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Abstract

Background: Bronchial fibroblasts contribute to airway remodelling, including airway wall fibrosis. Transforming

non-asthmatic and asthmatic subjects.

by simvastatin.

signaling holds promise for treating airway wall fibrosis.

growth factor (TGF)81 plays a major role in this process. We previously revealed the importance of the
mevalonate cascade in the fibrotic response of human airway smooth muscle cells. We now investigate
mevalonate cascade-associated signaling in TGFf 1-induced fibronectin expression by bronchial fibroblasts from

Methods: We used simvastatin (1-15 uM) to inhibit 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase
which converts HMG-CoA to mevalonate. Selective inhibitors of geranylgeranyl transferase-1 (GGT1; GGTI-286, 10
pM) and farnesyl transferase (FT; FTI-277, 10 uM) were used to determine whether GGT1 and FT contribute to
TGFB1-induced fibronectin expression. In addition, we studied the effects of co-incubation with simvastatin and
mevalonate (1 mM), geranylgeranylpyrophosphate (30 uM) or farnesylpyrophosphate (30 uM).

Results: Immunoblotting revealed concentration-dependent simvastatin inhibition of TGF1 (2.5 ng/ml, 48 h)-
induced fibronectin. This was prevented by exogenous mevalonate, or isoprenoids (geranylgeranylpyrophosphate
or farnesylpyrophosphate). The effects of simvastatin were mimicked by GGTI-286, but not FTI-277, suggesting
fundamental involvement of GGT1 in TGFB 1-induced signaling. Asthmatic fibroblasts exhibited greater TGFB 1-
induced fibronectin expression compared to non-asthmatic cells; this enhanced response was effectively reduced

Conclusions: We conclude that TGFB 1-induced fibronectin expression in airway fibroblasts relies on activity of
GGT1 and availability of isoprenoids. Our results suggest that targeting regulators of isoprenoid-dependent
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Background

Chronic obstructive airways diseases, including asthma
and COPD, are characterized by structural alterations of
the airway wall. The accumulation of extracellular
matrix (ECM) proteins (fibrosis) and augmentation of
the airway mesenchymal layer, including fibroblasts and
airway smooth muscle, are common features of this air-
way remodeling [1-3]. In asthma, the degree of sube-
pithelial fibrosis has been shown to be associated with
disease severity and correlated with a decline in lung
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function parameters [4]. Transforming growth factor p1
(TGEB1) is a principal mediator of subepithelial fibrosis
and is highly expressed in asthmatics [4-6]. Airway
fibroblasts and myofibroblasts are a primary source of
ECM proteins, including fibronectin, in subepithelial
fibrosis linked to airway remodeling [7]. Targeting and
understanding molecular mechanisms that drive the
pro-fibrotic potential of these cells is of great interest
with respect to the development of therapies for chronic
airways diseases.

Statins were initially developed to inhibit the activity
of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA)
reductase and are widely prescribed to reduce hyperlipi-
demia [8]. Substantial evidence shows that statins also
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have pleiotropic anti-inflammatory, anti-fibroprolifera-
tive and immunomodulatory effects that are indepen-
dent of their cholesterol-lowering capacity [9-14].
HMG-CoA reductase is the proximal rate-limiting
enzyme of the multistep mevalonate cascade for choles-
terol biosynthesis. Cholesterol intermediates include the
15- and 20-carbon isoprenoids, farnesylpyrophosphate
(FPP) and geranylgeranylpyrophosphate (GGPP), respec-
tively. These lipid moieties are substrates for farnesyl
transferase (FT) and geranylgeranyl transferase 1
(GGT1) that catalyze the modification of monomeric G-
proteins, such as Ras and RhoA, by conjugating lipid
anchors crucial for their association with and activation
at the plasma membrane. Effects of statins on cell phy-
siology have been attributed, in part, to the depletion of
isoprenoids and the ensuing effects on prenylation-
dependent intracellular signaling activity [15-18]. Given
the biological importance of FT and GGT1, a number
of selective inhibitors have been developed and tested in
clinical trials for treatment of cancer [19-21]. To date
the impact of these inhibitors on lung health has not
been established.

