
Dynamic Heterogeneous Team Formation for
Robotic Urban Search and Rescue

by

Tyler J. Gunn

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

December 2011

c© Copyright by Tyler J. Gunn, 2011

Thesis advisor Author

John E. Anderson Tyler J. Gunn

Dynamic Heterogeneous Team Formation for Robotic Urban

Search and Rescue

Abstract

Using teams of robots to complete a task provides a number of advantages over the

use of a single robot. Multiple robots are able to complete tasks faster, and provide

redundancy in case of equipment failure or loss. Teams of robots with different ca-

pabilities and physiologies are beneficial because they allow a team to provide a high

level of overall functionality while striking a balance between the cost and complexity

of the robots. Previous work tends to focus on the use of pre-formed teams of robots,

with little attention to the formation and maintenance of the team itself. An environ-

ment such as a disaster zone presents numerous challenges to robotic operation, and

it can be expected that the nature of a team will change due to, for example, mal-

functions and the introduction of replacement equipment. I developed a framework to

support the maintenance of teams of heterogeneous robots operating in complex and

dynamic environments such as disaster zones. Given an established team, my work

also facilitates the discovery of work to be done during the team’s mission and its

subsequent assignment to members of the team in a distributed fashion. I evaluated

my framework through the development of an example implementation where robots

perform exploration in order to locate victims in a simulated disaster environment.

ii

Contents

Abstract . ii
Table of Contents . vii
List of Figures . viii
List of Tables . xiii
List of Algorithms . xiv
Acknowledgments . xv
Dedication . xvi

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Terminology . 4
1.4 Approach . 6
1.5 Urban Search and Rescue . 10
1.6 Research Questions . 12
1.7 Thesis Organization . 13

2 Related Work 14
2.1 Coordination in Multi-Agent Teams 15

2.1.1 Team Maintenance . 15
2.1.2 Roles . 19
2.1.3 Task Allocation . 23
2.1.4 Task Completion . 27
2.1.5 Effective Heterogeneous Teams 27

2.2 Urban Search and Rescue . 30
2.3 Experimental Domain . 34

2.3.1 Autonomous Control . 35
2.3.2 Mapping . 36

2.3.2.1 Updating the map 38
2.3.3 Localization and Shared Coordinate Systems 41
2.3.4 Multi-Robot Mapping . 45

iii

iv Contents

2.3.5 Frontier-Based Exploration . 47

3 Methodology 49
3.1 Framework Overview . 53
3.2 Team Maintenance . 57

3.2.1 Recognizing Failures . 59
3.2.2 Encountering Agents . 64

3.3 Task Management . 67
3.4 Attributes, Roles and Tasks . 69

3.4.1 Attributes . 70
3.4.2 Tasks . 72

3.4.2.1 Minimum Requirements 72
3.4.2.2 Suitability Expression 73
3.4.2.3 Task Priority . 75

3.4.3 Roles . 76
3.4.3.1 Suitability of an Agent to Fill a Role 77

3.4.4 Desired Team . 78
3.5 Task Management via the Task List 79

3.5.1 Carrying Out Tasks . 80
3.5.2 Adding New Tasks to the Task List 81
3.5.3 Assigning Tasks . 82

3.5.3.1 Role-based Task Assignment 83
3.5.3.2 Exhaustive Task Assignment 87

3.5.4 Sending Tasks to the Team Coordinator 87
3.6 Role and Team Determination . 89

3.6.1 Role Determination . 89
3.6.2 Team Determination . 94

3.7 Team Merging and Redistribution . 95
3.7.1 Coping with Failures and Inconsistent Knowledge 100
3.7.2 Examples of Team Merge and Redistribution 108

3.7.2.1 Encountering Supplementary Agents 109
3.7.2.2 Encountering Replacement Agents 110
3.7.2.3 Redistributing Teams 111
3.7.2.4 Role Check after Team Merge and Redistribution . . 112
3.7.2.5 Simultaneous Team Merge and Redistribution 112
3.7.2.6 Team Merge and Redistribution Impacted by Com-

munication Failure 114
3.8 Conclusion . 115

4 Implementation 116
4.1 Implementation Overview . 117
4.2 Operational Concept . 121

Contents v

4.2.1 Locating and Identifying Victims 121
4.2.2 Exploration . 124
4.2.3 Operational Knowledge . 125

4.3 Simulated Disaster Environment . 127
4.3.1 Localization and Coordinate Systems 132
4.3.2 Victims . 134
4.3.3 Robot Detection . 136

4.4 Robot Types . 137
4.4.1 MinBots . 139
4.4.2 MidBots . 140
4.4.3 MaxBots . 142

4.5 Attributes, Roles and Tasks . 144
4.5.1 Attributes . 144

4.5.1.1 Physical Properties 144
4.5.1.2 Computation Capabilities 146
4.5.1.3 Sensory Capabilities 148

4.5.2 Tasks . 149
4.5.2.1 Explore . 149
4.5.2.2 Explore Frontier . 150
4.5.2.3 Find Team . 151
4.5.2.4 Find Victim . 151
4.5.2.5 Confirm Victim . 152
4.5.2.6 Manage Team . 153
4.5.2.7 Encounter . 154

4.5.3 Roles . 155
4.5.3.1 Team Coordinator 157
4.5.3.2 Explorer/Verifier . 159
4.5.3.3 Explorer . 161

4.5.4 Desired Team . 161
4.6 Autonomous Control . 163

4.6.1 Perceptual Schemas . 165
4.6.1.1 Localization . 165
4.6.1.2 Process Range Data 165
4.6.1.3 Detect Debris . 166
4.6.1.4 Detect Obstacles . 168
4.6.1.5 Update Map . 169
4.6.1.6 Detect Robots . 169
4.6.1.7 Detect Victims . 169
4.6.1.8 Detect Lost . 170

4.6.2 Motor Schemas . 171
4.6.2.1 Avoid Obstacles . 171
4.6.2.2 Move To Location 173

vi Contents

4.6.2.3 Turn in Place . 174
4.6.2.4 Random . 175
4.6.2.5 Recover Stuck . 175

4.7 Framework-Specific Modules . 176
4.7.1 Encounter Manager . 177

4.7.1.1 Encounter Task . 179
4.7.2 Knowledge Manager . 181
4.7.3 Communication Manager . 183

4.7.3.1 Acknowledged Messages and Timeouts 184
4.8 Mission-Specific Modules . 186

4.8.1 Mapping . 186
4.8.1.1 Updating the Occupancy Grid Map 188
4.8.1.2 Merging Maps . 191

4.8.2 Frontier Finder . 193
4.8.3 Victim Tracker . 197
4.8.4 Planner . 199

4.9 Simulation Implementation Details 202
4.9.1 Simulated Unreliable Wireless Communication 202
4.9.2 Victim Detectors . 205
4.9.3 Robot Identifier Sensors . 207

4.10 Conclusion . 208

5 Evaluation 209
5.1 Overview . 209
5.2 Review of Research Questions . 210
5.3 Evaluation Criteria . 211
5.4 Experimental Environment . 212

5.4.1 Generating Environments . 212
5.4.2 Choosing Environments . 216
5.4.3 Generating Repetitions . 217

5.5 Experiment Design . 219
5.5.1 Base Cases . 220

5.5.1.1 Fixed Roles and Team Membership 220
5.5.1.2 Fixed Task Allocation 221

5.5.2 Independent Variables . 221
5.5.2.1 Replacement Robots 221
5.5.2.2 Communication Success Rate 222
5.5.2.3 Probability of Robot Failure 222

5.6 Leadership Failure Experiment . 225
5.7 Main Experiment Results . 226

5.7.1 No Replacement Robots . 227
5.7.1.1 Improvement in Coverage over Baseline 227

Contents vii

5.7.1.2 Improvement in Victims Identified over Baseline . . . 230
5.7.1.3 Impact of Communication Failures over Time 231
5.7.1.4 Impact of Robot Failures over Time 238

5.7.2 Replacement Robots . 242
5.7.2.1 Improvement in Coverage over Baseline 242
5.7.2.2 Impact of Communication Failures 245
5.7.2.3 Impact of Robot Failures 250

5.8 Leadership Failure Experiment Results 253
5.9 Analysis . 257
5.10 Summary . 259

6 Conclusion 261
6.1 Overview . 261
6.2 Answers to Research Questions . 261
6.3 Contributions . 263
6.4 Future Work . 265

6.4.1 Future Implementation Work 265
6.4.2 Future Methodology Work . 270

6.5 Conclusion . 274

A Experimental Environments 276

B Experiment Results 280
B.1 Main Experiment . 280
B.2 Leadership Failure Experiment . 290

Bibliography 307

List of Figures

2.1 The goal exerts an attractive force on the robot while obstacle hits
exert a repulsive force. The vector sum becomes the action vector the
robot uses to move. 35

2.2 Occupancy grid maps indicate the certainty that an obstacle is present
in an area represented by a cell. 37

2.3 Updating an occupancy grid map using HIMM. 39
2.4 Example of robots merging map patches stored in a manifold. 46

3.1 The operation of my framework, from the perspective of the team as
a whole. 54

3.2 The operation of my framework, from the perspective of an individual
agent. 55

3.3 The definition of a desired team describes the roles and number of
agents filling each role. The definition defines a minimum and maxi-
mum number of agents desired in each role. 58

3.4 A team adapts to the failure of an agent occupying the team coordi-
nator role. 62

3.5 Two agents encounter each other and perform a merge on behalf of
their respective teams. 64

3.6 Overview of how attributes make up the knowledge necessary to define
expressions, tasks and roles. 70

3.7 Expressions are built from conditions separated by logical operators. . 73
3.8 When condition Ci evaluates to true, it generates a value Wi. Where

the and operator separates conditions, the values are summed. Where
the or operator separates conditions, the result is the maximum value. 74

3.9 A role is defined by the tasks normally expected of an agent filling it. 76
3.10 A desired team is defined by the roles and range of agents desired in

each role. 78
3.11 Task assignment processing. 81

viii

List of Figures ix

3.12 Overview of an agent performing task assignment. role-based and ex-
haustive task assignment use the same general approach. 83

3.13 Communication failures can impact the merge and redistribution at
three points during the process. 101

3.14 Simultaneous merge scenarios can occur due to multiple encounters
between the same teams, or between different teams. 104

3.15 An established team encounters a lone agent unsuited to filling the
team leader role. The robot joins the established team in its optimal
role of explorer. 109

3.16 A team with a suboptimal team coordinator encounters a replacement
agent better suited to that role. The suboptimal team coordinator
cedes its role to the replacement and takes on its optimal role of victim
verifier. 110

3.17 A team with the victim verifier role unfilled encounters a team with
two and obtains one for itself. 110

3.18 A merge and redistribution where an agent does not learn of a required
role change due to communication failure. 111

3.19 Two lone agents simultaneously join the team, resulting in a deviation
from the definition of a desired team. 113

3.20 Two teams meet and attempt to merge. Communication failure pre-
vents one of the teams from hearing the results of the merge. 114

4.1 A MinBot detects a potential victim. 122
4.2 The team coordinator uses its map to identify frontiers, transitions

between explored and unexplored space. 124
4.3 Example simulated USAR environment. 129
4.4 Major features of a simulated USAR environment. 129
4.5 Voids or rooms in the environment. 131
4.6 Robots mutually observing one another reconcile coordinate systems. 132
4.7 The simulated victim types allow for heterogeneity in sensors for victim

detection. 136
4.8 The three simulated robot types in my work. 137
4.9 Sensory equipment of the three robot types in my work. 139
4.10 A desired team in my example implementation. Teams begin with 1

MaxBot, 2 MidBots, and 4 MinBots filling the roles. 162
4.11 The interactions between the schemas in my implementation and the

framework software. 164
4.12 The detect debris perceptual schema allows a robot to track the loca-

tion of debris its rangefinders cannot see. 167
4.13 The repulsive force grows exponentially as the robot nears obstacles. . 173
4.14 Encounter manager. 176
4.15 Illustration of an encounter between two robots with robot sensors. . 177

x List of Figures

4.16 Coordination between encounter tasks of encountering robots. 179
4.17 To support efficient storage of the map, a lightweight matrix of pointers

references the occupancy grid patches, which are allocated as needed. 187
4.18 Example of updating the occupancy grid using sensors readings from

two heights. 191
4.19 The frontier finder identifies frontiers exploration tasks. 193
4.20 A cell is a frontier cell if it and one of it’s neighbors are empty, and a

neighbor is unknown. 196
4.21 Wavefront expansion. 201
4.22 Wavefront path generation. 201

5.1 Experimental environments are generated using a two step process. . 212
5.2 Main experiment variables and levels. 219
5.3 Leadership failure experiment variables and levels. 225
5.4 Factorial experiment, performance improvement in terms of coverage

and victims successfully identified, where replacement robots are not
available, compared to the fixed roles and team membership base case
(Section 5.5.1.1). 227

5.5 Main experiment, coverage over time where: no replacements are avail-
able, comm. success rate = 20%, and prob. robot failure = moderate. 232

5.6 Main experiment, victims identified over time where: no replacements
are available, comm. success rate = 20%, and prob. robot failure =
moderate. 233

5.7 Main experiment, coverage over time where: no replacements are avail-
able, comm. success rate = 60%, and prob. robot failure = moderate. 235

5.8 Main experiment, victims identified over time where: no replacements
are available, comm. success rate = 60%, and prob. robot failure =
moderate. 236

5.9 Main experiment, coverage over time where: no replacements are avail-
able, comm. success rate = 100%, and prob. robot failure = moderate. 236

5.10 Main experiment, victims identified over time where: no replacements
are available, comm. success rate = 100%, and prob. robot failure =
moderate. 237

5.11 Main experiment, coverage over time where: no replacements are avail-
able, comm. success rate = 60%, and prob. robot failure = none. . . 238

5.12 Main experiment, victims identified over time where: no replacements
are available, comm. success rate = 60%, and prob. robot failure =
none. 239

5.13 Main experiment, percentage of environment covered over time where:
no replacements are available, comm. success rate = 60%, and prob.
robot failure = major. 240

List of Figures xi

5.14 Main experiment, victims identified over time where: no replacements
are available, comm. success rate = 60%, and prob. robot failure =
major. 241

5.15 Performance improvement in terms of coverage and victims successfully
identified, where replacement robots are available, compared to the
fixed roles and tasks base case. 242

5.16 Main experiment, coverage over time where: replacements are avail-
able, comm. success rate = 20%, and prob. robot failure = moderate. 245

5.17 Main experiment, victims identified over time where: replacements
are available, comm. success rate = 20%, and prob. robot failure =
moderate. 246

5.18 Main experiment, coverage over time where: replacements are avail-
able, comm. success rate = 60%, and prob. robot failure = moderate. 247

5.19 Main experiment, victims identified over time where: replacements
are available, comm. success rate = 60%, and prob. robot failure =
moderate. 248

5.20 Main experiment, coverage over time where: replacements are avail-
able, comm. success rate = 100%, and prob. robot failure = moderate. 248

5.21 Main experiment, victims identified over time where: replacements are
available, comm. success rate = 100%, and prob. robot failure =
moderate. 249

5.22 Main experiment, coverage over time where: replacements are avail-
able, comm. success rate = 60%, and prob. robot failure = none. . . 250

5.23 Main experiment, victims identified over time where: replacements are
available, comm. success rate = 60%, and prob. robot failure = none. 251

5.24 Main experiment, coverage over time where: replacements are avail-
able, comm. success rate = 60%, and prob. robot failure = major. . . 252

5.25 Main experiment, victims identified over time where: replacements are
available, comm. success rate = 60%, and prob. robot failure = major. 252

5.26 Leadership failure experiment, percentage of the environment covered
for communication success rate 60%. 254

5.27 Leadership failure experiment, percentage of victims successfully iden-
tified for communication success rate 60%. 255

5.28 Leadership failure experiment, percentage of the environment covered
for communication success rate 20%. 256

5.29 Leadership failure experiment, percentage of victims successfully iden-
tified for communication success rate 20%. 256

A.1 Experimental environment configuration 1. 277
A.2 Experimental environment configuration 2. 278
A.3 Experimental environment configuration 3. 279

xii List of Figures

B.1 Main experiment, coverage over time where: no replacements available,
comm. success rate = 20%, and prob. robot failure = none. 282

B.2 Main experiment, victims identified over time where: no replacements
available, comm. success rate = 20%, and prob. robot failure = none. 282

B.3 Main experiment, coverage over time where: no replacements available,
comm. success rate = 20%, and prob. robot failure = major. 283

B.4 Main experiment, victims identified over time where: no replacements
available, comm. success rate = 20%, and prob. robot failure = major. 283

B.5 Main experiment, coverage over time where: no replacements available,
comm. success rate = 100%, and prob. robot failure = none. 284

B.6 Main experiment, victims identified over time where: no replacements
available, comm. success rate = 100%, and prob. robot failure = none. 284

B.7 Main experiment, coverage over time where: no replacements available,
comm. success rate = 100%, and prob. robot failure = major. 285

B.8 Main experiment, victims identified over time where: no replacements
available, comm. success rate = 100%, and prob. robot failure = major.285

B.9 Main experiment, coverage over time where: replacements available,
comm. success rate = 20%, and prob. robot failure = none. 286

B.10 Main experiment, victims identified over time where: replacements
available, comm. success rate = 20%, and prob. robot failure = none. 286

B.11 Main experiment, coverage over time where: replacements available,
comm. success rate = 20%, and prob. robot failure = major. 287

B.12 Main experiment, victims identified over time where: replacements
available, comm. success rate = 20%, and prob. robot failure = major. 287

B.13 Main experiment, coverage over time where: replacements available,
comm. success rate = 100%, and prob. robot failure = none. 288

B.14 Main experiment, victims identified over time where: replacements
available, comm. success rate = 100%, and prob. robot failure = none. 288

B.15 Main experiment, coverage over time where: replacements available,
comm. success rate = 100%, and prob. robot failure = major. 289

B.16 Main experiment, victims identified over time where: replacements
available, comm. success rate = 100%, and prob. robot failure = major.289

B.17 Leadership failure experiment, percent victims identified for communi-
cation success rate 100%. 290

B.18 Leadership failure experiment, percent environment covered for com-
munication success rate 100%. 291

List of Tables

4.1 Robot Types and Characteristics . 138
4.2 Robot Capabilities . 138
4.3 Tasks normally expected of the roles in my example implementation. 155
4.4 Calculated suitability of robot types to fill each role, based on the

attributes of the robot types. 156

5.1 Levels of the probability of robot failure independent variable. 224

B.1 Main experiment results cross reference. 281
B.2 Leadership failure experiment results cross reference. 290

xiii

List of Algorithms

1 Determining the suitability of an agent to fill a role. 77

2 Determining a new role for an agent. 90

3 Determining role importance weighting for an agent to fill a role. . . . 91

4 Merging and redistributing teams occurs by clearing both known teams

and iteratively re-adding members. 96

5 Finding the agent to add to the merged teams. 99

6 Determining the obstacle avoidance action vector. 172

7 Finding closest way-point. 174

8 Applying a rangefinder scan to the occupancy grid map. 188

9 Updating the certainty an obstacle is present at a location. 190

10 Merging maps. 192

11 Updating frontiers. 194

12 Determining if a robot is in radio range. 203

13 Simulated unreliable message delivery. 205

14 Determining if a robot fails during a time step. 223

xiv

Acknowledgments

I would like to begin by thanking my advisor, Dr. John Anderson, for guiding

me through this process. Your guidance enabled me to keep focused and on track

throughout the various steps of the way, and your reviewing skills helped me produce

a thesis I am truly proud of. I would also like to thank my committee, who ultimately

had to review this thesis so close to the holiday season.

Finally, I’d like to thank my friends and family, who have put up with my of-

ten lackluster ability to manage time between the various competing priorities and

responsibilities encountered during the process of writing this thesis.

xv

This thesis is dedicated to my wife, Angela, whose continual

encouragement and support made it possible to dedicate the time and

energy required to make this thesis a success. Angela, you never once

questioned my ability to make it through this journey, and for that I am

extremely grateful.

This thesis is also dedicated to my daughter, Erica, who always put a

smile on my face as she sat enthralled watching “Daddy’s robots” wander

around the computer screen, nor did she ever question why Daddy needed

to work on his thesis, rather than play “princess”.

xvi

Chapter 1

Introduction

1.1 Introduction

The goal of this research is to provide a framework to allow robots with different

capabilities (heterogeneous robots) operating in complex and dynamic environments

to form and maintain teams in order to identify and complete work in these environ-

ments.

Robots operating in any real-world environment, even a laboratory or factory

floor, have many challenges to contend with, such as noisy and inaccurate sensor data.

Localization is imperfect, even where positioning systems such as GPS are available,

and algorithms to intelligently interpret visual data are computationally expensive

and inaccurate. Operation in hazardous environments such as those presented by

the exploration of other planets and disaster zones must additionally deal with the

fact that robots can be damaged or destroyed and new potential team members may

arrive at arbitrary times as replacements, or as organizations commit new equipment.

1

2 Chapter 1: Introduction

The nature of many domains means that communication between robots is short

range, unreliable and sporadic in nature: in disaster areas, for example, infrastructure

can be heavily damaged, and the nature of debris itself can interfere with wireless

communication.

Robots operating in these complex and dynamic environments should be able to

take advantage of physical proximity to communicate their presence to one another

and negotiate an appropriate team structure. My thesis research involves the devel-

opment of a framework to facilitate this method of coordination, and examines its

effectiveness in the context of a heterogeneous team of robots operating in a simulated

disaster environment.

In this chapter I will begin by providing background and motivation for my re-

search. Second, I will provide a high level description of my approach and how it

benefits robots operating in complex and dynamic environments. Next, I will de-

scribe Urban Search and Rescue, an example of a complex and dynamic environment

which I use as a grounded context for my teamwork research, as well as a formal eval-

uation environment. Finally, I will describe the research questions this thesis poses

and provide an outline for the remainder of this thesis.

1.2 Motivation

Teamwork is an important part of our day to day lives. Tasks can be completed

faster by dividing the work amongst team members, and this principle applies equally

whether considering groups of humans or robots. Groups of robots have been shown

to complete work significantly faster than independent individuals in applications

Chapter 1: Introduction 3

such as scavenging and exploration [Shell and Mataric, 2006; Rosenfeld et al., 2006;

Ma et al., 2006; Rooker and Birk, 2007], for example.

There has only recently been a focus on how to form teams in situations where

the individuals involved are self-motivated. Current works tend to involve high level

tasks that do not translate well to the real world (e.g. package delivery in abstract

space [Dutta and Sen, 2003; van de Vijsel and Anderson, 2005]). There is little

consideration of the challenges present in a physical implementation on real robots,

such as communication distance or reliability [Vig and Adams, 2005]. Further, work

involving teams of heterogeneous robots (e.g. Kiener and von Stryk [2007]; Howard

et al. [2006a]) are usually restricted to relatively controlled environments such as a

laboratory and rely on fixed team structures determined in advance.

Aside from being able to complete a task faster, there are many benefits that

can be realized when robots with different capabilities (heterogeneous robots) form a

team. Using a single type of robot (homogeneous robots) with all possible capabilities

required does not make sense in situations where there is a clear division of skills.

In a manufacturing environment, for example, it would not make sense to have a

single type of robot that welds, cuts, and moves goods around a warehouse. Even

though such a robot could accomplish all tasks, the redundant equipment used for

others would be a significant economic waste. Beyond the issue of expense, redundant

equipment also requires additional energy to carry and provides greater likelihood of

robot failure.

An example of a domain where heterogeneity is beneficial is urban search and

rescue (USAR). According to Murphy et al. [2000a], rescuers identify the availability

4 Chapter 1: Introduction

of different robot physiologies as an important consideration when operating in a

USAR domain. Wheeled robots are able to search open areas quickly, while tracked

robots such as the iRobot PackBot are advantageous for climbing stairs and over

areas of light debris [Yamauchi, 2004]. Further specialized physiologies, such as the

snake-like robot developed by Murai et al. [2008], can be used for searching tight

enclosed areas. Each robot physiology is well suited for use in certain situations,

making it advantageous to have a variety of robot physiologies available.

There is also a utility in robots having access to a number of different sensory

facilities, both from the standpoint of suitability to particular tasks and cost-benefit

ratio. A laser scanner is both excellent for mapping and significantly more expensive

than other forms of sensing, for example, making it cost prohibitive to equip every

member of a team where some are expected to be lost are destroyed. Another ex-

ample is the sensory equipment to detect the presence of victims in the environment.

Burion [2004] studied sensors suitable for victim detection and found that the fusion

of results from multiple sensors shows significantly improved victim detection perfor-

mance. Equipping all robots with these capabilities would increase the overall cost

and complexity of a search and rescue robot considerably.

1.3 Terminology

Before moving on to an overview of my approach, I will define some common

terms that have specific meanings in the context of my work.

• Agent - Russell and Norvig [2003] define the term agent as something which

perceives its environment using sensors in order to act upon the environment

Chapter 1: Introduction 5

using actuators. This broad definition can be applied to humans, who perceive

their environment through their senses, and act using their limbs. Software

agents in the general sense could read input from a database and display results

on a computer monitor. For the purposes of my work, I define an agent as a

mobile robot equipped with sensors which enable it to perceive the environment

it operates in and actuators that allow it to move in and interact with the

environment. I also make the important distinction that an agent consists of its

control software and the robotic platform it operates on; the control software

cannot transfer from one robot to another. The terms agent and robot will

sometimes be used interchangeably.

• Environment - the environment is the area in which robots operate, collaborat-

ing towards the overall goal of the team.

• Heterogeneous robot - a heterogeneous robot is one in which differences in phys-

iology, sensory equipment, and computational or memory capabilities exist be-

tween robots. My work focuses on the physical differences between robots that

make them suited to performing particular types of work. I do not consider

differences in robot control software or behaviour primitives when comparing

robots.

• Mission - in the context of my work, a mission is an objective known to all

robots operating in the environment. The robots work together to accomplish

the mission.

• Role - a robot assumes a role on a team in order to determine the general

6 Chapter 1: Introduction

collection of tasks that the robot is normally expected to be able to perform.

A robot well suited to fill a role has the necessary capabilities (e.g. sensory,

computational, physiology) to complete the tasks that the role normally expects.

Differences in robot capabilities mean that other robots may only be able to fill

the role in a limited capacity, or not at all.

• Task - a task is a clearly separable unit of useful work that a robot can carry

out in order to make overall progress towards the team’s mission. In my work, a

single robot carries out a task in isolation and does not require the assistance of

any other robots to complete it (this is in contrast to tasks such as box-pushing

in which robots require tight coordination to complete a task [Mataric et al.,

1995]).

1.4 Approach

My thesis research involves the design and implementation of a framework that

allows robots operating in a complex and dynamic environment to form and maintain

teams in order to identify and complete work in these environments. My framework

is intended for use in challenging domains involving area coverage tasks, using robots

with potentially different skill sets. Robots employing this framework are able to dy-

namically structure themselves into teams in a decentralized manner. The framework

allows robots to recognize situations where the team structure should be modified

to accommodate the discovery of new robots and the departure or failure of existing

robots. Further, my framework enables robots to identify work to be completed in

Chapter 1: Introduction 7

the environment in the form of tasks, and then to determine the appropriate robot

to carry out these tasks.

Robots using my framework coordinate using short-range unreliable wireless com-

munication. My framework takes advantage of the broadcast nature of wireless com-

munication to allow robots to gather knowledge of other robots operating in the

environment both through periodic announcement broadcasts and inspection of wire-

less traffic between other robots. This helps ensure knowledge of the current team

structure disseminates amongst all members of the team, while reducing the overall

amount of bandwidth dedicated to the dissemination of this knowledge.

My framework improves over existing frameworks that rely on reliable wireless

communication and have fixed team structures where the mapping between robots

and the work to complete is determined in advance (e.g. Howard et al. [2006a];

Kiener and von Stryk [2007]). The design of such frameworks makes it difficult for

them to cope with changes in team structure and losses of communication that occur

in hazardous environments such as a disaster zone.

Tasks in my framework are determined in advance of a mission, and describe the

units of work that robots can perform. To determine the robot best suited to carry out

a task, a task has both a minimum requirements and suitability expression defined in

terms of the attributes of a robot. The minimum requirements determine the absolute

minimum set of capabilities a robot requires in order to carry out the task. For robots

that meet the minimum requirements of a task, the suitability expression determines

the degree to which a robot is suited to carry out that task. Describing tasks in this

manner forms the basis on which robots can reason about the best available team

8 Chapter 1: Introduction

member to carry out a specific task and assists in indicating when the current team

structure is less than ideal or when new members should be sought out.

To facilitate efficient task allocation and assign a general responsibility of duties,

I use roles to describe the set of tasks a robot filling the role is normally expected to

be able to perform. Since roles are defined in terms of the tasks normally expected

of them, and tasks are defined in terms of attributes a robot must possess in order to

complete them, a robot can determine its suitability to fill a role. Using roles provides

a short-cut when assigning tasks to other robots; a task can be assigned to any robot

who occupies a role that is normally expected to be able to carry out the task.

Finally, my framework defines a desired team in terms of the number of robots and

the roles they will occupy. A special purpose team coordinator role is present on each

team. A robot occupying the team coordinator role provides a coordination point for

all robots operating on the team. The team coordinator is responsible for assigning

tasks identified by members of its team to the robots best suited to carry them out.

The team coordinator attempts to ensure that each teammate has a small backlog

of tasks to complete, helping agents remain productive in times of communication

outages. All teammates have default tasks that define work they can perform on their

own in the absence of instructions from the team coordinator. As the structure of a

team changes due to team mates arriving and leaving, the agent occupying the team

coordinator role can change as best suits the resulting team structure. This ensures

that the team coordination responsibilities are not fixed to a single agent that is a

single point of failure, and allows a team to adapt such that the best available agent

performs these duties at any one time. The choice of desired team composition is

Chapter 1: Introduction 9

domain dependent and should take into account the general mix of work expected to

be performed in the domain, as well as the capabilities of agents that will be available

on a team.

Because this framework is intended for application in dangerous or challenging

environments, it assumes that any agent could suffer a failure or become separated

from its team at any point 1. In a damaged building, for example, a structural

collapse could isolate the agent from its team or even destroy it entirely. A failure

of this nature would potentially incapacitate a team if the failing agent occupied the

team coordinator role. To allow teams to continue operation in such circumstances,

agents using my framework periodically perform a role check. During the role check,

the agent uses its knowledge of the agents on its team to determine the role it should

fill at the current time. In this way, agents are able to adjust the role they occupy

on their team to compensate for the loss of team mates. The desired team definition

also allows an agent to identify situations where the addition of another agent to its

team would be advantageous. As the number of agents filling each role changes, those

where the number of agents filling the role falls below the definition of a desired team

are given a higher priority to fill when replacements of other teams are encountered

in the environment.

My framework also supports the operation of multiple cooperating teams within

an environment. Agents that encounter one another in the environment take advan-

tage of visual and radio contact in order to exchange mission progress information.

This helps reduce the chance of unintended redundant effort between teams. During

1Realistically, however, this could happen even in the safest of domains and does not preclude
the use of this framework in everyday environments as well.

10 Chapter 1: Introduction

an encounter the agents also share knowledge about their teams and perform a redis-

tribution of team members. The redistribution of team members helps ensure that

teams are re-shaped closer to the desired team structure. If a team loses its leader, for

example, it has the opportunity to pick up a better suited leader from another team

it encounters. Alternatively, an agent might also become lost or separated from its

team. Upon encountering another agent or group, it has the opportunity to become

a member or form a new team. This is advantageous as the agent is able to con-

tinue performing useful work for another team, while at the same time distributing

knowledge from one team to another.

1.5 Urban Search and Rescue

In order to study dynamic team formation in a grounded manner, a representative

domain must be chosen. A good example of a highly challenging domain in which

agents can be of value is in the aftermath of a natural or man-made disaster. This is

commonly known as Urban Search and Rescue (USAR) [FEMA, 2000], and involves

exploring damaged structures to locate and assist human casualties. I evaluate my

work using a simulated USAR environment in which robotic agents must coordinate

in order to locate victims while generating a map of the disaster zone.

Murphy et al. [2000a] describe the mobility and sensory difficulties present in

such an environment. Debris and uneven terrain can make it difficult for a robot

to navigate, and can cause a robot to become stuck. The collapse of a building

results in many small voids that larger robots would be unable to explore. Existing

floor-plans and maps of the environment are not useful as structural changes to the

Chapter 1: Introduction 11

environment as a result of the disaster may have caused considerable changes to the

configuration of walls and spaces. Further, progressive collapses can occur during the

rescue operation further changing the expected layout.

During the robotic USAR operations at the World Trade Center disaster, Casper

and Murphy [2003] found that rescuers had a difficult time visually identifying features

in images due to dust covering all areas of the environment; the current state of the art

in image processing would not have fared better. According to Murphy et al. [2000a],

readings from sonar sensors can be hindered by the presence of sharp angles in the

environment and varying surface materials. Laser range finders offer improvements in

these areas, but suffer issues with reflective surfaces. Their cost also precludes their

widespread use.

According to Wong et al. [2004], the use of robotics in USAR promises to help

rescuers provide a more timely and efficient response to disasters. Robots are not

subject to the same constraints that human rescuers are; they can be sent to perform

search and rescue operations in conditions deemed unsafe for human rescuers. Robots

do not suffer from fatigue during continual use. They are always alert and ready to

perform their duties.

From an academic standpoint, USAR robotics provides researchers with numer-

ous difficult problems to solve. USAR robotics is a multidisciplinary research field,

involving work in artificial intelligence, human robot interaction, psychology, and

engineering. The Computing Research Association [2002] identifies the creation of

computer technologies to minimize the impact of disasters as a grand challenge in

computing. Further research in USAR robotics is recommended to aid in disaster

12 Chapter 1: Introduction

response.

1.6 Research Questions

I will use the approach and domain outlined in the previous sections to answer

the following research questions:

1. Can my framework provide teams operating in dynamic environments

with the ability to adequately cope with changes in team structure

and composition (i.e. due to loss and failure of team members, and

encountering other teams and teammates in the environment)? I

will compare the relative performance of agents using my framework against a

baseline approach where agents cannot switch roles and teams. An increasing

level of probabilistic agent failure will be used to demonstrate the ability of my

framework to cope with the changes in team structure that will occur due to

failures. Further, replacement agents will be introduced into the environment,

which can be discovered by existing teams.

2. Can my framework help mitigate the negative affect of unreliable

communication on coordination efforts between agents? This question

can be answered by observing the difference in performance while the com-

munication reliability is varied when using my framework versus the baseline

approach where agents cannot switch roles and teams.

3. Is my framework able to cope with failure of a team’s leadership

structure? Inducing a failure in leadership at set points allows for observation

Chapter 1: Introduction 13

of the performance benefits realized by using my approach versus the baseline.

1.7 Thesis Organization

The remainder of this thesis is structured as follows:

• Chapter 2 - Related Work - reviews literature related to this thesis for

topics such as teamwork, exploration, search and rescue and other peripheral

areas such as mapping techniques.

• Chapter 3 - Methodology - discusses my teamwork and task assignment

framework.

• Chapter 4 - Implementation - discusses the implementation of my frame-

work for use in the simulated USAR environment in which I evaluate my work.

Provides detailed descriptions of the elements of my framework that are coded

specifically for this domain. Also provides detailed descriptions of the peripheral

components required to operate in a USAR environment such as, for example,

the victim tracker and frontier finder modules.

• Chapter 5 - Evaluation - describes the experiments I use to evaluate my

work, and discusses the results obtained.

• Chapter 6 - Conclusion - answers the thesis questions within the context

of my experimental results, providing further discussion and ideas for future

directions this work can take.

Chapter 2

Related Work

My work covers a number of topics within the general field of multi-agent systems.

Specifically, my work covers elements of multi-agent cooperation in area coverage

tasks. My methodology supports this cooperation through the formation and main-

tenance of teams, and task allocation within those. As my example implementation

involves performing an urban search and rescue mission in an inherently complex and

dynamic environment, there are a number of peripheral research areas with which

my work is concerned. Some examples of these include autonomous robot control,

environment mapping, and distributed exploration.

This chapter introduces important related research, and describes the areas where

my work is similar to and differs from these related works. Section 2.1 begins with a

selection of topics related to coordination in multi-agent teams. The section begins

by reviewing related work involving the formation and maintenance of multi-agent

teams, and the use of roles to set expectations of agents on a team. Related work in

the area of task allocation is presented, and a description of current works involving

14

Chapter 2: Related Work 15

effective heterogeneous teams is provided.

Section 2.2 examines related research in the field of urban search and rescue

robotics, both from the perspective of the types of robots desirable to perform this

mission, and current works to support coordination of robots in a rescue environment.

Finally, Section 2.3 covers a variety of topics peripheral to the development of

my framework, yet important to the development of my example implementation.

This includes topics such as autonomous robot control, mapping, and distributed

exploration.

2.1 Coordination in Multi-Agent Teams

This section reviews related literature dealing with coordination in multi-agent

teams. It reviews related literature dealing with key areas related to my work: roles,

task allocation, heterogeneous teamwork, and team maintenance.

2.1.1 Team Maintenance

Until recently, there has not been a large focus on how to form and maintain

teams of robotic agents. Most previous works assume teams were formed in advance

and will not change during the course of operation (e.g. [Rekleitis et al., 2004],

[Bruce et al., 2003], [Lau et al., 2009], [Boonpinon and Sudsang, 2007], [Giannetti

and Valigi, 2006], [Li et al., 2007]). This section reviews previous multi-agent systems

work dealing with the formation of mutually beneficial partnerships between robots.

These works provide a basis for the type of teamwork found in my work.

16 Chapter 2: Related Work

Dutta and Sen [2003] studied cooperation between heterogeneous agents in an

abstract package delivery domain. Their approach assumes agents are self-interested

and can form mutually beneficial partnerships with other agents. The agents co-

operate using the principle of reciprocity; an agent can only expect to get out of a

partnership what they have contributed themselves. That is, an agent’s willingness

to provide assistance to another is dependent on the history of interaction between

the two. In contrast to teams in my work, the partnerships between agents occur

between two agents only and are limited in scope to the interactions between those

agents. Since agents are self-interested, there is no imperative for agents to form

larger aggregations like the teams in my work. My work assumes agents are not

self-interested and have a common goal. Finally, the package delivery domain Dutta

and Sen [2003] use to study their work has been so strongly abstracted from the real

world as to make it unrealistic for a physical robotic domain. The impact of commu-

nication between agents is not considered, and there is an inherent assumption each

agent can communicate with any other. This is in contrast to real-world domains

where communication is unreliable and limited by the range of a robot’s transmitter.

Further, Dutta and Sen [2003]’s package delivery domain abstracts physical space to

a series of spokes emanating from a central hub. This abstraction lacks the realism

of working in a true 2-D or 3-D environment, and does not concern itself with issues

such as localization in the environment. In my work, teams involve a larger number

of agents than Dutta and Sen [2003]’s partnerships out of necessity, both from the

perspective of parallelism in operation and redundancy of agents.

Chapter 2: Related Work 17

van de Vijsel and Anderson [2005] build on the work by Dutta and Sen [2003],

and attempt to increase realism in the team formation process by assuming agents

have conflicting goals, multiple teams can exist, and agents learn of others based on

their interactions. Similarly, my work assumes multiple teams can exist, but I do not

assume agents have conflicting goals. Although learning about other agents through

interactions is a broadly applicable concept to robotic domains, the underlying domain

choice is again too abstract to be suitable for use in a real world domain. van de Vijsel

and Anderson [2005] uses a package delivery domain where agents work in a two

dimensional grid environment. Although this is more realistic than Dutta and Sen

[2003]’s package delivery domain, it again does not consider issues such as perception

of agents in the environment, localization, or the impact of limited range unreliable

communication.

Brooks and Durfee [2003] propose using congregations as a means of supporting

cooperation between agents. Similar to teams in my work, congregations provide a

means for agents with similar needs to identify one another in order to have repeated

and meaningful interactions. Brooks and Durfee [2003] assume agents in a congrega-

tion will fill different roles over the span of their membership, take on different tasks,

and interact with a wide number of agents. Although these assumptions agree with

my use of teams, there is still an underlying assumption that an agent’s participation

in a congregation is dependent on the gains it can achieve from being a member of the

congregation. In my work, I assume agents cooperate selflessly in order to advance

the overall mission of the team. An agent’s membership on a team is not dependent

on the gains it can receive from being a member of the team, but rather based on

18 Chapter 2: Related Work

where the agent feels it is best suited to contribute. Further, Brooks and Durfee

[2003] studied their congregation approach in an information economy domain where

agents act as consumers of articles offered by different producers. As with Dutta

and Sen [2003] and van de Vijsel and Anderson [2005], this domain lacks the level

of difficulty expected in any real-world domain in which robots operate, making this

approach unsuitable for difficult domains such as USAR.

George et al. [2010] developed a method to form coalitions between members of a

larger team of unmanned aerial vehicles (UAVs) operating in a region. These coali-

tions facilitate the cooperative engagement of a target by a subset of the overall team.

Where a UAV determines it does not have the required resources to engage a target,

it broadcasts a request for the resources it requires to engage its target. UAVs in

radio range hear the request and respond with a bid indicating the resources avail-

able, and an estimated time to travel to the target location. George et al. [2010]

assumes communication is limited in range and propose techniques for propagating

information among the team members, given messages can propagate a greater dis-

tance through the user of multi-hop message routing. Although their work occurs in

a more real-world domain, it focuses on the formation of sub-teams intended for the

completion of a single task and does not deal with the formation of the overall team

of UAVs. In contrast, my work assumes tasks are carried out by a single agent. A

method such as George et al. [2010]’s might be useful to add the ability for robots

in my work to form sub-teams in order to cooperatively complete tasks, but it is not

sufficient on its own to form and manage long term teams as members are lost and

new members arrive.

Chapter 2: Related Work 19

Cheng and Dasgupta [2010] studied a technique to form teams among groups of

robots operating with the overall goal to explore an area. They examine the hypoth-

esis that smaller teams of robots cooperating in an environment can more effectively

explore the area than a single larger team. Their work uses elements of game theory

to study how robots can partition themselves into smaller teams in a manner such

that the resulting teams perform the optimal exploration of the environment, mini-

mizing the overlap in coverage between robots. They have evaluated their technique

using mathematical models in an abstract domain, but plan to study their technique

in a simulated robotic domain in the future. As such, this approach remains a math-

ematical abstraction that has yet to be demonstrated to be practically applicable.

In addition, while their approach to forming teams aims to form teams which are

mathematically closer to optimal, my work relies on heuristic descriptions of a de-

sired team to guide the team formation process. However, techniques such as Cheng

and Dasgupta [2010]’s could be used to enhance the decisions made during my team

merge and redistribution process (Section 3.7).

2.1.2 Roles

The concept of using roles as a means to set expectations of agents is common in

multi-agent systems research. This section begins by examining possible variations

and interpretations of the general term, and continues by describing related uses of

roles with appropriate comparisons to my work.

It is important to gain an understanding of what the term role means, and the

possible variations that are possible. Odell et al. [2003] studied the concept of roles in

20 Chapter 2: Related Work

the context of human organizations, drawing influences from the behavioural sciences.

They distinguish between emergent roles, where the behaviours and operations of roles

are learned through operation of the multi-agent system, and imposed roles where the

roles are pre-determined in advance. Since imposed roles mimic how roles in human

organizations operate, Odell et al. [2003] argue that where humans must interact with

a multi-agent system, it may be advantageous to use an imposed role structure. The

roles in my work are imposed by the specific tasks (or units of work) that agents

perform (future work could study the use of emergent roles).

Odell et al. [2003] define the horizontal specialization of roles as referring to the

breadth of operations that an agent filling a role can perform. Roles that have too

much horizontal breadth result in a tendency towards homogeneous robots and a

limited set of resulting roles. Instead, Odell et al. [2003] argue that role design

should tend towards having a variety of limited capability roles, which helps promote

heterogeneity in agents. Although the roles in my work tend towards defining a broad

range of operations an agent can perform, I do not assume that agents are able to

complete all operations expected of the role, leading to each agent having a degree of

suitability to fill a role.

According to Odell et al. [2003], the vertical specialization of a role determines

the degree to which an agent filling the role relies on other robots to coordinate its

activities within the role. Vertically narrow roles result in an agent relying heavily

on other agents for direction, while vertically broad roles focus on the direction and

coordination of other agents. In my work, roles fall in the middle of the spectrum as

the team coordinator role provides general direction to agents which are expected to

Chapter 2: Related Work 21

perform work independently.

Similar to my work, Odell et al. [2003] define a role assignment as a mapping of

an agent to a role, and a position as a specific role assignment within a group (team).

A number of positions make up a group (team). Similarly, I define a desired team in

terms of the number of positions that make up a team.

With an understanding of roles and properties that can be used to describe them,

the remainder of this section examines some related works involving roles and com-

pares their use to my work.

Xu and Xia [2009] developed a system to facilitate assignment of roles to robots

operating in complex domains without the use of explicit communication between

robots. They evaluate their work in the context of simulated robotic soccer. Similar

to my work, Xu and Xia [2009] describe a role as being defined by the activities that a

robot performs while filling that role. However, Xu and Xia [2009] do not abstract the

activities robots perform into tasks. In the robotic soccer domain, Stone and Veloso

[1999] have previously shown the nature of the domain is such that the work involved

is determined by areas of the playing field. As a result, the use of tasks would be

questionable, unless the tasks were bounded to a specific area of the playing field.

Xu and Xia [2009] assume all robots are homogeneous and have the capabilities to

fill any role equally well, where my work assumes robots are heterogeneous and each

robot can fill a role to a varying degree. Further, Xu and Xia [2009] assume a team

is defined in terms of a set of roles, where each robot fills a single role on the team.

In contrast, my work assumes each role can be occupied by many individuals and a

team is defined by the roles and number of individuals occupying each role. Similar

22 Chapter 2: Related Work

to my example implementation, robots are assigned roles preferentially based on their

location in the environment (I assign tasks preferentially to the robot closest to the

task location). Finally, Xu and Xia [2009] assume a lack of explicit communication

among teammates, requiring robots to be able to observe all other members of their

team in order to form an accurate world model on which the role determination is

based. This is appropriate in a robotic soccer domain as the physical environment in

which the robots operate is limited in size and all robots can reasonably be expected

to observe one another in order to form a world model. This assumption is not

realistic in domains such as USAR where robots are spread out and there are a large

number of obstacles present in the environment.

Using a robotic soccer domain, McMillen and Veloso [2006] studied an approach

to assigning roles to players on a team. In their work, roles act as descriptions of

the work a robot filling that role will complete. McMillen and Veloso [2006] consider

role allocation to be analogous to task allocation. In effect, they consider roles to

strictly define the work to be completed by a robot filling a role. Further, they use

roles to define the area a robot operates in when filling that role. This is in contrast

to my work where roles are less strict and only set heuristic expectations of the work

to be completed. Further, my work does not place constraints on the areas in which

a robot can operate based on the role it fills. McMillen and Veloso [2006] define

plays to determine the series of actions a team must take given the current position

of the players and the soccer ball. The plays define the roles that must be filled

to complete the play. In contrast to my work where roles are filled by robots in a

decentralized manner, McMillen and Veloso [2006] assign roles through a leader robot

Chapter 2: Related Work 23

who determines which robot should fill each role based on their location on the field.

The use of plays provides the potential for the roles on a team to change during the

game, where in my work the roles required of a team are determined by the definition

of a desired team.

