
Exploiting Parallelism of Irregular Problems and
Performance Evaluation on Heterogeneous

Multi-core Architectures

by

Meilian Xu

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Doctor of Philosophy

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

May 2012

c© Copyright by Meilian Xu, 2012

Thesis advisor Author

Prof. Parimala Thulasiraman Meilian Xu

Exploiting Parallelism of Irregular Problems and

Performance Evaluation on Heterogeneous Multi-core

Architectures

Abstract

In this thesis, we design, develop and implement parallel algorithms for irregu-

lar problems on heterogeneous multi-core architectures. Irregular problems exhibit

random and unpredictable memory access patterns, poor spatial locality and input

dependent control flow. Heterogeneous multi-core processors vary in: clock frequency,

power dissipation, programming model (MIMD vs. SIMD), memory design and com-

puting units, scalar versus vector units. The heterogeneity of the processors makes

designing efficient parallel algorithms for irregular problems on heterogeneous multi-

core processors challenging. Techniques of mapping tasks or data on traditional par-

allel computers can not be used as is on heterogeneous multi-core processors due to

the varying hardware. In an attempt to understand the efficiency of futuristic hetero-

geneous multi-core architectures on applications we study several computation and

bandwidth oriented irregular problems on one heterogeneous multi-core architecture,

the IBM Cell Broadband Engine (Cell BE). The Cell BE consists of a general proces-

sor and eight specialized processors and addresses vector/data-level parallelism and

instruction-level parallelism simultaneously. Through these studies on the Cell BE,

ii

Abstract iii

we provide some discussions and insight on the performance of the applications on

heterogeneous multi-core architectures.

Verifying these experimental results require some performance modeling. Due

to the diversity of heterogeneous multi-core architectures, theoretical performance

models used for homogeneous multi-core architectures do not provide accurate results.

Therefore, in this thesis we propose an analytical performance prediction model that

considers the multitude architectural features of heterogeneous multi-cores (such as

DMA transfers, number of instructions and operations, the processor frequency and

DMA bandwidth). We show that the execution time from our prediction model is

comparable to the execution time of the experimental results for a complex medical

imaging application.

List of Publications

• Meilian Xu, Parimala Thulasiraman and Sima Noghanian, ”Microwave tomog-

raphy for breast cancer detection on cell broadband engine processors” , Elsevier

, Journal of Parallel and Distributed Computing, Vol. 72, Issue 9, September

2012, Pages 1106-1116.

• Meilian Xu and Parimala Thulasiraman, ”Mapping Iterative Medical Imaging

Algorithm on Cell Accelerator” , Hindawi Publishing Corporation , Interna-

tional Journal of Biomedical Imaging (Special Issue on Parallel Computation in

Medical Imaging Applications), Volume 11, 2011, doi:10.1155/2011/843924.

• Cameron Melvin, Meilian Xu and Parimala Thulasiraman, ”Preserving Image

Quality with Reduced Radiation Dosage in Computed Tomography by Parallel

Computing” , Serials Publications , India, International Journal of Computer

Science and System Analysis , Vol. 2, No. 2, pp. 121-131, July-Dec 2008.

• Meilian Xu, Parimala Thulasiraman and Ruppa K. Thulasiram, ”Cell Process-

ing for Two Scientific Computing Kernels”, in Handbook of Research on Scal-

able Computing Technologies, IGI Global, (25 pages), 2009, Editors: Kuan-

Ching Li, Ching-Hsien Hsu, Laurence Yang, Jack Dongarra and Hans Zima.

• Meilian Xu and Parimala Thulasiraman, Rotation based Algorithm for par-

allelizing OS-SART for CT on homogeneous multicore architecture , The 12th

IASTED International Conference on Signal and Image Processing, Maui, Hawaii,

2010.

• Meilian Xu, Parimala Thulasiraman and Ruppa K. Thulasiram, Exploiting Data

iv

List of Publications v

Locality in FFT using Indirect Swap Network on Cell/B.E., High Performance

Computing Symposium, Quebec City, QC, June 2008.

• Cameron Melvin, Meilian Xu and Parimala Thulasiraman, HPC for Iterative

Image Reconstruction in CT, The ACM Canadian Conference on Computer

Science and Software Engineering (C3S2E), Montreal, Quebec, May 2008.

• Meilian Xu and Parimala Thulasiraman, Finite-Difference Time-Domain on the

Cell/B.E. Processor , The 9th IEEE International Workshop on Parallel and

Distributed Scientific and Engineering Computing, Miami, US, April 2008.

• Meilian Xu, Abas Sabouni, Parimala Thulasiraman, Sima Naghonian, Stephen

Pistorius, Image Reconstruction using microwave tomography for breast cancer

detection on distributed memory machine, The 36th International Conference

on Parallel Processing, Xian, China, September 10-14, 2007, pp. 36-43.

• Abas Sabouni, Meilian Xu, Sima Noghanian, Parimala, Thulasiraman, Stephen

Pistorius, Efficient Microwave Breast Imaging Technique Using Parallel Finite

Difference Time Domain and Parallel Genetic Algorithms, 2007 IEEE AP-S

International Symposium on Antennas and Propagation in Honolulu, Hawaii,

USA on June 10-15, 2007.

• Meilian Xu, Abas Sabouni, Parimala Thulasiraman, Sima Noghanian and Stephen

Pistorius, A Parallel Algorithmic Approach to Microwave Tomography in Breast

Cancer Detection , The 8th IEEE International Workshop on Parallel and Dis-

tributed Scientific and Engineering Computing, Long Beach, CA, March 26-30

2007.

Acknowledgments

I would like to thank all the people who have helped and inspired me during my

doctoral study and made this thesis possible.

Foremost, I would like to express my sincere gratitude to my supervisor Prof.

Parimala Thulasiraman for the continuous support of my Ph.D. study and research,

for her patience, inspiration, and enthusiasm. It has been an honor to be her first

Ph.D. student. Her understanding, encouragement and personal guidance have pro-

vided a good basis for the thesis. I appreciate all her contributions of time and ideas

to make my Ph.D. experience productive and stimulating. I am also thankful for the

excellent example she has provided as a successful woman scientist and professor.

I would like to thank my committee members Prof. Sima Noghanian, Prof. Ben

Pak Ching Li, Prof. Udaya D. Annakkage and Prof. Laurence T. Yang. I would like

to thank Prof. Noghanian for introducing me to the microwave tomography project

and for her valuable comments and ideas on related publications. I would also like to

thank Prof. Li for his questions and comments from theoretic point of view, which

brings about the proposed performance model in the thesis. I would like to express

my thanks to Prof. Annakkage and Prof. Yang for spending time in reading the

thesis and providing valuable comments.

I wish to thank Dr. Michel Toulouse for his continuous support during my grad-

uate program at University of Manitoba. I wish to thank Prof. Ruppa (Tulsi) Thu-

lasiram for his help on the research of FFT. I also want to thank Abas Sabouni for

the collaboration and help on microwave tomography project. My warm thanks also

go to Jonatan Aronsson and Gilbert Detillieux for their help on simulation environ-

ments. I would also like to thank Lynne Hermiston for her help on administrative

vi

Acknowledgments vii

issues during the long journey.

My deepest gratitude goes to my family for their unflagging love and support

throughout my life. This thesis is simply impossible without them. I am indebted

to my father Dezhi Xu for his support on my decision to go abroad and study. As

a typical father in a Chinese family, he worked industriously to support the family

and spare no effort to provide the best possible environment for me to grow up and

attend school. Although he is no longer with us, he is forever remembered. I am sure

he shares our joy and happiness in the heaven. I cannot ask for more from my mother

Lanying Li for her everlasting love and understanding. I owe my loving thanks to

my husband Zhihui Zhu and my lovely son Hongyuan Zhu. They have lost a lot due

to my research abroad. Without their encouragement, patience and understanding

it would have been impossible for me to finish this work. My parents-in-law deserve

my sincere gratitude to help me take care of my son. I also want to thank my sisters

and brothers-in-law to take care of my parents all the years I am abroad.

Without all the helps and support, the thesis is impossible!

This thesis is dedicated to my parents Dezhi Xu and Lanying Li who

taught me the joy and power of reading from childhood, enabling such a

study to take place today.

viii

Contents

Abstract . ii
List of Publications . iv
Acknowledgments . vi
Dedication . viii
Table of Contents . x
List of Tables . xi
List of Figures . xii

1 Introduction 1
1.1 Motivation and Goal of the thesis . 6

1.1.1 Finite Difference Time Domain 8
1.1.2 Fast Fourier Transform . 9
1.1.3 Iterative CT Reconstruction Techniques 10
1.1.4 Microwave Tomography . 11

1.2 Contributions . 13
1.3 Organization of the thesis . 13

2 Parallel Architectures and Cell BE 15
2.1 Parallel Architectures . 15
2.2 Cell BE Processor . 24
2.3 Applications on Cell BE Processor 30
2.4 Summary . 44

3 Finite Difference Time Domain 45
3.1 Introduction . 45
3.2 FDTD on Distributed-Memory Machines 49
3.3 FDTD on homogeneous Multi-core Architecture 52
3.4 FDTD on Cell BE Processor . 55
3.5 Experiment Results . 59
3.6 Summary . 71

ix

x Contents

4 Fast Fourier Transform 73
4.1 Introduction . 74
4.2 Cooley-Tukey Butterfly Network and ISN 76
4.3 Parallel FFT Based on ISN on Cell BE 80
4.4 Experiment Results . 84
4.5 Summary . 88

5 Iterative CT Reconstruction Technique 92
5.1 Introduction . 93
5.2 Iterative Reconstruction Techniques 98
5.3 Parallel Computing for Reconstruction Techniques 105
5.4 OS-SART . 109
5.5 OS-SART on Cell BE . 113
5.6 Experiment Results . 117
5.7 Summary . 126

6 Microwave Tomography 128
6.1 Introduction . 129
6.2 Microwave Tomography . 133

6.2.1 FDTD for MT . 137
6.2.2 GA for MT . 139

6.3 Microwave Tomography on Cell BE 141
6.3.1 FDTD on SPEs . 141
6.3.2 Coordination between PPE and SPEs 146

6.4 Experiment Results . 147
6.5 Summary . 151

7 Performance Prediction Model 153
7.1 Performance Prediction for FDTD . 153
7.2 Summary . 159

8 Conclusions 161

Bibliography 185

List of Tables

1.1 Characteristics Comparison between four problems 12

5.1 Execution time for different combinations of subset number and itera-
tion number . 120

xi

List of Figures

2.1 SMP architecture . 17
2.2 nonuniform memory access (NUMA) architecture 18
2.3 distributed memory architecture . 19
2.4 MIMD division . 20
2.5 Gap between required performance and delivered performance. (Ban-

ton, 2008) . 21
2.6 Narrowed gap between required performance and delivered performance

via accelerator. (Banton, 2008) . 22
2.7 Cell Broadband Engine Processor Block Diagram 25
2.8 EIB data flow illustration. (Kistler et al., 2006) 28

3.1 Communication Scheme in Parallel FDTD 52
3.2 Simplified block diagram of Sun Fire X4600 server. 54
3.3 Computation Time for Different Clusters 62
3.4 Computation Time for Different Compilers 63
3.5 Computation Time for Different DMA Size 64
3.6 Performance comparison between two synchronization mechanisms . . 65
3.7 Computation Time Comparison between Shared Memory Machine and

Cluster . 67
3.8 Computation Time Comparison between Cell BE Processor and Cluster 68
3.9 Computation Time Comparison between Cell BE Processor and Shared

Memory Machine . 69
3.10 Computation Time for Different AMD Cores 70
3.11 Computation Time for Different Processors 71

4.1 Butterfly computation. 76
4.2 Cooley-Tukey butterfly network with bit-reversed input and ordered

output (Grama et al., 2003). 78
4.3 Indirect swap network with bit-reversed input and scrambled output. 79
4.4 Data migration between main memory and SPEs on Cell BE. 83

xii

List of Figures xiii

4.5 Computation time and speedup for different problem size on different
number of SPEs . 85

4.6 Comparison between Cell BE and cluster for 4K and 16K complex
numbers . 87

4.7 Comparison between Cell BE and cluster for different input data size
on 8 SPEs/processors . 88

5.1 Schematic diagram of X-ray projection acquisition (Herman, 1980). . 95
5.2 Framework of Iterative Reconstruction Techniques 99
5.3 Illustration of Iterative Methods . 100
5.4 Framework of OS-SART Reconstruction Technique 111
5.5 Profile Results of OS-SART. 115
5.6 Computation time vs Number of subsets on AMD. The curve shows

the time for different number of subsets for one iteration. 119
5.7 Computation time vs Number of subsets on AMD and Cell BE. The

curve shows the time for different number of subsets for one iteration. 121
5.8 Computation time and speedup vs number of SPEs/cores for 20 subsets

and 10 iterations. 123
5.9 Computation time and communication time vs number of SPEs and

number of image rows per DMA transfer for 20 subsets and 10 iterations.124
5.10 Computation time and speedup vs number of SPEs for different image

sizes using 20 subsets and 10 iterations. 125
5.11 Reconstructed images at different iterations for 20 subsets. 126

6.1 Microwave Tomography Illustration. 135
6.2 Simulation Settings (Xu et al., 2007a). 136
6.3 MT on Cell BE flow chart. The variables used for the time for different

part are included. 143
6.4 Comparison between two mapping schemes for FDTD. The straightfor-

ward mapping is the one without overlapping computation with com-
munication, while the optimized mapping is the one with the overlap-
ping technique. 149

6.5 Performance comparison between two versions of MT, which integrate
GA and with two different FDTD simulation. 150

6.6 Performance comparison of MT on different platforms. 152

7.1 Analysis results vs experiment results of FDTD simulation. The legend
of 1 row means 1 row for each DMA transfer. 159

Chapter 1

Introduction

A parallel machine is made up of many independent processors. Clusters and

NOWs (network of workstations) which paved the way in parallel processing are

still considered to be cost effective, scalable, easy to program and could be built us-

ing off-the-shelf RISC processors. High performance computing (HPC) clusters pro-

vide increased performance by splitting the computational tasks among the nodes in

the cluster and have been commonly used to study data-intensive and computation-

intensive applications. These clusters are cost effective, scalable and run standard

software libraries such as MPI which are specifically designed to develop scientific

application programs on HPC. They are also comparable in performance and avail-

ability to supercomputers (Bader and Pennington, 2001). A typical example is the

Beowulf cluster which uses commercial off-the-shelf computers to produce a cost-

effective alternative to a traditional supercomputer. Many of the fastest computers

or supercomputers in the top500.org list are clusters. One of the crucial issues in clus-

ters is the communication bandwidth. High speed interconnection networks such as

1

2 Chapter 1: Introduction

Infiniband have paved the way for increased performance gain in clusters (Pentakalos,

2002).

However, the development trend in clusters has been greatly influenced by hard-

ware constraints leading to three brick walls (Asanovic et al., 2009). According to

Moore’s law, the number of transistors on the chip will double approximately ev-

ery 18 months (Moore, 1965). However, the speed of processor clocks has not kept

up with the increased transistor design (known as Moore’s Gap) (Sutter and Larus,

2005). This is due to the physical constraints imposed on clock speed increase. For

example, too much heat dissipation leads to complicated cooling techniques to pre-

vent the hardware from deteriorating. And, too much power consumption daunts the

customers from adopting new hardware, increasing the cost of commodity applica-

tions. Power consumption doubles with the doubling of operating frequency leading

to the first of the three walls, known as the power wall. On the other hand, even

with the increased processor frequency achieved so far, the system performance has

not improved significantly in comparison to the increased clock speeds. In many ap-

plications, the data size operated on by each processor changes dynamically, which

in turn, affects the computational requirements of the problem leading to communi-

cation/synchronization latencies and load imbalance. Multithreading is one way of

tolerating latencies. However, previous research (Thulasiram and P.Thulasiraman,

2003; Thulasiraman et al., 2004) has indicated that though multithreading solves the

latency problem to some extent by keeping all processors busy exploiting parallelism

in an application, it has not been enough. Accessing data in such applications greatly

affects memory access efficiency due to the non-uniform memory access patterns that

Chapter 1: Introduction 3

are unknown until runtime. In addition, the gap between the processor speed and

the memory speed is widening as the processor speed increases more rapidly than

the memory speed leading to the second wall, memory wall (Wulf and Mckee, 1995).

To solve this problem, many memory levels are incorporated which requires exotic

management strategies. However, the time and effort required to extract the full

benefits of these features detracts from the effort exerted on real coding and opti-

mization. Furthermore, it has become a very difficult task for algorithm designers

to fully exploit instruction level parallelism (ILP) to utilize the processor resources

effectively to keep the processors busy. Solutions to this problem have been in using

deep pipelines with out-of-order execution. However, this approach impacts the per-

formance of the algorithm due to the high penalty paid on wrong branch predictions.

This leads to the third wall, ILP wall. These three walls force architecture design-

ers to develop solutions that can sustain the requirements imposed by applications

and provide solutions to some of the problems imposed by hardware in traditional

multiprocessors.

A multi-core architecture is one of the solutions to tackle the three walls. This

architecture is driven by the need for decreased power consumption, increased op-

erations/watt and Moore’s Gap. A multi-core architecture consists of a multi-core

processor, which is also called a chip-level multiprocessor (CMP). A multi-core pro-

cessor combines two or more (less than ten) independent cores on a single die. Some

cores on the same processor die run at a comparatively lower clock speed which de-

creases heat. The heat dissipation of the die will improve since workloads can be

balanced across various cores to evenly distribute the generated heat. Industry ven-

4 Chapter 1: Introduction

dors such as Intel, AMD, IBM and Sun Microsystems have designed homogeneous

multi-core or many-core (with tens, hundreds, or even thousand of cores on a single

die) processor chips where all the cores are exactly the same and have the same in-

struction set. A multi-core architecture is a new architecture and cannot be regarded

as a new SMP (Symmetric MultiProcessor) architecture since all cores in this archi-

tecture share on-chip resources whereas separate processors in the conventional SMP

do not (Dongarra et al., 2007). For example, each core of an AMD Opteron dual-core

processor has its own L2 cache, but the two cores still share other interconnect to

the rest of the system such as the memory controller. These dual-core processors

belong to homogeneous multi-core processors because the resources and execution

units (or cores) are mere replications of each other. The number of cores on a single

die is still growing. Quad-Core Intel Xeon processor and Quad-Core AMD Opteron

processor are already available. Cyclops64 has as many as 64 homogeneous cores on

a single chip (Denneau and Warren, 2005), which is usually known as a many-core

architecture. Homogeneous multi-core architectures increase parallelism and provide

performance improvement for many real-time, data-intensive applications. They pro-

vide thread-level parallelism and can support OpenMP and MPI (Message Passing

Interface) standard programming languages. Therefore, existing parallel algorithms

implemented using OpenMP or MPI can be ported onto these machines with little

difficulty. In general, homogeneous multi-core systems do not require much, if any,

code modification to make existing software work. Code for these systems often re-

quires refinement and tweaking when performance is not as expected. However, as

the number of cores per chip increases, so does the power consumption and heat dis-

Chapter 1: Introduction 5

sipation generated from these cores. This leads to higher costs for thermal packaging,

fans, electricity, and even air conditioning. There is a greater chance of failures due

to higher-power systems.

Although homogeneous multi-core processors have become mainstream, heteroge-

neous multi-core architectures have gained their recognition and popularity gradually

due to their unique features for HPC. The concept of heterogeneous multi-core com-

puting is not new. It has existed since the mid-80’s where a problem’s workload is split

between a general-purpose processor and one or more specialized, problem-specific

processors. Notable examples include Floating Point Systems’ array processors, the

Inmos “Transpute” and the Connection Machine (Eatherton, 2005). Today we have

such heterogeneous multi-core computing in hardware designs such as GPU (Graph-

ics Processing Unit) and recent GPGPU (General Purpose GPU), FPGA (Field Pro-

grammable Gate Array), and network processors (Cisco’s 188 Reduced Instruction

Set Computer (RISC) cores on a single chip in a 130nm process). Heterogeneous

multi-core architectures such as IBM Cell Broadband Engine (Cell BE) (Kahle et al.,

2005), or multi-core system with GPUs (Graphic Processing Units) or any hardware

specialized accelerators have a better performance/power ratio. Due to their het-

erogeneity, these architectures support diverse applications. However, programming

these architectures is very difficult. The conventional high level programming lan-

guages for the conventional single-core systems encapsulate the underlying hardware

from software programmers. On the contrary, the heterogeneity of cores on heteroge-

neous systems indicates different architectures and instruction sets on different kinds

of cores on the same system. These architectures provide a concrete programming

6 Chapter 1: Introduction

paradigm which exposes the programmers to much of the underlying hardware for

optimal performance. For example, CUDA is the language used for Nvidia’s GPG-

PUs1. Programmers have to use CUDA to manipulate the memory on GPGPUs. The

Cell BE processor has one conventional microprocessor, Power Processor Element

(PPE), and eight SIMD (Single Instruction Multiple Data) co-processing elements

called Synergistic Processor Elements(SPEs). PPE and SPEs use different Instruc-

tion Set Architecture (ISAs). With the recent introduction to OpenCL, some of the

problems pertaining to the portability of the algorithms on heterogeneous multicore

architectures would be resolved.

1.1 Motivation and Goal of the thesis

High performance computing is moving towards exascale computing. Heteroge-

neous parallel machines with accelerators such as Graphical Processing Units (GPU)

and the recent architecture (at the time of this writing, AMD Accelerated Process-

ing Unit(APU)) have demonstrated their capabilities beyond graphics rendering or

general purpose computing and are proved to be well suited for data intensive appli-

cations. However, heterogeneous multicore architectures pose new challenges. First,

algorithms have to be redesigned to take advantage of the architecture. In addition,

the programming models differ between vendors, lacking portability of algorithms

across various heterogeneous platforms. Hopefully, with OpenCL, this problem can

be resolved. With the future of general purpose computing moving towards hetero-

geneous multicore architectures, it is important to understand the behaviour of these

1http://www.nvidia.com/object/cuda home new.html

Chapter 1: Introduction 7

architectures on high performance computing applications.

As a stepping stone to understand the applications that can be studied on these

machines, we have designed, developed and implemented several computation and

bandwidth oriented algorithms on on-chip accelerator, the Cell BE. Cell BE has

features similar to modern general purpose heterogeneous multicore computers such as

APU. Therefore, our algorithm design will remain intact without any modifications if

the same algorithms were implemented on futuristic machines. Moreover, we develop

a general performance prediction model for heterogeneous multicore architectures.

We focus on four different problems in this thesis. Some of these problems are

kernels to medical imaging modalities which we feel will benefit from the sustained

peak performance of Cell BE. We develop parallel algorithms for these problems and

implement the algorithms on the Cell BE by fully utilizing the various features of the

Cell BE. Through these studies on the Cell BE, we provide some discussions on the

performance of such applications on heterogeneous multicore architectures in general

and provide some insight into the performance of these applications.

The problems considered have different characteristics and features. The complex-

ity of the algorithm design and implementation increases for each of these problems.

They range from regular to irregular problems, synchronous to asynchronous compu-

tations, static to dynamic execution and structured or unstructured problem domain.

An irregular problem has irregular memory access pattern. Unstructured problems

cannot be represented by a regular data structure such as an array. In a dynamic

problem, communication pattern changes over time, data size increases or decreases,

and load imbalance may result. An asynchronous problem has its own challenges

8 Chapter 1: Introduction

especially in termination detection.

1.1.1 Finite Difference Time Domain

Finite Difference Time Domain (FDTD) is a popular simulation method and a

regular scientific computing problem which is a kernel to many applications such

as Electromagnetic theory in (Taflove and Hagness, 2000) and medical imaging (Xu

et al., 2007a; Xu and Thulasiraman, 2008a).

FDTD is an inherently data-intensive and computation-intensive algorithm which

exhibits nearest neighbor communication patterns categorizing it as a regular prob-

lem. Since it is usually a kernel in many applications, its performance is crucially

important to the overall performance of the entire application. The field updates in

FDTD are stencil updates which consist of a discrete set of cells and a computational

kernel that is invoked for each cell to calculate the new cell values. This characteristic

of FDTD makes it a data intensive problem.

Although there exist many FDTD algorithms designed for different conventional

parallel architectures, the performance of those parallel FDTD is still an issue to

the underlying applications. The Cell BE exhibits several levels of parallelism at the

architecture and hardware level, which may be suitable for data intensive problems

such as FDTD. Therefore, in this thesis we investigate and design parallel FDTD for

Cell BE. For the purpose of comparison, we also design parallel FDTD on conventional

distributed memory machines and shared memory machines.

We propose to incorporate the GA together with the FDTD and implement the

algorithm on the Cell BE. We will study the Cell BE’s intrinsic features for this im-

Chapter 1: Introduction 9

portant application and provide a comprehensive analysis of the performance results.

1.1.2 Fast Fourier Transform

The Fast Fourier Transform (FFT) algorithm is a well-known kernel in many

applications such as computed tomography (CT) and option pricing in finance. The

Fourier back projection (based on FFT) algorithm is commonly used in CT (Herman,

1980). The FFT is a data intensive, semi-regular problem. The algorithm follows a

butterfly computation with regular synchronization and communication at each level

of the iteration. The communication patterns change at each iteration although it is

very easy to determine the identification of the partners.

Iterative FFT algorithm has been intensively studied on distributed memory ma-

chines. Unlike the fixed nearest-neighbor communication inherent in FDTD algo-

rithm, the FFT exhibits dynamic communication patterns, which makes it a semi-

irregular algorithm since the communication patterns can only be decided at run

time. The changing patterns incur two main latency issues for FFT on distributed

memory machines: communication and synchronization.

These two latencies can be tolerated or hidden by either multithreading technique

or data locality improvement technique . The former technique tries to overlap com-

putation with communication, while the latter tries to map data in a way such that

the number of communication can be reduced. Simultaneous multithreading (SMT)

with large number of threads (over hundreds or thousands) is not supported in the

hardware of Cell BE. Therefore, we reduce the communication latency by using an

indirect swap network (Yeh and Parhami, 1996) instead of the traditional Cooley-

10 Chapter 1: Introduction

Tukey butterfly network to compute FFT (Cooley and Tukey, 1965). We design an

iterative FFT algorithm on Cell BE by partitioning the swap network and mapping

the sub-network to the Cell processors.

1.1.3 Iterative CT Reconstruction Techniques

X-ray computed tomography (CT) is an imaging modality which reconstructs

an image from projection data (Herman, 1980). With acquired data through CT

scanners, CT can reconstruct images using either analytical methods (also known as

transform-based methods) or iterative methods. Analytical methods are faster than

iterative methods for the same amount of projection data. However, the problem

with analytical methods is that they need larger number of projections than itera-

tive methods, which exposes patients to large dosage of X-ray radiation. Although

iterative methods are safer, they are computationally intensive requiring long pro-

cessing time. Furthermore, they are also communication intensive and provide lots

of asynchronicity.

We have developed two parallel algorithms on distributed memory machines and

shared memory machines, with little improvement in performance (Melvin et al.,

2008a,b). These two algorithms are variants of Algebraic Reconstruction Technique

(ART) methods for CT (Gordon et al., 1970). ART is one category of iterative re-

construction techniques. One of the reasons for limited performance improvement

is that the chosen variants incur too much synchronicity due to frequent memory

access on shared memory machines or inter-processor communications on distributed

memory machines. Therefore, in this thesis we re-investigate the variants of iterative

Chapter 1: Introduction 11

reconstruction techniques, focusing on one variant, Ordered Subset Simultaneous Al-

gebraic Reconstruction Technique (OS-SART) (Hudson and Larkin, 1994), which is

more suited for Cell BE.

1.1.4 Microwave Tomography

As mentioned in subsection 1.1.1, FDTD is a kernel to microwave imaging ap-

plications. One of such applications is microwave tomography (MT). Microwave

tomography is a safe screening modality that can be used for breast cancer detec-

tion (Noghanian et al., 2006; Ashtari et al., 2010; Sabouni et al., 2011). The technique

uses the dielectric property contrasts between different breast tissues at microwave

frequencies to determine the existence of abnormalities. The proposed MT approach

is an iterative process that involves two algorithms: Finite-Difference Time-Domain

(FDTD) and Genetic Algorithm (GA). It is a computation intensive problem: (i)

the number of iterations can be quite large to detect small tumours; (ii) many fine-

grained computations and discretizations of the object under screening are required

for accuracy.

We developed a parallel algorithm for microwave tomography on CPU-based ho-

mogeneous, multi-core, distributed memory machines (Xu et al., 2007a). The perfor-

mance improvement was limited due to communication and synchronization latencies

inherent in the algorithm. Therefore, we exploit the parallelism of microwave to-

mography on Cell BE processor. Since FDTD is a numerical technique with regular

memory accesses, intensive floating point operations, SIMD type operations, the al-

gorithm can be efficiently mapped on Cell BE achieving significant performance.

12 Chapter 1: Introduction

Finally, we propose a performance prediction model based on DMA transfers,

number of instructions and operations, the processor frequency and DMA bandwidth.

Since, microwave tomography is a complex problem that uses the SIMD units, SPEs

and PPE for calculating FDTD and GA respectively, and all the other Cell BE archi-

tectural features, we used this problem as an example to obtain a general performance

prediction model applicable to heterogeneous multi-core architectures.