In previous work, we showed that mevalonate-derived
isoprenoids provide key regulatory input for the fibrotic
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response of human airway smooth muscle cells [14]. We
now investigate the role of mevalonate cascade-associated
cell signaling in TGFP1-induced expression of the extra-
cellular matrix protein fibronectin by bronchial fibroblasts
from both non-asthmatic and asthmatic subjects.

Materials and methods

Materials

All chemicals were obtained from Sigma (St. Louis, MO)
unless indicated otherwise. Primary antibodies against
fibronectin (sc-9068, rabbit polyclonal), collagen type I
(sc-8786, goat polyclonal), GGTase 1B (sc-100820,
mouse monoclonal) and FT B (sc-137, rabbit polyclonal)
were from Santa Cruz Biotechnology (Santa Cruz, CA).

Human airway fibroblast cell culture: standard study
design

Primary human airway fibroblasts were isolated from
macroscopically healthy segments of second- to fourth-
generation main bronchi obtained after lung resection
surgery from patients with a diagnosis of adenocarci-
noma. The airway smooth muscle and mesenchymal
fibroblast layers were carefully separated by manual dis-
section; passage 3-4 fibroblasts were used (Figures 1, 2,
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Figure 1 Simvastatin prevents TGFB1-induced fibronectin and collagen | expression. Western analysis was performed using whole cell
lysates from primary human airway fibroblast cultures that were grown to ~80% confluence, then serum-deprived for 24 h and stimulated with
TGFB1 (2.5 ng/ml) for 48 hours. A typical blot is shown for fibronectin and collagen | (A) alongside data from densitometry analyses, which
revealed that TGFB 1-induced fibronectin protein abundance was dose-dependently suppressed by simvastatin (1-15 puM). For each experiment
expression levels were normalized to maximal-induced fibronectin expression, and B-actin was used as a loading control. Data represent means
+ s.e. mean of 3 independent experiments, using 3 different primary cell lines. **P < 0.01, ***P < 0.001 compared to C. Legend: 0 h and t = 0:
initial basal (unstimulated) cultures; 48 h and t = 48 h: treatment time-matched, basal (unstimulated) cultures; C: cells treated with TGFB1 alone
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Figure 2 Involvement of isoprenoid intermediates of the mevalonate cascade in the simvastatin-induced suppression of TGFf1-
induced fibronectin expression. (A) Representative western blot showing fibronectin protein abundance in whole cell lysates obtained from
primary human airway fibroblast cultures stimulated with TGFB1 (2.5 ng/ml) in the presence or absence of simvastatin (10 uM) and co-incubated
with GGPP (30 puM), FPP (30 uM) or mevalonate (1 mM) for 48 h. (B) Data from densitometry of samples from experiments shown in panel A.
Data represent means =+ s.e. mean of 3 independent experiments, using 3 different cell lines. Legend: 0 h and t = 0: initial basal (unstimulated)
cultures; 48 h and t = 48 h: treatment time-matched, basal (unstimulated) cultures; C: cells treated with TGFB1 alone for 48 hours; Simv:
simvastatin; Mev: mevalonate. *P < 0.01 compared to C(ontrol); *P < 0.05 compared to simvastatin.

and 3). For comparative studies (Figure 4) primary fibro- =~ Committee at the Institut Universitaire de Cardiologie
blasts were isolated from bronchial biopsies of mild ster- et de Pneumologie de Québec.

oid naive asthmatic (n = 3) and healthy (n = 3) subjects. Cells were plated on uncoated plastic dishes in Dul-
The asthmatic subjects fulfilling the American Thoracic  becco’s modified Eagle’s medium (DMEM) supplemen-
Society criteria for asthma [22] were recruited from the ted with 50 U/ml streptomycin, 50 pg/ml penicillin, and
Asthma Clinic at IUCPQ (Québec, Canada). They used 10% fetal bovine serum (FBS). Cells were grown to
only an inhaled $2-agonist on demand. The asthmatics ~80% confluence, after which they were maintained for
were atopic nonsmokers (mean age = 24 + 2, FEV;% 24 hours in serum-free DMEM supplemented with 5
predicted = 95 + 0.4% and PCyy = 4.6 = 0.01 mg/ml). pg/ml insulin, 5 pg/ml transferrin, and 5 ng/ml
None used systemic or inhaled CS. Healthy subjects  selenium.