This section has examined the concept of roles and their origin in behavioural

sciences. It also examined some related works involving roles and illustrated the sim-

ilarities and differences between those works and my own. The next section examines

how tasks can be allocated to members of a team.

2.1.3 Task Allocation

Given a team of agents cooperating towards a common goal, the process of task

allocation is concerned with choosing which agent(s) on a team should take on which

tasks. This section examines task allocation approaches related to the approach I use

in my work. I begin with a description of the Contract Net approach, a framework

that forms the foundation for the other approaches I outline below.

Davis and Smith [1983] developed the Contract Net approach to support the

completion of tasks with a distributed collection of agents. The framework is one

of the major foundations of multi-agent systems research, and is still implemented

and extended in systems today [FIPA, 2002]. The Contract Net approach treats

distributed task allocation as a contract negotiation between an agent with a task

requiring assignment, and agents that negotiate to ensure the completion of the task.

The framework assumes any agent can act as a contractor (an agent bidding on a task)

or a manager (an agent with a task requiring completion). Using the Contract Net

24 Chapter 2: Related Work

approach, tasks are announced with a description of the work to be completed, the

criteria an agent must meet in order to consider bidding on the task, and the criteria

used by the manager to evaluate bids. Contractors evaluate whether they meet the

necessary criteria, and respond with a bid based on the criteria. A bid criterion could

be, for example, a measure of the estimated time the contractor expects it would take

to complete the described task. The manager evaluates all of the bids it receives and

assigns the task to the best bidder.

My approach to task allocation is similar to the Contract Net approach to the

degree that similar issues of contracting underlie much modern multi-agent systems

research. Each agent in my approach is responsible for evaluating its individual

suitability to complete the task and reporting back to the task assigner. However in

contrast to the Contract Net approach, agents do not communicate the details of the

tasks requiring completion, as the nature of the tasks to be completed is determined

in advance of operation. Further, my work uses two passes of contract negotiations

to perform task assignment. In the first phase, role assumptions are used to narrow

the pool of bidders to only those expected to be able to complete the task; this helps

reduce communication traffic and frees unsuited bidders from having to prepare a bid.

Where the first phase fails to result in the contract being awarded to an agent, the

second phase opens the bidding to all agents nearby (Sections 3.5.3.1 and 3.5.3.2).

Finally, the Contract Net approach assumes a contractor can further decompose

a task and sub-contract the components to other agents [Davis and Smith, 1983]. In

my work, I assume tasks are completed by a single agent without being broken down

further. A task may ultimately be routed to another agent if the agent accepting it

Chapter 2: Related Work 25

fails, however.

Building on the work of Davis and Smith [1983], Gerkey and Mataric [2002] de-

veloped an auction-based method for distributed task allocation amongst teams of

heterogeneous robots. Similar to my work, it is assumed robots are subject to fail-

ures, communication between robots is unreliable, and task executors are responsible

for completion of a task without supervision by the assigner. Task allocation oc-

curs in a decentralized manner in that each agent is responsible for assigning its own

tasks. Communication between robots uses a publish/subscribe approach. Messages

are published based on subjects that describe the capabilities required to complete

tasks. Robots subscribe to subjects based on the capabilities they possess. When

a robot announces a task, it publishes an announcement based on the capabilities

required to complete the task. The announcements include a bid evaluation method

each subscriber to the message uses to evaluate its suitability to complete the task.

Subscribers respond with their evaluated bid for the completion of the task; the

assigner chooses the winning bidder and assigns the task. Task completion is time-

bounded and the assigner is responsible for monitoring the progress of the task by a

task executor.

Gerkey and Mataric [2002]’s approach of agents bidding on tasks is similar in

spirit to how agents in my work respond to task announcements with their suitability

to complete a task. However in my work the task assigner uses roles as a means

of filtering the agents the task announcement is addressed to, where Gerkey and

Mataric [2002] relies on the publish/subscribe communication model to limit the

agents considered for bidding.

26 Chapter 2: Related Work

Kiener and von Stryk [2007] present a framework for the cooperative completion

of tasks by teams of heterogeneous robots. Kiener and von Stryk [2007]’s framework

achieves this by modeling the individual tasks of the overall mission, and storing

the degree to which each of the robots can perform these tasks. The capabilities of

(only) a single humanoid and single wheeled robot are determined in advance, along

with weights identifying the suitability of each to all possible tasks. This information

allows a central controller to allocate tasks to each robot.

While the tasks involved are significant in that they involve fine motion control

and interaction (e.g. parking a wheeled robot while a humanoid mounts it), this is still

very primitive in terms of task allocation. The broadly different robot skills and task

demands in Kiener and von Stryk [2007]’s work results in a predefined set of tasks

with only one logical way to map these tasks to the robots in their system. Their

approach also requires constant communication with a central controller, where my

work performs task allocation in a distributed manner. My framework also assumes

there are many possible mappings between robots and tasks. Tasks will be discovered

as robots move through the environment, rather than allocated by a central controller.

The design of my approach will also suppose adding robots to existing teams, as well

as forming a team from an initial collection of robots. Further, my work does not

have the requirement that reliable communication is available between team members

for successful task completion.

My work, however, uses a similar approach to mapping tasks as that of Kiener and

von Stryk [2007], in terms of recording knowledge about tasks and robot capabilities

and attempting to match these, albeit in a more sophisticated way. My matching is

Chapter 2: Related Work 27

necessarily heuristic in nature, because of a much greater number of possible match

combinations. I also extrapolate robot capabilities into defined roles which determine

the types of tasks suitable for a particular role to perform.

2.1.4 Task Completion

In my work, each agent maintains a prioritized list of tasks it will carry out. The

task-list in my work is similar in concept to an agenda. An agenda is a broadly used

concept in artificial intelligence research, originating from the Speech Acts Theory as

a way of describing how the human mind tracks pending speech acts it is considering

vocalizing [Cohen and Perrault, 1979]. Agendas are commonly used in belief-desire-

intention (BDI) architectures to manage the actions an agent is considering given its

current beliefs about the environment and intentions / goals [Bratman et al., 1988].

Matelln and Borrajo [2001], for example, uses an agenda to specify the actions a

robot will execute next. Actions are added by the robot, actions themselves, and

other cooperating robots. Pokahr et al. [2005] define a framework to allow an agent

to deliberate about its goals in order to plan the required actions to achieve them.

They use an agenda to track the pending actions an agent considers given its current

goals.

2.1.5 Effective Heterogeneous Teams

This section reviews a selection of related works involving teams of heterogeneous

robots cooperating effectively in real-world domains. These works illustrate the ben-

efit of heterogeneity in robot types, and provide inspiration to the choice of robots

28 Chapter 2: Related Work

used in my example implementation.

Parker et al. [2003] developed a system to automatically deploy a sensor network

using heterogeneous robots. Resourceful leader robots guide the overall deployment of

the network, while follower robots act to provide direct movement instructions to the

sensor nodes necessary to keep them in formation and deploy them. In contrast to the

work I propose, the teams, formation, and deployment positions of the sensor nodes

are all pre-computed in advance and rely on the presence of reliable communication

to a central processing unit. Changes in team structure due to the loss of robots are

accounted for by looking up a new pre-computed deployment pattern and adjusting

the formation accordingly. No attempt is made to recover lost robots. Further work

by Howard et al. [2006a] investigates the performance of the system with a simpler

team structure (eliminating the follower robots), and sensor node robots with basic

autonomous navigation capabilities. During their experiments, they found the leader

robot would lose track of the simpler robots due to issues detecting them in the

environment. Howard et al. [2006a] argues this is further evidence that fault tolerance

must be planned into any real-world implementation.

The framework developed by Kiener and von Stryk [2007], introduced in Section

2.1.3, to support task allocation to robots is also interesting from the perspective that

it involves heterogeneous robots cooperating on a team towards a common goal. They

demonstrate their framework with a humanoid and wheeled robot, and task the pair

with following a soccer ball (held by a human) down a corridor, and then kicking it

into a goal. Neither robot is well suited to completing the entire mission on its own.

The humanoid robot is able to see and track the ball, but has limited locomotion.

Chapter 2: Related Work 29

The wheeled robot has no vision capabilities, but has fast locomotion. Kiener and

von Stryk [2007] demonstrate that the two robots can solve the problem by working

together: the humanoid rides on the wheeled robot to the ball, then dismounts and

deposits the ball in the net. Although their work uses heterogeneous robots, it is

demonstrated using only two robot types. In contrast, my framework will operate

with many types of robots. Finally, Kiener and von Stryk [2007] use a fixed team

structure which is determined in advance, where in my work I assume the dynamic

nature of the environment will result in changes to team membership as the mission

progresses. Further, I assume robots are able to form and disband teams in order to

adapt to the changes in the available mix of robot types.

Dorigo et al. [2011] developed the swarmanoids architecture as a means of en-

couraging research into swarm robotics in real-world domains. Similar to Kiener and

von Stryk [2007], Dorigo et al. [2011] use heterogeneous robots to carry out complex

cooperative tasks in a real-world domain. Their work uses three robot types which

cooperate to complete the mission of locating a book on a shelf and retrieving it. A

flying eye-bot robot has the ability to autonomously fly in indoor environments and

uses vision to detect the book on a shelf and direct the rest of the team to retrieve

it. Foot-bot robots are traditional wheeled robotic platforms, equipped with the nec-

essary sensors to navigate autonomously through the environment without colliding

with obstacles. Finally, a hand-bot robot includes a gripper suitable for gripping the

target book from a shelf, and a magnetic tether system that allows it to attach to

a metal ceiling and raise itself up the book shelf in order to grab the book. The

hand-bot robot type is unique in that it has no locomotion capabilities of its own;

30 Chapter 2: Related Work

it depends on foot-bot robots to move it into position to retrieve the book from the

shelf. Although their example task of retrieving a book from a shelf is an impressive

demonstration of heterogeneous robots cooperating to complete a mission, the het-

erogeneity between the robot types precludes them from being used in a combination

other than their demonstrated configurations. In the absence of foot-bot robots, for

example, a hand-bot robot would be unable to move; it could not link up with an

eye-bot to move around. The current swarmanoids implementation places restrictions

on how robots can be combined, and leaves little opportunity to adapt to changes in

available robot types. In my work, I assume a certain degree of overlap in the capa-

bilities of the various robot types. This allows teams to adapt to scenarios where a

more capable robot type has been lost, and provides the ability to continue operation

in a potentially degraded state using a less capable robot as a substitute for the lost

robot.

2.2 Urban Search and Rescue

This section reviews a selection of related topics in the field of urban search and

rescue robotics. I first examine work to covering the properties of robots necessary to

support effective operation in a USAR domain, and then describe test-beds designed

to foster research through the establishment of standardized example environments in

which USAR robots can be tested. Finally, I examine related works to accomplish the

USAR mission through the use of robots, and examine related control methodologies

and uses of heterogeneous robot types.

Chapter 2: Related Work 31

Schlenoff [2005] studied the properties of robots used in USAR to develop an on-

tology that describes their physical, functional and operational characteristics. Their

goal was to develop a standardized description of USAR robots in order to facilitate

the development, testing and evaluation of robots for use in USAR operations. My

framework describes robots in terms of attributes that describe a robot’s suitability

for executing tasks in domains such as USAR. The attributes I use in my exam-

ple implementation are similar to those in Schlenoff [2005]’s work and describe the

locomotion, sensory and computational capabilities of the robots. A real-world im-

plementation of my work could use the ontology created by Schlenoff [2005] in order

to provide a commonly understood description of the robots used.

To promote research into USAR robotics, the National Institute of Standards and

Technology (NIST) developed a series of robotic USAR test arenas, which are used

in the RoboCup Rescue competition [Jacoff et al., 2003]. These test arenas provide

a real-world physical simulation of conditions a robot can be expected to encounter

while operating in a disaster zone. Three standard configurations represent environ-

ments of increasing difficulty, and provide simulated victims that must be located.

The goal of the NIST test environments is to provide a standardized means to evalu-

ate and compare USAR robots. Jacoff et al. [2003] also describes the USAR mission

used in the RoboCup Rescue competitions. Similar to my example implementation,

robots must explore an environment while building a map and identifying the location

of victims found. Further, in my implementation I evaluate the performance of my

framework in terms of the percentage of victims located and the percentage of the

environment explored. This is similar to the performance metric used in RoboCup

32 Chapter 2: Related Work

Rescue which assigns a point-score based on the number of victims located and quality

of the map created.

Reich and Sklar [2006a,b] make use of both robots and wireless sensor nodes in

order to locate victims within an environment and to subsequently localize them.

Similar to my work, an assumption is made that the sensor nodes are simple, inex-

pensive, expendable, and available in larger quantities than the more capable robots.

The sensor nodes detect victims in the environment through some means (their exam-

ple implementation uses a simulated victim detection approach), and broadcast the

presence of victims to neighboring sensor nodes. Sensor nodes pass along this infor-

mation, tracking the number of hops to the detected victim. As knowledge of a victim

propagates through the network, robots begin to move toward the closest sensor node

with the lowest victim hop-count. The robots, knowing their starting location, can

thus determine the location of the victims. In my work, I assume robots use a local

coordinate system based on their starting location and that the members of a team

reconcile differences in their coordinate system, lending to a shared understanding of

locations in the environment. Knowledge of detected victims is propagates to other

agents as a specific location, rather than using communication hop-counts.

Carnegie [2007] developed a robotic USAR system which uses a team consisting

of three different classes of robots. The largest robots act to carry the smaller two to

the edge of the disaster zone. The middle size robots are responsible for deploying

the smallest robots into the environment. Similar to the work I propose, the small-

est robots are intended to be inexpensive enough that they are expendable. Task

allocation in Carnegie [2007]’s system assumes the availability of high bandwidth

Chapter 2: Related Work 33

communication and a preformed team structure – two constraints my work does not

assume.

Dissanayake et al. [2006] developed the CASualty robotic search and rescue sys-

tem. CASualty makes use of three different classes of robots with different physical

forms and sensor capabilities, suitable for operation on different terrain types. Similar

to the work I propose, Dissanayake et al. [2006] make use of an occupancy grid map-

ping approach and frontier-based exploration. Although their approach uses multiple

heterogeneous robots to accomplish the search and rescue task, coordination between

the robots relies entirely on human operators.

Wegner and Anderson [2004] implemented a robotic control system for use in a

USAR domain. Their work focuses on the issue of blending instructions from a human

operator with the instructions generated by robots’ own autonomous control system.

The system also provides the capability to identify situations where a robot requires

the assistance of the human operator (e.g. a robot getting stuck). Gauthier and

Anderson [2005] extend this work by investigating situations where robots can assist

one another. Neither of these works employs heterogeneous robots as I intend to, and

more importantly, neither performs any type of autonomous team management.

Scone and Phillips [2010] recognize that in a rescue environment communication

will necessarily be short range and limited in nature. They assume a robot will be

designated as a coordination point through which other robots will report the dis-

covery of victims in the environment to rescuers residing outside the environment

(presumably this robot has increased communication facilities that enables it to com-

municate over a longer distance). Since robotic rescue aims to find as many victims,

34 Chapter 2: Related Work

as quickly as possible, Scone and Phillips [2010] study the impact of robots moving

to report their results to the coordination point on the overall mission. When a robot

moves to report to the coordination point, it is not actively searching for victims.

Conversely when a robot is exclusively searching for victims, it is potentially delay-

ing the delivery of information regarding the presence of victims it has already found

back to the coordination point. They found that using a biologically inspired foraging

strategy, a balance between exploring and reporting results to the coordinator could

be made, minimizing the overall time to find and report the location of the victims

in the environment. Although my work does not explicitly deal with the impact of

reporting exploration results back to the rescue team, my framework does attempt to

ensure that a single agent on a team maintains a complete map of the environment

along with the location of the victims. Strategies such as Scone and Phillips [2010]’s

could be used to ensure that team coordinators regularly report their results to the

rescue team.

2.3 Experimental Domain

Since my example USAR implementation involves the use of robotic agents, there

is also background to my thesis in terms of robotic control and other problems tra-

ditionally associated with mobile robots, such as mapping. Although the primary

focus of this thesis is the agent interaction / teamwork aspect of my approach, it is

important to provide a necessary foundation in related areas necessary for a team

of robotic agents to operate in a disaster environment. This section provides neces-

sary background for robotic control software, environment mapping techniques, and

Chapter 2: Related Work 35

Robot

Goal

(1) Motor schema
generates attractive

vector

(a)

(1) Perceptual
schema interprets

ranger data

(2) Motor schema
generates repulsive vector

(b)

Action Vector

Goal

(c)

Figure 2.1: The goal exerts an attractive force on the robot while obstacle hits exert

a repulsive force. The vector sum becomes the action vector the robot uses to move.

general exploration approaches.

2.3.1 Autonomous Control

The most commonly-used approaches to control in modern mobile robotics are

behaviour-based approaches, where control logic is grouped into interacting packages

for specific behaviours. An example of this is Arkin [1987]’s Schema-based approach.

Arkin uses perceptual schemas to filter incoming sensory information into a format

suitable for use by motor schemas, which determine the action the robot will take

based on the current perceptual information. Schemas can be organized hierarchically,

and can stimulate or inhibit one another’s outputs, allowing for complex behaviour

to emerge from the interaction of simple components.

Figure 2.1 shows an example of using schemas to direct a robot to a goal, while

avoiding obstacles. In 2.1a, a motor schema directs the robot to the goal location

by generating an attractive vector proportional to the distance from the goal loca-

36 Chapter 2: Related Work

tion. Obstacle avoidance is facilitated through a perceptual schema 2.1b(1) which

interprets the distance readings from the robot’s sensors to identify the location of

obstacles. The output of this perceptual schema feeds into a motor schema 2.1b(2)

which generates a repulsive vector to guide the robot away from the obstacles. The

vector-sum of the motor schemas results in the action vector 2.1c which guides the

robot towards the goal while avoiding obstacles. Beyond this global vector summa-

tion, schemas may be arranged to specifically reinforce or inhibit the output of other

schemas in particular.

I use a schema-based approach in my example implementation to provide robots

with the ability to interpret and process raw sensory data, and provide a set of mo-

tion primitives such as move to location and random wander motor schemas. The

implementation of my framework provides a deliberative layer than enables and dis-

ables schemas as necessary based on the robot’s current task. This goes beyond a

pure schema-based approach itself, making my behavioural implementation a hybrid

architecture, analogous to others who have also added deliberative mechanisms to

schema-based models (e.g. AuRA [Arkin and Balch, 1997]).

2.3.2 Mapping

Since one of the primary goals of robots in my work is to generate a map of

the environment, an effective means of representing the map information is required.

The major approaches to mapping can be divided into topological mapping [Goe-

demé et al., 2008], which creates a map that specifies the connections between areas,

and occupancy-grid based mapping [Elfes, 1989], which divides the map into a grid

Chapter 2: Related Work 37

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 0 0 0 -1 -1

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 25

0 23

0 25

0 0
Known
Empty

Unknown

Occupied

Figure 2.2: Occupancy grid maps indicate the certainty that an obstacle is present

in an area represented by a cell.

with each cell representing a fixed amount of space. Each cell in the grid indicates

the degree of confidence that an obstacle occupies that space. I will be taking the

latter approach for my mapping, because of the ease of creating and communicating

occupancy grids. While this is the less sophisticated of the two, and would not likely

be used in real-world USAR, mapping is a peripheral element in my research, and

this method will support operation in my simulated environment while keeping the

scope of this work reasonable.

In my implementation of occupancy grids, Equation (2.1) illustrates how the value

of a cell, Cx,y, represents the degree of confidence there is an obstacle present in the

location that cell represents.

Cx,y =

−1 nothing is known about (x,y);

0 the cell is unoccupied;

1..M the cell may be occupied.

(2.1)

Where Cx,y = −1, the robot has no knowledge of whether there is an obstacle or

not at the location (x, y); the area is unexplored. A value of 0 represents a certainty

38 Chapter 2: Related Work

that a cell is unoccupied. Values from 1 to M represent an increasing degree of

confidence a cell contains an obstacle. The value M represents a maximal degree of

confidence a cell contains an obstacle – my implementation uses M = 25. Figure 2.2

shows a small occupancy grid map with unknown (unexplored) space, known empty

space, and areas of differing obstacle confidence.

Gutmann et al. [2005] extends the basic two-dimensional occupancy grid map by

adding a height measure to each cell. This means that each cell records not only the

confidence an obstacle occupies a space, but also the height of the obstacle in that

space. Gutmann et al. [2005] calls this a 2.5D occupancy grid map, and uses it for

obstacle avoidance with humanoid robots traversing a standard floor surface. The

height information allows the humanoid robot to plan its steps given the presence of

obstacles in the environment that it can potentially step on to or over. In my example

implementation, I use a 2.5D occupancy grid map to differentiate between areas of the

environment covered by low debris suitable for navigation by tracked robots, versus

open areas of the environment suitable for navigation by wheeled robots.

2.3.2.1 Updating the map

Robots update an occupancy grid map of the environment to indicate the potential

presence of obstacles. A robot equipped with a bump sensor, for example, could

update an occupancy grid map when it collides with an obstacle. The robot could later

drive over the same location, decreasing the confidence of an obstacle being present at

that location. The same principle also applies when considering observations reported

by other robots; if another robot reports a location as empty, this can decrease the

Chapter 2: Related Work 39

-1 -1 -1 -1 -1 -1 -1 +3 Obstacle
Range
Sensor

(a) Updating the confidences based on a scan.

½ ½

½ 1

½ ½

Range
Sensor

½

½

½

(b) The growth rate operator updates the

confidence of obstacles based on a cell’s

neighbors.

Figure 2.3: Updating an occupancy grid map using HIMM.

confidence of an obstacle being present at a location. Observations made by other

robots are generally given a lesser importance to those made first-hand, as there is

inherently some degree of uncertainty due to errors in localization. That is, a second

robot may report an obstacle at a given location thinking it is at that location, when

in fact it is somewhere else.

Robots building maps of an environment will typically make use of range-finding

sensors to build a map of the environment. Range-finding sensors, such as sonars and

laser range scanners, provide a means of estimating the distance from the robot to

the nearest obstacle in the path of the scan beam. Sonar sensors are generally fixed

to the robot’s body and return a range reading in the direction the sensor points.

Laser scanners sweep a laser beam across the scanner’s field of view and return range

readings at fixed intervals; a SICK laser scanner, for example, returns 180 readings

over a 180 degree field of view. Given that the robot knows its location on the

occupancy grid map and the direction the ranger reading occurred, it can update

the occupancy grid map. All range-finding sensors have a maximum scan range; if

40 Chapter 2: Related Work

no obstacle is encountered within the maximum scan range these sensors typically

return a maximum distance value.

Borenstein and Koren [1991] developed the Histogrammic in Motion Mapping

(HIMM) algorithm to update the occupancy grid cells in a straight line between the

robot’s location up until the end of the scan. Figure 2.3a illustrates this process.

Each cell along the laser scan line up until the end of the scan is decremented in

confidence by 1; this makes sense as the ranger beam did not encounter an obstacle.

If the end point of the scan is not at the maximum range of the sensor, the end

point is increased in confidence by +3 as it is presumed the point is an obstacle. The

schema uses Bresenham’s line algorithm to determine the points between the robot

location and the end of the scan line that require updating. Bresenham [1996]’s line

algorithm is a computer graphics algorithm used to efficiently rasterize a line on a

grid between two points.

Since HIMM increases confidence at a single point, a fast moving robot will tend

to report few successive scans for the same location. This can lead to low confidence

values for obstacles while the robot is moving. To help grow confidence in the presence

of obstacles, HIMM uses a growth rate operator when it updates the obstacle cell at

the end of the scan. In addition to increasing the confidence by 3, the end cell is also

increased in confidence by 1
2

the confidence of each neighboring cell.

I use HIMM to update the occupancy grid maps that robots in my implementation

build. HIMM is advantageous as repeated scans build confidence in the presence of

obstacles. Where an erroneous sensor reading reports the presence of an obstacle,

subsequent scans will reduce the confidence in the presence of that obstacle causing it

Chapter 2: Related Work 41

to fade off the map. This is also helpful to prevent robots from mapping the presence

of other teammates as obstacles; subsequent scans of the same location will cause the

presence of the robot to fade away in confidence.

2.3.3 Localization and Shared Coordinate Systems

The reactive autonomous control approach introduced in Section 2.3.1 provides a

robot with the ability to avoid collisions with obstacles, while navigating to a destina-

tion in the environment. Further, the mapping techniques introduced in Section 2.3.2

provide a robot with the ability to build a representation of the environment where the

robot (or its team) has been. For a robot to navigate effectively in an environment, it

must also be able to determine its location within that environment [Murphy, 2000].

Localization is the process by which a robot attempts to determine its location in an

environment. According to Murphy [2000], localization is either iconic, meaning the

raw sensor data is used to determine a robot’s location, or feature-based, meaning

identifiable features such as corners or doorways are identified and used to determine

the robot’s location.

For a single-agent scenario, a robot could use its own map to provide reference

points for determining its location. In a multiple-robot scenario, such as that involved

in my work, the multiple robots involved require a common understanding of the

meaning of spatial positions they refer to [Wiebe and Anderson, 2009]. For example,

each robot creating its own map may have a completely different starting point, yet

ultimately will have to combine these maps in order to produce cooperative results. A

robot indicating a goal to travel to a specific location will similarly have to refer to that

42 Chapter 2: Related Work

location using a reference that will have meaning to a receiving agent. This requires

some form of shared coordinates (either a common external frame of reference, or a

means of translating one agent’s frame of reference to another). It also requires that

each agent have a reasonable and continually updated estimate of its own location in

the environment, so that a given location can be interpreted relative to the robot’s

own.

The most well-known common frame of reference for geographic information is

the Global Positioning System (GPS). GPS provides an absolute, external frame of

reference, which a GPS receiver can use to determine the latitude and longitude of

the receiver. Since GPS receivers all use the same external frame of reference, robots

equipped with GPS receivers have a shared understanding of the meaning of locations

they communicate to one another. Even in a forgiving outdoor environment however,

GPS still requires sophisticated correction schemes for making accurate large-scale

maps with multiple robots [Reid and Braunl, 2011].

GPS is far less forgiving in other environments, for example, such as inside build-

ings with concrete walls. Radio interference and debris also make GPS unsuitable

for robots operating in a disaster zone. Further, in environments such as exploring

a mine or another planet, GPS signals will not available at all. Without a common

external frame of reference (such as provided by GPS), robots must rely on other

methods to determine their location.

A number of probabilistic localization techniques exist which allow a robot to

localize itself in its map of the environment. These techniques use a combination

of odometry information, and matching the robot’s current sensor readings against

Chapter 2: Related Work 43

the robot’s map in order to probabilistically establish the robot’s location. These

approaches can use only the information provided by one agent (e.g. [Burgard et al.,

2011], [Guanghui et al., 2007]), or can take advantage of the perspectives of multiple

agents inhabiting the same environment. Approaches in the latter category, such

as those of Fox et al. [2000] and Martinelli et al. [2005], use mutual observation

between robots to allow robots in close proximity to share data in order to aid in

their respective localization efforts. The encounter provides a common reference point

which both robots use to establish a common localization. Probabilistic approaches

such as these account for noisy and inaccurate sensor data, and are ideal for real-world

implementations.

A robot operating in an unknown environment attempting to localize itself, while

also building a map of the environment (Section 2.3.2) faces further challenges. Lo-

calizing using a map that is under construction is difficult, as the map will be an

incomplete representation of the environment. The incomplete map can result in

a lack of firm reference points necessary to facilitate localization. This problem is

known as simultaneous localization and mapping (SLAM), and involves a robot both

building a map of the environment it explores, and localizing itself with that map

as it operates. Basic SLAM techniques, such as those by Diosi and Kleeman [2004]

and Montemerlo et al. [2003], are intended for use by a single robot. The SLAM

problem has also been studied extensively when considering multiple robots coopera-

tively mapping and localizing within an environment (e.g. [Pfingsthorn et al., 2008],

[Andersson and Nygards, 2008]).

Aside from probabilistic approaches to establishing a shared understanding of

44 Chapter 2: Related Work

locations among a team, it is also possible to build one up over time. Wiebe and

Anderson [2009], for example, studied three approaches to enable robots to establish

shared understandings about locations in the environment. Their first approach uses

chance encounters between robots to establish a shared meaning for the location where

the robots met. Their second approach establishes shared understandings based on

uniquely identifiable areas of the environment which both robots observe. Finally,

their third approach recognizes common features such as doorways or hallways, and

establishes a shared meaning between robots based on these.

It is often desirable to introduce simplifications to single and multi-robot localiza-

tion, in order to facilitate research in an unrelated area. Anderson and Papanikolopou-

los [2007, 2008], for example, use a deployment pattern where all robots enter the

environment one at a time, in the line, providing a shared localization ability through

their shared common origin. The RoboCup small size league uses a camera positioned

over the playing field to identify and localize the players, using a shared coordinate

system [Zickler et al., 2010]. Rooker and Birk [2007] demonstrated their approach to

maintaining wireless communication among team members in simulation, assuming

all robots have a shared coordinate system and perfect localization.

Since localization and establishing a shared coordinate system between robots is a

peripheral area to my focus on adaptive teamwork, I use the built-in localization pro-

vided by the Stage simulator to provide each robot with its absolute location within

the environment [Gerkey et al., 2003]; this provides a global shared coordinate system

and perfect localization, similar to Rooker and Birk [2007]. To simulate conditions

necessary for each team to establish its own shared coordinate system, members of

Chapter 2: Related Work 45

a team begin operation in a common location, similar in spirit to Anderson and Pa-

panikolopoulos [2007]. This ensures robots on a team have a common starting frame

of reference. I do not assume that all teams start at the same coordinates, however,

so teams will create maps based on different origins, and agents on different teams

will refer to locations with different designations, requiring the same translations that

would be necessary in the real world.

While not requiring a complete multi-agent localization algorithm in my approach

is a simplification over the real world, it involves a peripheral area of research upon

which adaptive teamwork does not directly depend. I have attempted in my work to

leave open the means by which localization could be performed, to allow any approach

to localization to be substituted into this. For example, although in my implementa-

tion all robots share the same coordinate system through the Stage simulator, I use

encounters between robots to emulate the coordinate system reconciliation (similar

to Martinelli et al. [2005]’s approach) that would be required if robots localized in a

different manner. I assume two robots are only able to reason about communicated

locations and information if they have previously encountered one another in the

environment, and completed a coordinate reconciliation step (Section 4.7.1.1).

2.3.4 Multi-Robot Mapping

Given techniques for a single robot to construct a map of the environment in which

it operates (Section 2.3.2), and techniques robots can use to establish a shared un-

derstanding of their location within the environment (Section 2.3.3), it is desirable to

construct a single unified map of the environment, based on the maps each individual

46 Chapter 2: Related Work

builds.

Since my work uses the localization API provided by the Stage simulator, all

robots have shared, perfect localization. This means the maps robots build will all be

based on the same coordinate system, and map merging becomes a simple operation

of combining the values for cells with the same coordinates (Section 4.8.1.2).

In reality, differences in coordinate systems makes map merging a more complex

operation than in my implementation. Multi-robot mapping is a well-studied area,

and many useful solutions have been studied to account for differences in coordinate

systems between robots. An example is Carpin [2008]’s approach to allow multiple

robots exploring an area to merge their individual occupancy grid maps into a single

combined map. Carpin’s approach uses image processing techniques to identify areas

where the individual maps overlap, and a series of translations and rotations are then

applied to fit the map pieces together.

Imperfect localization can also result in areas where a robot’s map ends up over-

x

1) Two robots navigate a
circulator corridor, creating
separate maps as a series of
connected patches

2) Errors in localization while
constructing each robot’s map
would cause an overlap if the
patches were fit together.

3) Encountering one another
provides a common reference
point on both maps, allowing the
maps to be fit together,
correcting the overlapped areas.

Figure 2.4: Example of robots merging map patches stored in a manifold.

Chapter 2: Related Work 47

lapping itself, such as illustrated in Figure 2.4(1) and 2.4(2). A potential solution to

this is Howard et al. [2006b]’s approach to simultaneous localization and mapping,

which represents maps as a series of map patches overlaid on a manifold structure.

The map patches are able to logically overlap in the manifold structure, and when

robots encounter one another (Figure 2.4(3)), the robots use the common reference

point of the encounter, which allows patches to be correctly merged together, resolving

overlaps and loops in the stored map data. Because my simulation uses perfect local-

ization, such techniques are not required, but could be substituted into the framework

I present when implemented in a physical environment.

2.3.5 Frontier-Based Exploration

Aside from providing humans with a view of the environment being explored, a

map can also be used to help guide the team’s exploration efforts.

Yamauchi [1997] developed a frontier-based approach to exploring an unknown

space using an occupancy grid map. Frontier-based exploration works by detecting

the boundaries between empty explored space and unexplored space on the occupancy

grid map. A frontier is an area where a robot could potentially gain more information

about the environment; by continually navigating to frontiers the robot is able to con-

tinually build and expand its occupancy grid map of the environment. Frontier-based

exploration has been shown to be an effective multiple robot exploration technique

(see [Yamauchi, 1998; Poernomo and Ying, 2006; Ma et al., 2006; Rooker and Birk,

2007]), and I will be incorporating a frontier-based exploration approach in directing

robots to explore the environment.

48 Chapter 2: Related Work

While there are a host of other interesting low-level problems in mobile robotics

that could be addressed in this thesis, the main focus of my work is on high-level

team formation and adaptation. I will therefore be using tools within the simula-

tion package I will employ to provide adequate solutions to other problems (such as

localization) to allow me to focus my efforts on the core of this thesis.

Chapter 3

Methodology

The main contribution of my thesis is the development of a framework enabling

teams of heterogeneous agents to form teams and adapt to changes in team structure,

while operating in a complex and dynamic environment. The purpose of this chapter

is to describe the approach my framework takes in a domain-independent manner.

While I make reference to some of the particular features of domains that make them

challenging or dangerous to robots, and draw examples from USAR on occasion,

it is important to emphasize that my framework is not intended to be confined to

one particular domain. Other domains involving the use of multiple agents with

potentially different skill-sets and area coverage in a challenging environment are ideal

candidates for my framework. Examples include exploring another planet, clearing

a mine field, and performing surveillance. At the same time, my framework and its

implementation is inspired by particular aspects of real-world difficulties associated

with multi-robot systems, and so I begin with a brief discussion of some of these,

before providing an overview of the framework itself.

49

50 Chapter 3: Methodology

In my example implementation, agents are embodied as autonomous robots equipped

with the necessary capabilities to operate in a disaster environment. In such an en-

vironment there is a high degree of probability that robots will become damaged or

destroyed making it cost prohibitive to equip every robot with all capabilities. This is

common in many challenging domains, and for this reason my framework assumes the

capabilities of the robots falls onto a spectrum ranging from poorly equipped to well

equipped. I also assume that there will be many poorly equipped robots, and few well

equipped robots. The manner in which robots are equipped is domain and mission

dependent, but I assume that the poorly equipped robots would be equipped with

the least expensive sensors, simplest drive capabilities and minimal computational

power. I also assume that robots will be specialized to support the overall mission.

In a USAR domain, for example, some robots might be equipped with complicated

sensory equipment capable of confirming the presence of a victim in the environment

(e.g. a combination of sophisticated life signs detection, such as CO2, heat, as well

as vision), while others might be specialized towards penetrating difficult-to-access

areas. Clearing a minefield, on the other hand, could use a large number of expend-

able robots to search for mines and a smaller number of specialized robots to clear

the mines the exploring robots find.

My methodology involves mapping agents to tasks in a manner similar in spirit to

that of Kiener and von Stryk [2007], but with two important differences. First, task

allocation is decentralized. Rather than using a fixed central controller to identify and

assign tasks, an agent on a team occupying the role of team coordinator is responsible

for the management of work to be completed. This responsibility is not fixed, and

Chapter 3: Methodology 51

shifts between team members to take into account the failure of team members and

the arrival of new ones. Second, task allocation in my approach makes use of a

formal definition of roles, where Kiener and von Stryk [2007] perform task allocation

by directly mapping tasks to robot capabilities.

The use of roles promotes efficiency in task allocation in a similar way that roles in

human organizations do: they allow assumptions of the abilities of the agents that fill

them, thereby avoiding exhaustively considering all underlying skills of all potential

agents. Exhaustive matching is impractical in all but the simplest situations such

as that implemented by Kiener and von Stryk [2007](Section 2.1). As the number of

agents and capabilities increases, the memory and computational cost of an exhaustive

search is too great for the available time and the limited computing facilities of an

agent. Beyond the computational complexity of matching itself, there is also the issue

of decentralization, since no one agent will always have a consistent view of the world.

Supporting an exhaustive matching process would entail the cost of making this view

consistent as well.

There are some complications inherent with using roles in this manner. Since an

agent may fill a role to which it is not entirely suited, it is possible that some tasks

are best done by others despite normally being associated with that role. If the task

warrants, an assigner can start with the role assumption and spend the extra effort to

match beyond that to mission-specific attributes (a more detailed discussion can be

found in Section 3.5.3.1). For example, there may be any number of agents with the

equipment to perform some specified task, but beyond this it might be more desirable

to find the one of these that is closest to the location associated with that task. It

52 Chapter 3: Methodology

is also possible that an assignee knows it cannot complete a task due to equipment

failure, or that its current workload is not conducive to taking on another task. In

such a situation, it can inform the assigner that it cannot complete the task and

the assigner will attempt to assign the task to another agent. The task assignment

process assumes communication is unreliable and that assignees can fail at any time;

this ensures that task assignment does not get stuck waiting for an agent due to

communication or equipment failure.

Over the course of operation in a difficult and dynamic domain, it is reasonable to

expect that the nature of a team will change, both by losing members (e.g. disability,

recruitment to other teams) and gaining them (encountering new agents, meeting

and exchanging members with other teams). An agent could easily be destroyed by

rolling over a mine while clearing a minefield for example, or become stuck on loose

ground while mining or exploring another planet. Equally, another jurisdiction may

arrive at a disaster site with new agents that can join those already exploring for

human victims. My work provides provisions for agents to change roles as necessary

(possibly changing teams as well) in these situations. This means, for example, if the

agent occupying the team coordinator role fails, another agent can step in to fill that

role, or other agents may recognize the lack of possibilities for leadership and seek

out another team, causing the restructuring or complete breakup of the team itself.

Further, an agent that becomes separated from its team is able to switch to a new

role and join another team it encounters.

Similar to Odell et al. [2003], in my framework a desired team is defined by the

number of agents and the roles they fill on the team in order to complete the mission.

Chapter 3: Methodology 53

The desired team defines the desired minimum and maximum number of agents filling

each role; these limits are chosen at design-time to ensure that the team can handle

the expected mix of tasks present in the environment.

The following sections describe the operation of my framework from the perspec-

tive of the team as a whole and the individual agent. First, an overview of the major

interactions within a team are presented in order to provide a high level overview

of what my framework does to support the maintenance of teams (Section 3.2) and

the distribution of work amongst teammates (Section 3.3). Next, the relationship be-

tween attributes, tasks and roles is explained to provide a basis for how my framework

accomplishes its major operations in a distributed manner (Section 3.4). Finally, Sec-

tions 3.5, 3.6 and 3.7 provide a detailed description of the algorithms and interactions

of my framework in terms of the concepts of attributes, tasks and roles.

3.1 Framework Overview

To fully understand the operation of my framework and how it supports dis-

tributed team maintenance and task management, it is necessary to describe the

high-level operations and interactions the framework supports. These high level de-

scriptions provide an understanding of what the team as a whole does, as well as the

major interactions between agents using my framework. Subsequent sections answer

the question of how my framework accomplishes these operations.

Figure 3.1 shows the operation of my framework from the perspective of the team,

while Figure 3.2 shows how this translates to individual agents on a team. The

primary objectives of my framework are team maintenance and task management.

54 Chapter 3: Methodology

Framework Operations for the Team as a Whole

Identify Assign Execute

Adjust
Roles

Merge
Teams

Encounter
Agent

Recognize
Failures

Disband
Team

Team

Agent
3

Agent
2

Agent
1

Agent
n

Figure 3.1: The operation of my framework, from the perspective of the team as a

whole.

The team maintenance operations focus on the formation and maintenance of teams,

and their reaction to changes in team structure. The task management operations

focus on the identification and assignment of tasks to the most suited members of

the team. Since roles in my framework are defined in terms of the tasks normally

expected of them, a deficiency in team structure can result in a situation where task

assignments are suboptimal; the team maintenance operations attempt to correct

deficiencies in team structure so that a higher level of suitability can be achieved

when assigning tasks.

The first team maintenance operation a team performs (Figure 3.1) is to recognize

and respond to agent failures. In a disaster environment, for example, robots could

be damaged, destroyed, or become separated from their teams. In response to a

Chapter 3: Methodology 55

Framework Operation for a Single Agent

Adjust
Role

Merge
Teams

Identify

Assign Execute

Receive

Send

Accept
Form
Team

Encounter
Agent

Recognize
Failures

Team

Agent
3

Agent
2

Agent
1

Agent
n

Figure 3.2: The operation of my framework, from the perspective of an individual

agent.

recognized failure, the team will either adjust the roles of the remaining agents on

the team, or disband the team completely. This is accomplished in a distributed

manner at the agent level (Figure 3.2). Agents actively monitor the status of their

teammates and when they determine a failure has occurred are able to initiate an

adjustment in their own role accordingly.

Team maintenance also occurs when agents encounter one another in the envi-

ronment. From the perspective of an established team (Figure 3.1), encountering

another team provides the opportunity for teams to merge or re-distribute the agents

between the teams. Robotic agents on different teams in close physical proximity to

56 Chapter 3: Methodology

one another, for example, are able to visually identify each other and take advantage

of short-range communication between each other. My framework provides the agents

with the ability to learn about each other’s teams and to exchange agents between

teams in order to improve the operating conditions of both.

Aside from providing established teams with the ability to merge / re-distribute

agents, team maintenance also supports the formation of new teams from individual

agents operating in the environment as they encounter one another. In my framework,

individual agents are not treated differently from agents operating as a part of a

larger team. Such agents are the sole member of the team and fill the role of team

coordinator. A lone agent well suited to filling the team coordinator role will tend

to retain that role and build up its team as it encounters agents, where a long agent

poorly suited to filling the team coordinator role will tend to cede that role for a more

suitable one on another team it encounters.

Thus, using my framework, teams are a fluid aggregation of agents, where the

agents switch roles within the team and change teams as necessary to make the best

use of the available agents. As agents change roles and teams, the overriding goal is

to form stable teams that meet the definition of a desired team as closely as possible.

From the perspective of an existing team using my framework, a collection of task

management activities are performed, as shown in Figure 3.1. As the team identifies

tasks, these are assigned to the best suited team members who carry them out. In

my framework, tasks are considered to be atomic units of work that a single agent

will complete in isolation. As shown in Figure 3.2, the identification of tasks occurs

at the agent level. As agents identify tasks, they are sent to the agent filling the team

Chapter 3: Methodology 57

coordinator role. Each task is assigned to the best suited agent, who carries it and

reports the results back to the team coordinator.

Where the current team complement allow the feasible assignment and completion

of a task (i.e. no agent could possibly complete it, even in a mediocre way), the

task is retained for future completion, as long as the task remains relevant. Future

assignment attempts ensure that the task has an opportunity to be carried out when

the team complement supports it.

With a high level overview of the interactions that occur in my framework estab-

lished, the following Sections 3.2 and 3.3 describe the team maintenance and task

management interactions shown in Figures 3.1 and 3.2 in more detail to provide

a better understanding of what my framework does. This provides an appropriate

foundation for the detailed discussion of how attributes, tasks and roles operate and

the detailed algorithms used to accomplish team maintenance and task management,

which form the remainder of this chapter.

3.2 Team Maintenance

Before discussing the operation of my framework further, it is necessary to have

some understanding of the high-level relationship between tasks and roles in my frame-

work (more formal descriptions of the representations of these will appear in Sections

3.4.2 and 3.4.3, with further implementation details in Chapter 4). A task specifies

the set of capabilities an agent must possess in order to take on a task. The task

requirements are formulated such that it is possible to calculate a suitability value for

any one agent with a unique set of capabilities to complete that task (Section 3.4.2).

58 Chapter 3: Methodology

Roles, on the other hand, are defined in terms of the set of tasks an agent filling

that role will normally be expected to be able to perform. This means the set of

capabilities an agent requires to fill a role is ultimately determined by the tasks

normally expected of that role. Since task requirements are formulated such that

an agent’s suitability to execute a task can be calculated, it follows that an agent’s

suitability to fill a role is the aggregate of its suitability to complete each task normally

expected of the role.

1

1 2

1 2 3 4 5

6 7 8 9 10

Team Coordinator

Explorer / Verifier

Explorer

Role: Positions:

1 1

1 2

3 10

Desired Number:

Min: Max:

Figure 3.3: The definition of a desired team describes the roles and number of agents

filling each role. The definition defines a minimum and maximum number of agents

desired in each role.

The concept of a desired team is central to team maintenance in my framework.

Figure 3.3 depicts the concept of a desired team using the configuration from my

example USAR implementation. The desired team identifies the number and roles

of the agents that make an effective team. It describes the team composition that

the team maintenance operations aim to achieve. The desired team composition is

dependent on the domain and the capabilities of the agents and is determined by a

Chapter 3: Methodology 59

human in advance of operation. The desired agent mix is chosen to ensure the agents

coordinating on a team are able to effectively complete the team mission (future work

could have the team learn or adjust the desired agent mix as it operates). Within a

team, team coordinator is a special purpose role responsible for directing the overall

operation of the team. The team coordinator role designates the responsibility of

assigning tasks to a single agent and provides a single coordination point where the

results of tasks are collected.

The goal of team maintenance is to ensure agents fill roles on the team which

result in the team approximating the definition of a desired team as closely as pos-

sible. Adjusting the roles agents fill on the team can occur when an agent failure is

recognized, or when a new agent is found and a team merge and redistribution occurs.

3.2.1 Recognizing Failures

Carlson and Murphy [2003] studied the reliability of research and field robots and

found equipment and software failures to be very common during operation. In an

environment hostile to the operation of robotic equipment, such as the exploration of

another planet or in the aftermath of a disaster, it is essential not only to use robust

equipment, but to ensure that the operation of a system is resilient to such failures.

In my framework, where an agent is able to recognize that it has become disabled

in some manner and cannot continue operation, it informs its teammates who record

the failure. In my example USAR implementation, for example, agents that become

stuck and are unable to free themselves inform their teammates, who can then adjust

their roles accordingly.

60 Chapter 3: Methodology

Although self-recognition of failures is an active area of research (e.g. see Verma

et al. [2004]), it is often not possible for an agent to determine itself if it has failed. In

my USAR implementation, agents can become lost when they wander out of wireless

radio range of their teammates or suffer from equipment failure. In a real-world

scenario, other failures are possible due to structural collapses, fires or flooding. Even

very basic failures can sometimes be hard to determine: the result of being in a

dark room can look very much like vision failure, for example. My framework helps

agents detect scenarios where teammates have become separated from the team, or

have suffered a complete failure, by tracking the last time an agent has heard from

the other agents on its team. Agents that have not been heard from in a specified

period of time are considered to no longer be a member of the current team. In

my example implementation, agents rely on monitoring the wireless communication

messages between each other to track when each teammate has been heard from.

My framework primarily concerns itself with coping with the complete failure of

agents; establishing a more complete failure model able to compensate for partial

agent failures would be useful future work.

A team recognizes the failure of agents and responds to these failures by adjusting

the roles of the remaining agents accordingly. Using my framework, an agent is

responsible for determining if any of its teammates have failed, and adjusting the role

it fills on the team in response (a Role Check). Agents change roles in an attempt

to ensure the team matches the definition of a desired team a closely as possible.

