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CHAPTER I

INTRODUCTION

Liﬁear programming méthbds are today an accepted and widely

usedvtechniqﬁe of analysis in the field of economics. Generalization
of 'such methods towards what T. C, Koopmans calls "Activity Analysis"
has Ted to the realization of the connections that exist between lin-
- ear programming and the rest of standard economic theory. Another
generalization proceeded towards spatial models and yielded a series
~of complex interregiopal systems capable of practical applications to
questions referring to multiregional ecohomiés. These latter models
derive directly as generalizations of a most abstract scheme developed
by T. C. Koopmans in 1] , Ch; 3, and [ié}.. The mathematics of [1i]
is quite complicated while in [li] Koopmans makes an attempt at better
cpmmunication.with general economists. Up to now, however, very few |
attempts have been made at communication as regards the complex inter-
" regional systems deve}oped out of Koopmans' general scheme, except in
Isard [Qj.-

The aim in this thesis isthreefold: (a) to show how the complex

interregional linear programming models can be derived from the simpler

- linear programming models and thus help in .the understanding of these more

complex systems, (b) to bring out, in the course of this integration, the

economic interpretation of these models and relate them to standard notions




of economic theory, and (c) to stress the formal similarity of these

models.by adopting a specific method of exposition that brings out that
similarity and substantiates the contention that the abstract frame-

work of Koopmans forms their basis. This heips those unacquainted with
the literature on interregional linear programming carry over their know-
ledge of spaceless linear programming anélysis in.studying the literature,

Interregional linear programming considers the transportation
éector explicitly, as was to be expected. From various lingar program—
ming models on this subject, I have chosen for consideration in this the-
sis a family 6f models that lend themselves to practical application and
are at the same time quite general.

Chapter II of this thesis contains a simple spacelsss linear pro-
graming model, an elémentary exposition of the economic interpretation
of the model and its method of solution which bring out the way in which
the problem of economic choice is handled by the method. An attempt at
relating the results of the technique to economic equilibrium is also
made, and some differences from neo-classical analysis are pointed out.

. The "raison d'etre" of this chaptér»is twofold: to provide a simple

- basis for expésition and economic interpretatibn of linear programming
and to set out a simple model (Model I) which constitutes the basis of
a much more complicated model in Chapter V.

Chapter Il examines the well kﬁown transportation problem in lin-
ear programming as well as a variation Qf it which yields to generaliéa—
tion towards thé general model of Chapter IV. The dual to the transpor-

tation model is also examined and the connection of the model to spatial




equilibrium and of the dual prices to equlllbrlum prices is examined.

ChapterIV proceeds to an account of the way in which the simple
transportation model can be generallzed and culmlnates in an inter-
regional linear programming model by A. Hurter [7]

Chapter Vgeneralizes the simple model of Chapter 1Ito another
interregional model by M. Harwitz 07]

Finally, Chapter\ﬂiis devoted to "formal comparison" of the
models in.ChapterEUIand\l to one ancther and to other models by'W. Isard
ﬁ?] B, Stevens El(] and L, Moses I}eﬂ An evaluation and some conclusions
aﬂ'mech%mau

I have attempted in this thesis to integrate the relevant litera-
ture by bringing its similérities to the fore. In some ways this has
forced me to approach the modelg from a novel éngle, and in some places
I have run into unsettled questions. When I did,I attempted an explana-
tion but I did not alwaysvsucceed. I would very much hesitate to use the
word "original" to in&icate these efforts, since I believe that originality
constitutes much more than what I have done. In footnotes, then, I have
indicated when a passage in this thesis is a product of my efforts to under-
stand'the literature, by using the word "n@vel" - for lack of a more appro-

priate one,




CHAPTER Il

- LINEAR PROGRAMM ING

The Chapter will be devoted to an elementary exposition-
of the technique of linear programming. As stated in the introduc-

tion, the general approach will consist of an attempt to interpret

the mathematical features of this method in economic terms.

Section 2.0 sets éut the mathematical structure of the
general lincar programming problem in a very elementary form. Pure
mathematical questions connected with the method are not examined.

Section 2.1 gives a general economic interpretation of the
linear programming problem. This procedure helps, by bringing out
the generél {eatures of the method,.to determine general situations
where the method is applicable,

Section 2.2 is concerned with a specific economic example of
‘the method and explains duality and efficiegcy in economic terms.,

Finally, section 2.3 elaborates on some special characteris-

tics of linear programming with regard to employment of resources.

2,0 THE MATHEMATICAL. STRUCTURE OF LINEAR PROGRAMMING

TLinear programming is basically a mathematical technique per-
prog g Yy q
taining to the maximization or minimization of a linear function (cal-

led the "objective function") subject to a number of constraints in the




form of linear inequalities or equalities. In this section I will only
state the problem in its mathematical form and mention some mathematical
questions connected with it, together with references for those interested

in pursuing these matters further. In fact,the "raison d'etre" of this

section is to provide a framework for the general economic interpretation

in 2.1,

2.0.0, Maximizetion and Minimization: Dual Linear
Programming Problems

A bésic mathematical feature of the L.P.l ‘technique is that
of "duslity". This meaﬁs that to each maximization problem there cor-
responds a minimizétion problem and vice versa., The two problems are
usually called "dual linear programning problems" or "dval linear pro-
“grams", Generally, the problem one starts with is called the "primal",
whether it is the maximizalion or the minimization problem. The corres-
ponding problem is tﬁeh called its "dual", In any case, the terms "pri--
mal" or "dual" should not be specifically associated with maximization or

minimization: the primal problem may be either a maximization or a mini-

mization problem, The dual will then be the opposite of the primal.

1t should perhaps be noted that the dual programé are connected
through their parameters. The parameters of the primal enter the dual,
though in a rearranged form. This is made clearer in the next two sub-

sections, and bears an important economic interpretation as will be seen

1ater?



2.0.1.

Let f (%, X5, +.. %,) be a linear function in n variables,
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In (1d) p is a row vector and x a column vector.

The linear inequality constraints may similarly be written
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or

i £ b (24)

In (2d), A is the matrix (aik) of (2c), x the column vector of
xi's and b the column vector of bi‘s.

An additional constraint present in linear programming is
that variables are not permitted £o také up negative values., This

is usually called the "non-negativity" condition, and is stated as

follows:

1

or x 2?’ 0 (34d)

where x is the colum vector of xi‘s and O is.the nxl null vector,

'x, > 0 (33, b,c) (i=1, ...n)

A typical maximization problem in Q,B. is then,
maximize (I) |
subject to
~(2) and (3)

or, in the matrix notation,

maximize f(xl, x2i..xn) T px (149)
subject to Ax b (24)
and x > 0 L (3d)

2.0.2. The Dual: Mathematical Formulation

The dual corresponding to the problem in 2,0.1 is a minimiza-

tion problem, stated as follows:
Minimize

g (yl, y2, e e ym) = blyl J""bzyz '+’ ooc'\'bmym . (}4,8,) .
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additional requirement -that

ys >/ 0 (i=1, ...m (6 a, b, ¢)

y >/ 0 | ' (64)




In (4d) b is the colum vector of bi's, as in (2d). In

(Sd)vA-is the matrix gf a3 10 as in (2d), p is the #OW'vector of pi's,
as in (1d). The transpose of a vector or matrix is denoted by a

prime.

2.0.3. Formal Relations Between Dual Linear Programs

The relationship alleged in 2.0.0 between the primal and the

dual problems now becomes apparent. Consider the two problems in their

most compact notation:

Maximize Px | finimize by
Subject to Ax £ b Subject to AUy X pf
and x> 0 | and y o)

E 1rs t: Lh.(/ aramnevers 1nv > 4 WO robilems are ulle
L)a,]“e.

Hecond, the symmetry in the transposition of parameters from one

problem to the other is easily noticeable: (a) the vector p of the objec-

tive function in the primal has been transposed and transferred to the

right-hand side of the constraints in the dual, (b) the vector b on the
right-hand side of the constraints in the primal has been transposed

and transferred to the objective function in the dual and, (c) the mat-

rix A in the primal has been transposed in the dual.
Third, it should be noted that the number of constraints in the

co
" primal (including the non-negativity constraints) is the same 'as in the




dual, i.e. m+n, AIf the non-negativity conditions are not taken
into account, it turn3'0u£ that the number of variables in the pri-
mal (n) becomes the number of constraints in the dual, and the num-
ber of constraints in the primal (m) becomes‘the number of variables
in the dual,

An important property of the dual linear programs is that
the maximum value of f(xl cous #h) is equél to the minimum value of
g(yl, ces yh). Also, if a solution to¥the maximum (or minimum) prob-
lem exists, its dual also-has a solution.3

These'formal s&mmetries should not, however, give the impres-
sion that §ne_of the dual programs is.fedundant;while it is true that
max £ (x7, .. xh) Z min g (yi, .. ym), the variables x, and yk bear dis-
tinct economic interp%etations and are both useful in terms of understand-
ing the basic notions in the theory of economic choice. This will be-

come apparent in sections 2.2 and 2.3 below.
2,1 L,p, AND ECONOMIC CHOICE: A GENERAL INTERPRETATION

In (2¢) of 2.0.1, each column of the mxn matrix may be generally
interpreted to represent an economic "activity". The notion need not be
fesﬂridtéd to any particuiar type of economic activity; it is quite general
and may be used to represent ;n'activity in production, in consumption, in
transportation etc. This explains the variety of uses of the linear program-

ming technique, from very specific and practical questions to quite general

problems.
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The (constant) numbers in each column of the matrix usually in-
dicate-what the respective activity needs to operate at a unit level;

this is not a general interpretation, however, since sometimes the

"results" (as contrasted to the "needs") of the activity areArecorded
in its colump along with its "needs". Differentiation between the two
is achieved through a sign convention (é.g. minus signs for the "needs"
and plus signs for the "results"),

-

A word about the term "unit level of activity" used in the pre-

vious paragraph is in order: this is defined with reference to one of

the (possibly many) "results" of the activity by specifying a "unit" of
it for the purpose, and then calculating what the activity "needs" to
produce this "unit?g Consider, for example, the activity. of producing
seed oil. Chooée seed'oil as the result of the activity in terms of
which the unit levél of activity is to be defined; choose an appropriate
unit for the result, e.g., toms. Thé "needs" of the activity (i.e., some

of the numbers, a., in the relevant column of A. will now be calculated

ik

with reference to one ton of seed oil. Any other "results" of the activity

besides seed oil will also be recorded along with the '"needs" of the activity

(only with a different sign).-
Concentrating on the "needs" of each activity and turning to (2a)

of 2,0.1, the meaning of the left-hand side of each inequality becomes

clear: a is what must be used of "source"lby activity 1 in order
that the latter operate at its unit level. Taking x; as the level.of
operation of the particular activity i, it is ecasily seen that all xq

represents the total "needs" of activity 1 for "source" 1 when the activity




is operated at the level xp. A similar interpretation holds for

a2 %o except that it refers to activity 2. The left—hand side of
the first equation therefore represents the sum total of '"needs" of
all activities from "source" 1, when they operate at levels x;(i=1l,...n)
respectively. This interpretation carries over to any welation of sys-
tem (2a). |

To be'sure, unless the "sources" are defined to be "primary
resources", i.e., non-producible by any activity, the above interpreta~
tion 1is not so general. Suppose; for example, that "source" 3 is pro-
ducibie by one or more'activities,.say activities 2 and L. Then, 39
and th are unit "results" of the relevant activities and the left-
hand: - side of eguation 3 of system (2a) of 2,0.1 must be separated
in two parts: a32 x?-#‘aBA xh, which is the "contribution" of activi-
ties 2 and L to the availability of "source" 3; and the rest which is
the sum total of "neecds" of all acti?ities from "sourte" 3. Obviously
some kind of sign conveﬁtion is required.to'distinguish a32 and a3h
from all other ay (k= 1, ... n, k72 kZ4).

The interpretation of the right—hang,side of the equations of
system(2a) of 2,0.1 is, of course, the availability limits of the

"sources", Thus, b, is the available amount of "source" 3 (not taking

3
into  account what can be contribuped by activities if "source" 3 is re-
producible), and the same holds for every b, (k =1, ... m). Feasibility
of whate%er is pursued is imposed by the restriction that the sum total
of the "needs" of all activities from each "source" should no£ excezd the

v

availability limits of the "source",




Turning to the objective function (1 of 2.0.1) the vector

p = [bl’ p2, cen pQ} represents the unit contribution of each

activity to a quantitatively expressible objective. For example,

p2 represents the contribution of agtivity 2 to this aim, when the
activity is operat;d at unit level, The‘purpdse, of course, is to
maximize the total contribution of the activities, subject to the
constraints of "sourcef availability and to the additional constraint

that the maximizing activity levels (xi) must not be negative,

The non-triviality of this problem is assured when three con-
ditions are satisfied: (a) the availability limits of at least two
sources are finité,‘(b) the various activities compete between them—
selves for the use of limited "sources", and (c) no activity can be
judged outright as technically superiorkto all others., An explanation
follows.

First, suppose that the availébility limite of all "sources"
are infinite, i,e., sources are available in whatever amount needed,
Since the objective function is linear (i.e.,.since the unit contribu-

tion of each activity to the aim remains constant irrespective of the

level of operation of the activity) the value of the function varies
directly with the levels of activities. But since the availability
.‘limits of all sources are infinite, any and all activities can be

operated at any level. Hence, the value of the objective function can

be made as large as desiredf and there is an infinite number of ways
in which this can be done (e.g., by using any one activity, provided its

contribution to the aim is positive). In this case, the economic problem
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is triviai or, rather, there exists no economic problem at a.ll.‘5

As a second case, assuﬁe that the availability limits of all
"sources" are infinite except one, say the fifth. In the system (2a)
of 2,0.1 the oﬁly relevant constraint is theﬁ the’fifth inequality
namely, 4

+ . ees b
§51 X A, X g X <L p
together, of course, with the non-negativity conditions (3).
This problem is not formally trivial, but it is indeed very

simple to solve. Consider the ratios:

P P
1 2 -
[—" 73 ecseeee pn
a a
51 52 ' a5n

. p. N
The economic meaning of-ai is that it is the "return" of the ith
51
activity per unit of the "source" used. It is the contribution of

the ith activity to the aim, per unit of the "source" used by it.
Obviously, the objective function will be maximized by using the
activity with the highest "return per unit of source" at the maximum
possible level .6 |

To illustrate case (b) above, consider the problem:

- Maxini ze X+ X + = £ (x)
Py X+ P, X, + P (x)

X
3°3
7
subject to




r ] 1 [
all 0 0 Xq bij
b
a5 0] O. X, AR
—1
O a O X !
32 | 3 |
0 a 0 T .
14,2 |
0 0 a i
o 53 !
0 0 a , b
L 63 6

In this example, the availability levels of "sources" are
finite, but the activities do not compete for their use. 1In other
words, what is peededkby one activity is not needed by any other,
énd this simplifiés the problem.immensely; Assuming that all p's
are positive (i.e., that all activities have something to contri-
bute Lo the aim) the solution of the problem is obvious: for activity

1, check the ratios by and b, and choose the smaller? this will be /
the level that helps maximize f(x), subject to the constraints set by
the availability limits bl and b2. The same procedure is to be followed
for each activity.

~In this last case, the various activities do ngt compete for
the same scarce "sources", neither does one produce something needed by
another activity. Hence, they are independent in the sense that .the level
of operation of each does not de;end on the levels of others.8

To show'the necd for condition (c), consider the following tech-

nology:
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- Act. 1 Act, 2 Act,3
Source 1 -5 -20 -5
Source 2 ' -10 © =30 -5

Result 1 1 1

The result is the same in all activities (e.g. a certain commodity).

~

Obviously, activity 3 is "technicaily" superior to the other two
“ , _
since it requires less of both "sources" to yield the same result,
Choice is restricted from the start to activity 3. :f;;

To summarize the above, then, it can be said that the L.P. tech-

nique is suitable for tackling problems of choice between interdependent

activities. Problems of choice with not obvioﬁs solutions arisQ in cases
where there exist fes£rictidhs and where the elements subject to choice
are interdeg@xkﬁ@ and, of course’, where there exists more than one way
of satisfying the exogenously giveﬁ aim.]

It cannot be overstressed that a large category of allocation

problems in economics are essentially problems of choice as described

above., Linear programming can thus be a very useful technigue in tackling

these problems;

2.2 LINEAR PROGRAMMING: AN ECONCOMIC EXAMPLE

In this section I shall make an attempt at presenting a simplified

economic problem. in linear programming form and at explaining the mathema-
tical features of the problem in specific economic terms. Both the primal

and the dual problems will be examined.
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. 2,2,0 The Primal

2.2.0.0. The Setup and the Assumptions

Suppose a closed economy with the following characteristics:

(i) There are two "resdufces" or "primary factors of produc-~ -
tion". "Resources" are defined to be commodities available in nature
and not reproducible by any activity,‘at least within the time-span

~considered in the pfoblem. |

(ii) The technology available to this economy specifies three
"activities" of‘production. An M"activity" is here defined as a com-
bination of qualitatively defined commodities (in our case, resources)
in fixed guantitative ratios, as inputs, to produce "final" commodities
in fixed quantitétive ratios to the inputs. "4 "final" commodity is one
not available in nature but desired in itself (presumably by consunmers,
but we shall be abstracting from the demand side of the problem in this
example).

To clear the above definition of an activity, consider the follow-

ing example: ' L
Resource 1 f;S_ﬂ
_ " 2 -6
Final commodity‘l - 1
Final comriodity 2 _O.ﬁ_

This activity uses a combination of 5 units of (qualitatively'defined,
. ' . 10
that is, homogeneous) resource 1 and 6 units of (also homogeneous) re-

source 2 to preduce 1 and 0.5 units of final commodities 1 and 2. TFrom
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the definition, the quantitative ratio of inputs (5 or 6) is given

and constant. This obviously means that within this sp

5

ecific activity

there is no possibility of primary factor substitution. In other words,

an activity as defined represents one point on the production isoquant

. . 44
of neo-classical economics,

The requirement that the final commodities produced by the ac-

tivity bear constant quantitative ratios to the inputs is another way

of stating the assumption of constant returns to scale.

(iii) Each of the activities given by the existing technology

can (not taking into account the restrictions imposed by the limited

availability of the resources) be expanded or reduced to any level of

operation,

This is the assumption of divisibility: it implies that glven

the activity

L

005

of the previcus example, any level of it is possible, e.g.,

0.1

— s W
-6
1

0.5

b

—
"'005

-0.6 |

0.1

O‘Oﬁ,

is possible, and so is




10 =6

0.5

by -

r—

-50
~-60
10

5

L

19

As can be seen from the coefficients of inputs and outputs of

the resultant vectors, this assumpbion means that resources as well as

final commodities are perfectly divisible.

(iv) There is no interaction between the activities given by

the technology. This means that the unit resource "needs" and the unit

productive "results" of each activity are not affected by the fact that it

is operated along with others.

External economi€s and diseconomi€s, that

is, are ascumed away. In mathematical terms, given the activities

Act, 1
-5
6
1
0.5

Lo ]

one can ‘perform operations like

— —

-5
-6

N
[

¥£3

—

-10

-2

—

Act, 2

—lO”W

-2

~-40

-18

N

o
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-

The resultant vector shows the composite needs and productive re-
sults of activitieé 1 and 2 when fhey are operatedfat levels 2 and 3
respectiﬁely._
(v) The prices of the final commodities.are given and constant.
(vi)v‘ Intermediate:commodities have been "netted out" (the rele-
vant technique is in 4.2, below).

“

(vii) The purpose is to maximize the sales receipts.
2,2,0.1. The Data

(1) The quantities of resources available are as follows:

Resource 1 60
- measured in appropriate units
Resource 2 | 18

(ii) Suppose that thebtechnology is as follows:

s

Act, 1 Act,2 Act, 3

Resource 1 -10 , =2l —21—W with resources
. ' measured in the
Resource 2 . |- 4 -6 -3 same units as
above, and final
Final Comm, 1 1 ' . o0 0 commodities mea-
_ ' ’ sured in appro-
" mo2 0 -0 1 priate units
i} n
3 | 0 1 . O__
where each column represénts one activity.
(iii) The prices of final commodities are
final commodity 1 12 expressed in §
per unit of
" n 2 3 commodity

1" L] 3 . L"




Since the aim is to maximize sales receipts, the commodities

can be taken out of the matrix by adopting as unit level for each
activity that level which gives $1 of revenue. The activities, as

given in (ii), result in $2, $4, and $3 per unit of operation, res-

pectively. Division of the colums by 2, 2, and 3 respectively,

gives what we want:

5 6 7|
2 1.5 )
0.5 0 0
0 0 1

- 3
0 i
- I3 B

It can be easily verified that each activity now gives $1. of
revenue when operated at this '"new" unit level given by the matrix,

We can thus dispose of the commodities and write the technological
. (2,
matrix as follows:

Resource 1 5 6 7

N

Resource 2 1,5 1

2.2.0.,2. Formulation of the Problem: lodel I

Denote by Xl’ Xys X the activity levels (in dollar values)

that maximize total receipts: since at the unit level each activity

contributes §1 to revenue, we seek to maximize

R = 1x +ix %lx3

On the other hand, when the activities are operated at levels

X]s Xps X3, they absorb resources, We have:



total amount absorbed of resource 1 is 5x, +56xp + 7x

3

and the same as above of resource 2 is 2x, +-1.5x9 %—le
and these émounts should not exceed the availability limits of re-
sources as given by (1) of 2.2.0.1, i.e.,

5xp b, ¥ T, <. 60

231 #—l}SXQ +~lx3 < 18

As a last requirement, negative levels of operation of the ac-

- tivities have no economic meaning, i.e., we must have

X :} 0 x2 ‘;;' 0 XBT?/ 0

To summorize, the problem, is:

2 . :
Maximize R = EZXE = Ii 1 i] ' Xij
i
< lc
%, (1c)
X
3_1
subject to
5 6 7 % ] 60
1
pd
' 2 1.5 1 x| T |18 (2¢)
2
X
3-4
and to
X, 2 0 (iz1,3) (3c)

This can be seen to be a standard linear programming problem, by
comparison with what has been said in 2.0.1., A4lso, conparison with the
examples set out in section 2,1 shows that the problem is neither tri-

"

vial nor "easy" to solve, in the sense that (a) constraints exist (b)

activities are interdependent in their use of limited resources and,
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b(c) no activity can be judged outright as technically superior to all:

the rest,

2.2.0.3. Slack Variables

It would be easier, for computational reasons, if the system
(2¢) of the previous section were one of equafions rather than inequali-
ties. This can easily be done by introducing additional variables (called
"slack" variables) to the inequalities, as follows:
- The first inequality of (2¢c) is
5%y 6x2 ¥ 7><3 < 60
by adding up a positive variable XL to the left-hand side
5%, ¥ Gxé i 7, £ Ju'clL = 60
we have an eouality. The economic ﬁeaning of the variable XL must be
obvious; since the sum 5xl-¥ 6x2 ¥ 7x3 representsAthe total amount of
resource ﬁsed by the three activities when they operéte at ‘the levels
X1, x2 and XB rgspectivély, the expression lxh represents the amount of
the resource left unused. The amount used anq that which remains idle
must (by the definition of the uhused amount} be equal to the amount
available of the resource. The fact tﬁat an additioﬁal restriction of
‘_non—negativity is imposed on XL (X?'k? 0) ensures that the original in-
equality is satisfied when the corresponding eguality is, and vice versa,
To elaborate on this last point, suppose that x, were permitted to

L

take negative values. The result would be that X, could artificially aug-
. b

ment the amount of the resource available, and the original inequality




constraint would not bear a epe-to-one correspondence with the de-

rived equality constraint. For example, we could have Xy = 100

X, = 100 x3 :_100 and xh = -17,40. This set of values would satisfy
the equality constraint, but the values of x, X x3 would not satisfy
the original inequality, which is the original meaningful constraint
imposed by the data.‘ Introductj:oh of the slack variable x,, that is,

without the additional non-negativity restriction would change the

problem, which was not intended.‘?’

