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This work provides an evaluation of the application of Artificial Neural Networks

(ANN's) to the problem of Short Term Load Forecasting (STLF) for a large and varied

geographical region with extreme weather conditions. Using data supplied by Manitoba

Hydro Electric Utility an ANN was optimized for forecasting the Manitoba firm system load

for the nest day. Feedforward ANN's using the Bacþropagation algorithm were found to

be well suited to STLF, combining both weather related and time sequence forecasting.

Direct comparison of the ANN using forecasted weather to the present method used by

Manitoba Hydro for a month chosen by Manitoba Hydro was performed. The forecasts

performed by Manitoba Hydro for that month resulted in an average percent error of 5.87o,

with the ANN forecast at 5 .6Vo using 24 hovr weather and 5 .9Vo using 4 hour weather. The

reliability of the forecasts using ANN's combined with their ability to perform at this level

without the aid of an experienced system operator, make ANN's an atÍactive alternative for

STLF. Findings using unsupervised learning algorithms supported the evaluation performed

using supervised learning, and are summarized in the Appendix.
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The electrical load is the power that an electrical utility needs to supply in order to

meet the demands of its customers. It is therefore very important to the utilities to have

advance knowledge of their elecfrical load, so that they may ensure that this load is met and

to minimize any interruptions to their service.

Short Term Load Forecasting (STLF) is the general process of forecasting the

electrical load of a utility from one minute to one day in advance. This forecast is then

utilized for the scheduling of system generation and load distribution. This allows for the

advance scheduling of power sales and/or purchases, as well as scheduling of general

maintenance on sections of the power system infrashucture.

Historically the need for short term load forecasting has forced its evolution in some

form by every elecrical utility. Originally STLF was performed solely on the basis of the

experience and observations of the system operator. Then, with the advent of the computer,

utilities found a tool that could be used to contain massive amounts of data and perform the

computations on this data to implement avariety of algorithms which could model the load

and exfrapolate or make forecasts based on this historical information. The particular model

and technique varied to suit the particular needs of each utility.



For Short Term Load Forecasting two general model types have evolved, with many

techniques for implementing both of them: time sequence models, and weather dependent

models t1-181. Hybrid models have arisen more recently, which separate the load into

weather dependent and weather independent components which are evaluated, then

combined to provide the forecast [1-2]. There have been five main techniques used to

implement the specific model [3]. These techniques are : Multiple Linear Regression [2,4],

Stochastic Time Series [5], General Exponential Smoothing [5], State Space Methods [1],

and Knowledge Base Expert Systems t611. The last technique represents a break from the

statistical approach of the othets, by attempting to perform forecasts by expressing the

operators experience and observations in terms of rules.

Recently a sixth technique has been used in the field of Short Term load Forecasting,

which also breaks from just improving the model. This technique, Artificial Neural

Networks (ANN's), like the Expert Systems, attempts to use experience and observations

to perform forecasting t8-181. However in the case of an ANN the knowledge is supplied

by the historical data rather than through the experience of an expert user, and. the system

learns for itself, representing this knowledgein amodifiable distributed weight matrix rather

then a fixed set of coded rules.

Research in the area of the application of Artificial Neural Networks to load

forecasting over various levels ( system to feeder ) and various time ranges ( short, medium,

and long term ) has shown much promise. However the thrust of this research seems to be

in the direction of single valued forecasts rather then over a continuous series, using sums

and averages with other techniques (as described above) to decrease the average error and

standard deviation of both input data and forecasts [8-13]. Furthermore they tend to use

large amounts of preprocessing and data selection schemes for the training data, creating

systems which may not degrade gracefully if the actual data used is in anyway inaccurate

lt2-r41.
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Manitoba Hydro CMH) currently employs a composite multiple linear regression

(MLR) technique to perform short term load forecasting. This technique has been found to

have many inherent shortcomings in both the algorithm and the method of implementation.

