root of o(x) are
found by exhaustive search through all the values of GF(2™). There can be at most L error
locators where L is the degree of o(x). The error value is found by solving the syndrome

equation

L
Sy = Z yxk forl<k<lL 2.7)

i=1

- 40 -

Valid. Syst. for Printed Docs Ch. 2 : Background

where x; is the error locator for the it" error and y; is the erroneous value. Solving the

equation is equivalent to inverting a matrix:

- -l r A

) b3 B

-] (2.8)

Once the error values are calculated, they are subtracted from the received word at

the determined error locations.
2.4.4 Convolutional Codes

2.4.4.1 Introduction

Convolutional codes are linear, time invariant, finite constraint length trellis codes.
Convolutional codes can be interpreted in two ways: as a trellis cocie or as a linear code
with infinitely long generator matrix. The infinite matrix interpretation is the literal
interpretation of the encoding process and is used for syndrome decoding of the code. The
trellis viewpoint is used in decoding algorithms such as Viterbi decoding, sequential

decoding, or turbo decoding.

A convolutional code encodes a stream of data by sliding a window along the
stream of symbols and calculates linear combinations of the symbols to generate parity
symbols sent on the channel. In the case of systematic convolutional codes, the parity

symbols are sent along with the information symbols. A convolutional code is

_ 41 -

Valid. Syst. for Printed Docs Ch. 2 : Background

characterized by its input length, output length, constraint length, and generator
polynomial(s). The input length, k, determines how many symbols are processed at each
iteration of the encoder. The output length, n, determines the number of symbols output at
each iteration. The constraint length, N, is the size plus one of the sliding window
(maximum size plus one in case of multiple encoding windows). The generator

polynomials are the polynomials used to generate the channel symbols.

An example of a systematic (2,1), N=2 convolutional code encoder with

g11=(11)=(g;1(0),g;,(1)) is given in Fig. 2.9..

B

11115 C o
1723 - 11P112P213P3- -

211(0) gl
L

Fig. 2.9. (2,1) N=2 systematic convolutional encoder.

The input bits are fed into the shift register (“window”) and a linear combination
of the currently input bit and the bits in the register is calculated according to the generator
" polynomial. The output switches between the input bit and the parity bit at every iteration,

outputting a string of information (bit, parity) pair. The associated generator matrix is:

- 42 -

Valid. Syst. for Printed Docs Ch. 2 : Background

1g1(0)0g(1)...0g,(N-1)0
0 0 1gu(0)...0g,(N=2)0gy(N-1) ..
0 0 - : 0g(N=2) . .

1 g”(O)
0 0 1 g”(O)

(2.9)

11010, .. 0]
0011010. .. 0
. .0011010...0
0000 |

A codeword is obtained by multiplying G, and the message: ¢ = mG,,.

Convolutional codes can also be represented using a tree or a trellis. Figure 2.11
represents the code tree for our example. The trellis representation of the code considers
the encoder as a finite state machine (FSM). The states of the encoder are contained in the
values of the shift register (memory of the circuit). Figure 2.10 is the FSM diagram and

the trellis for our code.

- 43 -

Valid. Syst. for Printed Docs Ch. 2 : Background

Output
y_3 1/10
SWes of 00 00 -

Ol ___ inputl 1/11 0/01

----1nput 0
| , S
1010 0/00
(a) Trellis diagram (b) FSM

Fig. 2.10. (a) Trellis diagram, (b) FSM for a (2,1) N=2 code.

00
00
11
00 I
01
11
10
00
00
01
11
11 —
01
10 10
o} o
E— 00
1 o0 [
v 1
01 —‘““_
01
11
10
11
00
01
11
10 -
01
10
10

Fig. 2.11. Tree representation of a (2,1) N=2 code.

_ 44 -

Valid. Syst. for Printed Docs Ch. 2 : Background

The arrows in the FSM represent the transition from one state to another. Each
arrow is labeled with the input and output associated with the transition. Given a state and
an input, the output of the encoder is identical at any point of time. This is the called time

ivariance property.

2.4.42 Self-Orthogonal Convolutional Codes

An (n,k) convolutional code is self-orthogonal if and only if the set of J; syndrome

symbols, which check eq(i), are orthogonal on ey(i) for i=1,2,...k [SLin70].

Syndromes are received symbols stripped from their information symbols; the
syndromes are a sum of error symbols. The following discussion applies to convolutional
codes in general, syndromes are not specific to self-orthogonal codes and there exist other

decoding techniques based on syndrome evaluation.

Syndromes are obtained by encoding the received information symbols and
XORing the result with the received parity symbols. The XOR operation removes the

information symbols and leaves the error symbols only. If the received sequence is of the

form:
r = ro(1)rg(2)...rg(m)r ()7, (2)...r, (). (2.10)
ro= ro(1)..rg(l)r, (1)... (2.11)
r, = okt 1)..rg(n)r (k+ 1)... (2.12)
r=cte (2.13)

- 45 -

Valid. Syst. for Printed Docs Ch. 2 : Background

The syndromes are calculated by encoding the received information bits

u=rG,=.cG,+eG, (2.14)

w0

o= (iGw)pﬂLep (2.15)

where i is the source word. For a systematic code ¢, = i. The resulting parity bits

are XORed with the received parity bits.

s=rytu, = (iGw)p te,t (COGOO)p + (eOGw)p =e,*t (eOGOO)p (2.16)

The result are the syndromes. Note that only errors and linear combination of
errors remain and all information bits are gone. Equation (2.16) can also be written

literally

k k

si) = e+ + S e (O + .+ T ey (Dgy(N=1) 2.17)

P=1 i=1

for 1 £j <k, where g,.j(s) is the s™ coefficient of the generator polynomial g;;.

Definition (orthogonal syndromes): Two syndromes are orthogonal on e(1) if both contain

eo(1) but they have no other error symbols in common.

For example: g;;=(1010011)

- 46 -

Valid. Syst. for Printed Docs Ch. 2 : Background

51(1) = ep(1) +eg(2)

s5(1) = e (1) +e,(2)

53(1) = ep(1) +ey(1) +e5(2)

s,(1) = e (1) +e5(1) +e5(2)

s55(1) = ey(1) +e4(1) +e4(2)

sg(1) = e0(1)+e3(1)+es(1)+es(2)

s1(1) = eo(1) + e, (1) +e,(1) +eg(1) +e5(2) (2.18)

s;(1), s3(1), se(1), and s4(1) are orthogonal on ey(1). The code is self-orthogonal

with J=4. A list of self-orthogonal convolutional codes is given in [LiWe67].

2.4.4.3 Threshold Decoding

Self-orthogonal codes can be decoded using a technique called threshold decoding
developed by Massey (see [Mass63].) From our previous example, we observe that if two
bits or less are in error then a majority vote on the syndromes will give the error. The
decision rule is given by the following equation:

J

S sk > [ﬂ (2.19)

I=1

if eg(1) 1s zero and EJJ or less error occur then Eq. (2.19) returns a 0; if eg(1) is
one and L‘ij J —1 or less error occur then Eq. (2.19) returns a 1. This decoding technique 1s
called majority decoding. It is a special case of threshold decoding. Threshold decoding

introduces weights and a threshold calculation:

- 47 -

Valid. Syst. for Printed Docs Ch. 2 : Background

J J

W.
> si(kyw;> T with T = > 3 (2.20)
i=1 i=0

where w; is a weighting term that is proportional to the reliability of the ih syndrome. If all

w;s are equal to one we fall back on the majority decoding rule.

This matter is developed in [Mass63]. In this section a few additional explanations

are given to ease the understanding of the proof.

To minimize the probability of symbol error, the decoding rule is:

eq=1 1f Pr(e, =1 l{Si}) > Pr(e,,=0| {S.}) and e,,=0 otherwise.

Using Bayes' rule

Pr({ SI} |el71=V)Pr(enI:V)
P =V|{S;}) = 2.21
r(em |{S1}) Pi’({Sl}) ()
The decoding rule becomes: Choose e,=1 if and only if
Pr({S;} |e,=1 YPr(e,=1)>Pr({S;} |em=O)Pr(em=O) (2.22)

Since the syndromes are orthogonal on the m™ symbol, the S; are all independent
variables. Hence the decoding rule 1s:

J J
Pr(e,,=1) H Pr(Sl.lem=1) > Pr(e,,=0) H Pr(Si‘em=O) (2.23)

i=1 i=1

Finally, taking the logarithm of the rule with equally likely e

. 48 -

Valid. Syst. for Printed Docs Ch. 2 : Background

" Pr(S, €, =0) <0 -
2. M B le,=1) 224
i=1
If p, = 1—¢q, denotes the probability of an odd number of ones among the noise

P, ” p

bits exclusive of e, that are checked by S;, the i'" syndrome orthogonal to €, then it

follows that

Pr(§=0le,=1) = Pr(S=1le,=0) = p,

lf Sizl
Pr($;=1]e,=0) P D,
[Pr(S—l]em—l)] log ! = (25~ Dlog - (2.26)

ifS]:O
Pr($;=0]e,,=0) q; D;
log— 28;—1)log— (2.27)
[Pr(S O|em—1)} ; = () q;
so the decision rule becomes
Z (25; —l)ln—<0 (2.28)

i=1

or

251-—> Zl (2.29)

i=1 i=1

- 49 -

Valid. Syst. for Printed Docs Ch. 2 : Background

Using Eq. (2.20) and Eq. (2.29) we deduce

q;
w; = In— (2.30)
P
Furthermore
1 i
pi = 3 1_H(1_2yij) (2.31)

J=1

where v, 1s the probability that the i symbol in the i syndrome is in error, n; is the
number of symbols in S; except e, (refer to [Mass63] for a proof). Using Eq. (2.31) and

Eq. (2.30)

n;

1
-5 1- [T (=21

J=1

n;
1
i 1 - H(l _2ylj)

j=1
(2.32)

n;

1+ 1027,
= In =1

1- H(l —Z'YU)

Jj=1

if o, = =In(1 _ZYz'j)

- 50 -

Valid. Syst. for Printed Docs

Ch. 2 : Background

1-2y, = exp(—a;;)

n;
1+ exp —Z o
j=1

n;
1-exp —Z o
J=1

r n;
_ 1
w. = In| coth 5 Z o

L j=1

The decision function

 [Pr(e,=0]{5})
Ja = ln{Pr(emﬂl{Si}):!

(2.33)

(2.34)

(2.35)

(2.36)

can be fed back into the decoder. The probability of error given f, is

Pr(error|fy) = Pr(e,=0|{S,})iff,>0
Pr(error|f;) = Pr(e,=1 [1{S:})iff,<0
iff,>0

f; _ Pr(error|fy)
- 1—Pr(error|fy)

Ja
Pr(error|f,) = © 7
1+
Similarly if £, <0

(2.37)

(2.38)

(2.39)

51 -

Valid. Syst. for Printed Docs

Ch. 2 : Background

~fa
Pr(error|fy) = € - (2.40)
1+e d
Thus Vf, 4
i
Pr(error|fy) = —7 (2.41)
1+e
B
MSB
Select o] | | ~--------- N
—— !
MSB \ y 4 y 4 ¥
from -
demodulator
S Sy Sy
Confidence Level
LSBs N B
Select o] [[----------]
—f
LSBs V‘”-V *___v .
from weight o weight Scaling
demodulator function funciion
W] WJ
(128w, (1-2Sy)wy
* — * £ Decision
> d e =0 if £;<0

Fig. 2.12. Threshold decoder circuit.

Valid. Syst. for Printed Docs Ch. 2 : Background

The probability of error can be identified as v;; and fed back into the decoder. An

implementation of the total decoder circuit is in Fig. 2.12..

2.4.5 Summary

This section described forward error correcting codes, both block codes and
convolutional codes, with their associated coding and decoding procedures. These codes

are the building blocks of the code used to protect the data on the physical paper channel.

2.5 Barcodes

Now that the error correcting code background has been acquired, the state of the
art in barcode technology can be reviewed for a better understanding of the uniqueness of
the pattern developed in this thesis. Most of the following material comes from Palmer's
book with minor editions for content flow [Palm95]. Palmer defines barcodes as “an
automatic identification technology that encodes information into an array of adjacent
varying width parallel rectangular bar and spaces.” Two parts of the definition are key:
automatic and bar and spaces. The automation is one of the goals for this thesis. Bars and

spaces are the principal constituents of barcodes.

- 53 .

Valid. Syst. for Printed Docs Ch. 2 : Background

a0 1213, .0

- - - ~ -
- — — - ~> o -~

Start Character Data (message) Check Digit Stop Character

Fig. 2.13. 1D barcode structure.

For a more accurate description, barcodes are a series of printed bars of various
colors (usually black and white) and sizes arranged in a certain fashion so as to encode
data (see Fig. 2.13.). In general, barcodes bars are parallel and arranged in a rectangular
shape. The bars are arranged in groups that are called symbols (the “letters” of the
barcode) and the group of all possible symbols is called the symbology of the barcode (the
“alphabet” of the barcode). Barcodes contain a synchronizing pattern (such as start and
stop characters) and the information symbols. All barcodes use a form of redundancy to
protect the information against errors happening during its life on paper. There are two
main categories of barcodes: one dimensional (1D) and two dimensional barcodes (2D).
2D barcodes are further divided into stacked and matrix barcodes. Refer to Palmer's book

for a complete description and thorough listing of all existing barcodes [Palm95].

- 54 -

Valid. Syst. for Printed Docs Ch. 2 : Background

il |l||| IHIII 1 VIR

LA

8?1?199959
Do71719993
(e)
o 07171994
(h)
|
VENUS
()

Fig. 2.14. Sample of 1D barcodes: (a) UPC-A,; (b) Code 39; (c) Codabar; (d) Code 11; (e)
EAN 13; (f) EAN §; (g) interleaved 2 of 5; (h) UPC-E; (1) Code 39 and; (j) Code 128.

- 55 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.5.1 1D Barcodes

1D barcodes usually have a start and stop character at the beginning and the end of
the barcode and information symbols in between. They use the height of the symbols as a
form of redundancy and sometimes use check characters to guarantee the integrity of the

data. Figure 2.14 1s an illustration of 1D barcodes.

2.5.2 2D Barcodes

Two dimensional (2D) barcodes, introduced in the mid-80s, use smaller bar height
and encode the data with Reed Solomon (RS) codes to protect the code from errors to
compensate for the lack of vertical redundancy. The RS codes are used for their resilience
to burst errors and for their easy implementation using barcode symbology (each RS field
number is associated with a barcode symbol). 2D barcodes were made possible by the
advent of better and cheaper imaging technology such as CCD and CMOS arrays and

faster, less power hungry processors.

There are two main types of 2D barcodes: 2D stacked and 2D array. 2D stacked are
1D codes piled up on top of one another with shorter bar height. 2D matrix are just a series
of dots instead of bars. 2D barcodes can carry more information than regular 1D barcode
and can have a much higher resilience to noise. 2D barcodes are only decoded with

mmaging hardware. Figure 2.15 illustrates a few examples of 2D barcodes.

- 56 -

Valid. Syst. for Printed Docs Ch. 2 : Background

Fig. 2.15. 2D barcodes examples: stacked: (a) 16K; (b) PDF417; (c) SuperCode; matrix:
(d) Aztec; (e) Code 1; (f) UltraCode; (g) DataMatrix; and an example of unique 2D
barcode: (h) 3Di.

- 57 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.5.3 Summary

We have seen different types of barcodes in this section from the original 1D
barcodes used for small amount of data exchange such as a key entry into a database for a
product. 2D stacked and matrix barcodes used for higher volume of data (for example a
macro mode of PDF417 allows to‘encode up to 99,999 characters) and used for a richer
input format than 1D barcodes (some 1D barcodes only handle numbers where PDF417
can encode 76 different kind of symbols). The pattern developed in this thesis will be

similar to 2D matrix barcode technology.

2.6 Random Number Generators

Random number generators (RNGs) are algorithms used to generate sequence of
numbers that behave.like a sequence of independent random numbers with uniform
distribution. The meaning of random will not be discussed in this thesis. However, we can
define tests that a sequence of independent random number should pass and put the

generated sequence through those tests.

Computers are finite state machines, so RNGs implemented on a computer will be
peﬁodic. The quality of a RNG on a computer is then measured by the length of its period
and by the fact that it passes tests that random numbers should pass. There is however no
way to prove that a RNG is good, the generator is good until it fails a test. The quality

requirements for a generator also varies with its applications (as shown in Section 5.1.1).

- 58 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.6.1 Linear Congruential Generator

The most popular RNG is the linear congruential generator (LCG) which works 1n

the following way:

X,y = (aX,+c)ymod m n=0 (2.42)

where m is the modulus (m >0), a is the multiplier (0<a<m), ¢ is the increment
(0<c<m), and X, is the seed (0 <X, <m). Those generators are fast and have been
heavily studied and ways have been found to select moduli and multipliers that give

maximum period length [Knut81].

2.6.2 Encryption Based RNG

The goal of data encryption is to generate from a plain text a ciphertext that is as
close as possible to white noise so that probabilistic methods performed on the ciphertext
cannot give any information about the cleartext (see also Section 2.3 for an introduction
on cryptography). This property can be used to generate random numbers by simply
encrypting a seed several times and extracting numbers at each iteration. Any encryption
algorithm can be used to generéte random data. However, encryption algorithms are
relatively slow compared to simpler random number generator algorithms such as the
LCG. A viable choice is to base the generator on block ciphers algorithms which are some

of the fastest strong encryption algorithms.

- 59 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.6.3 RNG Test Procedures

In this section, we describe the chi square test which is used, for example, in the
equidistribution, pair, triple, and gap test. We also define the spectral test which is used

only for LCG.
2.6.3.1 Chi Square Test

The chi square (xz) statistic for an experiment with k possible outcomes, performed n

times, 1s defined as [FaDe99]:

k
(Y—np)

2.43
; = (2.43)

where Y; are the number of experiments which resulted in each possible outcome and p;

are the a priori probabilities of each outcome.

Xz will be larger to the extent that the observed results diverge from those
expected by chance. The probability Q of a xz value for an experiment with d degrees of

freedom (df) due to chance is:
d t

-1y d_
Qg™ { @} Jf e (2.44)

where gamma is the generalization of the factorial function to real and complex

arguments:

- 60 -

Valid. Syst. for Printed Docs Ch. 2 : Background

Kooy = [e ar (2.45)
0

and d=k-1 (intuitively, the k" possible outcome value can be deduced from the k-1 other

possible outcomes, so our experiment has k-1 degrees of freedom).
2
There are two steps to the y~ test:

Step 1. If the outcome of an experiment has a probability of happening less than o
or more than 100%-o (where o is usually 0.1% or 0.5%) then the

generator 1s rejected and the test stops,

Step 2. If not, the Xz cumulative density function (CDF) of a series of experiments
with d degrees of freedom is plotted which should be comparable with the

theoretical CDF.
If the RNG passes those two steps, it passes the specific test.

The Xz test can be performed on various distributions, for example:
equidistribution over k categories (p;=1/k), distribution of pairs (k? categories, pi=1/k2),
triplets (k> categories, p,-=1/k3), distribution of a given bit (2 categories, p;=1/2), mod-3

distribution (3 categories, p;=1/3).

- 61 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.6.3.2 Spectral Test

The spectral test is described in detail in [Knut81] and the algorithm to perform the
test efficiently 1s also given. The spectral test applies only to LCG. All known good LCG

passed the test and all flawed LCGs failed it.

2.6.4 Summary

RNGs are used to introduce randomness in processes. Two RNGs were detailed
(congruential and crypto RNG) and testing procedures to evaluate the quality of the
randomness of the number were given. The RNGs are used for noise generation and

random interleaving.

2.7 Digital Image Processing

The demodulation of the pattern involves the location of the pattern and transformation to
binary information with or without confidence level. The demodulated information is then
passed to the decoder. The pattern is acquired through a scanner which transforms it into a
digital image. The goal of this section is to give the necessary background in image
processing to understand the workings of the demodulator which is designed in the next

chapter.

2.7.1 General Concepts

Digital image processing is the action of transforming an image using computers or

special purpose digital hardware to enhance it, compress it, extract information from it, or

- 62 -

Valid. Syst. for Printed Docs Ch. 2 : Background

find patterns in it. The focus of the thesis is on edge enhancement as an image
enhancement transformation and line identification algorithms in special transform

spaces.

A digital image is represented by a two variable discrete function f:

(x5,), xe NN[ON=-1],y e XN [0,M - 1] (2.46)
where N is the positive integer set, N and M are the horizontal and vertical dimensions of
the image. A single point (x,y) is called a pixel. The value of f{(x,y) represents the
intensity of the image at pixel (x, y). For gray scale images, f(x, y) is between 0 and 255

where 0 is black and 255 is white and any number in between is a shade of grey.

2.7.2 Edge Detection

Edges in images are represented by sharp changes in the value of f(x, y). Sharp
changes in a function imply a high slope which in turn mean a high positive or negative
values for the local derivative. Now consider an ideal step edge. When smoothed the
profile of the edge looks like the leftmost sketch of Fig. 2.16.. The next sketches show the
first and second derivatives; the presence and location of the edge is marked by a peak and

a zero crossing respectively.

- 63 -

Valid. Syst. for Printed Docs

Ch. 2 : Background

F(x)

Smoothed
step edge

F’(x)

First
derivative

Peak

F’(x)

Second
derivative

7S

Zero
crossing

Fig. 2.16. Successive edge derivatives.

The norm of the gradient for a two variable function is expressed by:

= [(&)'+(Z

(2.47)

The gradient for a pixel can be approximated as a linear combination of its

surrounding pixels. This operation is called convolution and can be represented by a

matrix sweeping the image where each pixel is replace by the sum of the surrounding

pixel values multiplied by the matrix coefficient. The following operators are all discrete

linear approximations of the gradient operator. All operators are then considered in the

reference image matrix shown in Fig. 2.17..

- 64 -

Valid. Syst. for Printed Docs Ch. 2 : Background

fix-Ly-1) | fix-1,y) | f(x-Ly+1)

f(x>)"1) f(xvy) f(x>y+1)

fix+ly-1) | fixtly) | f(x+ly+])

Fig. 2.17. Image matrix for edge detection algorithms.

The properties of a good edge detection operator are:

» Isotropic (the edge direction does not matter)

* Good Localization (1dentify the location of the edge precisely)

* Good Signal-To-Noise Characteristics

* Accurate Determination of Edge Orientation

2.7.2.1 Gradient Operator

The gradient operator can be approximated by the following equation:

1
2

Vi~ [») —fG + 1,)) + (f0n,3) — o,y + 1))

Eq. (2.48) can itself be approximated by:

(2.48)

- 65 -

Valid. Syst. for Printed Docs Ch. 2 : Background

V= [fa,) = flx + 1,)+ [f0x, ») = fx, y + 1) (2.49)

Eq. (2.49) 1s equivalent to perform two convolutions with the masks shown in

Figure 2.18 and add the absolute value of the resulting images at each pixel.

1 0 0 1 -1 0
-1 0 0 0 0 0
0 0 0 0 0 0

Fig. 2.18. Basic gradient approximation convolution matrices.

2.7.2.2 Roberts Operator

Another approximation can be obtained by taking the cross terms instead of the

terms on the same column or row:

Vi [, y) =+ Ly + DI+ |G,y + 1) = flx + 1,)l (2.50)

This is called the Roberts cross-gradient operator. The convolution matrices are

shown in Fig. 2.19..

1 0 0 0 1 0
0 -1 0 -1 0 0
0 0 0 0 0 0

Fig. 2.19. Roberts cross-gradient convolution matrices.

- 66 -

Valid. Syst. for Printed Docs Ch. 2 : Background

2.7.2.3 Prewitt Operator

The Prewitt operator approximates the gradient at (x, y) by taking the difference

of three pairs of numbers instead of a single pair of numbers:

Vi=I(fx=1,y-D=flx+1,y-1))+

(f(x— 1,)/)“‘](‘()(—*_ 1>y))+

(fx-Ly+ D)= flx+1,y+ 1)+ (2.51)
Kf(x_ 1>y_ 1)"f(x— 1:y+ 1))+

(r-Ly-1-fix-Ly+1))+

(G- Ly—1)—fix— Ly + 1)

The convolution matrices are shown in Fig. 2.20..

-1 -1 -1 -1 0 1
0 0 0 -1 0 1
1 1 1 -1 0 1

Fig. 2.20. Prewitt convolution matrices.

2.7.2.4 Sobel Operator

The Sobel operator is another approximation of the gradient function. However,

this operator provides both a smoothing operation with the derivative operation: a simple

1 2 1 operation is performed before the derivative is applied.

. 67 -

Valid. Syst. for Printed Docs Ch. 2 : Background

-1 2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

Fig. 2.21. Sobel convolution matrices.

2.7.2.5 Laplacian Operator

The Laplacian is the second derivative for the two dimensional image function:
2 2
0 0
Vif = - +
A CRORE(CS)
- (-) : (-)
= | 2 + 2=
ERENACSY) \3 yf(x, y)

= %(f(x,)’)—f(x— 1,y))+%(f(x>y) —f(x,y~ 1))

Y+ 1,) =)} - {xy) - fx - 1,0)}
+ oy + D)=l y)) - {06 y) - flx, y—1)3

= flx+ L)+ fx-1Ly)+fle,y + D+ y—1) - 4f(x, ») (2.52)

The equivalent convolution matrix is illustrated in Fig. 2.22.. An edge 1is
represented by a maximum of the absolute value of the derivative which is an increase, a

maximum, and then a decrease. The second derivative will then be positive before the

- 68 -

Valid. Syst. for Printed Docs Ch. 2 : Background

edge and then negative. In other words, the derivative will change sign and the edge
location is the zero crossing of the function. Edge location with the Laplacian operator is
then performed in two steps: convolution of the image with the Laplacian operator mask,

and location of the zero crossing in the image.

0 1 0
1 -4 1
0 1 0

Fig. 2.22. Laplacian operator.

2.7.2.6 Canny Operator

The Canny edge detector arises from the earlier work of Marr and Hildreth, who
were concerned with modeling the early stages of human visual perception [MaHi80]. In
designing this edge detector, Canny considered an ideal step edge represented as a sign
function in one dimension, corrupted by an assumed Gaussian noise process. In practice
this is not an exact model but it represents an approximation to the effects of sensor noise,
sampling, and quantization. This edge detector is ot used in this Thesis but could be
implemented in further work. The approach was based strongly on convolution of the
image function with Gaussian operators and their derivatives, so we shall consider the 2D

Gaussian functions and their derivatives (in polar coordinates):

e X (2.53)

G(r) =

2nc

- 69 -

Valid. Syst. for Printed Docs Ch. 2 : Background

and the first derivative 1wth respect to 1 1s,

0 —r 2c
—G(r) = e (2.54)
or 2ng
and the second derived 1s,
2. _10(.0 ’
= 290,29 = _ Tl
V6 = 122Gy 6260){2 62} 2.55)
The first derivative of the image function convolved with a Gaussian,
g(x,y) = D[Gauss(x,y) ® f(x, y)] (2.50)

is equivalent to the image function convolved with the first derivative of a

(Gaussian,

g(x,y) = D[Gauss(x,y)] ® f(x, y) (2.57)

Therefore, it is possible to combine the smoothing and detection stages into a
single convolution in one dimension, either convolving with the first derivative of the
Gaussian and looking for peaks, or with the second derivative and looking for zero

crossings.

After convolving the image with a derivative of the Gaussian function, edge

detection can proceed by the simple thresholding of the data. In practice, the final

~ 70 -

Valid. Syst. for Printed Docs Ch. 2 : Background

determination of the presence or absence of an edge is more complex, and it is common to

include post-processing thinning and thresholding stages.

The goals of the Canny Operator were stated explicitly

* Good Detection: the ability to locate and mark all real edges.

* Good Localization: minimal distance between the detected edge and real edge

 Clear Response: only one response per edge.

To fulfil these objectives, the edge detection process included the following stages

Stage 1. Image Smoothing: The image data is smoothed by a two dimensional

Gaussian function of width specified by a user parameter.

Stage 2. Differentiation: Assuming two dimensional convolution at stage 1, the
smoothed 1mage data is differentiated with respect to the x and y
directions. It is possible to compute the gradient of the smooth surface of
the convolved image function in any direction from the known gradient in

any two directions.

Stage 3. Non-maximum Suppression: Having found the rate of intensity change at
each point in the image, edges must now be placed at the points of
maxima, or rather non-maxima must be suppressed. A local maximum

occurs at a peak in the gradient function, or alternatively where the

- 71 -

Valid. Syst. for Printed Docs Ch. 2 : Background

Stage 4.

denivative of the gradient function is set to zero. However, in this case we
wish to suppress non-maxima perpendicular to the edge direction, rather
than parallel to (along) the edge direction, since we expect continuity of
edge strength along an extended contour (this assumption creates a
problem at corners.) Rather than perform an explicit differentiation
perpendicular to each edge, another approximation is often used. Each
pixel in turn forms the centre of a nine pixel neighborhood. By
interpolation of the surrounding discrete grid values, the gradient
magnitudes are calculated at the neighborhood boundary in x and y
directions perpendicular to the centre pixel. If the pixel under
consideration is not greater than these two values (i.e. non-maximum), it

1s suppressed

Edge Thresholding: The thresholder used in the Canny operator uses a
method called “hysteresis”. Most thresholders used a single threshold
limit, which means if the edge values fluctuate above and below this
value the line will appear broken (commonly referred to as “streaking”).
Hysteresis counters streaking by setting an upper and lower edge value
limit. Considering a line segment, if a value lies above the upper
threshold limit it is immediately accepted. If the value lies below the low
threshold it is immediately rejected. Points which lie between the two
limits are accepted if they are connected to pixels which exhibit strong

response. The likelihood of streaking is reduced drastically since the line

- 72 -

Valid. Syst. for Printed Docs Ch. 2 : Background

segment points must fluctuate above the upper limit and below the lower
limit for streaking to occur. Canny recommends the ratio of high to low
limit be in the range two to one or three to one, based on predicted signal-

to-noise ratios.

Canny proposed a final processing stage, aggregation or feature synthesis. The
general principle is to start from the smallest scale, then synthesize the larger scale outputs
that would occur if they were the only edges present. Then compare the large scale output
to the synthesis. Additional edges are marked if the large scale output is significantly
greater than the synthetic prediction. The synthetic data was produced by convolving a
Gaussian of large scale with the small scale edge data. The procedure is repeated to mark
edges at the second scale which were not present at the first, then third to second, and so
on. Canny observed that “in the many cases the majority of edges were picked up by the
smaller channel, and that later channels mark mostly shadow and shading edges, or edges

between textured regions”.

2.7.2.7 Deriche Operator

The basic idea introduced by Canny behind optimal operators is based on a

continuous edge model which consists in a step signal corrupted by a gaussian white noise
I(x) = Au_,(x) + n(x) (2.58)

where u_;(x) denotes the unit-step function and n(x) is a noise term whose mathematical

. . . 2
expectation and variance are respectively 0 and ¢~ .

- 73 -

Valid. Syst. for Printed Docs Ch. 2 : Background

We then consider the convolution of this signal with an edge detector f(x)

0(x) = [IOG)(x-y)dy (2.59)

-—~00

According to this model Canny has proposed to find an optimal edge detection

operator using the following three requirements:

1. Low probability of error (failing to mark or falsely marking real edge points).
This criterion consists in finding an asymmetric operator which maximizes the signal to

noise ratio:

4 [s

c /fwfz(x)dx

2. Good localization: points marked as edges should be as close as possible to the

s (2.60)

true edge. The localization is defined as being the inverse of the standard deviation of the

position of the true edge:

A\ = _Alr)

o /[@dx 200

3. Only one response to a single edge: consists in a constraint on the average

distance between two local maxima (x,,,),

- 74 -

Valid. Syst. for Printed Docs Ch. 2 : Background

(2.62)

Canny has then proposed a FIR operator (Finite Impulse Response filter: a series
of shift registers with no feedback) which maximizes the product £A under the constraint
that the third criterion' is fixed to a constant value k. For the unapproximated Canny
operator the performance is A = 1.12 with k=0.58. In practice, as seen in the previous
section, the Canny operator is approximated by a Gaussian function which leads to

2A = 0.92 with k=0.51.

Deriche has then proposed an IIR (Infinite Impulse Response filter: a series of shift
registers with feedback) operator which optimizes the Canny criteria, this operator has the

following form [Deri87]
fx) = ge_a’x' sinmx (2.63)
It is shown that the most efficient operator is the limit of the previous one when o
tends to 0. Therefore,

fx) = Sxe oM (2.64)

This filter has a performance XA equal to .2 (with k=0.58) which is
approximately 25% better than the unapproximated Canny operator. An interesting

property of this operator comes form the o parameter which allows to adapt it to the

- 75 -

Valid. Syst. for Printed Docs Ch. 2 : Background

content of the images. Roughly, if the image is noisy the o parameter has to be chosen
relatively small (0.25 to 0.5) which means that X (detection) is favored to the detriment of

A (localization) ([Deri98] p. 25). For a clean image o is chosen relatively large (=1.0).

The one-dimensional Deriche operator corresponds to two stable second order
recursive filters (this proof is based on computing the Z transform of the discrete IIR
operator) ([Deri98] p. 17). This results can be extended to the two-dimensional operator.
The first step in the computation of the filter consists in processing the rows of the image

according to the following scheme (x is the input image)

yiD = ax ivayx ;o + byyiD + byt (2.65)

going from left to right, and
VB = agx; o ragx; et biy@+ D, (2.66)
going from right to left. This operation gives a temporary result, say A, whose

expression 1s

}\‘i,j = c](yl(,lj) +yl(’21)) (2.67)

The second step concerns the columns of A

yl(,]j) = ash;;+tagh;_y;* b]yl(]—)l,j + b]yzcl—)Z,j (2.68)

from top to bottom, and

yz(,zj) - a7xi+],j+a8Ki+2,j+b1y§L)],j+b]yl(-]{»)z,j : (2.69)

~ 76 -

Valid. Syst. for Printed Docs Ch. 2 : Background

from bottom to top. The final result is then obtained by

= 0+ (2.70)

The following set of parameters is used to compute the horizontal component of

the gradient
0.2
ay=0,ay=1,a;=-1,a, = 0,¢; = —(1-¢") (2.71)
as = kas = ke “(0—1),a; = ke *(0—1),a5 = —ke %, ¢, = 1 (2.72)

The vertical component can be obtain by swapping a; and a;, 4, and ¢; and c,.
For both components we have

)
(I-e)

- -2
1+20e “—e "

k =

,by =2e¢ ,b, = 2e (2.73)

Another set of parameters allows to compute the Laplacian of the image but the
most efficient way to perform features extraction is the gradient based approach. Since the
processing of a row (respectively a column) is independent of the computations required
for other rows (respectively columns) it is possible to implement the Deriche operator on a

parallel computer [LaLio6].

We now describe contour extraction using the result produced by the Deriche
operator. The first step, in order to extract thin contours, i.e. contours of thickness equal to

one pixel, is to extract the local maxima of the gradient norm in the gradient direction

given by the vector (%, -gi) However, the gradient direction does not coincide (in
»

- 77 -

Valid. Syst. for Printed Docs Ch. 2 : Background

general) to integer pixel coordinates. There are two common ways of dealing with this

problem:

1. Take the gradient norm at the nearest neighbor of the pair of non-integer

coordinates; and

2. Perform a (bi)linear interpolation in order to obtain a value for the gradient

norm at the non-integer coordinates given by the gradient direction.

Note that both solutions have no physical meaning. Hysteresis thresholding
method can also be used. It consists in eliminating the local maxima which are not
significant according to the following rules. Given a high and a low threshold level, we

eliminate the following local maxima:
1. Local maxima which gradient norm are less than the low level; or

2. Local maxima which gradient norm are less than the high level unless it is
connected (here 8-connected) to another local maximum which gradient norm is greater

than the high threshold level.

A local maximum is said to be 8-connected to another local maximum whose
gradient norm is greater than the high threshold level if one of its 8 nearest neighbors has
a gradient norm greater than the high threshold level or if one of its neighbors is connected

to a local maximum whose gradient norm is greater than the high threshold level. This

- 78 -

Valid. Syst. for Printed Docs Ch. 2 : Background

thresholding technique gives better results than a one level threshold because it takes into

account that some contours can be "hidden" in the noise.
2.7.3 Line Tracking Algorithms

2.7.3.1 Radon Transform

The Radon transform extracts line parameters from an image. It is an attractive
transform for its resilience to noise. Each line in the image space is transformed into peaks
in the Radon space, which position correspond to the parameters of the lines. The location
of lines in the transform space is then the identification of local maxima. Once the maxima
are located, the associated parameters can be used to reconstruct the lines in the original

image.

The Radon transform is defined by integrating a continuous two dimensional

function f(x, y) along slanted lines
F(a, b) = fwf(x, ax + b)dx (2.74)
Intuitively, if g(x,y) has high values along the line y = ax+ b the transform

F(a, b) has a high value. The intensity in the (a, b) space indicate the probability of a

line in the image. Using the Dirac function, Eq. (2.74) can be rewritten as

F(a, b) = J‘fw [e,)8(y ~ ax — b)dxdy (2.75)

- 79 -

Valid. Syst. for Printed Docs Ch. 2 : Background

The Radon transform is approximated in the discrete domain by the following

equation
M-
[vs]
Flapb) = [fonap+b)de=dx S flx,, ax, +b) (2.76)
- m=0
where
X = X, = X, tmAx m=0,... ., M-1
y =y, = ymm-l-nAy n=2~0,..,N-1
(2.77)
a=a,= a,,;,+kAa k=20,...,K-1
b=10b,=0b,,,*tIAb [=0,...,L-1

Both the image coordinates and the Radon transform coefficients are quantized.
The quantization of the image coordinates relates to out digital image model. The
quantization of the slope coefficients relate to the quantization of the Radon transform
space which in turn can be represented as a digital image. The ordinate component
ax, +b; does not necessarily correspond to a y,, so the image has then to be
approximated in those points. Three possible methods to approximate the value of the
image are: nearest neighbor, linear, and sinc interpolation. For more details on the

algorithms used to perform such interpolation are detailed in [Toft96].

The cartesian representation of lines has a singularity for vertical lines (a — «.)

To avoid the singularity, the lines can be represented in polar form

. 80 -

Valid. Syst. for Printed Docs Ch. 2 : Background

0 w0

F(p,0) = j jf(x,y)a(p-xcose—ysine)dxdy

—00 —00

(2.78)

= jf(pcos@ — 5sinB, psind + scosB)ds

—G0

where s lies along the line.

Similarly, the Radon transform can be expressed in the discrete domain
S-1

F(p,,0,)=As Zf(prcosel - sjsiné)t, p,sin@, + SjcosE),) (2.79)
j=0

Similar interpolation methods can be used to approximate the value of f(x,y)

where the (x,p Y0) quantized coordinates do not match the

(p,cosB,—s;sinb, p,sind, +s:c0s0,) coordinates. Again see [Toft96] for details.