The same pfocedure can be follom;ed with regard to the second
inequality of 2c. We then get,
5%, +6x2 +7x3 +le+Ox5 = 60

2x; £ 1.5x, 4 1)@3 + Ox, + 1x, = 18

Obviously, we must use a separate slack variable for the second
inequality, as there is no reason to impose the additional restriction
that the amounts unused of each resource must be equal,

The system of (2c) and (3c) of 2.2.0.2 can then be written:

5 6 7 10 | % 60
o 172
2 1.5 1 0 1 x z 18 (2d)
s — - . ]
L
X
: L2
X X 0 (1=1, ...5 | (3d)
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and it must be horne in mind that this system is equivalent to the
system (2¢),(3¢) in the sense that a set of values of %, that satisfy
(%¢), (3c) satisfy (2d), (3d) also, and vice versa. In economic terms,
the nature of the constraints is not affected by the introduction of the
slack (or surplus) variables."’

The usual asSumpﬁion about the contribution of the slack variables

to the objective function of the problem is that they do not contribute

anything. ‘The objective function (lc) is then written

. ;-
R = [1 11 O O] , Exl, x2,» x3, x1+, 'XS] (14)

which 1s the same function. Ve are‘thus assured that the system (1d),
(2d), (3d) is equivalent to the original (le), (2c), (3c).

As stated at the beginning of this section, the introduction of
the slack variables was meant to simplify the problem from the computa—
tional point of view, For certain cases of theoretical analysis, however,
slack variables acquire a quite different and important standing: it will
be recalled that lxl+ represents the amount of resource 1 not used by any
activity. The assumption is that the existence of this unused amount does
not modify the objective function. This implies that the amount unused can
be disposed of freely, that is, without requiring inputs/for its disposal,
In another, more theoretical, problem it might be desirable to investigate 

this situation without making the "free disposal" assumption. Naturally,

in this case it is the system (1d) (2d) (3d) (with (1d) modified accordingly)

. . . (
which 1s the original problem.‘s

2.2.0.l, Feasible, Basic Feasible, and Optimum Solutions
3 X i

Our aim in the problem of this section is to maximise the sales




receipts subject to the constraints imposed by resource availability,

A "solution" is defined as a set of values of the variables of the prob-

5

x = 4,0 x_ = -182, In this "solution", the objective function takes

L > _ ,
the value 100, It will be observed, however, that though this set of

lem, X x2, x3, XL, x.. E.8., a "solution" is x; = 100 X, = 0 Xy = 0

values of the variables satisfies the constraints (2d), it violates the
non-negativity conditions on XL and x5. Hence, the first distinction with

reference to solutions:

A "fegsible" solution is a set of values of the variables (a set
of activity levels) that satisfies the constraints (2d) and the non-
negativity conditions (3d), if‘such;a solution exists.l,

The number of unknowns is‘usually greater than the number of
equation coﬁstraints in a linear pfogramming problem.r7 This means
that, if there exists a solution, there will usually exist more than
one solutions” to the system (2d). The same will usually hold for
-feasible solutions: if there exists one there will exist more than one.

In the specific problem of this section, for example, one can

see that the sets of activity levels below constitute some of the feasible

solutions (indeed, the number of feasible solutions is infinite).

Table 1: Some Feasible Solutions of (2d)

Variable X%, xé xL x £ (x)

Solution (a) 0 0] 0 60 18 0

» (v) 9 0 o0 15 0 9
() 7.1 O 3.1 0 0 10 2
3 3 3

(d) 1 1 1 L2 13.5 3

(e) 2 1 5 9 7.5 8

(£) 3 1 5 4 5.5 9

(continued)
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Variable X b4 bd X X f(x
T T R
Solution (g) L 1 5 15 3.5 10
(h) 5 .0 5 0o 7 10
(1) L.5 O 0 37.5 9 L.5
(3) 0 10 0 0 3 10
(k) 0 0 60 0 18-60 8.000
7 T

The question immediately arises, thgn: how are we to proceed

in finding, among the infinite number of feasible solutions available,

one which maximi%ss the objective function?

A number of mathematical theorems eliminate the difficulty.

These theorems assure us that in order to find an "optimum" solution

(i.e., a feasible solution which maximizes the objective function) we

need only examine the "baSic,feasiblé solutions". Since the number of

basic feasible solutions is finite, the difficulty is surpassed:9

A "pasic feasible solution" is a feasible solution in which the

number of variables that can be different from zero is egual to the numr'

ber of equationsX It can be seen that solutions (a), (b), (c), (3), (k)

are basic feasible solutions, in Table 1,

An iterative procedure has been devised which proceeds from one

 basic feasible solution to another and, with the help of a choice cri-

terion, determines an optimum solution (it should be borne in mind that

this optimum solution is not necessarily unique; other basic - and non

, 24
basic - feasible solutions may be optimum solutions, too). The method is

called the "simplex method". In accordance with the aim pursued in this

thesis, I shall investigate only the economics of the simplex method in the

next section.
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2,2.0.5, Solution of the Problem: The Economics
of the Simplex Method .

From 2.2.4., our problem was:

To maximiZzs sales receipts

R = f(x) = x X, {-XB (1)
subject to the constraints

5% %-6&2_{<7x3 £ X, = 60 (2)

2x1-¥‘l.5Xé-f 1x3:ﬁ433 = }8 (3)
and X1 X, X3,.XL’ x5 =z 9. ' ‘ (4)

From ihe discussion in the previous section weAknow that we need con-
sider only two activities at & time. |

- An_obvious choice is to produce nothing?® This will mean that
the levels of activities 1, 2, 3; (gl, X59 xB) are chosen to be zero.
On the other hand, the total amounts of resources available will re-
main idle, i.e, the levels of éctivities L and 5 will be %), = 60
x5 = 18, Total sales receipts are seen to be zero, since keéping
resources idle does not contribute to sales receipts. This is solu-
tion (a) in Table 1 of 2.2.0.4.2 |

Sin;e we are to proceed iteratively, we may find another (basic)

feasible choice of activity levels, compare the sales receipts in the
two choices and keep the choice which yields the greater receipts, Ac-
tually, however, thé method proceeds in a(slightly different way, by
using a mathematical criterion which has a direct and very important

interpretation for the theory of economic choice. I will proceed to

state this criterion by example,
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Let us isolate the activity with the highest unit contribu-
tion to sales receipts; since all activities have the same unit
contribution, we will examine them in turn. .

Consider activity 1. Its resource requirements per unit are

5 and 2 respectively and its unit contribution to receipts is $1., The
basic economic question which arises is as follows: we can use 5 units

. of resource 1 and 2 of resource 2 in two alternative ways; either oper-

ate activities 4 and 5 at the levels 5 and 2 respectively;~or operate
activity 1 at the level of unity. If we make the first choice, we_have
receipts equal to zero. If, however, we choose to use these amounts of
resources by operating activity 1 at the level of unity, we gave receipts.
of $1. By sticking to the first choice, that is, we actually lose re-
ceipts that we could have h&i?q' -

The same procedure for activities 2,and 3’shcwsvthat By using
~ each one of theﬁ at unit levél we couid increase our receipts by $1
respectively.

A little reflection shows that the question posed above lies

at the heart of the allocationvproblem in economics. I will elaborate

on this point in section 2.2.1.
Since there is no difference betweeﬁ the unit gains of activi-
ties 1, 2, 3, we can choose activity 1 to operate in the program. We

could of course choose to operate activiﬁy 1 at a level that permits

both activities L, and 5 to operate at some positive level (as in solu-
tion (i) of Table 1 of 2,2.0.4). But this is to be avoided for two

reasons: first, we will economize in computation time by not considering
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three-variable solutions (i.e., non-basic feasible solutions) and,
second, it would pay to operate activity i at the highest possible
level (since its unit contribution to the sales receipts is con-
stant). ‘

To find the highest possible level at whiéh éctivity 1 can be
operated we proceed as follows: we know that activity 1 operated at
unit level is equivalent - in terms of resource use - to the sum of
activities 4 at levelrfive and 5 at levél two, Since we are to con-
sider two variable (i,é. basic feasibie) solﬁtions only, we seek to
-find the levels of acﬁivity 1 that.will make it impossible for activi-
ties 4 and 5 to be opefafed at positive levels.

Now, in the firsf basic solution the activity levels were as
follows: XL = 6Q,x5 T 18. Since activity 1 at unit level is equiva-
lent to x, = 5 and %, = 2, it is obvious that if we set X = 9 we

[
will have to have x. = 0.25 Also, if we set X = 12 we will have x, = O.

> L
The choice is now between xy = 9 and X, T 12,i:zk.1ittle reflection shows
that the least of the two is the maximum possible level of x1.26 We have
‘thusndetermined that Xi = 9 must be substiﬁuted for x5 in the next basic
solution, The second basic solution, that is, contains xl = 9 and XL to
be determined,
A look at the resource needs of activity 1 at the level 9 shows
~ that only 15 units of resource 1 are left. Hence xL - 15, Our second
basic feasible solubion is, then, solution (b) of Table 1, i.e., x; = 9,

x, =15, x = x_ 2 = x_= 0. The total revenue from activity 1 will be

4 2 3 5
$9 and that of activity 4 $0. Hence the value of f(x) will be %9.27




The question is whether this solution gives the maximum re—

venue possible, To answer it, we must go through the same’ procedure

as with the first basic feasible solution,

Let us start with activity X, it needs 6 and 1.5 units of

resources 1 and 2 respectively, and gives
unit level of operation). The same total amount of re

by activities 1 and 4 if they are operated at levels X; = 0.75 and x,

2.25. This can be easlly checked:

5
0.75 |+ 2.25
2

of activity 2,

We have, again, two alternatives:

1. 6

b

o | 1.5

L and Y5 unitsof resource 2 by operating activities 1 and L at levels

0.75 and 2,25 reupect1vel v,
operating activity 2 at the
the first choice are $0.75 (

while those associated with

31

%1 of revenue (all these, per

sources is ‘needed

4

» the unit requirements

either use 6 units of resource

or use those same amounts of resources by

level of unity. The receipts associated
since only activity 1 contributes to rev

the second choice are #1, Between these

with
enue),

two

alternative uses of the same bundle of reoources, it is the second which

contributes more to the given purpose (i. e., to revenue maximisation

sticking to the first, then,

operation of activity 2.

By the same reasoning we find th

1 and 1 unit of resource 2 in two alternative ways:

). By

we lose $0,75 - $1 = $0.25 per unit of non-

at we can use 7 units of resource

either by operating

activities 1 and L at the levels 0.5 and L.5 respectively (with total re-

venue %0.5) or by operating

activity 3 at unit level. By sticking to the
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first alternative, we lose $0.5 - $1 = $0.5 per unit of non-operation
of activity 3'.28 |

Finally, the same procedure shows that we can use O units of
resource 1 and one unit of resource two eitﬂer by operating activities
" 1 and 4 at levels 0.5 and -2.5 respectively, or by operating activity
5 at unit level. This alternative, however, will have to be discarded,
since by sticking to the first alternative we géin $05 - $0 = $0.5 per
unit of non—operation-of activity 5.29'

To summarize the diséussion, we have threé alternatives:

- (a) keeb operating activities 1 and L at levels 9 and 15,
(b) substitute activity 2 in the program, to gain $b.25 of revenue

per unit of its operation, and
(¢) substitﬁte activity 3 in the program, to gain $0.50 of revenue

per unit. ﬂ |
Taken at - face value (i.e. in terms of gains per unit of activity)
- it seems logical to proceed to alternative (c)%O Following exactly the
samé procedure as when we mqfed from the first to the second basic solu-
tion, we find that activity 3 will be épera@ed at the level x.3 =3 % |
and activity 4 will be,xz = 0. Activity 1 will be operated at level
xl«: 7 %,51 The full solution is, then, x3 = 7 % #é’z 0 x = 3‘%_

x, =0 X = 0 solution (c) in Téble 1. The total revenue associated

L
with this solution is $10 2.
3
To check whether this is an optimal solution, we need only consi-
der activity 2 as an alternative?z‘ult is then found that the alternative

is either activities 1 and 3 at levels 0.5 and 0.5 respectively, or activity




33

2 at unit level. Sincé both alternatives contribute the same re-
venue (51) we lose $1 - %1 = $0 by non-operating activity 2. Hence,
we have arrived at an optimum solutioh. That is, any other feasible
set of activity levels will yield either $10 2 of revenue or less,

. 3 .
The last statement of the preceding paragraph makes it clear

that the optimum solution that we have found is not necessarily uni-
que. Indeed, in this problem there are more than one optimum solu-

tions.zz’ This can be seen by the fact that the contributions to re-

venue by the two alternatives aﬁove are equal. This situation means
that activity 2 can be substituted at unit level (or at any other
possible level) for actiﬁity 1 at level 0.5 and activity 3 at level
0.5, and total revenue will not change. 1f, for example, we operate

x. at the maximum possible level (in which case x, = 0) we geth‘L

2 3

- = ; = = = ; S VG 2. ;
Xy L %, 6 X 0 _xh 0 X5 0 and total revenue of %10‘3 /

Tndeed it can be seen that if we start from the optimum solu-

w iao

3 : °

ing activity 2 for activities 1 and 3. dn the ratio 1l: 0.5, 0.5, we

tion x, =71 x, =0 x =31 x =0 x_ =0 and proceed substitut-
1 = 2 3 L

get an infinite number of optimum solutions, all yielding the same maxi-

mum revenue. This, of course, need not happen in all linear progromming

probléms: most problems have a unique optimum solution. The specific

example happens to have infinite opbimum solutions.

2.2.0.6 Graphical Solution

The simple problem that we are working with allows a graphical

solution, too; The graphical approach to the solution has its useful-

ness, though it cannot be a substitute to the method of section 2.2,0.5,
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since it brings out different éspects of the problem.
If we are to use two-dimensional diagrams we will have to
measure resource quantities on the axes, Activities will then rep-

resent points in the positive quadrant, and all their possible levels

of operation will be on straight lines passing through the origin.

Consider, for example, activity 1:
‘ ? : o

resource 2

resource 1

Big., 2.1

Point a on the line Opl shows the resource quantities needed by the
activity at unit level of operétibn. Point bﬁ(lO, L) shows what the

activity needs in order to operate at level 2, Obviously, ob = 20a

from the assumption of constant returns to scale. Any point on @pl
between O and a represents the activity at a level smaller than unity.
It will be clear that the needs of the activity at each level are rep-

resented by a unique point on @pl and vice versa,

In Fig. 2.2,1 have graphed all three activities: points a, b,
¢, represent the activities 1, 2, 3 at unit level. The question arises

about the meaning of the points on the line abc,



Note, to start with, that point a represents a combination

of resources that yields ¥l of revenue, at the given final commodity

prices. The same holds for points b and c.

resource 2

P

fs
o
PR & d
N |2

S T 0. >

o <
05‘ bl/

e 4
o s 6 7

rescurce 1
Fig, 2.2

Now consider point d on ab. It cen be easily proved that (i) d rep-
resents the total factor quantities needed by activity p1 at level

' L] : p
a' plus activity Py at level b (or, the gquantities needed by Py

1 | ’ ..
at levcl a plus those needed by p3 at level c''), and (ii) d rep-
resents combinations of activities that give a total of {1 in revenue.35
The same holds for every point on abc. 1t is then seen that abc is an

iso-revenue curve, i,e., it represents activities or combinations of

activities that result in 51 of revenue. Note that the general shape of

this line (whether it is a straight or broken line, whether its slope

]
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is negative or positive or mixed) depends on the commodity prices
in relation to the technology.36
Now consider the line efg: it is parallel to abc and €0 =

2a0, fO = 2b0, g0 = 2c0, It can be easily seen that it is an iso-

revenue curve for $2. Obviously, a whole family of such iso-revenue
curves can be drawn, covering the area p16 p3.
Let us turn to the resource availabilities: resource 1 is

available'at a maximum of 60 units and resource 2 at a maximum of

18 units. This. can be représented as point b in Fig. 2.3.

Resource 2

Resource 1
Eig. 2.3

Obviously, any point outside ihe rectangle QOabc is infea-

siblé; any point inside is feasible, though it does not employ the

resources fully,37 and any point on the line ab (or bc), e.g., point
g (point e) employs fully resource 2 (resource 1). Also, the only

point that employs both resources fully is point b=(60, 18).

In Fig. 2.4 I have put the two diagrams together., It will
be remembered that the problem was to maximise revenue subject to the

constraints of resource availability and the non-negativity conditions
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on the activity‘levels. Since we operate on the positive quadrant,
non-negativity conditions are always satisfied; the other constraints
are embodied in the figure. Note, finally, that the farther an iso-
revenue curve is from the origin, the more revenue it shows.

Consider the.iso—revenue curve efg. Since e0 = 5a0, efg shows

activity combinations yielding $5 of revenue. All combinations on efg

are feasible. Obviously, we can do better than that, as in hij; this shows 99

of revenue, and the part hiv is all feasible. Incidentally, our second ba-
sic solutién in 2.2.0,1 is point h. |

Now consider pqr. It yields more than $10 2, but it contains no
feasible point, Obviously, the line we seek is klmg, whose only feasible
point is 1, with revenue $10 2. 1 can be reached by operating activity 1
at level W (7 1) and activity 3 at level x (3 1). Both resources are fully
- employed. (Ingeed, 1 can be reached b& a combgnation of activities 1 and
2 also, as well as by combinations of all activities, as explained in
2.2,0.5). )

In this section, I have not.éxploited the particular advantages

of the graphical approach. This will be done in section 2.3,




2.2.1 Beonomic Efficiency

2.2.1.0 Efficiency of fesource Allocation, and:Resource
. - oL -~ - -
Valuation: A Preview of the Dual

In checking the optimality of the third basic salution (xl

7

=71 x,=31 x Tx = x.=0) of the previous éubsection I as~
3 3 3 2 L 5

serted that we did not need to check the alternatives of operating

activities 4 and 5.38 It will, however, be instructive for quite

another purpose to examine these alternatives,

First, it is to be remembered that x

L

that activity 4 (or 5) is operated at unit level, that is, one unit

=1 (or X5 = 1) means

of resource 1 (or 2) remains unemployed. It follows that in the third
basic (and optimai) solution we have full employment39 of both resources
(x =x =0).

I 5 -
Let us now check the alternatives of operating either activity

L or 5: I start with activity 4.

It will be found that activity L operated at unit level is

1

equivalent - from the point of view of resource use - to activities 1

0
and 3 operated at levels -1 and 2 respectively.h We have:
-lx4 2x =x (1)
9 9

The left-hand side combination of activities yields - 1 (#1), 2 (§1)
9

= §1 of revenue, while the right-hand-side yields zero revenue. Hence,

9

if we decide to operate activity 4 instead of activities 1 and 3, we lose

%1 - %0 = §1 per unitary operation of activity 4. Alternatively, by non-
9 9 . .
operating activity 4, we gain §0 - §1 = § -1 by unitary non-operation.
' 9 9
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: ) L1
As far as activity 5 is concerned, we find  that it is

equi&alent to activities 1 and 3 operated at levels 7 and -5 res-

9 9
pectively. We have

% xl 78 x3 = x5

The left-hand side yields $2 of revenue. Hence, we lose $2 per unitary

9

operation of activity 5, or we gain $2 by non-operation (per unit level).

9

The main question is about the economic meaning of the two num-

bers associated with the resources, namely, $1 for resource 1 and i

9

. for resource 2. What does it mean to say that we lose $1 by unit

9

operation of activity 4? It will be recalled that non-operation of

2
9

activity ) means full employment of the resource, while operation of
activity 4 at positiﬁe level means unemployment of resource 1. Hence,
we can say that $l is what'we lose in revenue if we employ 59 units of
resource 1 insteaz of 60 (recall'that; in the optimal solution, resource
1 was fully employed)., $l, that is, is the marginal contribution of re-
source i‘tobrevenue, and Zan be called the marginal revenue productivity
of the resource. The same interpretation holds for resource 2.
Inﬁerestingiy, the implied analogy with standard neoclassical
allocation the&ry préceeds further: multiplication of the quantities
of factors employed (in the optimal solution) by their marginal revenue

products (at the optimal solution) yields

60,1 4 18

=10 2
5 .

.2
9 3

which is exactly the maximum révenue attainable,
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The two "values" associated with the two resources are then
seen to impute the total revenue to them, in conformity with the stan-
dard neoclassical theory of distribution,

2.2,1.1 Efficiency: L.P. and Neo-classical Economics

I shall now make an attempt at explanation of the notion of
efficiency, and its relationship to resource valuation, .

The simplest notion of efficiency refers to commodity bundles:
given the technology and the qﬁantities of resources available, a feas-

ible commodity bundle is efficient if there is no other feasible bundle

B with a greater quantity of at least one commodity and with equal quanti-

ties of the rest of the comrodities. Consider the case of two commodi-
ties. Given the technology and the resources available a standard produc—

tion possibility area may help explain the notion of efficiency (Fig. 2.5).