(mean age = 22 + 0.4, FEV% predicted = 106 + 0.82% For all studies, unless otherwise stated, we followed a
and PC, > 128 mg/ml) were non-atopic nonsmokers  standard treatment protocol. Serum-deprived cells were
with no history of asthma or other pulmonary or sys-  stimulated with TGFB1 (2.5 ng/ml) for 48 hrs in the
temic diseases. The atopic status of asthmatics was  presence or absence of simvastatin (1, 10, 15 uM, added
determined by skin prick tests showing a positive reac- 30 min before TGFB1). In some experiments, the effects
tion (3 mm or more) to at least 2 aero-allergens. The of co-incubation with mevalonic acid (1 mM) [14,24],
healthy group had no skin reaction. Bronchial biopsies  geranylgeranyl pyrophosphate (GGPP, 30 pM) [14,18] or
were obtained by bronchoscopy from asthmatic and  farnesyl pyrophosphate (FPP, 30 uM) [14,18] were stu-
healthy subjects as described previously [23]; passage 4-  died (all added 4 h prior to TGFB1). In separate experi-
6 cells were used. Written informed consent was ments the effects of the geranylgeranyltransferase
obtained from all subjects before entry into the study. inhibitor GGTI-286 (10 uM) [14,18,24,25] and the far-
All procedures were approved by the Human Research  nesyltranferase inhibitor FTI-277 (10 pM) [14,25,26]
Ethics Board (University of Manitoba) and the Ethics  were investigated (added 30 min prior to TGEB1).
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Figure 3 GGTI-286 mimics the effects of simvastatin on TGFB1-induced fibronectin protein expression. Western analysis was performed
using whole cell lysates obtained from primary human airway fibroblast cultures that were maintained under TGFB1 (2.5 ng/ml)-stimulated or
serum-deprived conditions in the absence or presence of simvastatin (10 uM), GGTI-286 (10 uM) or FTI-277 (10 uM) for 48 h. (A) Representative
western blots showing that the suppressive effects of simvastatin on TGFf 1-induced fibronectin protein expression could be mimicked by GGTI-
286, but not by FTI-277. (B) Bar chart summarizing the effects of simvastatin, GGTI-286 and FTI-277 under basal and TGFf 1-stimulated conditions
on fibronectin protein abundance. (C) Reverse transcriptase PCR was performed using total RNA extracted from human fibroblast cell cultures.
The photograph shows that transcripts for 7 prenyl transferase subunits are abundant in these cells, including multiple variants of the FNTA
subunit that is common to GGT1 and FT. Data in panel B represent means + s.e. mean of 3 independent experiments, using 3 different cell lines.

Legend: 0 h and t = 0: initial basal (unstimulated) cultures; 48 h and t = 48 h: treatment time-matched, basal (unstimulated) cultures; C: cells
treated with TGFB1 alone for 48 hours; Simv: simvastatin. **P < 0.01 compared to C(ontrol).

Protein immunoblotting

After washing cultures with ice-cold phosphate-buffered
saline (PBS, composition (mM): NaCl 140.0; KCI 2.6;
KH,PO, 1.4; Na,HPO4.2H,0 8.1; pH 7.4) cell lysates
were prepared in ice-cold SDS buffer (composition: 62.5
mM Tris-HCI, 2% SDS, 1 mM PMSF, 1 mM protease
inhibitor mix, and 1 mM phosphatase inhibitor mix).
Equal amounts of protein, as determined using a com-
mercial Lowry assay, were subjected to electrophoresis
and transferred to nitrocellulose membranes. Mem-
branes were subsequently blocked in Tris buffer con-
taining 0.1% Tween-20 and 5% w/v dried milk powder,
then incubated overnight at 4°C with primary antibodies
(fibronectin (diluted 1:1000), GGTase 1p (diluted 1:400),
FTB (diluted 1:1000) and B-actin (diluted 1:20.000)).
Blots were then incubated with diluted horseradish

peroxidase conjugated secondary antibodies prior to
visualizing bands on film using enhanced chemilumines-
cence reagents (Amersham, Buckinghamshire, UK). Al
blots were subjected to densitometry using a computer
page scanner and Totallab™Ssoftware. For data analyses
bands were normalized to B-actin to correct for small
differences in loading.