The Radon transform of a line in the image domain is a point in the transformed
domain. The transformation of a point in the image domain are all the parameters of the
lines going through this point. For the cartesian representation, if the point is (x, y,) the

lines going through the point have the following form:
Yo = axgt+b (2.80)
hence

b=-xyat+y (2.81)
0 0

- 81 -

Valid. Syst. for Printed Docs Ch. 2 : Background

The transform of a point using the cartesian Radon transform is a line. Toft shows
that the transform of a point in the polar domain is a sinusoid (the same reasoning can be

applied: the coefficients of all the lines going through the point) [Toft96].

2.7.3.2 Hough Transform

If only a few points in the image are non zero, the Radon transform calculation
adds a lot of zero values with no benefit to the final result. The Hough transform makes
calculations only for the points defined in the image: instead of counting the points on a
Iine in the image domain and representing it as a point with the summed intensity in the
transform domain, the Hough transform takes each non zero point in the image domain
and transforms it into the transform of the point in the transform domain (a line for the
cartesian representation and a sinusoid for the polar representation, both represents all
possible coefficients of the lines that go through the given point). If the number of zero
points in the image is high, the Hough transform has a smaller computational load than the
Radon transform. The Radon transform has a complexity of O(M?) (M number of pixels in
a side) and the Hough transform has a complexity of O(EFM) where EF is the number of

non-zero pixels in the image (which is hopefully less than Mz.)

The Hough transform has also both a cartesian and a polar representation and a

discrete calculation for digital images.

- 82 .

Valid. Syst. for Printed Docs Ch. 2 : Background

2.7.4 Summary

We saw in this section different methods for line parameters extraction (Hough and
Radon transforms) and methods for edge detection in digital images. This is used in

locating the transmitted data on the physical paper channel.

- 83 .

Valid. Syst. for Printed Docs Ch. 3 : System Design

CHAPTER III

SECURITY SYSTEM, CODE, AND PATTERN DESIGN

3.1 Introduction

Each component background was described in Chapter II. It is now time to bring
them all together and apply them to the thesis: transmit (pattern design, decoder design)

securely (security system) and reliably (error correcting code design) on paper.

3.2 Scalable Security System

Several factors affect the selection of a cryptosystem. The paper documents have

two main characteristics:
(1) Their life expectancy; and
(11) Their value.

For this reason, several levels of security are required from the cryptosystem.

3.2.1 System Design for Small Value Documents

If the information on a paper has a small value and a lifetime expectancy of a few
months, a simple verification station with a single key for a batch of documents can be

implemented. The cryptosystem can be based on a stream based key cipher for

-84 -

Valid. Syst. for Printed Docs Ch. 3 : System Design

information confidentiality with an MDC for data integrity. If the information carried by
the security pattern can be clearly displayed but not altered (Iike the dollar amount of a
banknote), a MAC along with the original message can be used to secure the message
content. The keys for the document batch are stored on the verification stations and are
expired as new documents are introduced. The updating of the keys is handled by a simple
symmetric key communication system. The symmetric communication keys are changed
at each new download of document keys. The communication channel bandwidth and the

verification station key database are minimal. Fi gure 3.1 illustrates the cryptosystem.

A private

e

Central

Verification Station ey Updater

il

Fig. 3.1. Cryptosystem schematic for small value documents.

A small number of keys are stored on the verification station and the keys are
expired after a few months. A key is corrupted only if the verification hardware is broken
into. If a key is leaked, the corrupted key only involves a few months’ worth of documents
and when the fraud is detected, the key can be retired. The key becomes invalid as soon as

anew batch of documents is produced.

- 85 -

Valid. Syst. for Printed Docs Ch. 3 : System Design

3.2.2 System Design for Medium Value Documents

The information value is medium and with a lifetime expectancy of a year or two.
This system is designed to reduce the impact of a corrupted key. Half of the key or the
entire key is stored on the verification station to reduce the storage requirements and the
key encrypts only part of a batch (c.g., groups of thousands). A central key server stores
the remainder of the key for each part of the batch or is not used interactively if the whole
key 1s stored on the station. The communication is still done using a symmetric key
communication system. The communication key is updated at regular intervals of time
(e.g. a month). If the communication channel key is broken into, the keys are updated
before any new upload of new document key. A corrupted document key only corrupts the
small part of the batch it encrypts. The storage requirement is medium and the
communication bandwidth is medium to small depending on the quantity of the key that is

stored on the verification station. Figure 3.2 illustrates the system.

A

Verification Station

private

Central Partial
Key Server

il

Fig. 3.2. Cryptosystem schematic for medium value documents.

- 86 -

Valid. Syst. for Printed Docs Ch. 3 : System Design

3.2.3 System Design for High Value Documents

This system design requires a high bandwidth communication channel but no
storage on the verification station. There is one key per document and all keys are stored
on the local server. The key server and the verification stations verify each other’s
identities using zero-knowledge based protocols. During the identification phase a
symmetric session key generated by the key server is exchanged. In this way, the
communication key is never stored on any of the stations. In the same way, by using zero-
knowledge based protocols, the identification tokens are never stored on the verification
stations. It is much easier to secure a central server than all the individual verification
stations that go in the field. Once the session key is established, the key server can send
the document key or update the station identification token. A corrupted document key

only involves one document. Figure 3.3 illustrates the system.

ZK based

Y

Central
ey Server

Verification Station

Fig. 3.3. Cryptosystem schematic for high value documents.

- 87 -

Valid. Syst. for Printed Docs Ch. 3 : System Design

3.2.4 Summary

The value of paper documents even of the same kind can vary (paper money of
different value). All the previous systems can be mixed for the same type of documents
according to the document value. The systems described are recommended systems which

can be altered or completely changed depending on the requirements of the documents.

3.3 Double Interleaved Concatenated RS and Convolutional Self-

Orthogonal Code

As Michelson and Levesque said: “the selection of an error control scheme
consists in part of matching the features of the technique with the system objectives.”
[MiLe85]. The system's objectives are to produce a reliable (that detects if and where
errors occurred and possibly corrects them), fast communication of data on the paper
channel which is a compound error channel. The approach taken in this thesis is to use a

concatenated scheme with interleaving.

Concatenated codes, introduced by Forney in 1966, are the consecutive encoding
and decoding of a data stream by two or more codes. The first code is called the outer code
followed by the inner code. Since decoding is implemented in stages on much simpler
codes, decoder complexity is much reduced. Even though concatenated codes are not the
best codes in their class, they still have very good performance (as seen in the
experimental results) and make decoders for such powerful codes tractable. Concatenated

codes match the reliability and speed requirements of our system.

- 88 -

Vahd. Syst. for Printed Docs Ch. 3 : System Design

In [CaCl81], the authors show through experimentation that the best concatenated
codes are obtained using Reed-Solomon (RS) codes as outer codes and convolutional
codes as mner codes. Reed-Solomon are chosen as outer codes because they are MDS
which make them the best performing codes for a given rate. Furthermore, different error-
correction capabilities can be chosen for RS codes which helps match the requirements of
a specific channel by modifying the error correction power of the code according to the
noise strength and characteristics on the transmission channel. Finally, fast decoding
algorithms based on the Berlekamp-Massey algorithm make them suitable for our speed

requirements.

There should be an optimum rate for the outer code for a fixed inner code and a
fixed channel. Indeed, the inner code leaves a given BER after decoding the information
from the channel, there should thus be an optimal rate for the outer code at which the
targeted error correction at the output of the overall code is matched and no additional
correcting power is unused. The flexibility of RS codes facilitates finding this optimal

rate.

The mner code should have a monotonic performance around the aimed signal to
noise ratio (SNR). If the code has a waterfall shaped performance curve (flat before a
given SNR and steep afterwards), the outer code will be designed along the flat portion of
the curve which is a waste of the inner code decoding power, or along the steep portion,
which in turn gives a very unstable code performance when the SNR hits the flat portion

of the inner code performance curve. Furthermore, Forney looked for the best operating

- 89 _

Valid. Syst. for Printed Docs Ch. 3 : System Design

point on the inner code performance curve at fixed SNR that gives the optimal outer code
rates and found that the inner code should output a stream with a 102 BER. All these
considerations make convolutional codes a good candidate for inner codes. Clark and Cain
selected a Viterbi decoding algorithm using demodulator soft decision. However, the
Viterbi algorithm complexity grows exponentially with the constraint length of the code,
so we decided to use instead a self-orthogonal convolutional code (CSOC) with either
majority decoding, or threshold decoding, or even feedback threshold decoding, all of
which have fast hardware implementation. We believe that the loss in performance is not
big enough to diminish the quality of the overall code. Furthermore, due to the simplicity
of the decoding algorithm, codes with longer constraint length can be practically used.

The chosen CSOC are (2,1) codes with several constraint lengths.

Due to their continuous decoding, convolutional codes decoding errors tend occur
in bursts. However those bursts have finite length characteristics more specifically, for
CSOC they are 2 to 3 times the constraint length of the code [MiLe85]. This allows the
designer to insert an interleaver between the RS code and the convolutional code to break
up those error bursts in several RS blocks. When burst errors have bounded length, the
most efficient interleaving in terms of speed and size required to break up the burst noise
are periodic interleavers [CaCl81]. There is an optimal size after which no additional
decoding performance is gained. For example, in the case of block interleaving, if the
interleaver width is longer than the burst, the burst will be spread at longer intervals but

there will be no additional gain when the RS code decodes those errors.

- 90 -

Valid. Syst. for Printed Docs Ch. 3 : System Design

We have seen that errors also occur in bursts on the paper channel but
convolutional codes are designed to correct random errors best. A way to transform those
bursts into random errors is once more by the use of interleavers. However, in this case the
burst characteristics are unknown, e.g. it is hard to predict what direction a scratch is
going to have, how long and how wide it will be. The only way to cope with unknown
burst error noise is whether to estimate worst case scenario and design periodic
interleavers accordingly or use pseudorandom interleavers. We have chosen

pseudorandom interleavers for this design.

Reed Solomon code concatenated with convolutional codes have been used
extensively in many applcation such as space communication and several thesis treated
the specific code used in this thesis [Leon95]. However, they are a new application for

transmission of data on paper documents.

Figure 3.4 shows the final block diagram of the code.

Source
Encoder Modulator
RS Block CSO Pseudo Random
Encoder [] Interleaver kel Encoder [®7] Interleaver

Fig. 3.4. Block diagram of the designed code.

Valid. Syst. for Printed Docs Ch. 3 : System Design

3.4 Square Pattern Modulator with Threshold Demodulator

The following paragraph describes the process used to transmit the encrypted and
encoded data on paper. The rocess is illustrated in Fig. 3.5.. The first step 1s to print the
data overlaid on the document. The choice of the code is a double interleaved
concatenated RS and convolutional self-orthogonal code. The choice of the size and
constraint length of each component is dependent on the results obtained in the studying
of the theoretical code performance under AWGN. This pomt is developed in the next
chapter. The size of the interleavers should be maximized for performance. The size of
each interleaver (block and random) should be of the size of the transmitted data to
maximize the size of the interleavers without padding with unnecessary zero data to

complete the interleaver input.

The pattern is printed and read in a matrix form. Data is printed row by row from
left to right. A “1” is represented by a black square and a “0” by a white square. The
dimensions of the matrix are calculated so the difference between length and width is
minimized (closest dimensions to a square). The smallest difference is calculated by
finding the smallest difference between two integers that divide the total number of bits
and which product is equal to the total number of bits. Such numbers are built by taking
combinations of the prime number decomposition of the total number of bits. The pattern

is the surrounded by a one pixel border used for location and transformation.

- 92 .

Valid. Syst. for Printed Docs Ch. 3 : System Design

Overlaid
Pattern

Noise

Scan

Y Y

Extract Signature Enhance Edges

;

Detect Pattern
Boundaries

Y

Rotate/Translate Pattern
and Crop Image

Y

Decode and Decrypt
the Pattern

Compare and
E— Vahdate

Fig. 3.5. Decoding process

Valid. Syst. for Printed Docs Ch. 3 : System Design

The demodulation consists of: scanning, locating, transforming, and reading. The
only transformations corrected is a possible rotation and translation of the pattern, no
shearing or perspective. The number of bits in the image read is reduced by applying an
edge detector operator and thresholding the resulting image. This allows the number and
the range of the pixels to be reduced without losing the important pattern perimeter
locator. The selection of ;[he edge detector is based on the detector that will keep the

pattern frame best even with surrounding noise.

The image is then transformed using the Radon or the Hough transform. The local
peaks in the transformed space are enhanced by applying a local thresholding operator.
The pattern perimeter line coefficients are four peaks, grouped in pairs. Each pair of
coefficients is located on the same vertical line (each pair of coefficients represent the two
parallel lines of the rectangle), the two pairs are separated by 90" (angles in a rectangle).
By identifying those coefficients, the pattern is then located and the proper translation and
rotation is applied to the image. To avoid the pattern going out of the image bounds, the
translation is applied first and the rotation is applied next. If the pattern is located properly,
the angles of the lines in the resulting transformed pattern should be respectively 0 and
90 . The opposite of the smallest line angle (in absolute value) (0-angle) is the rotation to
apply. If the pattern after rotation is still upside down, the decoding fails and a rotation of
90" is applied to the pattern; if after four rotations the pattern is still not decoded it is a
decoding failure (an improvement to the pattern would be to put a unique mark in one
comer to know the proper orientation of the pattern). Each parallel line should have an

equal and opposite distance from the center. The translation vectors should then be minus

.94 -

Valid. Syst. for Printed Docs Ch. 3 : System Design

the distance of the center between the two lines and the image center. Let's call 6 the
rotation angle and p,, p,, p;, p, the distances of the lines from the Image center

obtained in the transform space. The transformation to apply is the following

Pyt P,
R [cos@ sine:’ H+ 2 (3.1)
y(f) ~sin® cosH| |y P3Py
2

(0
'x -
where | are the transformed coordinates. We want however to perform the translation
Y

first. The transformation then becomes

Pt Py
P _ | cosB sinb|| |x 4 |cosO —sind 2 (3.2)
y(t) —sin® cosB|| |y sin® cosO | |p;+p,
2

The matrix multiplication for the translation coefficient is of course calculated
once only and not for each pixel. The image is then cropped to the edges of the pattern. In
the following discussion, a pixel is a point in the scanned image and a pattern pixel is a
pixel in the printed pattern; a pattern pixel can be formed of several image pixels. The
pattern is now centered and straight, using the top and bottom lines thickness, the
thickness of a pattern pixel is calculated (average of the lines’ thicknesses). The image is
then read a square at a time, each square having the size of the calculated frame line
thickness. All the pixel values inside the square are added and the pattern pixel is a “1” if
its value is more than the value of the sum of a black pattern pixel divided by two, it is a

“0” otherwise. However, if a pixel in the center of the pattern pixel is black or white, the

- 95 -

Valid. Syst. for Printed Docs Ch. 3 : System Design

pattern pixel is automatically assigned to the corresponding “1” or “0” because if the
pattern is not perfectly aligned with the image pixels, the value of the edges 1s more likely
to be in between the value of the two adjacent pattern pixels). The generated bitstream is

then fed to the decoder.

A signature is extracted from the document (such as a bill serial number) and the
key database (whether it is stored locally or not) is queried with this document signature
and 1t sends back the encryption key and the random seed for the random interleaver. To
limit the data transmitted, the crypto key can be used as the random seed. The decoding
and decrypting is as described in Chapter II. The extracted information is then compared
to the signature extracted from the document which in tumn validates or invalidates the

document.

3.5 Summary

The complete design for the secure and reliable transmission of data on paper has
been laid out. The important points were: there is different level of security system
depending on the lifetime of the document and its value. The chosen code (double
interleaved concatenated RS and convolutional self-orthogonal code) is designed to
handle the compound error paper channel and the speed requirements for the application.
The pattern and demodulation are designed for easy location and handles rotation and

translation offsets. The next chapter sets the design of the experiments performed for the

- 96 -

Valid. Syst. for Printed Docs Ch. 3 : System Design

random number generators randomness test, coding evaluation, and pattern demodulation

experiments.

- 97 .

Valid. Syst. for Printed Docs Ch. 4: Design of Experiments

CHAPTER IV
DESIGN OF EXPERIMENTS

4.1 Introduction

Several experiments are performed to test the components of the system. The
random number generators are put through several tests of randomness, the code’s
theoretical performance under AWGN (with or without interleavers) is evaluated. F inally,
the pattern functioning with or without noise is tested. This chapter describes settings and

design of those experiments and validates the decision made for those experiments.

4.2 Code Performance

This experiment tests the code performance in several configurations. The measure
used to compare codes is the bit error rate (BER) against the signal to noise ratio (SNR).
The BER is plotted on the logarithmic scale, it is calculated by dividing the number of bits
in error over the total number of bits. The SNR is measured by dividing the signal power
over noise power. The SNR ranges from -5dB to +5dB in steps of +1dB. The source
contains 10° bits for SNR from -5dB to +2dB and 107 bits for +3dB and up because
performance is around 10 when SNR is less or equal than 2dB and at 3dB or more, the
BER often passes 107 requiring an increased number of bits for statistically valid

measurements (a rule of thumb is 30 samples for statistically valid data). The signal is

- 98 -

Valid. Syst. for Printed Docs Ch. 4: Design of Experiments

modulated using binary antipodal signaling (+1V for a binary 1 and -1V for a binary 0).

The average power of the binary antipodal signaling is

N

ES:TLB (1) 2dt = 1w

o

where Ty is the period of the signal

: . 2 . .
Gaussian variables have a power of N, = ¢~ Watts (02 1s the variance of the

signal). The SNR is then

o’ = % (4.1)

A property of a random variable R(m,v) (m mean, v varlance) is

R(m=0,v=0") = cR(m=0,v=1) (4.2)

The noise is generated with a zero mean, a variance based on the SNR using Eq.
(4.1). The Box Muller algorithm is used to transform the uniform probability variable into
Normal distribution as found in [PTVF92]. The chosen RNG to generate the uniform
probability variable is the PDES for its very good performance to all the tests we put it
through (see Section 5 -1.2). Noise is added one bit at a time: a value of +1 or-1isinput, a

Gaussian variable is generated and added to the value.

- 99 .

Valid. Syst. for Printed Docs Ch. 4: Design of Experiments

7 6 5 4 3 2 1 0
] -
-1.5 -1.0 -05 0O 0.5 1.0 1.5

Fig. 4.1. Uniformly spaced 3 bit quantizer.

Table 4.1 Optimum 8-level quantizer; E/Ny=-6.1dB; Ig j=-1;; for 0<j<4.

L Threshold
J value
Ip -0

I -1.760
I, -1.056
I -0.503
Iy 0

The demodulator either makes a hard decision on the received signal according to
its sign or scales and quantizes the output to 4, 8, or 12 levels. Both [CaCl81] and
[MiLe85] deal with the quantization levels and the associated performance for
respectively threshold decoding of block code and Viterbi decoding algorithm. Both
conclude that 3 bit quantization (8 levels) gives a good decoding performance (0.1 dB
from continuous) and higher number of bits do not increase performance significantly
considering the added decoder complexity. Michelson and Levesque give the optimal
quantization thresholds with regard to maximizing the computational cut-off rate Reomp
(for rates R<Rqpp codes with long constraint length or block length can be decoded

without suffering an unbounded growth in the number of decoding computations).

- 100 -

Valid. Syst. for Printed Docs Ch. 4: Design of Experiments

The results are very close to the uniform quantizer which we use in this thesis (see

Fig. 4.1. and Table 4.1).

Several experiments are performed to test various parts of the code:

* Convolutional code alone;

» Code without inside interleaver;

* Code with pseudorandom inside interleaver;

= Code with block interleaver;

 Code with convolutional code of different constraint length;

¢ Convolutional codes different decoding techniques.

The outside interleaver is not tested in this experiment as it is designed to break

burst noise but only Gaussian noise is simulated.

- 101 -

Valid. Syst. for Printed Docs

Ch. 4: Design of Experiments

overlaid
pattern

Test Hough and
Radon, Time,
Performance

with Noise

Compare Image Afte
Rotation and Scans of
Straight Image

Scan

¢ Test resolution

Y

Enhance Edges

J

Detect Pattern
Boundaries

Y

Rotate Pattern

and Crop Image 1

Y

Decode
the Pattern

Time, Performance
Under Burst and
AWGN

Fig. 4.2. Decoding process with experiments legends.

- 102 -

Valid. Syst. for Printed Docs Ch. 4: Design of Experiments

4.3 Pattern Functional Testing

Several combinations of coding are used to test the pattern. The experiments are
aimed at determining the necessary scanning resolution for proper decoding of the pattern,
determining the behavior of the pattern under burst and Gaussian noise, selecting the best
line detection algorithm for performance and timing issues. Fig. 4.2. shows the flow of the
decoding process and the legends indicate the experiments performed at each stage. The
patterns are generated into a PBM (portable bitmap) file. The image is scaled up and
printed at 37.5 dpi (dot per inch) and 75 dp1 (the scaling process is to get the desired
resolution on a 300 dpi printer). The data encoded in the pattern 1s an ascii file with the
following quote:

"Be like a postage stamp. Stick to it until you get
there.”

Harvey Mackay

The seed for the random interleaver is set to zero for all patterns. The pattern is
printed on good quality, matte paper using a laser printer. The printing conditions are
ideal, however, it provides an acceptable basis for the testing of the performance of the

code under burst noise and validation of the design of the pattern and the demodulator.

The pattern is then scanned using a flat scanner. The paper is scanned straight,
rotated, and shifted. The lighting conditions are ideal but the resolutions at which the
pattern is scanned is representative of real world performance and is a good evaluation for

the pattern demodulation performance. The pattern is scanned in equal (only for 75dpi

- 103 -

Valid. Syst. for Printed Docs ~ Ch. 4: Design of Experiments

pattern), double, and quadruple the printing resolution to test the necessary scanning
resolution. The images are scanned in black and white as well as in 256 grey levels. The
scanning resolution is sufficient if the pattern without noise can be reproduced without

€ITor.

The images are transformed from TIFF format (scanner output option) to PGM
format (UNIX image file format supported with some Linux libraries), demodulated and
decoded using the algorithms described in the background and system design chapters.
The components tested are the different edge detection operators. The Hough and Radon
transforms tested under clean and noisy conditions. The demodulator has then a pass or
fail test on the perfect signal reconstruction of non noisy images. The noise correction is

traced for a sample image illustrating the process of interleaving and decoding.

Random bursts are generated by modifying the image after scanning and by

physically altering the printed pattern.

All the software is developed under the Linux operating system using GNU
development tools. The image processing tools for edge detection come from a library
called ImageMagick which performs a number of operations; the Radon and Hough
transforms are implemented according to Peter Toft’s thesis [Toft96]; the rest are
implemented from scratch and coded in C. For further information on ImageMagick, refer

to the project webpage [Imag00].

- 104 -

Valid. Syst. for Printed Docs Ch. 4: Design of Experiments

4.4 Summary

This chapter described the modus operandi of the experiments and the motivation
behind those. The experiments are designed to test the appropriate randomness of the
RNG according to their applications (random interleaving and noise generation); the
performance of the code starting with its individual components and ending with an
overall performance test; the last experiment deals with the overall system evaluation,
verifying the adequate choice of techniques for the entire system under normal and noisy

conditions.

- 105 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

CHAPTER V
EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Random Number Generator Tests

This section gives the results and discussion on the RNG used for random

interleaving, uniform and, Gaussian random number generation.

5.1.1 Linear Congruential Generator

The chosen LCG is the Berkeley system distribution (BSD) implementation

rand48:

X, ., = (25214903917 - X+ 11)mod2"® (5.1)

F

Out,,; = X,,»16 (5.2)

¥
where >> is the shift operator and Out,,,; is the 32 bit integer output.

From Theorem A p. 16 of [Knut81] and as 11 is relatively prime of 2*8, b=a-
1=25214903916 is a multiple of 2 and b is a multiple of 4, the period of the LCG is

m=2%8>104. This period is largely sufficient to generate our random permutations.

The spectral test results from [Enta98] are shown in Table 5.1. According to

[Knut81], the RNG passes the spectral test for dimensions 2 to 8 as i, > 0.1. According to

- 106 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

the author, all bad generators failed the spectral test which gives us a confidence in the

good quality of the chosen generator.

Table 5.1 Spectral test results for the BSD LCG

Spectral Dimension 2 3 4 5 6 7 8

Spectral Distance i 0.51 080 | 045 | 058 | 0.66 | 0.80 | 0.60

!
08
-
._‘__'_’ >
3 =
50.6 E -
a 4
I a
& ['
§0.4 § g .-
= I Experimental Results z |)
S X = . Experimental Results ——
02 Theoretical Results - - - oz 3 Theoretical Results - « «
0 0
0 E 4 . 12 14 16 0 2 4 6 3 10 12 14
th 1 chi square th chi square th
(a) 8" bit, consecutive generates (df=1) 1 (b) 87 bit, every 1024" generates (df=1)
0.9 0.9
» 08 0s
= >
5 07 =07
5 =
= <
g 06 -§ 0.6
g os o 05
2 S
% 04 Zo04
- Z .
S Experimental Results e = Experimental Results e
03f S 03
Theoretical Results - ~ - Theoretical Results « = «
0.2 02
0.1 0.1
o5 2 4 6 10 12 14 16 18 05 2 4 6 H 10 12 14 16 18
- th e off square - - | chi Square I -
(c) 16™ bit, consecutive generates (df=1) (d) 16" bit, every 1024 generates (df=1)

Fig. 5.1. rand48 random bit Xz test, theoretical and experimental results.

- 107 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

! I
0.9 0.9
08 08
= o
=07 Zo07
206 206
=% =%
» 035 0 0.5
04 04
v 2
503 Experimental Results —— 503 Experimental Resutts ——
02 Theoretical Results - - « 02 Theoretical Results « « -
0.1 0.1
0 0
0 s 10 15 20 25 0 2 E] 3 s 10 12 14 16 18 20
chi square chi square
(a) mod 3, consecutive generates (df=2) (b) mod 3, every 1024 generates (df=2)
. 2 . .
Fig. 5.2. rand48 mod 3 %~ test, theoretical and experimental results.
] |
/
0.8 08 H
> > H
=07 = ;
3 = N
Hoe S06 .
c S :
s g ;
5 g :
=04 Z04 ' Experimental Results ——
& b N
%0_3 Experimental Results — g ! Theoretical Results - - «
0.2 Theoretical Results - - - 02 ,"
;
ol j
0
300 350 200 450 500 550 w0 S w0 S &o 700 800 500 1000 1100 1200
chi square ch}x square
(b) every 1024" generates (df=448)

(a) consecutive generates (df=448)

Fig. 5.3. rand48 3LSB 3-tuples Xz test, theoretical and experimental results.

- 108 -

Valid. Syst. for Printed Docs

Ch. 5: Exp. Results & Discussion

09 0.9
08 08
Zos Zo7
:’% 0.6 _E 0.6
5 o5 505
E 5
;_ 0.4 ;U“od
% 03 Experimental Results — 503 Experimental Results
02 Theoretical Results - - - 02 Theoretical Results « « -
01 01
0l 0 200 220 240 260 280 300 320 340 ?SO 200 220 240 260 280 300 320 340 360
chi square chi square

(a) 256 numbers, consecutive generates (df=255)

(b) 256 numbers, every 1024 generates (df=255)

i
0.9 0.9
= 0.8 > 08
Z o7 B 07
= 2
S 06 © 06
(=% (=%
2 0s 2os
g]
S 04 g 04
5 03 . S 03
Experimental Resulls —— Experimental Results —
0.2 . 0.2
Theoretical Results - - - Theoretical Results « « -
0.1 0.1
0
64000 §4500 65000 65500 66000 66500 000 64000 Ea300 C3000 65500 66000 66500 67000 67500 6800
chi square " chlhsquare
(c) 65536 numbers, consecutive generates (df=65535) (d) 16" bit, every 1024 generates (df=65535)
Fig. 5.4. rand48 equidistribution y~ test, theoretical and experimental results.
] 1
0.9 0.9
0.8 0.8
Zo7 Zo7
= B
S 06 5]
.§] 0.6
s 2
o 03 Sos
& &
éOA ;ca_o_4
5 03 Experimental Results —— 503 Experimental Results w—
02 Theoretical Results - - - 0.2 Theoretical Results - - -
0.1 0.1
9
63500 64000 64500 65000 65500 66000 66500 67000 000 64500 65000 65500 66000 66500 67000
chi square chi square

(a) consecutive generates (df=65535)

(b) every 1024 generates (df=65535)

Fig. 5.5. rand48 8LSB pairs xz test, theoretical and experimental results.

109

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

The BSD generator also passes all the empirical Xz test (as shown in Fig. 5.1. to
Fig. 5.5.) except the 3 lower bits 3-tuples test when each sample are separated by 1023
generated numbers. For this test, Xz =961, k=449. This happens with a probability less

than 107, The generator fails the test for the following reasons:
Corollary 5.1:
if
X, 41 = (@X, +bymod(m) (5.3)

and p/m and if

XP) = X mod(p) (5.4)
then
X®) = (aXP) + bymod(p) (5.5)

Proof:

from Eq. (5.3)

D, G =aXn+b+k]m=aXn+b+k1up (5.6)

from Eq. (5.4)

X = Xyt kyp

=aX, +b+kup+iyp (5.7)
= aXr(IP)+b—k3p+k1up+k2p

- 110 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

Hence Eq. (5.5) is true. O

In the case of the BSD generator:

X2 = (aX@)+bymod2® 1<e<48 (5.8)

For example, if e=1, the least significant bit has period 2 or less. In the same
manner, the first two bits have period 4 or less and the 16™ bit has period 210 or less. The
test then fails because it takes the 16”’, 17th, and 18" bit of numbers that are 2'° apart so
the least significant bit of the new set of numbers has period 2'6/219=20=64 or less, the
second 128 or less and the third 256 or less. Furthermore, the test is performed in a 3

dimensional space which increases the clustering of the points.

To avoid such a behavior, the implementation of the random interleaver picks its

numbers from the most significant bits of the generated numbers.

Corollary 5.2: The n bit of the BSD generator has period exactly 2™.

Proof:

(X)) has period 2% and all bits lower than the 48" have period 2*7 or less so the
48™ has a period of exactly 248, Furthermore, from Theorem 5.1, we know that
X2 = (aX®) + bymod(2") As well 2 does not divide a and a-1 is divisible by 4.
Hence, (X,gzk)) has period 2* and from the same reasoning as for the 48™ bit, the k™™ bit

has period exactly 2%. [

- 111 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

The maximum number needed by the interleaver is 2'° so only the 16 MSB are
needed. The lowest extracted bit has a period of 23%and our application only needs a

maximum of 2'® numbers. The period is thus large enough.

5.1.2 Pseudo DES RNG

The pseudo. DES (pDES) RNG is described and implemented in [PTVF92]. The
RNG is tested using the mod3, equidistribution of the 8 MSB, MSB, pairs of 8 MSB,
equidistribution of the 16 MSB, triplets of 3 MSB tests, all of which are performed with

and without gap of 2'0.

The x2 CDF is generated using the algorithm from [HiPi85]. 10,000 numbers are
generated to calculate each Xz value and calculate its probability. 1,000 XZ values are
calculated. The resulting Xz probability distribution is plotted along with the theoretical

CDF. Results are shown in Fig. 5.6. to Fig. 5.10.. The pDES passes all the x2 tests.

5.2 Code Under AWGN

Several experiments are performed on the code to test for the best RS block size,
convolutional code constraint length, and interleaver type and size. The experiments are
also aimed at verifying assertions regarding the design choices of the code such as CSOC
performance, optimum interleaver size and type, and RS optimum size. The overall

concatenated code performance evaluation is broken down by the evaluation of the CSOC

- 112 -

Valid. Syst. for Printed Docs

Ch. 5: Exp. Resulis & Discussion

1

28

%

9.6

o

2 Experimental Results
_?4 , Theoretical Results. ..
0.2

S CHNER - SO 1V By I/ v sy ooy o'
chi square

(a) 8" bit, consecutive generates (df=1)

2
E
=
g Experimental Results —
o
ER Theoretical Results. . .
g o4y
5 |

02h

o
< 2 8 T 13 T3 16

6
chi square

2 4
(b) 8" bit, every 1024 generates (df=1)

}\0,8
z EY
2 =
5 3
o6 . 3 .
2 Experimental Results — g Experimental Results -
z ° .
T o4 Theoretical Results. . . é Theoretical Results. . .
§ z
3
0.2 oak
ol
° 0
0 2 N 6 10 12 12 i6 5 + 5 7 e o

h chiséuare
(c) 16 bit, consecutive generates (df=1)

N 10
chi square

(d) 16" bit, every 1024 generates (df=1)

Fig. 5.6. pDES random bit xz test, theoretical and experimental results.

1
0.9 0.9
208 5. 038
Bor 3 07
3 £
206 2 06
Q. a.
=4 ©
E 0.5 z 0.5
3 &)
; 04 Experimental Results me @ 04 Experimental Results e
Bos3 S 03 .
Theoretical Results - - - Theoretical Results « « «
0.2 0.2
0.1 0.1
0 0
4] 5 20 25 0 2 4 14 16 18 20

l0chi square 3
(2) mod 3, consecutive generates (df=2)

8 . 10 12
chi square

(b) mod 3, every 1024 generates (df=2)

Fig. 5.7. pDES mod 3 xz test, theoretical and experimental results.

113 -

Valid. Syst. for Printed Docs

Ch. 5: Exp. Results & Discussion

chi square probability

a9
08
07

0.6

Lxperimental Results we—e
Theoretical Results « - «

0

0
160 180 200 220 240 260 280 300 320 340 3

chi square
(a) 256 numbers, consecutive generates (df=255)

()

chi square probability

N3

07

Experimental Results e

Theoretical Results « -

t}
FRO

(b) 256 numbers, every 1024 generates (df=255)

200 220 240 260

chi square

280 300 320 34

09 0.9
> 0.8 5 08
:—5* 0.7 '_,5_: 0.7
s]
3 06 < 06
=% a
205 205
c =4
& o4 g 04
% 03 Experimental Results —— T:) 03 Experimental Results w—
02 Theoretical Results - - » os Theoretical Results « - -
0.1 0.1
0
63500 64000 64500 63000 65500 66000 66500 67000 7500 63000 64500 65000 65500 66000 66500 67
chi square clnhsquare
(c) 65536 numbers, consecutive generates (df=65535) (d) 16™ bit, every 1024" generates (df=65535)
Fig. 5.8. pDES equidistribution y~ test, theoretical and experimental results.
! 1
0.9 0.9
038 08
Zo7 Zo7
=) B
Soe6 806
2 2
505 505
g 0.4 g 0.4
g Experimental Results ——— E Experimenial Results ——
503 . 503
Theoretical Results - - - Theoretical Results - - -
0.2 02
0.1 0.1
0
300 350 400 450 500 550 600 300 350 400 _ 430 500 550 600
chi square chi square

(2) consecutive generates (df=448)

(b) every 1024™ generates (df=448)

Fig. 5.9. pDES 3LSB 3-tuples XZ test, theoretical and experimental results.

- 114 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

1
09 09
08 08
> >
=07 =07
3 >
206 206
e]
© 05 So0s
Z04 204 Experimental Results —
‘? Experimental Results —— fc
503 503 Theoretical Results. - -
Theoretical Resuits- - -
02 0.2
01 01
0 0
64000 64500 65000 63500 66000 66500 67000 64000 64500 65000 65500 66000 66500 67000
chi square chi square
(a) consecutive generates (df=65535) (b) every 1024 generates (df=65535)

Fig. 5.10. pDES 8LSB pairs x2 test, theoretical and experimental results.
performance with different constraint length, then the experimentation of RS codes with
different block sizes and close rates; finally, the concatenated code is tested with no

interleaver, random interleaver, block interleaver, and symbol block interleaver.

5.2.1 Non Coded Transmission

The following result is the simulation of bit transfer under AWGN using bipolar
binary modulation. The AWGN is generated using the ran4 RNG and the Box-Muller

algorithm. The theoretical error performance under such conditions is given by [Hayk94]

BER = Lerse [Ft

where E, is the energy per bit, N,/2 is the power spectral density of the Gaussian noise,
and erfc is the complementary error function given by

[ve)

erfe(u) = %fexp(—zz)dz
T

u

- 115 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

The error function is generated using the Linux function provided with the
mathematical library. Both theoretical results and simulation results are plotted in Fig.
5.11.. It can be observed that there is a close match between the two so the noise and

signaling simulations are properly implemented.

-0.5
- - Theoretical results
| — Simulation results
1.5+ S
E.B 2 \\\\
- \\
o~ N
R
Mos |
N\
a3t
-3.5 i
N
4 \ . ,
-4 -2 4 6 8

0 >
SNR (dB)

Fig. 5.11. Non-coded data transmission using bipolar binary modulation theoretical and
simulation performance

5.2.2 Convolutional Code Performance

(2,1) CSOCs of different constraint lengths 2, 7, and 18 are tested. The graph
represents the BER against SNR. CSOCs are decoded using the majority decoding

algorithm. The results also include the non coded performance.

- 116 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

-0.5

(Z,Ig CSOCN=2 —
(2,1) CSOC N=7 e
gl (2,1) CSOC N=18 s |
Non Coded

BER (log)

» B 0 > 4 5 3
SNR (dB)
Fig. 5.12.(2,1) CSOC performance with constraint length 2, 7, and 18.

In Fig. 5.12., it can be observed that the longer constraint length codes have better
performance at higher SNR by a good margin, e.g. 1dB at BER of 1073 (and it increases)
but lower constraint length perform better at low SNR but not by much (approximately
0.2dB.) The crossover of performance happens at around 2dB. Furthermore, a decreasing
performance gain is achieved as the constraint length increases. So, for high SNR, it is not
necessary to take the largest constraint length code but an optimal length code can be
found after which no significant gain is added. The monotony condition necessary for the
inner code design is verified by the CSOC (no waterfall performance curve). A BER of
107 is obtained at around or more than 1 to 2dB which gives us the operating point of the

concatenated scheme according to the code design section. In [CaCl81], the author

- 117 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

observed through simulation that 8-level quantized threshold decoding gives an
improvement of 1.7dB over majority decoding. The authors also state that feedback
decoding increases the performance of approximately 0.6dB in both soft and hard decision
decoding. For the concatenated code, all constraint length CSOC perform approximately
the same in the operating point region. Of course if a higher SNR can be achieved, the
higher constraint length code should be used. However, it should also be considered that a
small extra bandwidth expansion of the length of the constraint length 1s produced by
convolutional codes. Furthermore, the gain diminishes as the constraint length increases

so 18 looks like a good compromise between decoder complexity and code performance.

0 .
RS(7,3) -
»1 — RS(15,7) —
] — RS(31,13) ——]
RS(63,27) e
ol No code —— |
/'_3]
o
2
E-4 | RS(31,13)
52
m
51
61
. RS(63,27
-8

4) 0 2 4 6 8
SNR (dB)

Fig. 5.13. RS performance for RS(7,3), RS(15,7), RS(31,13), and RS(63,27).