Ha

e

Y

Fig, 2,5

According to our definition, bundle a is not efficient since there
exists, for example, a feasible bundle p which has more of one com-
modity (y2) and the same quantity of the other commoaity (yi). We could
of course have picked point d or ¢ for the comparison (indeed, any point
in ﬁhe area abc is superior to a).

Now let us examine point b, Clearly, there is no other feasible
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bundle with more units of one commodity and at least equal guantity of
he other. Hence, b is an efficient bundle. The same will hold for every

point on the production-possibility frontier, ebdcf,

The notion of an efficient point is thus seen to be a technical

concept relating to production and allocation of resources. It does not,

however, always refer to full employment of all resources, as the above

L2
exarple may imply. This can be seen from the following "linear-program-

ming-type" of examvle: Let

1
A -5
B{-3 represent the activity producing
y 1
AR

commodity ¥y by use of resources A, B, and

.|
2
A |-12.5
B | -4 the activity producing Yy Also, let
yi 1
2
IjO
A 1 =250
B | ~120 represerit the quantities of resources

. . . . . L
available and, finally, make the usual linear programming assumptions., 3

Given this technology and the cuantities of resources, we can construct
the production-possibility area as follows:

Full employment of factor A in the production of 1 (notwithstm ding

\
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the limits imposed by factor B) gives a maximum of 50 units of
y . Full employment in the production of y2 gives 20 units of
1l

yé. Because of non-substitutability of resources and constant

returns to scale, the marginal rate of transfdrmation of yl to
y2 is a constant. Hence the production-possibility frontier for
resource A is a straight line joining the two extreme combina-
tions. The samé ré;soning appiies for resource B, The combina—l

tions are shown in Fig; 2.6 below,
Tz '
PN

Resouvce B

9 a

Rgsoqvcﬁ A

k‘?ox ‘ (5e°7 3
Fig. 2.6
Obviously, the set of feasible bundles from the point of
view of both resources is the area Oacd. Moreover, on all bundles

lying within (not on the North-east boundary of) the area Qacd need,

for their production, fewer units of both resources than are available,
Finally, all bundles lying on the segment ac (except bundle c) em-

ploy resource A-fully, but not resource B. The reverse holds for

bundles on the éegment de (except bundle c). To wit, only bundle
¢ needs, for its production, to fully employ both resources.hh By

our definition, however, bundle ¢ is not the only efficient point:
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the locus of (the infinite number of) efficient points is &he fron-
tier acd. It is thus seen that the notions of efficiency of resource
use and that of full employment of resources are not necessarily
equivalent.hs It is true, however, that an efficient bundle will em-

ploy at least one resource fully.h

Obviously, the notion of efficient commodity bundles (or

equivalently, of efficient use of scarce resources) seems to be a

technical one, disengaged from such economic considerations as demand,

- price, and profit.. This is formally true, as can be seen from the rele-

.+ vant definition,

We can, however, define an efficien£ commodity bundle in rela-
tion to a set of prices for the coﬁﬁodities cdnsidered. Such a bundle
will have to be, so to épeak,'“doubiy" efficient, i.,e,, it will have
to satisfy two ;equiréments: firsﬁ; it wil: have to be an efficient

bundle in the sense defined above and, second, it will have to be ef-

ficient from the 'economic point 6f view. In other words, it will have

to satisfy some kind of (usually) a monetary objéctive, besides being
technically efficient, |

In still othe} WOrds, the notion of)efficient commodity bundles
(or, what is the same thing, the notion of éfficient resource utiliza-

tion) is closely related to the notion of the production function in stan-

dard economic\theory.h7 Both notions represent sets of efficient choices
available to an economic agent or agents (or, for that matter, to a planning
authority). An efficient bundle relative to a set of prices, on the other

hand, is an element of this set of choices that satisfies an additional re-



requirement, In standard economic theory such a bundle represents an
optimal choice appropriate to the given set of prices, and is usually

found by calculus methods. Consider, for example, the case (Fig, 2.7)

pAY

y'

Figo\ 2.7

where ef is the préduction possibility frontier of Fig, 2.5 and U

is a horizontal section (isoquant) of the society's assumed utility
surface. Point d is Seen to satisfy two requirements: it is tech-
nically efficient (as it lies on ef) and it maximises a utility in-
dex. Point d can then bg called efficient in relation to the set of

prices given by the slope of the line gh.h-8 No other efficient point

is seen to satisfy this second requirement. And another set of prices
(as implied in another utility suffébe) will produce another "efficient"

point in this "double" sense.

Similarly, in the linear programming example, consider first
the following set of constant prices: Py =5 P, = 4. The total re-
venue function then becomes R =-py Yy {-pg ¥o = 5y1-+ Lys. The total

revenue surface lies in the space of three dimensions, and is a plane
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thrbugh the origin (due to the assumption of constant prices). To
find the efficient bundle relative to the giVeﬁ set of prices assume
that the aim is revenue maximisation. Take horizontal sections of

the revenue surface (iso-revenue lines). %o get Fig. 2.8

Yz

z(////—iso—revenue line

a9

Fig. 2.8

where acd is tﬁe production-possibility frontier of Fig,2:6. It turns
out that bundle g ({04 units of y; and zero units of yé) is the effic-
ient one, given this set of prices.49 At another set of prices, say
Py = 2.5 p, = k4, bundle ¢ turns out to be efficient instead.

It will ha&e become ' apparent in.the above discussion that
the simple linear programming example of this 'section and the slightly
more complicated one ﬁhat we have posed ana solved in section 2,2.0 are
formally equivalent. It is tﬁus seéﬁ‘that iinear’programming is designed
to solve spgcifically the pfoblem of finding, among a number of efficient’
points, one that maximizes a givén linear function for a given set of
50

prices,

In this sense, the technique is combletely equivalent to the stan-
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dard calculus techniques of economic theory (though, when it comes
to specification of functions and formulation of constraints, L.P,
turns out to be a much more general and deeper tool for economic
analysis. Also, the results of the two analyses might differ con-
. ol e : " . C
siderably.) Just as standard "continous" eccrnomic analysis de-

picts equilibrium points by solving problems of extrema of,functions,52

L.P. does precisely the same thinz, in a setup of different specifica~

tions. This is sometimes supressed by the fact ihat L.P, (and, in
its more general formmlation, activity analysis) is a uore general
method of analysis, completély'frée of the institutional specifica-
tions that abound in standard neoclassical economic theory. As g
result, it mey look as if it bears no relationship to standard neo-
clascical econumics, But while it is true.that L.P, is more general
and can be used in varicus institutional setups (for example in a
centrally planned ecconomy), it is also true that 'its categories can
be given institutional specifications that bring it quite close to
the perfectly competitive and welfare model of neocléssical economics,
The simple example of this section is a éése in point: a number of

agssumptions and specificatiocns can turn it into the standard profit-

maximisation problem of the perfectly competitive firm in the short rum.ﬂL

2.2.1.2 Efficient Choices and Shadow (Dual) Prices

It will be clear from the above discussion that the optimal

solution Xy = 7 x, =31 Xy = X, = X5 = 0 tc the problem of 2.2

1
3 273 b

is an efficient bundle at the given set of commodity prices. The maxi-

1
i

mun revenue associated with this bundle is 10

who

. The values associated



with the two scarce resources were 1 and 2 respectively, and were

9 9

seen to al].ooate the maximum total revenue attainable (at the given

prices) to the scarce resources. These resource values are in ef-

fect the solution of the dual problem, and are usually calléd "shadow"
or "accounting" pfices. They can be used as goides for the efficient
a.llocation of fesoﬁrces, in the sense that actual prices cannoﬁ exceed
the shadow prices, if the (additional) un'it‘s of the relsources are to

be employed. 5

2.2.2 The Dual

2.2.2.1 A Graphical Solution

I now proceed to formulate the dual to the problem of 2,2.0.

To recapltulate, the pmmal problem was:

‘maximize f(x) = ,01, 1] [xl, X5 3.] (1a)

o

subject to .
5 6 7 bd 60
xk| = (1p)
21.5 1 x;‘ i8]
and xi ? 0 | i=1l, ..3 - | : (1c)
Formally, then, the dual is’® .

. . 3 / .
minimize g(u) = é0, 187} Ell’ uzj‘ (2a)
sub ject to _

-

i 5 2 v - 1—‘
6 1.5 u, ~— 11 "~ (2b)

7 1 1 |
and ui>/ 0 . i-l, 2. , (2¢)
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To see the economic meaning of this system, it may be
easier to write 1t in the form:
minimize g(u) = 60 u1%~ 18 u, (2a)

subject to )
5 ul—% 2 u, }; 1

6 v+ 1.5 > 1o (2b)!
7 ul-+ 1 u, ;7 1 |
Uy, u?‘z; 0 | (2¢)1

Since the physical quantities 60 and‘18 are nultiplied and
added into one homogeneous sum? Uy and U, have to be some kind of
prices for the resources. What is sought is a set of prices U7,
u2 that will minimize the total value of resources g(u).

In the first inequality of (2b)’ the left-hand side sum is
obvicusly the cost of activily 1 at unit level of operation,.while

the right-hand side is the revenne of the activity at unit level,

given the prices of the outuuts, The inequality stipulates that

activity 1 is not permilted to create any orofit. The same inter-
pretation holds for the other two inequalities of (2b)!,

As for (2c)', the résource prices éfe not permiﬁtedbto be
negative. This is Justified by the assumption of free disposal,
mentioned in 2.2.0.3.

The computational’proceddre for the solution of the dual
differs slightly from that of the sélution of the oprimal. Since,

however, the columns of the matrix in (2b) are nurely fictitious

activities, and their "levels" of operation are the prices of the
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resources, it would be rather confusing to'go through the computations
and try to explain the economics of the simplex method in this case.
Instead, I wiil solve the problem by the graphicél approach. But
first some observations oh the constraints and the objective funétion
of the problém.
The requirement that no' activity shall have its primary re-

source costs smaller than its revenue ensures complete allocations

.of the revenue to the scarce fesources, which islcompatible with

~ traditional theory.

| The~objectivé function can ﬁé looked upon as the total "in-

come" of the resources when fully employed. The economic explanation

of minimiZation of -this funétion proceeds as follows.

The actual quantities of résources employed (given the final
commodity pricgs) depgna on the technology and the resource prices.
Given the technology, a set of high :esourcé prices may be such that
" the resource costs of operating the activities exceed their revenues.
In such a case, no activity will be operated and, of course, no re-
‘sources will be employed. Thé actual income of resource holders will
be zero. The objectivé fﬁnction, howe&er, will‘show a positive value,
The unemployment of resources shows, on-tée other ﬁand, that the va-
lue imputed to resources (by choice of the resource prices) is higher
than the actual contribution ﬁhey can ﬁake to revenue in circumstances
of optimal alloca?ion. If resource holders insist on these prices,

rmiisallocation (i.e.'waste) of resources will occur since the commodity

bundle chosen under these circumstances has zero quantities of all com-
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modities and is obviously not efficient. The economy stays at the
origin of Fig, 2.6 above. It is then seen that a lower set of re-
source prices are neéded if the economy is to move to a more sensible

resource allocation, i,e. to an efficient commodity bundle. When these

prices are tried, it is found that (a) the economy operates on its pro-
duction-possibility frontier (b) the actual returns to resource holders
are equal to the maximum revenue attainable on the frontier and, (c) the

value of the obJjective function is at its minimum, which is also equal

to the maximum revenﬁe attainable (as was already shown in 2,2,1.0).

I now procéed £§ a graphical preéentation of the solution. In
Fig. 2.8, the line AF repreéents all price combinations for which activity
1 breaks even?7 Lines BE and CD rébresent the same things for activities
2 and 3 respéctively. The line labelled g(u) = 18 has a slope of - 60

o 18
and represents all sets of prices Uy, U for which the objective function
2

8 %
achieves the value 18.5 : :

To start, choose the resourde—pfice pair represented by poing G
(ul = 0.165 u, = O.h5). These prices are feasible from the point of

view of the constraints, as can be seen by substituting them into (2b)!

and (2c)!'. Graphically, this is ascertained by the fact that any pair
of Uy, U, on the right of the "frontier" CJF satisfies all three inequal-
ities of (2b)' and, of course, (2c)f.

As can be seen from (2b)!, however, at these prices no activity breaks

even. Hence no activity will be operated, and the full amount of resources

’

available will be unemployed. Resources are "overpriced" and the result

is waste, The "would-be" iricome of the resource-owners is $18, but their
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actual receipts are zero.

4

Obviously, what has been said of the price-pair G can be said

in relation to any price pair lying to the right of the line CJF,

On the other hand, any price-pair on the left of this same line is

infeasible, as it violates at least one constraint. Consider, for
example, point B (ul =0 u, = 0.66): it violates the third constraint
of (2b)!', i.e. makes activity 3 profitable. l

Obviously, what remains are’price combinations on the "frontier!

CJF. Let us therefore consider point C (u =0 =1). At this price

u, = ,
pair the "would-be" returns of resource owners are still $18, Moreover,
activity 3 breaks even, and thus can be operatedzt the maximal possible
level, which is x3:=_é% (60 <:;§)a Resource 1 isvthus fully employed,

together with 60 units of resource 2, Actual receipts of resource owners

7
are 60.0 + 60 . 1 = $60, which is exactly equal to the revenue attainable

7 7 , .
by this program (x =0 x,z20 x =60 x =0 x.=18 - 60). That re-
2 3 7% b > -5
venue, however, is not the maximum possible (60 <<lO 2). The resource

3

prices are such that - glven the commodity prices - the resulting alloca-

tion is not efficient in the "double" sense of section 2.2.1.1 (i.e.,

optimal) despite the fact that it lies on the frontier of the production-

possibiiity area (it does because it employes one resource fully),
To wit, the situation stands as follows: given the technology

and the resource quantities we have a production-possibility frontier,

on which all points are usually efficient59 in the technical sense,

2

Now, given a set of commodity prices (perhaps, reflecting the relative

desirability of commodities) there exist, among the efficient points
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of the frontier, one or more optimal points that maximise revenue.
If we stipulate that no activity in an optimal program shall operate at

a profit or loss, the set of resource prices'compatible with the opti-

-

mal points is unique. This unique set of resource prices is what we
épe trying to find; An& other set of resource prices will produce a
program (a point in the production possibility area) which is either in-
efficientj(like that given by the set of prices G) or it is technically

efficient but not optimal in relationlto the commodity prices.

Let us return to the problem of finding these resource prices. Ob-
Viously, on the line gfu) = 18 we have price sets that give us either
né production at all (all points on line except point C) or some production
which.is not optihal;dMoreover, (and this is in line with our aim of mini-
mizing g(u)) there is aﬁple room for moving the line g(u) parallelly to
the left (i.e. making its value less). In Fig. 2.9, then, let us try the
line g(u) = 12, |

On this line, all érice combinations lying on the segment BK (ex-
cept point K) are not feasible. On the other hahd, all price combinations

on the segment KF (except points K and F) produce a zero-production situa-

tion. What remains are price-sets K and F,

Consider, first, the price-pair K (u, =1 u_ = L) where activ-
| 11w 2 1
ity 3 breaks even. Obviously, we have the same situation as with the price

pair C, except for "would-be" resource income. The latter is $12 at K

(60..1 4+ 184). Activity 3 is operated at the level 60 as at C, with
1 11 a 7
actual resource income of 60.1 (60. 4 =

60 = 60. Activity . i
T 1 Vity revenue 1s

& .
77 7
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again $60.
7

We can then conclude that for all price pairs lying on CJ

(except J)activity 3 will be operated at the level 60, with actual

. . 7
resource employment 60 units of 1 and 60 units of 2, and actual re-
7
source income of $60. The only thing that differs on these points

/

is the value of g(u), which gets smaller as we move from C to J,

Now consider point F (ul = 0.2, ﬁ2 = 0). At this price-pair,
it is activity 1 whichvbreaks even, It will be operated at the maxi-
mum poscible level X = 9 with full employment’of resource 2 and enm-
ployment of 45 units of resouwrce 1. "Would be" resource income is
#12, while actual resource income is 45x0.2 18x0 = $9, equal to the

revenrue of the activity. Incidentally, this price pair (F) is better

than K from the point of view of actual resource revenue.
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Thus, we have not yet reached the maximum revenue, neither

have we reached the minimum g(n), as the latter can be shifted to
the 1éft anﬁ still contain some feasible price-pair. Mofeover, what
we saia about the relationship between price-pair C and all others on
CJ (except J), obviously holds for the relationship betﬁeen price-pair
F and all others on FJ (except J)., That is, for any price-pair on FJ
(excent J) the situation will be as fof price~pair F (i.e., xX= 9
$2:: 0] xat: 0 Xh: 15 xs': O) activity revenue = actual resoﬁrqe
receipts = $9> except for g(u), which will be less.

t remains, then, to shift g(u) to the left, to pass through J.
This has been done in Fig. 2.10. First, it is to be observed that no
olher. price pair on that line is feasible except J. (ul.: 1 u2 - 2).
Total "would-be" returns are 60 x 1 ;_ 18.x.2 - 32. Morébzer, all 3c~
tivities break even! The problem Zmerges asgto whgch acbivities to

operate and at what levels, but we can posztpone it for the next section,

—

For the moment, we can pick activity 1 at level 7 1 and activity 2 at

wi

level 3 1. Their total resource needs are 60 and 18 respectively. Actual

resource income is 60 x 1 4 18 x 2 - 32 equal to the "would-be" income

9 3

and egual to the maximum revenue attainable in the optimal solutions to

O

the primal problem. Ye have found two shadow prices that are compatible

with the technology, the resource availability and the final commodity
1

prices. We have reached the end of a rather long journey.

2,2.2.2 Dual Prices As:Guides to Resource “Allocation

I now take up the "quantity" problem which arose in the previous

section. It will be remembered that at point J of Fig. 7 (ul‘: 1 u =
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all activities bfoke even, so the problem érose of which activities
to use at wﬁich level, in order to achieve the maximum revenue.

First, a word about the fact that, in our example, all three
activities break even, This is really a rather special case, as will
be seen in\the next section, and corresponds to the case of an infinite
number of optimal sdlﬁtions to the primal. The usual case is that, at
the optimizing dual prices, as many activities break even as there are
resources,éo i.e., the optimal solution to the primal is_unidue and
contains only two ac£ivities at non-zero level.

As far as our "quantity" problem is concerned, however, it

would remain if, say, only activities 1 and 3 broke even at point J

( =1 u:g)-
f1=5 =% | |

To illustrate, I will first examine the case for a centrally
pianned economy. The criterion that only those activities which break

even be dperated is not enough.for specification of the levels of the

59

activities, even when the dual resoufce—prices are known to the planning

authority; a separate calculation is needed, with the following procedure:

Find out which activities break even (suppose that they are ac-

tivity 1 and acﬁivity 2) at the given dual prices. In the primal, drop
other activities to get
maximise X + xg (1)
subject to
. . .’A5x1+7x3vé 60
2x1+1x3 < 18 (2)

all
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Drop all those constraints which correspond to resources with dual
: : 61 o
prices equal to zero (in our case,none). Change the inequality

. . 62
signs into equation signs and solve  the system:

5x4+7x 260
l P2

3
. (2)'
2 x+1x - 18 ,
4+l \
to get =71 x =31
175 BT
and maximum revenue Xl + x3 = 10 %

Now examine the case for a perfectly competitive economy with,
three industries, each firm in each industry facing given constant

rices of resources (v, = 1 u, = and of commodities ( =2
1 2 1

9 9

.p? = 3 P3 Z L) and each firm in esch industry facing the same tech-
nology (as represented by the colums of the matrix (2¢) of 2.2.0.2).
Assume, as above, that only activities 1 and 3 break even at the given

3 s v 7
comnodity and resource prices. Thus, only commodities 1 and 2 will be
produced. However, the allocation of resources between the two industries
(let alone among the firms in each industry) is indeterminate. This is
a comron problem when constant-returns-to-scale production functions are

' L . - . e

_assumed. Hence, even in a competitive economy, a planning authority is
needed to dictate the levels of operation of each industry that will make
revenue attain its maximum. The same procedure will have to be followed

as in the case of a centrally planned economy.

2.3 LINEAR PROGRAMMAING: STRUCTURAL RELATIQONSHIPS BETWEEN COMZODITY PRICES,
RESQUHCE QUANTITIES, AND TECHNOLOGY 8%

The example given in section 2.2. was rather special in two respects:
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first, the relationship between technology and factor availability
was such that full employment of both resourcés was possible within
a'relatively great range of cémmodity prices. Second, there were an
infinite number of optimum solutions to the ﬁroblem.

The aim in this section is to show (a) the effect that commod—
| ity prices can have on the optimal soiutioﬁ, given the technology and
' the resource availability, (b) The effect that commodity prices can
have on the number of optimum solutions, (c) The effect that commodity
priées can have on full employment of resdﬁrces in the optimal solution,

"(d) The effect that the relationship between technology and resource

availability can have on the employment of resources, irrespective of

commodity prices. The aPProach in this section will be graphical

only, o S -

2.3.0 "Structural" -Unemployment

This is case (d) of 2.3.. quéider the same technology as in

©2.2.0.2, with different factor availabilities

5 6 7 'Resoﬁrce 1 10
2 1,51 Resource 2 18
and depict these activities in Fig, 2,11:

Resource 2 ‘ : P,

4t

A ;Q
V\NT"‘

Pa
P=

Resource 1
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1 said in 2.2.0,6. that any point on the line abe represents
a combination of activities,-and that there is a family of such lines
actually "covering" the area Py 0 p3 extending to infinity in the NE

66

direction, That- is, every point in this area represents a combina-
tion of activities; and its co-ordinates show totai quantities of re-
sources employed by thé respec£ive combination(s). It follows that
"bundles" of resources lying within this area are Qotentially67 fully
employable, that is, there exists a combination of activities that em-
‘ploys both resources fully.