In summary, the following Table 1.1 lists the four problems to be considered with

their specific characteristics.

FDTD FFT iterative re-
construction

microwave
tomography
(MT)

applications/
kernels

microwave to-
mography

CT CT medical imag-
ing

regular/
irregular

regular semi-irregular irregular irregular

structured/
unstructured

structured structured unstructured unstructured

static/
dynamic

static dynamic dynamic dynamic

synchronous/
asynchronous

synchronous synchronous asynchronous asynchronous

Table 1.1: Characteristics Comparison between four problems

The four problems are categorized as applications/kernels, regular/irregular, struc-

tured/unstructured, dynamic/static, synchronous/asynchronous. An irregular prob-

lem has irregular memory access pattern. Unstructured problems cannot be repre-

sented by a regular data structure such as an array. In a dynamic problem, communi-

cation pattern changes over time, data size increases or decreases, and load imbalance

Chapter 1: Introduction 13

may result. An asynchronous problem has its own challenges especially in termination

detection.

1.2 Contributions

The main contributions of the thesis is in mapping irregular computations on het-

erogeneous multi-core architectures, in particular Cell BE. In this thesis we consider

four problems, with increasing complexity, thereby increasing the use of advanced

features in the Cell BE architecture. We propose a general performance prediction

model which can be used as a basis for evaluation in future heterogeneous multi-core

architectures.

1.3 Organization of the thesis

The remainder of this thesis is organized as follows. Chapter 2 briefly discusses

parallel architectures and the recent accelerator architectures, focusing on Cell BE

and various applications on the Cell BE. Chapter 3 investigates different parallel

architectures for FDTD and the corresponding parallel algorithms, including paral-

lel FDTD on distributed memory machines, homogeneous multi-core machines and

the Cell BE processor. Chapter 4 presents the communication and synchronization

overhead in traditional Cooley-Tukey butterfly network for FFT and introduces a

modified network, indirect swap network (ISN), which was proposed in VLSI circuit

design to reduce the overhead from improved locality. Chapter 5 describes iterative

reconstruction techniques and investigates OS-SART technique on Cell BE, including

14 Chapter 1: Introduction

parallel OS-SART on homogeneous multi-core machines and the Cell BE processor.

Chapter 6 illustrates microwave tomography technique and designs parallel microwave

tomography algorithm on Cell BE processor, followed with a performance prediction

model using microwave tomography as an example on Cell BE in chapter 7. Finally,

chapter 8 presents our conclusions and future work.

Chapter 2

Parallel Architectures and Cell BE

This chapter briefly introduces parallel architectures, with a focus on Cell BE. It

also reviews different applications on Cell BE.

2.1 Parallel Architectures

The last few years has been dominated by teraflop (1012 floating point operations

per second) computers. Applications such as drug development to combat serious

diseases, simulations of natural phenomena such as earthquakes, hurricanes and un-

derstanding the molecular dynamics of the universe or body cell structure have suc-

cessfully used teraflop computers. High performance computing is now reaching the

petaflop era and moving towards exascale computing. To sustain petaflop comput-

ing, thousands of processor cores will be needed. Hardware, programming languages,

and software environment all play a significant role in designing parallel algorithms

for these computers. Currently, very few parallel algorithms are scalable to petaflop

15

16 Chapter 2: Parallel Architectures and Cell BE

computers. Computer architectures are becoming more and more complicated and

efficiently using these architectures to fully exploit scalability and high performance

for many applications is a challenge.

In the 1970’s, Flynn (Flynn, 1972) categorized parallel systems into four models

according to the number of instruction streams and data streams. Though, we are

in the multi-core era, Flynn’s taxonomy still applies. The four groups are single

instruction single data (SISD) model, single instruction multiple data (SIMD) model,

multiple instruction single data (MISD) model, and multiple instruction multiple

data (MIMD) model. An SISD system is the common von Neumann model used

in all single processor computers where one stream of instruction processes a single

stream of data. An SIMD architecture has one control unit and many processing

elements (PE). Each of the PE’s perform the same instruction dictated by the control

unit on different data sets. The processors compute in a synchronous manner. Vector

processors, which operate on vector data in a pipelined fashion, can also be categorized

as SIMD. SIMD systems exploit fine-grained parallelism. Systolic arrays fall under

the MISD model. MISD architectures are obsolete. An MIMD system consists of

multiple processing elements, each with its own stream of instructions operating on

its own data. A vast majority of modern parallel systems such as clusters, network

of workstations and multi-core machines fall into this group.

The MIMD system can be further subdivided according to the memory organiza-

tion: shared memory and distributed memory architectures. In a shared-memory sys-

tem, all processing elements share a single address space and communicate with each

other by reading and writing to shared variables. Symmetric multiprocessor (SMP)

Chapter 2: Parallel Architectures and Cell BE 17

or uniform memory access (UMA) systems, non-uniform memory access (NUMA)

systems, and cache-coherent NUMA (ccNUMA) systems belong to shared memory

systems. In an SMP system, all processors have access to a global memory and access

all memory locations at equal speeds. This is illustrated in Figure 2.1.

Figure 2.1: SMP architecture

Although an SMP system is easy to program, it does not scale well. The in-

terconnection network is usually a bus or a crossbar switch. In NUMA systems as

shown in Figure 2.2, the memory is distributed among the various processors, each

with its own address space but all processors have equal access to all the memory.

In essence, NUMA machines are also called as distributed shared memory machines.

In these architectures, some blocks of memory may be physically more closely as-

sociated with some processors than others. This reduces the memory bandwidth

bottleneck and scales well. However, as a result, the access time from a processor to

a memory location can be significantly different depending on how close the memory

location is to the processor. In these systems, data locality is very important. Both

SMP and NUMA machines have cache coherency problems. There are techniques

18 Chapter 2: Parallel Architectures and Cell BE

such as snooping and distributed directory protocols to alleviate the cache coherency

issue (Patterson and Hennessy, 2007).

Figure 2.2: nonuniform memory access (NUMA) architecture

To mitigate the effects of nonuniform access, each processor has a cache, together

with a cache-coherent protocol called cache-coherent NUMA (ccNUMA) systems.

Logically, programming a ccNUMA system is the same as programming an SMP, but

to obtain the best performance, the programmer needs to pay particular attention to

data locality and cache effects. On the other hand, a distributed memory system is

harder to program but scales well. Each processor of a distributed memory system has

its own address space and communicates with other processors by message passing

(sending and receiving messages via interconnect network) as shown in Figure 2.3.

The distributed memory systems are traditionally divided into two classes: mas-

sively parallel processors (MPP) and clusters. In an MPP, the processors and the

Chapter 2: Parallel Architectures and Cell BE 19

Figure 2.3: distributed memory architecture

network are tightly coupled and have specialized hardware for special use. Clusters

are composed of off-the-shelf computers connected by an off-the-shelf network. A

well-known example of clusters is Beowulf clusters which connect PCs running the

Linux operating system. Hybrid systems are clusters of nodes with separate address

space in which each node contains several processors that share memory. Grids are

systems that are distributed, heterogeneous resources (such as computation servers,

storage application servers, etc) connected by LAN or WANS (Foster and Kesselman,

2003), which is often the Internet. The resources in the grids are owned by different

individuals/organizations and there is no centre administration of the resources. The

division of MIMD can be summarized in Figure 2.4.

With these parallel architectures and their corresponding parallel programming

environments, such as OpenMP1 for shared memory systems and MPI (Message Pass-

ing Interface)2 for message passing systems, the HPC community has witnessed the

boom in HPC applications. Recently, computational science applications which are

interdisciplinary in nature have attracted the HPC community. However, the growth

1http://openmp.org/wp/
2http://www.open-mpi.org/

20 Chapter 2: Parallel Architectures and Cell BE

Figure 2.4: MIMD division

trend has been impaired due to the increasing gap between the exponentially grow-

ing requirements of high bandwidth, low latency, data intensive applications and the

performance delivered by commodity processors and parallel systems as shown in

Figure 2.5 (Banton, 2008). Moore’s law has hit the limitation to improve perfor-

mance at the increased rate of power consumption and frequency. At about 3GHz,

the power requirements rise rapidly and the performance has reached a limit, largely

due to pipelining as deep as thirty stages. In 2001, Pat Gelsinger, Intel’s first CTO,

developed a law that discusses the dilemma of widening gap between the required

and delivered performance of commodity processors in Gelsinger’s law. It states that

Chapter 2: Parallel Architectures and Cell BE 21

as the number of transistors doubles, the performance increases by only 40%, but the

power consumption increases out of control (Banton, 2008).

Figure 2.5: Gap between required performance and delivered performance. (Banton,
2008)

Gelsinger’s law and the widening gap has driven chip makers to migrate towards

adoption of multi-core architectures and accelerators (co-processors) instead of con-

tinuing to increase the number of transistors and processor frequency in order to

narrow the gap, as shown in Figure 2.6.

Furthermore, in the last few years, power consumption, cooling infrastructure,

physical size, and carbon footprint have become more important than ever for some

HPC applications, which has driven the HPC community into green computing3.

A new metric, SWaP, is proposed to measure the power consumption of parallel

3http://www.green500.org

22 Chapter 2: Parallel Architectures and Cell BE

Figure 2.6: Narrowed gap between required performance and delivered performance
via accelerator. (Banton, 2008)

architectures4. SWaP, Size (in rack units (RU)), Watts (power consumption during

benchmark operation), and Performance (using industry standard benchmarks), is

defined as follows:

SWaP =
performance

space× power
(2.1)

SWap is more favorable to new parallel architectures using multi-cores or accelera-

tors, such as Cell BE and GPGPUs. Cell BE has the capabilities of running both fine

and coarse grained computations. The drawback of this architecture is the low level

assembly-style language which of course allows a programmer to draw the computing

power of the hardware that only a knowledgeable programmer would benefit. The

General Purpose Graphics Processing Units (GPGPU), an easily attachable GPU chip

4http://www.sun.com/servers/coolthreads/swap/index.jsp

Chapter 2: Parallel Architectures and Cell BE 23

to any general purpose computer, includes large number of cores, provides fine-grained

computations and efficiently implements data parallel applications. The drawback in

this architecture is the slow global memory access latency and its high network band-

width between the GPU and the CPU. All these systems have one common feature:

they have higher SWaP values compared to conventional parallel systems. It’s more

difficult to fully exploit parallelism on these architectures compared to conventional

parallel systems due to architectural restrictions in the type of applications that can

be designed.

Due to the high SWaP values, architects considered designing high performance su-

percomputers using conventional processors with accelerators. For example, the Cell

BE processor was a building block of the Roadrunner, once the fastest supercomputer

in the list of top500.org5. Roadrunner was built using 6,912 dual-core AMD Opteron

processors and 12,960 PowerXCell 8i processors (enhanced Cell BE processors with

improved double-precision floating-point performance). Initial tests indicated that

the Cell BE processors reached 1.33 petaflops while Opterons reached 49.8 teraflops,

implying that twice as many Cell BE processors produce 26.7 times more computing

power compared to the dual-core Opterons. Recently, this idea of hybrid systems

(CPU and GPU on same chip) has been adopted in the general purpose computers

market. Accelerated Processing Units (APU) has gained special attention in the PC

market with its on-chip CPU and GPU. However, with less number of GPU cores,

but with capabilities of conserving power built within the hardware, the benefits of

this architecture is yet to be seen and will be the research focus for future studies in

the HPC community.

5http://www.top500.org

24 Chapter 2: Parallel Architectures and Cell BE

2.2 Cell BE Processor

The Cell BE processor is the first implementation of the Cell Broadband Engine

Architecture (CBEA) (Chen et al., 2007). Although the Cell BE processor was ini-

tially intended for applications in media-rich consumer-electronics devices such as

game consoles (Sony Play Station 3, PS3) and high-definition television, the archi-

tecture has been enabling fundamental advances in processor performance. These

advances are expected to support a broadband range of applications in both commer-

cial and scientific fields.

The first generation of the Cell BE processor is a single-chip processor with nine

processor elements operating on a modified shared memory model, as shown in Fig-

ure 2.7 (Arevalo et al., 2007). The Cell BE processor is a heterogeneous multi-core

processor. The nine processor elements consist of one Power Processor Element (PPE)

that is compatible with 64-bit PowerPC Architecture with operating system support

and eight Synergistic Processor Elements (SPEs) optimized for computation intensive

SIMD applications. Other important architectural parts include a memory controller,

an I/O controller, and an on-chip coherent bus EIB (Element Interconnect Bus) which

connects all elements on the single chip. The SPU (synergistic processing unit) in

an SPE is a RISC-style processing unit with an instruction set and a microarchitec-

ture. The eight SPEs are purposefully designed for high performance data-streaming

and data-intensive computation via large number of wide uniform registers (128-entry

128-bit registers) and 256KB local store for each SPE. The Memory Flow Controller

(MFC) on each SPE and the high bandwidth EIB (with a peak bandwidth of 204.8

GBytes/s) enable SPEs to interact with PPE, with other SPEs, and with the main

Chapter 2: Parallel Architectures and Cell BE 25

memory efficiently. The EIB has separate communication paths for data and com-

mands which request data transfers to and from other elements on the bus. The EIB

data network consists of four 16-byte wide data rings as shown in Figure 2.7: two

rings clockwise and the other two counterclockwise. The EIB data bus arbiter always

selects one of the two rings that travel in the direction of the shortest transfer.

Figure 2.7: Cell Broadband Engine Processor Block Diagram

26 Chapter 2: Parallel Architectures and Cell BE

One of the most salient differences between the PPE and SPEs is the way they

access the main memory. PPE accesses the main memory directly with load and

store instructions that move data between the main memory and a private register

file, similar to the way that conventional processors access the main memory. On the

other hand, SPEs cannot access the main memory directly. They issue direct memory

access (DMA) commands to move data and instructions between the main memory

and a private local memory called a local store (LS). However, DMA transfers can be

done without interrupting the SIMD operations on SPEs if the operands of SIMD op-

erations are available in the LS. This 3-level organization of storage (register file, local

store, main memory), with asynchronous DMA transfers between LS and main mem-

ory, is radically different from conventional architectures and programming models.

It explicitly parallelizes computation with the transfers of data and instructions and

is the main factor that the Cell BE processor brings significant performance improve-

ment over contemporary microprocessors. But the 3-level organization complicates

the programming effort by requiring explicit orchestration of data movements. An

example of a DMA transfer initiated by a SPU to access the main memory is shown

in Figure 2.8 (Kistler et al., 2006). Step 1 to step 7 are explained as follows.

1. The DMA command issued by the SPU is put to the MFC SPU command

queue via channel interface. If the DMA command is issued by other SPUs or

the PPE, the command will be put to the MFC proxy command queue via the

MMIO register.

2. The DMA controller (DMAC) will select a command for processing.

3. This step works for a DMA list command which is an array in the SPU’s local

Chapter 2: Parallel Architectures and Cell BE 27

store. Each element in the array consists of DMA source/destination addresses

and transfer lengths for each addresses pair. The DMAC queues a request for

the list element to the local store interface and puts the returned list elements

to the MFC SPU command queue as resolved DMA commands as in step 1.

4. This step translates the source/destination addresses in the DMA command

using MMU and TLB (translate look-aside buffer).

5. The DMAC creates a bus request to transfer data for the command and queues

the bus request to the bus interface unit (BIU).

6. The BIU selects the request from its queue and issues the command to the EIB.

The EIB orders the command with other outstanding requests and broadcasts

the command to all bus elements. Since the example is to access main memory,

the memory interface controller (MIC) will acknowledge the command to the

EIB. The EIB then informs the BIU that the command is accepted and data

transfer between the local store and the main memory can begin.

7. The BIU performs reads/writes for the data transfer. The EIB transfers the

data for the request between the BIU and the MIC. The MIC transfers data

to or from the off-chip main memory. One bus request can transfer up to 128

bytes. If the DMA command requests more than 128 bytes, it will be unrolled

to a sequence of bus requests and remains in the MFC SPU command queue

until all bus requests have completed. At the same time, DMAC will accept

other DMA commands and starts again from the step 1. When all bus requests

for a command have completed, the DMAC will signal command completion to

28 Chapter 2: Parallel Architectures and Cell BE

the SPU and remove the command from the queue.

Figure 2.8: EIB data flow illustration. (Kistler et al., 2006)

The Cell BE processor was designed to address some of the issues related to

the three walls which limit the performance of contemporary microprocessors and

widen the gap between required performance and delivered performance (Kahle et al.,

Chapter 2: Parallel Architectures and Cell BE 29

2005). The three walls are power wall, memory wall, and processor frequency as

mentioned in Chapter 1. For power wall, the Cell BE processor aims to improve power

efficiency at about the same rate as the performance increase by differentiating control

tasks and computation-intensive tasks to different processor elements. The PPE is

responsible for control tasks. Intensive computation tasks are offloaded to SPEs

which have simpler hardware implementations and save the transistors for controls

to be used for computations. Hence, some control tasks are missing in SPEs such as

branch prediction, out-of-order execution, speculative execution, shadow registers and

register renaming, extensive pipeline interlocks, etc. For memory wall, as mentioned

above, the Cell BE processor uses 3-level memory hierarchy and asynchronous DMA

transfers between main memory and LS to mitigate or hide the several hundreds cycles

of DRAM memory latency in conventional microprocessors. For processor frequency,

PPE supports two threads simultaneously in hardware and each SPE has a large

register file which supports many simultaneous in-process instructions without the

overhead of register-renaming or out-of-order processing. In summary, the Cell BE

alleviates the problems posed by three walls via optimizing control plane processor

(PPE) and data plane processors (SPEs) separately.

The Cell BE processor exhibits several levels of parallelism. Coarse-grained paral-

lelism exists between the PPE and SPEs, and between different SPEs. The PPE and

SPEs can work on different tasks concurrently. Each SPE can also perform different

tasks simultaneously. Fine-grained parallelism can be implemented both on the PPE

and on the SPE. Both the PPE and the SPEs have their own SIMD instruction sets,

each capable of executing two instructions per clock cycle. The PPE has a two-way

30 Chapter 2: Parallel Architectures and Cell BE

multi-threaded hardware support and is a dual-issue in-order processor. The SPE

does not support multi-threading on the hardware level. However, it is also a dual-

issue in-order processor because of its two pipelines. Also, the MFC of each SPE

can move data around without interrupting the ongoing tasks on the PPE and SPEs.

The nature of parallelism on the Cell BE processor is expected to produce significant

performance improvement if fully explored and utilized (Brokenshire, 2006).

All these features make the Cell BE processor attractive for computation intensive

applications in various areas (Williams et al., 2006). A detailed introduction of some

applications follows in section 2.3.

2.3 Applications on Cell BE Processor

Although the Cell BE processor’s initial target was game/multimedia applications,

it has been a research topic in a growing number of other areas and applications due

to its potential for high performance. Therefore, this section will review the research

of different applications/algorithms on Cell BE.

Numerical kernels are usually time consuming. Their performances are critical

to the applications. Hence, several kernels have been investigated on Cell BE and

results have shown significant performance improvement on Cell BE for those kernels

over conventional microprocessors. FFT (Fast Fourier Transform) is a kernel for a

variety of applications such as image processing (Oppenheim and Willsky, 1983),

computed tomography (Basu and Bresler, 2000) and computational finance (Barua

et al., 2005). Chow et al. (Chow et al., 2005) investigate the performance of Cell

BE for a modified stride-by-1 algorithm proposed by Bailey (Bailey, 1990) based

Chapter 2: Parallel Architectures and Cell BE 31

on Stockham Self-sorting FFT. They fix the input sampling size to 16 million (224)

single precision complex elements and achieve 46.8 Gflop/s on a 3.2GHz Cell BE.

Williams et al. (Williams et al., 2006) investigate 1D/2D FFT on Cell BE on one

SPE. FFTW6 adds various benchmarks of FFT on IBM Cell Blade and PlayStation

3 for different combination among single precision, double precision, real number

inputs, complex number inputs, 1D, 2D, and 3D transforms. Bader et al. (Bader and

Agarwal, 2007) investigate the naive Cooley-Tukey radix-2 Decimate in Frequency

(DIF) algorithm and design an iterative out-of-place FFT called FFTC on Cell BE.

FFTC takes ordered input and produces ordered transformed output. The input

(array of size N) is divided into 2P chunks, each of size N
2P

(P is the number of SPEs).

For each iteration (log N iterations in total), SPE i is assigned chunk i and i + P

from the data set to achieve load balance between all SPEs. Although they manually

vectorize (SIMDize) the Gentleman-Sande butterfly computations and achieve high

performance, the performance is still deteriorated by two factors. One is that for

each iteration in the butterfly network, each SPE needs to DMAin (transfer data

from main memory to local store) and DMAout (transfer data from local store to

main memory) N
P

data elements. This requirement puts non-trivial communication

burden on EIB for large N . The second factor is the comparatively large number

of synchronization, which is 2 log N log P stages in total. In order to mitigate the

synchronization overhead, Xu et al. (Xu et al., 2008) study an improved FFT

algorithm based on Indirect Swap Network (ISN) on the Cell BE. ISN originates from

the Cooley-Tukey radix-2 Decimate in Time (DIT) butterfly network. It only has logP

iterations which need to communicate and synchronize between SPEs. The downside

6http://www.fftw.org

32 Chapter 2: Parallel Architectures and Cell BE

is the dynamically changing partnership between SPEs implies the requirement of

dynamic branch operations which is not supported on SPEs due to its simple design

and shortage of chip area for the branch prediction unit after more cores are integrated

on the single chip. Details about FFT based on ISN for Cell BE are explained in

Chapter 4.

Several graph-related algorithms have also been investigated on Cell BE. Villa

et al. (Villa et al., 2007) design a parallel Breadth-First-Search (BFS) algorithm

inspired by the Bulk-Synchronous Parallel (BSP) model for general multi-core ar-

chitectures. The parallel BFS algorithm is implemented on Cell BE and uses per-

formance optimization techniques available on Cell BE. These techniques include

inherent SIMD on SPEs, double buffering, explicit data orchestration between the

hierarchy of working sets, and multi-dimensional parallelism space on chip. The BFS

on Cell BE virtually scales linearly for graphs having high average degrees of vertices.

For graphs with small average degrees, the performance saturates when more SPEs

are involved. For a graph with average degrees of vertices of 200, Cell BE is 22 times

faster than Intel Pentium and Woodcrest, 26 times faster than AMD Opteron, and at

the same level of performance of 128 BlueGene/L processors and an MTA-2 system

with 23 processors.

Sorting is one of the most important and also fundamental problem in large-scale

data intensive applications in different fields such as databases. Gedik et al. design

a high performance sorting for Cell BE, called CellSort (Gedik et al., 2007). CellSort

is based on distributed bitonic merge with a SIMDized bitonic sorting kernel. It is

a three-tiered algorithm. The three-tiered approach can best use the several levels

Chapter 2: Parallel Architectures and Cell BE 33

of parallelism on Cell BE and best conquer the constraint of different bandwidth for

accesses between local store and main memory. Among the three tiers, the innermost

first tier, single-SPE local sort, is an effecient bitonic sorting kernel to sort data

items fitting in the limited local store of an SPE. Although bitonic sort does not

have optimal asymptotic complexity, it is more suitable for SPE. It shows contiguous

memory access pattern which can provide SIMD acceleration. It has a straight-

forward non-recursive implementation when the number of data items is a power

of 2. Furthermore, it is an in-place sort which can save memory space during the

compare-and-swap operations. This is critical to SPEs since each SPE only has very

limited local store. The second tier, distributed in-core sort, sorts data items fitting

into the collective space provided by the local stores of participant SPEs. This tier

can benefit from the high bandwidth for cross-SPE local store transfer via EIB bus.

This tier is responsible for the in-core bitonic merge based on the result of the first

tier. It consists of two stages. During the first stage, all SPEs perform the local

bitonic sort in parallel. For the second stage, all SPEs have to go through log P

number of k-merge phases (P is the number of SPEs, k = 2m to k = P ×m, m is the

number of data items that the first tier sorts). The outermost tier, distributed out-of-

core sort, happens when the set of data items need larger memory than cumulative

space of all SPEs and SPEs have to transfer data back and forth between the local

stores and main memory via comparatively lower bandwidth. This tier uses out-of-

core bitonic merge over the results of the second-tier. With manual SIMDization

and low level optimization such as loop unrolling and branch avoidance, CellSort on

one SPE achieves 1.7 times faster for the first tier than on 3.2GHz Intel Xeon, 10

34 Chapter 2: Parallel Architectures and Cell BE

times faster for the second tier on two Cell BE processors than dual-3.2GHz Intel

Xeon, and four times faster for 0.5GB data with 16 SPEs than dual-3.2GHz Intel

Xeon. Compared with the ABiSort algorithm on GPU (GeForce 7800) (Greb and

Sachmann, 2006), CellSort is seven times faster to sort 1 million (float, point) pairs.

ABiSort and other sort algorithms on GPU suffer from two factors. One is cache

memory latencies which have to be designed by using appropriate data layout and

tiling. The second factor is the non-trivial mapping of basic data types into pixels in

GPU’s texture memory (Govindaraju et al., 2006). The authors also mention that the

ability of SIMDizing bitonic sort kernel in CellSort is the key to its high performance.

Other sort kernels such as Radix and Postman’s sort degrade the overall performance

because they involve extensive scalar updates which are hard to be SIMDized.

Database is an essential part in many applications. Hence, an efficient RDBMS

(Relational DataBase Management System) is important. Heman et al. investigate

and port a vectorized query processing model of MonetDB/X100 on Cell BE (Heman

et al., 2007). MonetDB/X1007 is an open-source DBMS using vertical fragmented

storage supporting both SQL and XQuery. One port effort is manual loading which

adds code management to the list of database tasks such as select and join. It borrows

the idea in Octopiler research8 compiler which is developed by IBM and tries to hide

code size limitations of SPE local store by automatically partitioning code into small

enough chunks. For manual loading, each SPE runs a small runtime system that waits

for code and data requests from the PPE. When a request comes in, SPE loads the

data and code (if not in local store) and executes the required operation. In this way,

7http://monetdb.cwi.nl
8http://arstechnica.com/uncategorized/2006/02/6265-2/

Chapter 2: Parallel Architectures and Cell BE 35

SPE can deal with late binding dynamically, which is critical for interactive database

queries. A limited set of relational operators (scan, select, aggregate) has been ported

on PPE and the computational primitives on SPEs. The primitives are responsible

for computing core functions such as addition and multiplication. With porting this

portion only, Cell BE achieves 20 times faster than a 1.3GHz Itanium2 (16 seconds

on Cell BE versus 311 seconds on Itanium) for 6 million records. The reason for this

improvement relies on several factors. The first factor is that ManetDB/X100 allows

for Volcano-style (once-a-tuple) pipelining which are suitable for SIMD operation on

SPE. The record is organized via columns rather than rows. The second factor is that

the intermediate results are kept in local store rather than in main memory to avoid

EIB and main memory channels contention.

Data mining is another area of interest. The exponentially growing cost for ex-

tracting knowledge from information and short response time for interactive process

of data mining has attracted researchers in this area to investigate the potential of

Cell BE for data mining. Buehrer et al. (Buehrer and Parthasarathy, 2007) inves-

tigate three key kernels in data mining, namely clustering, classification, and outlier

detection on Cell BE. Clustering is a process by which data points are grouped to-

gether based on similarity. kMeans, a popular distance-based clustering algorithm,

is examined on Cell BE. Classification is a data mining task which predicts the la-

bel or class of a data object. A classification algorithm based on analogy, k Nearest

Neighbors algorithm (kNN), is investigated on Cell BE. Outlier detection is impor-

tant in many areas such as network intrusions detection and noise in data set etc..

A distance-based outlier detection algorithm, ORCA9, is ported to Cell BE. These

9http://www.isle.org/ sbay/software/orca/

36 Chapter 2: Parallel Architectures and Cell BE

algorithms are embarrassingly parallel. Hence, the multi-level parallelism inherent in

Cell BE may bring benefit to these algorithms. The authors emphasize that Cell BE

is superior to other commodity processors as to power efficiency. For example, one

Cell BE SPU uses only four watts per core at 3.2GHz, while a 2.8GHz Intel Pen-

tium D 2 needs 95 watts (Buehrer and Parthasarathy, 2007). Even with low power

consumption, Cell BE achieves significant performance improvement for the three

kernels. As to kMeans for clustering, Cell BE using only 6 SPEs available on a PS3

uses 1.25 seconds compared to 9 seconds on Pentium D 2. The simulation setting

includes 100K data points, 60 dimensions and 24 centres. For kNN, Cell BE uses 0.25

seconds compared to 4.64 seconds on Pentium D 2 for 20K training points, 2K test

points, 24 dimensions and 10 neighbors. For ORCA, Cell BE uses only 7.1 seconds

compared to 71 seconds on Pentium D 2 for 200K data points, 32 dimensions, 10

outliers and 40 neighbors.

Note that the Cell BE has not only been investigated for traditional problems in

computer science. It has gained attention from the growing computational science

communities such as computational physics, computational biology, and biomedical

areas. These areas have huge amount of computations for simulation. Power efficiency

and computation power are two of the most important factors when researchers choose

hardware facilities. Cell BE has exhibited such favorable properties as discussed so

far. Therefore, what follows will cover the investigation and experience of Cell BE in

computational science.

