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Abstract

This thesis reports on my Ph.D. research in the area of microwave remote sensing of the
Arctic. The main objective of this research is to reconstruct the dielectric profile of the
snow-covered sea ice, and indirectly retrieve some of its geophysical and thermodynamic
properties. To meet this objective, a nonlinear electromagnetic inverse scattering algorithm
is developed that consists of forward and inverse solvers. The input to this algorithm is
the normalized radar cross section (NRCS) data collected by radar systems from the snow-
covered sea ice profile. The proposed inversion algorithm iteratively minimizes a discrepancy
between the measured and simulated NRCS data (i.e., the misfit cost function term) to
achieve an accurate reconstruction. Herein, the boundary perturbation theory and the cloud
model are utilized as the forward solver, and the differential evolution algorithm is used as
the inverse solver.

Two main challenges associated with this inverse problem are its ill-posedness (which is often
associated with the non-uniqueness of the solution and the instability of the associated math-
ematical problem) and its limited available scattering data. To tackle these challenges, the
utilization of appropriate regularization and weighting schemes as well as the incorporation of
prior information into the inversion algorithm are employed. These include the utilization of
(i) appropriate weighting factors for the misfit cost function, (ii) more sensitive NRCS data
with respect to the unknown parameters, (iii) further parametrization of the profile based
on the expected permittivity distribution, (iv) time-series NRCS data to better initialize the
inversion process, and (v) NRCS data collected by the satellite and on-site scatterometer to
be inverted simultaneously for profile reconstruction.

The experimental data utilized in this thesis are collected by the author in collaboration
with the Centre for Earth Observation Science. These measurements are performed on
(i) the artificially-grown sea ice in the Sea-ice Environmental Research Facility, located at the
University of Manitoba during Winter 2014, and (ii) the landfast sea ice located in the Arctic
(Cambridge Bay, Nunavut) during May 2014. The measurement procedure includes NRCS
data collection through an on-site C-band scatterometer and a spaceborne SAR satellite (i.e.,
radarsat-2), and physical sampling of the snow and sea ice.
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The proposed electromagnetic inverse scattering algorithm is utilized to invert these experi-
mental data sets, as well as some synthetic data sets. It will be shown that the use of various
techniques developed in this thesis in conjunction with the developed inversion algorithm
results in reasonable snow-covered sea ice profile reconstruction.



Acronyms and Symbols

Acronym Description

NRCS Normalized radar cross section.
SERF Sea-ice environmental research facility.
DE Differential evolution.
BPT Boundary perturbation theory.
SAR Synthetic aperture radar.
VV Vertical-sent vertical-receive polarization.
HH Horizontal-sent horizontal-receive polarization.
VH Vertical-sent horizontal-receive polarization.
HV Horizontal-sent vertical-receive polarization.
FYI First year ice.
MYI Multi year ice.
YI Young ice.
NI New ice.
ppt Part per thousand.
SPM Small perturbation method.
NL Noise level.
CF Cost function.
TG Temperature gradient.
GO Geometric optics.
IEM Integral equation method.
SFT Strong fluctuation theory.
DMRT dense medium radiative transfer theory.
FMCW Frequency-modulated continuous-wave.
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Symbol Description

x̂, ŷ, ẑ Unit vectors along x, y and z directions.
j Imaginary unit (j2 = −1).
kb Wavenumber of the background medium.
λb Wavelength of the background medium.
Einc Incident electric field.
Escat Scattered electric field.
Escat

meas Measured scattered electric field on the measurement domain S.
S

p
s Scattered power density with p polarization.

S
q
i Incident power density with q polarization.

σpq or σpq NRCS with p-sent q-receive polarization.
(.)∗ Complex conjugate operator.
(.)−1 Inverse operator.
Re Real part operator.
Imag Imaginary part operator.
ǫ′ Real part of the relative complex permittivity.
ǫ′′ Imaginary part of the relative complex permittivity.
T Temperature.
S Salinity.
ρ Density.
τ Relaxation time.
κ Thermal diffusivity.
CP Specific heat capacity.
LP Latent heat.
kT Thermal conductivity.
χ Dielectric profile.
L(χ) Regularization cost function.
C(χ) Regularized cost function.
F(χ) Cost function.
κpq Regularized cost function weighting factor.
T Generalized transmission coefficient.
R Generalized reflection coefficient.
h rms height.
l Correlation length.
∆ Layer thickness.
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1

Introduction

This dissertation presents my doctoral research in the area of microwave remote sens-

ing of the Arctic. The primarily objective was to retrieve some parameters of interest

from the snow-covered sea ice profile utilizing the measured microwave scattering data.

To achieve this objective, an electromagnetic inverse scattering algorithm(1) was devel-

oped, various profiles were studied, and new contributions were made to improve the

accuracy of the reconstructed profiles.

1.1 Motivation and Rationale

The Arctic has shown a trend of warming and an increase in the precipitation for the

past few decades [1]. These have had a significant effect in the Arctic in the form

of reduction of summer sea ice extent and lower sea ice thickness [2]. Moreover, a

positive thermodynamic feedback mechanism in the Arctic has accelerated the sea ice

(1) Within the context of this thesis, inverse scattering algorithms may be referred to as nonlinear inversion
algorithms (or, simply, inversion algorithms), reconstruction algorithms, or retrieval algorithms.
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melt further. This melt pattern is projected to further unfold well into the 21st century

with major environmental, social, sovereign, and economic impacts, on regional and

global levels. Changes due to these impacts concern Canada significantly as it has

almost 40% of its landmass within the Arctic boundary, and also neighbors vast arctic

bodies of water on its northern coasts.

Despite negative impacts of the climate change, the altered Arctic has also laid the

groundwork for some new opportunities. For instance, Canada is involved in the re-

newed development of energy and mineral resource extraction and the transportation

in the Arctic tout de suite. Responsible and sustainable planning for such develop-

ments requires continuous monitoring and accurate modeling of the current and future

physical state of the Arctic, amongst other measures. To achieve these monitoring

and modeling goals, microwave remote sensing has been introduced as an effective

tool to the Arctic sciences’ toolbox. The usefulness of this tool is better understood

considering the Arctic’s remoteness, sheer size, and hazardous environment. More-

over, microwave remote sensing can provide day-and-night measurements regardless of

weather conditions. As one of its objectives, microwave remote sensing investigates

the utilization of the remotely collected electromagnetic data from the Arctic profile

to retrieve some of its parameters of interest (e.g., snow thickness). Despite prodigious

progress in the past, the accurate parameter retrieval and profile classification through

microwave remote sensing is still a challenging topic. Therefore, I set out to contribute

to the solution of this problem as my Ph.D. research topic.

1.2 Research Objectives

New remote sensing techniques and algorithms need to be developed so as to extract as

much information as possible about the geophysical and thermodynamics state of the

snow-covered sea ice in the Arctic. From microwave remote sensing perspective, an im-
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portant piece of information about this profile is its dielectric properties. The dielectric

properties of the snow-covered sea ice profile determines the way it interacts with an

impinging electromagnetic wave. This quantitative information is dependent on other

geophysical and thermodynamic properties of snow and sea ice (e.g., temperature,

salinity, and brine volume fraction); e.g., see proxy formulas in [3–6]. These secondary

parameters are of great interest as being the input data to various thermodynamic

and climate models. Therefore, the focus of this thesis is on the reconstruction of the

dielectric profile (i.e., thickness values, complex permittivities, and roughness param-

eters) and the indirect retrieval of its thermodynamic and physical parameters (e.g.,

temperature profile).

In this research, the snow-covered sea ice profile is reconstructed within the framework

of electromagnetic inverse scattering. Performing three different steps is commonly

required in this framework: (i) data collection, (ii) data calibration, and (iii) data

processing [7]. In the data collection step, the domain of interest is irradiated by

an antenna and the scattered data is then collected by a receiving antenna (same as

transmitting antenna in the case of monostatic configuration). In the next step, the

measured data set is calibrated against another data set collected from a scatterer

with a known scattering matrix. Finally, in the data processing step, the calibrated

measured data is utilized as the input to an appropriate electromagnetic inverse scat-

tering algorithm to find(2) the quantitative dielectric profile of the snow-covered sea

ice. This research will utilize all these three steps with an emphasis on data processing.

Therefore, our principal goal can further be categorized into the following items.

1. Development of an inversion algorithm that is capable of retrieval of snow-covered

sea ice parameters. This algorithm iteratively minimizes the discrepancy between

the measured and simulated microwave scattering data. This process requires the

(2) Within the context of this thesis, finding the dielectric profile may be referred to as reconstructing the
dielectric profile or retrieving the dielectric profile.
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utilization of an electromagnetic inverse solver in conjunction with an electromag-

netic forward scattering solver.

2. Collection of physical and polarimetric normalized radar cross section (NRCS)

data from various snow-covered sea ice profiles. Physical sampling includes the

in-situ measurement of density, salinity, and temperature of the snow and sea

ice. Herein, the NRCS data collection is performed through a ground-based radar

system (i.e., C-band scatterometer), and a space-borne satellite (i.e., radarsat-2).

The inversion algorithm will then utilize the collected NRCS data to retrieve the

parameters of interest. Within this thesis, this process is sometimes referred to

as the inversion of the NRCS data.

3. Development of strategies to tackle the challenges (e.g., ill-posedness(3), lack of

sufficient data, nonlinearity) associated with this electromagnetic inverse scat-

tering problem.

4. Validation and improvement of the inversion algorithm for various measurement

configurations and snow-covered sea ice profiles.

It should finally be noted that the contributions made as a result of my Ph.D. research

to meet the objectives mentioned above are outlined in Chapter 8.

1.3 Thesis Structure and Outline

This thesis is structured based on the grouped manuscript style (i.e., sandwich thesis).

Therefore, Chapters 3 to 7 are the candidate’s peer-reviewed journal papers. The

(3) Based on Jacques Hadamard, a problem is well-posed if it satisfies the following three criteria: (i) existence
of the solution, (ii) uniqueness of the solution, (iii) the solution depends continuously on the data [8]. The
violation of any of these criteria results in an ill-posed problem. The first criterion is often satisfied in the
sense that a physical solution exists. However, it should be noted that the mathematical problem set up to
represent the actual problem may not have a solution; e.g., due to the use of a poor model. The second
and third criteria are usually treated by collecting as much reliable information as possible, use of prior
information, and various regularization techniques.
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collection of these papers contributes towards the principal goal of the thesis, as defined

in Section 1.2. Moreover, it should be mentioned that the papers enclosed in this thesis

are slightly edited to avoid repetitions and to achieve a consistent format throughout.

Nonetheless, some general concepts might be repeated for the benefit of the reader (e.g.,

the cost function formulation).

The outlines of each chapter are presented below.

– In Chapter 2, the background required for a general comprehension of microwave

remote sensing of the snow-covered sea ice is presented. This includes investiga-

tion of the geophysics, thermodynamics, and dielectric properties of the snow and

sea ice. At the end, the basics of electromagnetic inverse scattering algorithm

associated with the snow-covered sea ice profile are explained.

– Chapter 3 introduces the nonlinear inversion algorithm developed to reconstruct

the dielectric profile of the snow-covered sea ice. In this chapter, the inversion is

performed on noisy and noiseless synthetic NRCS data. It is demonstrated that

the algorithm is capable of reconstructing the unknowns (e.g., complex permit-

tivity, roughness parameters, and thickness) accurately.

– The bistatic configuration is investigated in Chapter 4. For this configuration,

a new weighting factor for the cost function is introduced. It is shown that

the utilization of the introduced weighting factor results in higher reconstruction

accuracy compared to the conventional weighting factors. The study presented

in Chapter 4 is based on noisy and noiseless synthetic NRCS data.

– In Chapter 5, the sensitivity of the NRCS data with respect to the unknown profile

parameters is studied. It is demonstrated that the use of more sensitive NRCS

data results in enhanced reconstruction. In addition, in an attempt to reduce the

number of unknowns, I propose a new parametrization so as to incorporate prior

information about the complex permittivity profile of the snow-covered sea ice
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of interest into the inversion algorithm. This chapter utilizes both synthetic and

measured NRCS data. The measured data were collected via a monostatic C-band

scatterometer that irradiated the snow-covered sea ice profile grown artificially

at the Sea-ice Environmental Research Facility (SERF) in winter 2014. Within

the context of this thesis, I refer to this experiment as SERF Experiment I.

– A new inversion strategy is introduced in Chapter 6 to take advantage of the

time-series NRCS data so as to retrieve the temporal evolution of temperature,

salinity, and density profiles of the snow-covered sea ice. The employment of the

time-series NRCS data allows the minimization of the search space for problem

unknowns, thus, achieving better reconstruction accuracy. The experimental data

utilized in this chapter were collected at the SERF in winter 2014. Within the

context of this thesis, I refer to this experiment as SERF Experiment II.

– Chapter 7 investigates the retrieval of snowpack parameters of the snow-covered

sea ice profile. To this end, the inversion algorithm is equipped with an enhanced

forward solver. The enhancement is focused on incorporating a volume scattering

component into the forward solver. This is important due to the existence of large

inclusions within the snowpack. The temporal NRCS and physical sampling data

in this chapter were collected in Cambridge Bay, NU, located within the Arctic

Circle, during May 2014. Both scatterometer and satellite data are inverted

in this chapter. (A profile averaging technique is also applied to reduce the

number of unknown parameters.) Within the context of this thesis, I refer to the

experiment considered in this chapter as Cambridge Bay Experiment.

– A conclusion is presented in Chapter 8. This chapter includes a summary of

the thesis and my contributions to the area of microwave remote sensing of the

snow-covered sea. Furthermore, my recommendations for future work based on

the findings of this research are outlined.



2

Background and Framework

2.1 Overview

In this chapter, the background on the snow-covered sea ice (i) geophysics, (ii) dielec-

tric properties, and (iii) thermodynamics are presented. In addition, a background

concept for inversion algorithms is explained. In Section 2.2, the geophysics of the

snow and sea ice, as the constituents of the snow-covered sea ice profile, are described.

In particular, the sea ice formation process and the presence of brine inclusions in the

sea ice are studied. Furthermore, the snow structure and its variations are investi-

gated. Next, in Section 2.3, the formulas to calculate the permittivity values of single

and multi-phase dielectric materials are presented. These include the Debye, mixing,

and semi-empirical formulas that are utilized to calculate the permittivity values of

various dielectric materials, including snow and sea ice. Subsequently, it is shown that

the dielectric properties of snow and sea ice are dependent on their geophysical state.

In Section 2.4, the thermodynamics of the snow-covered sea ice profile in the arctic

environment is presented. To this end, the formulas to calculate various thermody-
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namic parameters of the snow and sea ice (e.g., specific heat) are presented. Next, a

one-dimensional heat transfer model is introduced that relates the transfer of energy

through snow-covered sea ice profile, to the growth or melt of each layer. Afterwords,

the thermodynamics of the snow-covered sea ice is put in perspective with respect to

its geophysics and dielectric properties. Finally, the concept of the electromagnetic in-

verse scattering associated with the snow-covered sea ice is introduced in Section 2.5.

This includes the description of the electromagnetic forward and inverse solvers. At

the end, the topics of parameterization and use of prior information to tackle the ill-

posedness associated with the snow-covered sea ice electromagnetic inverse scattering

are briefly explained.

2.2 Snow-Covered Sea Ice Geophysics

This section investigates the geophysics of snow and ice in the Arctic. First, in Sec-

tion 2.2.1, the ice formation process and geophysics are explained. This topic is then

followed by a description of the snow geophysics and metamorphism in Section 2.2.2.

It should be noted that the focus of the research presented in this thesis is on snow-

covered sea ice formed under calm conditions.

2.2.1 Sea Ice

Sea Ice Formation

Sea ice is a product of cooling saline ocean water. The initial formation of sea ice

is influenced by presence of snow fall and water turbulence due to wind or wave, as

shown in Figure 2.1. The general sea ice formation process under calm conditions is

explained as follows. (This explanation is based on [10].) When the open water surface

temperature drops down to the freezing point (−1.8 ◦C for 32 ppt salinity), minute disks
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Fig. 2.1: Ice growth evolution under various conditions. This figure is based on [9].

of ice form on the surface of the water. As the heat is transferred upwards towards

the surface, a layer of randomly oriented needles and platelets, referred to as frazil ice,

begins to accumulate. If there is a snow fall event at this stage, a mixture of ice and

snow will develop on surface, referred to as slush. Over time, the frazil ice develops

into grease ice and then solidifies into a thin elastic layer, referred to as nilas ice. From

this point on, the sea ice grows from the bottom of the ice (i.e., congelation growth)

into new ice. During the cold season, ice growth continues in the form of a columnar

structure to reach to the so-called first year ice (FYI). If this ice can survive the melt

of the next warm season, it will be referred to as multi year ice (MYI).
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Brine and Salinity

As sea water solidifies into ice, its salt content is ejected into pockets within the formed

ice. These inclusions, referred to as brine pockets, are in liquid or solid form depending

on the ice temperature. As the ice grows, the brine moves upwards and downwards and

forms channels within the ice, resulting in a C-shaped salinity structure for different

ice types having various thickness values. The upward expulsion of brine is primarily

due to pressure buildup in the brine pockets caused by ice growth. This forces the

brine upwards through microscopic cracks within the ice. This upward move leads to

(i) formations of millimeter crystal structures on the ice surface, referred to as frost-

flowers in lack of a snow layer [11,12], or (ii) a saline layer at the bottom of snow in the

case of snow-covered sea ice [13] (1). The downward migration of brine is primarily due

to gravity drainage. This process involves the movement of brine due to differences in

density between the brine in the ice and that in the seawater. This occurs due to the

development of a buoyancy driven convection system. This drainage of brine releases

a considerable amount of salt into the ocean. Another mechanism which contributes

towards the downward movement of brine is the solute diffusion. This occurs since

brine tends to move towards the warmer end of the ice (i.e., the ice-ocean interface).

Finally, it should be mentioned that there might be other inclusions in the ice (e.g., air

bubbles). In the sea ice type of interest (i.e., young and first year sea ice), the volume

fractions of these other inclusions are negligible compared to that of brine [14].

2.2.2 Snow

Snow is the ice crystals formed in the atmosphere. But the snow layer on the ice is a

mixture of single or clusters of crystals with its pores initially filled with air. There

could also be water vapor and liquid water in this layer if the snow is wet. Finally,

(1) It should be noted that we can have both brine skim and frost flowers.
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the snow could even be brine-wetted at its interface with ice, as explained above. The

snow density can vary significantly, as reported in [15]. Snow plays a major role in

climate models for the Arctic. This is due to two major properties of the snow. First,

the albedo (i.e., the fraction of solar shortwave radiation reflected from the surface)

of snow is higher than that of ice [16]. Second, the thermal conductivity of snow is

smaller than ice [17]. Therefore, the snow layer is an effective thermal blanket for the

ice beneath which slows both its growth and melt rate.

As the snow falls on the ice, it goes through a metamorphism process. Snow meta-

morphism is the change of the structure and texture of snow grains due to a varying

temperature, migration of liquid water and/or water vapors, and gravitational pressure

within the snow cover. There are two major metamorphism processes [18]. First is the

equi-temperature metamorphism (i.e., equilibrium state). This happens in isothermal

and deep snowpacks. During this process, the snow crystals go through an erosion pe-

riod and end up as well-rounded snow grains. Snow grains also develop bonds (known

as necks) with each other. The result of this metamorphism is a packed layer with

higher density. Second is the temperature gradient (TG) metamorphism. This occurs

when there is a large temperature change within the snowpack. This process is also re-

ferred to as kinetic growth in which grains become faceted and the bonds are poor. As

water vapor is deposited on the snow grains, they grow larger, and eventually form the

large crystals referred to as depth hoars. Depth hoars normally form at the snow-ice

interface, where the vapor pressure gradient is strong and persistent. Other metamor-

phism are the gravitational (i.e., overburden) and freeze-melt (i.e., freeze-thaw cycles)

metamorphism, both resulting in a denser snowpack.

Dry and Wet Snow

To simplify the study of snow properties and its metamorphism, the snow is catego-

rized into two types here. These are dry snow and wet snow; i.e., snow with less and
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more than 2% liquid water content respectively. The metamorphism in dry snow is

mainly governed by temperature gradient [19]. After the snow fall and based on the

daily temperature gradient, the snowpack fluctuates between either well-rounded (i.e.,

equi-temperature metamorphism), or faceted (i.e., temperature gradient metamor-

phism) grains. Snow grains evolve into hoars at the bottom of the snowpack, when the

temperature gradient is large enough. As time goes by, the faceted crystal formation

moves upward since the rounded ice crystals (i.e., vapor sources) are depleted. This

process means that in a typical snowpack, snow-grain size increases with depth while

the density decreases.

Wet snow has a higher grain growth rate compared to dry snow with a similar meta-

morphism [19]. As the water content in the wet snow increases, the grain growth rate

increases as well. For lower liquid contents (i.e., pendular regime)(2), air-filled gaps

among the clusters of ice crystals are reduced, forming larger connected units. For

higher liquid contents (i.e., funicular regime), water freely moves to the bottom of

the snowpack where smaller grains melt and contribute to the formation of large snow

grains. Therefore, the grains cluster together with liquid water bonding them.

2.3 Snow-Covered Sea Ice Dielectric Properties

This section presents the formulas relating the dielectric properties of snow-covered sea

ice to its geophysical properties as described in Section 2.2. To this end, a dielectric

material, or simply a dielectric, is defined in Section 2.3.1, and general formulas to

calculate dielectric properties are cast. Next, Section 2.3.2 presents the parameters in

these formulas for various single-phased materials of interest. Finally, in Sections 2.3.3

and 2.3.4, the dielectric properties of ice and snow are investigated respectively. It

should be noted that the methodology utilized in this thesis to calculate the permit-

(2) The snow pendular regime spans from dry snow up to a water saturation level of roughly 8% of the snow
mixture [20].
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tivity of the snow and sea ice is presented in Appendix B.

2.3.1 Permittivity General Formulation

A dielectric is a material whose dominant charges are bound (not free to move); when

an external field is applied to it, its charges shift slightly in place (i.e., polarization) [21].

If the dielectric is considered to be lossy, its dielectric value (i.e., permittivty) will be

a complex number(3). In what follows, I initially attempt to describe the relations that

outlines the frequency-dependence of permittivity for a single-phase material. To this

end, let’s define the electric polarization vector, denoted by P , as the dipole moment

per unit volume. When an electric field is applied to a dielectric with no dipole to

dipole interactions (i.e., Debye model), the time-dependency of the polarization can

be characterized as [22]
dP (t)

dt
=

1

τ
[−P (t)] (2.1)

In (2.1), Ps is the static value of P , and τ is the relaxation time (momentary delay to

transfer to equilibrium). In the phasor domain(4), we can solve for P (ω) as

P (ω) =
Ps

1− jωτ
(2.2)

Furthermore, for the electric flux density, denoted by D, we have [22]

D(ω) = P (ω) + Pres(ω) +Dvac(ω) (2.3)

In (2.3), Pres denotes the resonant part of the polarization and Dvac denotes the

vacuum contribution to D. Using Pres(ω) +Dvac(ω) = ǫ0ǫ∞E(ω), and Ps = ǫ0(ǫs −
(3) Any contributions due to a finite conductivity of the dielectric can be incorporated into an effective
complex permittivity.
(4) We assume a time-dependency of e−jωt.
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ǫ∞)E(ω) [22] along with (2.2) and (2.3) we arrive at

D(ω) =
ǫ0(ǫs − ǫ∞)

1− jωτ
E(ω) + ǫ0ǫ∞E(ω) (2.4)

By substituting D = ǫ0ǫrE in (2.4), the Debye equation for frequency dependent

permittivity is found to be

ǫr(ω) = ǫ∞ +
ǫs − ǫ∞
1− jωτ

(2.5)

It should be noted that (2.5) is now consistent with the definition of ǫ∞ and ǫs as

lim
ω→∞

ǫr(ω) = ǫ∞ (2.6)

lim
ω→0

ǫr(ω) = ǫs (2.7)

Finally, the presence of a finite conductivity, σ, can be incorporated into the complex

permittivity by using the concept of effective complex permittivity which combines the

effect of σ and ǫr into the effective complex permittivity, ǫr,eff , as follows [23,24]
(5)

ǫr,eff (ω) = ǫ∞ +
ǫs − ǫ∞
1− jωτ

+
jσ

ωǫ◦
(2.8)

If the dielectric material under investigation is a mixture of a number of dielectrics

(e.g., dry snow that is pure ice crystals in an air background) its macroscopic effective

permittivity can be defined as(6) [25]

<D >= ǫeff < E > (2.9)

The effective permittivity can be calculated through various homogenization (mixing

formula) methods. One such popular method in the remote sensing community is the

(5) ∇×H(ω) = −jωD(ω) + σE(ω) = −jωǫ0

ǫr,eff (ω)

︷ ︸︸ ︷

(ǫr(ω) +
jσ

ωǫ0
)E(ω).

(6) The averaging is performed through < f(r) >= 1
V

∫

V
f(r)dV .
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Polder-Van Santen(7). To this end, Polder introduces the following procedure for a

mixture dielectric consisting of a host medium and inclusions. Herein, we assume a

two-phase mixture in which we have a host medium with one type of inclusions [26].

<D >= ǫeff < E >= ǫh < E > + < P >= ǫh < E > +vi(ǫi − ǫh)
1

Vi

∫

Vi

EdV

(2.10)

In (2.10), the subscripts h and i refer to the host and inclusion respectively. Also,

vi denotes the volume fraction of the inclusion, and Vi is the actual volume of the

inclusions. For example, if the inclusions are random identical ellipsoids, vi is related

to the physical dimension of the inclusions by

vi =
4

3
πaobocoN (2.11)

In (2.11), N is the number of inclusions per meter cube. Also ao, bo, and co are half of

the ellipsoid dimensions along its major a, b, and c axes. Next, Polder assumes that

the mean field within a particle, denoted by Em, is linearly related to the homogenous

field away from the particle (i.e., < E >)(8) via a tensor α. The mean value of the

field in the interior of a randomly oriented ellipsoidal particles will then be [26]

1

Vi

∫

Vi

EdV =
1

3
(αaa + αbb + αcc) < E > (2.12)

In (2.12), u = a, b, c are the axes of the ellipsoid, and αuu relates to the polarisability

of the ellipsoid in u direction when an external field in u direction is applied. Utilizing

(2.12) and (2.10), we have [26]

ǫeff = ǫh + vi(ǫi − ǫh)
1

3
(αaa + αbb + αcc) (2.13)

(7) This method is sometimes referred to as the Bruggeman or de Loor method [25].
(8) This homogeneous field is associated with the effective permittivity of the mixture.
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In an external field of < E(u) >(9), the mean internal field in an ellipsoid will be [26]

E
(u)
int =

1

1 + ( ǫi
ǫeff

− 1)Au

< E(u) >= αuu < E(u) > (2.14)

In (2.14), Au is the depolarization factor of the ellipsoid along its u axis defined as [26]

Au =
aoboco

2

∫ ∞

0

dh

(h+ u2)
√

(h+ a2o)(h+ b2o)(h+ c2o)
(2.15)

As an example, Au = 1/3 in the case of spherical inclusions (i.e., ao = bo = co). Finally,

utilizing (2.13) and (2.14), the effective permittivity of the mixture is calculated as [26]

ǫeff = ǫh +
vi
3
(ǫi − ǫh)

∑

u=a,b,c

[

1

1 + Au(
ǫi

ǫeff
− 1)

]

. (2.16)

Finally, de Loor suggests that for the low values associated with the inclusion’s volume

fraction (i.e., vi ≤ 0.1), the ǫeff on the right hand side of (2.16) can be replaced by

the permittivity of the host medium(10) [27].

2.3.2 Single-Phase Materials

Below, the components of (2.8) for various single-phase materials of interest are pre-

sented to calculate their permittivity values.

Pure Water

For pure water, the conductivity is taken to be zero. The rest of Debye parameters are

(9) < E
(u) > denotes < E > along the u direction.

(10) Conceptually, in a series expansion of ǫeff , the surrounding permittivity of the inclusions can be approx-
imated by ǫh as the first term of the series for low values of vi. But for large values of vi, the interactions
between inclusions may not be ignored. This interaction is partly accounted for by considering the inclusions
being surrounded by ǫeff rather than ǫh [26, 27].
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as follows [28]. For the static permittivity of pure water, denoted by ǫws , we have(11)

ǫws (T ) = 88.045− 0.4147T + 6.295× 10−4T 2 + 1.075× 10−5T 3 (2.17)

In (2.17), T is the temperature (and also throughout this thesis). The relaxation time

is

2πτw (T ) =1.1109× 10−10 − 3.824× 10−12T+

6.938× 10−14T 2 − 5.09610−6T 3
(2.18)

The permittivity of pure water in high frequency is equal to 4.9. Finally, it should be

noted that Debye parameters are temperature dependent.

Pure Ice

The relaxation frequency, defined as fr = 1/2πτ , of pure ice is much lower than

liquid water. Therefore, some consider pure ice to be a non-dispersive material at

microwave regime with a slight temperature dependance. In [23], an empirical equation

is introduced which describes the temperature dependency of the pure ice permittivity,

denoted by ǫpi, as

ǫpi (T ) = 3.1884 + 0.00091T. (2.19)

The above formula only presents the real part of the relative complex permittivity.

The imaginary part of this model is presented in Appendix B; see (B.2). This complex

permittivity model is utilized to calculate the pure ice permittivity in this thesis.

Liquid Brine

Although liquid brine is a mixture of pure water and various salts (e.g., Na2S04,

NaCl, with NaCl being the principle component), it is commonly considered to be

(11) Throughout this thesis, the temperature denoted by T , is in ◦C, the density denoted by ρ, is in g/cm3,
and the salinity denoted by S, is in ppt, unless mentioned specifically to be otherwise.
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a single-phase material at microwave frequencies [27–29]. Therefore, its permittivity

is calculated through the Debye formula rather than the mixing formulas. The Debye

parameters associated with liquid brine are introduced as follows [29]. The static

permittivity is equal to

ǫbs (T ) =
939.66− 19.068T

10.737− T
(2.20)

Also, for high frequency (optical) permittivity we have

ǫb∞ (T ) =
82.79 + 8.19T 2

15.68 + T 2
. (2.21)

Furthermore, the relaxation time is equal to

2πτb◦ (T ) = 0.10990 + 0.13603× 10−2T

+ 0.20894× 10−3T 2 + 0.28167× 10−5T 3
(2.22)

And finally, for conductivity

σb (T ) =







−T exp(0.5193 + 0.08755T ), T ≥ −22.9 ◦C

−T exp(1.0334 + 0.11T ), T < −22.9 ◦C

(2.23)

where exp denotes the natural exponential function. Finally, it should be noted that

a similar method to calculate the brine permittivity is utilized in this thesis, as intro-

duced in Appendix B.

2.3.3 Sea Ice

The sea ice of our interest consists of a pure ice background with brine pockets as the

most important inclusions, as previously discussed in Section 2.2. Therefore, sea ice can

be considered a two-phase medium and its permittivity can be calculated using (2.16).

To determine if the sea ice under study is a tenuous material or not, the brine volume
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fraction needs to be calculated [27,30] as

Vb =
Ssi × ρsi
Sb × ρb

(2.24)

In (2.24), S is the salinity [ppt] and ρ is the density [g/cm3] with the subscripts si

and b denoting the sea ice and brine respectively. Moreover, an empirical equation for

brine volume fraction in sea ice can be written as [31]

Vb =







10−3Ssi

(−52.56
T

− 2.28
)
, −2.06 < T ≤ −0.5 ◦C

10−3Ssi

(−45.917
T

+ 0.930
)
, −8.2 < T ≤ −2.06 ◦C

10−3Ssi

(−43.795
T

+ 1.189
)
, −22.9 < T ≤ −8.2 ◦C

(2.25)

Herein, we consider (2.25) for Vb calculation.

The sea ice permittivity, ǫsi, can now be calculated based on the Polder-Van Santen/de

Loor formulation presented above. Therefore, ǫsi will be [27]

ǫsi =







ǫpi +
3Vbǫpi(ǫb−ǫpi)

ǫb+2ǫpi
, Vb ≤ 0.1

ǫpi +
3Vbǫsi(ǫb−ǫpi)

ǫb+2ǫsi
, Vb > 0.1

(2.26)

2.3.4 Snow

Snowpack is considered to be a mixture of air and ice crystals. The addition of water

changes the status of snow from dry to wet. Therefore, the permittivity of snowpack

can be determined using mixture formulas. Although, it should be mentioned that due

to the metamorphism processes discussed in Section 2.2, empirical equations might

return more accurate results in some cases.

Dry Snow
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Dry snow is considered to be a mixture of pure ice and air gaps. The permittivity of

dry snow, ǫds, as a two-phase medium is calculated by (the subscript pi denotes pure

ice)

ǫds = 1 +
3Vpiǫds (ǫpi − 1)

ǫpi + 2ǫds
(2.27)

Since the dielectric of pure ice is only slightly temperature dependent, the dry snow

dielectric is mainly dependent on the dry snow density (determining the volume frac-

tion of pure ice within the snowpack by Vpi = ρds/0.916 [32]). It is also common to

calculate the dry snow permittivity based on empirical experiments as done in [32,33].

Wet Snow

Wet snow can be considered as dry snow with water inclusions [32]. Therefore, the

wet snow permittivity, ǫws, can be determined by a two-phase mixture equation, as

ǫws = ǫds +
mvǫws

3
(ǫw − ǫds)

∑

u=a,b,c

[ǫws + (ǫw − ǫws)Au]
−1 (2.28)

In (2.28), mv is the water content volume fraction which should be measured indepen-

dently. Furthermore, Au has been defined in (2.15). There are also empirical equations

for wet snow permittivity calculation as reported in [34].

Brine-Wetted Dry Snow

As the snowpack goes through the metamorphism process, brine might be ejected into

the bottom of the snowpack(12). This results in a brine-wetted snow, as explained in

Section 2.2. Drinkwater and et al. in [35] suggests the following procedure to calculate

the permittivity of brine-wetted dry snow, ǫbds. First, the true volume fraction of brine

(12) Moreover, airborne deposition of sea salt can also lead to a saline surface.
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within the snowpack, vb, is calculated as

vb =
Vbρb

(1− Vb) ρpi + Vbρb

ρs
ρb

(2.29)

Then using the mixture formula, ǫbds will be

ǫbds = Xvb
ǫb − ǫds

1 +
(

ǫb
ǫds

− 1
)

A◦
(2.30)

In (2.30), A◦ is the dominant depolarization factor, and X is a coupling factor. For

isotropically oriented oblate spheroids, the coupling factor is 2/3. In the pendular

regime, depolarization factor is about 0.053. Finally, typical values for sea ice and

brine-wetted dry snow for various temperature and salinity combinations versus fre-

quency is depicted in Figure 2.2.

2.4 Snow-Covered Sea Ice Thermodynamics

Snow-covered sea ice thermodynamics investigates the flow of energy through the snow

and ice [10]. Therefore, thermodynamics governs the melt and growth process of snow-

covered sea ice. In addition to the physical structure of the profile and its density, four

thermal parameters, namely, thermal diffusivity κ in m2.s−1, specific heat capacity CP

in J.Kg−1.C−1, latent heat LT in J.Kg−1, and thermal conductivity kT inW.m−1.C−1,

determine the thermodynamic characteristics of the snow and ice. These parameters

are defined in Section 2.4.1. Section 2.4.2 describes the heat transfer and energy

balance applied to the snow-covered sea ice. Finally in Section 2.4.3, the relation of

thermodynamics to sea ice geophysics and dielectric properties is explained.(13)

(13) As a reminder, throughout this thesis, the temperature is in ◦C, the density is in g/cm3, and the salinity
is in ppt, unless mentioned specifically to be otherwise.
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Fig. 2.2: Typical values for (a) real part of sea ice permittivity, (b) imaginary part of sea ice per-
mittivity, (c) real part of brine-wetted dry snow permittivity, and (d) imaginary part of
brine-wetted dry snow permittivity. (T represents the temperature in ◦C and S denotes the
salinity in ppt.) PVS/de Loor method is utilized for mixture dielectric formula in this figure.

2.4.1 Thermodynamic Parameters

Specific heat capacity, or thermal capacity, is the ratio of the heat added to an object

to the resulting change in its temperature. The specific heat of snow or ice depends

on (i) specific heat of their components, and (ii) the amount of water that changes

state during a temperature change. For example, the specific heat of sea ice, CP
si , is

calculated by the following approximate equation [36]

CP
si = CP

pi + γ
S

MT 2
(2.31)
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In (2.31), S is the salinity, T is the temperature, and CP
pi is the specific heat of pure

ice. We also have γ = 1.72 × 107 J.K.m−3.ppt−1, and M = 900 kg.m−3. The brine

inclusions in sea ice is represented in (2.31) through the salinity. For dry snow specific

heat, CP
ds, there is only a temperature dependence as shown in [37],

CP
ds = 92.88 + 7.364T 2

k . (2.32)

In (2.32), Tk is the temperature in K.

Latent heat is the heat released or absorbed per unit mass during phase change. This

allows us to calculate the amount of energy when snow and ice form or melt. For

instance, the latent heat of sea ice can be calculated as [38]

LT
si = 333394− 2113T − 114.2S + 18040

S

T
(2.33)

The difficulty with latent heat modeling arises when a layer contains more than one

phase; e.g., having both solid and liquid such as a snowpack with liquid water and ice

crystals.

Thermal conductivity is the ability of a material to conduct heat. In the case of snow

and ice, this parameter may be expressed based on the components of the snow and

ice and their thermal conductivity, shape, and arrangement. In the case of sea ice, the

thermal conductivity may be formulated as [39]

kTsi = kTpi + β
S

T
(2.34)

In (2.34), β is equal to 0.13W.m−1. It should be noticed that the thermal conductivity

has a direct relation to salinity and an inverse one with temperature. A more complex

formula which takes into account the effect of brine and air bubbles can be found

in [38]. In the case of snow, an empirical formula is presented in [40] that relates the
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thermal conductivity of dry snow to its density and temperature as

kTds = 2.845× 10−6ρ2ds + 2.7× 10−4 × 2(Tds−233)/5 (2.35)

In (2.35), Tds is the temperature inK. Finally, it should be mentioned that the thermal

conductivity of snow, despite a large variance, is on average seven times smaller than

that of the ice [17]. Therefore, the snowpack can effectively act as a thermal insulator

for the ice underneath.