Now consider the data on resource availability that yield

point a (or, in fact, any point outside the area Py 0 p,); there exist

3

two kinds of combinations of activities that can give this point: (i) a

combination of p, and P, (or‘p] and p3, or p, and p3, or py, P, and p3)

with one activity operated at a negative level, and (ii) a combination of

Mactual" activities (pl, P, Pg) and slack variables, with all "actual"

2
activities operated at non-negative levels and the slack variables operated
L 68
at positive levels,
Combination (i) is, of course, to be rejected, since negative levels

of activities are not admissible. As for combination (ii), the presence in

it of a slack variable at positive level shows that both resource quantities

~ shown by point d cannot be actually fully employed,

The above conclusion is inéensitive to a change in commbdity ﬁfices:
such a change will only alter the shape of the line abc but will never make
it extend outside the area p; O Py It follows that at no set of commodity

-

prices is full employment of resource 2 possible. We can call this case
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one of "structural'" unemployment, as it occurs from the fact that
the set of resource quantities available is not hal anced" with
technology (i.e., it does not fall within the area p; O p3). Or
we can say that resource 2 is a "free commodity", although this seems
to me as too impersonal a terminology (suprose resource 2 were labour?)
The solﬁtion to the primal is, of course, point e, with only
activity 1 operated at the maximum possible level (B), with a maximum
revenue of £8. The solution is unique.
In the dual, the slopé of g(u) changes. FYrom Fig, 2.12‘it
can be seen that the resource-price pair minimizing g(u) is u; = 0.2
u, = 0, with activity 1 ojerated. Hence, we see that when a resource
comes out not fully employed in the final solution its dual price is
Zero (hence the terminolosy “free commodity").
This result of structufal unemployment is rather uncowmon in
standard neoclassical economic theory, where the "well-~behavedness"
of production functions permnils any degree of substitution of resources.
In contrast, the assumption of fixed coefficients in linear programming
permits substitution only in the indirect sense of combinations of ac-
69

tivies, and this only within a certain range.

2.3.1 Comrodity Prices and the Optimal Solution
(Cases a, b, ¢, of 2.3)

Consider the original data of the problem of 2.2 (given in

2.2.0.1) with a.different set of prices:
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Res., 1 | -10 -2/
no2 -4 -6
Comm.,1 1 0]
noo2 0 0
"3 0 1

Then, our "technology per dollar"

10 24

L 6

: -2i~ Eesource 1 available 60

3 o2 ! 18

0 Price of commod. 1 1

1 " " " 2 1

-0 " " 3 I
S

7

1

is as follows:

and in I'ig, 2,13 the optimal solution is point d with resource 2 not

fully employed. This happens despite the fact that the resource avail-

ability point lies within the area p; O p, and is thus potentially em-
1 3

ployable,

In this case, comnodity prices are in such relation to the

technology that they render activities 1 and 2 unacceptable. As can be

seen from the $1 iso-revenue "curve", point C lying on activity 3 is the

only relevant one from the whole triangle, as it yields $1 of revenue by

71

using less resources than any other combination.

So there seems to be one kind of unemployment arising simply

from the strength of demand in relation to technology.

Fig. 2.1 shows the dual to this problem. The dual prices that

minimize g(u) are at F, i.e., uy =

is activity 3, at level 8 4

7

It is thus seen that:

= O.

Q

(a) Different sets of commodity prices yield different optimal

solutions to the same problem ("same" in terms of technology and resource

The only activity operated
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availability).

(b) The number of optimal solutions (one or infiﬁite) depends
on the set of prices.
| (¢) Full employment of rescurces in the optimal solution also
depends on prices of commodities. For full employment of resources
there have to te sétisfied'gyg conditions: first, thc resource qﬁanti—
tles available must be in balance with the existing technology (see

2.3.9) and, second, commodity prices must fall within certain ranges.
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CHAPTER III

LINEAR PROGRAMING MODELS WITH SPACIAL

CONSIDERATIONS

This Chapter is devoted to an examination of the trensporta-

tion model, an interpretstion of its dual and a reexamination of the

primal in the light of a non-linear interregional equilibrium model.
Fxamination of these subjects paves the way to generalizations of
the transportation model in Chaptefiﬂkv
3.0 THE TRANSPORTATION MCODEL

This is a general linear progrémming model with a special
and simpler mathematical structure being the only difference. This
simplef structure allows the use of éblution methods other than the
simplex method. Sinde, however, this thesis is not concerned with
computational problems except in -so far‘they_illustrate economic no-

tions and since these aspects were' taken up in ChapterII, this sec-

tion will be devoted to some special characteristics of this model with

72
reference to space,

3.0.1 Model II :: Total Exports Equal To Imvorts

The problem tackled by this transportation model is part of

a more general problem of interregional equilibrium which will be
examined briefly in the next section. With this generalization in

view I will state the transportation problem in the most general
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terms possible,

Consider a closed economy divided into n regions73 poten-
tially producing and corisuming'nL a single homogeneous commodity,
Production costs may vary from region to region in both marginal
and average terms, There is a maximum‘productive capacity for
each region, which'is fixed during the period of examination., De-
mand conditions may also vary between regions,75 Minimum76 trans-
portation costs per unit of coﬁmoditylfrom region ﬁo region are known
" and constant,

The questions arising in connection with this static partial

equilibrium situation have to do with the possibilities of trade bet-

ween regions, the amounts "exported" and "imported" and the after trade

equilibrium prices in each region. ' For the purposes of this section

assume that we arevgiven part of the solution to this problem as follows:

(aj All regions participate in trade, i,e., either export
or import.77 We may then number the regions so that
those from 1 to m (<: n) are net exporters (later also
called "origins") and those from ;+1 to n are importers
(also called destinations).

- (B) The total amount of exports of each region is given, de-

noted by X, (i =1, 2/...'. i) .

(c) The total imports of each importing region are given,
denoted by Bj (j = m+1, ... n).

(d) Minimum unit transportation costs afe given, denoted

by 5 3¢ (i=1, ...m j= m+l, ... n). The first sub-
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seript refers to the exporting and the
second to the importing region.

The problem that remains in thls case is the guestion of

which origin w1ll ship how much of the commodity to which destina~
tion. The criterion to be used in answering this question is ob-
viously total transportation costs of the system. This is because
comparative advantages of regions due to different conditions of

supply and/or demand have already been taken into account in answer—

ing the question "which region is to export or import how much',
Productive capacities have also been taken into account in connection
with this latter question.

In llnear programﬁlnv form the problem 10, then,

i 7 -
inimize | S = ZZ’ZE- SlJ Xij (3-1)
_ =1 J=myy
n
cub.ect tO X. . X- : j— = l L I m) ( '.2
[=)vivhy §n+l ].J< i ( s 3 )

m .
= X; ; > B_(j=m+l, ... n) (3-3)
i=1 J .

1J>/ O for all i, j | (3-1)
.. and n

Z X = =, 3B, (3-5)

iz 1 p=utal

Condition (3-5) implies that (3-2) and (3-3) are actually

equality constraints., It ié impossible, for example, for any origin
not to ship all its exports Xi’ since this will entail unsatisfied

demand in at least one destination.78 The same remark holds with res-
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"pect to (3-3). Slack variables are obviously not necessary in this
special case.
Thé unknowns in this problem are the individual shipments
Xij' The problem has'm(n-m)‘unknowns and n eguality constraints,
Actually, however, only n - 1 constraints are independent, That is,
if a set of Xﬁj valﬁes satisfies all but one constraint in (3-2) and
(3-3) with an equaliﬁy sign, then it must satisfy that one constraint
also. The reasoning depends on the fact that (3-5) must hold.79 Say,

for example, that a set of xij values satisfies all but the first equa-

tion constraint in (3+2)

;ij - _Xg P
- X : (3-21)
%%y - fn

and all constraints in (3-3):

< s B . '
T %, mel mo+ 1
2 x. . =B (3-31)
i‘%hmﬂ :m+2

1 '

) I

. - B

Zrom T

i
and, of course, the non-negativity conditions.

Adding up all equalities in (3-2) and in (3-3) we get

m n 3 n
ZE: ;i X, = i{ X
122 Jempy 1J iz

= ;Ej Xij = b B, respectively.




And subtraction of the first from the second sum yields

n 411
le :_ Z B. - 2 X’.

jemel J iz2 1

/\/‘B

w1

e
I

and the right-hand side of this last eguation must be equal to Xl*
by (3-5).

In economic'terms} s;nce the above set of Xij values satis-
fies all the demands exactly (i.e., 3-3), it must exhaust all the
available exports Xi’ because total imports egual total exports.

On the other hand, exports from regions 2 to M have been exhausted
(the set of Xij satisf%es 3—&). Hence, Cthe expérts of origin 1
must also be exhausted. .

The abovevrémarks as to the number of effective constraints
serve to indicste tﬁat a basic feasible (and hence the optimal) solu-
tion will contain n-1 variables. This is of use in the interpretation
of the dual, below.

I will not take up the solution of a speéific transportation
problem, since the principle is here'the same as in Chapter 2 (though
a simpler solution methed may be used). It seems worthwhile for the

-

purposes of this thesis, however, to interpret the notion of "activity"

73

in thisﬂkbdel and state and interpret the dwal. To simplify, I will as-

sume three origins and four destinations. The primal is, then

3 S
minimize S = 521 ﬁ%' gid X, . (3-6)
1= 3=, - -

subject to




X, 5 F6 M7 Xo, %5 Xag Xy
-1 -1 -1 -1
S T, [ R |
1 1
1 1
1 1
1 1

, s, 8, s s s, s
1, 15 16 17 24, 25 26 27

xij‘}> 0  for all i, j

and 3 .:r'._' \
= Xe= Bj
i=1 hE

Th

Mh T35 T34 39
-~ +— - T,
x| [
9| |7
-1 -1 -1 -1 b'e X
2L Xg
1l X27é BZJ-
1 | B
EN I
1 Bé
| 1 x3 - B
. 7 7
s s K s - ‘Jj“‘ a
3L 35 36 37
(3-8)
(3-9)

The constraints in (3-7) are accompanied by the activity labels

at the top and the relevant transportation costs at the bottom for expo-

sitional convenience.

Looking down by colymns, origin number one has

four activities available, 14, 15, 16, and 17. Each of them "uses" one

unit of the commodity available at this

origin (hence the minus sign)

. and "produces" the same commodity at each destination, incurring the

transportation cost shown at the bottom.

The same holds with respect to

the other two origins. The solution method will pfgceed by choosing

(3-7)

(n-1) activities each time and calculating their total transportation cost.

Comparison of activities outside the basis with those of the basis will

proceed exactly along the lines of Chapter 2, till an optimal solution is
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reached,

The dual of this problem is as follows:

: 2 7
faximize U = ‘“géLH X5 + E%vj Bj - (3-10)
subject to -
A - 0y 5; Slh
Ve - Uy < = 5
(a)
Ve -y g; S,
v7 - u S; 517:
Vh -, fg_ s2l+ (b) (3-11)
vs - u, g; 25
v,o- o, féy S,
V7 - U.2 < 827__J
v - u s '
4 3 < 34 (c) /
vo-u
5 113 < 535
v, - u3 < 836
v, - u3 g;_ 537~
and v, u, » O  for all i, j . - (3-12)

J

-

. The optimal solution in the primal will include six activities,
and of these six at least one will belong fo_each origin and at least

one will trénsport the commnodity to each destinatiqn (this is because

of (3-5) above). By the symmetry of duality, at least one constraint
from groups (a) (b) (c) will be satisfied with an equality, hence
vy u?, MB will appear without fail. Also, all vj will appear since

at least one shipment will be made to each destination.8o The dual will

then give six equations in seven unknowns, u4; and v, to be determined,
The values to be determined will be the optimal ones.8l The degree of

freedom available in determining these values corresponds to the redun-
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dancy of one constréint in the primal,

In short, the dual does not determine absoluté "yalues" but
only "value" differences which should hold in equilibriﬁm. The econo-
mic meaning~of these "value" differences has intentionally been left
ambiguous in this 'secﬁion. vEconomic interpretation is taken up in sec-
tion 3.0.4.

3.0.2 Model IiI:_Z&i> %Bj

As another variation of the ﬁransportation model consider the
case where 2Xi> 12,5.: this, of course, could not have been given by
v , J .
the more general problem that was briefly referred to in section 3.0.1,

the reason being that _iXi = 52 B must hold if Xi is interpreted as ex-
o ; j
ports and B as imports. Another interpretation is then needed here,

Consider a case where amounts Xi of a homogeneous comrodity are
available in m locations for distribution to (n-k) consumption points,

The consumption requirements of these points are B, (j = ni+1l, ... n) and

J

the unit transportation costs are given. The question is to find a set

of shipments % 5 which will minimize

)} n
sz = 8

i= 1 J=mMrl

(3-1a)

i3 %43
subject to

2. L% Lk (=1, .6 (3-2a0)
3T+

2. % 5 V éj (j=Hm+l, ... n) (3-3a)
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Xij 2} 0 for all i, J (3-4a)

- = s (
and ) B. 3-5a)
=1t % Fm+1l Y -

We can still write (S;Ba) in this form, provided all Sij>’ 0, since in this
case the objective of cost minimization will see to it that no.destination
receives more than it requires. Constraints (3-3a) are thus in fact equal-
ity constraints,

Constraints (3-2a), however, are meaningful ineguality constraints
since (3—5#) holds. We are then in need of slack or disposal activities
which will perform the-task of transferring the excess of %EXE over%?Bj
to a fictitiews destination at zero transportation costs. We need one such
activity for each origin, and the relevant sij,will be zero for such ac-
tivities, though their coefficients will be the same as those of any other
meaningful activity. To simplify the exposition, with three origins and /
three destinations and the slack variables added, the fictitious destina-

tion bearing the number 7, the problem is that of section 3.0.1, equations

(3-6) to (3-9), with él?’ 327 and 537 equal.to zero and B7Vequa; to
q 6 o
B, X ¥y - 2 By ,
- i= 1 =4

It is thus seen that the total amount of the slack is given
before the solution of the problem. This permits equation (3-9) to re-
main after the introduction of the slack variables. Formally, then, a
problem of the form (3-1a) to (3-5a) is transformed to one of the form

(3-1) to (3-=5), the differences being:
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(a) If the problem (3-1la) to (3-5a) has m origins and
(n-%) destinations, the problem (3-1) to (3-5) de-

rived from it has M origins and (n+1 - m) destina-

tions,

(b) While the problem (3-1a) to (3-5a) has f(n-m) unknowns.
mdncmmmﬂhm%vmedm®mdomﬂmsm(n+l—m)m%
knowns and n+1 constraints. However, the Aerived prob-

lem has n meaningful constraints for reasons already noted

'in 3,0,1.
This form of the probleﬁ has not been given as much attention
in the literature as the one in section 3,0.1. Note, however, that this
form leads to generalizations that are quite élose‘to full scale inter-
regional models. The dual of this problem will be interpreted in sec-
tion 3.0k .

3.0.3 The General Economic Problem

In this section the general economic problem whose part can be
82
solved by the transportation model of 3.0.1 is examined, for the case

of two regions; The supply and demand conditibns in thesé‘regions can be

represented in a back-to-back diagram as follows:

P

92 ‘  Fig.%3.1 %



‘tion costs, If Py~ §é>»s?l where py, D
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The supjly and demand functions are here represented by straight lines
for purposes of diagrammatic convenience, The basic argument is not
affected by this simplification. DBoth supply and demand in each region
are functions of pfice.

In Figure 3.1,the pre-trade equilibrium prices in regions 1 and
2 are ;l and 52 respectively. The relevant questiohs‘in this partial

équilibrium situation are: the possibiiity of trade, the direction of

trade, its amount and the after-trade equilibrium prices and quantities.

The possibility and direction of trade obviously‘depend on the
pre~trade price difference in relation to the given constant transporta-
, are pre-trade prices, region 2

3 —‘ . - - - 2-4‘ . . . o
will be an exporter. If p2 p1>> 512 region 1 will be an exporter, 1f
the initial price difference is smaller than the relevant transportation
cost (P - 52 < 857 and ﬁg -5 < §10) no trade will take place.

The amount of trade (the Xﬁ‘and'B. of the transportation problLem)

J
may be said to depend on elasticities of demand and supply in the two re-
gions.
83 .

A solution of this problem  will yield the above as well as the
quantities supplied locally (which are not considered in the transportation
model)., It will also yield equilibrium after-trade prices satisfying the

-

Ifollowing conditions:
Py - p2-: 521 if region 2 exports
and

if region 1 exports

Py = P = 8o




The after-trade equilibrium prices yielded by this problem have the

conventional meaning, since they are defived fron equilibria of supely
and demand, with one diference: transportation costs influence the
price structure in that the price spread between regions in after-trade
equilibrium cannot excééd them. Thus, given one after trade equilibrium
price and the interregional pattern of trade (which region exports to
which) all prices are "frozen" by the fact that they have to satisfy the

e ay s 8
equilibrium conditions above, -

In diagrammatic terms for the case of two reglons, Fig. 3.2 de-

picts the excess curves- e

/\
&
?
ﬂ3

82 Fig, 3.2 Ef

of region 1 (El) and 2 (EZ)’ calculated as S, - D for all priceé
A i

(i-1, 2). P, and ﬁzare the pre-trade equilibrium prices and p3 would
be thé‘iﬁferregional equilibrium price (with region 1 exporting X = 93
-and region 2 importing B? :<§3) if the transportation cost Sl? were zero.
0fi the other hand, if 312>? P, =Py there would be no trade, Finally,
with O<<s312 <: Py - ﬁl say §yp = ab, the after-trade equilibrium prices

B

will be pyp, p2,'with Py, - Py = 5, and X, = 9 o

In his guoted article,P. Samuelson is concerned with a number of
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interesting questions that this thesis will not relate as they do nat
pertain directly to its content. The purpose of this section was

simply to show the context in which the transportation model of 3.0.1

falls as fgrl'as general economic analysis is concerned, to heip in the
interpretation gf the dﬁal to the transportation problem, and to show
the rationale by which extensions and generalizations of the transporta-
tion model have proceeded. These matters will be examined in Chapter 4.

3.0.4 Economic_Interpretations of the Duals to the Transvortation
Models II and III

There are a ﬁumber of interﬁrétations of the dual values u; and
Vj in the transportation model. I consider ail of them important and il-
lumninating and I will take them up in turn.

Qne interpretation 55 o model II relates directlj to the general
problem of 3.0.3: the equilibrium conditions on after-trade prices in
this problem are exactly the same as the éonstraints,(B—ll) with an equal-
ity sign, ‘if u; is interpreted as F.0.B, price at the equrting region i
and v , as delivered price at the importing region j. Since the dual to

J
the transportation model has one degree of freedom, we need one price

given from outside the model to determine the whole equilibrium price
structﬁre. If the price given from outside is taken from the solution
" of the general problem of 3.0.3, the prices derived from the dual will be

identical to those found by the solution of the general problem. The

transportation model II is thus seen to be embedded in the more general
problem of 3,0.3 in the sense that, given the total amounts of exports

and imports, one after-trade equilibrium price and the transportation
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cosfs,“it determines (in the primal) the interregional trade struc-
ture Wwhich minimizes transpor# costs and which is identical to that
yielded by the solution to the general problem,86 and (in the dual)
the interregionaliafter-tfade equilibrium price structure again iden-
tical to that yieldgd by the problem in 3.0.3,

Building up on this interpretation,gq consider a large number
of merchants buying the commodity from the (given) exporting regions
~and selling it té the importing regions. Their revenue would be, in.
total,

R = ;ﬁi ¥. B. (3-13)
Jjrl  JJ

and their cost, again in total,

m moow
CZ 2 u X +2 25

i=1 1 i= Jewmn

. X, . (3-11)

iJ "ij
In the aggregate, then, they will attempt to maximixe:88

T = (52vj Bj - ?ui x) - { ? éij xij,(3-15)

The first part (in parentheses) of (3:15) is the quantity to be maxi-
mized in the dual, subject to the cénditionS'Bf zero profit on all ship-
mentsvaCEPally ma@e (vj - ui :{ Sij)' The second part is the value to

be miﬁimized in the primal ;ubject to its availability and requirenent
Iiconstraints.k It can then be sald that the fictitious merchants attemot to
maximize (3-15) subject to the constraints (3-2) to (3-5) and (3-11),
(3-12). But maximization of (3-15) subject to these constraints is equiva-

lent to separate minimization of (3-1)subject to (3-2) to (3-5), and

. (3 0 8 m .
maximization of (3-10) subject to (3511) and (3-12). 9 The maximum valne -
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of T is zero, by’the fundamental theorem of linear programndng.go
The merchants, that is, end up without even the ﬁormal profits at equili-
brium. This is due to the fact that this is only a partial model, and
the existence of these merchants to force the equ&librium in the compe-
titive economy may be justified by reference to disequilibrium profits
that they would maké.gi |
In another interpre;a’c:ion,92 one can disregard preduction costs
_ and proceed to determine the dual values by arbitrarily setting one
value ui equal to zero and solving for the rést. Values so comnpuhed
should be positive for a direct. economic interpretation and this is
assured by trial and error in setting various ui equal to zero.95
The computed values of ui can be ranked in descending order of magni-
tude, and the interpretation would be thﬁt an origin witﬁ higher uy
than another is better located than the secoﬁd, given the demands and
transportation costs. Proximity to markets (given the demands end the
transportaﬁion costs) is then reflected by the u; . Transportation
costs per unit do not reflect this characteristic because they are one
factqr in determining total.transportation costs, the other being the
interregional éhipﬁents found in the optimal solution of the primal,
&Aen it comes to the vV , however, this aporoach in interpreting
" the dual can only say that they correspond to the most economic distribu-
tion of output from the point of view of tbtal transportation cost,
Lastly, one interpretation relates the dual variables to location

A N . . .
rents, This interpretation abstracts, like the previous one, from pro-

duction and in this sense it removes the transportation model from its
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place as part of the general economic problem of 3.0.3. The glven

amounts oft&; at each location are here to be thought of as given
i

by technology,'e.g., warehovse capacity. The problem is then trans-
formed into the following: A.number M of warehousés having capacity
% (1 =1, .. ) are full - of a commodity to be distributed to a num;
bgr n-m of coﬁsumption locatibns, each having a given requirement Bj
(j=hm+1, .... n). Given the unit transportation costs gij’ the
question is again to find the minimum-transportation-cost pattern of
shioments. In this situation, the commodity available at the m
warehouses may be assuﬁed to have a givenvcost p, same for all loca-
tiég§. The dual constraints can then be written

ij 7/

(3

Calling (u + p) the FOB price of the comniodlty at location i and
i :

| (vj+p) ~(urp) sy (Eln )

m+1, ... nj

(Vj + p) the delivered price at j and assuming one consumption loca~

95

tion and three warehouse locations we have, for the dual constraintsi
¥ - 8
(¥, + p) (o, + p) £ 85
(Ve+p) - (wtp) £ 5 (3-16)
5 2 25

(V‘5+ p) - (u3+ p) < ’335

Assuming szi:-'%Bj, all three constraints will be satisfied
(8
with equality. The solution to this problem, is, of course, trivial.
The delivered orice at the consumption location will be equal to p plus

the highest unit transportation cost. Assuming S];>fsasj7 SBS the de-
.5 &

livered price will be p-¥bl5. But it was also defined as (V_+p). Sub-
: D
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1

stitution of (p-bSlS) for (Vsi-p) in the eguality form of (3-16)

yields
F R CR TR % .
IR T I g (3-17)
U= %15 T s )
and the ui can be directly interpreted as location rents. The ware-
~house manager at iocation 3,'that is, can charge p+u, for his commo-

3

dity, u3 being his rent due to better location of his warehouse rela-

tive to the demand location., His rent is quantitatively equal to the

differcnce between the highest transportation costs (%15) and the trans-
1

portation costs from his own (%35). The warehouse at location 1 can
dispose of its product onlj if it chahges a FOB price equal to p, hence
with u; = 0.