Sweep3D is an algorithm to solve a 3D neutron transport problem from a scat-

tering source (Koch et al., 1992). It can be used to simulate and analyze fires,

Chapter 2: Parallel Architectures and Cell BE 37

explosions and even nuclear reactions by simulation rather than by experiments. Its

discrete analysis starts with dividing the domain into a finite mesh of cells such that

the particles such as photons flow along fixed number of waves and occupy fixed en-

ergy levels. The analysis result shows the flux of photons or other particles through

the domain. It is time-consuming for a large domain. Hence, Petrini et al. (Petrini

et al., 2007) investigate the problem on Cell BE by fully using five levels of paral-

lelism available on Cell BE. The five levels of parallelism are process level parallelism

shown on different Cell BE processors via MPI, thread level parallelism across SPEs,

data streaming parallelism via asynchronous DMA and double buffering, vector paral-

lelism by SIMD operation on SPU via 128-bit wide registers, and pipeline parallelism

through the two pipelines on SPU. The authors investigate the performance in detail

by adding different levels of optimization. For a 50×50×50 input set, Sweep3D uses

22.3 seconds when it is ported to PPE with no code changes. IBM XLC compiler

instead of GNU C compiler can reduce the time to 19.9 seconds. With porting the

computation intensive nested loops to 8 SPEs, the run time drops dramatically to

3.55 seconds. Manual SIMDization and double buffering helps Sweep3D to achieve

a performance of 1.68 seconds only. Cell BE is about 4.5 times faster than IBM

Power5, which is specifically designed for scientific computing. The improvement can

reach to a factor of 20 over other general processors such as Intel Xeon. Therefore,

porting and optimizing Sweep3D on Cell BE is worth the effort. The authors also

expect that the optimization techniques by application developers now can eventually

migrate into parallelizing tools and compilers. These supports can relieve the burden

on software developers who are required to manage low level processor components

38 Chapter 2: Parallel Architectures and Cell BE

such as memories and communications via DMA, which is in turn the consequence of

the architecture evolution to simpler and more streamlined paradigms.

New techniques developed to study gene expression and function determination

have led to an exponential growth of available genomic data in bioinformatics ap-

plications. Accordingly, computational power needed by bioinformatics applications

is growing exponentially. As an early investigation for this area, Sachdeva et al.

(Sachdeva et al., 2007) explored the viability of the Cell BE for bioinformatics. They

make preliminary progress to port two highly popular bioinformatics applications

to Cell BE. One is FASTA, which applies Smith-Waterman dynamic programming

algorithm to compare two input sequences and compute a score representing the

alignment between the sequences (Smith and Waterman, 1981). Smith-Waterman al-

gorithm can produce optimal pairwise global or local sequence alignment. The other

application is ClusterW, which deals with multiple sequence alignment (Thompson

et al., 1994). Contrary to Smith-Waterman, ClusterW does not give an optimal align-

ment, but it is fast and efficient to give reasonable alignments for similar sequences.

They only port two most time-consuming parts (kernel functions) of the two appli-

cations, one for each application, to Cell BE based on existing vectorized code. For

Smith-Waterman algorithm, an Altivec version of its kernel function exists. There-

fore, the major effort for porting includes converting Altivec APIs to SPU APIs. The

porting only considers both sequences to be compared to fit entirely in the local store,

which limits the sequence size to at most 2K characters. Larger size sequences incurs

complicated data dependency problems and solutions. Even though, Cell BE takes

4.896 ms while Opteron takes about 42.36 ms when the length of sequence is 2. For

Chapter 2: Parallel Architectures and Cell BE 39

ClusterW algorithm, an IBM Life Sciences modified version has a vectorized kernel

function. Except the porting effort shown in Smith-Waterman, porting ClusterW has

to consider the overflow problem which is solved by upgrading data type from 16-bit

to 32-bit. It has also broken the inner loop into several different loops so that the

branch evaluation depends only on a single loop variable. The reason is that SPU

only has static branch prediction. The experimental results show that one Cell BE

processor (8 SPEs) uses 75.7 seconds while PowerPC G 5 with vectorized code takes

613.82 seconds for a size of 318 sequences having average length 1043 (the input is

from BioPerf suite10). But when considering the total time of ClusterW on different

platforms, Cell BE is only marginally better due to the degraded performance of the

PPU which is responsible for other parts of ClusterW. The authors conceives of a

solution as either porting more code of ClusterW to SPU or using Cell BE as accel-

erator, in tandem with a state-of-art superscalar processor, as explored in the hybrid

architecture of Roadrunner project based on Opteron and Cell BE.

Medical imaging is another area that is exploiting Cell BE. One important step

in medical imaging is image reconstrution. In this step, a reconstruction algorithm

reconstructs 2D or 3D images based on data samples from medical devices such as CT

(computed tomography) scanners which collect projection image data. The data re-

flects the absorption of the inner structure of the object. The data are then processed

to reconstruct the inner structure using reconstruction algorithms. New reconstruc-

tion algorithms on different hardware platforms have continuously been investigated

to improve image quality and reduce X-ray dose at the same time due to the side-

effects of X-rays. Sakamoto et al. (Sakamoto et al., 2005) investigate a reconstruction

10http://www.bioperf.org/

40 Chapter 2: Parallel Architectures and Cell BE

algorithm for 3D cone beam CT based on Feldkamp algorithm on Cell BE. A cone

beam X-ray CT is based on the acquisition of two-dimensional projections for different

positions of a cone beam X-ray source (Kalender, 2005). Feldkamp algorithm (Feld-

kamp et al., 1984), which works on volumetric data in 3D, has a complexity of O(N4)

where N is the number of detector pixels in one detector row. The Feldkamp al-

gorithm consists of three steps. The first step is to obtain the weighted projection

data. The second step is to filter the weighted data in order to obtain a sharp recon-

structed image. The third step is to backproject the filtered data and reconstruct the

structure of the object. Among all three steps, the last step is most computation-

intensive part which occupies roughly 97% of the workload when reconstructing a

1283 volume from 64 1282 projections. Hence, the backprojection step is offloaded

to a single SPE. As one preliminary research, the authors only consider the impact

of SIMD operations on the overall performance. The scalar code on PPE takes 97.5

seconds to reconstruct a volume of 1283 from 64 1282 pixels. But with SIMD op-

eration on a single SPE, the same workload only takes 4.5 seconds. Bockerhach et

al. (Bockenbach et al., 2007) investigate Feldkamp algorithm on different platforms

including PC, FPGA, GPU, and Cell BE. The complete volume to be reconstructed

is divided into slabs, which are again divided into small cubes. In such a way, slabs

can be processed only with limited projection data which are the relevant surface of

the projections. Furthermore, a rectification-based method is used to speed up the

backprojection process (Riddell and Trousset, 2006). The method aims to use a near-

est neighbor approach during the backprojection by realigning the projection data to

an ideal detector geometry via resampling and bilinear interpolation of the projection

Chapter 2: Parallel Architectures and Cell BE 41

data. Although the comparison is not an apple-to-apple one for performance on these

platforms, the big difference is still encouraging. For 512 projections on a 5123 vol-

ume, PC (3.06GHz Xeon processor) takes 3.21 minutes, while FPGA-based system

with one FPGA and two PowerPC 7410 uses 25 seconds, 37 seconds for GPU-based

system (Nvidia G70), and 17 seconds for 2.8GHz cell BE. As to the image quality,

Cell BE achieves better accuracy than FPGA and GPU. The authors have more bias

on Cell BE for the backprojection because Cell BE proposes a fully programmable

architecture which is accessible from high level programming languages although it is

difficult to use the processor to an optimized level.

Cell BE is also used by Servat et al. (Servat et al., 2008) for drug design problem.

They examine the protein docking application using Fourier Transform Docking (FT-

Dock) (Gabb et al., 1997) algorithm. The Cell BE FTDock implementation on 8 SPEs

(each with 1 task) achieves 3x speedup compared to an MPI FTDock using 8 tasks

on two 1.5GHz POWER5 processors, each processor being dual-core and each core

dual-threaded. A prototype speech recognition engine has also been designed on Cell

BE (Liu et al., 2007). With carefully chosen data layouts and algorithm redesign for

data parallelism and streaming opportunities on Cell BE, the recognition engine can

process 1,216 real-time channels (RTCs) on a single 3.2GHz Cell BE processor, while

only 10 RTCs are processed on 3.2GHz Intel Pentium 4. I/O intensive algorithms

such as encryption/decription are investigated on Cell BE (Rafique et al., 2008). Since

SPEs do not support a native operating system, all I/O requests are re-directed to

PPE, making PPE the bottleneck for I/O intensive algorithms. Therefore, it is criti-

cal to using prefetching-based techniques by overlapping the memory transfers among

42 Chapter 2: Parallel Architectures and Cell BE

the I/O subsytems (disk, off-chip memory and on-chip memory) with computations.

The techniques include synchronous/asynchronous file prefetching by the PPE, syn-

chronous/asynchronous DMA by the SPE. An asynchronous prefetching-based ap-

proach achieves 22.2% better performance for encryption/decryption compared to

the case when all I/O is handled by SPEs.

One of the financial risk analytic applications, European Option pricing, have

been ported to Cell BE (Easton et al., 2007). A European option is a simple financial

contract that gives the buyer the right to trade a given asset at a specific price on

a specific date. The trade data is fixed, which differentiate European option from

American option. As the first attempt to port this kind of applications to Cell BE,

Easton et al. (Easton et al., 2007) mainly consider porting and optimizing two parts

to the Cell BE. One is the random number generation, and the other is the Monte

Carlo simulation to simulate the trade scenario. These two parts are also the most

time consuming parts, taking 99.8% of the total execution time. The ported code

speeds up linearly when more SPUs (up to 16) are involved, both for single-precision

(SP) and double-precision (DP) operations, although the performance of DP is much

slower than that of SP. The same code has also been optimized for Intel multi-core

processor (dual-core and quad-core), using OpenMP to fully use multiple cores. The

Cell BE with SDK2.1 delivers performance improvements of 11x and 3x for SP and

DP respectively compared to Intel multi-core processor. One reason of this is that the

SPE does not run an operating system. Instead, it is completely dedicated to running

the application code exclusively. This preliminary results are so impressive that Cell

BE may appeal to financial market organizations, especially when they are facing the

Chapter 2: Parallel Architectures and Cell BE 43

increasingly serious problem of space, power and cooling from the increasing number

of general purpose processors.

From the discussion of different applications/algorithms on Cell BE so far, it is

not difficult to see that Cell BE, especially its eight independent SPEs, brings great

performance improvement for different applications via manual SIMD operations,

explicit data movement management by asynchronous DMA transfers and explicit

scheduling and synchronization (such as loop unroling and multiple buffering) among

all nine cores. On the other hand, all the performance improvement techniques put

more burdens on developers compared to conventional processors, which in turn im-

pact the productivity and code portability. Therefore, Alam et al (Alam et al., 2007)

evaluate the performance/productivity ratios for a diverse set of kernels and appli-

cations from scientific, cognitive, and imaging problem domains. Specifically, these

include molecular dynamics simulation (floating point intensive applications), Monte

Carlo simulation (inherently scalar calculations with dynamic loop count), satisfiabil-

ity solver SAT (logic intensive cognitive calculations), covariance matrix calculation

in hyperspectral imaging (regular 2D array-based signal processing calculations), and

genetic algorithm (GA) for TSP problem and Ackley’s function from genesis ge-

netic algorithm package (Baeck, 1992). The authors investigate suitable optimization

techniques for the five applications according to the applications’ properties such as

computation-intensive or less computation with more logic operations. Compared to

the optimized implementation of the five applications both on 3.2GHz Cell BE and

on the 2.66GHz Intel dual-core Woodcrest processor, Cell BE achieves from over 8x

to 2.5x better improvement over the Woodcrest at the processor level. They use the

44 Chapter 2: Parallel Architectures and Cell BE

concept of source lines of code (SLOC) to measure the productivity. To quantify the

tradeoffs between productivity and performance, a metric called relative productiv-

ity (Funk et al., 2006), defined as the ratio of speedup over SLOC, is used for the

five applications. Based on the experimental results, the authors conclude that the

applications with high computations such as covariance matrix creation have high rel-

ative productivity and applications with less computations such as SAT solver have

low relative productivity. The relative productivity can be further improved with

improvement made to the software stacks of Cell BE such as the optimized compiler,

optimized library. Another approach to improving the relative productivity is provid-

ing Cell BE developers with programming models and development platforms such

as RapidMind multi-core development platform (Monteyne, 2008).

2.4 Summary

This chapter briefly introduced traditional parallel paradigms and the recent ac-

celerator parallel paradigms which try to solve the problems of performance limitation

on conventional microprocessors. A detailed introduction of one of the accelerators,

the Cell BE processor, was also included. The performance improvement potential

of the Cell BE processor was closely examined and verified through different inter-

disciplinary applications. The applications considered are data intensive applications

which have regular properties. In the following chapters, we will discuss various

applications or problems that are both computation and bandwidth intensive.

Chapter 3

Finite Difference Time Domain

Finite Difference Time Domain (FDTD) is a popular simulation method in many

applications such as electromagnetic theory (Taflove and Hagness, 2000) and medical

imaging (Xu et al., 2007a). FDTD is an inherently data-intensive and computation-

intensive algorithm which exhibits nearest neighbour communication patterns. Since

it is usually a kernel in many applications, its performance is crucially important

to the overall performance of the entire application. In this chapter we investigate

FDTD on Cell BE. For the purpose of performance comparison, we also describe how

to map FDTD on traditional parallel architectures, including distributed memory

systems and shared memory systems.

3.1 Introduction

FDTD is a numerical technique proposed by Yee in 1966 to solve Maxwell’s equa-

tions in electromagnetics (Yee, 1966). Yee’s algorithm discretizes the 3D region of

45

46 Chapter 3: Finite Difference Time Domain

interest into a mesh of cubic cells called Yee cells. The algorithm is based on central

finite difference approximation. In 3D space, there are three electric field components

(~Ex, ~Ey, ~Ez) and three magnetic field components (~Hx, ~Hy, ~Hz). The edges of the cu-

bic cells in one mesh lie at the centres of the cubic cells in the other mesh and the

cubes interlace each other. The ~E and ~H components are sampled at alternate half

time steps in a leapfrog scheme such that all field components are calculated in each

time step: ~E components are sampled at each time interval n while ~H components are

sampled at each mid time interval (n + 1/2). The relationships between ~E and ~H for

the application in 2D space are shown from Eq.(3.1) to Eq.(3.4). Let α =
1− σ∆t

2ε0εr

1+ σ∆t
2ε0εr

,

β =
∆t
ε0εr

(1+ σ∆t
2ε0εr

)
, and γ = ∆t

µ∆y . Here σ is the conductivity of Yee cell, µ is the per-

meability of Yee cell, ε0 is the permittivity of free space, εr is the permittivity of Yee

cell, ∆t is the time step, ∆x and ∆y are the dimensions of Yee cell. The electric fields

and magnetic fields are updated using the following four equations. Here Ezx|n+1
i,j is

the electric field along Z axis projected onto X axis at the position (i, j) for time step

n + 1, Ezy|n+1
i,j is the electric field along Z axis projected onto Y axis at the position

(i, j) for time step n + 1, Hx|n+1/2
i,j is the magnetic field along X axis at the position

(i, j) for time step n+1/2, Hy|n+1/2
i,j is the magnetic field along Y axis at the position

(i, j) for time step n + 1/2.

Ezx|n+1
i,j = αEzx|ni,j +

β

∆x
×

[
Hy|n+1/2

i,j −Hy|n+1/2
i−1,j

]
(3.1)

Ezy|n+1
i,j = αEzy|ni,j −

β

∆y
×

[
Hx|n+1/2

i,j −Hx|n+1/2
i,j−1

]
(3.2)

Chapter 3: Finite Difference Time Domain 47

Hx|n+1/2
i,j = Hx|n−1/2

i,j − γ[Ezx|ni,j+1 + Ezy|ni,j+1−

Ezx|ni,j − Ezy|ni,j]
(3.3)

Hy|n+1/2
i,j = Hy|n−1/2

i,j + γ[Ezx|ni+1,j + Ezy|ni+1,j−

Ezx|ni,j − Ezy|ni,j]
(3.4)

A sequential FDTD on a conventional computer is shown in Algorithm 1. N is

Algorithm 1 Sequential FDTD on a conventional computer

Initialize electric fields and magnetic fields;

Calculate coefficients for all Yee cells;

for n = 1 to MAX TIMESTEPS do

for i = 1 to N do

5: for j = 1 to N do

Update Ezx[i][j] using equation 3.1;

Update Ezy[i][j] using equation 3.2;

Update Hx[i][j] using equation 3.3;

Update Hy[i][j] using equation 3.4;

10: end for

end for

end for

the number of Yee cells in each direction, assuming that each direction is equally

divided. MAX TIMESTEPS is the max number of time steps (iterations) for field

updates. FDTD is the kernel of many applications in electromagnetic field (Taflove

48 Chapter 3: Finite Difference Time Domain

and Hagness, 2000; Xu et al., 2007a). As an iterative algorithm, its performance

is critical to its widespread applications. However, it is computationally intensive

and therefore parallel processing is required (Xu et al., 2007a). The complexity of a

2D FDTD algorithm is O(N3) since MAX TIMESTEPS normally has the same

magnitude as N . The sequential FDTD algorithm takes about 200 seconds for a

600× 600 computational domain in 4000 time steps on an AMD Athlon 64 X2 Dual

Core processor at 2GHz (Xu et al., 2007a). In medical imaging, finer granularity is a

necessity to produce more accurate results. However, increased granularity indicates

increased computation time along with more memory requirement. These reasons

have led us to design parallel FDTD algorithms for different architectures.

A number of parallel FDTD research has been reported using different parallel

schemes on different platforms for different applications. The earliest work is done

by Mittra et al. (Varadarajan and Mittra, 1994) in 1994 on an HP-735 workstation

cluster via PVM. Liu et al. (Liu et al., 1995) parallelize the core FDTD on a CM-5

(32 processors) parallel computer, which is 100 times faster than sequential version.

Guiffaut et al. (Guiffaut and Mahdjoubi, 2001) implement a parallel FDTD on a

computational domain of 150 × 150 × 50 cells on PC and the Cray T3E. They use

Message Passing Interface (MPI) and adopt vector communication scheme and matrix

communication scheme, obtaining higher efficiency by the latter scheme. Su et al. (Su

et al., 2004) combine OpenMP and MPI to parallelize FDTD: OpenMP used for the

one time initialization and each time-step for updating the E-fields and H-fields; MPI

is used for the communication between neighboring processors. Yu et al. (Yu et al.,

2006) introduce three communication schemes in parallel FDTD. The three schemes

Chapter 3: Finite Difference Time Domain 49

differ in which components of E-fields and H-fields should be exchanged and which

process should update the E-fields on the interface.

The rest of this chapter is organized as follows. The next section describes the

issues of parallelizing FDTD on distributed memory machines. Section 3.3 explains

the parallelization of the FDTD algorithm on homogeneous multi-core system (or dis-

tributed shared memory machine). Section 3.4 indicates the challenges (limitations

and restrictions) of the Cell BE in parallelizing the FDTD algorithm. This section

uses the many useful features of the Cell BE, in particular the SPEs for vector compu-

tations. This is followed by the experimental section which provides detailed analysis

and comparison of the performance results of the Cell BE to the conventional parallel

architectures. Section 3.6 summarizes the chapter.

3.2 FDTD on Distributed-Memory Machines

FDTD is data-parallel in nature (Rodohan and Saunders, 1993) and exhibits

apparent nearest-neighbor communication pattern (Varadarajan and Mittra, 1994).

Therefore, FDTD is a suitable algorithm for parallelization on distributed memory

machines using Message Passing Interface (MPI).

The factors impacting the performance of parallel FDTD on distributed memory

machines are communication and synchronization overhead. As shown in the pre-

vious section, field updates of each Yee cell requires information from its neighbors.

There is no communication overhead if the neighbors of the Yee cells reside on the

same processor. However, communication becomes an issue at the border of decom-

position where some or all of cells’ neighbors are on the neighboring processors. The

50 Chapter 3: Finite Difference Time Domain

computational domain has to be large to provide accurate results which implies the

communication overhead is high while transferring large amount of data. Therefore,

overlapping communication with computation is critical to gaining performance. An-

other nature of FDTD is that the field updates cannot proceed to the next time step

until all Yee cells have been updated for the current time step. This incurs syn-

chronization overhead for each time step. Therefore, in designing a parallel FDTD

algorithm on distributed memory machines, proper data distribution and mapping

on available processors is critical to avoiding communication bottlenecks.

Yu et al. (Yu et al., 2006) introduce three communication schemes to parallelize

FDTD. The three schemes differ in which components of ~E and ~H should be ex-

changed and which processor should update the ~E on the interface. The division of

the computational domain is on the ~E along the Cartesian axis. The computational

domain is divided along the x axis (Figure 3.1) of ~E. Suppose the computation do-

main is divided into n × n cells and p processors are used for FDTD computation.

Then, each processor receives a matrix of m×n cells where m = n/p. Each processor

i (i is not equal to 1 and p, the last processor) shares the first and mth row of its

computational domain with processor i− 1 and i + 1 respectively. The first row and

mth row are called ghost rows shown as dotted lines in Figure 3.1. Therefore, ~E on the

interface of adjacent processors are calculated on both processors. The purpose of the

scheme is to eliminate the communication of ~E and only communicate ~H, trying to

improve the computation/communication efficiency. The parallel FDTD algorithm,

referred to as MPI-version parallel FDTD algorithm, is given in Algorithm 2.

Chapter 3: Finite Difference Time Domain 51

Algorithm 2 Parallel FDTD on distributed-memory machines(MPI-version parallel

FDTD)

Initialize electric fields and magnetic fields;

if processor is master processor then

Calculate coefficients for all Yee cells;

Decide the Yee cells for each processor and send coefficients of those Yee cells

to the corresponding processors;

5: else

Receive the coefficients of the Yee cells residing on the local processor;

end if

for n = 1 to MAX TIMESTEPS do

for i = 1 to N/P do

10: for j = 1 to N do

Update Ezx[i][j] using equation 3.1; Update Ezy[i][j] using equation 3.2;

Update Hx[i][j] using equation 3.3; Update Hy[i][j] using equation 3.4;

end for

end for

15: Exchange magnetic fields with the neighboring processors;

Synchronize among all processors

end for

if processor is not master processor then

Send the final results to master processor;

20: else

Receive results from all other processors;

Output the results at the observation points;

end if

52 Chapter 3: Finite Difference Time Domain

Figure 3.1: Communication Scheme in Parallel FDTD

3.3 FDTD on homogeneous Multi-core Architec-

ture

The multicore machine available for this work is a Sun Fire X4600 server. It

is configured with eight sockets. Each socket is configured with an AMD Opteron

dual-core processor. A simplified illustrative block diagram is shown in Figure 3.2.

P0-P7 represent the eight AMD Opteron dual-core processors. Each core (C0 and

C1) has its own L1 and L2 caches. M0-M7 represent the corresponding memory

of each processor. The dark lines between processors are the AMD HyperTransport

Technology links. The figure omits other details such as I/O controller. As a whole

system, it is a ccNUMA(cache-coherent Non-Uniform Memory Access) SMP system.

Chapter 3: Finite Difference Time Domain 53

Each processor has its dedicated memory attached to two cores. It can access the

memory of other processors via AMD’s unique Direct Connect Architecture (DCA).

AMD Opteron dual-core processors have interesting design technologies to tackle

some aspects of the three walls. Each core has separate L1 and L2 cache. Separate

L2 caches prevent potential synchronization bottleneck for multiple threads on mul-

tiple cores competing over the same data cache. Hence, separate cores can process

separate data sets, avoiding cache contention and coherency problems. Furthermore,

AMD has a unique implementation of ccNUMA based on DCA (AMD, 2006). Inside

each of the eight dual-core processors, there is a cross-bar switch. One side of the

switch attaches the two cores. The other side of the switch attaches the DCA with a

shared memory controller and HyperTransport Technology links. The shared memory

controller connects the two cores to dedicated memory. The HyperTransport Tech-

nology links allow dual cores on one processor access to another processor’s dedicated

memory. Therefore, for each core, some memory is directly attached, yielding a lower

latency, while those not directly attached have a higher latency. The combination

of ccNUMA and DCA technology can improve performance by locating data close

to the thread that needs it, which is called “memory affinity”. Besides, the hypervi-

sor which virtualizes the underlying multicore processor and multi-processor system,

provides facilities to specify “thread affinity” to assign dedicated cores for threads.

This facility contributes to further performance improvement.

54 Chapter 3: Finite Difference Time Domain

Figure 3.2: Simplified block diagram of Sun Fire X4600 server.

Although FDTD is computationally intensive, it shows apparent data parallelism

and high data locality property. Each Yee cell update, both for electric fields and for

magnetic fields, only needs information of its near neighbors as shown in equation 3.1

through equation 3.4. Locality is one of the key factors that impact performance

on cache-based computers (Chandra et al., 2001). The inherent locality property of

FDTD may bring significant performance on the homogeneous multi-core system via

shared-memory parallel programming paradigm, especially with the hardware support

of separate L2 cache for each core. Therefore, we designed a shared-memory version

of FDTD as shown in Algorithm 3, which we refer to as OpenMP version parallel

FDTD.

Chapter 3: Finite Difference Time Domain 55

Algorithm 3 Parallel FDTD on shared-memory machines (OpenMP-version parallel

FDTD)

Initialize electric fields and magnetic fields;

Calculate coefficients for all Yee cells;

for n = 1 to MAX TIMESTEPS do

#pragma omp parallel

5: {

#pragma for private(i, j)

for i = 1 to N do

for j = 1 to N do

Update Ezx[i][j] using equation 3.1;

10: Update Ezy[i][j] using equation 3.2;

Update Hx[i][j] using equation 3.3;

Update Hy[i][j] using equation 3.4;

end for

end for

15: }

end for

3.4 FDTD on Cell BE Processor

The Cell BE architecture is quite different from the conventional CPU processor.

To efficiently implement any problem on this architecture, we have to consider the ar-

chitectural features, its limitations or restrictions that may hinder in the performance

of an algorithm.

56 Chapter 3: Finite Difference Time Domain

One issue is the limited size of the local store (LS) on each SPE. The 256KB LS

is for both instructions and data. Based on the equations (3.1) to equation (3.4), for

a computational domain of 600 × 600 Yee cells, 16M memory is needed to hold the

variables for the coefficients and the fields at run time, without considering the code

and other variables. Therefore, one of the main issues is to decide on how to make

the data fit in the limited memory size at run time. A solution to this issue is we let

each SPE consider a part of the computational domain once. At each time step, the

SPE fetches the coefficients and the field values of the Yee cells within the part of

the computational domain, and updates the fields using the equations. The updated

field values are stored back to the corresponding memory locations to make space for

the next part of the computational domain. The SPE then starts with the next part

of the domain. The process continues until all the Yee cells of the computational

domain are updated for the current time step. Another round of the whole process

starts for the next time step for MAX TIMESTEPS rounds. By fetching and storing

data between the main memory and the LS, each SPE can manage the LS to have

instructions and data under 256KB limit at run time.

Another issue is how to decide on the size and the frequency of exchanging data

between the memory and the LS such that the Cell BE processor is fully utilized. The

SPEs can only operate on instructions and data residing on the LS. Unlike the PPE,

SPEs cannot access the main memory directly. It has to fetch instructions and data

from the memory to the LS using asynchronous coherent DMA commands. There-

fore, the communication cost must be considered during algorithm design. A suitable

size and frequency for the transfers has to be determined to ensure there is no data

Chapter 3: Finite Difference Time Domain 57

starvation and there is minimal overhead. Several points are critical in reducing the

communication cost and achieving efficient SPE data access: data alignment, access

pattern, DMA initiator, and location. The MFC of the SPE supports transfers of

1, 2, 4, 8 and n × 16(up to 16K) bytes. Transfers less than 16 bytes must be natu-

rally aligned and have the same quad-word offset for the source and the destination

addresses. Also, all transfers cannot be completed without the EIB. Hence, the cost

on the EIB must be minimized. A minimal overhead of the EIB can be achieved if

transfers are at least 128 bytes, and transfers greater than or equal to 128 bytes are

cache-line aligned, i.e., aligned to 128 bytes. Furthermore, whenever possible we let

SPE initiate the DMAs and pull the data from the main memory instead of PPE’s L2

cache. MFC transfers from the system memory have high bandwidth and moderate

latency, whereas transfers from L2 cache have moderate bandwidth and low latency.

The third issue is the synchronization problem when more than one SPE is used

to explore the parallelism between SPEs. Algorithm 1 shows that the field update for

all Yee cells must be completed for the current time step before any Yee cells can be

dealt with further for the next time step. Therefore, when more than one SPE is used

to update different part of the computational domain, the synchronization among all

participant SPEs is mandatory for correct results.