It is therefore desirable for MH to develop a new STLF system which addresses the current

problems, and which is sufficiently adaptable to meet their future needs.

Some of the problems with the MLR technique are :

the assumption of a linear relationship between load and weather variables,

the assumption of a uniform relationship over the entire day,

no tolerance for poor weather forecasts, and

the reliance on chosing a good "reference"t duy.

These problems with the present method of STLF at Manitoba Hydro must be

addressed by any new technique developed for them. This new technique must be able to

take advantage of non-linearrelationships, differentrelationships for differentregions of the

day, and to have inherent fault tolerance in order to compensate for bad or incorrec t data.

Furthermore, any new method should try to eliminate as many sources of error as possible,

such as the choosing of a reference day, to decrease demands on the valuable time of an

experienced system operator. One relatively new technique, ( to STLF ), that meets these

requirements is Artifìcial Neural Networks. This technique has recently been applied to

various forms of load forecasting, and has shown promise when compared with many

previous techniques t8-1 8l

The purpose of this thesis is to examine the use of ANN's for the problem of short

term load forecasting, for the Manitoba Hydro Electric Utility.

1. A day, from the past, on which to base the forecast.
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This thesis will look at the applicability of Artificial Neural Networks to perform

short term load forecasting, using historical data supplied by Manitoba Hydro Corporation,

between January 1989 and l/.ay 1992.

A variety of aspects of ANN's will be analyzedin determining a model suitable for

Manitoba Hydro. These aspects include the network architecture of the proposed models,

and method of raining. The focus of this research witl be on supervised learning2, using the

Bacþropagation (BP) algorithm. The network architecture will look at input and output

structure, hidden neurons, feedback and modular natffe of ANN's. Finally the training

structure for continuous forecasting will be evaluated.

The analysis of results will be based on the daily average percent errors and the daily

peak percent erfors, both of which are critical to MH.

Final results for each learning method will be compared with actual past forecasts

performed by Manitoba Hydro using their present method, for a month chosen by Manitoba

Hydro.

3-.3 ST'R.{JCTKJR.Ð

Chapter 2 provides a general background of the present method of Short Term Load

Forecasting at Manitoba Hydro and of Artifîcial Neural Networks. This is immediately

followed by a general infroduction to ANN's and a description of supervised leaming.

2. Unsupervised learning will be briefly presented in Appendix C.



In Chapter 3 the application of ANN's to STLF will be investigated using supervised

learning. This chapter is divided to examine the systematic evaluation of the application to

STLF with respect to the general and specific network architecture, and training structure

of the ANN.

A comparison of forecasting using ANN's, to the present method of forecasting

employed by MH is presented in Chapter 4.

Chapter 5 will then present the final conclusions and recommendations as

determined by this research.

Appendix A shows daily graphs of the comparison results presented in chapter 4.

Appendix B provides the tsP algorithm used in this research.

Appendix C gives a brief overview of ANN's implementing unsupervised learning,

and some results found using unsupervised learning for STLF.
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The present method of short term load forecasting employed by Manitoba Hydro is

Multiplel,ineanR.egnessionanalysis,orMLR [19]. MLRisbasedonthepremisethatthere

is a linear relationship between a dependent variable (F) and changes between one or more

independent variables (^.{il. This relationship is illusrrated by equation (1) :

F = âg*â1Å.4.1 +a,2AÃ2+a3Å.43+...

The MLR technique then calculates the coefficients â1, â2, ã3, ..., corresponding to each

independentvariable. Thesum, xaiÂÁ,,fori > l,thenbecomesthechangeinthedependent

variable due to the independent variables. The constant coefficient, ag, is the base value of

the dependent variable to which any change due to changes of the independent variables is

added. These coefficients are calculated so as to minimi ze the error between the right and

left hand sides ofequation (1) over a given system ofthese equations.

(1)



For STLF the dependent variable is the load, and the independent variables are

weather components. Manitoba Hydro uses three weather components in the MLR analysis.