Further, role changes ensure that the team coordinator role is filled by the best

suited agent. The recognition of failures is implicit in that an agent adjusts the role

Chapter 3: Methodology 61

it fills on their team in response to deficiencies it detects in its current view of the

team complement. An agent periodically determines the best role for it to fill and

implements a role change if the role is different from the one it currently fills. The

agent informs its teammates of the change, which can trigger subsequent role checks to

occur for other members of the team. To help prevent two agents from simultaneously

determining their role and implementing the same role change, a random interval is

added between role checks to minimize the chance of this occurring. It is important

to note that each agent is responsible for changing roles on its own, and can do so

without the explicit “permission” of any other agent. It is, however, also possible for

an agent to be instructed to change roles by another agent such as in the case where

a team merge occurs (Section 3.2.2).

Since I assume communication is unreliable, messages used to communicate the

current team structure are not guaranteed to reach every member of the team. This

results in agents on a team having a view of the overall team structure that may differ

from the actual team structure. In periods where communication is more reliable it

can be expected that each individual team member will have a more accurate view

of the team structure, while in periods of poor communication it can be expected

that the individual’s view of the team structure diverges from reality. As a result,

an agent can potentially initiate a role change that is sub-optimal due to having an

incomplete view of its team structure. These deviations are expected in the context

of the team of a whole, and compensated for in part by defining a desired team in

terms of a range of agents filling each role. Restricting the role checks each agent

performs to occur on a periodic basis also helps to prevent the team from continually

62 Chapter 3: Methodology

Bar indicates
agent suitability

to fill role

Team Coordinator

Explorer / Verifier

Explorer

Team meets the definition of a desired team.

Agent switches roles
to compensate for

the failure.

Team Coordinator

Explorer / Verifier

Explorer

Agent changes roles to ensure team continues
to meet the definition of a desired team.

Agent
experiences

failure

Figure 3.4: A team adapts to the failure of an agent occupying the team coordinator

role.

restructuring itself as its view of the team structure changes. Such delays between

reevaluation are often useful in multi-agent systems, to avoid unnecessary oscillation.

Anderson and Baltes [2006], for example, note that it can be used both for choosing

which opponents to block on a field, and what the most appropriate play should be

in robotic soccer, while avoiding explicit communication between agents.

Figure 3.4 uses the roles and agent types from my example USAR implementation

to illustrate the role adjustment that occurs in response to the failure of an agent.

The specific details of the tasks used to define these roles, as well as differences in the

different robot types are presented in Chapter 4; they are discussed here at a high

level to provide an example of how a team responds to failures. Prior to the failure,

Figure 3.4 shows agents filling roles in quantities deemed ideal given the definition of

a desired team. The green bars below each agent show the degree of suitability for

each agent to fill their current role. An agent’s suitability to fill a role is calculated

by matching the individual agent’s capabilities against the requirements of the tasks

Chapter 3: Methodology 63

normally expected of the role (Section 3.4.3.1). One of the agents filling the explorer

/ verifier role recognizes the failure of the agent filling the team coordinator role

and adopts that role in response. Others with similar suitability will be unlikely to

re-examine their roles at the same time, and so conflict is unlikely. In the event two

agents attempt to adopt this role at the same time, the next role check by either agent

would rectify the situation. Where the agents are not equally suited to fill the role,

the less suited agent would choose a new role during the role check, and the better

suited agent would remain in the role. Where both agents are equally suited, the

agent with the highest robot identification number (Section 3.4.1) chooses another

role. Since the agent adopting the team coordinator role is not fully suited to fill

that role, it can be expected to do so in a reduced capacity compared to the failed

agent. The team, however, can continue operation despite this. When an agent better

suited to fill the team coordinator role joins the team, the less suited agent will cede

the role to the better suited one in a similar fashion. Since agents do not perform

role checks at the same time, it is unlikely that multiple agents will adopt the same

role simultaneously. However (as explained above), should this occur the agents will

correct the situation during a subsequent role check.

Because of the assumption that there will likely be few very-well equipped agents,

the failure of one such agent, as in this example, will often result in a less suitable

agent taking its place at least temporarily. In Figure 3.4, the explorer role is filled

by agents that are so simplistic in nature as to be entirely unsuited to fill the team

coordinator role. In a scenario where only agents of this type remain on the team

after the failure of a well suited team coordinator, one would fill the role of team

64 Chapter 3: Methodology

Team 2

Agent
1

Agent
3

Agent
1

Agent
n

Team 1
Agent

7 Agent
8

Agent
9

Agent
n

Share
Team

Knowledge

Best Suited?

Merge /
Redist.

Inform
Team

Yes

No

Share
Team

Knowledge

Best Suited?

Merge /
Redist.

Inform
Team

Yes

No

Figure 3.5: Two agents encounter each other and perform a merge on behalf of their

respective teams.

coordinator. Because the agent type lacks the ability to perform any meaningful team

coordinator activities, the result would be a gradual degradation in the performance

of the team. Without a team coordinator to assign meaningful work, the agents will

eventually resort to their default idle behaviour of wandering. This will result in the

agents wandering away from one another and each agent not having heard from its

teammates in some time. At this point, it will form a new team with itself as the

only member, making it a likely candidate to be picked up by an established team

that encounters it in the future.

3.2.2 Encountering Agents

Teams encountering one another have the opportunity to exchange teammates

so both teams better meet the definition of a desired team, or to combine them

Chapter 3: Methodology 65

into a single team (the simplest case of which is picking up a single individual that

has no other teammates). Using my framework, this occurs when individual agents

on different teams encounter one another. In my example USAR implementation,

agents may sense one another’s presence while performing their own tasks, by virtue

of being in close physical proximity. During such encounters the two teams also have

the opportunity to share mission-specific data between themselves. In my example

USAR implementation, an encounter between teams provides the opportunity to share

information about the area that each team has explored, and the location of any

potential victims that have been found so far.

Figure 3.5 shows the operations that occur when two agents encounter each other

and perform a merge and redistribution of their respective teams. The two encoun-

tering agents first exchange information about their teammates. This includes the

roles each agent occupies, as well as a description of the capabilities of each agent.

The two agents encountering each other act as representatives for their teams and

negotiate the merge and redistribution on behalf of their respective teams. There are

computational expectations for performing this task that are similar to those of the

team coordinator, and so the two agents encountering one another must determine

their respective degrees of suitability to this task. The agent with the best suitability

to this will perform the merge and redistribution (if necessary), provided the agent’s

abilities meet a defined threshold (since neither encountering agent may in fact be

particularly well-equipped). If neither agent qualifies, the merge and redistribution

does not take place. In my example implementation, for example, only two of the

agent types are qualified to perform the merge and redistribution operation.

66 Chapter 3: Methodology

Intuitively, the agents on both teams filling the team coordinator role would be the

ideal agents to perform the team merge and redistribution operations. However, unre-

liable communication and potentially large distances between the encountering agents

and their respective team coordinators make this undesirable in practice. Performing

the negotiation over long distances is problematic as unreliable communication makes

failure likely. Further, moving the team coordinator agent closer would prevent that

agent and the encountering agents from completing other useful work in the interim.

Using the encountering agents ensures the merge and redistribution is performed by

agents local to one another. This is a trade-off, as the agent performing the merge

will potentially be less suited from a computational and memory standpoint than the

team coordinator agent from either team. Further, there will likely be some discrep-

ancies in the agent’s personal view of the current team complement compared to the

team coordinators’. However, it is not unreasonable to expect just as large (or larger)

discrepancies due to communication issues inherent in negotiating with the actual

team coordinators from a distance.

The representative agent chosen to perform the merge and redistribution combines

information regarding the other representative agent’s teammates with information

about its own teammates. It uses this information to form new teams by iteratively

finding the best suited agent to fill a role on the new teams and assigning that agent

to its best suited role and team (details of this process are found in Section 3.7). The

definition of a desired team guides the agent selection process to ensure that the most

important roles where the desired minimum requirements have not yet been met are

filled first. The result will be either a single combined team, or two teams with agents

Chapter 3: Methodology 67

swapped between teams to ensure both teams match the definition of a desired team.

Where both teams already meet the definition of a desired team prior to the merge

and redistribution operation, no changes are made to either team.

After the merge and redistribution operation, the other agent is informed of the

role and team changes that its teammates must implement as a result. Both encoun-

tering agents are then responsible for informing their own teammates of the changes

that must be implemented. Details of the team merge and redistribution operation

can be found in Section 3.7. Example scenarios illustrating this process are available

in Section 3.7.2.

3.3 Task Management

Given an established team, my framework supports the identification, assignment

and completion of tasks. As shown in Figure 3.2, every agent plays a part in the

task management process. Each agent is responsible for identifying tasks in the

environment to the degree that its sensory equipment allows it to do so. Where an

agent is able to carry out a task it identifies by itself and its workload permits, it will

carry out the task. Otherwise, the agent sends tasks to the member of its team filling

the team coordinator role. The team coordinator receives the task and will assign it

to another member of the team for completion.

Task assignment first uses roles as a shortcut to determine the agent(s) to consider

assigning the task to (a detailed description of role-based task assignment is in Section

3.5.3.1). Since a role is defined in terms of the tasks normally expected of it, requests

are sent only to those agents filling a role normally expected to be able to complete

68 Chapter 3: Methodology

the task. Agents respond with an estimate of their own suitability toward completing

the task. The task is then assigned to the best suited agent.

When task assignment request messages are sent to agents, it is possible that

poor communication conditions prevent the requests from being received by every

agent. It is also possible that the responses agents send back to the requests are not

received by the task assigner. No attempts are made to re-try or re-send messages

used in the task assignment process; agents impacted by communication failures are

thus unlikely to be assigned the task. This means although there may potentially be

many agents whom are expected to be able to complete a task, only a subset of these

agents will participate fully in the negotiation. This distributed model assumes that

in such cases, a task left undone will be rediscovered by another agent.

Where a task fails to be assigned after using the role-based task assignment op-

eration, due to communication difficulties or a lack of suitable agents, a second task

allocation process is used. The second task allocation process operates similarly, ex-

cept without using roles. In the second process, called exhaustive task assignment, a

broadcast message is sent to all agents on the current team in range. The responses

and assignment occurs in the same manner as when roles are used as a shortcut. The

second task allocation process provides agents impacted by communication failure in

the first process with another chance to participate in the task assignment process.

It also broadens the pool of agents able to participate in the assignment process to

account for the fact the task assigner may have an incomplete view of the roles each

member of its team currently fills.

After carrying out a task, the agent completing the task reports the results to the

Chapter 3: Methodology 69

agent filling the team coordinator role. Reporting task completion results to the team

coordinator ensures that agent has the most complete picture of the work completed

in order to aid in prioritizing future work.

The preceding sections introduced the major operations of my framework and

provided an overview of its operation in terms of the team as a whole and the in-

dividual agents that make up the team. The following section explains the concept

of attributes and expressions and how they are used in determining the agents best

suited to carry out tasks. Finally, the manner in which roles are defined in terms of

the tasks expected of them is explained and how this relates to the definition of a

desired team.

3.4 Attributes, Roles and Tasks

In my framework, attributes are used to describe the capabilities of agents and the

requirements of tasks. Figure 3.6 (explained in detail in the subsections that follow)

shows how attributes are used to form expressions that describe the capabilities an

agent requires in order to carry out a task. Roles are defined in terms of the different

types of tasks normally expected of an agent occupying that role. The roles and

number of agents expected in each form the definition of a desired team. Finally, the

capabilities of an agent determine the attribute values it has, which determines the

role it will fill on a team.

70 Chapter 3: Methodology

Desired Team

Role

Task

Minimum Requirements Expression

Suitability Expression

Minimum Requirements Expression

Condition

Attribute ValueOperator

Condition

Attribute ValueOperator
Logical

Operator

Suitability Expression

Condition

Attribute ValueOperator

Condition

Attribute ValueOperator
Logical

Operator

Weight: X Weight: Y

Weight: X Weight: Y

Role

Task Task Task

Number: X Number: Y

Condition

Condition Weight: Y

Agent

Attribute Value
Attribute Value
Attribute Value

Identification Team ID

Agent

Attribute Value
Attribute Value
Attribute Value

Identification Team ID

Figure 3.6: Overview of how attributes make up the knowledge necessary to define

expressions, tasks and roles.

3.4.1 Attributes

For agents to meaningfully coordinate with one another about work to perform,

they require a common understanding of the properties of themselves and others.

As shown in Figure 3.6, attributes describe the capabilities and properties of agents

relevant to the completion of tasks. Agents also have an identification and team ID

property. The agent identification is a unique number identifying each agent in the

mission, and the team ID is the identification number of the team the agent currently

is a member of.

Chapter 3: Methodology 71

The choice of attributes is mission specific and shared between all agents using my

framework in advance of operation. Examples of attributes might include, for exam-

ple, the diameter or a robotic agent (useful for determining if it can fit into a space),

whether an agent possesses a specific sensor type or has a particular locomotion ca-

pability. In my framework, each agent maintains a list of attribute-value pairs that

describe its capabilities. For the robotic agents in my example implementation, this

includes physical properties, sensory capabilities, and computational facilities. These

values are determined at agent design-time and provide the necessary information for

an agent to describe its capabilities to other agents. Agents share their attribute-

value lists with their teammates in order to form a distributed view of the overall

team composition. This shared knowledge provides a basis for agents to reason about

who should carry out tasks and which role the agent should best fill at any one time.

The attributes that describe an agent can have boolean or numerical values, as

best suits the nature of the attribute. Boolean attributes are useful to indicate if an

agent has a specific feature. The HasMap attribute, for example, identifies if an agent

maintains a map of its surroundings. Numerical attributes are useful to describe

physical properties of an agent. An example might be an attribute that describes

the width of a robotic agent in meters. Numerical attributes can also be used to

represent enumerated properties. For example, the physiology of a robotic agent

could be described such that 1=tracked, 2=wheeled, and 3=humanoid. Section 4.4

describes the specific agent attributes I use in my example implementation.

72 Chapter 3: Methodology

3.4.2 Tasks

In my framework, tasks represent units of work that contribute towards the

progress of a mission. These are divided into types based on the kinds of work

that the overall framework will carry out. These types are domain dependent and

defined and represented by humans when a domain is chosen. In contrast to Kiener

and von Stryk [2007] where multiple agents coordinate on a single task, in my work

a single agent carries out a task in isolation. Examples of task types in my example

implementation include explore frontier, find victim, and confirm victim.

The minimum requirements and suitability expression elements shown in Figure

3.6 determine the attributes an agent must possess in order for it to be able to carry

out a task of that type. The priority element describes the importance of one type

of task in relation to the other types in the mission.

Agents recognizing work to be done create tasks as instances from these task type

descriptions. It is possible the agent that creates a task may not have the capabilities

required to complete it. Defining a task in terms of its minimum requirements and

a suitability expression provides information agents require to reason about whether

they can or cannot carry out a task themselves, and subsequently who is best suited

to carry out a task given the current team complement (Section 3.5.2 describes how

task assignment occurs using these attributes).

3.4.2.1 Minimum Requirements

The minimum requirements for a task type, illustrated in Figure 3.6, defines the

absolute minimum capabilities an agent must possess in order to be able to carry

Chapter 3: Methodology 73

Condition

Attribute ValueOperator

Condition

Attribute ValueOperator
Logical

Operator

= ≠
> ≥
< ≤

OR
AND

Boolean
Real

Integer

Figure 3.7: Expressions are built from conditions separated by logical operators.

it out. As shown in Figure 3.7, expressions are constructed of conditions separated

with logical operators. Each condition consists of an attribute, a comparison, and

a value. Conditions support attribute / value comparison using the operators >

(greater than), ≥ (greater than equal), < (less than), ≤ (less than equal), = (equal),

6= (not equal).

Equation (3.1) illustrates a simple minimum requirements expression (M) from my

example USAR implementation. To be able to carry out this task, the HasRanger

or HasLaser attribute of the agent must be true and the Clearance attribute must

have a value > 0.5.

M = (HasRanger = true ∨HasLaser = true) ∧ Clearance > 0.5 (3.1)

3.4.2.2 Suitability Expression

A task type’s suitability expression, shown in Figure 3.6, is used to calculate the

suitability of an agent to carry out that type of task. The suitability expression is

used to calculate a numeric value that describes the degree to which an agent is suited

to carry out a task, and allows for reasoning about which agent is best suited to carry

74 Chapter 3: Methodology

Suitability Expression

C1

Logical
Operator

If C1 evaluates to true then W1

else 0

Cn

If Cn evaluates to true then Wn

else 0

OR Max

AND Sum

Figure 3.8: When condition Ci evaluates to true, it generates a value Wi. Where the

and operator separates conditions, the values are summed. Where the or operator

separates conditions, the result is the maximum value.

it out.

Similar to the minimum requirements, the suitability expression consists of con-

ditions combined with logical operators. Each condition is weighted to reflect its

contribution to the evaluation of the suitability expression against a set of agent at-

tributes. Where an agent does not meet the minimum requirements of a task, the

suitability expression always evaluates to zero.

As shown in Figure 3.8, conditions Ci in a suitability expression that are satisfied

(evaluate to true) generate a value equivalent to their weight Wi, while conditions

Ci that are not satisfied (evaluate to false) generate a value of zero. The evaluated

weights for conditions combined with the and logical operator are added together.

For conditions combined with the or logical operator, the result is the maximum

weight of the evaluated conditions. The net effect is that conditions combined with

the and operator increase the suitability for every condition that is met, while the or

operator acts to increase suitability based on the most valuable condition met.

Chapter 3: Methodology 75

Equation (3.2) illustrates the suitability expression (S) for the Explore Frontier

task in my example implementation. These tasks are best suited for completion by

the smaller, low-cost robots as their expendable nature makes them well suited to

operation in unknown environments. The (HasLaser[10] = true∨HasRanger[15] =

true) sub-expression favours an agent with a low-cost sonar ranger. Similarly, the

(Expendability[60] > 0.5 ∨ Expendability[10] > 0.2 ∨ Expendability[0] > 0.01)

sub-expression assigns increasing suitability to more expendable agents. Finally, the

weights from the sub-expressions and the RobotRadius[20] < 0.2∧HasMap[5] = true

portion of the expression are added together to determine the overall suitability.

S = ((HasLaser[10] = true ∨HasRanger[15] = true) ∧

(Expendability[60] > 0.5 ∨ Expendability[10] > 0.2

∨Expendability[0] > 0.01) ∧

RobotRadius[20] < 0.2 ∧HasMap[5] = true (3.2)

3.4.2.3 Task Priority

The priority attribute of a task type (see Figure 3.6) indicates its relative im-

portance in relation to other task types. A higher priority in one task relative to

another means the higher priority task should be carried out first. While a task is

carried out, it may be pre-empted if a higher priority task arrives. In my example

implementation confirming a hypothesized victim, for example, takes priority over

exploring a frontier.

76 Chapter 3: Methodology

Role R1

Weight: W2

Task T3

Min. Req.

Suit. Exp.

Task T1

Min. Req.

Suit. Exp.

Task T2

Min. Req.

Suit. Exp.

Task Tn

Min. Req.

Suit. Exp.

Mission Task Types

Task T1

Min. Req.

Suit. Exp.

Task T2

Min. Req.

Suit. Exp.

Task Tn

Min. Req.

Suit. Exp.

Weight: W1 Weight: Wn

Role Rn

Weight: W2

Task T1

Min. Req.

Suit. Exp.

Task T2

Min. Req.

Suit. Exp.

Task Tn

Min. Req.

Suit. Exp.

Weight: W1 Weight: Wn

Figure 3.9: A role is defined by the tasks normally expected of an agent filling it.

3.4.3 Roles

As illustrated in Figure 3.6, a role is defined by the tasks that any robot occupying

the role is normally expected to be able to perform, such that each role has a list of

the tasks expected of it. Thus, roles are a heuristic description of the types of work

a robot filling the role will normally carry out. Roles are heuristic both in the sense

that an agent occupying a role may not be able to complete all of those tasks, and in

the sense that the tasks listed may be a representation of the types of work normally

expected of the role. This is in contrast to previous work where roles have been used

to define other individual parameters, such as the area to cover in soccer [McMillen

and Veloso, 2006; Stone and Veloso, 1999], or the tasks that one is permitted to

perform [Zambonelli et al., 2003].

A role Ri can be defined as in Figure 3.9. Where M = {T1, T2, · · · , Tn} are the

Chapter 3: Methodology 77

task types expected in the current mission, a role Ri is defined by the subset of the

mission tasks that are normally expected to be carried out by an agent filling the role

Ri. Each expected task is assigned an importance weighting that determines how

important it is that an agent filling the role can carry out that type of task. When

determining the suitability of an agent to fill a role, the importance of the task acts

to weight the agent’s suitability for the task in the overall role suitability calculation

(see Section 3.6.1). Tasks that an agent is expected to encounter the most often are

assigned a higher importance weighting.

3.4.3.1 Suitability of an Agent to Fill a Role

Given a role Ri is defined in terms of the tasks {T1, T2, · · · , Tn} normally expected

of a robot filling that role, it is possible to determine a numerical suitability for an

agent to fill Ri given the agent’s attributes.

Algorithm 1 Determining the suitability of an agent to fill a role.

Require: T = {T1, T2, · · · , Tn}, the tasks normally expected of role R

Require: W = {W1,W2, · · · ,Wn}, the weights of tasks R expected of role R.

Require: A = {A1, A2, · · · , An}, the attributes and values that describe an agent

S = 0

for all Ti ∈ {T1, T2, · · · , Tn} do

Ei ← evaluate suitability expression of Ti against A

S = S + EiWi

end for

return S, suitability of agent to fill role R

78 Chapter 3: Methodology

Algorithm 1 shows the process used to determine the suitability of an agent with

attributes and values A to fill a role R. From Figure 3.9, T = {T1, T2, · · · , Tn} defines

the set of tasks that are normally expected of role R. Each task Ti ∈ R has an

importance weighting Wi that determines the importance of the task in relation to

the other tasks expected of the role.

For each task Ti, the suitability expression of the task is evaluated against the

attributes and values in A (see Section 3.4.2.2 for more on evaluating suitability

expressions of a task). This value is multiplied by the importance weighting Wi for

the task and added to S, the overall suitability of the agent to fill the role.

The result is a sum of the agent’s suitability to carry out each task expected of

the role, weighted by the relative important of the tasks in the role.

3.4.4 Desired Team

Role R1

1 min
min
+1

max… …
Role Rn

1 min max… …… min
+1

Figure 3.10: A desired team is defined by the roles and range of agents desired in

each role.

Given the roles {R1, R2, · · · , Rn} defined for the current mission, a desired team is

defined by the range of agents that should be present on a team to perform the mission

effectively. As shown in Figure 3.10, for each role Ri a minimum and maximum

Chapter 3: Methodology 79

number of agents are specified. The minimum values establish the absolute minimum

complement of agents filling roles necessary to accomplish the mission. In any domain

there is always a point of diminishing return after which the addition of more agents

results in a minimal performance gain. Rosenfeld et al. [2006] found that in any

physical domain there will be an upper limit on the number of agents that can operate

in close proximity before interference between agents begins to inhibit overall group

performance. Computational, memory and communication limits of agents will also

impose constraints on the maximum size of a team in terms of the effort required to

manage the team and process the results of less capable agents. The maximum values

for all roles collectively enforce an upper bound on the number of agents filling the

roles on the team.

3.5 Task Management via the Task List

Section 3.3 introduced the manner in which my framework identifies and assigns

tasks to agents on a team in a distributed manner. Section 3.4 discussed roles and

how they are defined in terms of the types of tasks normally expected of them.

Further, it described how the requirements of tasks are expressed in terms of minimum

requirements and suitability expressions. This section brings together these concepts

and explains in detail how task management occurs via the task list. It also describes

in detail how roles are used in the task assignment process and how task assignment

works.

Using my framework, each agent maintains a prioritized list of tasks. This task

list allows an agent to track new tasks it discovers in the environment, participate in

80 Chapter 3: Methodology

the negotiation of new work to carry out, and assign tasks that it cannot carry out

by itself to other agents. Further, the task list provides a source of tasks for the agent

to carry out itself.

3.5.1 Carrying Out Tasks

Tasks on the task list are maintained in order of task priority, followed by the time

the task was added to the list. An agent will carry out the highest priority, oldest

task first. If while carrying out a task, a higher priority task arrives than the current

one, the agent suspends the current task and begins carrying out the task with the

higher priority. The suspended task remains in the same position on the agent’s task

list and will resume once the higher priority task has been completed. This helps to

ensure that more important tasks receive prompt attention. In my example USAR

implementation, for example, a robot should stop exploring an area if a task arrives

requesting it to confirm the presence of a victim in the environment.

If an agent runs out of tasks, it will carry out an idle task. The idle task specifies

the default behaviour of the agent in the absence of specific work to complete. In my

example USAR implementation, for example, in the absence of a victim to confirm

or a specific area to explore, agents fall back to a random wander behaviour. This

helps ensure that in periods of unreliable communication or when a team suffers a

failure of its team coordinator that agents have a task that is useful in their domain

to fall back upon until they are able to receive more meaningful work. In the case

of wandering, the agent can also discover new tasks while performing this fallback

behaviour, so this will likely be useful in a broad range of domains.

Chapter 3: Methodology 81

Team
Coordinator

Task Originator

Send Task To
Coordinator

New
Task

New
Task

Task Accepted

Can assign
tasks? Role Based

Assignment
Exhaustive
Assignment

Failed
Yes

Retry
Later

SuccessAssigned

Assigned

Failed

No

Role Based
Assignment

Exhaustive
Assignment

Failed

Retry
Later

SuccessAssigned

Assigned

Failed

Min.
Requirements

Met?

Workload
Permits?

Yes

Task Rejected

No

No

Self
Complete

Yes

Figure 3.11: Task assignment processing.

3.5.2 Adding New Tasks to the Task List

When an agent identifies a new task that requires completion, it adds it to its task

list. At this point, a determination is made if the agent will carry out the task itself or

send it to another agent for completion (see Figure 3.11). The agent first determines

if its own attributes satisfy the task minimum requirements (See Section 3.4.2.1). If

satisfied, the agent determines the number of tasks on its list of the same type that

is to carry out. If the count is less than a configured threshold (I use 5 in my work),

the agent will mark the task for completion by itself. The task count threshold helps

to spread the workload among all the agents on the team. The threshold applies per

task type to ensure that an agent will complete a balance of different task types. For

example, in my implementation it would be undesirable for an agent that can confirm

82 Chapter 3: Methodology

victims to refuse those tasks because it already has a backlog of frontiers to explore.

This mechanism could still be made more elaborate in the future, considering domain-

specific attributes of tasks (e.g. considering the distance between different exploration

tasks might lead an agent to reject another such task on that basis rather than the

overall quantity).

If a task cannot be carried out by the current agent (due to workload or unmet

minimum requirements), the task will be sent to the team coordinator for assignment.

3.5.3 Assigning Tasks

In my work, I assume the assignment of tasks is the responsibility of the agent

filling the team coordinator role. Figure 3.11 shows the handling of a task which will

be sent to the team coordinator for assignment. The agent attempts to send the task

to the team coordinator (Section 3.5.4). If the team coordinator accepts the task,

it will first attempt to assign the task using the role-based task assignment process

(Section 3.5.3.1). If no suitable agent is found using this process, an attempt is made

using the exhaustive assignment process. It is also possible for the team coordinator

to refuse the task, in which case the agent will attempt to assign the task on its own,

providing it has the necessary capabilities to perform task assignment.

To keep the resources required to track tasks out for assignment, and to prevent

overwhelming the wireless communication, an agent assigning tasks will only attempt

to assign a fixed number of each task type at any one time. In my implementation, I

limit the task assignment process to 5 instances of each task type.

Chapter 3: Methodology 83

Wait for
Responses

Send
Assignment

Requests

Receive
Request

Send
Suitability

Wait for
Confirmation

Send
Confirmations

Got
Response?

Yes

Exhaustive
Assignment

No

Done
I Execute?

Queue Ignore

NoYes

Receive
Request

Send
Suitability

Wait for
Confirmation

I Execute?

Queue Ignore

NoYes

Task Assigner Task Assignees

Figure 3.12: Overview of an agent performing task assignment. role-based and ex-

haustive task assignment use the same general approach.

3.5.3.1 Role-based Task Assignment

An agent with the capability of performing task assignment will first attempt to

assign the task using role-based task assignment. Role-based assignment of tasks takes

advantage of the fact that the definition of a role is in terms of the tasks an agent in

that role is normally expected to carry out. This eliminates the need to match task

attributes exhaustively against the attributes of each team member, speeding the task

assignment process. Role-based assignment is also advantageous because the agent

performing task assignment can send messages addressed to specific recipients rather

84 Chapter 3: Methodology

than broadcasting a request and hoping someone responds. Role-base task assignment

occurs in three phases: sending task assignment requests, waiting for responses, and

sending confirmations.

As illustrated in Figure 3.12, during the first phase the task assigner sends task

completion requests to all agents it is aware of on the current team who are in a role

expected to be able to complete the task. The assigner iterates through the agents

{K1, K2, · · · , Kn} known to be on its team, offering the task to all potential assignees

simultaneously. If the role agent Ki is known to occupy is expected to be able to

complete the task to be assigned, the assigner sends a task assignment request to

agent Ki. The potential assignee agent Ki processes the incoming task assignment

request and responds based on its current workload and capabilities.

The potential assignee first determines its suitability to carry out the task by

evaluating the task minimum requirements and suitability expression of the task

against its own attributes (Sections 3.4.2.1 and 3.4.2.2). If the agent satisfies the

minimum requirements for the task, it checks its task list to see how many other

tasks of the same type it has queued for completion. If the number of tasks already

queued is within a defined limit (in my work, five), the agent sends a response back

to the task assigner indicating its acceptance of the task, as well as its calculated

suitability to carry out the task. If the minimum requirements of the task are not

met or the task would exceed the robot’s workload for that type, the agent sends a task

rejection response indicating it cannot carry out the task. Tasks an assignee accepts

are added to the assignee’s task list and marked to indicate that the task is accepted

from another agent pending the receipt of a confirmation message. The assignee will

Chapter 3: Methodology 85

not carry out the task until it receives confirmation. The counting of similar task

types to balance workload is a primitive estimator; in any real-world domain there

are any number of other factors that could influence the distribution of workload. For

example, the estimated time to complete each task could be incorporated into the

workload determination to ensure an agent’s pending tasks will keep it busy for some

determined period of time.

During the second phase of role-based task assignment, the assigner waits for re-

sponses to the task assignment requests for a period of time (in my implementation,

two seconds). Incoming assignment responses are logged along with each potential as-

signee’s self-reported suitability to carry out the task. My framework also supports a

mission-specific cost when determining to whom a task should be assigned. In my ex-

ample implementation, all tasks occur at a physical location so the cost is the distance

from the task location to the location of the assignee agent. The mission-specific cost

factor is used to break ties between equally suited agents when determining which

should carry out the task.

In the third phase of role-based task assignment, the assigner agent reviews the

responses to determine the best agent (if any) to assign the task to. An acceptance

confirmation message is sent to the potential assignee whom responded with the

highest suitability. Where multiple agents have the same suitability, the agent with

the lowest cost (i.e. closest distance in my example implementation) to carry out

the task is chosen. The assignee whom receives the acceptance confirmation marks

the task as ready for completion and sends an acknowledgment message to the task

assigner indicating it received the confirmation. Where the task assigner does not

86 Chapter 3: Methodology

receive an acceptance confirmation message, it assumes the task assignment failed

and proceeds to the exhaustive task assignment process (Section 3.5.3.2).

It is, however, possible the acknowledgment was sent by the assignee but did

not arrive due to communication failure. In such a scenario, there is a potential for

the same task to be assigned to multiple agents. In the worst case there will be

some duplication of effort due to multiple agents executing the task. In the case of an

exploration task, for example, the path both agents travel to arrive at the exploration

location will differ, resulting in an opportunity for both agents to discover new work

along the way. In other domains, duplication of effort may be undesirable. An

implementation using my framework targeting such a domain would need to explicitly

take measures to minimize the negative impact caused by duplicate work. This could

involve checking whether work has already been completed prior to starting (i.e. an

agent assigned a task to cut a lawn in an area could check the height of the grass to

determine if it has already been cut).

At the same time the acceptance confirmation is sent to the agent the assigner

has chosen to complete the task, task cancellation messages are sent to all other task

assignees to indicate the task was assigned to someone else. Upon receiving these

messages, the assignees remove the task from their task lists and do not consider it

for completion. A timeout ensures that an assignee will not wait for an acceptance

or cancellation message for too long. If an assignee has not received either message

before the timeout, the task is removed from its task list and no longer considered

for completion by that assignee.

Where the task assigner fails to receive an acceptance confirmation message indi-

Chapter 3: Methodology 87

cating that an assignee has accepted the task, it will attempt to use exhaustive task

assignment (Section 3.5.3.2) to assign the task. Similarly, if the assigner received only

rejection responses from all assignees, it will also use exhaustive task assignment to

attempt to assign the task.

3.5.3.2 Exhaustive Task Assignment

If role-based task assignment fails to result in the assignment of a task, the agent

falls back to using exhaustive assignment. Exhaustive task assignment is not optimal

as it places extra load on the team to process the assignment requests and track

responses. It also necessitates a greater reliance on communication between agents.

In exhaustive task assignment, role information cannot be relied upon to provide

guidance in determining the agents to assign a task to. Exhaustive task assignment

uses the same three phases as role-based assignment. The distinction is that in

exhaustive task assignment, a task assignment request is broadcast to any agent in

range that can hear it – no specific addressing occurs. Agents that receive the task

assignment request and are on the assigner’s team send back responses as in role-based

assignment.

If after role-based and exhaustive assignment a task is still unassigned, it is re-

queued on the assigner’s task list so that an attempt can be made to assign it later.

3.5.4 Sending Tasks to the Team Coordinator

Agents rely on the team coordinator to perform task assignment. The team co-

ordinator should have the most complete knowledge of the team complement and

88 Chapter 3: Methodology

be the best equipped to perform the task assignment. To send a task to the team

coordinator, an agent identifies which agent it knows is the team coordinator, sends

a message with the task to be assigned, and awaits a response. Where sending a task

to the team coordinator fails, the agent will attempt to assign the task by itself if

possible.

In order to determine to whom the task should be sent, the agent uses its current

knowledge of its teammates to identify the agent it thinks is filling the team coordina-

tor role. It sends a message to that agent with the task requiring assignment. If the

recipient is the team coordinator, and it has the capability of assigning tasks, it sends

a response indicating that it received the task successfully and will assign the task

on behalf of the sender. Having successfully sent the task to its team coordinator,

the agent removes the task from its task list. It is also possible that the agent iden-

tified as the team coordinator is not the team coordinator, such as in the case when

another agent has assumed that role but communication issues prevented the agent

from learning about the role change. In such a scenario, the agent will periodically

attempt to re-send the task until its knowledge of its teammates correctly identifies

the team coordinator.

It is also possible the agent filling the role of team coordinator lacks the compu-

tational and memory capabilities required to perform the task assignment operation

described in Section 3.5.3. This might happen if the team coordinator agent fails and

a poorly suited agent, incapable of assigning tasks, assumed the team coordinator

role. In such a scenario, the members of the team would be responsible for retaining

tasks they identity until the team complement includes an agent capable of filling the

Chapter 3: Methodology 89

team coordinator role with the necessary capabilities to perform the task assignment

operation.

To help cope with unreliable equipment and communication, an agent sending a

request to the team coordinator to assign a task monitors the request for a defined

period (two seconds in my implementation). If the sender does not receive a response

in a timely manner, it attempts to assign the task by itself if possible, and failing

that re-queues the task in its own task list later processing. Failures can occur if the

sender has wandered out of range of the team coordinator, or if the team coordinator

has failed, for example.

3.6 Role and Team Determination

In Section 3.2.1, the concept of an agent determining its role and team membership

was introduced as a means of responding to the failure or loss of agents from the team.

To ensure a team is resilient to situations such as these, each agent periodically

determines the best role for it to fill at any one time. In this way, the team adjusts

the roles of its members in a distributed fashion using knowledge of the current team

structure shared among all teammates. At the same time a role determination occurs,

each agent also evaluates its current team membership to recognize situations where

it should form a new team of its own.

3.6.1 Role Determination

Each agent periodically (every 30 seconds in my implementation) evaluates its

current role within the context of all agents that it currently knows about. This

90 Chapter 3: Methodology

Algorithm 2 Determining a new role for an agent.

Require: {K1, K2, · · · , Kn}, the known agents on my team.

for all Ri ∈ {R1, R2, · · · , Rn}, the roles for the current mission. do

S ← suitability of agent to fill role Ri

W ← role importance weighting

Track role with highest (S +W)

end for

Switch to role with highest (S +W)

enables it to detect situations where the current team complement has strayed away

from the desired team composition. An example is where the team coordinator be-

comes damaged and another agent will take over that role. It also allows the agent to

adjust its role when another agent switches into the role it currently fills. The agent

may have been filling a role it is not ideally suited for and another agent has switched

into that role. In such a scenario the first agent may be able to switch to a role to

which it is better suited.

As illustrated in Algorithm 2, role determination consists of the agent iterating

through all roles for the current mission and determining the best role for it to occupy

at the current time, given the other agents it knows about. For a roleRi, the agent first

determines its own suitability S to occupy the role (see Section 3.4.3.1 for information

on calculating an agent’s suitability to fill a role). A role importance weighting W is

then calculated based on the number of agents currently occupying this role compared

against the definition of a desired team and the importance of the role. The agent

tracks the role with the highest S + W value and switches to that role if it differs

Chapter 3: Methodology 91

Algorithm 3 Determining role importance weighting for an agent to fill a role.

Require: R role to determine important weighting

Require: K known agents on agent’s team

Require: S suitability of agent to fill role R

Find N = number of other known agents K in this role on my team

Dmin = minimum number of agents filling this role on a desired team

Dmax = maximum number of agents filling this role on a desired team

Ir = the importance weighting of the role R on a desired team

if N < Dmin then

W ← Dmin−N
Dmin

Ir

else if N ≥ Dmin ∧N < Dmax then

W ← Dmax−N
2Dmax

Ir

else if N ≥ Dmax then

if another agent Ki ∈ K fills role R and its suitability is less than S then

W ← I

end if

end if

return W the role importance weighting

from its current one.

Algorithm 3 shows how an agent calculates the role importance weighting W for

a role R. The purpose of the role importance weighting is to encourage an agent to

fill a role to which it is less suited when the number of agents filling that role has

fallen below what is specified in the definition of a desired team.

92 Chapter 3: Methodology

If N , the number of agents occupying the role Ri, is less than Dmin, the desired

minimum number of agents occupying role Ri, the role is assigned an importance

weight W = Nmin−N
Nmin

Ir, where Ir is the importance of the role from the definition of a

desired team. The result is a decreasing importance weighting for the role Ri as the

number of agents in the role approaches the minimum desired Nmin.

If N , the number of agents occupying the role Ri, is between Dmin, the desired

minimum number of agents occupying role Ri, and Dmax, the desired maximum num-

ber of agents occupying role Ri, the role is assigned a lesser importance weighting to

reflect the fact that its minimum has already been met. In this case, W = Dmax−N
2Dmax

Ir.

Finally, if N , the number of agents occupying the role Ri, is greater than or equal

to Dmax, the role is currently filled according to the definition of a desired team.

In such a circumstance, the agent attempts to determine if it is better suited to be

occupying the role Ri than any of the other agents on its team already occupying that

role. The agent does this by looping through the known agents {K1, K2, · · · , Kn}

on the current team and finding the agent occupying the role Ri with the lowest

suitability to occupy that role. If all agents are better suited to occupy the role, the

role is not considered as a candidate for the agent to switch to and W = 0. If a less

suited agent occupying the role is found, the importance weight of the role is assigned

W = I.

If at the end of processing a better suited role was found, the agent switches to

that role and announces the role change to its teammates. Any agents occupying the

role which receive the role switch announcement will initiate a role check as well. In

this way, if an agent is better suited to fill a role than a team member it knows of

Chapter 3: Methodology 93

in that role, that team member will re-evaluate its role given that the better suited

agent now occupies that role.

Performing a role check depends on an agent’s knowledge of its current team

composition. Since agents rely on communication to discover the composition of their

team, unreliable communication results in inconsistencies between the agents’ view

of the current team structure compared to the actual team structure. As a result,

an agent performing a role check may be making its decision based on inaccurate

information. An agent’s view of its current team structure could lack information

about new team members who have joined the team, or it could include information

about team members who have left the team or failed.

Where an agent does not have knowledge of a member of its team the agent

might, for example, switch to a role it considers unfilled despite the existence of a

better suited team member whom has already filled the role. In such a scenario,

the agent’s inconsistent view of the current team structure results in it adopting a

different role than it would if its knowledge of the current team structure included

the agent it was not aware of. As communication improves, however, the agent would

learn of the better suited agent and adjust its role accordingly.

Similarly, an agent’s knowledge of its current team composition could include a

teammate who has failed or left the team. In scenarios such as these the agent may

continue to fill its current role despite there being an under-filled role. However where

an agent has not heard from a teammate in some time it removes the teammate from

its knowledge of its current team composition. The agent will consider the missing

teammate during its next role check. Similarly, other members of the team will

94 Chapter 3: Methodology

recognize the departure of the teammate and attempt to compensate during the next

role check.

The definition of a desired team specifies a range of agents filling each role, which

will account for some suboptimal role switches. In the worst case there is a potential

for the roles agents fill on a team to deviate from the definition of a desired team.

This is to be expected, however, as the definition of a desired team is intended to act

primarily as a guideline to define a team structure considered ideal for operation of

the team. Deviations from the definition of an ideal team can result in duplication of

effort, or a delay in executing some types of tasks. However, it is desirable for a team

to continue operation in a degraded state rather than ceasing to function altogether.

3.6.2 Team Determination

Prior to the agent evaluating its role within its current team, it also evaluates its

current team membership. If the agent has not heard from any members of its current

team in some time, it will form a new team with itself as the only team member (for

information on how agents forget team members in my example implementation, see

Section 4.7.2 in Chapter 4). By the time an agent decides to form a new team of its

own, it will have already in effect left its team. Its previous teammates may have

already forgotten about it and adjusted the team structure to compensate. Further,

had the agent been able to find its way back to its team, it would have as a part of

completing its assigned tasks.

An agent forms a new team when it becomes isolated, to ensure that a team

consists primarily of agents in close physical proximity. If agents maintained their

Chapter 3: Methodology 95

previous team identity, a situation could arise where geographically separated groups

of agents consider themselves members of the same team. The result would be a frag-

mentation of the team where each fragment consists of very different team members,

each with its own different goals. The team fragments will behave as if they were

actually different teams, and it makes sense to identify them as such. By changing

team identity when an agent becomes separated from its team, any new team forming

as a result will be identified as a different team, preventing the issue of a fragmented

team identity. If an agent becomes separated from its team and were to encounter

its previous team again, it would re-join that team if space was still available and its

skill set was still required.

3.7 Team Merging and Redistribution

This section describes the process and algorithm used to perform the team merge

and redistribution process which occurs when agents encounter one another. The

section begins with a discussion of the interactions between the encountering agents

and the communication required between them. A discussion of the impact of com-

munication failures and inconsistencies in an agent’s knowledge of its team structure

follows in Section 3.7.1.

As introduced in Section 3.2.2, when agents encounter one another while perform-

ing operations in their environment, an opportunity arises for the agents’ teams to

exchange mission progress and information about one another’s teams. The encoun-

tering agents act as representatives for their respective teams and are responsible for

performing the merge and redistribution operations.

96 Chapter 3: Methodology

Algorithm 4 Merging and redistributing teams occurs by clearing both known teams

and iteratively re-adding members.

Require: M = {M1,M2, · · ·Mn}, the agents on merging agent’s team.

Require: O = {O1, O2, · · ·On}, the agents on other agent’s team.

K = M ∪O, known agents on both teams.

M = O = ∅; clear both known teams.

while agents exist in K that are not assigned to a team do

Ki ← agent with highest suitability to fill a role on team M or team O.

Add agent Ki to best suited team, M or O.

end while

Agents can only be involved in a single encounter at a time. An agent observing

multiple other agents will attempt to initiate an encounter with the first observed

agent. Similarly, an agent receiving multiple requests to initiate an encounter will

participate in the first received encounter for which it received a request. Attempt-

ing to perform multiple encounters at the same time would necessitate a means of

synchronizing the merge and redistribution operations. This would unnecessarily

complicate the team merge and redistribution process, and increase the chance of

communication failures impacting the process as a whole.

Recall from Section 3.2.2, the representative agents first exchange information

about one another’s teams. Since the team merge and redistribution operations are

negotiated by the representative agents, and these operations are similar in nature

to the activities expected of an agent filling the team coordinator role, they use their

suitability to fill that role as a means of determining which agent should perform the

Chapter 3: Methodology 97

actual merge and redistribution calculations.

Each representative agent determines its own suitability to fill the team coordi-

nator role given it knows its attributes Aself = {A1, A2, · · · , An}. The agent uses

Algorithm 1 (see page 77, Section 1) to calculate the numerical suitability, Sself . The

agent also calculates the suitability of the other representative agent, Sother to fill the

team coordinator role. Both representative agents calculate these values using the

attributes of the other agent found in the previously exchanged team information.

A team merge and redistribution suitability threshold determines the minimum

suitability required to execute the team merge and redistribution algorithm. The

threshold recognizes the fact there is a bare minimum set of capabilities required

for an agent to be able to complete the team merge and redistribution calculations.

Where the agent’s own suitability Sself is less than the threshold, it will rely on

the other agent to complete the team merge and redistribution calculations. Where

neither agent’s suitability is greater than or equal to the threshold, the encounter is

terminated without making any changes to either team.

The representative agents both determine if Sself > Sother. If the agent’s own

suitability is greater than the other agent’s, it will consider itself responsible for

completing the team merge and redistribution calculations. Where both agents de-

termine they are equally suited, ties are broken by choosing the agent with the higher

identification number (recall from Section 3.4.1, agents have a unique identification

number).

Algorithm 4 describes the process used to perform the team merge and redistri-

bution operation. Of the two encountering agents, the one that is best suited to

98 Chapter 3: Methodology

fill the role of team coordinator is responsible for executing Algorithm 4. Each of

the encountering agents calculates its suitability to fill the team coordinator role and

exchanges it at the same time it that it sends the other agent information about its

own team (for more information on determining an agent’s suitability to fill a role,

see Section 3.4.3.1). For the purposes of Algorithm 4, M = {M1,M2, · · ·Mn} is the

set of agents known to be on the team same team as the agent performing the merge,

and O = {O1, O2, · · ·On} is the set of agents known to be on the other agent’s team.

The goal of the team merge and redistribution algorithm is to re-shape the two

teams or combine them into a single team, as determined by the definition of a desired

team. The algorithm begins by combining M and O into K, and clearing M and O;

the agents from both teams are pooled and then iteratively placed back on to a team

in the role that suits them best.

While there are still agents in K left to process, the algorithm iteratively finds the

agent with the highest suitability to fill a role on either team M or team O, and adds

that agent to the best suited team. Algorithm 5 describes the manner in which the

highest suitability agent is found. For each agent Ki ∈ K, the algorithm determines

the suitability of the agent to fill each of the roles for the current mission on both

team M and team O. The suitability calculation used is the same one an agent uses

to determine its own suitability to fill a role on its current team (see Algorithm 2

in Section 3.6.1). This ensures that where appropriate a less suited agent can fill a

role if required. Algorithm 5 tracks the agent Ki that is best suited to fill a role on

either M or O. Since the algorithm always finds the best suited agent, sub-optimal

role assignments are avoided unless necessary.