The Cell BE processor supports different synchronization mechanisms (Kistler

et al., 2006): MFC atomic update commands, mailboxes, SPE signal notification

registers, events and interrupts, or just polling of the shared memory. We consider

the mailboxes and SPE signal notification registers. For the first method, SPEs use

mailboxes while PPE acts as the arbitrator. When each SPE finishes its tasks for the

58 Chapter 3: Finite Difference Time Domain

current time step, it uses mailbox to notify the PPE that it is ready for the next time

step. When the PPE receives messages from all participant SPEs, it sends a message

via mailboxes to those SPEs and lets the SPEs start the task for the next time step.

The PPE is not involved for SPE signal notification registers method. One SPE acts

as the master SPE, and other SPEs are slave SPEs. The slave SPEs send signals to

the master SPE when their tasks for the current time step is completed, and wait

for the signal of starting the task for the next time step from the master SPE. The

master SPE sends such signal only when it receives signals from all slave SPEs.

The last issue is on the implementation level: the exploitation of SIMD on the

SPE. SPEs are SIMD-only co-processors. Scalar codes, especially codes for arithmetic

operations, may deteriorate the performance since the SPE has to re-organize the

data and instructions to be executed on the SPE. The code written in a high-level

language must rely on the compiler technology to be auto-vectorized to exploit SIMD

capability of the SPE. However, the flexibility of high-level languages makes it difficult

to achieve optimal results for different applications. Therefore, explicit control of the

instructions by the programmers is a detrimental for optimal performance. For this

purpose, the SPE provides intrinsics which are essentially inline assembly code with

C function call syntax. These intrinsics provide such functions as register coloring,

instruction scheduling, data loads and stores, looping and branching, and literal vector

construction. We consider literal vector constructions since most of the tasks for

FDTD are arithmetic operations. This construction aims to manually apply SIMD

technique to the two FOR loops shown in Algorithm 1.

Based on the solutions discussed above to solve some of the issues, we designed

Chapter 3: Finite Difference Time Domain 59

a parallel FDTD algorithm as shown in Algorithm 4 and Algorithm 5 (referred as

CellBE-version parallel FDTD) for the PPE side and the SPE side respectively. The

purpose is to fully exploit the natural parallelism provided by the processor in order

to achieve significant performance improvement.

Algorithm 4 FDTD on the PPE(CellBE-version parallel FDTD)

Create SPE threads;

Initialize the coefficients and fields for the domain;

Prepare control blocks for each SPE;

for each SPE do

5: Wait for them ready;

Send information for synchronization;

end for

Wait for all SPEs to finish and print outcome;

3.5 Experiment Results

We designed and implemented the FDTD algorithm on three architectures: dis-

tributed memory machines, homogeneous multicore machines and the Cell BE proces-

sor. They were run on four configurations. We use processing unit number as x axis

to avoid confusion between processor number, thread number, core number, and SPE

number. Although PPE is used for part of the computation, its contribution to the

final performance is negligible compared to the computation on the SPEs. Therefore,

the processing unit number indicates the number of SPEs for the Cell BE processor.

The configurations of the infrastructure used for the experiments are summarized

60 Chapter 3: Finite Difference Time Domain

Algorithm 5 FDTD on the SPE(CellBE-version parallel FDTD)

Send ready signal to the PPE;

Receive information for synchronization;

DMA in control block about assigned task and running setting;

for n = 1 to MAX TIMESTEPS do

5: while Ezx of Yee cells not updated do

Fetch chunks of coefficients and field values of last time step; Update Ezx

using SIMD version of equation 3.1; Store the updated Ezx back to memory;

end while

while Ezy of Yee cells not updated do

Fetch chunks of coefficients and field values of last time step; Update Ezy

using SIMD version of equation 3.2; Store the updated Ezy back to memory;

10: end while

while Hx of Yee cells not updated do

Fetch chunks of coefficients and field values of last time step; Update Hx

using SIMD version of equation 3.3; Store the updated Hx back to memory;

end while

while Hy of Yee cells not updated do

15: Fetch chunks of coefficients and field values of last time step; Update Hy

using SIMD version of equation 3.4; Store the updated Hy back to memory;

end while

Synchronize with other SPEs;

end for

Send finish signal to the PPE;

Chapter 3: Finite Difference Time Domain 61

below.

• Beowulf cluster: a cluster of 24 nodes. Each node is an AMD Athlon dual-

core processor at 2GHz, 512KB cache, with 100Mb/s Ethernet switch as the

interconnection; GNU C compiler;

• HP cluster: a cluster of 16 nodes. Each node is a dual AMD Opteron single-

core processors at 2.4GHz, 2GB per node of physical memory, with Voltaire

Infiniband Switched-fabric interconnection; C compiler from Portland Group.

• Sun Fire x4600: 8 AMD dual-core Opteron processor at 1GHz, 1M cache per

core, 4GB memory per processor and 32GB distributed shared memory in the

system; Sun C compiler and Omni compiler;

• IBM Cell BE processor: Georgia Tech Cell BE cluster containing 14 IBM Blade

QS20 dual-cell blades, each running at 3.2GHz, GNU C compiler.

Figure 3.3 illustrates the performance of the MPI-version parallel FDTD algo-

rithm (Algorithm 2) on two clusters. The HP cluster outperforms the Beowulf cluster

when the same number of processing units is used. One of the main reasons for this

difference is that the two clusters use different interconnection networks between pro-

cessors. The Voltaire Infiniband Switched-fabric interconnection network of the HP

cluster provides faster communication speed and lowers the communication latencies

and synchronization latencies.

Figure 3.4 depicts the performance of the OpenMP-version parallel FDTD (Algo-

rithm 3) on the same multicore machine, running different binary codes generated by

different compilers. It is apparent that the binary code generated by Sun C compiler

62 Chapter 3: Finite Difference Time Domain

Figure 3.3: Computation Time for Different Clusters

runs faster than the binary code generated by Omni compiler. Sun C compiler op-

timizes the code to best utilize the architecture. On the other hand, Omni compiler

has limitations to optimize the code for different hardware.

As discussed in the previous section, DMA size may be a factor for the performance

improvement since a large number of transfers incur more communication overhead.

For this purpose, we designed a simulation scenario where different number of rows

(each row has 600 floats, which is 2, 400 bytes) in the computational domain are

transferred in each DMA command. The result is depicted in Figure 3.5. The almost

flat curves (downward a little for 6 rows in each DMA command) indicates that

the DMA size is not a factor for FDTD since the minimal transfer size (for 1 row)

is already 2400 bytes. For bigger sizes, the next DMA command has to wait for

Chapter 3: Finite Difference Time Domain 63

Figure 3.4: Computation Time for Different Compilers

the previous transfer (large number of data, eg. 14, 400 bytes for 6 rows) to be

completed. The figure shows another issue for the communication overhead, the time

for synchronization. It can be seen from the different spaces between different curves.

The space between the top two curves (for 1 SPE and 2 SPEs) is the widest, while the

space between the bottom two curves (for 4 SPEs and 8 SPEs) is the narrowest. The

observation verifies the fact that more overhead occurs when more SPEs are involved.

In fact, the speedup for 2 SPEs is 1.95, 3.69 for 4 SPEs, and 4.92 for 8 SPEs.

Another scenario was designed to verify the performance difference when using

signal and mailbox synchronization mechanisms. The results shown in Figure 3.6

indicate that the two mechanisms give comparatively equal performance, although

signal synchronization outperforms mailbox method a little for a big DMA size (6

64 Chapter 3: Finite Difference Time Domain

Figure 3.5: Computation Time for Different DMA Size

rows).

Chapter 3: Finite Difference Time Domain 65

(a) DMA size: 1 row, 2,400 bytes

(b) DMA size: 6 rows, 14,400 bytes

Figure 3.6: Performance comparison between two synchronization mechanisms

66 Chapter 3: Finite Difference Time Domain

So far, we have investigated the performance of the algorithm independently on

each architecture. It is worth comparing the performance on different architectures

to verify whether the Cell BE architecture meets with the original design objectives

of providing substantial performance improvement by tackling the brick walls. We

compare between the best performances achieved on the three architectures.

Figure 3.7 shows the performance of MPI-version on the HP cluster and the

OpenMP-version on Sun Fire x4600. We notice there is an intersection between

the two curves. The curves to the left of the intersection indicate that the Opteron

dual-core processor outperforms Opteron single-core processor both at the core level

(1 processing unit) and at the processor level (2 processing units for dual-core versus

1 processing unit for single-core). However, the curves to the right of the intersec-

tion, i.e. for 4 and 8 processing units, the homogeneous multicore architecture with

Opteron dual-core processors has longer computation time than the HP cluster with

Opteron single-core processors. The reason is the overhead of multi-threads and the

longer memory latency for dual-core system. Although the single-core Opteron pro-

cessors resides on different computers, these computers are connected with Voltaire

Infiniband Switched-fabric interconnection which minimizes the communication la-

tencies.

Chapter 3: Finite Difference Time Domain 67

Figure 3.7: Computation Time Comparison between Shared Memory Machine and
Cluster

The performance comparison between HP cluster and the Cell BE processor is

shown in Figure 3.8. The two curves are almost parallel to each other. This implies

that the performance on the Cell BE processor keeps almost constant ratio of 1.45

over the AMD Opteron single-core processors, no matter how many processing units

are involved. At the processor level, a Cell BE processor using 8 SPEs is 7.05 faster

than an Opteron single-core processor.

68 Chapter 3: Finite Difference Time Domain

Figure 3.8: Computation Time Comparison between Cell BE Processor and Cluster

The final comparison is between the Cell BE processor and the Opteron dual-

core processors in the homogeneous multicore architecture. The result is shown in

Figure 3.9. The distance between the two curves is growing with more processing

units. This is due to the thread overheads when using more cores. At the processor

level, a Cell BE processor using 8 SPEs is 3.37 faster than an Opteron dual-core

processor.

Chapter 3: Finite Difference Time Domain 69

Figure 3.9: Computation Time Comparison between Cell BE Processor and Shared
Memory Machine

Figure 3.10 enhances the impact of the multi-threads overhead on the dual-core

system. The parallel algorithm achieved the maximum performance for 8 cores. The

performance decreases when more than 8 cores are used due to the overheads.

70 Chapter 3: Finite Difference Time Domain

Figure 3.10: Computation Time for Different AMD Cores

The computation time for different processors is summarized in Figure 3.11. Based

on these comparisons, we can conclude that:

• The Cell BE processor provides significant performance improvement over con-

ventional processors and parallel architectures.

• All parts of the whole parallel system are important to the final performance.

These include the processor, the interconnection network, and the compiler.

Chapter 3: Finite Difference Time Domain 71

Figure 3.11: Computation Time for Different Processors

3.6 Summary

In summary, in this chapter we studied a simple but important kernel in many

applications. The FDTD algorithm is inherently data parallel with nearest neighbor

communication patterns. This allows us to use the SPEs for vector computations.

There were three issues that required careful consideration on Cell BE: memory la-

tency, synchronization latency and spatial locality. We used features such as synchro-

nization and asynchronous DMA command of the Cell BE to reduce memory and

synchronization latencies that may hinder the performance of the algorithm. The

experiment results (Xu et al., 2007b,a; Xu and Thulasiraman, 2008b,a) show that the

Cell BE processor outperforms the homogeneous multi-core system, both at the core

72 Chapter 3: Finite Difference Time Domain

level and at the processor level. The Cell BE provides speedup of 7.05 faster than

AMD single-core Opteron processor and 3.37 than AMD dual-core Opteron processor

at the processor level.

Chapter 4

Fast Fourier Transform

In this chapter, we investigate the efficiency of the Cell BE architecture for band-

width and computation oriented problems such as FFT (Fast Fourier Transform).

FFT is an efficient algorithm to compute discrete Fourier transform. Its applications

range from image processing to finance. It is also one of the well studied problems

in parallel computing since it is a data, communication and synchronization inten-

sive algorithm. Although there is a change in the communication patterns between

nodes at run time, the patterns can be detected through arithmetic manipulations.

Therefore, FFT is categorized as a semi-regular problem. The communication and

synchronization latencies in parallel architectures can be tolerated through efficient

data mapping. In this chapter, we exploit data locality by using the ideas proposed

in VLSI circuits using indirect swap networks to efficiently map data onto the swap

network to perform the FFT butterfly computations.

73

74 Chapter 4: Fast Fourier Transform

4.1 Introduction

The discrete Fourier transform (DFT) is used in many applications such as in

digital signal processing to analyze the signals frequency spectrum, to solve partial

differential equations or to perform convolutions. The DFT computation can be

expressed as a matrix-vector multiplication. A straightforward solution for N input

elements is of complexity O(N2). The Fast Fourier Transform (FFT) proposed by

Cooley-Tukey (Cooley and Tukey, 1965) is a fast algorithm for computing the DFT

that reduces the complexity to O(N log N).

The FFT has been studied extensively as a frequency analysis tool in diverse appli-

cations areas such as audio, signal, image processing (Oppenheim and Willsky, 1983),

computed tomography (Basu and Bresler, 2000) and computational finance (Barua

et al., 2005). There are many variants of the FFT algorithm. Mathematically, all

variations differ in the use of permutations and transformations of the data points

(Loan, 1992). For a sequence x(r) with N data points, decimation-in-time (DIT)

FFT, divides the sequence into two halves x1(r) and x2(r) at every iteration. On the

other hand, decimation-in-frequency (DIF), FFT divides the sequence into odd and

even data points at every iteration. The main difference in these FFT variations is

the structure of the butterfly computation performed. Depending on the number of

groups to divide the input elements, there are radix-2, radix-4, mixed-radix, split-

radix FFTs in the literature. In this paper, we consider the basic radix-2 DIT FFT

on N input complex elements, where N is a power of 2.

Parallelizing the FFT on multiprocessor computers concerns the mapping of data

onto processors. On shared-memory processors, the whole data is placed in one

Chapter 4: Fast Fourier Transform 75

global memory, allowing all processors to have access to the data. The computation

is subdivided among the processors in such a way that the load is balanced and

memory conflict is low. The recursive FFT algorithm can be easily programmed on

such machines. On distributed architectures, each processor has its own local memory

and data exchanges are via message passing. In this architecture, the recursive FFT

algorithm is not the appropriate algorithm because combining even and odd parts of

elements at each iteration while the data is distributed on different processors requires

relatively high level of programming sophistication. Another approach is to employ

the iterative scheme for distributed memory machines.

There are mainly two latency issues in computing FFTs on parallel architectures:

communication and synchronization. During the butterfly computation, the partners

change at each iteration and an efficient data mapping is difficult. Data need to

be communicated between processors at every iteration. This implies synchroniza-

tion between processors. In order to achieve high performance, both the latencies

have to be either hidden or tolerated. One such approach is multithreading (Thu-

lasiraman et al., 2000). Another approach to tolerate latency is by mapping data

efficiently onto the processors local memory, that is exploiting data locality. Yeh et

al. (Yeh and Parhami, 1996) proposed an efficient parallel architecture for FFT in

VLSI circuits using indirect swap networks (ISN). Data mapping in the swap network

topology reduces the communication overhead by half at each iteration. The idea of

swap network has been applied to option pricing in computational finance applica-

tions (Barua et al., 2005) and has shown to produce better performance than the

traditional parallel DIT FFT. However, synchronization latency is still an issue for

76 Chapter 4: Fast Fourier Transform

large data size.

In this chapter, we investigate the FFT computations using ISN on Cell BE to

further provide improved performance by using the features of Cell BE to reduce the

latencies encountered in FFT. The rest of this chapter is organized as follows. The

next section describes the Cooley-Tukey FFT butterfly network and the FFT based

on indirect swap network. Section 4.3 explains the parallel FFT algorithm on Cell in

detail listing challenges and corresponding solutions, followed by experimental results

in Section 4.4. Section 4.5 summarizes the chapter.

4.2 Cooley-Tukey Butterfly Network and ISN

At each iteration of the FFT computations, two data points perform a butterfly

computation. The butterfly computation, Figure 4.1, can be conceptually described

as follows: a and b are points or complex numbers.The upper part of the butterfly

operation computes the summation of a and b with a twiddle factor ω while the

lower part computes the difference. In each iteration, there are N
2

summations and

N
2

differences (Grama et al., 2003).

Figure 4.1: Butterfly computation.

Chapter 4: Fast Fourier Transform 77

In general, a parallel algorithm for FFT, with blocked data distribution of N
P

el-

ements on P processors, involves communication for log P iterations and terminates

after log N iterations. If we assume shuffled input data at the beginning (Figure 4.2),

the first (log N − log P) iterations require no communication. Therefore, during the

first (log N − log P) iterations (local stage), a sequential FFT algorithm can be used

inside each processor. At the end of the (log N − log P)th iteration, the latest com-

puted values for N
P

data points exist in each processor. The last log P iterations

require remote communications (called remote stage). Note that the other half of

the pairs for the N
P

elements on one processor reside on the same remote processor.

The identity of the processors for remote communication can be identified very easily.

That is, at the kth stage of the remote stages (k = 0, · · · , log P − 1), if processor Pi

needs to communicate with processor Pj then j = i XOR 2k where XOR is exclusive

OR binary operation (Chu and George, 2000; Grama et al., 2003).

Note that in the Cooley-Tukey FFT algorithm as shown in Figure 4.2, N
P

data

elements are exchanged between two paired processors without inter-processor per-

mutation (Chu and George, 2000) at the remote stage, leaving each paired processors

with the same copy of 2N
P

elements for butterfly computations. Since the same butter-

fly computations are performed on the processors, there are redundant computations.

If only one processor performs the butterfly computations, then some of the pro-

cessors may be idle. Furthermore, this communication incurs a message overhead

of N
P

elements at each stage for remote stages and the distance each message trav-

els increases as iterations move forward depending on the interconnection network.

The consequence is that more communication and synchronization overhead leads to

78 Chapter 4: Fast Fourier Transform

Figure 4.2: Cooley-Tukey butterfly network with bit-reversed input and ordered out-
put (Grama et al., 2003).

traffic congestion in the butterfly network.

One solution to reduce data communication at each remote stage is through inter-

processor permutation by using Indirect Swap Network (ISN) (Yeh and Parhami,

1996; Yeh et al., 2002). For local stages, each processor permutes N
2P

elements locally

and performs N
2P

butterfly calculations; for remote stages, each processor permutes

and exchanges N
2P

data with its paired processor. Note that the permutation exploits

data locality and thereby reducing message overhead between two paired processors

by N
2P

. This is a significant decrease in communication for very large networks. An

Chapter 4: Fast Fourier Transform 79

indirect swap network is depicted in Figure 4.3 for 16 elements on 4 processors. In

this example, at remote stage 0, processors 0 and 1 exchange data points 2, 3 and 4, 5

respectively. The other data points are kept intact in their respective processors (data

points 0 and 1 in processor 0, data points 6 and 7 in processor 1). In general for a

given N and P processors, N
2P

data points are swapped between two processors. The

result is reducing the communication of the traditional butterfly network in Figure

4.2 by half.

Figure 4.3: Indirect swap network with bit-reversed input and scrambled output.

80 Chapter 4: Fast Fourier Transform

4.3 Parallel FFT Based on ISN on Cell BE

As one of heterogeneous multi-core architectures, Cell BE has been investigated for

different FFT algorithms. Chow et al. (Chow et al., 2005) investigate the performance

of Cell BE for a modified stride-by-1 algorithm proposed by Bailey (Bailey, 1990)

based on Stockham Self-sorting FFT. They fix the input sampling size to 16 million

(224) single precision complex elements and achieve 46.8 Gflop/s on a 3.2GHz Cell BE.

Williams et al. (Williams et al., 2006) investigate 1D/2D FFT on Cell BE on one SPE.

Bader et al. (Bader and Agarwal, 2007) investigate an iterative out-of-place DIF FFT

with 1K to 16K complex input samples and obtain a single precision performance

of 18.6Gflop/s. Their approach incurs frequent synchronization overhead both at the

end of the butterfly update and at the end of the followed permutations. FFTW

adds various benchmarks of FFT on IBM Cell Blade and PlayStation 3 for different

combination among single precision, double precision, real number inputs, complex

number inputs, 1D, 2D, and 3D transforms.

A Cell BE processor consists of eight SPEs, each with 256KB memory both for

instructions and for data. Unlike conventional shared-memory machines, all SPEs can

not access the main memory directly. However, they can share and access the main

memory by explicitly issuing asynchronous coherent DMA commands. As explained

in the previous section, FFT based on ISN need to synchronize and communicate

at the beginning of each remote stages such that each processor then can fetch the

updated butterfly computation results. Therefore, it is critical to reducing the com-

munication and synchronization overhead among all SPEs. Besides data alignment,

access pattern, DMA initiator, and location that we consider for mapping of the

Chapter 4: Fast Fourier Transform 81

algorithm on Cell BE, we also use double-(or multi-) buffering techniques to hide

data-access latencies by overlapping the data movement with computation.

In the implementation of the FFT algorithm on the Cell BE, assume N is the size

of the data and P is the number of SPEs. The PPE bit-reverses input data which is

naturally ordered. The PPE prepares and conveys information such as the memory

address of the bit-reversed data, the memory address of the swap area, the number

of SPEs, and the problem size when creating SPE threads. After SPEs receive the

information, each of them gets the corresponding (N
P

) amount of data from the main

memory according to their id. At the same time, SPE can overlap the communica-

tion between the main memory and LS with the task of computing twiddle factors.

Each SPE then starts (log N − log P) iterations of the sequential computation. Af-

ter (log N − log P) iterations, each of the SPEs starts the iterations of the remote

stage. At every iteration of the remote stage, each SPE stores intermediate results

back to the swap area and synchronizes to ensure every SPE stores their portion of

intermediate results to the swap area. At the end of synchronization, each SPE gets

their paired partners from the swap area to perform the butterfly computation. Note

that in the swap network, N
2P

data is stored back for each SPE at each iteration.

In the Cell BE implementation, the SPEs do not exchange data directly with one

another, which is different from the distributed algorithm implementation. In a clus-

ter, the data is initially distributed to the processors by the master processor, and

the processors communicate with one another to obtain their paired partners at each

iteration. This requires N
2P

communications, which is an overhead in the distributed

implementation. On the Cell BE, data exchange is between the SPE and main mem-

82 Chapter 4: Fast Fourier Transform

ory via asynchronous DMA transfer issued by SPE. This is a significant advantage

on the Cell BE over distributed memory machines. The EIB is fast and allows fast

communication between the main memory and SPEs. On the distributed memory

machines, the interconnection network plays a crucial role in the exchange of data

between processors. On the Cell BE, since it is system-on-chip architecture, DMA

access is fast, and every element of the architecture works together to accomplish the

task. Figure 4.4 illustrates an example of data exchanges on Cell BE between the

main memory and SPE for remote stage.

Another issue is synchronization. On the distributed memory machines, the pro-

cessors synchronize at each iteration. In the FFT implementation on Cell BE (Xu

et al., 2008), the SPEs also need to synchronize, but some unique features of the Cell

BE bring great benefits to FFT computations. The Cell BE processor supports dif-

ferent synchronization mechanisms (Kistler et al., 2006): MFC atomic update com-

mands, mailboxes, SPE signal notification registers, events and interrupts, or just

polling of the shared memory. We consider mailboxes and SPE signal notification

registers in this thesis. For the first method, SPEs use mailboxes via PPE as the ar-

bitrator. When each SPE finishes its tasks for the current time step, it uses mailbox

to inform the PPE that it is ready for the next time step. When the PPE receives

messages from all participant SPEs, it sends a message via mailboxes to those SPEs

and lets the SPEs start the task for the next time step. For SPE signal notification

registers method, the PPE is not involved. One SPE acts as the master SPE, and

other SPEs are slave SPEs. The slave SPEs send signals to the master SPE when

their tasks for the current time step is completed, and wait for the signal from the

Chapter 4: Fast Fourier Transform 83

Figure 4.4: Data migration between main memory and SPEs on Cell BE.

master SPE to start the task for the next time step. The master SPE sends such

signal only when it receives signals from all slave SPEs.

At the end of all iterations, the SPEs write the final results back to the main

memory. This new FFT algorithm based on ISN for Cell BE is presented as a pseudo-

code in Algorithm 6 and Algorithm 7. It only shows the workload on the SPE. The

PPE is responsible to bit-reverse the naturally-ordered input at the beginning and

84 Chapter 4: Fast Fourier Transform

shuffle the final computation results of SPEs such that the overall output is naturally-

ordered as in butterfly network.

4.4 Experiment Results

The new FFT algorithm based on swap network was implemented using sdk2.1 on

an IBM Blade QS20 dual-Cell blade running at 3.2GHz available at Georgia Institute

of Technology. The compiler is xlc compiler. Figure 4.5 shows the performance of the

algorithm for different problem sizes on different numbers of SPEs. The figure shows

that the execution time decreases while increasing number of SPEs for different input

sizes. Furthermore, the time for 4K input decreases faster than the time for 1K while

increasing number of SPEs. This is because DMA supports up to 16K asynchronous

transfers between main memory and local store. Therefore, for larger problem size,

the communication overhead is very close to the overhead of smaller problem size.

The difference between execution time for larger problem size and smaller problem

size is mainly the computation time on each SPE.

Chapter 4: Fast Fourier Transform 85

Figure 4.5: Computation time and speedup for different problem size on different
number of SPEs

In order to investigate features of Cell BE, we compare the execution time of the

algorithm on Cell BE with its execution time on a cluster (Barua, 2004). The cluster

is a 20 node SunFire 6800 running MPI. The SunFire system consists of Ultra Space

III CPUs, with 1050 MHz clock rate and 40 gigabytes of cumulative shared memory

running Solaris 8 operating system. The comparison is depicted in Figure 4.6(a)

for 4K single precision complex numbers and Figure 4.6(b) for 16K single precision

complex numbers. As shown in the figure, Cell BE performs much better than the

cluster. For 8 SPEs on Cell BE and for 8 processors of the cluster, Cell BE is

3.7 times faster than the cluster for 4K input data size and 6.4 times faster than

86 Chapter 4: Fast Fourier Transform

the cluster for 16K input data size. The reason is due to the large communication

overhead in the cluster, that is, N
2P

× log P communications per processor for log P

iterations. On the contrary, the high-speed EIB on Cell BE, which supports a peak

bandwidth of 204.8GBytes/s for intra-chip transfers, provides good performance for

Cell BE, especially when the problem size increases. This can be further validated by

Figure 4.7. The FFT algorithm for Cell BE outperforms the FFT algorithm for the

traditional cluster significantly for larger problem sizes.

Note that the communication between the main memory and the SPEs do not

degrade the performance of the algorithm. This is partly due to the system on chip

architecture of Cell BE. The interconnection network which is a hindrance on dis-

tributed memory machines is not of concern on Cell BE. We have used the high

speed EIB, asynchronous DMA transfer overlapped with computation, large num-

ber of large uniform registers for SIMD operations available on the Cell BE to our

advantage in the FFT implementation.

Chapter 4: Fast Fourier Transform 87

(a) Comparison for 4K complex numbers

(b) Comparison for 16K complex numbers

Figure 4.6: Comparison between Cell BE and cluster for 4K and 16K complex
numbers

88 Chapter 4: Fast Fourier Transform

Figure 4.7: Comparison between Cell BE and cluster for different input data size on
8 SPEs/processors

4.5 Summary

In summary, in this chapter we studied a semi-irregular problem, FFT, which is

also an important kernel in many applications. The two main latencies that degrade

performance on parallel architectures are communication and synchronization laten-

cies. The FFT algorithm incurs both these latencies. An additional issue specifically

to Cell BE was the small local store on each SPE. We overlapped computations with

communications between the main memory and local store through double-buffering,

used the various memory level hierarchies to tolerate memory latency and used syn-

chronization primitives such as mailboxes and SPE signal notification registers to

Chapter 4: Fast Fourier Transform 89

tolerate synchronization latencies. We used mailboxes and SPE signal notification

registers available on the Cell BE processors for synchronization purposes. The high

speed EIB on the Cell BE processor is very efficient for communications. The exper-

imental results (Xu et al., 2008) show that for 8 SPEs of IBM Blade QS20 dual-Cell

blade running at 3.2GHz and for 8 processors of the cluster of SunFire 6800 running

at 1050MHz clock rate, Cell BE is 3.7 times faster than the cluster for 4K input data

size and 6.4 times faster than the cluster for 16K input data size.