These are temperafure (T), wind speed @), (neglecting wind direction), and sky cover (S).

The basic relationship which is analyzed at Manitoba Hydro is given as :

Al. = kr^T + k*ÂW + krÅS

where ÅX, is the change in load from a given reference day to the forecast day. Similarly ÂT,

ÁW, and ÂS are respectively the changes in the temperatue, wind speed and sky cover from

the given reference day to the forecast day. The coeff,rcients k1, lrry, and kg are calculated

using the MLR technique on a set of historical load and weather data. The system of

equations consists of one equation for each hour in a given hour set, of each day in a given

day set, for each year in a given yea.r set. The changes to the given variables are calculated

as shown in equations (3a) through (3d) below. The subscripts denote to which day the

variable is referring, F for the variable on the forecast day, and R. for the variable on the

reference day. For example, equation (3a) reads, the change in load is equal to the forecast

day load minus the reference day load.

(2)

ÂL - I-p-X-p

ÂT - Tp,-Tp

ÂW - Wp-Wp

ÂS = Sr,- SR

np - [-p + 
^f,

Substituting for Á[, using equation (2) gives us :

(3a)

(3b)

(3c)

(3d)

The forecasted load for a particular day is then given by rewriting equation (3a) as:

Øa)

Lp - L¡ + tri1 ÅT' + kw ÂIV + Bis ÂS (4b)



This is the same basic equation that the MI-R technique solves using historical data. The only

difference is that a reference day load is used instead of the constant coefficient or base load,

to which the change in load due to weather factors is added.

An example of how a daily load cuwe might be forecast based on equation (4a) is

shown in figure 2.1. In the system employed by MH the change in load is caiculated for

between four and six individual hours. A minimum of four hours are broken up into two pairs

of hours which border the ranges for the am and pm peak loads. These hours are 9:00 and

12:00, for the am peak range, and 17:00 and 22:00 for the pm peak range. The other rwo

hours consist of the am and pm peak hours of the reference day, if they are not already one

of the above four. The change in load for the remaining hours between 9:00 and 22:00 are

linearly interpolated, and for the hours before 9:00 and after 22:00 the change in load is

assumed to be the same as at 9:00 and22:00, respectively.

The coefficients [<1, [<14l, and ks are actually three sets of coefficients (one for each

of temperature, wind speed, and sky cover) which vary throughout the year in regular

patterns, and vary from year to year with system load growth (or decay). To remove any

anomalous data, the MLR technique requires data over a suffîciently long period of time.

However a balance must be struck so as not to average out the effect of system load growth

over this time. It was found experimentally that at least three to four years worth of data was

¿1000

s000 Forecast Ðay

Refenence Ðay

Change i¡¡ Load
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."'A'-- -
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requfued as a minimum, but that when approaching ten years of darathe growth factor could

not keep up due to the averaging effect. For this reason seven years of data was chosen.

Due to this annual regularity and the computational time required to perform the

linear regression, it was decided to calcuiate only one value for k1, [<y, and kg for each

month of the year, and to use non-linear smoothing to develop an annual set of points for

each coefficient. The system of equations that the MLR solves consists of one equation for

the daily peak hour, with the preceding and following two hours, for the weekdays or

weekends (but no holidays) of a given month of the year, for each of the last seven years.

Once the coefficients have been developed, the actual operation is quite simple. The

forecast day is chosen as the next day. A weather forecast for this day is supplied from an

outside source, at a time as close to the forecast day as is still useful to the system operator.

This data is then entered into a program along with advance knowledge of changes to

industrial load sites (ie. a200 M'W smelter shutting down for a month), and the forecast day.

The user is then prompted to choose a referenco day from the historic aI d,atabase. In general

a reference day must3 :

1) be the same day of the week as the forecast day,

2) be from the recent past (usually no more then one year), and

3) have similar weather pattems as the forecast day.

The user is then provided with the 24hotx load forecast, by means of equation (ab) above.