Chapter 3: Methodology 99

Algorithm 5 Finding the agent to add to the merged teams.

Require: K = {K1, K2, · · · , Kn}, known agents on both teams.

Require: M ← the agents on the merger’s team.

Require: O ← the agents on the other agent’s team.

B ← null, the best suited agent to join one of the teams.

Bs ← null, suitability of best suited agent.

for all Ki ∈ {K1, K2, · · · , Kn} do

for all T ∈ {M,O} do

for all Ri ∈ {R1, R2, · · · , Rn}, the roles for the current mission. do

S ← weighted suitability of Ki to fill role Ri on team T

Track agent Ki with best suitability S.

end for

end for

end for

return Ki, the agent best suited to join one of the two teams.

The process continues until all agents have been added to teams. Where an agent

is equally suited to a role on team M or team O, the algorithm will keep the agent on

its previous team to prevent agents unnecessarily changing teams every time a merge

and redistribution occurs. This is important as my framework is designed to operate

in environments where communication between agents is unreliable. Minimizing team

changes ensures that agents do not waste time attempting to communicate a team

switch that has no positive impact on either team.

Following the merge and redistribution operation, the agent executing the merge

100 Chapter 3: Methodology

and redistribution algorithm sends the role changes and team membership changes

applicable to the other team to the other representative agent. The two represen-

tative agents negotiating the team merge then send instructions to their teammates

indicating the required role changes and team membership changes. Upon receipt of

the role and team information, the teammates switch their current role and team as

specified. The required role changes and team membership resulting from the team

merge and redistribution algorithm are not used by either of the representative agents

to update their knowledge of the current team structure – relying on this information

completely would mean assuming the changes specified were successfully carried out,

which ultimately may or may not be the case. Instead, agents implement role change

and team membership change instructions addressed specifically to them, and ignore

any other such messages. As agents implement the role change and team member-

ship change instructions, they immediately broadcast a message indicating their new

role and team membership information. Agents receiving these broadcasts update

their knowledge of the current team structure accordingly. Subsequent communica-

tions sent by the agents also include the new role and team membership information,

ensuring the new information has a higher chance of being overheard by all team

members despite unreliable communication.

3.7.1 Coping with Failures and Inconsistent Knowledge

The description of the team merge and redistribution process and algorithms in

the previous section describe the expected process in ideal conditions where knowledge

of the team structure is consistent between the agents on a team and communication

Chapter 3: Methodology 101

Team 2

Agent
1

Agent
3

Agent
1

Agent
n

Team 1
Agent

7 Agent
8

Agent
9

Agent
n

Share
Team

Knowledge

Best Suited?

Merge /
Redist.

Inform
Team

Yes

No

Share
Team

Knowledge

Best Suited?

Merge /
Redist.

Inform
Team

Yes

No

1

23 3

Figure 3.13: Communication failures can impact the merge and redistribution at three

points during the process.

failures do not impact the process. This section describes the impact of inconsistencies

in an agent’s knowledge of its team structure, and the impact of communication

failures at various points in the process.

Communication failures have the potential to impact the team merge and redis-

tribution process either by directly interrupting the process itself, or indirectly by

causing inconsistencies in the knowledge each representative agent has of its team

composition. Inconsistencies in a representative agent’s knowledge of its team com-

position can cause it to make decisions it would not otherwise make if it had complete

knowledge of its team, consistent with that of all teammates.

As shown in Figure 3.13, communication failures can directly impact the merge

and redistribution operation by interrupting the exchange of messages between the

102 Chapter 3: Methodology

representative agents and their team at three critical points. Failures can occur while

exchanging information about each other’s teams (1), communicating the required role

and team changes (2), and when each representative informs its respective teammates

of required team and role changes (3). Timeouts are used in the major steps of the

process to ensure an agent will not wait indefinitely for messages it is expecting from

the other agent.

When the representative agents first exchange information about one another’s

teams (Figure 3.13 (1)), a failure will cause the merge and redistribution process to

terminate. The agents have the opportunity to try again during their next encounter.

No role changes or team membership changes will occur in this scenario.

A communication failure occurring when a representative informs a member of

its team of a role change or team membership change (Figure 3.13 (3)) will prevent

that agent from implementing a role change or team membership change. In such

a scenario, the agent will learn of role changes or team membership changes imple-

mented by other agents on both teams and update its knowledge of the current team

complement accordingly. The agent will adjust the role it fills on its team based on

this knowledge during its next role check. Depending on how poor communication

conditions are, there is a potential for multiple role changes or team membership

changes to not be implemented as required. The role check operations performed by

the agents ensure the team attempts to adjust its structure given the role changes

and team membership changes which were successfully implemented.

As indicated in Figure 3.13 (2), a communication failure can occur when the rep-

resentative agent completing the merge and redistribution calculation informs the

Chapter 3: Methodology 103

other representative of the role changes and team membership changes required. In

such a scenario the representative agent sending the merge instructions would begin

informing its own teammates of the required changes, while the other representative

agent would never receive the merge instructions required of its team. The result is

a scenario where members of one team implement role changes and team member-

ship changes which are inappropriate given the other team is not implementing any

changes.

Since the role change and team membership change instructions are only used

by the agents implementing the instructions, neither team will update the knowl-

edge of its team complement with the unimplemented changes. The impact of not

implementing changes will vary, depending on the exact nature of the changes. For

example, an agent might be instructed to switch roles on its team in order to ac-

commodate an agent from the other team. If the agent from the other team never

receives the instruction to switch teams, the role vacated to accommodate the agent

switching teams will remain unfilled. In such a scenario, future role check operations

would lead to the recognition of the vacant role, and the agent that switched out of

it (or some other agent) would be instructed to fill that role if it resulted in a better

team structure. In the meantime, the team may have been forced into a sub-optimal

configuration. Further, the team is unable to gain the benefit of the new agent which

was to join its team.

Although in the previous example the team is able to easily repair itself through

a role check, it is possible to imagine scenarios where this is not possible. The team

merge and redistribution operation could, for example, determine an agent on team A

104 Chapter 3: Methodology

Green Team Yellow Team Green Team Yellow Team Red Team

Figure 3.14: Simultaneous merge scenarios can occur due to multiple encounters

between the same teams, or between different teams.

is to swap roles with an agent on team B. If the agent on team A fails to receive the

required role change and team membership change instructions, the agent on team

B would change teams and assume the role the agent from team A was supposed to

vacate. This could leave team A with an overfilled role, and team B with an under-

filled role. This would result in both teams operating in a degraded state. Team A

might have room for the extra agent in another role on its team, and would implement

such a change during the next role check. Team B, however, would need to encounter

another team (or encounter team A again, at a later time) or lone agent in order to

replace the missing agent.

Aside from communication failures during the team merge and redistribution, it is

also possible for multiple encounters between agents to occur at the same time. Figure

3.14 shows two ways in which simultaneous encounters can occur. These scenarios

are illustrations of the types of simultaneous encounters that might occur.

In the first scenario (Figure 3.14(1)), multiple agents on each team encounter

multiple agents on the other team at the same time. Given the knowledge each of

Chapter 3: Methodology 105

the representative agents possesses of their own team composition will likely vary,

the multiple pairs of representatives might potentially arrive at different required

role changes and team membership changes. Further, the agents implement the role

changes and team membership changes in the order they are received, resulting in the

potential for parts of either of the role changes or team membership changes from the

simultaneous merges being implemented. As with the communication failure scenarios

explained above, the agents on both teams will adjust their own roles given the role

changes and team changes that actually do get implemented, ensuring both teams

adapt as required. The representatives, however, will likely have similar knowledge

of their team structure and will thus attempt to implement similar role changes and

team membership changes. In some scenarios, the simultaneous encounters could

actually compensate for communication failures during the merge and redistribution

operations, acting to cross-check each other.

In the second scenario (Figure 3.14(2)), a team simultaneously encounters agents

on different teams. The result is a scenario where a single team attempts to perform

the merge and redistribution operation with two other teams at the same time. In

scenarios such as these, each representative would only have knowledge of their team

as it was at the start of the encounter. Similar to the first scenario, role changes

and team membership changes will be implemented by the representative agents,

potentially causing conflicting changes within the teams. As with the first scenario,

the teams will all adapt as agents learn of the changes and complete role checks.

In reality, it is not likely for three large teams to be involved in a simultaneous

merge scenario such as this. Agents will tend to be geographically spread out as they

106 Chapter 3: Methodology

complete tasks, and it is expected teams would tend be distributed geographically

somewhat as well. This makes sense as, for example, rescuers would not insert all

rescue robots in the exact same location. The teams would be introduced in multiple

locations, and exploration should ideally direct the teams and robots within them

to spread out in order to explore the area faster. It is important to note, however,

work in laboratories sometimes assumes robots begin operation in a common location

(e.g. [Anderson and Papanikolopoulos, 2007]). This provides robots with a common

localization points for robots, but is not practical for actual rescue work.

A more likely case of the second scenario in Figure 3.14 would be where a team

encounters two lone agents at the same time. In such a scenario, the team could

decide to adopt both agents. If both agents ended up in the same role, there is a

possibility that role ends up overfilled. If there was space for one of the agents in

another role on the team, the required change would occur when the agents perform

a role check. If there is no space for the extra agent in another role, the role would

remain overfilled until another team is encountered, or a vacancy is created due to

the failure of another team member. A detailed discussion of a scenario such as this

is found in Section 3.7.2.5.

In any of the previous scenarios, there is a possibility communication failures

could result in the team implementing role changes and team membership changes

that unintentionally result in agents filling a role such that the number of agents

filling that role exceeds the maximum per the definition of a desired team. During

subsequent role check operations, the agents in the overfilled role could switch to

another role if space was available in a suitable role.

Chapter 3: Methodology 107

It is, however, possible there are no appropriate unoccupied roles to which extra

agents could switch. A team can respond to this situation in a number of different

ways: The team could continue operating with overfilled roles, the extra agents could

be forced to leave the team, or the team coordinator could use the team merge and

redistribution algorithm (Section 3.7) on the current team complement, splitting the

team into two or more new teams which meet the definition of a desired team.

In the first response to overfilled roles, the team continues operating with some

roles overfilled. The next time another team is encountered, the agents in excess

of the role maximum have the opportunity to switch to another team. Further,

during operation it is possible an agent may become separated from the team or

suffer a failure, bringing the team closer to the definition of a desired team. Handling

overfilled roles in this manner might be reasonable if encounters between teams occur

frequently, and agents will frequently suffer failures or become lost. In my example

implementation, I chose to use this approach, as the number agents available of each

type means it is unlikely for there to be a large surplus of the more capable agent

types so as to overfill their best suited roles. I also chose a large range of desired

agents to fill the role to which the least capable agents are best suited, so that in

most scenarios there would be room for extra agents resulting from inappropriate

merge operations.

The second potential response to overfilled roles involves agents recognizing sit-

uations where there is no longer space for them on their current team, and leaving

the team on their own. The agents could recognize this during the period role check

operations. Departing the team would provide the agents with an opportunity to join

108 Chapter 3: Methodology

another team, build up a new team of their own from other agents encountered, or to

join another team with space. Agents departing the team in this manner also act to

provide a means of distributing their former team’s knowledge to a new encountered

team.

The third potential response to overfilled roles involves the agent filling the team

coordinator role recognizing its team has overfilled roles, and initiating the team merge

and redistribution algorithm, using its current team as input to the algorithm. The

algorithm would provide the necessary role changes and team membership changes to

correct the overfilled roles. This would result in the team splitting into two smaller

teams, with the agents distributed between the teams. This approach raises the

possibility of similar issues as when two teams are merged, and the role change and

team membership change instructions are not fully implemented. Investigating these

latter two responses is identified as future work (Section 6.4).

The next section illustrates some common scenarios and shows how the team

merge and redistribution algorithm adjusts the two teams as a result.

3.7.2 Examples of Team Merge and Redistribution

The following examples illustrate some common scenarios where merging and re-

distributing teams can occur. The examples use the roles and agent models from

my implementation (see Sections 4.5.3 and 4.4 for more information, but the degree

of detail presented here suffices for the context of examples). There are three roles

illustrated; team coordinator, victim verifier, and explorer. The examples visualize

the desired team structure as a series of boxes representing the number of each role

Chapter 3: Methodology 109

Before Merge After Merge

Team
Coordinator

Victim Verifier

Explorer

Team 1 Team 2 Team 1

Figure 3.15: An established team encounters a lone agent unsuited to filling the team

leader role. The robot joins the established team in its optimal role of explorer.

to fill (e.g. Figure 3.15). The boxes with dashed lines represent role requirements

above the minimum desired. A colored bar below each agent illustrates the level of

suitability that agent has to fill the role it is in. These examples are not intended to

be an exhaustive illustration of all possible team merge operations that can occur,

but instead serve to highlight some of the more common merges that would occur in

a dynamic and challenging environment.

3.7.2.1 Encountering Supplementary Agents

Figure 3.15 illustrates a situation when an established team (team 1) encounters

a lone agent filling the team coordinator role of its own team (team 2). This lone

agent could be a replacement released into the environment that has come across an

existing team, or an agent that has become separated from its team. The team merge

results in the lone agent joining team 1 and assuming its optimal role, explorer, on

that team.

110 Chapter 3: Methodology

Team
Coordinator

Victim Verifier

Explorer

Team 1 Team 2 Team 1

Before Merge After Merge

Figure 3.16: A team with a suboptimal team coordinator encounters a replacement

agent better suited to that role. The suboptimal team coordinator cedes its role to

the replacement and takes on its optimal role of victim verifier.

3.7.2.2 Encountering Replacement Agents

Figure 3.16 illustrates a scenario where team 1, a team with a suboptimal team

coordinator, encounters a lone agent that is better suited to that role. Such a scenario

could occur if, for example, the leader of team 1 fails or becomes separated from its

team; in such a scenario another agent would assume the team coordinator role, albeit

at a reduced capacity. Team 2 consists of a single agent well suited to filling the team

coordinator role; this could be a replacement agent or an agent that has become

Before Merge After Merge

Team
Coordinator

Victim Verifier

Explorer

Team 1 Team 2 Team 1 Team 2

Figure 3.17: A team with the victim verifier role unfilled encounters a team with two

and obtains one for itself.

Chapter 3: Methodology 111

Team Coordinator

Victim Verifier

Explorer

Team with a sub-optimal team coordinator
encounters a better suited agent

1. Agents perform merge and redistribution.

Team Coordinator

Victim Verifier

Explorer

Agent 2's knowledge of the current team
composition is inconsistent with the actual state.

2. Teammates are informed
of new roles.

3. Message fails
to reach agent 2.

1

2
3

4

5

3 4

2

1

5

1 2

3 4

2
3

4

1

5

Team Coordinator

Victim Verifier

Explorer

3 4

2

1

Team Before Merge and Redistribution Team After Merge and Redistribution

Figure 3.18: A merge and redistribution where an agent does not learn of a required

role change due to communication failure.

separated from its team. When teams 1 and 2 merge, the agent from team 2 assumes

the team coordinator role on team 1, and the current team coordinator on team 1

assumes its optimal role as a victim verifier.

3.7.2.3 Redistributing Teams

Figure 3.17 illustrates a scenario where team 2 has not met its minimum require-

ments for the victim verifier role. Upon encountering team 1, one of the agents

occupying the victim verifier role on team 1 switches to team 2 so that it can meet

the minimum requirements for that role as per the definition of a desired team.

112 Chapter 3: Methodology

3.7.2.4 Role Check after Team Merge and Redistribution

Figure 3.18 shows a scenario where a team merge and redistribution operation

occurs, but communication failure prevents a member of the team from being informed

of the new team structure. In Figure 3.18, prior to the merge and redistribution the

team is operating in a degraded state. Agent 2 fills the role of team coordinator on

the team. Agent 1 encounters a lone agent (agent 5), and acts as a representative to

perform the merge and redistribution of the teams. It is determined agent 2 will cede

the team coordinator role to agent 5, who will join the team. Agent 2 will switch to

the explorer / verifier role. Agent 1 informs the team of the required role changes.

Agent 2, however, does not receive the message informing it to switch from the team

coordinator role to the explorer / verifier role.

Figure 3.18 shows the team after the merge and redistribution. Agents 1, 3, 4

and 5 are aware of the new team configuration and know agent 5 is the new team

coordinator. Since agent 2 failed to receive the message notifying it of the changes, its

knowledge of the current team composition is now inconsistent with the actual state.

This means both agents 2 and 5 believe themselves to be the team coordinator. This

inconsistency will correct itself when agent 2 learns about the existence of agent 5,

who is filling the team coordinator role. At that point, agent 2 will perform a role

check causing it to switch to the victim verifier role as originally planned.

3.7.2.5 Simultaneous Team Merge and Redistribution

As shown in Figure 3.19, a team with four agents has an opening in the victim

verifier role. Agents 1 and 2 both encounter lone agents operating in the environment.

Chapter 3: Methodology 113

Two team members simultaneously
encounter an agent suitable to fill the

Victim Verifier role.

1. Merge and
Redistribute

Team Coordinator

Victim Verifier

Explorer

The Victim Verifier role is now over-filled.

5

1

2

3 4

Team Before Merge and Redistribution Team After Merge and Redistribution

Team Coordinator

Victim Verifier

Explorer

1

2

3 4

1

2

3

4
6

Deviation
from desired

team

2. Inform of
new roles

5
1

2

3

4 6

5 6

1. Merge and
Redistribute

Figure 3.19: Two lone agents simultaneously join the team, resulting in a deviation

from the definition of a desired team.

Agent 1 encounters agent 5 and initiates the team merge and redistribution operation.

At the same time, agent 2 encounters agent 6 and initiates the team merge and

redistribution operation. Both agent 1 and agent 2 recognize the agent they encounter

as a suitable agent for the unfilled victim verifier role on the team. As a result agent 5

and 6 become members of the team and fill the victim verifier role. Figure 3.19 shows

the result of the team merge and redistribution. Agents 2, 5, and 6 all fill the victim

verifier role on the team. This results in a situation where the team complement

has deviated from the definition of a desired team. The first agent of 2, 5, and 6 to

perform a role check will recognize the role it fills no longer meets the definition of a

desired team and will choose to fill the Explorer role, despite the fact it is less suited

to that role.

114 Chapter 3: Methodology

“Green” Team Yellow Team

1. Required role/team
changes do not make it to

yellow team.

2. “Green” team implements
required changes.

Figure 3.20: Two teams meet and attempt to merge. Communication failure prevents

one of the teams from hearing the results of the merge.

It is also possible to imagine a scenario where all roles on the team were filled

by agents. In such a scenario, agents 2, 5, and 6 would remain in the victim verifier

role and the team would fail to meet the definition of a desired team. The next time

another team is encountered, there would be an opportunity for one of the extra

agents filling the victim verifier role to switch to the other team.

3.7.2.6 Team Merge and Redistribution Impacted by Communication

Failure

Figure 3.20 depicts a scenario where two teams (the green team and the yellow

team) perform a merge and redistribution operation. The representative agent on the

green team performs the merge and redistribution calculations and sends the required

role and team changes to the representative agent on the yellow team. The message,

however, does not make it to the yellow team representative due to a communication

failure. As a result, the green team agents implement the required role changes and

team membership changes, while the yellow team agents do not due to the failed

communication.

In the end only the required changes to the green team are implemented, while

Chapter 3: Methodology 115

the yellow team implements no changes. As agents on both teams learn of the role

changes and team membership changes that succeeded, the teams will adjust the roles

of their members as agents perform their periodic role checks.

3.8 Conclusion

This chapter has provided an in-depth description of the major operations that

my framework performs in order to form and maintain teams of agents operating in a

dynamic and changing environment. The concept of attributes, and how they are used

to define the requirements for tasks was described, as well as how roles are defined in

terms of the tasks normally expected of them. Finally, the detailed algorithms that

operate on the attributes, tasks, roles and teams were presented to describe how the

framework accomplishes its team maintenance and task management objectives.

The next chapter describes my example implementation of my methodology. The

agents, attributes, tasks, and roles that I use in my implementation are described,

along with the mission-specific task algorithms and robot control software, and the

simulated environment in which my agents perform. This simulated environment was

used to run a series of experiments evaluating this framework in a complex domain,

and the presentation of these results follows in Chapter 5.

Chapter 4

Implementation

This chapter describes the Urban Search and Rescue implementation I developed

in order to support a controlled evaluation of my framework for adaptive and flexible

teamwork in complex environments. Section 4.1 provides an overview of the robots

I use in my implementation, and the mapping between robots and roles. Section 4.2

describes the operational concept of my example implementation, and explains how

the robots cooperate as a team in order to accomplish the USAR mission. Section

4.3 examines the simulated environment I use in my implementation. The simulated

victims and the manner in which robots detect these victims are described, as well

as the approach I used for robots to detect the presence of one another in the en-

vironment. Section 4.4 describes the different models of simulated robots and the

sensory and computational resources available to them. In Section 4.5, I describe the

attributes, roles and tasks the robots use accomplish the USAR mission as described

in Section 4.2. Finally, Section 4.7 describes framework and mission-specific modules

in my implementation.

116

Chapter 4: Implementation 117

4.1 Implementation Overview

In order to study the methodology described in Chapter 3, my example imple-

mentation is grounded in the domain of Urban Search and Rescue. I assume teams of

heterogeneous robotic agents are coordinating to explore damaged structures in order

to build a map of the environment and to locate human casualties, and that robots

will be lost and new robots will be released into the environment as time goes on.

To keep the scope of my work manageable, my implementation operates in a simu-

lated disaster environment. Using simulation to study my methodology is appropriate

as the primary focus of my framework is to support teamwork and coordination be-

tween agents, rather than complete accuracy in USAR in particular. Setting up a

genuine disaster environment, having enough heterogeneous robots, and controlling

trials in such an environment would also be impractically difficult. The approach

of using a simulated USAR environment for multi-agent research is well established;

Wegner and Anderson [2004] studied how to blend human instructions with those of

an autonomous control module, Gauthier and Anderson [2005] studied agents provid-

ing assistance to one another, and Eghbali and Sharbafi [2010] studied path planning

algorithms inspired by ant colony behaviours in simulated USAR environments, for

example. A simulated environment provides the ability to run large numbers of simu-

lations faster than real-time and ensures simulation results are repeatable [Vaughan,

2008]. It is important to ensure that I can run a sufficiently large number of exper-

imental trials to demonstrate my approach. I examine the benefits of a simulated

implementation further in Section 4.3.

To perform the USAR mission, I assume that a large number of simple, inex-

118 Chapter 4: Implementation

pensive, and expendable robots are available. These robots (which I will refer to

as MinBots for convenience) are small in size, have inexpensive sensors, and have

limited computational and memory resources. The MinBots rely on wheels for loco-

motion. Their small size and wheeled physiology limits their operation to areas rela-

tively clear of debris, and precludes them from navigating over obstacles (though not

around them). I assume the MinBot robot type is computationally limited, preclud-

ing it from performing operations such a maintaining a map of the team’s exploration

progress, assigning tasks, and determining new areas to explore. I also assume the

availability of a small number of more complex, expensive robots. These physically

larger robots (called MaxBots) have expensive sensors, and ample computational and

memory resources. Similar to the Packbot robot developed by iRobot, MaxBots use

a tracked drive system that allows them to navigate over small obstacles and through

areas of debris without becoming stuck [Yamauchi, 2004]. Finally, I also assume the

availability of robots (called MidBots) with capabilities and size that fall between

the MinBots and MaxBots. Similar to the MinBots, the MidBots rely on wheels for

locomotion and cannot drive over larger obstacles. For more information on these

specific robot types, see Section 4.4.

The choice of robot types introduces heterogeneity in terms of the progressively

smaller size of the robots used, the computational and sensory capabilities of each,

as well as differences in methods of locomotion. Although my framework allows for

variations in sensory equipment between individual robots of each general type, my

implementation assumes that all robots of a type are equipped the same. MidBots,

for example, are equipped with specialized equipment to enable more accurate detec-

Chapter 4: Implementation 119

tion of victims in a debris field. I have chosen these three to provide the necessary

capabilities for operation within USAR domain, and to provide a reasonable challenge

in terms of the possibilities for task allocation to the algorithms described in Chapter

3. It is entirely possible there can be further variations in robot types within each

of these categories, or additional categories for other domains, and my framework

supports such variations.

My implementation assumes robots have a probability of failure, and that a robot

will fail completely, rather than individual components failing. An interesting area of

future work (Section 6.4), however, would be to implement partial failures, such as

those studied by Carlson and Murphy [2003]. The individual components of a robot

could have a probability of failing, with robots able to recognize these failures and

adjust their advertised capabilities accordingly.

To support search and map creation in a USAR environment I define the following

roles: team coordinator, explorer/verifier, and explorer. The team coordinator role has

the responsibility of directing the overall operation of a team, directing the assignment

of tasks to the various team members, and maintaining a map that represents the

collective exploration of the team. Robots occupying the explorer role are expected

to be able to explore an area specified by the team coordinator, and to find potential

victims in the environment. Robots occupying the explorer/verifier role are expected

to be able to confirm the identification of victims in the environment, as well as

perform exploration. Further details of these roles from a knowledge/implementation

standpoint may be found in Section 4.5.3.

In my implementation, a desired team would have one robot in the team coordi-

120 Chapter 4: Implementation

nator role, one to two robots in the explorer/verifier role, and three to ten robots

in the explorer role. A team structure such as this allows exploration to spread out

further from the team coordinator, provides a reasonable level of redundancy between

robots, ensures that a reasonable mix of capabilities is present on a team in order to

complete its mission, and does not overwhelm the team coordinator with too many

robots to coordinate.

Although there is an ideal mapping between the three robot types and the roles

in my work (MaxBot → team coordinator, MidBot → explorer/verifier, MinBot →

explorer) there will be many times where such a mapping will not be possible, because

the appropriate robot is not available (not present or unable to do additional work).

Each type could attempt to take on any role, however, to varying degrees of success.

If a MinBot is on its own, it must act as its own team coordinator, for example, and

would recognize when it encounters any other type of robot to whom it would be best

to cede this role. In such a scenario, the limited capabilities of the MinBot would

result in it doing little else other than attempting to find a team to join and storing

a map of the area explored to report to a new team. Similarly, a MaxBot (operating

on its own or as part of a team that already had a functional team coordinator)

might perform low-level exploration expected of the explorer role, but would switch

to the team coordinator role when the opportunity arose (e.g. the current coordinator

becomes nonfunctional, or a team with a poor coordinator is encountered). The

diverse capabilities of the MidBots make them suitable to fill a wide range of roles,

albeit in a reduced capacity compared to other more specialized robots. A MidBot

could fill the team coordinator role in the absence of a MaxBot, for example, with

Chapter 4: Implementation 121

the expectation the reduced computational and storage capabilities would result in it

not being as effective at handling the team. Similarly, when filling the explorer role

its increased size would prevent it from gaining access to smaller areas that a MinBot

would have no problem exploring. Sensor equipment variations between robots will

also result in situations where a robot is occupying a general role and may be more

useful for specialized tasks (e.g. verifying the presence of a victim).

This section has provided a high level overview of the robots, tasks and roles in

my implementation. The following sub-section describes the manner in which robots

cooperate in order to create a map of the environment while identifying victims.

4.2 Operational Concept

This section describes the interactions between robots in the context of the two

major goals of the mission (Section 2.2): locating and identifying victims, and explor-

ing the environment while building a map, so that victims can ultimately be reached

by humans. Finally, the operational knowledge maintained by a team is described, to

provide an understanding of how the team protects against loss of data due to failure

of the team coordinator.

4.2.1 Locating and Identifying Victims

In my example implementation, positively identifying a victim in the environment

is a capability afforded to a limited number of robots on a team. Other robots on the

team are able to identify the potential presence of victims in the environment, but

must rely on suitably equipped team mates to confirm the presence of the victim.

122 Chapter 4: Implementation

1. MinBot sees potential victim

2. Task sent to

team coordinator

3. Task assigned to MidBot

Figure 4.1: A MinBot detects a potential victim.

Of the three types of robots in my implementation, the MinBots and MidBots

have the necessary capabilities to detect the potential presence of victims in the

environment. I assume the MinBots use a low fidelity victim detector which is only

able to detect the potential presence of a victim in the environment. In a real-world

implementation, this might be accomplished through an infrared sensor to detect

heat signatures similar to a human body (in which case similar temperature heat

sources could be mistaken for a human victim), or through analysis of images from a

camera (in which case it is possible to image debris configurations resembling a human

victim). The MidBots are able to positively detect the presence of a victim in the

environment (more information on victim detection can be found in Section 4.3.2).

In a real-world implementation, the MidBots would use a number of complementary

sensor technologies (i.e. heat, visual, sound) to achieve a reasonable level of certainty

a human is present. Alternatively, the MidBots could be equipped to rely on a

human operator remotely confirming the presence of a potential victim (e.g. similar

to [Wegner and Anderson, 2004]). Given there will be a larger number of MinBots

Chapter 4: Implementation 123

than MidBots, it is expected the MinBots will detect the potential presence of the

majority of victims, which the MidBots will subsequently confirm.

Figure 4.1 shows a typical sequence of interactions which occur when a MinBot

detects a potential victim. Upon detecting the potential victim, the MinBot generates

a task to confirm the presence of the potential victim. The task identifies the location

of the potential victim (Figure 4.1(1)). The MinBot does not have the necessary

capabilities to carry out the victim confirmation task, so sends it to the robot filling

the team coordinator role on its team (Figure 4.1(2)); in this case a MaxBot type

robot.

The MaxBot type robot performs task allocation for this new task (Section 3.5.3),

and assigns it to a nearby MidBot robot with the necessary capabilities to carry out

the task (Figure 4.1(3)). The MidBot accepting the task will move to the location

specified in the victim confirmation task and use its superior sensory capabilities to

confirm the presence of the victim. The results are passed back to the robot filling

the team coordinator role to update the list of victims it maintains (more information

on tracking victims is found in Section 4.8.3).

In a scenario where a MidBot robot initially detected the victim, it would carry

out the victim confirmation task itself, moving in closer as necessary to confirm the

presence of the victim. The results obtained by completing the task are still passed

to the team coordinator to ensure there is a centralized list of the victims found.

124 Chapter 4: Implementation

Frontiers

Team coordinator’s map
overlaid on top of environment

Unexplored AreaExplored Area

Figure 4.2: The team coordinator uses its map to identify frontiers, transitions be-

tween explored and unexplored space.

4.2.2 Exploration

In my implementation, exploration of the environment is directed by the robot

filling the team coordinator role. A robot of the MidBot and MaxBot types filling

the team coordinator role uses a frontier-based approach to guide the exploration.

These robot types also have the capability of building an occupancy grid map of

the environment based on the exploration results reported by the members of the

team. The team coordinator identifies frontiers and generates explore frontier tasks

for these locations (Section 4.8.2). Frontiers are non-obstacle boundaries between

explored and unexplored space, and represent areas where the team stands to gain

more knowledge about the environment.

Although both the MidBot and MaxBot robot types have the capability of iden-

Chapter 4: Implementation 125

tifying frontiers, the MaxBot robot type can use a path-planning algorithm (Section

4.8.4) when assigning frontiers to robots. The path-planning algorithm allows the

MaxBot to make better decisions about which robot is closest to the frontier, and

takes into account the fact debris may block some areas, making them inaccessible to

robots incapable of traversing the debris.

Figure 4.2 shows a simulated USAR environment with the team coordinator’s map

overlaid on top of it. The pink areas on the map represent unexplored areas. The

blue lines indicate frontiers the team coordinator has generated explore frontier tasks

for.

The team coordinator assigns the frontier exploration tasks to robots on the team,

who complete them and report back with the results. Carrying out a frontier explo-

ration task involves moving to the frontier location, and exploring for some time. The

robot reports back with the map data acquired during the exploration, assuming the

exploration was successful (it didn’t get stuck or lost, for example).

4.2.3 Operational Knowledge

The operational knowledge a team updates during the course of the USAR mission

consists of the occupancy grid map of the environment and the list of victim locations.

Although the robot filling the role of team coordinator expected to have the most

complete picture of the operational knowledge, all other robots with the capability

of maintaining their own copy of the operational knowledge will attempt to do. The

MidBot and MaxBot robot types have the necessary capabilities of merging the results

of exploration tasks into their own maps, as well as the capability of tracking a list

126 Chapter 4: Implementation

of victim locations and statuses. When these robots overhear wireless messages sent

from other teammates to the current team coordinator, they use the messages to

update their own operational knowledge as well.

This means a team meeting the description of a desired team in my implemen-

tation could have up to three copies of the team’s operational knowledge. This is

advantageous as it ensures the knowledge the team gains during operation is not

vulnerable to the failure of a single robot. If the robot filling the team coordinator

role fails and a MidBot or MaxBot robot assumes the team coordinator role, the dis-

tributed operational knowledge ensures the team does not have to start the mission

over.

The downside to maintaining copies of operational knowledge among members of

the team is that they are unlikely to be consistent. A robot could temporarily be out

of range of a transmitting robot, and not receive updated knowledge. Further, com-

munication failures could prevent the reception of information by some teammates.

Inconsistencies in the operational knowledge mean if the current team coordinator

fails, it is possible the robot taking over the team coordinator role has different in-

formation about the team’s progress than the original coordinator. Although there

is a potential for some duplication of effort to re-collect the lost knowledge, the team

does not have to restart the entire mission due to the failure.

In addition to sharing knowledge among a team, teams which have physically

encountered one another, and established a translation between their respective lo-

cal coordinate systems (Section 4.3.1), are able to use overheard wireless messages

from each other to update their respective operational knowledge. This helps ensure

Chapter 4: Implementation 127

multiple teams operating in the environment are able to benefit from knowledge they

hear when within communication range. The limited range of wireless communica-

tion in my implementation means this will not occur frequently, unless the teams are

operating in the same geographical area.

4.3 Simulated Disaster Environment

Although verification of my framework using real robots would be ideal, there are a

number of advantages to using simulation as a means of performing experimentation.

According to Cohen et al. [1989], experimentation using a simulated environment

is advantageous as a simulated environment provides the necessary control over the

environment to ensure experiments are repeatable. This is not only advantageous

during experimentation, but also to promote comparison with methods developed

by other researchers. Cohen et al. [1989] also argue simulation is advantageous as

it allows the researcher access to a wider variety of environments than they would

otherwise have access to, and allows environments to be constructed to test very

specific scenarios. This level of control over the experiment can very difficult to

achieve in the real world. It would be difficult and time consuming, for example,

to ensure any debris and obstacles moves during the mission are moved back to the

exact same starting locations, lighting conditions are identical, and the robots are

all positioned in the exact same starting locations. Further, Etzioni and Segal [1992]

argue simulated agents are advantageous as a vehicle for multi-agent systems research

as they allow the peripheral problems associated with physical robots (i.e. sensors,

actuators) to be simplified in order to facilitate experimentation.

128 Chapter 4: Implementation

Verification of my framework is accomplished in simulation using the Stage module

of the Player/Stage package. Player/Stage is a robot control and simulation package,

widely used in multi-robot systems research. Player provides a common interface

for interacting with robots and their various sensory devices, while Stage provides

simulated robots and sensors that operate in a simulated environment [Gerkey et al.,

2003]. The Stage simulator has been verified against real robots, and provides ad-

equate simulation resolution to ensure that results in simulation parallel those seen

with real robots.

Control software coded against the Player module has the advantage of being easily

moved from simulation to real robots. However, using Player requires that simulations

be run in real time, and it means although simulation runs are deterministic they are

not repeatable (the order of execution for robot control software is influenced by

the operating system scheduler). As described by Vaughan [2008], using the Stage

simulator alone provides two key advantages important to my work: the ability to

run simulations much faster than real time, and repeatability between simulation

runs. Verification of my approach necessitates a large number of simulation runs,

making it infeasible to run them in real time (running my experiment trials in real

time would take 188 days (Section 5.5)). The repeatability of simulation runs in

Stage is particularly important during experimentation as it ensures that changes in

an experimental variable are the actual cause of differences in experimental results,

rather than random variation between runs.

Although my work is coded against the Stage simulator, the application pro-

grammer interfaces (APIs) provided by Stage and Player are similar enough that

Chapter 4: Implementation 129

Figure 4.3: Example simulated USAR environment.

Figure 4.4: Major features of a simulated USAR environment.

retrofitting my approach to work through Player would not require a significant ef-

fort, making translation to a real-world implementation possible.

Figure 4.3 shows a high-level view of a simulated USAR environment in my work.

130 Chapter 4: Implementation

The major features of these simulated environments are highlighted in Figure 4.4.

A team of robots begins operation in a walled area along the perimeter of the envi-

ronment. The robot team starting locations are evenly spaced along the perimeter

of the environment. Robots are placed in the starting boxes (emulating an insertion

point into the environment such as a window or door) with the MaxBots in back,

MidBots in the middle and the MinBots in front. The arrangement of robots is cho-

sen to ensure the robots with sensors capable of perceiving others on the team are

placed in the best position to use those sensors. This emulates a common starting

deployment, such as the one used by Anderson and Papanikolopoulos [2007] in their

work, allowing robots on a team to establish a shared coordinate system based on a

fixed reference point. Further discussion on localization and the coordinate systems

used in my implementation are found in Section 4.3.1.

Replacement robots begin operation at evenly spaced intervals along the perimeter

of the environment. Replacement robots are introduced at the replacement locations

after a fixed delay to simulate the insertion of replacement robots into the environment

during the rescue operation.

The light-grey areas in Figure 4.4 emulate low-lying debris in the environment. In

a real USAR environment this could be small piles of bricks or debris that a robot with

greater mobility, such as afforded by a tracked drive system, could explore. In my

simulated USAR environment, debris forms an obstacle to robots with a wheeled drive

system (i.e. the MidBot and MinBot robot types). The MaxBot robots are able to

drive through the low-lying debris due to their tracked drive system. Obstacles which

are impassable to all robots are also scattered throughout the environment (shown

Chapter 4: Implementation 131

(a) A void with no debris blocking entrances;

accessible by any robot.

(b) A void with debris blocking entrances; ac-

cessible only by tracked robots.

Figure 4.5: Voids or rooms in the environment.

as taller, dark grey boxes in Figure 4.4. In a real USAR environment this could be

larger obstacles such as office furniture, or partially collapsed building structures.

Rectangular voids are scattered throughout the environment. Larger voids simu-

late the presence of rooms or cubicles in a typical office environment, while smaller

voids simulate small enclosed areas created by failure of the building structure. Ran-

domly sized voids are positioned in the environment, and have a variable number of

openings. Some voids, as in Figure 4.5a, are accessible to all robots. Approximately

60% of all voids have low-lying debris blocking all openings, as illustrated in Fig-

ure 4.5b. These voids require a robot with the ability to traverse debris in order to

be explored.

By default, the Stage simulator supports specifying whether an object in the en-

vironment acts as an obstacle to robots (all walls, for example, are marked as obsta-

cles). To simulate differences in robot drive systems, I modified the Stage simulator

so obstacles can also specify an obstacle type, and robots can identify which types of

132 Chapter 4: Implementation

Robot R1
Robot R2

R1 sees R2 at position O2=(x,y), orientation α2.

R2 reports its position as A2=(x,y), orientation β2.

R2 sees R1 at position O1=(x,y), orientation α1.

R1 reports its position as A1=(x,y), orientation β1.

Robot sensors enable robots to

mutually observe each other.

Figure 4.6: Robots mutually observing one another reconcile coordinate systems.

obstacles they collide with. In my simulated environments, each obstacle is marked

with an obstacle type of debris or wall. Robots with a tracked drive system only

collide with obstacles with an object type of wall, but can drive through obstacles

with an obstacle type of debris. Likewise, robots with a wheeled drive system collide

with obstacles with either a wall or debris obstacle type.

Realistically, a robot traveling through debris would be expected to travel slower

than it could in open areas. To simulate this, robots with a tracked drive travel at

half their normal speed when navigating through areas of debris.

4.3.1 Localization and Coordinate Systems

As described in Section 2.3.3, for robots on a team to cooperate effectively, its

members must be able to refer to locations in space in a manner understandable to

all members of the team. I assume all members of the same team share the same local

coordinate system. This is provided by the stage simulator’s API and allows me to

remove considerations of localization from my implementation. As stated in Section

2.3.3, however, any localization scheme can be added to replace this.

Chapter 4: Implementation 133

To emulate a shared localization between members of a team, I assume members of

the same team begin operation in a specific starting formation (similar to Anderson

and Papanikolopoulos [2007]). The starting formation emulates conditions which

would provide a single fixed reference point, allowing the team to establish a shared

coordinate system.

Each team may start at a different origin, and thus, while there will be consistent

localization within teams, there will still be different coordinate systems between

teams, as would occur in team-independent localization in the real world. Thus, it

is necessary for robots on different teams to be able to reconcile differences between

their respective shared coordinate systems. Moving to the real world would mean

the reliance on the Stage simulator’s localization API would need to be removed. An

implementation in a USAR test bed could, for example, use a probabilistic approach

(e.g. [Fox et al., 2000] or [Martinelli et al., 2005]).

In my implementation, teams establish a translation between their respective local

coordinate systems when two robots encounter one another in the environment. A

robot equipped with a robot detector (Section 4.3.3) is able to determine (in its team’s

local coordinate system) the position and orientation of another robot it observes in

the environment. The observed robot reports its position and orientation, in its

team’s local coordinate system, to the observing robot. This information can be used

to establish a translation between points referenced in each team’s local coordinate

systems.

Figure 4.6 illustrates how robots from two teams encountering one another in the

environment are able to use their robot detectors to establish a translation between

134 Chapter 4: Implementation

their team’s local coordinate systems. Robot R1 observes robot R2 at location O2 =

(x, y), with orientation α2, in the local coordinate system shared by R1’s team. Robot

R2 reports its location to robot R1 as A2 = (x, y), with orientation β2. Similarly,

robot R2 observes robot R1 at location O1 = (x, y), with orientation α1, in the local

coordinate system shared by R2’s team. Robot R1 likewise reports its location to

robot R as A1 = (x, y), with orientation β1.

A robot can only switch teams during an encounter, which ensures a translation

between the team coordinate systems is established. When a robot switches teams,

it continues to use its original team’s coordinate system, but applies a translation to

coordinates communicated by its new team. With any further team switch, the trans-

lation to the new team’s coordinate system replaces the translation to the previous

team’s coordinate system.

Moving my implementation to a controlled USAR test bed (e.g. the NIST test

bed [Jacoff et al., 2003]), using real robots, would be a useful avenue for future work,

and would provide an increased level of realism in terms of localization and coordinate

reconciliation for mapping.

4.3.2 Victims

Victims are randomly placed in my environment and represent individuals that

may be trapped and/or injured. The detection of victims in a real-world USAR

environment is a challenging problem unto itself potentially involving the fusion of

readings from heat, sound, vision and other sensors [Murphy et al., 2000a]. As the

purpose of my work is to study coordination in a USAR environment, I have made

Chapter 4: Implementation 135

necessary abstractions to the process of victim detection in my simulation.

To include an element of sensory heterogeneity in my work, I have implemented

two types of simulated victim detectors. A basic victim detector allows a robot to

detect the potential presence of a victim in the environment. In a real-world imple-

mentation, a basic victim detector would ideally be very simple and inexpensive so it

could be used on the inexpensive and expendable MinBot robots. Such a sensor could

identify heat signatures in the environment which mimic the temperature of a human

body, for example, or flag something resembling a human form. Potential victims

found using this sensor would ultimately be confirmed using a more complicated and

expensive victim detector, to avoid sending human rescuers to investigate based on

only a weakly confirmed hypothesis.

In my USAR simulation, a full-featured victim detector allows a robot to confirm

potential victims in the environment. In a real-world implementation such a victim

detector would employ multiple sensors and rely on complex sensor fusion to provide

a more accurate identification. This sensor would necessarily be more expensive

and it would be desirable to equip a smaller number of robots with these sensors.

Information about the implementation of the victim detectors can be found in Section

4.9.2.

Figure 4.7 illustrates the simulated victims in my environment. Figure 4.7a shows

a debris configuration that represents a false victim in the environment. The basic

victim detector cannot distinguish between a false victim and a true victim as illus-

trated in Figure 4.7b. The full-featured victim detector can distinguish between the

two types of victims. Thus, readings reported by the basic victim detector must be

136 Chapter 4: Implementation

(a) A debris configuration resembling a victim. (b) An actual victim.

Figure 4.7: The simulated victim types allow for heterogeneity in sensors for victim

detection.

confirmed using the full-featured victim detector.

4.3.3 Robot Detection

When robots encounter one another in the environment, they take advantage of

being in close physical proximity and act as representatives for their team to initiate

the merge and redistribution operation (Section 3.2.2). In my example implemen-

tation, I assume some robots are equipped with robot identifier sensors. A robot

identifier allows one robot to detect the presence of another robot, and determine

the identification, position, and orientation of the robot in relation to itself (detailed

information on the implementation of robot identifiers is found in Section 4.9.3).

The robot identifier is important as it provides a means to recognize the identity

of a robot in close physical proximity, which is a prerequisite to addressing messages

to nearby robots using wireless communication. The robot identifier also provides

the ability to determine the position and orientation of an observed robot. This

information can be reconciled against the location and orientation the observed robot

reports, in order to reconcile differences between local coordinate systems.

Chapter 4: Implementation 137

Figure 4.8: The three simulated robot types in my work.

To initiate the merge and redistribution operation between two robots, one of

the two encountering robots must have a robot identifier. If neither robot has a robot

identifier, the robots cannot recognize the presence of one another in the environment

and thus cannot initiate the merge and redistribution operation.

4.4 Robot Types

This section describes in detail the characteristics and capabilities of the three

types of robots I use in my example implementation. The MaxBot type is based

on the pioneer robot model predefined in the Stage simulator, and the MidBot and

MinBot types were created for my implementation.

Figure 4.8 illustrates the appearance of the three simulated robot types in my

implementation. The MaxBot on the left is the largest robot and has the most

powerful sensory and computation facilities, as well as a tracked drive system enabling

it to move easily through debris. The MidBot in the middle is smaller, and is equipped

with lesser computation and sensory facilities. It also relies on a less robust wheel-

drive. Finally, the MinBot on the right represents the most limited robot in my

work. Similar to the MidBot, it employs a wheeled drive, and has a further reduced

138 Chapter 4: Implementation

Minbot Midbot Maxbot

Locomotion Wheeled Wheeled Tracked

Width/Length 10 cm x 10 cm 20 cm x 20 cm 38 cm x 44 cm

Victim Sensor Basic Full No

Robot Sensor No Yes Yes

Sonar Sensors 5 10 3 (debris)

Sonar Range 4 m 6 m 2 m

Laser explorer/verifier No No Yes

Laser Range - - 6 m

Table 4.1: Robot Types and Characteristics

Minbot Midbot Maxbot

Victim Tracker Yes Yes Yes

Frontier Finder No Yes Yes

Maintain Team Map No Yes Yes

Task Assignment No Yes Yes

Planner No No Yes

Table 4.2: Robot Capabilities

complement of sensors and computational power.

Tables 4.1 and 4.2 show the physical properties, sensory equipment and general

capabilities of the three types of robots I use in my work. The following sub-sections

Chapter 4: Implementation 139

(a) MinBot sonar

rangefinders.

(b) MidBot sonar rangefinders.

(c) MaxBot sonar and laser rangefinders.