Thermal diffusivity is the ability of heat conduction through a medium relative to

its ability to store thermal energy as an indicator of heat conduction rate. Thermal

diffusivity is therefore defined as

κ , kT/ρCP (2.36)

It can be seen from (2.36) that if snow-covered sea ice becomes thermally more con-

ductive, the energy conduction rate increases. But if the temperature increases, this

rate will be reduced.

2.4.2 Heat Transfer and Energy Balance

Measurement of major Arctic system parameters such as the snow mass balance (i.e.,

the mass difference between deposited and melted snow) and ice extent (i.e., the area

of open water covered with sea ice) over time is of great modeling significance. Since

the melt and growth of sea ice is temperature dependent, retrieval of the temperature

within the snow-covered sea ice profile will assist us in better modeling of the Arctic

system [17]. One way to retrieve the temperature of the snow-covered sea ice is to

use the heat equation which describes the distribution of heat (i.e., variation in tem-

perature) within the profile over time. If we consider the snow-covered sea ice to be
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Fig. 2.3: Schematic of one dimensional heat transfer, surface energy balance, and boundary conditions.
The air-snow interface is at z = 0.

homogenous within each layer of snow and ice, the three dimensional heat equation

will be reduced to a one-dimensional heat diffusion equation as [41]

ρCP ∂T

∂t
=

∂

∂z

(

kT
∂T

∂z
± I◦

)

(2.37)

whose schematic is depicted in Figure 2.3. In (2.37), t is the time, z is the profile

depth, and I◦ is the internal heating due to an external source (e.g., from penetrated

solar energy flux). To solve this differential equation for both snow and ice layer,

the boundary conditions should be satisfied. There are three boundaries, namely air-

snow, snow-ice, and ice-ocean. For the air-snow interface, surface energy balance (i.e.,

the first law of thermodynamics at the profile’s surface) states that the summation

of incoming and outgoing energy fluxes must be zero for temperatures below freezing

as(14) [41]

(1− α)F r − I◦ + FL − FEL + F s + F l + F c = 0 (2.38)

(14) For above freezing temperatures, there will be an imbalance of heat fluxes that causes the snow to melt.
This melting is therefore represented by the right hand side of (2.38) to be equal to −LT

s
(dhs+dhi)

dt
at z = 0,

where LT
s , hs, and hi are the snow latent heat, snow thickness, and sea ice thickness respectively.
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In (2.38), positive and negative signs denote incoming and outgoing heat flux densi-

ties(15). Furthermore, in (2.38), fluxes are defined as follows [10]

• F r is the incoming short-wave radiation (i.e., higher frequency) of the sun on the

snow surface after traveling through the atmosphere.

• FL is the incoming long-wave radiation (i.e., lower frequency) due to the atmo-

sphere and cloud radiation warmed up by the solar radiation.

• FEL is the outgoing long-wave radiation of the profile’s surface. This is calculated

through the Stefan-Boltzmann law of radiation that describes the power radiated

from a gray body in terms of its temperature as

FEL = eLσT
4
k (2.39)

In (2.39), Tk is the surface temperature in K. Also, σ is the Stefan-Boltzmann

constant, and eL is the surface emissivity. For a perfect black body, eL = 1. The

emissivity is close to unity for snow, and is between 0.66 and 0.99 for sea ice [10].

• F s is the sensible heat flux that is the heat transfer between the surface of the

profile and air through conduction. If the surface is warmer than air, F s is

upwards and negative and vice versa.

• F l is the latent heat flux to the air that is due to sublimation (i.e., solid snow

grains turn into gas without going through a liquid stage).

• F c is the heat flux conducted through the body of snow (upwards or downwards,

depending on the profile’s temperature).

• α denotes the surface albedo, defined as the fraction of the reflected radiation

(15) Heat flux density is the rate of heat energy transfer through a given surface per unit area per unit time.
Therefore, is has a unit of W.m−2.
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from the surface to the incident radiation on it(16).

For the snow-ice interface, we need to consider the conducted heat through this bound-

ary that leads to a Neumann boundary condition as [10, 41]

kTs
∂Ts
∂z

= kTi
∂Ti
∂z

. (2.40)

Finally, at the ice-ocean interface, the difference between conducted heat from the ice

and the ocean heat flux, Fw, results in the melting/freezing rate of the snow-covered

sea ice(17) denoted by Wm/f , as [10, 41]

Fw − kTi
∂Ti
∂z

= LT
i W

m/f . (2.41)

Knowing these three boundary conditions, the differential equation can be solved to

obtain the temperature profile variations.

2.4.3 Thermodynamics in Relation to Sea Ice Geophysics and Dielectric

In Section 2.2, the snow-covered sea ice geophysics was discussed. At different times of

the year, the snow-covered sea ice goes through different stages of growth or melt and

shows different characteristics. Most notably, three parameters, namely, temperature,

salinity, and density profiles, change during snow-covered sea ice evolution. Also, from

Section 2.3, it can be concluded that the complex permittivity of the snow and sea

ice are primarily based on these three parameters. Moreover, in the same section, it

was shown that the thermodynamic parameters of specific heat capacity, latent heat,

and thermal conductivity, are also dependent on temperature, salinity, and density.

Therefore, a change in these three latter parameters of snow-covered sea ice will affect

(16) For example, the new snow, bare first year sea ice, and open water albedo are approximately 0.87, 0.52,
and 0.06 respectively [10].
(17) That is, −LT

si
(dhs+dhi)

dt
at z = hs + hi.
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Fig. 2.4: Seasonal evolution of the normalized radar cross section data with vertical-sent vertical-
receive polarization, denoted by σV V , for the first-year sea ice measured at 5.3 GHz, based
on [42].

both the dielectric and thermodynamics of the profile. To track these changes for

first-year sea ice, each stage of the profile’s evolution is studied separately as follows.

2.4.3.1 Freeze-Up

The first stage is the freeze-up, happening after the summer and before the winter. As

the temperature drops, the sea ice formation begins. As the sea ice grows, more brine

is ejected out of the sea ice and therefore, its bulk salinity decreases(18). Lower salinity

then decreases the real and imaginary parts of the complex permittivity. On the other

hand, as we progress towards the winter, the profile’s temperature decreases. It is also

shown that the brine volume fraction decreases as the temperature decreases. Since the

permittivity is directly related to the brine volume fraction, the profile’s dielectric value

(both real and imaginary parts of the complex permittivity) will also decrease. In sum-

mary, the average dielectric decreases as we progress during the freeze-up. Moreover,

as temperature decreases, both the density and the specific heat capacity decrease. In

addition, thermal conductivity tends to decrease with temperature decrease and tends

to increase with salinity reduction. Since both temperature and salinity decrease at

(18) It should be noted that, there is often a highly saline brine skim at the upper interface. This condition
might continue to exist until the spring melt.
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this stage, the prediction of thermal conductivity changes becomes difficult. The brine

pockets also act as temperature capacitors, releasing and absorbing the latent heat.

This further complicates the thermodynamic processes. Finally, frost flowers and brine

skim also might appear at this stage of sea ice growth. These structures are highly

saline, and therefore, increase the overall permittivity. It should be noted that the

frost flowers are also insulators and reflect the solar radiation, thus, affecting the heat

transfer.

2.4.3.2 Winter

Next, we move to the winter stage during which the sea ice growth continues with the

dropping temperature. The reduction in salinity and temperature will further decrease

the permittivity. Since the sea ice salinity reduction in winter has a considerably slower

rate compared to the freeze up stage, the reduction rate in the permittivity will be

slower as compared to the previous stage. The shortwave flux is at its lowest during this

season and the temperature gradient within the profile is large. Winter is also marked

by snow deposition on the ice layer. Storms often are associated with incursions of

warm air and high winds that heat and pack the surface. Such periodic phenomena

give rise to crusts on the snow, which often get buried. Early in the winter, the snow

is at the beginning of its metamorphism process. It has a low salinity and the grains

are not yet connected to each other. As a result, it has a low permittivity. The

snow has a low thermal conductivity which results in a strong temperature gradient

in the snowpack but a slightly lower one in the sea ice. Moreover, the snow albedo

is considerably higher than sea ice which will significantly changes the surface energy

balance. Therefore, the growth rate of ice and the thermodynamic processes are slowed

down, and thus, the profile becomes more stable. The bulk density of the profile will

also stay almost unchanged for most of the winter.
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2.4.3.3 Melt-Period

The last stage is the melt period. The changes during this period are fast-paced

and therefore, the melt period is divided into three sections: early melt, melt onset,

and advanced melt. Starting with early melt, the shortwave radiation increases and

affects the surface energy balance, resulting in temperature increase. The temperature

increase of the profile is also due to a warmer climate and ocean currents. As a result

of a high temperature gradient, the snow metamorphism speeds up and larger grains

are formed within the snowpack. Also, the water content in the snowpack increases

which increases the dielectric value. Moreover, the basal layer formation speeds up

at the bottom of the snowpack with larger snow grains (lower densities) and higher

salinities. Next, during the melt onset, the surface albedo of the snow will start to

decrease further. The presence of clouds will also increase the longwave radiation which

will further increase the temperature of the snowpack. Also, as the brine is further

rejected from the profile, the dielectric value decreases. This reduction is not significant

since the increase in liquid water present in the profile increases the dielectric value.

This water is either due to rain or the melting of the snow. It can easily flow down

to the the base of the snowpack and cause a slushy layer. Some of this water may

freeze up during the night and create ice lenses. Later during the advanced melt, the

melted snow on the snow creates puddles which will enlarge and create melt ponds.

The excess water will go through the brine drainage channels and will flush out the

remained brine within the sea ice eventually. This reduces the sea ice salinity further.

The snow-covered sea ice will melt away completely later in summer in the case of a

first year sea ice.

In summary, during the freeze-up and melt period, the geophysical and thermodynamic

parameters change rapidly, thus, increasing the dielectric values. During the winter, on

the other hand, the geophysical parameters are more stabilized and the thermodynamic
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processes are slowed down. Dielectric values at this stage are stable but lower than

those of both freeze-up and melt period. As a final note, it is interesting to follow

the temporal change in the microwave back-scattering versus the snow-covered sea ice

evolution as shown in [42], see Figure 2.4. Since the microwave back-scatterings are

affected by the dielectric profile, the above discussion helps us understand the temporal

change in micorowave back-scattering. Generally, microwave back-scattering increases

as the dielectric values increase. It should also be noted that the microwave signature of

the snow-covered sea ice is also dependent on the roughness of the profile. The rougher

surfaces (e.g., due to windy conditions) increase the monostatic back-scattering values.

2.5 Electromagnetic Inverse Scattering

This Section investigates the electromagnetic inverse scattering. To this end, the defi-

nition of inverse problems and general approaches to solve these problems are presented

in Section 2.5.1. Next, Sections 2.5.2 and 2.5.3 describe the forward and inverse solvers

respectively, as two main components of an inversion algorithm.

2.5.1 Inverse Problem and Inversion

Problems can be categorized into forward and inverse problems. When an input is ap-

plied to a physical system, a response is created based on the system’s characteristics.

A forward problem deals with the prediction of the system’s response with the knowl-

edge of its characteristics and input. On the other hand, an inverse problem deals

with the prediction of system’s characteristics or input when provided with the sys-

tem’s response. Broadly speaking, electromagnetic inverse problems can be classified

into two categories: electromagnetic inverse source and electromagnetic inverse scatter-

ing problems. In electromagnetic inverse source problems, the unknown to be found is
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the current distribution (e.g., current distribution of a radiating element) that creates

electromagnetic fields. In the electromagnetic inverse source problem, the response of

the system (resulting electromagnetic fields) is known from measurements. In addition,

the system’s characteristics (e.g., Green’s function of free space) is also known. There-

fore, the electromagnetic inverse source problem may then be formulated as finding

the input to the system (current distribution) from the known system’s response and

characteristics. On the other hand, in the electromagnetic inverse scattering problem,

we deal with an unknown medium. This unknown medium is interrogated by known

incident electromagnetic fields (input to the system). The interaction of these known

incident electromagnetic fields with this unknown medium results in scattered electro-

magnetic fields. These scattered electromagnetic fields, which are the response of the

system, are then measured. The electromagnetic inverse scattering problem can then

be formulated as finding the properties of this unknown medium (system’s character-

istics) from the knowledge of the system’s input and response. The electromagnetic

inverse scattering problem as applied to snow-covered sea ice is considered in this the-

sis. Therefore, within this thesis, we may use the electromagnetic inverse scattering

problem and the electromagnetic inverse problem interchangeably.

As noted above, the inverse problem retrieves the parameters of a target (a medium)

through utilizing the measured response. There are at least two approaches to retrieve

the parameters of interest [43], which are to be explained below.

The first approach is empirical-based which does not depend on electromagnetic model-

ing. To explain the first approach, consider a set of N different measurements, denoted

by D as

D = {(xi, yi) |i = 1, 2, .., N} (2.42)

In (2.42), xi and yi are the measured data, and the parameter of interest, respectively,

at the ith measurement. For example, xi can be the electromagnetic measured data
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corresponding to an ice thickness of yi. In this approach, the goal is to utilize D to find

an appropriate relation f between the measured data and the parameter of interest.

For example, finding an f that minimizes the following norm

∥
∥y − f (x)

∥
∥ (2.43)

where y and x denote the vectorized form of yi and xi respectively. There are different

techniques to achieve this goal. One technique is the parametric regression. In this

technique, it is assumed that the relation between x and y can be characterized in a

parametric way (e.g., with a multiple linear regression). In this statistical approach,

it is essential to choose the right expression and have a large data set to minimize the

fitting error. In summary, this technique requires a large data set containing different

xi and yi measurements so as to find an appropriate relation between xi and yi. Once

this relation is found, the parameter of interest can be inverted for a given measured

data through substitution into the equation.

Next technique within the first empirical-based approach is the non-parametric regres-

sion in which no assumption is made on the relation between x and y. One example

of this technique is the use of neural network as in [44]. The training strategy plays a

major role in successful retrieval of this technique. Similar to the previous technique,

a large data set is required to train the algorithm properly.

A majority of studies on parameter (e.g., sea ice thickness, temperature, etc.) or

characteristics (e.g., sea ice type, extent, concentration, etc.) retrieval of snow and

sea ice have been carried out using this empirical-based approach. Some of the im-

portant research studies within this framework are explained below. In [45], the sea

ice concentration is retrieved through a linear interpolation of brightness temperature.

In [46], the sea ice thickness is shown to be related to the radar signature of the profile

through a linear regression. A similar work in [47] reported a significant logarithm
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correlation between the sea ice thickness and the cross-polarized L-band radar data.

Also in [48], the co-polarization to cross-polarization ratio was shown to have a lin-

ear relation with multi-year sea ice thickness. In [49], sea ice temperature is retrieved

through an interpolation between the observed brightness temperature at 6.5 GHz, sea

ice concentration, and sea ice emissivity. Furthermore, in [46], the type of sea ice is dis-

tinguished based on the back-scattering value thresholds defined for various ice types.

Also neural networks have also shown to be a capable tool in sea ice classification.

One example is in [50] where the algorithm could successfully distinguish different ice

types using radarsat-1 ScanSAR data from the Baltic sea. For snow layer retrieval,

the thickness has been retrieved utilizing a snow radar in [51]. The retrieval is based

on the signal power thresholds and peaks defined based on the received time-domain

scattered signal. A similar work for thickness retrieval is also presented in [52]. More

recently, a novel method has been proposed in [53] that determines the fresh snow

thickness through co-polarization phase difference of X-band SAR. Finally in [54], the

snow-water-equivalent (SWE) is retrieved through a linear interpolation of brightness

temperatures at different frequencies.

The second retrieval approach is physical-based which relies on electromagnetic mod-

eling. In this approach, the characteristics of the system are predicted using an elec-

tromagnetic model. The mechanism to solve this inverse problem is formulated by the

utilized electromagnetic inversion algorithm. Broadly speaking, inversion algorithms

can be categorized into linear and nonlinear. Linear inversion algorithms approximates

the physics of wave propagation through linearizing the scatterring problem, and then

solve for the unknown. For example, the Born approximation, which is a famous linear

inversion algorithm, approximates the total field within the scatterer to be equal to

the incident field so as to linearize the scattering problem. The parameters of the

scatterer (e.g., sea ice thickness and dielectric properties) are then to be found from

the measured data by assuming this simplified physics (linearization). As will be seen



2.5 Electromagnetic Inverse Scattering 35

later, as opposed to nonlinear approaches, linear inversion algorithms do not need to

update the unknown parameters iteratively, nor find the new scattered fields. As a

result, no forward solver is needed to be used in conjunction with linear inversion algo-

rithms so as to simulate the scattered field. Consequently, simpler techniques compared

to nonlinear inversion algorithms can be used to solve linearized inversion problems;

e.g., Fourier transformation-based techniques [55]. The linearization approximation

mentioned above can result in low reconstruction accuracy for complex profiles. To al-

leviate this problem, the second category of physical-based retrieval approaches, which

are nonlinear inversion algorithms, can be used.

In contrast to linear inversion algorithms, nonlinear inversion algorithms do not at-

tempt to simplify the physics of wave propagation within the scatterer. That is, they

attempt to converge to the actual wave propagation within the profile in an itera-

tive fashion. During this iterative process, nonlinear inversion algorithms update the

unknown parameters until convergence occurs. One approach to solve the nonlinear

inversion problem is to formulate it through an optimization algorithm. Optimization

algorithms as applied to the electromagnetic inverse scattering problem are iterative

and often require repeated calls to inverse and forward solvers so as to minimize a

cost function [56–58]. (There also exist some iterative inversion algorithms that do not

require explicit calls to a forward solver [59].) At each iteration of the nonlinear inver-

sion algorithm, the inverse solver calculates an estimated profile based on the measured

scattered data and the available estimate for the profile at that iteration. The forward

solver will then calculate the scattered data due to the newly estimated profile.(19) By

iteratively minimizing the data misfit cost function between the measured and simu-

lated data, the inversion algorithm attempts to converge to an estimated profile that

is sufficiently close to the actual one. As noted before, the iterative nature of these re-

construction algorithms is to handle the nonlinearity of the mathematical formulation

(19) Typically, a forward solver calculates the fields inside the domain of interest as well as on the measurement
domain.
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associated with the electromagnetic inverse scattering problem. Finally, it should be

noted that an optimization-based nonlinear electromagnetic inversion algorithm will

be considered in this thesis.

There are very few studies cited in the literature on the electromagnetic inversion of

snow and sea ice. Some of the important studies in this area are described below.

It should be noted that the algorithms utilized in each study are suitable only for a

specific profile and data set. In [56], a review on the earlier inversion algorithms for sea

ice can be found. Most of the early work on sea ice inversion investigate considerably

simplified profiles. These profiles are generally a one-layer medium with flat interfaces.

For example in [60], the profile is simplified into a single sea ice layer with flat interfaces.

Then, the thin saline ice thickness is retrieved using time-series back-scattered data,

considering the penetration depth of electromagnetic waves. In this paper, a combi-

nation of radiative transfer equation and thermodynamic saline ice growth model acts

as the forward solver. Also, the Levenberg-Marquardt scheme is utilized as the inverse

solver. More advanced models are used with a one-layer ice having rough interfaces.

For example in [61], a combined surface and volume scattering model for altimeter

measurements is used to re-track individual waveforms scattered from the ice layer.

Then a weighted least-squares fitting procedure is used to invert the data. Another

example is brought in [62] where a combination of the radiative transfer theory and

the dense medium phase and amplitude correction theory is utilized as the forward

model. This model predicts the radar signature of a single sea ice layer with rough

interfaces. Then, the Levenberg-Marquardt inverse solver scheme is utilized to retrieve

the sea ice thickness. The research on the electromagnetic inversion of snow-covered

sea ice is truly scarce. One such example is brought in [63] where geometric optics

is used as the forward solver to predict the large-scale radar signature of the profile.

Then, an automated steepest descent method, as the inverse solver, minimizes the cost

function to retrieve three parameters: the power reflection coefficient at nadir(20), the

(20) Herein, nadir denotes the direction that is perpendicular to the profile; i.e., 0◦ incidence angle with respect



2.5 Electromagnetic Inverse Scattering 37

root-mean-square surface slope, and the volume scattering albedo. Another example

can be found in [64] where a helicopter-mounted coil induces electromagnetic fields as

flying over snow-covered sea ice. A forward solver then calculates the magnetic field at

the coil, and the thickness is then retrieved through the Levenberg-Marquardt inverse

scheme.

We have now briefly described physical-based electromagnetic nonlinear inversion al-

gorithms. As noted above, such inversion algorithms require the use of two different

solvers: forward and inverse solvers. In what follows, these two solvers will be explained

in more details.

2.5.2 Forward Solver

The role of the forward solver is to solve the forward problem. In our framework, this

translates into calculating the electromagnetic response of the profile, as well as the

field in the profile, when provided with the system’s input (i.e., incident field) and

characteristics (i.e., dielectric profile). Ideally, the response calculated by the forward

solver should be equal to the data measured in practice from the same profile. (We

also note that the forward solver also calculates the fields within the profile.) It is

assumed that the available data to be used in this research is the measured normalized

radar cross section (NRCS) of the profile. Therefore, the forward solver to be utilized

in this research needs to be able to calculate the NRCS so as to be compared with

the measured NRCS. The NRCS data can be collected under different configurations;

i.e., having different incidence angles, receiving angles, frequencies of operation, and

polarizations. To this end, let’s assume a plane wave of frequency f and polarization q

impinges at angles of ψinc = (θinc, ϕinc) on the dielectric profile of interest, denoted by

χ(r), where θ is the elevation angle, ϕ is the azimuth angle. Also, ψ is a placeholder

to the vertical direction.
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for these two angles. Now, if the p-polarized component of the far-field scattered field

is collected from angles of ψscat = (θscat, ϕscat), the resulting NRCS is defined as

σpq (χ(r);ψinc, ψscat, f) ,
1

A

〈

lim
Rr→∞

(

4πR2
r

Sp
s

Sq
i

)〉

(2.44)

for a distributed target of surface A area at a distance of Rr. Also, S
q
i and Sp

s are the

power density illuminating the target at a linear q polarization, and the power density

scattered off the target at a linear p polarization, respectively. The symbol 〈 〉 is the

ensemble average of a large number of independent measurements. The polarization

is assumed to be either horizontal (H) or vertical (V); i.e., p, q ∈ {H,V}. Finally, the

incident electric field having q polarization will be denoted by Eq
inc, and the scattered

field with p polarization will be denoted by Ep
scat.

The scattered field can be calculated through solving the Maxwell equations which

govern the wave’s behavior. Generally, various forward solvers are differentiated from

one another through their approaches towards solving these equations. However, from

the snow-covered sea ice remote sensing perspective, forward solvers can be divided

into the models considering only the surface scattering, and the models that also in-

corporate the effects of volume scatterers. In Section 2.2, it was explained that the

snow-covered sea ice profile is a layered medium with possible inclusions within each

layer. Surface scattering models assign an effective permittivity to each layer, as de-

scribed in Section 2.3, and simulate the scattered field arising from these homogeneous

layers having rough boundaries in between. Volume scattering models do not assign

an effective permittivity to each layer. Instead, they account for the scattering con-

tributions due to inclusions and surface-volume interactions. It should also be noted

that forward models have also different capabilities in handling the profile’s charac-

teristics such as the number of layers, inclusion of rough boundaries, and the volume

scatterers’ properties. Finally, we note that Chapters 3 to 6 of this thesis consider a

surface scattering model; then, in Chapter 7, a volume scattering model is added to
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this surface scattering model.

Some of the surface scattering models applied to geophysical profiles are the geo-

metric optics approximation (GO) [65], the small perturbation theory (SPM) [66],

the boundary perturbation theory (BPT) [67], and the integral equation method

(IEM) [68]. Some volume scattering models are the polarimetric strong fluctuation

theory (SFT) [69] , the dense medium radiative transfer theory (DMRT) [70], and a

model introduced in [71] for scattering from a low-dielectric layer of Rayleigh scat-

terers with irregular boundaries. The disadvantages of volume scattering models are

their limitations on the number of layers, the properties of the inclusions, and the

permittivities of the background layers. Finally, there are numerical full-wave solvers

which result in high precision in calculating the scattered fields, for example finite-

difference and finite-volume time-domain methods [69, 72]. The main disadvantage of

these methods is the high computational expense that makes their incorporation in

inversion algorithms difficult.

2.5.3 Inverse Solver

The role of the electromagnetic inverse solver is to reconstruct the parameters of inter-

est, in our case the dielectric profile denoted by χ. This reconstructed profile should

be as similar as possible to the true profile. This is usually achieved through the

iterative minimization of a misfit cost function, denoted by F(χ), between the mea-

sured and simulated data, as depicted in Figure 2.5. However, this cost function is

ill-posed; thus, its minimization may result in an unstable (oscillatory) solution. As

noted earlier, this ill-posedness indicates that (i) a small change in the measured data

can result in significant changes in the reconstructed dielectric profile (instability), and

(ii) the uniqueness of the solution is not necessarily guaranteed [73,74].(21) Therefore,

(21) As noted in Chapter 1, although a physical solution always exist for our problem, the mathematical
problem (strictly speaking) may not support the existence of the solution. For example, the use of a model
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Fig. 2.5: The nonlinear inversion algorithm scheme.

due to this ill-posedness, the data misfit cost function needs to be regularized, which

help to filter out those components of the measured data that can result in oscilla-

tory solutions. This can be achieved by using several methods such as additive [75],

projection-based [76], or multiplicative regularization methods [77]. For example in

additive regularization, instead of minimizing the data misfit cost function, F(χ), the

regularized cost function, denoted by C(χ), will be minimized as

C(χ) = F(χ) + βL(χ) (2.45)

In (2.45), L(χ) is the regularization cost function, and β ∈ R
+ is the regularization

weight. The regularization parameter β needs to be chosen in such a way that is

not too large to over-regularize, and not too small to under-regularize the problem.

For linear ill-posed problems, there are some methods such as the L-curve [78] and

generalized cross validation [79] techniques to properly determine the regularization

weight. However, to the best of our knowledge, most of the techniques for choosing

the regularization weight for nonlinear ill-posed problems are ad hoc.

Another common method of regularization is projection-based regularization. This

regularization technique projects the solution space into a smaller subspace, and then

that assumes a flat interface with a homogeneous layer for an actual rough layered medium in conjunction
with measured monostatic radar data can result in no solution. In practical cases, the model is chosen to be
close to the actual problem, but of course is still not exact. In such cases, we usually formulate the problem
based on cost function minimization as opposed to solving an exact equation.
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attempts to reconstruct the solution in this subspace. For example, Krylov subspace

and the truncated singular value decomposition regularization schemes fall into this

category [8]. In some other inverse problems such as snow-covered sea ice remote

sensing, the possible ranges of the parameters of interest might be known (e.g., upper

and lower levels for young sea ice real-part permittivity). In such cases, the inverse

solver can attempt to reconstruct the unknown parameters within these ranges instead

of blindly looking for any value. Such approaches, which will be used throughout this

research, will also fall under the projection-based regularization scheme.

Another way to reduce the degree of ill-posedness is collecting “sufficient” scattering

data. Except in some special cases (e.g., see [80]), it is not currently known how we

can determine whether or not sufficient scattering data has been collected for an elec-

tromagnetic inverse scattering problem. Therefore, at the current state-of-the-art, we

need to rely merely on collecting as much scattering data as possible.(22) Moreover, the

importance of increasing the number of measured data points can be mathematically

justified as follows. Let’s assume that the operator M maps the information within

the snow-covered sea ice (imaging domain) to the NRCS data at the measurement

site. The information that will be mapped to the NRCS data, denoted by σ, are often

called contrast sources [82], which are the multiplication of the dielectric contrast of

the snow-covered sea ice profile, denoted by X, and the induced electric field inside

the profile (E). That is,

σ = M(XE). (2.46)

The challenge in findingX from (2.46) lies in the fact that the inverse of the operatorM

does not exist since the null space ofM is not trivial (due to non-radiating sources [83]).

In inverse scattering, the issue of non-trivial null space of M is often handled by

(22) We note that such scattering data need to be reliable. If a non-reliable data point is added to a data
set, this can deteriorate the performance of the inversion algorithm. In practical applications, we might know
that (1) all data points are equally reliable, (2) some data points are not reliable, and (3) some data points
are more reliable than the others. In case 1, we can utilize all data points equally. In case 2, we can discard
not reliable data points. In case 3, we can use the concept of data covariance matrix [81] so as to modify the
cost function to be minimized based on data points’ uncertainties.
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performing multiple measurements with the hope that the collective null space of all

the measurements, which is the intersection of all individual null spaces, becomes

trivial [83]. We note that in all these measurements, the induced electric field E will

be different. However, it is assumed that X does not vary from one measurement to

the other.

Now we can define the data misfit cost-function, F(χ), for our snow-covered sea ice

application. As explained above, the measured scattering data of our interest are the

NRCS values. Therefore, F(χ) can be defined as

F(χ(r)) ,
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In (2.47), γ(fi) and κpq are the weighting factors, σmeas is the measured NRCS data

from the actual profile, and σsim is the simulated NRCS data due to the predicted

dielectric profile χ(r). (The position vector within the domain of interest is denoted

by r.) The utilized expression for the frequency weighting factor is

γ(fi) ,

(

f 2
i

nf
∑

ζ=1

f−2
ζ

)−1

. (2.48)

The frequency weighting factors in (2.48) have been already successfully used in geo-

physical inversion [84] in low frequencies. Herein, we use this weighting for snow-

covered sea ice remote sensing. We only note that the choice of γ(fi) as presented in

(2.48) lies in the idea that the smaller the frequency of operation is, the less nonlinear

the associated mathematical problem will be. Therefore, based on (2.48), more weight

is assigned to NRCS data of lower frequencies so as to help the inversion algorithm

not be trapped in local minima due to the increased nonlinearity in higher frequencies.

This frequency weighting can then help the convergence of the inversion algorithm to
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an appropriate solution. As can be seen, the total numbers of frequencies, receiving

angles, and incidence angles are nf , nRx, and nTx respectively. Also, four different

combinations of polarization components, namely, HH, HV, VH and VV, can be used.

Therefore, when using all polarization combinations, the total number of data points

to be used in reconstructing the unknown χ(r) will be 4× nTx× nRx× nf .

In addition to the general challenges facing all electromagnetic inversions, there are

specific challenges to snow-covered sea ice dielectric profile reconstruction. One is

having limited measurement access (e.g., measured data can be collected only above

the domain of interest; not everywhere around it) that limits the number of data

provided to the inverse solver. This limitation can potentially create an imbalance

between the number of measured data points and the number of unknowns to be

reconstructed. Below, two strategies are introduced (namely parametrization and use

of prior information) to tackle this problem.

Parametrization

One way to handle the imbalance between the number of data points and unknowns is

to increase the number of data points (e.g., through the use of different polarizations

and frequencies, several transmitting and receiving antennas). Another way is to re-

duce the number of unknowns. However, as noted above, microwave remote sensing of

snow-covered sea ice merely permits performing limited-view one-sided measurements

at limited frequencies and polarizations. It is, therefore, essential to parametrize the

snow-covered sea ice dielectric profile to reduce the number of unknowns; thus, having a

better balance between the number of unknown and known quantities. (We note that

almost all the snow-covered sea ice inversion in the literature perform parametriza-

tion [56,60–64].)

To set out parametrization for snow-covered sea ice under investigation in this research,

it is assumed that the ice-formation process yields a layered medium with rough in-
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terfaces and complex permittivity values with sphere-like or randomly oriented brine

inclusions (note Sections 2.2 and 2.3). Therefore, we model the arctic snow-covered

sea ice profile as a layered structure with air and ocean as upper and lower half-spaces.

(This model has been shown to be in good agreement with experimental results for the

snow-covered sea ice [72, 85].) Therefore, we begin our parametrization by assuming

that the domain to be imaged is a layered medium, consisting of snow and ice layers,

sandwiched between air and ocean half spaces. The next step in our parametrization

assumes that the layers’ properties do not vary in the horizontal plane (xy plane).

Now, let’s focus on the vertical change (i.e., change along the z axis) of the dielectric

properties within each layer. Electrically small inclusions within each layer, such as

brine inclusions, cause each layer to have an inhomogeneous (and, possibly anisotropic)

complex permittivity distribution. However, it is very difficult, if not impossible, to

reconstruct these small inclusions individually merely based on the NRCS data, which

is a far-field quantity. (This is due to the fact that super-resolution microwave inver-

sion often requires capturing the information within evanescent waves, which is usually

done by near-field measurements [86].) Therefore, we do not aim to reconstruct these

individual electrically small inhomogeneities within each layer directly. In fact, in the

cases where the existence of these inclusions is negligible, we assume that each layer

has a homogeneous isotropic relative complex permittivity distribution as a simplifying

assumption. This homogeneous isotropic relative complex permittivity is the effective

relative complex permittivity of that layer. On the other hand, in the cases where

the existence of these inclusions needs to be taken into account, parameters associated

with the collective effect of these inclusions will be added as unknowns to the problem.

In addition to the layers’ relative complex permittivities, denoted by ǫ = ǫ′ + jǫ′′,

parameters associated with the collective effect of non-negligible inclusions, thickness

values of layers, denoted by ∆, their surface roughness parameters have an important

role in governing the interaction of electromagnetic waves with the profile. The surface

roughness of a given layer is usually parametrized by two parameters [87]: h, which is
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the root-mean-square (rms) height of roughness, and l, which is the roughness corre-

lation length(23). Therefore, the unknowns to be reconstructed are the parametrized

form of χ(r).

To clarify this, let’s consider an example in which we have a snow-covered sea ice

profile with a single snow and a single ice layer. Based on the above parametrization,

the unknown dielectric profile function χ(r) is parametrized into 12 unknowns for this

example; namely,

χ =
[

ǫ′snow ǫ′′snow ǫ′ice ǫ′′ice ∆snow ∆ice

hair-snow lair-snow hsnow-ice hsnow-ice hice-water hice-water

]

∈ R
12 (2.49)

where ∆snow and ∆ice denote the thickness of snow and ice layers respectively. Also, the

subscripts used with roughness parameters indicate the interface between two layers.

For example, hair-snow represents the rms height roughness at the interface of air and

snow layer. Therefore, for this example, the inversion algorithm needs to reconstruct

these 12 real unknowns. As will be discussed later, some of these unknown parameters

can be assumed to be known for a given application. It is clear that if more layers are

added to this model, the number of parameters increases accordingly. Finally, with the

parameterization explained for the above example, the data misfit cost functional F(χ)

given in (2.47) will become a mapping from an R12 space to one single real number R;

i.e., F : R12 → R. To further clarify our parametrization, let’s consider the previous

example but now with non-negligible inclusions in the snow layer; e.g., having large

snow grains. As will be discussed in Chapter 7, the snow grain size will now be added

to the vector of unknowns to represent the collective effect of these inclusions on the

volume scattering component.

(23) The height probability density function, denoted by p(ζ), is defined based on the probability of surface
height occurrence, ζ(x, y), relative to the mean surface value (i.e., < ζ >). Based on this, the rms height is
defined as h =< ζ2 >1/2= [

∫∞

−∞
ζ2p(ζ)dζ]1/2. Moreover, denoting the surface correlation function by C, the

correlation length of l happens for C(l) = e−1. Thus, the heights of two points on the surface separated by a
distance greater than l are considered to be uncorrelated [27].
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Use of prior Information

Any extra information about the profile’s characteristics that can be provided to the

inverse solver will help the inversion algorithm converge to more accurate reconstruc-

tion. The use of prior information can be regarded as an attempt to make the null

space of the problem as close as possible to trivial. There are different ways using

which prior information can be incorporated into the inversion algorithm. In what

follows, we present some of them which have been applied in this research. The most

basic way is the case when the prior information provides exact information about an

unknown, thus, removing that unknown from the list of the unknowns to be recon-

structed. For example, as will be seen in this thesis, we can sometimes obtain the

snow-air roughness parameters using lidar measurements, thus, removing lair-snow and

hair-snow from the list of unknowns. Another way of using prior information is for the

case when we know the possible ranges of the unknowns. In such cases, we may em-

ploy the projection-based regularization scheme as explained before, or use auxiliary

unknowns [88]. Furthermore, a reasonable estimate for the vector of unknowns can be

used as prior information to initialize(24) the inversion process. This is, in particular,

useful for time-series data inversion [89]. Finally, different models such as the per-

mittivity curve [52,90] and thermodynamic ice growth model [60] can be incorporated

into the inversion process as prior information. As will be seen later in this thesis, this

may require the use of auxiliary unknowns.

(24) Nonlinear inversion algorithms require an initial guess to start the inversion process.



3

Nonlinear Inverse

Scattering Algorithm

3.1 Overview

In Chapter 2, the background on the snow and sea ice geophysics, dielectric proper-

ties, thermodynamics, and the electromagnetic inverse scattering were explained. In

this chapter, a nonlinear electromagnetic inverse scattering algorithm is developed and

presented that reconstructs the snow-covered sea ice dielectric profiles using monos-

tatic or bistatic, single or multiple-frequency, multi-polarimetric normalized NRCS

data collected at any desired incidence angle. To this end, following an introduction

in Section 3.2, the problem statement is brought in Section 3.3. Next in Section 3.4,

the snow-covered sea ice profile is parametrized from an inverse scattering perspec-

tive. These profile parameters are the unknowns to be retrieved through the inversion

algorithm.

As previously shown in Chapter 2, the electromagnetic inverse scattering algorithm
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requires a forward and an inverse solver. Following this approach, in Section 3.5, the

boundary perturbation theory is introduced as the forward solver utilized to simu-

late the normalized radar cross section data based on the simulated scattered field.

Subsequently, the differential evolution as a global optimization inverse solver is pre-

sented in Section 3.6. This technique retrieves the complex permittivities, thickness

values, and roughness parameters of the snow-covered sea ice. The inversion results

for the so-called young ice are presented in Section 3.7. The parameters of the profile

are retrieved utilizing the simulated data collected under the bistatic and monostatic

configurations, as described in Sections 3.7.1 and 3.7.2, respectively. Next in Sec-

tion 3.7.2, noise is added to the synthetic data to assess the robustness of the inversion

algorithm. Finally, a conclusion is brought in Section 3.8. It is concluded that the

achievable quantitative accuracy of the reconstructed profiles is reasonable as long as

sufficient scattering data points are provided to the inversion algorithm.