RNA extraction and reverse transcriptase PCR

Total RNA was extracted using the RNeasy RNA Mini Kit
(Qiagen, U.S.A). For reverse transcription (first strand
c¢DNA synthesis) we used 2 ug of total RNA (in x pL), 0.3
pL Random Hexamers (3 mg/mL, Invitrogen) and 10-x pL
ddH,O. After heating for 5 min at 65°C, 9 pL of reaction
mixture (1 uL ANTP PCR mix (10 mM, Amersham,
Canada), 4 pL 5 x first-strand buffer, 2 yL. DTT (0.1 M), 1
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Figure 4 Simvastatin profoundly suppresses the augmented TGFB1-induced fibronectin expression in asthmatic bronchial fibroblasts.
Western analysis was performed using whole cell lysates obtained from nonasthmatic and asthmatic bronchial fibroblast cultures that were
maintained under TGFB1 (2.5 ng/ml)-stimulated or serum-deprived conditions in the absence or presence of simvastatin (0.1-10 uM) for 48 h. (A)
Western blots showing simvastatin dose-dependently suppresses TGFB 1-induced fibronectin expression in nonasthmatic and asthmatic bronchial
fibroblasts, whereas GGTase 1B and FTase B protein abundance is not affected. (B) Representative western blot showing a more robust TGFB 1-
induced fibronectin abundance in asthmatic versus nonasthmatic fibroblasts, which is effectively suppressed by simvastatin. (C) Densitometric
analysis revealed significant differences in TGFf1-induced fibronectin expression between nonasthmatic and asthmatic fibroblasts. Moreover,
simvastatin markedly prevents fibronectin expression in both cell types. Data represent means + s.e. mean of 5 independent experiments, using
cells obtained from 3 non-asthmatic and 3 asthmatic subjects. Legend: t = 0: initial basal (unstimulated) cultures; t = 48 h: treatment time-
matched, basal (unstimulated) cultures; Simv: simvastatin. **P < 0.01, **P < 0001 compared to asthmatic TGFB. *P < 0.05, **P < 0,001
compared to nonasthmatic TGFf.
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pL RNaseOUT (40 U) and 1 pL Moloney murine leukemia
virus reverse transcriptase (M-MLV RT, 200 U, Invitro-
gen)) was added. Samples were incubated at 42°C for 120
minutes then heating at 72°C for 15 minutes. cDNA was
stored at -20°C until further use. PCR amplification was
performed in a total volume of 50 puL which included 1 uL
RT reaction mixture, 0.5 uM of each forward and reverse
oligonucleotide, 1 x PCR buffer with 1.5 mM MgCl, 0.2
mM dNTP PCR mix and 1.25 U of Platinum Taq Poly-
merase (Invitrogen). Primers used for GAPDH and the
human prenyltransferase subunits FNTA (varl), FNTA
(var2), FNTB, PGGT1B, RabGGTA and RabGGTB are
listed in Table 1.

Statistical analysis

All data represent means + s.e. mean from n separate
experiments. Statistical significance of differences was
evaluated by the Student’s ¢-test for paired observations
or by ANOVA for multiple measurements followed by a
Tukey’s post-test. Differences were considered to be sta-
tistically significant when P < 0.05.