90 Chapter 4: Fast Fourier Transform

Algorithm 6 Parallel FFT based on ISN on SPE

Require: N
P

bit-reversed single precision complex number in array A[N
P

], P SPEs,

N = 2i, P = 2j, N >> P , array B[N
P

] to store transferred data temporarily

Ensure: scrambled N
P

complex numbers transformed in array A

DMA in N
P

complex numbers to array A;

Compute twiddle factors and stored in array W [N/2];

for i = 0 to (log N − logP − 1) do

NG = 2i; {number of groups}

5: shuffle twiddle factors W [N/2];

for j = 0 to N/P − 1 step 2 do

if ((j&NG) = 0) then

pID = j xor NG; {butterfly partner id}

Copy A[j] and A[pID] to B[j] and B[j+1];

10: else

pID = (j + 1) xor NG;

Copy A[pID] and A[j+1] to B[j] and B[j+1];

end if

end for

15: while UTE > 8 do

{UTE: un-transformed elements number}

SIMDize butterfly computation between neighboring 8 elements in array B;

UTE− = 8;

end while

20: Compute any un-transferred elements if N
P

is not multiple of 8;

Swap results in array B to array A;

end for

Chapter 4: Fast Fourier Transform 91

Algorithm 7 Parallel FFT based on ISN on SPE (Continued)

for i = 0 to (logP − 1) do

if ((SPEid & NG) = 0) then

DMA out all N/2P elements with odd number indices to main memory;

else

5: DMA out all N/2P elements with even number indices to main memory;

end if

Synchronize with all other SPEs;

if ((SPEid & NG) = 0) then

DMA in N/2P elements from main memory and put into the odd number

indexed positions;

10: else

DMA in N/2P elements from main memory and put into the even number

indexed positions;

end if

NG = 2i;

shuffle twiddle factors W [N/2];

15: while UTE > 8 do

SIMDize butterfly computation between neighboring 8 elements in array B;

UTE− = 8;

end while

Compute any un-transferred elements if N
P

is not multiple of 8;

20: Swap results in array B to array A;

end for

DMA out final N
P

transformed results in array A to PPE;

Chapter 5

Iterative CT Reconstruction

Technique

Medical imaging such as X-ray computed tomography has revolutionized medicine

in the past few decades. The use of X-ray computed tomography has increased rapidly

since 1970 when Radon’s technique for reconstructing images from a set of projections

was first introduced in the medical field. In 2007, it was estimated that more than

62 million scans per year were obtained in United States and about 4 million for

children (Brenner and Hall, 2007). The number of scanners has also increased in

many countries due to the ease of using these machines. The commonly used analytic

technique in CT scanners to produce diagnostic evaluation of an organ or the region

of interest is Fourier Back Projection (FBP). This technique requires a large number

of projections measured uniformly over 180◦ to 360◦ (Kak and Slaney, 2001) inducing

a large amount of radiation into the body to produce quality images. Therefore, there

has been a lot of interest in developing algorithms that minimize the radiation dose

92

Chapter 5: Iterative CT Reconstruction Technique 93

without impairing image quality. One such class of algorithms (Andersen, 1989; Kak

and Slaney, 2001) that has been studied are iterative or algebraic algorithms.

In this chapter, we consider a coarse-grained, data parallel, iterative algorithm

that is suitable for parallelization on Cell BE. Through this study, we obtain more

insight on the design and development of algorithms for irregular applications such

as medical imaging on heterogeneous multi-core architectures. Medical imaging is

irregular due to its unstructured data patterns leading to irregular memory access

patterns and dynamic data changes at run time leading to load balancing issues.

5.1 Introduction

X-ray computed tomography (CT) is an imaging modality which reconstructs

an image from projections (Herman, 1980). CT has many applications ranging from

nondestructive materials testing (detecting mines is one of such examples) to detecting

tumors in medicine. In medicine, it is one of the most important non-invasive medical

imaging modalities which allow physicians to visualize the internal structures of an

object without biopsies. Furthermore, images reconstructed in CT are superior to

conventional projection because CT eliminates the superposition of over- and under-

lying structures which usually plagues conventional projection images. For example,

in a conventional chest radiography, the heart, lungs, and ribs are all superimposed on

the same film, whereas a CT slice captures each organ in its actual three-dimensional

position.

CT reconstructs a cross-sectional image by computing the X-ray absorption coef-

ficient distribution of an object from projection data, which is the measurement of

94 Chapter 5: Iterative CT Reconstruction Technique

the relative number of photons passing through the object. Data is acquired through

CT scanners which has improved the X-ray source geometry and the detector tech-

nique (Kalender, 2005) over the period of five generations. The most common scanners

now are scanners using parallel-beam or fan-beam source with 1D detector array and

scanners using cone beam source with 2D detector array.

An example of an X-ray projection of an object in CT is shown in Figure 5.1. A

row of X-ray sources (Si), supply parallel beams passing through the object. Each

beam is attenuated as it passes through the object, with the resultant attenuated

beams measured by a row of detectors (Di) (Kalender, 2005). The X-ray source emits

radiation, and the detector array collects the radiation that is not absorbed passing

through the object. CT estimates the absorption of the radiation at each small

section of the object, based on the total amount of radiation detected through each

path. Each small section becomes a pixel (image cell) in the image representation.

In practice, a large number of projections need to be taken as the X-ray source and

the detector array rotate around the object concentrically, with projection sampled

at varying angles. The projection angles are usually equally spaced and taken in a

consecutive order, although this need not be the case (Guan and Gordon, 1994).

CT has evolved into different geometrical structures to project the X-ray beam

onto the detector. Different geometries have different X-ray source geometry and

their corresponding detectors (Kalender, 2005). For early fan beam or parallel beam

sources, the CT system has 1D detector array to acquire 1D projection data for each

scan. Figure 5.1 depicts one parallel beam projection example. With 1D projection

data, reconstruction techniques can reconstruct one 2D slice of the object. In order

Chapter 5: Iterative CT Reconstruction Technique 95

Figure 5.1: Schematic diagram of X-ray projection acquisition (Herman, 1980).

to construct a 3D object from 1D detector data, reconstruction techniques stack all

2D slices together to form the 3D object. For the recent cone beam sources, the CT

system has 2D detector array to acquire 2D projection data for each scan. With 2D

projection data, cone beam reconstruction technique can reconstruct the 3D object

directly.

With the acquired projection data, CT can reconstruct images using either an-

alytical methods or iterative methods (Herman, 1980). CT measures the number

of X-ray photons transmitted through the patient along individual projection lines.

The task of CT reconstruction is to estimate from the measurements the distribu-

tion of linear attenuation coefficient in the slice (this is why tomography is used)

being imaged (Herman, 1980). Analytic methods include direct Fourier transform

96 Chapter 5: Iterative CT Reconstruction Technique

(DFT) method (Herman, 1980) and Filtered Back Projection (FBP) method (Cho

et al., 1993). FBP is the most commonly used method in commercial CT machines.

FBP reconstructs images by filtering the projection images with a ramp filter in fre-

quency space, followed by backprojecting the filtered projections onto a reconstruction

grid (Cho et al., 1993). DFT and FBP are used for parallel beam reconstruction of

2D slice for 3D object. In cone beam case, a new reconstruction technique called

Feldkamp algorithm or FDK algorithm from the name of three authors was intro-

duced in 1984 to reconstruct the 3D object directly (Feldkamp et al., 1984). The

Feldkamp algorithm has been extended to improve accuracy (Grass et al., 2000) or

for helical cone beam CT (Kudo and Saito, 1991; Wang et al., 1993; Yan and Leahy,

1992). Feldkamp type cone beam reconstruction techniques reconstruct each voxels

which are the counterparts of pixels in 2D. This thesis focuses on 2D reconstruction.

Analytic methods require only one pass computation over the set of projection

data and only a filtering operation followed by a backprojection. On the other hand,

iterative methods go through many rounds of simulating the projection, correction,

backprojection, and image update (as mentioned below) process. Depending on the

frequency of the image update, iterative methods have many variants. Analytical

methods are faster than iterative methods for the same amount of projection data.

However, the problem with analytical methods is that they require a large number

of projections measured uniformly over 180◦ or 360◦ in order to reconstruct accurate

images (Kak and Slaney, 2001). Furthermore there are situations where the measure-

ment conditions do not apply. The large number of projections indicates high radia-

tion dose, which is the most controversial issue for CT exam. The main issue with CT

Chapter 5: Iterative CT Reconstruction Technique 97

now is how to reduce the radiation dose during the examination without compromis-

ing the image quality. Generally speaking, measurement with a high radiation dose

can reconstruct high quality images as in FBP, while a lower dose leads to increased

image noise and results in blurred images. But as the radiation dose increases, so does

the associated risk of radiation induced cancer. One way to reduce radiation dose

for the reconstruction without reducing the image quality is using iterative methods.

Although iterative methods are safer, they are computationally intensive, requiring

long processing time. Furthermore, these methods are communication intensive but

allow asynchronous computations in order to overlap communication with compu-

tation to reduce processor idle time. Melvin et. al. (Melvin et al., 2008a,b) have

investigated two variants of iterative methods using shared and distributed memory

multiprocessors with little improvement in performance. In this chapter, we consider

other variants of iterative algorithms and select one that is suitable for the Cell BE

architecture. We introduce a rotation based technique into the selected algorithm to

further reduce memory latency, an important impediment in Cell BE.

This chapter is organized as follows. The next section explains variants of iter-

ative methods in detail. Section 5.3 reviews parallel computing for reconstruction

techniques. We introduce the rotation-based iterative method and consider the par-

allelization of this method on homogeneous multicore architectures and Cell BE in

section 5.4 and section 5.5, respectively. Experimental results are included in sec-

tion 5.6 followed by discussions and conclusions in section 5.7.

98 Chapter 5: Iterative CT Reconstruction Technique

5.2 Iterative Reconstruction Techniques

In the literature, when large set of projections are unavailable, or when the projec-

tions are sparse or missing at certain orientations, it is found that iterative methods

produce reconstructions of better quality than FBP (Andersen, 1989; Kak and Slaney,

2001). Furthermore, it was observed that iterative methods theoretically only require

about half the number of projections than the FBP methods (Guan and Gordon,

1996).

The first representative iterative method is algebraic reconstruction technique

(ART) proposed by Gordon et. al. (Gordon et al., 1970). ART reconstructs an im-

age by iteratively updating a reconstruction grid via a projection-back projection

procedure until a convergence criterion is satisfied. By incorporating statistical con-

cepts into the update steps in the iterative process, iterative method group has more

variants, including maximum likelihood (ML) expectation maximization (EM) tech-

nique (Lange and Carson, 1984; Rockmore and Macovski, 1976; Shepp and Valdi,

1982), simultaneous algebraic reconstruction technique (SART) (Andersen and Kak,

1984; Andersen, 1989; Jiang and Wang, 2003), and convex algorithm (Lange, 1990;

Lange and Fessler, 1995). ML-EM method iteratively reconstructs the image as an

optimal estimate that maximizes the likelihood of the detection of the actual mea-

sured photons based on a statistical model of the image system. The SART method

iteratively minimizes the mean square error between the estimated and measured

projections in the real space. Convex algorithm is a statistical reconstruction algo-

rithm which iteratively aims at maximizing the Poisson likelihood. No matter which

technique is used in the update step, all iterative methods follow the same framework

Chapter 5: Iterative CT Reconstruction Technique 99

as shown in Figure 5.2 (Ni et al., 2006).

Figure 5.2: Framework of Iterative Reconstruction Techniques

To illustrate how iterative methods work, we will use the unknown image f(x, y)

in Figure 5.3 which is to be reconstructed from a set of projection data. The image is

superimposed with a square grid consisting of N = n2 cells, assuming that each cell

100 Chapter 5: Iterative CT Reconstruction Technique

has homogeneous material thus having a constant attenuation coefficient value fj in

the jth cell (Kak and Slaney, 2001). A ray is a strip of width τ in x − y plane as

shown in Figure 5.3. In most cases, the ray width τ is approximately equal to the cell

width. A line integral along a particular strip is called raysum, which corresponds to

the measured projection data at the direction of that ray. A view (or projection or

projection view) is defined as all rays projecting to the object at the same angle.

Figure 5.3: Illustration of Iterative Methods

Let pi be the raysum measured with ith ray as shown in Figure 5.3 and assume

that all projections are represented using one dimensional array. The relationship

between fj’s and pi’s is as follows:

Chapter 5: Iterative CT Reconstruction Technique 101

N∑
j=1

wijfj = pi, i = 1, 2, · · · , M (5.1)

where M is the total number of rays counting all Q projection angles. wij is the

weighting factor that represents the contribution of jth cell to the ith ray integral

along the ith ray. It is calculated as the fractional area of the jth cell intercepted by

the ith ray. For different rays, wij’s have different values for the same jth image cell.

In equation 5.1, most of wij’s are zero since only a small number of cells contribute

to any given raysum. For example, there are only ten nonzero wij’s for projection pi

shown in Figure 5.3.

By expanding equation 5.1, the iterative method tries to solve the reconstruction

problem as a system of linear equations as follows:

w11f1 + w12f2 + · · ·+ w1NfN = p1

w21f1 + w22f2 + · · ·+ w2NfN = p2

...

wi1f1 + wi2f2 + · · ·+ wiNfN = pi

...

wM1f1 + wM2f2 + · · ·+ wMNfN = pM (5.2)

102 Chapter 5: Iterative CT Reconstruction Technique

To solve equations 5.2, it is possible to use conventional matrix theory method if

M and N are very small. But in practice, M and N are very large to get an accurate

reconstructed image for the application. For example, for an image of size 256× 256,

which is normal in medical imaging, N will be 65,000 and M will have the same

magnitude. For such M and N , the size of weighting factor matrices will be 65, 000×

65, 000 which precludes any possibility of direct matrix inversion. Furthermore, noise

as well as sampling errors in practice do not provide for a consistent equation system.

It means that with the same configuration of the left side of the equations, we may

have different values for the right side of the equations with different measurements.

Thus, iterative methods have to be used to solve equations 5.2.

There are basically four steps in the iterative reconstruction algorithm: (i) for-

ward projection, (ii) error correction, (iii) back projection, and (iv) image update.

The algorithm terminates when the convergence criterion is satisfied. There are sev-

eral iterative algorithms in the literature. These algorithms all follow the four steps

mentioned above, but differ as to when the image updates are performed. The num-

ber of updates determines the quality of the image and also gives an upper bound

on the total computation time (Mueller, 1998). We assume in this thesis that an

iteration comprises of steps (i) to (iii) followed by an image update.

ART iterates through the three steps (one iteration) for each ray and then up-

dates the image at the end of step three. Note that an image update is done for

each ray which is highly time consuming. Also, this is very sequential in nature.

Simultaneous Iterative Reconstruction Technique (SIRT) (Gilbert, 1972) improves

upon ART and iterates through steps (i) to (iii) for all the rays before performing an

Chapter 5: Iterative CT Reconstruction Technique 103

image update. This method requires many iterations for accurate results and there-

fore has a slower convergence rate. Simultaneous Algebraic Reconstruction Technique

(SART) (Andersen and Kak, 1984) combines the good properties of ART and SIRT.

The algorithm works on projections. SART passes through steps (i) to (iii) for rays

within one projection, followed by an image update. This is done iteratively for each

of the Q projections. Note that, since the image is updated after computing the rays

of each of the Q projections, the convergence rate is faster and the number of iter-

ations compared to SIRT is reduced. Both SART and SIRT produce better quality

images than ART. However, they are computationally intensive. The convergence

rate of simultaneous methods can be further accelerated through Ordered-subsets

(OS) technique (Hudson and Larkin, 1994; Brenner and Hall, 2007). Ordered sub-

sets method partitions the projection data into disjoint subsets and processes the

subsets sequentially. For ART, each ray corresponds to one subset. Therefore, for

M rays, there are M subsets. In the case of SIRT, all rays (M) correspond to one

subset only. A subset in SART may correspond to all the rays in one projection

angle or combine several projections of different angles into one subset. This is called

OS-SART (Hudson and Larkin, 1994; Wang and Jiang, 2004). Due to the fast conver-

gence rate of SART, we consider parallelization of SART using the Ordered-subsets

(OS) technique. Though OS-SART can reduce the reconstruction time with respect

to the convergence rate and produce images with high quality, it is still prohibitively

time-consuming due to its computation-intensive nature, especially for large images

with high resolution requirements.

One approach to increasing the performance of the OS-SART algorithm is to paral-

104 Chapter 5: Iterative CT Reconstruction Technique

lelize the algorithm on modern multicore systems, including traditional homogeneous

multicore systems and heterogeneous multicore systems such as Cell BE which aim

to reduce the gap between the application required performance and the delivered

performance (Banton, 2008). The enhanced parallelism support of multicore systems

supports coarse-grained data parallel applications which is exhibited in OS-SART

as each of the subset in OS-SART performs the same algorithm (same instructions)

supporting data parallelism.

So far, this chapter has introduced variants of iteration-based reconstruction meth-

ods in detail. Compared with analytical methods, iterative methods need longer

processing time, which impacts their use in practice. The reasons are summarized

into two points: one is that iterative methods require usually multiple iterations of

computation over the set of projection data; the other is that these methods must

perform a forward projection and a back projection for all projection data in each

iteration. While the complexities of projection and back projection are similar, the

cost for filtering in FBP is usually less than the cost for a projection (Ni et al., 2006).

Although transform-based methods are faster than iterative methods with the same

amount of projection data, both groups are time-consuming since the data sets from

applications are normally very large. Therefore, the next section will survey parallel

computing techniques to speedup CT image reconstructions.

Chapter 5: Iterative CT Reconstruction Technique 105

5.3 Parallel Computing for Reconstruction Tech-

niques

There are three ways to speedup image reconstructions. One is to improve the

reconstruction techniques themselves as mentioned in the last section and other re-

search (Katsevich, 2002). The second is to use dedicated hardware design for CT

reconstruction (Lattard and Mazare, 1989; Lattard et al., 1990). FPGA has been

investigated to accelerate reconstruction (Coric et al., 2002). Dedicated hardware

such as GPU has also been examined to speedup reconstruction for Feldkamp-type

algorithm (Cabral et al., 1994) and for SART (Mueller and Yagel, 2000). The third

approach is using parallel processing, which is closely related to the thesis and will

be surveyed elaborately both for transform-based reconstruction methods and for it-

erative reconstruction methods. The back projection algorithm in transform-based

methods and both forward-projection and back projection algorithms in iterative

methods are the most time consuming parts in the reconstruction process for which

parallel processing is necessary.

2D and 3D transform-based reconstruction techniques have been parallelized on

different architectures. An earlier work is done by Guerrini et al. (Guerrini and

Spaletta, 1989) to implement the reconstructions on the CRAY X-MP vector com-

puter. The limited computing power and memory of the machine then impacts large

3D reconstruction problems. Chen et al. (Chen et al., 1990) implemented the convo-

lution back projection algorithm for 3D parallel beam geometries on the Intel hyper-

cube, iSPC/2 multiprocessor. They parallelize two functions (convolution and back

106 Chapter 5: Iterative CT Reconstruction Technique

projection) via a two-stage pipelining approach. Rao et al. (Rao et al., 1995) im-

plement FBP for 2D cone beam tomography on the CM5 and Intel Paragon parallel

platforms. Their results favor the Intel Paragon platform over the CM5 machine as

to the efficiency and the flexibility to control the message exchange. Reimann et

al. (Reimann et al., 1996) implement the Feldkamp algorithm for cone beam tomog-

raphy on a shared memory machine and a cluster of workstations (COW) using MPI.

They notice the load imbalance problem in the back projection step of the Feldkamp

algorithm, and provide two approaches to improving the processor utilization. One

approach is to split the volume into slabs containing voxels proportional to predeter-

mined computational speed. The other approach is to reduce the back projection in

the root processor by the relative time of filtering and back projection. Roerdink et

al. (Roerdink and Westenberg, 1998) investigate both direct Fourier reconstruction

and filtered back projection using data-parallel programming style on the CM-5. The

authors verify the feasibility of a data-parallel approach for these two reconstruc-

tion methods. They find that the direct Fourier reconstruction method is easy to

parallelize and runs faster than Fourier back projection algorithm on the CM-5.

More recently, transform-based techniques have been investigated using new par-

allel computing techniques. Smallen et al. (Smallen et al., 2000) implement cone beam

reconstruction algorithm using grid computing technique. By combining workstations

and supercomputers available in the grid, they run GTOMO (Computational Grid

parallel Tomography) application and investigate work queue scheduling strategy for

image reconstruction. Cell BE has also been investigated for transform-based tech-

niques since it provides the processing power needed for affordable, high-performance

Chapter 5: Iterative CT Reconstruction Technique 107

medical imaging systems that are capable of meeting with requirements of modern

scanners (Bockenbach and Kachelriess, 2006). Sakamoto et al. (Sakamoto et al.,

2005) implement the Feldkamp algorithm on Cell BE. They offload the back projec-

tion stage which is the most time-consuming part to SPEs while leaving the other

two stages (weighting and filtering) on the PPE. They achieve 20 times better perfor-

mance with the offload of back projection stage than without offloading. Kachelrieb

et al. (Kachelrieb et al., 2007) investigate parallel-beam 2D back projection algo-

rithm and cone beam 3D back projection algorithm on Cell BE. Their results are

encouraging to provide potential real-time imaging at full spatial resolution since the

reconstruction time is in the same order as the typical scan time.

Compared with the amount of research on parallel computing for transform-based

techniques, the research on parallel computing for iterative techniques is relatively

small. Laurent et al. (Laurent et al., 1998) parallelize a block-ART method and SIRT

method for 3D cone beam tomography on five MIMD machines. The authors use fine-

grained parallelism approach to parallelizing the block-ART, which introduces more

frequent communications and impact the performance. Within expectation, Feldkamp

algorithm achieves the highest performance over the two iterative methods. However,

the block-ART works better for noisy data sets as seen in Carvalho et al. (Carvalho

and Herman, 2003). They show that the ART family of algorithms has distinct advan-

tage over transform-based techniques in that the quality of ART reconstructions are

not adversely affected by increased cone beam angles. Distributed parallel computing

techniques are also used for reconstruction. Backfieder et al. (Backfrieder et al., 2001)

use web-based technique to parallelize ML-EM iterative reconstruction for SPECT

108 Chapter 5: Iterative CT Reconstruction Technique

on SMP clusters. A java-applet enabled web-interface is used to submit projection

data and reconstruction task. The remote cluster reconstructs the image and sends it

back for analysis. Li et al. (Li et al., 2004) parallelize EM reconstruction using P2P

distributed computing technique. Authors from the same group also extend EM re-

construction using Internet-based distributed computing (Ni et al., 2004). Li et al. (Li

et al., 2005) parallelize four representative iterative algorithms: EM, SART and their

ordered subset (OS) versions for cone beam geometry on a Linux PC cluster. They use

techniques to improve the parallelization such as micro-forward-back-projection and

parameters such as cache at the ray level during forward-projection. Gordon (Gor-

don, 2006) parallelize 2D ART using a linear processor array. The author investigates

both sequential ART and parallel ART algorithm on different phantom data with or

without noise introduced for different number of projection views. The reconstructed

images from sequential ART and parallel ART have been theoretically measured us-

ing minimal distance and relative error criteria and reach consistent results without

significant difference. The author mentions that the algorithm can be easily extended

to 3D reconstruction using voxel model by changing the linear parallel array to a

rectangular mesh-connected array of processors. Melvin et al. (Melvin et al., 2008a)

parallelize ART on a shared memory machine. Based on the entropy measurement

used to determine the quality of reconstructed images, they show that parallel ART

using only 36 angles can yield approximately equivalent image quality as FBP recon-

struction using 180 angles in about the same amount of time.

As mentioned before, ART and its variants are known to be superior to analytical

methods with respect to the quality of reconstruction, especially when limited views

Chapter 5: Iterative CT Reconstruction Technique 109

are available. However, the main problem with iterative methods has been its inherent

sequential nature and long processing time. Cell BE has provided the processing

power for an increasing list of computation-intensive applications as mentioned in

chapter 2.3. In the next section, we consider a variant of SART, called OS-SART,

a coarse-grained algorithm which is both computation and memory bound. This

algorithm is suitable for study on the Cell BE architecture and gives opportunities to

exploit the SPE, the EIB, the PPE, DMA transfers and other architectural features

in depth.

5.4 OS-SART

In this section we explain OS-SART using the example shown in Figure 5.3.

As explained earlier in section 5.2 the reconstruction problem can be formulated

as given in Equation 5.1 and illustrated here again,

N∑
j=1

wijfj = pi, i = 1, 2, · · · , M (5.3)

where wij is the weighting factor that represents the contribution of jth cell along

the ith ray. The weighting factor can be calculated as: (i) the fractional area of the

jth cell intercepted by the ith ray; or (ii) the intersection length of the ith ray by

jth cell when the ray width τ is small enough to be considered as a single line. In

the thesis, we use the latter (Siddon’s method) which will be explained later. Note

that for different rays, wij’s have different values for the same jth image cell. The left

hand side of each equation in Equation 5.1 is used as the forward projection operator

for the specific ray i. In Figure 5.3, most of wij’s are zero since only a small number

110 Chapter 5: Iterative CT Reconstruction Technique

of cells contribute to any given raysum. For example, there are only ten nonzero wij’s

for projection pi if we consider using the fractional areas as the contributions.

All rays in one projection correspond to one subset in SART. In OS-SART, a

subset may consist of many such projections. Figure 5.4 shows a flow chart for OS-

SART. The algorithm iterates over many ordered subsets sequentially before checking

the convergence criterion. The image cells are updated with the following equation:

f r,l+1
j = f r,l

j + λ ·

∑
i∈OSl

[
pi−

∑N
k=1 wikfr,l

k∑N
k=1 wik

] · wij∑
i∈OSl

wij

, j = 1, 2, · · ·N (5.4)

where pi is the raysum of ray i, wij is the weighting factor, r is the iteration index,

and l is the subset index. λ is a relaxation parameter used to reduce noise. Let,

Corresponding Subset Index (CIS), CIS = {1, 2, · · · , Q} correspond to indices of Q

projections for the total of M rays. CIS is partitioned into T nonempty disjoint

subsets OSl, 0 ≤ l < T .

The most time-consuming parts of OS-SART are the forward projection and back

projection steps shown in Figure 5.4. The computation complexity of each step is:

O(I × T × Q
T
× n2) = O(I × Q × n2), where I is the total number of iterations. If

Q has the same magnitude as n, which is normal in real situations, the computation

complexity is O(n3), making OS-SART computationally intensive. The OS-SART

algorithm is also memory bound. The memory requirement for the forward projection

step includes the space required for storing the weighting factors matrix (w) for one

subset and the entire image. The space for the matrix and the image are O(M
T
×

n2) = O(Mn2

T
) and O(n2), respectively. Since M normally has the same magnitude

as N = n2 (Kak and Slaney, 2001), the memory complexity of OS-SART is O(n4),

making this algorithm memory intensive.

Chapter 5: Iterative CT Reconstruction Technique 111

Figure 5.4: Framework of OS-SART Reconstruction Technique

As mentioned earlier there are two ways of determining wij: either using the

fractional area of the jth pixel intercepted by ith ray or using the intersection length

of jth pixel by ith ray. In this thesis, we use the intersection length to compute wij

based on Siddon’s method, which reduces the computing complexity from O(N3) of

the general ray tracing method to O(N) (Siddon, 1985). We constrain the ray width

such that the ray can be considered as a single line for accurate simulation. For a

detector t of the detector array at projection angle θ, Siddon’s method calculates the

position of all pixels along the ray (t, θ) and the intersection length of the ray through

each pixel. There are several ways of storing the weighting factor matrix. One way is

to pre-compute the entire M × N matrix. If M and N are extremely large, memory

112 Chapter 5: Iterative CT Reconstruction Technique

storage becomes an issue. On the other hand, if the whole matrix is stored on disk,

there will be performance degradation due to access latency of wij from disk during

forward projection, correction, and back projection steps. Therefore, we calculate the

weighting factors on-the-fly for all rays of a specific projection at angle θ by using a

rotation based method (Bella et al., 1996; Lee and Kim, 2003).

Typically, the detector array is rotated around an image and the matrix is com-

puted for all rays within a projection angle. For Q projections, there will exist Q such

matrices. In general, the matrix wij is quite large. On the Cell BE we are limited

by the amount of memory available on each of the SPEs. Although, we could store

the values in main memory, transferring data from main memory to local stores in

SPE a few chunks at a time, it will degrade the performance of the algorithm due to

intensive communication overhead. Therefore, in this thesis, we use a rotation based

algorithm (Bella et al., 1996; Lee and Kim, 2003) that is less sensitive to memory. In

this method, the image is rotated around the detector array (instead of the detector

array being rotated around the image) at a base angle θ. The values of wij are calcu-

lated for this angle and stored as reference. Let’s call this wbase
ij . This is a one-time

computation. To calculate the projection values at an angle θi, the forward projection

starts by rotating the object at angle θi using bi-linear interpolation method. The

method then computes the forward projection data by summing over all nonzero pix-

els along each ray in the rotated image. That is, the pixel values are calculated using

the reference matrix, wbase
ij and the rotated image. The back projection starts with

the traditional back projection process, followed by rotating the object back with

−θi. Note that the main memory only stores one base weighting factor matrix which

Chapter 5: Iterative CT Reconstruction Technique 113

is significantly less than storing Q weighting factor matrices as in non-rotation based

methods. The rotation-based method reduces memory latency and brings advantages

to parallelization of OS-SART since parallel tasks for different projection angles can

calculate their weighting factors matrices independently corresponding to the base

matrix.

In Equation 5.4, the forward projection for each angle within the subset (the

summation with respect to k) only depends on the current image estimate f r,l
k , which

is either the first image estimate or the result of the previous subset. Therefore, it

is possible to calculate the forward projection for each angle within the subset in

parallel. The current image estimate for each angle can be stored in the global shared

memory. The correction (the summation with respect to i in the numerator) and back

projection (the division) for the subset is a cumulative result of correction and back

projection of different angles in the subset, a commutative operation that can also be

done in parallel. The only step that requires sequential computation in Equation 5.4

is the image update. This step requires the cumulative result of the correction and

back projection contributions from all angles in the subset. The parallel OS-SART

algorithm is described in Algorithm 8.