The materials presented in this chapter are based on the paper published in the IEEE

Geoscience and Remote Sensing Letters in 2015 [91](1).

3.2 Introduction

This chapter is focused on the development of an appropriate electromagnetic inverse

scattering algorithm that takes the microwave scattering data collected from a given

snow-covered sea ice domain of interest, and then returns some important dielectric

profile parameters of that domain. This nonlinear inversion algorithm consists of two

main parts: forward solver and inverse solver. The utilized forward solver is the

recently-developed boundary perturbation theory (BPT) solver [92], which has the

same region of validity as the small perturbation method (SPM) [93]. To the best of

(1) c© [2015] IEEE. Reprinted, with permission, from N. Firoozy, P. Mojabi, and D. Barber, “Nonlinear
inversion of microwave scattering data for snow-covered sea-ice dielectric profile reconstruction,” Geoscience

and Remote Sensing Letters, IEEE, vol. 12, no. 1, pp. 209-213, Jan 2015.
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Fig. 3.1: Parameterization of the snow-covered sea ice profile into rough layered media.

our knowledge, this forward solver has not been used for snow-covered sea ice inversion.

The inverse solver utilizes a global optimization algorithm to minimize a regularized

data misfit cost functional.

The research on nonlinear inversion of snow-covered sea ice profile is scarce [57,60], and

even less common when ice is covered with a snow layer [56,58]. The main contribution

of this chapter is, therefore, the development of a nonlinear inversion algorithm that

is capable of simultaneous reconstruction of the effective relative complex permittivity

of snow and ice layers and their thickness values as well as their surface roughness

parameters using multi-polarimetric multiple-frequency scattered data in both bistatic

and monostatic configurations. Although the proposed algorithm assumes a simplified

model for snow-covered sea ice and also utilizes idealized measurement scenarios, it

is an important useful step towards developing strategies for reconstruction of snow-

covered sea ice properties.

3.3 Problem Statement

The unknown to be reconstructed is the snow-covered sea ice dielectric profile, which

is denoted by χ(r) where r is the observation point. It is assumed that the avail-

able data to be used in this reconstruction is the measured normalized radar cross
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section (NRCS) of the profile. To increase the number of data points, the NRCS can

be collected under different configurations; e.g., by having different incidence angles

as shown in Figure 3.1 (i.e., incidence angles of Ψinc = (θinc, ϕinc) where θinc is the

elevation and ϕinc is the azimuth angle), receiving angles (i.e., incidence angles of

Ψscat = (θscat, ϕscat)), frequencies of operation f , and polarizations q. Therefore, an

NRCS denoted as σpq(χ(r); Ψinc,Ψscat, f). The polarization is assumed to be either

horizontal (H) or vertical (V); i.e., p, q ∈ {H,V}.

The inversion problem can be formulated as the minimization of the data misfit cost

functional, defined as the discrepancy between the measured and simulated NRCS

data, over the dielectric profile χ. That is, the data misfit cost functional, F(χ(r)),

can be written as

F(χ(r)) ,

nf∑

i=1

nRx∑

n=1

nTx∑

m=1

∑

p=H,V

∑

q=H,V

∣
∣
∣σmeas

pq (Ψm
inc,Ψ

n
scat, fi)−

σsim
pq (χ(r); Ψm

inc,Ψ
n
scat, fi)

∣
∣
∣ (3.1)

where σmeas is the measured NRCS data from the actual profile, and σsim is the simu-

lated NRCS data due to the predicted dielectric profile χ(r).

3.4 Parameterization of Snow-Covered Sea Ice Dielectric Profile

Microwave remote sensing of snow-covered sea ice merely permits performing limited-

view measurements in the sense that the scattering data can only be collected above

the domain of interest. Due to this limitation, blind inversion (i.e., inversion without

the use of prior information) is more likely to fail for this application. It is, therefore,

essential to parametrize the snow-covered sea ice dielectric profile to reduce the number

of unknowns; thus, enhancing the quantitative accuracy of the reconstruction results.
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To set out this parameterization, we model snow-covered sea ice as a layered media

with rough surfaces having air and ocean as upper and lower half-spaces. (It was

shown that this model is in good agreement with experimental results [72, 85].) This

model is depicted in Figure 3.1. We further assume that each layer has a homogeneous

isotropic relative complex permittivity distribution, denoted by ǫ = ǫ′ + jǫ′′. This

homogeneous isotropic relative complex permittivity is, in fact, the effective relative

complex permittivity of that layer taking into account the presence of inclusions such

as brines. It should be noted that the assumption of having an isotropic permittivity

distribution is based on the assumption that the brine cells are spherical inclusions.

Although this might not be precise, this simplified model has been successfully used

in literature [72]. The surface roughness of a given layer is parametrized by two pa-

rameters: h, which is the root-mean-square (rms) height of roughness, and l, which

is the roughness correlation length. It should be mentioned that we will utilize ∆snow

and ∆ice to denote the thickness of snow and ice layers respectively. Also, the sub-

scripts used with roughness parameters will indicate the interface between two layers.

For example, hair-snow represents the rms height roughness at the interface of air and

snow layer. With the parameterization utilized in this chapter, the data misfit cost

functional F(χ) is now a mapping from an R12 space to one single real number R. The

minimization of F(χ) will then reconstruct these 12 real unknowns.

3.5 Forward Solver

The proposed nonlinear inversion algorithm requires calling a forward solver several

times during dielectric profile reconstruction so as to evaluate the data misfit cost

functional F(χ); thus, the utilized forward solver needs to be sufficiently fast. Herein,

the boundary perturbation theory (BPT) formalism, recently developed by Imperatore

et. al. [92], is used. This method is a first-order approximation technique that provides

polarimetric solution to the 3D scattering problem from rough layered media with
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arbitrary numbers of layers. For this first-order approximation to be valid, the BPT

algorithm only requires the classical gently roughness criterion at the interfaces of

layers [92]. The logic of BPT is as follows. The BPT first assumes flat interfaces for

the whole profile and then finds the so-called generalized reflection and transmission

coefficients. It then considers the effects of roughness as equivalent current densities on

flat interfaces to accommodate the incoherent scattering component. The tangential

boundary condition is applied and these equivalent current densities are calculated

based on the geometry of rough interfaces and the unperturbed field values. Since

the roughness parameters of different layers, and subsequently their corresponding

equivalent current densities, are considered to be uncoupled, a summation is utilized

to find the total scattered field from the profile. Finally, the NRCS is derived from

the calculated scattered field. Therefore, the formula to calculate the polarimetric

NRCS for an N layered medium with uncorrelated roughnesses for boundaries is as

follows [94]

σpq = πk40

N−1∑

n=0

|αm,m+1
pq (kscat

⊥ ,kinc
⊥ )|2Wn(k

scat
⊥ − kinc

⊥ ) (3.2)

Equation (3.2) takes into account contributions from individual rough surfaces within

the layered media. The formulation to calculate α can be found in [94], and is based

on the previously-calculated field values. Also k is the wavenumber times wave prop-

agation direction vector and k⊥ is the perpendicular component of its projection on

the surface. Also, Wn denotes the spatial power density of surface n, defined as the

Fourier transform (denoted by F) of the auto-correlation function of the nth rough

boundary ζn as [95]

Wn(κ) = F{Cn(ρ)} =
1

(2π)2

∫ ∫

< ζn(r⊥ + ρ)ζn(r⊥) > ejκ.ρdρ (3.3)

In (3.3), Cn is the auto-correlation function associated with the ζn boundary, r⊥ de-

notes the position vector on the surface ζn, and <> denotes the statistical ensemble

average. Two common forms of correlation functions are the exponential and Gaussian
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functions, that result in the following spatial power densities [96]

WGaussian(k
scat
⊥ − kinc

⊥ ) =
(hl)2

4π
exp(

−|kscat
⊥ − kinc

⊥ |2l2
4

) (3.4)

Wexponential(k
scat
⊥ − kinc

⊥ ) =
(hl)2

2π

1

(1 + |kscat
⊥ − kinc

⊥ |2l2)3/2
. (3.5)

Different ice and snow types exhibit various values for surface roughness parameters.

Thus, one power density formulation might be more appropriate than the other de-

pending on these values. Based on our experience and lidar measurements [97], the

exponential distribution best fits the common new ice type. The region of validity for

this method is similar to the small perturbation method [98]. We also note that due

to its closed-form formulation, this forward model is computationally efficient. This

is a vital property for our inversion algorithm scheme as it requires numerous calls to

the BPT solver.

3.6 Inverse Solver

The data misfit cost functional F(χ) needs to be minimized so as to reconstruct the di-

electric profile χ. However, this cost functional is ill-posed; thus, its minimization may

result in an unstable (oscillatory) solution. To handle this ill-posedness, we minimize

the regularized cost functional C(χ)

C(χ) = F(χ) + βL(χ) (3.6)

where L(χ) is the regularization cost functional, and β ∈ R
+ is the regularization

weight. The regularization term is chosen to be the total variation regularizer. That
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is,

L(χ) ,
∣
∣
∣ǫ′snow + jǫ′′snow −

=1
︷︸︸︷
ǫair

∣
∣
∣

+
∣
∣
∣ǫ′ice + jǫ′′ice − ǫ′snow − jǫ′′snow

∣
∣
∣. (3.7)

The regularization parameter β needs to be chosen in such a way that is not too large

to over-regularize the problem, and is not too small to under-regularize the problem.

In this chapter, to find an appropriate value for β, we perform reconstruction of a

given reference true profile using several values of β. We then find the β that provides

the most accurate reconstruction. As long as the data collection procedure and noise

level as well as the profile to be reconstructed do not change significantly as compared

to this reference model, this β can be used as a reasonable choice for other profile

reconstruction.

We minimize this regularized cost functional via the differential evolution (DE) algo-

rithm.(2) To this end, we have implemented the already developed algorithm intro-

duced in the literature (e.g., see [76,99]). The DE algorithm is based on the evolution

concept in which only the fittest elements get the chance to evolve to the next genera-

tion. Therefore, in the first generation, all elements are randomly distributed within a

search space defined as prior information. Then their corresponding fitness values, C,

are calculated. Then three members of this generation are randomly chosen (denoted

by P1, P2, and P3) and an off-spring is created as [76]:

xnew
n =







xold
n |P1 + ξ × (xold

n |P2 − xold
n |P3) rand(0, 1) ≤ ζ

xold
n Otherwise

(3.8)

(2) Several optimization algorithms such as derivative-based local optimizers, e.g., Gauss-Newton and conju-
gate gradient algorithms, can be used to minimize our nonlinear data misfit cost function, each of which has
its own advantages and disadvantages. Herein, we have chosen the DE algorithm due to the fact that it can
easily (i) utilize phaseless (magnitude-only) data (NRCS data), (ii) accommodate different prior information,
and (iii) incorporate physical/thermodynamic unknowns.
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where ξ and ζ are chosen to be 0.5 and 0.8 respectively [76]. This specific implemen-

tation is called the random DE algorithm. If the first parent, P1, is chosen as the one

having the fittest value, as opposed to being chosen randomly, the algorithm is referred

to as the DE/Best. Also, if ξ is chosen randomly between 0 and 1, the algorithm may

be called DE/ditter [100]. Herein, we use the DE/Best implementation. At this point,

the data misfit cost functional is evaluated for each individual and that value is com-

pared to the original parent. Either the off-spring or the parent with the lower fitness

value is mutated to the next generation. This process is then repeated again till we

get to an acceptable error level. The DE algorithm also requires the implementation

of an appropriate boundary condition ensuring that the elements are within the search

domain. In our implementation, if an element happens to exit the search domain,

it will be randomly placed back somewhere within the search domain. Limiting the

search space serves two purposes (i) as a projection-based regularization to tackle the

inversion instability (ill-posedness) issue [75], and (ii) to act as prior information so

as to achieve higher accuracy in parameter reconstruction. This limitation is based on

our observation of typical permittivity or thickness values for snow and ice.

3.7 Inversion Results

Herein, we attempt to reconstruct snow-covered young ice (YI) dielectric profiles using

either microwave bistatic or monostatic synthetic data. For bistatic data collection,

the domain of interest is illuminated by a unique incidence angle (nTx = 1); namely,

Ψinc = (45◦, 0◦). The scattered data is then collected at several scattered angles, all of

which have the same azimuth angle, ϕscat = 10◦, but different elevation angles, θscat.

The elevation angle is varied from 25◦ to 65◦ with 10◦ increments (i.e., measuring

at 5 elevation angles). As far as monstatic data collection scheme is concerned, we

use five different incidence angles, θinc, from 25◦ to 65◦ with 10◦ increment; thus,

having nTx = 5. Since, this is a monostatic setup, one scattered angle, which is the



3.7 Inversion Results 56

same as the utilized incidence angle, is used to collect the NRCS data; thus, having,

nRx = 1. For both monostatic and bistatic data collection schemes, all possible four

polarization combinations are used toward reconstruction of the profile. All these

data collection schemes are performed within the frequency range of 3 GHz to 4 GHz

at 15 different frequencies equispaced in this frequency range (i.e., nf = 15). For

the examples considered herein, this frequency range presents an appropriate trade-

off between providing sufficient spatial resolution and penetration depth. Finally, the

relative complex permittivity of the ocean is assumed to be 60 + j60 for all these

examples within the frequency range of interest. (Throughout this chapter, a time-

dependency of e−jωt is implicitly assumed.)

To reconstruct these profiles, we first need to set the search space for the inversion

algorithm based on the expected values. The inversion algorithm will then try to

reconstruct the true values within the search domain. The search space for relative

complex permittivity values is as follows: the real part of the snow permittivity from

2 to 3, the imaginary part of the snow permittivity from 0 to 1, the real part of the

ice permittivity from 3 to 5, and the imaginary part of the ice permittivity from 0 to

1. The search space for thickness values is as follows: snow thickness from 0 to 20 cm,

ice thickness from 0 to 40 cm. Finally, the search space for roughness parameters is

as follows: h and l of the air-snow interface from 0.1 cm to 0.16 cm, and 1.20 cm to

1.60 cm respectively, h and l of the snow-ice interface from 0.12 cm to 0.25 cm, and

0.84 cm to 2.44 cm respectively, h and l of the ice-ocean interface from 0.22 cm to

0.33 cm and 1.00 cm to 5.50 cm respectively.

We finally note that when one deals with inversion of simulated data, e.g., the data

presented in Chapters 3 and 4, the simulated data needs to be contaminated with

noise and collected on a different discretization grid as compared to that used in the

inversion so as to avoid the so-called inverse crime. In our simulated data, we have

considered noisy synthetic data sets. (We have also considered noiseless synthetic data
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Tab. 3.1: Dielectric profile specifications used for snow-covered YI in Section 3.7.1. The complex
permittivity values are assumed to be constant within the frequency range of 3 to 4 GHz.

Snow-Covered YI Profiles Case I Case II Case III

Thickness [cm]
Snow 5 10 12

Ice 15 25 32

Permittivity (averaged)
Snow 2.3 + j0.2

Ice 3.6 + j0.5

Roughness Parameters [cm]
Air-Snow h = 0.15 and l = 1.3

Snow-Ice h = 0.185 and l = 1.42

Ice-Ocean h = 0.22 and l = 2.6

sets for the sake of comparison.) However, since our utilized BPT forward solver does

not discretize the imaging domain, e.g., similar to the method of moments, change of

the discretization grid is not applicable here. We also note that in Chapters 5, 6, and 7,

we consider the inversion of experimental data; thus, there are no risks of committing

inverse crime in these three chapters [101].

3.7.1 Snow-covered YI—Bistatic setup

The specifications of the profile of interest are tabulated in Table 3.1 for three different

cases with increasing snow/ice thickness values. As noted above, this profile is to be

reconstructed using 4 × 15 × 5 = 300 scattering data points. The results of this

inversion, denoted by DE/Best, are depicted in Figure 3.2. The two horizontal lines

in these plots represent the true snow-ice and ice-ocean interfaces. Also, the y = 0

line in these plots is the true air-snow interface. The true permittivity values are

demonstrated in these plots by � (for the real part) and ⋄ (for the imaginary part).

As can be seen, with the increase of snow/ice thickness, the retrieval of thickness

values will degrade whereas the quantitative accuracy of the reconstructed complex

permittivity values will not be affected that much. This might be due to the fact that

as opposed to thickness retrieval, permittivity retrieval does not need full penetration

all the way down to the ocean interface. Finally, Table 3.2 reports the reconstructed

roughness parameters corresponding to Figure 3.2. As can be seen, the reconstructed
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Fig. 3.2: Reconstruction of the snow-covered YI for three different cases of Table 3.1 from bistatic
data sets.

roughness parameters for the first interface, i.e., air-snow interface, are more accurate

than those for the other two interfaces.

3.7.2 Snow-covered YI—Monostatic setup

Herein, we consider the same snow-covered YI as studied in Section 3.7.1. However,

as opposed to Section 3.7.1 in which a bistatic data collection scheme was used, we

now consider a monostatic data collection scheme. This is important as a monostatic

configuration is more practical as it can be easily mounted on a single ship or an

airplane. As described in the beginning of Section 3.7, the total number of data

points to be inverted in the monostatic case is the same as the one in Section 3.7.1;

i.e., 300. Although the number of data points is the same in both monostatic and

bistatic configurations, this does not mean that the amount of useful information is

the same in these two different data sets. Based on our numerical trials, we have found

that the bistatic data set is generally more suitable for our reconstruction algorithm.

We speculate that this is due to the fact that the maximum NRCS usually occurs

around the specular reflection angle. The reconstruction results for the monostatic
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(a) Case I
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(b) Case II
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(c) Case III

Fig. 3.3: Reconstruction of the snow-covered YI for three different cases of Table 3.1 from monostatic
data sets.

cases are shown in Figure 3.3. As can be seen, the inversion accuracy of the bistatic

data sets outperform that of the monostatic data sets. However, since the number

of data points is kept the same as the bistatic case, the inversion accuracy of the

monostatic data sets does not suffer dramatically. Also, thanks to surface roughness,

the amount of information within the monostatic data set is increased. Note that if

there was no surface roughness, the received electromagnetic wave in monostatic case

will be significantly reduced. Therefore, from this point of view, surface roughness is

useful for monostatic data collection schemes. Finally, the reconstructed roughness

parameters for this example are listed in Table 3.2. As can be seen, the reconstructed

roughness parameters for the air-snow interface are more accurate compared to those

of the other two interfaces.

3.7.3 Snow-covered YI–Noisy data set

In all the above examples, we did not add synthetic noise to the collected data sets.

We now consider the robustness of the inversion algorithm against noisy data sets.

It should be noted that, in addition to thermal noise and radar speckle, some other
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(a) Bistatic, NL = 0.10
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(b) Bistatic, NL = 0.25
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(c) Bistatic, NL = 0.50
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(d) Mono, NL = 0.10
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(e) Mono, NL = 0.25
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(f) Mono, NL = 0.50

Fig. 3.4: Reconstruction of Case I Profile in Table 3.1 from noisy data sets, with varying noise level
NL, in both bistatic and monostatic (mono) configurations.

interfering signals picked up by the antenna can contribute to the overall noise of the

measured data. (The effect of some of these interfering signals may be minimized

by using appropriate filtering techniques.) Also, in practice, the parameterization

presented in Section 3.4 may not be accurate enough for an actual snow-covered sea

ice profile. This simplification can then be regarded as a modelling error in the inversion

algorithm. This modelling error can then be regarded as part of the manifest noise for

the reconstruction algorithm.

The method used in this chapter to create a noisy data set is as follows. Let’s assume
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Tab. 3.2: Reconstruction of surface roughness parameters; all roughness parameters are in centime-
tres.

Figure 3.2
Case I Case II Case III
h l h l h l

air-snow 0.16 1.23 0.15 1.31 0.15 1.30
snow-ice 0.16 1.52 0.20 1.31 0.21 1.29
ice-ocean 0.22 3.86 0.28 1.83 0.24 3.41

Figure 3.3
Case I Case II Case III
h l h l h l

air-snow 0.15 1.30 0.15 1.30 0.15 1.30
snow-ice 0.19 1.31 0.22 1.81 0.25 1.52
ice-ocean 0.33 4.36 0.22 2.05 0.26 3.98

Figure 3.4
(a) (b) (c)

h l h l h l
air-snow 0.14 1.42 0.16 1.22 0.16 1.39
snow-ice 0.16 1.25 0.20 1.25 0.18 1.21
ice-ocean 0.33 3.05 0.35 2.75 0.33 2.76

Figure 3.4
(d) (e) (f)

h l h l h l
air-snow 0.12 1.20 0.15 1.28 0.16 1.45
snow-ice 0.22 1.22 0.21 1.77 0.21 1.45
ice-ocean 0.33 3.86 0.35 3.60 0.36 4.76

that the noise level is denoted by NL, which can vary from 0 to 1, then the noisy

NRCS data will be (1 ± NL) × σ where σ is the dimensionless noiseless NRCS data.

To evaluate the robustness of the inversion algorithm against noisy data, we consider

Case I profile of Table 3.1. Two different data sets are then considered for this profile:

a bistatic dataset as collected in Section 3.7.1, and a monostatic dataset as collected

in Section 3.7.2. Then, three levels of noise are added to these two datasets. Inversion

of these noisy datasets are shown in Figure 3.4. As can be seen, the quantitative

accuracy of the inversion results corresponding to NL = 10%, and 25% is reasonable.

However, for NRCS errors beyond (max,min) = (1.76,−3.01) dB, which correspond

to NL = 50%, the inversion results are no longer reliable. The reconstructed roughness

parameters for this example are also shown in Table 3.2. As opposed to reconstructed

thickness values which seem to suffer the most from increasing NL, this table shows

that the reconstructed roughness parameters are not as much sensitive to the noise

level.
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3.8 Conclusion

Forward and inverse scattering models of snow-covered sea ice hold promise in both

the estimation of the geophysical and thermodynamic state of arctic. In this chapter,

a nonlinear inversion algorithm was proposed to find the dielectric profile of a given

snow-covered sea ice domain of interest from microwave NRCS data. Specifically,

this algorithm simultaneously inverts multi-frequency multi-polarimetric bistatic (or,

monostatic) datasets to reconstruct the relative complex permittivities, thickness val-

ues, and roughness parameters of snow and ice layers. The proposed algorithm has

one main limitation: due to the use of the BPT forward solver, the roughness param-

eters of the interfaces cannot be beyond the validity region of the SPM. If needed,

this issue can be handled by using another type of forward solver. It should also be

noted that the quantitative accuracy achievable from this inversion algorithm depends

on the amount of useful scattering information provided to the algorithm. Using this

nonlinear inversion algorithm, three different forms of snow-covered young ice were in-

vestigated. It was shown that dielectric profile parameters associated with these cases

can be reasonably retrieved as long as sufficient scattering data are available. It was

also shown that the reconstruction accuracy, specially, accuracy of the reconstructed

ice thickness, will be degraded in the presence of noise.

This chapter, therefore, contributes to the area of sea ice remote sensing, in places

with snow-covered sea ice including the Arctic, Antarctic, Baltic Sea or the Sea of

Okhotsk, by proposing an inverse scattering algorithm to extract more information

from the normalized radar cross section data to be used to infer the dielectric profile.

This can have several possible applications such as more accurate ice profile classifi-

cation, detection of oil spills in sea ice, transport safety monitoring and more precise

classification of both the geophysical and thermodynamic state of snow-covered sea

ice.



4

Balanced Inversion

of Bistatic NRCS Data

4.1 Overview

An electromagnetic inverse scattering algorithm that reconstructs the dielectric pro-

file of the snow-covered sea ice was developed and presented in Chapter 3. In this

algorithm, a misfit cost function calculates the discrepancy between the measured and

simulated NRCS data associated with a predicted dielectric profile. To reconstruct

the unknown profile, this cost function is iteratively minimized utilizing the differen-

tial evolution algorithm so as to achieve a minimum discrepancy. The weighting factor

employed for this discrepancy in Chapter 3 was equal to unity for both monostatic and

bistatic configurations. In this chapter, I introduce a weighting factor to be utilized in

the cost function for the bistatic NRCS data, and compare its performance to three

commonly-used weighting factors.

After an introduction in Section 4.2, the methodology utilized to perform the inver-
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sion is presented in Section 4.3. As previously explained in Chapter 3, the inversion

algorithm consists of a BPT forward solver that works in conjunction with DE in-

verse solver. This algorithm iteratively minimizes the NRCS data misfit cost function

to reconstruct the snow-covered sea ice profile. In Section 4.4, four different cost

functions (namely blind, normalized, constant, and balanced) are introduced. Sub-

sequently, the reconstruction accuracy of the inversion algorithm utilizing these four

cost functions are investigated in Section 4.5. Although these cost functions utilize the

same synthetic bistatic NRCS data, their achievable reconstruction accuracy varies.

In particular, the developed balanced weighting cost function results in the highest re-

construction accuracy compared to the rest. This weighting factor first normalizes the

NRCS data discrepancies and then multiplies them by the measured horizontally-sent

and horizontally-received NRCS data. This multiplication gives a larger weight to the

data in the vicinity of the specular angle. Finally, the synthetic data is contaminated

with noise to further assess the inversion performance. For this case, similar inversion

results with respect to the working of the balanced weighting factor are obtained.

The materials of this chapter are based on the paper published in Taylor & Francis

Remote Sensing Letters in 2015 [102](1).

4.2 Introduction

This chapter, which builds on our abstract presented in [103], is focused on investi-

gating four different cost functions for the inversion of simulated bistatic radar cross

section data. Although the application of bistatic data in earth remote sensing is

currently limited, it holds promise for accurate retrieval purposes. Such bistatic mea-

surements are feasible via the use of bistatic ground-based scatterometers, two-aperture

(1) c© [2015] Taylor & Francis Reprinted, with permission, from N. Firoozy, P. Mojabi, and D. G. Barber,
“Balanced inversion of simulated bistatic radar cross-section data for remote sensing of snow-covered sea ice,”
Remote Sensing Letters, vol. 6, no. 5, pp. 399-408, 2015.
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air-borne radar systems and tandem satellites.

In an inversion algorithm, the choice of the cost function to be minimized is important

to properly account for the relative magnitude and importance of all data points. This

is, in particular, very important in snow-covered sea ice dielectric profile inversion

since the number of measured data points in snow-covered sea ice remote sensing

applications is limited compared to the number of unknowns to be reconstructed.

Therefore, the available data points need to be weighted with care in the minimization

scheme so as to extract as much information as possible from the scattering ensemble.

Based on this investigation, an appropriate balanced cost function, which can result

in enhanced reconstruction accuracy, is proposed. Using three numerical examples, it

will be shown that the proposed balanced inversion can enhance the reconstruction

accuracy of dielectric profiles.

Throughout this chapter, we use simulated bistatic NRCS data to evaluate this bal-

anced inversion algorithm. This simulated data is created with the BPT forward

solver [94]. The three test cases are simplified models of rough layered snow-covered

sea ice profiles. A time-dependency of e−jωt where j =
√
−1, ω is the angular frequency,

and t denotes the time, is implicitly assumed in this chapter.

4.3 Inversion Methodology

We have recently developed an inversion algorithm for the reconstruction of unknown

snow-covered sea ice dielectric profiles (denoted by χ) from NRCS data (denoted by σ)

as the algorithm’s input [91]. To this end, this inversion algorithm iteratively minimizes
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the following cost function over χ,

C(χ(r)) ,
F∑

i=1

R∑

n=1

T∑

m=1

∑

p=H,V

∑

q=H,V
∣
∣
∣σmeas

pq (ψ
(m)
inc , ψ

(n)
scat, fi) − σsim

pq (χ(r), ψ
(m)
inc , ψ

(n)
scat, fi)

∣
∣
∣. (4.1)

In the above cost function, σmeas
pq (ψ

(m)
inc , ψ

(n)
scat, fi) is the NRCS data when the domain of

interest is illuminated from the ψ
(m)
inc direction with the (p) polarization at the fi fre-

quency, and then the resulting scattered field is measured from the ψ
(n)
scat direction with

the (q) polarization at the same frequency. (Polarizations (p) and (q) can be horizontal

or vertical, denoted by H and V respectively. Also, the number of frequencies of op-

eration, receiving angles, and incidence angles are F, R, and T respectively.) Within

the scope of this chapter, σmeas
pq is generated by simulating the profile using the BPT

forward solver. Therefore, we choose to refer to σmeas
pq as the reference NRCS data, and

not the measured NRCS data, for more clarity. In addition, σsim
pq (χ(r), ψ

(m)
inc , ψ

(n)
scat, fi)

is the predicted NRCS data corresponding to the predicted dielectric profile χ at a

position vector r under the same measurement configuration. We also note that each

of the incident and scattered directions is characterized by two angles: the elevation

angle θ, and the azimuth angle ϕ. It should also be noted that if the measurement un-

certainties at each data point are unknown, (4.1) can be modified as proposed in [104].

However, in this chapter, we assume we do not have access to this prior information.

Therefore, the effect of measurement uncertainties will not be considered in the cost

function.

At each iteration of the inversion algorithm, the BPT forward solver [94] is used to

calculate the predicted NRCS data of a given predicted dielectric profile. Based on

the discrepancy between this predicted NRCS data with the reference NRCS data,

the differential evolution (DE) algorithm [100] will update the predicted dielectric

profile through the minimization of (4.1). This iterative scheme continues until a
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convergence is achieved. Herein, the unknown dielectric profile, χ(r), is assumed to be

a rough layered medium consisting of a snow pack above sea ice, sandwiched between

air and ocean. The inhomogeneities within the layers, such as the presence of brine

pockets, are not included in this simplified model. However, the collective effect of these

inhomogeneities will be accounted for by assigning an effective complex permittivity

to each layer. We also assume that brine pocket is randomly oriented or is of spherical

shape, and therefore, each layer has an isotropic complex permittivity. Since our

algorithm is capable of modeling the stair-casing within both ice and snow layers,

the utilized snow-covered sea ice models can consist of several layers, each of which

has a different effective complex permittivity. Finally, to handle the ill-posedness of

this problem [105], we have utilized a projection-based regularization scheme [91,106]

that limits the search space for the unknowns to be reconstructed to an appropriate

subspace.

4.4 Balanced Inversion

The cost function, presented in (4.1), treats the discrepancy values corresponding to

different measurement scenarios equally. (That is, it is an unweighted summation of all

discrepancies.) This is not necessarily a proper approach since the inversion algorithm

may then favor minimizing certain discrepancy values over the others merely due to

their larger magnitudes. If this happens, it is very likely that the inversion algorithm

will not be able to utilize all the available information within the measured NRCS data

toward dielectric profile reconstruction. As a result, the final solution will not be the

most accurate reconstruction that could have been achieved from the given measured

data set.

To address this issue, we consider the following cost function that utilizes two sets of
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Tab. 4.1: Specifications of the snow-covered sea ice numerical model studied in Section 4.5 (Exam-
ple 1). All length values are in (cm). Here, Half-Space refers to a medium with a boundary
at infinity.

Snow Ice Ocean

Thickness 4 18 Half − Space

Relative Permittivity 2.50 + j0.10 3.75 + j0.40 60.00 + j60.00

rms Height (h) 0.14 0.20 0.30

Correlation Length (l) 1.50 1.80 2.00

weighting factors, γ(fi) and κpq,

F(χ(r)) ,
F∑

i=1

γ(fi)
R∑

n=1

T∑

m=1

∑

p=H,V

∑

q=H,V

κpq(ψ
(m)
inc , ψ

(n)
scat, fi)×

∣
∣
∣σmeas

pq (ψ
(m)
inc , ψ

(n)
scat, fi) − σsim

pq (χ(r), ψ
(m)
inc , ψ

(n)
scat, fi)

∣
∣
∣. (4.2)

Comparing (4.1) with (4.2), it can be seen that γ(fi) and κpq are set to unity in our

original cost function. Before considering κpq, let’s present the utilized expression for

the frequency weighting factors

γ(fi) ,

(

f 2
i

F∑

ζ=1

f−2
ζ

)−1

. (4.3)

The above frequency weighting factors have been already successfully used in geophys-

ical inversion [84] in low frequencies; thus, we do not elaborate on the use of these

frequency weights in this chapter. We only note that the choice of γ(fi) as presented

in (4.3) lies in the idea that the smaller the frequency of operation is, the less nonlinear

the associated mathematical problem will be. Therefore, based on (4.3), more weight

is assigned to NRCS data of lower frequencies so as to help the inversion algorithm

not be trapped in local minima due to the increased nonlinearity in higher frequencies.

This frequency weighting can then help the convergence of the inversion algorithm to

an appropriate solution.
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Fig. 4.1: NRCS ratios when the profile of Table 4.1 is irradiated from ψinc = (45◦, 0◦) direction, and
the emanating scattered data is collected at different scattering angles.

We now consider four different expressions for κpq to be used in (4.2). In the first one,

the weights κpq are chosen to be unity. Therefore, in this form, the discrepancy values

between all data points at one operational frequency are blindly summed. In the results

to be presented, we refer to this cost function as “blind”. Before moving on to the

next choice of κpq, we first note that the NRCS data has different ranges of values for

different polarization combinations. This has been illustrated in Figure 4.1 which shows

different synthetic polarimetric NRCS ratios for the snow-covered dielectric profile of

Table 4.1 for the frequencies of 3 and 4 GHz, when the profile is illuminated from

ψinc = (θ, ϕ) = (45◦, 0◦). From this figure, it can be seen that the scale of NRCS

values for various polarizations can be very different. Similar trends were observed

from numerous other simulations for bistatic data from simplified snow-covered sea

ice profiles, including those described in Section 4.5. It is speculated that this is

partly due to the absence of the Brewster angle effect in HH polarization as noted

in [107]. Therefore, in the blind cost function, the contribution of the smaller NRCS

values may be lost, which indicates that the scattering information within these smaller

NRCS values has not been fully utilized in the reconstruction. Thus, based on our

numerical experience that shows that σHH is often the dominant NRCS value in bistatic
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measurements from the snow-covered sea ice, we consider the following κpq,

κpq(ψ
(m)
inc , ψ

(n)
scat, fi) ,

max{σmeas
HH (ψ

(m)
inc , ψ

(n)
scat, fi)}

max{σmeas
pq (ψ

(m)
inc , ψ

(n)
scat, fi)}

, (4.4)

which presents a constant weight for each polarization combination, thus, resulting

in four different κpq values in total. In fact, the use of these four κpq values in (4.2)

classifies all the data points into four clusters, each of which corresponds to a specific

polarization combination, and then attempts to equalize these four clusters of data

points. In our results, we refer to this cost function as “constant”. On the other hand,

as opposed to equalizing these four clusters, we can normalize the discrepancy value

corresponding to each data point individually by using the following κpq,

κpq(ψ
(m)
inc , ψ

(n)
scat, fi) ,

1

σmeas
pq (ψ

(m)
inc , ψ

(n)
scat, fi)

, (4.5)

which will then result in the so-called “normalized” cost function.

The development of the last κpq, to be described below, is inspired by the observation

that the receiving angles that are closer to the specular scattered angles often exhibit

higher sensitivities with respect to the parameters to be reconstructed [108]. Based on

this, we speculate that these receiving sites might provide more “informative” scatter-

ing data, and might then deserve to receive higher weights during the optimization.

The expression for κpq that implements this idea is given as

κpq(ψ
(m)
inc , ψ

(n)
scat, fi) ,

σmeas
HH (ψ

(m)
inc , ψ

(n)
scat, fi)

σmeas
pq (ψ

(m)
inc , ψ

(n)
scat, fi)

. (4.6)

To understand the effect of these weights, note that the denominator of (4.6) when

multiplied by the discrepancy in (4.2) will result in the normalized cost function. How-

ever, the numerator of (4.6) will emphasize the information measured at the specular

angles as the σHH value at these angles has often larger values. The use of these weights
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in conjunction with (4.2) will then be referred to as the “balanced” cost function.

4.5 Synthetic Data Reconstruction Results

To compare the effectiveness of the four cost functions presented in the above section

with respect to the achievable reconstruction accuracy, numerous inversion scenarios

were studied. Generally, all the cases investigated followed the same trend and there-

fore, only three scenarios are presented here. As the first example, let’s consider the

snow-covered sea ice profile of Table 4.1. This profile is irradiated from ψinc = (45◦, 0◦)

direction, and the polarimetric NRCS is synthetically created at 8 different directions

having θ from 30◦ to 65◦ with the step of 5◦ and a fixed ϕ = 10◦ at 11 equispaced

frequencies starting with 3 GHz, and ending at 4 GHz. In this example, the inver-

sion algorithm retrieves 12 unknowns (namely, the roughness parameters of root mean

square (rms) height, h, and correlation length, l, for the snow-ice and ice-ocean in-

terfaces, height of snow and ice and finally, real and imaginary parts of the effective

complex permittivity of snow and ice). Four different inversions, each of which utilizes

one of the four cost functions described in the previous section, are applied to this syn-

thetic bistatic NRCS data set. The error in the reconstruction of the twelve unknowns

for each of these four cost functions is depicted in Figure 4.2. The profiles to be

reconstructed in Figure 4.2(a) and (b) are presented in Table 4.1 and 4.2, respectively.

A four percent noise is also added to the input data used to reconstruct the profile of

Table 4.2(b) to further assess the algorithm’s reconstruction ability in the presence of

noise. Also, in part (b), as opposed to part (a), the roughness parameters are given to

the inversion algorithm as prior information to keep the number of unknowns the same

as part (a). In this figure, the lower the plot value, the lower the retrieval error, thus,

the more accurate the reconstruction. This error is calculated based on the absolute

value of the difference between the final predicted value and the true value, divided by

the true value (i.e., the relative error). We also note that the differential evolution
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Tab. 4.2: Specifications of the snow-covered sea ice numerical model studied in Section 4.5 (Exam-
ple 2). All length values are in (cm). Here, Half-Space refers to a medium with a boundary
at infinity.