Results

Simvastatin prevents TGFB1-induced fibronectin protein
expression

Primary human bronchial mesenchymal fibroblasts were
stimulated with 2.5 ng/ml TGEB1 for 48 h in the pre-
sence and absence of simvastatin (Figures 1A and 1B).
TGEFB1 induced a marked increase in fibronectin pro-
tein, an effect significantly suppressed by 1 (69.5 + 7.4%
of C), 10 (62.5 + 6.7% of C) and 15 pM (37.6 + 11.5% of
C) simvastatin. Similarly, TGFp1-induced collagen I pro-
tein abundance was dose-dependently inhibited by sim-
vastatin (Figure 1A), indicating that as for airway
smooth muscle [14] the inhibitory effects of simvastatin
are more broadly applicable. Based on these data and
previous reports by our group on potential toxicity of
high concentrations of simvastatin [27], we used 10 uM
in all subsequent experiments.

Depletion of isoprenoids underpins the suppressive
effects of simvastatin

To determine whether the effects of simvastatin on
fibronectin are due to reduced formation of mevalonate,

Table 1 Primers Used For Reverse Transcriptase PCR
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FPP and GGPP, we incubated human airway fibroblasts
with TGFB1 and simvastatin in the presence of mevalo-
nate (1 mM), FPP (30 uM) or GGPP (30 uM). Co-incu-
bation with these intermediates caused nearly full
prevention of the suppressive effects of simvastatin,
implying their depletion is critical for the effects of sim-
vastatin (Figures 2A and 2B).

Inhibition of GGT1, but not FT, mimics the effects of
simvastatin

We next investigated the effects of the geranylgeranyl
transferase inhibitor GGTI-286 (10 uM) and the farnesyl
transferase inhibitor FTI-277 (10 pM) on TGFB1-
induced fibronectin protein expression (Figures 3A and
3B). GGTI-286 significantly prevented TGFB1-induced
fibronectin accumulation to a similar degree as 10 uM
simvastatin. In contrast, no reduction in fibronectin was
observed after co-treatment with FTI-277 (Figures 3A
and 3B). These findings indicate a predominant involve-
ment of GGT1, but not FT, in the TGFB1-induced pro-
fibrotic response of human airway fibroblasts. In line
with these findings, profiling of the expression of pro-
tein prenyltransferase subunits by RT-PCR revealed
expression of 6 subunits, including two variants of the
farnesyltranferase, CAAX box, alpha (FNTA) subunit
that is common to both GGT1 and FT (Figure 3C).
These results indicate human airway fibroblasts express
the genes necessary to form GGT1, FT and GGT2 pre-
nyltransferase heterodimers. Further confirming these
findings, we demonstrate that GGTase 1B and FTase 3
protein are expressed in non-asthmatic and asthmatic
fibroblasts; abundance of these subunits was not affected
by simvastatin, nor was there any difference in expres-
sion between non-asthmatic and asthmatic fibroblasts
(Figure 4A).

Simvastatin effectively suppresses the augmented
profibrotic response of asthmatic bronchial fibroblasts

To determine the effects of simvastatin on fibronectin
expression in non-asthmatic and asthmatic bronchial
fibroblasts, cells were stimulated with TGFB1 in the pre-
sence and absence of simvastatin (Figure 4A). Simvasta-
tin dose-dependently suppressed fibronectin abundance
in non-asthmatic and asthmatic fibroblasts. To directly

Fragment Forward Reverse PCR Product Size
FNTA var 1(Human) 5'-TAT AGA TCC GGT GCC GCA GAA TGA-3' 5'-ACT CTC CGG AAA TGC CAC ACT GTA-3 196 bp
FNTA var 2 (Human) 5'-GTC CTG CAG CGT GAT GAA AGA AGT-3' 5'-ACT CTC CGG AAA TGC CAC ACT GTA-3 101 bp
FNTB (Human) 5-TGC AGA GGG AGA AGC ACT TCC ATT-3' 5'-AGC TGT GCA GGA TCC AAT AGC AGA-3' 114 bp
PGGT1B (Human) 5-TTG CAA TGA CCT ACA CTG GCC TCT-3' 5-TCA CTG CCT TCA GGT ACT GCA CAA-3' 143 bp
RabGGTA (Human) 5-TGC TGG AGA ATA GCG TGC TCA AGA-3' 5-AGT CAA GAT GGG TGA CCA AGA GCA-3' 121 bp
RabGGTB (Human) 5-AGA CCA GGT TCT GAA TCC CAT GCT-3' 5-TGG TAA CTT CTC CGG CCT TCC ATT-3' 162 bp