Now assume that Kr X+ X57>B5 but also that X + X_3 < BS,‘so
that all constraints in (3-16) are again satisfied with equality., If we
then introduce a fourth warehouse with capacity‘XL such that

X B - &X_+ %
b < 5 ( 2 3)

and located at the point of consumption (545 = 0) we get
= 8 . - & - '
BT P15 7 Sy 70 g
u =Ts -5 - )
2 1B 2 ) (3-18)
u -8 -8
3 15 35 g
uh - 515 )

The warehouse at location 4, that is, can change p+u, for his commodity,

L

But this will be equal to the delivered price, since
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(v5+ p) - (uh+ p) = 55 Z0 (3-19)

Obviously, then, v_ = uA: the v.'s, that is, are the location rents
J

5

that warehouses would earn if located at the points of consumption,

and there is no conceptual difference between them and the uj. Put

in another way, the location rent v5 is equal to the transportation
cost of the first warehouse, since

v, + = (s, _+ -20
(51>)A(15 p) (3-20)

and is "earned" by the warehouses at a rate discounted by the trans-

I8

portation cost:

u - s -8 v

4 15 L5 5
u3 - sl5 - 335 = v5 - Sgp (3-21)
.1 Z s -8 V. -8

2 15. 25 5 25
?1 bt 315 - 815 -0 |
An explanation of the quantitative restrictions on the Xi
imposed above is in order: X2+ X3<:B5hwas imposed so that warehouse
52 the given

relationships between unit transport costs dictate satisfaction of

1 would remain in the "optimal". solution. If Xéf X > B
3

35 solely from locations 2 and 3, in which case the rents change to

u, = Sp5 = 325 .: 0
| Uy = Sy5 - 535 (3-22)
and. ~u5 - 525

and the first constraint of (3-16) is satisfied with an inequality sign
in the solution (that is, %15 = 0 in the solution of the primal).

Also, if the introduced Xh is greater than the difference Br.minus
. = 2



(Xé + X3), which was sﬁpplied by warehouse 1 before the introduction,
the fourth warehouse will displace waréhduée 1 (and possibly 2 and 3,

but assume this away for the moment) and the structure of rents will

be: :
U, = 525 - 325 -0
u3 P 525 - S35 (3-23)
ub( :_525 ? V5

It is obvious from (3-17) that, given ﬁhe Ki and Bj’ the rent
structure depends on the transportation costs. Also, from (3-17) and
(3-22), given the transportaﬁion'costs,the rent structure derends on
capacity in its relation to demand. Changes in capacity and/or demand
that are large enough will change the rent structure (i.e. the solution
to the problem). The example was given above as regards to changes in
capacity. In a case pertaining to demand, if.Bs is changed to B'B, where
B'5 {; %?¥ Ké’ the rent structure of (3-17) will be chanced to that of
(3-22). |

The above examples, involving only one consumption location, are

obvicusly simplified to such a‘degree that they render the solution to the

transpertsation problem trivial. They do, however, make clear the notion

of duéi prices in terms of location rents. In a more cémplicated examnle
“the relationships between uy, Vj”éjj and capacities and demands would not
be so simple, but the interpretation would carry over directly.

Finaliy, there is the formal “"mathematical" interpretatioﬁ, common

to linear programming problems: u, expresses the change (decrease) in to-
3 g

tal transportation costs that would result if the capacity of origin i

/
7




were to be increased by one unit. Similarly, v, can be interpreted
A J

xactly as-uy and, also, as the increase total in transportation
costs that would result if the requirement Bj increased by one unit,

This interpretati;n is, of course, in "marginal" térms, that is it~

does not necessarily aprly for\a "lump-sum" change. Also, it is con;
ceptually mer'e directly applicable to the problem in 3.0.2 since

changes in capacity or demand would violate equality (3-5) of the problem
in 3.0.1. This may be oné reason why this explanation is not common in
the\literature on the transportation problem.,

Needless to say, all four interpretations are useful. The first
shows the interregional price structure to be determined by the dual,
given one price, The second is of value in explaining locational advan-
tage, though it faces some difficulties in e%plaining the Vj' The fourth
is directly applicable as an investment criterion, as will be seen below.
Finally, the third is to the writer of this. thesis the most satisfactory
one from. the point of view of linking the transportation model to the
general problem of 3.0.3. .. Stevens did not proceed to this linkage,
however, and his concept of giveh cost at eégh warehouse may create some
uneasiness since it is not linked to production, I shail attespt to
bring forth this linkage in the next few paragranhs.

Consider two regions faciﬁg cohstant returns to scale in the
production of one commodity, with the same variable costs per unit (but

not necessarily with the same capacity in production). The back-to-back

diagram in this case would be as in Fig, 3.3.
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¥ %
I LY
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v
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%, . Fig_o 3.3 a,

Region 1 is seen to have an "excess capacity" of ab at the.

pre-trade equilibrium price p. Region 2 is facing a strong demand

N\

in relation to its "capacity" and operates at full capacity at the
price 5?. The situation obviously involves the short-run. The
capacity restrictions need not refer to capital stocky they may be

due to any resource. The excess curves (Si - Dj) are as in Fig,

P

3.4 below.

£S2.

A% £Vg

9. Fig., 3.0, 8,
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The lalelling is meant to show that an excess supply curve is actually
an excess-demand curve at prices below the equilibrium.
Ir S1p = tt the after-trade equilibrium price in region 2

will be

P2 ™R * s

and impo?ts B2 will be equal to Xl. Producers in region 1 will be
charging p in a world of perfect competition, and they will be ex-

" porting £ 1 Their location rent, > Uy will then be egual to zero since
they are the (slncle) farthest sups l%iié/prlgln to destination 2.

On the other hand,

12 "S55 T 810

In other words, Stevens' base price or cost, p, is p in our
example. Thus, Stevens' intérpretaﬁion is compaiible wibh a general
Samuel son-Cournot problem where technology is the same in all regions
wdeﬂﬁﬁiscmmhmtrdmw@tosu&&

Actually, B, Stevens constructs a supply curve at the single
destination which implies a constant base price p irrespective of out-
put, .and his demand curve is,inelastic~witﬁlfespect to price. But he
stops short of interpreting p as the common constant—pe;—unit variable
costs in the general problem. The above explanation is deemed to jus-
tify the assumption of a '"base pfice”, as well as tq make clear the
reason why, in a linear téchnélogy, it is capacity combined with loca-~

tion that makes for the existence of rents (given the demand and trans-

portation costs). - For suppose that capacity in region 2 was not pcbut

pd: u and v, would then be all zero. With the same unit variable costs

i J
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and constant returns to scale, and given the demands and the trans—
portation costs, it is only regional capacity constraints which give
rise to trade, and hence earn rents. When the variable cost condi-
tions are different we cannot aséribe the whole values of uy and vj
to location. In fact, a Stevens approach seems inapplicable, since
the base price is not unique but there is one distinct P for each
_origin which cannot be determlned by the transportatlon model. In this
case, location and scarc1ty rent are mixed 1n ulgé

In fact, even in this last "linkage" case that I have been
describing, things are not.so clear: things were rather "engineered"
so that the pre—trade and after-trade prlce in the exporting region is
the same, This was so because exports of region 1 at prlce p were
smaller than the excess capacity in region 1. Another type of diagram,

equivalent to Fig. 3.4 may help (Fig, 5).

1% S,

S;z

9,

Sz

Fig. 3.5




In Fig, 3.5, the axes of region 1 have been displaced upwards

by 810 to show that exports frgm region 1 to 2 will cost the vrice
charged at regionyl plus transport cost. When trade opens there is a
meaningful price spread ﬁp ~ p. Region 1 exports and 2 imports till this
spread vanishes. TMEh%wamvmarmepﬁceﬁfﬂﬂstepg(%Umﬂy5+
S, 9 due to axis transposition). Imports to region 2 (BQ) are ab, ex-
ports from 1 are a'b' and ab = a'b! = Xl in Fig. 3.4.

The special characteristic in these figures is that exports of
region 1 bring forth interregional price equilibrium before the excess
capacity in the regionvis‘exhausted. If we consider Fig. 3.4, however
(the difference is made by changing the capacity in 1, but could also have
been brought about Qy reducing transport costs or by increasing demand}

things are not as clear as in Fig. 3.5

o

v —
Sa.

P

O |-
~
0:—__

r

N Fig. 3.6
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Producers in region 1 change pl for their putput in inter-

regional equilibrium which is higher than p. We still have, of course,

but.thé felationship éf Stevens'! base price to production costs is somehow
lést: something has interfered, and I would hazard that it is relative
scarcity of totai capecity in relation to demand :3 the total rent
.512-: 52—5 wﬁich was earned by location 2 in Figs., 3.4 and 3.5 is now
increased 0 5124-5‘;;<and location 1 is also earning p; -'ﬁ. This

analysis camot be done through linear programming, however, as will be

seen 'in section 4.0,




CIAPTHER IV

SOME GENERALIZATIONS OF THE TRANSPORTATION MODEL (111)

In this Chapter I will attempt a presentation of two models
by A, Hurter.97 The first is a generalizétion of the transportation
modél in 3.02 to include production costs. The secbnd is a full-
fledged multi—commodity multi-region model utilizing techniques of
general activity analysis, This chapter also includes an "inter-
mediate” model (V) designed as a smooth step to Hurter's general
model, |

4.0 Model IV: Minimization of Production plus
Transportation Uosts

The applicability of the transportation model in 3.0.1 to
guestions of general interregional equilibrium is obviously limited by
the assumptions of given suprlies and demands. Such a model cannot
consider questions of spat;al allocation of production and the effects
of transportation costs on such allocation., Moreover, it is a one-

" cormodity model and in this sense it is partial. Sections3.0.2 - 3.0.4

point towards generalidations of the transportation model to relax the

aséumption of given supslies at the origins. This is what the model of
this section amounts to.

Consider, first, the model in 3.0,2 (III): one obvious "generaliza-
tion" would be to drop the distinction between "origin" and "destination"

regions and assign a supply and a demand at every region. 4As long as
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capacity in regi_oﬁ i is not greater or equal to demand in region i for
all i, there would Vexi'st deficit regions where X5 - Bi<O, and surplus
regions where Xi - Bi> 0. Xy obviqusly dpes not represent, total ex-
ports of region i, neither does B. represent total imports. Rather, when

J

Xj- B <o, thié nunber represents vthe rtetod imports of region i, When
Xi," éi‘y'o, this puéLer represents thé upper limit to exports (since
2 Xi‘:7 érBi the aétual exports of a surplus region can be less than
ST U =

The conditigh‘thét Xi_- Bi‘<:0 for some regions is necessary
for the problem not to be trivial: if X,» B, for all i and si; = O
‘fhe solution is 6bviously'that each région sﬁpplies its own demand and
total transpoftaﬁion cost is zero.gs’ For the possibility of trade to
exist in tﬁis schéme,'then, the above cordition must hold.

Actually, giveﬁ the assumption that intraregional transporta-

tion costs are zero (sii = 0), the above excursion is not really a generali-

zation: for consider the possibilities for v regions;

X; - B, > o0 izl T.....m % |
XJ._-BJ.<‘G 3 Tm, reee m g (4-1)
Xy -Bx = 0 kZn+1....v )

each region must fall into one of these three categories, and the number-
ing was made with these categories in mind. Now define
EiEXi—Bi i:l’ o-o'm

)
) (4-2)
)

m+ 1, ... n

"t
it

I B: - X« j

J J J

The above "generalization" is then shown to be trivial, in the sensc
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that it introduces no new elements into the problem: since regions m+1

to v do not participate in trade, and since s;3 = O the problem is still

™M
Minimize :? i% Sii X (4-3)
L= Jeun J 1J

subject to n :

z Xe o é ‘El (l = l, . M) (l;—l;.)
et J
n .
z %5 2 Ij (j=m+l, ... n) (4-5)
iz A

_ Xy o Oforalli,j O (4-6)

and beJ_}f Ij ) (4=7)

and this is identical to the problem in 3.0.2 eq. (3-la) to (3-5a) .
This was intuitively obvious, given the assumptions,

A meaningful éenefalization is seen to involve production costs
at each region. If the objective is defined as minimizatioﬁ of thé sum
of production and transportation costs we cannot be sure that a surplus
region will not import. For suppose thai.&i - Bi>> 0 and that clf7 c,*
So1 wﬁg?e o is the constant unit cost of pfoduction in region i; it is
then quite possible that the region may import in the final solution
(depending oﬁ the total surplus on the other regions and on the structure

of transportation costs). Thus, we cannot maintain the definitions (4=2)

any longer. Instead, the problem is,

v v
Minimize 2 Z  e,. x;: (4-8)
=1 3 14 | |
sub ject to o
v .
j2=l x5 L LoGEL, L R (S
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v ,
X. . >7 B (=1, .. v) (4-10)
- 371 iy J
xij'2> 0 for all i, j | (4-11)
v v
and  Z X, > Z B, , (4-12)
t=] 4 J=1 J
where:
cij = ci+-sij the sum of unit production cost in region i
and the unit transportation cost from region 1 to
- region j
£ = the maximum productive capacity in region i
Bj = the given demand in region j

In mathematical terms, the model (4-8) to (4-12) is seen to
be the transportation model III eys. (3-la) to (3-5a) with trans.
portation costs egual to cij' Theveconomic interpretation chanées /
considerably, however: the mode](4-8) to (4-12) incorporates produc—

tion as well as transportation. The choice involved here is the com~

bined one of where to produce and where to ship the commodity, and is

to be made with the objective.of minimization of total production and
transportation costs,

“mThat the implications of this model differ from those of 3.0.2
can be seen from an interpretation of the dual in the simple example -

which follows.99

'Consider 2 regions with the following supply and demand rela-
tions:
(4-13)
(4-14)

D. - -
1 100 hpl

(=]
11

N

o
A
e
ZANI/AN
8 &

o
N
<

120 - 6p,
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sl:gfloo P> 5 (4-15)
Sl = 0 p <L 5
5,< 150 p >15 (4-16)
B, = 0 o p <15
512 =5 S, = 1 (4-17)

_Where Dy, Si’ Py represents demand, supply and price in region i and

'Sij the cost of transportation from i to j. The supply functions in

this exarmple exhibit constant returns to scale in production, with
capacity limits 100 and 150 units for regions 1 and 2 respectively.
The pre-trade prices are (Sﬁt Fig. 4 below)

=5 p, = 15 - (4-18)
with D =%l
‘Since ﬁl—§2<<321 and 52” §l>>812 region 1 will be an exporter

= 80 and Dy = 5, = 30. (h—i9)

and region 2 an importer. The excess supply functions in the two re-

gions are: (see Fig. 4.2, below)

B8 =100 - (100 - 4p)) = el p, 75 (4-20)
ED, =120 - 6P2 - | - p2<§15 (4~21)
since, at after-trade equilibrium, we have
ESl = ED2 and Py = Py = 895 (4-22)
equating (4-20) to (4-21) and using (4-22) we find
pl = 9 p2 = lll'
=z = 36 -
E& D, =36 | (4-23)

[
It

0

5

100 52
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Graphical representations of the pre-trade and after-trade
solutions are shown in Figs. 4.1 and 4.2.

Consider oW the linear programming model (4-8) to (4-12):

the relevant data must be,

Dl = 64 D2 = 36
cl = 5 c2 ; 15
si2 =5 5, = 1 (4-21,)

zl = 100 Xy = 150

‘Note that the aflter-trade equilibriﬁm quantities demanded are taken
ffom (4-23). The rest is original data. Thus, the model (4-8) to
(4-12) is going to determine total regional exports by itself, and
not require them as data, as was the case in 3.0.1. Also, it differs
fromthe model of section 3.0.2 in that the latter chooses the inter-
regional shipments X 3 which minimize total transportalion costs only.
What enables us £oigeneralize from the model of 3.0.2 to the

model (4-8) to (4-12) is obviously the assumption of constant returns to

scale, coupled with an implicit assumption of perfectly elastic factor
supplies at given factor prices in each reéion. These pwo assumptions
‘meke for the specific shape of the supply functions in Fig. 4.1. The
concept of a maximum capacity can then be associated with an upper

chysical limit to the supply of one of the factors. More on this point

will be said in relation to the full-fledged model.
Given the data in (4-24) the (trivial in this case) problem is
[t o = 5
Minimize C = 5 xll+-lO x124— 16 Xyp ¥ 15 x50 (4,-25)

Subject to
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“X11 X2

X1 X

1+ Xy
Ko T Xy

3 T %3

4y O

-~x93 = ~150
= 61,
= 36
~ 150
for all i, J
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( [,{,— 26 )

(4-27)

where a fictitious destination 3 has been added to convert inequali-

ties to egualities, as in 3.0.2.

L
X1 T Ok

X =36 X, =

0

foo
and (4-28) enumerates basic variables only, ®

Xog

The optimal solution is

= 150  (4-22)

The minimun value of

C is 680. The model is thus seen to choose not the interregional

shipments Xij which satisfy the demands at minimum total transpor-

tation cost (if it was to do this it wouid‘yield Xy7 = 6l Xon = 36,

Xpq = 36,

x23 = llh)>but the interregidnal shipments which satisfy

the demands at minimum total production plus transportation cost.

the process, it determines importing and exporting regions, too,

The dual to this problem is:

- Haximize 6Ly)+ 36v,+ 1507 5+ - 1008 - 150u,

. Subject to

vy - Uy 5: 5
V)=, :{ 16
Vo - Uy £ 10
vy - u, f{ 15
Vy - Uy £ 0
v3 - Uy f{ 0

(a)
(b)
(c)
(@)
(o)
(1)

(4

0)

(4-29)

In




and Vs Uy 27,0 , (4-31)

Since the optimal solution to the primal involves le,'le,

*os and a3 constraints (a), (c), (d) and (f) will be satisfied with

an equality in the dual. We have:

vl - ul = 5
v - =10 -32
s Y (4-32)
vy - u2 = 15
v —-u =0
3 2

and since the fictitious destination 3 does not have any actual demand

0 and obtain

at all, we set vy

= - - - 1E = ()~
uy 5 u, 0 u = 10 u, = 15 us 0 (4,-33)

with the objective function of the dual attaining the value 680, as
expected.
One dirsct interpretation of the uy values is the fourth of-

given the

fered in section 3.0.4, namely: uj= 5 >0 = u, shows that, g

2

technology, the structure of transportation costs and the demand, re-

gion 1 satisfies that demand most eccnomically from the point of view

of total production and transportation costs. It should thus be con-
sidered first when additions to capacity (due to increased demand) are
considered. To see this, consider a shift in the demand of regicn 2,

shifting the curve EEZ in Fig. 4.2 to the rizht so that it does not

interseét E l: this will mean that production in region 2 will have to
start to satisfy some of the region's demand at P, = 15 per unit. But
if the capacity of region 1 had increased, production in region 2 would

not be required., Total system costs would increase by 10 per unit (5 for
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production+5 for transportation) and this would represent a saving
of 5 per unit, which is equal to u, . Be it noted again that this in-

terpretation is in the "marginal" sense. Moreover, the values of u;
p & P 4

depend on .( among other factors) the technology available in each re-
‘gibn'és given by the production costs. Their use as indicators for

investment is then strictly dependent on the requirement that invest-

ment will change only the capécity but not the unit costs. Obviously,

if we could invest in region 2 and créate capacity to produce at

éosts lower than 15 per.unit, say 9 per unit, the ranking of regiohs

according to the uy found would not be helpful in telling us whether

" this investment is to be considered desirable. But then, this dif-

-ficulty can be overcome by resolving the problem as if this invest-

mént had been done and comparing the_first to the second situation from
the point of view ;} total system cqsts. On the other hand, u; = O means
that, given tﬁe data, investment in fggion 2 ﬁili not help in reducing

system costs,

When it comes to the vj, this interpretation can only refer

to them as the delivered prices'o' in regionsl and 2. - Given the general

. problem (4-13) to (4-23), this creates some doubt: price differentials
are as they should be, that is

Vo T V1 TPy TP TS,

but ’chelv'j are different from the p_ by one unit. This needs some el-
‘aboration,'®2

The médel‘(A—IB) to (4-17) differs from the linear programming
.fofmulation (4-25) to (4-27) in only one essential respect - the treat-

ment of demand. The first, more general, model treats demand as variable

with price and determines the equilibrium quantities demanded, while the
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linear programming model needs these eguilibrium quantities as data
and considers them as given and constant irrespective of prices.

- In diagrammatic terms, the linear programming model considers Fig,

4.3 instead of Fig, 4.1 and satisfies demands by using activites
(at feasible levels) that involve the lowest total system costs. De-

mands are then considered independent of price and this makes for the

discrepancy between the vj and pj.
& | P’
p'\_ Sl
[ D,
Q‘Z_ . o q|
Big., 4.3

Since, however, the price-differentials yielded by the linear

programming model .are consistent with those of the more general problam,

and since equations (4-32) have one degree of freedom, we may consider

setting one vj equal to its respective p'j and recalculate vj and U, 2

2 3

and Vis V5 can now be directly interpreted as the delivered pricesvin re-~

vl=pl=9yieldsv2:l/.|. ul=h u, =1 v =-1

gions 1 and 2. The objective function of the dual retains the same
maximum value, and the u; seem to me to have an interpretation as the

excesses over cost assigned to the scarce capacities. Producers in
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region 1, that is, receive an additional 4 pér unit of the commodity
at equilibrium due to relatively scarce capacities. Consider the
case of Figs. 3.3-3.5 of chapter 3, section. 3.0.4: there, dl would
be zero and uz)rO with the same interpretation.‘

Tﬁe meaning of v_ in this interpretation is not clear, how-
ever. I was not able to pursue this further and I submit it as it
stands. | |

The problém of delivered frices raised above has some interest-
ing implications when one comes to the questidn of applicability>of
the linear prqgramming model. For suppose we have gobd reasons to
believe that for a certain commodity,

(a) there are numerous producers in each region,

(b) the productioh—qost behaviour is close to that

depicted by infinitely elastic suﬁbly curves, and
(c) transportation costs per unit are constant.