Figure 4.9: Sensory equipment of the three robot types in my work.

describe each type of robot in detail.

4.4.1 MinBots

In my work, the MinBot robot type is the smallest robot, with the least sensory

and computational abilities. Similar to Carnegie [2007], the MinBot should be a

robot that is inexpensive enough as to be expendable. I assume these robots are

small in size; approximately 10cm x 10cm, and use a wheeled drive system. The use a

wheeled drive system means that the MinBot robots are restricted to relatively open

areas with little debris.

140 Chapter 4: Implementation

As shown in Figure 4.9a, MinBot robots are equipped with five sonar sensors

arranged on the front of the robot. The sonars have a maximum range of 4.0 meters.

The MinBot robots use these sonar sensors both for obstacle avoidance, and to update

their own occupancy grid map of the environment. I assume that MinBot robots lack

the ability to detect other robots in the environment, meaning they cannot detect the

presence of other teams in order to initiate an encounter between the teams (recall

one of the two robots must have the ability to identify robots for this to occur).

Further, MinBot robots are equipped with basic victim sensors (Section 4.3.2),

capable only of detecting the potential presence of victims in the environment. A

better suited robot would need to confirm the presence of these potential victims.

Finally, the limited computational and memory capabilities of MinBot robots

make them unsuitable to perform the duties a robot filling the team coordinator

role normally performs. For example, the MinBot lacks the ability to analyze its

occupancy grid map to detect frontiers and generate frontier exploration tasks. It is

also not able to maintain the team’s combined map of the environment; the MinBot

can track only the area it has explored itself. The MinBot’s lack of computational

facilities also prevents it from assigning tasks to other robots on its own; it must rely

on a better equipped robot to do this on its behalf (Section 3.5.4).

4.4.2 MidBots

The MidBot robot type is sized between the smallest and largest robot types, at

20cm x 20cm. Similar to the MinBot robot type, the MidBots are equipped with a

wheeled drive system.

Chapter 4: Implementation 141

Figure 4.9b shows the 10 sonar sensors a MidBot is equipped with; the number

and position of the sensors afford the MidBot a larger field of view, and their increased

range (6m) allows for the detection of obstacles at a greater distance than the MinBot.

As with the MinBot, the sonar sensors are used both for obstacle avoidance and to

update the occupancy grid map.

Unlike MinBots, the MidBot robots are equipped with a robot identifier sensor

which enables them to detect the presence, orientation and identity of other robots

in the environment. This means the MidBot robots are able to detect robots on other

teams in order to initiate a merge and redistribution operation between the two teams.

MidBot robots are equipped with full featured victim sensors (Section 4.3.2),

capable of detecting the potential presence of victims in the environment. In contrast

to the basic victim sensor found on the MinBot, the full featured victim sensor on a

MidBot is able to confirm the presence of a potential victim at closer ranges. This

makes the MidBot robot especially well-suited to carrying out the confirm victim

tasks identified by teammates.

Compared to the MinBots, the MidBots are equipped with a greater level of com-

putational capabilities. The MidBots have the computational capabilities required to

maintain the team’s combined map of the environment. This means they are able

to use exploration results reported by teammates to build a combined map of the

environment. The MidBots can then use this combined map along with the frontier

detection algorithm to identify frontier exploration tasks, guiding the teams explo-

ration. Further, the MidBots are able to perform task assignment, allowing for the

assignment of discovered tasks to other teammates. The MidBot, however, lacks the

142 Chapter 4: Implementation

capability to execute the path-planning algorithm. This means its task assignments

will be suboptimal compared to a MaxBot’s. The lack of path planning capabilities

means a robot may be assigned a task in a location it cannot access. Further, the

lack of planner generated way-points makes the assignee more likely to fall into a

navigational local minima inherent to the reactive navigation. According to Murphy

[2000], a local minima is an area where the sum of the action vectors from the motor

schemas results in a vector with zero magnitude. This might occur if, for example,

the action vector attracting the robot to a destination is negated by the action vector

directing the robot to avoid an obstacle. When the magnitude of the action vector is

zero, the robot stops moving.

4.4.3 MaxBots

The MaxBot robot type is the largest of the three robot types, measuring 38cm x

44cm (the default size of the Pioneer model in the stage simulator). In contrast to the

other robot types, the MaxBot is equipped with a tracked drive system. The tracked

drive system affords the MaxBot the ability to traverse not only through open areas,

but also over areas of low lying debris.

From a sensory standpoint, the MaxBot robot type is the best equipped of the

three robot types. As shown in Figure 4.9c, the MaxBot robots are equipped with a

laser scanner and a small complement of sonar sensors. The laser range scanner has

a maximum range of 6m, similar to the sonars on the MidBot. Although most real

laser scanners provide up to 180 readings over a 180 degree scan range, I assume the

laser scanners on the MaxBot provide 45 readings over a 180 degree scan range. The

Chapter 4: Implementation 143

reduced number of scans helps minimize the computational overhead inherent with a

laser scanner in the Stage simulator. A MaxBot uses the laser scanner for obstacle

avoidance and to update its map of the environment.

The MaxBot’s sonar sensors are positioned lower on the body of the robot to

provide a means of detecting the presence of low lying debris in the environment.

These sensors are only used to update the robot’s occupancy grid map to indicate

the presence of areas of low lying debris.

While the MaxBot robot type has very good sensory capabilities, I assume that its

capabilities are geared towards identifying robots in the environment, making them

ideally suited to performing coordination activities. The MaxBot is equipped with

a robot identifier sensor, but it does not have the ability to detect the presence of

victims in the environment. Since the MaxBot is ideally performing coordination

activities, I presume it would be unwise to explicitly send the MaxBot in harm’s way

to confirm potential victims. Instead, I place this responsibility on the MidBot robot

type.

MaxBots are equipped with the highest level of computational facilities, and are

able to perform frontier detection, maintain the team’s map and perform task assign-

ment. In addition, the MaxBot robot type can take advantage of a path-planning

algorithm when assigning tasks to robots on its team. The path-planning algorithm

affords the MaxBot with the ability to determine if a teammate may be unable to

reach a location due to known debris along the way. The path-planning algorithm

also means the MaxBot is able to provide task assignees with a list of way-points to

help them navigate to the location of a task.

144 Chapter 4: Implementation

The next section relates the characteristics of the robot types to the attributes,

tasks and roles in my example implementation.

4.5 Attributes, Roles and Tasks

This section describes the attributes which define the characteristics and capa-

bilities of the robots in my example implementation. It then describes the tasks in

terms of minimum requirements and suitability requirements expressions formulated

using these attributes. The roles in my example implementation are defined in terms

of these tasks, and related to the definition of a desired team.

4.5.1 Attributes

Recall from Section 3.4.1 that attributes define the mission-specific properties of

agents used to define the necessary capabilities an agent must possess in order to

complete a task. The robots in my implementation use the following attributes to

describe their physical properties and computational capabilities.

4.5.1.1 Physical Properties

These attributes describe physical properties of the robots, useful for determining

if a robot can access areas of the environment, and how long it will take them to get

to a location.

• Physiology – an enumerated attribute of the robot used to describe how it

moves about the environment. Valid values for my implementation are wheeled,

Chapter 4: Implementation 145

representing a robot with a wheeled drive, and tracked, representing a robot

with a tracked drive. I assume tracked robots are able to navigate through

areas of low lying debris, where wheeled robots are confined to open areas with

no debris.

• Radius – a floating point attribute describing the maximum radius of a robot,

measured in meters. Can be used by the planning algorithm to determine if

a robot can fit through a space. For the MinBot robot type, 0.05m. For the

MidBot robot type, 0.10m. For the MaxBot robot type, 0.44m.

• Speed – a floating point attribute indicating the maximum speed of a robot,

measured in meters per second. Useful for determining how long a robot will

take to travel between two points when choosing which robot should be assigned

a task. In my implementation, all robot types have a speed of 0.4 meters /

second.

• Expendability – a floating point attribute ranging from 0 to 1.0 indicating how

expendable the robot is. This attribute is a heuristic measure of how willing

we are to send a robot into harm’s way. In my implementation, the MinBot

robot type has the highest expendability (1.0), while the MaxBot has the lowest

(0.05). The MidBot robot type falls in between with an expendability of 0.25.

• RobotModel – a special-purpose enumerate attribute which identifies the specific

model of the robot (MinBot, MidBot, MaxBot). This attribute is used during

one of my experiment base-cases where there is a fixed mapping between tasks

and the robot models (Section 5.5.1.2).

146 Chapter 4: Implementation

4.5.1.2 Computation Capabilities

These attributes are heuristic descriptions of the capabilities of the robots. They

provide an indication whether a particular robot has the necessary computational

and memory resources necessary to perform the more computationally and memory

intensive operations of the mission.

• CanFindFrontiers – boolean attribute which determines whether the robot can

use the frontier-finder module to analyze its map in order to generate fron-

tier exploration tasks. Frontier detection involves analyzing the robot’s map

to detect transitions between explored and unexplored space. It also involves

tracking the status of the generated tasks. The frontier detection algorithm

and tracking of tasks would require a robot with significant computational and

memory requirements (i.e. the MaxBot and MidBot robot types).

• CanMaintainTeamMap – boolean attribute which determines if a robot has

the capability to maintain a combined map of the team’s exploration progress.

Robots with this capability are able to merge the maps reported by other robots

as a result of carrying out explore frontier tasks into their own map. Although

in my example implementation map merging is a relatively trivial operation, in

a real-world implementation the map merging algorithm would need to account

for differences in coordinate systems and attempt to compensate for noisy and

inaccurate data. The MaxBot and MidBot robot types both have the capability

to merge maps, in order to maintain a combined map of the environment with

the team’s exploration progress.

Chapter 4: Implementation 147

• CanAssignTasks – boolean attribute which indicates whether a robot can use

the role-based and exhaustive task assignment algorithms (Sections 3.5.3.1 and

3.5.3.2) to assign tasks to other members of the team. These operations can be

computationally intensive and require significant memory resources to track the

status of ongoing task assignment operations, and are best handled by a robot

with ample computational and memory facilities (i.e. the MaxBot and MidBot

robot types).

• HasPlanner – boolean attribute indicating whether a robot is able to use the

path-planning algorithm to generate navigational paths between locations on

the map. A robot with this capability is better able to assign tasks as it can

determine if an assignee is able to reach the destination and suggest a series of

way-points to the robot which will help prevent it from getting stuck in navi-

gational local minimas. This algorithm is the most computationally intensive

in my implementation, and is reserved for those robots with the highest level of

computational and memory capabilities (i.e. the MaxBot robot type).

• HasMap – boolean attribute indicating whether a robot is able to maintain its

own occupancy grid map of the environment. In my example implementation,

true for all robot types. It is, however, possible to imagine a model of robot

which does not have the capability of generating an occupancy grid map. Such

a robot could simply cache sensor readings without putting in the effort to

assemble them into a map.

148 Chapter 4: Implementation

4.5.1.3 Sensory Capabilities

This section describes the attributes robots use to describe their sensory capabil-

ities.

• HasRangeFinder – boolean attribute indicating whether the robot is equipped

with a sonar rangefinder. Indicates the robot has 1 or more sonar sensors.

The MinBot and MidBot robot types rely on sonar sensors for navigation and

mapping. The MaxBot robot type has a small complement of sonar sensors

lower on its body to help map the presence of debris.

• HasLaser – boolean attribute indicating whether the robot is equipped with a

laser range finder. In my implementation, the MaxBot robot type is equipped

with a laser range finder.

• HasVictimDetector – boolean attribute indicating whether the robot is equipped

with a victim detector sensor. Indicates whether the robot has either a basic

or full-featured victim detector (Section 4.3.2). Both the MidBot and MinBot

robot types in my implementation have a victim detector.

• VictimDetectorCanConfirmVictims – boolean attribute indicating whether a

robot’s victim detector can positively confirm victims. The basic victim detector

is unable to confirm victims, whether the full-featured vector detector can. Only

the MidBot robot type in my implementation has a victim detector capable of

confirming victims.

• HasRobotIdentifier – boolean attribute indicating whether a robot is equipped

Chapter 4: Implementation 149

with a robot identifier (Section 4.3.3). A robot identifier enables a robot to

initiate an encounter with another robot it observes in the environment.

4.5.2 Tasks

This section describes the task types used in my example implementation in terms

of the attributes describes in the previous section.

4.5.2.1 Explore

The explore task type performs undirected, autonomous exploration. Robots car-

rying out this task wander in a randomly chosen direction for a period of time while

avoiding obstacles. The robot updates its occupancy grid map as it explores. The

explore task is the idle task which all robots carry out in the absence of other work.

As such, the priority of the explore task is set to the lowest of all task types. Further,

the explore task will never be sent to another robot for completion; each robot carries

out its own explore task.

Equation 4.1 describes the minimum requirements for the explore task. A robot

carrying out the task must have at least a sonar or laser rangefinder. The suitability

requirements (Equation 4.2) assign an equal suitability to a robot with a laser or

sonar rangefinder. The minimum requirements and suitability expression for the

explore task ensure any robot can carry out the task in the absence of other work.

Mexp = {HasLaser = true ∨HasSonar = true} (4.1)

Sexp = {HasLaser[100] = true ∨HasSonar[100] = true} (4.2)

150 Chapter 4: Implementation

4.5.2.2 Explore Frontier

The explore frontier task type involves moving to a location, performing explo-

ration, and reporting the results back to the team coordinator (the robot carrying out

the task could in fact be the team coordinator itself, and would report the results to

itself). Instances of this task type are created by the frontier finder module (Section

4.8.2).

Equation 4.3 specifies that a robot must have at minimum a laser or sonar

rangefinder in order to carry out an explore frontier task. Equation 4.4 increases

a robot’s suitability for robots with an occupancy grid map (HasMap[5] = true).

Robots with a sonar rangefinder are given a preference over ones with a laser scanner

(HasLaser[10] = true ∨ HasSonar[15] = true). The intention is to favor robots

with less expensive sonar sensors, because those with better sensors are more likely

to be of use doing higher-level sensory tasks such as verifying victims. Finally,

an increasing suitability is assigned to robots with a greater expendability factor

(Expendability[60] > 0.5 ∨ Expendability[10] > 0.2 ∨ Expendability[0] > 0.01).

Mfron = {HasLaser = true ∨HasSonar = true}(4.3)

Sfron = {HasMap[5] = true ∧

(HasLaser[10] = true ∨HasSonar[15] = true) ∧

(Expendability[60] > 0.5 ∨ Expendability[10] > 0.2 ∨ Expendability[0] > 0.01)}(4.4)

Chapter 4: Implementation 151

4.5.2.3 Find Team

When replacement robots begin operation, an instance of the find team task type

is used to help guide them deeper into the environment in search of a team to join.

The schema guides the robot travel along the bearing in which it was introduced into

the environment, while avoiding obstacles. The robot continues in that bearing for

five minutes, until another joins the robot’s team, or until the robot joins another

team. Ultimately, the environment will contain walls and other obstructions which

prevent the robot from strictly continuing in the exact bearing the robot was inserted

into the environment. The bearing acts as a general guide to steer the robot into the

environment.

The find team task type has no minimum requirements or suitability requirements,

as any replacement robot can take it on. I assume replacement robots are introduced

at the edge of the environment and are oriented roughly towards its center. Find

team tasks guide replacement robots into the environment where they are more likely

to encounter other teams already operating in the environment.

4.5.2.4 Find Victim

The find victim task type represents the capabilities required for a robot to find

victims in the environment. As such, it is not a task which the robot explicitly puts

on its task list. In my implementation, robots with the capability to do so continually

search the environment for victims regardless of the tasks they execute. Thus, the

find victim task type represents whether a robot has the capability to use the victim

tracker module (Section 4.8.3).

152 Chapter 4: Implementation

The minimum requirements (Equation 4.5) specify the robot must have a victim

detector. Robots with either the basic or full-featured victim sensor (Sections 4.3.2

and 4.9.2) are capable of finding victims. The suitability expression of the task

(Equation 4.6) specifies a slight increase in suitability for robots that do not have a

victim detector capable of confirming the identity of victims. Although the difference

in suitability ultimately does not impact which robots can or cannot use the victim

tracker module, the difference in suitability feeds into the role suitability calculations

and can have an impact on a robot’s overall suitability to fill a role.

Mfvic = {HasV ictimDetector = true} (4.5)

Sfvic = {V ictimDetectorCanConfirmV ictims[5] = false ∧

HasV ictimDetector[95] = true} (4.6)

4.5.2.5 Confirm Victim

The confirm victim task type defines the work necessary to confirm the presence

of a potential victim located in the environment. The basic victim detector and full-

featured victim detector are both capable of detecting potential victims at a distance

(Section 4.9.2). Robots equipped with the full-featured victim detector are able to

confirm the presence of potential victims upon moving closer to the location of the

potential victim. The victim tracker module (Section 4.8.3) creates instances of the

confirm victim task type when a potential victim detected in the environment requires

confirmation.

The task involves moving to a specified location, confirming or refuting the pres-

Chapter 4: Implementation 153

ence of a victim at that location, and reporting the results back to the team coordi-

nator.

The minimum requirements of confirm victim task type (Equation 4.7) state a

robot must have a victim detector capable of confirming potential victims. The suit-

ability expression (Equation 4.8) indicates the same requirements, with the majority

of the suitability factor attributed to the ability to confirm potential victims.

Mfvic = {HasV ictimDetector = true ∧

V ictimDetectorCanConfirmV ictims = true} (4.7)

Sfvic = {V ictimDetectorCanConfirmV ictims[80] = true ∧

HasV ictimDetector[20] = true} (4.8)

4.5.2.6 Manage Team

The manage team task type is a meta-task representing the general set of capabili-

ties required for a robot to manage the overall USAR mission. The manage team task

type acts as a general description of the capabilities required for a robot to effectively

fill the team coordinator role (Section 4.5.3.1). It is primarily used as a component

of the role definitions to identify the desired capabilities of a robot filling the team

coordinator role.

Equation 4.9 indicates a robot must have at minimum the ability to build an

occupancy grid map, and the capability of merging maps in order to manage a team.

The MidBot and MaxBot robot types in my implementation are both candidates to

perform the team management responsibilities. The suitability expression (Equation

154 Chapter 4: Implementation

4.10) gives preference to robots that are able to use the planner module (i.e. the

MaxBot type).

Mmt = {HasMap = true ∧ CanMergeMaps = true} (4.9)

Smt = {HasMap[20] = true ∧ CanMergeMaps[10] = true ∧

CanFindFrontiers[40] = true ∧HasP lanner[30] = true} (4.10)

4.5.2.7 Encounter

The encounter task encapsulates the operations necessary for two robots to en-

counter one another in the environment. The encounter task type serves three pur-

poses. First, it provides the encountering robots with the ability to directly share

their knowledge of the mission. Second, although my current implementation uses a

shared coordinate system, the encounter task is also an opportune time for robots to

reconcile differences between one another’s coordinate systems and re-localize. Third,

this task provides robots on different teams with the opportunity to complete the team

merge and redistribution operation (Section 3.7). The encounter task is unique in

my implementation as it involves two robots cooperatively completing the encounter.

Section 4.7.1 describes the task in detail and explains how both robots cooperate to

complete the encounter.

Encounter tasks are generated by the encounter manager module (Section 4.7.1)

when a robot with a robot identifier sensor observes another robot. The encounter

manager will only generate an encounter task if the robot has not completed a pre-

vious encounter within 1 minute. This prevents robots from continually engaging in

Chapter 4: Implementation 155

Team

Coordinator Explorer

Explorer /

Verifier

Explore 3% 5% 5%

Explore Frontier 4% 60% 10%

Find Team

Find Victim 3% 35% 5%

Confirm Victim 50%

Manage Team 80% 20%

Encounter 10% 10%

100% 100% 100%

Ta
sk
 T
yp
es

Roles

Table 4.3: Tasks normally expected of the roles in my example implementation.

encounters with one another.

The encounter task type has no minimum requirements (Equation 4.11), and a

suitability expression (Equation 4.12) which assigns full suitability to a robot with

a robot identifier. The choice of minimum requirements and suitability expressions

ensures a robot with a robot identifier can encounter another robot lacking a robot

identifier, yet still cooperatively complete the encounter.

Mmt = {} (4.11)

Smt = {HasRobotDetector[100] = true} (4.12)

4.5.3 Roles

As previously introduced in Section 3.4.3, a role provides a heuristic description

of the tasks a robot filling that role is normally expected to carry out. This section

describes the roles I use in my example implementation. To accomplish the USAR

156 Chapter 4: Implementation

Robot Type

Team

Coordinator Explorer

Explorer /

Verifier

MinBot 11 124 24

MidBot 73 56 86

MaxBot 96 52 42

Roles

Table 4.4: Calculated suitability of robot types to fill each role, based on the attributes

of the robot types.

mission, I define the roles team coordinator, explorer, and explorer/verifier. Table

4.3 shows the roles I use in my example implementation and which of the task types

described in Section 4.5.2 are normally expected of each role. The percentages shown

in the table are a heuristic description of the types of tasks normally expected of each

role. The percentages describe the relative importance of being able to carry out each

type of task for a robot filling that role. The values in my implementation were set

at values I deemed reasonable, and then refined through experimentation to verify

the behaviour of robots performing role check operations, and teams undergoing the

merge and redistribution operation. An area of potential future work would be to

study applying techniques to enable the expected task mix to be refined as the robots

operate (Section 6.4).

Table 4.4 shows the calculated suitability of each robot type to fill the roles in

my example implementation. The suitability is an unsigned integer, representing the

relative suitability of a robot to fill a role, compared to the other robot types. The

actual numerical suitability values are not as important as the values relative to oth-

Chapter 4: Implementation 157

ers. Reading across the rows of the table, the suitability values may be compared to

determine the relative suitability of a robot type for each of the roles. A MinBot,

for example, is strongly suited to the explorer role, and weakly suited to the team

coordinator role. Reading down the columns of the table, the suitability values rep-

resent the relative suitability of each robot type to fill that role. Sections 4.5.3.1,

4.5.3.2 and 4.5.3.3 discuss the work normally expected of a robot filling each role,

and the implication of the role being filled by each of the robot types in my example

implementation.

4.5.3.1 Team Coordinator

A robot filling the team coordinator role is expected to guide the overall USAR

mission for a team. As shown in Table 4.3, the task mix normally expected of a

robot filling the team coordinator role consists primarily of the manage team task

type (Section 4.5.2.6), and a small element of exploration. The robot filling the team

coordinator role is expected to be able to explore frontiers, and will thus assign some

explore frontier tasks to itself, as its team coordination responsibilities allow. The

team coordinator will ideally use the frontier finder module (Section 4.8.2) to identify

explore frontier tasks based on areas requiring exploration. It assigns these tasks to

members of the team for completion. The team coordinator will use the results of

the explore frontier tasks to add knowledge to its occupancy grid map, which drives

the identification of further explore frontier tasks.

The team coordinator is also responsible for assigning tasks identified by other

team members. This typically involves assigning confirm victim tasks (Section 4.5.2.5),

158 Chapter 4: Implementation

found by team members using their victim tracker modules (Section 4.8.3), to appro-

priate members of the team.

The best suited robot to fill the team coordinator role is the MaxBot robot type

(Table 4.4). In my example implementation, the MaxBot can make use of the planner

module (Section 4.8.4) when assigning tasks to members of the team. This ensures

a task is not assigned to a robot that is not able to move to the task location (i.e.

the path is blocked by known debris or some other obstruction) and gives a more

accurate picture as to which robot is closest to the task location. Further, the team

coordinator uses the planner to provide a series of way-points which the task assignee

can use to navigate to the task location. The way-points help reduce the chance of

the robot becoming stuck in local minima while navigating, or wasting time traveling

down the wrong path. An implementation on real robots would likely result in a

larger advantage to the MaxBot robot type than in my simulated implementation.

Where the MaxBot robot type would be likely to use a powerful computer, the MidBot

might rely on a lower powered embedded computing platform. These differences in

computational abilities are not reflected in my current implementation; future work

to increase realism in my simulation would need to emulate the simulated time it

takes to complete various operations as would be expected on real hardware (Section

6.4). Further, my implementation does not impose different memory constraints on

the simulated robot types. Differences in available memory between the MidBot and

MaxBot types would impact the size of maps each could maintain, and the amount

of knowledge each was capable of remembering.

Due to computational and memory constraints, a MidBot robot filling the team

Chapter 4: Implementation 159

coordinator role will not be able to use the planner module. Not having access to the

planner module means the MidBot robot type will not be able to consider whether

assignees are knowingly unable (from the map) to access the task location, and will

rely on the Cartesian distance when considering the closest robot. Further, a lack

of way-points to the task location results in the assignee relying on purely reactive

navigation to the task location. An assignee could become lost or stuck in a local

minima while attempting to navigate to the task location.

The MinBot robot type is the poorest suited robot to fill the team coordinator role.

Since the MinBot cannot merge maps resulting from exploration tasks, a unified view

of the environment cannot be maintained. Further, the MinBot lacks the capability to

use the frontier finder module, which means the team cannot perform exploration in a

coordinated manner. The MinBot type cannot assign tasks, which means any confirm

victim tasks identified will not be assigned to an agent capable of completing them.

Should a MinBot robot fill the team coordinator on a larger team for an extended

period of time, the result will be a gradual breaking up of the team as teammates

fall back to performing unguided exploration. This will result in the team gradually

spreading apart until the teammates are no longer in radio range of one another.

4.5.3.2 Explorer/Verifier

A robot filling the explorer/verifier role is expected to perform exploration under

the direction of the team coordinator, and to carry out victim verification tasks. The

weights of the expected tasks (Table 4.3) place an emphasis on the confirm victim

tasks, representing the relative important of this type of task for a robot filling the

160 Chapter 4: Implementation

explorer/verifier role. The inclusion of the manage team task type in the expected

task mix acts to encourage robots with some ability to manage a team to fill the

explorer/verifier role. The intention is to encourage the team composition to include

some robots which could act as a backup for the robot filling the team coordinator

role.

The mix of tasks and weights make the MidBot robot type the best suited to fill

the explorer/verifier role (Table 4.4). The MidBot robots have a full-featured victim

detector capable of confirming the identity of potential victims in the environment,

making them ideal for completing confirm victim tasks. A MidBot has the capability

of assigning tasks and is able to use the frontier finder module, making them an ideal

backup robot to fill the team coordinator role if required.

The next best suited robot type to fill the explorer/verifier role is the MaxBot

robot type (Table 4.4). The MaxBot robot type lacks a victim detector of any kind,

meaning it is unable to execute the confirm victim tasks which make up a large part

of the expectation of the role. However, a MaxBot filling the explorer/verifier role

provides a backup to the robot filling the team coordinator role, should that robot

fail. Since it can be expected there will be far fewer MaxBot robots present in the

environment than MidBots, a MaxBot would not realistically fill the explorer/verifier

role for long. Strong team coordinators would likely be picked up by other teams

lacking that capability.

The least suited robot to fill the explorer/verifier role is the MinBot robot type

(Table 4.4). As with the MaxBot robot type, the MinBots lack the capability to

confirm potential victims, and further do not make suitable replacement team co-

Chapter 4: Implementation 161

ordinators. The range of expected agents filling the explorer role on a team means

surplus MinBots are more likely to fill the explorer role.

4.5.3.3 Explorer

As shown in Table 4.3, robots filling the explorer role are primarily expected to

perform exploration under the direction of the team coordinator. Robots filling this

role are also expected to search for potential victims while exploring.

The MinBot robot type is best suited to fill the explorer role (Table 4.3), at-

tributable to its highly expendable nature. The MinBot robot type is also simplistic

in nature, and lacks most of the capabilities of the MidBot and MaxBot robots which

make them better suited to fill other roles. The plentiful quantity of MinBot robots

compared to the other robot types make it likely the explorer role will be filled by a

MinBot robot over the other types.

4.5.4 Desired Team

Recall from Section 3.4.4 that a desired team defines the roles and range of each

which should be present on a team in order to complete the mission. Figure 4.10

shows the definition of a desired team used in my example USAR implementation.

I assume a single robot will fill the team coordinator role, 1 to 2 robots will fill the

explorer/verifier role, and 3 to 10 robots will fill the explorer role. The teams I use

in my evaluation begin operation as shown in Figure 4.10, with one MaxBot filling

the team coordinator role, 2 MidBots filling the explorer/verifier role, and 4 robots

filling the explorer role.

162 Chapter 4: Implementation

1

1 2

1 2 3 4 5

6 7 8 9 10

Team Coordinator

Explorer / Verifier

Explorer

Role: Positions:

1 1

1 2

3 10

Desired Number:

Min: Max:

Figure 4.10: A desired team in my example implementation. Teams begin with 1

MaxBot, 2 MidBots, and 4 MinBots filling the roles.

This mixture of robot types was chosen to provide a reasonable level of redundancy

for robots filling the team coordinator role, and to ensure a sufficient number of robots

are available to execute the confirm victim tasks identified over the course of the

mission. The small range of desired robots (1 to 2) filling the explorer/verifier role

was chosen to ensure a level of redundancy for confirming victims, while ensuring

a team does not end up with a large number of highly capable agents. The wide

range of robots desired in the explorer role (3 to 10) reflects the fact MinBot robots

are the most plentiful, yet unreliable agents in my implementation. Replacement or

lost MinBot robots could be encountered at any time, and the large upper range

in the explorer role provides ample room to accommodate these robots. Further,

MinBot robots can become lost or disabled, reducing the number of robots available

on the team. The relatively large difference between the upper and lower range for

the explorer role accommodates these variations.

The definition of a desired team for my example implementation was arrived at

Chapter 4: Implementation 163

through preliminary experimentation, given the framework described in Chapter 3,

the control elements described in Section 4.6, and the domain described in Section 4.3.

The composition of a desired team would likely differ in a real-life implementation,

and would need to draw on research studying the use of real robots in USAR (e.g.

[Murphy et al., 2000a]).

4.6 Autonomous Control

This section describes the autonomous control system used by robots in my ex-

ample implementation. The section begins with a description of the schema-based

approach I use to process sensory input and generate a corresponding action vector to

guide the robot’s movement. I also describe how the autonomous control system in-

teracts with the framework-specific software to add a deliberative layer to the reactive

control provided by the schemas.

Figure 4.11 shows the perceptual schemas in my implementation which interpret

the raw sensor data from the victim detector, robot identifier and various range sen-

sors. The figure also shows the motor schemas which provide the framework software

with navigational primitives enabling the robot to move to locations, avoid obstacles,

and recover from situations where it has become stuck. This approach is analogous

to the schema-based approach developed by Arkin [1987].

The outputs from some of the perceptual schemas (Figure 4.11) feed into mission-

specific modules in the framework software which are responsible for identifying tasks

based on the perceived sensory information. Carrying out a task provides input to

the autonomous control system to enable and disable motor schemas as required by

164 Chapter 4: Implementation

Framework Software

Motor Schemas Perceptual Schemas

Repulsive

Attractive

Localization

Process
Rangers

Update
Map

Detect
Debris

Detect Lost

Detect
Obstacles

Detect
Robots

Detect
Victims

Avoid
Obstacles

Move to
Location

Recover
Stuck

Random

Turn In
Place

Action
Vector

Sonar
Rangers

Laser
Scanner

Victim
Detector

Robot
Detector

Victim
Tracker

Encounter
Manager

Frontier
Finder

Task
Execution

Occupancy
Grid Map

Mediator

Task

Task

Task

Figure 4.11: The interactions between the schemas in my implementation and the

framework software.

the task. Thus, the mission-specific modules and task execution provide a delibera-

tive layer on top of the basic schema-based autonomous control system, making my

approach analogous to other hybrid architectures, such as AuRA [Arkin and Balch,

1997].

The following sections explain the operation of the individual schemas pictured

Chapter 4: Implementation 165

in Figure 4.11 and describe how they interact with one another and the framework

software.

4.6.1 Perceptual Schemas

4.6.1.1 Localization

The localization perceptual schema (Figure 4.11) is responsible for determining

the current location of the robot, in the robot’s local coordinate system. In my work

all robots share the same coordinate system, and determine their location using a

Stage simulator API call (Section 4.3.1).

The localization perceptual schema determines the current position, Probot =

{x, y}, and orientation, αrobot, the robot faces. The robot position and orientation

are inputs to all other perceptual schemas as they must know the robot’s location

and orientation in order to perform their function.

In addition to reporting the position and orientation of the robot, the localization

perceptual schema also detects situations where the robot has become stuck. The

Stage API provides an IsStalled property on the robot that determines if it has

collided with some obstacle which prevents it from moving. An implementation on

real robots could, for example, report the robot as stuck if its position has not changed

in some time despite the robot receiving motor inputs directing it to move.

4.6.1.2 Process Range Data

As shown in Figure 4.11, the process range data perceptual schema provides other

perceptual schemas with range data from sonar and laser rangefinders. In my im-

166 Chapter 4: Implementation

plementation, the process range data perceptual schema primarily provides a single

representation of the sonar and laser scan data retrieved from the Stage API. An

implementation of this schema on real robots would need to perform more advanced

sensor fusion. According to Diosi and Kleeman [2004], sensor fusion is the process by

which information from different sensor types is combined, in order to reduce the inci-

dence of false readings and to take advantage of complementing characteristics of the

different sensor types. A laser range scanner, for example, has difficulties detecting

mirrors and glass doors, while a sonar sensor is able to detect these obstacles.

In my implementation, the process range data schema uses data from any sonar

sensors and laser range scanners defined for the robot to create a combined list of

rangefinder data. Each reading consists of a start point, direction and distance reading

for the rangefinder scan, Sscan = (x, y, z), αscan, Dscan, relative to the robot. This

establishes where the sensor is located on the robot’s body, in which direction the

scan beam went, and the measured distance reading. For scan beams from a laser

rangefinder, αscan is the direction of the laser beam as it was emitted from the scanner.

4.6.1.3 Detect Debris

Using input from the localization and process range data perceptual schemas, the

detect debris perceptual schema identifies low-lying obstacles which a robot is unable

to detect using its sonar or laser rangefinder sensors. The schema adds the debris

location to a rolling list of debris locations.

Figure 4.12 illustrates how the detect debris perceptual schema works. If the

localization perceptual schema indicates the robot has become stuck (Section 4.6.1.1),

Chapter 4: Implementation 167

Robot

Debris

2. Ranger readings do not
indicate presence of obstacle.

1. Localization perceptual schema
detects the robot is stuck.

3. Detect debris schema marks
location as a debris hit.

Figure 4.12: The detect debris perceptual schema allows a robot to track the location

of debris its rangefinders cannot see.

the schema loops through all rangefinder readings reported by the process range data

perceptual schema to determine if any reading is within a short distance of the robot.

A short distance reported by a rangefinder indicates the potential presence of a large

obstacle such as a wall. In this case, the schema would not report the presence of

debris. If, however, no rangefinder reading indicates the presence of a large obstacle,

the schema will log the robot’s current location as a debris hit. The fact the robot

got stuck while the rangefinders returned no obstacle hits indicates the robot hit an

obstacle it could not detect.

The detect debris perceptual schema enables robots which are incapable of nav-

igating through low-lying debris to detect the location of this debris, in order to

avoid a collision with this location in the future (Section 4.6.1.4). Where a robot has

the capability to navigate through the debris, it would not become stuck and would

continue navigating unimpeded without logging the location as debris. I equip the

MaxBot robot type with a small complement of sonar rangefinders positioned low on

the robot’s body, enabling it to sense and map debris it encounters in the environment

168 Chapter 4: Implementation

(Section 4.4.3).

4.6.1.4 Detect Obstacles

The detect obstacles perceptual schema uses the range and direction readings from

the process range data (Section 4.6.1.2), detect debris (Section 4.6.1.3), and detect

robots (Section 4.6.1.6) schemas to generate a list of obstacles the robot should avoid.

The schema generates a list of vectors in magnitude / direction format specifying the

distance and direction of each detected obstacle, O = { ~O1, ~O2, · · · , ~On}. ~Oi =

Di

φi

,

where Di is the distance and φi is the direction to obstacle Oi.

When interpreting the rangefinder readings, only those rangefinder readings where

the distance returned is less than the maximum range of the rangefinder are added

to the list of obstacles. The height at which the rangefinder readings were taken is

also taken into account when adding them to the list of obstacles. Where the robot

has a wheeled drive system, both low-lying debris and higher obstacles are added to

the list. Where the robot has a tracked drive system, I assume the robot can drive

over obstacles less than a height of 9cm.

Similarly, only those debris points within a fixed distance of the robot (in my

implementation, 2 meters) are added to the list of obstacles. Any robots in range are

added to the list of obstacles.

The result is a consolidated list of vectors specifying the distance and direction to

all obstacles the robot should avoid.

Chapter 4: Implementation 169

4.6.1.5 Update Map

The update map perceptual schema uses the readings from the process range data

(Section 4.6.1.2) and detect debris (Section 4.6.1.3) schemas to update the robot’s

occupancy grid map. The detect robot schema is not used to update the map as it

would be undesirable to specifically show the position of robots on the map. More

information on how the occupancy grid map is updated is found in Section 4.8.1.1.

As shown in Figure 4.11, the schema updates the robot’s occupancy grid map of

the environment using the rangefinder readings and debris hits found.

4.6.1.6 Detect Robots

The detect robots perceptual schema uses the robot identifier to generate a list of

robots currently observed. As shown in Figure 4.11, the output from the detect robots

perceptual schema feeds into the encounter manager (Section 4.7.1). The encounter

manager is a framework-specific module, responsible for initiating encounters with

observed robots in the environment.

The detect robots schema maintains a list of vectors in magnitude / direction for-

mat specifying the distance and direction of each detected robot, R = { ~R1, ~R2, · · · , ~Rn}.

~Ri =

Di

φi

, where Di is the distance and φi is the direction to robot Ri.

4.6.1.7 Detect Victims

The detect victims perceptual schema uses the victim detector (Section 4.9.2)

to generate a list of potential victims currently observed. As illustrated in Figure

4.11, the output from the detect victims perceptual schema feeds into the victim

170 Chapter 4: Implementation

tracker (Section 4.8.3). The victim tracker is a mission-specific module in my example

implementation, responsible for creating confirm victim tasks based on the victims

requiring confirmation observed by the robot.

The detect robots schema maintains a list of vectors in magnitude / direction for-

mat specifying the distance and direction of each detected victims, V = { ~V1, ~V2, · · · , ~Vn}.

~Vi =

Di

φi

, where Di is the distance and φi is the direction to victim Vi.

4.6.1.8 Detect Lost

The detect lost perceptual schema tracks the distance a robot has traveled while

carrying out a task that involves moving to a location through the use of the move

to location motor schema (Figure 4.11). The perceptual schema is reset when the

destination for the move to location motor schema is set. At this point, the schema

calculates the distance from the robot’s current location to the destination. As the

robot moves towards its destination, the detect lost schema tracks the cumulative

distance the robot travels. Despite the use of way-points to help guide a robot to

its destination, changes to the environment due to structural collapse or inaccurate

knowledge used in the planning process can still result in a robot failing to reach its

destination. Where the task was assigned by a robot not capable of using the planner

module, no way-points would be available to help guide the robot to its destination,

further increasing the chance of the robot getting lost. The detect lost perceptual

schema provides the robot with a means of detecting scenarios where it has traveled

much further than necessary to reach its destination.

If the robot has traveled more than five times the expected distance, the schema

Chapter 4: Implementation 171

generates a signal which the framework software uses as a cue to indicate the robot

has become lost. The five times expected distance factor was arrived at through initial

experimentation, and takes into account the fact a robot will not be able to travel in

a straight line distance to arrive at a task location. Future work could improve on

this by having the robots on a team adjust this value down, based on how far over

the expected distance robots typically end up traveling to arrive at their destination.

When the robot determines it has become lost, execution of the current task is

suspended and the robot moves on to the next task. Where the suspended task is an

explore frontier task, the task is abandoned and the exploration results obtained so

far are sent back to the team coordinator. Future exploration from the perspective of

other agents could reveal another route to reach the frontier, or result in the frontier

having been explored. Where the suspended task is a confirm victim task, the task

is re-queued and the robot will attempt to complete it at a later time.

4.6.2 Motor Schemas

This section lists the motor schemas the robot uses to generate action vectors

which guide the robot to move to locations, avoid obstacles, and recover from situa-

tions where it has become stuck.

4.6.2.1 Avoid Obstacles

As illustrated in Figure 4.11, the avoid obstacles motor schema uses the obstacles

identified by the detect obstacles perceptual schema (Section 4.6.1.4). It generates

a corresponding action vector repulsing the robot away from the identified obstacle

172 Chapter 4: Implementation

Algorithm 6 Determining the obstacle avoidance action vector.

Require: O = { ~O1, ~O2, · · · , ~On}, where ~Oi are the vectors pointing to each obstacle.

Require: M = maximum obstacle distance

~A← empty action vector.

for all ~Oi ∈ { ~O1, ~O2, · · · , ~On} do

~R =

 (M−Di)
2

Mn

π + φi

~A = ~A+ ~R

end for

return ~A

points.

Algorithm 6 shows how the schema generates the resulting action vector. The

algorithm loops through the n vectors pointing to obstacles found by the detect ob-

stacles perceptual schema and calculates the average repulsive force required to avoid

the obstacles. The repulsive forces are in the opposite direction of the detected ob-

stacles.

Assuming a maximum obstacle distance (M) of 10 meters, Figure 4.13 illustrates

how the repulsive force exerted by obstacles grows exponentially as a robot nears the

obstacles. The exponential growth used to determine the repulsive force of obstacles

was determined through experimentation. The exponential function results in the

robot ignoring distant obstacles, while reacting strongly to close obstacles. This

helped to minimize oscillations I observed when using a linear obstacle avoidance

function; robots would tend to cycle back and forth through tight areas.

Chapter 4: Implementation 173

0

1

2

3

4

5

6

7

8

9

10

10 9.5 9 8.5 8 7.5 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

M
a

g
n

it
u

d
e

 o
f

R
e

p
u

ls
iv

e
 F

o
rc

e

Distance to Obstacle

Magnitude of Repulsive Force vs Distance

Figure 4.13: The repulsive force grows exponentially as the robot nears obstacles.

4.6.2.2 Move To Location

The Move to Location motor schema enables a robot to move to a specified lo-

cation. As shown in Figure 4.11, it does not depend on any perceptual schemas for

input. Instead, the schema acts to guide the robot through a series of way-points,

determined by the task the robot is currently carrying out, to arrive at its final des-

tination. Where a robot was assigned the task by a team coordinator incapable of

using the planner module, the way-points list would consist of only the task location

itself (since only the planner module can produce way-points).

Tasks involving moving to a location may have either a task location or a set of

way-points to the location provided by the path planner. When the robot begins

carrying out the task, however, it may be in a different position than that assumed

by the robot planning the path because of stale information or robot movement. The

first way-point on the path is thus not necessarily the most efficient place for the robot

carrying out the task to begin traveling. The closest way-point, and thus the place

174 Chapter 4: Implementation

Algorithm 7 Finding closest way-point.

Require: Y = {W1,W2, · · · ,Wn}, where Wn is the ending way-point.

Require: D current destination.

if No current destination, D then

D ← closest way-point Wi in Y to robot’s location.

Remove {W1 · · ·Wi} from Y

end if

A← action vector attracting robot to D

to begin moving toward is found using Algorithm 7. The way-points prior to this are

removed from the plan. The robot navigates through the remaining way-points in

order until it reaches its destination.

Given the robot’s current destination, Equation 4.13 illustrates the attractive

action vector A which guides the robot to the destination. Dg is the distance between

the robot and the destination, and φ is the angle between the robot and the destination

coordinates.

A =

Dg

φ

 (4.13)

4.6.2.3 Turn in Place

The turn in place motor schema generates an action vector which commands the

robot to turn in place in a clockwise direction. The motor schema is used by the

encounter task (Section 4.7.1.1) to turn a robot in place so it can detect a robot

which has requested an encounter.

Chapter 4: Implementation 175

The schema generates an action vector pointing in the direction π
2
. The turn

in place motor schema is handled specially by the autonomous control system to

command the robot’s motors to turn the robot in place without moving forward or

backward.

4.6.2.4 Random

The random motor schema helps prevent the robot from becoming stuck in a local

minima.

The random motor schema generates a small magnitude action vector pointing in

a randomly generated direction in the range [−π, π]. A new direction is chosen every

second. Adding this small random vector to the robot’s overall action vector ensures

the magnitude will never sum to zero, preventing the robot from getting stuck in a

local minima resulting from a zero magnitude action vector.

4.6.2.5 Recover Stuck

The recover stuck motor schema uses the “stuck” indicator provided by the local-

ization perceptual schema (Section 4.6.1.1) to recognize a situation where the robot

has become stuck. In response, the recover stuck motor schema generates an action

vector commanding the robot to back up and attempt to free itself. When the recover

stuck motor schema generates an action vector, it suppresses the output of all other

motor schemas.

The schema attempts to free the robot by “wiggling” the robot while commanding

it to move backwards. To “wiggle” the robot, the schema generates a new random

direction pointing behind the robot in the range [−π
4
, π
4
]. A new value is generated

176 Chapter 4: Implementation

For Each Visible Robot:

Start
Encounter in

progress?
Done

Yes

Robot(s) visible?

No

No

Yes

Encountered
robot recently?

Initiate
encounter
with robot

No

Yes

More
Visible?

No

Yes

Received
encounter
request?

No

Yes

Figure 4.14: Encounter manager.

twice per second. If the localization perceptual schema reports the robot has become

freed, the recover stuck motor schema commands the robot to reverse in the current

direction for 2 seconds. At this point, the schema resets itself and stops generating

an output. The robot can then continue normal autonomous movement. The detect

debris schema will have recorded the location where the robot got stuck, which would

then be included in the action vector generated by the avoid obstacles motor schema.

4.7 Framework-Specific Modules

This section describes modules I implemented to support the methodology de-

scribed in Chapter 3. These modules provide supporting functionality necessary for

the robots in my example implementation to manage teams and distribute tasks to

one another.

Chapter 4: Implementation 177

(a) (b) (c)

Figure 4.15: Illustration of an encounter between two robots with robot sensors.

4.7.1 Encounter Manager

This section describes the encounter manager module, which runs on each robot

and is responsible for identifying opportunities to perform an encounter with another

robot. In my implementation, an encounter provides robots on two teams with an

opportunity to perform the team merge and redistribution operation described in

Section 3.7. In my implementation, an encounter also provides two robots with the

ability to reconcile any differences between their team’s local coordinate systems, and

provides an opportunity for the robots to make use of close physical proximity to

share mission-specific knowledge.

An encounter is a coordinated maneuver which takes place between two encoun-

tering robots. Both robots involved in the encounter carry out encounter tasks, and

use wireless communication to coordinate the encounter. Figure 4.15 illustrates the

sequence of events which occur when a robot encounters another robot in the envi-

ronment. In Figure 4.15a(1), Robot 1 observes Robot 2 and initiates an encounter

178 Chapter 4: Implementation

by sending an “I See You” message to state its intention to initiate an encounter

(Figure 4.15a(2)). Robot 2 has a robot identifier sensor (Section 4.3.3) and will at-

tempt to turn in place until Robot 1 is observed. If Robot 2 has a robot identifier

sensor, it sends a “Seeking You” message to Robot 1 to acknowledge the encounter

request message and state that it is maneuvering into position for the encounter (Fig-

ure 4.15b(3)). Robot 2 turns in place until Robot 1 is observed (Figure 4.15b(4)).

Where Robot 2 does not have a robot identifier sensor, it will simply stop moving

as it cannot attempt to sense the other robot. Finally, Robot 2 sends a “Ready”

message to Robot 1 indicating it is in position and ready to begin the encounter.