- 118 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

5.2.3 RS Performance

The RS codes are characterized by their symbol size and their designed distance
(equivalent to their error correcting power as they are MDS codes). The simulation is
performed on codes with similar rates: RS(7,3), RS(15,7), RS(31,13), and RS(63,27) with
respective rates of 0.428, 0.467, 0.419, and 0.428. The first and last code have identical
rates. This experiment is performed to get and idea on which block size should be used for
better performance. As seen in Fig. 5.13., similar results apply to the block length of RS
codes and constraint length of convolutional codes: at low SNR, lower length codes
perform slightly better than Jonger length codes. However, all codes performance is close
to the performance without code which makes the use of codes highly inefficient in such a
case; the cross over of all code performance is around 1dB and afterwards, longer size
codes perform significantly better. It can also be noted that the performance gain for
higher block sized codes does not seem to decrease like the performance of convolutional

codes with higher constraint length.

Those results are validated using an upper bound on performance. A decoding
error occurs whenever t+1 or more symbols are in error. The probability of decoding error
is

n

> (Mpst-po"

i=1+1
where pg is the probability of symbol error and 1-pg is the probability of correct symbol.

The equation illustrate the choice of i positions in n with each chosen i symbols having a

- 119 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

probability of error pg and each n-i remaining bits having a probability 1-pg of being
correct. When a codeword is incorrectly decoded, it leaves at most i+t symbol errors (i are
the symbols already in error considering they are all in the information part of the
codeword and t is the maximum number of errors that can be introduced when decoding
the codeword). The probability of a symbol being in error when a codeword is in error is
then ir—[Considering as an upper bound that all bits in a symbol are in error when a

14

symbol is in error the probability of error bit is then bounded by

RS : .
Py < Z ()pfg(l ~ps)" (5.9)

i=r+1
On the binary symmetric channel, the probability of symbol error is one minus the
probability of correct symbol. A symbol is correct if all its bits are correct. If the

()

probability of bit error in the channel is Py~ and all bits are probabilistically independent

a symbol is in error with a probability of
ps = 1-(1-p)" (5.10)

Using Eq. (5.9) and Eq. (5.10) we finally get

EEEE M- a-pyYapy (5.11)

=+

- 120 -

Valid. Syst. for Printed Docs

Ch. 5: Exp. Results & Discussion

BER (log)

“10 L

-12

RS(7,3) upper bound]

RS(63,27) simulation RS(63,27) upper bound |

RS(7,3) simulation

4

2

0 2 1 6 8
SNR (dB)

Fig. 5.14. Theoretical bound and simulated RS(63,27) and RS(7,3) performance.

Fig. 5.14. compares the theoretical upper bound and the simulated results. The

simulated curve is always under the theoretical which is a validation of our simulation and

of the correctness of the error correction power of the code. Even if the bound is not a

close bound, it still helps evaluate performance of codes at high SNR (where it is too

computationally expensive to simulate) and to compare RS codes between each other.

The overall performance of the code can be estimated by assessing the

performance of the convolutional code and tabulating it against the RS code. If the SNR is

at 2dB, the convolutional code leaves a BER of 1072 Considering that the interleaver in

between the two codes recreates an independent noise, the BER of 1072 is equivalent to a

- 121 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

<
<

Expected Performance — Expected Performance —
y Simulation Performance —— | Simulation Performance ——
g:z ’,;02
53 3
= m
-4 -4
-3 -5
I B | Sy B A S S
(a) (b) SNR (dB)
0
M - 0
sExpecied Performinee — EXpecied Performince
-1 - | Simulation Performance —
—~ =
Ch Ea
o o ~
™ ex3
5]
=@ m
-4 4
-5 5
-4 -2 0 2 4 6 8§ -6
-4 -2 0 2 4 6 8
SNR (dB
(c) (dB) (d) SNR (dB)

Fig. 5.15. Concatenated codes simulated performance compared to expected performance
with (2,1), N=18 CSOC, and (a) RS(7,3), (b) RS(15,7), (c) RS(31,13), and (d) RS(63,27).

SNR of 4.5dB according to Fig. 5.11.. The overall code performance at 2dB should then

be around the RS performance at 4.5dB.

- 122 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

0 : 0
No interleaver No interleaver
-1 -1
8x8 Interleaver 8x8 Interleaver
%) =0
k) U 16x16 Interleaver o= !
z 32x32 Interleaver = 32x32 Interleaver 16x16 Interleaver
531 a0) " - 3
E 40x40 Interleaver 24x24 Interleaver (c*!f__; > 40x40 Interleaver. 24x24 Interleaver
-4f 48x48 Interleaver 4} 48x48 Interleaver
_ 36x36 Interleaver 56x36 Interleaver:
-9 Ax6d . -5
64x64 Interleaver 64x64 Interleaver:
-6 -6
-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8
SNR (dB))) SNR (dB
(a) RS(7,3) (b) RS(15,7) (@B)
0 0
No interleaver No interleaver
-1 / -1 /
8x8 Interleaver 8x8 Interleaver
air2 ’é:}Q
) . L ‘ /
Z’ 32x32 Interleaver 16x16 Interleaver E . 32x32 Interleaver 16x16 Interleaver
<3 3
Lm“ 40x40 Interleaver: 24x24 Interleaver [clﬁ) 40x40 Interleaver. 24x24 Interleaver
-4 48x48 Interleaver -4 48x48 Interleaver
. 56x56 Interleaver: 5 56x56 Interleaver:
_D -
64x64 Interleaver—F> 64x64 Interleaver.
66—) 0 2 4 6 8 R -2 0 2 4 6 d 8
SNR (dB
(c) RS(31,13) SNR (dB) (d) RS(63,27) (dB)

Fig. 5.16. Concatenated codes performance for various block interleavers with (2,1),N=18
CSOC, and (a) RS(7,3), (b) RS(15,7), () RS(31,13), and (d) RS(63,27).

5.2.4 Interleaver Type and Performance

5.2.4.1 Code Performance with and without Interleaver

The concatenated code performance is assessed without inside interleaver and with
block interleaver of size 8x8, 16x16, 24x24, 32x32, 40x40, 48x48, 56x56, and 64x64 (see
Fig. 5.16.). The code performs better with an interleaver.As the convolutional code leaves
burst noise at the end of its decoder, the interleaver helps break those bursts in several RS
blocks and thus enhances the performance of the overall code. The interleaver transforms

the burst noise at the output of the convolutional code into random noise so the

- 123 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

performance of the code should tend to the estimated performance using the method
described at the end of Section 5.2.3. There is a maximum length of the interleaver after
which no additional gain is performed. Figure 5.15 shows a comparison of the expected
performance and the performance with a 64x64 interleaver. The simulated code performs
better within a few point of a dB for all RS codes except for the (63,27) code. However,
the RS(63,27) performance is the only one to still increase with the interleaver of size
04x64 so the expected performance can be reached or outperformed for larger interleaver
sizes. This section justified the use of the interleaver between the RS code and the
convolutional code. It also showed that the goal performance is reached or outperformed
as the interleaver size grows. The next section compares the concatenatea code

performance with block and random interleaver.

5.2.4.2 Random Interleaver vs. Block Interleaver Performance

Random interleavers and block interleavers working on the same number of bits
are compared (e.g., an 8x8 block interleaver is compared with a 64 random interleaver).
The random interleaver is based on the rand48 RNG which as we saw in Section 5.1.1 has
a period long enough for the numbers generated to be independent. The theory in Section
2.6 1s once more verified by experimentation: the random interleaver performs worse or
equivalently to the block interleaver at equivalent sizes (see F 1g. 5.17.). Random
interleaver which are twice the size of block interleavers are needed for equivalent

performance (see Fig. 5.18.).

- 124 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

8x8 block interleaver — 16x16 block interleaver
64 bit random interleaver m 236 random bit interleaver
-1 -1
—’%}2 51;2
553 &3
o0 fae)
-4 -4
-5 -5
R R A e T e S e sy
SNR (dB) SNR (dB)
0 24x24 block interleaver — 0 32532 block interleaver —
576 random bit interleaver 1024 random bit interleaver —
-1 -1
o2 T2
< L
23 3
m m
-4 4
.5 -5
B R 3 7 6 § O 3 5
SNR (dB) SNR (dB)

40x40 block interleaver — 48x48 block interleaver me

0
1 1600 random bit interleaver mm 2304 random bit interleaver

- -1

3 5

cﬁ_3 ; -

W -3
e o

-4 -4

-5 -5
6 %) 0) 7 6 g 0 =)] % i 3
0 SNR (dB) 0 SNR (dB)
56x56 block interleaver . 64x64 block interleaver
: 3136 random bit interleaver — . 4096 random bit interleaver —
g 5
=3 =3
m m
-4 -4
-5 -5
S) 1 6 O) 5
SNR (dB) SNR (dB)

Fig. 5.17. Random interleaver vs. block interleaver.

- 125 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

16x15 block interfeaver —
512 random bit interleaver ——

BER (log)
&

4) 0 2
SNR (dB)

Fig. 5.18. Concatenated code with a double size random interleaver (512 bits) vs. 16x16
block interleaver.

The use of block interleavers is then better than random interleavers for the
specific burst noise characteristic at the output of the convolutional decoder. The next
section compares the performance of the concatenated code with bit block interleaver and

symbol block interleaver.

- 126 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

<
o]

4x4 symbol interleaver 8x8 symbol interleaver
8x8 bit interleaver — 16x16 bit interleaver —

1 1 BEIR (log) 1
Ln £ (%) [] —
., BER(log)
(W] BN (V3 1897 ot

]) 0 bl 4 6 3 -4 -2 0 2 4 6 8
SNR (dB) SNR (dB)
0 12x12 symbol interleaver 0 16x16 symbol interleaver
24x24 bit interleaver — 32x32 bit interleaver —
-1 : -1
Tir2 w2
2 <
&3 &3
m o
-4 -4
-3 -5
S i 3
0 SNR (dB) 0 SNR (dB)
20x20 symbol interleaver — 24x24 symbol interleaver
: 40x40 bit interleaver 48x48 bit interleaver —.
- -1
- 5
.%32 ggz
=
m o)
-4 -4
-5 -5
e 6 34—
0 SNR (dB) 0 SNR (dB)
28x28 symbol interleaver 32x32 symbol interleaver —

56x56 bit interleaver m. 64x64 bit interleaver

' 1 BE-R (log)]
L -+~ (98 [\ [
3 1 BEIR (log) '
¥ P (2] b —

b b i ¥ 6 -6
SNR (dB)

Fig. 5.19. Symbol interleaver vs. block interleaver for RS(15,7), N=18.

i 7 0) T 5
SNR (dB)

- 127 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

5.2.4.3 Bit Block Interleaver vs. Symbol Block Interleaver

Intuitively, the bit block interleaver is not optimum for the RS code decoder that
follows it: if a burst of bits of the size of the RS symbol are in error, the bit block
interleaver spreads the bits on several symbols which can produce a decoding error if the
affected symbols number is higher than the error correcting capability of the code. The
goal 1s then to use an interleaver that works on the RS symbols instead of single bits. The
experiment is performed on interleaver working on the same number of bits. For example,
a 24x24 bit block interleaver (which processes 576 bit at a time) is compared with a 12x12
symbol block interleaver with symbols of 4 bit (which processes 12x12x4=576 bit at a
time). The results using different interleaver sizes with RS(15,7) and CSOC with N=18 is
shown in Fig. 5.19.. It can be observed that the symbol interleaver always outperforms the
bit interleaver even at large interleaver sizes. The use of symbol interleavers is then

recommended over bit interleavers.

5.2.5 CSOC and RS choice

Figure 5.20 illustrates the performance of the concatenated code with RS(7,3), bit
interleaver of different sizes, and CSOC of constraint length N=7 and N=18. The lower
constraint length CSOC outperforms the longer constraint length with small or no
interleaver as the decoding errors at the output of the longer constraint length CSOC are
more clustered in longer bursts hence the RS code makes a decoding error. As the

interleaver length increases, the code performs closer to the expected performance as the

- 128 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

<o
<

8x8 interleaver. N=18 __ 16x16 iqterleaver, N=18 —
4 8x8 interleaver. N=7=—| | 16x16 interleaver. N=7
g Eg
&3 £3
m o
4 -4
-3 -5
B e e) 3 i 6 g O % 2 q 6 8
SNR (dB) SNR (dB)
0 0 -
24x24 interleaver, N=18 33§3§;qterlelaver= NN=1§ —
-1 24x24 interleaver, N=7 w0 { -1 X352 interleaver, N=/—
o2)
2 L2
&3 o3
m m
-4 -4
-5 -5
I e 5 i 5 S A | 3 1 3
0 SNR (dB) SNR (dB)
40x40 interleaver, N=18 — 48x48 interleaver, N=18 .
-1 40x40 interleaver, N=7 em { -] 48x48 interleaver, N=7 —
Cd__?, Z_:;
&8}
&0 &
-4 -4
-5 -5
% 3 4 6 g O g %
0 SNR (dB) 0 SNR (dB)
56x56 interleaver, N=18 —— 64x64 interleaver, N=18
-1 56x56 interleaver, N=7— { -1 64x64 interleaver, N=7 .
EL;-Z -3932
-3 3
m m
-4 -4
-5 -5
O 5 I S S %
SNR (dB) SNR (dB)

Fig. 5.20. Concatenated code performance with RS(15,7), N=7 and N=18.

- 129 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

output noise of the convolutional code decoder is closer to random. From Fig. 5.12., the
cross over performance between the two CSOC codes happens at 2dB; as the interleaver
size increases, the cross over point becomes 2dB which illustrates the fact that the code
performance approximates better and better the expected performance of the code. The
CSOC code should then be chosen according to the expected functioning SNR point of the
communica.tion system: 1f the SNR 1is less than 2dB, N=7 is a better choice but if the SNR

1s greater or equal to 2dB, N=18 outperforms largely the other code.

The choice of the RS code does not make a difference for middle SNR less than
0.5dB. If the SNR at the output of the convolutional decoder and the interleaver is
considered random, it is equivalent to a BER of 10" and for the concatenated code with
N=2 it is a SNR less than -1.36dB, for N=7, -0.96dB, and for N=18, -0.45dB. For any
SNR larger than the previous values, the bigger the RS block size, the better the
performance. As an example, for a SNR of 2dB and CSOC N=18, the concatenated code
with RS(7,3) has 2 BER of 10?7 where the code with RS(31,13) has a BER of 10043, At
2dB, the performance is multiplied by more than ten each time one bit is added to the

symbol size.

- 130 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

0 0 concatenated m=4,t=4 N= 14_
-1 concatenated m=3,t=2,N=18, -1 int=16x16,int symb=
iNt=16x16,int symb=3 = RS m=4,t=6 —

2f~ RS m=3,t=3 —{ -2 ~

of on
3tE 3rE
A 41

m a8
-5 -5
-6 -6
S A 0 5 4 6 5 4 3 2 o1 0 1 23

() SNR (dB) (b) SNR (dB)

0
-1
2

g
312
-4 = concatenated m=5,t=0, N=18

% int=14x 14, int symb=5""
-5 5 =

RS m=5,t=11 — = Concatenated Co?ﬁ tl?s x% tl;g gylﬁnb] 86_

-6 5 RS m=6,t=23 —

-7 385 4 3 T 0 1 2
O A3 251 0 r@py 3O @ SNR (dB}

Fig. 5.21. (a) conc(m=3,t=2,N=18,I=16,mi=3) with RS(m=3,t=3), (b)
conc(m=4,t=4,N=18,I=16,mi=4) with RS(m=4,t=6), (c) conc(m=5,t=9,N=18 =1 4,mi=5)
with RS(m=5,t=11), and (d) conc(m=6,t=18,N=18,I=8,mi=6) with RS(m=6,t=23).

5.2.6 RS and Concatenated Code Comparison

The performance under gaussian noise of the concatenated code using N=18 and a
symbol interleaver is compared to the performance of the RS code alone. Codes with
comparable rates are chosen. The concatenated code has an output rate of (n-2t)/2n and the
RS code has an output rate of (n-2t')/n. The unknown is t', the number of errors correction

capability of the RS code. Solving for ' we get:

- 131 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

n+ 2t

1=
4

(5.12)

The codes compared are: conc(m=3,t=2,N=18,I=16,mi=3) with RS(m=3,t=3),
conc(m=4,t=4,N=18,I=16,mi=4) with RS(m=4,t=6), conc(m=5,=9,N=18,I=14,mi=5)
with RS(m=5,t=11), and conc(m=6,t=18,N=18,I=8,mi=6) with RS(m=6,t=23) (see Fig.

5.21).

The concatenated code performs significantly better after 0dB and a little worse
below 0dB. However, the code is used at a point where the BER is much less than 107 so

the performance before 0dB is irrelevant.

5.2.7 Concatenated Code and RS Code Timing

To prove the fact that the concatenation of two codes while keeping the same rate
can increase performance and speed, both the RS alone and the concatenated code are
timed on the coding and decoding of a million bits with AWGN noise. The two codes are
selected to have similar rates as described in the previous section. The results are shown in
Table 5.2. The concatenated code is always faster at coding and decoding but really makes
a difference when decoding under heavy noise conditions: at 0dB, the RS code takes twice

as long as the concatenated code to decode the information.

- 132 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

Table 5.2. Timing comparison of RS and concatenated code under AWGN.

Coding Decoding
Code SNR Time (s) Time (s)
concm=>y, 5dB 14 42
t=7, N=18
RS m=5, 5dB 17 52
t=11
concm=5, 0 dB 14 61
t=7, N=18
RS m=5, 0dB 17 120
t=11

5.2.8 Summary

The experimentations allowed to define guidelines for the choice of the best code

parameters:

- The code performs best around 2dB;

- The RS code can be chosen according to the targeted BER: the bigger the
block length the better the performance;

- The CSOC has a crossover of performance around 2dB after which the higher
the constraint length the best the performance. However, the performance gain diminishes
with the longer constraint length;

- The best interleaver is the symbol block interleaver which outperforms the bit
block interleaver and the random interleaver;

- There exists a ceiling size for the interleaver after which no significant
additional gain is obtained; and

- The concatenated code outperforms significantly RS code alone at equivalent
rate in both noise protection and speed.

- 133 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

With this code parameters, performance of 107 can be achieved at 2dB with

simple decoder components.

5.3 Decoding Procedure Testing

This section goes through each step of the decoding process and selects the best
method to use at each step based on tests performed on live pattern data. The decoding
steps tested are: scanning resolution, line detection algorithm in conjunction with edge
operators, and demodulation algorithm. The actual decoding of the code is tested in a
separate section under noisy conditions. A series of example patterns is shown in Fig.

5.22..

5.3.1 Scanning Resolution of Rotated and Unrotated Pattern

Figure 5.23 shows the scanning in B&W and 8 bit grayscale of the pattern using
resolutions equal, double and quadruple of the initial printed resolution. The experiment is
performed for a printed pattern at 37.5 ppi (pixel per inch). The first conclusion is that the
original printing resolution does not matter as long as the required printing quality can be
achieved. The real factor is the ratio between the printing and the scanning resolutions.
Second it can be noted that for equivalent results, the B&W image has to have at least

twice the resolution of the grayscale image. A slight misalignment in the scanned image

- 134 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

Fig. 5.22. Example of patterns: (a) RS(3,1) Conv(18); (b) RS(3,1) Conv(7); (c) RS(6,5)
Conv(2); and (d) RS(4,3) Conv(18).

implies the complete loss of bits in the binary image whereas the grayscale image
gives lighter or darker pixels but the original pattern pixel is still very distinguishable. The
equal ratio between printing and scanning is too prone to misalignment errors. However,
the double ratio is already a workable sample which agrees with [Palm95]: “As
expounded by Nyquist, the sampling theorem suggests that it might be possible to build
equipment that can successfully decode linear modulated symbols with a Beta (ratio
between printed and scanned resolution) approaching 1.0. In the real world scanning
situations, this is impractical, and most equipment employs a Beta of 2.0 or greater for

width modulated symbologies. 2D Matrix symbologies use even larger values of Beta.”

- 135 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

Fig. 5.23. Scanned patterns at different printing and scanning resolutions: (a) original
pattern printed at 37 ppi; (b) scanned pattern in B&W at 37 dpi; (c) gray level at 37 dpi;
(d) B&W at 75 dpi; (e) gray level at 75 dpi; (f) gray level at 100 dpi; and (g) gray level at
150dpi.

- 136 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

Figure 5.24 illustrates the rotation process applied to a pattern scanned rotated.
The transformation has to be performed on a gray scale image for best results. Once more

the Beta 2 seems to be a good rule of thumb.

(b)

Fig. 5.24. (a) Scanned rotated image and (b) image after transform.

5.3.2 Line Detection Tests

The two line detection algorithms considered in this thesis are the Radon and the
Hough transform. The Radon transform is more computationally expensive but gives
clearer peaks for the identified lines. The Radon transform cost is based on the size of the
original image and the size of the image to generate in the transform space. The Hough
transform can be as computationally expensive as the Radon transform but its
computational time depends not only on the same factors as the Radon transform but also
on the number of non zero pixels in the original image. This is a very important fact
because a lot of computation can be saved with a clever way of thresholding the original

image.

- 137 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

30 T : ¥

3]
W
T
1

Hough Time
x/2250 ———

20

time (s)
s

W
L

1l I " L

0 10000 20000 30000 40000 50000 60000 70000
Number of Pixels

(a)

40 . T r T . T

35t

Hough Transform Time
.038*sqrt(x)-3

30¢

25¢

20t

time (s)

15t

10 +

0 . . . N . .
0 200000 400000 600000 800000 le+06 1.2e+06 1.4e+06

Number obeutput Pixels

Fig. 5.25. Hough transform time (a) against number of pixels in the input file and (b)
number of pixels required in the output file.

- 138 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

The Hough transform is tested with an image containing a square of non zero
pixels of increasing dimension. The time to execute the transform is recorded and is
plotted against the number of pixels. The output of size of the transform is left relatively
large so the time taken by the transform is high enough to be relevant. The result is shown
in Fig. 5.25.. There is a linear relationship between the number of non zero pixels and the
time taken by the Hough transform. The goal is then to reduce as much as possible the
number of pixels in the input image while keeping the lines features. The Radon transform
time is the same as the Hough transform time for an image where all pixels are non zero.
The second graph illustrates the Hough time to transform an image with all non zero
pixels of fixed size but the transform image is of varying size. The time decreases with the
size of the output image on a square root profile. The rule is then to decrease the size of the

output image while still keeping enough dots to identify the line peaks.

From the first experiment, the goal is to reduce the number of pixels in the input
image while keeping the line features. Edge detection operators with thresholding can
perform this function. The goal was originally to test several edge detection operators and
compare them with one another. However, a Hough transform package developed by Pr.
John Gauch at the University of Kansas implemented the idea that I wanted to develop in
this thesis with a few interesting additions [KUIM99]. The package performs the

following steps:

1. Apply the first order Sobel gradient operator in the x and y direction and

calculate the norm of the calculated vector;

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

2. Threshold the resulting image (the threshold is a function parameter);

3. Apply the Hough transform to the thresholded Sobel image;

4. Use a 5x5 neighborhood operator to threshold the transformed image and

threshold the image (the threshold is a function parameter);

5. Apply an averaging operator to the thresholded Sobel image to thicken the

lines and fill in any gaps in the lines; and

6. For each pixel in the thresholded Hough transform image, follow the
associated line in the blurred Sobel image and record a pixel in the final image when the

line hits a series of n non zero pixels in a row (n is a function parameter).

In the Sobel image, edges are enhanced creating a number of non zero pixels
around the edge. The transformed edge is not a single point in Hough transformed space, it
1s an oval. The 5x5 neighborhood operator helps to isolate a local maximum that is not Jjust

a dot but a group of pixels.

Usually, the inverse Hough transform results in non localized lines that go through
one side of the image to the other. The localization of the lines on the image is performed
by blurring the Sobel image and by following the lines in the blurred image which
parameters are left in the thresholded Hough transform image. If a segment of non zero
pixel with a minimum length is found along the line then the segment 1s drawn in the final

image. The images for each step of the process are shown in Fig. 5.28..

- 140 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

Fig. 5.26. Hough transform of rotated pattern.

- 141 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

LW SN ek Y A b
= e R ek
‘:i‘f.‘:._._'.»_(._ W N

J e Nande]
CaT AL _';s?"‘

(2)

(e) ®
Fig. 5.27. Hough transform of translated pattern.

- 142 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

()

Fig. 5.28. KUIM line identification process: (a) original image, (b) after Sobel, (c) Hough
transform, (d) Hough thresholded, (¢) image from (b) after averaging, and (f) identified
lines.

Fig. 5.26. and Fig. 5.27. correspond to Hough transform of the rotated and
translated pattern respectively. The strong dots correspond to the pattern frame. The X

axis is the angle parameter of the line and the Y axis is the rho parameter of the line. A

- 143 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

rotation of the pattern means a change in the theta argument (translation in Hough space).
The frame dots are still grouped in two parallel pairs spaced 90 degrees in theta parameter.

Similarly, the translation leaves the characteristics of the frame dots the same.

It can be noted that specialized DSP processor, FPGA, or ASIC would diminish
the time of execution of the transforms specially if the transform is pipelined as described
in various papers [BrYo92][CHSA90][GoDr95][KeMa93]. It is advantageous to take the
Radon transform if the number of pixels in the final image cannot be reduced or if the

extra processing power can be performed in minimal time.

AT T T e

I
Xoft

Fig. 5.29. Misaligned pixel and scanning grid when scanning at twice the printing
resolution.

5.3.3 Demodulation Theory and Choice

A scanner is a series of photo sensors (usually CCDs) arranged in a square grid
that measures the intensity of the light reflected by the scanned material. From the

previous paragraph, the document is scanned at twice the resolution it is printed: there are

- 144 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

two scan dots for each printed pixel. The line detection procedure seen in the previous
section allows the pattern to be straightened (no more rotation). However it does not avoid
the pattern to be imperfectly aligned with the scanner grid. Figure 5.29 shows a scanned

pixel (dark dot) and the scanning grid. Each scanning pixel has been numbered.

The following equations give the percentage of the total pixel intensity that is

sensed by each scanner dot:

cl = (1=-XofN(1-Yoff)

c2 = (1-Yoff)

c3 = Xoff{1-"Yoff)

c4 = (1 -Xoff)

c5 =1

c6 = Xoff (5.13)
c7 = (1-Xoff)Yoff

c8 = Yoff

c9 = XoffYoff

Fig. 5.30. illustrates the real scanned pattern and the simulation of the scanning
physical process using Eq. (5.13). The simulated result is very close to the scanned result.
The only main difference is due to imperfections in the paper, the printed pixels and the
eventual non uniformity of the scanning cells and grid. However, the result is satisfying so

the model can be used for a back processing algorithm during demodulation.

- 145 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

Fig. 5.30. (a) Scanned pattern and (b) simulated scanning pattern.

Al. The algorithm can scan the first contour of the pattern and as it is a complete

black pixel contour and the outside of the contour are all white pixels, the X
offset and Y offset can be determined by the intensity of the pixels on the
outside of the contour. Once the X and Y offsets have been determined, the
pattern is demodulated from top down and left to right. The intensity of the top
pixel in ¢7 and ¢9 is subtracted to the intensity of dot ¢1 and ¢2 of the pixel
being demodulated; the intensity of dot ¢3 and c6 of the left pixel are
subtracted to the intensity of dot c1 and c4 of the pixel being demodulated;
and the intensity of dot c¢9 of the top left pixel is subtracted to the intensity of
dot ¢ of the pixel being demodulated. The remaining intensities f dot cl, c2,
c4, and c5 of the pixel being demodulated are respectively divided by the

coefficients associated to each pixel and a majority vote is performed between

- 146 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

the four. If a tie occurs, a majority vote of ¢2, ¢4 and c¢5 is performed. This
algorithm requires the exact identification of which line in the decoded pattern
1s line ¢5 otherwise, the wrong coefficients are applied to the wrong scanned
dots and this can lead to erroneous demodulation. This algorithm when
applied properly is the best demodulation algorithm as it is an exact inverse

transform of the scanning process.

Fig. 5.31. Demodulation grid over the scanned pattern.

AZ2. Another simplified algorithm that does not depend on the proper identification
of ¢5 is to take four decoded dots arranged in a square, take the average of the
four intensities and threshold it with a mid point (Fig. 5.31. shows the

demodulation grid over the scanned pattern zoomed on the top left cormner).

- 147 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

The pixel ¢5 is always part of the four dots selected and drives the average of
the four pixel under or over the threshold as it always has the intensity of the

original pixel.

A3. An even simpler algorithm is to take four dots in a square and identify which
of the four is the closest to a 0 intensity or a 1 intensity (this process seeks c5)

and decode the pixel to the intensity of that pixel.

The second algorithm (A2) is the one implemented in this thesis.

5.4 Error Altered Pattern Testing

5.4.1 Gaussian Noise Testing

The noise is generated over the scanned image. This kind of noise simulates bad
printing quality and poor paper quality (the printed dots in the pattern smear creating a
random looking noise in the scanned pattern) as well as the crumbling of the paper
throughout its life. Fig. 5.32. illustrates the KUIM Hough transform performance under
noise. The Hough transform performs very well still clearly highlighting the lines around
the pattern. The algorithm fails to recognize the lines at around 1dB. The performance of
the pattern is linked to the analysis of the codes carried earlier in this chapter and will not
be performed again. However, the previous decoding step techniques are correctly chosen

as they still perform their task under white Gaussian noise.

148 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

(b)

Fig. 5.32. (a) original image, (b) identified lines, and (c¢) associated Hough transform.

- 149 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

Fig. 5.32. (a) original image, (b) identified lines, and (c) associated Hough transform.

- 150 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

5.4.2 Burst Noise

The pattern is tested under burst noise, The pattern is erased and scanned and
demodulated. Examples of the scanned patterns after demodulation are shown in Fig.

5.33. (note all those patterns decode properly).

Fig. 5.33. Demodulated patterns after burst noise is applied (a) m=5, t=15, (b) m=6, t=7,
‘and m=6, t=20.

The resulting decoding process is visually illustrated in Fig. 5.35.

- 151 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

"’J]lf:\. 1(-

';-M, Rk
'3”*5.-& ;?

ey "i'
; _,.-_J._

Fig. 5.34. Difference between the decoded patterns with and without noise, (a) for the
pattern, (b) after random deinterleaver, (c) after the convolutional decoder, and (d) after
the symbol interleaver.

- 152 -

Valid. Syst. for Printed Docs

Ch. 5: Exp. Results & Discussion

EE]

PR

Lt

i

3338 aRRETTELE:

FE TN E

TEETEETIEESE

PP PGP PP R P AL B

Fig. 5.35. Decoding process of m=5,t=15 (see previous figure), (a) after random
deinterleaver, (b) after the convolutional decoder, and (c) after the symbol interleaver.

The result after the RS decoder is not shown in this figure as it is not a pattemn

anymore, it 1s a text file. The next figure (Fig. 5.34.) shows the subtraction between the

decoded patterns without noise and the decoded patterns with noise.

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

The random interleaver at the beginning of the decoding process does randomize
the burst noise as said in the pattern design section. However, after testing all patterns
under burst noise, the maximum size of the burst is around 15% of the pattern size. The
problem comes from the convolutional code that does not bring any decoding gain, it
actually gives a negative gain to the decoding process: the pattern after random
interleaving has 3,127 bits in error, after the convolutional decoder, it has 4,470! In t}.ll'S
case, the random interleaver and the convolutional code interfere with the good burst
decoding properties of the RS code. This remark started a series of testing with the RS

code alone as well as the RS with symbol interleaving.

Figure 5.36 shows examples of patterns that decode properly. Similarly to Section
5.2.6, RS code and concatenated codes of identical rates are compared for performance
under burst noise. The concatenated code with m=5, t=7 has a similar rate to the RS code
alone with m=5, t=11 as well as concatenated m=6, t=7 and RS m=6, t=19, and finally
concatenated m=6, t=20 and RS m=6, t=26. For all RS codes a symbol interleaver is used
and for RS m=6, t=27 a pattern without symbol interleaver is also tested. The results of the

biggest scratch on each pattem is illustrated in Fig. 5.34..

- 154 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

Table 5.3 Worst case scratch handled by equivalent rate concatenated and RS codes.

Code Type Scr;:/iixSize
conc m=5, t=7, N=18 15%
RS m=5, t=11 27%
conc m=6, t=7, N=18 16%
RS m=6,t=19 21%
conc m=6, t=20, N=18 15%
RS m=6, t=26 34%
RS m=6, t=26 no interleaver || 27%

Fig. 5.36. RS pattern with symbol interleaver (a) m=6, t=19, (b) m=5, t=11, (c) m=06, t=26,
and without interleaver (d) m=6, t=26.

From the experiment, in the worst case, the pattern decodes properly until more
than 21% of the pattern is scratched and the maximum of the tested patterns is 34% of the
pattern. The symbol interleaver helps as the pattern without the interleaver decodes up to
27% scratch when the one with interleaver decodes up to 34% scratch. Furthermore, the

shape of the scratch is very constrained as the RS lines are stacked up and the scratch

- 155 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

cannot go any further horizontally without giving a decoding error. The performance of
the RS code alone is much better than the performance of the concatenated code (uptoa
factor of more than 2 for the small set of patterns tested) and the performance of the RS
code with an interleaver is better than without an interleaver as it allows for bigger and

more isotropic scratches.

5.5 Summary

This chapter guided the selection of the elements used in the pattern design:

1. Selection of the random number generator for noise generation and for

random interleaving (rand48);

2. Choice of the optimal code parameters for optimal performance of the

concatenated code under AWGN:;

3. Testing of the decoding process and selection of the optimal parameters for

the decoder; and

4. Testing of the pattern under burst noise and selection of the best code for this

kind of noise.

Some of the main results are:

1. Bigger is better for the RS code symbol size, the convolutional code constraint

length, and the interleaver size;

- 156 -

Valid. Syst. for Printed Docs Ch. 5: Exp. Results & Discussion

2. symbol interleaver with symbols of the size of the RS symbol size perform

best;

3. the concatenated code performs much better than RS alone under AWGN; and

4. RS with interleaver performs much better than the concatenated code under

burst noise.

The choice between RS with interleaver and the concatenated code depends a lot
on the noise type expected during the document's life. For example, on a scratch ticket
where the pattern would be printed under the scratch material, it is recommended to use
the RS with interleaver code. But in a document that is printed on poor paper with poor ink
and that has less chances of being scratched or will suffer smaller scratches the designed

concatenated code is recommended.

- 157 -

Valid. Syst. for Printed Docs Ch. 6 : Concl. & Recommendations

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The validation system developed in this thesis is complementary to the classic
forgery prevention techniques as it prevents the creation of new documents and the
alteration of the current documents (integrity) but it does not protect against exact
duplication of a document. The duplication protection has to be provided by another
standard technique (see Section 1.2 for a description of standard printed document

security techniques.)

Three levels of security system have been proposed according to the life span and
the value of the document to be protected. Increased security comes at the cost of

increased bandwidth requirements between the key server and the validation stations.

A line locator algorithm using the gradient edge enhancement operator and the
Hough image transform allow for automatic location of the validation pattern. The

technique can locate the pattern with SNR as low as 2 dB.

The code used to protect the encrypted signature can perform a BER of 107%° at
an SNR of 2 dB. The best interleaver is the symbol interleaver, and the bigger code
components perform the best. However, there is a ceiling with little return for the

interleaver size and the convolutional code constraint length. The RS performance

- 158 -

Valid. Syst. for Printed Docs Ch. 6 : Concl. & Recommendations

increases linearly with block size. The concatenated code performs up to 2 dB better than
the RS code alone at similar code rate for a BER of 107" . Comparing the same codes for
decoding speed, the concatenated decoding can be up to twice as fast than the RS

decoding at 0 dB but only 20% faster at 5 dB.

However, the RS decodes with no error with burst error of up to 27% whereas the
concatenated code cannot go beyond 15% of erasure due to the poor performance of the
outer convolutional code which amplifies the burst noise. Adding a symbol interleaver
before the RS code, the performance increased to 34% and the noise applied can be more
isotropic. The symbol interleaver breaks the noise into several RS frames without

spreading noise between symbols.

The code must be chosen according to the expected noise characteristics: the
concatenated code performs best under random noise and the interleaved RS is better at

burst noise. However, they both have acceptable performance in the other noise type.

6.2 Contributions

This thesis made the following contributions:

* Design of a entire validation system from the creation of the pattern and its

validation, through the management of keys on the network;

* Analysis of the concatenated code with the selection of the optimal parameters

for the specific concatenated code;

- 159 -

Valid. Syst. for Printed Docs Ch. 6 : Concl. & Recommendations

» Design of a multi level security system based on the value of the document to

be validated;

» Modeling of the scanning transformation; and

» Analysis of two random number generators and the selection of the best of the

two.

6.3 Recommendations for Future Work

The concatenated code performance was only compared to the interleaved RS.
Other codes can be implemented in the pattern to compare performance under Gaussian
and burst noise. The performance of concatenated convolutional interleaved with RS code

using Turbo decoding should be investigated.

The Radon and Hough transforms have a high computational cost. As mentioned
in Section 5.3.2, the transforms can be parallelized and efficiently implemented on DSPs.
A hardware implementation should be performed as the current times for the transforms
using software only on a generic purpose processor are too high for our automatic

validation.

To reduce computation of the Hough transform, the pattern can be processed with
low pixelation first, cropped and processed at higher resolution. The large pixelation is a

low pass filter which increases the resilience of the location algorithm against noise.

- 160 -

Valid. Syst. for Printed Docs Ch. 6 : Concl. & Recommendations

The pattern printing and scanning were ideal (laser printing and flatbed scanning).
The pattern should be printed using a low resolution (75-100 dpi) inkjet printer and a
handheld scanner (using CCD technology) should be used to acquire the pattern. Those

condition would be much closer to real life application.

- 161 -

Valid. Syst. for Printed Docs References

[ABAs00]

[ACAI00]

[Benb99]

[Blah83]

[BrYo92]

[CaCl81]

[Cann&6]

REFERENCES

American Bankers Association, “Deposit account fraud survey report,”

2000, 80 pp.

American Collectors Association, Inc., “Credit and collections fact sheets:
Statistics on checks,” Oct. 2000. From http://www.collector.com/content/

press/factsheets/check.html (available as of June 2001).

A. Y. Benbasat, “A survey of current optical security techniques,” MIT
Media Lab. Boston, MA, Apr. 1999. From http://www.media.mit.edu/~ayb/

663 7report.pdf (available as of June 2001).

R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA:

Addison-Wesley, 1983, 500 pp.

M. Brady and W. Yong, “Fast parallel discrete approximation algorithms
for the Radon transform,” Proc. 4th Annual ACM Symp. on Parallel

Algorithms and Architectures, pp. 91-99, 1992.

J. B. Cain and G. C. Clark, Jr., Error-Correction Coding for Digital

Communications. New York, NY: Plenum Press, 1981, 422 pp.

J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698, Nov.

1986.