Snow Ice Layer I Ice Layer II Ice Layer III Ocean

Thickness 2 2 5 2 Half − Space

Relative Permittivity 2.10 + j0.20 4.00 + j0.40 3.60 + j0.15 3.80 + j0.30 60.00 + j60.00

rms Height (h) 0.15 0.10 0.01 0.01 0.15

Correlation Length (l) 1.50 1.00 0.50 0.50 1.50

algorithm incorporates a partly-random step in each element’s evolution [100] so as

to be able to investigate the search space of each unknown parameter thoroughly for

the universal minimum of the cost function after all iterations. Therefore, for every

separate complete run of the DE algorithm, the final reconstructed profile might vary

very slightly. To compensate for this effect and report a general trend, each of the four

inversion algorithms is run a few times with the same input NRCS data for the same

profile. Five runs is found sufficient since averaging beyond that did not change the

reconstruction accuracy results considerably. (These average reconstructed values are

the ones reported in this section.) As can be seen from both plots in Figure 4.2, the

retrieval error associated with the balanced cost function is almost constantly bellow

all others; therefore, the balanced inversion outperforms the others with respect to the

achievable reconstruction accuracy. It should also be noted that the addition of noise

to the input data has degraded the reconstruction accuracy and yet the balanced form

has kept its advantage over other three cost functions.

To consider more practical scenarios, we next study the reconstruction of two more

elaborate numerical models. These two models are a snow-covered thin New Ice (NI)

model as specified in Table 4.2, and a thicker NI model as presented in Table 4.3. In

these two numerical models, we consider three inner layers within the ice layer. This

is done to represent the varying permittivity within the ice layer. As noted in [109],

the plot of permittivity versus sea ice depth can have a C-shaped curve, with higher

permittivity values for top and bottom layers, and lower permittivity value for the
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Fig. 4.2: The common logarithm (log
10
) of relative error in the reconstruction of the 12 unknowns

using four different cost functions (CF) of the profiles of (a) Table 4.1, and (b) Table 4.2. The
horizontal axis shows the parameter of interest, and the vertical axis is its corresponding
error. Re and Imag denote the real-part and imaginary-part of the permittivity for the
corresponding layer. ∆ denotes the thickness parameter. In (a), 1st, 2nd, 3rd refer to as
air-snow, snow-ice and ice-ocean interfaces. In (b), Layer I, Layer II, and Layer III refer to
the layers within the ice as in Table 4.2.

middle layer. As can be seen in Tables 4.2 and 4.3, the interfaces for these inner

layers within NI are almost flat. These very small roughness parameters associated

with the inner NI layers are taken as known roughness parameters for the inversion

algorithm. Therefore, each of these two numerical models has a total of 16 unknown

parameters (namely, the roughness parameters of rms height, h, and correlation length,

l, for the air-snow, snow-ice top layer and ice bottom layer-ocean interfaces, height of

snow and ice and finally, real and imaginary parts of the permittivity for snow and

three ice layers). It should also be noted that although the total thickness of the NI
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Tab. 4.3: Specifications of the snow-covered sea ice numerical model studied in Section 4.5 (Exam-
ple 3). All length values are in (cm). Here, Half-Space refers to a medium with a boundary
at infinity.

Snow Ice Layer I Ice Layer II Ice Layer III Ocean

Thickness 4 3 8 4 Half − Space

Relative Permittivity 2.20 + j0.10 4.20 + j0.60 3.60 + j0.40 3.90 + j0.50 60.00 + j60.00

rms Height (h) 0.16 0.04 0.01 0.01 0.16

Correlation Length (l) 1.60 0.40 0.50 0.50 1.60

layer is an unknown to the inversion algorithm, the relative thickness of each inner NI

layer with respect to the total thickness of the NI layer is taken to be known, thus,

serving as prior information to the inversion algorithm.

Before presenting the inversion results of these two profiles, let’s note that the reference

NRCS data to the inversion algorithm in these two examples are synthetically created

using the same setup as used in the first example. For each profile, the unknown

parameters are retrieved first through the inversion of the blind cost function and next

by the inversion of the proposed balanced cost function. The inversion results for these

two examples using both noiseless and noisy NRCS data are depicted in Figure 4.3.

(To create the noisy data sets, 4% noise has been added to the noiseless data sets.)

The closer the plotted reconstructed lines are to the true profile, the more accurate the

reconstruction is. It is evident that the proposed balanced inversion outperforms the

blind inversion in achieving enhanced reconstruction accuracy for both noiseless and

noisy data sets. Therefore, as can be seen in Figure 4.3, the balanced inversion is still

important when the noise is present in the NRCS data. For example, the achievable

accuracy of the reconstructed real-part of the permittivity for the profile of Table 4.2

when using balanced inversion of noisy data, see Figure 4.3(f), is higher than that

when using blind inversion of the same noisy data, see Figure 4.3(e). Note that as the

noise in the NRCS data increases, the reconstruction accuracy decreases. However,

the balanced inversion still manages to outperform the blind inversion, indicating its

appropriate use of the information contents available in the NRCS data.
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It should also be noted that the balanced inversion results for the last two examples

(Tables 4.2 and 4.3) are not as good as the balanced inversion result for the first

example (Table 4.1). This could be attributed to the increase of the number of unknown

parameters in the last two examples as compared to the first example while having the

same number of reference NRCS data points as compared to the first example. Also,

the limitation on the penetration depth of irradiating electromagnetic waves degrades

the inversion accuracy for lower profile depth. The effect of attenuation is even worse

if the top layer is wet or brine-wetted [110].

Finally, we note that the reconstruction accuracy of the roughness parameters for

the profile of Table 4.1, denoted by h and l in Figure 4.2(a), are generally better

when the balanced cost function has been used. When the profile to be reconstructed

becomes more complex, assuming all the parameters to be unknown will result in poor

performance of the inversion algorithm due to the large imbalance between the number

of unknowns and the number of known NRCS data points. Therefore, for the examples

considered in Figures 4.2(b) and 4.3, we decided to give the roughness parameters

as prior information to the inversion algorithm. (Otherwise, we have to increase the

number of data points; e.g., by adding more frequencies or incidence/scattered angles.)

It would be instructive to investigate the performance of the inversion algorithm when

provided by wrong prior information; e.g., assuming that the inner interfaces are flat

for the profile of Table 4.2. (For the top interface, we still consider a known rough

interface, and use this as prior information since this roughness can be obtained by the

use of lidar in practice.) Based on this wrong surface flatness assumption, the inversion

algorithm was run for each cost function. The balanced cost function resulted in 78%

error; however, the error of the three other cost functions exceeded 100%. Therefore,

as can be seen, the balanced approach still outperforms; however, due to the use of

wrong prior information (significant modelling error), the error level is high. Of course,

as opposed to the profile of Table 4.2, if we consider a profile whose inner roughness
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parameters are sufficiently smooth, the assumption of flat interfaces will be acceptable,

thus, resulting in satisfactory reconstruction accuracy.

4.6 Conclusion

We have investigated the formulation of an appropriate cost function, which we refer to

as the balanced cost function, for dielectric reconstruction of simplified snow-covered

sea ice profiles from simulated bistatic NRCS data sets. This balanced cost function

is a weighted discrepancy between the reference NRCS data and the NRCS data of

a given predicted dielectric profile. The minimization of this cost function over the

dielectric profile will result in the final reconstructed dielectric profile. This balanced

cost function was compared with three other cost functions. The inversion of the

proposed balanced cost function achieved the best retrieval accuracy as compared to

the reconstruction accuracy obtained by inverting the other three cost functions. The

weighting scheme utilized in the balanced cost function normalizes the discrepancy

and also emphasizes the data points in the vicinity of the bistatic specular angle. The

latter is achieved through a multiplication with the HH polarized NRCS data. We

speculate that the NRCS data of these data points are more sensitive to the profile

unknowns, thus, being more informative to the inversion algorithm [108]. Numerous

simulated scenarios have been studied, three of which have been presented in this

chapter. The trend in all these scenarios were similar, supporting our claim on the

advantage of the balanced inversion algorithm. As a further step in this research, the

synthetically created bistatic NRCS data sets used in this chapter should be replaced

by the measured bistatic NRCS data to further assess the reconstruction accuracy

achievable from the proposed balanced inversion algorithm against experimental data.
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Fig. 4.3: Reconstructed permittivity and thickness values using (a) blind inversion of noiseless NRCS
data for the profile shown in Table 4.2, (b) balanced inversion of noiseless NRCS data for the
profile shown in Table 4.2, (c) blind inversion of noiseless NRCS data for the profile shown
in Table 4.3, (d) balanced inversion of noiseless data for the profile shown in Table 4.3,
(e) blind inversion of noisy NRCS data for the profile shown in Table 4.2, (f) balanced
inversion of noisy NRCS data for the profile shown in Table 4.2, (g) blind inversion of noisy
NRCS data for the profile shown in Table 4.3, and (h) balanced inversion of noisy data
for the profile shown in Table 4.3. The horizontal lines in each figure represent the named
interfaces (numbered from top to bottom). Real and Imag indicate the real and imaginary
parts of the reconstructed relative permittivity (denoted by ǫ).
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SERF Experiment I:

Inversion and Sensitivity Analysis

5.1 Overview

In Chapters 3, an electromagnetic inverse scattering algorithm was developed, and

its reconstruction accuracy for the snow-covered sea ice profile was assessed utilizing

synthetic data for various scenarios. Also in Chapter 4, it was shown that emphasizing

the role of the NRCS data collected in the vicinity of the specular angle in a bistatic

configuration results in higher reconstruction accuracy. Utilizing the same inversion

algorithm in this chapter, our objectives are to (i) find the NRCS data which are

more sensitive to the profile’s parameters of interest and assess their role in inver-

sion, (ii) employ the experimental NRCS data instead of synthetic NRCS data, and

(iii) introduce a further profile parametrization scheme based on prior information. In

particular, the use of this prior results in enhanced reconstruction. As will be described

in this chapter, the experimental data have been collected in the SERF during Winter



5.1 Overview 79

2014.

This chapter is structured as follows. After an introduction, the problem statement is

outlined in Section 5.3. Next, a preview of the BPT solver is brought in Section 5.4.

Subsequently, the NRCS sensitivity analysis from a forward scattering perspective

is presented in Section 5.5. To calculate these sensitivity values, the derivatives of

the NRCS data with respect to the profile parameters are calculated utilizing the

finite difference formulation. From the sensitivity analysis results, it is concluded

that the NRCS data collected at incidence angles in the vicinity of (i) nadir for the

monostatic configuration, and (ii) specular reflection for the bistatic configuration, are

more sensitive compared to the NRCS data collected at other incidence angles.

In Section 5.6, the reconstructed profiles are presented when synthetic NRCS data

are inverted. Based on the reconstruction results, it is concluded that the inclusion

of more sensitive NRCS data results in higher retrieval accuracy. Subsequently, the

speculation on the role of more sensitive NRCS data is investigated in Section 5.8,

utilizing the experimental data. To this end, the data are divided into two cases, one

with the NRCS data collected close to the nadir, and the other case with the NRCS

data set excluding the latter.

In addition, a C-shaped curve is fitted to the complex permittivity model of the profile

to reduce the number of problem unknowns. This will take advantage of prior informa-

tion regarding the complex permittivity distribution of the profile, thus, reducing the

number of unknowns, and guiding the inversion algorithm toward the true solution.

The inversion results using this prior information are then presented. These results

further confirm the speculation that utilizing more sensitive data achieves better re-

construction results for the monostatic case. Finally, a conclusion ends this chapter in

Section 5.9.

At the end, it should be noted that the monostatic NRCS data were collected at the
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Sea-ice Environmental Research Facility (SERF), located at University of Manitoba,

Winnipeg, Canada, during Winter 2014. During one phase of this experiment, the

polarimetric NRCS data were collected at frequencies ranging from 5.3 GHz to 5.7 GHz

through a C-band scatterometer. The air-snow interface was also scanned through a

lidar to calculate the roughness parameters. Moreover, physical samplings of snow

and sea ice (i.e., temperature, salinity, and density measurements) were carried out to

determine the true permittivity of the profile.

The materials of this chapter are based on the paper published in the IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing in 2015 [90](1).

5.2 Introduction

Two general challenges in solving any electromagnetic inverse scattering problem are

how to deal with the nonlinearity and ill-posedness of the associated mathematical

problem. Herein, the nonlinearity of the problem is treated by the use of an iterative

inversion algorithm, and the ill-posedness of the problem is handled by the use of a

projection-based regularization technique. Also, in the case of snow-covered sea ice mi-

crowave remote sensing, which is the focus of this chapter, at least two other challenges

exist. First, there exist vertical heterogeneous characteristics in the ice-snow profile

as well as possible horizontal inhomogeneities within the imaging domain. Second,

the inversion algorithm often have access to only limited measured data points [111].

To address the first issue, full-wave forward solvers are available which consider both

volume and surface scattering mechanisms. Such solvers can also take into account

different inclusion shapes within a rough-layered medium [72]. Unfortunately, the pro-

file’s large electrical size and the complexity of such models make it difficult to use

(1) c© [2015] IEEE. Reprinted, with permission, from N. Firoozy, A. Komarov, J. Landy, D. Barber, P. Mo-
jabi, and R. Scharien, “Inversion-based sensitivity analysis of snow-covered sea ice electromagnetic profiles,”
Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 8, no. 7, pp.
3643-3655, July 2015.
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these full-wave forward solvers in conjunction with inversion algorithms due to their

high computational complexities. (This can be better understood by noting that a for-

ward solver will be called several times in an iterative inversion algorithm.) One way

to handle this challenge, which will be used throughout this chapter, is to simplify and

parametrize the structure of the domain under study, and then use non full-wave for-

ward solvers [112,113]. To tackle the lack of access to sufficient measured data points,

appropriate data collection schemes need to be utilized so as to collect more informative

data points to help the inversion algorithm converge to more accurate reconstruction.

Also, the development of efficient inverse scattering algorithms which can fully utilize

the information within the measured data points should also be considered.

This chapter addresses the issue of having access to only limited data points by in-

vestigating which data points can possibly present the most useful information for the

reconstruction of the dielectric profile of the domain of interest. In fact, this chapter

attempts to set some guidelines for an appropriate data collection configuration for

the purpose of optimal dielectric profile reconstruction of snow-covered sea ice profiles.

These guidelines are derived based on the sensitivity analysis of the scattering data

with respect to the unknowns which are to be reconstructed. To derive these sensitivity

values, we utilize the recently-developed boundary perturbation theory (BPT) as our

forward scattering solver [94] in conjunction with a finite difference derivative formula-

tion. The effectiveness of these guidelines will be first investigated by the inversion of

synthetically collected data, and then through the inversion of the experimental data

collected in the Sea-ice Environmental Research Facility (SERF) at the University of

Manitoba, Winnipeg, MB, Canada [114].

This chapter is a contribution to the J-STARS Special Issue that builds on our con-

ference paper at IGARSS 2014 [108] by presenting our experimental data collection

procedure and the experimental data inversion. Throughout this chapter, the term

“snow” is used in its general form which is taken to include all states of dry, wet,
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brine-wetted and slush [115]. Also, a time-dependency of exp(−jωt) has been implic-

itly assumed in this chapter.

5.3 Problem Statement

Our goal is to investigate the sensitivity of different measured data points with respect

to the unknowns to be reconstructed. We then study the role of these sensitivity

values in the achievable reconstruction accuracy. Our speculation is that the inversion

of data points of higher sensitivity values results in more precise reconstruction results

as compared to the reconstruction results obtained by inverting the same number of

data points that correspond to smaller sensitivity values. We will then attempt to

support this speculation by inverting synthetically and experimentally collected data

sets having different sensitivity values. This study is important as it provides insight

on how to perform data collection in a practical measurement system so as to achieve

enhanced reconstruction accuracy.

In this chapter, the measured quantity is the normalized radar cross section (NRCS)

data, denoted by σpq. The NRCS data can be collected from different incidence and

scattered angles. Herein, we are interested in studying the sensitivity of the NRCS

data collected from different angles with respect to the layers’ complex permittivities

and their thickness values. To this end, we utilize an electromagnetic forward solver

in conjunction with a finite difference formulation to calculate these sensitivities. We

finally consider inverting different synthetic and experimental data sets, having the

same number of data points but different sensitivity values to assess our speculation

on the role of more sensitive NRCS data in inversion.
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5.4 Forward Scattering Solver

To calculate the sensitivities, we first need to be able to calculate the NRCS value for

given incidence and scattered angles from a given snow-covered sea ice profile. Herein,

the boundary perturbation theory (BPT) is utilized as our forward solver to calculate

the NRCS values. (This forward solver will also be utilized in our inversion algorithm

to evaluate how close the calculated NRCS due to a predicted profile is with respect

to the measured NRCS data.) In this section, we first briefly explain the structure of

snow-covered sea ice profile and its evolution, and then briefly describe the simplified

electromagnetic models that will be used in this chapter. The description of the BPT

forward solver then follows.

5.4.1 Snow-covered sea ice evolution and electromagnetic model

Herein, we study the snow-covered new ice (NI) developed in a calm condition. There-

fore, it is only slightly rough and the brine pockets are either randomly positioned or

spherical.Therefore the layer posses an isotropic complex permittivity [116]. A simpli-

fied profile under a monostatic measurement configuration is depicted in Figure 5.1.

Note that this chapter assumes almost flat interfaces for layers within the ice layer.

However, other interfaces, particularly the air-snow one, are generally rough. As will

be seen later, for all synthetic data sets, we assume that we have rough layers of snow

and ice sandwiched between air and ocean half spaces. We then assume homogeneous

complex permittivity and thickness values for these layers. The assumption of having

a homogeneous complex permittivity value for a given layer can be justified by as-

suming an effective complex permittivity value for that layer. This effective complex

permittivity will also serve the purpose of reducing the number of unknowns associ-

ated with an inhomogeneous complex permittivity distribution. Another type of model

simplification is presented in the experimental data section of this chapter in which
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Fig. 5.1: Schematic of radar cross section measurements of a simplified snow-covered sea ice profile
with rough interfaces through a scatterometer. As can be seen the incident direction Ψinc

is characterized by two angles; i.e., Ψinc = (θinc, ϕinc). Also, the scattered direction Ψscat is
characterized by two angles; i.e., Ψscat = (θscat, ϕscat). In the case of a monostatic setup,
θscat = θinc, and ϕscat = 180◦ − ϕinc.

the inhomogeneous complex permittivity distribution is modeled by the superposition

of two exponential functions. This will be based on using prior information about the

inhomogeneous complex permittivity distribution of the actual profile.

5.4.2 NRCS calculation using the BPT forward solver

The BPT forward solver [94] is utilized to calculate the NRCS values, σpp. Also based

on our experience and lidar measurements [97], the exponential distribution for the

spatial power density best fits the common new ice type. We also note that due to

BPT closed-form formulation, this forward model is computationally efficient. This

makes it suitable to be used in global optimization inversion algorithm (as used in

our earlier work [91]), and also to be called repetitively to perform sensitivity analysis

using a finite-difference differentiation scheme (as will be shown in Section 5.5).

In what follows, we consider a numerical example, in which we calculate the NRCS

of a snow-covered sea ice profile described in Table 5.1 with the orientation notation
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Tab. 5.1: Dielectric profile specifications of the snow-covered ice profile considered in Section 5.4.2. h
and l are the surface roughness parameters of rms height and correlation length, respectively.

Snow (wet) Ice Layer I Ice Layer II Ice Layer III Ocean

THICKNESS (cm)
3 5 8 5 Half − Space

PERMITTIVITY
2.0 + 0.3j 4.5 + 0.4j 3.7 + 0.2j 4.0 + 0.3j 58.0 + 41.0j

ROUGHNESS PARAMETERS (cm)
h = 0.15 h = 0.05 h = 0.01 h = 0.01 h = 0.05
l = 1.50 l = 0.50 l = 0.50 l = 0.50 l = 0.50

used in Figure 5.1 at the frequencies of 5 GHz and 6 GHz with the Horizontal-sent

Horizontal-receive (HH) polarization. As can be seen, this snow-covered sea ice profile

has been parametrized as a rough-surface multi-layered medium in which each layer

has a homogeneous complex permittivity value. For the monostatic configuration,

with Ψinc = (θinc, φinc) = (15◦:75◦, 0◦) and Ψscat = (θscat, φscat) = (θinc, 180◦), and the

bistatic configuration, with Ψinc = (θinc, φinc) = (45◦, 0◦) and Ψscat = (θscat, φscat) =

(15◦:75◦, 0◦), the BPT forward solver returns the NRCS results shown in Figure 5.2.

(These two frequencies of operation are chosen as the lower and upper frequencies of

the C-band spectrum commonly used in space-borne SARs such as radarsat.) From

many NRCS simulations of different ice types for the purpose of inversion, we recom-

mend that measurements in high incidence angles (i.e., usually above 60◦) should be

generally avoided as they might return too small NRCS values which could be lost in

the noise floor of the system or environmental interferences. Also, we can induce that

in bistatic configuration, unlike the monostatic, NRCS values for HH is higher than

V V . Moreover, although in the case of Figure 5.2, the increase of frequency leads to

higher values for NRCS (due to more comparable size of wavelength to surface rough-

ness), a more complex medium might not follow this trend due to multiple scattering

events between its various layers.
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Fig. 5.2: NRCS (denoted by σ) for HH polarizations at 5 and 6 GHz for values of Table I in (a) Mono-
static, and (b) Bistatic configurations.

5.5 Sensitivity Analysis

Sensitivity analysis for remote sensing applications can be performed from different

viewpoints. For example, it can be carried out to investigate the ability of the inverse

solver to accurately differentiate between two similar profiles. For sea ice applications,

this has been previously investigated to evaluate the reconstruction abilities of various

inversion algorithms; e.g., see [117, 118]. Herein, we look at the sensitivity analysis

from a forward scattering viewpoint. That is, we utilize a forward scattering solver

(i.e., the BPT) to calculate the change in the NRCS value due to a small change of

one of the profile parameters.

The sensitivity of the NRCS data with respect to the model parameters of each layer’s

permittivity and thickness can then be calculated through the following fourth-order

finite-difference derivative formulation as

∂σpq
∂χi

≈ −σpq|χi+2∆χi
+ 8σpq|χi+∆χi

− 8σpq|χi−∆χi
+ σpq|χi−2∆χi

12∆χi

(5.1)
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In (5.1), χi is the unknown parameter (e.g., the real part of the snow complex per-

mittivity) with respect to which the sensitivity is being calculated. Also, ∆χi is the

perturbation of the model parameter χi used to calculate the sensitivity. To find an

appropriate value for the perturbation of each of the profile’s parameters, we itera-

tively reduce the magnitude of ∆χi and calculate the corresponding sensitivity until

it converges to a stable value.

Figures 5.3 and 5.4 depict the sensitivity values of the NRCS data with HH polar-

ization for the profile of Table 5.1. The monostatic configuration has a look angle

of Ψinc = (θinc, φinc) = (15◦:70◦, 0◦) and Ψscat = (θscat, φscat) = (θinc, 180◦) and the

bistatic configuration has a look angle of Ψinc = (θinc, φinc) = (45◦, 0◦) and Ψscat =

(θscat, φscat) = (15◦:70◦, 0◦). The sensitivities are calculated with respect to each layer’s

permittivity and thickness values at 5.5 GHz, at different angles for both monostatic

and bistatic setups. Since, for this case, the sensitivity trend for HH and V V polar-

izations proved to be the same, only the sensitivity for HH polarization is shown here.

Also, since the sensitivity with respect to real and imaginary parts of the complex

permittivity proved to have the same pattern for this case, only the sensitivity with

respect to the real part of the complex permittivity is shown here. For the monostatic

configuration, it is obvious that the closer the observation angle is to the nadir, the

higher the sensitivity is. In the case of the bistatic configuration, the sensitivity is

generally highest within the vicinity of the specular angle, though not necessarily ex-

actly at that angle. The reason for this shift is linked to the multiple scattering events

between the layers. Finally, for both the monostatic and bistatic configurations, the

magnitude of the sensitivity decreases as the depth increases, since only a smaller

portion of the illuminating wave can penetrate to deeper locations within the profile

and also make it back to the observation point. We also note that herein we do not

investigate the sensitivities with respect to the roughness parameters (h and l) since

these roughness parameters are taken as prior information in the utilized inversion
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Fig. 5.3: Monostatic sensitivity analysis for the HH polarizations at 5.5 GHz for the profile of Ta-
ble 5.1 (a) NRCS sensitivity with respect to permittivity, (b) NRCS sensitivity with respect
to thickness. Here, ∆ denotes the thickness values.

algorithm. It should also be noted that when we calculate the sensitivity values, e.g.,

with respect to the real part of the snow complex permittivity, we keep the rest of

the parameters constant. (These constant values are chosen to be close to the typical

values.) Therefore, we do not claim that the sensitivity results presented here are true

for all rough multi-layer profiles. However, we tried different rough snow-covered sea

ice profiles, and similar results were obtained for them.

We speculate that higher sensitivity values with respect to a parameter translates

into more accurate reconstruction accuracy with respect to that parameter. If this

speculation is correct, the data collection setup should attempt to collect data points

having higher sensitivity values for the inversion algorithm to provide enhanced recon-

struction accuracy. Therefore, for the bistatic configuration, an appropriate margin of

measurements around the specular angle should be provided. Also, for the monostatic

configuration, an appropriate margin around the nadir should be utilized. In what fol-

lows, we attempt to support this speculation by applying our inversion algorithm to

synthetic and experimental data sets.
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Fig. 5.4: Bistatic sensitivity analysis for the HH polarizations at 5.5 GHz for the profile of Table 5.1 at
45◦ incidence angle (a) NRCS sensitivity with respect to permittivity, (b) NRCS sensitivity
with respect to thickness. Here, ∆ denotes the thickness values.

5.6 Inversion Algorithm

The inversion algorithm utilized in this chapter has been presented in [91]. The dif-

ferential evolution (DE) algorithm [99] in conjunction with the BPT forward solver

constitute the two main components of this inversion algorithm. Using an iterative

scheme between these two components, this inversion algorithm reconstructs the un-

known parameters of snow-covered sea ice from the NRCS data by minimizing a data

misfit cost functional. Moreover, a projection-based regularization algorithm handles

the ill-posedness of the mathematical problem by limiting the search space of the un-

known parameters. Finally, a band of 0 to 2 for the imaginary part of the complex

permittivity and 2 to 8 for the real part of the complex permittivity is considered.

For the synthetic data inversion, layer thickness is also set between 0 to 30 cm. The

roughness parameters are provided to the algorithm to reduce the number of unknowns

in both synthetic and experimental data inversion.
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5.7 Synthetic Results

In this section, we will present the snow-covered sea ice profile reconstruction results

considering the data sensitivity discussed previously.

5.7.1 Synthetic data sets

To investigate the importance of using data points having high sensitivity values in

the inversion algorithm, we consider two synthetic data sets, referred to as Case I and

Case II, per monostatic and bistatic configurations for the profile of Table 5.1. The

scattering data sets for both cases are collected at 10 equispaced frequencies between

5 and 6 GHz and an incidence angle illuminating the profile at (θinc, ϕinc) = (θscat, 0◦)

for the monostatic and (θinc, ϕinc) = (45◦, 0◦) for the bistatic configuration. The scat-

tered data is measured at the azimuth angle of ϕscat = 180◦ for the monostatic case

and ϕscat = 5◦ for the bistatic case. In both configurations, the elevation measure-

ment (scattered) angles are (i) 15◦ to 35◦ with 5◦ steps for Case I data set, and

(ii) 40◦ to 60◦ with 5◦ steps for Case II.

5.7.2 Inversion results

The inversion of these synthetic data sets are shown in Figure 5.5. As it is evident from

the reconstruction results, the inversion of Case I returns more accurate reconstruction

results for the monostatic configuration and the inversion of Case II returns more

accurate reconstruction results for the bistatic one (with mean-square-root of relative

error of 0.9448, 1.0674, 1.4164 and 0.5266 for part (a) to (d), respectively). This

confirms the speculations of Section 5.5 as Case I data set is within the region of high

sensitivity for the monostatic case and Case II data set is within the region of high
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Fig. 5.5: Reconstruction of the snow-covered sea ice dielectric profile of interest using two different
synthetic data sets, Case I and Case II. The y = 0 line indicates the air-snow interface,
(a) monostatic configuration, Case I, (b) monostatic configuration, Case II, (c) bistatic
configuration, Case I, and (d) bistatic configuration, Case II

sensitivity for the bistatic case. It should be noted that various other profiles of snow-

covered new ice were investigated under the same scheme and they all follow the same

trend in inversion accuracy as the case studied above.

5.8 Experimental Results

In this section, we present our measurement setup that has been used to collect ex-

perimental NRCS data. It should be noted that our equipment is only capable of

measuring monostatic NRCS data. Therefore, this section is entirely focused on the

monostatic experimental data measurements and inversion.

5.8.1 Measurement Setup and Equipment

The measurements were performed at the Sea-ice Environmental Research Facility

(SERF) located at the University of Manitoba, Winnipeg, MB, Canada. The SERF
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was constructed in 2011 as the first experimental sea-ice facility in Canada. In this

facility, the sea ice is developed within a pool 18.3 meters long, 9.1 meters wide, and

2.4 meters deep. The pool is equipped with in-situ sensors, e.g., a temperature logger,

and external instruments, e.g., a met station, for time-series monitoring as the ice

in the pool develops. There is also a platform constructed at the end of the pool

for scatterometer and lidar placement so as to perform NRCS and surface roughness

parameter measurements respectively.

The scatterometer in this experiment is a polarimetric, solid-state frequency-modulated

continuous-wave radar working in the frequency band of 5.25 to 5.75 GHz (C-band).

This frequency band was chosen as a tradeoff between the achievable resolution and

the penetration depth. Also, models evaluated through the C-band scatterometer

measurements may be scaled up to measurements by same-band satellites, e.g. current

Canadian radarsat-2 and European Sentinel-1 as earth observation satellites. The

radar system is equipped with a parabolic solid dish antenna of 61 cm diameter and a

nominal 25 dB gain. This results in a half-power beam-width of about 5.5◦ for various

polarizations. For polarimetric measurements, the scatterometer RF signal consists of

polarization tooth-saw sections, with a polarization delay between them, and finally

a calibration and noise segment. Sensitivity of the system is measured to be -40 dB

which defines the system noise floor. A lidar system is used to scan the surface for

roughness parameter calculations. The lidar system used in this research is a Leica

Scanstation C10 terrestrial laser scanner [97]. The minute laser wavelength of the lidar

pulse makes 3D mapping of the surface feasible, which in turn enables us to calculate

the roughness parameters. The Scanstation C10 emits pulses of light at a repetition

frequency up to 50 Hz and records both the trajectory and time-of-flight for each pulse

to be reflected by the surface of the target and return to the scanner. At a wavelength

of 532 nm, the laser pulses are consistently reflected by the surface.
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(a) (b)

Fig. 5.6: SERF facility (a) The initial stage of sea-ice growth, (b) Calibration setup using a trihedral
corner reflector at the last day of measurement.

5.8.2 Measurement Procedure

The SERF pool was filled with a salt mixture to simulate the sea-water (i.e., Cl−

with 568.32 mmol/kg, SO2−
4 with 20.77 mmol/kg, Na+ with 510.36 mmol/kg, K+

with 10.52 mmol/kg, Mg2+ with 57.99 mmol/kg and Ca2+ with 11.73 mmol/kg) with

an overall salinity of 33.8 ppt. As one of the project’s phases, in January 2014, ice

growth started from open-water under the natural cold weather of Winnipeg, as shown

in Figure 5.6a. A monostatic configuration was chosen in which polarimetric (i.e.,

HH, V V and V H linear polarization) NRCS of the domain was measured. The C-

band scatterometer was placed on the platform facing the pool, with the antenna-base

height of about 5 m from the pool’s surface. The scatterometer is capable of measuring

NRCS at frequencies from 5.25 to 5.75 GHz in a 100 MHz step. The elevation and

azimuth scanning angles range from 20◦ to 60◦ and from -15◦ to +15◦ with 5◦ steps

respectively. The scanning in azimuth plane is averaged for each elevation incidence

angle as we assume azimuthal homogeneity for the domain of interest for each elevation

angle. Also each identical scan is repeated 5 times and the scan results are averaged

to produce a single scattering matrix so as to reduce the effect of random noise in the

measurement, by a minimum ratio of 1/
√
5.
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5.8.3 Calibration

Two calibrations were carried out: (i) a sky calibration (cold source) for the system

noise temperature, and (ii) a polarimetric calibration using a metallic trihedral corner

reflector for each sampling frequency, as shown in Figure 5.6b. Due to the excellent

cross-polarization (more than 30 dB in the peak of every polarization) between channels

of this specific scatterometer, a single target calibration was sufficient for polarimetric

calibration. It should be noted that the application of new calibration files resulted in

an almost constant shift for NRCS values for all scattering angles when compared with

both simulation and previous calibration files for similar configurations. Therefore, the

measured values were corrected for this shift. Finally, since the scatterometer was not

in the far-field for all incidence angles, a correction factor was applied to all NRCS

measurements.

5.8.4 Lidar Measurements

The scatterometer measurement was followed by a lidar scan on the 4th of February

2014 to measure the small-scale roughness of the surface. Roughness parameters are

assumed unchanged compared to previous days as there was no significant weather

incidence. The lidar scanner was mounted on the scaffold directly below the C-band

scatterometer as shown in Figure 5.7a, at a height of 2.8 m above the SERF pool.

The scanner was configured to obtain samples at a spatial resolution of less than 2 mm

from an area of the snow surface enclosing almost the entire scatterometer measurement

footprint. The final scan contained more than 15 million surface measurements.

After the scan was taken, the data were post-processed following the procedure outlined

in [97] to extract the relevant surface roughness parameters with two approaches.

In one approach, rms height h and correlation length l are measured alongside the
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estimated scatterometer scanning arc at 5◦ intervals with incidence angles from 25◦ to

60◦. For each incidence angle, a series of square 1m× 1m sections were extracted from

the full scan at 0.2 m intervals along the scatterometer swath. Each square section was

aligned parallel to the scatterometer beam and contained more than 200, 000 surface

measurements. A few sections of lidar data contained outlying samples located well

above the true pool surface, caused by laser reflections from precipitation, which were

removed using a simple height-threshold algorithm. The samples within each section

were interpolated to a regular grid made up of 5mm × 5mm cells (i.e., less than one

tenth of the utilized scatterometer’s wavelength of 5.5 cm) using a linear interpolation

scheme. This method of interpolation was chosen, rather than a more sophisticated

method such as kriging, because the sampling interval between raw samples was smaller

than 2 mm. Therefore, the linear interpolation helped to the information from the

original data while re-sampling to a grid with cells larger than the sampling interval

of the raw samples. In the other approach to calculate h and l, sampling was carried

out within a rectangular mesh over the surface, instead or the scatterometer arc scan

path, with sampling of 2 mm and a window size of 1m× 1m.

The scanned surface contained a larger scale of surface topography. This was possibly

caused by irregular deposition of snow at the pool surface or, alternatively, redistribu-

tion of snow by wind across the pool in previous days. Including this larger scale of

topography in the surface roughness measurements would bias h and l. An FFT-based

detrending algorithm was therefore used to remove low-frequency surface topogra-

phy above a wavelength of 0.5 m within each section, leaving only the high-frequency

(radar-relevant) roughness components. Surface roughness parameters were calculated

for each detrended section using two-dimensional auto-correlation. Mean values for h

and l were obtained for each scatterometer incidence angle from the average of all

1m×1m sections in a swath. For instance in the first approach, five sections were used

to calculate roughness parameters for the narrow-swath 25◦ incidence angle, whereas
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(a) (b)

Fig. 5.7: Surface roughness measurement at SERF (a) Lidar placement under scatterometer in the
shed, (b) Oblique view of the profile’s surface. The scatterometer scanning area on the
surface is outlined in black lines.

eighteen sections were used for the wider-swath 60◦ incidence angle.

5.8.5 Profile Description

By the 3rd of February 2014, the ice in the SERF pool had grown to a thickness of

about 26 cm. An early snow-fall that happened at the beginning of the ice formation

created a top layer on ice of about 1.5 cm thickness. This top layer is highly saline;

we speculate the reason to be a combination of brine expulsion to the surface from the

ice bellow and a process of melt-refreeze over past days.

To have a reference for our electromagnetic modeling evaluation, we need to measure

the thickness and complex permittivity value for each layer of the profile. A direct in-

situ complex permittivity measurement method of snow and upper layer of ice at the C-

band frequencies using a dielectric probe was not successful. The reasons are speculated

to be (i) melting snow/ice at the probe surface, and (ii) imperfect contact of the probe

with the surface due to the roughness (in case of ice) or air-bubbles (in case of snow).

Therefore, semi-empirical methods were chosen to calculate the complex permittivity

as follows. For ice, the brine permittivity is first calculated from the ice temperature
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and the frequency of operation [4]. Then, its volume fraction from ice salinity [5] and

finally a mixture model is used to calculated the sea ice permittivity [116]. To this

end, an ice-core was extracted from the pool and a temperature profiling was carried

out with 2.5 cm steps when the scatterometer was measuring the NRCS. It was then

cut into 5 cm slices which were later melted and salinity measured. It was not initially

clear what the geophysical composition and structure of the top layer was. Therefore,

four different formulations are tested in our data: dry snow [32, 119], wet snow [32],

brine-wetted dry snow [110, 115], and slush [72, 120]. To extract the input variables,

temperature was measured every 0.75 cm and a cutter was used to sample it every

1 cm (0.5 cm overlapping). The snow samples were first weighted for density and later

melted for salinity measurements. Possible top layer middle permittivity is brought in

Table 5.2 for each scenario (mixture formula for ice and brine was used to calculate the

slush permittivity [27]). To use the right formulation for the permittivity of the top

layer, each state was simulated by the forward solver and the resulting simulated NRCS

values were compared to the NRCS measurements. The assumption of the slush state

proved to provide the best match between the simulation and measurement results.

This conclusion is also in line with our physical observations during the experiments.