The encounter manager uses the detect robots perceptual schema (Section 4.6.1.6)

to determine when a robot is being observed by the robot identifier sensor. The

encounter manager tracks the time of last encounter for each robot it knows of,

ensuring the robot on which it runs does not repeatedly engage in frequent encounters

with the same robots. As shown in Figure 4.14, the encounter manager iterates

through the list of observed robots reported by the detect robots perceptual schema,

and determines if an opportunity exists to perform an encounter with one of the

robots. If an observed robot has not been previously seen, or the time since the

robot was last involved in an encounter is greater than a set time (1 minute in my

implementation), the encounter manager attempts to initiate an encounter with that

robot. It does this by creating a new encounter task, specifying an encounter is to

be initiated with the observed robot. The encounter task has a higher priority than

the other task types, and the robot begins carrying it out immediately, suspending

any other work.

Chapter 4: Implementation 179

Observed

Observer

Get in

Position
Reconcile

Perform

Merge?
Merge Share

Sync

Team
Yes

No

Done

Get in

Position
Reconcile

Perform

Merge?
Merge Share

Sync

Team
Yes

No

Done

Figure 4.16: Coordination between encounter tasks of encountering robots.

The encounter manager also tracks incoming requests via wireless communication

to initiate an encounter. As shown in Figure 4.14, if the robot is not already engaged

in an encounter it will add an encounter task to its task list specifying a request was

received to initiate an encounter. If the robot is already engaged in an encounter, it

replies with a message indicating it is currently busy and cannot participate in the

requested encounter.

4.7.1.1 Encounter Task

Both of the encountering robots carry out their own encounter task. The two

tasks coordinate using wireless communication between the two robots, as illustrated

in Figure 4.16. The figure refers to two robots, the observer and the observed. The

observer is the robot that initiated the encounter by observing the observed robot.

All of the steps in the encounter process make use of timeouts, ensuring the robots

do not wait for one another indefinitely, should communication or equipment failures

occur (a comprehensive discussion of the impact of failures and uncertain knowledge

on the team merge and redistribution process can be found in Section 3.7.1).

180 Chapter 4: Implementation

The first step the encounter tasks accomplish is to ensure both robots are in

position for the encounter. The robots position themselves to ensure they can both

observe one another using their respective robot sensors, and when in position stop

moving. Where only the observer robot has a robot sensor (i.e.. in the case where a

MidBot or MaxBot observes a MinBot), the observed robot has no ability to position

itself so the observer is in view. In this case, the observed robot simply stops moving

to allow the observer to get a stable position and orientation reading using its robot

identifier sensor.

If the observed robot has a robot sensor, it will get into position by turning in

place until the observer is within view of its robot identifier sensor. While rotating,

the observed robot periodically sends a “Seeking You” message to the observer robot,

ensuring it is aware the robot is attempting to move into position. Once the observer

robot is visible, the robot stops turning and sends a “Ready” message to the observer.

As shown in Figure 4.16, when both robots are in position, the encounter tasks

move to the reconcile step. The reconcile step provides the robots with an opportu-

nity to reconcile differences in their teams’ local coordinate systems (Section 4.3.1).

Each robot sends a message to the other, indicating its current location and orien-

tation in its own local coordinate system. The combination of this and the position

and orientation of the other robot reported by the robot identifier provide sufficient

information for the two robots to establish a translation between their respective

coordinate systems.

Following the coordinate reconciliation step, the encounter tasks move to the sync

team step (Figure 4.16). During the sync step, each robot sends the knowledge it has

Chapter 4: Implementation 181

of its team to the other robot. This ensures both robots have an accurate picture

of the composition of the two teams, which is a precursor for performing the team

merge and redistribution operation. If the robots are on different teams, they will

perform the team merge and redistribution operation as described in Section 3.7.

The final step in the encounter (Figure 4.16) involves the encountering robots shar-

ing their current mission knowledge with one another. Each robot sends its current

environment map to the other robot. Where the recipient has the capability to merge

maps (i.e. the MaxBot and MidBot robot types), the map information is combined

with the robot’s own map of the environment. Where the encountering robots are on

the same team, this helps ensure consistency in mission knowledge among teammates.

Where the encountering robots are on different teams, the knowledge exchange helps

synchronize the mission knowledge between the different teams.

After the completion of the steps of the encounter tasks, each robot removes the

respective encounter task from its task list, and the time of the encounter is recorded

to ensure the robots do not immediately engage in another encounter.

4.7.2 Knowledge Manager

My example implementation includes a knowledge manager module responsible

for maintaining a robot’s operational knowledge of its own attributes, and of the other

robots operating in the environment. The knowledge manager is also responsible for

maintaining the static knowledge pre-programmed into the robots at design time.

This includes the robot’s attributes, the task types, roles, and knowledge of the

desired team definition.

182 Chapter 4: Implementation

The knowledge manager makes use of the robot’s wireless communication facilities

to synchronize knowledge of the team’s composition among all members of the team.

The knowledge manager accomplishes this using intentional broadcasts of self infor-

mation, and by gaining knowledge from wireless traffic the robot overhears. Similar to

Legras and Tessier [2004], I rely on the broadcast nature of wireless communications

so that a robot makes use of all messages it overhears, even the ones not explicitly

addressed to it. Further, the knowledge manager is able to “forget” knowledge of

teammates when no communication has been received for some time; this enables the

robot to cope with situations where a teammate has become lost or damaged (Section

3.2.1).

Each robot’s knowledge manager periodically (every 15 seconds in my work) uses

the wireless communication system to broadcast a message to all robots in range.

This message contains the robot’s identification, current team affiliation, current role

and suitability to fill that role, and a list of the robot’s attributes. Any robots

within radio range overhear the broadcast and pass it to the knowledge manager.

The knowledge manager updates its operational knowledge of other robots to include

the new information. The knowledge manager timestamps the time when it has last

heard from each robot. The timestamps provide the knowledge manager with the

basis for “forgetting” old knowledge.

In addition to the intentional broadcasts a robot makes, all messages sent to

other robots include the robot’s identification, current team affiliation, current role,

and suitability to fill that role. This small subset of information ensures team and role

changes are more likely to be overheard by members of a robot’s team. The full list

Chapter 4: Implementation 183

of robot attributes does not form a part of every message, as they would increase the

size of messages considerably. Further, the robot attributes in my implementation are

static, so there is not an imperative to continually resend them (though this would

change if future work modeled the current state of various attributes and abilities).

Knowledge older than a configured age (in my implementation, I used three min-

utes) is “forgotten”, and is no longer used by the robot when considering role and

team switches (Section 3.6), considering potential task assignments (Section 3.5.3),

for determining who is leading the current team, or when performing a team merge

and redistribution operation (Section 3.7). The ability to forget knowledge in this

manner ensures that a robot bases team merge and redistribution decisions on knowl-

edge of the robots it is most confident are active members of the team (Section 3.7).

Robots which become disabled are forgotten by their team, allowing teammates to

adjust roles appropriately during periodic role-checks (Section 3.6.1). Similarly, if a

robot becomes separated from its team, it will forget its old team and become more

willing to join up with another team it encounters in the environment (Section 3.6.2).

4.7.3 Communication Manager

The communication manager module handles the delivery and receipt of messages

between robots. It assumes that robots use a wireless radio capable of providing con-

nectionless, broadcast-based communication between robots. Thus, robots are able to

hear messages from all robots within their current radio range. Messages can be either

broadcast and unacknowledged, or directed and acknowledged. The communication

manager provides the capability to address sent messages to specific robots in radio

184 Chapter 4: Implementation

range, and to track the successful receipt of those messages using an acknowledgment

message. In my work, I assume messages not impacted by communication failures

are received by all robots in radio range of the sender. This includes messages which

are addressed to a specific robot. Although only the intended recipient will act upon

the message, other robots in radio range are able to use the sender’s information to

update their knowledge of the current team (Section 4.7.2). Further, robots capable

of doing so will incorporate knowledge gained from confirming victims and exploring

areas into their own operational knowledge (Section 4.2.3).

Wireless communication in my implementation is facilitated by the Stage simula-

tor. To simulate unreliable communication, I assume any message a robot sends has

a probability of being successfully sent to the robots in radio range. Section 4.9.1

describes the simulated wireless communication used in my implementation. The

probability of being successfully sent is an experimental parameter, which is varied

in the experiments I performed to evaluate my implementation (Section 5.5).

4.7.3.1 Acknowledged Messages and Timeouts

All messages a robot addresses to another robot contain a message sequence num-

ber. The message sequence number allows the communication manager to track

whether or not a sent message was successfully received by the recipient. When a

recipient receives a message addressed to it, it immediately sends back an acknowledg-

ment message with the same sequence number. Upon receipt of the acknowledgment,

the sender marks the message as being received successfully. It is, however, possible

for either the sent message or the acknowledgment from the recipient to be lost due

Chapter 4: Implementation 185

to communication failures. The communication manager also tracks a send timeout

for all sent messages (in my work, two seconds). If an acknowledgment has not been

received within the send timeout, the sent message is marked as having failed delivery.

As one of the goals of my work is to study the impact of unreliable communication

on coordination between robots, my implementation does not include the capability

to re-send messages when acknowledgments fail. In a real-world implementation, the

communication manager would increase the chance of delivery through retries and

other means. Rather than assuming unreliable communication can be made better,

I attempt to use the available communication without relying on resends or other

techniques.

The acknowledgment of sent messages is useful to allow a framework module

to determine if a message was received successfully. For example, when one robot

observes another in the environment, it sends an “I See You” message to the robot it

observes, which is the trigger for initiating an encounter maneuver between the two

robots. When the communication manager receives an acknowledgment to the “I See

You” message, the encounter task knows that it can safely proceed to the next step

in the encounter maneuver (Section 4.7.1.1).

Where appropriate, I attempt to deal with message delivery failures in other ways.

A robot exploring an area, for example, could have moved out of range of its team

coordinator, preventing it from reporting back the final results of its exploration. In

such a scenario the robot would continue on to the next task, and report back the

aggregate results from both exploration tasks. This helps to ensure effort is not lost

due to communication failures.

186 Chapter 4: Implementation

4.8 Mission-Specific Modules

This section describes the mission-specific modules in my example implementa-

tion. These modules provide the necessary logic to enable robots to explore the

environment, identify frontier exploration tasks, build a map, and identify victim

confirmation tasks.

4.8.1 Mapping

One of the goals of my search and rescue system is to create a map of the en-

vironment a robot explores; an occupancy grid provides a means of describing the

environment a robot explores in terms of the certainty that an obstacle exists at a

location [Elfes, 1989]. In a real USAR environment a three dimensional mapping

approach would be necessary. For my purposes, I use an occupancy grid structure

capable of storing not only the certainty an obstacle is presence in a location, but

also the height of the obstacle. My approach is similar to work by Gutmann et al.

[2005] and results in a 2.5 dimension representation of the environment.

Since robots can begin operation anywhere in the environment, and the extent to

which a robot can explore in any direction is unknown, it is important to represent

the occupancy grid map in an efficient manner. Since each robot’s coordinate system

begins at point (0, 0) in a Cartesian plane, a robot exploring a 100m x 100m environ-

ment would need to allocate a 200m x 200m map to account for the fact it could start

operation at any point in the environment. I account for this by using a lightweight

matrix of pointers, which point to dynamically allocated occupancy grid patches. Fig-

ure 4.17 illustrates this process. Initially the matrix of pointers does not reference any

Chapter 4: Implementation 187

Matrix of
grid patch
pointers

Occupancy grid patch Occupancy grid patch

Occupancy grid patchOccupancy grid patch

Figure 4.17: To support efficient storage of the map, a lightweight matrix of pointers

references the occupancy grid patches, which are allocated as needed.

patches. As the robot explores and a need arises to expand the map, new fixed-size

occupancy grid patches are allocated in the pointer matrix. In my implementation,

the pointer matrix can accommodate up to 100 x 100 grid patches, each 500 x 500

cells in size. In my experiments, I used a map resolution of 0.08 meters x 0.08 meters

per cell. This means the occupancy grid map can represent an environment up to

2000 meters in each direction from the robot’s starting location. It would be possible,

however, to modify my occupancy grid implementation to facilitate the expansion of

188 Chapter 4: Implementation

the pointer grid, allowing the map to be expanded as required.

4.8.1.1 Updating the Occupancy Grid Map

Each cell in the occupancy grid map consists of two single-byte integers, repre-

senting the height and degree of certainty an obstacle is present at that height. As

previously introduced in Section 2.3.2.1, I use the HIMM (Horizontal in Motion Map-

ping) approach to update the occupancy grid map with scans from sonar or laser

rangefinders. Bresenham [1996]’s line algorithm is used to rasterize the scan lines

onto the occupancy grid.

Algorithm 8 Applying a rangefinder scan to the occupancy grid map.

Require: P = (x, y, z), the coordinates of the origin of the scan

Require: D, the distance of the rangefinder scan

Require: R, the maximum range of the scanner

Require: M , the occupancy grid map to update

E ← end point of scan based on P and D

U ← P

while U 6= E do

if at end of scan (U = E) and scan distance less than max range (D < R) then

Increase confidence at P by 3

else

Decrease confidence at P by 1

end if

U ← next point on line, according to Bresenham’s algorithm

end while

Chapter 4: Implementation 189

Given the starting point of the rangefinder scan (P) and the distance of the

rangefinder scan (D), Algorithm 8 describes the process used to update the certainty

values in the occupancy grid map.

Individual cells in the occupancy grid are updated using Algorithm 9. The algo-

rithm accepts a point (P) on the map, specifying the (x, y) coordinates of the point

to update, and the height (z) the corresponding reading was taken at. Where a

rangefinder scan is applied to the map, z will be the height of the rangefinder sensor

which generated the scan. The algorithm also requires the change in certainty to be

applied (∆). A positive ∆ value indicates an increase in confidence an obstacle is

present, while a negative ∆ value indicates a decrease in confidence an obstacle is

present.

As described in Algorithm 9, if ∆ represents a decrease in certainty, the certainty

at cell Cp will only be decreased if the height of the rangerfinder is the same or

lower than the height (Ho) stored in the occupancy grid for cell Cp. This allows the

occupancy grid map to increase the certainty of a low-lying obstacle, while ignoring

a decrease in confidence at a higher point. If ∆ represents an increase in certainty,

the certainty at cell Cp is increased; if the rangefinder height (z) is higher than the

height (Ho) stored in the occupancy grid for cell Cp, the height at Cp is set to z.

Figure 4.18 illustrates the operation of Algorithm 9 for a robot with both a laser

rangefinder positioned high on its body, and a sonar rangefinder positioned low on its

body. The dashed blue box represents a cell at coordinates (x, y) in the occupancy

grid map (M), which stores the certainty Cp an obstacle of height Ho is present at

that location. For this example, assume Cp = unknown initially. At point (x, y), the

190 Chapter 4: Implementation

Algorithm 9 Updating the certainty an obstacle is present at a location.

Require: P = (x, y), the point in the map to update the confidence

Require: z, the height of the rangefinder used to take the reading

Require: ∆, the change in confidence

Require: M , the occupancy grid map to update

Cp ← certainty of cell in M at (x, y)

Ho ← height of obstacle as recorded in M at P

if decreasing certainty (∆ < 0) and z is the same height or lower than Ho then

Cp = Cp + ∆

else if increasing certainty (∆ > 0) then

Cp = Cp + ∆

if z is higher than Ho then

Ho = z

end if

end if

sonar rangefinder has detected debris, and updates M with an increase in confidence

of ∆s = +3, at height zs. This sets Cp = +3, and Ho = zs. Also at point (x, y), the

laser rangerfinder detects empty space, and updates M with a decrease in certainty

of ∆s = −1, at height zL. Since ∆s represents a decrease in certainty, and zL > Ho,

Cp is not changed, and remains +3.

Chapter 4: Implementation 191

Robot

Debris

W
A
L
L

Cp = Certainty in M at (x,y)

HO = Height in M at (x,y)

zL = height of laser rangefinder

zS = height of sonar

L = -1

S = +3

Figure 4.18: Example of updating the occupancy grid using sensors readings from

two heights.

4.8.1.2 Merging Maps

As robots carry out explore frontier tasks (Section 4.5.2.2), they send the results of

their exploration to the team coordinator, in the form of an occupancy grid map. As

previously described in Section 2.3.4, combining maps generated by multiple robots

is a non-trivial operation. Errors in localization and noisy sensor data, for example,

lead to errors in the map merging process, potentially rendering the resulting map

useless.

In my example implementation, since I assume members of a team share the same

coordinate system (Section 4.3.1), robots on the same team can communicate maps

with one another, and overlay the maps in order to facilitate merging. As robots from

different teams encounter one another in the environment, they gain the ability to

translate their coordinate systems, opening the possibility of merging maps between

teams. The merging of maps between teams occurs not only with the information

192 Chapter 4: Implementation

exchanged during the encounter (Section 4.7.1.1), but also when map communications

between members of another team are overheard (Section 4.2.3).

Since robots use the Stage API to localize themselves, and all agents effectively

share a common coordinate system, I assume that a robot can only merge another

robot’s map into its own if it has previously encountered a member of that robot’s

team, establishing a translation between their respective coordinate systems (Section

4.3.1). This means merging maps is a simple manner of overlaying the two occupancy

grid maps, once coordinates are appropriately translated. Although this is unrealistic

for a physical environment without adding a means of overcoming the error involved

in reconciling coordinate differences between agents, it is sufficient for demonstrating

my adaptive team management framework.

Algorithm 10 Merging maps.

Require: M , the occupancy grid map.

Require: S, an occupancy grid map to merge into M .

for all P [x, y] ∈ S do

if P [x, y] is not unknown then

if P [x, y] is known empty space then

C[x, y] = known empty.

else

Update certainty of C[x, y] using Algorithm 9, with S[x, y].Height,

S[x, y].Certainty.

end if

end if

end for

Chapter 4: Implementation 193

Given a robot’s map (M), and a received map to merge in (S), Algorithm 10

describes the process used to merge maps. For each cell P [x, y] in S which does not

represent unknown space, the corresponding cell C[x, y] in M is found. If P [x, y]

represents known empty space, C[x, y] is set to known empty space. Likewise, if

P [x, y] represents an obstacle of varying certainty, Algorithm 9 is used to update the

certainty of C[x, y], with the height from S[x, y], and the change in certainty being

the certainty of S[x, y].

4.8.2 Frontier Finder

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 23 25 0 0 0 -1

-1 0 23 0 0 0

-1 0 0 1 0 0

-1 0 0 0 0 0

25 0 0 0 0 0

0 25

0 23

0 25

0 0

ExploreFrontier

Location: (x,y)

ExploreFrontier

Location: (x,y)

Figure 4.19: The frontier finder identifies frontiers exploration tasks.

As described in Section 2.3.5, my implementation uses a frontier-based approach

to guide a team’s exploration efforts. A frontier is a transition between explored

empty space and unexplored empty space, and represents a location where a robot

can move to potentially gain knowledge of the environment Yamauchi [1997]. As

illustrated in Figure 4.19, the robot filling the team coordinator role uses the frontier

finder module to identify frontiers in the robot’s occupancy grid map and generate

explore frontier tasks. As robots report back the result of exploring frontiers to the

194 Chapter 4: Implementation

team coordinator, the frontier-finder marks the frontiers as explored.

The frontier finding algorithm runs periodically (every 10 seconds in my imple-

mentation) to inspect the robot’s occupancy grid map to identify new frontiers. The

frontier finder also removes frontiers which no longer exist due to updates made to

the map since the last execution of the algorithm.

Algorithm 11 Updating frontiers.

Require: M , the occupancy grid map, with all cells marked unvisited.

for all C[x, y] ∈M do

if C[x, y] is not visited, is not part of a frontier, and is a frontier cell then

Mark C[x, y] visited.

Create new frontier F starting at C[x, y].

V = empty stack

Push C[x, y] onto V

while V has cells do

T [x, y]← Pop top cell from V

Add cell T [x, y] to frontier

Push neighboring frontier cells of T [x, y] not visited, or part of a frontier

end while

Record size of F and create frontier task

else if C[x, y] is not visited, is part of a frontier, and is not a frontier cell then

Update frontier containing C[x, y]

end if

end for

Chapter 4: Implementation 195

Algorithm 11 describes how new frontiers are identified and unnecessary frontiers

are removed. The algorithm begins by assuming all cells in the map are unvisited /

unprocessed. For each cell (C[x, y]) in the occupancy grid map M , the algorithm first

determines if C[x, y] has been marked as visited (each cell is visited only once during

each algorithm execution). If the cell has not been visited, is not already part of a

frontier, and is a frontier cell, it is pushed onto a stack (V) for processing. A new

frontier (F) is created, and the algorithm follows the frontier by adding all adjacent

frontier cells to the frontier.

If the algorithm encounters a cell C[x, y] which has not been visited, is marked

as part of a frontier, but is not a frontier cell, it updates the frontier containing

C[x, y] to decrease its size. This ensures as the map changes due to the addition of

new information, existing frontiers are adjusted appropriately. The new knowledge

could result in an existing frontier shrinking in size, or being removed entirely. If

a frontier is removed, the robot broadcasts a message indicating the task associated

with the removed frontier is now invalid. The robot whom the task was assigned to

will remove the task from its task list to prevent duplication of effort. Communication

failure could result in the task cancellation message failing to be received by the task

assignee, in which case the assignee would still explore the frontier, duplicating effort.

The duplication of exploration effort still provides the opportunity for new knowledge

to be gained, as each robot will likely take a different route to arrive at the frontier.

Further, re-exploring an area helps to increase the certainty of the map data for that

area.

A cell C[x, y] is considered a frontier cell if it is a transition from known empty

196 Chapter 4: Implementation

0

0

0

0 23

0 25

0 23

Cell is empty.
5 neighboring cells are empty.

No neighboring cells are unknown.
Cell is not a frontier cell.

(a)

0

0

0

0 23

0 25

-1 23

Cell is empty.
4 neighboring cells are empty.
1 neighboring cell is unknown.

Cell IS frontier cell.

(b)

Figure 4.20: A cell is a frontier cell if it and one of it’s neighbors are empty, and a

neighbor is unknown.

space to unknown space. By definition, a cell is a frontier cell, if it represents empty

space, one of its eight neighboring cells is known empty space, and one of its eight

neighboring cells is unknown space. Figure 4.20a shows a cell that is not a frontier

cell: The cell itself represents empty space, five of its neighboring cells are empty

space, but no neighboring cells represent unknown space. There is no potential to

gain knowledge of unknown space at that cell. Figure 4.20b shows a cell that is a

frontier cell: The cell itself represents empty space, four of its neighboring cells are

empty space, and one of its neighboring cells is unknown space.

When a robot completes an explore frontier task, it reports back the map infor-

mation resulting from the exploration to the team coordinator. The team coordinator

merges the results into its own map, and marks the frontier as explored.

My approach to frontier-based exploration assumes the team coordinator will iden-

tify a number of frontiers for exploration, and assign them to the robots on its team,

Chapter 4: Implementation 197

such that there will generally be a backlog of frontiers requiring exploration. This

approach differs from work by Yamauchi [1998], where coordination is achieved by

sharing map information and each robot is responsible for identifying frontiers on its

own. Yamauchi [1998] makes no attempt to eliminate duplicate effort between robots.

Other approaches can be used to help prevent duplicate effort, and it would be useful

future work to investigate the efficacy of such approaches in helping to prevent the

duplication of effort in my implementation. Poernomo and Ying [2006], for example,

attempt to ensure robots are sufficiently spread out, so as to reduce the possibility

of overlapping efforts. My frontier finder implementation could be modified to mimic

this behaviour by attempting to assign the most geographically separated frontiers to

different robots.

4.8.3 Victim Tracker

The victim tracker module is responsible for tracking victims in the environment,

and identifying potential victims in the environment which require confirmation. It

maintains a list of tracked victims, where victims are uniquely identified by their lo-

cation in the environment. Information recorded about each tracked victim includes

a location, status, and information about the associated confirmation task (if appli-

cable) for that victim. The victim status can be: potential, negative, or positive. A

status of potential means the victim tracker is not sure if there is a victim present

at the victim’s location. This is the case where the victim was detected using a ba-

sic victim detector (Section 4.9.2). A status of negative indicates a potential victim

which has been confirmed (using a full-featured victim detector (Section 4.9.2)) as

198 Chapter 4: Implementation

not being a victim. A status of positive indicates a potential victim which has been

positively confirmed as a true victim.

The victim tracker updates the status of victims identified by the detect victims

perceptual schema (Section 4.6.1.7), and using information received via the wireless

communication system. The detect victims perceptual schema provides a list of vic-

tims, and indicates whether each is categorized as potential, negative, or positive, as

determined by the robot’s victim detector sensor. The victim tracker loops through

the reported victim locations and status and updates its list of tracked victims. If a

new potential victim has been found, the victim tracker creates a new confirm victim

task, which it adds to its task list (Section 3.5.2).

The team coordinator inspects confirm victim tasks it receives using the victim

tracker, and removes tasks for victims which it already knows to be confirmed, or

for which a different victim confirmation task already exists. This helps reduce the

chance of duplicate effort where multiple robots identify a potential victim in the

same location, or where a different robot finds a potential victim which has already

been confirmed.

When a robot completes a confirm victim task, it reports its findings about the

potential victim to the team coordinator. The team coordinator’s victim tracker

module uses this information to update its knowledge of the victim’s status. All

other robots with the capability to do so who overhear this message also update their

knowledge of the victim. This helps ensure knowledge of victims is distributed among

the team. In my implementation, I assume the MinBot robot type is capable only

of tracking the victims it identifies, and the MidBot and MaxBot robot types are

Chapter 4: Implementation 199

both able to track all victims the team identifies. A real-world implementation of a

MinBot would likely be severely memory-constrained, making it unlikely to be able

to track the victims found by the entire team.

4.8.4 Planner

The planner module provides a robot with the ability to make use of its occupancy

grid map to find a path from a starting location to a destination. My planner module

implementation is based on the wavefront planner module included in the Player

component of the Player/Stage software [Gerkey et al., 2003]. According to Murphy

[2000], one advantage of wavefront planners is their ability to use a generated plan to

find a path from any location in the environment to the destination. This is ideal in

my work, as the planner module is used during the task allocation process. Given a

task location, the planner module is able to efficiently determine an appropriate path

and associated cost to reach the task location from any task assignee’s location.

When assigning a task, the task assignment process first generates a plan for the

task location. As robots respond to task allocation requests, they report their current

location to the task assigner. The task assigner uses the planner to determine the

cost (distance) involved with reaching the task location from each potential assignee’s

location. When an assignee is chosen to carry out the task, the planner is used to

provide a series of way-points to help guide the assignee to the task location. The

way-points do not directly dictate the exact movements the robot will make, but

instead act to guide the robot to its destination while its reactive control system

performs obstacle avoidance. This helps reduce the chance of an assignee getting lost

200 Chapter 4: Implementation

or stuck in a local minima while navigating to a task location.

The wavefront planner operates on a grid data structure (similar to the occupancy

grid map) called a configuration space [Murphy, 2000]. The configuration space, or

CSpace for short, represents the environment from the perspective of the planner.

Similar to the occupancy grid map, it specifies the known areas where a robot can

move to, and the areas known to be occupied by an obstacle. Unlike the occupancy

grid, it does not specify a level of certainty for obstacles, nor does it distinguish

between unknown space and obstacles. This makes sense, as the planner cannot

assume the robot is able to travel to unknown spaces, or to destinations within an

area flagged as an obstacle. The configuration space also takes into account how close

to obstacles a robot is permitted to travel. In my implementation, I assume robots

should not get closer than 30 cm to obstacles, to reduce the possibility of collision.

The planner begins at the destination cell, and marks each non-obstacle neigh-

boring cell with the distance (path cost) to the destination cell. A pointer in each

neighbor cell points back to the destination. The neighboring cells are then recur-

sively populated. The result is a fully-populated CSpace grid where each cell indicates

the distance to reach the destination cell, and the pointer in the cell points to the

neighboring cell with the smallest distance.

Figure 4.21 illustrates the process through which the wavefront planner CSpace

is populated, assuming each cell represents a 1m x 1m area. Figure 4.21(1) shows

the first iteration of the algorithm. Here, each neighbor of the destination cell is

populated with the distance to the destination. The pointers in each cell point to

the destination. Figure 4.21(2) shows the second iteration. The distances expand

Chapter 4: Implementation 201

1 1

1.4 1 1.4

(1) Beginning at destination,

populate neighbors with

cost to destination.

2 1 1 2

2.4 1.4 1 1.4 2.4

(2) Recursively populate

costs of neighboring cells.

3 2 1 1 2 3 4

3.4 2.4 1.4 1 1.4 2.4

3.8 3.4

4.8 4.4 10 10 10

5.8 5.4 9.4 9.8 10

3.4 4.4

5.4

6.4

7.4

5

5.4

5.8

6.8

7.8

6.8 6.4 7.4 8.4 9.4 10

7.8 7.4 7.8 8.8 9.8 10

8.8 8.4 8.8 9.2 9.4 10

9.4 8.4

9.8 9.4

10 10

8.8

9.8

10

(3) Continue until all cells

are populated.

Figure 4.21: Wavefront expansion.

outward from the destination, much like a wave in a pool of water. Here, the pointers

in each cell point to the next closet cell to the destination. Figure 4.21(3) shows

the result of the algorithm. Each cell in the CSpace is populated with a distance

to the destination, and the pointers in each cell point to the next closest cell to the

destination.

The cost (distance) to reach the destination is stored in each cell. As illustrated

in Figure 4.22(1), finding the path from any location to the destination becomes a

3 2 1 1 2 3 4

3.4 2.4 1.4 1 1.4 2.4

3.8 3.4

4.8 4.4 10 10 10

5.8 5.4 9.4 9.8 10

3.4 4.4

5.4

6.4

7.4

5

5.4

5.8

6.8

7.8

6.8 6.4 7.4 8.4 9.4 10

7.8 7.4 7.8 8.8 9.8 10

8.8 8.4 8.8 9.2 9.4 10

9.4 8.4

9.8 9.4

10 10

8.8

9.8

10

3 2 1 1 2 3 4

3.4 2.4 1.4 1 1.4 2.4

3.8 3.4

4.8 4.4 10 10 10

5.8 5.4 9.4 9.8 10

3.4 4.4

5.4

6.4

7.4

5

5.4

5.8

6.8

7.8

6.8 6.4 7.4 8.4 9.4 10

7.8 7.4 7.8 8.8 9.8 10

8.8 8.4 8.8 9.2 9.4 10

9.4 8.4

9.8 9.4

10 10

8.8

9.8

10

(1) To find path, begin at start

location and follow pointers to

lowest cost neighbors.

(2) Way-points are the minimal

set of points with no obstacles

between them.

Figure 4.22: Wavefront path generation.

202 Chapter 4: Implementation

simple manner of following the pointers from the starting location to the destination.

The figure illustrates this process for finding the path from two different locations to

the destination. To provide a set of way-points to guide a robot from a location to

the destination, the planner examines the path to find the minimal set of cells along

the plan with no obstacles between them (illustrated in Figure 4.22(2)). This ensures

the way-points are providing general guidance to the robot, rather than a prescriptive

set of exact moves the robot must carry out to reach the destination.

4.9 Simulation Implementation Details

This section describes the manner in which I extended the Stage simulator to pro-

vide simulated limited range unreliable communication. It also describes the manner

in which I implemented the victim identifier sensor and robot detector sensors, using

the facilities provided by the Stage simulator.

4.9.1 Simulated Unreliable Wireless Communication

I assume that the robots in my work coordinate via unreliable short-range wireless

communication. A real-world implementation might use an 802.15.4 wireless radio to

support communication between robots. Radios of this nature can achieve a maximum

transmission range of approximately 300 meters in open space [Baronti et al., 2007].

Older versions of the Stage simulator supported a simulated Wi-Fi model, which

was capable of determining which robots are in radio range of one another. The

Wi-Fi model also supported a basic broadcast message facility. As part of my work,

I ported the older code from the Stage 2.0 code-base to Stage 3.2 version I used for

Chapter 4: Implementation 203

my work. The Stage Wi-Fi model supports simulation of radio propagation using

the ITU indoor radio model. According to Seybold [2005], the ITU indoor radio

model describes the propagation of radio signals inside rooms or closed areas. A

distance power loss coefficient determines how much signal power is lost as radio

waves propagate. Higher values indicate a higher degree of signal loss as the distance

between the sender and recipient increases.

Algorithm 12 Determining if a robot is in radio range.

Require: C ← power loss coefficient

Require: P ← transmission power, in dB

Require: S ← receiver sensitivity, in dB

Require: f ← transmission frequency in MHz (2400 for Wi-Fi)

Require: d← Cartesian distance to robot

L = 20 log10 (f) + C log10 (d)− 28

if L ≤ (P − S) then

return In range

else

return Out of range

end if

Algorithm 12 describes how the modified Stage simulator determines if two robots

are within radio range of one another. The algorithm calculates L, the power loss (in

dB) of a signal transmitted at frequency f (in MHz), where the robots are separated

by a cartesian distance of d meters. The power loss coefficient (C) determines the

degree of power loss as distance increases – higher numbers indicate a higher degree

204 Chapter 4: Implementation

of power loss as distance increases. If the power loss between robots is less than the

difference between the power of the transmitter (P), and the sensitivity of the receiver

(S), the robots are considered to be in radio range. In reality, radio signals would not

cut off at an exact distance and would vary based on the presence of obstacles and

local interference. However, for the purpose of my work this radio model is sufficient.

In my implementation, I use a power setting of 4, a sensitivity of -70, and a

power loss coefficient of 30. The power loss coefficient was chosen based on the ITU

recommendations for an indoor office environment [ITU-R, 2003]. The power and

sensitivity were arrived at through initial experimentation, and result in an effective

communication range between robots of approximately 20 meters. Although wireless

radios can achieve much greater transmission distances in open space, I assume that

the difficult environment of a disaster zone would introduce considerable limitations

on the maximum transmission range of radio signals. Further, it would be advanta-

geous to minimize the radio transmission power in order to conserve robot battery

life.

Given my work assumes wireless communication is unreliable, I extended the

Wi-Fi model to support a parameter that determines the probability of a message

being sent from a sender successfully. Algorithm 13 shows the algorithm I use to

implement simulated unreliable message delivery. The parameter Psucess determines

the probability a sent message will be successfully delivered to the robots within radio

range. The algorithm generates a random number R from 0 to 100. If the random

number of greater than the Psuccess, the message is delivered to all robots in radio

range. The sending robot does not know whether a sent message was successfully

Chapter 4: Implementation 205

Algorithm 13 Simulated unreliable message delivery.

Require: N = {N1, N2, · · · , Nn}, robots in radio range.

Require: M ← message to send.

Require: Psuccess ← the probability of successful message send ([0 · · · 100]).

R← random number in [0 · · · 100].

if R > Psuccess then

for all Ni ∈ {N1, N2, · · · , Nn} do

Deliver M to Ni.

end for

end if

received.

4.9.2 Victim Detectors

I use the fiducial finder functionality provided by the Stage simulator to implement

false and positive victims, and the two types of victim sensors (Section 4.3.2). Objects

in the Stage simulator can be assigned a fiducial type and fiducial ID within that type.

In my work, I assign a specific fiducial type for the identification of false and positive

victims (another fiducial type is used to identify robots with the robot identifier sensor

(Section 4.9.3)). Configurations of debris representing a victim (e.g. Figure 4.7a) are

assigned a fiducial ID of 1, while true victims (Figure 4.7b) are assigned a fiducial ID

of 2.

A fiducial finder in Stage is a sensor capable of detecting objects marked with

a specific fiducial type, and subsequently returning the associated fiducial ID. This

206 Chapter 4: Implementation

is the rough equivalent of having a bar code to uniquely or categorically identify a

marked object, and a scanner to read that code. The fiducial finder has a configurable

maximum range and identification range. The maximum range identifies the maxi-

mum distance at which a fiducial finder can detect fiducials. Within the maximum

range, a fiducial finder returns the coordinates and orientation of each object with

the matching fiducial type. The identification range determines how close the robot

must be to a fiducial in order to determine its fiducial ID. Outside the identification

range, the fiducial ID is returned as “undefined”, indicating the potential presence of

a victim.

The full-featured victim detector is configured as a fiducial finder with a maximum

range of 6.0 meters, and an identification range of 4.0 meters. This means at a distance

between 4.0 and 6.0 meters the full-featured victim detector can identify the potential

presence of victim, but because it cannot read its fiducial ID, it cannot distinguish

between a true victim and a debris configuration resembling one. Between 0 and 4.0

meters, the full-featured victim detector can read the fiducial ID, making it capable

of distinguishing between true victims, and debris configurations resembling victims.

The basic victim detector is configured as a fiducial finder with a maximum range

of 4.0 meters, and an identification range of 0 meters. This means that at a distance

between 0 and 4.0 meters, the basic victim detector can identify the potential presence

of a victim. The identification range of 0, however, prevents the basic victim detec-

tor from differentiating between true victims and debris configurations representing

victims. Both victim detector sensors have a 180 degree field of view in front of the

robot.

Chapter 4: Implementation 207

4.9.3 Robot Identifier Sensors

In my work, the robot identifier sensor provides a robot with the ability to deter-

mine, in the robot’s local coordinate space, the position and orientation of another

robot in close physical proximity. It provides a means for a robot to initiate an

encounter with a robot it observes in the environment (Section 4.7.1.1).

In their work, Howard et al. [2006a] outfit each physical robot with a cylindrical

fiducial. The marker is encoded with the robot’s unique ID and has a pattern around

its circumference which is marked so that it appears differently, depending on the

angle from which it is viewed. Using a camera, a robot can observe another robot

in the environment to determine the identification and orientation of it in the envi-

ronment, in relation to itself. Analogously, I employ simulated fiducials for a robot

to identify and determine the relative location and orientation of another robot. I

assume that all robots in my environment have fiducial markers similar to [Howard

et al., 2006a]. Robots equipped with a robot identification sensor (i.e. the MidBot

and MaxBot robot types) read the fiducials on robots to determine their position and

orientation in the environment.

Similar to the victim detection approach described in Section 4.9.2, I make use of

the fiducial finder functionality in the Stage simulator to implement my fiducial-based

robot identification system. A unique fiducial type is delegated to robot identification.

Each robot has a fiducial with the robot identification fiducial type, and a fiducial ID

set to its unique robot ID. A Stage fiducial finder configured to recognize the “robot

identification” fiducial type forms the robot identifier sensor.

The robot identifier fiducial finder is configured to have a maximum range of 6m in

208 Chapter 4: Implementation

which it can identify the position and orientation of other robots. The robot identifier

is set to have a 180 degree field of view in front of the robot.

For robots that have a robot identifier, the Stage simulator reports the robot ID

and relative position and orientation of any robots in the current field of view. These

values are used by the detect robots perceptual schema (Section 4.6.1.6).

4.10 Conclusion

This chapter has described the Urban Search and Rescue implementation I devel-

oped in order to support an evaluation of my methodology. The following chapter

describes the experiments I performed to evaluate my methodology against baseline

conditions.

Chapter 5

Evaluation

5.1 Overview

In order to examine the effectiveness of my methodology (Chapter 3), experi-

ments were conducted in the simulated USAR environment, described in Section4.3.

I compared the performance of teams using my methodology against two baseline

cases. In the first, robots were not able to implement role changes and team mem-

bership changes in response to changing conditions. I further compared these against

a worst-case baseline, where in addition to roles and team membership being fixed,

tasks were mapped in a fixed manner to the three robot types. I considered factors

such as the availability of replacement robots, the degree to which communication

would be successful, and the likelihood of robot failure.

This chapter begins with a review of my thesis questions (Section 5.2), and a

description of the experiments I performed to answer these questions. Next, I de-

scribe how I generated the experimental environments (Section 5.4) in which I ran

209

210 Chapter 5: Evaluation

my experiments. I then describe the design for the experiments (Section 5.5), along

with the criteria I used to compare the effectiveness of my methodology against the

baseline cases (Section 5.3). The results of my experiments are presented in Sections

5.7 and 5.8, and a discussion of my findings is found in Section 5.9.

5.2 Review of Research Questions

Recall my research questions from Section 1.6:

1. Can my framework provide teams operating in dynamic environments

with the ability to adequately cope with changes in team structure

and composition (i.e. due to loss and failure of team members, and

encountering other teams and teammates in the environment)?

2. Can my framework help mitigate the negative affect of unreliable

communication on coordination efforts between agents?

3. Is my framework able to cope with failure of a team’s leadership

structure?

My main experiment (Section 5.5) answers the first two questions, by studying

the impact communication and robot failures have on the performance of teams. A

second experiment with a smaller scope (Section 5.8) answers the third question,

by introducing a failure in the leadership structure of a team at a pre-determined

interval, and observing the performance of the team as it adapts.

Chapter 5: Evaluation 211

5.3 Evaluation Criteria

To facilitate an evaluation of the performance of my methodology, I recorded

two values at fixed times throughout each trial: the percentage of the environment

covered, and the percentage of victims successfully identified. The percentage of the

environment covered metric measures the total portion of the environment explored

by both teams. The percentage of victims successfully identified metric describes the

number of victims (Section 4.3.2) successfully identified by all teams. A victim is

considered successfully identified when it has been correctly identified as either a

false or positive victim (i.e. by a robot equipped with full-featured victim detector

(Section 4.9.2). My implementation software captures these metrics every 20 seconds

for the duration of each 30 minute trial.

The metrics are captured from the team coordinators of each team, excluding

replacement robots that have not yet joined a team or formed a team of their own. I

also exclude the individual map and victim knowledge from MinBots, as these robots

are not capable of forming an aggregated view of a team’s operational knowledge

(Section 4.2.3). This can result in some knowledge gained by MinBots not being

represented in the above metrics (i.e. if a MinBot was unable to communicate new

knowledge to the team coordinator, due to it becoming lost or experiencing commu-

nication issues). I chose not to include this information, as I assume the successful

transfer of knowledge to the team coordinator is an important indicator that a team

is performing effectively, and because it takes a generally conservative approach to

evaluating my work. Map data from the team coordinators is merged (Section 10) and

victim knowledge is combined to determine the actual metrics above for the purposes

212 Chapter 5: Evaluation

Trial GenerationEnvironment Generation

Start

Done

Set

Independent

Variables

Done
Create

Boundary

Generate

Voids

Place

Victims

Place

Teams

Place

Replacements

Generate

Debris and

Obstacles

Start

Generate Repetition

Set Random

Seeds

Write

Simulation

Worldfile

Figure 5.1: Experimental environments are generated using a two step process.

of evaluation.

5.4 Experimental Environment

This section describes the simulated disaster environments in which I ran my

experiments. The manner in which the environments were constructed is described, as

well as the experimental controls I used to help avoid bias between the environments.

All experimental environments were generated as world files suitable for use with

the Stage simulator. The three robot models (MinBot, MidBot, and MaxBot) are

defined in a common file, according to the specifications found in Section 4.4. This

common file is referenced in each world file, ensuring all instances of a robot type

have the same physical properties, sensory equipment, and capabilities.

5.4.1 Generating Environments

As previously stated in Section 4.3, I chose to evaluate my methodology in sim-

ulation for the consistency and repeatability it offers over performing experiments

in a real-world domain. Running all of my experiments in the same environment is

not ideal, as there could be biases inherent with the environment. For example, the

Chapter 5: Evaluation 213

starting position of replacement robots and the configuration of debris could result

in the replacements infrequently encountering other robots, making my methodol-

ogy appear less effective than it is. Similarly, the starting position of replacement

robots could result in the replacements encountering other robots easily, making my

methodology appear more effective than the intended operating environment. Using

multiple environments with the same difficulty of operation is ideal, as it helps to re-

duce bias inherent to the environment. The environment generator I used to generate

my environments ensures all environments are similar in terms of the difficulty op-

eration. The environment generator ensures the placement of environment elements

occurs randomly, robot starting locations are evenly spaced along the perimeter of the

environment, and the density of obstacles present in the environments are consistent.

Environments used in my work were generated using an environment generator

application written in Java. The environment generator randomly creates an envi-

ronment containing debris, obstacles, voids, victims, and robots. Parameters in the

environment generator allow the properties of the generated environments to be con-

figured. I used the environment generation application created by Wegner [2003] as

starting point for my environment generator.

As shown in Figure 5.1, generation of environments occurs in two phases: environ-

ment generation, and trial generation. During the environment generation phase, the

physical configuration of the environment is established. This includes the position of

walls, voids, debris, obstacles, robots, and victims within the environment. The con-

figuration of each generated environment is saved. The chosen environments (Section

5.4.2) are used as input for the trial generation phase, where the actual experimental

214 Chapter 5: Evaluation

conditions are generated for each experiment.

I chose to use a two phase environment generation process to ensure I had an

opportunity to review the environment configurations, prior to generating the com-

plete Stage world files for each environment. The two phase environment generation

process also provides the flexibility to generate more repetitions of an experiment, or

entirely new experiments based on the same environment configuration.

Each generated environment is 60 meters by 60 meters in size, and has a boundary

wall along each edge (e.g. Figure 4.3, p.129). After placing the perimeter boundary

walls, the voids and rooms are placed in the environment (referred to as voids from this

point forward). An environment has 50 rectangular voids, with randomly generated

dimensions 5 – 12 meters wide, and 5 – 12 meters long. The voids are randomly

positioned within the environment, ensuring none overlap.

Each void has 1 to 5 openings, randomly placed along the perimeter of the void.

Each opening is from 1 to 2.5 meters wide. 60 percent of voids have all of their

openings blocked by debris (Figure 4.5b, p.131) , meaning they are only accessible

to robots with a tracked drive system. The openings in the remaining 40 percent of

voids are not blocked by debris, and are accessible to any robot (Figure 4.5a, p.131).

As described in Section 4.3, robots begin operation in enclosed areas along the

perimeter of the environment (Figure 4.4, p.129). This emulates an entry point in

the environment where the robots are inserted, such as a window or a doorway. In

my experiments, I used two teams, each with its own entry point. The first entry

point is randomly placed along the perimeter of the environment. The other entry

point is placed to ensure both entry points are evenly spaced along the perimeter of

Chapter 5: Evaluation 215

the environment. Each team starts with one MaxBot robot, two MidBot robots, and

four MinBot robots, arranged as illustrated in Figure 4.4.

After placing teams, starting positions are generated for the replacement robots

along the perimeter of the environment (Figure 5.1). These starting positions are used

for experimental conditions where replacement robots are present. 13 replacement

robot starting positions are evenly spaced along the perimeter of the environment.

The 13 positions are randomly assigned a robot from a pool of replacements, which

includes 10 MinBots, 2 MidBots, and 1 MaxBot.

Each environment has 10 negative victims (debris configurations resembling vic-

tims; Figure 4.7a, p.136), and 20 positive victims (Figure 4.7b, p.136). Negative and

positive victims are positioned randomly in the environment, such that they are at

least 0.8 meters from a wall, and no victims overlap.

The final step in the environment generation process (Figure 5.1) is the placement

of obstacles and debris (Figure 4.4, p.129). Each obstacle or debris object is 0.5

meters wide by 0.5 meters long. Obstacles and debris are created and positioned

randomly, until the total area occupied by walls, obstacles, and debris covers 13%

of the total environment area. 60% of the added objects are debris (impassable by

wheeled robots), and 40% are obstacles (impassable by all robots). The obstacle and

debris objects are positioned to ensure they are at least 1.2 meters from the wall of

a void, and 0.6 meters from the nearest obstacle or debris object.