GAPDH (Human) 5-AGC AAT GCC TCC TGC ACC ACC AAC-3'

5'-CCG GAG GGG CCA TCC ACA GTC T-3' 136 bp
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compare these responses different lysates were analyzed
on the same gel; though no differences in basal fibro-
nectin expression were observed, a more robust
response to TGFB1 by asthmatic fibroblasts was evident
(2.7 + 0.4 fold higher; Figures 4B and 4C). Importantly,
simvastatin suppressed TGFB1-induced fibronectin
expression in both non-asthmatic and asthmatic cells
(40.0 £ 4.8% and 52.4 + 8.1% reduction, respectively;
Figure 4C).

Discussion

In the present study, we demonstrate that isoprenoid
intermediates of the mevalonate cascade provide key
regulatory input for the TGFB1-induced expression of
the extracellular matrix protein fibronectin by human
bronchial fibroblasts. HMG-CoA reductase inhibition
with simvastatin suppressed TGFp1-induced fibronec-
tin abundance, an effect prevented by exogenous meva-
lonate, GGPP and FPP. Effects of simvastatin were
mirrored by the selective GGT1 inhibitor, GGTI-286,
but not the farnesyl protein transferase inhibitor, FTI-
277, suggesting that proteins targeted by GGT1 for
conjugation of prenyl lipid chains are crucial for
TGFB1-induced fibronectin expression. Moreover, we
show for the first time that fibronectin expression in
response to TGFB1 is markedly augmented in bron-
chial fibroblasts obtained from asthmatics compared to
those from non-asthmatics. Simvastatin effectively
inhibited TGFP1-induced fibronectin in fibroblasts
from both groups.

Statins are recognized for pleiotropic effects that
exceed their cholesterol lowering capacity. Statin use
correlates with reduced COPD hospitalizations and mor-
tality [28-30], and up to 50% slower decline in lung
function (FEV1 and FVC) in smokers, former smokers
and non-smokers [9,10]. In patients receiving double
lung transplant, statin use is associated with significantly
better post-operative spirometry and airway inflamma-
tion as indicated by reduced numbers of neutrophils
and lymphocytes [31]. Several recent studies have also
revealed anti-inflammatory effects of statins in murine
and rat models of allergic asthma [32,33] and COPD
[11,12]. Moreover, statins reportedly suppress ex vivo
airway responsiveness in animal models [34,35].

Statins have broad effects on cell responses, including
inhibition of proliferation, migration and they can pro-
mote apoptosis [15-18,27]. These studies are consistent
with our observation that mevalonate, GGPP and FPP
can prevent the effects of simvastatin, confirming the
fundamental role of regulated protein lipidation in cell
function, including fibronectin expression [36]. Impor-
tantly, we have demonstrated previously that under the
conditions studied 10 pM simvastatin does not affect
human airway fibroblast viability, as determined by
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MTT assays, within 48 h; indicating the observed
decrease in fibronectin is not an artifact due to cell
death [27]. Our finding that mevalonate, FPP and GGPP
prevent the suppressive effects of simvastatin yet only
GGTI-286, but not FTI-277, mimics its actions suggests
that signaling proteins that are subject to GGT1-cata-
lyzed geranylgeranylation are crucial for TGFB1-induced
fibronectin expression in airway fibroblasts. These find-
ings are supported by studies using human fetal lung
fibroblasts demonstrating the effectiveness of a GGT1
inhibitor (GGTI-298), but not a FT inhibitor (FTI-277),
on TGFB1-mediated expression of connective tissue
growth factor (CTGEF), elastin and fibronectin mRNA
[21,37-39].