5.5 OS-SART on Cell BE

There are four important routines in our proposed rotation-based OS-SART algo-

rithm: forward projection, rotating the image, back projection and creating reference

matrix wbase
ij . By using a profiling tool, gprof, we determined the percentage of execu-

tion time spent on these routines. This was done to determine which routines require

114 Chapter 5: Iterative CT Reconstruction Technique

Algorithm 8 Parallel OS-SART

while not converged do

for all subsets do

for all projections in the subset in parallel do

calculate forward projection;

calculate correction;

calculate back projection;

end for

update current image estimate;

end for

end while

more effort in parallelization. Figure 5.5 shows the results for these routines for vary-

ing image sizes, with 20 subsets for 1 and 20 iterations. For both iterations, we notice

that the rotation of the image is the most time consuming part. For 20 iterations,

the forward projection, back projection, and rotation are also time consuming. The

creation of the reference matrix is negligible. Therefore, from this figure we can see

that forward projection, back projection, and rotation require efficient parallelization.

Recall that each subset is computed iteratively. The computation of the pixel

values for a subset, l + 1 requires that the subset l has already been computed and

the image has been updated. Using this updated image, Equation 5.4 is computed.

Also, f r,l+1
j depends on the weighting factors wij and the pixel values computed for

the subset l, f r,l
j . Therefore, although there is synchronization between subsets, there

is no synchronization within a subset. We exploit this parallelism on Cell BE.

Chapter 5: Iterative CT Reconstruction Technique 115

Figure 5.5: Profile Results of OS-SART.

The image estimate for each angle can be stored in main memory. The correc-

tion (
pi−

∑N
k=1 wikfr,l

k∑N
k=1 wik

) and back projection (

∑
i∈OSl

[
pi−

∑N
k=1 wikf

r,l
k∑N

k=1
wik

]·wij∑
i∈OSl

wij
) for the subset is a

cumulative result of correction and back projection of different angles in the subset

of the current iteration. Therefore, these can be done in parallel also. The only step

that requires sequential computation in Equation 5.4 is the image update. This step

requires the cumulative result of the correction and back projection contributions

from all angles in the subset.

On the Cell BE, the creation of the reference matrix is computed by the PPE

and stored in main memory. This is a one time computation. The PPE controls

the algorithm. It also assigns the projection angles to each of the SPEs. Given Q

116 Chapter 5: Iterative CT Reconstruction Technique

projection angles and T subsets, Q
T

projection angles are assigned to each subset. The

angles within the subset, OSl, are further divided. For P SPEs, each SPE is assigned

Q
T∗P projection angles. This process is repeated for each subset. The PPE schedules

the angles to the SPEs. At the end of the calculation of SPEs on a subset, the PPE

performs the image update, and assigns angles from the next subset, OSl+1 to each

SPE.

Each of the SPEs performs the following computations for their assigned angles θj.

First, it rotates the image at an angle θj. Then, it computes the forward projection

by accessing the reference weighting factor matrix and the image from main memory

via asynchronous DMA transfers. Due to the limited local store in each of the SPEs,

the matrix and image are accessed in chunks. Transferring data from main memory

to local store is called DMAin (Arevalo et al., 2007). Depending on the size of the

image, this process may take several rounds. In the next step, the SPEs perform

the error correction at the end of the forward projection computation. After error

correction step, the SPE performs the back projection. The SPE sends the data back

to main memory in chunks, called DMAout (Arevalo et al., 2007). This is again due

to the limited memory on each SPE. Finally, the SPE rotates the image back to its

original position and stores this in main memory. The above process is done by an

SPE for each of its assigned angles. In our work, we balance the load on each of the

SPEs by assigning the same number of projection angles.

Algorithm 9 and Algorithm 10 show the psuedocode of the PPE and SPE algo-

rithms discussed above.

Chapter 5: Iterative CT Reconstruction Technique 117

Algorithm 9 Parallel OS-SART on PPE

Require: PPE creates threads to carry out the time-consuming parts on SPEs and

setup related environments

while (r < R) do

for l = 0 to T do

send messages to all SPEs to start a new subset l;

wait for all SPEs to complete the forward projection, corrections, and back-

projection step;

5: accumulate error corrections for each pixel;

update images;

end for

end while

5.6 Experiment Results

The implementations are done on a distributed shared memory Sun Fire x4600

machine which consists of eight AMD dual-core Opteron processors (16 cores in total)

running at 1GHz with 1M cache per core and 4GB memory per processor. We use

OpenMP1 for parallel programming.

The projection data is obtained from CTSim simulator 3.0.32. CTSim simulates

the process of transmitting X-rays through phantom objects. Currently, CTSim pro-

duces only 1D projection data for 2D images. Therefore, in this work, we focus on

2D images to test the feasibility of our parallel OS-SART algorithm. For the experi-

ments we set the image size of Shepp-Logan phantom to 256× 256 and λ = 0.2. 360

1http://www.openmp.org
2http://www.ctsim.org/

118 Chapter 5: Iterative CT Reconstruction Technique

Algorithm 10 Parallel OS-SART on SPE

Require: p: number of SPEs, Q: number of projections, T : number of subsets,

nuOfChunks = n
rowsPerDMA

{n: one dimension size of the image, rowsPerDMA:

number of rows of the image per DMA transfer.}

while (r < R) do

for l = 0 to T do

wait for and receive messages from PPE to start new subset l;

5: for j = 0 to Q
T×p

do

locate the projection index q for the current SPE and j; rotate the current

image clockwise by corresponding angle for projection q;

for k = 0 to nuOfChunks do

DMAin related data, including base weighting factors matrix, the cur-

rent image; calculate and accumulate the raysums for forward projection

step in SIMD way; {forward projection}

end for

10: calculate and accumulate the raysum corrections; {corrections}

for k = 0 to nuOfChunks do

DMAin related data, including the weighting factors; calculate and ac-

cumulate backprojection for each pixel in SIMD way; DMAout the back-

projection data; {bacprojection}

end for

rotate the image counter clockwise by the corresponding angles for the

projectin q;

15: end for

end for

end while

Chapter 5: Iterative CT Reconstruction Technique 119

projections are obtained over 360 degrees.

Figure 5.6 shows the sequential computation time with varying number of subsets

in one iteration. The simplest case is using only one subset with all the projections

which is nothing but the SIRT algorithm. The 360 subsets correspond to one pro-

jection per subset which corresponds to SART. The results show that the number

of ordered subsets impacts the processing time. From the figure, we see that the

execution time increases as the number of subset increases. This is because, the time

for image update increases when the number of subsets increases. That is, in one

iteration, the image is updated only once for one subset (SIRT) but 360 times for 360

subsets (SART).

Figure 5.6: Computation time vs Number of subsets on AMD. The curve shows the
time for different number of subsets for one iteration.

For T subsets, the OS-SART algorithm goes through the three steps (forward

projection, correction, backprojection) and updates the image for each of the subsets.

120 Chapter 5: Iterative CT Reconstruction Technique

This corresponds to one iteration. The next set of results, Table 5.1, considers varying

the number of iterations and subsets. Given I iterations and T subsets, I*T = 36

in this example. That is, we perform the image update 36 times. When the subset

number is 1 (SIRT), the execution time increases considerably. However, with 36

subsets and 1 iteration, we get considerably better performance. This indicates that

the reconstruction time of the OS-SART algorithm decreases with the increase in the

number of subsets, verifying that the convergence time of OS-SART is faster than

SIRT.

Subsets# Iteration# Execution Time(sec)
1 36 172.49
2 18 87.76
4 9 46.45
18 2 13.97
36 1 9.47

Table 5.1: Execution time for different combinations of subset number and iteration
number

Chapter 5: Iterative CT Reconstruction Technique 121

Figure 5.7: Computation time vs Number of subsets on AMD and Cell BE. The curve
shows the time for different number of subsets for one iteration.

Figure 5.7 shows the sequential computation time with varying number of subsets

for both the Cell processor (1 SPE) and the AMD Opteron dual-core processor (1

core). The figure shows that the number of ordered subsets impacts the processing

time for both the Cell and the Opteron processor. In both cases, execution time

increases with increasing subsets. This can be easily explained as follows. As the

number of subset increases, the number of image update also increases. Since the

image update is done by the PPE and has to be done sequentially, the sequential

portion of the algorithm, therefore, limits the performance on the entire algorithm

confirming Amdhal’s law. As can be seen from the speed up curve, for one subset,

the algorithm running on one SPE is over 5 times faster than on one core of the AMD

Opteron processor. For 360 subsets, the Cell BE is 2.7 times faster than AMD Opteron

processor. Note that for larger subsets, the number of DMA transfers between the

local store and main memory increases on the Cell BE, increasing execution time.

122 Chapter 5: Iterative CT Reconstruction Technique

However, compared to AMD Opteron processor, the Cell BE still performs better.

Figure 5.8 shows the computation time and speedup for different number of SPEs

and AMD cores. We set the number of subsets T = 20, the total number of projec-

tions, Q = 360 , the total number of processors P = 8, to reconstruct the image for

I = 10 iterations. Each subset is assigned 360
20

= 18 projection angles. Among the

360 projection angles, we can randomly select 18 angles for each of the subsets. How-

ever, in our algorithm we follow the equation mentioned in section 5.4. That is, the

ordered subset OSl is created by grouping the projections (PRq, 0 ≤ q < 360) whose

indices q satisfy q mod T = l. Therefore, for the 360 projections, OS0 will consist

of projections 0, 20, 40,...,340. OS1 will consist of projections 1, 21,41,...,341. The

algorithm starts with OS0. The 18 projection angles from OS0 are then subdivided

and assigned to SPEs. Therefore, in Figure 5.8, for 8 SPEs, d 360
20∗8e projection angles

are assigned to each SPE which performs forward projection, back projection, error

correction, and rotation on their locally assigned data.

Since the Cell BE consists of 8 SPEs (processing elements or cores), our com-

parison on AMD Opteron is also for maximum of 8 cores. Figure 5.8 shows that

the speedup on Cell BE is better than AMD Opteron processor when the number

of processing elements used is less than 4. However, the speedup drops for Cell BE

when more SPEs are used due to increased number of DMA transfers. This is due

to the limited amount of local store available on each of the SPEs. As more SPEs

are added, the number of DMA transfer increases since only a small amount of data

can be DMAed in or DMAed out from main memory to local store and vice versa.

This adds to memory latency and communication overhead. It was observed that the

Chapter 5: Iterative CT Reconstruction Technique 123

communication portion (including the DMA transfers and synchronization overhead)

increased from 62% for one SPE to 86% for eight SPEs. The AMD HyperTransport

technology attributes to the better speedup when more AMD cores are involved.

Figure 5.8: Computation time and speedup vs number of SPEs/cores for 20 subsets
and 10 iterations.

Figure 5.9 shows the computation and communication times of the proposed al-

gorithm for different DMA transfer sizes. We experimented with 1, 4, 8 or 16 im-

age rows for each DMA transfer from main memory to the local stores and vice

versa. As the figure indicates, the DMA transfers significantly add to communication

cost dominating the total execution time of OS-SART on Cell BE. The communica-

tion/computation ratio is significant when more SPEs are involved.

124 Chapter 5: Iterative CT Reconstruction Technique

Figure 5.9: Computation time and communication time vs number of SPEs and
number of image rows per DMA transfer for 20 subsets and 10 iterations.

Figure 5.10 investigates the scalability of our algorithm for varying problem size

and image size. As the number of SPE increases for a given problem size, the exe-

cution time decreases. The speedup of the algorithm for any image size on 8 SPEs

is approximately 2.8 and the speedup increases as the number of SPE increases.

Therefore, current implementation of the OS-SART with rotation-based algorithm is

scalable with increasing problem and machine sizes.

Chapter 5: Iterative CT Reconstruction Technique 125

Figure 5.10: Computation time and speedup vs number of SPEs for different image
sizes using 20 subsets and 10 iterations.

Finally, Figure 5.11 illustrates the reconstructed images (256x256) obtained at

different iterations. The number of subsets is 20. The image quality increases for

more number of iterations. This result shows the accuracy of the algorithm.

126 Chapter 5: Iterative CT Reconstruction Technique

(a) iteration 5 (b) iteration 10 (c) iteration 20

(d) original shepp-Logan

phantom

Figure 5.11: Reconstructed images at different iterations for 20 subsets.

5.7 Summary

In this chapter, we efficiently mapped OS-SART algorithm using the architectural

features of the Cell BE. One of the main drawback of Cell BE is the limited memory

storage on each of the SPEs. To circumvent this problem we used rotation-based

algorithm that incorporates a technique to calculate the projection angles using less

memory. Though this was efficient, it also added to the number of transfers required

Chapter 5: Iterative CT Reconstruction Technique 127

to DMAin and DMAout the data between main memory and local store on SPE

which was a bottleneck as the number of SPEs increased. However, in comparison to

a shared memory machine, the implementation on Cell BE performed much better.

The results showed that the number of ordered subsets impact the sequential

processing time on one SPE. However, Cell based OS-SART on one SPE was five

times faster than OS-SART on AMD Opteron core for one subset and one iteration.

As number of subsets increased with number of iterations the speedup also increased.

The contribution of this chapter is reflected in (Xu and Thulasiraman, 2011).

Chapter 6

Microwave Tomography

Breast cancer, with the exception of lung cancer, is the leading cause of cancer

deaths in women worldwide. In 2008, an estimated 26% (182,460) (Jemal et al.,

2008) of women in US were diagnosed with breast cancer. However, it is also one

of the few cancers that can be controlled by using asymptomatic breast screening

methods, followed by effective treatments.

To lower the mortality rate of breast cancer patients, breast screening modal-

ities should be effective in detecting tumors at their early stage of microcalcifica-

tions (Strickland, 2002)1. Although there are several breast screening methods, any

chosen method should take into consideration the following conditions (Patlak et al.,

2001): (i) comfort of the patients without introducing any potential health risks, (ii)

producing high resolution images to enable physicians to accurately interpret the im-

ages correctly, (iii) cost and ability to detect malignant tumors at a curable stage with

a high true positive rate and true negative rate. Currently available breast screening

1Residue left by rapidly dividing cells in the breast which may lead to cancer

128

Chapter 6: Microwave Tomography 129

techniques, such as X-ray mammography, Magnetic Resonance Imaging (MRI), and

ultrasound, do not meet all of these conditions. For example, X-ray mammography,

arguably the current gold standard for breast cancer detection, compresses the breast

making women uncomfortable. Also, research has shown that a small portion of

mammograms indicate that a cancer could possibly be present when it is not (called

a false-positive result), leading to inaccurate results which can have 20% false positive

rate.

Research is still underway in developing new techniques to detect breast cancers.

A new and emerging breast cancer detection technique is microwave imaging. This

chapter will discuss one of microwave imaging approaches, which is called microwave

tomography (MT), and how to use the power of Cell BE for MT.

6.1 Introduction

Microwave imaging uses electromagnetic radiation with frequencies ranging from

approximately 1 GHz to 20 GHz. It can be used to penetrate the body and retrieve

structural and functional information from tissues via scattered signals. Due to its

versatility and suitability, it has been used for a wide range of applications such as

non-destructive evaluation and subsurface imaging (Caorsi et al., 2001). Microwave

imaging (Fear et al., 2003; Li and Hagness, 2001; Meaney et al., 2000) promises to

be a safe and efficient breast cancer screening method, which meets the conditions

mentioned above. Recently, it is reported that microwave imaging is a cheaper and

much safer technique than traditional modalities for breast cancer detection (Delbary

et al., 2010). Since the technique uses non-ionizing radiation, it is considered to

130 Chapter 6: Microwave Tomography

be less harmful to patients. The technique relies on the relatively large contrasts

between the dielectric properties of tumors and those of normal breast tissues at

microwave frequencies (Converse et al., 2006). In microwave imaging, the breast is

illuminated with a microwave field, and the material properties of the breast (shape,

internal electric characteristics) are reconstructed by measuring the scattering of the

electromagnetic signals.

There are two main approaches in microwave imaging: microwave tomography

(MT) (Meaney et al., 2000; Noghanian et al., 2006) and radar microwave imag-

ing (Fear et al., 2003). Confocal microwave imaging (based on radar imaging tech-

nique) (Fear et al., 2003) reconstructs the image by focusing the reflections from the

breast. Although it can find small objects, it does not attempt to reconstruct the

exact permittivity profile of the breast. The technique attempts to detect strong

scattering centres which may be tumors. However, due to the fact that breast tis-

sues are relatively inhomogeneous containing regions of fatty (adipose) tissues, fibro

glandular tissues, calcifications and possibly malignant tumors, confocal microwave

imaging has limited capability to distinguish tumors from all scattering centres. The

microwave tomography method works by measuring the scattered field with antennas

placed at various points around the object. The method involves solving the inverse

scattering problem to create a map of dielectric properties inside the object. This is a

nonlinear phenomenon, but, different linearization approaches such as the Born and

Rytov approximations (Chew, 1990; Kak and Slaney, 2001), may be applied to the

reconstruction problem. These approximations were shown to be effective when the

scattering objects were electrically small or when the contrast with the background

Chapter 6: Microwave Tomography 131

was minimal, which is generally not the case for imaging biological tissues. High per-

formance computers have paved the way for developing powerful tools and algorithms

to describe and explore more complicated nonlinear phenomena.

In this thesis, we consider microwave tomography based on global optimization as

an iterative algorithm that involves two algorithms in the tumor detection process:

genetic algorithm (GA) and finite difference time domain (FDTD). To our knowl-

edge, microwave tomography technique incorporating FDTD method and GA is the

original work proposed by authors in (Noghanian et al., 2006; Ashtari et al., 2010;

Sabouni et al., 2011). Please refer to section 6.1 for more detailed description on

microwave tomography using GA and FDTD. There are two issues that make this

approach a computation intensive problem: (i) the number of iterations can be quite

large to detect small tumours; (ii) the object has to be discretized into fine-grained

computations for accuracy. In (Xu et al., 2007a), we developed a parallel algorithm for

microwave tomography and parallelized the algorithm on CPU-based homogeneous,

multi-core, distributed memory machine. The results indicate that the communica-

tion and synchronization latencies add significant overhead to the entire performance

of the algorithm. Therefore, we investigate a multi-threaded microwave tomography

algorithm to reduce communication and synchronization overhead inherent in this

problem on emerging heterogeneous multicore architectures.

Heterogeneous multicore architectures which incorporate traditional CPU with

accelerators (or co-processors) are promising hardware solutions to circumvent the

memory wall problem (Asanovic et al., 2009). The IBM’s Cell BE architecture and

NVidia’s GPU architecture are two main stream heterogeneous multicores. The Cell

132 Chapter 6: Microwave Tomography

BE consists of (i) one traditional CPU called PowerPC Processor Element (PPE); (ii)

eight co-processors called Synergistic Processor Elements (SPEs) supporting SIMD

operations, each with local memory on chip; (iii) a high bandwidth bus (EIB, element

interconnect bus) connecting all elements on a single chip. The Cell BE architecture

reduces the memory latency issue by supporting asynchronous DMA transfers be-

tween main memory and local memory of SPEs. The GPU from Nvidia consists of (i)

many streaming multiprocessors (SMs) on a single chip; (ii) on-chip shared memory

and large number of registers which provide fast access to data and speedup calcu-

lation on SMs. The architecture with GPU hides the memory latency problem by

supporting large number of hardware supported threads simultaneously. Different

from traditional architectures, Cell BE and GPU have unique features which make

mapping algorithms on them challenging: i) SPEs and SMs do not support branch

prediction; (ii) there is no support of recursion; (iii) SPEs and SMs have very limited

local memory; (iv) access to main memory is slow; (v) there is no hardware supported

cache on SPEs.

In this thesis, we consider the Cell BE. Although Cell BE is architecturally similar

to GPUs, it is more suited to irregular coarse-grained problems. (Bader et al., 2007;

Xu et al., 2008). The architecture supports asynchronous DMA transfers to multitask

computations to hide communication latencies. The unique feature of CPU and SPEs

on a single chip together with a fast interconnection network is an added benefit to

hide memory latencies and coordinate computations between PPE and SPEs.

In (Xu and Thulasiraman, 2008c,a), we parallelized FDTD on Cell BE and com-

pared the results with a shared memory architecture and a cluster of distributed

Chapter 6: Microwave Tomography 133

memory multicores. The Cell BE achieved a speedup of 14.14 over AMD Athlon and

7.05 over AMD Opteron at the processor chip level. Furthermore, the Cell BE with

8 SPEs is 2.9 times faster than an eight node shared memory machine and 1.45 times

faster than an eight node distributed memory machine. The reason why the shared

memory version is slower than the distributed memory version is due to the overhead

of multi-threads and memory latency for dual-core system used for the shared mem-

ory version. The distributed memory system uses Voltaire Infiniband Switched-fabric

interconnection to connect single-core processors to minimize the communication la-

tencies. We modify the FDTD algorithm to improve performance from that of FDTD

implementation discussed in Chapter 3. we continue this work, by integrating GA

and parallelizing the complete microwave tomography algorithm on Cell BE.

The rest of this chapter is organized as follows. The next section explains mi-

crowave tomography technique, with separate descriptions on FDTD for MT in sub-

section 6.2.1 and on GA for MT in subsection 6.2.2. Section 6.3 describes the map-

ping of microwave tomography on Cell BE, followed with experimental results in

section 6.4. Discussions and conclusions in section 6.5 concludes the chapter.

6.2 Microwave Tomography

An accurate and efficient microwave imaging technique based on microwave to-

mography was proposed in (Sabouni et al., 2006). Microwave tomography recon-

structs the image by iteratively applying a numerical model to combinations of po-

tential breast structures, and matching measured data with computation results of

the model (Noghanian et al., 2006). The process of computing the output from a

134 Chapter 6: Microwave Tomography

known input and system properties is a forward computation process and the ob-

tained results are forward computation data.

In this technique, the breast is illuminated at different angles and the scattered

field is measured around the object. After discretizing the solution space, the di-

electric properties of the solution domain are used as parameters to optimize a cost

function using genetic algorithm (GA). GA is used to search the presumed dielectric

property profiles space in a reasonable amount of time in order to find the globally op-

timized profile which produces scattered fields close to the measurement. The process

continues until the calculated data converges with the measured data, indicating that

the real breast material profile is very close to the presumed profile at the convergence

point. By using this method, we are able to solve the inverse scattering problem and

find the location, shape, size, permittivity and conductivity of the tissue. A Finite

Difference Time Domain (FDTD) method is used to compute the scattered field at

the observation points, thereby providing the information needed for each generation

of the GA optimization procedure.

Though, FDTD can efficiently and accurately model an inhomogeneous object

of arbitrary shape (Taflove and Hagness, 2000; Yee, 1966), it is computationally in-

tensive (Su et al., 2004). In addition, the search space for GA grows dramatically

when increasing the resolution for various combinations of different tissue types at

different positions in the breast. Since the scattering field calculations using FDTD

must be done tens or even hundreds of times per generation in the GA procedure, the

computation is time consuming. Figure 6.1 illustrates the framework of microwave

tomography.

Chapter 6: Microwave Tomography 135

Figure 6.1: Microwave Tomography Illustration.

In this thesis, a breast in the prone position is simulated by a breast phantom

consisting of a cylindrical object extended infinitely in the z-direction. The cylinder

is a reasonable approximation for feasibility studies of tumor detection in 2D cross

sections (Fear et al., 2003). Figure 6.2(a) depicts a cross sectional view in the x-y plane

of the cylinder. The phantom is subdivided into 16 tiles, called GA tiles hereafter.

Each GA tile will assume to have the same dielectric property everywhere inside the

tile. The goal is to image a small object (tumor) inside a heterogeneous structure

(the breast) . The heterogeneous material is covered by an outer layer (skin) with an

appropriate dielectric property. We simulate the breast phantom being illuminated

by a plane wave which is perpendicular to the propagation direction and parallel to

the axis of the cylinder. The plane wave impinges on the object and the scattered field

is collected by the receiving antennas that surround the object. The scattered field

calculated at these points is used as the measured field. The angle of the incident

wave is changed and the procedure is repeated for multiple incident angles. The

algorithm starts with a set of random initial guesses of the breast structure, and

a full wave analysis using FDTD is then carried out for each member of this set

to find the values of the scattered field. The calculated scattered field is compared

with the measured field and GA optimization is used to identify the tissue structure

136 Chapter 6: Microwave Tomography

that minimizes the difference between simulated and measured scattered fields. The

structure that minimizes these differences is chosen as the final image of the object

under investigation.

(a) Breast Phantom

(b) 2D Computational Domain

Figure 6.2: Simulation Settings (Xu et al., 2007a).

As can been seen in the sequential algorithm, Algorithm 11, microwave tomog-

raphy is an integration of two tightly coupled algorithms, GA and FDTD. There

Chapter 6: Microwave Tomography 137

are three steps in the algorithm: (i) GA provides the initial setup values based on

the individuals (ii) FDTD calculates the electric and magnetic fields (iii) GA then

calculates the fitness to guide its evolution.

6.2.1 FDTD for MT

A detailed explanation of FDTD is given in Section 3.1.

Before using FDTD (Taflove and Hagness, 2000) algorithm, certain preconditions

have to be met. First, a computational domain must be established on which the

Yee cells are based. Normally, the computational domain is the physical region over

which the simulation will be conducted, such as the breast in our application. Second,

the material of each cell within the computational domain must be specified by their

permittivity, permeability, and conductivity. Since FDTD allows the material at each

cell to be specified, an inhomogeneous object of any shape can be easily modeled. In

the current study, we consider breast tissue made up of a combination of 50/50 adipose

and fibro-glandular tissues with a small tumor tissue located at some point inside the

breast. The breast phantom is illuminated by a succession of short pulse Transverse

Magnetic (TMz) waves.

Maxwell equations are solved in a closed area using FDTD. To calculate the scat-

tered field in an infinite space, we truncate the area with artificial absorbing layers

around the simulated region using Modified Perfectly Matched Layer (MPML) ab-

sorbing boundary conditions (Chen et al., 1995). MPML ensures accurate results by

suppressing outward-propagating numerical wave analogues and spurious reflections.

Another accuracy factor in FDTD is the cell size, ∆x×∆y, which must be less than

138 Chapter 6: Microwave Tomography

the wavelength, usually taken to be less than a tenth of the wavelength (Taflove and

Hagness, 2000).

The stability of FDTD is another critical issue. The time step, ∆t, the max-

imum velocity of the wave, vmax, and the dimension of the cell, (∆x, ∆y), must

satisfy Eq.(6.1) (also known as Courant condition (Courant et al., 1967)), to ensure

that the simulation result is stable and correct. In this application, the plane waves

propagate across discrete cells. The time step must be less than the time for the waves

to travel between adjacent grid points. Otherwise, a nonzero field value of a cell is

introduced before the wave can reach the cell, violating causality of the simulation

system and resulting in an unstable and inaccurate output.

vmax∆t =

[
1

∆x2
+

1

∆y2

]−1/2

(6.1)

Fig. 6.2(b) illustrates the discretized computational domain of a breast phantom

shown in Fig. 6.2(a). The 2D computational domain presents the cross section of

a dielectric cylinder, which simulates the cross section of a breast. Each of the 16

GA tiles in Fig. 6.2(a) can be further decomposed into Yee cells. Gaussian pulse

plane waves impinge from multiple directions. Near to far field transformation is

a calculation that is performed to find the far-field based on the surface current

distribution. Since the field calculated by FDTD is on the object (the breast in

this case) and field received by antennas is the far-field scattered by the object, this

calculation is necessary.

The fitness function used by the GA discussed in section 6.2.2 is defined in Eq.(6.2),

where k ranges from 1 to kmax, and k is the index of the incident angle and kmax is the

largest index. The object is illuminated by a Gaussian plane wave and the scattered

Chapter 6: Microwave Tomography 139

fields (Ekθ) are measured by receiver antennas (far field) which surround the breast.

In this work, to enhance the accuracy of the image, the procedure is repeated for

four different incident angles (0◦, 90◦, 180◦, 270◦). There are 100 observation points

located in the far-field zone and the scattered field is measured on a circle around

the breast. θ represents different angles of the observation points. Emeasurement
kθ and

EFDTD
kθ are the measured and calculated values at angle θ using kth incident angle,

respectively.

f = 1−

∑
k

√∑
θ(Emeasurement

kθ −EFDTD
kθ)2∑

θ(Emeasurement
kθ)2

4
(6.2)

6.2.2 GA for MT

The inverse scattering problem determines the characteristics of an object from

measured data. A problem is not well-posed (Tikhonov and Arsenin, 1977) if solution

is highly sensitive to changes in data. Inverse scattering problems are ill-posed with

several local minimum solutions. In this work, we use genetic algorithm (Holland,

1975) to solve the inverse scattering problem in order to find a global minimum

through a set of potential solutions (chromosomes, called). Each individual is a set of

possible dielectric permittivities (εr) and conductivities (σ) assigned to each GA tile

inside the breast (a GA tile a is assigned εra and σa). All Yee cells inside each GA tile

assume to have the same permittivities and conductivities. Here we assume that the

permittivity and conductivity of cells outside the breast and the cells falling in PML

areas are the same as the parameters of the free space. Furthermore, we consider

only two kinds of tissues for the 16 tiles inside the breast as shown in Figure 6.2(a):

average tissue and tumor tissue. Therefore, an individual is encoded as a binary string

140 Chapter 6: Microwave Tomography

with 1 indicating tumor tissue and 0 for non-tumor tissue. The fitness function used

to evaluate each individual is the difference between the measured and calculated

scattered fields at the observation points given by Eq.(6.2).