This system has been developed and used for the past several decades. In that time

it has been found that while in general performing adequately, there are several areas where

improvement could be made.

The area of greatest error using this system is the accuracy of the weather forecast.

While the accuracy of the weather forecast can not be improved, a system which would not

rely on this accuracy so greatly would be an improvement.

3. These characteristics do not hold for hotidays.



A second drawback to this system is that it heavily relies on having expert users. The

user is required to choose an appropriate reference day (based on the weather forecast), and

must evaluate the load forecast, correcting it or even replacing it with a nelv one. Choosing

the reference day is key to this system, as it is used as the base to which the calculated change

in load is added. For making this choice, the simple guidelines often lead to several choices

for referenc e day, but not all (or necessarily any) of them are good ones (a corrunon problem

in an environment with many extremes of weather and changes in weather). However the

er¡or for the load forecasts can range to over 20Vo even after the experienced user has made

corrections based on their outside knowledge. Therefore a system which could lower the

dependency on the choice of reference day and make fewer demands on the system user

would be advantageous.

Lastly there are the basic assumptions used to devise and apply this method. The

assumption that the relationship between load and weather is linear, that the change in load

depends on only one reference day, and that the relationship for each hour is the same for

a given day. To investigate these assumptions a nonlinear system could be developed with

various input data, and connection schemes. This system could then model both linear and

non-linear relationships, and would therefore be an improved system.

2.2 AR.T'åF'KCåAX, A{Ð{JR.Aå, NÐT' W@R.KS

An Artificial Neural Network (ANfÐ is a parallel disfributed system thar attempts

to model the connectivity and simple biologicalprocessing cells (Neurons) of the brain [20].

A parallel distributed system is one with a large number of processing elements

capable of working in parallel, and inter-connections between these elements. In this type
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of system, knowledge is not treated as local representation, as with the coeff,rcients with the

MLR process, butrather as disnibuted representation. Distributed representation means that

no single processing element has any consistently unique meaning. Instead it is the pattern

distributed over many processing elements which represent the knowledge of the system.

In an ANN the knowledge of the network is determined by rhe sfrength of the

inter--connections, called synapses, of the neurons in the network. This synapse sfength is

represented as a real number weight connecting the ouþut of one neuron to the input of

another neuron. With the MLR technique each coefficient has a specific meaning, and its

contribution to the ouþut is explicitly defined. In an ANN it is the combined effect of the

network inputs, and neuron ouq)uts, modified by these synaptic weightvalues through which

they flow, thatproduces the desired ouþut. No single weightvalue has any definite meaning.

Parallel distributed systems have certain advantages over other systems. In general

the knowledge (or weights) does not need to be explicitly known in advance. Instead the

knowledge can be learned by naining the network. This adaptability combined with the

distributed representation in the network is the property of recognition of similar patterns

and generalizalon to abstract patterns, within the network input space. It is this abitity that

allows an ANN to compensate and degrade gracefully in performance with bad training data,

and unreliable inputs.

Figure 2.2 shows a diagram of the iú Neuron in a feedforward Artificial Neural

Network. An ANN consists of r¡ basic processing elements called Neurons, (represented by

circles in the diagram). These neurons are connected to one another by uni-directional links,

(represented as lines). Each link has a real number weight, w¡, associated with it,

(represented by filled rectangles on the lines). For all of the feedforward networks we will

be using, the neurons will be cate1orizedinto one of three types. Those with external inputs

called input neurons, those with external ouþuts called output neurons, and those with no

extemal inputs or outputs called hidden neurons.

11



Neuron

.wii a¡ = F(neti)

FIGIJR.Ð2.2z Al{euron

In general each neuron in an ANN consists of three basic parts, the net input to the

neuron, the state of activation of the neuron, and the neuron ouþut. There may be many

classes of input to a neuron which affect the activation of the neuron in different ways. These

may be external inputs to the system, or the outputs of other neurons. Each class has its own

net input which is passed to the activation function. The activation function combines the

various net inputs of the neuron and the present activation of the neuron, to determine the

new state of activation of the neuron. The activation of the neuron is then passed to an output

function which produces the new neuron ouf¡lut, which can be passed to other neurons or to

outside the network.