216 Chapter 5: Evaluation

5.4.2 Choosing Environments

I generated a total of 40 environments, from which 3 environments were chosen to

be used when performing my experiments. My selection process involved loading each

environment in the Stage simulator, and running them for a few minutes of simulated

time to observe the general movement of the robots. I eliminated any environment

where:

1. The wall of a void blocks a team starting position. This configuration creates

a narrow corridor through which the entire team must navigate before entering

the broader environment. The high density of robots in the starting position,

and the fact the robots use reactive navigation would result in significant time

wastage before any useful work could be done. In a real USAR environment, this

would be a situation where after a single false start, a team would be inserted

elsewhere.

2. The wall of a void blocks a replacement robot starting position. Similar to the

previous case, a narrow corridor is created which causes the replacement robot

to waste considerable time attempting to free itself before it can even begin

doing useful work.

3. The randomly distributed obstacles and debris are too clustered. In some cases,

the random placement of obstacles and debris resulted in areas where the de-

bris and obstacle configuration made navigation more inconsistent across the

domain than would be desirable. The goal was to have a series of environments

with roughly consistent navigational difficulties, as opposed to domains where

Chapter 5: Evaluation 217

difficulties were more concentrated in some areas than others.

4. The randomly distributed victims are too clustered. Occasionally victims would

be clustered, rather than evenly distributed throughout the environment. Again,

the goal was to have domains that would be of roughly equal challenge, and this

clustering would prevent that.

After considering the above situations, I chose three environments from the initial

40 that appeared to be of roughly equal difficulty. The independent variables, and

the factorial design used in my main experiment (Section 5.5) made it impractical

to use more than three environments (each environment adds 2700 simulation runs).

Many repetitions of each experimental condition are run in each of the three environ-

ments, resulting in a comprehensive demonstration of my methodology compared to

the baseline techniques. The three environment configurations I chose are shown in

Appendix A.

5.4.3 Generating Repetitions

In order for me to make observations beyond those possible with aggregate data,

I required the ability to visually observe the trials that make up this data as well.

Watching trials as they ran was not desirable, as running Stage with the graphical user

interface enabled results in a significant performance penalty (I ran my experiments

with the graphical user interface disabled to speed simulation execution). Further,

even with the graphical user interface enabled, simulations run up to 20 times faster

than real-time, making it difficult to make fine grained observations. This means

making observations about specific trials required the ability to re-run them perfectly,

218 Chapter 5: Evaluation

with the graphical user interface enabled and the simulation speed slowed down.

The factorial design of my experiment (Section 5.5) assumes each experimental

condition (all 162 combinations of the levels of the variables shown in Figure 5.2)

will be run for 50 repetitions each. In each repetition, different communication fail-

ures and robot failures will occur. Further, the autonomous control software will

generate different random motions, and use different recovery movements to become

unstuck. Finally, the role check operation intervals occur for each robot at different

intervals. These variations mimic what would be expected in repeated repetitions of

an experiment in the real world.

Although operation of the Stage simulator ensures running the same world file

multiple times will result in repeatable results [Vaughan, 2008], the use of random

number generators in my robot control software means individual trials are not nat-

urally repeatable. To ensure repeatability of the trials and facilitate re-running them

for observation, the seed values for the random number generators are specified in

the Stage world file for each trial. This ensures any single experimental trial can be

run any number of times, generating the same results each time.

50 sets of different random number seeds were generated, and used in the 50

repetitions of each experimental condition. This ensures random factors are identical

across all like numbered repetitions of each experimental condition. This means, for

example, if robot 3 fails after 10 seconds, in repetition 1, it will fail at the same

point in repetition 1 for all experimental conditions. The use of different random

number seeds across repetitions ensures no repetition of an experimental condition

will generate exactly the same results.

Chapter 5: Evaluation 219

Condition

Replacement

Robots

Communication

Success Rate

Probability of

Robot Failure
TechniqueX X X

No

Replacements

Replacements

20%

60%

100%

None

Moderate

Major

Fixed Task

Allocation

Fixed Roles and

Teams

My

Methodology

X 50
Repetitions

=
Trials

8100X 3
Environments

Figure 5.2: Main experiment variables and levels.

5.5 Experiment Design

For my main experiment, I compare my methodology against two base case con-

ditions (Section 5.5.1). Since my methodology aims to cope with communication and

robot failures, two of the independent variables in my experiment control the commu-

nication success rate (Section 5.5.2.2), and the probability of robot failure (Section

5.5.2.3). In addition to responding to failures, my methodology also allows a team to

adapt to accommodate the arrival of replacement robots. I include another indepen-

dent variable in my experiment, which determines whether replacement robots are

available or not (Section 5.5.2.1).

As shown in Figure 5.2, I chose a factorial design for my main experiment. My

experimental conditions consist of every unique combination of the three independent

variables, and the three techniques. I performed 50 repetitions of each condition, in

each of the 3 experimental environments, for a total of 8100 experimental trials.

220 Chapter 5: Evaluation

5.5.1 Base Cases

I compare my methodology against two base cases. The base cases provide a basis

for comparing my methodology against the kinds of techniques commonly used in

current works involving teams of robots.

5.5.1.1 Fixed Roles and Team Membership

In the first base case, robots are not permitted to change roles and cannot switch

teams. This means team structure is fixed: teams cannot gain team members, and

team members cannot voluntarily leave the team. Further, robots are not able to

change their roles or team membership to adapt to changes to the team as a result to

failures. This is intended to provide a basis for comparison against my framework’s

performance from the standpoint of adaptive team management. Because tasks are

still allocated in the base case using my task allocation methodology (Section 3.5.3),

it should allow me to show how much of any performance improvement is due to

improved team management.

This also allows some comparison with other work. This base case is similar in

spirit to Parker et al. [2003]’s approach to coordinating the deployment of robots in

an environment. In Parker et al. [2003]’s work, the leader, follower, and sensor robots

can only ever carry out the responsibilities pre-determined for them at the start of

the mission.

Chapter 5: Evaluation 221

5.5.1.2 Fixed Task Allocation

The second base case uses fixed roles and team membership, and includes the

restriction that there is a one to one mapping between tasks and robot types. This

means each task type can only be carried out by one type of robot. Team coordination

responsibilities can only be carried out by MaxBots, confirm victim tasks can only

be carried out by MidBots, and explore frontier tasks can only be carried out by

MinBots.

Using a fixed task mapping as well as no team management essentially provides

a worst-case comparison for multi-robot exploration in this domain: I can compare

my approach and the base case above to a situation where all agent interaction is

completely inflexible.

Using a fixed mapping of tasks to robots in this manner is similar in spirit to

Kiener and von Stryk [2007], where there is a single mapping of tasks to the robot

types.

5.5.2 Independent Variables

5.5.2.1 Replacement Robots

The replacement robots independent variable aims to examine how my methodol-

ogy deals with the availability of replacement robots. My experimental design treats

replacement robots in a binary fashion (Figure 5.2): replacement robots are either

available or unavailable. Where replacement robots are available, the environment

includes 10 replacement MinBot robots, 2 replacement MidBot robots, and 1 replace-

ment MaxBot robot. Replacement robots begin operation after 5 minutes. This

222 Chapter 5: Evaluation

emulates a scenario where replacement robots are introduced after the start of the

rescue operation to offset damage or loss, or where another rescue team has arrived

with additional resources to augment the mission.

The case where no replacements are available assumes the robots available at the

start of the mission are the only robots available. This case examines my framework’s

ability to allow existing teams to adapt to failures which have occurred, or the absence

of a robot due to it becoming lost.

5.5.2.2 Communication Success Rate

The communication success rate independent variable determines the probability

any given message will be successfully sent to all robots in radio range. It makes

use of the simulated unreliable wireless communication facilities, which I added to

the Stage simulator (Section 4.9.1). My experiment uses success levels of 20%, 60%,

and 100% (Figure 5.2). The 20% success level represents an environment where

communication is extremely unreliable, and a vast majority of messages are not sent

successfully. The 60% success level represents a scenario where a majority of messages

are sent successfully. This level is representative of conditions I would expect in a

disaster environment, where communication is possible, but still unreliable. The 100%

success level represents a scenario where all messages are sent successfully and allows

a comparison of results with a scenario where communication success is not an issue.

5.5.2.3 Probability of Robot Failure

The probability of robot failure independent variable determines the probability

that a robot will suffer either a temporary or a permanent failure in each time step of

Chapter 5: Evaluation 223

the simulation trial (Figure 5.2). Both the probability of temporary failure, and the

probability of permanent failure are specified separately for each robot type. When

a failure occurs, a robot is immobile and its control software does not run for the

duration of the failure, nor can the robot send or receive any communications. If the

failure is permanent, the robot ceases operation for the remainder of the trial. The

length of a temporary ranges from 180 to 240 seconds (3 to 4 minutes). Replacement

robots cannot suffer any failures until they begin operation.

Algorithm 14 Determining if a robot fails during a time step.

Require: Pperm = probability ∈ [0, 1] robot will fail permanently

Require: Ptemp = probability ∈ [0, 1] robot will fail temporarily

R = random real number ∈ [0, 1].

if R ≤ Pperm then

Robot fails permanently

else if Pperm < R ≤ (Pperm + Ptemp) then

T = random integer ∈ [180 · · · 240]

Robot fails for T seconds

end if

Algorithm 14 shows the process by which a robot determines whether it will suffer

a failure in a time step. Given the probability the robot will fail permanently (Pperm

) and the probability the robot will fail temporarily (Ptemp), the algorithm chooses

a random real number (R) from 0 to 1.0, inclusive. If R ∈ [0, Pperm], the robot will

suffer a permanent failure for the remainder of the trial. If R ∈ (Pperm, Pperm+Ptemp],

the robot will choose a random integer (T) from 180 to 240, and remain in a failed

224 Chapter 5: Evaluation

Level Robot Model

Prob. Permanent

Failure

Prob. Temporary

Failure

Avg. % Total Time

Failed
None MinBot 0.0000 0.000 0.0%

MidBot 0.0000 0.000 0.0%
MaxBot 0.0000 0.000 0.0%

Moderate MinBot 0.0000 0.008 14.9%
MidBot 0.0000 0.006 11.9%
MaxBot 0.0000 0.004 9.0%

Major MinBot 0.0002 0.014 25.1%
MidBot 0.0002 0.012 20.9%
MaxBot 0.0002 0.010 18.5%

Table 5.1: Levels of the probability of robot failure independent variable.

state for that duration of time.

Table 5.1 shows the three levels of the probability of robot failure independent

variable I use in my main experiment (Section 5.5), and the individual failure prob-

ability parameters for each robot type. The probability of failure parameters are set

for each robot type such that the most reliable robot type is the MaxBot, and the

least reliable robot type is the MinBot. The MidBot robot type falls in between the

other two. I assume the more capable robot types will be more reliable, due to more

expensive construction, and due to the fact they will likely be spending more time on

coordination activities rather than exploration. The final column in Table 5.1 shows

the average percentage of time during a mission each robot type can be expected to

be in a failed state.1

The none level represents the case where robots do not suffer from permanent

or temporary failures (Table 5.1). The failure probabilities of the moderate level are

set so none of the robot types will suffer a permanent failure. The MinBot, MidBot,

1Average percentage of total time failed over 100 trials, each with a duration of 30 minutes.

Chapter 5: Evaluation 225

Condition

Replacement

Robots

Communication

Success Rate

Leadership

Failure
TechniqueX X X

No

Replacements
20%

60%

100%

MaxBot and

MidBot failure

Fixed Roles and

Teams

My

Methodology

X 50
Repetitions

=
Trials

900X 3
Environments

Figure 5.3: Leadership failure experiment variables and levels.

and MaxBot robot types will spend on average 14.9%, 11.9%, and 9.0% of the time

failed at this level, respectively. The failure probabilities of the major level are set

so that all robot types have a small probability of suffering from a permanent failure.

The MinBot, MidBot, and MaxBot robot types will spend on average 25.1%, 20.9%,

and 18.5% of the time failed at this level, respectively. I chose a low probability of

permanent failure, as higher levels caused a high amount of variation in the average

percentage of total time failed. This makes sense, as suffering a permanent failure

early on in a trial versus late in the trial can have a considerable impact in the overall

progress of the team. The leadership failure experiment, detailed in the next section,

examines the impact of permanent failures in a controlled manner.

5.6 Leadership Failure Experiment

I performed an additional experiment to explicitly study the impact of failures

experienced by the robots filling the team coordinator role on a team. Although

my main experiment includes consideration of random robot failures throughout the

226 Chapter 5: Evaluation

trials, these failures never occur at predictable times, making it difficult to make

specific observations about individual failures. This new experiment introduces fail-

ures of robots capable of leadership roles at predetermined times, allowing for more

effective analysis of their impact.

Figure 5.3 shows the design of this experiment. Since the purpose of the exper-

iment was purely to study the impact of leadership failures on a team, I included

only a single team, and no replacement robots. Similar to my main experiment, I

varied the communication success rate (20%, 60%, 100%). I did not include random

probabilistic failures for any robots. In all trials, the MaxBot fails after 10 min-

utes of operation, and one of the MidBots fails after 15 minutes of operation. This

experiment compares my methodology against a scenario where the roles and team

membership is fixed at the start of the trial, and cannot change (Section 5.5.1).

I ran each experiment condition 50 times, in each of the 3 environments from my

main experiment (Section 5.5), for a total of 900 trials.

5.7 Main Experiment Results

This section describes the results I obtained from my main experiment. The

results are grouped first by whether there were replacement robots available. Within

each group, subsections show the impact of communication failure, and the impact

of robot failures. Table B.1 (Appendix B.1) provides a cross-reference of the results

for all combinations of the independent variables. On all charts in the sections that

follow, error bars represent 95% confidence intervals.

Chapter 5: Evaluation 227

(a) (b)

Figure 5.4: Factorial experiment, performance improvement in terms of coverage and

victims successfully identified, where replacement robots are not available, compared

to the fixed roles and team membership base case (Section 5.5.1.1).

5.7.1 No Replacement Robots

Figure 5.4 provides a summary of the performance improvements realized using my

methodology, compared to the base case where roles and team membership are fixed

(but not the allocation of tasks) (Section 5.5.1.1). The charts use statistics captured at

the end of each experimental trial and show the performance improvement realized,

for each level of the communication success rate and probability of robot failure

independent variables.

5.7.1.1 Improvement in Coverage over Baseline

Figure 5.4a shows the improvements in coverage realized using my methodology,

compared to the base case where roles and team membership are fixed (but not the

228 Chapter 5: Evaluation

allocation of tasks). With the exception of the case where both communication is

extremely unreliable (20% success rate), and robots experience high levels of failures

(major failure probability), my methodology results in an average of approximately

a 5% improvement in coverage over the baseline.

Where the communication success rate is 20% and robots do not suffer from

failures (Figure 5.4a), my methodology showed a considerable improvement in per-

formance over the baseline. When observing simulation runs at these levels, I noticed

extremely unreliable communication caused task assignment to fail, leading to the

members of a team falling back to undirected wandering. Where roles and team

membership were fixed (but not the allocation of tasks), team members increasingly

spread apart as they wandered, eventually losing contact with their team coordina-

tor. Using my methodology, smaller grouping of agents were able to form as the team

broke apart. Where a MidBot was able to take on the team coordinator role for a

subset of the team, there was a chance for the smaller teams to still perform some

useful work, despite the overall poor communication. In the instances I observed,

however, robots still spend a large amount of time carrying out their wander idle

tasks, indicating their efforts are not as effectively coordinated as they could be, due

to the poor communication.

At the 20% communication success rate, the performance improvement quickly

drops as the probability of robot failure increases (Figure 5.4a). Where the probabil-

ity of robot failure was major, my methodology could result in a slight decrease in

coverage (when the confidence interval is included), compared to the baseline tech-

nique. The sharp drop in performance indicates that a 20% communication success

Chapter 5: Evaluation 229

rate is not sufficient to facilitate an effective coordination of the exploration efforts.

The poor communication results in frontier exploration tasks frequently failing to

be assigned, which means the team coordinator builds a large backlog of unassigned

tasks (recall from Section 3.5.3, task assignment will only attempt to assign the 5

oldest tasks at one time). The poor communication conditions also prevent the re-

sults from the few frontier exploration tasks that do get successfully assigned from

being reported back to the team coordinator. Without the knowledge gained from

the frontier exploration tasks, the team coordinator will not remove older frontier

exploration tasks which have become obsolete, resulting in tasks being assigned to

explore frontiers which likely no longer exist.

At the 60% and 100% communication success rate, as the probability of robot

failure increases, the improvement in the percentage of the environment covered does

not vary significantly. Replaying some experimental trials revealed the random dura-

tion temporary failures of robots (Section 5.5.2.3) were short enough that teams did

not recognize the failures and adjust their structure to compensate. The temporary

failures, which are 3-4 minutes in duration, appeared to end before a team recognized

the absence of the failed robot. A robot must not be heard from for 3 minutes before

it is forgotten (Section 4.7.2). Useful future work would be to run an experiment to

further investigate the impact of short duration failures, given different memory du-

rations, and to investigate whether a team could fine-tune this parameter based on its

experience. The leadership failure experiment results (Section 5.8), however, include

predictable, long duration failures which allow for a better comparison between my

methodology and the baselines. Short term failures did, however, sometimes result

230 Chapter 5: Evaluation

in the failed robot’s team moving out of communication range from the failed robot,

resulting in it becoming separated from its team upon resuming operation.

5.7.1.2 Improvement in Victims Identified over Baseline

Figure 5.4b shows the improvement in the percentage of victims successfully iden-

tified using my methodology. The improvements achieved over the baseline were

consistently higher than the improvements in the area covered.

At the 20% communication success rate, as the probability of robot failure in-

creases, the percentage of victims successfully identified compared to the baseline

drops similarly to the percentage covered, at the same levels of communication suc-

cess rate and robot failures (Figure 5.4b). Despite this, however, the improvement is

still greater than 20%, unlike with the percentage of the environment covered, where

it is possible for a decrease in performance to occur when the confidence interval is

considered. The relatively small density of victim confirmation tasks in an environ-

ment (there are at most 30) means that despite the extremely poor communication, a

large backlog of victim confirmation tasks will not accumulate. Using my methodol-

ogy, the formation of smaller teams as the larger teams break apart means the victim

confirmation tasks have a better chance of being assigned. Further, when a MidBot

assumes the team coordinator role, it has the ability to carry out victim identification

tasks on its own, avoiding the need to assign these tasks to another robot.

At the 60% and 100% communication success rates, as the probability of robot

failure increases, the performance improvement compared to the baseline does not

vary significantly, similar to what was observed with the improvement in area covered.

Chapter 5: Evaluation 231

The same observations made in Section 5.7.1.1 apply to the improvement in the

percentage of victims successfully identified: the short duration of robot failures were

the most likely cause of the small differences observed.

5.7.1.3 Impact of Communication Failures over Time

This section investigates the impact of the communication success rate on the per-

centage of the environment covered and percentage of victims successfully identified,

over the duration of the trials. Since the intention is to investigate the impact of

unreliable communication, these observations compare the impact of the communica-

tion success rate with a fixed probability of robot failure. Graphs showing the results

for the other levels of the probability of robot failure variable are cross referenced in

Table B.1 in Appendix B. To ensure my analysis of the impact of communication fail-

ure occurs in realistic conditions, I chose to highlight the results when the probability

of robot failure is moderate.

Figures 5.5 and 5.6 show the average percentage of the environment covered and

percentage of victims successfully identified over the duration of the 30 minute (1800

second) experimental trials, where the communication success rate is 20%. These

graphs compare my methodology against both the base case where roles and team

membership is fixed (but not the allocation of tasks) (Section 5.5.1.1), and the base

case where task allocation is also fixed (Section 5.5.1.2).

The percentage of the environment covered (Figure 5.5) for my methodology and

the base case where roles and team membership (but not the allocation of tasks) are

fixed, at the same rate until 800 seconds (13 minutes) into the trials. Observing trial

232 Chapter 5: Evaluation

Figure 5.5: Main experiment, coverage over time where: no replacements are avail-

able, comm. success rate = 20%, and prob. robot failure = moderate.

runs, I noticed by this point in time the teams had spread out enough to cause robots

to become separated from their team. Using my methodology, the separated team

members were able to restructure themselves into smaller teams, where with the base

cases, the separated agents would generally wander off, and be unable to contribute

further. This allowed my methodology to achieve a minor gain in performance over

the baseline where roles and team membership (but not the allocation of tasks) is

fixed.

The base case where task allocation is fixed (as well as roles and team member-

ship) performed considerably worse than the other cases (Figure 5.5). After only 100

seconds, the lack of communication provided a considerable hindrance to progress.

The fixed mapping of tasks to robot types reduces the potential number of agents the

explore frontier tasks can be assigned to, making it less likely for these tasks to be

Chapter 5: Evaluation 233

Figure 5.6: Main experiment, victims identified over time where: no replacements are

available, comm. success rate = 20%, and prob. robot failure = moderate.

assigned.

Figure 5.6 shows the average percentage of victims successfully identified over the

duration of each trial. Both base cases performed similarly, leveling off in performance

soon after the start of the trial, and achieving only minor gains. The extreme lack

of communication resulted in a general failure to assign tasks in both cases. Unlike

with the frontier exploration tasks, victim identification tasks cannot be carried out

by the team coordinator. An inability to assign tasks due to poor communication

means the team is unable to make significant progress identifying victims.

My methodology showed a considerable improvement over the baseline cases, as

the teams were able to break up into smaller teams composed of the geographically

close robots, which were occasionally assign some victim identification tasks, despite

the poor communication conditions. Further, when a MidBot fills the team coordi-

234 Chapter 5: Evaluation

nator role, it can carry out some of the victim identification tasks by itself without

relying on wireless communication. The severe communication failures still resulted

in a general lack of coordination amongst team members, however. The team splits

tended to occur near the middle of the trials I observed, and had not broken apart

further by the end of the 30 minute trials. Given the general lack of coordination at

the 20% communication level, I suspect the smaller teams would also end up breaking

apart if the trials were extended beyond 30 minutes.

Ultimately, a 20% communication success rate does not appear sufficient to sup-

port meaningful coordination of the exploration and victim confirmation activities.

This is not surprising, as a majority of messages do not get through, leading to robots

falling back to their idle tasks. In effect, the teammates are operating autonomously,

with very little supervision by the team coordinator.

As shown in Figure 5.7, at the 60% communication success rate, my methodology

performed similarly to the base case, in terms of the percentage of the environment

covered, where roles and team membership (but not the allocation of tasks) is fixed, up

until around the 200 second (approx. 3 minute) mark. At that point, the performance

of my methodology began trending up from the fixed roles and team membership (but

not the allocation of tasks) baseline, and continued to diverge through to the end of

the trials.

The baseline where roles and team membership (but not the allocation of tasks)

are fixed showed a significant performance gain, compared to the fixed task allocation

baseline, throughout the trials (Figure 5.7). This is to be expected, as fixing the task

mapping to specific robot types considerably limits the pool of agents available to

Chapter 5: Evaluation 235

Figure 5.7: Main experiment, coverage over time where: no replacements are avail-

able, comm. success rate = 60%, and prob. robot failure = moderate.

carry out any one task.

Figure 5.8 shows the average percentage of victims successfully identified dur-

ing the duration of each trial, where the communication success rate is 60%. My

methodology shows a considerable improvement over the baseline, beginning at the

600 second (5 minute) mark in the trials. Using my methodology, the percentage of

victims successfully grows at an increased rate compared to the baseline. This means

that victims are being found more quickly using my approach.

Finally, when the communication success rate is 100%, in terms of the percentage

of the environment covered (Figure 5.9), my methodology performs similar to the

base case where roles and team membership (but not the allocation of tasks) are

fixed. This makes sense, as there is no communication failure for my methodology to

compensate for, and neither case can benefit from being able to flexibly adapt to the

236 Chapter 5: Evaluation

Figure 5.8: Main experiment, victims identified over time where: no replacements are

available, comm. success rate = 60%, and prob. robot failure = moderate.

Figure 5.9: Main experiment, coverage over time where: no replacements are avail-

able, comm. success rate = 100%, and prob. robot failure = moderate.

Chapter 5: Evaluation 237

Figure 5.10: Main experiment, victims identified over time where: no replacements

are available, comm. success rate = 100%, and prob. robot failure = moderate.

presence of new team members. The performance improvements seen are reflective

of the fact robots can still fail or become separated from their team, despite ideal

communication conditions.

The percentage of victims successfully identified, however, does show an improve-

ment over the baseline where roles and team membership (but not the allocation of

tasks) are fixed, and the communication success rate is 100% (Figure 5.10). The

divergence in performance from the baseline, despite perfect communication is likely

due to teams adapting to a MidBot robot becoming separated from the team. In such

a case, the MidBot would form a team of its own, or join another team. In either

case, it is able to keep contributing its victim identification skills to a team, where in

the base cases the loss of this important skill significantly hampers the team victim

identification efforts.

238 Chapter 5: Evaluation

Figure 5.11: Main experiment, coverage over time where: no replacements are avail-

able, comm. success rate = 60%, and prob. robot failure = none.

5.7.1.4 Impact of Robot Failures over Time

This section investigates the impact of the probability of robot failure (Section

5.5.2.3) on the percentage of the environment covered and percentage of victims suc-

cessfully identified, over the duration of the trails. Similar to Section 5.7.1.3, a fixed

level of the communication success rate variable is used. Graphs showing the results

for the other levels of the communication success rate variable are cross referenced in

Table B.1 in Appendix B. I chose to analyze the impact of robot failure where the

communication success rate is 60%, as I assume this is a reasonable representation of

the conditions my methodology is expected to operate in.

Figures 5.11 and 5.12 show the percentage of the environment covered and per-

centage of victims successfully identified over the duration of the trials, where there is

Chapter 5: Evaluation 239

Figure 5.12: Main experiment, victims identified over time where: no replacements

are available, comm. success rate = 60%, and prob. robot failure = none.

no probability of robot failure. As expected, where robots do not suffer from failures,

the differences seen between the techniques can be traced to other sources. As previ-

ously mentioned in Section 5.7.1.3, when robots become separated from their team,

my methodology provides the team with the opportunity to adapt to the loss of the

robot, and for the lost robots to form a new team or their own or join another team.

The small difference in the percentage of the environment covered, seen in Figure

5.11, is partly due to the fact all members of a team area able to contribute to the

exploration efforts. This means if a single member becomes separated from the team,

the remaining team will still be able to perform well without it. In contrast, when a

MidBot, the only robot capable of identifying victims, becomes separated from the

team, my methodology results in a large improvement in performance, compared to

the baselines. This is seen in Figure 5.12, where my methodology achieves a consid-

240 Chapter 5: Evaluation

Figure 5.13: Main experiment, percentage of environment covered over time where:

no replacements are available, comm. success rate = 60%, and prob. robot failure =

major.

erable gain in performance over time, compared to the baseline cases. Observations

of trial runs revealed this was due to a MidBot becoming lost. My methodology en-

ables the MidBot to form its own team, or join another team, allowing it to continue

performing useful victim identification work. In the baseline cases, a loss of a MidBot

has a large impact on the team’s ability to quickly identify victims.

The percentage of the environment covered over time for the three probabili-

ties of robot failure (none (Figure 5.11), moderate (Figure 5.7), and major (Figure

5.13)) exhibit the same general trend. As previously explained in Section 5.7.1.1, my

methodology achieved approximately a 5% improvement over the baseline where roles

and team membership (but not the allocation of tasks) is fixed. This improvement is

realized over the course of each trial, building gradually. Increasing the probability

Chapter 5: Evaluation 241

Figure 5.14: Main experiment, victims identified over time where: no replacements

are available, comm. success rate = 60%, and prob. robot failure = major.

of robot failure results in the performance graphs shifting down due to the impact of

the increasing failures.

The percentage of victims successfully identified over time for the three probabil-

ities of robot failures (none (Figure 5.12), moderate (Figure 5.8), and major (Figure

5.14)) also exhibit the same general trend. The improvement realized over the course

of the trials averages approximately 20% (Section 5.7.1.1). The improvement is real-

ized over the course of the trials, beginning to build around the 500 second (8 minute)

mark, growing steadily until the end of the trials. During the initial 500 seconds (8

minutes) of operation, robots were still clustered in the same general geographic area,

reducing the likelihood of a robot becoming separated from its team.

242 Chapter 5: Evaluation

(a) (b)

Figure 5.15: Performance improvement in terms of coverage and victims successfully

identified, where replacement robots are available, compared to the fixed roles and

tasks base case.

5.7.2 Replacement Robots

Figure 5.15 illustrates the performance improvements realized using my method-

ology, when replacement robots are available, compared to the base case where roles

and team membership (but not the allocation of tasks) are fixed (Section 5.5.1.1).

The charts show the performance improvement realized, for each level of the commu-

nication success rate and probability of robot failure independent variables.

5.7.2.1 Improvement in Coverage over Baseline

Figure 5.15a shows the improvements in coverage realized using my methodology,

compared to the base case where roles and team membership (but not the allocation of

tasks) are fixed (Section 5.5.1.1). Similar to the situation where no replacements are

Chapter 5: Evaluation 243

available (Section 5.7.1.1), trials using my methodology show a considerable improve-

ment over the baseline, with the exception of the case where both communication is

extremely unreliable (20% success rate), and robots experience high levels of failures

(major probability of robot failure).

At the 20% communication success rate, a rapid decrease in performance was

observed as the probability of robot failure increased (Figure 5.15a), similar to where

no replacement robots are available (Figure 5.4a). When the probability of robot

failure is none or moderate, the availability of replacement robots results in a further

4% improvement in coverage when compared to trials where no replacement robots

are available (Figure 5.4a).

At the 20% communication success rate, when the probability of robot failure is

major, however, my methodology can result in a decrease in performance compared to

the baseline. Similar to when no replacement robots are available (Figure 5.4a), when

the probability of robot failure is major, the combination of poor communication and

robot failures results in the team coordinator performing a poor job at coordinating

the exploration efforts. Further, the poor communication results in the encounters

involving replacement robots having a high chance of failing to complete. This makes

the replacements less likely to join a team, or form a team of its own.

Where the communication success rate is 60%, and 100%, my methodology achieves

approximately a 20% improvement in the percentage of the environment covered,

over the baseline (Figure 5.15a). Recall, where no replacements are available, my

methodology resulted in approximately a 5% improvement in the percentage of the

environment covered, over the baseline (Figure 5.4a). This makes sense, as using my

244 Chapter 5: Evaluation

methodology, teams are able to adjust their structure to accommodate the arrival of

the replacement robots.

When comparing the 60% and 100% communication success rates improvements

(Figure 5.15a), my methodology performs slightly better when the communication

success rate is 100%. The reverse is true where no replacement robots are available

(Figure 5.4a). This is likely the result of better communication conditions making it

easier for robots to complete encounters, without being interrupted by communication

failures. Successful encounters make it more likely replacement robots will join a team,

or form a team of their own.

The improvement in the percentage of victims successfully identified when replace-

ment robots are available, observed in Figure 5.15a, closely resemble those seen when

no replacement robots are available (Figure 5.4a). When the communication success

rate is 60% or 100%, the improvement seen in the percentage of victims successfully

identified is approximately 15% higher than those when no replacements were avail-

able. This makes sense, as the replacement robots augment the capability of the

teams using my methodology, enabling them to perform more effectively.

When the communication success rate is 20%, the improvements seen in the per-

centage of victims successfully identified are at most 4% better than those when no

replacements are available. Observing some experimental trials revealed that poor

communication made the encounters taking place unlikely to succeed, resulting in the

replacement robots infrequently joining or forming a new team of their own.

Chapter 5: Evaluation 245

Figure 5.16: Main experiment, coverage over time where: replacements are available,

comm. success rate = 20%, and prob. robot failure = moderate.

5.7.2.2 Impact of Communication Failures

This section explores the impact of communication failures on the percentage

of the environment covered and percentage of victims successfully identified, over

the duration of trials where replacement robots are available. My methodology is

compared against both the baseline where roles and team membership (but not the

allocation of tasks) are fixed, and the baseline where the allocation of tasks is fixed.

Here, I show the results where the probability of robot failure is moderate. Graphs

showing results for the other levels of the probability of robot failure variable are

cross referenced in Table B.1 in Appendix B.

Figure 5.16 shows the average percentage of the environment covered over the

duration of trials, where the communication success rate is 20%, and the probability of

246 Chapter 5: Evaluation

Figure 5.17: Main experiment, victims identified over time where: replacements are

available, comm. success rate = 20%, and prob. robot failure = moderate.

robot failure is moderate. The vertical line at the 300 second mark indicates the time

at which the replacement robots entered the trial. Similar to when no replacement

robots are available (Figure 5.5), my methodology results in a small improvement in

the percentage of the environment covered, over the baseline where roles and team

membership (but not the allocation of tasks) is fixed. Observing experimental trials

at this communication success rate reveals that in most cases, the replacement robots

failed to join an existing team or form a new team, due to the communication failures.

The improvement in the average percentage of victims successfully identified over

the duration of trials with replacement robots available (Figure 5.17) also closely

resembles the improvement where no replacement robots are available (Figure 5.6).

This indicates a 20% communication success rate is not sufficient enough for my

methodology to be able to effectively make use of replacement robots.

Chapter 5: Evaluation 247

Figure 5.18: Main experiment, coverage over time where: replacements are available,

comm. success rate = 60%, and prob. robot failure = moderate.

Where the communication success rate is 60%, as shown in Figure 5.18, my

methodology was able to make use of the replacement robots soon after they be-

came available. Approximately 100 seconds after the replacement robots become

available, a sharp jump in percent coverage is seen, allowing the teams to establish

an even larger lead over the baseline where roles and team membership (but not the

allocation of tasks) are fixed, compared to when no replacement robots are available

(Figure 5.7). This makes sense, as the teams are able to make use of the replacement

robots to augment their capabilities.

A similar jump in the percentage of victims successfully identified in response to

the availability of the replacement robots is seen in Figure 5.19.

Where the communication success rate is 100%, the percentage of the environment

covered (Figure 5.20) and percentage of victims successfully identified (Figure 5.21)

248 Chapter 5: Evaluation

Figure 5.19: Main experiment, victims identified over time where: replacements are

available, comm. success rate = 60%, and prob. robot failure = moderate.

Figure 5.20: Main experiment, coverage over time where: replacements are available,

comm. success rate = 100%, and prob. robot failure = moderate.

Chapter 5: Evaluation 249

Figure 5.21: Main experiment, victims identified over time where: replacements are

available, comm. success rate = 100%, and prob. robot failure = moderate.

show increases in performance for all techniques, due to the better communication

conditions. The same general trend is seen, where the replacement robots result in

my methodology causing a spike in performance beginning around the 400 second (6.5

minute) mark. The results show a general improvement over when the communication

success rate is 60%. This is not surprising as higher levels of communication support

more effective coordination, ensuring operations such as the exchange of knowledge,

and encounters between robots are able to complete successfully more often. The

availability of replacements allows the team to cover a larger area and identify victims

earlier in the trial than when no replacements are available.

250 Chapter 5: Evaluation

Figure 5.22: Main experiment, coverage over time where: replacements are available,

comm. success rate = 60%, and prob. robot failure = none.

5.7.2.3 Impact of Robot Failures

This section investigates the impact of varying the probability of robot failure

(Section 5.5.2.3) on the percentage of the environment covered and the percentage of

victims successfully identified, over the duration of trials, where replacement robots

are available. This section investigates the impact of probabilistic robot failure where

the communication success rate is 60%. Graphs showing results for the other levels of

the communication success rate variable are cross referenced in Table B.1 in Appendix

B.

Figure 5.22 shows the performance of my methodology over the duration of tri-

als, compared to both baselines, where there are no robot failures. The availability

of replacement robots at the 300 second (5 minute) mark results in my methodol-

Chapter 5: Evaluation 251

Figure 5.23: Main experiment, victims identified over time where: replacements are

available, comm. success rate = 60%, and prob. robot failure = none.

ogy achieving a significant performance improvement over the baseline cases. As

explained in Section 5.7.2.2, my methodology enables the replacement robots to join

existing teams, or form their own new teams, resulting in the significant performance

improvements observed over the baseline.

The same observations apply to the percentage of victims successfully identified

when robots do not suffer probabilistic failures, as shown in Figure 5.23. The large

jump in performance observed with my methodology is due to the availability of the

replacement robots.

The results when the probability of robot failure is moderate (Figured 5.18 and

5.24) or major (Figures 5.19 and 5.25) are similar in appearance. Increasing the

probability of robot failure results in all techniques suffering a similar performance

hit, shifting the graph curves down.

252 Chapter 5: Evaluation

Figure 5.24: Main experiment, coverage over time where: replacements are available,

comm. success rate = 60%, and prob. robot failure = major.

Figure 5.25: Main experiment, victims identified over time where: replacements are

available, comm. success rate = 60%, and prob. robot failure = major.

Chapter 5: Evaluation 253

As mentioned in Section 5.7.1.1, my methodology did not appear to result in

major differences in performance as the probability of robot failure increased. Since

robots fail for a random period of time from 3 to 4 minutes, and failures are only

detected once a robot has been absent for 3 minutes, shorter term failures were not

likely to be identified. A slight increase can be observed in some of the results, which

can be attributed to a team wandering away from a failed robot, and it becoming

lost as a result. In such instances, my methodology provides the lost robot with the

opportunity to rejoin its team, or a new team it encounters.

5.8 Leadership Failure Experiment Results

This section investigates the results of the leadership failure experiment (Section

5.6) I performed. The leadership failure experiment demonstrates the effectiveness of

my methodology in coping with the failure of robots occupying the team coordinator

role, compared to the baseline where roles and team membership (but not the allo-

cation of tasks) are fixed (Section 5.5.1.1). For the purpose of this analysis, I present

results were the communication success rate is 20%, and 60%. Graphs showing results

for the remaining 100% level are cross referenced in Table B.1 in Appendix B (the

results parallel those observed when the communication success rate is 60%). On all

charts in the sections that follow, error bars represent 95% confidence intervals.

The graphs in Figures 5.26 and 5.27 show the percentage of the environment

covered and percentage of victims successfully identified, respectively, when the com-

munication success rate is 60%. The vertical line at the 600 second (5 minute) mark

indicates the point at which the MaxBot robot filling the team coordinator role failed.

254 Chapter 5: Evaluation

Figure 5.26: Leadership failure experiment, percentage of the environment covered

for communication success rate 60%.

The vertical line at the 900 second (15 minute) mark indicates the point at which

one of the MidBot robots on the team failed. When the MaxBot filling the role of

team coordinator fails, the percentage of the environment covered (Figure 5.26) and

percentage of victims successfully identified (Figure 5.27) in the baseline case immedi-

ately stops growing. Without the ability to adapt to the loss of the MaxBot, the team

is no longer able to benefit from the coordination it provides. Further, the knowledge

agents report to their team coordinator as a result of carrying out any backlogged

tasks fails to be integrated into the team’s consolidated view maintained by the team

coordinator.

Using my methodology, the team recognizes the failure of the MaxBot approxi-

mately 3 minutes after it fails. In Figures 5.26 and 5.27, my methodology records no

Chapter 5: Evaluation 255

Figure 5.27: Leadership failure experiment, percentage of victims successfully identi-

fied for communication success rate 60%.

progress, until one of the MidBot robots takes over the team coordinator role (between

the vertical 600 and 900 second lines). The team continues to make progress, until

the 900 second mark, at which point one of the MidBot robots fails. A slight leveling

off in performance can be observed for 3 minutes, after which progress continues. The

second failure is not as evident in the graphs, as in some trials the MidBot suffering a

permanent failure at 900 seconds may not be the MidBot filling the team coordinator

role. This ultimately depends on which MidBot recognized the failure of the original

team coordinator first.

The graphs in Figures 5.28 and 5.29 show the percentage of the environment

covered and percentage of victims successfully identified, respectively, when the com-

munication success rate is 20%. Similar to the results in the main experiment, where

256 Chapter 5: Evaluation

Figure 5.28: Leadership failure experiment, percentage of the environment covered

for communication success rate 20%.

Figure 5.29: Leadership failure experiment, percentage of victims successfully identi-

fied for communication success rate 20%.

Chapter 5: Evaluation 257

the communication success rate is 20%, the team is not able to coordinate its efforts

well. Reviewing experimental runs reveals task assignment often fails, resulting in

team members falling back to their wander idle tasks. As the team spreads out,

team members move out of radio range of one another. Despite the fact the team

coordinator role is assumed by a MidBot at 600 and 900 seconds, the MidBot filling

that role is not able to perform any meaningful coordination of the team’s efforts.

5.9 Analysis

Having discussed the results of the main experiment (Section 5.7) and the lead-

ership failure experiment (Section 5.8), this section makes some observations about

my methodology as a whole, identifying its strengths, and areas where it could be

improved through future research.

When considering the reliability of communication in an environment, my results

clearly show the need for a bare minimum level of communication, regardless of the

technique used. A 20% communication success rate is insufficient to support effective

coordination of teams, and results in robots often falling back to their idle work.

Given a communication success rate of 60%, my methodology results in performance

improvements, when compared to the baseline where roles and team membership (but

not the allocation of tasks) are fixed. Reduced levels of communication success tend

to result in robots becoming separated from their team more often, and my method-

ology provides these lost robots with the ability to form a new team of their own, or

join another team they encounter. It would be interesting to perform a future exper-

iment to determine the communication success rate necessary for an improvement in

258 Chapter 5: Evaluation

performance to be observed.

My methodology shows significant utility in enabling a team to cope with the

complete failure of critical team members carrying out leadership duties. By allowing

a less capable robot to shift into the team coordinator role, a team can continue

operating, despite the failure of a critical team member. Where members of a team

cannot change their roles and team membership, the performance of a team is severely

impacted by the failure of the team coordinator robot.

Although my methodology results in improvements over a baseline where roles and

team membership (but not the allocation of tasks) is fixed and robots suffer from ran-

dom temporary failures, my implementation does not recognize short duration robot

failures well. This is due to the manner in which failed robots become forgotten by

their teammates. Further, since each robot maintains a backlog of tasks to complete,

a short duration failure of the team coordinator is not likely to impact a robot’s ability

to continue performing useful work. Once the team coordinator restores operation, it

could continue assigning new work to robots. Future work is necessary to determine if

my implementation could be made more responsive to short duration failures, and to

investigate whether techniques could be applied to allow a team to adjust its response

to short duration failures as the mission progresses. Simply forgetting about failed

agents after a short period of time is not ideal, as agents experiencing legitimate de-

lays are likely to be written off prematurely. This also means the structure of teams

will fluctuate more frequently, as agents attempt to cope with the increased number

of perceived failures. Future work is necessary to determine the impact of varying the

memory duration. It would also be interesting to investigate the impact of varying

Chapter 5: Evaluation 259

the size of the task backlog each robot maintains. I suspect using a smaller task

backlog would more clearly show the improvements realized with my methodology

during short term failures. It is possible maintaining a backlog of tasks is a sufficient

mitigation to cope with short term failures of the team coordinator.

My example implementation includes two main task types: frontier exploration,

and victim identification. The largest gains in performance over the baseline cases

were seen with the victim identification tasks. This suggests tasks requiring very

specialized skills, available on only a small subset of the robots benefit most from

my methodology. This is further supported by the fact the improvements seen in the

percentage of the environment covered over the baseline are smaller in comparison.

The ability to explore is a capability all team members possess, providing a high level

of redundancy for this skill. Future work could investigate the impact of specialization

versus generalization with respect to my methodology.

5.10 Summary

Having reviewed my research questions, this chapter provided an overview of

the experimental environments I used to evaluate my example implementation and

methodology. An explanation of how these experimental environments were gener-

ated was provided, along with a description of the controls put in place to ensure

consistency among the generated environments, and control over the experimental

parameters. The base case conditions against which I compare my methodology were

described, along with the experiments I performed to answer my research questions.

Evaluation criteria were presented, providing a means of numerically describing the

260 Chapter 5: Evaluation

performance of my methodology versus the baseline cases. Finally, the results from

each experiment were discussed, and an analysis of the results seen was presented.

Chapter 6

Conclusion

6.1 Overview

This chapter begins by discussing the results obtained in Chapter 5, and how these

results answer my main research questions (Section 6.2). A review of the main con-

tributions of my thesis is presented (Section 6.3), and a discussion of future research

directions for my work follows (Section 6.4.2).

6.2 Answers to Research Questions

Section 1.6 presented the research questions around which the work in this thesis is

centered. This section reviews those questions, and discusses how they are answered

by the results in Chapter 5.

1. Can my framework provide teams operating in dynamic environments

with the ability to adequately cope with changes in team structure

261

262 Chapter 6: Conclusion

and composition (i.e. due to loss and failure of team members, and

encountering other teams and teammates in the environment)?

My methodology shows clear benefits when helping a team cope with team

members getting lost due to unreliable communication and the difficult nature

of the environment. Lost team members are able to either form their own team,

or join another team they encounter. Where an agent has especially important

skills (i.e. victim identification), my methodology helps ensure a lost robot is

able to continue providing useful work towards the overall mission goal. Where

critical members of the team suffer a failure, my methodology also shows a

significant improvement over the baseline cases, allowing a less suited robot to

take on the team coordinator role. Where replacement robots are available, my

methodology shows a clear benefit in allowing the replacements to form new

teams, and be integrated into existing teams.

2. Can my framework help mitigate the negative affect of unreliable

communication on coordination efforts between agents?

My main experiment results show that my methodology is able to help cope with

the negative affect of unreliable communication on the coordination efforts be-

tween robots. With a communication success rate of 60%, my methodology

was able to compensate for the coordination issues associated with agents be-

coming separated from their team, by allowing them to join another team, or

form a new team in response. Although my methodology was hampered at

the 20% communication success rate, future experimentation might show more

robustness of my approach between the 20% and 60% communication success

Chapter 6: Conclusion 263

rates.

3. Is my framework able to cope with failure of a team’s leadership

structure?

The leadership failure experiment clearly demonstrated my methodology’s abil-

ity to enable a team to continue operation, despite the failure of a robot filling

the critical team coordinator role (Section 5.8). Where roles and team member-

ship are fixed, the failure of the team coordinator resulted in the team ceasing to

make further progress. Using my methodology, the team adjusted to the failure

of the team coordinator, and was able to continue making progress despite the

loss of the better suited robot.

6.3 Contributions

My research provides contributions in a number of key areas, including mobile

robotics, distributed artificial intelligence, and multiagent systems. My major contri-

butions include:

1. A methodology supporting the formation, and maintenance of teams of hetero-

geneous agents operating in dynamic and complex environments.

2. A methodology supporting the use of roles as a heuristic description of the types

of work teams can be expected to complete in an environment, and supporting

the effective assignment of tasks to team members filling these roles.

3. A means of compensating for the loss of team members, either due to equipment

264 Chapter 6: Conclusion

failures or unreliable communication.

4. A framework to describe agents in terms of the capabilities required to carry

out tasks, and to reason about the best suited agent to carry out these tasks.

5. A demonstration of the efficacy of using heterogeneous robots to complete a

complex mission in a dynamic and complex domain.

6. Enhancements to the Stage simulator, promoting future research in mobile

robotics where communication is limited in range and unreliable in nature.

7. An example implementation demonstrating my methodology in a repeatable

manner, in randomly generated environments resembling a disaster environ-

ment.

8. A flexibly designed example implementation, which provides a test-bed in which

future teamwork research can be conducted (Section 6.4).