- 162 -

Valid. Syst. for Printed Docs References

[CHSA90]

[Deri87]

[Deri98]

[Enta98]

[FaDe99]

[GoDr95]

[GoWo092]

[Hayk94]

W. Current, P. Hurst, E. Shieh, and 1. Agi, “An evaluation of Radon
transform computations using DSP chips,” Machine Vision and

Applications, vol. 3, pp. 63-74, 1990.

R. Deriche, “Using Canny's criteria to derive a recursively implemented
optimal edge detector,” Int'l J. Computer Vision, vol. 1, no. 2, pp. 167-187,

1987.

R. Deriche, “Techniques d'Extraction de Contours,” INRIA Sophia-
Antipolis, Apr. 1998. From ftp://ftprobotvis.inria.fr/pub/html/Cours/

techniques_contours.ps.gz (in French) (available as of June 2001).

K. Entacher, “A collection of classical pseudorandom number generators
with linear structures - Advanced version,” June 2000, Ch. C. From http:/
crypto.mat.sbg.ac.at/results/karl/server/server.html (available as of June

2001).

J. L. Devore and N. R. Farnum, Applied Statistics for Engineers and

Scientists. Pacific Grove, CA: Duxbury Press, 1999, 577 pp.

W. A. Gotz and H. J. Druckmuller, “A fast digital Radon transform - An
efficient means for evaluating the Hough transform,” Pattern Recognition,

vol. 28, pp. 1985-1992, 1995.

R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading, MA:
Addison-Wesley, 1992, 716 pp.

S. Haykin, Communication Systems (3rd ed.). New York, NY: Wiley, 1994,

422 pp.

- 163 -

Valid. Syst. for Printed Docs References

[HiPi85]

[Imag00]

[KeMa93]

[Kins95]

[Knut81]

[KUIM99]

[LaLio6]

[Leon95]

I. Hill and M. Pike, “Remark on Algorithm 299,” ACM Transaction on

Mathematical Software, vol. 11, no. 2, p. 185, 1985.

“ImageMagick - Convert, edit, and compose images.” From http:/

www.imagemagick.org (available as of June 2001).

B. T. Kelley and V. K. Madisetti, “The fast discrete Radon transform -
Part I Theory,” IEEE Transactions on Image Processing, vol. 2, no. 4,

pp. 382-400, 1993.

W. Kinsner, Fractal and Chaos Engineering, 24.721 Course Notes,

University of Manitoba, 1995.

Donald E. Knuth, The Art of Computer Programming, vol. 2,
Seminumerical Algorithms (2nd ed.). Reading, MA: Addison-Wesley,

1973.

J. Gauch, “Kansas University Image Processing System (KUIM),” Kansas
University, 1999. From http://www ittc.ukans.edu/~jgauch/research/kuim/

html/ (available as of June 2001).

J. Lakhal and L. Litzer, “A parallelization of the Deriche filter: A
theoretical study and an implementation on the MasPar system,” Proc.

Int'l Conference on Parallel Computing and Distributed Processing

Techniques (PDPTA'96), p. 867, 1996.

C. W. Leong, A Concatenated Interleaved Reed-Solomon and
Convolutional = Self-Orthogonal Coding Scheme: A Forward Error

Correction System. B.Sc. Thesis, University of Manitoba, 1995.

- 164 -

Vahd. Syst. for Printed Docs References

[LiWe67]

[Mass63]

[Mand82]

[MaHi80]

[MiLe85]

[MOVa96]

[Palm95]

[PeJS92]

[PTVF92]

S. Lin and E. Weldon, “Long BCH codes are bad,” Information Control,
vol. 11, pp. 445-451, 1967.
J. L. Massey, Threshold Decoding. Cambridge, MA: MIT Press, 1963,

129 pp.

B. B. Mandelbrot, The Fractal Geometry of Nature. San Francisco, CA:

W. H. Freeman, 1982, 465 pp.

D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of Royal

Society of London, vol. 207, pp. 187-217, 1980.

A. M. Michelson and A. H. Levesque, Error-Control Techniques for
Digital Communication. New York, NY: Wiley, 1985, 463 pp.

A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. ~ CRC Press, 1996, 816 pp. From http:/

www.cacr.math.uwaterloo.ca/hac/ (available as of June 2001)

R. C. Palmer, The Bar Code Book, Reading, Printing, Specification, and
Application of Bar Code and Other Machine Readable Symbols (3rd ed.).

Peterborough, NH: Helmers Publishing, 1995, 836 pp.

H.-O. Peitgen, H. Jurgens, and D. Saupe, Chaos and Fractals: New

Frontiers of Science. New York, NY: Springer-Verlag, 1992, 984 pp.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: the Art of Scientific Computing. New York, NY:

Cambridge University Press, 1992, 735 pp.

- 165 -

Valid. Syst. for Printed Docs References

[Rene88]

[Reneds§]

[Schn96]

[Shan48]

[SLin70]

[Toft96]

R. L. van Renesse, “Paper based document security - A review,” Proc. Int'l

Carnahan Conference on Security Technology, pp. 75-80, 1988.

R. L. van Renesse (ed.), Optical Document Security (2nd ed.). Norwood,

MA: Artech House, Jan. 1998, 505 pp.

B. Schneier, dpplied Cryptography: Protocols, Algorithms, and Source

Code in C (2nd ed.). New York, NY: Wiley, Oct. 1995, 784 PD-

C. E. Shannon, “A mathematical theory of communications,” Bell Syst.

Tech. J., vol. 27, pp. 379-423, 623-656, 1948.

S. Lin, An Introduction to Error-Correcting Codes. Englewood Cliffs, NJ:

Prentice-Hall, 1971, 330 pp.

P. Toft, The Radon Transform, Theory and Implementation. Ph. D.
Dissertation, Technical University of Denmark, 1996. From http:/

eivind.imm.dtu.dk/staff/ptoft/ptoft papers.html (available as of June 2001)

- 166 -

Valid. Syst. for Printed Docs Appendix A : Source Code

APPENDIX A

SOURCE CODE

A.1 Debugger

// debugger.cc
#include “debugger.h”

int binaire(int nbr,ostream& output, int size)

{

for (unsigned int i=(l<<(size-1));i>0;i>>=1)
output << ((nbr&i)!=0);

A.2 Buffer

// buffer.h
#ifndef buffer h
#define _buffer h

#include <iostream.h>

class buffer

{

protected:

char *bufferbPtr;

char *writePtr;

char *readPtr;

char *wrapPtr;

int inMin, outMin;
char full;

char firstFill;

char eof;

long bytesRead;

unsigned charlastNbrBits;

public:
buffer(int size,int inMinimum=-1,int outMinimum=-1);
~buffer();

- Al -

Valid. Syst. for Printed Docs Appendix A : Source Code

friend buffer& operators>(buffers is, buffer& buff);
friend istream& operator>>(istream& is, buffers& buff);
friend ostream& operator<<(ostream& os, buffer& buff);
int read(char* outString, int minRead, int maxRead) ;

int testRead{() ;

int testWrite();

int get (unsigned char& info);

int put (unsigned char info) ;

int last{unsigned char info, unsigned char nbrBits);
int reSync();

void setEOF();

char atEOF();

long nbrRead() ;

void newData () ;

protected:
int numberRead();
int numbexrWrite();

}i

#tendif

// buffer.cc
#include “buffer.h”

buffer: :buffer(int size,int inMinimum, int outMinimum) : inMin (inMinimum) ,
outMin (outMinimum), £full(0), firstrFill(1l),

bufferbPtr(0), writePtr(0), readPtr(0), wrapPtr (0),
eof (0),

{

bytesRead (0), lastNbrBits(8)

if (size<=0)
cerr << “"Buffer size must positive.” << endl;
exit (0);

}

bufferPtr=new char[size];
writePtr=readPtr=bufferPtr;
wrapPtr=bufferPtr+size;

}

buffer: :~buffer()

{

if (bufferbPtr)
delete bufferPtr;

Valid. Syst. for Printed Docs Appendix A : Source Code

istream& operator>>(istream& is, buffers buff)
int bytesToWrite=buff.numbexrWrite() ;
int totalWrite=buff.testWrite();

buff.bytesRead=0;

if (buff.inMins>totalWrite)//always £false if the “in” minimum is
negative

return is;//(thus no minimum input)

if (bytesToWrite==0)
return is;

is.read(buff.writePtr,bytesToWrite) ;
buff .bytesRead=is.gcount () ;
if (buff.bytesRead<bytesToWrite)

cout << “To read= “ << DbytesToWrite << % read= “ <<
buff.bytesRead << endl;

buff .writePtr+=buff.bytesRead;

if (buff.writePtr>=buff.wrapPtr)
{
if (buff.firstFill)
buff.firstFill=0;
buff.writePtr=buff . .bufferbtr;
buff.full=1;

if ((bytesToWrite=totalWrite-bytesToWrite)>0)
{
is.read (buff.writePtr,bytesToWrite) ;
buff.bytesRead=is.gcount () ;
buff .writePtr+=buff.bytesRead;

if (buff.writePtr>=buff.wrapPbtr)
{
if (buff.firstFill)
buff.firstFill=0;
buff.writePtr=buff.bufferbPtr;
buff.full=1;

!
i
return is;

}

buffer& operators>(buffers is, buffers& buff)
{
int bytesToWrite=buff.numberWrite () ;
int totalWrite=buff.testWrite();

Valid. Syst. for Printed Docs Appendix A : Source Code

buff.bytesRead=0;

if (buff.inMin>totalWrite)//always false if the “in” minimum 1is
negative
return buff;//(thus no minimum input)

buff.bytesRead=is.read (buff.writePtr,buff.inMin,bytesToWrite) ;
buff.writePtr+=buff bytesRead;

if (buff.writePtr>=buff.wrapPtr)
{
if (buff.firstFill)
buff.firstFill=0;
buff.writePtr=buff.bufferPtr;
buff.full=1;

if ((bytesToWrite=totalWrite-bytesToWrite)>0)

{

buff.bytesRead:is.read(buff.writePtr,buff.inMin,bytesToWrite);
buff.writePtr+=buff . bytesRead;

if (buff.writePtr>=buff.wrapPtr)

{

if (buff.firstFill)
buff.firstFill=0;

buff . .writePtr=buff.bufferPtr;

buff.full=1;

!
}
return buff;

}

ostream& operator<< (ostream& os, buffers& buff)

{

int bytesToRead;
int bytesWritten=0;

while ((bytesToRead=buff.numberRead())>0)

{
if (buff.outMin>bytesToRead &&//always false if the “out”
minimum is negative
tbuff.eof)//(thus no minimum input)
return o0s;

os.write(buff.readPtr,bytesToRead) ;
buff.readPtr+=bytesToRead;

if (buff.readPtr>=buff.wrapPtr)

{

- A4 -

Valid. Syst. for Printed Docs Appendix A : Source Code

buff.readPtr=buff.bufferbPtr;
buff.full=0;

return os;

}

int buffer::read(char* outputStrg, int minRead, int maxRead)

{

int maxReadLocal=numberRead() ;

int totalRead=testRead();

int firstRead= (maxRead>maxReadLocal) ?maxReadLocal :maxRead;
int i=0;

bytesRead=0;

if (firstRead>=minRead && firstReads>0)
for (i=0;i<firstRead;i++)
* (outputStrg++)=* (readPtr++) ;

if (readPtr>=wrapPtr)

{

readPtr=bufferPtr;
full=0;

maxRead-=firstRead;
totalRead-=firstRead;
int secondRead= (maxRead>totalRead) ?totalRead:maxRead;

if (secondReads>=minRead && secondRead>0)
for (i=0;i<secondRead;i++)
* (outputStrg++) =* (readPtr++) ;
if (readPtr>=wrapPtr)

{

readPtr=bufferPtr;
full=0;

}

bytesRead=firstRead+secondRead;

return firstRead+secondRead;

long buffer: :nbrRead/()

return bytesRead;

Valid. Syst. for Printed Docs Appendix A : Source Code

void buffer: :newData ()
{
full=0;
firstFill=1;
eof=0;
writePtr=readPtr=bufferPtr;

}

int buffer::numberRead()

{

if (readPtrs>=wrapPtr)

{
readPtr=bufferPtr;
full=0;

}

if (full)

return (wrapPtr-readPtr) ;
else

return (writePtr-readPtr);

}

int buffer::numberWrite ()
{
if (eof)
return O;

if (writePtr>=wrapPtr)
{
if (firstFill)
firstFill=0;
writePtr=bufferPtr;
full=1;

}

if (full)

return (readPtr-writePtr);
else

return (wrapPtr-writePtr);

}

int buffer::reSync()

{
if ((writePtr>=wrapPtr) && (readPtr>=wrapPtr))
{
if (firstFill)
firstFill=0;
readPtr=bufferbPtr;
writePtr=bufferPtr;
return O;

- A6 -

Valid. Syst. for Printed Docs Appendix A : Source Code

if (readPtr>=wrapPtr)

{
readPtr=bufferPtr;
full=0;
}
if (writePtr>=wrapPtr)
{
if (firstFill)
firstFill=0;
writePtr=bufferPtr;
full=1;
}
!
void buffer::setEOF ()
{
eof=1;
}
char buffer::atEOF ()
{
return (eof&&(testRead()==0));
!
int buffer::testRead()
{
if (readPtr>=wrapPtr)
{
readPtr=bufferbPtr;
full=0;
}
if (full)
return (wrapPtr-readPtr)+ (writePtr-bufferbPtr);
else

return (writePtr-readPtr);

}

int buffer::testWrite()
{
if (eof)
return 0;

if (writePtr>=wrapPtr)
{
if (firstFill)
firstFill=0;
writePtr=bufferPtr;
full=1;

- A7 -

Valid. Syst. for Printed Docs Appendix A : Source Code

}

if (full)
return (readPtr-writePtr);
else
return (wrapPtr-writePtr)+(readPtr-bufferPtr);

}

int buffer::get (unsigned char& info)
{
if (numberRead())
{
info=* (readPtr++) ;
if (readPtr>=wrapPtr)
{
readPtr=bufferbPtr;
full=0;
}
if (eof && readPtr==writePtr)
return lastNbrBits;
else
return 8;

return 0;

}

int buffer::put (unsigned char info)

{

i1f (numberWrite())

{

*(writePtr++)=info;

if (writePtr>=wrapPtr)

{
if (firstPill)
firstFill=0;
writePtr=bufferPtr;
full=1;

return 1;

return 0;

}

int buffer::last (unsigned char info,unsigned char nbrBits)

{

if (numberWrite())

{

- A8 -

Valid. Syst. for Printed Docs Appendix A : Source Code

*{writePtr++)=info;
eof=1;
lastNbrBits=nbrBits;

if (writePtr>=wrapPtr)
{
if (firstFill)
firstFill=0;
writePtr=bufferPtr;
full=1;

return 1;

return 0;

A.3 coDec

// coDec.h
#ifndef _coDec_h
#define _coDec h

#include “buffer.h”

class coDec

{
protected:
buffer* inBuffer;
buffer* outBuffer;
char eof;

public:
coDec () ;
coDec (buffer& in, buffers& out);

int setInBuffer(buffer& in);
int setOutBuffer (buffer& out);
int setIOBuffer(buffers& in,buffer& out);

virtual int processbatal();
virtual void newData();

char atEOF() {return eof;};

1i

#tendif

Valid. Syst. for Printed Docs Appendix A : Source Code

// coDec.cc
#include “coDec.h”

coDec::coDec () : inBuffer(0), ocutBuffer(0), eof(0)
{
}

cobec::cobDec (buffer& in, buffer& out): inBuffer(&in), outBuffer (&out),
eof (0)

{

}

int coDec::setInBuffer (buffers& in)

if (outBuffer==&in)
cerr << “the input and the output buffers »
<< “cannot be the same” << endl;
return 0;

inBuffer=∈

int coDec::setQutBuffer (buffers out)

if (inBuffer==&out)
cerr << “the input and the output buffers »
<< “cannot be the same” << endl;
return 0;

outBuffer=&out;

int coDec::setIOBuffer (buffer& in,buffer& out)

if (&in==&out)
cerr << “the input and the output buffers *
<< “cannot be the same” << endl;
return 0;

inBuffer=∈
outBuffer=&out;

int coDec: :processData ()

{

- AlO -

Valid. Syst. for Printed Docs

Appendix A : Source Code

if (linBuffer || toutBuffer)
{
cerr << “Please assign me with some input and output”
<< " buffers before asking me to process data” << endl;

return -1;

if (inBuffer->atEOF())

{
outBuffer->setEOF () ;
return 0;

unsigned char temp;
while ((inBuffer-stestRead()) &&
(outBuffer->testWrite()))

inBuffer->get (temp) ;
outBuffer-s>put (temp) ;

return 1;

}

void coDec::newData ()
{
if (inBuffer)
inBuffer->newbata () ;
if (outBuffer)
outBuffer->newbata () ;
eof=0;

A4 RS

// RS.h
#ifndef RS h
#define RS h

#include “coDec.h”
#include <math.h>
#include <limits.h>

class RS : public coDec

{

//friend int main() ;
protected:

- All -

Valid. Syst. for Printed Docs Appendix A : Source Code

int* alphaOf;
int* indexOf;
int m, GF, t, n, k, r;
/* m symbol size
GF (q"m)
g=2
t correcting power
r=2t number redundant bits
n number of bits in total (g™m-1)
kX number of data bits

n=k+xr
*/
int bitsInBuffer;
public:
RS (int mValue, int tValue); //GF(g™m) -- g=2 -- t correcting power

int alpha(int index) ;
int index (int number) ;
int getGFsize();

protected:
int addOrNull (int operandl, int operand2, int modulus);
int subOrNull (int operandl, int operand2, int modulus) ;

}i
#endif

// RS.cc

#include “RS.h”
#include “debugger.h”
#include “debug.h”

RS::RS8(int mvValue, int tValue): m(mvValue), t(tValue), GF(1), index0Of (0),
alphaOf (0)
{
if (m<3 || m»6)
{
cerr << “m should be in between 3 and 6” << endl;
exit (1) ;

}

for (int power=l; power<=m; power++)
GF*=2;//GF=q"m (g=2)

n=GF-1;

r=t<<l; // r=2t number of redundant bits

if (r>=n)

{

cerr << "“the number of redundant bits r=" << r
<< ™ 1s greater than the ™

- Al2 -

Vahd. Syst. for Printed Docs Appendix A : Source Code

<< “maximum size n=" << n << endl;
exit (2);
k=n-r;
cout << dec << “code: RS(™ << n << ",” << Kk <<)" << endl;

// construction of the two tables:index -> number (alphaOf [index])

// number -> index (indexOf [number])
alphaOf = new int [n+1];
indexOf = new int [n+1];

alphaOf [0]=1;
indexOf [0] =n;
alphaOf [n] =index0f [1]=0;

int £[]1={0,0x3,0x7,0xB, 0x13,0x25,0x43};
// Galois Field generator polynomials

#ifdef debug

cout << “index\tnbr\tbinary” << endl;
cout << 0 << “"\t” << 1 << “\t”;
binaire (1, cout);

cout << endl;

#endif

//generation of the field and its associated indexes:
for {(int index=1; index<n; index++)
{
alphaOf [index] =alphaOf [index-1)}<<1; // shift the registers
alphaOf [index] "= (alphaOf [index] >>m) *f [m] ;
// feedback last bit through generator polynomial
indexOf [alphaOf [index]] =index;

#ifdef _debug
cout << index << “\t” << alphaOf[index] << “\t”;
binaire (alphaOf [index] , cout) ;
cout << endl;
#endif
!
alphaOf [0]=1;
indexOf [0l =n;
alphaOf [n]l =index0f [1]=0;

}

int RS::alpha(int index)

{
}

return alphaOf [index] ;

int RS::index(int number)

{

- Al3 -

Valid. Syst. for Printed Docs Appendix A : Source Code

return indexOf [number] ;

}

int RS::getGFsize ()

{
}

return GF;

int RS::addOrNull (int operandl, int operand2, int modulus)
{
int temp;
if (operandl==modulus || operand2==modulus)
return modulus;

if ((temp=(operandl+operand2) $modulus) <0)
return temp+modulus;

else
return temp;

}

int RS::subOrNull (int operandl, int operand2, int modulus)
{
int temp;
if (operandl==mcdulus)
return modulus;

if (operand2==modulus)

{

//cerr<< “Can’'t divide by zero!!!” << endl;
return INT MAX;

}

if ((temp=(operandl-operand2) $modulus}<0)
return temp+modulus;

else
return temp;

A.5 RSEncoder

// RSEncoder.h
#ifndef RSEncoder h
#define _RSEncoder_h

#include “RS.h”

class RSEncoder: public RS

{

- Al4 -

Valid. Syst. for Printed Docs Appendix A : Source Code

unsigned int* generator;//indexes of generator polynomial for the

code
unsigned int* systematic; // systematic symbols buffer.
unsigned int* FSR;//feedback shift registers for redundant bits
gen.
unsigned int SBin;// buffer to build symbols (8bits->mbits)
int SBinBits;//number of bits in the symbol buffer
int padBits;
unsigned int SBout;// buffer to build symbols (8bits->mbits)
int SBoutBits;//number of bits in the symbol buffer
int inputCount;
int outputCount;
int lastWrite;
int bytesToOutput;
int nbrBytesOutput;
int remainingBits;
int symbol,feedback,FSRindex,FSRregister,
FSRregBit, maxOutput, CBbits;
unsigned intcharBuffer, output;
unsigned chartempChar;
public:
RSEncoder (int mValue, int tValue);
~RSEncoder () ;
int processbDatal() ;
int processSymbols () ;
void newData () ;
}i
#endif

// RSEncoder.cc
#include “RSEncoder.h”
#include “debugger.h”
#include “debug.h”

RSEncoder: : RSEncoder (int mValue, int tvalue) : RS (mvValue, tValue),
generator (0),
systematic (0), FSR (0}, SBin(0), SBinBits (0), padBits(0),
SBout (0),
SBoutBits (0), inputCount {0) , outputCount (0),

bytesToOutput (0),
nbrBytesOutput (0), remainingBits(0), lastWrite(1),
symbol (0) , feedback (0) , FSRindex (0) , FSRregister (0),
FSRregBit (0) ,maxOutput (0),CBbits(0),
charBuffer (0), output(0),
tempChar (0)

- AlS -

Valid. Syst. for Printed Docs Appendix A : Source Code

n)

int nbrBits;

nbrBits=k*m; // the output is done with chars
bytesToOutput=nbrBits/8;// determine ther number of bytes in the
remainingBits=nbrBits%8;// input information (k symbols of m bits)

generator=new unsigned int [r+1];

generator [0]=1;
generator [1]=0;

int index;
int power;

/*
constructs the code generator polynomial
*/
for (power=2; power<=r; power++)
{
generator [power]=0;
for (index=power-1; index>=1; index--)
generator [index] =
indexOf [alphaOf [addOrNull (power, generator [index],n)]
* alphaOf [generator [index-1]1]] ;

/*
the program switches between indexes and numbers because
addition is easier w/ numbers (XOR) and
multiplication is easier with indexes (sum of indexes mod
*/

generator [0] =addOrNull (generator [0] , power, n)

12

}

#ifdef _debug

for (power=r; power>=0; power--)
cout << “ “ << generator [power] ;

cout << endl;

#endif

systematic=new unsigned int [k];
FSR=new unsigned int([r];

for (int FSRindex=0;FSRindex<=r-1;FSRindex+4+)
FSR[FSRindex]=n;// alphaln]=0

FSRregister=r-1;

RSEncoder: : ~RSEncoder ()

{

- Al6 -

Valid. Syst. for Printed Docs Appendix A : Source Code

delete generator;
delete systematic;
delete FSR;

}

int RSEncoder::processData ()

{

int inNbrBits=0;

if (tinBuffer || !outBuffer)
cerr << “Please assign me with some input and output *
<< “buffers beforxe asking me to process data” << endl;
return -1;

}

datalnput_Process:

eof=inBuffer->atBOF () ;

if ((inputCount==0) && (outputCount==0) && (SBinBits== ||
padBits>0)

{

&& (SBoutBits<=0) && (eof))

outBuffer->setEQF () ;
return 1;

}

/*
input the first k symbols (of length m bits) outputs them
(x"r*i(x))
and process them through the FSR
*/
while ((inputCount<k) && (outBuffer->testWrite()) &&
{ inBuffer->testRead() || (eof=inBuffer-
>atEOF ())))

{

if (SBinBits<m)
{
// padBits flags when the system started padding the
information
// (when there is not enough info to fill info block so 0
pad)
if (eof)
{
SBin= (SBin<<8) +0x0;
padBits+=8;
inNbrBits=8;

else

inNbrBits=inBuffer->get (tempChar) ;
SBin:(SBin<<ianrBits)+(tempChar>>(8—ianrBits));

- Al7 -

Valid. Syst. for Printed Docs Appendix A : Source Code

}

SRinBits+=inNbrBits;

}

while (SBinBits>=m)
{
if (inputCounts>=k)
goto outputFSR;
// extract symbol from symbol buffer (SBin) :
SBinBits-=m;
symbol=8SBin>>SBinBits;
systematic [inputCount] =symbol;
SBin"=symbol<<SBinBits;
inputCount++;
#ifdef _debug
cout << “new data: “ << symbol << “ %;
binaire (symbol, cout,m) ;
cout << endl;
#endif
// FSR:
#ifdef debug
cout << “before: “;
for (FSRindex=r-1;FSRindex>=0;FSRindex--)
cout << alphaOf [FSR[FSRindex]] << ™ ™ ;
cout <<endl;
#endif

feedback=indexOf [alphaOf [FSR[r-1]] “symbol] ;
for (FSRindex=r-1;FSRindex>=1;FSRindex--)
FSR [FSRindex] =indexOf [
alphaOf [addOrNull (feedback, generator [FSRindex] ,n)]
“alphaOf [FSR[FSRindex-1]]];
FSR{[0] =addOrNull (feedback,generator 0] ,n) ;

#ifdef debug

cout << “after: “;

for (FSRindex=r-1;FSRindex>=0;FSRindex--)
cout << alphaOf [FSR{FSRindex]] << ™ » ;

cout <<endil;

#endif
}
}
/*
output the content of the Feedback Shift Register
*/
outputFSR:

#ifdef _debug

cout << endl;

fiendif

while ({inputCount>=k) && (outputCount<n) && (outBuffer-

- Al8 -

Valid. Syst. for Printed Docs Appendix A : Source Code

>testWrite()))

{

// output systematic information and then redundant info.

}

#ifdef _debug
cout << “outputFSR: “ << outputCount << endl;
#endif

while (SBoutBits<8 && FSRregister>=0)

if (outputCount<k)

// systematic
SBout= (SBout<<m) +systematic [outputCount] ;

else

// redundant
SBout= (SBout<<m) + (alphaOf [FSR [FSRregister]}) ;
FSRregister--;

SBoutBits+=m;

outputCount++;

if (SBoutBits>=8)
SBoutBits-=8;
output= (char) (SBout>>SBoutBits) ;
outBuffer->put ((unsigned char)output);
SBout " =output<<SBoutBits;

}

// after this stage SBoutBits is strictly less than 8

// if at end of file and still some bits in SBout, output them

if ((inputCount>=k) && (outputCount>=n) && (SBinBits==0 ||
padBits>0)
&& (SBoutBits>0) && (eof=inBuffer-
>atEOF ()))

{

/*

*/
if

(

if (lastWrite=outBuffer->testWrite())

{

output=(char) (SBout<< (8-SBoutBits)) ;
outBuffer->last ((unsigned char)output, SBoutBits) ;
SBoutBits=0;

initialize all the variables and buffers for the next set of
data to be processed (unless it’s the end of the file)

(inputCount>=k) && (outputCount>=n) && (lastWrite))

- Al9 -

Valid. Syst. for Printed Docs Appendix A : Source Code

inputCount=0;
outputCount=0;
FSRregister=r-1;
nbrBytesOutput=0;

for (FSRindex=0;FSRindex<=r-1;FSRindex++)
FSR{FSRindex]=n;// alphaln}=0

goto datalnput Process;
return 1;

void RSEncoderxr: :newData ()

if (inputCounti=0 && (leof))
cerr << “Warning from Reed Solomon encoder: new data”
<< " requested while the previous data were still »
<< “being processed.” << endl;

RS: :newData () ;

SBin=0;
SBinBits=0;
padBits=0;
SBout=0;
SBoutBits=0;
inputCount=0;
outputCount=0;
bytesToOutput=0;
nbrBytesOutput=0;
remainingBits=0;
lastWrite=1;

int RSEncoder: :processSymbols ()

{
static unsigned int feedback=0, FSRindex=0,FSRregister=r-
1,FSRregBit=0,
maxOutput=0,CBbits=0;
static unsigned int charBuffer=0, output=0;
static unsigned char tempChar=0, symbol=0;

if (!inBuffer || !outBuffer)

{

cerr << “Please assign me with some input and output »
<< “buffers before asking me to process data” << endl;
return -1;

- A20 -

Valid. Syst. for Printed Docs Appendix A : Source Code

datalInput_ Process:
if ((inputCount==0) && (outputCount==0) && (SBinBits==0 ||
padBits>0)

{

&& (SBoutBits<=0) && (eof=inBuffer->atEOF()))

ocutBuffer->setEOF () ;

return 1;
}
/*
input the first k symbols (of length m bits) outputs them
(x"r*i(x))
and process them through the FSR
*/
while ((inputCount<k) && (outBuffer-stestWrite()) &&
(inBuffer-s>testRead() || (eof=inBuffer->atEOF())))
{
if (eof)
{
symbol=0xb;
padBits=1;
}
else
inBuffer->get (symbol) ;
systematic [inputCount] =symbol;
inputCount++;
#ifdef _debug
cout << “new data: “ << symbol << » %;
binaire (symbol, cout,m) ;
cout << endl;
#endif
// FSR:

#ifdef _debug

cout << “before: “;

for (FSRindex=r-1;FSRindex>=0;FSRindex--)
cout << alphaOf [FSR{[FSRindex]] << ™ * ;

cout <<endl;

#endif

feedback=index0Of [alphaOf [FSR[r-1]] “symbol] ;
for (FSRindex=r-1;FSRindex>=1;FSRindex--)
FSR[FSRindex] =indexOf [
alphaOf [addOrNull (feedback, generator [FSRindex] ,n)]
“alphaOf [FSR [FSRindex-1]11] ;
FSR[0] =addOrNull (feedback, generator [0],n) ;

#ifdef _debug
cout << “after: “;
for (FSRindex=r-1;FSRindex>=0;FSRindex--)

- A21 -

Valid. Syst. for Printed Docs Appendix A : Source Code

cout << alphaOf [FSR[FSRindex]] << ™ * ;
cout <<endl;
#endif

}

/*

output the content of the Feedback Shift Register
*/
outputFSR:

#ifdef _debug
cout << endl;
fendif

while ((inputCount>=k) && (outputCount<n) && (outBuffer-
>testWrite()))
{
// output systematic information and then redundant info.
#ifdef debug
cout << “outputFSR: " << outputCount << endl;
#tendif

if (outputCount<k)
// systematic
output=systematic [outputCount] ;
else
// redundant
{
output=alphaOf [FSR [FSRregister]] ;
FSRregister--;
}
outBuffer->put ((unsigned char)output) ;
outputCount++;

/*
initialize all the variables and buffers for the next set of
data to be processed (unless it’s the end of the file)

*/

if ((inputCount»>=k) && (outputCounts>=n))

inputCount=0;
ocutputCount=0;
FSRregister=r-1;
nbrBytesOutput=0;

for (FSRindex=0;FSRindex<=r-1;FSRindex++)
FSR [FSRindex] =n;// alpha[n}=0

goto datalInput Process;

- A22 -

Valid. Syst. for Printed Docs Appendix A : Source Code

return 1;

A.6 RSDecoder

// RSDecoder.h
#ifndef RSDecoder h
#define RSDecoder h

#include “RS.h"
#include <iomanip.h>

class RSDecoder: public RS

{

int* codeWord;
int* syndrome;

int inputCount;
int outputCount;

unsigned

int SBin;

int SBinBits;
char outputDataFlag;

unsigned

int SBout;

int SBoutBits;

int blockNbr;

int codeWordCounter;

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
int

unsigned
unsigned

int

public:

int*C;

int*D;

int*Ctp;

int**errLoc;

int*Xloc;

int*errvalue;
N,L,delta,Di, temp, result, con,pivot,err;

char symbol,mask;

char tempChar;
frameCount;

RSDecoder (int mValue, int tValue);
int processDatal() ;
int processSymbols{) ;

void newData () ;

- A23 -

Valid. Syst. for Printed Docs Appendix A : Source Code

}i

int printMatrix(int matrix{5] [3],RS& GF);
#endif

// RSDecoder.cc
#include “RSDecoder.h”
#include “debugger.h”
#include “debug.h”

RSDecoder: :RSDecoder (int mvValue, int tvalue) : RS (mvValue, tValue),
codeWord (0),

syndrome (0) , inputCount (0), SBout (0), SBoutBits(0),
outputCount (0) , SBin(0), SBinBits(0), outputDataFlag(0),
blockNbr (0},

symbol (0) ,mask ((1<<8)-1), tempChar(0), frameCount (0)

codeWord=new int [n];
syndrome= new int[r+1];

for (int syndromeCounter=0; syndromeCounter<r+1l; syndromeCounter++)
syndrome [syndromeCounter] =n;// alphaOf [n}=0

C=new unsigned int [r+17;

D=new unsigned int[r+1];

Ctp=new unsigned int [r+1];

/*

errLoc=new unsigned int*[2* (r-1)];

for (int errLocCount=0; errLocCount<2* (r-1);errLocCount++)
errLoc [errLocCount] =new unsigned int[r-17;

Xloc=new unsigned int[r-1];

errValue=new unsigned int[r-1];

*/

errLoc=new unsigned int*[2* (n+1)];

for (int errLocCount=0; errLocCount<2* (n+l);errLocCount++)
errLoc [errLocCount] =new unsigned int[n+1];

Xloc=new unsigned int[n+1];

errValue=new unsigned int [n+1];

int RSDecoder: :processbata ()

{

/7
!/
//

int syndrCounter;

unsigned int Clr+1],D[r+1],Ctplr+1],errLoc(2* (r-1)] [r-1],
Xloc[r-1],errvaluer-1];

static unsigned int

*C=0, *D=0, *Ctp=0, **errLoc=0, *X1loc=0, *errValue=0;

int cl,col, row,diag, polyPower;
unsigned char charOut;

- A24 -

Valid. Syst. for Printed Docs Appendix A : Source Code

int nbrBits=0;

if (!inBuffer || !outBuffer)
cerxr << "Please assign me with some input and output ™
<< “buffers before asking me to process data” << endl;
return -1;

}

// This algortihm drops any impartially input RS frame at the end
// of the algorithm so it does not matter if it gets the exact
// number of bits from the input because it will drop the extra bits
anyways
startProcess:
if (eof=inBuffer->atEOF() && (inputCount<n))
{
outBuffer->setEOF () ;
if (inputCount!=0)
{
cout << “RSDecoder: dropped “ << inputCount
<< “ symbols at the end of the stream\n”;
inputCount=0;
}

return 1;

}

while ((inputCount<n) && (inBuffer->testRead()))
{
if (SBinBits<m)
{
inBuffer-s>get (tempChar) ;
#ifdef debug
cout << “buffer input:”;
binaire (tempChar, cout) ;
cout << endl;
#endif
SBin=(SBin<<8) + (tempChar&mask) ;
SBinBits+=8;
#ifdef _debug
cout << “data in:";
binaire (SBin, cout, 32) ;
cout << endl;
#endif

}

while (SBinBits>=m && inputCount<n)

{

// extract symbol from symbol buffer (SBin):
SBinBits-=m;
symbol=8SBin>>8BinBits;

- A25 -

Valid. Syst. for Printed Docs Appendix A : Source Code

#ifdef _debug
cout << “new data: “;
binaire (symbol, cout,m) ;
cout << " " << hex << (int)symbol << endl;
#endif
SBin”=symbol<<SBinBits;
codeWord [inputCount] =indexOf [symbol] ;
// syndrome calculation:
for (syndrCounter=1;syndrCounter<r+1;syndrCounter++)
{
syndrome [syndrCounter] =
indexOf [
alphaOf [addOrNull (syndrome [syndrCounter],
syndrCounter,n) 17
alphaOf [codeWordlinputCount] 1 3;
#ifdef _debug
cout << “syndrome “ << syndrCounter << “ “
<< alphaOf [syndrome [syndrCounter]] << endl;
#endif

}

inputCount++;

if (inputCounts>=n)

{

#ifdef _debug_
cout << “remaining bits “ << SBinBits << endl;
#endif

#ifdef _debug
for (syndrCounter=1;syndrCounter<r+i;syndrCounter++)

{

cout << “syndrome “ << syndrCounter << “
<< alphaOf [syndrome [syndrCounter]] << endl;

}

#endif

//cout<< “Decoding block #” << (++blockNbr) << endl;

}

int Lold;

if {inputCounts>=n && outputDataFlag==0)

{
/*
Massey algorithm to calculate the error locator polynomial

*/

- A26 -

Valid. Syst. for Printed Docs Appendix A : Source Code

for (cl=0;clc<=r;cl++)
Clc1l]=Dlcl]}=Ctplcl]=n;

//Cl01=D[1]=L=0;

C[0l=D[0]}=L=0;

for (N=1;N<r+1;N++)

{
#ifdef _debug
cout << “iteration #” << N << endl;
cout << “syndrome “ << dec << alphaOf [syndrome[N]] <<
endl ;
#endif
delta=alphaOf [syndrome [N]] ;
#ifdef debug
cout << “delta ™ << indexOf{deltal << endl;
#endif
for (cl=1;cl<=L;cl++)
{
#ifdef debug
cout << “C8 " << Clcl] << ™ ™ << syndrome[N-c1]
<< M " << addOrNull (C[cl], syndrome [N-cl],n) << endl;
#endif
delta=delta”alphaOf [addOrNull (C[c1], syndrome [N-
cl],n}l;
#ifdef debug
cout << “delta " << indexOf [delta] << endl;
#tendif
!
#ifdef _debug
cout << “delta " << indexOf[deltal << endl;
#endif

if (delta!=0)
{
Di=indexOf [delta] ;
!/
Ctpl0l=C[0];
//for (cl=0;cl<=L+1;cl++)
for (cl=1;cl<=r;cl++)
{
//temp=addOrNull (Di,D{cl1],n);
temp=addOrNull (Di,D[c1-1]1,n);
#ifdef _debug
cout << “del*D[" << cl-1 << “]=" << temp <<
Y C=" << Clcl] << endl;
#endif
Ctplcl] =indexOf [alphaOf [C[c1]]”
alphaOf [temp]l] ;

}

#ifdef debug

- A27 -

Valid. Syst. for Printed Docs Appendix A : Source Code

cout << “C* “;
for (cl=0;cl<=L+1l;cl++)

cout << Ctplcl] << ™ »;
cout << endl;

#endif
if (2*L<N)
{

for (cl=0;cl<=xr;Ccl++)
if((D[cl]:subOrNull(C[cl],Di,n))::INT_MAX

outputDataFlag=1;
goto outputData;
}
#ifdef _debug
cout << “D: “;
for (cl1=0;cl<=L+1;cl++)
cout << D[cl] << ™ “;
cout << endl;
#endif
L=N-1L;
#ifdef _debug
cout << “L=" << L << endl;
#endif

}

else

{
for (cl=L+l;cl>=1;cl--)

Dicl]l=D{c1-1];

D[0]=n;

}

for (cl=0;cl<=L;cl++)
Clcl]l=Ctplci];

fifdef debug

cout << “C %;

for (polyPower=0;polyPower<=L;polyPower++)
cout << C[polyPower] << “ “;

cout << endl;

#tendif

}

else

{
for (cl=L+l;cl>=1;cl--)

D[c1]=D[c1l-1];

D[0]=n;

!