As can be seen in figure 2.2 the basic neuron which we will be using, consists of

simplified versions of the three basic parts described above. The ift neuron computes a net

input equal to the sum of the output of the.ift neuron, o¡, times the weight connecting o¡ to

the ith nouron, w¡, for 1 s i < n . The net input is then passed to an activation function that

bounds the activation value to a predefined range. This function is typically a non-linear
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and differentiablea function called a sigmoid (S-shaped). Finally the ouþur is equal ro rhe

activation value of the neuron.

In the special case of the input neurons, the activation value is equal to the external

input, and passes this value directly to the neruon output.

There is also a method for updating the weights associared with an ANN, called the

learning rule. The learning rule and algorithm which implements the rule is specified for

each particular ANN, but they all have their roots in the hypothesis of D.O. Hebb [21] :

"Any two cells or systems of cells that are repeatedly active at the same

time will tend to become 'associated,' so that activity in one faciliøtes the

activity in the other."

"... A growthprocess accompanying synaptic activity makes the synapse

more readily traversed."

This hypothesis thatlearning occurs by changing the synaptic sfrength connecting associated

cells, and not in the cell itself is the foundation of the hebbian learning rule usually stated:

When two cells fire (are activated) at the same time, then the strength of

the connection between them should be increased.

and in general this rule can be written as lZ2l:

Âw¡¡ = eQa¡

where a¡ and a; are the activations of two neurons, i and j, then the change to the weight

proportional to the product of these two activations. The constant of proportionality, e ,

called the learning rate, and acts to scale the change to the weights.

Learning is performed by an ANN through the implementation of the learning rule

which changes the weight values interconnecting the network. During learning a set of

faining patterns, called the naining set, is presented one pattern at a time to the network.

4. This properry will be discussed in secrion 2.Z.zrheBacþropagation Algorithm.

(s)
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The training set pattern always consists of at least one component, an input vector. After each

fraining pattern input vector is presented to the network, all of the neuron activations are

updated, and neuron outputs are produced. Based on the updated neuron oufputs, the

network weights are updated following the particular learning rule. This update can occur

after each pattern, or can be accumulated over the entire training set, and then applied.

The specific ANN's that are to be evaluated in this research are discussed next. For

each algorithm we specify what kind of neurons are to be used, the general pattern of

connectivity between the neurons, and the specifîc learning rule to be implemented.

2"2"í SUPÐR.V{SÐÐ K,ÐAR,NTNG

Supervised learning is a class of learning rules which requires two components for

a training set pattern. This pair consists of an input vector and a target vector. The target

vector is used during the learning phase for comparison to the network ouq)ut, produced by

the particular input vector of the training pair. When the output vector does not equal the

target vector an error is produced, and the weights are adjusted.

The error function is defined using the Least Mean Square (LMS) error :

1-
Ðp = iT(toi-opil2 (6)

T

The error for each pattern Ðo is the sum of the LMS er¡ors as defined in equation (6), where

p indexes the specific training pattern, and i indexes each element in the target vector (tpÐ

and each corresponding ouþut neuron (ooJ. tlhe total error over all raining patterns Ð, is

then the sum of each naining pattem error.

E = Iro
p

(7)
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The weights are adjusted or updated by a learning rule, which is defined to minimize

the error function. There are many known algorithms which minimize multidímensional

functions. One class of minimization algorithms which has been found to converge quickly

in general and for ANN applications is the conjugate gradient (CG) minimi zation[23] This

technique will be used with the Back hopagation algorithm to minimize the error function.

2"2"2 BacEc Fropagatåona,&ågonåúhxm

The Back Propagation (BP) algorithms is so named because during training after

propagating the input vector through the network the weights are adjusted by propagating

the er¡or backwards through the network. This allows for the use of hidden neurons for

which the error function cannot be directly calculated.