Application of the simple linear programming model of this

chapter might then be tried and demands would logically be the observed

quantities demanded during the period under consideration. But if the

‘actual situation in the economy is close to that depicted by Fig. 4.1,

the linear pfogramming model would not be able to yield the actual

comnodity prices unless one of them were given from outside. To the

extent that demands are dependent on price, that is, the cdmputed prices

will differ from those observed., All this apart’ from other discrepan-

cies that might arise because (a), (b) and (c)




106

may not be good representations of the situation.

What is rather unfortunate in this connection is the fact
that possible discrepancies of the computed values from the observed
ones cannot be aésigned uneguivocally to each diécrepancy of the
model from the actual situation. Thus, a difference between computed
andlobserved price differentials may be due to non—constant transport
costs, but also to non-competitive elements. I shall return to this
subject in the last chapter, |
4.1 A GENERAL MULTI-REGION MULT?—COMMODITY MODEL

oy
L.1.1 Generalizing .- Model. IV

One major handicap of the model of section 4.0 from the
point of view of general equilibriﬁm énalysis is,of course, that it
deals with oné commodity only. Thus it may be used in studies of one
particular commodity market of ; multiregional economy, One "extension!
‘of‘this model that comes to mind is to use one such model for each final
commudity; This “extensibn" does not make the model more general, how-
ever, for the following reasons.

The implicit éssumption about given production costs c; in re-
gion i of thé model of 4.0 was indeed that all other industries in the
economy were at equilibrium. Thus, our one-commodity producing industry
was facing givencprices for all its inputs and this fact, together with
constant returns to scéle in its production, yielded the special form of
the supply curve of the previous section. The sources of supnly of in-
puts were chosen to minimize input costs, If we "extend" the model to com-

prise more com:odities, we still need the unit costs of production of each




com odity in each region as a parameter of the model. ifut cur assump-

tion of eguilibrium in the rest of the ccoomy now becomes untenable,
since we are . in fact to find this equilibrium from the solution to

our model. 1f this assumption is dropped, then the priccs and sourcces

of inpuls of each industry ere to be determined frowm the selution of
the model, and they will in turn determine the costs of nroduction.

2 i d
We are in a vicious circle, that is: we cannot start solving the orob-

lem without the unit costs of production, but we must solve it first

if we are to find these costs. To show what the nroblem exactly amounts

to I will first construct a highly hypothetical situation that avoids
this impasse, and then proceed to drop the simplifying assumptions,
) R . . o3z . ] e
Pae i AL B a . - . L S - 1330 4 <l sy AU L il 4L
Consider a world with two primary factors and no intermediate
soods needed in vroduction. Each region has a pon:l of these factors

04

. : . 1 . . . .
available to 1its own two industriesz for use in the nroduction of
final roods. The primery factors, that is, are non-transportable bet-

ween regions. The supply of these factors is perfectly elastic al a

given price for each, with an upper quantity limit imposed by availabil-

ity. ©Bach industry uses these factors in fixed guantitative rztios to

s

produce its single output (no joint production, one tochnique) and all

D

industries enjoy constant returns to scale.
In this highly simplified situaticn,the unit coste ol nroduc-
tion in each industry are given when the unit prices of the primary

factors are given, The general formula would be:

.Cs — . ' ..
Ji - jbtli jpl + v 23 de

where j 1 = unit cost of production of commodity i (by industry i)

in region j,
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ﬁb'ki = unit physical requirement of resource k
(k= 1, 2, 7) for the production of com-
modity i in region j, and

jpk - unit price of resource k in region j.

Differences in production costs between industries of the same
region j would then afise because of differences in jb'ki. Differ-
ences in costs between the same industry; in different regions
would arise because of differences in both jb' . and iPk.

Now drop the assumption of non-existence of intermediate
commodities and concentrate 4n one. region assuming it as closed. Its
technology, resource\availability and demand for final use dve given

by (4-34), (4-35), and (4-36):

a1 2y, By |
(41-34) - (4-35)

P11 bpp B

by byl R,

— —

In‘(A—Bh),aik denotes the quantity of commodity i needed as inter-
mediate input in the production of one unit of commodity k, by
derotes the quantity of redource i needed as input in the produc-

‘tion of one unit of commodity k, R, represents the quantity of re-
. i

source i available,and B is the demand for commodity i for final use
(consumption, etc.).

In equilibrium, the following relation must hold (where Ii



is "intermediate" denand for the product of industry i):

KoL (2, (130
that 1is Xi - Ii T By (i1, 2) (1,-38)

But I, = a5 % + a2y X, and by substitution,

%, - ;{ e X 7B (i =1, 2) (4-39)

This will ve recognlzed as an input-output system. Uiven the' vector
final demand (4-36) one may seek to find the required gross (in-
cluding intermediate uses) outpuls of l_;he. industries that satisfy +~

demand., The solution is unique, since there is only one way of nro-

ducing each comrodity, This absence of choice makes rossible the "ebling

\ ).)
e

9

out" of intermediate com:odities by the following nrocedure: grsher (-

can be writlben:

1-a., - a * ' B
2
11 . 1 = 1 (1.-1,0)

fow
A

-3 l-a,. %
21 ! 22 y? 2
that is (presup osing that the system is sclubl e)
~ -1

oo

4 =2y =7, . =

{ | = - l-a
A " 22

ey

(1,-41)

N

or,

o 21 1 o2 o

Where B, are the elcments of the inverse matrix of (4=11). One unit

N

of comrodity 1 for [inal use is then seen to regquire %94 mits of mross
output of sector 1, aad 1‘791 of outiut of Sector 2. With tecinolosies

unchanged these requirements do net change. But one unit of pross ovtput
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of industry i requires b,, units of the first resource. Thus, the

1i

direct and indirect resource requirements for one unit of final com-

modity 1 are}

b E_+ b _E =b' (4
11 11 12 21 - 11 (4-43)
and similarly for the other commodity, ’
- =b', (L=44)
b_.E + b, E -
11 12 12 22
and for the other resource,
b21 11 22 21 o A
= -
by Bitb E = b (4-45)

22 22 B T 22
Since the bik'and Eik depend only on technology which is assumed
unchanging, we can "net out" inteérmediate commodities from ,4-34 and
write,
b! b!

b! b
21 22

the b';k:irx@rué)representing the direct and indirect resource needs
i .

of industry k from resource i .in order that the industry producé one

unit of final output; This last technology matrix is of the same

form as that'used in the ‘example of section 2,2,0.1. It is thus seen

that assuming ‘away intermediate commodities in that case did not really

cause any problem presupposing that we interpret the b"k correctly.log
_ . i

It camnot be overemphasised that "netting out" of intermediate

comodities was possible because of the basic assumption that there ex-

ists only one activity for the production of each commodity. If more than



one activity exists for the same comrodity, the solution to the proi-

lem (4-39) to (4-42) involves cheice, even with a siven [linal demand

. 1 . 4
vector. This means that we cannot follow the above 'netting” procedure

from the bmﬁinﬂingj intermediate comrodities will have to be kept in the

&y

problem throughout., Since intermediate covrodities require primary fac-

tors for their production, an aprropriate optimizing criterion will
sure that no waste takes plaée3 Fore on this last point will he said
below.

The above example of '"netting out" the intermediate commodi-

ties was done, it should be noted, Ly concentrating in one region

and assuming it closed., Hence, given the other assumptions, there
wiss no cholce involved in satisfying the final demand of the region,
When this intermediate assumption of closedness is dropped, however,
'and the possibility of transportation o cbmmodltLes (intermediate
and final, but not primary) is recognised to be possible al a trans-

portation cost Sij’ there arc obviously more than one ways of satisfy-

ing final demand in a region. Hence, intermediate gocds must be Rept
in the model. Since they require srimary factors for their produc-’
tion, the logical step is to consider priméry factor costs as the only
cests of production for the system. Intermediate commodities, that
is, are not "netted out" from the begimning but during the choice rro-

cess according to the criterion of minimizing costs. This means tha
the bik of (4-34) will be used, not the bt.) of (4~46) and the tech-
nology will be in the form of (4-34).

For three regions, two commodities and Lwo primary factors
i) 3 i 2




we have, for region 1,
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The subseripts on the left refer to the region and imply Lhe possibil-

ity of different techinclogy, resource availability and demand per Yo
gion. Transportation (minimum) unit costs of comaodity k frow region i

to region j

]

region 1 is

311 3257

are denoted by 435, and the price of primary factor r in
13k

denoted by | e,

13%1 11%2
23%1 2152

3391 3152

i Yoth are given:

12°2 137 191 291 3%
2% 23%2)(h-50)  [1%2 2% 3%
3252 33%2

The objective is the satisfaction of finel demand in all reglons ab wini-




mun total producticon plus transportation cost.

Hach region 1 still has one actuval activity Lo prodice com
f=) ’ wd i
modity k, namely,

/’ . .
“Y.a .8 b b =1, 2 k=1, 2;
R E 1k i 2k i 1k i ij ] b b 3 > 2

with transportation to other regions now possible, however, the unit

costs assoclated with each activity change with the destination of
its output because of different transportation coshks, For exarple,

for activity 2 in regioh 1 we find that the total unit costs are

EblénjoiYﬁb2é]&eé}+sll if the product is mede available in

the sane region that it was produced. If the commodity is transperted

to region 2 costs become Ilbl;][leﬂ'k[le;}[le;yh §,5s and similarly for

transportelion to region 3. It is thus found that activity 2 of resion

1 has to be made into three separate activities according to destina-

~tion of its output. e can then write:

-1 ] - r”la]_:z# ' r:]_al,?’ (1)
1% 1% 1% (2)
12 P12 “1P12 | (2)
1595 =Py, | -lbzz | (114,_'52) ()
0 | 1 0 a (5) \
o |- lo RO (6)
_11X2 12 1352 (7)

o pal)e el o
[ble + nS2 [bea)l ) +reSa [ b Lol 352

The symbol X in the seventh row is to be interpreted as the level
ij k
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of activity producing commodity k in region i and making it available
in region j. Row (8) lists the unit costs associated with each activity.

Row (1) represents the inputs of commodity 1 required for a unit of

production of commodity 2 in region 1. Row (2) lists the unit of com-
modity 2 made available in region 1 (the unity in the second row and

first column) minus what is needed of same for its production 139?).

Rows (3) (4) are obvious. Row (5) represents cormnodity 2 produced in

region 1 and made avéilable in region 2, Row (6) represents commodity

2 produced in regioh 1 and made available in region 3.

The locutioﬁ "made available in region ...." does not specify
the use of £he commodity in the receiving region. The commodity may
be used as:;an intermediate input and/or as final output to satisfy
‘the demand in that region. Thus, trade is made up of both intermediate
and final commodities.. |

That there is more thén one way o} satisfying final demand in
each region is now seen by the fact that, e.g., region 2 has at least
threé obvious ways of sgtisfying its demand for commodity 2. Yne choice

is to produce it itself (using the technology of the second column of

(4-470), with the associated costs), another to import it from region 1
- (using the second column of (4-52)) and another to import it from region

3. Actually, the problem of choice is more complicated than that, since

each of the above choices involves other choices about the sources of
intermediate inputs to be used in each activity,
106
L.1,2 Model V

The discussion in the previous section points towards a number



of generalizations of the transportation model of section 4.0 one of

which proceeds as follows:

Suppose that the primary factors in the various regions are

relatively abundant in relation to regional demand. Thus they do not
constrain the levelé of activities in each region., Their supnrly is
still perfectly elastic at a given pri;e,howevér (this is somewhat
awkward under competit@ve conditions: see section 4.2.3). On the

other hand, there is a maximum capacity in each industry of each

region, associated with its fixed capital stock.

Since primafy(faétors do not constitute constraints any
more, the technology of each region (for three regions, two commo-
dities, and two primary factors;)lo7 changes from that of (4-47) to
(A—A§) of the previous section, to the one below,

For region i (i =1, 2, 3)

r— : - ¢

-1 0
A
0 -1 i1l
A
|-.a .-~.a i2
taiaz b1 -53)
_—iagf_i822 _ . il
b pra— ‘B
i2

Where the -1 in the first row and column of the 2x2 matrix indicates

that to produce commodity 1 in region i one unit of capacity iAl is

needed; similarly for the second row. The rest have already been ex-

plained,
Distinguishing activities by destination of output we write,

for region 1
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s
¥

-1 -1 -1 0 0 0
0 0 0 -1 -1 -1
%1 %1 m1%11 P12 1?12 139 50)
_1321> —]_a,21 —1%21 1_1322 ela22 _la22 _____
0 1 0 0 o 0
o o 1 o 0 0
0 0 0 0 1 0
o 0 | 0 b 0 o

n* 15 13X1 1 1% 15k
with the eXplanation.of rows as follows:
(1) Capacity of industry 1
(2) Capacitj of industry 2
(3) Commodity 1 (see eﬁpienatioh ofleespective‘item in (4-52))
(4) Commodity_/2, same explanation as in (3)
(5)»Commodity 1 produced in fegion 1 ahd transperted‘to region 2

(6) Same as above, for transportation te region 3

.(7) Same as in (5), for commodity 2

(8) Same as inw(é), for cemmoditj 2
The primary factor and transportation costs‘associated with each ac-
tivity are as in (4-52) of the previous section. As for the tech-

nological matrices of'the two other regions they are similar to (4-5.).

The primal and>the dudl are presented in tabular form in Table 1.
Each column of Table 1 represents one activity that is to be
interpreted as the activities in L-54. At the bottom of each column

is the symbol representing the level of each activity. At the top of
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each column are tﬁé costs associated with unit level operation of each
activity. For example column se&en represents the activity which pro-
duces commodity 1 in region 2 and transports it to region 1 (21Xl). At
the top of the column are the unit costs of this activity. Witﬁin the
column, since thisiactivity.fequires one unit of capacity for commodity
1 in region 2 (gAl), we find -1 in the respective row. The activity
yields one unit of commodity 1 in region 1 (available for final demand
lBl or for intermeﬁiate us;hin region 1) and a +1 is found in the res-
pective row, The unit requirements of the actifity for intermediate in-
puts 1 and Z'ane drawn from the respective pools in region 2 and are
shown in the apbrgpriate rows.

The extreme right column lists the capacities of the regions and
the final demands to be satisfied. The ﬁegative signs in capacities
and in the.respective fequirements of the.activities carry the same mean-
ing as in the transportation-model, wiéh tge direction of inequality
reversed. This will also be.seen below, in the formal presentation of
the model. |

~The primal can;bé read éff Table 1 in the following way: Let
X be the co;wnﬁ vector of 1% (at the bottom of the Table), A the
12 x 18 matrix (which constitutes the main body of the table), € the
row vector with_elem@nts'thg costs of each activity (at the top of the
table) and B the column vector of capacities and final demand require-
ments (at the extreme right—hand side of the Table) . The problem is,

then,
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' Minimize C X (h-55a)
subject to A X 2 B (4-56a, L4-57a)
and X > 0

or, in formal notation

332 , 23319
inimize 3 S [:.x 225 [ B aln
mmmze £ ‘?% Easkj i3 g*i Z Jf [;er][ibrk_]EJ -55)
subject to 3 _
| Z AR TR =123 1,2) (4-56)
J
dia 52 %7 Fn (n = 1,2 (4-57)
ipm - a - h} pmm=1, L~
i k j [p m;] KPJ x) 7 p=1.2,3)
and 13 k :;, for all i, #),-58)

where i, Jj, p, stand for regions and vary frém 1 to 3,
r stands for resources and varies from 1 to 2,
Ak, m stand for commodities and vary from 1 to 2,

The linear forms (4-55a) and (4-55) are identical, stating
the total transportation and primary factor cpsts that are to be mini-
mized. Inequalify (4—56).sta§es that, for each region and commodity,
the levels of the three activities associated wi£h one specific com-
modi ty should not be greater (in absolute value) than the (absolute
value of) the productlve capac1ty avallable in the region. For ex-
ample, for region 3(i=3) and commodity 2(k=2) (4-56) reads (multip-
lied by -1)

s¥atafy vk, 0 gy

This can be read off Table 1 by .multiplying the sixth row of the matrix
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" by the vector X .and setting this greater than the capacity listed

at the extreme right:
k. - X - X - - A
3 % TR, . M
Inequality (4~57) will be explained in parts: fﬁixm_represents the
i

pool of commodity m made available in region p for intermediate and

final use, For commédity 2 and region 3 this reads
3X2+ 23352 33X2 o
z f E’mk] [ x_] s, On the other hand represents the total
k

. heeds of the activities of region p for commodity m as an intermed-

iate. For the same region and commodity as above this reads

3321 [31*1*32*1 MET SIS [31’52 + 3%y + 338, |
Inequality'(e:57) then says that the pool of comnodity 2 made avail-
able in region 3 miﬁus‘the amoﬁnt ﬁsed uphin broduction of all comno-
dities should be greater or equel to the final demand for that commo-~
. dity in the region. | | |

.vaiousiy, tﬁeredafe”2§3Jrestrictions on eapacities (the first
six rows of the mafrix.in Table 1) and .2x3 restrictions on final demand
(the last six.rowe of the table) each referring to one commodity and one
region. Inequality (4-58) is sei%—explaﬂaiory.'

The optimal solution to this model willidetermine the regional
output of each commodity i ik (1 = 1,2,3, k = 1,2), the interregional
commodi ty movements ij¥k (i = 1,2,3 3=1,2,3, i#j, k=1,2) and the local

production ;% (1=J) that will satisfy the regional demands {B, at the
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minimum total trahsportation and pfimary factor costs, given the re-
gional constraints of capacity. For a solution to exist, we must

clearly have

‘?iAk >.Léin | (k = 1,2)

the difference being_at least equal to the needs of the system for com-

modity k as an intermediate. I shall not examine the potential applic--

ability of this mddel here. This will be done in Chapter 6 in connec-

tion with a still more complicated model of the next section.
The dual of this model is also presented in tabular form in

Table 1. Turn the table ninety degrees clockwise and let ;V, repre-
sent the price of commodity k in region i (the price refers to the
commodity both as intermediate and final), and iﬁk the shadow price of

and. ‘U will be recognized
k. ik
to have the same meaning as the vj and u, in Model IV, Let V represent

i

capacity for commodity k in region i. The j?
BN =

the column vector of in and iUk (at the top of the table) and C , A

B the same vectors as in the primal. The dual, then, is

‘maximize B 'V (4-592)

sub ject to | |
' . 2Ag vV < | c v 4 (4-60a)
and V > 0. - - (4-61a)

or, in formal notation,

23 22
maximize if [:J.VQ (jBk-X— Zkél [iU;} [lAk—] (4-59%

sub ject to
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2 2
"f [iamkjﬁvn]" = it ? o [1%] (4-60)

(j:}l,'2,3 i=z1,2,3 k=1, 2)

and ivk, iUk > 0 for all i, k A (4-61)

The ob jective of the dual is to maximize the difference between the de-
vlivered‘value of final commodities and the "shadow" value of capacities.
The interpretation of le and lUk is the same as in Model IV (section 4.8).
The dual constraints (4-60) also have the same interpretation as in that
model and in models‘of Chapter 3 (see 3.0.4) though they are a little more
complicated; For commodity 2 delivered in region 3, from region 1, (4-60)

reads

{( 2l [ a 2y 2-_& [1 ;& i5%2 ¢
+ edhe ALl (4-62)

The 1nequallty then stateslo8 that the price of commodity 2 in
region 3 and of the same commodity in region 1 must not differ by more
than the relevant transportation cost, 15, lhis is the usual inter-
regional equilibrium condition. To see that this is actually what the
ineqﬁélity says consider the.price of commédity 2 in region 1 in a situa-
tion of perfectly competitive equilibriumad lV2 will then consist of
(a) the primary factor costs per unit of‘comnodlty 2, (b) the costs of

intermediate inputs ;er unit, and (c) the "costs" of capacity per unit of
the commodity. Now, (a) is the bracketed term on the right hand side of
(4-62), and (b) is the braced: " term on the left hand side; (c) is lU2.
Bringing them all on the left-hand side and substituting 1V2 for them we
find, |




vV -V 5; ) v (4L-62a).

which verifies the above remarks.
At this point, it may be useful to attempt & connection bet-
ween the model of this section and previous transportation models

De

Let us consider

v - W < S15 (3-11(b) of 3.0.1) Model IT
v, - ulA<f cte - : (a~?0c> Hodel IV
v s+ (b e+ [.b e
#l1 i} iB [; 1] 1271 |1 1ﬂJ~1 G_QBE_;]
and {Eﬂfl el [lhed
(4-60)
(4,-60) can be written: Vl 1V1.-§;lﬁ° (4-60a) where iVl stands for

the bracketed terns in (4-60). It will be remembered that in the model
of 3;0.1~wc had no means of alculating absolute prices unless one such
price was given from the solution of the general problem of 3.0.3 (sece
scetion 3.0.4 above). In short, it determined.only equilibrium price-
differentials. In the first interpretation of this model (1n 3.0..) one
price was given from outside and the dual determined the ab solute price
structu??; in 3;ll(b), uy can then be thought as equivalent to 1Vl of
4-60(a) .,
On the other hand 4-30(c) can be written:
v, - (ul+ c2) < 515 (4-30c)!
and thus ul+ c9 Z 10 (see 4~2L4 and 4,-31) can be considered.equivalent

to l 1 of (4~6Ua) It will be rememberedl that absolute price determina-

tion did not need an outside price in Model IV of 4.0. The problem arose,
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\v
however, of'discrepancy between prices computed from the dual and
prices computed from the general problem in which demands were depen-

dent on price,

Finally, (4-60) can be written:

21 {(1 e R FOH L R PO N B L | A
4—[&Q~I}~T- 425

and the terms in brdckets are equlvalent to |V F of (h—éOa) again,

‘Thus, one can see how the 1ncrea51ng complexlty of the model
paySvin'tefms of results. Model IT of 3.0.1 was given constant supplies
and demands and unit transportation costs and yielded only price dif-
ferentials (by itself). Model IV of 4.0 waslgiven constant demands and
capacities,.unit variagie costs of production and unit transpdrtation
costs and yielded equilibriﬁm prices under the assumption that demand
is completely insensitive to price; it_élsosyie}ded values of capacities
- in a competitive equilibrium.r Finally,‘thé'model of this section was
given constant demands and capacities,.intérmediatevinput requirementé,.