Genetic algorithms are categorized according to the population replacement strat-

egy applied in consecutive generations (Levine, 1994): generational replacement GA

(GRGA) or steady-state GA (SSGA). GRGA creates a new generation by replacing

all individuals of the previous generation. That is, members of the new generation are

created from old population using genetic operators and all members of the old gener-

ation are replaced. On the other hand, SSGA only replaces some individuals with new

ones based on different strategies. In this work, SSGA with elitism strategy is used for

generation replacement (Michalewicz, 1992; Mitchell, 1996). Elitism strategy copies

a small portion of the fittest candidates unchanged into the next generation. This

strategy can sometimes improve the performance by ensuring that GA does not waste

time re-discovering previously discarded partial solutions. This strategy places a very

important role in this work as FDTD is a time-consuming process and re-evaluation

of the same best solutions for more than one generation incurs dramatic increase in

execution time without contributions to convergence. There are four steps in SSGA:

(i) select two parents; (ii) use genetic operators (mutation, crossover) to create an

offspring; (iii) evaluate offspring with fitness function; (iv) decide if the individual will

be replaced; that is, replace if the new individual is better. These steps are repeated

until a termination condition is met. We use roulette wheel selection strategy in step

(i) to select parents for crossover. In this technique, the individuals with high fitness

values have higher chance to be selected as parents and propagate their strong genes

Chapter 6: Microwave Tomography 141

to the offspring individuals. In SSGA, a portion of best individuals is passed to the

next generation and the rest of the population is replaced.

6.3 Microwave Tomography on Cell BE

As can been seen in the sequential algorithm, Algorithm 11, microwave tomog-

raphy is an integration of two tightly coupled algorithms, GA and FDTD. There

are three steps in the algorithm: (i) GA provides the initial setup values based on

the individuals (ii) FDTD calculates the electric and magnetic fields (iii) GA then

calculates the fitness to guide its evolution.

GA controls the flow of microwave tomography without intensive floating point

calculations. Therefore, this component is performed on the PPE. On the other

hand, FDTD is time consuming, with intensive floating pointing calculations. The

algorithm can be formulated as a SIMD type problem, as all cell grids are subject

to performing the same series of instructions. Therefore, FDTD is off-loaded to the

SPEs. The following sections explain the mapping process of FDTD on SPEs and

the integration of PPE and SPEs. Figure 6.3 illustrates the task assignments on PPE

and SPEs.

6.3.1 FDTD on SPEs

In this section, we conider a modification to the FDTD algorithm’s implementation

on Cell BE discussed in section 3.4. This is done to improve the overall performance

of the microwave tomography algorithm.

The FDTD algorithm is computationally intensive for the following reasons. The

142 Chapter 6: Microwave Tomography

Algorithm 11 Sequential MT

1: create unique individuals; read measured fields for four impinge directions;

2: for each individual in the current generation do

3: decode individual to setup permittivity and conductivity parameters;

4: for each wave impinge direction do

5: initialize fields, PML layers in Eq.(3.1) to Eq.(3.4) on page 47;

6: for each time step do

7: update Ezx fields using Eq.(3.1); update Ezy fields using Eq.(3.2);

8: update Hx fields using Eq.(3.3); update Hy fields using Eq.(3.4);

9: do near to far field transformation;

10: end for

11: calculate fields for the current impinge direction;

12: calculate difference between measured and calculated fields;

13: end for

14: calculate fitness according to Eq.(6.2);

15: end for

16: while (1) do

17: check convergence criterion;

18: if convergent then

19: break;

20: end if

21: create new generation;

22: for each new individual in the new generation do

23: execute line 3 to line 14;

24: end for

25: end while

Chapter 6: Microwave Tomography 143

Figure 6.3: MT on Cell BE flow chart. The variables used for the time for different
part are included.

calculation is complex as shown in Eq.(3.1) to Eq.(3.4) on page 47. The size of Yee

cells has to be fine-grained such that each cell can be treated as with homogeneous

material. The granularity of the cells makes a significant impact on the accuracy

of the results that is critical for early breast cancer detection, to find tumors at an

early stage when they are smaller than few millimeters. However, this granularity

implies an increase in the number of cells in the computational domain. The Courant

144 Chapter 6: Microwave Tomography

condition, a necessary condition for convergence and stability of FDTD indicates that

the largest time step (∆t, mentioned in section 6.1) depends on the number of cells.

The complexity of a 2D FDTD algorithm is O(N3) where N is the number of the

cells along one direction, assuming the computational domain has equal dimensions for

two directions. One iteration of a sequential FDTD algorithm takes approximately

200 seconds for a 600 × 600 computational domain with 4000 time steps on AMD

Athlon 64 X2 Dual Core processor at 2GHz. As shown in Algorithm 11, many such

iterations are required before meeting the convergence criteria. The convergence

criteria could be either the maximum number of predefined generations reached by the

algorithm or the predefined threshold fitness value reached by the fittest individual of

a generation. Therefore, the performance of FDTD algorithm is critical to the overall

performance of microwave tomography, and mapping FDTD to SPEs would improve

overall performance.

Also, FDTD is memory-intensive. At least 16MB of memory is needed for a

computational domain of 600 × 600 Yee cells to perform the calculations. This is

without even considering instructions and other data structures. This requirement is

much higher than the 256KB local store available on each SPE. Due to this limited

local store, each SPE requires frequent DMA transfers to fetch data from memory.

DMA transfers become a bottleneck and degrade performance. To solve the memory

transfer latency problem, we overlap computations with communication. This is

possible since Cell BE supports non-blocking memory transfers. We decompose the

grid, N × N of Yee cells into chunks with R × N (where R < N) cells. Each

chunk is assigned to an SPE. At each time step, the SPE fetches necessary data

Chapter 6: Microwave Tomography 145

from memory via asynchronous DMA transfers to update electric and magnetic fields

of Yee cells for its assigned portion of the data. The magnetic fields are updated

immediately after the electric field updates for its assigned rows. Using the electric

(Ezx, Ezy) and magnetic field data (Hx, Hy) of the previous time step available in

the local store on each of the SPEs (DAMed in), the intermediate results of the

electric fields for the current time step are calculated, followed immediately with the

calculation of magnetic fields which uses the intermediate results of the electric fields

in local store. Due to the limitation on the size of the local store, it is important

to increase the computation-to-communication ratio to hide memory latency. The

portion of the algorithm that performs this overlap is highlighted in Figure 6.3. For

example, the SPE issues DMA command to store Ezx back to main memory (DMAed

out). Simultaneously as the communication is being performed, the SPE performs

the calculation of Ezy. Similar communication-computation overlapping is done for

Ezy and Hx.

Please note that this approach is significantly different from that explained in

section 3.1 (Xu et al., 2008; Xu and Thulasiraman, 2008c), where we do not overlap

the computation with the DMA transfers. That is, SPE calculates fields, such as Ezx,

then issues DMA commands to store Ezx back to the main memory. SPE waits for

the completion of the DMA transfer. SPE starts to calculate the next field values

only after the completion of the transfer.

Synchronization is necessary between SPEs in the FDTD algorithm. In our orig-

inal FDTD algorithm, in section 3.1 (Xu and Thulasiraman, 2008c), we investigated

two synchronization mechanisms, mailbox and SPE signal notification registers. Since

146 Chapter 6: Microwave Tomography

we did not find too much of performance difference between these two mechanisms,

we use mailbox synchronization mechanism. With this mechanism, PPE acts as an

arbitrator (Kistler et al., 2006). When an SPE completes its tasks for the current

time step, it sends messages to PPE via the mailbox to notify the PPE that it is

ready for the next time step. When the PPE receives messages from all participant

SPEs, it sends a message via mailboxes to those SPEs and lets the SPEs start the

tasks for the next time step.

Finally, SPEs are SIMD-only co-processors. SPEs would have to re-organize data

and instructions to execute scalar code in SIMD fashion. This may deteriorate the

performance of the algorithm. Therefore, we manually SIMDize the fields update

using SPE intrinsics to improve performance.

6.3.2 Coordination between PPE and SPEs

The two components of microwave tomography, FDTD and GA, are mapped on

the two separate cores of the Cell BE. This subsection explains the coordination

between PPE and SPEs.

Initially, the PPE decodes the individuals, sets up corresponding permittivity and

conductivity parameters, and completes all initialization process.

The PPE then signals SPEs to start the FDTD computations. The near to far field

transformation, which is used in FDTD to calculate antenna scattering, is done at each

time step (line 9 of Algorithm 11). In the sequential algorithm, the transformation

is done after the electric and magnetic fields updates. Although, we can let the SPE

to compute the transformation at the end of each time step, it is not necessary to

Chapter 6: Microwave Tomography 147

waste SPE resources for two reasons: (i) the updated transformation is not required

by the SPEs for computations at the next time step; (ii) amount of time to do the

transformations is trivial. Therefore, the transformation process is designated to the

PPE. At the end of each time step, the PPE signals the SPEs to start the next time

step, and then continues to compute the transformations. Note, that the near to

far field transformation designated to the PPE uses a mechanism similar to double

buffering to allow PPE compute the transformation for the current time step while

simultaneously allowing SPEs to compute simulation for the next time step. By

allowing concurrency of computations between PPE and SPE, the resources of the

cores of the Cell BE are used efficiently.

The post processing at the end of computing FDTD for all time steps (line 11

and line 12) is also assigned to PPE. This is a sequential computation which requires

the PPE to calculate and accumulate the difference between measured fields and

calculated fields to calculate the fitness value (line 6.2). Finally, the PPE checks for

convergence and notifies the result to SPEs using mail box. Figure 6.3 illustrates the

mapping of microwave tomography on Cell BE with all these mapping considerations.

6.4 Experiment Results

The computational domain (Figure 6.2(a), Figure 6.2(b)) is of size 600×600 cells,

including 10 layers of MPML. The FDTD is modeled as a grid of Yee cells with

∆x = ∆y = 0.3mm, time step ∆t = 0.5ps (Equation 5). Figure 6.2(a) amplifies the

cross section of the breast phantom in Figure 6.2(b). At the current research stage,

we assume that the breast phantom consists of three kinds of tissues: skin, average

148 Chapter 6: Microwave Tomography

tissue and malignant tumor tissue. The breast phantom is divided into 16 GA tiles

with the size of 1.5cm by 1.5cm. The total number of time steps for each iteration of

FDTD, by default is set to 4000.

We carried out the experiments on an IBM BladeCenter QS20 available from

Georgia Institute of Technology. The IBM BladeCenter QS20 consists of two Cell

BE processors running at 3.2GHz. Each processor contains 8 SPEs. Two processors

share 1GB XDRAM main memory with 40GB blade-mounted IDE hard disk drive.

The implementation uses sdk3.1. The compiler used is spu-gcc and ppu-gcc with

optimization level -O3. The execution time of the computations performed on SPE

is obtained using the SPU decrementer applying the clock just before the start and

completion of the FDTD algorithm.

Initially, we conduct an experiment to show the efficiency of microwave tomogra-

phy in locating tumors. The breast phantom is filled with average tissues (relative

permittivity: 15.66, conductivity: 1.03) and one tumor (relative permittivity: 50.74,

conductivity: 4.82). It is illuminated by a plane wave at four different angles and

the scattered fields are measured by 100 receiver antennas in the far-field zone on a

circle around the breast phantom. The probability of crossover and mutation is .9

and .1, respectively. The population size is 50 and the elitism rate is 8% (that is,

4 best individuals are passed to the next generation without changing.) The results

show that we are able to locate the malignant tumor at the 39th generation.

Figure 6.4 shows the comparison between our earlier algorithm (Xu and Thu-

lasiraman, 2008c) (näıve approach) and the current optimized work with overlapping

computations and communications. As can be seen, the optimized FDTD algorithm

Chapter 6: Microwave Tomography 149

performs significantly better than the näıve algorithm. The relative performance

improvement is 27.9% for one SPE and 54% for eight SPEs. The improvement is

also due to the increase in computation to communication ratio in the optimized ap-

proach. Overlapping computations during DMA transfers significantly impacts the

performance of the algorithm, indicating that the algorithms have to be redesigned

to fully exploit the architectural features of Cell BE.

Figure 6.4: Comparison between two mapping schemes for FDTD. The straightfor-
ward mapping is the one without overlapping computation with communication, while
the optimized mapping is the one with the overlapping technique.

We also tested the genetic algorithm component and its integration with FDTD.

The first generation consisted of 6 individuals; for second, third and fourth generation

(4 generations in total), two new individuals were created and the two worst ancestor

individuals were replaced. In total, 12 individuals were considered with 48 iterations

of FDTD, since each individual passes through four different impinge directions. In

150 Chapter 6: Microwave Tomography

Figure 6.5 we compared the overall performance of optimized microwave tomography

to the our original work (Xu and Thulasiraman, 2008c). We do this by separating the

execution times of the PPE (executing GA, initialization, near to far field transfor-

mation) and SPEs (executing FDTD). The improvement of microwave tomography

using optimized mapping scheme over our original algorithm is approximately 40%.

Figure 6.5: Performance comparison between two versions of MT, which integrate
GA and with two different FDTD simulation.

In order to illustrate the capability of a Cell BE processor, especially its SIMD

coprocessor SPEs, we compare the performance of microwave tomography on various

platforms: PPE only, PPE with one SPE, PPE with eight SPSs, one Quad-Core Intel

Xeon E5440 running at 2.83GHz (32KB L1 data and 32KB L1 instruction cache per

core, 12MB L2 cache shared by four cores, 16GB memory shared by two processors

on a node), one AMD Dual-Core Opteron 275 running at 2.2GHz (64KB L1 data and

64KB L1 instruction cache per core, 1MB L2 cache per core, 4GB memory shared by

two processors on a node). We parallelized the code using OpenMP on Intel and AMD

Chapter 6: Microwave Tomography 151

processors, using four threads and two threads for each processor, respectively.The

compiler used is gcc with optimization level -O3. In these experiments, we limit the

number of generations to 2 instead of 4. The experiments still consider 6 individuals

for each generation and replace 2 worst ancestor individuals. The results are shown

in Figure 6.6.

Taking the experiments using eight SPEs as the base, we achieved speedups of

22.7, 5.1, 7.2 and 10.4 over PPE only, PPE with one SPE, Xeon and Opteron, respec-

tively. The worst performance occurs when only PPE is used which executes only one

thread. However, the performance increases dramatically using the PPE with even

one SPE, which achieves speedups of 1.4 and 2.0 over Xeon and Opteron, respectively.

Several factors bring these differences: (i) the clock rate, (ii) the SIMD capabilities

and high bandwidth available on SPEs, (iii) the latency reducing techniques such as

double buffering and overlapping computation with communication. The software op-

timization techniques combined with hardware supports increase performance when

using all eight SPEs. The experimental results show that Cell BE processor is suitable

for this application.

6.5 Summary

In this chapter, we designed and implemented a parallel microwave tomography

algorithm on the Cell BE processor. We mapped the two components of microwave to-

mography, GA and FDTD, to PPE and SPEs, respectively. We modified the FDTD

algorithm by overlapping computations with communications during asynchronous

DMA transfers, thereby increasing computation-to-communication ratio. We op-

152 Chapter 6: Microwave Tomography

Figure 6.6: Performance comparison of MT on different platforms.

timized FDTD algorithm and improved the performance over the original FDTD

algorithm by 54%. The overall performance of the algorithm increased by 40% in

comparison to our original algorithm. We have shown that mapping the algorithm

according to the architectural features of Cell BE is very important in achieving per-

formance. The contributions of this work is reflected in (Xu et al., 2007b,a, 2012).

Chapter 7

Performance Prediction Model

This chapter proposes a performance prediction model for algorithms executed on

Cell BE based on parameters such as amount of DMA requests, number of instructions

and operations, processor frequency and DMA bandwidth.

7.1 Performance Prediction for FDTD

We consider the microwave tomography as an example on our proposed prediction

model. This is because the microwave tomography algorithm uses all the features of

the Cell BE. Due to the complexity of the algorithm and its use of the hardware,

we feel that studying the performance prediction model on this complex, irregular

problem would be sufficient to generalize the model on heterogeneous multi-core ar-

chitectures.

We consider the computations on PPE and SPEs separately. The PPE orches-

trates flow control while the SPEs use SIMD style programming to compute FDTD.

153

154 Chapter 7: Performance Prediction Model

The computation time on PPE is denoted as TPPE which involves initialization, com-

putation using genetic algorithm, transformation and post processing. The transfor-

mation is computed by PPE during FDTD computations by SPE, overlapping the

two computations. Therefore, the computing time of these transformations can be

absorbed in the computing times of FDTD. The other computing tasks (initialization,

GA and post processing) are negligible as will be shown in the performance results.

TPPE = Tinit + TGA + Ttransformation + Tpostprocessing (7.1)

On the SPE, based on the flowchart in Figure 6.3, the total time of FDTD for one

iteration denoted as TFDTD is given as follows:

TFDTD =
TTS ×N

P ×R
(TDMAin + TEzx+

max(TDMAoutEzx + TDMAoutEzy + TDMAoutHx,

TEzy + THx + THy) + TDMAoutHy + Tsync)

(7.2)

where TTS is the total time steps for one iteration of FDTD, N is the dimension of

the computation domain, P is the number of SPEs, R is the number of rows per DMA

transfer. TDMAin is the time to DMAin (retrieve data from memory to SPE) Ezx, Ezy,

Hx, Hy and corresponding coefficients. TEzx, TEzy, THx, THy are computation times to

update the corresponding fields. TDMAoutEzx, TDMAoutEzy, TDMAoutHx, TDMAoutHy are

time to DMA out (store back the results in memory) the corresponding fields. PPE

and SPE synchronize at the beginning and end of each time step. This is denoted as

Tsync and can be obtained from running the program.

The timing for each of the terms in Eq.(7.2) is derived below. We use the following

parameters: BW is the bandwidth of DMA transfer, 25.6GB/s. CPUFreq is the CPU

Chapter 7: Performance Prediction Model 155

frequency, 3.2GHz. FPcycles, LScycles, Shufflecycles, Branchcycles are the cycles

for single precision floating point instruction (6), load/store instruction (6), shuffle

bytes instruction (4), and branch instruction (4), respectively (Murrell, 2006).

TDMAin =
R ×N × 8× 4

BW
=

32×R ×N

25.6× 109
(7.3)

where constant 8 represents the number of data items transferred and constant 4

determines the size of each data item for fields and coefficients in Eq.(3.1) to Eq.(3.4).

TEzx =
R ×N × (4× FPcycles + 6× LScycles)

CPUFreq × 4

=
15×R ×N

3.2× 109

(7.4)

where constant 4 indicates the number of floating point instructions involved to cal-

culate Ezx in Eq.(3.1). The constant 6 is the total number of load (5) and store (1)

instructions. The constant 4 is due to the 4-way SIMD single precision on SPU.

TEzy =
R ×N × (4× FPcycles + 6× LScycles)

CPUFreq × 4

+
R ×N × Shufflecycles

CPUFreq

=
19×R ×N

3.2× 109

(7.5)

This is similar to Eq.(7.4), except for an additional term related to the shuffle oper-

ations involved in Eq.(3.2) for the j − 1 index on the right hand side.

THx =
R ×N × (6× FPcycles + 8× LScycles)

CPUFreq × 2

+
R ×N × 2× Shufflecycles

CPUFreq

=
29×R ×N

3.2× 109

(7.6)

156 Chapter 7: Performance Prediction Model

There are two shuffle operations involved to calculate one Hx as shown in Eq.(3.3).

This is incorporated in the above equation.

THy =
R ×N × (6× FPcycles + 8× LScycles)

CPUFreq × 2

=
21×R ×N

3.2× 109

(7.7)

Field updates for R rows are included in a two-level for loop since we are con-

sidering a 2D computational domain. There are R outer-loops and N/4 inner-loops,

where constant 4 is due to the SIMD operations in the loop. Therefore, the time for

the branches involved in the for loop is:

Tforbranch =
4×R × N

4
×Branchcycles

CPUFreq
=

4×R ×N

3.2× 109
(7.8)

The double buffering mechanism on PPE mentioned in section 6.3 causes the SPEs

to decide which buffers to use to DMAin and DMAout the data. This is executed by

a conditional branch statement and involves 16 load/store instructions.

Tifbranch =
16× LScycles + 1×Branchcycles

CPUFreq

=
100

3.2× 109

(7.9)

TDMAoutEzx = TDMAoutEzy = TDMAoutHx

= TDMAoutHy =
R ∗N ∗ 4

BW
=

4×R ×N

25.6× 109

(7.10)

where constant 4 is the size of data.

The time taken to compute the fields is given below. This is without the consid-

eration of branch instructions described above. Based on these equations, we can get

Chapter 7: Performance Prediction Model 157

the time to calculate Ezy, Hx, Hy as follows:

Tcomputation = TEzy + THx + THy =
84×R ×N

3.2× 109
(7.11)

The communication time (DMA out) is:

Tcommunication = TDMAoutEzx + TDMAoutEzy

+ TDMAoutHx =
12×R ×N

25.6× 109

(7.12)

As can be seen from these equations, the computation time completely overlaps

communication (i.e., Tcomputation > Tcommunication). By substituting the corresponding

values into equation Eq.(7.2), we get the following.

TFDTD = TTS ×
[104

3.2× 109
+

N

P

(
36×N

25.6× 109
+

88×N

3.2× 109
+

Tsync

R

)] (7.13)

From this equation, we can see that the time to calculate FDTD has very limited

impact from R, the number of rows per DMA, as FDTD is a computation-intensive

task and Tsync is relatively small compared to other terms. The only limit of R in

experiments is the size of local store to hold the code and Yee cells.

In order to verify the accuracy of the prediction model, we compare the predicted

execution time with experimental execution time for FDTD component executed on

the SPEs. The experimental results are collected by running FDTD on SPEs for

50 rounds. The comparison of the results are shown in Figure 7.1. In this figure,

the number of rows transferred per DMA transfer (set to 1 or 2) refers to R in

Eq.(7.13), the number of SPEs is P and the number of time steps, TTS is either

1000 or 4000. The Tsync values are obtained experimentally. Note that this is the

synchronization time between PPE and SPEs. These values are between 1.59936 for

158 Chapter 7: Performance Prediction Model

one SPE and 1.650941 for eight SPEs. It can be seen that the prediction model

accurately predicts the execution time of the FDTD algorithm running on the SPEs

regardless of the number of time steps. The difference between the predicted values

and the experimental values is within 0.5 second for the four combinations of TTS and

R for 1 SPE (SPE is an in-order general-purpose coprocessor). However, when more

SPEs are involved, the prediction accuracy decreases. This is due to the overhead

caused by hardware such as DMA controller of each SPE and the 16-byte wide data

rings of the EIB to coordinate with simultaneous DMA transfers. Furthermore, when

considering the execution time for different number of rows per DMA transfer using

the same number of SPEs for both analysis and experimental reasons, the almost even

bars indicate that the parameter, R, has negligible impact on the overall performance

of FDTD. Tsync is also comparatively much smaller than the other terms in Eq.(7.13).

Chapter 7: Performance Prediction Model 159

(a) 4000 time steps

(b) 1000 time steps

Figure 7.1: Analysis results vs experiment results of FDTD simulation. The legend
of 1 row means 1 row for each DMA transfer.

7.2 Summary

This chapter proposed a general performance prediction model that is applicable

for heterogeneous multicore architectures. Our algorithm carefully takes into con-

sideration the different components of the Cell BE, the PPE (or CPU) and SPEs

(SIMD processors) and subdivides the tasks accordingly. Fine grained data intensive

tasks (FDTD) are offloaded to SPEs while control and coordination tasks (GA) are

160 Chapter 7: Performance Prediction Model

performed by the PPE. We can easily map the algorithm on the latest architecture,

APU, which incoprates the GPU cores (for computing data intensive computations)

and CPU cores (for computing GA algorithm). Therefore, our performance model

can be applied to future heterogeneous multicore architectures (Xu et al., 2012).

Chapter 8

Conclusions

In this thesis, we designed, developed and implemented parallel algorithms for ir-

regular problems on heterogeneous multi-core architectures. Irregular problems have

input dependent control flow, unpredictable memory access patterns, poor spatial

locality and are memory/network bound. With the future of high performance com-

puting moving towards heterogeneous multi-core architectures, it is important to

understand the behavior of these architectures on irregular problems, a class of prob-

lems that are still under study on homogeneous multi-core architectures (Secchi et al.,

2012). Techniques of mapping tasks or data on traditional parallel computers can not

be used as it is on heterogeneous multi-core processors due to the varying hardware.

In an attempt to understand the efficiency of futuristic architectures on applications

we studied problems of varying characteristics: data parallel, computation intensive,

communication and synchronization intensive. We exploited the parallelism of four

different problems on one heterogeneous architecture, Cell BE.

FDTD and FFT are two important kernels in image processing. FDTD is a

161

162 Chapter 8: Conclusions

numerical technique with regular memory accesses, intensive floating point operations

and is data parallel in nature. The initial implementation of FDTD on Cell BE with

8 SPEs is 2.9 times faster than an eight node shared memory machine and 1.45

times faster than an eight node distributed memory machine. FFT on the other

hand is a computation intensive problem with predictable communication patterns

and synchronization latencies. This algorithm required the use of synchronization

primitives such as mailboxes and the high bandwidth interconnection network on the

Cell BE to hide the latency issues. The experimental results showed that for 8 SPEs

of IBM Blade QS20 dual-Cell blade running at 3.2GHz and for 8 processors of the

cluster of SunFire 6800 running at 1050MHz clock rate, Cell BE is 3.7 times faster

than the cluster for 4K input data size and 6.4 times faster than the cluster for 16K

input data size.

Computed tomography and microwave tomography are two medical imaging tech-

niques. CT is a memory bound problem. For CT, we considered a coarse-grained,

iterative algorithm, OS-SART, that is suitable for parallelization on Cell BE. One of

the main drawback of Cell BE is the limited memory storage on each of the SPEs.

To circumvent this problem we used rotation-based algorithm that incorporates a

technique to calculate the projection angles using less memory. We noticed that the

speedup dropped for Cell BE when more SPEs were used due to increased number of

DMA transfers. As more SPEs were added, the number of DMA transfer increased

since only a small amount of data can be DMAed in or DMAed out from main mem-

ory to local store and vice versa. This added to memory latency and communication

overhead. It was observed that the communication portion (including the DMA trans-

Chapter 8: Conclusions 163

fers and synchronization overhead) increased from 62% for one SPE to 86% for eight

SPEs.

Microwave tomography is a computation, communication, synchronization in-

tensive problem. FDTD is one of the important kernels for microwave tomogra-

phy. Therefore, performance improvement in FDTD is vitally important. We modi-

fied the FDTD algorithm by overlapping computations with communications during

asynchronous DMA transfers. The modified algorithm also orchestrates the com-

putations to fully use data between DMA transfers to increase the computation-to-

communication ratio. We saw 54% improvement on 8 SPEs (27.9% on 1 SPE) for

the modified FDTD in comparison to our original FDTD algorithm on Cell BE. The

other component in microwave tomography is genetic algorithm which could be ef-

ficiently implemented on the PPE. We reduced the synchronization latency between

GA and FDTD by using mechanisms such as double buffering which increased the

performance of the algorithm.

Finally, we proposed an analytical performance prediction model and used mi-

crowave tomography as an example to predict the accuracy of the algorithm analyti-

cally and experimentally.

The future in parallel computing is on general purpose heterogeneous multi-core

computers. These machines are cost effective without the need for sophisticated

expensive supercomputers to execute the algorithms. Therefore, these machines are

attractive to medical practitioners and other non-computer science researchers who

would benefit from porting medical imaging algorithm on APU to obtain real time

diagnosis at a cheaper cost. In the future, we plan to port all the algorithms on

164 Chapter 8: Conclusions

futuristic architectures such as AMD Fusion. Porting of the algorithms from Cell

BE to AMD APU is not straightforward due to the different programming paradigm.

However, recently, OpenCL has been regarded as the standard programming model

for heterogeneous platforms. One of the drawbacks of Cell BE is its limited memory

storage on SPEs. The APU rectifies this with its large GPU memory size. The many

cores available on the GPU will allow us to have the ability to experiment with larger

data sizes (increased number of Yee cells for example) for more accuracy without

degrading the performance.

One of the important research issues is performance prediction. Our proposed

model will be the starting point for future research in this area.

Bibliography

S. R. Alam, J. S. Meredith, and J. S. Vetter. Balancing productivity and performance

on the cell broadband engine. In IEEE Annual International Conference on Cluster

Computing (Cluster 2007), pages 149–158, Austin, Texas, September 2007.

AMD. Performance guidelines for AMD athlon 64 and AMD opteron ccNUMA mul-

tiprocessor systems. http://www.amd.com/, 2006.

A. H. Andersen. Algebraic reconstruction in CT from limited views. IEEE Transac-

tions on Medical Imaging, 8(1):50–55, 1989.

A. H. Andersen and A. Kak. Simultaneous algebraic reconstruction technique

(SART): A superior implementation of the ART algorithm. Ultrasonic Imaging, 6:

81–94, January 1984.