The occurrence of such high salinity and slush was also recorded in SERF in the

previous year [72]. We should note that the top layer seems too saline to have formed

only through brine rejection during ice formation. Therefore, we speculate that the

thin ice sheet was depressed by the snow cover and seawater percolated up through to

the base of the snow layer, or the ice was not in freeboard but rather frozen to the pool

edge, so the seawater was under pressure causing hydrostatic pumping of water to the

ice surface at some point. This condition is not generally observed in the Arctic. (i.e.,

the snow is typically much less saline with lower permittivity.) The true profile of

the complex permittivity is thus calculated and depicted in Figure 5.8 for the middle

frequency of 5.5 GHz.
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Tab. 5.2: Four possible states of top layer and their corresponding physical/chemical properties per-
mittivity at the middle point.

TOP LAYER PROPERTIES
Temperature (C ) Density (g/cm3) Salinity (ppt)

-8.81 0.39 60.30

PERMITTIVITY
Dry Snow Wet Snow Brine-Wetted Snow Slush

1.54 3.68+1.12j 3.62+1.42j 7.81+1.44j
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Fig. 5.8: True profile (a) salinity and temperature measurements, (b) calculated permittivity.

5.8.6 Profile Parametrization

As apparent from Figure 5.8b, both real and imaginary parts of the complex permit-

tivity profile follow an exponential pattern with depth, showing a significant decrease

within the first few centimeters. Therefore to reduce the number of parameters which

define the dielectric profile of the domain, and thus reducing the number of unknowns

for the inversion algorithm, a curve is fitted to the real and imaginary parts of the

complex permittivity as

ǫ(z) = a× exp(cz) + b× exp(dz) (5.2)



5.8 Experimental Results 99

where ǫ can be the real or the imaginary parts of the complex permittivity. In (5.2), z is

the depth from the snow top and a, b, c and d are the real-valued unknowns. Therefore,

the whole domain’s complex permittivity profiled is parametrized by 8 unknowns. It

should be noted that the choice of such exponential form to fit the permittivity profile,

comes from the knowledge of its true profile’s C shape. Therefore, the use of (5.2)

in the inversion algorithm is considered as another prior information in the inversion

process.

5.8.7 Discussion on the Measured Values

Polarimetric measurements of the HH, VV, and VH NRCS of the profile were carried

out at the frequency samples of 5.3, 5.4, 5.5, 5.6 and 5.7 GHz. Figure 5.9 shows

the measured σV V for all sample frequencies. Four issues should be addressed here.

First, the NRCS is not an ever-decreasing pattern. This can be traced back to the

inhomogeneity in the roughness parameter values for each elevation angle, confirmed

by the lidar measurements. Second, unlike a simple half-space, the NRCS does not

equally increase by stepping up the frequency for all incidence angles. This is due to

the layered nature of this medium which causes multiple reflections. Third, an error

margin of up to 0.5 dB exists in each measurement, defined as the NRCS variation

in repetitive measurements. Fourth, sampling frequencies, due to the scatterometer

limitation, are only 100 MHz away from each other. Therefore, it is expected that

the the information at some data points might be lost as the NRCS difference to be

due to the frequency change or the error margin. Such incidents will contribute to the

reconstruction error of the inversion algorithm. Moreover, the BPT as a multi-layered

rough media surface scattering forward solver follows the measured NRCS accurately.

We trace it to our speculation that the surface scattering component is overwhelmingly

larger than the volume scattering component. The justifications for this are (i) first

few layers have a very high permittivity with high interface electromagnetic reflection,
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Tab. 5.3: Roughness parameters of rms height and correlation length (i) Approach A: along rectan-
gular, with sampling interval scale of 2 mm, 1m× 1m window (ii) Approach B: along arc,
with sampling interval scale of 5 mm, 1m× 1m window (iii) Chosen Values: based on lidar
suggestions and electromagnetic modeling result comparison with measurement. NA refers
to not available data. Values are in cm

APPROACH A APPROACH B CHOSEN VALUES

θ◦ h l θ◦ h l θ◦ h l

60 0.12 1.20 60 0.11 1.7 60 0.120 1.200
57 0.10 1.41 55 0.13 1.0 55 0.100 2.100
53 0.10 2.50 50 0.11 2.8 50 0.130 2.300
49 0.12 3.67 45 0.10 1.7 45 0.115 1.700
44 0.12 4.17 40 0.12 1.9 40 0.215 1.900
37 0.10 3.57 35 0.18 1.8 35 0.180 1.300
29 0.24 1.40 30 0.28 1.3 30 0.250 1.400
25 NA NA 25 NA NA 25 0.105 1.800
20 NA NA 20 NA NA 20 0.105 1.800

(ii) the slush-covered sea ice in the SERF is new, thus, lacking more complex volume

scatterers (e.g., lenses), and (iii) the measured values for the cross-polarized NRCS

components are very small.

Table 5.3 shows the calculated roughness parameters resulting from the lidar scans. To

examine the certainty of these values, two approaches were considered: (i) measure-

ments along vertical rectangular grids with sampling interval scale of 2 mm, 1m× 1m

windows, and (ii) measurements along arcs corresponding to the scatterometer ele-

vation measurement angles with the sampling interval scale of 5 mm, 1m × 1m win-

dows. As can be seen, the subjective approach in the roughness parameter calculation

method can result in different values, more noticeably for the correlation length, for

even the same incidence angles. Furthermore, what is considered here as “scattering

angle arc” for lidar off-setting, is merely resulted from simple geometry calculation

as H tan(θ) × (cos(φ)x̂ + sin(φ)ŷ) in which H is considered to be the distance be-

tween the tube on which antenna bracket is mounted to the profile’s surface. This

value is not exactly the same as the actual incidence angle from the scatterometer’s

antenna, as the complex antenna’s bracket movement in this calculation is ignored.
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Fig. 5.9: Measured σV V at sampling frequencies of 5.3, 5.4, 5.5, 5.6 and 5.7 GHz with error margin at
each measurement. The inner box is a magnifier for more detailed view. (b) Comparison of
σV V between the simulated, denoted by Sim, and measured, denoted by Meas, at 5.5 GHz.

Moreover, the antenna has a Gaussian field distribution which does not incorporate

roughness effects uniformly. Therefore, instead of using the exact values of the rough-

ness parameters provided by the lidar calculation in our electromagnetic modeling,

we use them as a reference and tweak them in a way that the resulting NRCS from

the forward solver resembles the measured NRCS data the most. Final values cho-

sen on this assumption are shown in the last column of Table 5.3. This model-based

judgment on roughness parameters was possible since we had the true permittivity of

the profile through direct physical measurements. This shortcoming in independently

choosing the right roughness parameters can be partially solved if a completely ob-

jective method in roughness parameter calculation is developed. Other interfaces are

taken to be almost smooth in accordance with our observations and previous studies

at the SERF [72]. Moreover, to make sure that these roughness values are within

the validity region of the BPT forward solver, an NRCS comparison with improved

integral equation method (I2EM) [27], was carried out for a simplified profile of half

space with the same roughness parameters as reported in Table 5.3. The results varied

only about 0.15 dB in most data points which is within the tolerance of the algorithm.

Finally, a comparison between simulated and measured data at 5.5 GHz for the SERF

profile is depicted in Figure 5.10.
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Fig. 5.10: Comparison of σV V between the simulated, denoted by Sim, and measured, denoted by
Meas, at 5.5 GHz.

5.8.8 Inversion results

In this section, we apply our inversion algorithm to the NRCS data measured at the

SERF. The inversion results can then be used to evaluate the role of the sensitivity

in the achievable reconstruction accuracy. Due to the large number of the profile un-

knowns and limited number of NRCS data points, the surface roughness parameters

are taken to be as prior information. Also a height position griding based on mea-

surement points on the snow-covered sea ice provides the algorithm with the profile’s

freeboard. Therefore, the total number of unknowns to be reconstructed is 8 (4 as the

coefficients of (5.2) for the real part of the profile’s complex permittivity and the other

4 as the coefficients of (5.2) for the imaginary part of the profile’s complex permittiv-

ity). Two different measured data sets are then considered, and named as Case I and

Case II. For Case I, the input data of σV V and σHH belonging to the look angles of 20◦,

25◦, 30◦, 35◦, and 40◦ at the sampling frequencies of 5.3, 5.4, 5.5, 5.6 and 5.7 GHz are

considered. Therefore, a total number of 50 input data points is available for Case I.

For Case II, the input data of σV V and σHH belonging to the look angles of 40◦, 45◦,

50◦, 55◦, and 60◦ at the sampling frequencies of 5.3, 5.4, 5.5, 5.6, and 5.7 GHz are

considered. Therefore, similar to Case I, a total number of 50 data points is available
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Fig. 5.11: Reconstruction of the snow-covered sea ice dielectric profile of interest using two different
data sets, Case I and Case II through monostatic configuration experimental data. (a) real
permittivity profile, Case I, (b) imaginary permittivity profile, Case I, (c) real permittivity
profile, Case II, (d) imaginary permittivity profile, Case II

for Case II. The profile is then reconstructed using these two different data sets. The

result of the reconstruction is shown in Figure 5.11. It is obvious that the inversion

of the data set of Case I returns more accurate reconstructions, with mean square

relative error of at least two times smaller than that of Case II (i.e., for the first 9

points permittivity, with mean-square-root of relative error of 0.0649, 0.4196, 0.1091

and 0.8139 for part (a) to (d), respectively). This verifies our speculation that the

NRCS data collected at the angles close to the nadir in a monostatic configuration

provide more sensitive data to the dielectric profile of the domain of interest, thus,

helping the inversion algorithm to converge to a more accurate reconstruction. Also, it

is evident that due to the penetration depth, the illuminating wave interrogates deeper

layers of the profile less efficiently. Therefore, the retrieval accuracy deteriorates in

deeper layers.



5.9 Conclusion 104

5.9 Conclusion

In this chapter, we have (i) investigated the sensitivity of the NRCS data in both

monostatic and bistatic configurations with respect to the dielectric profile parameters

of snow-covered sea ice, and (ii) demonstrated through synthetic and experimental

data that enhanced reconstruction accuracy can be obtained if more sensitive NRCS

data is used for inversion. To calculate the sensitivity of the NRCS data at different

look angles, we have used the BPT forward solver in conjunction with the fourth-

order finite-difference derivative formulation. The choice of the BPT forward solver

was beneficial as its closed-form recursive formulation results in efficient computational

time. It was then shown that the NRCS data collected close to the nadir in monos-

tatic setups is more sensitive to the dielectric profile parameters. Also, it was shown

that the NRCS data collected close to the specular angle in bistatic setups exhibit

high sensitivity values with respect to the dielectric profile parameters. It should be

noted that in the case of a bistatic configuration, the maximum sensitivities for all the

profile parameters do not necessarily happen at the specular angle. This could be due

to multiple scattering events from rough interfaces. Therefore, it was recommended

that an angular margin in the vicinity of the specular angle should be included in

measurements.

Based on these observations, we then speculated that the inversion of the data sets

corresponding to higher sensitivity values should result in enhanced dielectric profile

reconstruction accuracy as compared to the inversion of the data sets corresponding to

smaller sensitivity values. To verify this speculation, we created two different NRCS

data sets for each profile of interest. These two different data sets are distinguished by

their corresponding look angles towards the profile. The difference between the look

angles transforms into different NRCS sensitivity values. It was then shown that the

inversion of more sensitive data set results in enhanced reconstruction accuracy, thus,
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confirming our speculation.

For the monostatic configuration, we investigated inverting both experimentally and

synthetically collected data sets of different sensitivity values. In particular, for the

experimental NRCS data inversion, we used a parametrization technique to lower the

number of profile unknowns to deal with the imbalance between the number of known

and unknown quantities. In this parametrization, prior information regarding the

shape of the dielectric profile curve, based on physical observations, was utilized. For

the bistatic configuration, we only showed the inversion of synthetically collected data

sets of different sensitivity values. This is due to the fact that experimental bistatic

NRCS data was not available. As a future work, inversion of experimentally collected

bistatic NRCS data should be carried out. This will further evaluate our speculation

on bistatic inversion of the more sensitive NRCS data in the vicinity of the specular

angle. Such bistatic data may be measured through tandem satellites, dual-apertured

airborne radars, and bistatic ground-based scatterometers. In addition, it will be useful

and practical to assess similar scenarios to those studied in this chapter using single-

frequency data sets. The use of single-frequency data sets, as opposed to multiple-

frequency data sets, may then require incorporating more prior information about the

profile to be reconstructed.

This chapter, therefore, contributes to better understanding the importance of the

sensitivity of the measured NRCS data points with respect to the parameters to be

reconstructed in microwave remote sensing of snow-covered sea ice dielectric profiles.

The framework presented above can then be a useful tool in selecting more informative

data points for the microwave inversion process.



6

SERF Experiment II:

Temporal Evolution Retrieval

6.1 Overview

In the previous chapter, the use of sensitive NRCS data with respect to the unknown

parameters of the profile for a multi-frequency monostatic configuration was investi-

gated. Furthermore, a profile parametrization technique was employed based on prior

information about the permittivity profile of the snow-covered sea ice. These two

techniques allowed an appropriate treatment of the ill-posedness associated with the

inverse scattering of the snow-covered sea ice. Herein, we consider the case in which we

do not have access to multi-frequency data sets; instead we have access to time-series

NRCS data. To address this scenario, I develop another strategy in this chapter to

invert single-frequency time-series monostatic NRCS data. Within this framework, the

inversion algorithm reconstructs the vertical temporal profiles of temperature, salinity,

and density of the snow-covered sea ice. The time-series single-frequency NRCS data
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utilized in this chapter have been collected at the SERF during Winter 2014.

Herein, the structure of this chapter is described. A brief introduction is brought in

Section 6.2 and is followed by the problem statement in Section 6.3. Afterwards in

Section 6.4, the general strategy utilized for inversion is outlined as below. It is ex-

pected that when the number of measured NRCS data points is small, the employment

of prior information about the profile can increase the accuracy of the reconstruction

by tackling the ill-posedness. Thus to take advantage of this concept, it is proposed

to utilize the reconstructed profile at a given time step as prior information for the

profile reconstruction at the subsequent time step. Next in Section 6.5, the measure-

ment procedure is explained. The measurement procedure is similar to that explained

in Chapter 7 (i.e., physical sampling, lidar, and scatterometer measurements), except

that the NRCS data collected through the scatterometer are single frequency and in

time-series. The physical sampling is also carried out throughout the temporal NRCS

measurements.

The utilized inversion algorithm is briefly described in Section 6.6. This inversion al-

gorithm employs a normalizing weighting factor for the misfit cost function to retrieve

the temperature, salinity, and density profiles of the snow-covered sea ice. It should be

noted that these geophysical and thermodynamic parameters of snow and sea ice are

related to their dielectric properties through the proxy formulas presented in Chap-

ter 3. In Section 6.7, the use of prior information is further explained. This includes

(i) an appropriate parameterization of the snow-covered sea ice profile, and (ii) taking

advantage of the reconstructed profile at one time step to reconstruct the profile at

the next time step. The latter allows us to minimize the search space for the prob-

lem unknowns assuming that the profile goes through no abrupt changes. Finally, the

retrieved temporal evolution of the temperature, salinity, and density profiles are pre-

sented in Section 6.8. These retrieved parameters are in good agreement with the true

values. Furthermore, a relation between the evolution of the retrieved temperature and
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salinity profiles and their complex permittivities is established. Some specifications of

the retrieved results are also deciphered considering the physical state of the measure-

ment setup (e.g., air temperature at the time of measurements). Subsequently, various

sources of error due to the utilized non-ideal physical sampling procedure are outlined.

At the end, a conclusion in Section 6.9 highlights the findings of this chapter.

The materials of this chapter are based on the paper accepted for publication in IEEE

Journal of Oceanic Engineering in 2015 [89](1).

6.2 Introduction

Herein, we use the normalized radar cross section (NRCS) data as the measured quan-

tity to characterize the snow-covered young sea ice profile. Young sea ice is a transition

ice between earlier nilas and later first year ice, with a typical thickness varying from 10

to 30 cm. It is known that the NRCS data collected from a given snow-covered sea ice

profile is nonlinearly related to its dielectric profile. On the other hand, the dielectric

profile of snow-covered sea ice is linked to its temperature, salinity, and density pro-

files. Therefore, the temperature, salinity, and density profiles are associated with the

measured NRCS data. This chapter aims to reconstruct the temperature and salinity

profiles of the snow-covered sea ice from time-series monostatic single-frequency (C-

band) NRCS data. The inversion algorithm considered herein is an electromagnetic

inverse scattering solver that iteratively reconstructs the temperature and salinity pro-

files from NRCS data. This chapter shows how time-series NRCS data can provide

prior information for the utilized inversion algorithm so as to monitor the evolution of

temperature and salinity profiles during the time interval of interest.

(1) c© [2015] IEEE. Reprinted, with permission, from N. Firoozy, A. Komarov, P. Mojabi, D. Barber, J.
Landy, and R. Scharien, “Retrieval of young snow-covered sea-ice temperature and salinity evolution through
radar cross-section inversion,” Oceanic Engineering, IEEE Journal of, vol. 41, no. 2, pp. 326-338, 2016.
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6.3 Problem Statement

The profile under study in this chapter is a new ice (NI) rapidly-grown from sea

water in the Sea Ice Environmental Research Facility (SERF) under cold condition.

This facility is a unique Arctic Ocean mesocosm [121] located on the University of

Manitoba campus. The profile under investigation in this chapter is a simulation of

young sea ice that would form in polynya or lead areas. In such areas, similar to the

experiment presented herein, when the ice sheet diverges in cold conditions, the open

water freezes into new ice with a high growth rate resulting in high brine rejection.

These forms of young ice are becoming increasingly important physically, biologically,

and geochemically due to climate change [11].

The ice in SERF was covered with a thin layer of snow for almost the entire period

of study. Based on the true properties of the profile under study, it can be modeled

as a multi-layered medium with rough interfaces, as depicted in Figure 6.1. A single

complex permittivity was assigned to the top snow layer and a changing complex

permittivity to the ice layer. The imaginary part of the complex permittivity is mostly

due to the presence of brine which is taken to be of spherical shape in this chapter. Due

to the assumption of the spherically-shaped brine inclusions, the complex permittivity

of the ice will be isotropic. It should also be noted that, throughout this chapter, slush

is referred to as a special case of snow.

The unknown properties of the above profile, which are to be retrieved, are its temper-

ature and salinity at different depths as well as the density of the top layer (snow layer).

On the other hand, the known quantity, from which the unknowns are to be retrieved,

is the single-frequency NRCS data, σpq. In this chapter, we consider monostatic NRCS

in which one antenna serves as both the transmitter and receiver.

The unknowns are then to be reconstructed from the knowledge of the single-frequency
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Fig. 6.1: Simplified stair-cased snow-covered sea ice profile with rough interfaces. The top thin snow
layer is assumed to have a homogeneous complex permittivity. The ice layer is assumed to
have varying complex permittivity.

(C-band) monostatic NRCS data. In this chapter, the NRCS data are collected as

a time-series data, thus, enabling us to quantitatively reconstruct the salinity and

temperature profiles at different time steps within the time period of interest. This

provides us with the ability to quantitatively monitor the thermodynamic evolution of

the sea ice. In the next section, we briefly describe our strategy; more details will be

presented in the rest of the chapter.

6.4 General Strategy

As noted earlier, we aim to reconstruct the unknown profiles within the framework

of electromagnetic inverse scattering. It is well-known that electromagnetic inverse

scattering is an ill-posed problem [105,122]. Consequently, the accuracy of the recon-

structed profile depends on the ratio of the number of (independent) measured data

points to the number of unknown parameters of the profile. The number of mea-

sured data points can be increased by performing data collection at different angles,

frequencies, and polarizations.
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When the number of measured data points is not sufficient to achieve a reasonable

reconstruction accuracy, prior information about the profile to be reconstructed can

be employed. Similar to the above discussion, the use of prior information can be

regarded as an attempt to make the null space of the problem as close as possible to

trivial. To this end, different methods such as the incorporation of thermodynamic ice

growth model [60] and permittivity curve parameterization [90] have been previously

used.

In this chapter, the NRCS data are only measured at 5.5 GHz. Although being limited

to a single-frequency NRCS data set, we collect a time series of these NRCS data. To

take advantage of the fact that we do have a time-series data set, we propose to use the

reconstructed profile at a given time step as prior information for the reconstruction

of the profile at the subsequent time step. This strategy is implemented assuming

that there is no extreme abrupt changes in the profile under investigation. The details

of our implementation are presented in Section 6.7. To the best of our knowledge,

this method has not been previously applied to an electromagnetic inverse scattering

algorithm for snow-covered sea ice.

6.5 Measurements

In what follows, different aspects of our measurements have been classified into six

different parts, as described below.

6.5.1 Measurement Setup

Time-series NRCS measurements were carried out at the University of Manitoba SERF

mesocosm located in Winnipeg, Canada, spanning from 25th of January 2014 to 10th

of February 2014. In this phase of the SERF project, the pool, see Figure 6.2a, was
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filled with a salt combination of Cl−, SO2−
4 , Na+, K+, Mg2+, and Ca2+, resulting in

an approximate salinity of 33.8 ppt. The sea-water grew into thick new ice (NI) under

the natural cold weather of Winnipeg. The weather conditions were stable with no

precipitation during the experiment except a snow-fall on the late evening of January

25th with drifting snow condition which left a layer of about 1.5 cm thick snow on

the surface. A meteorological station located beside the pool at the SERF measured

the air temperature. As can be seen in Figure 6.3, this temperature shows a small

deviation from manual air temperature measurements at the snow-covered sea ice due

to the difference in the height of measurements.

6.5.2 Scatterometer Setup

During most of the measurement period (25th of January 2014 to 10th of Febru-

ary 2014), a C-band solid-state frequency-modulated continuous-wave (FMCW) scat-

terometer, with an antenna height of approximately 5m from the profile’s surface, was

continuously measuring the polarimetric NRCS at elevation angles of 20◦ to 60◦ with

5◦ intervals and at azimuth angles of -15◦ to 15◦. Continuous measurements along the

azimuth plane for each incidence angle were averaged to account for a horizontally

symmetric medium assumption. At the end of the measurements, a trihedral metallic

corner reflector was used for polarimetric scatterometer NRCS calibration, as shown

in Figure 6.2b. Also, a sky measurement was performed for each scan separately as a

part of system’s calibration procedure. (A detailed report on the calibration errors

and procedures for this scatterometer is presented in [90].) On one occasion, a Leica

Scanstation C10 terrestrial laser scanner (light detection and ranging; lidar) was also

employed for detailed surface roughness characterization.
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(a) (b)

Fig. 6.2: Measurements at the SERF (a) Scaffolding setup on which the scatterometer (on the roof
of the scaffolding) and lidar (located on a tripod) are mounted. Both Scatterometer and
lidar are looking toward the pool and scanning the snow-covered sea ice; (b) Scatterometer
calibration through a trihedral corner reflector mounted on a tripod in the middle of the
pool.

6.5.3 Physical Sampling Procedure

To be able to evaluate the accuracy of the retrieval results, physical sampling of the

snow-covered sea ice profile was also performed with a temporal resolution between

one and three times per day. In each physical sampling session for the snow layer,

whose total average thickness is 1.5 cm, a cutter of 1 cm thickness was used to extract

two samples: one from 0 cm to 1 cm and the other from 0.5 cm to 1.5 cm. These

samples were later weighted to calculate their densities. Next, they were melted; and,

the salinity of each sample was measured through a salinity meter. We averaged the

values of the two salinity and the two density measurements to assign homogenous

salinity and density properties to the snow layer. For the ice layer, an ice core was

extracted in each physical sampling session. The ice core was then cut into different

samples. Starting from the ice surface, the first and second samples had a thickness

of 2 cm and 3 cm respectively; the rest of the samples were then of 5 cm thickness.

Each sample was later melted and the bulk salinity was measured through a salinity

meter. Finally, a manual temperature profiling of snow and ice was carried out. For the

snow layer, these temperature measurements were performed at the air-snow interface,
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middle of snow and snow-ice interface. For the ice core, holes were drilled at 2.5 cm

intervals for temperature probe insertion. In addition to the manual temperature

profiling, a temperature string, installed in the SERF pool, also measured the vertical

temperature every 2 cm. (The first temperature sensor is located at the depth of

1.5 cm.) The temperature measurements obtained through this string are shown in

Figure 6.4. As seen in this Figure, the temperature data from this string was not

available during some time periods. Therefore, the available string readings are only

shown here for comparative purposes. As can be seen later, we have used the manual

temperature data to model the dielectric properties of the snow-covered sea ice. We

also note that the thickness of ice across the pool may vary slightly. This affects the

sampling at different locations in the pool; e.g., the small reduction of the measured

ice thickness on the 31st of January.

As also noted in [90], a top layer of slush with an average thickness of 1.5 cm covers

the ice. The presence of a highly saline slush may be explained by one of the following

scenarios, or a combination thereof: (1) the melt-down of early snow on very young ice,

(2) possible breaks at the edges of the pool that might have expelled some sea-water

on the young ice at an early stage, and (3) brine migrating towards the surface. This

might happen particularly in case of a high ice growth rate resulting in a high brine

expulsion rate. However, as can be seen from Figure 6.3, the air temperature during

the period of this experiment was consistently below −10 ◦C; therefore, the possibility

of a direct thermodynamic melt of the snow is small. On the other hand, a high rate

of brine expulsion is more likely due to the consistently cold temperatures.

6.5.4 In-situ Indirect Permittivity Extraction

Enabled by this sampling, the permittivity of slush layer was then calculated based on

its density, salinity and temperature as a mixture of ice and brine [120]. Calculation of
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sea ice permittivity was also performed based on each measurement point’s salinity and

temperature. Brine salinity was calculated through formulation in [123]. Similarly, we

calculated brine permittivity following [4], pure ice permittivity following [3], brine and

pure ice density following [30]. The Polder-van Santen/de Loor mixture formulation

with spherical inclusion was also applied based on the formulation presented in [27].

In this formulation, we considered an effective dielectric constant equal to the host

medium (i.e., ice), or inclusion (i.e., brine), for the region immediately surrounding

the inclusion if the brine fraction volume was smaller, or greater than 0.1 respectively.

Further details on these proxy formulations are brought in Appendix B. Figure 6.5

depicts the manually measured temperature of the profile at the surface and at depths

0.75 cm, 2.5 cm, 5 cm, 9 cm, 14 cm, 19 cm, 24 cm, and 29 cm away from the surface.

Figure 6.6 shows the measured salinity from snow/ice samples for the aforementioned

points. When the data for a specific point were not available, an interpolation technique

was applied between the neighboring points to extract the expected value. From

Figure 6.6a, a large salinity for the top layer is evident. The jump in salinity, starting

after the first sampling, is an indication of the early surface slush layer formation.

Regarding the assignment of the salinity values to the above measurement heights,

the following protocol was followed. The extracted profile sample was staircased at

the depths of 1.5 cm, 3.5 cm, 6.5 cm, 11.5 cm, etc. The salinity within each separate

section of the profile was then measured. This measured salinity was then assigned to

the middle point of this layer. For example, the salinity values for the first, second,

third, and fourth layers were assigned to 0.75 cm, 2.5 cm, 5 cm, and 9 cm respectively.

As will be seen later in Section 6.7.1, the salinity (and, temperature) values at these

points are taken to be the unknowns of the inversion algorithm. (The reconstructed

values can then be compared with the measured values at these points.)
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Fig. 6.3: Air temperature measurements at the SERF through the MET station and the manual
temperature meter.

6.5.5 Time-Series NRCS Data

The C-band (5.5 GHz) polarimetric NRCS measurements were performed in a time-

series manner from 1pm on January 25th (2014) to 8am on February 10th (2014),

capturing the evolution of snow-covered sea ice from open water to almost 30 cm thick

ice. To reduce the effect of the measurement random error, the NRCS measurements for

a given incidence angle and polarization within one hour of continuous measurements

are averaged into one number. Therefore for each hour within the measurement period,

we have one σHH , one σV H , and also one σV V per incidence angle.

Figure 6.7 shows this time-series NRCS data. As can be seen in this figure, five different

measurement periods can be identified for this time-series experiment.

6.5.5.1 Initial formation of ice

In the first period from 1pm on January 25th to 7am on January 27th, ice forms

from open sea water. After the initial formation, the ice grew to 3.5 cm after which,
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Fig. 6.4: Temperature string color map. First sensor is at the depth of 1.5 cm, and the rest of the
sensors are placed with an interval of 2 cm. The colorbar represents the temperature in ◦C.
The manually measured (total) ice thickness is projected on the plot as squares.

there was a snow-fall event. We speculate that the significant increase in the NRCS

value, compared to its initial value, is either due to the complex effect of this snow-

fall or the expulsion of sea water on the newly-formed ice surface. The spectrogram

(i.e., the Fourier-domain data within a moving window with time) of the time-series

NRCS data also showed the presence of higher-order frequency components for this

time interval compared to the rest of the measurements. We speculate that this is an

indication of dealing with a rapidly-changing nonlinear system for this interval. The

complexity of this time interval prohibits its electromagnetic inversion through our

utilized electromagnetic solver; therefore, this time interval is only presented as an

observational case.

6.5.5.2 Stabilization period

In the next stage of the profile’s evolution, the system goes into a transition state

till 12am on January 30th, during which the system behavior stabilizes (i.e., moving
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Fig. 6.5: Manual ice temperature profiling. The solid line is only to connect the measurement points
of the same profile height.

towards a stable NRCS.) Similar to the previous measurement period, this period will

not be investigated for inversion, and is only presented for context. Finally, regarding

these two measurement periods, it should be noted that from 11am on January 26th to

10.30am on January 27th, NRCS measurements were not carried out for the angles of

20◦, 25◦, 30◦, 35◦ and 40◦, due to human operator’s error. An interpolation technique

was then used to plot the missing data as follows. The NRCS curve as a function

of time at 45◦ is taken as the reference plot. Then, its deviation from a direct line

connecting the start and the end points within the missing time slot is calculated.

Next, this deviation is weighted by the ratio of the NRCS standard deviation of the

intended missing angle to that of 45◦. These weighted values are finally added to a

direct line connecting the start and the end points within the missing time slot for

each angle of interest. It should be reminded that the interpolated data have not been

utilized in the inversion algorithm, and have been presented only for show purposes.
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Fig. 6.6: Manual salinity profiling (a) 0.75 cm up to 2.5 cm; (b) 9 cm up to 29 cm.



6.5 Measurements 120

6.5.5.3 Period of interest

From 12am on January 30th to 2pm on February 3rd, no significant meteorological

event occurred and the measured NRCS behavior agreed with our electromagnetic

modeling expectation. Thus, we designate this interval as the period of interest. That

is, our electromagnetic inversion, to be presented later, will be performed on the time-

series NRCS data within this measurement period. (We note that the necessary

condition for a successful inversion is that the utilized modeling should be sufficiently

close to the actual scenario.)

6.5.5.4 Measurement halt period

There was no NRCS measurements performed from 12pm on February 4th to 2pm

on February 7th. We note that this missing data, and also the aforementioned miss-

ing data in the second measurement period are both outside the period of interest.

Therefore, they do not affect our inversion process.

6.5.5.5 Last measurement period

The last measurement interval happened from 2pm on February 7th to 8am on Febru-

ary 10th. Due to the changes on the profile’s surface and the lack of the lidar data, the

inversion of the NRCS data within this interval is not investigated. (The lidar data,

to be described later, serves as prior information for the inversion algorithm.)
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Fig. 6.7: Time-series measured NRCS (denoted by σ) at 5.5 GHz for (a) HH polarization; (b) VV
polarization; (c) VH polarization. The vertical lines denote the time intervals for (1) period
of initial ice formation and rapid changes due snow-fall from January 25th 13pm to January
27th 7am, (2) period of stabilization from January 27th 7am to 30th 12am, (3) period of
interest from January 30th 12am to February 3rd 2pm, (4) period of measurement halt, and
(5) period of post measurement from February 7th 2pm to February 10th 8am.
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Tab. 6.1: The rms height, h, and correlation length, l, regarding the roughness parameters of the
air-snow interface at 9 different incidence angles

θ◦ 20 25 30 35 40 45 50 55 60

h (cm) 0.105 0.105 0.250 0.180 0.215 0.115 0.130 0.100 0.120
l (cm) 1.800 1.800 1.400 1.300 1.900 1.700 2.300 2.100 1.200

6.5.6 Lidar Data

A lidar scan was carried out on 4th of February so as to determine the roughness

parameters: the rms height, h, and the correlation length, l. Figure 6.8 shows the

result of the surface scan in terms of the surface height and variation. The investigation

domain is stable in the period of interest; thus, the surface roughness parameters

estimated on the date of lidar measurements are used for the whole period of interest. A

Gaussian height distribution best fits the data and an exponential distribution has been

used to determine the correlation length. The resulting surface roughness parameters

(h and l) for the first interface at each incidence angle are presented in Table 6.1. For

other interfaces, we assumed very small roughness. This assumption was confirmed

with both our physical observation for this profile, and also the comparison of simulated

with measured NRCS values. A detailed description on our lidar data acquisition and

interpretation can be found in [90,124].

6.6 Inversion Algorithm

We have previously used our inversion algorithm for snow-covered sea ice permittivity

profile reconstruction successfully [90, 91]. This inversion algorithm consists of two

main parts; namely, forward solver and inverse solver. The utilized forward solver is

the Boundary Perturbation Theory (BPT) solver [94]. The BPT is a non full-wave

solver which uses a closed-form formulation to calculate the polarimetric NRCS of a

multi-layer medium with rough interfaces. Moreover, the BPT forward solver provides
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Fig. 6.8: Lidar scan of SERF’s pool surface at 12pm on February 4th showing surface height for
(a) the whole pool surface; (b) near detrended; and (c) far detrended. The colorbar scale is
in [cm] in (a), and is in [m] in (b) and (c).
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flexibility in parameterization of the profile of interest since it is capable of simulating

an arbitrary number of layers. Therefore, it is suitable to be used with snow-covered sea

ice profiles which are modelled as a multi-layer medium with rough interfaces. Finally

the utilization of the BPT forward solver as a surface scattering model is assumed to be

sufficient for our profile of interest since the volume scattering component contributing

to NRCS values are negligible. This condition is due to the high permittivity contrast

between the first few layers, and also due to the early stage of profile metamorphism

that lacks large multifaceted grains or volume scatterers like lens. The very small

measured values for NRCS cross polarization components also serve as an indication

for this condition. The inverse solver utilizes the Differential Evolution (DE) algorithm

[76], in conjunction with an appropriate regularization scheme, to minimize a data

misfit cost functional. The DE algorithm is a global optimization method based on

the evolution in which only the fittest elements evolve to the next generation. As a

global optimization, the DE algorithm calls the forward solver during many iterations

and, therefore, the forward solver run-time needs to be very small. The BPT solver

is capable of providing this fast run-time through its use of closed-form formulations.

The fitness is evaluated based on a cost functional defined as the weighted discrepancy

between the measured NRCS value and the simulated NRCS value due to a candidate

profile using the BPT. This data misfit cost functional can be written as

F(χ(r)) ,
N∑

n=1

∑

pq=HH,VV

κpq(Ψ
n
inc,Ψ

n
scat, f) ×

∣
∣
∣σmeas

pq (Ψn
inc,Ψ

n
scat, f) − σsim

pq (χ(r); Ψn
inc,Ψ

n
scat, f)

∣
∣
∣ (6.1)

In (6.1), the superscripts “meas” and “sim” represent measured and simulated NRCS

data respectively. The parameter N denotes the number of the measurement (incident)

angles. (Herein, N = 9 since the incidence angles change from 20◦ to 60◦ with the

step of 5◦.) As can be seen in the summation index of (6.1), only two polarization

combinations, namely, HH and VV, are used for this experiment. The reason that the
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cross-polarized NRCS data has not been included in the cost functional is associated

with the inaccurate prediction of the BPT forward solver for the cross-polarized data

due to its inability to take into account more complex monostatic second-order surface

scattering and volume scattering events within the dielectric profile. Also, Ψn
inc denotes

the nth incident azimuth and elevation angles and Ψn
scat denotes the nth scattering

azimuth and elevation angles respectively. Note that herein, we consider a monostatic

setup; thus, the incident and scattered angles are co-located. The constant f stands

for the frequency of operation, which is 5.5 GHz for our C-Band scatterometer. The

properties of the profile to be reconstructed are represented by the unknown χ. Finally,

the weight κpq in (6.1) is a normalization factor defined as

κpq(Ψ
n
inc,Ψ

n
scat, f) ,

1

σmeas
pq (Ψn

inc,Ψ
n
scat, f)

(6.2)

This inversion algorithm attempts to solve this electromagnetic inverse scattering prob-

lem by iterative minimization of (6.1). To handle the instability of the solution associ-

ated with this inverse scattering problem, a projection-based regularization scheme is

used to stabilize the mathematical formulation [91]. This projection-based regulariza-

tion limits the search space of the DE algorithm to those values which are reasonable

and physically meaningful. This will be explained in more details in Section 6.7.

As will be discussed in Section 6.7, the unknowns to be reconstructed are the salinity,

temperature, and density profiles. However, our BPT forward solver requires the

knowledge of the dielectric profile to calculate the simulated NRCS data. To handle

this, at each iteration of the inversion algorithm, the predicted salinity, temperature

and density are fed into semi-empirical formula (see Section 6.5.4) to calculate the

slush and sea ice permittivities. This calculated permittivity profile will then be fed

to the BPT solver to calculate the corresponding NRCS values.
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6.7 Use of prior Information in Inversion

As noted in Section 6.4, the greater the number of measured data points, the more accu-

rate the reconstructed profile. In the research presented in [90], a multiple-frequency (5

frequencies) polarimetric NRCS data set enabled us to reconstruct the snow-covered

sea ice profile of SERF accurately. However, the time-series polarimetric NRCS data

being considered in this chapter were carried out only at a single frequency of oper-

ation; i.e., 5.5 GHz. Of course, a single-frequency scattering data set provides the

inversion algorithm with less information compared to a multiple-frequency data. To

compensate for this lack of information associated with our single-frequency time-series

NRCS data, the following two-step strategy was developed.