#ifdef debug
cout << “D: “;
for (cl=0;cl<=L+1;cl++)

- A28 -

Valid. Syst. for Printed Docs

Appendix A : Source Code

cout << Dfcl] << v »;
cout << endl;
#endif

}

#ifdef _debug

cout << “C »;

for (polyPower:O;polyPower<=L;polyPower++)
cout << ClpolyPower] << ® »;

cout << endl;

#endif

/*

chien search of the roots of the error locator polynomial

*/
err=0;
#ifdef _debug
cout << “error places: ™:
#endif

for (int tryPower=0; tryPower<=n-1;tryPower++)

{

result=n;// 0 (initialization)

output

}

for (polyPower:O;polyPower<=L;polyPower++)
result:indexof[alphaOf[C[polyPower]J*

alphaOf[addOrNull(result,tryPower,n)]];

if (result==n)// alphaOf [tryPower] is a root
{
exXrr++;
Xloc[err] =tryPower;
#ifdef _debug
cout << err << “:”
#endif

<< Xloclerr] << ™ .

!
if (err==L)
break;

#ifdef _debug
cout << endl;
#endif

#ifdef _debug

cout << “error places: “;
for (cl=1;cl<=err;cl++)

cout << ¢l << “:" <o Xloc[cl] << » n,
cout << endl;

#endif

// 1if there is more error than the code can correct,

// the data without correction

just

- A29 -

Valid. Syst. for Printed Docs

Appendix A : Source Code

w .,

if (err!=L)

{

#ifdef _debug_

cout <«
<<
<<
cout <<
cout <«
#endif
L=exrr;

“The number of errors is greater”

v than the error correction capabilities”
“ of the code” << endl;

“number of errors “ << err << endl;

Y, Y << L << endl;

//outputDataFlag=1;
//goto outputData;
//return -1;

/*

Calculation of the error values (inversion of the error
locator matrix)

*/

for (col=1l;col<=L;col++)

{

for (row=l;row<=L;TrOw++)

{

if ((Xloclcoll$n)==0 && Xloc[col]!=0)
errLoc [col] [row] =n;

else if (((Xloclcol] *row)%n)==0)
errLoc {col] [row] =0;

else

errLoc[col][row]=addOrNu11(Xloc[col]*row,O,n);

errLoc [col+L] [row] =n;

if

}

#ifdef _debug_

(row==col)
errLoc [col+L] [row] =0;

for (row=l;row<=L;Yow++)

{

for (col=1;col<=2*L;col++)

{

cout << dec << setw(3) << (int)errLoc [col] [row] << ™

}

cout << endl;

}

#endif
//if (L>0)

//printMatrix(errLoc,*this);

- A30 -

Valid. Syst. for Printed Docs Appendix A : Source Code

for (diag=1;diag<=L;diag++)
{
pivot:errLoc[diag][diag];
for (col:diag;col<=2*L;col++)
{
errLoc[col] [diag]=
subOrNull(errLoc[col][diag},pivot,n)
if (errLoc[col][diag]::INT_MAX)

{

:

ocutputbDataFlag=1;
goto outputData;

//printMatrix (errLoc, *this)

7

for (row=1l;row<=L;row++)
{
if (diag!=row)
{
con:errLoc[diag][row]—errLoc[diag][diag];
for (col=diag;col<=2*L;col++)
errLoc {col] [row] =
indexOf [alphaOf [errLoc [col] [row]]

alphaOf[addOrNull(errLoc[col][diag],
con,n)ll;

//printMatrix(errLoc,*this);

}

/*
for (row=1l;row<=L;row++)
{
for (col=1;col<=L;col++)
{
errLoc {col] [row] =n;
for (dnt i=1;i<=L;i++)
errLoc [col] [row] =
indexOf [alphaOf [errLoc [col] [row]] ™
alphaOf [addOrNull (errLoc [i+L] [row] ,
addOrNull(Xloc[col]*i,o,n),n)]];
cout << alphaOf [errLoc[col] [row]] << ™ “;
1
cout << endl;
}
*/

#ifdef _debug
cout << endl << endl;
for (row=1;row<=L;row++)
{
for {(col=1;col<=2*L;col++)

{

cout << dec << setw(3) << (int)errLoc[col] [row] << ™

- A31 -

Valid. Syst. for Printed Docs Appendix A : Source Code

}

cout << endl;

}

for (syndrCounter=1;syndrCounter<=L;syndrCounter++)

{

W

cout << “syndrome
<< syndrome [syndrCounter] << endl;

#endif

/*
calculates the error correction terms:
*/
for (row=1l;row<=L;row++)
{
result=0;
for (col=1;col<=L;col++)
result®=alphaOf [addOrNull (syndrome [col],
errLoc [col+L] [row]l ,n)] ;
errValue [row] =indexOf [result] ;
#ifdef debug

cout << “error at " << dec << (n-Xlocl[row])
<< ™ is " << hex << alphaOf[errValuelrow]] <<
endl;
#endif
}
/*
corrects the input stream
*/
int errPos;
for (cl=1l;cl<=L;cl++)
{
errPos=Xloc[cl];
codeWord [n-errPos-1] =index0Of [alphaOf [codeWord [n-errPos-
1117

alphaOf [errValue [c1]1];

outputDataFlag=1;

outputData:
while ((outputDataFlag) && (outputCount<k) &&
(outBuffer->testWrite()))

while (SBoutBits<8 && outputCountc<k)

{

SBout<<=m;

- A32 -

Valid. Syst. for Printed Docs Appendix A : Source Code

SBout+=alphaOf[codeWord[outputCount]];
SBoutBits+=m;

outputCount++;
if (SBoutBits>=8)

SBoutBits-=8;
charOut:SBout>>SBoutBits;
SBout”=charOut<<SBoutBits;
outBuffer->put ((unsigned char)charOut&0xFF) ;
#ifdef _debug

cout << “output:” << hex

<< (int) (charOut&O0xFF)

<< w \\;
#endif

if ((outputDataFlag==1) && (outputCount>=k))

{
fifdef _debug
cout << endl << endl << dec << ++frameCount << “\tnew frame” <<
endl;
#endif

outputDataFlag=0;
outputCount=0;
inputCount=0;

for (int syndromeCounter=0; syndromeCounter<r+1;
syndromeCounter++)
syndrome[syndromeCounter]:n;// alphaOf [n]=0

inBuffer->reSync() ;
outBuffer->reSync () ;

goto startProcess;

}

#ifdef _debug
cout << “That’'s all folks!!!” <« endl;
#endif

int printMatrix(int matrix[5] [3],RS& GF)

{

for (int row=1l, row<=2; row++)

{

for (int col=1;col<=4;col++)

- A33 -

Valid. Syst. for Printed Docs Appendix A : Source Code

cout << setw(2) << setfill(*)
<< GF.alpha({matrix[col] [row]) << ™ »;

cout << "™ »;
for (int col=1;col<=4;col++)
cout << setw(2) << setfill(*)

woown

<< matrix([col] [row] << ;
cout << endl;

}

cout << endl;

void RSDecoder: :newData ()

{

RS: :newData () ;

inputCount=0;
outputCount=0;
SBin=0;
SBinBits=0;
SBout=0;
SBoutBits=0;
outputDataFlag=0;
blockNbr=0;

for (int syndromeCounter=0; syndromeCounter<r+l; syndromeCounter++)
syndrome [syndromeCounter}=n;// alphaOf [n]=0

int RSDeccder: :processSymbols ()

{

static unsigned char ask=(1<<8)-1;
int syndrCounter;
static unsigned char tempChar, symbol=0;

if (!inBuffer || loutBuffer)

{

cerr << “"Please assign me with some input and output *
<< “buffers before asking me to process data” << endl;
return -1;

startProcess:
if (eof=inBuffer->atEOF() && (inputCount<n))

{

outBuffer->setEOF () ;
return 1;

while ((inputCount<n) && (inBuffer->testRead()))

- A34 -

Valid. Syst. for Printed Docs Appendix A : Source Code

inBuffer->get (symbol) ;
codeWord [inputCount] =indexOf [symbol] ;

// syndrome calculation:
for (syndrCounter=1l;syndrCounter<r+1;syndrCounter++)
{
syndrome [syndrCounter] =
indexOf [
alphaOf [addOrNull (syndrome [syndrCounter],
syndrCounter,n) 17
alphaOf [codeWord [inputCount]]];
#ifdef _debug

cout << “syndrome " << syndrCounter << ™ *
<< alphaOf [syndrome [syndrCounter]] << endl;
#endif
inputCount++;

if (inputCount>=n)
{
#ifdef _debug
for (syndrCounter=1;syndrCounter<r+1;syndrCounter++)
{
cout << “syndrome “ << syndrCounter << “ “
<< alphaOf [syndrome [syndrCounter]] << endl;

}

#endif

cout << “Decoding block #” << (++blockNbr) << endl;

}

//unsigned int Clr+1],D[r+1},Ctplr+1il,errLoc{2* (r-1)] [r-11,
// Xloc[r-1],errValue [r-1];

unsigned int *C,*D,*Ctp, **errLoc, *X1loc, *errValue;

C=new unsigned int [r+17;

D=new unsigned int[r+1};

Ctp=new unsigned int [r+1];

errLoc=new unsigned int*[2* (r-1)];

for (int errLocCount=0; errLocCount<2* (r-1);errLocCount++)
errLoc [errLocCount] =new unsigned int[r-1];

Xloc=new unsigned int[r-1];

errValue=new unsigned int[r-1];

static int N,L,delta,Di, temp,result, con,pivot, err;
int cl1,col,row,diag, polyPower;

- A35 -

Valid. Syst. for Printed Docs Appendix A : Source Code

unsigned char charout;

if (inputCount>=n && outputDataFlag==0)
{
/*
Massey algorithm to calculate the error locator polynomial
*/
for (cl=0;cl<=r;cl++)
Clcll=Dlc1l]l=Ctplcl]=n;
C{0]1=D[1]=L=0;
for (N=1;N<r+1;N++)
{
#ifdef _debug

cout << "syndrome “ << syndrome [N] << endl;
#endif

delta=alphaOf [syndrome [N]] ;
for (cl=1;cl<=L;cl++)

delta=delta”alphaOf [addOrNull (C[c1], syndrome [N-
cl] ,n)l;

#ifdef _debug

cout << “delta “ << indexOf [delta] << endl;
#endif

if (delta!=0)
{
Di=indexOf [delta] ;
for (cl=0;cl<=L+1;cl++)
{
temp=addOrNull (Di,D{cl],n) ;
Ctplcl]=index0Of [alphaOf[Clc1]]1™
alphaOf [temp]] ;

}

#ifdef _debug_
cout << “C* .,
for (cl=0;cl<=L;cl++)
cout << Ctplcl] << » v;
cout << endl;
#endif

if (2*L<N)
{
for (cl=0;cl<=L;cl++)
Dlcl]=subOrNull (C{c1],Di,n)
L=N-L;

12

}

for (cl=0;cl<=L;cl++)
Clcl]=Ctplcl};

- A36 -

Valid. Syst. for Printed Docs Appendix A : Source Code

#ifdef _debug
cout << “C “;
for (polyPower:O;polyPower<=L;polyPower++)
cout << C[polyPower] << “ »;
cout << endl;
#endif
}
for (cl=L+l;cl>=1;cl--)
D[cll=D{ci-17;
D[0]=n;
#ifdef _debug
cout << “D: »;
for (cl=0;cl<=L+1;cl++)
cout << D[cl] << ™ »;
cout << endl;
#endif

}

fifdef _debug

cout << “C “;

for (polyPower:O;polyPower<=L;polyPower++)
cout << ClpolyPower] << “ »;

cout << endl;

#endif

/*
chien search of the roots of the error locator polynomial
*/
err=0;
#ifdef _debug
cout «< “error places: “;
ffendif

for (int tryPower=0; tryPower<=n-1;tryPower++)

{
result=n;// 0 (initialization)
for (polyPower:O;polyPower<=L;polyPower++)
result=indexOf [alphaOf [C[polyPower]]"
alphaOf[addOrNull(result,tryPower,n)]];
if (result==n)// alphaOf [tryPower] is a root
{
exrr++;
Xloc[err] =tryPower;
#ifdef _debug
cout << err << “:” << Xloclerr] << “ »;
#endif
}
if (err==L)
break;
}

#ifdef _debug

- A37 -

Valid. Syst. for Printed Docs Appendix A : Source Code

output

greatex”

cout << endl;
#endif

#ifdef _debug
cout << “error places: “;
for (cl=1;cl<=err;cl++)
cout << ¢l << “:” << Xloclcl] << ™ %;
cout << endl;
#endif

// 1if there is more error than the code can correct, Jjust
// the data without correction

if (erri=L)

{

cout << “Decoding failure:\nThe number of errors is
<< " than the error correction capabilities”
<< " of the code” << endl;

//outputDataFlag=1;
//goto outputData;
return -1;

/*
Calculation of the error values (inversion of the error
locator matrix)

*/

for (col=1;col<=L;col++)

{

for (row=1l;row<=L;row++)

{

errLoc [col] [row] =addOrNull (Xloc {col] *row, 0,n) ;
errLoc [col+L] [row] =n;
if (row==col)

errLoc [col+L] [row] =0;

}

//if (L>0)
//printMatrix(errLoc, *this) ;

for (diag=1;diag<=L;diag++)

pivot=exrLoc [diag] [diag];
for (col=diag;col<=2*L;col++)
{
errLoc [col] [diag]l=
subOrNull (errLoc [col] [diag]l,pivot,n) ;

- A38 -

Valid. Syst. for Printed Docs Appendix A : Source Code

//printMatrix (errLoc, *this) ;

}

for (row=1l;row<=L;row++)
{
if (diag!=row)
{
con=errLoc [diag] [row] -errLoc [diag] [diag];
for (col=diag;col<=2*L;col++)
errLoc [col] [row] =
indexOf [alphaOf [errLoc [col] [row]] ™
alphaOf [addOrNull (errLoc [col] [diag],
con,n)l]];
//printMatrix (errLoc, *this) ;

}
/*

calculates the error correction terms:
*/
for (row=1;row<=L;row++)
{
result=0;
for (col=1l;col<=L;col++)
result”=alphaOf [addOrNull (syndrome [col],
errLoc{col+L] {row] ,n)];
errValue [row] =indexOf [result] ;
#ifdef _debug
cout << “error at " << Xloclrow]
<< " is ™ << errvaluelrow] << endl;
#endif

}
/* .

corrects the input stream
*/
int errPos;
for (cl=1;cl<=L;cl++)
{

errPos=Xloc[cl];

codeWord [n-errPos-1] =indexOf [alphaOf [codeWord [n-errPos-

111"
alphaOf [errValue [cl1]]];

}

outputDataFlag=1;

outputData:
while ((outputDataFlag) && (outputCount<k) &&

- A39 -

Valid. Syst. for Printed Docs Appendix A : Source Code

(outBuffer->testWrite()))

symbol=alphaOf [codeWord [outputCount]];
outputCount++;

outBuffer->put ((unsigned char)symbol&0xFF) ;
}
#ifdef debug
cout << endl << endl;
#endif

if ((outputDataFlag==1) && (outputCounts>=k))
outputDataFlag=0;
outputCount=0;
inputCount=0;

for (int syndromeCounter=0; syndromeCounter<r+1;

syndromeCounter++)
syndrome {syndromeCounter]l=n;// alphaOf [n]=0

inBuffer-sreSync();
outBuffer-sreSync () ;

goto startProcess;

}

#ifdef _debug_
cout << “That’s all folks!i!” << endl;
#endif

A.7 interleaver

// interleaver.h
#ifndef interleaver h
#define interleaver h

#include “RS.h”
#include “coDec.h”

class interleaver: public coDec

{

int nbrRow,nbrCol;
int rowOut ;
int colOut;
int bufSize;
int nbrChar;

- A40 -

Valid. Syst. for Printed Docs Appendix A : Source Code

unsigned char**puffer;
unsigned charcharIn;
unsigned charcharOut;

unsigned int SBin; // buffer to build symbols (8bits->mbits)
int SBinBits; //number of bits in the symbol buffer

int padBits;

int realBits;

unsigned int SBout; // buffer to build symbols (8bits->mbits)
int SBoutBits; //number of bits in the symbol buffer

int lastWrite;

int bytesToOutput;
int nbrBytesOutput;

int remainingBits;

int inputCount;
int outputCount;

public:

interleaver(int Size Y

interleaver(int _nbrRow, int _nbrCol) ;
~interleaver () ;

int processDatal() ;

void newDatal() ;

¥

#endif

// interleaver.cc
#include “interleaver.h”

interleaver::interleaver(int Size):

nbrCol(Size),nerow(Size),inputCount(O),
outputCount (0) , charIn(0), bufsSize (0), rowQut (0) ,
colOut (0),

nbrChar (0), SBin(0), SBinBits (0), SBout(0), SBoutBits (0)

{

if (Size<=0)
cerr << “"The size of the interleaver is negative or nullti!” <«

exit (-1);

}

bufsize=Size*Size;
bytesToOutput=bufSize/8;
remainingBits=bufSize%8;

- A4l -

Valid. Syst. for Printed Docs Appendix A : Source Code

buffer=new unsigned char* [Size];

if (!buffer)
{
cerr << “Couldn’t allocate memory for the interleaver of size
<< Size << endl;
exit (-2);
}

for (int i=0;i<Size;i++)

{

buffer [i]l =new unsigned char([Size];

if (lbuffer[il)
{
cerr << "“Couldn’'t allocate memory for the interleaver of
size “ << Size << endl;
exit (-2);
}

}

for (int i=0;i<Size;i++)
for (int j=0;j<Size;j++)
buffer[i] [j]1=0;

}

interleaver: :interleaver (int _nbrRow, int _nbrCol) :
nbrRow {_nbrRow) ,nbrCol(nbrCol), inputCount (0),

outputCount (0) , charIn(0), bufsize(0), rowOut (0),
colOut (0},

nbrChar (0), SBin(0), SBinBits(0), SBout (0), SBoutBits (0)

{

if (nbrRow<=0 || nbrCol<=0)
cerr << “"The size of the interleaver is negative or null!!i!” <«
endl;
exit (-1);

}

bufSize=nbrRow*nbrCol;
bytesToOutput=bufSize/8;
remainingBits=bufSize%8;

buffer=new unsigned char* [nbrCol];

if (!buffer)
{
cerr << “Couldn’t allocate memory for the interleaver of size ™
<< nbrRow << “X” << nbrCol << endl;
exit (-2);

- A42 -

Valid. Syst. for Printed Docs Appendix A : Source Code

}

for (int i=0;i<nbrCol;i++)

{

buffer[i]=new unsigned char [nbrRow] ;

if (tbuffer[i])
{
cerr << “Couldn't allocate memory for the interleaver of
size ™ << nbrRow << “"x” << nbrCol << endl;
for (int j=0; j<i; j++)
delete buffer[i];
delete buffer;
buffer=0;
exit (-2) ;

}

for (int i=0;i<nbrCol;i++)
for (int j=0;j<nbrRow;j++)
buffer[i] [§]=0;

}

interleaver: :~interleaver ()

{

if (buffer!=0)

{

for (int i=0; i<nbrCol; i++)
if (bufferfi] 1=0)
delete bufferi];
delete buffer;

}

int interleaver::processData()

{

int i=O,j=0,colIn,rowIn,bitCount;
startProcess:

if ((eof=inBuffer->atEOF()) && inputCount==0 && outputCount==0)
{

outBuffer->setEOF () ;

eof=1;

return eof;

while ((inputCount<bufSize) &&
(inBuffer->testRead() || (eof=inBuffer->atEOF())))

- A43 -

Valid. Syst. for Printed Docs

Appendix A : Source Code

while {

if (SBinBits==0)
{
if (eof)
charIn=0;
else

inBuffer-s>get (charin) ;

SBinBits+=8;

while
rowIn=inputCount/nbrCol;
colIn=inputCount%nbrCol;

rowQut=colIn;
colOut=rowlIn;
if |
buffer [rowOut] [colOut]
else
buffer [rowOut] [colOut]
inputCount++;
SBinBits--;
}

//cout<< “coucou” << endl;

(inputCount>=bufSize) &&
{outputCount<bufsize)

while

{
rowOut=outputCount/nbrRow;
colOut=outputCount%nbrRow;

(SBinBits>0 && inputCount<bufSize)

(charIn& (0xl<< (SBinBits-1))))

=1;

=0;

&& (outBuffer->testWrite())

(SBoutBits<8 && outputCount<bufSize)

SBout= {SBout<<1l) +buffer [rowOut] [colOut] ;

outputCount++;
SBoutBits++;

//cout<< “Gutten tag” << endl;

if

{

(SBoutBits>=8)

SBoutBits-=8;
charOut=8SBout>>8SBoutBits;
outBuffer-s>put (charOut) ;
SBout “=charOut<<SBoutBits;
//cout<< “bonjour” << endl;

}

else
if (SBoutBits<8 && eof)

{

)

- Add -

Valid. Syst. for Printed Docs Appendix A : Source Code

charOut=SBout<< (8-SBoutBits) ;
outBuffer->put (charOut) ;
SBoutBits=0;

//cout<< “hello” << endl;

if (inputCounts>=bufSize && outputCount>=bufSize)
{

inputCount=0;

outputCount=0;

charIn=0;

eof=inBuffer->atEOF () ;
goto startProcess;

return 1;

void interleaver::newData ()
coDec: :newDatal() ;

inputCount=0;
outputCount=0;
charin=0;
for (int i=0;i<nbrCol;i++)
for (int j=0;j<nbrRow;j++)
buffer[i] [1]1=0;

A.8 interleaver rand

// interleaver rand.h
#ifndef interleaver rand h
#idefine interleaver rand_h

#include “coDec.h”
#include <stdlib.h>

class interleaver rand: public coDec

{

int interleaverSize;
int rowOut ;
int colOut;

- A4S -

Valid. Syst. for Printed Docs Appendix A : Source Code

int bufSize;
int nbrChar;
unsigned char*buffer;
unsigned char*touched;
unsigned charchariIn;
unsigned charcharoOut;

unsigned int SBin; // buffer to build symbols (8bits->mbits)
int SBinBits; //number of bits in the symbol buffer

int padBits;

int realBits;

unsigned int SBout; // buffer to build symbols (8bits->mbits)
int SBoutBits; //number of bits in the symbol buffer

int lastWrite;

int bytesToOutput;
int nbrBytesOutput;

int remainingBits;

int inputCount;
int outputCount;

public:
interleaver rand(int Size);

int processbatal() ;

void newbData() ;

}i

#endif

// interleaver rand.cc
#include “interleaver rand.h”

interleaver_rand::interleaver rand(int Size):
interleaverSize (Size) , inputCount (0},

outputCount (0) , charIn(0), bufsize (0), rowOut (0) ,
colout (0),

nbrChar (0), SBin(0), SBinBits(0), SBout(0), SBoutBits(0)

if (Size<=0)
cerr << “The size of the interleaver is negative or null!!!” <<
endl;
exit(-1);

bufSize=Size;
bytesToOutput=bufSize/8;

- Ad6 -

Valid. Syst. for Printed Docs Appendix A : Source Code

remainingBits=bufSize%s;

buffer=new unsigned char[Size]l;
touched=new unsigned char[Size];

if (!buffer || !touched)
{

cerr << “Couldn’t allocate memory for the interleaver of size *
<< Size << endl;

exit (-2);
}

for (int i=0;i<Size;i++)
{
buffer[i]l=0;
touched [i]=0;

}

srand48 (0) ;

}

int interleaver rand::processData()

{

int i=0,3=0,collIn, rowIn,bitCount, index;

startProcess:

if ((eof=inBuffer->atEOF()) && inputCount==0 && outputCount==0)
{

outBuffer->setEQF () ;

eof=1;

return eof;

while ((inputCount<bufSize) &&
(inBuffer->testRead() || (eof=inBuffer->atEOF())))

if (SBinBits==0)
{
if (eof)
charIn=0;
else
inBuffer->get (charin) ;
SBinBits+=8;

}

while (SBinBits>0 && inputCount<bufSize)
{
//index=1rand48 () $interleaverSize;
do

- A4T -

Valid. Syst. for Printed Docs

Appendix A : Source Code

}

index=1rand48 () %interleaverSize;

while (touched[index]) ;

//cerr<< index << endl;

touched [index] =1;

if ((charIn&(0xl<<{(SBinBits-1))))
buffer [index]=1;

else
buffer[index]=0;

inputCount++;

SBinBits--;

//cout<< “coucou” << endl;

while ((inputCount>=bufSize) &&
(outputCount<bufSize) && (outBuffer->testWrite()))

while (SBoutBits<8 && outputCount<bufSize)

{

SBout=(SBout<<1) +buffer [outputCount] ;
outputCount++;

SBoutBits++;

//cout<< “Gutten tag” << endl;

if (SBoutBits>=8)

{

}

else

SBoutBitg-=8;
charOut=SBout>>SBoutBits;
outBuffer->put (charOut) ;
SBout “=charOut<<SBoutRBits;
//cout<< “bonjour” << endl;

if (SBoutBits<8 && eof)

{

charOut=SBout«< (8-SBoutBits) ;
outBuffer->last (charOut, SBoutBits) ;
SBoutBits=0;

//cout<< “hello” << endl;

inputCount>=bufSize && outputCounts>=bufSize)

inputCount=0;
outputCount=0;
charIn=0;

- A48 -

Vahd. Syst. for Printed Docs Appendix A : Source Code

for (i=0;i<interleaverSize;i++)
touched[i]=0;

eof=inBuffer->atEOF () ;
goto startProcess;

return 1;

}

void interleaver rand::newbData/()

{

coDec: :newData () ;

inputCount=0;

outputCount=0;

charIn=0;

for (int i=0;i<interleaverSize;i++)
buffer[il=0;

A.9 deinterleaver_rand

// deinterleaver rand.h
#ifndef _deinterleaver rand h
#define _deinterleaver rand h

#include “coDec.h”
#include <stdlib.h>

class deinterleaver rand: public coDec

{

int interleaverSize;
int rowOut ;

int colout;

int bufSize;

int nbrChar;

unsigned char*buffer;
//unsigned char**touched;
int* table;
unsigned charchariIn;
unsigned charcharOut;

unsigned int SBin; // buffer to build symbols (8bits->mbits)
int SBinBits; //number of bits in the symbol buffer

int padBits;

int realBits;

- A49 -

Valid. Syst. for Printed Docs Appendix A : Source Code

unsigned int SBout; // buffer to build symbols (8bits->mbits)
int SBoutBits; //number of bits in the symbol buffer
int lastWrite;

int bytesToOutput;
int nbrBytesOutput;
int remainingBits;

int inputCount;
int outputCount;

public:
deinterleaver rand(int Size);

int processbDatal(};
int initTable();
int printTable{);

void newDatal() ;

}i

#endif

// deinterleaver rand.cc
#include “deinterleaver_rand.h”

deinterleaver rand::deinterleaver_rand(int Size):
interleaverSize (Size), inputCount (0),
outputCount (0) , charIn(0), bufsSize (0), rowQut (0) ,
colout (0),
nbrchar(0), SBin(0), SBinBits(0), SBout (0), SBoutBits(0)

if (Size<=0)

{

endl;

}

cerr << “The size of the interleaver is negative or nulli!!” <<

exit(-1);

bufSize=Size;
bytesToOutput=bufSize/8;
remainingBits=bufSize%8;

buffer=new unsigned char[Size];
table=new int [Size];

if (tbuffer || !table)

{

cerr << “Couldn’'t allocate memory for the interleaver of size "
<< Size << endl;

- A50 -

Valid. Syst. for Printed Docs Appendix A : Source Code

exit(-2);

for (int i=0;i<Size;i++)
{
buffer[i]=0;
table[i]=0;

}

srand48{0) ;
initTable () ;

}

int deinterleaver_ rand::processData()

{

int i=0,3=0,colIn,rowIn,bitCount, index;
startProcess:

if ((eof=inBuffer->atEOF()) && inputCount==0 && outputCount==0)
outBuffer->setEOF () ;
eof=1;
return eof;

while ((inputCount<bufSize) &&
(inBuffer->testRead() || (eof=inBuffer->atEOF())))

if (SBinBits==0)
{
if (eof)
charIn=0;
else
inBuffer->get (charIn) ;
SBinBits+=8;

}

while (SBinBits>0 && inputCount<bufSize)

{

index=table [inputCount] ;

if { (charIn&(0xl<<(SBinBits-1))))
buffer[index]=1;
else
buffer [index] =0;
inputCount++;
SBinBits--;
}

//cout<< “coucou” << endl;

- A51 -

Valid. Syst. for Printed Docs Appendix A : Source Code

while ((inputCounts>=bufSize) &&
(outputCount<bufSize) && (outBuffer->testWrite()))

while (SBoutBits<8 && outputCount<bufSize)
SBouts= (SBout<<1) +buffer [outputCountl ;
outputCount++;
SBoutBits++; .
//cout<< “Gutten tag” << endl;

if (SBoutBits>=8)
SBoutBits-=8;
charOut=8Bout>>SBoutBits;
outBuffer->put (charOut) ;
SBout “=charOut<<SBoutBits;
//cout<< “bonjour” << endl;

else

if (SBoutBits<8 && eof)
charOut=8Bout<< {8-SBoutBits) ;
outBuffer->put (charOut) ;
SBoutBits=0;
//cout<< “hello” << endl;

if (inputCounts>=bufSize && outputCount>=bufsSize)

inputCount=0;
outputCount=0;
charin=0;

eof=inBuffer->atEQOF () ;
initTable() ;
goto startProcess;

return 1;

}

void deinterleaver_ rand::newData ()

{

coDec: :newData () ;

- A52 -

Valid. Syst. for Printed Docs Appendix A : Source Code

inputCount=0;

outputCount=0;

charIn=0;

for (int i=0;i<interleaverSize;i++)
buffer[i]=0;

}

int deinterleaver rand::initTable()

{

int i,3;

int index;

int rowQut, colOut;
int row, col;

for (i=0;i<interleaverSize;i++)
table[il=-1;

for (i=0;i<interleaverSize;i++)
{
//index=1rand48 () $interleaverSize;
do
index=1rand48 () %interleaverSize;
while (tablelindex]i=-1);
//cerr<< index << endl;

table[index]=1i;

int
deinterleaver rand::printTable ()
for (int i1=0;i<interleaverSize;i++)
cout << tablel[i] << ™ %;
cout << endl;
return 1;

A.10 interleaver8x

// interleaver8x.h
#ifndef interleaver8x h
ffdefine _interleaver8x_h

#include “RS.h”
#include “coDec.h”

class interleaver8x: public coDec

- A53 -

Valid. Syst. for Printed Docs Appendix A : Source Code

int interleaverSize;
int rowOut ;

int colOut;

int bufSizeinChar;
int nbrChar;

unsigned char**puffer;
unsigned charcharin;

int inputCount;
int outputCount;

public:
interleaver8x(int Size);

int processbData() ;

void newData () ;

}i

#endif

// interleaver8x.cc
#include “interleaver8x.h”

interleaver8x: :interleaver8x(int Size) :
interleaverSize (Size), inputCount (0), outputCount (0),

charIn(0), DbufSizeinChar(0),
rowOut (0), colOut(0),

nbrChar (0)
{
if (Size<=0)
{
cerr << “The size of the interleaver is negative or null!!!” <<
endl;
exit (-1);
}
if ({(Size%8)!=0)
{
cerr << “The size of the interleaver should be a multiple of 8,
Y << 8Size;
cerr << “ is not a multiple of 8” << endl;
exit(-3);

nbrChar=Size/8;
bufSizeinChar=nbrChar*Size;

buffer=new unsigned char* [Size];

- A54 -

Valid. Syst. for Printed Docs Appendix A : Source Code

if (lbuffer)

{

cerr << “Couldn’t allocate memory for the interleaver of size ™
<< 8ize << endl;
exit (-2);

for (int 1i=0;i<Size;i++)

{

puffer [i] =new unsigned char [nbrChar] ;

if ('buffer{il)

{

cerr << "Couldn’t allocate memory for the interleaver of
size “ << Size << endl;
exit (-2);

for (int i=0;i<Size;i++)
for (int j=0;j<nbrChar;j++)
buffer[i] [§]1=0;

}

int interleaver8x::processDatal()

{

int i=0,3j=0,collIn, rowlIn,bitCount;
startProcess:

if ((outputCounts>=bufSizeinChar && inBuffer->atEOF()) || eof)

{
outBuffer->setEOF () ;
eof=1;
return eof;

while (teof)

{

while ((inputCount<bufSizeinChar) && (inBuffer->testRead()))

{

inBuffer->get (charlin) ;

rowIn=inputCount/nbrChar;
colIn= (inputCount%nbrChar)<<3;

for (bitCount=7;bitCount>=0;bitCount--)

{

rowQut=colln;

- A55 -

Valid. Syst. for Printed Docs Appendix A : Source Code

colOut=rowln;

buffer [rowOut] [colOut/8] +=((charIn>>bitCount)&l) <<
(7-colOut%s8) ;
colIn++;
}
inputCount++;

}

/*

The buffer used to be reversed so had to push the data as if
Zero

now the data are put at the right place right away not pushed
in

if ((inputCount<bufSizeinChar) && (eof=inBuffer->atEOF()))
{
for (i=0;i<8;i++)
buffer[i] <<= (8-inputCount) ;
inputCount=8;

}
*/

while ((inputCounts=bufSizeinChar || inBuffer->atEOF()) &&
(outputCount<bufSizeinChar) &&

(outBuffer->testWrite()))
outBuffer->put (buffer [outputCount/
nbrChar] [(outputCount++) $nbrChax}) ;

if (inputCounts>=bufSizeinChar && outputCounts>=bufSizeinChar)
inputCount=0;
outputCount=0;
charIn=0;

for (i=0;i<interleaverSize;i++)
for (j=0;j<nbrChar;j++)
buffer[i] [j1=0;

eof=inBuffer->atEOF () ;

if (outputCount>=bufSizeinChar && inBuffer->atEOF())

{

outBuffer->setEOF () ;
eof=1;
return eof;

return 1;

}

return 1;

- A56 -

Valid. Syst. for Printed Docs

Appendix A : Source Code

void interleaver8x::newData ()

{

coDec: :newData () ;

inputCount=0;
outputCount=0;

charlIn=0;

for (int
for

i=0;i<interleaverSize;i++)
{int j=0;j<nbrChar;j++)
buffer{i] [j]=0;

A.11 convolEncoder

// convolEncoder.h
#ifndef _convolEncoder h
#define _convolEncoder_h

#include “coDec.h”

//#define _debug

class convolEncoder: public coDec

{

unsigned
unsigned
int

unsigned

int

int

int

unsigned

unsigned
FSR

char chariIn;
char redundBits;

redundCount ;
int FSR;
_no0; // block length
_kO0; // information length
_N; // Constraint length
intgenerator; // polynomial generator

intmask; // mask to clear the output redundant bit from the

int inputCount;
int outputCount;
char lastDataln;
char lastDataOut;

unsigned

public:

chartempChar;

convolEncoder (int n0, int kO, int N);

- A5T -

Valid. Syst. for Printed Docs

Appendix A : Source Code

int processbatal() ;

void newData () ;

}i
#tendif

// convolEncoder.cc
#include “convolEncoder.h”
#include “debugger.h”
#include “debug.h”

convolEncoder: :convolEncoder (int n0, int k0, int N):
_no0(no0), kOo(k0), N(N),
charIn(0),redundBits (0),FSR(0), inputCount (0),
outputCount (0), lastDataOut (0), lastDataIn(0),

tempChar (0)

// generator polynomials list for (2,1) self-orthogonal codes
// The index is the constraint length
// 1if the generator is 0, it is not defined

static unsigned int

generators_list[}={0,0,0x3,0,0,0,0,0%x53,0,0,0,0,0,0,0,0,0,0,0%28413};

if (n0<=0]] _k0<=0 || _N<=0)

{

cerr << “"The Convolutional code parameters have to be positive”

<< endl;
exit (-1);
}
if (_N>18 || generators_list[Nl==0 || no!=2 || k0!=1)
{
Ccerr << “This dimplementation only supports (2,1) self-

orthogonal codes with constraint length 2, 7 or 18" << endl;

exit (-2);

}

generator=generators_ list[NJj;

mask=(l<<_N}-1;
#ifdef _debug
cout << “mask:”;

binaire (mask, cout,32) ;

cout << endl;

cout << “generator:”;
binaire(generator, cout, 32) ;

cout << endl;
#endif

int convolEncoder: :processDatal()

- A58 -

Valid. Syst. for Printed Docs Appendix A : Source Code

eof)

int 1i=0;
int inNbrBits;
startProcess:

eof=inBuffer->atEOF () ;

if ((lastDataOut) && (eof) && (inputCount==0) && (outputCount==0))
{

outBuffer->setEOF () ;

return eof;

}

// This loop does atomic input, processing and output.
while ((inputCount==0) &&

((inBuffer->testRead()) || (lastDataOut<= N &&
) &&

(outBuffer->testWrite()>=2))

redundBits=0;

if (lastDataOut<= N && eof)
charIin=0;
lastDataOut+=8;

else

inNbrBits=inBuffer->get (charIn) ;
if (inNbrBits!=8)
{
lastDataOut+=(8-inNbrBits) ;
eof=1;
}
1
#ifdef _debug
cout << endl << “data:” << hex << (int)charIn << endl;
#endif
outBuffer-s>put (charln) ;
for (i=7;i>=0;1i--)
{
FSR”™=generator* ((charIn>>i)&l) ;
#ifdef _debug
cout << “FSR=";
binaire (FSR, cout, 32) ;
cout << endl;
cout << “input bit:” << hex << (int) (charIn) << endl;
#endif
FSR<<=1;
redundBits<<=1;
redundBits+=(FSR>> N) ;

- A59 -

Valid. Syst. for Printed Docs Appendix A : Source Code

#ifdef _debug

cout << “redundBits=";
binaire (redundBits, cout) ;
cout << endl;

#endif

FSR&=mask;

}

outBuffer-s>put (redundBits) ;

}

// The two following loops execute the previous loop breaking it
down into

// dinput loop, processing loop, and output loop so that if the
output is

// not ready, the processing and input can still happen. This is
just

// a wminor tweaking though

/*while ((inputCount<l) && ((inBuffer->testRead () >0) ||
(tlastDataOut && eof)))