My methodology demonstrates several advantages over approaches where the roles

agents fill and team membership is fixed. Where no replacement agents are available,

my methodology enables agents to change the role they occupy or their team mem-

bership, compensating for situations where they become separated from their team

(Section 5.7.1). Further, teams using my methodology are able to restructure them-

selves to compensate for the failure of agents performing critical team leadership

duties (Section 5.8). Where replacement agents are available, my methodology en-

ables these agents to either form new teams of their own, or augment the capabilities

of existing teams operating in the environment (Section 5.7.2).

Chapter 6: Conclusion 265

6.4 Future Work

Although my methodology showed significant utility, my example implementation

revealed a number of areas where improvements could be made, or other interesting

research could be performed. The most obvious avenue of future work is an imple-

mentation in a physical environment using real robots. If a simulation revealed areas

for improvement, the real world will no doubt reveal more, since no simulation can

consider all the complexities the real world has to offer [Balch, 1998]. Section 6.4.1 be-

gins by describing improvements which can be made to my implementation, in order

to evaluate its performance in a real world environment. Section 6.4.2 discusses ele-

ments of my core methodology where improvements could be made, or other research

performed.

6.4.1 Future Implementation Work

My example implementation made a number of simplifications in peripheral com-

ponents to facilitate my thesis research (and implementation in a reasonable time-

frame). Although these simplifications are reasonable within the context of a sim-

ulated environment, operating in the physical world would require complete, imple-

mented solutions for all peripheral problems, as well as a physical environment to

properly evaluate USAR research.

Since disasters occur at unpredictable times and involve conditions truly hazardous

to robots and potentially even to human operators, a real disaster zone is not a suitable

environment in which to evaluate my methodology next. As discussed in Section 2.2,

the National Institute of Standards and Technology (NIST) has developed a series

266 Chapter 6: Conclusion

of USAR test arenas which emulate the conditions found in a real world disaster

zone [Jacoff et al., 2003]. Murphy et al. [2000b] evaluated the NIST test arenas, and

found them to be a useful research tool, providing a step towards operation in a real

disaster zone. One of the USAR test arena configurations would provide a useful real

world environment in which an implementation of my methodology on real robots

could be studied, and would provide a number of operational challenges not present

in simulation.

As discussed in Section 4.3.1, my implementation makes use of the Stage simulator

API to provide robots with perfect localization. Although this simplification allowed

me to focus on the coordination aspects of my work, an implementation on real robots

would need to use a more realistic localization technique. This could be accomplished

by using one of the multi-robot localization approaches discussed in Section 2.3.3 (e.g.

[Martinelli et al., 2005]). Moving away from perfect localization would necessitate a

review of the mapping and map merging techniques used, as they would need to

take into account the fact that localization in the real world cannot be considered to

be perfect. Further, the occupancy grid map I used in my example implementation

provides a 2.5 dimensional view of the world, where the real world is three dimensional.

A different map representation, such as Wurm et al. [2011]’s OctoMap representation,

might be suitable. The path planning algorithm in my implementation (Section 4.8.4)

would also need to be modified (or replaced) to take into account the different map

representation. Depending on the localization and mapping techniques employed, the

computation required may necessitate the MinBot robots relying on more capable

robots to build maps on their behalf, using communicated sensor data.

Chapter 6: Conclusion 267

Although the wireless communication model, described in Section 4.9.1, provides

a reasonable simulation of short range, unreliable communication, it simulates com-

munication connectedness based only on the distance between robots. In the real

world, the presence of obstacles blocking line of sight communication would serve to

attenuate signals. Further, the message delivery provided by my simulated wireless

communication does not consider the size of messages, or the time it would take

to send these messages. Adapting my implementation for use on real robots would

require the use of real wireless radios. As mentioned in Section 4.9.1, a suitable ra-

dio might use the IEEE 802.15.4 wireless standard, which is intended for low power,

short range communication. Using real radios would require a review of the data

communicated between robots, in order to optimize the quantity of data transmit-

ted. Map sharing, for example, should ideally send only the relevant portions of a

robot’s map, and should break down larger maps into smaller pieces more suitable

for transmission. Using real radios would provide the opportunity to develop appro-

priate communication protocols that take into account the challenges inherent with

real wireless communication (e.g. error checking, channel access).

An implementation on real robots would also require an appropriate implementa-

tion of robot perception, replacing the abstracted robot detector (Section 4.3.3) used

in my example implementation. As explained in Section 4.9.3, a solution might be

to outfit robots with coded fiducial markers, similar to those used by Howard et al.

[2006a] in their work, so robots could visually locate and identify one another in the

environment. This would make the encounter process more difficult, as robots could

not precisely determine their relative locations to establish a translation between their

268 Chapter 6: Conclusion

respective coordinate systems.

Similarly, a real world implementation of the abstracted victim detector (Section

4.3.2) used in my example implementation would be necessary. According to Jacoff

et al. [2003], the NIST test arenas include simulated victims which can be detected

visually. This would require a vision processing component to recognize the shapes

and colors normally associated with victims.

Assuming physical robots that are similar to the models used in my simulated

implementation are used, there is an opportunity for more diversity in the skill sets

offered by each robot type. A tracked MaxBot, for example, might be modified so

that it could transport the MidBot and MinBot robots to areas of the environment

which their limited mobility otherwise precludes them from accessing.

Finally, using real robots would necessitate operating under the constraints of the

computational hardware provided by the robot types employed. Where a MaxBot

could be expected to use a full powered computer (e.g. a laptop computer), the

MidBot and MinBots would likely use smaller, embedded computing platforms. These

platforms introduce memory and computational constraints not directly present in

my simulation (my work did assume weaker robot types would have fewer abilities

in these areas, but only in very general ways), and would require algorithms to be

adjusted for the different computing hardware. This would result in a greater degree

of heterogeneity in the robots’ computational capabilities than what was possible to

emulate given the granularity of my simulation.

In addition to improvements required to adapt my implementation for use on real

robots, improvements are also possible to my control software, making it better able

Chapter 6: Conclusion 269

to perform the USAR mission.

Kratzke et al. [2010] studied how real-world search and rescue operations are

planned and executed. It would be interesting to study ways in which their findings

could be used to help a team better coordinate its team members. Further, it would

be interesting to investigate the addition of a higher level planning mechanism to

provide general coordination to the teams operating in the environment. A human

operator could also be used to help coordinate the overall efforts of the team. A

blended approach, such as the one developed by Wegner and Anderson [2004], could

be used to allow the expertise of a human operator to be blended with those of an

automated planning mechanism.

When replacement robots begin operation, my implementation uses the find team

task type (Section 4.5.2.3) to guide these robots along the bearing in which they

were introduced into the environment, with the intention of encouraging them to

progress deeper into the environment. This behaviour assumes the teams already

operating in the environment will have explored the perimeter of the environment

first, and that a replacement robot is more likely to encounter other robots deeper in

the environment. An alternative possibility would be for the replacement robot to use

the wireless signal strengths of other robots it overhears in the environment to attempt

to locate existing teams operating in the environment. Wireless signal strength has

been used previously (e.g. [Ocana et al., 2005]) to aid robot localization, and similar

techniques could be used to help guide a replacement robot towards stronger radio

signals, with the goal of encouraging it toward other robots.

In addition to guiding replacement robots toward teams, members of an existing

270 Chapter 6: Conclusion

team could use the signal strength of robots they overhear to help react to a loss

of communication with their team (e.g. Ulam and Arkin [2004] studied behaviours

which help a team recover from the loss of communication between robots). In such a

scenario, a robot which has become separated from its team could attempt to regain

communication with its team, by homing in on the radio signals of its teammates.

Alternatively, the robot could attempt to home in on the radio signals of any other

robot it overhears, increasing the possibility of the robot switching teams, resulting

in a transfer of knowledge from one team to another.

Areas for improvement exist within the autonomous control module in my ex-

ample implementation (Section 4.6). Robots use the detect lost perceptual schema

to identify scenarios where they have traveled too great a distance to reach a des-

tination (Section 4.6.1.8). Ideally, a robot should attempt to automatically adjust

the maximum distance it travels to reach a destination based on its experiences so

far. This could help cut down wasted effort resulting from traveling to an unreach-

able destination. In such a situation, the robot could either ask its team coordinator

for a new path plan (where the team coordinator has a planner module) to reach

the destination from its new location. Alternatively, the robot could indicate to the

team coordinator that the destination could not be reached, and request the task be

assigned to another robot for completion.

6.4.2 Future Methodology Work

This section discusses potential areas of future work related to my methodol-

ogy. Although these are discussed in relation to my example implementation, they

Chapter 6: Conclusion 271

represent general improvements to my methodology which would be useful in other

domains as well.

Although my methodology assumes agents can suffer from failures at any point,

it does not incorporate any form of comprehensive failure model. The reliability of

robotic platforms has been studied previously (e.g. [Carlson and Murphy, 2003]);

knowledge of the expected reliability of robots and their components could be pro-

grammed into robots at design time. This information could then be used as part

of the task assignment process (e.g. Stancliff et al. [2009] found exploration per-

formance could be improved by anticipating failures based on a robot’s reliability),

ensuring critical tasks as carried out by more reliable agents, for example. Further,

agents could actively monitor their own performance (or the team coordinator could

monitor the performance of others) in order to adjust knowledge pertaining to their

reliability, based on actual experiences. Further, when agents detect failures of their

components, they could update their self-knowledge, helping to ensure they do not

take on tasks which they may no longer be suited to carry out.

My example implementation uses the expendability robot attribute (Section 4.5.1.1)

to provide a simple heuristic description of the relative expendability of one robot in

relation to another. This value is fixed at design time, and is the same for all robots

of the same type. Ideally, the expendability should be adjusted dynamically based

on the current team composition, and the knowledge agents possess. A lone Mid-

Bot, for example, would be less expendable than if there was another MidBot on the

team. Similarly, a value could be assigned to the knowledge a robot possesses, and

the expendability adjusted accordingly. A MinBot which has accumulated informa-

272 Chapter 6: Conclusion

tion about a large area of the environment, for example, could be considered as a

valuable backup of the team’s knowledge, and might be an advantageous robot to

send to another team to ensure the mission knowledge is spread further.

My main experiment revealed short term robot failures were not likely to be de-

tected by members of the team (Section 5.7). The fact each robot maintains a backlog

of tasks requiring completion meant short-term failures of the team coordinator did

not have a large impact on the team’s performance, as most team members had a

large enough backlog of work to last until the team coordinator returned to service.

It would be useful to study this phenomenon further, to determine whether actively

detecting failures sooner is beneficial, and to what degree the backlog of tasks pro-

vides robots with the ability to continue operating effectively despite the failure of

a team coordinator. Further, it might be possible for robots to actively adjust the

threshold for forgetting teammates as the mission progresses, possibly using some

type of machine learning technique.

Agents could also use learning techniques to adjust the desired team definition

(Section 3.4.4) as the mission progresses. For example, a team could recognize that it

frequently requires a skill set which is not available in abundance due to the current

desired team definition. In such a scenario, it might be advantageous to adjust the

desired team definition to accommodate more agents with this skill set. Conversely,

a team could recognize its desired team definition causes is to retain more agents

possessing a particular skill set than are required. The desired team definition could be

adjusted down, providing the opportunity for superfluous agents to switch to another

team where they could be better used. Other factors could impact the decision to

Chapter 6: Conclusion 273

adjust the desired team definition. A team could, for example, adjust the desired

number of agents filling a role if it determines that a skill set is important enough to

warrant an increased level of redundancy.

The team merge and redistribution algorithm (Section 3.7) in my methodology is

handled through representative agents who encounter one another in the environment.

Although I make the argument for performing the team merge and redistribution using

these intermediary agents, it would be useful to study the impact of other variations

of this process. An example is having the team coordinator agents move to the point

of encounter in order to complete the merge and redistribution operation directly,

rather than through the representative agents. Another possibility would be to bring

a team coordinator to the encounter point, only if is nearby. Experimentation would

be necessary to determine at what point it is advantageous to incur the penalty of

moving the team coordinator to the encounter point.

Aside from the knowledge sharing which occurs when teams encounter one another

and complete the team merge and redistribution operation, my methodology does not

explicitly attempt to coordinate efforts between teams operating in the environment.

In my example implementation, for example, the encountering teams could attempt

to negotiate general areas of responsibility within the environment in which each team

would attempt to constrain its efforts.

The team merge and redistribution algorithm (Section 3.7) attempts to maintain

team stability by reducing the number of agents which change between teams. It

would be useful to study the impact of team stability on team performance further,

to determine if there is a utility to attempting to keep larger teams together, or

274 Chapter 6: Conclusion

whether it is advantageous to encourage teams to split into smaller teams more often

than my methodology encourages them to now. Further, it would be interesting to

determine whether there is a utility in having a team detect a deficiency in its team

structure, and purposely seek out an encounter with another team, rather than relying

on chance encounters.

Finally, my methodology does not actively track the progress of tasks after assign-

ment. It would be useful to investigate the utility of tracking the progress of tasks as

they are carried out by agents. This would help the team coordinator ensure critical

tasks are completed in a timely manner, and could also serve as another means of

detecting the failure of task assignees.

6.5 Conclusion

It is my hope that the success of this research will encourage future research into

the issues involved with the effective coordination of agents operating in difficult and

challenging domains. Robots operating in dynamic and complex domains, such as

disaster zones, must cope with the difficult conditions inherent with these environ-

ments, and cannot make assumptions about the structure of teams, or the continuing

availability of members of a team. This makes investigation into approaches which

allow a team to reassign responsibilities to compensate even more important. The

high cost inherent with robotic systems also makes it desirable to develop techniques

allowing heterogeneous robots to cooperate effectively in these environments. Effec-

tive coordination of heterogeneous robots is beneficial as it allows a team to augment

the capabilities provided by a larger number of inexpensive general purpose robots

Chapter 6: Conclusion 275

with the capabilities provided by a smaller number of specialized robots.

This research has demonstrated the utility of describing the composition of a team

in terms of roles describing the types of work normally expected of its members, and

using this as a means of reasoning about the changes which can be implemented to

the structure of these teams in response to the loss or failure of team members, or the

discovery of new potential team members. This research has also identified a number

of interesting areas in which future work could productively be carried out (Section

6.4), based on the techniques which I have developed.

Appendix A

Experimental Environments

Figures A.1, A.2, and A.3 show the three environment configurations in which I

ran my experiments (Chapter 5).

276

Appendix A: Experimental Environments 277

Figure A.1: Experimental environment configuration 1.

278 Appendix A: Experimental Environments

Figure A.2: Experimental environment configuration 2.

Appendix A: Experimental Environments 279

Figure A.3: Experimental environment configuration 3.

Appendix B

Experiment Results

B.1 Main Experiment

280

Appendix B: Experiment Results 281

Replacements Comm Suc-

cess Rate

Probability

of Failure

Percent En-

vironment

Covered

Percent Vic-

tims Identi-

fied

No 20 None Fig. B.1 Fig. B.2

20 Moderate Fig. 5.5 Fig. 5.6

20 Major Fig. B.3 Fig. B.4

60 None Fig. 5.11 Fig. 5.12

60 Moderate Fig. 5.7 Fig. 5.8

60 Major Fig. 5.13 Fig. 5.14

100 None Fig. B.5 Fig. B.6

100 Moderate Fig. 5.9 Fig. 5.10

100 Major Fig. B.7 Fig. B.8

Yes 20 None Fig. B.9 Fig. B.10

20 Moderate Fig. 5.16 Fig. 5.17

20 Major Fig. B.11 Fig. B.12

60 None Fig. 5.22 Fig. 5.23

60 Moderate Fig. 5.18 Fig. 5.19

60 Major Fig. 5.24 Fig. 5.25

100 None Fig. B.13 Fig. B.14

100 Moderate Fig. 5.20 Fig. 5.21

100 Major Fig. B.15 Fig. B.16

Table B.1: Main experiment results cross reference.

282 Appendix B: Experiment Results

Figure B.1: Main experiment, coverage over time where: no replacements available,

comm. success rate = 20%, and prob. robot failure = none.

Figure B.2: Main experiment, victims identified over time where: no replacements

available, comm. success rate = 20%, and prob. robot failure = none.

Appendix B: Experiment Results 283

Figure B.3: Main experiment, coverage over time where: no replacements available,

comm. success rate = 20%, and prob. robot failure = major.

Figure B.4: Main experiment, victims identified over time where: no replacements

available, comm. success rate = 20%, and prob. robot failure = major.

284 Appendix B: Experiment Results

Figure B.5: Main experiment, coverage over time where: no replacements available,

comm. success rate = 100%, and prob. robot failure = none.

Figure B.6: Main experiment, victims identified over time where: no replacements

available, comm. success rate = 100%, and prob. robot failure = none.

Appendix B: Experiment Results 285

Figure B.7: Main experiment, coverage over time where: no replacements available,

comm. success rate = 100%, and prob. robot failure = major.

Figure B.8: Main experiment, victims identified over time where: no replacements

available, comm. success rate = 100%, and prob. robot failure = major.

286 Appendix B: Experiment Results

Figure B.9: Main experiment, coverage over time where: replacements available,

comm. success rate = 20%, and prob. robot failure = none.

Figure B.10: Main experiment, victims identified over time where: replacements

available, comm. success rate = 20%, and prob. robot failure = none.

Appendix B: Experiment Results 287

Figure B.11: Main experiment, coverage over time where: replacements available,

comm. success rate = 20%, and prob. robot failure = major.

Figure B.12: Main experiment, victims identified over time where: replacements

available, comm. success rate = 20%, and prob. robot failure = major.

288 Appendix B: Experiment Results

Figure B.13: Main experiment, coverage over time where: replacements available,

comm. success rate = 100%, and prob. robot failure = none.

Figure B.14: Main experiment, victims identified over time where: replacements

available, comm. success rate = 100%, and prob. robot failure = none.

Appendix B: Experiment Results 289

Figure B.15: Main experiment, coverage over time where: replacements available,

comm. success rate = 100%, and prob. robot failure = major.

Figure B.16: Main experiment, victims identified over time where: replacements

available, comm. success rate = 100%, and prob. robot failure = major.

290 Appendix B: Experiment Results

B.2 Leadership Failure Experiment

Comm Success Rate Percent Environment

Covered

Percent Victims Iden-

tified

20 Fig. 5.28 Fig. 5.29

60 Fig. 5.26 (p.254) Fig. 5.27 (p.255)

100 Fig. B.18 Fig. B.17

Table B.2: Leadership failure experiment results cross reference.

Figure B.17: Leadership failure experiment, percent victims identified for communi-

cation success rate 100%.

Appendix B: Experiment Results 291

Figure B.18: Leadership failure experiment, percent environment covered for commu-

nication success rate 100%.

Bibliography

J. Anderson and J. Baltes. An agent-based approach to introductory robotics using

robotic soccer. Intl. Journal of Robotics and Automation, 21(2), February 2006.

M. Anderson and N. Papanikolopoulos. Improving multirobot, cooperative search

via local target queues. In Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots

and Systems (IROS), pages 2590–2595, November 2007. doi: 10.1109/IROS.2007.

4399338.

M. Anderson and N. Papanikolopoulos. Implicit cooperation strategies for multi-robot

search of unknown areas. Journal of Intelligent & Robotic Systems, 53:381–397,

2008. ISSN 0921-0296. doi: 10.1007/s10846-008-9242-5.

L. Andersson and J. Nygards. C-SAM: Multi-robot SLAM using square root informa-

tion smoothing. In Proc. of IEEE Intl. Conf. on Robotics and Automation (ICRA),

pages 2798–2805, Pasadena, CA, USA, 2008. doi: 10.1109/ROBOT.2008.4543634.

R. C. Arkin. Motor schema based navigation for a mobile robot: An approach to pro-

gramming by behavior. In Proc. of IEEE Intl. Conf. on Robotics and Automation

(ICRA), pages 264–271, Raleigh, NC, USA, 1987. IEEE.

292

Bibliography 293

R. C. Arkin and T. Balch. Aura: principles and practice in review. Journal of

Experimental & Theoretical Artificial Intelligence, 9(2–3):175–189, 1997. doi: doi:

10.1080/095281397147068.

T. Balch. Robots move: Position paper on simulation. In Working Notes of

AAAI Spring Symposium, 1998. URL http://www.cs.cmu.edu/~trb/papers/

aaai_spring_position/.

P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu. Wireless

sensor networks: A survey on the state of the art and the 802.15.4 and zigbee

standards. Computer Communications, 30(7):1655–1695, 2007. ISSN 0140-3664.

doi: 10.1016/j.comcom.2006.12.020.

N. Boonpinon and A. Sudsang. Constrained coverage for heterogeneous multi-robot

team. In Proc. of IEEE Intl. Conf. on Robotics and Biomimetics (ROBIO), pages

799–804, December 2007. doi: 10.1109/ROBIO.2007.4522265.

J. Borenstein and Y. Koren. Histogramic in-motion mapping for mobile robot obstacle

avoidance. IEEE Transactions on Robotics and Automation, 7(4):535–539, August

1991. ISSN 1042-296X. doi: 10.1109/70.86083.

M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical

reasoning. Computational Intelligence, 4(3):349–355, 1988. ISSN 1467-8640. doi:

10.1111/j.1467-8640.1988.tb00284.x.

J. Bresenham. Pixel-processing fundamentals. IEEE Computer Graphics and Appli-

cations, 16(1):74–82, Jan 1996. ISSN 0272-1716. doi: 10.1109/38.481626.

http://www.cs.cmu.edu/~trb/papers/aaai_spring_position/
http://www.cs.cmu.edu/~trb/papers/aaai_spring_position/

294 Bibliography

C. H. Brooks and E. H. Durfee. Congregation formation in multiagent systems.

Autonomous Agents and Multi-Agent Systems, 7:145–170, 2003. ISSN 1387-2532.

J. Bruce, M. Bowling, B. Browning, and M. Veloso. Multi-robot team response

to a multi-robot opponent team. In Proc. of IEEE Intl. Conf. on Robotics and

Automation (ICRA), volume 2, pages 2281–2286, September 2003. doi: 10.1109/

ROBOT.2003.1241933.

W. Burgard, D. Fox, and S. Thrun. Markov localization for mobile robots in dynamic

environments. CoRR, abs/1106.0222, 2011.

S. Burion. Human detection for robotic urban search and rescue. Technical report,

Swiss Federal Institute of Technology, 2004. Swiss Federal Institute of Technology.

J. Carlson and R. Murphy. Reliability analysis of mobile robots. In Proc. of IEEE

Intl. Conf. on Robotics and Automation ICRA, volume 1, pages 274–281, September

2003. doi: 10.1109/ROBOT.2003.1241608.

D. Carnegie. A three-tier hierarchical robotic system for urban search and rescue

applications. In Proc. of IEEE Intl. Workshop on Safety, Security and Rescue

Robotics (SSRR), pages 1–6, September 2007. doi: 10.1109/SSRR.2007.4381268.

S. Carpin. Fast and accurate map merging for multi-robot systems. Autonomous

Robots, 25(3):305–316, 10 2008. doi: 10.1007/s10514-008-9097-4.

J. Casper and R. Murphy. Human-robot interactions during the robot-assisted urban

search and rescue response at the world trade center. IEEE Transactions on Sys-

Bibliography 295

tems, Man, and Cybernetics, Part B: Cybernetics, 33(3):367–385, June 2003. ISSN

1083-4419. doi: 10.1109/TSMCB.2003.811794.

K. Cheng and P. Dasgupta. Multi-agent coalition formation for distributed area

coverage: Analysis and evaluation. In Proc. of IEEE Intl. Conf. on Web Intelligence

and Intelligent Agent Technology (WI-IAT), volume 3, pages 334–337, September

2010. doi: 10.1109/WI-IAT.2010.277.

P. R. Cohen and C. R. Perrault. Elements of a plan-based theory of speech

acts. Cognitive Science, 3(3):177–212, 1979. ISSN 1551-6709. doi: 10.1207/

s15516709cog0303 1.

P. R. Cohen, M. L. Greenberg, D. M. Hart, and A. E. Howe. Trial by fire: Under-

standing the design requirements for agents in complex environments. AI Magazine,

10(3):32–48, 1989.

Computing Research Association. CRA grand research challenges in information

systems final report. In CRA Conf. on Grand Research Challenges in Computer

Science and Engineering, page 9, Warrenton, Virginia, USA, June 2002. URL

http://www.cra.org/reports/gc.systems.pdf.

R. Davis and R. G. Smith. Negotiation as a metaphor for distributed prob-

lem solving. Artificial Intelligence, 20(1):63–109, 1983. ISSN 0004-3702. doi:

10.1016/0004-3702(83)90015-2.

A. Diosi and L. Kleeman. Advanced sonar and laser range finder fusion for simulta-

neous localization and mapping. In Proc. of IEEE/RSJ Intl. Conf. on Intelligent

http://www.cra.org/reports/gc.systems.pdf

296 Bibliography

Robots and Systems (IROS), volume 2, pages 1854–1859, September 2004. doi:

10.1109/IROS.2004.1389667.

G. Dissanayake, J. Paxman, J. V. Miro, O. Thane, and H. Thi. Robotics for urban

search and rescue. In Proc. of 1st Intl. Conf. on Industrial and Information Systems,

pages 294–298, August 2006. doi: 10.1109/ICIIS.2006.365740.

M. Dorigo, D. Floreano, L. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Bi-

rattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A. Chris-

tensen, A. Decugniire, G. Di Caro, F. Ducatelle, E. Ferrante, A. Frster, J. Mar-

tinez Gonzales, J. Guzzi, V. Longchamp, S. Magnenat, N. Mathews, M. Montes de

Oca, R. O’Grady, C. Pinciroli, G. Pini, P. Rtornaz, J. Roberts, V. Sperati, T. Stir-

ling, A. Stranieri, T. Sttzle, V. Trianni, E. Tuci, T. A.E., and V. F. Swarmanoid:

a novel concept for the study of heterogeneous robotic swarms. Technical report,

Institut de Recherches Interdisciplinaires et de Dveloppements en Intelligence Ar-

tificielle (IRIDIA), Universit Libre de Bruxelles, 2011.

P. S. Dutta and S. Sen. Forming stable partnerships. Cognitive Systems Research,

4(3):211–221, 2003. ISSN 1389-0417. doi: DOI:10.1016/S1389-0417(03)00005-6.

Cognitive Agents and Multiagent Interaction.

M. Eghbali and M. Sharbafi. Multi agent routing to multi targets via ant colony. In

Proc of the 2nd Intl. Conf on Computer and Automation Engineering (ICCAE),

volume 1, pages 587–591, February 2010. doi: 10.1109/ICCAE.2010.5451346.

A. Elfes. Using occupancy grids for mobile robot perception and navigation. Com-

puter, 22(6):46–57, June 1989. ISSN 0018-9162. doi: 10.1109/2.30720.

Bibliography 297

O. Etzioni and R. Segal. Softbots as testbeds for machine learning. In Working Notes

of the AAAI Spring Symposium on Knowledge Assimilation, pages 1–8, Menlo Park,

CA, 1992. AAAI Press.

FEMA. Urban Search and Rescue Response System In Federal Disaster Operations.

Washington, DC, January 2000.

FIPA. FIPA contract net interaction protocol & specification, December 2002. URL

http://www.fipa.org/specs/fipa00029/SC00029H.pdf.

D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach to col-

laborative multi-robot localization. Autonomous Robots, 8:325–344, 2000. ISSN

0929-5593. doi: 10.1023/A:1008937911390.

M. Gauthier and J. Anderson. Peer instruction for a teleautonomous USAR sys-

tem. In Proc. of the 3rd Intl. Conf. on Computational Intelligence, Robotics, and

Autonomous Systems (CIRAS), Singapore, December 2005.

J. George, P. Sujit, J. Sousa, and F. Pereira. Coalition formation with communication

ranges and moving targets. In Proc. of American Control Conference (ACC), pages

1605–1610, July 2010.

B. Gerkey and M. Mataric. Sold!: auction methods for multirobot coordination.

IEEE Transactions on Robotics and Automation, 18(5):758–768, October 2002.

ISSN 1042-296X. doi: 10.1109/TRA.2002.803462.

B. Gerkey, R. Vaughan, and A. Howard. The Player/Stage project: Tools for multi-

http://www.fipa.org/specs/fipa00029/SC00029H.pdf

298 Bibliography

robot and distributed sensor systems. In Proc. of the 11th Intl. Conf. on Advanced

Robotics, pages 317–323, Coimbra, Portugal, June 2003.

L. Giannetti and P. Valigi. Collaboration among members of a team: a heuristic

strategy for multi-robot exploration. In Proc. of 14th Mediterranean Conf. on

Control and Automation (MED), pages 1–6, June 2006. doi: 10.1109/MED.2006.

328718.

T. Goedemé, T. Tuytelaars, and L. Gool. Visual topological map building in self-

similar environments. Informatics in Control Automation and Robotics, pages 195–

205, 2008.

C. Guanghui, H. Nakamoto, N. Matsuhira, and I. Hagiwara. Effective application

of monte carlo localization for service robot. In Proc. of Intl. Conf. on Intelligent

Robots and Systems (IROS), pages 1914–1919, San Diego, CA, USA, October 2007.

doi: 10.1109/IROS.2007.4399409.

J.-S. Gutmann, M. Fukuchi, and M. Fujita. A floor and obstacle height map for 3d

navigation of a humanoid robot. In Proc. of the IEEE Intl. Conf. on Robotics and

Automation (ICRA), pages 1066–1071, April 2005. doi: 10.1109/ROBOT.2005.

1570257.

A. Howard, L. Parker, and G. Sukhatme. Experiments with a large heterogeneous

mobile robot team: exploration, mapping, deployment and detection. Intl. Journal

of Robotics Research, 25(5–6):431–447, May 2006a. ISSN 0278-3649. doi: 10.1177/

0278364906065378.

Bibliography 299

A. Howard, G. Sukhatme, and M. Mataric. Multirobot simultaneous localization and

mapping using manifold representations. Proc. of the IEEE, 94(7):1360–1369, July

2006b. ISSN 0018-9219. doi: 10.1109/JPROC.2006.876922.

ITU-R. Recommendations, propagation data and prediction methods for the plan-

ning of indoor radiocommunication systems and radio local area networks in the

frequency range 900mhz to 100ghz. Technical report, International Telecommuni-

cation Union (ITU), Geneva, 2003.

A. Jacoff, E. Messina, B. Weiss, S. Tadokoro, and Y. Nakagawa. Test arenas and

performance metrics for urban search and rescue robots. In Proc. of IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), volume 4, pages 3396–3403,

October 2003. doi: 10.1109/IROS.2003.1249681.

J. Kiener and O. von Stryk. Cooperation of heterogeneous, autonomous robots: A

case study of humanoid and wheeled robots. In Proc. of IEEE/RSJ Intl. Conf.

on Intelligent Robots and Systems (IROS), pages 959–964, November 2007. doi:

10.1109/IROS.2007.4399291.

T. Kratzke, L. Stone, and J. Frost. Search and rescue optimal planning system. In

Proc. of the 13th Conf. on Information Fusion (FUSION), pages 1–8, July 2010.

N. Lau, L. Lopes, G. Corrente, and N. Filipe. Multi-robot team coordination through

roles, positionings and coordinated procedures. In Proc. of IEEE/RSJ Intl. Conf.

on Intelligent Robots and Systems (IROS), pages 5841–5848, October 2009. doi:

10.1109/IROS.2009.5354286.

300 Bibliography

F. Legras and C. Tessier. Advances in Agent Communication, chapter LOTTO: Group

Formation by Overhearing in Large Teams, page 1956. Springer Berlin, 2004. doi:

10.1007/978-3-540-24608-4 15.

T. Li, C.-Y. Chen, Y.-C. Yeh, C.-C. Yang, H.-K. Huang, H.-L. Hung, C.-H. Chu,

S.-H. Hsu, D.-Y. Huang, B.-R. Tsai, M.-C. Gau, and R.-J. Jang. An autonomous

surveillance and security robot team. In Proc. of IEEE Workshop on Advanced

Robotics and Its Social Impacts (ARSO), pages 1–6, December 2007. doi: 10.1109/

ARSO.2007.4531425.

X. Ma, F. Meng, Y. Li, W. Chen, and Y. Xi. Multi-agent-based auctions for multi-

robot exploration. In The Sixth World Congress on Intelligent Control and Automa-

tion, volume 2, pages 9262–9266, June 2006. doi: 10.1109/WCICA.2006.1713793.

A. Martinelli, F. Pont, and R. Siegwart. Multi-robot localization using relative ob-

servations. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA),

pages 2797–2802, April 2005. doi: 10.1109/ROBOT.2005.1570537.

M. Mataric, M. Nilsson, and K. Simsarin. Cooperative multi-robot box-pushing. In

Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), volume 3,

pages 556–561, August 1995. doi: 10.1109/IROS.1995.525940.

V. Matelln and D. Borrajo. ABC2 an agenda based multi-agent model for robots

control and cooperation. Journal of Intelligent & Robotic Systems, 32:93–114, 2001.

ISSN 0921-0296. 10.1023/A:1012009429991.

C. McMillen and M. Veloso. Distributed Autonomous Robotic Systems 7, chapter Dis-

Bibliography 301

tributed, Play-Based Role Assignment for Robot Teams in Dynamic Environments,

pages 145–154. Springer, 2006. doi: 10.1007/4-431-35881-1 15.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An improved

particle filtering algorithm for simultaneous localization and mapping that provably

converges. In Proc. of the Sixteenth Intl. Joint Conf. on Artificial Intelligence

(IJCAI), Acapulco, Mexico, 2003.

R. Murai, K. Ito, and K. Nakamichi. Proposal of a snake-like rescue robot

designed for ease of use. In Proc. of IEEE Conf. on Industrial Electronics,

Control and Instrumentation (IECON), pages 1662–1667, November 2008. doi:

10.1109/IECON.2008.4758203.

R. Murphy, J. Casper, J. Hyams, M. Micire, and B. Minten. Mobility and sensing

demands in USAR. In Proc. of IEEE Conf. on Industrial Electronics, Control and

Instrumentation (IECON), volume 1, pages 138–142, Nagoya, Japan, 2000a. doi:

10.1109/IECON.2000.973139.

R. Murphy, J. Casper, M. Micire, and J. Hyams. Assessment of the NIST standard

test bed for urban search and rescue. Technical Report WS-00-09, Association for

the Advancement of Artificial Intelligence (AAAI), 2000b.

R. R. Murphy. Introduction to AI Robotics, chapter 4, 11, pages 105–152. The MIT

Press, Cambridge, MA, USA, 2000.

M. Ocana, L. Bergasa, M. Sotelo, J. Nuevo, and R. Flores. Indoor robot localization

system using wifi signal measure and minimizing calibration effort. In Proc. of the

302 Bibliography

IEEE Intl. Symposium on Industrial Electronics (ISIE), volume 4, pages 1545–1550,

June 2005. doi: 10.1109/ISIE.2005.1529162.

J. Odell, H. Van Dyke Parunak, and M. Fleischer. The role of roles in designing

effective agent organizations. In A. Garcia, C. Lucena, F. Zambonelli, A. Omicini,

and J. Castro, editors, Software Engineering for Large-Scale Multi-Agent Systems,

volume 2603 of Lecture Notes in Computer Science, pages 27–38. Springer Berlin /

Heidelberg, 2003. doi: 10.1007/3-540-35828-5 2.

L. Parker, B. Kannan, F. Xiaoquan, and T. Yifan. Heterogeneous mobile sensor net

deployment using robot herding and line-of-sight formations. In Proc. of IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), volume 3, pages 2488–2493,

October 2003. doi: 10.1109/IROS.2003.1249243.

M. Pfingsthorn, B. Slamet, and A. Visser. A scalable hybrid multi-robot SLAM

method for highly detailed maps. In U. Visser, F. Ribeiro, T. Ohashi, and F. Del-

laert, editors, RoboCup 2007: Robot Soccer World Cup XI, volume 5001 of Lecture

Notes in Computer Science, pages 457–464. Springer Berlin / Heidelberg, 2008.

ISBN 978-3-540-68846-4.

A. Poernomo and H. Ying. New cost function for multi-robot exploration. In Proc. of

9th Intl. Conf. on Control, Automation, Robotics and Vision, pages 1–6, December

2006. doi: 10.1109/ICARCV.2006.345220.

A. Pokahr, L. Braubach, and W. Lamersdorf. A BDI architecture for goal deliberation.

In Proc. of the fourth Intl. Joint Conf. on Autonomous Agents and Multiagent

Bibliography 303

Systems, AAMAS ’05, pages 1295–1296, New York, NY, USA, 2005. ACM. ISBN

1-59593-093-0. doi: 10.1145/1082473.1082740.

J. Reich and B. Sklar. Toward automatic reconfiguration of robot-sensor networks

for urban search and rescue. In Proc. of First Intl. Workshop on Agent Technology

for Disaster Management (ATDM): Fifth Intl. Joint Conf. on Autonomous Agents

and Multiagent Systems, Hakodate, Japan, May 2006a. ACM.

J. Reich and B. Sklar. Robot-sensor networks for search and rescue. In Proc. of IEEE

Intl. Workshop on Safety, Security and Rescue Robotics, Gaithersburg, MD, USA,

August 2006b.

R. Reid and T. Braunl. Large-scale multi-robot mapping in MAGIC 2010. In Proc.

of IEEE Conf. on Robotics, Automation and Mechatronics (RAM), pages 239–244,

September 2011. doi: 10.1109/RAMECH.2011.6070489.

I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset. Limited communication, multi-

robot team based coverage. In Proc. of IEEE Intl. Conf. on Robotics and Automa-

tion (ICRA), volume 4, pages 3462–3468, May 2004. doi: 10.1109/ROBOT.2004.

1308789.

M. N. Rooker and A. Birk. Multi-robot exploration under the constraints of wireless

networking. Control Engineering Practice, 15(4):435–445, 2007. doi: 10.1016/j.

conengprac.2006.08.007.

A. Rosenfeld, G. Kaminka, and S. Kraus. Coordination of Large-Scale Multiagent

304 Bibliography

Systems, chapter A Study of Scalability Properties in Robotic Teams, pages 27–51.

Springer US, 2006. doi: 10.1007/0-387-27972-5 2.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, chapter 2,

page 54. Prentice-Hall, 3 edition, 2003.

C. Schlenoff. A robot ontology for urban search and rescue. In Proc. of the Workshop

on Research in Knowledge Representation for Autonomous Systems, part of the

ACM Conf. on Information and Knowledge Management, 2005.

S. Scone and I. Phillips. Trade-off between exploration and reporting victim lo-

cations in USAR. In Proc. of IEEE Intl. Symposium on a World of Wire-

less Mobile and Multimedia Networks (WoWMoM), pages 1–6, June 2010. doi:

10.1109/WOWMOM.2010.5534926.

J. S. Seybold. Introduction to RF Propagation, chapter Indoor Propagation Modeling,

pages 210–214. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2005. doi: 10.1002/

0471743690.fmatter.

D. Shell and M. Mataric. On foraging strategies for large-scale multi-robot systems.

In Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages

2717–2723, October 2006. doi: 10.1109/IROS.2006.281996.

S. Stancliff, J. Dolan, and A. Trebi-Ollennu. Planning to fail – reliability needs to

be considered a priori in multirobot task allocation. In Proc. of IEEE Intl. Conf.

on Systems, Man and Cybernetics (SMC), pages 2362–2367, October 2009. doi:

10.1109/ICSMC.2009.5346359.

Bibliography 305

P. Stone and M. Veloso. Intelligent Agents V: Agents Theories, Architectures, and

Languages, volume 1555/2000, chapter Task Decomposition and Dynamic Role

Assignment for Real-Time Strategic Teamwork, pages 293–308. Springer Berlin,

1999.

P. Ulam and R. Arkin. When good communication go bad: communications recovery

for multi-robot teams. In Proc. of IEEE Intl. Conf. on Robotics and Automa-

tion (ICRA), volume 4, pages 3727–3734, May 2004. doi: 10.1109/ROBOT.2004.

1308844.

M. van de Vijsel and J. Anderson. Increasing realism in coalition formation. In Proc.

of the 3rd Intl. Conf. on Computational Intelligence, Robotics, and Autonomous

Systems (CIRAS), Singapore, December 2005.

R. Vaughan. Massively multi-robot simulation in stage. Swarm Intelligence, 2(2):

189–208, 12 2008. doi: 10.1007/s11721-008-0014-4.

V. Verma, G. Gordon, R. Simmons, and S. Thrun. Real-time fault diagnosis. IEEE

Robotics Automation Magazine, 11(2):56–66, June 2004. ISSN 1070-9932. doi:

10.1109/MRA.2004.1310942.

L. Vig and J. Adams. Issues in multi-robot coalition formation. In L. E. Parker, F. E.

Schneider, and A. C. Schultz, editors, Multi-Robot Systems, volume 3, pages 15–26.

Springer Netherlands, 2005. doi: 10.1007/1-4020-3389-3 2.

R. Wegner. Balancing robotic teleoperation and autonomy in a complex and dy-

306 Bibliography

namic environment. Master’s thesis, Department of Computer Science, University

of Manitoba, July 2003.

R. Wegner and J. Anderson. Balancing robotic teleoperation and autonomy for urban

search and rescue environments. In Proc. of the 17th Conf. of the Canadian Society

for Computational Studies of Intelligence, volume 3060, pages 16–30, London, ON,

CA, 2004.

N. Wiebe and J. Anderson. Local methods for supporting grounded communication in

robot teams. In D. Liu, L. Wang, and K. C. Tan, editors, Design and Control of In-

telligent Robotic Systems, chapter 14, pages 279–301. Springer-Verlag, Heidelberg,

2009. ISBN 978-3-540-89932-7. doi: 10.1007/978-3-540-89933-4 14.

J. Wong, C. Robinson, and M. Worrell. Urban search and rescue technology needs:

identification of needs. Technical report, Savannah River National Laboratory,

November 2004.

K. M. Wurm, D. Hennes, D. Holz, R. B. Rusu, C. Stachniss, K. Konolige, and W. Bur-

gard. Hierarchies of octrees for efficient 3d mapping. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), pages 4249–4255, September

2011. doi: 10.1109/IROS.2011.6094571.

D. Xu and K. Xia. Role assignment, non-communicative multi-agent coordination

in dynamic environments based on the situation calculus. In Proc. of WRI Global

Congress on Intelligent Systems (GCIS), volume 1, pages 89–93, May 2009. doi:

10.1109/GCIS.2009.255.

Bibliography 307

B. Yamauchi. Packbot: A versatile platform for military robotics. In G. Gerhart,

C. Shoemaker, and D. Gage, editors, Proc. of SPIE, volume 5422 of Unmanned

Ground Vehicle Technology VI, pages 228–237, 2004.

B. Yamauchi. A frontier-based approach for autonomous exploration. In Proc.

of IEEE Intl. Conf. on Computational Intelligence in Robotics and Automation

(CIRA), pages 146–151, July 1997. doi: 10.1109/CIRA.1997.613851.

B. Yamauchi. Frontier-based exploration using multiple robots. In Proc. of the 2nd

Intl. Conf. on Autonomous agents (AGENTS), pages 47–53, New York, NY, USA,

1998. ACM. ISBN 0-89791-983-1. doi: 10.1145/280765.280773.

F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent systems:

The gaia methodology. ACM Transactions on Software Engineering Methodology,

12(3):317–370, 2003. doi: 10.1145/958961.958963.

S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso. Ssl-vision: The

shared vision system for the robocup small size league. In J. Baltes, M. Lagoudakis,

T. Naruse, and S. Ghidary, editors, RoboCup 2009: Robot Soccer World Cup XIII,

volume 5949 of Lecture Notes in Computer Science, pages 425–436. Springer Berlin

/ Heidelberg, 2010. doi: 10.1007/978-3-642-11876-0 37.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgments
	Dedication
	Introduction
	Introduction
	Motivation
	Terminology
	Approach
	Urban Search and Rescue
	Research Questions
	Thesis Organization

	Related Work
	Coordination in Multi-Agent Teams
	Team Maintenance
	Roles
	Task Allocation
	Task Completion
	Effective Heterogeneous Teams

	Urban Search and Rescue
	Experimental Domain
	Autonomous Control
	Mapping
	Updating the map

	Localization and Shared Coordinate Systems
	Multi-Robot Mapping
	Frontier-Based Exploration

	Methodology
	Framework Overview
	Team Maintenance
	Recognizing Failures
	Encountering Agents

	Task Management
	Attributes, Roles and Tasks
	Attributes
	Tasks
	Minimum Requirements
	Suitability Expression
	Task Priority

	Roles
	Suitability of an Agent to Fill a Role

	Desired Team

	Task Management via the Task List
	Carrying Out Tasks
	Adding New Tasks to the Task List
	Assigning Tasks
	Role-based Task Assignment
	Exhaustive Task Assignment

	Sending Tasks to the Team Coordinator

	Role and Team Determination
	Role Determination
	Team Determination

	Team Merging and Redistribution
	Coping with Failures and Inconsistent Knowledge
	Examples of Team Merge and Redistribution
	Encountering Supplementary Agents
	Encountering Replacement Agents
	Redistributing Teams
	Role Check after Team Merge and Redistribution
	Simultaneous Team Merge and Redistribution
	Team Merge and Redistribution Impacted by Communication Failure

	Conclusion

	Implementation
	Implementation Overview
	Operational Concept
	Locating and Identifying Victims
	Exploration
	Operational Knowledge

	Simulated Disaster Environment
	Localization and Coordinate Systems
	Victims
	Robot Detection

	Robot Types
	MinBots
	MidBots
	MaxBots

	Attributes, Roles and Tasks
	Attributes
	Physical Properties
	Computation Capabilities
	Sensory Capabilities

	Tasks
	Explore
	Explore Frontier
	Find Team
	Find Victim
	Confirm Victim
	Manage Team
	Encounter

	Roles
	Team Coordinator
	Explorer/Verifier
	Explorer

	Desired Team

	Autonomous Control
	Perceptual Schemas
	Localization
	Process Range Data
	Detect Debris
	Detect Obstacles
	Update Map
	Detect Robots
	Detect Victims
	Detect Lost

	Motor Schemas
	Avoid Obstacles
	Move To Location
	Turn in Place
	Random
	Recover Stuck

	Framework-Specific Modules
	Encounter Manager
	Encounter Task

	Knowledge Manager
	Communication Manager
	Acknowledged Messages and Timeouts

	Mission-Specific Modules
	Mapping
	Updating the Occupancy Grid Map
	Merging Maps

	Frontier Finder
	Victim Tracker
	Planner

	Simulation Implementation Details
	Simulated Unreliable Wireless Communication
	Victim Detectors
	Robot Identifier Sensors

	Conclusion

	Evaluation
	Overview
	Review of Research Questions
	Evaluation Criteria
	Experimental Environment
	Generating Environments
	Choosing Environments
	Generating Repetitions

	Experiment Design
	Base Cases
	Fixed Roles and Team Membership
	Fixed Task Allocation

	Independent Variables
	Replacement Robots
	Communication Success Rate
	Probability of Robot Failure

	Leadership Failure Experiment
	Main Experiment Results
	No Replacement Robots
	Improvement in Coverage over Baseline
	Improvement in Victims Identified over Baseline
	Impact of Communication Failures over Time
	Impact of Robot Failures over Time

	Replacement Robots
	Improvement in Coverage over Baseline
	Impact of Communication Failures
	Impact of Robot Failures

	Leadership Failure Experiment Results
	Analysis
	Summary

	Conclusion
	Overview
	Answers to Research Questions
	Contributions
	Future Work
	Future Implementation Work
	Future Methodology Work

	Conclusion

	Experimental Environments
	Experiment Results
	Main Experiment
	Leadership Failure Experiment

	Bibliography