6.7.1 Parameterization of the unknown properties

As shown in [90], our inversion algorithm was unable to reconstruct deeper sections of

the profile with sufficient accuracy even with the use of a multiple-frequency data set

including five frequencies within the C-band. This is partly due to the attenuation of

electromagnetic waves at C-band within a lossy dielectric medium. Considering a half

space lossy dielectric medium, having a relative complex permittivity of ǫ′ + jǫ′′, the

amplitude of the electric field drops off to 36.8% of its surface value after traveling the

distance given below [21]

δ =
c0

ω
√
ǫ′

{

1

2
(

√

1 + (
ǫ′′

ǫ′
)
2

− 1)

}−1/2

(6.3)

where c0 is the speed of light in vacuum, and ω is the angular frequency. (For example,

for a half space dielectric medium having a permittivity close to that of ice, say,
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3.7 + j0.4, the value of δ will be about 8 cm.) Moreover, based on the intrinsic

impedance of the profile, surface roughness values, and the incidence angle, only a

portion of the incident power makes it into the profile [21], thus, resulting in less

penetration. (Of course, the achievable imaging depth is also related to the ability of

the radio-frequency receiver of the scatterometer to detect weak scattered signals.)

Based on the above discussion, we do not expect that a single-frequency inversion at

the C-band, which is considered in this chapter, can reconstruct these deeper sections.

Also, as noted in [90, 125], the permittivity changes in the middle section of the NI is

small. Based on this observation and also the limited penetration of the wave deeper

in the profile, we assume that the complex permittivity below 6.5 cm is homogeneous

in inversion algorithm. (Note that this is assumed to implicitly guide the inversion

algorithm that there is minimal scattering contributions received from anywhere below

6.5 cm.) It should finally be mentioned that once the salinity and temperature

of upper layers are reconstructed, they can be used to infer the properties of the

profile below the imaging depth using thermodynamic models [126]. This is due to

the fact that the surface brine volume and temperature changes are a function of the

thermodynamic balance between the ocean and the atmosphere.

To be able to compare the reconstruction results with the measured profile parameters

obtained by physical sampling, we assume that the profile to be imaged is staircased in

the same way as described in Section 6.5.4. The thickness of each layer in the inversion

process is taken to be consistent with the one used in the staircasing procedure em-

ployed in the physical sampling. This enables us to compare the reconstructed results

with the measured ones. Based on this staircasing, the unknowns to be reconstructed

will be the salinity and temperature values at the following depths: 0.75 cm, 2.5 cm,

5 cm and 9 cm. Based on our sampling procedure, the actual profile’s layers, starting

from the top of the profile, are located between 0 to 1.5 cm, 1.5 to 3.5 cm, 3.5 to 6.5 cm,

6.5 to 11.5 cm, etc. Each of these individual layers is then taken to be homogenous.
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Therefore, the properties at the middle points of each layer, which will be located at

0.75, 2.5, 5, 9 cm, etc., are chosen as the unknowns to be reconstructed. Since the

utilized C-band scatterometer barely sees the profile bellow 6.5 cm (due to having a

limited δ, and the overall signal-to-noise ratio of the measured data), we assume the

the profile under study is homogeneous for depth bellow 6.5 cm. Thus, based on our

labeling protocol explained above, the salinity and temperature at the depth of 9 cm

will be the same as those reconstructed from the information of the interface located

at 6.5 cm. In addition, the density of the profile at the top layer (i.e., at the depth

of 0.75 cm) is the other unknown. Noting that the roughness parameters are assumed

to be known, the inversion algorithm is left with 9 real-valued parameters to retrieve.

Mathematically speaking, this results in the parameterization of the unknown χ into

a real vector of size 9; i.e., χ ∈ R
9. Therefore, the cost functional to be minimized, F ,

will be a mapping from R
9 to R.

6.7.2 Use of time-series data

Instead of reconstructing the profile independently at each measurement time, we

take advantage of the nature of the time-series data as prior information. That is,

we use the reconstructed profile at a given measurement time (say, ti−1) to provide

prior information for the inversion of the NRCS data at the subsequent measurement

time (ti). This idea can be extremely helpful for the utilized inversion algorithm.

To understand this, the expected variations in the unknown parameters in the whole

period of interest have been listed in Table 6.2. (These values are obtained by physical

sampling as described in Section 6.5.3.). From this table, it is clear that an independent

reconstruction at a given time step (i.e., reconstruction at that time step without

using the reconstructed values at the previous time steps) requires the definition of

a large search space for both salinity and temperature parameters in the inversion

algorithm. For example, the changes in salinity and temperature for the 0.75 cm
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layer is 69.3 ppt and 9.24 ◦C. However, based on our time-series physical sampling,

we know that the changes of salinity and temperature for all measurement points

between two consecutive measurements (i.e., ti−1 and ti), are less than ±7 ppt and

±4 ◦C respectively. Therefore, by knowing the reconstructed parameters at a given

time step, the search space for the unknown parameters in the subsequent time step

can be significantly reduced. Mathematically speaking, a more limited search space

can filter out spurious solutions for this electromagnetic inverse scattering problem,

thus, guiding the inversion algorithm toward the correct solution.

Therefore, to reduce the search space significantly and increase the resulting recon-

struction accuracy, the retrieved salinity, temperature, and density at time ti−1 are

used as prior information for the inversion of the NRCS data at time ti. That is, when

inverting the NRCS data at time ti, the inversion algorithm looks for parameter values

in the proximity of the reconstructed values at the previous time step. The range

of this proximity is ±7 ppt for salinity and ±4◦ C for temperature respectively. The

process of limiting the search space of our inversion algorithm is done in two different

fronts. First, when the agents of the DE algorithm are distributed, we make sure

that they lie within the limited search space. Second, the boundary condition of the

DE algorithm also needs to be modified. This is implemented by utilizing a damping

boundary condition [76] in the DE algorithm to ensure that each evolved agent stays

within both the limits of Table 6.2 and those that are based on prior information from

the reconstructed parameters at the previous time step.

As can be seen, this scheme requires the reconstruction of the profile at the first time

step (i.e., for ti = t0) to be sufficiently accurate. (Otherwise, the error in the first

reconstruction may propagate to other reconstructions.) To have accurate reconstruc-

tion for the first time step, we have at least two options. In the first option, we collect

more scattering data only for the first time step; e.g., performing multiple-frequency

measurements as presented in [90]. Collecting more scattering data will then result in
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Tab. 6.2: Salinity and temperature changes for the top four measurement reference points withing
the time of interest interval

Depth(cm) 0.75 2.5 5 9

Salinity(max) 86.6 60.4 20.7 11.5
Salinity(min) 17.3 8.2 8.2 8.3

Temperature(max) -4.02 -3.15 -1.66 -3.13
Temperature(min) -13.26 -11.185 -10.07 -7.37

accurate reconstruction of the profile at the first time step. The second option uses

physical sampling of the profile only at the first time step. In other words, it performs

the procedure outlined in Section 6.5.3 only for the first time step. In this chapter, we

used the second option. That is, we used physical sampling to extract the properties

of the profile at time t0 (11am on January 30th). Using this prior information, we

then inverted the single-frequency NRCS data at the next time step t1. Then, the re-

constructed profile at t1 was used to invert the NRCS data at time t2. This procedure

continued until the NRCS data at all time steps were inverted.

Finally, it should be mentioned that we assume to have no knowledge of the measure-

ment uncertainties corresponding to different data points. When there is no such prior

information, the cost function presented in (6.1) implicitly assumes that the measure-

ment noise is identical at each measurement point, and is also uncorrelated. That is,

the so-called data covariance matrix [81] is an identity matrix in (6.1).

6.8 Results

As an initial attempt, the inversion algorithm was applied to the time-series data

without utilizing the reconstructed profile at the previous time step as prior information

for reconstructing the profile at the next time step. Under this condition, the inversion

algorithm was not able to converge to an accurate reconstruction. Next, time-series

prior information was added to the inversion algorithm. The reconstructed profile
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Fig. 6.9: Time-series reconstruction results from January 30th 11am to February 3nd 2pm for the
(a) Temperature profile; (b) Salinity Profile; and (c) Top layer (slush) density profile. Depth
is given in cm. Rec and Meas stand for reconstructed and measured data.
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for both salinity and temperature at 0.75 cm, 2.5 cm, 5 cm, and 9 cm depth within

the profile is shown in Figure 6.9a and b. As can be seen in these two figures, the

reconstructed temperature and salinity values, denoted by TRec and SRec respectively,

are close to the physically measured temperature and salinity values, denoted by TMeas

and SMeas respectively. We also note that the density value of the top layer (snow) was

also reconstructed by the inversion algorithm. The time-series reconstructed density

values, shown in Figure 6.9c, are also close to the measured ones and the diurnal

variability of the retrievals make sense physically for a very thin young snow cover

over sea ice. The oscillation in the retrieved snow density can be partially due to

the performance of the inversion algorithm. It should be noted that the amplitude of

this oscillation is small (i.e., 0.15 g/cm3), and might also be reasonably due to the

temporal temperature changes of the top layer.

Moreover, to demonstrate the relations between the retrieved temperature and salinity

with respect to the complex permittivity of the profile, the temporal reconstructed

values at different depths are plotted against the profile’s permittivity in Figure 6.10.

As can be seen, the temporal changes in permittivity are reduced within the ice as we

move deeper into the profile. Also, there is no linear relation between temperature and

permittivity at 2.5 cm, while such relations are more evident for other plots. Finally,

the average of reconstructed profile’s permittivity is 5.22 + j0.31 with a standard

deviation of 1.56 + j0.99.

To further verify the overall accuracy of the reconstruction results, the following argu-

ment is presented. Based on the heat exchange, we expect to see a resemblance between

the air temperature variations and the profile’s temperature variations. Figure 6.11a

confirms this expectation by demonstrating that the variations of the reconstructed

temperature at the depth of 0.75 cm follows a similar trend as the variations of the

measured air temperature within the time period of interest. Moreover, it is inter-

esting to notice that the local minima/maxima trend of the NRCS data resembles
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the temperature variations as shown in Figure 6.11a for the incidence angles of 30◦.

(Since NRCS variations for different incidence angles are generally similar, as shown

in Figure 6.7, hence comparison with only 30◦ is demonstrated.) Also temperature

variations for different depths are similar (with some time delay); thus, the depth of

0.75 cm is only considered in Figure 6.11a.

Another interesting observation is the trend in the order (not exact alignment) of

NRCS local minima/maxima occurrences which resembles that of the reconstructed

salinity at 0.75 cm (with some time lag), as shown in Figure 6.11b for the incidence

angle of 30◦. Among several parameters that affect the NRCS data, the complex per-

mittivity of this top layer, due to the presence of slush (highly saline), is an important

parameter. The salinity at the depth of 0.75 cm is an important indication of the com-

plex permittivity of this top layer. That’s why the effect of its variations is reflected

in the time-series NRCS data.

It should be noted that there are a few error sources in the physical sampling of the

profile that might affect the measured true parameters. For example, the ice-core

extraction is an invasive method which can result in brine leakage from ice cores.

Also, once extracted, the ice-core temperature starts decreasing quickly as it has a

higher temperature compared to the air temperature. Therefore, a deviation might

exist between the actual in-situ ice temperature and its measured value from the

ice-core. Noting that the reconstructed temperature, in fact, represents the in-situ

temperature, this might explain some of the discrepancies observed between TMeas

and TRec in Figure 6.9a. Moreover, a few physical sampling sessions took more than

one hour, and therefore the measured values in these experiments will represent the

average of temperature or salinity for a longer period of time. Finally, it should be

noted that the accuracy of the time-series reconstruction is greatly dependent on the

accurate measurement of the initial density, salinity, and temperature. To test the

resilience of the utilized inversion algorithm with respect to non-accurate initial data,
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Fig. 6.10: The relationship of reconstructed points from 30th of January 11am to 3rd of February
2pm between (a) salinity and real part of the permittivity; (b) salinity and imaginary part
of the permittivity; (c) temperature and real part of the permittivity; and (d) temperature
and imaginary part of the permittivity. Real and Imag stand for real and imaginary part
respectively.

same percentage of white additive Gaussian noise was synthetically added to each of

the measured initial values of density, temperature, and salinity. When the added

synthetic noise to the measured initial data exceeded 7%, the inversion algorithm was

not able to converge.

6.9 Conclusion

This chapter investigated the time-series NRCS data inversion within the electromag-

netic inverse scattering framework for artificially-grown snow-covered sea ice profile

reconstruction. In particular, the temperature and salinity of the snow/sea ice pro-

file and the density of the surface slush (wet snow) layer were reconstructed. The

reconstruction results matched well with the measured values obtained via physical

sampling. The main feature of this inversion algorithm is its ability to use time-series

NRCS data to provide prior information for the inversion at different time steps. This

prior information is incorporated in the inversion algorithm by limiting the search

space associated with the DE algorithm. Enabled by this feature, we were able to

quantitatively reconstruct the temperature and salinity profiles of the investigation

domain, and observe their evolutions within the time period of interest.
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Fig. 6.11: (a) Trend comparison between the reconstructed temperature profile at 0.75 cm and the
measured air temperature as well as the measured NRCS at 30◦; (b) Trend comparison
between the reconstructed salinity profile at 0.75 cm and the measured NRCS at 30◦. Rec
and Meas stand for reconstructed and measured data. The vertical axis is not to scale to
accommodate comparison of data having different dimensions.

Since the proposed algorithm only utilizes a single-frequency time-series monostatic

NRCS data, it has the potential to be extended to time-series SAR data inversion for

quantitative monitoring of a given investigation domain. To this end, it needs to be

ensured that an accurate retrieval at the first time step is available to the inversion

algorithm. In practice, this might be achieved by employing ground truth exploration,

or inverting more informative data at the first time step (e.g., the data collected from

an air-borne multi-frequency multi-polarization SAR platform).
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Cambridge Bay Experiment:

Enhanced Electromagnetic

Modeling for Inversion

7.1 Overview

In previous chapters, I introduced an electromagnetic inverse scattering algorithm that

retrieves the parameters of the snow-covered sea ice profile. The input data to the

inversion algorithm were the synthetic NRCS data in Chapters 3 and 4, and the exper-

imentally measured NRCS data collected at the SERF using a C-band scatterometer

in Chapters 5 and 6. Furthermore, various techniques were utilized and developed to

enhance the reconstructions. These include the use of (i) more sensitive NRCS data

with respect to the problem unknowns, (ii) multi-frequency NRCS data, (iii) temporal

reconstruction, (iv) further parametrization, and (v) various prior information. In this

chapter, the profile reconstruction of the first-year snow-covered sea ice utilizing an en-

hanced inverse scattering algorithm is presented. The measurements were carried out
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in Cambridge Bay, Nunavut, located within the Arctic Circle. The data to be inverted

are the combination of the NRCS data collected by an on-site C-band scatterometer,

and the radarsat-2 SAR satellite. Furthermore, a profile averaging technique is in-

troduced that reduces the number of problem unknowns. Finally, the forward solver

utilized in conjunction with the inversion algorithm is enhanced to consider the effects

of the so-called volume scattering.

This chapter is structured as explained below. The background of the research and the

problem statement are presented in Section 7.2. In Section 7.3, the measurement pro-

cedure is described. The experiments were carried out during May 2014 in Cambridge

Bay, located in the Canadian High Arctic. The measurements include (i) the tempo-

ral physical sampling of snow and sea ice, (ii) time-series single-frequency monostatic

NRCS data collection through an on-site C-band scatterometer over a period of one

month, (iii) cross-sectional single-frequency monostatic NRCS data collection through

radarsat-2 satellite in different days, and (iv) laser scans of the air-snow interface

utilizing a lidar for roughness parameter estimation.

As previously discussed in Chapter 2, our inversion algorithm consists of a forward

and an inverse solver. Forward solver attempts to model the electromagnetic scat-

tering fields associated with the irradiated rough multi-layered dielectric profile. The

BPT forward solver utilized in the previous chapters considers homogenous layers,

assuming each of which has an effective permittivity; i.e., only the so-called surface

scattering component is considered in NRCS calculation. In the case of the snow-

pack under investigation in this chapter, large snow grains in the brine-wetted dry

snow layers contribute to the so-called volume scattering component (not considered

in the BPT formulation used in the previous chapters). Therefore, in this chapter,

a volume scattering model is developed and added to the current BPT surface scat-

tering model to predict the NRCS of the profile more accurately. This model is a

variation of the existing heuristic single scattering cloud-model that is modified to
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consider multiple reflections in a multi-layered medium. The utilized forward scatter-

ing model is introduced in Section 7.4. In Appendix C, the ray-tracing technique is

used for a single-layer medium to put the formulas associated with the forward solver

introduced in Section 7.4 into perspective. The implementation of this forward solver

significantly improved the agreement between the experimentally measured and the

simulated NRCS data.

The inversion algorithm employed to retrieve the profile parameters through electro-

magnetic inverse scattering is briefly explained in Section 7.5. This is followed by

the description of the inversion strategy in Section 7.6. This strategy includes the

parametrization of the snow-covered sea ice and profile averaging. The former leads

to the formation of the vector of unknown whose dimension is reduced through the

utilization of prior information. In the case of profile averaging, it should be noted

that the snow-covered sea ice profile under investigation is considered to change mini-

mally within the period of interest during the temporal measurements. Therefore, an

averaging technique is utilized to represent the snow-covered sea ice by a single profile

during the period of interest. The reconstructed profiles through this framework are

presented in Section 7.7. Three inversion scenarios are considered in this section based

on the NRCS data set to be inverted. These scenarios include the NRCS data collected

by the (i) satellite, (ii) scatterometer, and (iii) satellite and scatterometer. Based on

the reconstruction accuracy in each scenario, it is concluded that increasing the num-

ber of measurement points (e.g., data provided by satellites with higher re-visit rates)

can improve the retrieval accuracy. Finally, a conclusion in Section 7.8 summarizes

the findings in this chapter.

The materials of this chapter are based on the paper accepted for publication in IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing [127](1).

(1) c© [2016] IEEE. Reprinted, with permission, from N. Firoozy, P. Mojabi, J. Landy, and D. Barber,
“Landfast First-Year Snow-Covered Sea Ice Reconstruction via Electromagnetic Inversion,” Selected Topics

in Applied Earth Observations and Remote Sensing, IEEE Journal of, 2016, Early Access.
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7.2 Introduction

To extract a profile’s parameters of interest, say the complex permittivity profile of the

snow-covered sea ice, from the measured scattering data, an inverse scattering algo-

rithm is needed to work in conjunction with an appropriate forward scattering model

so as to reconstruct (retrieve) these parameters. The final choice of a specific forward

model depends greatly on the profile under investigation. The choice of inverse scat-

tering algorithm also affects the choice of the forward model. For instance, although

full-wave forward solvers are generally the most accurate methods, they require the

discretization of the snow-covered sea ice profile, which results in large matrices due to

the large electrical size and roughness associated with the profile, thus, being compu-

tational expensive. Since inverse scattering algorithms are often iterative techniques

to handle the nonlinearity of the associated mathematical problem, they require the

call of the forward solver at each iteration, which might not be practical if the forward

solver is computationally expensive. Furthermore, since the number of measured data

points in the arctic microwave remote sensing application is limited and the measured

data are often amplitude-only (phaseless), the profile under investigation cannot be

reconstructed with too many detailed features. Thus, the forward solvers that rely

on knowing subwavelength properties of the profile may not be even practical for this

application.

Previously, we have developed an inverse scattering (inversion) algorithm utilized to

reconstruct the snow-covered sea ice dielectric profile from the simulated normalized

radar cross section (NRCS) data [91]. This algorithm was then successfully applied

to the measured NRCS data collected at the sea ice environmental research facility at

the University of Manitoba. Specifically, in [90], we showed that the use of multiple-

frequency NRCS dataset can provide sufficient information for accurate reconstruc-

tions. Also in [89], reconstruction was achieved through a time-series measurement
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and utilization of the retrieved profile at each time step as prior information for re-

construction at the next time step. In all of these previous works, the boundary

perturbation theory (BPT) [94] was used as our forward solver. The use of this for-

ward solver, which does not take into account the volume scattering phenomena within

each layer of the profile, was justified since the volume scattering effect within those

profiles were negligible compared to surface scattering arising from the rough layered

medium. In [128], we applied this inversion algorithm to the measured NRCS data

collected at Cambridge Bay, Canada. However, the reconstruction results were not

successful due to the fact that the volume scattering component was not negligible

anymore. Herein, we improve our inversion algorithm by advancing our forward solver

to take into account the volume scattering as well as the cross-polarized surface scat-

tering components. We then apply this inversion algorithm to the monostatic NRCS

data collected by radarsat-2 satellite, on-site C-band scatterometer, and the combi-

nation thereof to reconstruct the temperature, salinity, density, and snow grain size

associated with landfast snow-covered sea ice in Cambridge Bay, Canada. (As will

be described below, the measurements were performed in May 2014.) The world-map

and magnified view of the measurement area is shown in Figure 7.1. Finally, it should

be noted that this chapter is a contribution to the J-STARS Special Issue based on

our conference paper presented at the IGARSS 2015 [128]. Throughout this chapter,

a time-dependency of exp(−jωt) has been implicitly assumed.

7.3 Measurements

The measurement process consisted of four main components. The first component

was the in-situ physical sampling of the snow and ice. The time-series polarimetric

monostatic NRCS measured data, which were collected by utilizing an on-site C-band

scatterometer, was the second component. The third component was the satellite

imagery of the measurement area. The last component was the in-situ lidar scans of
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Fig. 7.1: The measurement location (black square) at Cambridge Bay, Nunavut, Canada, both on a
world-map and a magnified view.

the snow surface which were used to extract the roughness parameters of the air-snow

interface. As will be described later, the physical sampling and lidar data are used

either as prior information to the inversion algorithm, or for reconstruction accuracy

assessment. The measured NRCS data are then utilized as the input to the inversion

algorithm to retrieve the parameters of interest.

7.3.1 Physical sampling

A series of physical sampling of snow and ice was carried out in Cambridge Bay,

Nunavut, Canada, starting 12th of May 2014, and with continuous measurements from

20th to 28th of May 2014. In each physical sampling session, snowpack temperature

and density were measured with a resolution of 2 cm. To later estimate the snow grain

size at different depths, we spread the snow over a grid and took photos for visual

assessment; see Figures 7.2. The snow samples were eventually melted to measure

the bulk salinity of the snow at different depths of the profile. Ice cores were also

extracted each time. After drilling holes in each core at every 5 cm (except for the first

two points that have a 2.5 cm spatial resolution), a temperature probe was utilized for

temperature profiling of the ice. Next, the ice core was cut in blocks with a thickness

of 5 cm (except for the top 5 cm which was cut into two 2.5 cm blocks). These ice
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(a) Snow Profile (b) New snow layer (c) Original snow layer (d) Basal snow layer

Fig. 7.2: Snowpack on May 22nd, 2014 at 4 pm.

samples were later carried to the laboratory, and were then melted to measure their

bulk salinity. The temporal in-situ measured temperature, salinity, and density of the

profile are shown in Figure 7.3 to Figure 7.5 from 20th of May to 28th of May, with

two or three times sampling carried out daily, usually at 9 am, 4 pm, and 10 pm.

(a) Temperature profile

Fig. 7.3: Physical sampling data (temperature) from 9 am on May 20th, 2014 to 9 pm on May 28th,
2014. The solid horizontal line (i.e., y = 0 line) is the snow-ice interface and the vertical
dashed line mark the measurements performed at 6 pm on May 25th, 2014.

7.3.2 Scatterometer measurements

Time-series monostatic polarimetric C-band NRCS measurements were carried out

from May 20th to May 28th, 2014. To achieve the minimum recommended height
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(a) Salinity profile

Fig. 7.4: Physical sampling (salinity) data from 9 am on May 20th, 2014 to 9 pm on May 28th, 2014.
The solid horizontal line (i.e., y = 0 line) is the snow-ice interface and the vertical dashed
line mark the measurements performed at 6 pm on May 25th, 2014.

for scatterometer measurements, a setup was constructed to mount the equipment on,

as shown in Figure 7.6 (a). A near-field to far-field correction factor were applied to

obtain the far-field scattered wave [129]. Also, to reduce the effect of random noise, the

NRCS data measured within each hour were averaged into a single NRCS data point

per hour. The scatterometer measured the NRCS for the incidence angles ranging

from 20◦ to 65◦ with 5◦ intervals in the elevation plane. Also for each incidence angle,

the scatterometer swept 30◦ in azimuth plane and averaged the measured scattered

field. This technique helps reduce the effects of local profile inhomogeneity at each

incidence angle on the measured NRCS. The measured NRCS data were later calibrated

against the calibration data collected from a metallic trihedral in the field as depicted

in Figure 7.6 (b). Further details on this calibration procedure can be found in [129].

The excellent channel isolation of the scatterometer (greater than 30 dB) allows a

single object calibration, resulting in equal values for σHV and σVH. The noise floor of

the scatterometer system is measured at −40 dB. The measured co-polarized NRCS

data for select incidents are shown in Figure 7.7. The gaps in the time-series data

represent no measurement periods due to either logistic (e.g., generator failure) or
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(a) Snow density profile

Fig. 7.5: Physical sampling (density) data from 9 am on May 20th, 2014 to 9 pm on May 28th, 2014.
The horizontal line y = 0 is the snow-ice interface and the vertical dashed line mark the
measurements performed at 6 pm on May 25th, 2014.

environmental obstacles (e.g., whiteout periods). From the NRCS trend in Figure 7.7,

the NRCS measurement period can be divided into two main periods: (1) 9 am on May

20th to 4 pm on May 24th when the measured NRCS was stable and almost constant

for each incidence angle, and (2) 5 pm on May 25th to 12 am on May 28th in which the

measured NRCS data started to change rapidly, went through an unstable period, and

then seemed to stabilize again. In the first period, no significant meteorological events

occurred during the NRCS measurements, and the NRCS data were stable, thus, being

appropriate to be used in our model-based inversion algorithm. On the other hand,

from the beginning of the second period, a short series of drizzle, snow, and ice pellet

occurred. These events seemed to have altered the snow-covered sea ice profile, thus,

resulting in a complex NRCS behavior in the second period. To be more specific with

respect to the observed physical changes in the profile, the average temperature of

the snowpack increased and the density showed a more erratic nature. Consequently,

the measured NRCS was not constant anymore, but experienced sudden variations for

both channels that might be related to daily melt and freeze of the snowpack due to

warmer conditions approaching the end of May.
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(a) (b)

Fig. 7.6: On-site measurements of snow-covered sea ice at Cambridge Bay, Nunavut. (a) Scatterome-
ter NRCS measurement along side lidar on 23rd of May, 2014, (b) Scatterometer calibration
using a metallic trihedral on 28th of May, 2014.

7.3.3 Satellite imagery

We also obtained the NRCS data of the snow-covered sea ice under investigation from

the ScanSAR Wide Beam mode (dual HH–HV polarization) images of SAR Georefer-

enced Fine type from the Canadian radarsat-2 (active SAR operating in the C-band).

The images are available for various days within May 2014, but the selected dates are

the 3rd, 4th, 11th, 17th, 18th, 24th, and 25th for the reasons to be explained later. To

extract the NRCS from the satellite images, they were first calibrated. Then, to reduce

the speckle noise and yet retain the NRCS value integrity, a simple mean-box filter

was applied to the images. As an example, Figure 7.8 shows the processed products

for 17th and 18th of May, with measurement location within the yellow rectangular.

The ScanSAR images were zoomed in and cropped out in the vicinity of Cambridge

Bay for a better view of the measurement location.

7.3.4 Lidar measurements

A lidar laser scanner was employed on the measurement site to scan the height to-

pography of the air-snow surface on the 23rd of May. These collected data were later
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Fig. 7.7: Measured time-series NRCS data (denoted by σ) at 5.5 GHz. The vertical lines represent
(i) first period from 9am on May 20th to 4pm on May 24th, (ii) measurement halt from
4pm on May 24th to 5pm on May 25th, and (iii) second period of NRCS measurement from
5pm on May 25th to 12am on May 28th.

utilized to calculate the roughness parameters of rms height and correlation length

as shown in Figure 7.9 and reported in Table 7.1. As can be seen in this table, two

sampling interval grids were used for the extraction of the roughness parameters. The

average of these two different sets of roughness parameters will be provided to the

inversion algorithm as prior information. The procedure to calculate these roughness

parameters is as follows. We first corrected for the offset between scatterometer and

lidar position. Then, we filtered out anomalous returns (e.g., due to precipitation,

blowing snow, or multi-path reflections). Then, we selected subsections of the scan

area using 0.5× 0.5 m2 moving window with one section every 0.2 m along each radial

scat profile for scatterometer looking angles of 25◦ to 60◦. It should be noted that

the size of this window is approximately equal to the scatterometer footprint on the

snow surface. Each subsection was detrended using a FFT-based algorithm to remove
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Fig. 7.8: Radarsat-2 ScanSAR images cropped around Cambridge Bay area (approximately 115 ×
115 km2). The measurement area is marked by the yellow rectangles. (a) May 17th, HH
Polarization. (b) May 17th, HV Polarization. (c) May 18th, HH Polarization. (d) May 18th,
HV Polarization. Radarsat-2 Data and Products MacDonald, Dettwiler and Associates Ltd.
2014 - All Rights Reserved. Radarsat is an official mark of the Canadian Space Agency.

low-frequency topography which does not affect surface scattering of the radar but

biases the calculation of the roughness parameters. Next, we calculated the rms height

and correlation length within each subsection using the method applied in. We then

averaged those values for each inclination angle. Finally, we adjusted the roughness

parameters using calibration functions [130].
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Fig. 7.9: Lidar scan of the snow-covered sea ice profile measured through scatterometer on May
23rd. (a) The calculated rms height. (b) The calculated correlation length. The black arcs
represent the scanning path of scatterometer.

Tab. 7.1: The rms height, h, and correlation length, l, for the air-snow rough interface for different
incidence angles θ. The subscripts 1 and 2 denote two different sampling intervals having
0.2 cm and 0.5 cm grids respectively. NA refers to not available data.

θ◦ 20 25 30 35 40 45 50 55 60 65

h1 (cm) NA 0.16 0.13 0.10 0.10 0.10 0.10 0.14 0.15 NA
l1 (cm) NA 2.6 1.7 2.6 2.3 2.4 2.8 3.1 2.0 NA

h2 (cm) NA 0.15 0.13 0.10 0.10 0.10 0.10 0.14 0.14 NA
l2 (cm) NA 2.8 2.2 1.9 1.2 2.3 2.5 3.4 2.4 NA

7.4 Forward Solver

As noted earlier, our inversion algorithm requires the use of an electromagnetic for-

ward scattering solver. The role of this solver is to calculate the scattered field or

scattering parameters associated with a profile that is illuminated by an incident field.

(This profile is, in fact, the predicted profile at each iteration of the inversion algo-

rithm.) Herein, the scattering parameter of interest is a phaseless quantity known as

the normalized radar cross section (NRCS), denoted by σp/q. From one perspective,

the scattered field from a rough layered profile, and consequently its NRCS, consists of



7.4 Forward Solver 149

two main components that are due to the so-called surface and volume scattering, each

containing coherent and incoherent components [131,132]. Surface scattering is related

to the interfaces between homogenous layers with different dielectric values, and vol-

ume scattering is related to the effects of the individual scatterers within each layer.

Therefore, the total NRCS for rough layered media may be written as summation of

surface and volume scattering contributions [133]

σ
p/q
tot = σp/q

s + σp/q
v (7.1)

where the subscripts s and v denote the surface and volume scattering components.

Also p/q denotes p-sent and q-received polarizations where p and q represent vertical

or horizontal polarizations. In what follows, we first introduce the method applied to

calculate the surface scattering component. The calculation of the volume scattering

component will then follow. For the discussion presented below, it is assumed that we

have a rough multi-layered medium consisting of (N + 1)th layers, numbered from 0

to N . As a result, we will have N interfaces, numbered from 0 to (N − 1). The layer

0 is consider to be the measurement half space, which is air. The layer (N + 1) is

considered to be the termination layer, which is also a half space. The z direction is

assumed to be perpendicular to the layers’ interfaces. Finally we define a number of

parameters. k0 is the wavenumber in free space, hm is the rms height, and lm is the

correlation length associated with the roughness of the mth interface.

7.4.1 Surface scattering

To calculate the co-polarized component of the surface scattering σpp
s of a multi-layered

media with rough interfaces, the boundary perturbation theory (BPT) is utilized. We

now present the calculation procedure for the cross-polarized component of the surface

scattering.
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7.4.1.1 Cross-polarized component

The BPT is a first-order approximation solution. Therefore, the cross-polarized NRCS

calculated through the BPT will be zero in a monostatic configuration [94]. Since

we are planning to use the measured cross-polarized NRCS data in our inversion, the

following procedure is considered to estimate the cross-polarization component σpq
s . To

this end, we first start by noting that the cross-polarized NRCS of a rough interface

between two half spaces, the first one being air and the second one being a dielectric

medium having a complex permittivity of ǫ1, can be obtained as [134]

σpq,(0)
s =

S(θ0)k
4
0

8π

∫ ∫ [ ∞∑

f=1

∞∑

l=1

e−2kz0h2
0 ×

kz0h
2f+l
0

f !l!
S(θ0)|F (0)

pq (v, φ)|2W (f)
0 W

(l)
0

]

dφdv. (7.2)

In (7.2), the general form of Fpq can be found in [134, 135]. Furthermore, for S, a

Smith shadowing function is considered to calculate the back-scattering [136].

The next step will be how to adapt the above relation, which considers two half spaces,

to a multi-layered medium. To this end, we treat the layers m and (m + 1) as two

half spaces with a rough interface. Using (7.2), we then calculate its corresponding

σ
pq,(m)
s . We will then use the concept of the generalized transmission coefficients [137]

to transfer this σ
pq,(m)
s to the measurement half plane (air, or the 0th layer). As will

be seen below, we will utilize two generalized transmission coefficients; namely, Tp
0|m

and T
q
m|0. The first one is utilized to bring the power down to the outset of mth

layer, and the second one is used to transfer the power from the outset of mth layer

to the measurement half space (the 0th layer). We then incorporate the effect of

loss within the mth layer into the formulation through the complex wavenumber of

this medium. Finally, the summation of all the transferred components from each

interface to the measurement half-plane results in the total cross-polarized surface
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NRCS. It should be noted that this proposed procedure provides an approximation for

the cross-polarized surface scattering for multi-layered medium, and is not an exact

solution. Also, in [134], the coefficients Fpq are provided for an air-dielectric interface.

To adapt this formulation to our problem, these coefficients were slightly modified to

accommodate a dielectric-dielectric interface.

To put the above discussion into mathematical formulation, the approximated cross-

polarized surface scattering can be written as

σpq
s =

N−1∑

m=0

|ejkzm∆m |4|Tp
0|m|2|T

q
m|0|2σpq,(m)

s (7.3)

where σ
pq,(m)
s can be found from (7.2) by substituting the 0th and 1st layers with the

mth and (m+1)th layers. In (7.3), Tq
m|0 is calculated based on T

p
0|m using the reciprocity

of the generalized transmission coefficient, as brought in [138]. Also, T
p/q
m|m = 1, and

∆m is the thickness of the mth layer (∆0, which corresponds to the measurement

half space, is taken to be zero). Finally, kzm = km cos θm where the angle θm is the

refraction angle in the mth layer with respect to nadir assuming a flat interface, and

km is equal to k0 for m = 0, and is equal to k0
√
ǫm otherwise. Finally, we note that

the generalized transmission coefficients, T, can be obtained as [137,138]

T
p
0|m =

exp

[

j
m−1∑

n=1

kzn∆n

]
m−1∏

n=0

T p
n|n+1

m∏

n=1

[

1 +Rp
n−1|nR

p
n|n+1e

j2kzn∆n

] (7.4)

where R is the generalized reflection coefficient that is recursively calculated [138], and

R and T are the Fresnel reflection and transmission coefficients.

As can be seen, the above procedure for estimating the cross-polarized surface scat-

tering NRCS does not take into account the presence of surface roughness. This is as

opposed to the co-polarized surface scattering component calculated by the BPT that
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does take into account the presence of rough surfaces. In an attempt to incorporate

the effect of surface roughness into cross-polarized surface scattering NRCS estimation,

we substitute the Fresnel field reflection coefficient in (7.4) with the following coherent

field reflection coefficient based on [139]

Rp,coh
n|n+1 = Rp

n|n+1e
−2(knhn cos θn)2 (7.5)

By considering this assumption, which is usually referred to as the quasi-specular

reflection, the mechanism of reflection will be the same as Fresnel reflection, but the

attenuation factor e−2k2nh
2
n cos2 θn will incorporate the loss due to the roughness of the

interface. Similarly, we substitute the Fresnel field transmission coefficient in (7.4)

with the following coherent field transmission coefficient based on [140]

T p,coh
n|n+1 = T p

n|n+1e
−2
(
0.5knhn

∣
∣√ǫn cos θn−√

ǫn+1 cos θn+1

∣
∣
)2

(7.6)

Finally, we note that the utilization of the generalized transmission coefficients instead

of Fresnel transmission coefficients allows us to take into account the multiple reflec-

tions due to the layered nature of the profile. This concludes our discussion on the

calculation of the co-polarized and cross-polarized NRCS due to surface scattering.