{

if (!lastDataOut && eof)
{
charIn=0;
lastDataOut=1;
!
else
inBuffer->get (charin) ;
#ifdef debug
cout << “data:” << hex << (int)charIn << endl;

#endif
inputCount++;
}
while ((inputCount>=1) && (outputCount<2) && (outBuffer-
>testWrite()))

{

switch (outputCount)
{
case 0:
outBuffer-s>put (chariIn) ;
break;
case 1:
redundBits=0;

for (i=0;i<8;i++)

{
FSR"=generator* (charIn&l) ;
FSR<<=1;
redundBits=redundBits| ((FSR>> N)<<i);
#ifdef _debug

- A60 -

Valid. Syst. for Printed Docs Appendix A : Source Code

cout << “redundBits=";
binaire (redundBits, cout) ;
cout << endl;

#endif

FSR&=0X7F;

charIn>>=1;

}

outBuffer->put (redundBits) ;

break;
1
outputCount++;
}*/
if ((inputCount>=1) && (outputCount>=2))

inputCount=0;
outputCount=0;

goto startProcess;

}

eof=inBuffer->atEOF () ;

if ((lastDataOut) && (eof) && {(inputCount==0) && (outputCount==0))
{

outBuffer->setEOF () ;

return eof;

void convolEncoder: :newDatal()
coDec: :newData () ;

charIn=0;
redundBits=0;
FSR=0;
inputCount=0;
outputCount=0;
lastDataOut=0;
lastDataln=0;

A.12 convolDecoder

// convolDecoder.h
#ifndef _convolDecoder h
#define convolDecoder h

- A6l -

Valid. Syst. for Printed Docs

Appendix A : Source Code

#include

“coDec.h”

//#define debug

class convolDecoder: public coDec

{

// block length
// information length
// Constraint length

intgenerator; // polynomial generator
intfeedbackVector; // feedback vector of the syndromes
intmask; // mask to clear the output redundant bit from the

unsigned char infoBits;
unsigned char redundBits;
unsigned char infoBit;
unsigned int fifo;
unsigned char outFifo;
unsigned int FSR1;
unsigned char outFSR1;
unsigned int FSR2;
unsigned int feedback;
int _no;
int _k0;
int _N;
unsigned
unsigned
unsigned

FSR
unsigned intmajorityThreshold;
unsigned intsyndromes;
unsigned intsyndrCount;
unsigned intsyndrMask;
unsigned int charOut;
int bitsOut;
int inputCount;
int outputCount;
public:
convolbecoder (int n0, int kO,
int processDatal() ;
void newData () ;

#endif

// convolDecoder.cc

#include
#include

“convolDecoder.h”
“debugger.h”

#include “debug.h”

convolDecoder: :convolDecoder (int no,

int N);

int kO,

_n0{no0),_k0(k0), N(N),

int N):

A62 -

Valid. Syst. for Printed Docs Appendix A : Source Code

infoBits(0) ,redundBits (0),£fifo(0),FSR1(0) ,FSR2(0},
feedback (0) , charOut (0), inputCount (0) , outputCount (0),
infoBit (0) ,bitsOut (1-N)

// generator polynomials list for (2,1) self-orthogonal codes
// The index is the constraint length
// 1if the generator is 0, it is not defined
static unsigned intgenerators list|[]=
{0,0,0x3,0,0,0,0,0x53,

0,0,0,0,0,0,0,0,0,0,0x28413};
static unsigned intfeedback_vector listl(]l=
{0,0,0x1,0,0,0,0,0x13,

0,0,0,0,0,0,0,0,0,0,0x18413};

if (n0<=0 || kO0<=0 || _N<=0)
{

cerr << “The Convolutional code parameters have to be positive”

<< endl;

exit(-1);
}
if (N>18 || generators list[Nl==0 || nO!=2 || kO!=1)
{

cerr << “This implementation only supports (2,1) self-

orthogonal codes with constraint length 2, 7 or 18" << endl;
exit (-2);

}
generator=generators_list [NJ;
feedbackVector=feedback wvector list[N];
mask=(l<< N)-1;
unsigned intthresholdMask=1;
majorityThreshold=0;
for (int i=0;i< N;i++)
{
if ((generator&thresholdMask) !=0)
majorityThreshold++;
thresholdMask<<=1;
}
majorityThreshold>>=1;
#ifdef debug
cout << "majority threshold: “ << majorityThreshold << endl;
#endif

}

int convolDecoder: :processData()

int i=0;
int pos=0;

- A63 -

Valid. Syst. for Printed Docs Appendix A : Source Code

int temp;
int nbrToRead=0;

startProcess:
//if ((inputCount<2) && ((bitsOut- N+1)<=0) && (eof))
if ((inputCount<2) && (eocf))
{
outBuffer->setEOF () ;
return eof;

}

while ((nbrToRead=inBuffer->testRead()) &&
(outBuffer->testWrite()))
{

number

// Those two test are there to handle corrupt files with odd

// of charaters.
if (nbrToRead==1 && inputCount==0)
{
inBuffer->get (infoBits) ;
break;

}

if (nbrToRead==1 && inputCount==1)
{
inBuffer->get (redundBits) ;
break;
1
inBuffer->get (infoBits) ;
inBuffer->get (redundBits) ;
#ifdef debug
cout << endl << endl << “infoBits=";
binaire(infoBits, cout);
cout << endl;
cout << “redundBits=";
binaire (redundBits, cout) ;
cout << endl;
cout << “data:” << hex << (int)infoBits << endl;
#endif
for (pos=7;pos>=0;pos--)
{
infoBit=(infoBits>>pos)&l;
feedback=0;
// fifo input & output
fifo+=infoBit;
#ifdef _debug
cout << “fifo=";
binaire (fifo, cout, 32);
cout << endl;
#endif
fifo<<=1;

- A64 -

Valid. Syst. for Printed Docs Appendix A : Source Code

outFifo=fifo>> N;
fifo&=mask;
#ifdef debug
cout << “outFifo=";
cout << “"\t\t” << (int)outFifo;
cout << endl;
#tendif
// upper FSR input & output
FSR1"=generator*infoBit;
#ifdef _debug
cout << “FSR1=";
binaire (FSR1, cout, 32) ;
cout << endl;
#endif
FSRl<<=1;
outFSR1=FSR1>>_ N;
#ifdef _debug
cout << “outFSR1=";
cout << (int)outFSR1;
cout << endl;
cout << “redundant bit=";
cout << (int) (redundBits&l) ;
cout << endl;
#endif
FSR1&=mask;
// lower FSR input & output
#ifdef _debug
cout << “FSR2=";
binaire (FSR2, cout) ;
cout << endl;
#endif
FSR2+=((redundBits>>pos) &1) "outFSR1;
#ifdef _debug
cout << “FSR2=";
binaire (FSR2, cout) ;
cout << endl;
#endif
syndromes=FSR2&generator;
syndrCount=0;
syndrMask=1;
for (i=0;i<_N;i++)
{
if ((syndromes&syndrMask) !=0)
syndrCount++;
syndrMask<<=1;

}

#ifdef _debug

cout << “syndrome count: “ << syndrCount << endl;
#endif
if (syndrCount>majorityThreshold)
feedback=1;

- A65 -

Valid. Syst. for Printed Docs Appendix A : Source Code

FSR2"=feedbackVector*feedback;
FSR2<<=1;
FSR2&=mask;
if (bitsOut>=0)
{
charOut<<=1;
charOut+= (outFifo feedback) ;
#ifdef _debug
cout << “charOut=";
binaire (charOut, cout, 32);
cout << endl;
#endif
}
bitsOut++;
#ifdef _debug
cout << “original bit:” << (int)outFifo << endl;
cout << “correction:” << (int)feedback << endl;
cout << “aftexr correction:” << (int) (outFifo feedback) <<
endl ;
#fendif
}
if (bitsOut>=8)
{
bitsOut-=8;
outBuffer-s>put (charOut>>bitsOut) ;
#ifdef _debug
cout << “output:”;
binaire (charOut&0xFF, cout) ;
cout << endl;
cout << “output:” << hex << (charOut>>bitsOut) << endl;
#endif
//charOuté&= (1<< (bitsOut+1)-1);

}

// This is to deal with the case when there is not an even number
// of characters in the input file so program does not loop forever
eof=inBuffer->atEOF () ;

if ({(inputCount>=2) && (outputCount>=1))

{
inputCount=0;
outputCount=0;

goto startProcess;

}

void convolDecoder: :newbData ()

{

coDec: :newData () ;

- A66 -

Valid. Syst. for Printed Docs Appendix A : Source Code

infoBits=0;
redundBits=0;
fifo=0;
FSR1=0;
FSR2=0;
feedback=0;
charOut=0;
inputCount=0;
outputCount=0;
infoRit=0;
bitsOut=1- N;

A.13 Interleav_symb

// Interleav symb.h
#ifndef interleav _symb h
#define _interleav_symb h

#include “cobDec.h”
class interleav_symb: public cobDec

{
// symbol Size

int m;

// interleaver size=n*n; interleaverSize=n
int interleaverSize;

int rowOut ;

int colOut;

// n*n

int bufSizeinChar;

unsigned char**gsymbBuffer;

unsigned long int SBin;// buffer to build symbols (8bits->mbits)
int SBinBits;//number of bits in the symbol buffer

unsigned long int SBout;// buffer to build symbols (8bits->mbits)
int SBoutBits;//number of bits in the symbol buffer

int inputCount;
int outputCount;

public:
interleav _symb(int symblSize, int Size);

int processbatal() ;

int newbatal() ;

- A67 -

Valid. Syst. for Printed Docs Appendix A : Source Code

}i
#endif

// Interleav_symb.cc
#include “interleav symb.h”

interleav_symb::interleav_ symb(int symbolSize,int Size):
- interleaverSize (8ize) , inputCount (0),
outputCount (0) ,
bufSizeinChar (0), rowOut(0), colOout(0),
SBin(0), SBinBits(0),SBout (0),SBoutBits (0),
m{symbolSize)

int nbrBits;

if (Size<=0 || symbolSize<=0)
{
cerr << “The size of the interleaver or the symbols is negative
or nulliil”
<< endl;
exit(-1);

!
bufSizeinChar=Size*Size;
symbBuffer=new unsigned char*[Size];

if (!symbBuffer)
cerr << "“Couldn’t allocate memory for the interleaver of size ™
<< 8ize << endl;
exit (-2);

3

for (int i=0;i<Size;i++)

{

symbBuffer [i] =new unsigned char [Size];

if (!symbBuffer[i])
{
cerr << “Couldn’'t allocate memory for the interleaver of
size ™ << Size << endl;
exit (-2);
}

for (int i=0;i<Size;i++)
for (int j=0;j<Size;j++)
symbBuffer[i] [§1=0;

- A68 -

Valid. Syst. for Printed Docs Appendix A : Source Code

int interleav_symb::processData/()
static int symbol=0;
static unsigned long intcharBuffer=0, output=0;
static unsigned chartempChar=0;

int i=0,3=0,collIn,rowiIn,bitCount;

if {!inBuffer || !outBuffer)
cerr << “Please assign me with some input and output *

<< “buffers before asking me to process data” <<
endl;
return -1;

dataInput_ Process:
eof=inBuffer->atEOF () ;
if (inputCount==0 && outputCount==0 && SBinBits==0 && SBoutBits<=0
&& eof)
{
outBuffer->getEOF () ;
return 1;

while ((inputCount<bufSizeinChar) && (inBuffer->testRead() || eof

if (SBinBits<m)
{
/* you have no more data to give and the rest is padded to zero
automatically
when the buffer is originally initiallized */
if (eof)
{
SBin=SBin<< (m-SBinBits) ;
SBinBits=m;
inputCount=bufSizeinChar-1;

else
inBuffer->get (tempChar) ;

SBin= (SBin<<8) +tempChar;
SBinBits+=8;

while (SBinBits>=m)

{

- A69 -

Valid. Syst. for Printed Docs Appendix A : Source Code

if (inputCounts>=bufSizeinChar)

break;
// extract symbol from symbol buffer (SBin):
SBinBits-=m;
symbol=8Bin>>SBinBits;
// do your symbol interleaving here. ..
rowIn=inputCount/interleaverSize;
colIn=inputCount%interleaverSize;
rowOut=collIn;
colOut=rowlIn; .
symbBuffer [rowOut] [colOut]=symbol;

SBin”=symbol<<SBinBits;
inputCount++;

while (inputCounts>=bufSizeinChar && outputCount<bufSizeinChar &&
(outBuffer-

stestWrite ()))

{

while (SBoutBits<8)

{
if (outputCount>=bufSizeinChar)

break;

rowOut=outputCount/interleaverSize;
colOut=outputCount%interleaverSize;
SBout= (SBout<<m) +symbBuffer [rowOut] [colOut] ;
SBoutBits+=m;
outputCount++;

if (SBoutBits>=8)
{
SBoutBits-=8;
output= (char) (SBout>>SBoutBits) ;
outBuffer-s>put ((unsigned char)output);
SBout“=output<<SBoutBits;
}
}
// after this stage SBoutBits is strictly less than 8

// if at end of file and still some bits in SBout, output them
if ((inputCounts>=bufSizeinChar) && (outputCounts=bufSizeinChar)
&& (SBinBits==0) && (SBoutBits>0) && {eof))

1f (outBuffer->testWrite())

{
output=(char) (SBout<< (8-SBoutBits));
outBuffer->put ((unsigned char)output) ;
SBoutBits=0;

Vahd. Syst. for Printed Docs Appendix A : Source Code

if (inputCount>=bufSizeinChar && outputCount>=bufSizeinChar)

{

inputCount=0;
outputCount=0;

for (i=0;i<interleaverSize;i++)
for (j=0;j<interleaverSize;j++)
symbBuffer[i] [j]=0;
eof=inBuffer->atEOF () ;

goto datalnput Process;

return 1;

interleav_symb: :newData/()

{

int i,3;

if (inputCount!=0 && (!eof))
cerr << “Warning from Reed Solomon encoder: new data”
<< " requested while the previous data were still
<< “being processed.” << endl;

w

coDec: :newbhata () ;

SBin=0;
SBinBits=0;
SBout=0;
SBoutBits=0;
inputCount=0;
outputCount=0;

for (int i=0;i<interleaverSize;i++)
for (int j=0;j<interleaverSize;j++)
symbBuffer[i] [§]=0;

A.14 random_test

#include “ran4.h”
#ifdef cplusplus
extern “C” {

- A7l -

Valid. Syst. for Printed Docs Appendix A : Source Code

#endif /* cplusplus */

#define NITER 4
#define NBRIT 100000

long idums=0, idum=1;

void psdes(unsigned long *lword, unsigned long *irword)
{
unsigned long i,ia,ib,iswap,itmph=0,itmpl=0;
static unsigned longcl [NITER] ={
0xbaag6887L,
0xlel7d32cL,
0x03bcdc3cL,
0x0£33d1b2L};
static unsigned long c2 [NITER] ={
0x4b0£f3b58L,
0xe874£f0c3L,
0x6955c5a6L,
0x55a7cadéL};

for (i=0;i<NITER;i++) {
ia=(iswap=(*irword)) ~ cll[il;
itmpl = ia & OxXffff;
itmph = ia >> 16;
ib=itmpl*itmpl+ ~ (itmph*itmph) ;
*irword= (*1lword) ~ (((ia = (ib >> 16) |
((ib & Oxffff) << 16)) ~ c2{i])+itmpl*itmph);
*lword=iswap;

void sran4 (long seedval)

idums=seedval;
idum=1;

}

unsigned long nran4 (long* state0,long* statel)
{

//void psdes (unsigned long *lword, unsigned long
*irword) ;

unsigned long irword,itemp, lword;

//extern long idums, idum;

static unsigned long jflone 0x3£800000;

static unsigned long jflmsk = Ox007fffff;

irword=(*statel) ;
lword=(*state0) ;

psdes (&lword, &irword) ;
++ (*statel) ;

- A72 -

Valid. Syst. for Printed Docs Appendix A : Source Code

return irword;

}

unsigned long lran4 ()
{

//void psdes (unsigned long *lword, unsigned long
*irword) ;

unsigned long irword,itemp, lword;

//extern long idums,idum;

static unsigned long jflone = 0x3f800000;

static unsigned long jflmsk OxO007fffff;

It

if (idum < 0) {
idums = -idum;
idum=1;
}
irword=idum;
lword=idums;
psdes (&lword, &irword) ;
++idum;
return irword;

}

float fran4 ()
{

//void psdes (unsigned long *lword, unsigned long
*irword) ;

unsigned long irword,itemp, lword;

//static long idums = 0;

static unsigned long jflone = 0x3£800000;

static unsigned long jflmsk = OxO007fffff;
irword=idum;

lword=idums;

psdes (&lword, &irword) ;

itemp=jflone | (jflmsk & irword);

++idum;
return (*(float *)&itemp)-1.0;

}

float eran4 (long* state0l, long* statel)
{
//void psdes (unsigned long *lword, unsigned long
*irword) ;
unsigned long irword,itemp,lword;
//extern long idums,idum;
static unsigned long jflone
static unsigned long jflmsk

0x3£800000;
OXQO07££££f£f;

irword=(*statel) ;
lword=(*state0) ;

- A73 -

Valid. Syst. for Printed Docs Appendix A : Source Code

psdes (&1lword, &irword) ;
itemp=jflone | (jflmsk & irword);
++ (*statel) ;

return (*(float *)&itemp)-1.0;

}

#ifdef cplusplus

}

#endif /* _ cplusplus */

/*

main(int argc, char** argv)

{
long int number ;
unsigned longresult;
float result2;
double count {3];
double countup8 8} ;
double Xsqg;
int i;

count [0] =0;
count [1]=0;
count [2]1=0;
for (i=0;1i<8;i++)
countup8{i]=0;
number=-1;
dran4 (&number) ;
number=1;
while (number< (NBRIT+1))
{
result=dran4 (&number) ;
count [result%$3] ++;
countup8 [result>>29] ++;
} _
printf (*%.0f %.0f %.0f\n”,count [0],count[1],count(2]);
xsqg= (count [0] -NBRIT/3) * (count [0] -NBRIT/3)/ (NBRIT/3)+ {count [1] -
NBRIT/B)*(Count[l]—NBRIT/B)/(NBRIT/3)+(count{2]-NBRIT/B)*(Count[2]—
NBRIT/3)/ (NBRIT/3) ;
printf(*%.20£\n"”,xsq) ;
Xxsqg=0;
for (i=0;1i<8;i++)
xsg+=(countup8 [1] -NBRIT/8) * (countup8 [i] -NBRIT/8) / (NBRIT/8) ;
printf (“%.20£f\n",xsq) ;

- A74 -

Valid. Syst. for Printed Docs

Appendix A : Source Code

A.15 gasdev

// gasdev.cc

#include <stdio.h>
#include <iostream.h>
#ifdef _unix

#include <stdlib.h>

ftelse

#include “rand48.h”
#endif

#include
#include
#include
#include

“gasdev.h”
“ran4 .h”
<math.h>
<time.h>

float gasdev ()

{

static int diset=0;
static float gset;

static long numberl=1, number2=100000000;

float fac,r,vl,v2;

if

{

else

(iset == 0)

do
vli=2.0*fran4 ()-1.0;
v2=2.0*fran4 ()-1.0;
r=Vv3i*v1i+v2*v2;
while (r >= 1.0);
//cout<< r << endl;

fac=sqgrt(-2.0*log(x) /x);
gset=vl*fac;

iset=1;

return v2*fac;

iset=0;
return gset;

void initSeed()

{

long

int randSeed;

AT75

Valid. Syst. for Printed Docs

Appendix A : Source Code

time (&randSeed) ;
//sran4 (0) ;
sran4 (randSeed) ;

float gasdev48()

{

void

static int iset=0;
static float gset;
float fac,r,vl,v2;

if (iset == 0)

{

v1l=2.0*drand48()-1.0;
v2=2.0*drand48()-1.0;
Y=v1*v1+v2*v2;

}

while (r >= 1.0);

fac=sqrt (-2.0*log(xr) /1) ;
gset=vli*fac;

iset=1;

return v2*fac;

else

iset=0;
return gset;

initSeed48 ()

unsigned long int randSeed;
time ((long int*)&randSeed) ;
srand48 (randSeed) ;

A.16 factor

#ifndef _factor h
#define _factor h

int

factor {(unsigned long number, unsigned

maxNbrFactor) ;

int

factors|(],

unsigned

- A76 -

Valid. Syst. for Printed Docs Appendix A : Source Code

#endif

#include <iostream.h>
#include <«stdio.h>
#include “factor.h”

int factor(unsigned long number, unsigned int factors([], unsigned
maxNbrFactor)

int primeTableIndex=0, factorIndex=0;
static unsigned primeTable(] =
2, 3, 5, 7, 11, 13, 17, 19, 23,

29, 31, 37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 8%, 97, 101, 103,
107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307,
311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419,
421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523,
541, 547, 557, 563, 569, 571, 577, 587, 593,
599, 601, 607, 613, 617, 619, 631, 641, 643,
647, 653, 659, 661, 673, 677, 683, 691, 701,
709, 719, 727, 733, 739, 743, 751, 757, 761,
769, 773, 787, 797, 809, 811, 821, 823, 827,
829, 839, 853, 857, 859, 863, 877, 881, 883,
887, 907, 911, 919, 929, 937, 941, 947, 953,
967, 971, 977, 983, 991, 9397, 1009,1013,1019,
1021,1031,1033,1039,1049,1051,1061,1063,1069,
1087,1091,1093,1097,1103,1109,1117,1123,1129,
1151,1153,1163,1171,1181,1187,1193,1201,1213,
1217,1223,1229,1231,1237,1249,1259,1277,1279,
1283,1289,1291,1297,1301,1303,1307,1319,1321,
1327,1361,1367,1373,1381,1399,1409,1423,1427,
1429,1433,1439,1447,1451,1453,1459,1471,1481,
1483,1487,1489,1493,1499,1511,1523,1531,1543,
1549,1553,1559,1567,1571,1579,1583,1597, 1601,
1607,1609,1613,1619,1621,1627,1637,1657,1663,
1667,1669,1693,1697,1699,1709,1721,1723,1733,
1741,1747,1753,1759,1777,1783,1787,1789,1801,
1811,1823,1831,1847,1861,1867,1871,1873,1877,
1879,1889,1901,1907,1913,1931,1933,1949,1951,
1973,1979,1987,1993,19897,1999,2003,2011,2017,
2027,2029,2039,2053,2063,2069,2081,2083,2087,
2089,2099,2111,2113,2129,2131,2137,2141,2143,
2153,2161,2179,2203,2207,2213,2221,2237,2239,

- A7T -

Valid. Syst. for Printed Docs Appendix A : Source Code

2243,2251,2267,2269,2273,2281,2287,2293,22387,
2309,2311,2333,2339,2341,2347,2351,2357,2371,
2377,2381,2383,2389,2393,2399,2411,2417,2423,
2437,2441,2447,2459,2467,2473,2477,2503,2521,
2531,2539,2543,2549,2551,2557,2579,2591,2593,
2609,2617,2621,2633,2647,2657,2659,2663,2671,
2677,2683,2687,2689,2693,2699,2707,2711,2713,
2719,2729,2731,2741,2749,2753,2767,2777,2789,
2791,2797,2801,2803,2819,2833,2837,2843,2851,
2857,2861,2879,2887,2897,2903,2909,2917,2927,
2939,2953,2957,2963,2969,2971,29899,3001,3011,
3019,3023,3037,3041,3049,3061,3067,3079,3083,
3089,3109,3119,3121,3137,3163,3167,3169,3181,
3187,3191,3203,3209,3217,3221,3229,3251,3253,
3257,3259,3271,3299,3301,3307,3313,3319,3323,
3329,3331,3343,3347,3359,3361,3371,3373,3389,
3391,3407,3413,3433,3449,3457,3461,3463,3467,
3469,3491,3499,3511,3517,3527,3529,3533,3539,
3541,3547,3557,3559,3571,3581,3583,3593,3607,
3613,3617,3623,3631,3637,3643,3659,3671,3673,
3677,3691,3697,3701,3709,3719,3727,3733,3739,
3761,3767,3769,3779,3793,3797,3803,3821,3823,
3833,3847,3851,3853,3863,3877,3881,3889,3907,
3911,3917,3919,3923,3929,3931,3943,3947,3967,
3989,4001,4003,4007,4013,4019,4021,4027,4049,
4051,4057,4073,4079,4091,4093,4099,4111,4127,
4129,4133,4139,4153,4157,4159,4177,4201,4211,
4217,4219,4229,4231,4241,4243,4253,4259,4261,
4271,4273,4283,4289,4297,4327,4337,4339,4349,
4357,4363,4373,4391,4397,4409,4421,4423,4441,
4447,4451,4457,4463,4481,4483,4493,4507,4513,
4517,4519,4523,4547,4549,4561,4567,4583,4591,
4597,4603,4621,4637,4639,4643,4649,4651,4657,
4663,4673,4679,4691,4703,4721,4723,4729,4733,
4751,4759,4783,4787,4789,4793,4799,4801,4813,
4817,4831,4861,4871,4877,4889,4503,4909,4919,
4931,4933,4937,4943,4951,4957,4967,4969,4973,
4987,4993,4999,5003,5009,5011,5021,5023,5039,
5051,5059,5077,5081,5087,5099,5101,5107,5113,
5119,5147,5153,5167,5171,5179,5189,5197,5209,
5227,5231,5233,5237,5261,5273,5279,5281,5297,
5303,5309,5323,5333,5347,5351,5381,5387,5393,
5399,5407,5413,5417,5419,5431,5437,5441,5443,
5449,5471,5477,5479,5483,5501,5503,5507,5519,
5521,5527,5531,5557,5563,5569,5573,5581,5591,
5623,5639,5641,5647,5651,5653,5657,5659,5669,
5683,5689,5693,5701,5711,5717,5737,5741,5743,
5749,5779,5783,5791,5801,5807,5813,5821,5827,
5839,5843,5849,5851,5857,5861,5867,5869,5879,
5881,5897,5903,5923,5927,5939,5953,5981,5987,
6007,6011,6029,6037,6043,6047,6053,6067,6073,

- A78 -

Valid. Syst. for Printed Docs Appendix A : Source Code

6079,6089,6091,6101,6113,6121,6131,6133,6143,
6151,6163,6173,6197,6199,6203,6211,6217,6221,
6229,6247,6257,6263,6269,6271,6277,6287,6299,
6301,6311,6317,6323,6329,6337,6343,6353,6359,
6361,6367,6373,6379,6389,6397,6421,6427,6449,
6451,6469,6473,6481,6491,6521,6529,6547,6551,
6553,6563,6569,6571,6577,6581,6599,6607,6619,
6637,6653,6659,6661,6673,6679,6689,6691,6701,
6703,6709,6719,6733,6737,6761,6763,6779,6781,
6791,6793,6803,6823,6827,6829,6833,6841,6857,
6863,6869,6871,6883,6899,6907,6911,6917,6947,
6949,6959,6961,6967,6971,6977,6983,6991,6997,
7001,7013,7019,7027,7039,7043,7057,7069,7079,
7103,7109,7121,7127,712%9,7151,7159,7177,7187,
7193,7207,7211,7213,7219,7229,7237,7243,7247,
7253,7283,7297,7307,7309,7321,7331,7333,7349,
7351,7369,7393,7411,7417,7433,7451,7457,7459,
7477,7481,7487,7489,7499,7507,7517,7523,7529,
7537,7541,7547,7549,7559,7561,7573,7577,7583,
7589,7591,7603,7607,7621,7639,7643,7649,7669,
7673,7681,7687,7691,7699,7703,7717,7723,7727,
7741,7753,7757,7759,7789,7793,7817,7823,7829,
7841,7853,7867,7873,7877,7879,7883,7901,7907,
7919,7927,7933,7937,7949,7951,7963,7993,8009,
8011,8017,8039,8053,8059,8069,8081,8087,8089,
8093,8101,8111,8117,8123,8147,8161,8167,8171,
8179,8191,8209,8219,8221,8231,8233,8237,8243,
8263,8269,8273,8287,8291,8293,8297,8311,8317,
8329,8353,8363,8369,8377,8387,8389,8419,8423,
8429,8431,8443,8447,8461,8467,8501,8513,8521,
8527,8537,8539,8543,8563,8573,8581,8597,8599,
8609,8623,8627,8629,8641,8647,8663,8669,8677,
8681,8689,8693,8699,8707,8713,8719,8731,8737,
8741,8747,8753,8761,8779,8783,8803,8807,8819,
8821,8831,8837,8839,8849,8861,8863,8867,8887,
8893,8923,8929,8933,8941,8951,8963,8969,8971,
8999,9001,9007,9011,9013,9029,9041,9043,9049,
9059,9067,9091,9103,9109,9127,9133,9137,9151,
9157,9161,9173,9181,9187,9199,9203,9209, 9221,
9227,9239,9241,9257,9277,9281,9283,9293,9311,
9319,9323,9337,9341,9343,9349,9371,9377,9391,
9397,9403,9413,9419,9421,9431,9433,9437,9439,
9461,9463,9467,9473,9479,9491,9497,9511,95521,
9533,9539,9547,9551,9587,9601,9613,9619,9623,
9629,9631,9643,9649,9661,9677,9679,9689, 9697,
9719,9721,9733,9739,9743,9749,9767,9769,9781,
9787,9791,9803,9811,9817,9829,9833,9839, 9851,
9857,98592,9871,9883,9887,9901,9907,9923,9929,
9931,9941,9949,9967,9973,10007,10009,10037,10039,
10061,10067,10069,10079,10091,10093,10099,10103,10111,
10133,10139,10141,10151,10159,10163,10169,10177,10181,

- A79 -

Valid. Syst. for Printed Docs Appendix A : Source Code

10193,10211,10223,10243,10247,10253,10259,10267,10271,
10273,10289,10301,10303,10313,10321,10331,10333,10337,
10343,10357,10369,10391,10399,10427,10429,10433,10453,
10457,10459,10463,10477,10487,10499,10501,10513,10529,
10531,10559,10567,10589,10597,10601,10607,10613,10627,
10631,10639,10651,10657,10663,10667,10687,10691,10709,
10711,10723,10729,10733,10739,10753,10771,10781,10789,
10799,10831,10837,10847,10853,10859,10861,10867,10883,
10889,10891,10903,10909,10937,10939,10949,10957,10973,
10979,109287,10993,11003,11027,11047,11057,11059,11069,
11071,11083,11087,11093,11113,12117,113119,11131,11149,
11159,11161,11171,11173,11177,11197,11213,11239,11243,
11251,11257,11261,11273,11279,11287,11299,11311,11317,
11321,11329,11351,11353,11369,11383,11393,11399,11411,
11423,11437,11443,11447,11467,11471,11483,11489,11491,
11497,11503,11519,11527,11549,11551,11579,11587,11593,
11597,11617,11621,11633,11657,11677,11681,11689,11699,
11701,11717,11719,11731,11743,11777,11779,11783,11789,
11801,11807,11813,11821,11827,11831,11833,11839,11863,
11867,11887,11897,11903,11909,11923,11927,11933,11939,
11941,11953,11959,11969,11971,11981,11987,12007,12011,
12037,12041,12043,12049,12071,12073,12097,12101,12107,
12109,12113,12119,12143,12149,12157,12161,12163,12197,
12203,12211,12227,12239,12241,12251,12253,12263,12269,
12277,12281,12289,12301,12323,12329,12343,12347,12373,
12377,12379,12391,12401,12409,12413,12421,12433,12437,
12451,12457,12473,12479,12487,12491,12497,12503,12511,
12517,12527,12539,12541,12547,12553,12569,12577,12583,
12589,12601,12611,12613,12619,12637,12641,12647,12653,
12659,12671,12689,12697,12703,12713,12721,12739,12743,
12757,12763,12781,12791,12799,12809,12821,12823,12829,
12841,12853,12889,12893,12899,12907,12911,12917,12919,
12923,12941,12953,12959,12967,12973,12979,12983,13001,
13003,13007,13009,13033,13037,13043,13049,13063,13093,
13099,13103,13109,13121,13127,13147,13151,13159,13163,
13171,13177,13183,13187,13217,13219,13229,13241,13249,
13259,13267,13291,13297,13309,13313,13327,13331,13337,
13339,13367,13381,13397,13399,13411,13417,13421,13441,
13451,13457,13463,13469,13477,13487,13499,13513,13523,
13537,13553,13567,13577,13591,13597,13613,13619,13627,
13633,13649,13669,13679,13681,13687,13691,13693,13697,
13709,13711,13721,13723,13729,13751,13757,13759,13763,
13781,13789,13799,13807,13829,13831,13841,13859,13873,
13877,13879,13883,13901,13903,13907,13913,13921,13931,
13933,13963,13967,13997,13999,14009,14011,14029,14033,
14051,14057,14071,14081,14083,14087,14107,14143,14149,
14153,14159,14173,14177,14197,14207,14221,14243,14249,
14251,14281,14293,14303,14321,14323,14327,14341,14347,
14369,14387,14389,14401,14407,14411,14419,14423,14431,
14437,14447,14449,14461,14479,14489,14503,14519,14533,
14537,14543,14549,14551,14557,14561,14563,14591,14593,

Vahd. Syst. for Printed Docs Appendix A : Source Code

14621,14627,14629,14633,14639,14653,14657,14669,14683,
14699,14713,14717,14723,14731,14737,14741,14747,14753,
14759,14767,14771,14779,14783,14797,14813,14821,14827,
14831,14843,14851,14867,14869,14879,14887,14891,14897,
14923,14929,14939,14947,14951,14957,14969,14983,15013,
15017,15031,15053,15061,15073,15077,15083,15091,15101,
15107,15121,15131,15137,15139,15149,15161,15173,15187,
15193,15199,15217,15227,15233,15241,15259,15263,15269,
15271,15277,15287,15289,15299,15307,15313,15319,15329,
15331,15349,15359,15361,15373,15377,15383,15391,15401,
15413,15427,15439,15443,15451,15461,15467,15473,15493,
15497,15511,15527,15541,15551,15559,15569,15581,15583,
15601,15607,15619,15629,15641,15643,15647,15649,15661,
15667,15671,15679,15683,15727,15731,15733,15737,15739,
15749,15761,15767,15773,15787,15791,15797,15803,15809,
15817,15823,15859,15877,15881,15887,15889,15901,15907,
15913,15919,15923,15937,15959,15971,15973,15991,16001,
16007,16033,16057,16061,16063,16067,16069,16073,16087,
16091,16097,16103,16111,16127,16139,16141,16183,16187,
16189,16193,16217,16223,16229,16231,16249,16253,16267,
16273,16301,16319,16333,16339,16349,16361,16363,16369,
16381,16411,16417,16421,16427,16433,16447,16451,16453,
16477,16481,16487,16493,16519,16529,16547,16553,16561,
16567,16573,16603,16607,16619,16631,16633,16649,16651,
16657,16661,16673,16691,16693,16699,16703,16729,16741,
16747,16759,16763,16787,16811,16823,16829,16831,16843,
16871,16879,16883,16889,16901,16903,16921,16927,16931,
16937,16943,16963,16979,16981,16987,16993,17011,17021,
17027,17029,17033,17041,17047,17053,17077,17093,17099,
17107,17117,17123,17137,17159,17167,17183,17189,17191,
17203,17207,17209,17231,17239,17257,17291,17293,17299,
17317,17321,17327,17333,17341,17351,17359,17377,17383,
17387,17389,17393,17401,17417,17419,17431,17443,17449,
17467,17471,17477,17483,17489,17491,17497,17509,17519,
17539,17551,17569,17573,17579,17581,17597,17599,17609,
17623,17627,17657,17659,17669,17681,17683,17707,17713,
17729,17737,17747,17749,17761,17783,17789,17791,17807,
17827,17837,17839,17851,17863,17881,17891,17903,17909,
17911,17921,17923,17929,17939,17957,17959,17971,17977,
17981,17987,17989,18013,18041,18043,18047,18049,18059,
18061,18077,18089,18097,18119,18121,18127,18131,18133,
18143,18149,18169,18181,18191,18199,18211,18217,18223,
18229,18233,18251,18253,18257,18269,18287,18289,18301,
18307,18311,18313,18329,18341,18353,18367,18371,18379,
18397,18401,18413,18427,18433,18439,18443,18451,18457,
18461,18481,18493,18503,18517,18521,18523,18539,18541,
18553,18583,18587,18593,18617,18637,18661,18671,18679,
18691,18701,18713,18719,18731,18743,18749,18757,18773,
18787,18793,18797,18803,18839,18859,18869,18899,18911,
18913,18917,18919,18947,18959,18973,18979,19001,19009,
19013,19031,19037,19051,19069,19073,19079,19081,19087,

- A8l -

Valid. Syst. for Printed Docs Appendix A : Source Code

19121,19139,19141,19157,19163,19181,19183,19207,19211,
19213,19219,19231,19237,19249,19259,19267,19273,19289,
19301,19309,19319,19333,19373,19379,19381,19387,19391,
19403,19417,19421,19423,19427,19429,19433,19441,19447,
19457,19463,19469,19471,19477,19483,19489,19501, 19507,
19531,19541,19543,19553,19559,19571,19577, 19583, 19597,
19603,19609,19661,19681,19687,19697,19699,19709,19717,
19727,19739,19751,19753,19759,19763,19777,19793,19801,
19813,19819,19841,19843,19853,19861,19867,19889,19891,
19913,19919,19927,19937,19949,19961,19963,19973,19979,
19991,19993,19997,20011,20021,20023,20029,20047,20051,
20063,20071,20089,20101,20107,20113,20117,20123,20129,
20143,20147,20149,20161,20173,20177,20183,20201,20219,
20231,20233,20249,20261,20269,20287,20297,20323,20327,
20333,20341,20347,20353,20357,20359,20369,20389,20393,
20399,20407,20411,20431,20441,20443,20477,20479,20483,
20507,20509,20521,20533,20543,20549,20551,20563,20593,
20599,20611,20627,20639,20641,20663,20681,20693,20707,
20717,20719,20731,20743,20747,20749,20753,20759,20771,
20773,20789,20807,20809,20849,20857,20873,20879,20887,
20897,20899,20903,20921,20929,20939,20947,20959,20963,
20981,20983,21001,21011,21013,21017,21019,21023,21031,
21059,21061,21067,21089,21101,21107,21121,21139,21143,
21149,21157,21163,21169,21179,21187,21191,21193,21211,
21221,21227,21247,21269,21277,21283,21313,21317,21319,
21323,21341,21347,21377,21379,21383,21391,21397,21401,
21407,21419,21433,21467,21481,21487,21491,21493,21499,
21503,21517,21521,21523,21529,21557,21559,21563, 21569,
21577,21587,21589,21599,21601,21611,21613,21617,21647,
21649,21661,21673,21683,21701,21713,21727,21737,21739,
21751,21757,21767,21773,21787,21799,21803,21817,21821,
21839,21841,21851,21859,21863,21871,21881,21893,21911,
21929,21937,21943,21961,21977,21991,21997,22003,22013,
22027,22031,22037,22039,22051,22063,22067,22073,22079,
22091,22093,22109,22111,22123,22129,22133,22147,22153,
22157,22159,22171,22189,22193,22229,22247,22259, 22271,
22273,22277,22279,22283,22291,22303,22307,22343,22349,
22367,22369,22381,22391,22397,22409,22433,22441, 22447,
22453,22469,22481,22483,22501,22511,22531,22541, 22543,
22549,22567,22571,22573,22613,22619,22621,22637,22639,
22643,22651,22669,22679,22691,22697,22699,22709,22717,
22721,22727,22739,22741,22751,22769,22777,22783,22787,
22807,22811,22817,22853,22859,22861,22871,22877,22901,
22907,22921,22937,22943,22961,22963,22973,22993,23003,
23011,23017,23021,23027,23029,23039,23041,23053,23057,
23059,23063,23071,23081,23087,23099,23117,23131,23143,
23159,23167,23173,23189,23197,23201,23203,23209,23227,
23251,23269,23279,23291,23293,23297,23311,23321,23327,
23333,23339,23357,23369,23371,23399,23417,23431,23447,
23459,23473,23497,23509,23531,23537,23539,23549, 23557,
23561,23563,23567,23581,23593,23599,23603,23609, 23623,