In afeed forward network, such as in figure Z.3,therecan be alayerof inputneurons,

alayer of output neurons, and one or more layers of hidden neurons, connected in only one

direction. During Íaining only the output neruons have corresponding target vectors from

which to directly calculate the error component for each output neuron. For hidden neurons

the error must be propagated back from the output at each layer, so as to calculate the error

component for each hidden neuron with respect to its inputs. Only then can the weights

between a hidden neuron and each of its inputs be updated.

Input
Layer

ErßrIÞp,t 
" 

. d¡ ÀVVÀ\! -.J . 
^

algorithm is presented in Appendix B.

Feed Forward Ì{eÊwortr<

F{idder¡
[-ayers

Outpuû
X,ayen

Tnpuû Output

5. The

15



The lea¡ning rule for this algorithm, implementing CG minimization, is :

Åw¡¡ = /¡1- (8)

where Âw¡ is the change in weight connecting neuron j to neuron i, À is the distance to the

new minimum in the conjugate direction h, and h¡ is the component of the direction vector

corresponding to the component wij of the weight vector.

The algorithm requires the calculation of the negative gradient of the error function,

in order to minimize the error function with respect to the weight space.

'When 
a training pattern, p, is presented to the network, the er¡or is calculated for this

pattern as in equation (6). The negative gradient of the error function is [22]:

(9a)

where for ouçut neurons :

ôp¡ = (tpi - opi) a'(netpi)

and for hidden neurons :

ôpi = äðprwrri a'(netpi)

a(net) = --L -1 + e_out

Differentiating this activation function we get :

(eb)

(9c)

where k references the neurons in the layer above the layer being evaluated, so that they are

already known. This step is the back propagation of the enor previously described.

Equations (9b) and (9c) require that the activation function be differentiable to

implement the BP algorithm. The activation functions that will be used is a sigmoid called

the logistic function, which can be seen in figure 2.4, and is defined by equation (10a) :

l6

(10a)



a'(met)=a(1 -a)

Net Xnput

FtrGURE 2"4 : The LogistÍc A.ctivatior¡ Fu¡rction

(10b)
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3. ANALYSãS

3"L PR.OCÐE}{JRÐ

A systematic approach is taken to investigate the application of Artificial Neural

Networks with supervised learning (via the bacþropagation algorithm as described in

Chapter 2) to the problem of Short Term Load Forecasting. The approach is broken into five

areas, each building on the results for the previous aÍea : General Network Structure,

Structure of the InputLayer, NetworkModularization, Training, and Structure of theHidden

Layer.

To begin with the general network structure is investigated. In this area the question

of hidden layers will be investigated, as well as parallel versus serial output for daily STLF.

The results will be compared for each season, independentl¡ and then as a whole.

Then once a general network has been established, the structure of the input layer will

be investigated. This a¡ea is broken into two groups, the basic input types given to the

network, and feedback from previous time steps within the network (which is modeled as

input).

18



Once the input snucture for the network has been determined the method of training

the network will be evaluated. Specifically how often to fain, and how much naining data

to use will be evaluated, but not training parameters (such as the learnin g rate).

The next area to be evaluated is the modularization of the network into

sub-networks. This will be done in two parts : the days of the week, and holidays. For the

days of the week, the separation, or grouping of one or more days into a single network will

be determined. Also holidays will be included to evaluate whether they should or could be

incorporated, and if not what to do with them.

After determining the previous aspects of the network, the hidden layer(s) witt be

reevaluated (if any have been used).

In the first two areas the testing data is randomly chosen from the data set, then

starting with section 4, on training the network, the test data will represent forecasts for some

time in the future of all data from the corresponding training set.

3"2 GÐNER.A{, NÐT'WOR,K S T'R.UCT'UR.Ð

The first question to be asked is can an Artificial Neural Network learn to perform

the desired application, STLF, andif so whatis themostsuitableformforthenetworkto take.