_primary factor costs and unit transportation costs and determined

equilibrium prices of comm iodities (under the same assumption sbout demand
asAin.Model I¥ of 4.0) and an almost complete breakdown of these F,0.B,
prices in terms of costs of intermediate inputs, primary inputs and capa-

city inputs, "Almost" in this connmection means that the model did not

determine primary factor costs but it took them as given,
If, however, we seek a generalization of the model that would

also yield primary factor prices in its dual solution, problems arise. It will
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be remembered that the objective function of the primal needed these
prices as data; thus, we cannot consider them as variables.

This difficulty is not unique with the model of this section,

however. It runs through every linear progrémming formulation and
Aerives from the fact that linear programming models cannot handle the
demand side of ﬂhe‘économy successfully, neither can the§ handle curvi-
linear resource supply fqutions!oaThe linearity assumption, which is .
basic to the linear progfamming technigue and lends it- immense compu~

tational advantages ' .€xacts its price by precluding a sensiblelqo con-

sideration of these two aspects of a general economic system.

The‘above question of prices didvnot arise with the simpler
models in'this‘thesis since they were not so general as the model of this
section, Thisvindicgtes that wé have almost reached the present limits
of the linear programming technique in gnalyzing“general economic prob-
lems.

The problem of prices has been handled in a number of different

ways by various\autho;s. The next section deals with one such way in

: ~ 111
connection with the complete model of A, P.iHurter,

L.1.3 MODEL VI: A.HURTER
One approach to the resource-price problem discusced in the

last paragraphs of-the previous section is to drop the assumption of re-

lative abundance of primary factors in relation to regional demand. This
vwill be remembered to be the assumption on which Model V was constructed

from the material of section 4.1l.1. Dropping this assumiption is then seen
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to,necessitate'the re-introduction Qf the'resource.coefficient of the
activitiss and the avéilability limits of the resources (4-34 and 4-35

of section 4.1.1), since the possibility of resources constraining pro-
duction cannot be ruled out any longer. We can keep, however, the
.capacity restrictions'and specify that they refer to the.availability

of capital stock. This makes clear the static short-run character of

'the model ornce agaln With the same symbols for resources as in section
L. 1 1, the model is presented in tabiular form in Table 2, The symbols in
parentheses represent another compllcatlon irrelevant to the problem being
.dlscussed and should be disregarded for the moment (see below, in this
section). The model is then seen to differ from Model V only as to. addi-
tional resource constraints (I have assumed two resources for expositionél
ﬁurposes; the numbsr—sf resources assumed'is immaterial to the argument).
Table 2 is to be read in exactly the same way as Table 1. In formal nota-

tipn the primal is:

332 ’ 2332 |
. A, ; b . X =
Mininize . 2 ?5 ELJSQ ElJXk—}“ gfff Gea[i rx}[ljz‘ka (4=55)
subject to | .
lek _iAk (isl, 2, 3 k:';, 2) (4-56)
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and . > O for all i, j (4-58)
i3k 7 ? .

Stil) disregarding the symbols in parentheses, everything is the same
as in Model V except for (4-63): this simply states that the amounts
of rescurces used up by the varicus activities of ‘the region should not
exceed the availability limits of the resources in that region. This
implies the stzted assmption of resources being 1mlob11e between regions
(though the assumption could easily be removed by summing /4-63 over
i=1, 2, 3, it is retained for reascns that will be explained in Chaé—

ter 6). For region 2 and resource 1 (4~63) reads

X + X)) - b X+ X =R
2b11 (21'1 +—22Xi 23‘1) 2712 (21Xé Mmyé 23" 2>:?’ et

The dual to this model is

winize 22 (S [P (5] fifﬂ[ﬂ

k j

- 2 z [LA[ G ) (L-64)
subject to

.VA - {;IQA[' ;A : *25 [1 r;] { k——— ijsk-%

2 ‘ o
v Z P 50) (4-65)

and |V O for all §, k, r (4—~66)

, LU, WS
ikiyg ir 7
The new symbol 3W . represents the "orice" of the resource r in region
i to be (etermjned When the relevant constraint in the primal is bind-
ing in the optimal solution, the price W is found positive in the dual,

ir '
as already stated in Chapter II.
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The-objectivevfunction of this model includes the value of
the resources (third term) as was to be expected, while the con-
straints contain one additional cost item, referring to the resources,
The original.resource cost is also included, hoﬁever, and this needs
interpreﬁation. 3

.e_ as the minimum price of resource r in

\A, Hurter¥m2 defines iy

region 1 and érgues that the introduction of such price as externally
given minimum reséurce cost to producers, irrespective of the gctual
forces of the market, tends to lead the éy;tem to choices not necessarily
the best»frémvthe social economic point of view. Suppose, for example,
that the minimum price of a resource isbhigher than what the market
forces would:determine if left unrestrained; The imposition of this
minimum price then leads to underuti%izatioh of the resource and drives
the economy aﬁaj from'its productiongposéibility frontier. Hurter points
out the descriptive justification of/this imperfection and explains the
relationship between 'W and e as fbllows;

ir ir :
(a) ier = W = O means excess supply of resource,

. ir

/(b) _e{)-O, W = 0: the minimum price is too high relative
i 1r o
to supply and demandj there exists inefficiency in the
system,

(c) . =0 _W;} 0: the primary factor is fully utilized in
i - i

the region . An increase in its availability will lower

total system costs, end
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'(d)‘ie;>-0, iW;>>O: the resource is fully utilized
despite its minimum price (i.e., the minimum price
is too~low relative to that determined by the market.
The latter is ieftiwr)' | |
. I shall now proceed to explain thé symbols introduced in
parentheses in Table 2 and equations (4-63), (4-57) (4-614), (4-65).
Though the model of tﬂis section is quite generzl in terms
of activities and commodities,-transpbrtation appears nowhere as an
activity while its costs are given externaily. Since activities are
distinguished by origin and destigation (and, of course, by comrmodity
&vproduced) transportation inputs could easily.be introduced among the
inputs of each activity, in.which case we would face the same problem
as with the pricés of resources. Hurter's approach, however, is to
construct a model suitablé for government planning. The transportation

sector is assumed to becompletely controlled by the government which

regulates transport rates and purchases resources and commodities needed

as inputs by the transportation sector. 'Gr in (4-63) is the amount
, i
of resource r bought by the government in region i. Thus, the availabil-

ity of the resource r is decreased by this amount ( G ) from the start.
- . l r

The gpvernmeht, that is, is assumed to have priority over the private
sector in buying resources at the going market price. On the other hand,

me is the amount of commodity m required by the government in region p.

In this respect, the government stands equal to any other final user of

output. The interpretation of the dual follows directly from what was said

about the primal.



CHAPTWR V

HMODEL VIT

This model is basically an exbension of Model I to include
intermediate commodities and many regions. Variaticns of it have
. ; 3 14 s
been published by W. Isard and B, Stevens” . The exposition in
115

this thesis follows I, Harwitz.

5.0 Extension of Model I

With one region, two resources and three commodities the tech-
nological matrix and thie resource availability vector of Model T was

(cr.2.2.0.1 (i1), (1))

Resource 1 wb‘]l —b'12

Resource 2 “b'°l —b'22 (5-2)
Comrodity 1 1 0

Comrodity 2 0 1 0

Comcodity 3 0 0 2! |

4

where the prines on the resource coefficients of the activities are

. N . . A i

intended to show that intermediate comroditics have been "netted out'
by te technigue described in 4.1.1. Let us drop one comsodity Ifrou

this scheme to align the dimenslons of the model of this section to those

of the previcus chapter, and let us reintroduce intermediate comwodities.

This latter step is necessary if we are to exbtend the model to meny regions,

as has already been exolained in section 4.1.1. After both steps have

been taken (5-1) is changed to (5-3) below.



Introduction of casaclty reguirements (in the same velin as in

mod

2
1o — -
1-a, ) 312 (§-3)
—-a l-a
21 22

secti

cl V,and

section 4.1.3, model YIT) and labelling of coefficients to show

on Lol.2

r P

that they refer to activities in region (e.g.) 1 yields (5-4) and (5-5).

— — _
; )
1 0 1
0 1 - A
12
- b . - \,L,) —]R
LAt B (5e) -1 (5-5)
N - D - R
1701 1"20 1 )
1~ a ~_ 38
1 21 112
1891 1%
B ]
Finally, we have to distinguish activities 1" and 2 of (5-1) according

to destinations of their output,

model.

I,et us define

the quantity of primary factor r reqguired flor
transportation of cne unit of commodity k fron
region 1 to region J

the gquantity of commodity m required (as an inter-
mediabe iniut) to transport one unit of comodity k

from region 1 to region j.

and also include transportation in the




Consider now activity 1 of region 1 when it produces and "transports"

its output to region 1. Its requirements will be

. /
Y:l 0, -(15y3%9719); '(1 atn 21) -8 17 11’ 211121 )

and its level will be represented by llX1 On the other hand, when it

produces and transports its output to region 2 its requirements will be

/
)5 “1%1 T12Y11° 1% T12Vore %1

C1. 0 - (b _+_.%
[-"O’ (1 11 12 11)’ (1 21 12721
and its level will be denoted by 12Xl. As‘beforq,the production method
(that is,'the b's and the a's) does not change with the destination of
output. Only transportation requirements of the activity (the t's and
v's) vary with it, and the unit of output of the activity has been trans-
ferred to another column to show the change in destination of output.
Out of each original activity of region 1, then, we created 3, according
to destination. The rglevant‘symbbls for the activity levels are
X X X X X X

1117 12717 1377”11 2° 1272 132
and are to be interpreted in the same way as inModel V. Similarly, for
the other two r=gions:

X X X. X “X X , for region 2
21°1° 22717 23732 21 2° 22°2° 23 2’ &ro
and X 2X o
31 lf 3 lf 33X1’ 31X2, 32X2, 33X2, for region 3

The objective in this model is the 'same as in Model I: maximiza-

tion of total income, but for all regions taken together. We thus need

the prices of the final commodities in each region as data:

(;vl, Vo Tys 3o gV0s 3v;l (5-6)
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and we have to find a way of introducing only final (and not inter-
mediate) outpute in the bbjeclive function, Obviously, tﬁc variables
ijxk will not do for this purrose since they include intermediate pro-
duction. In other words,iiijxk denotes the total production of commod-
J

ity k in region i, including that part which is to be used as infermed-
iate inputs in the production of other commodities.

It is then necessary to introduce a number of "dumwuy" activities.
A Mgummy" activity is one which does not actually produce anything, but
einmply takes one unit of a commodi£y from a ponl and transfers it for a
special use., In the particular case of this model the "dummy" activities
take cne unit of cach commoldity in each region for final use in that
region (when they are operated at unit level). Their only element is thus
one unit of cutput in the anoropriate row of the ﬁechnological maltrix,

Up to this point I have used a minus sign for an input and a plus
sign for an oulput of an activity. As stated in Chapter 2, this is simidy

a convention., It will be found useful to use exactly the opuosite conven-

C . . . . . 116
tion in this model: minus signs for outputs and plus signs for inputs,
With the new convention and the introduction of the dumwy activities the
technological matrix of the systew is as in Table 3, -made in the same way
as Tables 1 and 2. iYP is the level of the "dwamy" activity in region i -
taking comrodity k for final use. -

The model introduces government as a demander of final goods and

resources in the various regions. However, the government here does not

regnlate either the rstes or the inputs of transportation sector: this

fode

g because of the fact that transportation has been included in the tech-
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nology. The symbols for the government are as in Model VI,

As discussed above, the only variables that enter the objec-
tive function with a non—-zero.coef}icient (price) are the levels of
dummy activities jYi (i =1, 2, 3 k = 1, 2). The variables are at
the bottpm and thé respectiv-e ‘prices at t}:e top of the table, as us-
ual, - ' -

The dual -_p_ricés refer to .t};e constraining factors of the prob-

lem and are as follows:

iUk Z the rent oh capacity to produce commodity k in region i
W = the rent on the primary factor r in region i

ir !

Fl = the shadow price of comnodity k (as an intermediate)

1k
' .in region i
As with Tables 1, 2, the model can be read off Table 3 in

exactly the same way. In formal not_atién the primal is:

: o 3 2 ) \ :
max;mze _ % { 'in iYk | : (5-7)
subjec.t to 2
3 A . ) B TR
Zig, L ihG=1,23 x=1,2 (58
j t . '
32 _
%g (P 1 strm) L '—[iGr E Eig’% (5-9)
32 ' o 3 < '
1Yk+§% (1akm ¥ ijvkm) inm -g J'i><( ~N ik (5-10)
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ard >/ 0 for all i, j, k. * "(5-11)

Y X
ik’ iik
The objective function (5-7) shows the total value of final commodi-
ties in all regions. (5-8) is the usual constraint on capacity (with

the new sign convention). (5-9) is the constraint on availability of

resources. For region 1 and resource 2 it reads:

(1P Fiatay) p% t (1b-21 12 21) 126+ (P21 13t21) 1%+

v

L 1G2
Finally, rewrite (5-10). as follows:
3 : 3 2
‘?jlx k >/ the + l_k +? %(iaxm-‘_ ljvkm) ijxm (5-10a)

The meaning of this constraint is . that the total pool 6f commodity
k coming to region i from all sources should‘at least be equal to that

drawn from the pool for (a) final demand (b) government demand and (c)

intermediate input demand.

The dual to this model is, in turn:

minimize % % W (R - i‘Gr)+._ ji% EWJ[ iA;l_

% i ): i) | (5-12)

r*%A\o

subject to
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2 2
“w il . U -
}2{ [iﬂ N Eakm + JVL\—.& ?E ;}[me J_JLI’B + 0

j”m>/ 0(t, 3=1, 2, 3 ml, 2) (5-13)

i 7 i (= 1, 2,3 k=1, 2) (5-14)
and Fo U iﬂ . >/ 0  for all i-, k, v (5-15)

(5-13) states that the cost of each comrrodity in each region.(rrespec—
tive of where the commodity comes from) should be at léast equal to the
price of the comrodity jr?n in that reglon. (5-14) fixeg the necessary
releticnship between the price of the commodity as an intermediate, 1
and the price of Uw<wmm¢myzm;ﬁnﬂ,v.

The grimal of this model functions on the same

]

principles as the
much simpler model 1: given the final comuodity prices it chooses a noint
on the boundary of the combined production nossibility frontier of all
regiors together so that total national rroduct is maximized for the Sys-
Lem. 1t may perhaps be useful to point out that the combined oroduction
poseibility frontier is net of reasl costs of/trénsport (the resources
absorbed by transport are tazken into account). The optimal solution
represedﬁs a competitive equilibrium at given prices of final comnodities
and is, of courée, an e fficient combination in the sense of section 2.2,1.1,
Uiven the commodity prices the dual imputes the value of the maxi-
mum output (attained.in the optimal solution of the primsl) back to the

resources and capacities. In the process, however, the dual determines

(intermediate) comnodity prices also. Since the price of one and the same
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o«
cormodity cannot be different when it is used as an intermediate from

when it is used as final, we get inequality (5-14). If N\ turns out greater
than V then the commodity is not put in final use but is only used as inter-

mediate,

The last point about the ;M vand in brings into mind the "price"
problem encountered in ?bdel VI. Indeed, the model of this section faces
the same problem, perhaps in a greater degree. To elaborate, the dual sets
out to find pripes of commodities but is restrained by the fact that these
computed prices, ir\k’ must bear a certain relationship with the exogenously
given commodity pfices in. The inconsistency is(clear: what is a variable
is also a datum,

117 ard M,

One way out of this impesse is suggested by B. Stevens
Harwitz ~. Impose on the primal an additional set of restrictions

iyk>/ in (=1, 2, 3 k:l,_z)_

vhere _Bk is interpreted by Stevens as minimum consumption requirements
i ! ;
of comnodity k in region i. If, in its objective of maximization of the

value of final output, the primal allocates a quantity of a final commod-

ity.ekactly edual to.thebregional reqiirement lBk’ this means that the
prixe lvk set for the_commodity in that regibn is too low (and, roughly
speaking, the model avoids the region). If this is the case, the dual
variable associated with the constraint will be positive. This variable

could then be adied to the exogenous price in and the problem re-solved

with the new commodity price, as if the latter were the actual price. Or,
the dual value could be considered as a subsidy that should be paid to
producers to bring the necessary final output to the region.

It may bé noted that the above approaches have not been examined

adequately in the 1itera£ure.



CHAPTER VI

FORMAL COMPARISONS, EVALUATION AND CONCLUSION

'\In this chapter an attempt is made at formal comparison of the
two basic models in this thesis (VI aﬁd VII) with each other and with
other similar models. Section 6.0’15 devotedlto this task. Further, an
evaluation of interregional linear programming models and some coﬁclu—

sions are aftémptéd.

6,0 FORMAL COMPARISONS *

6.0.1 Model VI (A, Hurter) and Model‘VII (M, Harwitz)

The formai similarity of the two models can be seen by examina-
tion of Tables 2‘(Model Vi) and 3 (Model VII), The matrix of constraints
is seen tévdiffer bétween the two‘modelé in three respects: (a) signs, (b)
transport input coefficients,'and (c) the last six columns of Table 3, The

3

difference in signs is purely a.conventional one as was explained in Chap-

ter Y. The transport input coefficients in Model VII are included because
transportatioh is‘juét anothér‘activiiy in that model, consuming resources
and intermediate inputs per unit of its output (this latter being defined as
transportation of one unit of commodity ¥ from region i to region j). This

treatment of transportatioh allows for the multidimensionality of the in-

dustry's output, thét is, it can take into account differences in input' re-
quirements as the épecific destination of putput to be transported changes.
On the othef hand, in Model VI transportation is handled exogenously. The
implicit assumption there is that its intérmediate and primary inputs are in-

cluded in the government‘s constant demands for primary factors and commodi-

ties,
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Difference (c) arises because of the different obJjective of
the two models: Model VI takes regional final demands given and pro-
ceeds to minimization of total production and transportation costs.

The unit production costs are given (by technoiogy and the minimum

resource prices) and so are the unit transportation costs (by the
regulatory ageﬁcy of the government). Thus the variables needed are
only the ij*k' Model VII howevér, takes prices of final commodities
given and proceeds to maximize the value of final output. Final de-
mand by the private sectér thus becomeé a varlable (in of Model VIa
is dropped) énd six new activities are introduced to transfer output to
final use. ,
Basically, then; the formal difference between Models VI and
VII boils down to a érice zabssumlr)‘tiox'l.lla The prices assumed as given,
that is, differ., Model VI assumes input prices given (not those of
intermediate inputs,f£hough) and thus has to define as objective the

minimization of costs. In its optimai solution it determines the final

commodity prices and the rents to capacities that are consistent with

the technology and the constraints (of capacity and demand). in a com-

petitive equilibrium situation; and runs into the problem of having to
determine pricss of resources also, which were assumed given when the
problem was posed., On the other hand Model VII takes final commodity prices

as given and has to define the objective in terms of maximization of the

value of final output. In its optimal solution it determines the resource
and capacity prices consistent with the consttaints (of resources and

demand) in a competitive equilibrium situation, and runs into the equiva-
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f

lent problem to that of lodel VI, in thabt it has to determine final

coxmodity prices which were assumed given when the problem was posed,

120 14 Hodel VI

/ .
65.0.2 L, Hoges! Madel

p . 121 .
L. Hoses' model is,in its thcoretical form ~ , very similar to

that of A, llurter. The main differences are:(a) introduction of trans-
port input coefficients into the matrix of technology, (b) introdnction
of capacities in the transportation sector and (¢) the quantity to be
minimized,

The‘introduction of transport input ccefficients was done by L.

192 . .

Moses in exactly the same way as in Model VII. The introduction of
transport capasities is similar to the introduction of capacities for
the producing industries of each region. Finally, the objective function
minimizes the quantity of primary inputs required to satisfy the given
final demand. Moses assumes one primary input, labour, and thus his objec-

tive function is .

minimize Z 2 Z j j ( t )

b+ X
K 33 i 1k ij 1k® ij k
vhere the subséript.l is used to denote labour., Moses' way of stating
the objective function seems to avoid the nrice problem referred to in

L . 123
the previous section, but this is done at the cost of having to ascume

one primary factor, so that 7 has meaning as the total cuantity of labour

required by the system to satisfy the. given final demands.
125

6.0.3 Tke Isard 2

1821

Stevens Model and Model VIT

There secms to be one essential difference botween the Isard-
Stevens model and model VII: model VII assumes resourcesimmobile and
considers all final comuoditics as potentially intermediate but dees not
consider intermediate commodities that are not Ffinal, e.g., raw nickel ore
at the mine head. This reveals an implicit assumpbion aboul mobility of

strictly intermediate comsoditics: namely, they are considered dmobile. This
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needs more elaboraticon,

Consider a resource in thie ground, e.g., nickel ore. The relevant
constraint on resource capacity will then refer to the rate at which this
ore can ve extracted during the period of examination and not tc the tolal

nickel ore reserve. Bubt in this case, there must exist a mining activity to

carry oubt its task. Its output will be a strictly intermediate good, for
which there is no final demand. Zubt the model assumes that each inbtermed-

iate comodity ccnsldered is also deananded by final users, and this cen be

seen by the fact that dummy activities for transferring to final demand are

defined for every produced commodity. If we keep this interpretation, the
only way out is tc assume that productive processes are sufficiently inte-

greted so that none produces a strictly intermediate commodity. This, in turn, .

imolies that the inputs necded for extraction of the resource are embodied in
1 j

the input coelticients of Lhe integrated activity. Nickel ore at the mine-

'

hend, then,docs not ap;ear as a product of any activity, which imnlies that

it is not transportable botween regions bub has to be further vrocecsed into

snollher commodity before it becomes mobile.

Ancther alternative, however, would be to keep thc activity that ex-

tracts the ore separate in the model. This would entail (a) either dropning

the relevent iY

or considering its price .Vk equal to zero, as we actually
X 5 ] 3

do with _.X], and (b) jutting the relevant government demand 1F¥4 equal. to
ij k : 3
zero (since the government is not assumed to operate an industrial enterprise

outside the nmodel).