The lack of effect of FT inhibition versus the effective-
ness of FPP to prevent the inhibitory effects of simvasta-
tin seems paradoxical. Theoretically, FPP can be
converted to GGPP intracellular, as such providing a
substrate for GGT1 [40]. Although an interesting
hypothesis, in the presence of simvastatin, even with the
addition of FPP, formation of the more downstream
sterol intermediate GGPP is not effected as HMG-CoA
inhibition depletes the upstream 5-carbon upstream
intermediate, isopentyl pyrophosphate (IPP), that is
required for conversion of FPP to GGPP [40]. An alter-
native potential explanation could lie in the promiscuity
of GGT1 both in using alternate isoprenoids (i.e. FPP)
and in effectively prenylating downstream effectors that
are essential for TGFB1-induced fibronectin expression.
Thus, our findings suggest that GGT1 may be able to
utilize FPP to modify a critical downstream effector.
Moreover, we speculate that FT is unable to prenylate
signaling proteins and induce their activation when
GGT1 activity is suppressed with GGTI-286. These
complex topics need to be addressed mechanistically in
future studies.

The anti-fibrotic effects of statins are not likely to be
limited to airway mesenchymal cells. Indeed, beneficial
effects of statins on human hypertrophic cardiomyopa-
thy [41] and the occurrence of renal interstitial fibrosis
in transgenic rabbits [42] have been reported. In addi-
tion, statins have cardioprotective effects that are asso-
ciated with their anti-fibrotic effects in adrenomedulin-
knockout mice [43] and have been reported to prevent
left ventricular remodelling, including interstitial fibrosis,
in hypertensive rats [44]. In vitro studies using human
lung fibroblasts derived from healthy and idiopathic pul-
monary fibrosis (IPF) patients also demonstrate that
simvastatin can inhibit connective tissue growth factor
expression, reduce collagen gel contraction, and down-
regulate smooth muscle a-actin expression [45]. In addi-
tion, systemic administration of simvastatin markedly
attenuates the onset of collagen-associated lung fibrosis
in mice treated with trachea-instilled bleomycin [46].
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To our knowledge, we demonstrate for the first time
that TGFB1-induced fibronectin protein expression is
significantly greater in fibroblasts from asthmatic subjects
compared to those obtained from healthy subjects. These
results correlate well with findings by Westergren-Thors-
son and colleagues that demonstrate fibroblasts isolated
from asthmatics produce increased amounts of proteo-
glycans [47]. This intrinsic difference between asthmatic
and non-asthmatic fibroblasts to express ECM proteins
could contribute to sub-epithelial fibrosis in the asth-
matic airway. Our data indicate that fibronectin expres-
sion by asthmatic fibroblasts is not-refractory to
simvastatin, suggesting this therapeutic approach could
be of benefit. In clinical studies, short-term treatment of
asthmatics with statins had no significant effect on lung
function or other indices of asthma control in patients
treated with corticosteroids [48] or without anti-inflam-
matory medication [49]. Conversely, a recent study
revealed that simvastatin can enhance the anti-inflamma-
tory effects of inhaled corticosteroids in mild asthmatics
[50], which is in line with reduced alveolar macrophage
numbers in sputum of asthmatics that had received statin
treatment [48]. Inasmuch as these studies indicate that
the effects of short-term statin treatment on airway
inflammation and lung function in mild to moderate
asthmatics is debatable, the effects of statins on features
of airway remodelling, which are generally associated
with disease duration and severity, remain elusive. Recent
in vitro studies using human airway smooth muscle cells
and fibroblasts do show statins inhibit proliferation and
promote apoptosis [18,51], which when considered in the
context of previous work by our group [14] and the pre-
sent study showing a concomitant effect on fibronectin
expression in bronchial mesenchymal cells, suggests
potential for suppressing airway remodeling.

Conclusions

Our data indicate that mevalonate cascade associated cell
signaling is a key signaling component in TGFp1-induced
fibronectin expression in primary human airway fibro-
blasts. Moreover, it appears that the prenyltransferase
GGT1 is a principal effector for isoprenoid-dependent
TGFB1 induced fibronectin expression. Last, we demon-
strate the presence of exaggerated fibronectin expression
in response to TGFP1 in asthmatic fibroblasts, and con-
firm that simvastatin can significantly suppress the
response in these cells. Based on our results simvastatin
and perhaps more selective inhibitors of GGT1 could be
considered as potential therapeutic tools to modulate air-
way wall fibrosis in fibrotic airway diseases such as asthma.
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