7.4.2 Volume scattering

Let’s now consider how the volume scattering component of the NRCS is estimated

in this work. To calculate σpp
v , the volume scattering in each layer, σ

pp,(m)
v , is approx-

imately calculated, and then transferred into the measurement half-space (i.e., air)

using a similar procedure explained in the previous section as

σpp
v =

N−1∑

m=1

|Tp
0|m|2|T

p
m|0|2σpp,(m)

v . (7.7)
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It should be noted that the above formulation assumes that the volume scattering

occurs in the layers sandwiched between the two half spaces, and not the half spaces

themselves. The volume scattering σ
pp,(m)
v within each layer m is calculated by a

heuristic single scattering model, which is equivalent to a single scattering radiative

transfer model as [27, 119]

σpp,(m)
v = σ

pp,(m)
v1 + σ

pp,(m)
v2 + σ

pp,(m)
v3 (7.8)

where σ
pp,(m)
v1 , σ

pp,(m)
v2 , and σ

pp,(m)
v3 are due to the direct volume contribution of parti-

cles (e.g., ice or brine inclusions), particle-interface interactions, and interface-particle-

interface interactions respectively. To calculate σ
pp,(m)
v1 , a cloud model is utilized as [27]

σ
pp,(m)
v1 = σ

pp,(m)
V ×

∣
∣
∣
∣

cos θm
2κm

(1− (L(m))2)

∣
∣
∣
∣

(7.9)

In (7.9), L(m) is the power loss factor, and κm = 2Im {km} is the extinction coefficient

approximated as inverse of the half of the skin-depth as [141]

κm = 2
ω

c







1

2
(

√

1 + (
ǫ′′m
ǫ′m

)
2

− 1)







1/2

(7.10)

Furthermore in (7.9), σ
pp,(m)
V is the volume back-scattering coefficient defined as [119]

σ
pp,(m)
V =

U∑

i=1

Niσbi =
U∑

i=1

Vi
4
3
πr3i

× σbi (7.11)

In (7.11), U is the number of different types of spherical scatterers within each layer

of snow (e.g., water, brine, ice particles, etc.), and Ni is the number of scatterer of

type i. Moreover, ri is the radius of a single scatterer and Vi is its respective volume

fraction [142]. Also, σbi is the scattering cross section of a single scatterer, and can be
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calculated as [143]

σbi =







64π5r6i
λ4
o

| ǫi−ǫb
ǫi+2ǫb

|2 |kiri| ≪ 1

2π
k2i

∑∞
n=1(2n+ 1)(|a(n),i|2 + |b(n),i|2) Otherwise

(7.12)

In (7.12), ǫi and ǫb are the permittivity values of the scatterer and its background

respectively. Depending on the size of each scatterer, we either use the Rayleigh ap-

proximation (i.e., the first condition) or the Mie scattering (i.e., the second condition)

in (7.12). The unknown coefficients a(n),i and b(n),i are defined in [27, 143], and are

calculated recursively.

Next, the particle-interface contribution, σ
pp,(m)
v2 , is calculated as [27]

σ
pp,(m)
v2 = σ

pp,(m)
V ×

∣
∣
∣4∆m(L

(m))2(Rp
m|m+1)

2
∣
∣
∣ . (7.13)

We note that in (7.13), we use the quasi-specular reflection assumption; i.e., (7.5) is

used to calculate the reflection coefficient.

The last volume scattering component in (7.8), σ
pp,(m)
v3 , considers a double reflection

from the bottom interface and double loss for the direct volume contribution as [27]

σ
pp,(m)
v3 =σ

pp,(m)
V ×

∣
∣
∣
∣

cos(θm)

2κm
(Rp

m|m+1)
4(L(m))2(1− (L(m))2)

∣
∣
∣
∣

(7.14)

Similar to the above, the quasi-specular reflection assumption is used to calculate

the reflection coefficient. This concludes our discussion on the calculation of the co-

polarized volume scattering component of the NRCS. We also note that the limitation

of this method lies in the fact that its calculated cross-polarized volume scattering

component of the NRCS becomes zero for the monostatic configuration. For bet-

ter understanding and further discussion on the above forward solver, please see Ap-

pendix ch:Appendix3.
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Now that our forward solver has been described, let’s consider Figure 7.10 that shows

the comparison of the simulated and measured NRCS data at 2 pm on 24th of May

2014. This time was chosen due to concurrent NRCS measurements by both the on-

site scatterometer and the satellite. For the co-polarized σHH in Figure 7.10(a), we

have shown the surface scattering component and the volume scattering component

as well as their summation (total component). As can be seen, the summation of the

simulated surface and volume scatting components follows the NRCS measured by the

scatterometer closely. It should be mentioned that we speculate the unexpected vari-

ations in the NRCS measured by the scatterometer is caused by local inhomogeneities

at some incidence angles. On the other hand, the NRCS measured by the satellite

is calculated by averaging an area of few kilometers, thus, tending to cancel out the

effects of any local inhomogeneity. Therefore, the NRCS data from the satellite is

closer to the simulated NRCS. It is also worthwhile to note that the large value of

volume scattering component in comparison with the surface scattering component for

the profile under study, may explain the similar values observed for the measured σHH

and σVV as shown in Figure 7.7.

In addition, Figure 7.10(b) compares the simulated and measured cross-polarized

NRCS data, namely, σHV. As noted above, our forward solver only estimates the

surface scattering component of the cross-polarized NRCS. This could be the rea-

son for the large discrepancy between the measured and simulated σHV. Therefore, to

crudely compensate for the absence of the cross-polarized volume scattering component

in our forward solver, a calibration factor is introduced based on the mean difference

of the measured and simulated data. Under the speculation that the cross-polarized

volume scattering component varies slightly for different incidence angles, we obtain

the calibrated simulated σHV as

σHV
(sim−cal) = σHV

s,(sim) + A0. (7.15)
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Fig. 7.10: Comparison of measured and simulated NRCS for 2pm on 24th of May. Subscripts (sim),
(sim-cal), (meas-scat), and (meas-sat) refer to simulated, calibrated simulated, measured
by scatterometer, and measured through satellite respectively. Also subscripts s and v refer
to surface and volume components.

In (7.15), the calibration coefficient, A0, is taken to be 7.3 dB. Of course, this cali-

bration factor is for the profile under study in this chapter, and can vary for other

profiles of interest. Furthermore, the accuracy of this forward scattering model was

assessed by comparing with the measured NRCS data reported in [144]. Our simu-

lated NRCS values are in agreement when compared to the reported values, with lower

accuracy for the cross-polarization component. Finally, it should be noted that we ac-

knowledge that the proposed framework for cross-polarization calculation is based on a

crude model, and requires further development. Also more comparisons with different

measured data sets will be part of the future work. Nonetheless, this method lays

the ground work for more accurate models to better simulate the cross-polarization

component. Within the framework of this chapter, we speculate that the use of the

above calibration method alleviates some errors associated with the cross-polarized

component calculation.
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7.5 Inversion Algorithm

The inversion algorithm reconstructs the parameters of interest from the measured

NRCS data. To this end, the inversion algorithm iteratively updates these parameters

by minimizing a data misfit cost functional. This process, which requires repeated

calls to a forward solver, continues until the inversion algorithm converges to a solution.

This solution will then serve as the reconstructed parameters associated with the snow-

covered sea ice profile of interest. In our case, the data misfit cost functional to be

minimized is the difference between the measured NRCS and the simulated NRCS due

to a set of unknown parameters. However, due to the ill-posedness of this problem,

the minimization may result in an unstable (i.e., oscillatory) solution, and also the

uniqueness of the solution is not necessarily guaranteed [73, 74]. To treat the ill-

posedness of the problem, the data misfit cost functional needs to be regularized. In

this chapter, the utilized regularization is a projection-based regularization scheme [76].

In our implementation, this regularization technique defines the possible range of values

for each unknown parameter to be retrieved, thus projecting the solution space into

a smaller subspace. To further treat the ill-posedness issue, it is recommended to

increase the number of measurements as much as possible. The reason behind this

idea can be explained as follows. For every measurement, there is an operator that

maps the snow-covered sea ice information to the NRCS data. Thus, the collective

nullspace associated with the problem can be thought as the intersection of all these

individual operators’ nullspaces. It is, therefore, expected that the collective null space

will be minimized as the number of operators increases.

Our inversion algorithm utilizes a global optimization method, known as the differential

evolution (DE) algorithm [99], to iteratively minimize the following data misfit cost
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functional

C(χ) ,
M∑

n=1

∑

p/q

1

σ
p/q
meas(Ψn

inc,Ψ
n
scat; f)

×
∣
∣
∣σp/q

meas(Ψ
n
inc,Ψ

n
scat; f) − σ

p/q
sim(χ; Ψ

n
inc,Ψ

n
scat; f)

∣
∣
∣

(7.16)

In (7.16), χ is the vector containing the unknown parameters of interest which will be

described in the next section, M denotes the number of the measurements at various

incidence angles, and p/q denotes different utilized polarization configurations. Also,

Ψn
inc and Ψn

scat denote the nth azimuth and elevation for incident and scattering angles

respectively. Finally, f is the frequency of operation, which is a fixed frequency at the

C-band. The weighting factor in (7.16) normalizes the discrepancies to the measured

NRCS, thus balancing the data for each incidence angle. In this chapter, we consider

a monostatic configuration, thus, Ψn
inc = Ψn

scat. Also, two combinations of p/q will be

considered herein: HH and HV.

7.6 Inversion Strategy

Herein, we present the assumptions made in our inversion algorithm in the following

four subsections.

7.6.1 Snow-covered sea ice parameterization

Based on our field observations and the physical sampling results, we divide the snow

cover into three distinct layers; namely, (1) new snow layer, (2) original snow layer, and

(3) basal layer. The new snow layer is due to the recent snow falls, has zero salinity,

and is considered dry (no water in liquid phase)(2). Next comes the older original snow

(2) We acknowledge that an error associated with the dry snow assumption exists, since the temperature of
the top layer of snowpack approaches zero for the end part of the period of interest.
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layer that is due to previous snow falls. This layer has gone through metamorphism,

thus, having larger grain size. It is also slightly saline due to its adjacency to the third

layer, which is the oldest snow layer. The third layer is the basal layer, which is highly

saline. This layer is due to the first snow fall on the sea ice. The metamorphism has

led to the presence of depth hoars in this layer. Herein, the second and third layers

are taken to be brine-wetted dry snow. The presence of brine might be due to the

upward movement of brine from the sea ice into the snow, or initial snowfall over frost

flowers. These values are typical of many measurements of snow covered smooth first

year sea ice [145, 146]. Figure 7.2 depicts the snow samples associated with each of

these layers. Finally, we note that the ice layer is assumed to be a half space in the

inversion algorithm.

7.6.2 Temporal average

Our physical sampling demonstrates that the profile under study has changed mini-

mally in May up to the 25th, in particular for the parameters of interest that play

a key role in profile’s back-scattering(3). Therefore, we propose to consider a single

temporally-averaged profile to represent the snow-covered sea ice for the aforemen-

tioned time period. This can be further verified considering the NRCS measured by

the scatterometer as shown in Figure 7.7. It is evident that the NRCS values are fairly

unchanged for each incidence angle since the beginning of scatterometer measurements

on 20th till the end of the observation period. Therefore, we calculate the temporal

averages of the measured salinity, temperature, and density for each layer within the

snow as well as the ice (Table 7.2). We then take these averages as our reference snow-

covered sea ice profile. Also, we note that in Table 7.2, the snow grain size is reported

based on in-situ visual evaluation of snow grains using a mm-grid etched plate. In

addition, Figure 7.11 shows these calculated average values with the uncertainty bars

(3) These parameters are defined in Section 7.6.3.
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Tab. 7.2: The averaged parameters for each layer within the reference snow-covered sea ice profile.

Snow New Layer Snow Original Layer Snow Basal Layer Sea Ice
(18 cm – 6 cm) (6 cm – 2 cm) (2 cm – 0 cm) (Half-Space)

Salinity (ppt) 0.12 3.47 9.58 4.93

Temperature (◦C) -3.63 -4.62 -4.73 -4.34

Density (g/cm3) 0.30 0.29 0.24 0.84

Grain Radius (cm) 0.10 0.20 0.50 NA

representing the standard deviation values. Concerning this plot, it should be noted

that although the average snow depth is assumed to be 18 cm, the actual snow depth

varied in each measurement session within a standard deviation of about 3 cm; thus,

there exists a larger uncertainty bar for the top layer in Figure 7.11. Consequently,

the values for the upper two points show unrealistic standard deviations, leading to

an artificial lower density. Although it should be noted that the averaging of the val-

ues associated with the top six measurement points in our simulation mostly corrects

this effect. Also, it is expected that the temperature of the top snow layer to be be

more affected by hourly air temperature and solar radiation changes. Therefore, a

larger variation is present for this top layer. (Temperature of the top layer will not

be used in the permittivity calculation of the top layer since the top layer is assumed

to be dry snow.) Finally, we note that we did not have access to physical sampling

for the 3rd and 4th of May; however, no significant meteorological event took place

from these dates up to the start of our physical sampling. Therefore, the whole period

from May 3rd to May 25th is assumed to have minimal changes. In addition, although

the air mean temperature difference between 4th and 11th is about 13.8 degrees, we

expect that the deviation of temperature in lower snow layers between these dates

is minimal due to snow’s small thermal conductivity. Also, as noted above, the top

layer of snow is considered to be dry; thus, its contribution to the NRCS will be only

density-dependent(4).

(4) It should be note that the snow might also be heated from below by the ocean heat conducted through
the sea ice, based on the average temperature variation represented in Table 7.2.
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7.6.3 Formation of the vector of unknowns

The choice of the vector of unknowns is mainly affected by our measured data, which

is the NRCS. That is, we are interested in parameters that affect the NRCS in our

utilized physical model. These parameters are the complex permittivity of each layer

as well the grain size. In our inversion algorithm, the complex permittivity is obtained

through proxy formulations to be explained in the next subsection. To this end, for the

top snow layer (new snow), only the density will be retrieved, since this layer is assumed

to be dry snow; thus, having its density will be sufficient to calculate its corresponding

permittivity. For the third snow layer (basal layer), the salinity, temperature, density,

and radius of the snow grain are treated as unknowns to be retrieved. As noted

above, the middle original layer is labeled as a transitional layer. (This is from a

modeling point of view, and not necessarily from a physical perspective.) Therefore,

we calculate its parameters based on the properties of the top new snow and bottom

basal layer. Specifically, the density of this layer is taken to be the average of the new

snow and basal layer, its salinity is taken to be one-third of the basal layer’s salinity,

and its temperature is approximated to be the same as that of the basal layer. These

assumptions are based on our physical observations and the thickness of the middle and

bottom snow layers. All other parameters are considered to be prior information that

are available through methods such as in-situ physical sampling, lidar measurements,

and the general knowledge of the typical seasonal snow-covered sea ice in the area.

For example, all the roughness parameters are provided to the inversion algorithm

as prior information. Based on the lidar measurements reported in Table 7.1, the

average rms height and correlation length of the air-snow interface are taken to be

0.12 cm and 2.34 cm respectively. Moreover, for the inner snow interfaces, we assume

a roughness based on the grain size in an ad hoc manner. Therefore, an rms height and

correlation length of 0.20 cm and 2.00 cm, and 0.50 cm and 5.00 cm, are assumed for

the new-original and original-basal layer interfaces respectively. For snow-ice interface,



7.6 Inversion Strategy 162

18

0

−50

−8 −6 −4 −2 0

P
ro

fil
e 

D
ep

th
 (

cm
)

Temperature (°C)

(a)

18

 

0

 

−50

0 5 10
P

ro
fil

e 
D

ep
th

 (
cm

)
Salinity (ppt)

(b)

18

0

0 0.2 0.4 0.6

P
ro

fil
e 

D
ep

th
 (

cm
)

Density (g/cm3)

(c)

Fig. 7.11: The temporally-averaged physically measured values of snow-covered sea ice for (a) tem-
perature, (b) salinity and (c) density, all of which up to 26th of May 2014. The uncertainty
bars are their respective standard deviation values. (The top two points have large bars
due to considering snowpack thickness (average) to be 18 cm for what is actually a variable
thickness.) The horizontal dashed line at zero is the snow-ice interface.

an almost smooth condition is assumed based on field observations with a typical rms

height and correlation length of 0.15 cm and 8.50 cm respectively, which is similar to

previously reported values [142].

7.6.4 Use of proxy formulations

After updating the unknowns, introduced above, at each iteration of the inversion

algorithm, we need to obtain the complex permittivity profile associated with the

predicted profile so as to find its corresponding simulated NRCS. To this end, the proxy

formulations introduced in [27, 119, 142] are utilized to calculate the permittivities of

dry snow, brine-wetted dry snow, and sea ice based on these retrieved parameters.
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Fig. 7.12: The reconstructed (a) temperature, (b) salinity, and (c) density & snow grain size.
The solid colored vertical lines are the retrieved parameter, the dashed colored vertical
lines are the parameters derived based on the retrieved parameter, and the vertical col-
ored dash-dot lines are the extra information (i.e., not used in inversion). The colors
blue (square), red (downside triangle), and green (upside triangle) represent the inver-
sion in Scenario (I) (using satellite data), Scenario (II) (scatterometer data), and Sce-
nario (III) (satellite plus scatterometer data) as inversion algorithm input. Circles in (c)
are the reference (black) and reconstructed (colored) relative snow grain sizes for the basal
snow layer, following the same color coding scheme.

7.7 Inversion Results

Herein, we first present the three scenarios that we consider for inversion. The inversion

results associated with each scenario will then be presented and discussed.

7.7.1 Three scenarios

Herein, we investigate the reconstruction of the snow-covered sea ice whose reference

profile is reported in Table 7.2 by utilizing the inversion algorithm introduced in Sec-

tion 7.5 in conjunction with the forward solver presented in Section 7.4. To this end, we

consider three different inversion scenarios distinguished by the measured data avail-

able to the algorithm. In Scenario (I), the NRCS given to the inversion algorithm is

the NRCS data collected by the satellite on the seven dates mentioned in Section 7.3.3.

Given that we are using a dual polarization data (HH and HV), and we have seven
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different incidence angles, the number of data points will be 14 in this scenario. In

Scenario (II), the dual-polarized (HH and HV) NRCS measured by the on-site scat-

terometer is given to the inversion algorithm. Noting that we have 10 incidence angles

in this scenario, the total number of data points will be 20. (Note that each data

point in Scenario (II) is the temporal average of the NRCS data collected over the

period of interest.) Finally, in Scenario (III), we utilize the NRCS measured by both

the scatterometer and satellite. Since the incidence angles in Scenarios (I) and (II) are

not exactly the same, Scenario (III) will have more information regarding the profile

of interest.

7.7.2 Results and Discussion

The reconstructed salinity, temperature, density, and snow grain size for these three

scenarios are depicted in Figure 7.12. These reconstructions are color-coded: blue,

red, and green represent Scenarios (I), (II), and (III) respectively. For example, in

Figure 7.12(a), the three reconstructed temperatures at the basal layer, shown by

colored solid vertical lines, correspond to these three scenarios. These reconstructions

can then be compared with the reference temperature at this layer, which is shown by

the dashed black curve. Also, as noted in Section 7.6.3, the parameters of the original

snow layer (middle snow layer) are found based on the reconstructed properties of

the first and third snow layers. That’s why in Figure 7.12(a), the temperature of the

original snow layer (three dashed colored vertical lines) coincide with the reconstructed

temperature of the basal layer. Finally, we note that the colored dash-dot line is the

temperature of the new snow layer, which is not used in the inversion algorithm for the

reasons explained in Section 7.6.3, and is brought here for demonstration purposes.

Figure 7.12(b) shows the reconstructed salinity at the basal layer for these three sce-

narios, see colored solid vertical lines. Similar to Figure 7.12(a), the salinity of the
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original snow layer can be obtained from these reconstructed salinity values, and is pre-

sented by dashed colored vertical lines. (The salinity of the new snow layer is not used

in the inversion algorithm.) Finally, Figure 7.12(c) represents two different parameter

reconstruction: the density and the snow grain size. As can be seen, the reconstructed

density values at the new snow layer as well as the basal snow layer are shown with

colored solid vertical lines. Based on Section 7.6.3, the density of the original snow

layer can then be found by knowing the reconstructed density values at the new and

basal snow layers. Furthermore, Figure 7.12(c) shows the reconstructed snow grain

size for the basal layer. The black circle is the reference size, and the colored concen-

tric circles represent the reconstructed snow grain size for these three scenarios. The

snow grain size for new snow layer has been taken as prior information, and that of

the original snow layer has been obtained based on the reconstructed snow grain size

of the basal layer.

The calculated average of the reconstruction relative errors for Scenarios (I), (II),

and (III) for the 5 problem unknowns outlined in Section 7.6.3, are 32%, 18%, and

13% respectively. These reconstruction results confirm our speculation that with an

increase in the number of measurements (i.e., NRCS data points), the reconstruction

accuracy increases. Finally, as can be seen in Figure 7.12 (c), it is interesting to note

that for all the three scenarios, the accuracy of density retrieval is higher for the top

layer compared to the basal layer. When comparing Scenario (II) to Scenario (I),

we should bear in mind that the area scanned by the scatterometer is a few meter

squares while that of the satellite is a few kilometer squares. On the other hand, the

reference profile for the reconstruction accuracy was also calculated based on the in-situ

physical measurements around the scatterometer area. Therefore, the accuracy of the

reconstruction results are slightly biased towards Scenario (II). Nevertheless, the nature

of the landfast snow-covered sea ice in the measurement area and our field observations

both confirm the validity of the assumption of a homogenous profile for the area used
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for satellite NRCS extraction. A further confirmation of the homogeneity assumption

is the higher reconstruction accuracy of Scenario (III) compared to Scenario (II), which

would have not happened if the reference profile was not representative enough for the

area under investigation. Finally, it is worthwhile to note that the inclusion of volume

scattering in our forward solver was critical in successful inversion for the snow-covered

sea ice profile studied in this chapter. In fact, a sole surface scattering model failed to

accurately retrieve the unknown parameters as shown in [128].

7.8 Conclusion

We have considered the inversion of the monostatic NRCS data collected from landfast

snow-covered sea ice in Cambridge Bay, NU, Canada, in May 2014. The NRCS data

were collected using an on-site C-band scatterometer as well as radarsat-2 satellite. It

was shown that the inclusion of the volume scattering component in the electromag-

netic forward solver is crucial for accurate NRCS modeling for the profile under study.

Thus, it is also crucial for obtaining accurate inversion results. To this end, the concept

of the generalized transmission coefficients in conjunction with the volume scattering

component of a single layer was utilized to model the volume scattering component

of our multi-layered rough medium. In addition to the co-polarized NRCS data, the

cross-polarized NRCS data were used in the inversion process to increase the number

of data points.

The developed inversion algorithm retrieves the temperature, salinity, density, and

snow grain size of the snow-covered sea ice profile through iterative minimization of

a normalized data misfit cost functional. This cost functional is associated with a

discrepancy between the NRCS data simulated by our proposed forward solver and

the measured NRCS data. Moreover, a projection-based regularization was utilized

to tackle the inversion ill-posedness. Based on the measured NRCS dataset provided
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to the inversion algorithm, we studied three different inversion scenarios in which

satellite data (Scenario (I)), scatterometer data (Scenario (II)), and finally the combi-

nation thereof (Scenario (III)) were fed to the inversion algorithm. There were 14 data

points available through satellite and 20 data points available through scatterometer

measurements (HH and HV polarizations for each incidence angle). Based on the re-

construction results, it was shown that the reconstructed profile became more accurate

as the number of input data increased; with the best reconstruction achieved through

Scenario (III) (mean relative reconstruction error of 13%).

Based on the comparison of these three scenarios, it can be concluded that if satellites

with shorter re-visit times are to be employed for this application, the reconstruction

accuracy may be enhanced. This may be particularly pertinent as the new ’sentinel’

series and the constellation missions of ESA and CSA come online. In addition, the

inversion algorithm utilized some prior information to reconstruct the unknown param-

eters. Assuming that more NRCS data points become available, e.g., through more

incidence angles, bistatic NRCS data, and more frequencies of operation, the inversion

algorithm may be able to treat some of these prior information as the actual unknowns

in the inversion process.
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Conclusion and Future Work

In this chapter, I present the conclusions of my thesis and the proposed future work.

Firstly, the summary of the thesis and the contributions made towards the thesis

objectives (as outlined in Chapter 1) are brought in Section 8.1. Next in Section 8.2,

the proposed new research direction and the future work based on the findings of this

research are introduced.

8.1 Conclusion

The main objective of this thesis was to retrieve the parameters of interest associated

with the snow-covered sea ice profile from NRCS data. These parameters can be the

geophysical, thermodynamic, or dielectric properties of the snow and sea ice. To this

end, an electromagnetic inverse scattering algorithm was developed that consists of for-

ward and inverse solvers. The performance of this electromagnetic inverse scattering

algorithm was then investigated against both synthetic and experimentally-collected
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NRCS data. It is concluded that for more accurate parameter retrieval, it is necessary

to (i) add more measured data, and (ii) utilize appropriate prior information. The ad-

dition of more measured data points is limited due to the structure of the snow-covered

sea ice profile (e.g., data collection only on one side of the profile), specifications of

the available electromagnetic sensors (e.g., single-frequency monostatic satellites with

limited re-visit rates), and the location of the profile (e.g., in remote and hazardous

Arctic environment). Therefore, various techniques were developed in this thesis to

take advantage of the prior information to add extra data to the inversion algorithm.

In addition to enriching the information content via performing more measurements

and the use of prior information, we need to ensure that the modeling error in the

inversion algorithm is as low as possible. To this end, the utilized forward solver was

enhanced so as to simulate the NRCS data associated with snowpacks containing large

snow grains more accurately. In summary, it has been shown that the electromag-

netic inverse scattering framework provides a promising tool to retrieve the dielectric

(complex permittivity), geophysical (e.g., snow grain size), and thermodynamic (e.g.,

temperature) properties of snow-covered sea ice.

8.1.1 Contributions

Herein, I outline the specific contributions made towards achieving the objectives of

the thesis.

1. A nonlinear electromagnetic inverse scattering algorithm is developed that re-

constructs the dielectric profile of the snow-covered sea ice. This reconstruction

is achieved through iterative minimization of a misfit cost function that repre-

sents the discrepancy between the measured and simulated data. The measured

data are the normalized radar cross section (NRCS) values collected from vari-

ous snow-covered sea ice types under different measurement configurations. The
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simulated data are produced utilizing the boundary perturbation theory and the

heuristic single scattering multiple reflection cloud model. The differential evolu-

tion method is utilized as the inverse solver to reconstruct a candidate profile at

each iteration most similar to the true profile. It should be noted that in addi-

tion to the dielectric profile of the snow-covered sea ice, this algorithm retrieves

some geophysical (e.g., snow grain size), and thermodynamic (e.g., temperature

profile) properties of the snow and sea ice through the previously established

proxy formulas. The proxy formulas relate the geophysical and thermodynamic

properties of the snow and sea ice to their dielectric properties. Moreover, a

projection-based regularization is utilized to tackle the ill-posedness of the in-

version problem. This translates into setting limits for the search space of each

unknown parameter in the inverse solver. These limits act as prior information,

and are based on our knowledge of the specific profile under investigation (e.g.,

setting the search space for the sea ice permittivity based on the experimentally-

determined expected variations).

2. The inversion of experimental data sets collected from two types of snow-covered

sea ice profiles are investigated within the framework of electromagnetic inverse

scattering. The first type, is the slush-covered artificially-grown sea ice in the

sea-ice environmental research facility (SERF) located in Winnipeg, studied in

Winter 2014. This type of profile represents the young sea ice that would form

in polynya or lead areas. The second type, is the first-year snow-covered sea ice

located in Cambridge Bay in the Canadian High Arctic, studied in May 2014. In

each of these two experiments, the time-series NRCS data are collected utilizing

a C-band scatterometer. Temporal physical sampling of snow and sea ice (i.e.,

temperature, salinity, and density profiling) are also performed concurrently with

the NRCS measurements, utilized to later verify the accuracy of the reconstructed

profiles through inversion.
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3. The formulation for the forward solver in the proposed electromagnetic inverse

scattering algorithm is expanded to include the effects of the non-negligible vol-

ume scatterers within the snowpack. This is achieved through the addition of a

volume scattering component to the surface scattering component simulated by

the BPT. The volume scattering component is calculated via a heuristic single

scattering cloud-model that sums the scattering effects of randomly distributed

scatterers. I expanded this model for multi-layered mediums to consider multiple

reflections from the rough boundaries through the use of the generalized reflec-

tion and transmission coefficients. It should be noted that under the introduced

inversion scheme, which utilizes this enhanced forward solver, the collective ef-

fect of volume scatterers is considered. Therefore, a collective characteristic for

all scatterers is retrieved in contrast to each scatterer being individually recon-

structed.

4. The following algorithms and techniques are developed and implemented to better

regularize the problem, and to add extra information to the problem (or, use more

sensitive information) so as to help the nonlinear inversion algorithm converge to

an appropriate solution.

– It is shown that the utilization of more sensitive NRCS data with respect

to the unknown parameters of the profile to be retrieved results in higher

reconstruction accuracy. Therefore for the purpose of inversion, the NRCS

data that are considered to be more sensitive are collected and inverted (i.e.,

NRCS data measured at incidence angles closer to the nadir or specular angle

for the monostatic or bistatic configurations respectively).

– An appropriate weighting factor for the misfit cost function is introduced for

the case of bistatic NRCS data collection configuration. This weighting fac-

tor normalizes the discrepancy between the measured and simulated NRCS

data and assigns a higher weight to those collected at angles in the vicinity
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of the specular reflection. The employment of this weighting factor is shown

to increase the reconstruction accuracy utilizing the synthetic bistatic NRCS

data.

– A further parametrization technique for the sea ice permittivity profile is

developed that reduces the number of inverse problem unknowns. This

parametrization is based on prior information about the shape of the sea

ice permittivity curve versus the profile depth. This curve is known to have

a C-shape for specific sea ice types as a result of their growth process.

– An inversion strategy is introduced that takes advantage of the time-series

nature of the temporally collected NRCS data. This is achieved through

utilization of the reconstructed profile at each time step, to set the search

space for the profile unknowns in the next time step. The assumptions

considered in this strategy are that (i) no abrupt changes occur in snow-

covered sea ice profile status during the period of the NRCS measurements,

and (ii) the true profile at the first time step is known either via physical

sampling or other inversion schemes (e.g., a multi-frequency scheme).

– A combination of the time-series NRCS data collected through a C-band

scatterometer and a C-band spaceborne SAR satellite (i.e., radarsat-2) are

utilized for the first time to retrieve the parameters of interest from the

snow-covered sea ice profile through an electromagnetic inverse scattering

algorithm. A profile averaging technique is introduced to reduce the num-

ber of inversion problem unknowns. The reconstruction results for different

scenarios utilizing this approach confirmed that the deployment of satellite

platforms with higher re-visit rates (i.e., satellites that would provide more

measured NRCS data points) can lead to higher reconstruction accuracy

within the electromagnetic inverse scatting framework.
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8.2 Future Work

My research presented in this thesis can be further developed on three fronts (i) the

electromagnetic inverse scattering algorithm improvements, (ii) application expansion,

and (iii) multi-physics inversion.

1. Electromagnetic inverse scattering algorithm improvements.– The proposed in-

version algorithm consists of two main components, namely, forward and inverse

solvers. Each of these solvers can then be further developed to achieve better

retrieval accuracy for specific snow-covered sea ice types. In the case of forward

solver, there are always promising opportunities to enhance the utilized forward

solver (e.g., use of higher order approximations), or use more sophisticated for-

ward solvers (e.g., dense medium radiative transfer theory). However, it should

be noted that the forward solver within this inversion framework is not used in

isolation. It is, in fact, used in conjunction with an inverse solver applied to a

given measured data set. Therefore, the choice of the forward solver can affect

the number of unknowns to be recovered, and thus, can affect the performance

of the inverse solver. For example, in a practical scenario in which the number

of measured data points are limited, if the use of a forward solver results in too

many unknowns, that might lead to reconstruction failure due to the significant

imbalance between the number of known and unknown quantities. Finally, we

should always consider the computational complexity of the forward solver as the

forward solver is often called several times during the inversion process.

On the other hand, the data used in this thesis for parameter retrieval of the

snow-covered sea ice profile were the phaseless NRCS data. It is expected that

the addition of other data extracted from the measurements to the inverse prob-

lem can improve the reconstruction accuracy. This is particularly noticeable in

the case of the data provided by polarimetric images of spaceborne SAR satel-
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lites (e.g., radarsat-2 and sentinel-1). Based on these data, various polarimetric

parameters can be calculated (e.g., target entropy), and then used (solely, or in

conjunction with the NRCS data) for parameter retrieval and classification. In

such scenarios, the inverse solver should be modified to take into account multiple

forms of data.

2. Application expansion.– Various applications for the developed inversion algo-

rithm can be considered depending on the profiles and parameters to be retrieved.

One application is the oil detection in the snow-covered sea ice profile. The ever-

increasing development in oil and gas exploration and shipping throughout the

Arctic translates into possible future oil spills. In the case of such oil spill oc-

currences, detection of the spill is a prerequisite to any subsequent endeavors for

cleanup and recovery. The electromagnetic inverse scattering algorithm devel-

oped in my thesis can be further expanded for oil detection. The oil can manifest

itself as (i) a separate distinguishable layer above, within, or below the snow-

covered sea ice profile, or (ii) inclusions within the snow or sea ice layer. The

dielectric contrast of the oil layer versus snow and sea ice layers in the former

case, and the change in the overall permittivity of the snow-covered sea ice pro-

file in the latter case, can lead to the oil retrieval utilizing the framework of the

developed inversion algorithm.

3. Multi-physics inversion.– It should be noted that new technologies proposed for

parameter retrieval from various types of snow and sea ice in the Arctic focus

on multi-physics methods. In such technologies, various types of data (e.g., elec-

tromagnetic, hyperspectral, acoustic, etc.) are collected from the profile to be

reconstructed. There are at least two approaches to invert these multi-physics

data sets. In the first inversion approach, the measured electromagnetic data

are inverted by an electromagnetic inverse scattering algorithm while the rest of

data are processed through other inversion algorithms (e.g., use of an acoustic
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inversion algorithm for the acoustic data set). Consequently, the intersection of

the retrieved parameters by each algorithm will form the final reconstruction.

In the second inversion approach, the multi-physics data are all fed to a single

inversion algorithm that reconstructs a single profile. This simultaneous inver-

sion approach can reduce the chance for the inversion algorithm to be trapped in

wrong solutions. The author believes that multi-physics methods will be the key

tool in future strategies for parameter retrieval through remote sensing.

This concludes my Ph.D. dissertation on radar cross section data inversion for snow-

covered sea ice remote sensing.
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Appendix A

In this thesis, the boundary perturbation theory (BPT) developed by Imperatore et.

al. [92, 94, 138] was implemented as the forward solver to calculate the NRCS data

associated with a layered medium with rough interfaces. The details on the derivation

of BPT formulation by Imperatore are presented in [94]. (We later enhanced this

forward solver as described in Chapter 7.) In this appendix, I briefly describe the

concept behind the BPT. Next, I will describe the details on how I have implemented

the BPT formulation to calculate the NRCS data associated with the snow-covered sea

ice profile having rough interfaces. Finally, the simulation results of the implemented

BPT code are verified via comparisons against simulation results of other forward

solver codes. (The details of the enhancement are not repeated here, and can be found

in Chapter 7.)

To explain the concept of the BPT, I initially introduce the generalized reflection and

transmission coefficients for flat interfaces as described in [137]. To this end, let’s first

consider a three-layer profile with flat boundaries as shown in Figure A.1. The total



178

Fig. A.1: Three-layer medium with flat surfaces (based on a figure in [137]).

field (i.e., the superposition of the down-going and up-going waves) in each of the

layers can be written as(1) [137]

E1y = A1

[
e−jkz1z +R1|2e

2jkz1d1+jkz1z
]

(A.1)

E2y = A2

[
e−jkz2z +R2|3e

2jkz2d2+jkz2z
]

(A.2)

E3y = A3e
−jkz3z (A.3)

In (A.1), R1|2 is the reflection coefficient parameter that considers the effect of multiple

reflections due to Region 2 and Region 3 interface. Also in (A.2), R2|3 is the Fresnel

reflection coefficient between Region 2 and Region 3. Moreover k is the wave number

and A is the wave amplitude. (Different subscripts denote different layers.) Knowing

that the down-going wave in Region 2 at z = −d1 is equal to the transmission of the

down-going wave from Region 1 plus the reflection of the up-going wave in Region 2,

we have(2) [137]

A2e
jkz2d1 = T1|2A1e

jkz1d1 +R2|1A2R2|3e
2jkz2d2−jkz2d1 (A.4)

(1) The example considers the transverse electric (TE) polarization.
(2) To be precise, this translates to z = −d1 − ǫ where ǫ is a very small positive number.
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Furthermore, the up-going wave in Region 1 at z = −d1 is equal to the reflection of

down-going wave in Region 1 plus a transmission of the up-going wave in Region 2.

This can be written as

R1|2A1e
jkz1d1 = R1|2A1e

jkz1d1 + T2|1A2R2|3e
2jkz2d2−jkz2d1 (A.5)

Next, we solve (A.4) for A2 to be

A2 =
T1|2A1e

j(kz1−kz2)d1

1−R2|1R2|3e2jkz2(d2−d1)
(A.6)

and use A2 in (A.5) to find R1|2 as

R1|2 = R1|2 +
T1|2R2|3T2|1e

2jkz2(d2−d1)

1−R2|1R2|3e2jkz2(d2−d1)
(A.7)

The above procedure represents the concept of the generalized reflection coefficients for

a three-layer medium with flat interfaces. Based on this, we can then understand that

if a new layer is added below the profile in Figure A.1, the Fresnel reflection coefficient

of R2|3 will be replaced by R2|3 [137]. Such reflection coefficients are referred to as

the generalized reflection coefficients. Therefore, for an N -layered medium, we have

the following generalized reflection coefficients where the index i denotes the layer

number [137]

Ri|i+1 = Ri|i+1 +
Ti|i+1Ri+1|i+2Ti+1|i e

2jkz(i+1)(di+1−di)

1−Ri+1|iRi+1|i+2 e
2jkz(i+1)(di+1−di)

=
Ri|i+1 +Ri+1|i+2 e

2jkz(i+1)(di+1−di)

1 +Ri|i+1Ri+1|i+2 e
2jkz(i+1)(di+1−di)

(A.8)

Similar to (A.6) which shows the transmission between two successive layers in a three-

layer medium, we can arrive at a similar transmission formula between two successive
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layers in an N -layered medium as follows [137]

Aie
jkzidi−1 =

Ti−1|iAi−1 e
jkz(i−1)di−1

1−Ri|i−1Ri|i+1 e2jkzi(di−di−1)
(A.9)

The above equation establishes a transmission relation between two successive layers.

Since A1 is known (incident field), A2 can be obtained. Then, from A2, A3 can be

found, and so on. This enables us to define the so-called generalized transmission

coefficient, T1|m, that establishes a transmission relation between layers 1 and m as

follows

Ame
jkzmdm−1 = T1|mA1e

jkz1d1 (A.10)

Noting (A.10) and (A.9), the generalized transmission coefficient T1|m can be recur-

sively obtained as [137]

T1|m =
m−1∏

i=1

Ti|i+1 e
jkzi(di−di−1)

1−Ri+1|iRi+1|i+2 e
2jkz(i+1)(di+1−di)

(A.11)

This concludes our description of the generalized transmission and generalized reflec-

tion coefficients.