A. Arevalo, R. M. Matinata, M. Pandian, E. Peri, K. Ruby, F. Thomas, and C. Al-

mond. Programming the Cell Broadband Engine examples and best practices.

Technical report, IBM Redbooks, Dec 2007.

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzre, J. Kubiatowicz, N. Mor-

gan, D. Patrerson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A view of the

165

166 Bibliography

parallel computing landscape. Communications of the ACM, 52(10):56–67, October

2009.

A. Ashtari, S. Noghanian, A. Sabouni, J. Arronson, G. Thomas, and S. Pistorius. Us-

ing a priori information for regularization in breast micorave image reconstruciton.

IEEE Transactions on Biomedical Engineeirng, 57(9):2197–2208, september 2010.

W. Backfrieder, S. Benkner, and G. Engelbrecht. Web-based parallel ML EM re-

construction for SPECT on SMP clusters. Technical report, University of Vienna,

June 2001.

D. A. Bader and V. Agarwal. FFTC: Fastest fourier transform on the IBM Cell Broad-

band Engine. In The 14th IEEE International Conference on High Performance

Computing (HiPC 2007), pages 18–21, Goa, India, Dec 2007.

D. A. Bader and R. Pennington. Cluster Computing: Applications. The International

Journal of High Performance Computing, 15(2):181–185, May 2001.

D. A. Bader, V. Agarwal, K. Madduri, and S. Kang. High performance combinatorial

algorithm design on the cell broadband engine processor. Parallel Computing,

33(10-11):720–740, 2007.

T. Baeck. A user’s guide to genesys 1.0. University of Dortmund, Department of

Computer Science, 1992.

D. H. Bailey. FFTs in external or hierarchical memory fourier. The Journal of

Supercomputing, 4(1):23–35, March 1990.

Bibliography 167

R. Banton. 5 critical factors to consider when choosing a processing solution for your

HPC application. Technical report, Mercury White paper, 2008.

S. Barua. Fast Fourier transform for option pricing: improved mathematical mod-

eling and design of an efficient parallel algorithm. Master’s thesis, University of

Manitoba, 2004.

S. Barua, R. K. Thulasiram, and P. Thulasiraman. High performance computing for a

financial application using fast Fourier transform. In Euro-Par Parallel Processing,

pages 1246–1253, Lisbon, Portugal, Aug. 2005.

S. Basu and Y. Bresler. o(n2 log2 n) filtered back projection reconstruction algorithm

for tomography. IEEE Transactions on Image Processing, 9(10):1760–1773, 2000.

E. V. Bella, A. B. Barclay, and R. W. Schafer. A comparison of rotation-based

methods for iterative reconstruction algorithms. IEEE Transactions on Nuclear

Science, 43(6):3370–3376, December 1996.

O. Bockenbach and M. Kachelriess. Cell Broadband Engine processor - an alternative

platform for data acquisition, filtering, reconstruction and visualisation of medical

imaging data. Medical Imaging, 40(7):40, November 2006.

O. Bockenbach, M. Knaup, and M. Kachelrieß. Implementatin of a cone-beam back-

projection algorithm on the cell broadband engine processor. In Proc. of SPIE

Symposium Health Montitoring and Diagnostics, 2007.

D. J. Brenner and E. J. Hall. Computed tomography-an increasing source of radiation

exposure. The New England Journal of Medicine, 357:2277–2284, November 2007.

168 Bibliography

D. A. Brokenshire. Maximizing the power of the Cell Broadband Engine processor:

25 tips to optimal application performance. Technical report, IBM White paper,

June 2006.

G. Buehrer and S. Parthasarathy. The potential of the cell broadband engine for

data mining. In International Conference on Very Large Data Bases(VLDB), pages

1286–1207, University of Vienna, Austria, Sept. 2007.

B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomographic

reconstruction using texture mapping hardware. In Proceedings of the 1994 sym-

posium on volume visualization, pages 91–98, Washington, D.C., October 1994.

S. Caorsi, A. Massa, and M. Pastroino. A crack identification microwave procedure

based on a genetic algorithm for nondestructive testing. IEEE Transactions on

Microwave Theory and Techniques, 49(12):1812–1820, December 2001.

B. Carvalho and G. Herman. Helical CT reconstruction from wide cone-beam angle

data using ART. In The IEEE Proceedings of the XVI Brazilian Symposium on

Computer Graphics and Image Processing (SIBGRAPI03), pages 363–370, October

2003.

R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel

Programming in OpenMP. Morgan Kaufmann Publishers, 2001.

B. Chen, D. G. Fang, and B. H. Zhou. Modified Berenger PML absorbing boundary

condition for FDTD meshes. IEEE Microwave and Guided Wave Letters, 5(11):pp.

399–401, Nov 1995.

Bibliography 169

C. M. Chen, S. Y. Lee, and Z. H. Cho. A parallel implementation of 3D CT im-

age reconstruction on a hypercube multiprocessor. IEEE Transactions on Nuclear

Science, 37:1333–1346, 1990.

T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell Broadband Engine Architecture

and its first implementation-A performance view. IBM J. RES. & DEV., 51(5):

559–572, Sept. 2007.

W. C. Chew. Waves and fields in inhomogeneous media. New York: Van Nostrand-

Reinhold, 1990.

Z. H. Cho, J. P. Jones, and M. SIngh. Foundations of Medical Imaging. Wiley, 1993.

A. C. Chow, G. C. Gossum, and D. A. Brokenshire. A programming example: Large

FFT on the Cell Broadband Engine. In Technical Conference Proceedings of the

Global Signal Processing Expo (GSPx), 2005.

E. Chu and A. George. INSIDE the FFT BLACK BOX: Serial and Parallel Fast

Fourier Transform Algorithms. CRC Press LLC, 2000.

M. Converse, E. J. Bond, B. D. V. Veen, and S. C. Hagness. A computational study

of ultra-wideband versus narrowband microwave hyperthermia for breast cancer

treatment. IEEE Transactions on Microwave Theory and Techniques, 54(5):2169

– 2180, May 2006.

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex

fourier series. Mathematical Computation, 19:297–301, 1965.

170 Bibliography

S. Coric, M. Leeser, E. Miller, and M. Trespanier. Parallel beam backprojection: An

FPGA implementation optimized for medical imaging. In Tenth ACM International

Symposium on Field-Programmable Gate Arrays (FPGA02), pages 217–226, Feb.

2002.

R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathe-

matical physics. IBM Journal, pages pp. 215–234, March 1967. English translation

of the 1928 German original paper.

F. Delbary, M. Brignone, G. Bozza, R. Aramini, and M. Piana. A visualization

method for breast cancer detection by using microwaves. SIAM Journal on Applied

Mathematics, 70:2509–2533, 2010.

M. Denneau and H. S. Warren. 64-bit cyclops principles of operation. Technical

report, IBM Watson Research Center, 2005.

J. Dongarra, D. Gannon, G. Fox, and K. Kennedy. The impact of multicore on

computational science software. CTWatch Quarterly, 3(1):3–10, February 2007.

J. Easton, I. Meents, O. Stephan, H. Zisgen, and S. Kato. Porting financial markets

applications to the cell broadband engine architecture. Technical report, IBM

White paper, June 2007.

W. Eatherton. The push of network processing to the top of the pyramid. keynote

address at Symposium on Architectures for Networking and Communications Sys-

tems, October 2005.

Bibliography 171

E. C. Fear, P. M. Meaney, and M. A. Stuchly. Microwaves for Breast Cancer Detection.

IEEE Potentials, 22(1):pp. 12–18, Feb/Mar 2003.

L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam algorithm. Journal

of the Optical Society of America A, 1:612–619, June 1984.

M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions

on Computers, C-21:948, 1972.

I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann Publishers, 2003.

A. Funk, V. Basili, L. Hochstein, and J. Kepner. Analysis of parallel softwaree de-

velopment using the relative development time productivity metric. CTWatch

Quarterly, 3(1):46–51, November 2006.

H. Gabb, R. M. Jackson, and M. J. Sternberg. Modelling protein docking using shape

complementarity, electrostatics and biochemical information. Journal of Molecular

Biology, 272:106–120–619, Sept 1997.

B. Gedik, R. Bordawekar, and P. S. Yu. Cellsort: High performance sorting on the cell

processor. In International Conference on Very Large Data Bases(VLDB), pages

1286–1207, University of Vienna, Austria, Sept. 2007.

P. Gilbert. Iterative methods for the reconstruction of three dimensional objects from

their projections. Journal of Theoretical Biology, 36(1):105–117, July 1972.

D. Gordon. Parallel ART for image reconstruction in CT using processor arrays. The

172 Bibliography

International Journal of Parallel, Emergent and Distributed Systems, 21:365–380,

2006.

R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (ART)

for three-dimensional electron microscopy and X-ray photography. Journal of The-

oretical Biology, 29:471–481, 1970.

N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort: high perfor-

mance graphics co-processor sorting for large database management. In Proceeding

of ACM SIGMOD, pages 1–10, Chicago, IL, June 2006.

A. Grama, A. Gupta, V. Kumar, and G. Karypis. Introduction to Parallel Computing.

Pearson Education Limited, 2003.

M. Grass, T. Kohler, and R. Proksa. 3D cone-beam CT reconstruction for circular

trajectories. Phys. Med. Biol., 45:329–348, 2000.

A. Greb and G. Sachmann. GPU-ABiSort: optimal parallel sorting on stream ar-

chitectures. In IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 1–10, Rhodes Island, Greece, April 2006.

H. Guan and R. Gordon. A projection access order for speedy convergence of ART (al-

gebraic reconstruction technique): a multilevel scheme for computed tomography.

Physics in Medicine and Biology, 39:2005–2022, 1994.

H. Guan and R. Gordon. Computed tomography using algebraic reconstruction tech-

niques (ART) for three-dimensional electron microscopy and X-ray photography.

Physics in Medicine and Biology, (41):1727–1743, 1996.

Bibliography 173

C. Guerrini and G. Spaletta. An image reonstruction algorithm in tomography: a

version of the CRAY X-MP vector computer. Computers and Graphics, 13:367–372,

1989.

C. Guiffaut and K. Mahdjoubi. A parallel FDTD algorithm using the MPI library.

IEEE Antennas and Propagation Magazine, 43(2):pp. 94–103, April 2001.

S. Heman, N. Nes, M. Zukowski, and P. Boncz. Vectorized data processing on the cell

broadband engine. In Proceedings of the Third International Workshop on Data

Management on New Hardware, pages 1–6, Beijing, China, June 2007.

G. T. Herman. Image reconstruction from projections, The fundamentals of comput-

erized tomography. Academic Press, 1980.

J. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, University of

Michigan Press, 1975.

H. M. Hudson and R. S. Larkin. Accelerated image reconstruction using ordered

subsets of projection data. IEEE Transactions on Medical Imaging, 13:601–609,

1994.

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun. Cancer

statistics, 2008. CA Cancer Journal for Clinians, 58(2):71–96, February 2008.

M. Jiang and G. Wang. Convergence of the simultaneous algebraic reconstruction

technique (SART). IEEE Transactions on Image Processing, 12:957–961, 2003.

M. Kachelrieb, M. Knaup, and O. Bockenbach. Hyperfast parallel-beam and cone-

174 Bibliography

beam backprojection using the cell general purpose hardware. Med. Phys., pages

1474–1486, April 2007.

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, R. R. Maeurer, and D. Shippy.

Introduction to the Cell multiprocessor. IBM J. RES. & DEV., 49(4/5):589–604,

July/Sept. 2005.

A. C. Kak and M. Slaney. Principles of computerized tomographic imaging. Society

of Industrial and Applied Mathematics, 2001.

W. Kalender. Computed Tomography: Fundamentals, System Technology, Image

Quality, Applications. Erlangen: Publics Corporate Pub., 2005.

A. Katsevich. Theoretically exact filtered backprojection-type inversion algorithm for

spiral ct. SIAM J. Appl. Math., 62:2012–2026, 2002.

M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communication network:

Built for speed. IEEE Micro, 26(3):10–23, 2006.

K. Koch, R. Baker, and R. Alcouffe. Solution of the first-order form of three-

dimensional discrete ordinates equations on a massively parallel machine. IEEE

Transactions of American Nuclear Society, 65:198–199, 1992.

H. Kudo and T. Saito. Helical-scan computed tomography using cone-beam pro-

jections. In IEEE Medical Imaging Conference, pages 1958–1962, Santa Fe, NM,

1991.

K. Lange. Convergence of EM image reconstruction algorithms with Gibbs smoothing.

IEEE Transactions on Medical Imaging, 9:439–446, 1990.

Bibliography 175

K. Lange and R. Carson. EM reconstruction algorithms for emission and transmission

tomography. Journal of Computer Assisted Tomography, 8:302–316, 1984.

K. Lange and J. A. Fessler. Globally convergent algorithms for maximum a posteriori

transmission tomography. IEEE Transactions on Image Processing, 4:1430–1438,

1995.

D. Lattard and G. Mazare. Image reconstruction using an original asynchronous

cellular array. In IEEE International Symposium on Circuits and Systems, pages

13–16, 1989.

D. Lattard, B. Faure, and G. Mazare. Massively parallel architecture: Application

to neural net emulation and image reconstruction. In International Conference on

Application Specific Array Processors, pages 214–225, September 1990.

C. Laurent, F. Peyrin, J. M. Chassery, and M. Amiel. Parallel image reconstruction

on MIMD computers for 3D cone beam tomography. Parallel Computing, 24:1461–

1479, 1998.

S. J. Lee and S. M. Kim. Performance comparison of projector-backprojector pairs

for iterative tomographic reconstuction. In Proceeding of SPIE, November 2003.

D. Levine. A Parallel Genetic Algorithm for the Set Partitioning Problem. PhD

thesis, Illinois Institute of Technology, Argonne, IL, May 1994.

X. Li and S. C. Hagness. A confocal microwave imaging algorithm for breast cancer

detection. IEEE Microwave Wireless Components Letters, 11(3):pp. 130–132, 2001.

176 Bibliography

X. Li, T. He, S. Wang, , G. Wang, and J. Ni. P2P-enhanced distributed computing

in medical image EM reconstruction. In International conference on Parallel and

Distributed Processing Techniques and Applications, pages 822–828, Las Vegas, NV,

June 2004.

X. Li, J. Ni, and G. Wang. Parallel iterative cone beam CT image reconstruction on

a PC cluster. Journal of X-Ray Science and Technology, 13(21):63–72, 2005.

Y. Liu, H. Jones, S. Vaidya, M. Perrone, B. Tyditat, and A. K. Nanda. Speech

recognition systems on the Cell Broadband Engine processor. IBM Journal of

Research and Development, 51(5):583–591, September 2007.

Z. Liu, A. Mohan, T. Aubrey, and W. Belcher. Techniques for implemetation of

the FDTD method on a CM-5 parallel computer. IEEE Antennas & Propagation

Magazine, 37(5):64–71, 1995.

C. V. Loan. Computational frameworks for the fast Fourier transform. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.

P. Meaney, M. Fanning, D. Li, S. Poplack, and K. Paulsen. A clinical prototype for

active microwave imaging of the breast. IEEE Transactions on Microwave Theory

and Techniques, 48(11):1841–1853, November 2000.

C. Melvin, M. Xu, and P. Thulasiraman. HPC for iterative image reconsruction in CT.

In The ACM Canadian Conference on Computer Science and Software Engineering

(C3S2E), Montreal, Quebec, Canada, May 2008a.

Bibliography 177

C. Melvin, M. Xu, and P. Thulasiraman. Preserving image quality with reduced radi-

ation dosage in computed tomography by parallel computing. International Journal

of Computer Science and System Analysis (IJCSSA), 2:121–131, July 2008b.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer, New York, 1992.

M. Mitchell. An Introduction to Genetic Algorithms (Complex Adaptive Systems).

MITPress, Cambridge, 1996.

M. Monteyne. RapidMind multi-core development platform. Technical report, Rapid-

Mind White paper, Feb. 2008.

G. E. Moore. Cramming more components onto integrate circuits. Electronics, 4:

114–117, April 1965.

K. Mueller. Fast and accurate three dimensional reconstruction from cone-beam pro-

jecton data using algebraic methods. PhD thesis, The Ohio State University, 1998.

K. Mueller and R. Yagel. Rapid 3-D cone-beam reconstruction with the simultaneous

algebraic reconstruction technique using 2-D texture mapping hardware. IEEE

Transactions on Medical Imaging, 19:1227–1237, 2000.

D. Murrell. SPU pipeline examination in the IBM full-

system simulator for the Cell Broadband Engine processor.

http://www.ibm.com/developerworks/power/library/pa-cellspu/, 2006.

J. Ni, T. He, X. Li, S. Wang, and G. Wang. Internet-based distributed computing

178 Bibliography

system for EM medical image reconstruction, chapter Lecture Note in Computer

Science (LNCS), pages 495–501. Springer-Verlag Heidelberg, 2004.

J. Ni, X. Li, and G. Wang. Review of parallel computing techniques for computed

tomography. Current Medical Imaging Reviews, 2:1–10, 2006.

S. Noghanian, A. Sabouni, and S. Pistorius. A numerical approach to microwave

imaging based on genetic algorithm optimization. In Proc. of SPIE Symposium

Health Montitoring and Diagnostics, San Diego, CA, February 2006.

A. Oppenheim and A. Willsky. Signals and Systems. Prentice Hall, Englewood Cliffs,

New Jersey, 1983.

M. Patlak, S. J. Nass, I. C. Henderson, and J. C. Lashof. Mammography and Beyond:

Developing Technologies for the Early Detection of Breast Cancer: A Non-Technical

Summary. National Academy Press, 2001. ISBN 0-309-07550-5. Available from

http://www.nap.edu/catalog/10107.html.

D. Patterson and J. Hennessy. Computer Organizatino and Design: The Hard-

ware/Software Interface. Morgan Kaufmann, 2007.

O. Pentakalos. An Introduction to the InfiniBand Architecture. O’Reilly, 2002.

F. Petrini, G. Fossum, J. Fernandez, A. L. Varbanescu, M. Kistler, and M. Perrone.

Multicore surprises: Lessons learned from optimizing Sweep3D on the Cell Broad-

band Engine. In IEEE International Parallel and Distributed Processing Symposium

(IPDPS), Long Beach,California, USA, March 2007.

Bibliography 179

M. M. Rafique, A. R. Butt, and D. S. Nikolopoulos. DMA-based prefetching for

I/O-intensive workloads on the Cell architecture. In ACM Proceedings of the In-

ternational Conference Computing Frontiers (CF’08), Ischia, Italy, May 2008.

R. Rao, R. D. Kriz, A. Abbott, and C. Ribbens. Parallel implementation of

the filtered back projection algorithm for tomographic imaging. available from

http://www.sv.vt.edu/xray ct/parallel/Parallel CT.html, 1995.

D. Reimann, V. Chaudhary, M. Flynn, and I. Sethi. Parallel implementation of cone

beam tomgraphy. In International Conference on Parallel Processing, pages 1–4,

Bloomingdale, IL, 1996.

C. Riddell and Y. Trousset. Rectification for cone-beam projection and backprojec-

tion. IEEE Transactions on Medical Imaging, 25:950–962, July 2006.

A. J. Rockmore and A. Macovski. A maximum likelihood approach to image recon-

struction. IEEE Transactions on Nuclear Science, NS-23:1428–1432, 1976.

D. Rodohan and S. Saunders. Rapid solution of the Finite Difference Time Domain

Method using parallel associative techniques. IEEE Transactions on Antennas &

Propagation, 14:302–307, 1993.

J. Roerdink and M. A. Westenberg. Data-parallel tomographic reconstruction: a

comparison of filtered backprojection and direct fourier reconstruction. Parallel

Computing, 24:2129–2142, 1998.

A. Sabouni, S. Noghanian, and S. Pistorius. Microwave tomography for breast cancer

180 Bibliography

detection: study of dispersion and heterogeneity effects. In Symposium on Antenna

Technology and Applied Electromagnetics, Montreal, Quebec, Canada, July 2006.

A. Sabouni, S. Noghanian, and S. Pistorius. A global optimization technique for

microwave imaging of the inhomogeneous and dispersive breast. IEEE Canadian

Journal of Electrical and Computer Engineering, 35(1), 2011.

V. Sachdeva, M. Kistler, E. Speight, and T. K. Tzeng. Exploring the viability

of the cell broadband engine for bioinformatics applications. In IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS), pages 1–8, Long

Beach,California, USA, March 2007.

M. Sakamoto, H. Nishiyama, H. Satoh, S. Shimizu, T. Sanuki, K. Kamijoh, A. Watan-

abe, and A. Asahara. An implementation of the Feldkamp algorithm for medical

imaging on CELL. Technical report, IBM White paper, Oct. 2005.

S. Secchi, A. Tumeo, and O. Villa. A bandwidth-optimized multi-core architecture

for irregular applications. In The 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, Ottawa, ON, May 2012.

H. Servat, C. Gonzalez-Alvarez, X. Aguilar, D. Cabrera-Benitez, and D. Jimenez-

Gonzalez. High Performance Embedded Architectures and Compilers, volume

4917/2008, chapter Drug Design Issues on the Cell BE, pages 176–190. Springer

Berlin / Heidelberg, January 2008.

L. A. Shepp and Y. Valdi. Maximum likelihood reconstruction for emission tomogra-

phy. IEEE Transactions on Medical Imaging, NI-1:113–122, 1982.

Bibliography 181

R. L. Siddon. Fast calculation of the exacct radiological path for a three-dimensional

CT array. Medical Physics, 12:252–255, Mar/Apr 1985.

S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, M. Su, C. Kesselman, S. Young,

and M. Ellisman. Combining workstations and supercomupters to support grid

applications: The parallel tomography experience. In Heterogeneous Computing

Workshop, pages 241–252, Cancun, Mexico, 2000.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.

Journal of Molecular Biology, 147:195–197, 1981.

R. N. Strickland. Image-Processing Techniques for Tumor Detection. Marcel Dekker,

Inc., 2002. ISBN 0824706374.

M. Su, I. EI-kady, D. A. Bader, and S. Lin. A Novel FDTD Application Featuring

OpenMP-MPI Hybrid Parallelization. In 33rd International Conference on Parallel

Processing(ICPP), pages pp. 373–379, Montreal, Canada, August 2004.

H. Sutter and J. Larus. Software and the concurrency revolution. ACM Queue -

Multiprocessors, 3:54–62, Sept. 2005.

A. Taflove and S. Hagness. Computational Electrodynimics: The Finite-Difference

Time-Domain Method, Second Edition. Artech House, 2000.

J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice. Nucleic Acids Research,

22:4673–4680, 1994.

182 Bibliography

R. Thulasiram and P.Thulasiraman. Performance evaluation of a multithreaded fast

fourier transform algorithm for derivative pricing. The Journal of Supercomputing

(TJS), 26(1):43–58, August 2003.

P. Thulasiraman, K. B. Theobald, A. A. Khokhar, and G. R. Gao. Multithreaded al-

gorithms for the fast Fourier transform. In ACM Symposium on Parallel Algorithms

and Architectures, pages 176–185, Winnipeg, Canada, July 2000.

P. Thulasiraman, A. Khokhar, G. Heber, and G. Gao. A Fine-Grain Load Adaptive

Algorithm of the 2D Discrete Wavelet Transform for Multithreaded Architectures.

Journal of Parallel and Distributed Computing (JPDC), 64(1):68–78, Jan. 2004.

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. Vh Winston,

1977.

V. Varadarajan and R. Mittra. Finite-Difference Time-Domain (FDTD) analysis

using distributed computing. IEEE Microwave and Guided Wave Letters, 4(5):

144–145, May 1994.

O. Villa, D. P. Scarpazza, F. Petrini, and J. F. Peinador. Challenges in Mapping

Graph Exploration Algoritms on Advanced Multi-core Processors. In IEEE In-

ternational Parallel and Distributed Processing Symposium (IPDPS), pages 1–10,

Long Beach,California, USA, March 2007.

G. Wang and M. Jiang. Ordered-subset simultaneous algebraic reconstruction tech-

niques (OS-SART). Journal of X-ray Science and Technology, 12:169–177, 2004.

Bibliography 183

G. Wang, T. H. Lin, P. Cheng, and D. M. Shinozaki. A general cone-beam recon-

struction algorithm. IEEE Transactions on Medical Imaging, MI-12:486–496, 1993.

S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. The potential of

the Cell processor for scientific computing. In ACM Proceedings of the International

Conference on Computing Frontiers (CF’06), pages 9–20, Ischia, Italy, May 2006.

W. Wulf and S. Mckee. Hitting the memory wall: Implications of the obvious. ACM

Computer Architecture News, 23(1):20–24, March 1995.

M. Xu and P. Thulasiraman. Parallel algorithm design and performance evaluation

of fdtd on 3 different architectures: Cluster, homogeneous multicore and Cell/B.E.

In The 10th IEEE International Conference on High Performance Computing and

Communications (HPCC-08), pages 174–181, DaLian, China, Sept. 2008a.

M. Xu and P. Thulasiraman. Finite-difference time-domain on the Cell/B.E. proces-

sor. In The 9th IEEE International Workshop on Parallel and Distributed Scientific

and Engineering Computing, Miami, FL, USA, April 2008b.

M. Xu and P. Thulasiraman. Finite-difference time-domain on the Cell/B.E. proces-

sor. In The 9th IEEE International Workshop on Parallel and Distributed Scientific

and Engineering Computing, pages 1–8, Miami, USA, April 2008c.

M. Xu and P. Thulasiraman. Mapping iterative medical imaging algorithm on cell

accelerator. International Journal of Biomedical Imaging (Special Issue on Parallel

Computation in Medical Imaging Applications, doi:10.1155/2011/843924, 11, 2011.

184 Bibliography

M. Xu, A. Sabouni, P. Thulasiraman, S. Noghanian, and S. Pistorius. Image recon-

struction using microwave tomography for breast cancer detection on distributed

memory machine. In International Conference on Parallel Processing (ICPP),

pages 1–8, XiAn, China, September 2007a.

M. Xu, A. Sabouni, P. Thulasiraman, S. Noghanian, and S. Pistorius. A parallel

algorithmic approach to microwave tomography in breast cancer detection. In

The 8th IEEE International Workshop on Parallel and Distributed Scientific and

Engineering Computing, Long Beach, CA, USA, March 2007b.

M. Xu, P. Thulasiraman, and R. K. Thulasiram. Exploiting data locality in FFT using

indirect swap network on Cell/B.E. In High Performance Computing Symposium

(HPCS), Quebec city, Canada, June 2008.

M. Xu, P. Thulasiraman, and S. Noghanian. Microwave tomography for breast can-

cer detection on cell broadband engine processors. Journal of Parallel and Dis-

tributed Computing, Special Issue: Accelerators for High Performance Comput-

ing (In Press), http://dx.doi.org/10.1016/j.jpdc.2011.10.01, 72(9):1106–1116, Sept.

2012.

X. Yan and R. M. Leahy. Cone-beam tomography with circular, elliptical and spiral

orbits. Physics in Medicine and Biology, 37:493–506, 1992.

K. Yee. Numerial solution of initial boundary value problems involving Maxwell’s

equations in isotropic media. IEEE Transactions on Antennas and Propagation,

AP-14(8):pp. 302–307, May 1966.

Bibliography 185

C.-H. Yeh and B. Parhami. A class of parallel architectures for fast Fourier trans-

form. In The IEEE 39th Midwest Symposium Circuits and Systems, pages 856–859,

August 1996.

C.-H. Yeh, B. Parhami, E. A. Varvarigos, and H. Lee. VLSI layout and packaging of

butterfly networks. In ACM Symposium on Parallel Algorithms and Architectures

(SPAA), pages 196–205, Winnipeg, Canada, July 2002.

W. Yu, R. Mittra, T. Su, Y. Liu, and X. Yang. Parallel Finite-Difference Time-

Domain Method. Artech House publishers, July 2006.

	Abstract
	List of Publications
	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation and Goal of the thesis
	Finite Difference Time Domain
	Fast Fourier Transform
	 Iterative CT Reconstruction Techniques
	Microwave Tomography

	Contributions
	Organization of the thesis

	Parallel Architectures and Cell BE
	Parallel Architectures
	Cell BE Processor
	Applications on Cell BE Processor
	Summary

	Finite Difference Time Domain
	 Introduction
	 FDTD on Distributed-Memory Machines
	 FDTD on homogeneous Multi-core Architecture
	FDTD on Cell BE Processor
	Experiment Results
	Summary

	Fast Fourier Transform
	Introduction
	Cooley-Tukey Butterfly Network and ISN
	Parallel FFT Based on ISN on Cell BE
	Experiment Results
	Summary

	Iterative CT Reconstruction Technique
	Introduction
	Iterative Reconstruction Techniques
	Parallel Computing for Reconstruction Techniques
	 OS-SART
	OS-SART on Cell BE
	Experiment Results
	Summary

	Microwave Tomography
	Introduction
	Microwave Tomography
	 FDTD for MT
	 GA for MT

	Microwave Tomography on Cell BE
	 FDTD on SPEs
	 Coordination between PPE and SPEs

	Experiment Results
	Summary

	Performance Prediction Model
	Performance Prediction for FDTD
	Summary

	Conclusions
	Bibliography