- A82 -

Valid. Syst. for Printed Docs Appendix A : Source Code

23627,23629,23633,23663,23669,23671,23677,23687,23689,
23719,23741,23743,23747,23753,23761,23767,23773,23789,
23801,23813,23819,23827,23831,23833,23857,23869,23873,
23879,23887,23893,23899,23909,23911,23917,23929,23957,
23971,23977,23981,23993,24001,24007,24019,24023,24029,
24043,24049,24061,24071,24077,24083,24091,24097,24103,
24107,24109,24113,24121,24133,24137,24151,24169,24179,
24181,24197,24203,24223,24229,24239,24247,24251,24281,
24317,24329,24337,24359,24371,24373,24379,24391,24407,
24413,24419,24421,24439,24443,24469,24473,24481,24499,
24509,24517,24527,24533,24547,24551,24571,24593,24611,
24623,24631,24659,24671,24677,24683,24691,24697,24709,
24733,24749,24763,24767,24781,24793,24799,24809,24821,
24841,24847,24851,24859,24877,24889,24907,24917,24919,
24923,24943,24953,24967,24971,24977,24979,24989,25013,
25031,25033,25037,25057,25073,25087,25097,25111,25117,
25121,25127,25147,25153,25163,25169,25171,25183,25189,
25219,25229,25237,25243,25247,25253,25261,25301,25303,
25307,25309,25321,25339,25343,25349,25357,25367,25373,
25391,25409,25411,25423,25439,25447,25453,25457,25463,
25469,25471,25523,25537,25541,25561,25577,25579,25583,
25589,25601,25603,25609,25621,25633,25639,25643,25657,
25667,25673,25679,25693,25703,25717,25733,25741,25747,
25759,25763,25771,25793,25799,25801,25819,25841,25847,
25849,25867,25873,25889,25903,25913,25919,25931,25933,
25939,25943,25951,25969,25981,25997,25999,26003,26017,
26021,26029,26041,26053,26083,26099,26107,26111,26113,
26119,26141,26153,26161,26171,26177,26183,26189,26203,
26209,26227,26237,26249,26251,26261,26263,26267,26293,
26297,26309,26317,26321,26339,26347,26357,26371,26387,
26393,26399,26407,26417,26423,26431,26437,26449,26459,
26479,26489,26497,26501,26513,26539,26557,26561,26573,
26591,26597,26627,26633,26641,26647,26669,26681,26683,
26687,26693,26699,26701,26711,26713,26717,26723,26729,
26731,26737,26759,26777,26783,26801,26813,26821,26833,
26839,26849,26861,26863,26879,26881,26891,26893,26903,
26921,26927,26947,26951,26953,26959,26981,26987,26993,
27011,27017,27031,27043,27059,27061,27067,27073,27077,
27091,27103,27107,27109,27127,27143,27179,27191,27197,
27211,27239,27241,27253,27259,27271,27277,27281,27283,
27299,27329,27337,27361,27367,27397,27407,27409,27427,
27431,27437,27449,27457,27479,27481,27487,27509,27527,
27529,27539,27541,27551,27581,27583,27611,27617,27631,
27647,27653,27673,27689,27691,27697,27701,27733,27737,
27739,27743,27749,27751,27763,27767,27773,27779,27791,
27793,27799,27803,27809,27817,27823,27827,27847,27851,
27883,27893,27901,27917,27919,27941,27943,27947,27953,
27961,27967,27983,27997,28001,28019,28027,28031,28051,
28057,28069,28081,28087,28097,28099,28109,28111,28123,
28151,28163,28181,28183,28201,28211,28219,28229,28277,
28279,28283,28289,28297,28307,28309,28319,28349,28351,

- A83 -

Valid. Syst. for Printed Docs Appendix A : Source Code

28387,28393,28403,28409,28411,28429,28433,28439,28447,
28463,28477,28493,28499,28513,28517,28537,28541,28547,
28549,28559,28571,28573,28579,28591,28597,28603,28607,
28619,28621,28627,28631,28643,28649,28657,28661,28663,
28669,28687,28697,28703,28711,28723,28729,28751,28753,
28759,28771,28789,28793,28807,28813,28817,28837,28843,
28859,28867,28871,28879,28901,28909,28921,28927,28933,
28949,28961,28979,29009,29017,29021,29023,29027,29033,
29059,29063,29077,29101,29123,29129,29131,29137,29147,
29153,29167,29173,29179,29191,29201,29207,29209,29221,
29231,29243,29251,29269,29287,29297,29303,29311,29327,
29333,29339,29347,29363,29383,29387,29389,29399,29401,
29411,29423,29429,29437,29443,29453,29473,29483,29501,
29527,29531,29537,29567,29569,29573,29581,29587,29599,
29611,29629,29633,29641,29663,29669,29671,29683,29717,
29723,29741,29753,29759,29761,29789,29803,29819,29833,
29837,29851,29863,29867,29873,29879,29881,29917,29921,
29927,29947,29959,29983,29989,30011,30013,30029,30047,
30059,30071,30089,30091,30097,30103,30109,30113,301189,
30133,30137,30139,30161,30169,30181,30187,30197,30203,
30211,30223,30241,30253,30259,30269,30271,30293,30307,
30313,30319,30323,30341,30347,30367,30389,30391,30403,
30427,30431,30449,30467,30469,30491,30493,30497,305089,
30517,30529,30539,30553,30557,30559,30577,30593,30631,
30637,30643,30649,30661,30671,30677,30689,30697,30703,
30707,30713,30727,30757,30763,30773,30781,30803,308089,
30817,30829,30839,30841,30851,30853,30859,30869,30871,
30881,30893,30911,30931,30937,30941,30949,30971,30977,
30983,31013,31019,31033,31039,31051,31063,31069,31079,
31081,31091,31121,31123,31139,31147,31151,31153,31159,
31177,31181,31183,31189,31193,31219,31223,31231,31237,
31247,31249,31253,31259,31267,31271,31277,31307,31319,
31321,31327,31333,31337,31357,31379,31387,31391,31393,
31397,31469,31477,31481,31489,31511,31513,31517,31531,
31541,31543,31547,31567,31573,31583,31601,31607,31627,
31643,31649,31657,31663,31667,31687,31699,31721,31723,
31727,31729,31741,31751,31769,31771,31793,317989,31817,
31847,31849,31859,31873,31883,31891,31907,31957,31963,
31973,31981,31991,32003,32009,32027,32029,32051,32057,
32059,32063,32069,32077,32083,32089,32099,32117,32119,
32141,32143,32159,32173,32183,32189,32191,32203,32213,
32233,32237,32251,32257,32261,32297,32299,32303,32309,
32321,32323,32327,32341,32353,32359,32363,32369,32371,
32377,32381,32401,32411,32413,32423,32429,32441,32443,
32467,32479,32491,32497,32503,32507,32531,32533,32537,
32561,32563,32569,32573,32579,32587,32603,32609,32611,
32621,32633,32647,32653,32687,32693,32707,32713,32717,
32719,32749,32771,32779,32783,32789,32797,32801,32803,
32831,32833,32839,32843,32869,32887,32909,32911,32917,
32933,32939,32941,32957,32969,32971,32983,32987,32993,
32999,33013,33023,33029,33037,33049,33053,33071,33073,

- A84 -

Valid. Syst. for Printed Docs Appendix A : Source Code

33083,33091,33107,33113,33119,33149,33151,33161,33179,
33181,33191,33199,33203,33211,33223,33247,33287,33289,
33301,33311,33317,33329,33331,33343,33347,33349,33353,
33359,33377,33391,33403,33409,33413,33427,33457,33461,
33469,33479,33487,33493,33503,33521,33529,33533,33547,
33563,33569,33577,33581,33587,33589,33599,33601,33613,
33617,33619,33623,33629,33637,33641,33647,33679,33703,
33713,33721,33739,33749,33751,33757,33767,33769,33773,
33791,33797,33809,33811,33827,33829,33851,33857,33863,
33871,33889,33893,33911,33923,33931,33937,33941,33961,
33967,33997,34019,34031,34033,34039,34057,34061,34123,
34127,34129,34141,34147,34157,34159,34171,34183,34211,
34213,34217,34231,34253,34259,34261,34267,34273,34283,
34297,34301,34303,34313,34319,34327,34337,34351,34361,
34367,34369,34381,34403,34421,34429,34439,34457,34469,
34471,34483,34487,34499,34501,34511,34513,34519,34537,
34543,34549,34583,34589,34591,34603,34607,34613,34631,
34649,34651,34667,34673,34679,34687,34693,34703,34721,
34729,34739,34747,34757,34759,34763,34781,34807,34819,
34841,34843,34847,34849,34871,34877,34883,34897,34913,
34919,34939,34949,34961,34963,34981,35023,35027,35051,
35053,35059,35069,35081,35083,35089,35099,35107,35111,
35117,35129,35141,35149,35153,35159,35171,35201,35221,
35227,35251,35257,35267,35279,35281,35291,35311,35317,
35323,35327,35339,35353,35363,35381,35393,35401,35407,
35419,35423,35437,35447,35449,35461,35491,35507,35509,
35521,35527,35531,35533,35537,35543,35569,35573,35591,
35593,35597,35603,35617,35671,35677,35729,35731,35747,
35753,35759,35771,35797,35801,35803,35809,35831,35837,
35839,35851,35863,35869,35879,35897,35899,35911,35923,
35933,35951,35963,35969,35977,35983,35993,35999, 36007,
36011,36013,36017,36037,36061,36067,36073,36083,36097,
36107,36109,36131,36137,36151,36161,36187,36191,36209,
36217,36229,36241,36251,36263,36269,36277,36293,36299,
36307,36313,36319,36341,36343,36353,36373,36383,36389,
36433,36451,36457,36467,36469,36473,36479,36493,36497,
36523,36527,36529,36541,36551,36559,36563,36571,36583,
36587,36599,36607,36629,36637,36643,36653,36671,36677,
36683,36691,36697,36709,36713,36721,36739,36749,36761,
36767,36779,36781,36787,36791,36793,36809,36821,36833,
36847,36857,36871,36877,36887,36899,36901,36913,36919,
36923,36929,36931,36943,36947,36973,36979,36997,37003,
37013,37019,37021,37039,37049,37057,37061,37087,37097,
37117,37123,37139,37159,37171,37181,37189,37199,37201,
37217,37223,37243,37253,37273,37277,37307,37309,37313,
37321,37337,37339,37357,37361,37363,37369,37379,37397,
37409,37423,37441,37447,37463,37483,37489,37493,37501,
37507,37511,37517,37529,37537,37547,37549,37561,37567,
37571,37573,37579,37589,37591,37607,37619,37633,37643,
37649,37657,37663,37691,37693,37699,37717,37747,37781,
37783,37799,37811,37813,37831,37847,37853,37861,37871,

- A85 -

Valid. Syst. for Printed Docs Appendix A : Source Code

37879,37889,37897,37907,37951,37957,37963,37967,37987,
37991,37993,37997,38011,38039,38047,38053,38069,38083,
38113,38119,38149,38153,38167,38177,38183,38189,38197,
38201,38219,38231,38237,38239,38261,38273,38281,38287,
38299,38303,38317,38321,38327,38329,38333,38351,38371,
38377,38393,38431,38447,38449,38453,38459,38461,38501,
38543,38557,38561,38567,38569,38593,38603,38609,38611,
38629,38639,38651,38653,38669,38671,38677,38693,38699,
38707,38711,38713,38723,38729,38737,38747,38749,38767,
38783,38791,38803,38821,38833,38839,38851,38861,38867,
38873,38891,38903,38917,38921,38923,38933,38953,38959,
38971,38977,38993,39019,39023,39041,39043,39047,39079,
35089,39097,39103,39107,39113,39119,39133,39139,39157,
39161,39163,39181,39191,39199,39209,39217,39227,39229,
39233,39239,39241,39251,39293,39301,39313,39317,39323,
39341,39343,39359,39367,39371,39373,39383,39397,39409,
39419,39439,39443,39451,39461,39499,39503,39509,39511,
39521,39541,398551,39563,39569,39581,39607,39619,39623,
39631,39659,398667,39671,39679,39703,39709,39719,39727,
39733,39749,39761,39769,39779,39791,39799,39821,39827,
39829,39839,39841,39847,39857,39863,39869,39877,39883,
39887,39901,39929,39937,39953,39971,39979,39983,39989,
40009,40013,40031,40037,40039,40063,40087,40093,40099,
40111,40123,40127,40129,40151,40153,40163,40169,40177,
40189,40193,40213,40231,40237,40241,40253,40277,40283,
40289,40343,40351,40357,40361,40387,40423,40427,40429,
40433,40459,40471,40483,40487,40493,40499,40507,40519,
40529,40531,40543,40559,40577,40583,40591,40597,40609,
40627,40637,40639,40693,40697,40699,40709,40739,40751,
40759,40763,40771,40787,40801,40813,40819,40823,40829,
40841,40847,40849,40853,40867,40879,40883,40897,40903,
40927,40933,40939,40949,40961,40973,40993,41011,41017,
41023,41039,41047,41051,41057,41077,41081,41113,41117,
41131,41141,41143,41149,41161,41177,41179,41183,41189,
41201,41203,41213,41221,41227,41231,41233,41243,41257,
41263,41269,41281,41299,41333,41341,41351,41357,41381,
41387,41389,41399,41411,41413,41443,41453,41467,41479,
41491,41507,41513,41519,41521,41539,41543,41549,41579,
41593,41597,41603,41609,41611,41617,41621,41627,41641,
41647,41651,41659,41669,41681,41687,41719,41729,41737,
41759,41761,41771,41777,41801,41809,41813,41843,41849,
41851,41863,41879,41887,41893,41897,41903,41911,41927,
41941,41947,41953,41957,41959,41969,41981,41983,41999,
42013,42017,42019,42023,42043,42061,42071,42073,42083,
42089,42101,42131,42139,42157,42169,42179,42181,42187,
42193,42197,42209,42221,42223,42227,42239,42257,42281,
42283,42293,42299,42307,42323,42331,42337,42349,42359,
42373,42379,42391,42397,42403,42407,42409,42433,42437,
42443 ,42451,42457,42461,42463,42467,42473,42487,42491,
42499,42509,42533,42557,42569,42571,42577,42589,42611,
42641,42643,42649,42667,42677,42683,42689,42697,42701,

- AB6 -

Valid. Syst. for Printed Docs Appendix A : Source Code

42703,42709,42719,42727,42737,42743,42751,42767,42773,
42787,42793,42797,42821,42829,42839,42841,42853,42859,
42863,42899,42901,42923,42929,42937,42943,42953,429¢61,
42967,42979,42989,43003,43013,43019,43037,43049,43051,
43063,43067,43093,43103,43117,43133,43151,43159,43177,
43189,43201,43207,43223,43237,43261,43271,43283,43291,
43313,43319,43321,43331,43391,43397,43399,43403,43411,
43427,43441,43451,43457,43481,43487,43499,43517,43541,
43543,43573,43577,43579,43591,43597,43607,43609,43613,
43627,43633,43649,43651,43661,43669,43691,43711,43717,
43721,43753,43759,43777,43781,43783,43787,43789,43793,
43801,43853,43867,43889,43891,43913,43933,43943,43951,
43961,43963,43969,43973,43987,43991,43997,44017,44021,
44027,44029,44041,44053,44059,44071,44087,44089,44101,
44111,44119,44123,44129,44131,44159,44171,44179,44189,
44201,44203,44207,44221,44249,44257,44263,44267,44269,
44273,44279,44281,44293,44351,44357,44371,44381,44383,
44389,44417,44449,44453,44483,44491,44497,44501,44507,
44519,44531,44533,44537,44543,44549,44563,44579,44587,
44617,44621,44623,44633,44641,44647,44651,44657,44683,
44687,44699,44701,44711,44729,44741,44753,44771,44773,
44777,44789,44797,44809,44819,44839,44843,44851,44867,
44879,44887,44893,44909,44917,44927,44939,44953,44959,
44963,44971,44983,44987,45007,45013,45053,45061,45077,
45083,45119,45121,45127,45131,45137,45139,45161,45179,
45181,45191,45197,45233,45247,45259,45263,45281,45289,
45293,45307,45317,45319,45329,45337,45341,45343,45361,
45377,45389,45403,45413,45427,45433,45439,45481,45491,
45497 ,45503,45523,45533,45541,45553,45557,45569,45587,
45589,45599,45613,45631,45641,45659,45667,45673,45677,
45691,45697,45707,45737,45751,45757,45763,45767,45779,
45817,45821,45823,45827,45833,45841,45853,45863,45869,
45887,45893,45943,45949,45953,45959,45971,45979,45989,
46021,46027,46049,46051,46061,46073,46091,46093,46099,
46103,46133,46141,46147,46153,46171,46181,46183,46187,
46199,46219,46229,46237,46261,46271,46273,46279,46301,
46307,46309,46327,46337,46349,46351,46381,46399,46411,
46439,46441,46447,46451,46457,46471,46477,46489,46499,
46507,46511,46523,46549,46559,46567,46573,46589,46591,
46601,46619,46633,46639,46643,46649,46663,46679,46681,
46687,46691,46703,46723,46727,46747,46751,46757,46769,
46771,46807,46811,46817,46819,46829,46831,46853,46861,
46867,46877,46889,46901,46919,46933,46957,46993,46997,
47017,47041,47051,47057,47059,47087,47093,47111,47119,
47123,47129,47137,47143,47147,47149,47161,47189,47207,
47221,47237,47251,47269,47279,47287,47293,47297,47303,
47309,47317,47339,47351,47353,47363,47381,47387,47389,
47407,47417,47419,47431,47441,47459,47491,47497,47501,
47507,47513,47521,47527,47533,47543,47563,47569,47581,
47591,47599,47609,47623,47629,47639,47653,47657,47659,
47681,47699,47701,47711,47713,47717,47737,47741,47743,

- A87 -

Valid. Syst. for Printed Docs Appendix A : Source Code

47777,47779,47791,47797,47807,47809,47819,47837,47843,
47857,47869,47881,47903,47911,47917,47933,47939,47947,
47951,47963,47969,47977,47981,48017,48023,48029,48049,
48073,48079,48091,48109,48119,48121,48131,48157,48163,
48179,48187,48193,48197,48221,48239,48247,48259,48271,
48281,48299,48311,48313,48337,48341,48353,48371,48383,
48397,48407,48409,48413,48437,48449,48463,48473,48479,
48481,48487,48491,48497,48523,48527,48533,48539,48541,
48563,48571,48589,48593,48611,48619,48623,48647,48649,
48661,48673,48677,48679,48731,48733,48751,48757,48761,
48767,48779,48781,48787,48799,48809,48817,48821,48823,
48847,48857,48859,48869,48871,48883,48889,48907,48947,
48953,48973,48989,48991,49003,49009,49019,49031,49033,
49037,49043,49057,49069,49081,49103,49109,49117,49121,
49123,49139,49157,49169,49171,49177,49193,49199,49201,
49207,49211,49223,49253,49261,49277,49279,49297,49307,
49331,49333,49339,49363,49367,49369,49391,49393,49409,
49411,49417,49429,49433,49451,49459,49463,49477,49481,
49499,49523,49529,49531,49537,49547,49549,49559,49597,
49603,49613,49627,49633,49639,49663,49667,49669,49681,
49697,49711,49727,49739,49741,49747,49757,49783,49787,
49789,49801,49807,49811,49823,49831,49843,49853,49871,
49877,49891,49919,49921,49927,49937,49939,49943,49957,
49991,49993,49999,50021,50023,50033,50047,50051,50053,
50069,50077,50087,50093,50101,50111,50119,50123,50129,
50131,50147,50153,50159,50177,50207,50221,50227,50231,
50261,50263,50273,50287,50291,50311,50321,50329,50333,
50341,50359,50363,50377,50383,50387,50411,50417,50423,
50441,50459,50461,50497,50503,50513,50527,50539,50543,
50549,50551,50581,50587,50591,50593,50599,50627,50647,
50651,50671,50683,50707,50723,50741,50753,50767,50773,
50777,50789,50821,50833,50839,50849,50857,50867,50873,
50891,50893,50909,50923,50929,50951,50957,50969,50971,
50989,50993,51001,51031,51043,51047,51059,51061,51071,
51109,51131,51133,51137,51151,51157,51169,51193,51197,
51199,51203,51217,51229,51239,51241,51257,51263,51283,
51287,51307,51329,51341,51343,51347,51349,51361,51383,
51407,51413,51419,51421,51427,51431,51437,51439,51449,
51461,51473,51479,51481,51487,51503,51511,51517,51521,
51539,51551,51563,51577,51581,51593,51599,51607, 51613,
51631,51637,51647,51659,51673,51679,51683,51691,51713,
51719,51721,51749,51767,51769,51787,51797,51803,51817,
51827,51829,51839,51853,51859,51869,51871,51893,51899,
51907,51913,51929,51941,51949,51971,51973,51977,51991,
52009,52021,52027,52051,52057,52067,52069,52081,52103,
52121,52127,52147,52153,52163,52177,52181,52183,52189,
52201,52223,52237,52249,52253,52259,52267,52289,52291,
52301,52313,52321,52361,52363,52369,52379,52387,52391,
52433,52453,52457,52489,52501,52511,52517,52529,52541,
52543,52553,52561,52567,52571,52579,52583,52609,52627,
52631,52639,52667,52673,52691,52697,52709,52711,52721,

- AR8 -

Valid. Syst. for Printed Docs Appendix A : Source Code

52727,52733,52747,52757,52769,52783,52807,52813,52817,
52837,52859,52861,52879,52883,52889,52901,52903,52919,
52937,52951,52957,52963,52967,52973,52981,52999,53003,
53017,53047,53051,53069,53077,53087,53089,53093,53101,
53113,53117,53129,53147,53149,53161,53171,53173,53189,
53197,53201,53231,53233,53239,53267,53269,53279,53281,
53299,53309,53323,53327,53353,53359,53377,53381,53401,
53407,53411,53419,53437,53441,53453,53479,53503,53507,
53527,53549,53551,53569,53591,53593,53597,53609,53611,
53617,53623,53629,53633,53639,53653,53657,53681,53693,
53699,53717,53719,53731,53759,53773,53777,53783,53791,
53813,53819,53831,53849,53857,53861,53881,53887,53891,
53897,53899,53917,53923,53927,53939,53951,53959,53987,
53993,54001,54011,54013,54037,54049,54059,54083,54091,
54101,54121,54133,54139,54151,54163,54167,54181,54193,
54217,54251,54269,54277,54287,54293,54311,54319,54323,
54331,54347,54361,54367,54371,54377,54401,54403,54409,
54413,54419,54421,54437,54443,54449,54469,54493,54497,
54499,54503,54517,54521,54539,54541,54547,54559, 54563,
54577,54581,54583,54601,54617,54623,54629,54631,54647,
54667,54673,54679,54709,54713,54721,54727,54751,54767,
54773,54779,54787,54799,54829,54833,54851,54869,54877,
54881,54907,54917,54919,54941,54949,54959,54973,54979,
54983,55001,55009,55021,55049,55051,55057,55061,55073,
55079,55103,55109,55117,55127,55147,55163,55171,55201,
55207,55213,55217,55219,55229,55243,55249,55259,55291,
55313,55331,55333,55337,55339,55343,55351,55373,55381,
55399,55411,55439,55441,55457,55469,55487,55501, 55511,
55529,55541,55547,55579,55589,55603,55609,55619,55621,
55631,55633,55639,55661,55663,55667,55673,55681,55691,
55697,55711,55717,55721,55733,55763,55787,55793,55799,
55807,55813,55817,55819,55823,55829,55837,55843,55849,
55871,55889,55897,55901,55903,55921,55927,55931,55933,
55949,55967,55987,55997,56003,56009,56039,56041,56053,
56081,56087,56093,56099,56101,56113,56123,56131,56149,
56167,56171,56179,56197,56207,56209,56237,56239,56249,
56263,56267,56269,56299,56311,56333,56359,56369,56377,
56383,56393,56401,56417,56431,56437,56443,56453,56467,
56473,56477,56479,56489,56501,56503,56509,56519,56527,
56531,56533,56543,56569,56591,56597,56589,56611,56629,
56633,56659,56663,56671,56681,56687,56701,56711,56713,
56731,56737,56747,56767,56773,56779,56783,56807,56809,
56813,56821,56827,56843,56857,56873,56891,56893,56897,
56909,56911,56921,56923,56929,56941,56951,56957,56963,
56983,56989,56993,56999,57037,57041,57047,57059,57073,
57077,57089,57097,57107,57119,57131,57139,57143,57149,
57163,57173,57179,57191,57193,57203,57221,57223,57241,
57251,57259,57269,57271,57283,57287,57301,57329,57331,
57347,57349,57367,57373,57383,57389,57397,57413,57427,
57457,57467,57487,57493,57503,57527,57529,57557,57559,
57571,57587,57593,57601,57637,57641,57649,57653,57667,

- A89 -

Valid. Syst. for Printed Docs Appendix A : Source Code

57679,57689,57697,57709,57713,57719,57727,57731,57737,
57751,57773,57781,57787,57791,57793,57803,57809,57829,
57839,57847,57853,57859,57881,57899,57901,57917,57923,
57943,57947,57973,57977,57991,58013,58027,58031,58043,
58049,58057,58061,58067,58073,58099,58109,58111,58129,
58147,58151,58153,58169,58171,58189,58193,58199,58207,
58211,58217,58229,58231,58237,58243,58271,58309,58313,
58321,58337,58363,58367,58369,58379,58391,58393,58403,
58411,58417,58427,58439,58441,58451,58453,58477,58481,
58511,58537,58543,58549,58567,58573,58579,58601,58603,
58613,58631,58657,58661,58679,58687,58693,58699,58711,
58727,58733,58741,58757,58763,58771,58787,58789,58831,
58889,58897,58901,58907,58909,58913,58921,58937,58943,
58963,58967,58979,58991,58997,59009,59011,59021,55023,
59029,59051,59053,59063,59069,59077,59083,59093,59107,
59113,59119,59123,59141,59149,59159,59167,59183,59197,
59207,59209,59219,59221,59233,59239,59243,59263,59273,
59281,59333,59341,59351,59357,59359,59369,59377,59387,
59393,59399,59407,59417,59419,59441,55443,59447,59453,
59467,59471,59473,59497,59509,59513,59539,59557, 59561,
59567,59581,59611,59617,59621,59627,59629,59651,59659,
59663,59669,59671,59693,59699,59707,59723,59729,59743,
59747,59753,59771,59779,59791,59797,59809,59833,59863,
59879,59887,59921,59929,59951,59957,59971,59981,59999,
60013,60017,60029,60037,60041,60077,60083,60089,60091,
60101,60103,60107,60127,60133,60139,60149,60161,60167,
60169,60209,60217,60223,60251,60257,60259,60271,60289,
60293,60317,60331,60337,60343,60353,60373,60383,60397,
60413,60427,60443,60449,60457,60493,60497,60509,60521,
60527,60539,60589,60601,60607,60611,60617,60623,60631,
60637,60647,60649,60659,60661,60679,60689,60703,60719,
60727,60733,60737,60757,60761,60763,60773,60779,60793,
60811,60821,60859,60869,60887,60889,60899,60901,60913,
60917,60919,60923,60937,60943,60953,60961,61001,61007,
61027,61031,61043,61051,61057,61091,61099,61121,61129,
61141,61151,61153,61169,61211,61223,61231,61253,61261,
61283,61291,61297,61331,61333,61339,61343,61357,61363,
61379,61381,61403,61409,61417,61441,61463,61469,61471,
61483,61487,61493,61507,61511,61519,61543,61547,61553,
61559,61561,61583,61603,61609,61613,61627,61631,61637,
61643,61651,61657,61667,61673,61681,61687,61703,61717,
61723,61729,61751,61757,61781,61813,61819,61837,61843,
61861,61871,61879,61909,61927,61933,61949,61961,61967,
61979,61981,61987,61991,62003,62011,62017,62039,62047,
62053,62057,62071,62081,62099,62119,62129,62131,62137,
62141,62143,62171,62189,62191,62201,62207,62213,62219,
62233,62273,62297,62299,62303,62311,62323,62327,62347,
62351,62383,62401,62417,62423,62459,62467,62473,62477,
62483,62497,62501,62507,62533,62539,62549,62563,62581,
62591,62597,62603,62617,62627,62633,62639,62653,62659,
62683,62687,62701,62723,62731,62743,62753,62761,62773,

- AS0 -

Valid. Syst. for Printed Docs Appendix A : Source Code

62791,62801,62819,62827,62851,62861,62869,62873,62897,
62903,62921,62927,62929,62939,62969,62971,62981,62983,
62987,62989,63029,63031,63059,63067,63073,63079,63097,
63103,63113,63127,63131,63149,63179,63197,63199,63211,
63241,63247,63277,63281,63299,63311,63313,63317,63331,
63337,63347,63353,63361,63367,63377,63389,63391,63397,
63409,63419,63421,63439,63443,63463,63467,63473,63487,
63493,63499,63521,63527,63533,63541,63559,63577,63587,
63589,63599,63601,63607,63611,63617,63629,63647,63649,
63659,63667,63671,63689,63691,63697,63703,63709,63719,
63727,63737,63743,63761,63773,63781,63793,63799,63803,
63809,63823,63839,63841,63853,63857,63863,63901,63907,
63913,63929,63949,63977,63997,64007,64013,64019,64033,
64037,64063,64067,64081,64091,64109,64123,64151,64153,
64157,64171,64187,64189,64217,64223,64231,64237,64271,
64279,64283,64301,64303,64319,64327,64333,64373,64381,
64399,64403,64433,64439,64451,64453,64483,64489,64499,
64513,64553,64567,64577,64579,64591,64601,64609,64613,
64621,64627,64633,64661,64663,64667,64679,64693,64709,
64717,64747,64763,64781,64783,64793,64811,64817,64849,
64853,64871,64877,64879,64891,64901,64919,64921,64927,
64937,64951,64969,64997,65003,65011,65027,65029,65033,
65053,65063,65071,65089,65099,65101,65111,65119,65123,
65129,65141,65147,65167,65171,65173,65179,65183,65203,
65213,65239,65257,65267,65269,65287,65293,65309,65323,
65327,65353,65357,65371,65381,65393,65407,65413,65419,
65423,65437,65447,65449,65479,65497,65519,65521,65537

}i

while (primeTable [primeTableIndex]<=number)

{

if ((number%primeTable [primeTablelIndex])==0)}

{

number=number/primeTable [primeTableIndex] ;
#ifdef debug _

cout << primeTable [primeTableIndex] << “ “;
#endif

factors [factorIndex++] =primeTable [primeTablelIndex] ;

if (factorIndexs>=maxNbrFactor)

{

cerr << “The number of factorg in *
<< number << “ 1is greater than the maximum

<< maxNbrFactor << “) allowed\n”;
return -2;

}

else
primeTableIndex++;

- A91 -

Valid. Syst. for Printed Docs Appendix A : Source Code

#ifdef _debug

cout << “\n”;
#endif

return factorindex;

A.17 patternDim

#ifndef patternDim h
#define _patternDim h

int patternDim(unsigned long nbrBits, unsigned long dimensions([2]);

int getDim(unsigned long* dim, unsigned factors [}, unsigned
nbrFactors,

char factorsI[], char factorsII, char nbrMult);
#endif

#include <iostream.h>
#include <stdio.h>
#include “factor.h”
#include “patternDim.h”

#define MAX NBR FACTORS 100

int patternDim(unsigned long nbrBits, unsigned long dimensions[2])
{

unsigned factors|[MAX NBR _FACTORS] ;

unsigned longdim=1, finalDim=1;

unsigned nbrFactors=0;

double distance=nbrBits;

char done=0;

if ((nbrFactors:factor(nerits,factors,MAX_NBR_FACTORS))<O)

{

cerr << “Error could not factor the number of bits in the
pattern\n”;
return -1;

char factorsI [nbrFactors], factorsII=0;

for (int i=0;i<nbrFactors;i++)
factorsI(i]=i;

for (int nbrMult=1;nbrMult<=nbrFactors/2;nbrMult++)

{

done=0;

- A92 -

Valid. Syst. for Printed Docs Appendix A : Source Code

while (idone)

dim=1;
done=getDim (&dim, factors, nbrFactors, factorsI, 0,nbrMult);
if (abs(dim - nbrBits/dim)<distance)

{

distance=abs (dim - nbrBits/dim);
finalDim=dim;

}

// the width is always bigger than the height
if (finalDim>nbrBits/finalDim)

dimensions [0] =finalDim;
dimensions [1]) =nbrBits/finalDim;

dimensions [0] =nbxBits/finalDim;
dimensions (1] =finalDim;

return 0;

int getDim(unsigned long* dim, unsigned factors[l, unsigned
nbrFactors,

{

char factorsI[], char factorsII, char nbrMult)
char end=0;

// this should be first because it is the stop condition of the
// recurrence
if (factorsI([factorsII]>(nbrFactors-nbrMult))
{
// this is to take care of the very first caller in the
recursion
// otherwise its index stays at the end of the factors list and
// as no getDim calls it it will not get reset. However, if it
is
// not the first caller, its index will get overwritten anyway
// by the caller
factorsI[factorsII]=0;
return 1;

}

dim=factors [factorsI [factorsII]l];

if (nbrMulti=1)

- AS3 -

Valid. Syst. for Printed Docs Appendix A : Source Code

end:getDim(dim,factors,nbrFactors,factorsI,factorsII+l,nbrMult—1);

if (end==1 || nbrMult=s=1)

{

factorsI[factorsIIi]++;
if (nbrMult!=1)
factorsI[factorsII+l]=factorsI[factorsII]+1;

return 0;

A.18 patternl

// patternl.h
#ifndef _patternl_h
ffdefine _patternl_h

#include “coDec.h”

class patternl: public coDec

{

code

gen.

unsigned int* generator;//indexes of generator polynomial for the

unsigned int* systematic; // systematic symbols buffer.
unsigned int* FSR;//feedback shift registers for redundant bits

unsigned int SBin;// buffer to build symbols (8bits->mbits)
int SBinBits;//number of bits in the symbol buffer

int padBits;

unsigned int SBout;// buffer to build symbols (8bits->mbits)
int SBoutBits;//number of bits in the symbol buffer

int inputCount;

int outputCount;

int lastWrite;

int bitsInBuffer;

int nbrLines;

int maxNbrLines;

int feedback, FSRindex, FSRregBit,
maxOutput, CBbits;

unsigned int charBuffer, output,symbol;

unsigned char tempChar;

unsigned char firstTime;

int done;
int realBits;
char sideDone;

- A94 -

Valid. Syst. for Printed Docs

Appendix A : Source Code

char doneData;
int bytesToOutput;

int nbrBytesOutput;

int remainingBits;

int charPerlLine;

public:

patternl{int nbrCol);
patternl (int nbrCol, int
int processData () ;

int giveNbrLines() ;

int processSymbols () ;

void newbDatal() ;

Vi
#endif

// patternl.cc
#include “patternl.h”
#include “debugger.h”
#include “debug.h”
#include <values.h>

patternl::patternl (int nbrCols):
FSR(O),

systematic (0},
SBout (0),
SBoutBits (0),
bytesToOutput (0),
nbrBytesOutput (
nbrLines (0),

_nbrLines) ;

inputCount (0) ,

0), remainingBits(0),

maxNbrLines (MAXINT) ,

feedback (0) ,FSRindex (0) , FSRregBit (0),

maxOutput (0) ,CBbits (0),
charBuffer (0), output(0),symbol(0),

tempChar (0),
firstTime (0),
done (0),
realBits (0),
sideDone (0) ,
doneData (0)

int nbrBits;

generator (0),
SBin(0),

SBinBits (0), padBits (0),
outputCount (0),

lastWrite (1},

bytesToOutput=(_nbrCols+2)/8;// determine the number of bytes that

the

remainingBits=(nbrCols+2)%8;// cols fits in

if (remainingBits==0)

{

- A9S -

Valid. Syst. for Printed Docs Appendix A : Source Code

bytesToOutput--;// To take care of the border
remainingBits=8;// because the last bit is not data, it is
// just a high bit

}

charPerLine=bytesToOutput+ (remainingBits!=0) ;

cout << bytesToOutput << “ " << remainingBits << endl;
}
patternl::patternl (int nbrCols,int _nbrLines=-1): generator(0),
systematic(0), FSR(0), SBin(0), SBinBits{(0), padBits (0),
SBout (0) ,
SBoutBits (0), inputCount (0), outputCount (0),
bytesToOutput (0) ,
nbrBytesOutput (0), remainingBits (0), lastWrite (1),

nbrLines (0),
maxNbrLines{ nbrLines),
feedback (0) ,FSRindex (0) , FSRregBit (0),
maxQutput (0) ,CBbits (0},
charBuffer(0), output(0),symbol(0),
tempChar (0),
firstTime (0},
done (0) ,
realBits(0),
sideDone (0) ,
doneData (0)

int nbrBits;

bytesToOutput=(nbrCols+2)/8;// determine the number of bytes that
the

remainingBits=(nbrCols+2)%8;// cols fits in

if (remainingBits==0)

{
bytesToOutput--;// To take care of the border
remainingBits=8;// because the last bit is not data, it is

// just a high bit

}

charPerLine=bytesToOutput+ (remainingBits!=0) ;

cout << bytesToOutput << “ " << remainingBits <« endl;

if (maxNbrLines>0)
maxNbrLines+=2;

}

int patternl::processDatal)

{

if (!inBuffer || !outBuffer)
cerr << “Please assign me with some input and output *
<< “buffers before asking me to process data” << endl;
return -1;