Now let’s define S
±p(0)
m as the zero-order complex amplitudes of the spectral repre-

sentation of the field at mth layer(3). (The superscript zero refers to the zero-order

field, i.e., the unperturbed field.) Therefore the amplitude of the up-going (+) and

down-going (-) field components at the interface between layers m and m + 1, i.e.,

z = −dm, can be combined into a matrix, denoted by S
p(0)
m , as(4) [94]

Sp(0)
m (k⊥, dm) =




S
+p(0)
m (k⊥)e

−jkzmdm

S
−p(0)
m (k⊥)e

+jkzmdm



 (A.12)

(3) We note that E
±(0)
m (r) =

∑

p=h,v e
jki

⊥
.r⊥ p̂±m(ki

⊥)S
±p(0)
m (ki

⊥)e
±jki

zmz, where p̂±m(ki
⊥) is the unit vector

indicating the horizontal/vertical (TE/TM) polarization [94]. Note that based on Imperatore’s notation [94],
k⊥ is the wavenumber vector projected on the interfaces; i.e., ki

⊥ = kxx̂+ ky ŷ.
(4) From this point on, the region indexing starts from 0.
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Employing a recursive approach, and applying the continuity of the tangential fields

across each interfaces, Imperatore finds [94]

Sp(0)
m (ki⊥, dm) = N

p
m|m+1(k

i
⊥)S

p(0)
m+1(k

i
⊥, dm)

= N
p
m|m+1(k

i
⊥)Πm+1(k

i
⊥)S

p(0)
m+1(k

i
⊥, dm+1)

(A.13)

In (A.13) we have [94]

N
p
m|m+1(k⊥) =

1

T p
m|m+1




1 Rp

m|m+1

Rp
m|m+1 1



 ; (A.14)

Πm+1(k⊥) =




ejkzm∆m 0

0 e−jkzm∆m



 (A.15)

Noting that the matrices N and Π create a transfer function formulation between the

field values at different layers, and that the very last layer is a half space(5), we can

utilize the generalized transmission and reflection coefficients to arrive at [94]

Sp(0)
m (ki⊥, dm) =




Rp

m|m+1(k
i
⊥)

1



T
p
0|m(k

i
⊥)e

jkzm∆mS
−p(0)
0 (ki⊥) (A.16)

The above equation relates the unperturbed field at the mth layer on z = −dm to the

incident field.

We now consider a profile with slightly rough interfaces. To this end, we write the

Taylor series expansion of the field jump at the mth interface, denoted by ∆Em(z)
(6),

as

∆Em(z) = ∆Em

∣
∣
∣
∣
z=−dm

+
∂∆Em

∂z

∣
∣
∣
∣
z=−dm

(z+dm)+
1

2

∂2∆Em

∂z2

∣
∣
∣
∣
z=−dm

(z+dm)
2+... (A.17)

(5) The up-going field will be zero at this half space.
(6) Similar equations can be written for ∆Hm(z).
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If the interface roughness shape is characterized by ζm(x, y), from the tangential bound-

ary condition n̂m ×∆Em

∣
∣
∣
∣
z=ζm(x,y)−dm

= 0 and keeping only the first orders of ζm and

υ, we arrive at(7) [94]

ẑ ×∆Em

∣
∣
∣
∣
z=−dm

= ∇⊥ζm ×∆Em

∣
∣
∣
∣
z=−dm

− ζmẑ ×
∂∆Em

∂z

∣
∣
∣
∣
z=−dm

(A.18)

The field solution can be approximated as Em ≈ E
(0)
m +E

(1)
m [94] (i.e., the unperturbed

solution with superscript (0) plus the correction due to the first-order roughness with

superscript (1)). Utilizing this field expansion in (A.18) gives [94]

ẑ ×∆E(1)
m

∣
∣
∣
∣
z=−dm

= ∇⊥ζm ×∆E(0)
m

∣
∣
∣
∣
z=−dm

− ζmẑ ×
∂∆E

(0)
m

∂z

∣
∣
∣
∣
z=−dm

(A.19)

It should be noted that the left hand side of (A.19) can be thought as an effective

(magnetic) current density.(8) The spectral representation of this left hand side will

then be

ẑ ×∆E(1)
m

∣
∣
∣
∣
z=−dm

=

∫ ∫

dk⊥e
jk⊥.r⊥J̃

p(1)
Hm (k⊥,k

i
⊥) (A.20)

In (A.20), the spectral surface equivalent current density J̃
p(1)
Hm is the Fourier transform

of the RHS of (A.19), which is dependent only on the unperturbed field component

E
(0)
m (i.e., the field component associated with the flat-interface assumption), and the

roughness ζm. Similar treatment of tangential boundary condition for magnetic field

results in an additional spectral surface equivalent current density of J̃
p(1)
Em . As can be

noticed, the roughness effect can be thought as a flat boundary, plus the equivalent

current densities due to the roughness. Thus, Imperatore considers the effect of these

current densities by adding them as a perturbation matrix Θ to the field equations in

(7) We note that the normal vector at mth interface, denoted by n̂m, is defined as n̂m = ẑ−υm√
1−υ2

m

. The slope

vector, denoted by υm, is defined as υm = ∇⊥ζm.

(8) A similar equation can also be found for ẑ ×∆H
(1)
m

∣
∣
∣
∣
z=−dm

, which can be thought as an effective electric

current density.
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(A.13) at the mth boundary as [94]

Sq(1)
m (k⊥, dm) +

Θ
︷ ︸︸ ︷



−koZoµm

2kzm
(k̂⊥ × ẑ).J̃

p(1)
Em + 1

2
k̂⊥.J̃

p(1)
Hm

+koZoµm

2kzm
(k̂⊥ × ẑ).J̃

p(1)
Em + 1

2
k̂⊥.J̃

p(1)
Hm



 = N
q
m|m+1(k⊥)S

q(1)
m+1(k⊥, dm)

(A.21)

Based on the above, S
+q(1)
0 (the up-going S in the first half-space on the very first

interface) can be calculated [94].

The field in the first half-space (i.e., in the measurement domain) due to the medium

under investigation can be written as [94]

E
(1)
0 (r) =

∑

q=h,v

∫ ∫

dk⊥e
jk⊥.r⊥ q̂+0 (k⊥)S

+q(1)
0 (k⊥)e

jkz0z (A.22)

Employing the method of stationary phase, we find the scattered field in the direction

of interest [94]

E
(1)
0 (r).q̂+0 (k

s
⊥)

∼= −j2πk0 cos(θs0)
ejk0r

r
S
+q(1)
0 (ks⊥) (A.23)

The normalized radar cross section of an area, denoted by A, is calculated by ensemble

averaging, denoted by <>, of the statistically identical interfaces as [94]

σqp = lim
r→∞

lim
A→∞

4πr2

A
< |E(1)

0 (r).q̂+0 (k
s
⊥)|

2
> (A.24)

By utilizing (A.23) in (A.24) and replacing S
+q(1)
0 with its solution we have(9) [94]

σqp = πk40|α̃m,m+1
qp (ks

⊥,k
i
⊥)|2Wm(k

s
⊥ − ki

⊥) (A.25)

(9) The solutions of S
+q(1)
0 are directly proportional to ζ̃(ks

⊥ − k
i
⊥), that is S

+q(1)
0 ∝ ζ̃(ks

⊥ − k
i
⊥). Therefore

we have σqp ∝ < |S+q(1)
0 |2 > ∝ < |ζ̃(ks

⊥ −k
i
⊥)|2 > ∝ W (ks

⊥ −k
i

⊥). (Note the definition of W in (3.3).) This
explains the appearance of the spatial power density, that is dependent on the perpendicular wave numbers,
in the final formulation for σqp.
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In (A.25), we have used α̃m,m+1
qp notation to represent the following [94]

α̃m,m+1
hh =

ksz0
kszm

(ǫm+1 − ǫm)(k̂
s
⊥.k̂

i
⊥)

× ejk
s
zm∆mT

h
m|0(k

s
⊥)[1 +Rh

m|m+1(k
s
⊥)]

× ejk
i
zm∆mT

h
0|m(k

i
⊥)[1 +Rh

m|m+1(k
i
⊥)]

(A.26)

α̃m,m+1
vh = −k

s
z0

k0
(ǫm+1 − ǫm)ẑ.(k̂

s
⊥ × k̂i⊥)

× ejk
s
zm∆mT

v
m|0(k

s
⊥)[1−Rv

m|m+1(k
s
⊥)]

× ejk
i
zm∆mT

h
0|m(k

i
⊥)[1 +Rh

m|m+1(k
i
⊥)]

(A.27)

α̃m,m+1
hv =

ksz0k
i
zm

k0kszmǫm
(ǫm+1 − ǫm)ẑ.(k̂

i
⊥ × k̂s⊥)

× ejk
s
zm∆mT

h
m|0(k

s
⊥)[1 +Rh

m|m+1(k
s
⊥)]

× ejk
i
zm∆mT

v
0|m(k

i
⊥)[1−Rv

m|m+1(k
i
⊥)]

(A.28)

α̃m,m+1
vv =

ksz0
k20k

s
zmǫm

(ǫm+1 − ǫm)

× ejk
s
zm∆mT

v
m|0(k

s
⊥)e

jkizm∆mT
v
0|m(k

i
⊥)

× {[1 +Rv
m|m+1(k

s
⊥)][1 +Rv

m|m+1(k
i
⊥)]

× ǫm
ǫm+1

ki⊥k
s
⊥ − [1−Rv

m|m+1(k
s
⊥)]

× [1−Rv
m|m+1(k

i
⊥)]k

s
zmk

i
zm(k̂

s
⊥.k̂

i
⊥)}

(A.29)

In (A.25), we also used the notation Wm defined as the spatial power spectral density

of mth corrugated interface, that is equal to [94]

Wm(κ) =< ζ̃m(κ), ζ̃
∗
m(κ) >=

1

(2π)2

∫ ∫

< ζm(r⊥ + ρ)ζm(r⊥) > ejκ.ρdρ (A.30)

Furthermore, to consider the contribution of all uncorrelated rough interfaces, the

effects of equivalent currents on all N rough interfaces are summed, resulting in the
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total NRCS value as [94]

σqp = πk40

N−1∑

m=0

|α̃m,m+1
qp (ks

⊥,k
i
⊥)|2Wm(k

s
⊥ − ki

⊥) (A.31)

It should be noted that based on roughness measurements on random and isotropical

surfaces, two popular forms of spatial power spectral density are determined to be

exponential and Gaussian, defined as [27]

Wgaussian(k
s
⊥ − ki

⊥) =
(hl)2

4π
e−|ks

⊥−ki

⊥|2l2/4 (A.32)

Wexponential(k
s
⊥ − ki

⊥) =
(hl)2

2π

1

(1 + |ks
⊥ − ki

⊥|2l2)3/2
(A.33)

In both (A.32) and (A.33), h is the root-mean-square height (i.e., the height standard

deviation of ζ), and l is the so-called correlation length, as defined in Chapter 2.

After presenting an overview on the derivation of BPT formulas by Imperatore, I

outline my methodology to implement the BPT formulation to calculate the NRCS

data associated with a multi-layered snow-covered sea ice with rough interfaces. As

can be seen in (A.31), the NRCS can be calculated if the α̃m,m+1
qp and Wm for each

boundary is determined. To this end, the following steps must be traversed.

1. The snow-covered sea ice vertical profile is stratified into homogenous layers,

each layer being assigned with a complex effective permittivity(10). Moreover,

the thickness values of each layer, the rms height, and the correlation length of

each boundary are also assigned. Furthermore, the frequency of operation, and

the azimuth and the elevation angles of the incident and scattered waves are set.

2. The values of basic parameters including km, k
i
⊥, k

s
⊥, k

s
⊥ − ki⊥, k̂

s
⊥.k̂

i
⊥, k̂

s
⊥ × k̂i⊥,

kizm, k
s
zm for the mth layer are calculated.

(10) Under the BPT scheme, the profile is not further discretized within each layer, nor on the boundaries.
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3. The Fresnel reflection and transmission coefficients are calculated through [94]

Rh
m|m+1 =

µm+1kzm − µmkz(m+1)

µm+1kzm + µmkz(m+1)

(A.34)

Rv
m|m+1 =

ǫm+1kzm − ǫmkz(m+1)

ǫm+1kzm + ǫmkz(m+1)

(A.35)

T h
m|m+1 =

2µm+1kzm
µm+1kzm + µmkz(m+1)

(A.36)

T v
m|m+1 =

2ǫm+1kzm
ǫm+1kzm + ǫmkz(m+1)

(A.37)

4. The generalized reflection coefficients for each boundary are recursively calcu-

lated, utilizing (A.8) and the Fresnel reflection coefficients. We should note that

R(N−1)|N = R(N−1)|N .

5. The generalized reflection coefficients for each boundary are calculated through [94]

T
p
0|m(k⊥) = exp[j

m−1∑

n=1

kzn∆n]
m−1∏

n=0

T p
n|n+1[

m∏

n=1

(1−Rp
n|n−1R

p
n|n+1e

j2kzn∆n)]−1 (A.38)

T
p
m|0(k⊥) =







T
p
0|m(k⊥)

µ0kzm
µmkz0

for p = h

T
p
0|m(k⊥)

ǫ0kzm
ǫmkz0

for p = v

(A.39)

6. The α̃m,m+1
pq values are calculated utilizing (A.26) to (A.29).

7. The spatial power spectral densities for each boundary are calculated via (A.32)

or (A.33), depending on the choice of the Gaussian or Exponential distribution

for the roughness respectively.

8. The total NRCS associated with the profile is calculated through (A.31).

Imperatore has evaluated the consistency and validity of perturbative formulations

derived for the scattering from a medium with rough boundaries in [92]. Further-
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Tab. A.1: Dielectric profile specifications of the multi-layered profile with rough boundaries intro-
duced in [94]. NA, k0, and λ denote not applicable, wave number in air, and wavelength
in air. The looking angles are θinc = 45◦, φinc = 0◦, and φscat = 45◦.

Region 1 Region 2 Region 3 Region 4

thickness half-space 1.15λ 2.80λ half-space

permittivity 1 3 9.5+j0.00055 20.5+j2.55

rms height NA 0.15/k0 0.15/k0 0.15/k0

correlation length NA 1.50/k0 1.50/k0 1.50/k0

more, an in-depth discussion on the physical meaning of the perturbative solutions

for the scattering associated with such a medium can be found in [147]. In what fol-

lows, I initially investigate the validity of my implementation of the BPT algorithm

through the comparison of my NRCS results with that of Imperatore’s. Next, compar-

isons with another approximation formulation introduced by Sarabandi to calculate

the NRCS associated with layered medium with rough interfaces is presented. Finally,

the implemented BPT simulation results are compared to those of the finite-volume

time-domain (FVTD) and method of moment (MoM) for rough layered media. To ver-

ify our implementation of BPT, the example layered medium with rough boundaries

introduced in [94] by Imperatore is revisited here. The profile and simulation specifi-

cations are listed in Table A.1. The NRCS values calculated via the implemented BPT

in this thesis are compared to the values reported in [94] for the profile in Table A.1

are reported in Figure A.2. As can be seen, the NRCS results are almost identical and

this confirms the correct implementation of BPT. The small discrepancies between the

two values are due to the error associated with visual reading of the NRCS values off

the graphs brought in [94]. In the next step, we compare the simulation results of the

implemented BPT with another approximation method developed for layered media

with rough boundaries. To this end, the formula introduced by Sarabandi in [148] is

considered. The profile in Table A.2 is investigated, and the simulated NRCS values

through both methods are depicted in Figure A.3. It can be seen that both result in

matching NRCS values. Indeed, Imperatore shows in [149] that BPT is consistent

with the formula introduced by Sarabandi in [148], Yarovoy in [150], and Fuks in [151].
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Fig. A.2: The NRCS values associated with the profile of Table A.1 utilizing the implemented BPT.
The superscript ref denotes the NRCS values for the aforementioned profile, as reported
in [94].

Tab. A.2: Dielectric profile specifications of the multi-layered profile with rough boundaries intro-
duced in [148]. NA, k0, and λ denote not applicable, wave number in air, and wavelength
in air. The looking angles are θinc = 45◦, φinc = 0◦, and φscat = 0◦.

Region 1 Region 2 Region 3

thickness half-space 3.33λ half-space

permittivity 1 2 25+j10

rms height NA 0 0.20/k0

correlation length NA 0 2.00/k0

Finally, the consistency between the NRCS values calculated through BPT and SPM

has been investigated in [152]. To further investigate the NRCS simulation accu-

racy via BPT as an approximate method, I present two cases of comparison with the

so-called full-wave methods of (i) method of moment (MoM), (ii) and finite volume

time domain (FVTD). For the first case, we consider a profile introduced by Demir

in [153], with specifications as described in Table A.3. The NRCS results are reported

in Figure A.4(a). It can be seen that the NRCS values for look angles close to the nadir

are more accurate than those with higher incidence angles values. The observed dis-

crepancies in NRCS values are tolerable for our application, considering the inevitable

error associated with in-situ measurements, dielectric modeling inaccuracies, and the

requirement for fast NRCS calculations(11).

(11) In [153], Demir reports that the problem under investigation had approximately two million unknowns.
Utilizing supercomputing resources (512 processors) with parallelized implementation, it took 10 CPU hours
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Fig. A.3: The NRCS values associated with the profile of Table A.2 utilizing the implemented BPT.
The superscript ref denotes the NRCS values for the aforementioned profile, calculated
through Sarabandi method, as reported in [148].

Tab. A.3: Dielectric profile specifications of the multi-layered profile with rough boundaries intro-
duced in [153]. NA and λ denote not applicable, wave number in air, and wavelength in
air. The looking angles are θinc = 40◦, φinc = 0◦, and φscat = 0◦.

Region 1 Region 2 Region 3

thickness half-space 0.20λ half-space

permittivity 1 5.4+j0.44 11.27+j1

rms height NA 0.02λ 0.02λ

correlation length NA 0.50λ 0.50λ

Finally, I present the comparison results between my implemented BPT and FVTD

reported in [72]. The profile under investigation is a sea ice layer covered with a

rough layer of slush, as characterized in Table A.4. The NRCS values associated with

this profile are depicted in Figure A.4(b). It should be noted that only HH and VH

polarizations are calculated in [72] through FVTD method for a monostatic setup.

Due to zero cross-polarization component for the NRCS that is simulated through the

BPT, only a comparison of NRCS with HH polarization is presented in Figure A.4(b).

Furthermore, the in-situ measured NRCS values associated with this profile are also

shown in this figure. As can be seen, the BPT results are following both FVTD

and measurement points closely. This concludes our appendix on verification of the

per incident polarization for a single surface realization. Furthermore, Demir adds that a tapered wave
incident field to reduce the edge truncation effects was utilized that introduces numerical errors.
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Fig. A.4: The NRCS values associated with the profile of (a) Table A.3 for comparison through MoM,
as reported in [153], and (b) Table A.4 for comparison through FVTD, as reported in [72].

Tab. A.4: Dielectric profile specifications of the multi-layered profile with rough boundaries intro-
duced in [72]. NA denotes not applicable. The looking angles are θinc = θ◦

scat
, φinc = 0◦,

and φscat = 0◦.

Region 1 Region 2 Region 3

thickness (m) half-space 0.0065 half-space

permittivity 1 7.2173+j1.7059j 4.1711+j0.1726

rms height (m) NA 0.00153 0

correlation length (m) NA 0.01406 0

implemented BPT.
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Appendix B

In this appendix, I present the procedure utilized in Chapter 6 to calculate the complex

permittivity value of the sea ice. Furthermore, I describe the procedure for calculating

the permittivity of dry snow, and brine-wetted dry snow, as utilized in Chapter 7.

The permittivity values are calculated utilizing the thermodynamic parameters of the

profile. As will be seen, in the case of sea ice, these parameters are the temperature,

denoted by T , and salinity, denoted by S. In the case of dry snow, only the density of

the snow, denoted by ρ, is utilized. Finally, in the case of brine-wetted dry snow, the

temperature, salinity, and density of the snow are used to calculate its permittivity.

All these thermodynamic parameters can be measured through in-situ measurements

along with snow and sea ice sample analysis. This enables us to compare the recon-

structed and calculated permittivities and also enables us to indirectly reconstruct

thermodynamic parameters.

As described in Chapter 2, the sea ice is considered to be a mixture of pure ice and

brine. Therefore, the sea ice permittivity can be calculated from the permittivity
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of these two constituents, their volume fractions, and the shape of brine inclusions.

Herein, I outline the procedure to calculate the sea ice permittivity as follows

1. The permittivity of the pure ice, denoted by ǫi = ǫ′i+jǫ
′′
i , is calculated through [3]

ǫ′i = 3.1884 + 9.1× 10−4T (B.1)

ǫ′′i =
α0

f
+ β0f (B.2)

In (B.1), T is in ◦C. Also in (B.2), the frequency f is in GHz, and α0 and β0 are

defined as [27]

α0 = (0.00504 + 0.0062(
300

Tk
− 1))× exp (−22.1(

300

Tk
− 1)) (B.3)

β0 =
0.0207

Tk

exp (335/Tk)

[exp (335/Tk)− 1]2
+

(1.16× 10−11)f 2 + exp [−9.963 + 0.0372(Tk − 273.16)]

(B.4)

where Tk is the temperature in ◦K.

2. Brine salinity, denoted by Sb, as a temperature dependent parameter is calculated

through the following empirical equations [123]

Sb =







1.725− 18.756T − 0.3964T 2 for− 8.2 ≤ T < −2◦C

57.041− 9.929T − 0.16204T 2 − 0.002396T 3 for− 22.9 ≤ T < −8.2◦C

242.94 + 1.5299T + 0.0429T 2 for− 36.8 ≤ T < −22.9◦C

508.18 + 14.535T + 0.2018T 2 for− 43.2 ≤ T < −36.8◦C

(B.5)

3. The permittivity of brine, denoted by ǫb = ǫ′b + jǫ′′b , is calculated as follows [154]

ǫ′b = ǫw∞ +
ǫb0 − ǫw∞

1 + (2πfτb)2
(B.6)
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ǫ′′b = (2πfτb)
ǫb0 − ǫw∞

1 + (2πfτb)2
+

σb
2πfǫ0

(B.7)

The parameters in (B.6) and (B.6) are calculated through the following equa-

tions [27, 154]

ǫw∞ = 4.9 (B.8)

ǫb0 = [88.045− 0.4147T + 6.295× 10−4T 2 + 1.075× 10−5T 3]×

[1− 0.255Nb + 5.15× 10−2N2
b − 6.89× 10−3N3

b ]
(B.9)

2πτb = [1.1109× 10−10 − 3.824× 10−12T + 6.938× 10−14T 2 − 5.096× 10−16T 3]×

[1 + 0.146× 10−2TNb − 4.89× 10−2Nb − 2.97× 10−2N2
b + 5.64× 10−3N3

b ]

(B.10)

σb = [Nb(10.36− 2.378Nb + 0.683N2
b − 0.135N3

b + 1.01× 10−2N4
b )]×

[1− 1.96× 10−2∆+ 8.08× 10−5∆2 −Nb∆[3.02× 10−5 + 3.92× 10−5∆

+Nb(1.72× 10−5 − 6.58× 10−6∆)]

(B.11)

Nb = Sb[1.707× 10−2 + 1.205× 10−5Sb + 4.058× 10−9S2
b ] (B.12)

∆ = 25− T (B.13)

4. The brine volume fraction, denoted by vb, in the sea ice under investigation is

calculated based on the sea ice temperature and salinity, denoted by Si, through

the empirical expression brought below [31]

vb = 10−3Si(
−49.185

T
+ 0.532) (B.14)

5. The effective permittivity of the sea ice can now be calculated through the so-

called Polder-van Santen/de Loor mixture formula for spherical brine inclusions
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through [155]

ǫsea ice = ǫi + 3vbǫ
∗ ǫb − ǫi
ǫb + 2ǫ∗

(B.15)

In (B.15), ǫ∗ is the effective dielectric constant for the region immediately sur-

rounding an inclusion particle, determined as [27]

ǫ∗ =







ǫsea ice for vb > 0.1

ǫi for vb ≤ 0.1

(B.16)

This concludes the procedure that we used to calculate the permittivity of sea ice.

Finally, it should be noted that another common mixing formula utilized for sea ice is

the Tinga-Voss-Blossey (TVB), that is simplified to the following for spherical brine

inclusions [156]

ǫsea ice = ǫi +
3vbǫi(ǫb − ǫi)

(2ǫi + ǫb)− vb(ǫb − ǫi)
(B.17)

I now present the method to calculate the permittivity of dry snow, denoted by ǫds,

utilized in this thesis. This method only requires the knowledge of the dry snow density,

denoted by ρds, through the following empirical equation as [119]

ǫds = 1 + 1.7ρds + 0.7ρ2ds (B.18)

As can be seen in (B.18), the imaginary part of the dry snow permittivity is negligible.

Finally, I describe the methodology utilized to calculate the permittivity of the brine-

wetted dry snow, denoted by ǫbds, in this thesis. This requires the knowledge of the

snow’s temperature, salinity, and density. To this end, the following steps are consid-

ered:

1. The so-called true volume fraction of the brine, denoted by Vb, within the snow
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is calculated as [142]

Vb =
vbρb

(1− vb)ρi + vbρb
× ρs
ρb

(B.19)

In (B.19), ρi is the density of pure ice that is equal to 0.934 g/cm3. Also, the

brine density, denoted by ρb, can be calculated via ρb = 1+0.01T . Moreover, the

brine volume fraction, vb, is calculated using (B.14).

2. The permittivity of the brine-wetted dry snow is calculated via [142]

ǫbds =
2

3
Vb

ǫb − ǫds
1 + 0.053( ǫb

ǫds
− 1)

(B.20)

In (B.20), the brine permittivity ǫb is calculated via (B.6) and (B.7).

This concludes our appendix on methodologies utilized to relate the thermodynamic

properties of snow and sea ice to their permittivity values as utilized in Chapters 6

and 7.
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Appendix C

In this appendix, the enhanced forward solver introduced in Chapter 7 is explained

for a three-layered medium with rough interfaces. To this end, the volume and surface

scattering components are investigated in Sections C.1 and C.2, respectively.

C.1 Volume Scattering

Herein, we demonstrate how single volume scattering with multiple boundary reflec-

tions can be formulated based on the concept of the generalized transmission coeffi-

cients. To demonstrate this, we assume a three layer medium (numbered as 0, 1, and

2) containing volume scatterers within the middle layer. The middle layer is sand-

wiched between two homogeneous half-spaces. This direct calculation provides insight

into the role of the generalized transmission coefficient as utilized in Section 7.4.2 for

multi-layered medium. To take into account multiple reflections within this three-layer

medium, we utilize a ray tracing technique as introduced in [137]. Since the discussion
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here is focused on co-polarized scattering, we drop the p/q superscripts for simplicity.

To begin the discussion, let’s assume that the field within the middle layer experiences

volume scattering due to a differential volume. The tube shown in Figure C.1 contains

the differential volumes over which the effect of volume scattering is integrated so as

to find the collective volume scattering due to that tube. This volume scattering can

be of two types: back-scattering and bi-scattering. Based on [27], the scattered power,

P tube
s , due to the interaction of the incident power, P tube

i , with a volume scattering

tube can be found as

P tube
s

P tube
i

=







σV
cos(θ)
2κ

(1− |e4jkz∆|), back-scattering

σV∆|e2jkz∆|, bi-scattering

(C.1)

where kz and ∆ belong to the middle layer. (This notation holds for the rest of this

appendix.) To complete our list of notations, we assume that P tube
s /P tube

i is equal to

|V|2 where V represents the field volume scattering due to the tube. In the case of back-

scattering, we denote this as Vb, and in the case of bi-scattering, it is denoted as Vbi.

As noted above, the collective volume scattering can be due to back-scattering and bi-

scattering from the tubes. Let’s now consider the back-scattering. As will be explained,

back-scattering can occur under two scenarios. In the first scenario, the wave enters the

tube from the above, and will then be scattered back. To understand this scenario, let’s

consider Figure C.1(a). As can be seen, the tube can be at position (i), (ii), etc. The

field will be transferred to each position with a coefficient of T0|1, T0|1R1|2R1|0e
2jkz∆,

etc. respectively. Furthermore, for any of these positions, the scattered field will be

transferred to the first half-space by T1|0, T1|0R1|2R1|0e
2jkz∆, and etc., as depicted in
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Fig. C.1: Different wave configurations for (a) into the back-scattering tube from above, (b) into the
back-scattering tube from below and bi-scattering tube, (c) exiting the back-scattering tube
from above and bi-scattering tube, and (d) exiting the back-scattering tube from below.

Figure C.1(c). Therefore, the total effect will be

Ab1
s

Ai

= T0|1 × Vb×

(T1|0 + T1|0R1|2R1|0e
2jkz∆ + ...)+

(T0|1R1|2R1|0e
2jkz∆)× Vb×

(T1|0 + T1|0R1|2R1|0e
2jkz∆ + ...)+

...

= (T0|1 + T0|1R1|2R1|0e
2jkz∆ + ...)×

(T1|0 + T1|0R1|2R1|0e
2jkz∆ + ...)× Vb. (C.2)
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Each of the last two parenthesis in (C.2) contains an infinite geometric series. There-

fore, they simplify as

Ab1
s

Ai

= Vb

=T0|1
︷ ︸︸ ︷

T0|1
1−R1|2R1|0e2jkz∆

×

=T1|0
︷ ︸︸ ︷

T1|0
1−R1|2R1|0e2jkz∆

(C.3)

We note that Ri|j = −Rj|i. In (C.3), T represents the generalized transmission coeffi-

cient introduced in (7.4). Now let’s calculate the corresponding NRCS as

σ =
4πR2

r

C0

Ss

Si
=

4πR2
r

C0

|As|2/4πR2
r

|Ai|2/C0

=
|As|2
|Ai|2

(C.4)

where C0 and Rr are the cross-section area of the tube and the observation distance

from the profile, respectively. Therefore, this NRCS will be

σ1 = |Vb|2|T0|1|2|T1|0|2

= σV
cos(θ)

2κ
(1− |e4jkz∆|)

︸ ︷︷ ︸

=σ
(1)
v1

|T0|1|2|T1|0|2 (C.5)

where σ1 is the NRCS observed at the first half space (layer 0), and σ
(1)
v1 is the NRCS

corresponding to the middle layer (layer 1) associated with this scenario whose effect

is transferred to the 0th layer via T1|0 and T0|1 coefficients. To link this to the three

mechanisms presented in Section 7.4.2, we note that this scattering is associated with

the particle back-scattering. This concludes our discussion on the first scenario for

back-scattering.

Now, let’s consider the second scenario for volume scattering due to back-scattering, as

shown in Figure C.1(b). In this scenario, the field enters the tube from the bottom due

to reflection(s) at the interface of layer 1 and layer 2. The field is then back-scattered

by the tube, and will then reach the 0th layer. This can be better understood by noting

Figure C.1(b) in which the tube could be at position (i), or (ii), etc. The field will be
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transferred to each position with a coefficient of T0|1R1|2e
jkz∆, T0|1R1|2

2R1|0e
j3kz∆, etc.

Furthermore, for any of these positions, the scattered field will be transferred to the

first half-space by T1|0R1|2e
jkz∆, T1|0R1|2

2R1|0e
3jkz∆, etc., as depicted in Figure C.1(d).

Therefore, the total effect will be

Ab2
s

Ai

= (T0|1R1|2e
jkz∆)× Vb×

(T1|0R1|2e
jkz∆ + T1|0R1|2

2R1|0e
3jkz∆ + ...)+

(T0|1R1|2
2R1|0e

3jkz∆)× Vb×

(T1|0R1|2e
jkz∆ + T1|0R1|2

2R1|0e
3jkz∆ + ...)+

...

= (T0|1R1|2e
jkz∆ + T0|1R1|2

2R1|0e
3jkz∆ + ...)×

(T1|0R1|2e
jkz∆ + T1|0R1|2

2R1|0e
3jkz∆ + ...)× Vb (C.6)

The last two parenthesis in (C.6), each has an infinite geometric series. Therefore,

they simplify as

Ab2
s

Ai

= (R1|2e
jkz∆)2Vb

=T0|1
︷ ︸︸ ︷

T0|1
1−R1|2R1|0e2jkz∆

=T1|0
︷ ︸︸ ︷

T1|0
1−R1|2R1|0e2jkz∆

(C.7)

Consequently utilizing (C.4), the NRCS respective to this scenario is calculated as

σ2 = |R1|2|4|e4jkz∆||Vb|2|T0|1|2|T1|0|2

= |R1|2|4|e4jkz∆|σV
cos(θ)

2κ
(1− |e4jkz∆|)

︸ ︷︷ ︸

=σ
(1)
v3

|T0|1|2|T1|0|2 (C.8)

where σ2 is the NRCS observed at the first half space (layer 0), and σ
(1)
v3 is the NRCS

corresponding to the middle layer (layer 1) associated with this scenario whose effect



C.1 Volume Scattering 201

is transferred to the 0th layer via T1|0 and T0|1 coefficients. To link this to the three

mechanisms presented in Section 7.4.2, we note that this scattering is associated with

the interface-particle-interface scattering mechanism. This concludes our discussion

on the second scenario for back-scattering.

We will now consider the volume scattering due to bi-scattering effects of the scatterers

within the middle layer. This bi-scattering can happen under two scenarios. The first

scenario involves an incoming field as shown in Figure C.1(b). Upon reflection(s) from

the interface of layer 1 and layer 2, this field enters the tube. The volume scattering

then occurs in a bi-static fashion, and the resulting scattered field enters the half space

(layer 0) as depicted in Figure C.1(c). Therefore, following the same procedure, we

will have

Abi
s

Ai

= (T0|1R1|2e
jkz∆)× Vbi×

(T1|0 + T1|0R1|2R1|0e
2jkz∆ + ...)+

(T0|1R
2
1|2R1|0e

3jkz∆)× Vbi×

(T1|0 + T1|0R1|2R1|0e
2jkz∆ + ...)+

...

= (T0|1R1|2e
jkz∆ + T0|1R1|2

2R1|0e
3jkz∆ + ...)×

(T1|0 + T1|0R1|2R1|0e
2jkz∆ + ...)× Vbi (C.9)

Again, the last two parenthesis in (C.9), each contains an infinite geometric series.

Therefore, they simplify into

Abi
s

Ai

= (R1|2e
jkz∆)Vbi

=T0|1
︷ ︸︸ ︷

T0|1
1−R1|2R1|0e2jkz∆

=T1|0
︷ ︸︸ ︷

T1|0
1−R1|2R1|0e2jkz∆

(C.10)

The second scenario for volume scattering due to bi-scattering is simply the mirror of
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the first scenario. This would give a multiple of two to the right hand side of (C.10).

Therefore utilizing (C.4), the NRCS due to this configuration is calculated as

σ3 = 4|R1|2|2|e2jkz∆||Vb|2|T0|1|2|T1|0|2

= 4|R1|2|2|e2jkz∆|σV∆|e2jkz∆|
︸ ︷︷ ︸

=σ
(1)
v2

|T0|1|2|T1|0|2 (C.11)

where σ3 is the NRCS observed at the first half space (layer 0), and σ
(1)
v2 is the NRCS

corresponding to the middle layer (layer 1) associated with this bi-scattering configura-

tion whose effect is transferred to the 0th layer via T1|0 and T0|1 coefficients. Similarly,

to link this to the three mechanisms presented in Section 7.4.2, we note that this

scattering is associated with the particle-interface scattering mechanism.

To account for the effect of all different configurations, we utilize a summation as in [27]

to calculate the total NRCS, σv. Thus, from (C.5), (C.8), and (C.11) it follows

σv =
3∑

i=1

σi =(σ
(1)
v1 + σ

(1)
v2 + σ

(1)
v3 )|T0|1|2|T1|0|2

=σ(1)
v |T0|1|2|T1|0|2 (C.12)

As can be seen, the above equation is identical to (7.7) for a three-layered medium

considered here. In addition, (C.12) may be re-written as

σv = σ(1)
v |T0|1|2

η0 cos(θ)

η cos(θ0)
|T1|0|2

η cos(θ0)

η0 cos(θ)
= σ(1)

v T0|1T1|0 (C.13)

where we refer to T as the generalized transmittivity. If we consider only one reflection

(i.e., Fresnel reflection and transmission coefficients instead of generalized coefficients),

(C.13) will be identical to the expression presented in [27] for a similar profile.
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C.2 Surface Scattering

Herein, we consider the same profile as presented above. The goal is to show how the

cross-polarized surface scattering is calculated. Let’s assume that the surface scattering

component due to the first interface is σ
pq,(1)
s , which can be found from (7.2). For the

second interface, following the same procedure presented in the previously, we have

As

Ai

= (T0|1e
jkz∆)× S×

(T1|0e
jkz∆ + T1|0e

jkz∆R1|0R1|2e
2jkz∆ + ...)+

(T0|1e
jkz∆R1|0R1|2e

2jkz∆)× S×

(T1|0e
jkz∆ + T1|0e

jkz∆R1|0R1|2e
2jkz∆ + ...)+

...

= (T0|1e
jkz∆ + T0|1e

jkz∆R1|0R1|2e
2jkz∆ + ...)×

(T1|0e
jkz∆ + T1|0e

jkz∆R1|0R1|2e
2jkz∆ + ...)× S (C.14)

where S represents the field cross-polarized surface scattering effect at the interface

of the layers 1 and 2 assuming that these layers are half spaces. Again, utilizing the

formulation for an infinite geometric series, we simplify (C.14) as

As

Ai

= (ejkz∆)2S

=T0|1
︷ ︸︸ ︷

T0|1
1−R1|2R1|0e2jkz∆

=T1|0
︷ ︸︸ ︷

T1|0
1−R1|2R1|0e2jkz∆

(C.15)

Assuming that the field surface scattering S results in the corresponding NRCS of

σ
pq,(2)
s , the total surface scattering NRCS is calculated as

σpq
s = σpq,(1)

s + |e4jkz∆||T0|1|2|T1|0|2σpq,(2)
s (C.16)

As can be seen, this is consistent with the formulation presented in Section 7.4.1.1.
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