The above second alternative interpretation enables the model to

consider all strictly intermediate commodities (excerpt transportation
scrvices) as mobile between regions, and thus the choice nrocedure is
freed from an artificisl constraint. By the last statement it is meant
that, if we do not adopt the second interpretztion but keep the firot,
we reamire Trom the model to nroduce smelted ore only in the regiens

that mines exist., Suppose, for example, that only one rcgion in the
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system has a nickel mine. Then, even if nickel ore at the minehead
could be transported to another region and smeltedl there at  much

lower unit total (unit production plus unit transvortalion) costs,

o

the model cannot consider this possibility, as it is excluded by

assumption.
It was noted above that the second alternative interpreta-
tion of model VII still considers that the transportation services

needed to traasport all unit of commodity y from region i to region j

O

must be produced in region i, that is, in the region of origin., This

is because the transportatiocn input coefficients are anbodied (or ra-
ther, added) with the production coefficients of each activity. This
treatment. has two consequences:
(a) the dual will not give a shadow price lor the intermediabe zocd
"transportation scrvices" and ’ /
() the model is restricted from choosing to allocate Lhe production
of these services to these regions that can vroduce thew most

economically.

The Isard-Stevens model is a way oub of this difficulty: trans-

pertation services are cxplicltly considered an intermediate consodity

produced by a separate activily. #lso, intermediate and final commodi-

ties are kept strictly separate in the model. This is achievad by postu-

™

lating that the outcome of every activity is an intermediate commodit:,

27

Tion:

We thus have, for each reg
(a) Productive Activities: these absorb primary insubts and

intermediate goodg (except transport services) and produce

5]

internediate goods (except transport services).




(b) Cne activity proeducing transport services (inftermedinle) by

o

"absorbing primary and intermediale inputs (except transport
services). |

(c) Shipment activities; these absorb one unit of an intermed~'
iate commodity ﬁnd ransport services and yield that unit
of intermediate'as.ayu output in another region., fiong
them, there arc shipment activities transferring the inter-
mediate good "transportation services",

(d) Final good activities: these absorb one unit of an inter—
mediate commodity and yield one unit of same as output., They
are dumny activitics, that is. In number, they are as many
as the number of Tinal commodities,

This treatment reguires adlitional constraints on the output of inter-
nediate comnodities. The constraints reouire that the total of cach
intermediate com.odity produced in a region plus the‘quantity shipped
into Lhe region from cther regions, minus ﬁhe quantity used in the re-
-gion minus what was shipned from this region>to others, should be egual
to zero.

In all other Basic respects the Isard-Stevens model is the same

as liodel VII,

6.1 Ekn Attempt at Fvaluation

I shall devote the first subsection below to some words of cau-
tion in connection with the models considered in this thesis. The next
subeection will then be devoted to an examination of the potential of

these models "in an ap;lication,
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1.1 Bethedolosy and “osumations

. oy, 0 . ' .
ret, all models are static. ‘lheir sclutions, then, give us no

out what the future path of the economy will be. Any interpre-

tations towards this direction should be made with extreme caution.

Second, the solutions to the models describe a perfectly compe-

. . . . . Q. .
titive equilibrium. *2ince not many are prepared to assume thabt the ac—

tual imperfect economy operates in this way, the usual Justification for

using competitive equilivrium models in actual spplications is that an

exsmination of differences betwesn the model's solution #nd that of the

actual economy will reveal the parts of the latter where imperfectians

exist,

Acceptance of this justification does not solve all the prob-

lems, though, the reason being that the differences referred to above

cannot safely be ascribed to neon-competitive elements cnly: other assiunp-

tions in the wodel (e.7., the linearity of producticn functions and the

~

k2

fect that the sclution values refer to an equilibrium) may be resvensible

for discrepancies, apart from discrepancies due to inaccuracy of the data.

N

128

»

Third, since optimal solutions of the models usually dilfer [rom

actuel market solutions, the cuestion arises as to the usefulness of the

comparative static theorems derived from the rodels.

It should be noted, however, that all three points considercd

above #are not peculiar to the modcls of this thesis: the Tirst two run

through the most ~part of economic theory end the third will apply to all

mcdels

W

tich do not estimate relationships, but are based on direct statis-

tical data. The answer to such criticisms will then probably be that, given

the present state of theoretical lnowledge in economics, we shall have to do
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with models havinthhese basic deficlencies.

There_are two points, however, that are peculiar to general
models cast in linear programming terms: the linearity assumption in
praduction and thé treatment of demand.

The linearity asswmption is of course indispensable and provides
us with actual solutions to complicated models. Until specific mebthods
of solution: of non-linear progremming models have been found we shall
have to do with models assuming constant returns to scale in production,

The same remarks as above hold with respect to the trestment of
demand (sec slso section 4.1.2). We simply do not have a way of intro-
ducing it into the linear programming model, because of the linearity
ass mption., Connected with the deficient treatment of demand is the

1 . "
price

problan that arises in all these models. As noted above,Moses!
model avoids it bubt pubs another as-umgtion in its nlace. And mereover
1 o . 2
the discrepancy between observed and comruted rrices noted at the end ol
L o L i

section 4.0 is not avoided by his assumption.

5.1.2 The Potential of Hodels VI and VII

I shall confine my remarks in this subsection to ﬁodelerI and
VITI so that I can be specific. In any case, the formalgsimilarity of the
models Jjustifies this approach.

Model VI is more of a planning model than VII since it isolales
the transportation sector outside the model and can thus provide some
answers to policy questions related to transportatibn and regional de-
velopment, The elffects of changing transportation rates on the outputs

of comuodities in each region can be calculated by reszolving the nroblem

=)
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with the proposed changes in rates as data, The new solution will show
the effects that these changes will éiKely have on regicnal outputs and

wployment, as well as on the total outrut of the transportation sector.

o)

The effects of 2 chiange in the regional distribution of govarn-
ment purchases of final soods and resources can also be shown by resolving
the rodel with the proposed 'Fk and .G . Obvicusly such changes will af-

i 1

: k
fect regional outputs, employment and resource use, and the output of the

transportation sector,

In terms of the dual, such changesas those examined above will
change tho.dual prices of commodities, capacities and resourccs. Com-
parison of the new prices to those computed if the initial solution
will show the effects that government policy may have in changing the
relabive attractiveness of regions to investors(@y chianging theiﬁkg,

and motile labour (bLy changing the iW ). Whether or not investment and
? 1r

‘

evour will follow the paltern dictsted by the dual prices is uncertain,

however, because of imperfections that exist in the economy.

The initial solution to the primel will show the optimal shipping

§

pattern: notwithstanding the remavKs made in 6,1.1, some remarks about

non-corpetitiveness could be made, by comparing the optimal to the actual

pattern,

The shadow prices of resources in the intial optimal solution will

also show the reglons where some resources are in short supply (1wr>»o)
and will thus give indications for government policy on this matter.
Finally, the introduction of a new productive activity in a region

could be tested by inserting engincering estimates of it§ Lechnolosy and
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.capacity and resolving the model. The new solution would show the
effects of such éhénge on regional Outputs, etc, The above aré instances
of application of sensitivity analysis and parametric programming,

Model VII is more of a descriptive than a planning model. The
aim of the governmenf should be defined as maximization of private income,

Parametric programming can also be made in this model, except referring

to transportation rates. The uses are thus very similar to those of
Model VI, |

6.2 Conclusion

It is the opinion of the author of thisc. thesis that the two basic
- models examined herein, as well as those fprmally\similar té them (section
6.0) provide quite useful tools for analysis of interregional poliéies. Up
to now, we have not been able to solve some basic problems noted above, But
then, science is bound to proceed fofward. In thé meantime, these models

are among the best we have available for analysis and policy,
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FOOTNOTES
These initials will be used fér "Linear Programming",
Sectiéns 2.2.1, 2.,2.,2,
See Kuhn and Tucker (14) Paper No, 4, or Hadley (5) Ch. 8.
Given positive contributions of éctivities to it.
In mathemaﬁical_terms,there is no finite maximum,

This assumes divisibility. See 2,2,0,0.

Since this sméller number indicates the maximum feasible level
of the acitivity. :

In mathematical terms the matrix A in (24d) of'2.0.1 is decompos-
able, , ' '

‘This is relevant to case (c) above, and is also implicit in the

objective of the problem. The aim is to maximize the sum
Plxyt..otp, X, not any particular P; X, . It is thus seen
that the activities constitute alternztive ways of satisfying
an aim. :

The fact that one can count and add five units of resource 1
directly implies homogeneity of the units of this resource,

By the same token, final commodities are also assumed homogen-
eous. ‘ '

It is perfectly legitimate, of course, to define an infinite

-number of activities in such a way that their totslity gives the

usual neo-classical isoguant. See Koopmans (11) and Dorfovew,

Samuelson, Solow (3).

Since there no more exists any need for differentiation between
primary factors and final commodities, we can also dispose of the
minus sigrs. .

-Some other details should be borne in mind: the coefficient of

x,. must be positive and 1lx, must be added to the left hand side
of a £ inequality, Otherwiée we have the same problems as when Xh
is allowed to take negative values.

On the other hand, if the inequality is in the > direction every-
thing else is done the same way éxcept that the expression lx, is
subtracted from the left hand side. X, is then called a surplus
vaxriable,
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15.

16.

17,

18,

23.
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In mathematical terms, the solution set of (2c) (3c) bears a
one-to-one correspondence with the solution set of (2d), (3d).
Also, the slack variables are unit vectors which can be thought
of as units of measurement (or as a basis) in the two dimensional
space of the example, .

On instances of using the free disposal assumption in models more
general than that of the example see Koopmans (11) and Debreu (2).

A feasible solution (i.e. a non-negative solution) exists for a
system Ax = b if and only if the vector b is an element of the
convex polyhedfal cone generated by the columns of A,

Suppose for example that we have

max. f (x) = cl X ¥ ¢ Xé'

sub ject to o -
LA xtap pék

Z
%lﬁ+%2X{“%

70 i=1,2

Addition of the slack variables will produce more unknowns (four)
than equations (two).

With m equations and n unknowns, the matrix of a system of equa-
tions can have maximum rank egual to m. Since m<n, there will be
an infinite number of solutions (it is assumed, of course, that
in the system AX = b w(A) = r(4)

where Ab'

See Hadley, (5),Ch. 2,3.

(A,b)- See Hadley,(5),p. 52)

For a precise definition see Hadley (5),'p.'5h.

See Hadley (5), p. 99.

This is the most obvious basic solution. It is chosen for computa-
tional convenience, since it is not going to be optimal unless the
comrodity prices are negative, or zero.

In mathematical terms, a subsystem of equations

56710 X
(2) and (3) [215101 Vlz (60
xs\" |18

A x = b




2L,

25.
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is obtained by setting x| = x, = Xy = 0. We have

10 %) 60
01 XS - 18
Al X o= b

Since rank of A, = rank of (4, b) = number of unknowns we have

a unique soluti%n. The solution is non-negative because b lies in
the non negative odhant of the two-dimensional space, and the
columns of matrix generate a convex polyhedral cone which is
the non-negative owthant.

In mathematical terms, the vectors of the matrix A, of footnote
23 form a basis(in this case, an oc¢thogonal basis) of the two-
dimensional Euclidean space. Hence, any vector K€E* can be rep-

-resented as a linear combination of x and x_. In the case of x,

we have, b >

5XL ¥ 2x5 .— Xq
The two sides of this equation represent alternative ways of using
5 units of resource 1 and 2 units of resource 2. Thevigﬁt—hand—
side choice yields $1. The difference 0-1 shows what is lost if
we choose the left-hand-side, while the difference 1-O shows what
we gain if we implement the right-hand choice instead.

"This can be givén an alternative .explanation: activity 1 at level

9 uses 9x2 = 18 units of resource 2, i,e. fully employs this re-
source. This means that the slack variable corresponding to this
resource (x5) must be zero.

If x = 9, resource 2 is not enough (see previous footnote). In
othey words, constraint 2 is violated.

In mathematical terms what we have done amounts to the following:
From the matrix ‘ _
5 6 7 1 0
2 1.5 1 0O 1
of foctnote 23 we chose the submatrix
51 '

A = i.e., we set i =x, ITx. =0
2 T ko 2730

and solved the system

20 b'd ) 13

A




28.

)

no

T

he iterstive procedure described in

to find xp =9 % = 15.
the text helped \ﬂ dntﬂPMLan* wivich submatrix to chocse by specify-
ing that X5 =0, Wow, A} was |1 O]. fo find AP we determine which

. 01

vector is to enter the basis (activity 1) and which is to go (ac-
tivity 5). The iterative procedure does not nccessarily take us
through all possible subratricices of A, and is thus szen to econo-
rize in comgutations.

In mathematical terms, the column-vectors (points) of the matrix

A of fou ‘tnete ?7 are linearly indevendent and Lhus from another
biaig Of E7, Since Xy, X es, x_and x, can be (uniquely) expres-
sed as linear combinalions of the“basis Yectors. The rest is the

N\ .
sane as in footnote 24,

Actually the economic interpretation of this case is somewhat
awkward since there is no economic sense in saying that we overate
activity 4 at a negative level. HMathematical'ly the solntion to
the sysbem |5 1 Xq 0

linesr combinaticn of activities dand [ that gives ac-
cannot te non-nezative, since the vector (C, 1)' lies owt-
convex nolyhedral cone generated by thie vecltors of the

can be se'n from the diagran below:

(53
(on

(o)

The words "at face value" imply that the criterion used for i

lenti—
fication of the most "rofitable" activity refers to unit "orofit-

ability" only, while we are interested in maximizing Total revenue.

All this, of course, is fournd by solving

, N
51 %) . 50
21 x| {18

This is Lecause

(a) activities / and 5 conbribute zero revenie
(b) activities 1 and 3 do not cause the rcevenue to diminish




33.

3L

35.

36,
37.

38.

39.
40.

L2.

L3,
Ly

L5.

If there are more than one, there are infinite optimum solutions.
See Hadley (5).

By solving 5 6} Xy 60
5

2 1. x|\ |18
2

Every point on the segment ab is represented by the linear com-
bination ma+(1l-m) b, 12 m> 0 or Ka. +(1-k) ¢, 1 2 k>0

See below, section 2.3.1.

The unit vectors (slack variables) are part of the problem. They
span the whole non- negatlve octhant Hence, any point in Ogbc is
feasible,

See . 32.

This need not always be the case: see section 2.3.

As usual, we Msolve ) 517 x1 (jl.
: 21| |x “ o

On the economic interpretation of the solution see fir;. 29.

By solving

& B

In the standard neoclassical theory, this isindeed what is im-
plied. Full employment of all factors is always the case on the

. frontier, and is achieved through factor substitution on the

"well-behaved" production functions of Y1 y2.

Section 2.2.0.0, (i), (i) (&) (iv) (vi).

To find bundle c, solve 5 12.5 y1 [250]

3 4 |\, 120

Indeed there are cases where full employment of all resources is
plainly impossible, Consider




¥

fax 5x_+ bx
1 2

)

The notion of ei"ficient roint sets, however, has come out of
ic ‘J“‘ml”“ vinile Lhe notion of prodaction funcltion secems
nted by cconamists, The lorner

in many respeclte. See Koopmans, (11)

ce is of course, eoual to t"n: social "mrgﬂ' nal rate
ti tu’rlo* between the tvo comaoditie as ‘«'oll as to the

'S
bechnical rate of their trasnsformation, in F con‘t:muous

<wected, Commodity 1 uses less of both rescurces
orice tiran commodity 2.

-‘-"’ich,ual’a.v the chclce f"t in L,P. usually consists of an area
Contai:n“fr efficient inefficient bundles. for normal ¢
on

Lions, nowever, btho l;(, B! ncentrates on the ellicilent

set, and, in fact, only on extrene UOJn'ts, i.c. on basic feasll

£

carlier. #n exception to this state
.\ﬂ'ir»‘q Note, however, that an lqef""icin“‘t
lor optimality il urices are negative or all

solutions as we
thie first basic
point is a cendida
HOYO .,

ot h N i S he Al {

e tally, bhen, ateuat, "activity analysis". Sec Xoopmans (12).

- . . « 1) M -7 Trr
In oulbe a number of caszes: see Yamuelson (19) , Chenters 1T, 1017,

general form of activity analysis., Sec

i

This is true only 5
the optinmal solubicn Jdoes not change. See 2.3,

in the liwsith, i.e. as long as

an 2,0,2.

!
o
b
-

Zquation: Suyt 2u
c 2
Frou ()Ou1 + 12n, = C for C = 18,
o
Not always: consider

Bubject to [ -5 L X

10 10 X

the composition
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A3
.

[@xN
CN

[
—Q
.

(@)

k]

The Trontier (assumins activity 1 produces and actwiiv
2 o L 1
produces y )LS ab e :

but only the part bc is efficient, not ab.

Tuis is not always true: it holds only when in the ortimal solu-

tion all ressurces are fully emnlored.

o r of
The reason for dropping these constraints will be exnlained
the next section.

In mathematical terms
O)Lrut11 At non-zero levels in the optimal solution to the

wl the resources with positive dual prices will bLe

g

isfied with an eguality sign in the opbimal solubion. Th
nal prol‘w' is thea transformed to thal in the text.

Since the sclution to the syotem (2)' is unisue, we need not

uze the La*man"c—multhlier technique. We need only

azd substitute the values of

Loyed, that is, the respective constraints will be -
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, the activities that break even will be

o
o

ylve (2)1
in the objective function.

If, however, one resource had zeré price we would have been leflt
with a meanincful constrained maximum vroblem, Lo be solved by
3 3 P

Lagyangean techninue,

See, however, fn. 60,

See Dorfmay, Samuelson-Solow (3), Wenqerxon Juandt (8) .
Yore or less a "novel" treatment. §

This is
6p3 (Opp is redundent from this point of visw).

See 2.3.1. B
See fn., 37 of secticn 2.2,

This points towards an aggregate wodcl for an economy, where
vloymant conld exist becouse of this reacon,
i s

See 2,2.0,1.

Seesgelion 2.1 for anobher exauple.

the convex polyhedral cone generated by the hellf-lines Opl

VN Eit-
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76.

77'

78.

79.
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81.

" where x;j are.the elements of a‘feasible solution vector,
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It should be noted in passing that the "yransportation” model

can be used in problems irrelevant to transportation. This is
because its definition pertains to the structure of its matrix

of constraints, and not to its interpretation, which"can be

varied depending on the problem. The specific name trgnspor~
tation model" is due to its first applications, which did refer

to space. oSee F, L. Hitchcock "The Distribution of a Product {rom
Several Sources to Numerous Localities", Journal of Mathematics
and Physics, Vol. 20, 1941, pr. 224-30.

Problems associated with the notion of a region will not concern
me in this thesis. The basic assumption throughout will be
equivalent to considering a region as a point in e conomic space
(which in turn means that transportation does not arise within
the region). '

"Potentially" covers the possibility of zero supply or demand in
a region. :

" Identical conditions of supply and demand in all regions are

not allowed since there will be no basis for interregional trade

.in this case,

"Minimum" implies solution of the so-called "transhipment" prob-
lem. See Hadley (5), p. 368.

A region cannot do both: see the section 30.3. Also regions not

participating in trade can be ignored.

A1 feasible solutions will have to satisfy

2 x° - S v ;
i ij-xj . (1 - l, PR m)
2 X;j = Bj (j=2m+1, ... n)

The matrix of equality constraints (3<2) and (3-3) has rank

n - 1. See Hadley , (5), p. 275.

When an x, . appears in the optimal solution, the constraint which
i has the respective si. in the dual is satisfied with an equal-
ity. : J )

. The exposition here approaches the solution of the dual indirectly

through the solution of the primal, by using the symmetry proper-
ties of duality. See Chapter 2.
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85.
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87,

88.
89.
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91.
92.
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94
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96.

97.

- 98.

99.

- analysis since the dual only determines relative and not abso-
"lute values, in this interpretation.cf. Stevens (292).

158

See Samuelson (20).

One method is that provided by S. Enke (4).

Except in the case where trade "branches off", that is, one ex- : iiﬁ;
porting region monopolizes a number of importing regions and is cut

off from the rest. In this case, two prices, one from each branch, .

will if given determine the rest. See (20).

See Samuel son (20).

For a pfoof based on a transformation of the general problem into
a maximum problem see Samuelson, (20).

Cf. Isard and Cstroff, (10).

This is correct only under the assumption of non-existence of
external economies and diseconomies, See also Chapter 2.

The proof relates to game theory; See Kuhn and Tucker (14)

- pp. 76-8, »

See Chapter II.
cr. Stevens: (22).

Cf. (3), pp. 125-6.

If, by setting a'ui = O there arise some negative values, the

smallest-value u is set equal to zero and the computation re-

peated from the beginning. This procedure does nct affect the

B, Stevens (22).

The number /4 is reserved for introduction of another warehouse
location,below,

Cf. B, Stevens (21).

In (7).

Indeed, more than that is required for a meaningful transportation
model: at least four regions must be considered.Cf. P, Samuelson
(20).

"Novel" with this thesis.
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107.

102,

117,

118,

The specific example involves degeneracy.

3
4

"Novel™ with this thesis.
tiore than two factors doc not change the argument.

The nuber of industries (commodities) 1s also immaterial to
the argument. There should be at least two, however, for the

......

Though there are some problems concerninzg the assumption that
"changing prices will not chanse tlie technology". This is be-
cause we have two prir
VII - IX,

wry factors. Ses Koopmans (11) Chs.

Basically A, Hurter's model, simplified in a number of respects.
See section 4.1.3.

The model can be extended to any number of regions, conrodi
and primary factors. The particular nuwbers have been here
Aicity.

chosen for expositional sin

The following three paragraph explanation is novel with this
Lhesis,

cr. (21) p. 62.

BiteX?
p, &2 and (11) Ch. 3.

(7)), Hodel IV, )

It is usual for the inequality signs to be in the " £ " direction
ins the

in a maximization problen. This is readily achieved by char
sign convention, as will be seen later,

=1
(o= 20

(21). See also Isard, (9).

(7).
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Cf. M, Harwitz and A, Hurter, (7), p. 60.

L. Moses, (16).

L. Moses has used a model much more similar to Model VI in an
application. See (16).

K, Harwitz, A, Hurter and L. Moses have worked with the re-
search d1v131on of the Transportation Center of Northwestern
University, Evanston, Illinois.

This neceﬂ51ty is not explicitly recognized by Moses.

W, Isard, (2).

B, Stevens, (21).
"Novel" with this thesis. .
Cf. B, Stevens (21), and R, Kuewne (13), pr. 429-30.

This is based on an argument suggested to me by my adviser,
Or, P, 5, Dhruvarajan,
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