- A9 -

Valid. Syst. for Printed Docs Appendix A : Source Code

dataInput_ Process:

eof=inBuffer->atEOQOF () ;
if (dones>=charPerLine)
outBuffer->setEQOF () ;
return 1;
// add one line of bits at the beginning of the pattern minus one bit
// because the right side and the left side are added at the same time
// by the central routine
while (outBuffer->testWrite() && firstTime<charPerLine)
outBuffer->put (0xff) ;
firstTime++;
if (firstTimes=charPerLine)
nbrLines++;
/*
if ((SBinBits<8 && outputCount!=bytesToOutput) ||
(SBinBits<remainingBits &&
outputCount==bytesToCutput))
SBin={SBin<<8)+0xff;
SBinBits+=8;

if (SBinBits>=8 I (SBinBitss>=remainingBits &&
outputCount==bytesToOutput))
{
// extract symbol from symbol buffer (SBin):
if (outputCount==bytesToOutput)
{
if (remainingBits!i=0)
{
SBinBits-=(remainingBits-1);
symbol=SBin>>SBinBits;
SBin"=symbol<<SBinBits;
symbol=symbol<< (8-remainingBits) ;
//outBuffer-s>put { (unsigned char) (symbol&0x£f)) ;
outBuffer->put (symbol) ;
}
outputCount=0;
nbrLines++;
firstTime=0;
SBinBits=0;
SBin=0;

else

- A97 -

Valid. Syst. for Printed Docs Appendix A : Source Code

SBinBits-=8;
symbol=SBin>>SBinBits;
outBuffer-s>put (symbol) ;
SBin"=symbol<<SBinBits;
outputCount++;

#ifdef _debug

cout << “new data: “ << symbol << ™ %;
binaire (symbol, cout,m) ;

cout << endl;

#endif
}
*/
}
while ((outBuffer->testWrite()) && firstTimes>=charPerLine &&
(inBuffer->testRead() || (eof=inBuffer->atEOF())) &&
!doneData)

if (outputCount==0 && !sideDone)
{
//cout<< SBinBits << “ “ << hex << SBin << “ “;
SBin+= (0x1l<< (SBinBits++)) ;
realBits++;
sideDone=1;
//cout<< hex << SBin << endl;

if ((SBinBits<8 && outputCount!=bytesToOutput) ||
(SBinBits<remainingBits && outputCount==bytesToOutput))

// padBits flags when the system started padding the

information
// (when there is not enough info to £ill info block so 0
pad)
if (eof)
SBin=(SBin«<<8)+0x0;
else

{

inBuffer-s>get (tempChar) ;
SBin= (SBin<<8) +tempChar;
realBits+=8;

}

SBinBits+=8;

if (SBinBits>=8 i (SBinBits>=remainingBits &&
outputCount==bytesToOutput))

{

// extract symbol from symbol buffer (SBin):

- A98 -

Va

hd. Syst. for Printed Docs

Appendix A : Source Code

if (outputCount==bytesToOutput)

{

//cout<< hex << SBin << “ “;
//if (remainingBits!=0)

/74
SBinBits-=(remainingBits-1); // the -1 1is to
leave room for
realBits-=(remainingBits-1); // the border
symbol=SBin>>SBinBits;
SBin"=symbol<<SBinBits;
symbol=(symbol«<< (8-remainingBits+1))+ (0xl<< (8-
remainingBits)) ;
//cout<< hex << symbol << “ " << hex << SBin <«
//cout<< endl;
//outBuffer-s>put ((unsigned char) (symbol&Oxff)) ;
outBuffer->put (symbol) ;
//}
outputCount=0;
nbrLines++;
if ((eof && realBits<=0) || nbrLiness=(maxNbrLines-
1))
{
doneData=1;
SBin=0;
SBinBits=0;
break;
}
}
else

SBinBits-=8;
realBits-=8;
symbol=SBin>>5SBinBits;
outBuffer-s>put (symbol) ;
SBin"=symbol<<SBinBits;
if (outputCount==0)
sideDone=0;
outputCount++;

}

#ifdef _debug

cout << “new data: “ << symbol << ™
binaire (symbol, cout,m) ;

cout << endl;

#endif

}

w

7

// Add a line at the bottom minus one bit because the middle section has
// already taken care of the left bit

- A99 -

Valid. Syst. for Printed Docs Appendix A : Source Code

while (doneData && done<charPerlLine && outBuffer->testWrite())

{

outBuffer->put (Ox£ff) ;

done++;
if (dones>=charPerLine)
nbrLines++;
/*
if ((SBinBits<8 && outputCount!=bytesToOutput) ||

(SBinBits<remainingBits &&
outputCount==bytesToOutput))
SBin=({SBin<<8) +0xff;
SBinBits+=8;

if (SBinBits>=8] (SBinBits>=remainingBits &&
outputCount==bytesToOutput))
{
// extract symbol from symbol buffer (SBin):
if (outputCount==bytesToOutput)
{
if (remainingBits!=0)
{
SBinBits-=remainingBits;
symbol=SBin>>SBinBits;
SBin"=symbol<<SBinBits;
symbol=symbol«< (8-remainingBits) ;
//outBuffer-sput ((unsigned char) (symbol&0xff));
outBuffer->put (symbol) ;
outputCount=0;
}
nbrLines++;
done=1;
SBinBits=0;
SBin=0;

else

SBinBits-=8;
symbol=SBin>>SBinBits;
outBuffer->put (symbol) ;
SBin"=symbol<<SBinBits;
outputCount++;

#ifdef _debug_

cout << “new data: “ << symbol << ™ %;
binaire (symbol, cout,m);

cout << endl;

#endif

- A100 -

Valid. Syst. for Printed Docs

Appendix A : Source Code

}

*/
}

#ifdef _debug
cout << endl;
#endif

int patternl::giveNbrLines ()

{
}

void patternl::newData()

{
}

return nbrLines;

int patternl::processSymbols ()

{
}

A.19 depatternl

// depatternl.h

#ifndef depatternl_h
#define depatternli_h

#include “coDec.h”

#include <fstream.h>

class depatternl: public coDec

{

unsigned intSBin;// buffer to build symbols

int
int

unsigned intSBout;// buffer to build symbols

int
int
int
int
int
int
int

int
int
int
int

(8bits->mbits)

SBinBits;//number of bits in the symbol buffer

padBits;

(8bits->mbits)

SBoutBits;//number of bits in the symbol buffer

inputCount;
outputCount;
lastWrite;
bitsInBuffer;
nbrLines;
maxNbrLines;

bytesToOutput;
nbrBytesOutput;
remainingBits;
bitsLastChar;

- Al0]

Valid. Syst. for Printed Docs Appendix A : Source Code

int width;
int height;
int charPerLine;

ifstream input;

int feedback, FSRindex, FSRregBit,
maxOutput, CBbits;

unsigned intcharBuffer, output,symbol;

unsigned chartempChar;

unsigned charfirstTime;

int done;

int realBits;

// the first line was already read in the constructor so we are at
line 2
int currentlLine, currentChar, currentBit;

public:

depatternl (char* filename) ;
int processDatal() ;

int giveWidth() ;

int giveHeight () ;

int processSymbols () ;

void newDatal() ;

}i
#endif

// depatternl.cc
#include “depatternl.h”
#include “debugger.h”
#include “debug.h”
#include <values.h>
#include <stdio.h>

depatternl: :depatternl (char* filename):
SBin(0), SBinBits(0), padBits{(0), SBout(0),

SBoutBits(0), inputCount (0}, outputCount (0),
bytesToOutput (0) , »
nbrBytesOutput (0) , remainingBits (0), lastWrite (1),

nbrLines(0),

maxNbrLines (0),width(0),height (0) ,bitsLastChar (0),charPerLine(0),
feedback (0) ,FSRindex (0) , FSRregBit (0), maxOutput (0),CBbits (0},
charBuffer(0), output (0) , symbol (0) , tempChar (0) , firstTime (0),

done(0),
realBits {(0), currentLine(2),currentChar (0),currentBit (0)

{

char buffer[256];

- Al102 -

Valid. Syst. for Printed Docs Appendix A : Source Code

input.open(filename,ios: :in) ;

if (!input)

{
cerxr << “Couldn’t open file ™ << filename << endl;
exit (-1);

}

input>> buffer >> width >> height;
// passes the cariage return
input.get () ;

cout << width << “x” << height << endl;

charPerLine=width/8+ (width%8!=0) ;
// number of bits in the last character. If the number of bits are
multiple of 8
// there are 8 bits not zero in the last char
bitsLastChar=width%8;
if (bitsLastChar==0)
bitsLastChar=8;

// get rid of the top line
input .read(buffer, charPerLine} ;

//for (int i=0;i<height;i++)

/74

// input.read (buffer, charPerLine) ;
// for (int j=0;j<charPerLine;j++)
// for (int k=0;k<8;k++)

/7 {

// if ((buffer[j]&(0x80>5k)) !=0)
// cout << “*7;

// else

// cout << “ %;

// }

// cout << endl;

}

int depatternl::processData()

{

char c=0;

if (loutBuffer)
cerr << “Please assign me with some output °
<< “buffer before asking me to process data” << endl;
return -1;

- Al03 -

Valid. Syst. for Printed Docs Appendix A : Source Code

}

if (currentlLine==height && SBinBits==0)
outBuffer->setEOF () ;
return 1;

}

while ((outBuffer->testWrite()) && (currentLine!=height b
SBinRBits!=0))
{
while (SBinBits<8 && currentLine!=height)
{
c=(char) input.get () ;
currentChar++;
if (currentChar==1)
{
//gets rid of the border
SBin=(SBin<<7)+ {c&0x7F) ;
SBinBits+=7;

else if (currentChar==charPerLine)

// outputs the bits in the last character of the line
and gets rid

// of the border

SBin= (SBin<< (bitsLastChar-1))+ (c>>{9-bitsLastChar));

SBinBits+=bitsLastChar-1;

currentChar=0;

currentlLine++;)

if (currentLine==height)

input.close () ;

else

SBin=(SBin<<8) +c;
SBRinBits+=8;

}

// the only time this happens is 1if the end of pattern is
reached
if (SBinBits<8)
{
c=(char) {(SBin<<(8-SBinBits)) ;
outBuffer-s>put (c) ;
SBinBits=0;
done=1;

else

- Al04 -

Valid. Syst. for Printed Docs Appendix A : Source Code

c=(char) (SBin>> (SBinBits-8)) ;
outBuffer->put (c) ;
SBinBits-=8;

}
}
#ifdef _debug_
cout << endl;

#endif
if (currentLine==height && SBinBits==0)

{

outBuffer->setEOF () ;
return 1;

}

int depatternl::giveWidth()

{
}

return width;

int depatternl::giveHeight ()

{
}

void depatternl::newbata()

{
}

int depatternl::processSymbols ()

{
}

return height;

A.20 demodulator

#ifndef demodulator_h
#define demodulator_ h

int demodulator (FILE* input, FILE* output,int pixelSize, int threshold);
#endif // _demodulator_h

#include <iostream.h>

#include <stdio.h>

#include <fstream.h>

#ifdef cplusplus

- Al05 -

Valid. Syst. for Printed Docs Appendix A : Source Code

extern “C” {
#endif

#include <pgm.h>
#include <pbm.h>

#ifdef cplusplus

}

#endif

int demodulator (FILE* input, FILE* output,int pixelSize,int threshold)

{

unsigned intmaxgray;
int format;

if (pixelSize<=0 || pixelSize>=10)
{
cerr << “Pixel size should be between 1 and 10, now it is ™
<< pixelSize << endl;

exit (-3);
}
bit **image;
int rows=0,cols=0;
int outRows=0, outCols=0;
char SBout=0;
gray *pixelRows [pixelSize] , *outRow;

unsigned long intavg=0;

pgm_readpgminit (input, &cols, &rows, &maxgray, &format) ;
if (rows==0 || cols==0)

cerr << “Couldn’t read image file” << endl;
exit (-4);

for (int i=0;i<pixelSize;i++)
pixelRows [i]l= pgm allocrow(cols);

outRows=rows/pixelSize;
outCols=cols/pixelSize;

pgm _writepgminit (output, outCols, outRows, maxgray,0);
outRow=pgm_allocrow(outCols) ;

int rowIndex=0,colIndex=0;
int pixelCount=0;

int horizOffset,vertOffset;
char localThresh=3;

- AlO6 -

Valid. Syst. for Printed Docs Appendix A : Source Code

for (rowIndex=0; rowIndex<outRows; rowIndex++)

{

for (horizOffset=0;horizOffset<pixelSize;horizOffset++)

pgm_readpgmrow(input,pixelRows[horizoffset],cols,maxgray,format);
for (colIndex=0;colIndex<outCols;colIndex++)
{
localThresh=3;
avg=0;
for .
(horizOffset=colIndex*pixelSize;horizOffset<colindex*pixelSize+pixelSiz
e;

horizOffset++)
for (vertOffset:O;Vertoffset<pixelsize;vertOffset++)
{
avg+=pixelRows [vertOffset] [horizOffset] ;
if (pixelRows [vertOffset] [horizOffset]<50)
localThresh=1;
if (pixelRows [vertOffset] [horizOffset]>200)
localThresh=0;
}
avg=avg/ (pixelSize*pixelSize) ;
if (threshold < 0)
outRow [colIndex] = (gray)avyg;

else if (avg>threshold || localThresh==0)
outRow [colIndex]=255;
else if (avg<=threshold || localThresh==1)

outRow[colIndex]=0;

}

pgm_writepgmrow(output,outRow,outCols,maxgray,O);

}

return O0;

A.21 noisify

#ifndef noisify h
#define noisify_h

int noisifyPbm(FILE* input,FILE* output, float gaussDev);
void noisify (float factor);
double gauss (void);

#endif // noisify_h

#include <«<stdlib.h>

- A107 -

Valid. Syst. for Printed Docs Appendix A : Source Code

#include
#include
#include
#include
#include
#include

#ifdef

<stdio.h>
<string.h>
<time.h>
<iostream.h>
“‘noisify.h”
“gasdev.h”

cplusplus

extern “¢”

#endif

#include
#include

<pgm.h>
<pbm.h>

fifdef cplusplus

}

#endif

int

{

noisifyPbm(FILE* input,FILE* output, float gaussDev)

unsigned intmaxgray;

int
int

gray

format;
rows=0,cols=0;
*inRow, *outRow;

pgm_readpgminit (input, &cols, &rows, &maxgray, &format) ;

if

{

}

(rows==0 || cols==0)

cerr << “Couldn’'t read image file” << endl;
exit(-4);

inRow= pgm_allocrow(cols} ;

pgm writepgminit (output, cols,rows,maxgray,0) ;
outRow=pgm allocrow(cols);

int
int
int

for

{

rowIndex=0,colIndex=0;
pixelCount=0;
tempPixel;

(rowIndex=0; rowIndex<rows; rowIndex++)

pgm_readpgmrow (input, inRow, cols, maxgray, format) ;
for (collIndex=0;colIndex<cols;colIndex++)

{

tempPixel= (int)inRow[colIndex]+ (int) (gaussDev*gauss () *127) ;

if (tempPixel<0)
outRow [colIndex] =0;
else if (tempPixels>maxgray)

- Al08 -

Valid. Syst. for Printed Docs Appendix A : Source Code

outRow [colIndex] =maxgray;
else
outRow [colIndex] = (gray) tempPixel;

}

pgm_writepgmrow(output,outRow,cols,maxgray,O);

return 0;

}

void noisify (float factor)

{
unsigned char *src_row, *dest_row;
unsigned char *src, *dest, *dest_data;
unsigned intnextIndex=0;
int noise,i=0;
int count{1000];

initSeed () ;

for (i=0;1i<1000;i++)
count [1]=0;
noise = 0;

for (i=0;1<1000000;i++)
{
//printf (*%d\n”, (int) (gauss () *127)) ;
//printf (*$1f “,gauss());
nextIndex=500+ (int) (factor*gauss () *127) ;
//nextIndex=500+ (int) {(factor*gasdev () *127) ;
if (nextIndex>=0 && nextIndex<1000)
count [nextIndex] ++;
}
//printf (M\n”);
for (i1=0;1i<1000;i++)
if (i==500)
printf (*%d\t%d\n”,i-500,count [i]/2);
else
printf (“%$d\t%d\n”,1-500,count [i]) ;

/*
noise = (int) (nvals.noisel[0] * gauss() * 127);
p = src[b] + noise;
if (p < 0)
p=0;
else if (p > 255)
p = 255;
dest [b] = p;
*/

- Al109 -

Valid. Syst. for Printed Docs Appendix A : Source Code

Return a Gaussian {(aka normal) random variable.

Adapted from ppmforge.c, which is part of PBMPLUS.

The algorithm comes from:

‘The Science Of Fractal Images’. Peitgen, H.-0., and Saupe, D. eds.
Springer Verlag, New York, 1988.
/
double gauss (void)

{
int 1i;
double sum = 0.0;

L T T T .

for (i = 0; i < 4; i++)
sum += rand () & OxX7FFF;

return sum * 5.28596089837e-5 - 3.46410161514;

A.22 binTolmg

// binToImg.h
#ifndef binToImg h
#define binToImg h

#include “coDec.h”

class binToImg: public coDec

{

code

unsigned int* generator;//indexes of generator polynomial for the

unsigned int* systematic; // systematic symbols buffer.

unsigned int* FSR;//feedback shift registers for redundant bits
gen.

unsigned int SBin;// buffer to build symbols (8bits->mbits)

int SBinBits;//number of bits in the symbol buffer

int padBits;

unsigned int SBout;// buffer to build symbols (8bits->mbits)

int SBoutBits;//number of bits in the symbol buffer

int inputCount;

int outputCount;

int lastWrite;

int bitsInBuffer;

int nbrLines;

int bytesToOutput;
int nbrBytesOutput;

- AlI0O -

Valid. Syst. for Printed Docs Appendix A : Source Code

int remainingBits;

int feedback, FSRindex, FSRregBit,
maxQutput, CBbits;

unsigned intcharBuffer, output,symbol;

unsigned chartempChar;

int realBits;

public:

binTolmg (int nbrCol) ;
int processbhatal();
int giveNbrLines();
int processSymbols () ;

void newDatal();
Vi
#endif
// binToImg.cc
#include “binToImg.h”
#include “debugger.h”
#include “debug.h”

binToImg: :binTolmg (int nbrCols) : generator (0),

systematic(0), FSR(0), SBin(0), SBinBits(0), padBits (0),
SBout (0) ,
SBoutBits (0), inputCount (0}, outputCount (0),
bytesToOutput (0},
nbrBytesOutput (0), remainingBits(0), lastWrite (1),

nbrLines (0),

feedback(o),FSRindex(O),FSRregBit(O), maxOutput(O),CBbits(O),
charBuffer (0),

output (0) , symbol (0), tempChar (0), realBits(0)

int nbrBits;

bytesToOutput=nbrCols/8;// determine the number of bytes that the
remainingBits:nbrCols%B;// cols fits in

}

int binTolImg::processbata ()

{

if (!inBuffer || !outBuffer)
cerr << “Please assign me with some input and output *
<< “buffers before asking me to process data” << endl;
return -1;

- AllL -

Valid. Syst. for Printed Docs Appendix A : Source Code

dataInput Process:

eof=inBuffer->atEOF () ;

if (eof && (realBits<=0))
outBuffer->setEOF () ;
return 1;

while ((outBuffer->testWrite()) &&

(inBuffer->testRead() || (eof=inBuffer-
>atEOF ())))

{
if ((SBinBits<8 && outputCount!=bytesToOutput) ||
(SBinBits<remainingBits &&
outputCount==bytesToOutput))

{

// padBits flags when the system started padding the

information
// (when there is not enough info to fill info block so 0
pad)
if (eof)
SBin=(SBin<<8)+0x0;
else
{
inBuffer->get (tempChar) ;
SBin= (SBin<<8) +tempChar;
realBits+=8;
}
SBinBits+=8;
}
if (SBinBits>=8 B (SBinBits>=remainingBits &&

outputCount==bytesToOutput))
{
// extract symbol from symbol buffer (SBin):
if (outputCount==bytesToOutput)
{
if (remainingBits!=0)
{
SBinBits-=remainingBits;
realBits-=remainingRits;
symbol=SBin>>SBinBits;
SBin“=symbol«<<SBinBits;
symbol=symbol<< (8-remainingBits) ;
//outBuffer-sput ((unsigned char) (symbol&Ox£f));
outBuffer->put (symbol) ;
}
ocutputCount=0;
nbrLines++;
if (eocf&&realBits<=0)

- All12 -

Valid. Syst. for Printed Docs Appendix A : Source Code

break;
else

SBinBits-=8;
realBits-=8;
symbol=8SBin>>SBinBits;
outBuffer->put (symbol) ;
SBin " =symbol<<SBinBits;
outputCount++;

}

#ifdef _debug_

cout << “new data: " << symbol << “ %;
binaire (symbol, cout,m) ;

cout << endl;

#endif

}

/*
output the content of the Feedback Shift Register
*/
#ifdef _debug
cout << endl;
#endif

}

int binTolImg::giveNbrLines ()

{
}

void binToImg: :newData ()

{
}

int binTolmg: :processSymbols ()

{
}

return nbrLines;

A.23 rand_test

// rand test.h
#ifndef rand test_h
#define rand test_h

double xsg_to_stddev(double xsg, double k, double n,int *approx) ;

- All13 -

Valid. Syst. for Printed Docs Appendix A : Source Code

int print2digits(double f);
void diagnostic(double xsqg, double k, double n);

#endif

// rand _test.cc
#include <stdio.h>
#include <iostream.h>
#include <stdlib.hs>
#include <time.h>
#include “ran4.h”
#include “gasdev.h”
#include <plab.h>
#include <values.h>
#include <math.h>
#include “rand test.h”

#define NBRIT 700000 :
#define LOG2PI1.837877/* log(2*pi) */
fidefine min(x,y) { ({(x)<(y)) 2 (x) : (y))
#define max(x,y) (((x)>(y)) ? (x) : (y))

/* Evaluate an X-squared variate xsq (for n items placed in k bins,

* with all bins equi-probable), returning the number of standard

* deviations the equivalent normal deviate differs £from its

expectation.

* That is, if this function returns -2.326, the xsqg value is at the

* p=0.01 point of its distribution.

*

* The value of *approx is set to 1 if the calculated stddev has more
than

* 10% relative error.

*

* See Thomborson’s SODA ‘93 submission for an explanation of this code.
*/
double xsg_to_stddev(double xsg,double k,double n,int *approx)

{

double stddev,v,wsq,w,a,keff,twologp,u;

xsq = xsq + k/n; /* apply a “continuity correction” */

v = k-1.0; /* degrees of freedom in Chi-squared approximation * /

/* Wallace's approximation */

wsqg = xsq - v - v*log(xsqg/v);

if (wsg<0.0) wsg=0.0; /* avoid sqrt(-0.0), as a result of round-off
errors */

w = sqgrt{wsqg);

a = sqrt(2.0/v)/3.0;

if (xsq <= v) { /* lower tail: use Wallace’s approx */

stddev = -w+a;
} else { /* upper tail: min(multinomial approx, Wallace’'s approx) */

- All4d -

Valid. Syst. for Printed Docs Appendix A : Source Code

*/

}

}

}
}

r

/*

*
*

*

*/

keff = k/(1.0+xsqg/n) * (1.0 - exp(-(xsg+n)/k));
twologp = (2.0*n - 1.0 - 2.0*keff) * log(k/keff) - 2.0*keff + LOG2PI;
/* if twologp is small, make it huge (so it won’'t affect the output)

if (twologp < 2.83) twologp = 1000.0;

/* convert 2*log(p) to (approx.) gquantile of normal distribution */
u = sqgrt({twologp - log(twologp - LOG2PI) - LOG2PI) ;

stddev = min(u,w+a) ;

f (fabs(stddev) > n/sqgrt(2.0*v)) {
*approx = 1;

else {

*approx = 0;

eturn (stddev) ;

Print a low-precision float, using “%f” format where possible.

Uses “%f” format if this would print at most 3 significant digits;
otherwise uses “%.2g”. Always prints at least 2 significant digits,
never prints more than 3.

int print2digits(double f)

{

d

a

i

e

e

e

e

e

ouble a;

= fabs(f);

f (a > 1000.0)
printf (“s#.2g”, f);
lse if (a > 10.0)
printf ("%.0£f”, £);
lse if (a > 1.0)
printf(“%.1£f”, £);
lse if (a > 0.1)
printf(“%.2£7, £);
l1se if (a > 0.01)
printf(“%.3£", £);
1se

printf (“$#.2g"”, f£);

void
diagnostic (double xsg, double k, double n)

{

double stddev;/* temp for calculating # of std devations */

int i; /* loop counter */

int robust; /* true if we can do a 2-tailed test with p < le-6 */
int accurate; /* true if the stddev estimate is accurate */

double nrobust,ngiveup; /* min n to give (robust,adequate) test

results */

double smallxsqg; /* temp for nrobust and ngiveup calculations */

- AllS -

Valid. Syst. for Printed Docs Appendix A : Source Code

There are two tests for small n. The less restrictive test, below,
checks whether the computed, continuity-corrected xsqg value

could ever fall below the 5% point on the Chi-squared distribution.
In all cases, if there is a xsq outcome below the 5% point, there
are (many) above the 95% point, so a two-sided test is reasonably
accurate.

The smallest xsq value is (n mod k) (k - (n mod k))/n. For the case
of n > k, a monotone envelope is
smallestxsgl = kK72/(4#%n)
For the case of n <= k, the smallest xsqg value is just
smallestxsg2 = k - n
We thus use max(smallestxsgl, smallestxsg2) =
smallxsqg = max(k-n, k*k/(4*max(n,k)))
as a monotone envelope for this function.

EREE T T T T R R S T T N S R

* My “ngiveup” calculation evaluates smallxsqgq for n =
(3*sgrt(k))*(1.1)"1,
* for i=0,1,... until the resulting xsq to_stddev value falls below -
1.645.
* The factor of 1.1 implies that we’ll overshoot the smallest possible
* value of ngiveup by at most 10%. (Alternatively, we could
symbolically
invert the calculations in the xsg_to_stddev() function, perhaps
approximating in terms of a power series. This would take a lot
of my time: I’d rather let your CPU do a bit of extra work when
evaluating ngiveup.)

*
*
*
*
*
* For large k, ngiveup is 3*sqgrt(k). For very small k, ngiveup
* ig moderately large: 725 at k=2, 51 at k=3, 24 at k=4, 17 at k=5,
* 13 at k=6, ..., 11 at k = 10, then rising with 3*sgrt(k) for k>10.
*/
ngiveup = ceil (3.0*sqgrt(k));
for (i=0; i<500; i++) {

smallxsqg = max(k-ngiveup, k*k/(4*max(ngiveup,k)));

if (xsg_to_stddev(smallxsq, k,ngiveup, &accurate) < -1.645) break;

ngiveup = ceil(ngiveup*1.1);
/* My nrobust calculation is similar to the ngiveup calculation,

* except that the cutoff probability is 0.5*10%{-6}, i.e. the

* gtddev value must fall below -4.892. This allows an xsq value
* to be rejected at the l-in-a-million level.

*

* ig 60; for k = 10, nrobust is 182; for k == 5, nrobust is about
* 5600; for == 3, nrobust is approximately 1077; for k == 2,

* nrobust is about 3*107{13}. For k >= 50, nrobust < k.

*

- All6 -

Valid. Syst. for Printed Docs Appendix A : Source Code

Perhaps I should use only a 1-tailed test on xsg for k<4,
since a 2-tailed test with small failure probability requires

an unreasonably-large’’ amount of data.

The statistician’s “rule of thumb” for Chi-squared testing

is n >= 5*k, which is much larger than my nrobust for large k,
and much smaller than my ngiveup for small k. T have found
no reason to test for n »>= 5*k. Indeed, Kendall and Stuart
(Vol 2, 2nd ed, p. 440) say there is “No general theoretical
basis for this rule.”

/

[T T T R T S

nrobust = ceil (7.0*sgrt(k));

for (i=0; 1<500; i++) {
smallxsqg = max(k-nrobust, k*k/ (4*max (nrobust, k)));
if (xsq_to_stddev(smallxsq,k,nrobust,&accurate) < -4.892) break;
nrobust = ceil (nrobust*1.1);

}

/* quit if sample is too small */

if (n<ngiveup) {
printf(® This test requires ™)
print2digits (ngiveup) ;
printf (™ or more random generates.\n”) ;
return;

}

if (n<nrobust) {
printf (* Note: at least);
print2digits (nrobust) ;
printf (* random generates are needed\n") ;
printf (® for a two-tailed test with confidence p > 1-1.0e-6\n"});

ChiSquareDistributionchiSquare (k-1);
printf ("\tX"2=");
print2digits(xsq);
printf (“\n\tDeg Freedom=%.0£", 6 k-1);
printf (*\n\tprobability of happening=") ;
double percent:lOO*chiSquare.distributionFunctionAt(&xsq);
if (percent>50)
percent=100-percent;
print2digits(percent) ;
printf (“%%\n”);

main (int arge, char** argv)

{

long int counter=1;

- AllT -

Valid. Syst. for Printed Docs Appendix A : Source Code

unsigned long result;

float result2;
double count [3];
//ChiSquareDistributionchiSquare2 (2) ;
double countup8 [8];
//ChiSquareDistributionchiSquare7(7);
double equid[1<<10];
double pairs([16] [16];
int prev;
double Xsq;

int i, 3;
double m= (double) MAXLONG+1;
long n=NBRIT;
double freq;

//printf (*$x %1f\n”,m,m);
count [0]=0;
count [1]=0;
count [2]=0;
for (i=0;1<8;i++)
countup8 [1]=0;
for (i=0;1<(1<<10) ;i++)
equid{i]=0;
for (i=0;i<16;i++)
for (j=0;j<16;j++)
pairsl[i] [j]1=0;
long int randSeed;
time (&randSeed) ;
result=randSeed;
//randSeed=0x389890bb;
sran4 (randSeed) ;
srand4 8 (randSeed) ;
printf (“*seed: %x\n”,randSeed);

int tmp;
while (counter< (NBRIT+1))
{
//srand (result) ;
//result=rand () ;
result=1lran4 () ;
//result=1rand48 () ;
counter++;
count [result%3]++;
//countup8 [result>>29] ++;
countup8 [(result>>28)&7] ++;
equid{ (result>>21)&0x3ff] ++;
if (counter%2)
pairs(prev] [(result>>26) &0x£f] ;
//pairs([1]} (2] ++;
else
prevs=(result>>26) &0xEff;

- All18 -

Valid. Syst. for Printed Docs Appendix A : Source Code

}
xsqg=0;
/*freq = n*(ceil(m/3.)) /m;
xsq = ((count [0]-freq)* (count[0]-£freq))/freqg;
printf (“%1f %1f %1f\n”,freq,xsq,count[0]);
freq = n*(ceil(2.*m/3.))/m - freqg;
xsqg += ((count[1]-freq)* (count [1]-freq))/freq;
printf (*$1f %1f %1f\n”, freq,xsq,count{il]);
freq = n-n*(ceil(2.*m/3.)) /m;
xsq += ((count [2]-freq)* (count [2]-freq))/freq;
printf (“%1f %1f %1f\n”,freq,xsqg,count[2]);*/
//interpret xsqg{sumfsq,3.0,dn);
freg={(double)n)*1/3;
for (i1i=0;i<3;i++)
xsqg+=((count [i] -freq) * (count [i] -freq)) / (freq);
printf (“Test mod 3:\n”);
diagnostic{xsqg,3,n);
xsg=0;
for (i=0;i<8;i++)
{
//printf (*%.01f “,countup8(i]) ;
xsq+={countup8 [i] -NBRIT/8) * (countup8 [1] -NBRIT/8) / (NBRIT/8) ;
}
printf (“*\nTest 3 MSB:\n");
diagnostic(xsq,8,n);
printf ("\nEquidistribution of the 10 MSB\n”);
for (i=0;i<(1l<<10);i++)

{
//printf (*%.01f “,equid[i]);
qu+=(equid[i]—NBRIT/(1<<10))*(equid[i]—NBRIT/(1<<10))/(NBRIT/
(1<<10)) ;
1

diagnostic(xsqg, 1<<10,n);
for(i=0;1<16;i++)
for(j=0;j<16;j++)
{
printf (*%.01f “,pairsf{i] [§]);
xsqg+=(equid [i] -NBRIT/ (1<<10))* (equid [i] -NBRIT/ (1<<10))/
(NBRIT/ (1<<10));

}

diagnostic(.087,2.0,n);

}
A.24 treatXsqFile

// /home/adenis/Thesis/source/treatXsgFile.main.cc

- All9 -

Valid. Syst. for Printed Docs

Appendix A : Source Code

#include <pLab.h>
#include <iostream.h>
#include <stdio.h>
#include <fstream.h>
#include <math.h>

#define MAX SIZE 1024

main (int argc, char** argv)
{
if (argc!=5)
{
cerry << “Usage “ << argv[0] <«
output filename degree freedom” << endl;
exit (-1);
}

ifstreamhead(argvi{l],ios::in);
ifstreamdata{argv{2],ios::in);
ofstreamoutput (argv([3],ios: :out);

char buffer [MAX SIZE];
float xsq,percent;
float first,last;

unsigned int number=55,degFree;
sscanf (argv[4],”%1”, °Free) ;

if (!data |] 'head || !output)

{

w

filename.head

filename.data

cerr << “Couldn’t open file one of the files” << endl;
exit (-2);
}
//data.getline (buffexr,MAX_SIZE) ;
head >> first >> last >> number;
if (number>100)
number=100;
cout << first << " ™ << last << " % << number << endl;
float binSize=(last-first)/ (number-2) ;
int i;

cout << “bin size="” << binSize << endl;

//for (i=0;i<numbexr;i++)
// cout << first+i*binSize << “ ;
//cout<< endl;

float yXsg [number] , essai=0;

- Al20 -

Valid. Syst. for Printed Docs

Appendix A : Source Code

int counter;

for (int i=0;i<number;i++)

yXsql{il=0;
do
{
data.getline (buffer,MAX SIZE) ;
if (data.eof() || data.bad())
break;
//cout<< buffer << endl;
sscanf (buffer,”%£f", &xsq) ;
//cerr<< xsq << endl;
//cout<< “Data: “ << xs¢ << * ™ << (xsg-first)/binSize << endl;
//cout<< “Before int: “ << floor((xsg-first)/binSize) << endl;
yXsqgl(int) floor ((xsg-first) /binSize)]++;
//cout<< “yXsgl"“ << counter << “]=" << xsq << endl;
} while (1);

ChiSquareDistributiondistrib (degFree) ;
double position;

for (i=1;i<number;i++)
yXsqlil +=yXsql[i-17;

for (i=0;i<number;i++)

{

output<< (position=first+i*binSize) << ™\t~

<< yXsqlil /yXsqglnumber-1] << “\t”

<< distrib.distributionFunctionAt (&position)

<< endl;

}

data.clear () ;
data.close () ;
head.close() ;
output.close () ;

A.25 scannerSimulator

#ifndef _scannerSimulator h
#define _scannerSimulator h

int scannerSimulator (FILE* input,FILE* output, float
#endif // _scannerSimulator h

#include <iostream.h>

Xoff,float Yoff);

- Al21 -

Valid. Syst. for Printed Docs Appendix A : Source Code

#include <stdio.h>

#ifdef cplusplus
extern “C” {
#endif

#include <pgm.h>
#include <pbm.h>

#ifdef cplusplus

}

#endif

int scannerSimulator (FILE* input,FILE* output, float Xoff, float Yoff)

{

unsigned intmaxgray;

int format;

int rows=0,cols=0;
gray *inRow[2], *outRow [2] ;
float convol [9] ;

int i,3;

int one, two;

if (Xoff>1.0f || Yoff>1.0f)

{

cerr << “One of the offsetd is greater than 1 please try
again.” << endl;
exit (-1);

pgm‘readpgminit(input,&cols,&rows,&maxgray,&format);

if (rows==0 || cols==0)

{
cerr << “Couldn’t read image file” << endl;
exit (-4) ;

}

inRow[0] = pgm_allocrow(cols+2) ;

inRow[1]= pgm allocrow{cols+2);

for (i=0;i<cols+2;i++)
inRow[0] {i]=255;

inRow[1] [0]=255;

inRow[1] [cols+1]=255;

pgm;writepgminit(output,cols*2+1,rows*2+1,maxgray,O);
outRow [0] =pgm_allocrow(cols*2+1) ;
outRow [1] =pgm_allocrow(cols*2+1) ;

convol [0]=(1-Xoff)*(1-Yoff);
convol[ll=1-Yoff;
convol [2] =Xoff* (1-Yoff);

- Al122 -

Valid. Syst. for Printed Docs Appendix A : Source Code

convol[3]=1-Xoff;

convol [4]=1;
convol [5] =Xoff;

convol [6]=(1-Xoff)*Yoff;
convol[7]}=Yoff;
convol (8] =Xoff*Yoff;

int rowIndex=0,colIndex=0;
int pixelCount=0;

int tempPixel, tempIndex;
two=1;

one=0;

for (rowIndex=0; rowlndex<rows+l; rowIndex++)

{

if (rowIndex==rows)
for (i=0;i<cols+2;i++)
inRow [two] [1]=255;
else

pgm_readpgmrow(input,&(inRow[two][1]),cols,maxgray,format);

for (collndex=0;colIndex<cols+l;colIndex++)

{

outRow[0] [colIndex*2]={(gray) {(convol [7] *inRow [one] [colIndex] +

convol [1] *inRow [two] [colIndex]) ;

outRow[0] [colIndex*2+1] = (gray) (convol [8] *inRow [one] [colIndex] +

convol [6] *inRow [one] [colIndex+1]+

convol [2] *inRow [two] [colIndex] +

convol [0] *inRow [two] [colIndex+1]);

outRow[1] [colIndex*2] = (gray) (convol [4] *inRow [two] [colIlndex]) ;

outRow[1] [colIndex*2+1]=(gray) (convol [5] *inRow [two] [colIndex] +

convol [3] *inRow [two] [colIndex+1]);
;gm_writepgmrow(output,outRow[O]+l,2*cols+1,maxgray,0);
if (rowIndex!=rows)

pgm_writepgmrow(output,outRow[l]+1,2*cols+1,maxgray,0);

tempIndex=one;
one=two;

- Al23 -

Valid. Syst. for Printed Docs

Appendix A : Source Code

two=tempIndex;

}

return 0;

- Al24 -

Valid. Syst. for Printed Docs Appendix B: Patterns

APPENDIX B

PATTERNS

The following are the patterns using the concatenated code with symbol interleaver of the
size of the pattern, a random interleaver, the convolutional code with contraint length 18

and the RS code with parameters indicated on top of each pattern.

Appendix B: Patterns

Valid. Syst. for Printed Docs
4-7

» ! 5

5-1

e -
s
E Lt]
T Y TR
]
SN ?.!E

T I
L s n
Al

5

- B2 -

Valid. Syst. for Printed Docs Appendix B: Pattemns

5-12

- B3 -

Valid. Syst. for Printed Docs Appendix B: Patterns

. B4 -

Valid. Syst. for Printed Docs Appendix B: Patterns

6-19

6-21
TS ety
i‘;ﬁ"ﬁ;’aé'tf ;34"5
3

i .-_;?‘.’g E

;&,\ﬁrjrb 5

".f'-. h~' *g-*i._
Saty

. B5 -

Valid. Syst. for Printed Docs Appendix B: Patterns

.- B6 -