To answer this we began with small training sets containing only a sample of seasonal

data, and data from weekdays (Monday to Friday). The data sets would be comprised of

information on weather, date/time, and load data. Five networks were then designed to be

ffained and tested with this data for each season. The first four have parallel input and output

(24 hours at a time) and evaluate the performance of the hidden layer(s). The use of hidden
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layers in an ANN can allow for feature extraction, with each hidden neuron representing one

feature, which may or may not be obvious when evaluating the problem. In general this

allows an ANN to perform better pattern recognition, which is basically the application of

load forecasting (extracting the weather-load pattern). The fifth network implements serial

(hourly) input and ouþut also using a fixed hidden layer.

The networks (14-1E) are :

14. A feedforward network with no hidden layer and 24 oatputneurons,

18. A feedforward network with t hidden layer of 206 neuron s and,24 output neurons,

1C. A feedforward network with 2 hidden layers of 20 neurons each (total of 40 hidden

neurons) and 24 output neurons,

lD. A feedforward network with 2 hidden layers of 10 neurons each (total of 20 hidden

neurons) and24 output neurons, and

1E. A feedforward network with t hidden layer of 20 neurons and 1 output neuïon.

Each of these networks will be trained using the same data. The format of the data

is presented in table 3.1 for each of the two representations.

Table 3.X : T'he Input and Output Ðata for the Thaining and T'esting Sets

The main difference is that the serial input (network lE) requires the knowledge of

the hour for which the data applies, while the position of the neuron in the parallel nerworks

(14-1D) defines the hour that it represents. Each data type is represented as either binary

6. The initial number of hidden neurons (20) is based on work done with Dr. Kermanshahi ¡1gl.

Data Type Parallel # Neurons Serial # Neurons

Input Day of the Month Binary 31 31

Input Day of the Week Binary 5 5

Input Hour Continuous Not Used N/a An Hour 1

Input Temperature Continuous 24 Hours 24 At Hour I
Input Wind Speed Continuous 24 Hours 24 At Hour i
Input Sky Cover Continuous 24 Hours 24 At Hour I

Output Load Continuous 24 Hours 24 At Hour I
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(0,1) or continuous [0,1], with only five binary neurons for the day of the week as only

weekdays are being considered.

To begin with each network is trained and tested using data chosen from only one

season at a tkne, for which the training and test results are shown in tables 3.2 and 3.3

respectively. The results presented are the avera1epercent error (Avg.) and the daily peak

percent error (Peak). These are calculated as follows :

Fencent Ðrnon - lActual n'oad-Fonecast I-oadl x r00vo (16)
A,ct¡¡a{ Load

N,A
X E Fercent Ðnnon(i,j)

.Avg.=+ e:lnx24

Feah = Ë Pencent Ðnnor(i,Feak Load F{our) (1g)
i=1

where n is the number of days in the respective set, and i,.i reference the day and the hour

of the day in question (only one hour being important to the peak calculation).

Table 3.2 : Training Resutts for Seasonal Training

For each of the networks, the h'aining results were quite good. While the er¡orresults

for networks 1A and lE being consistently higher on average, a few of their peak forecasts

performed quite well, notably network lE in the suffrmer. The results for network 1A were

perhaps the most surprising, that it did so well without a hidden layer.

Netwonk

Winter Spring Summer Fall

AvE.
(vo)

Feak
(v"\

AvE.
(vo)

Feak
(vo)

Avg.
(vo)

Feak
(vo)

AvE.
(vo)

Feak
(vo)

1A. 3.6 3.5 3.6 3.0 5.2 4.3 3.9 s.1

[ts 2.9 2.8 3.4 2.9 4.1 3.6 3.7 2.9

NC 2.9 2.6 3.6 3.0 4.0 3.6 3.8 2.9

xÐ 2.9 2.6 3.6 3.0 4.1 3.6 3.8 2.9

nÐ 3.9 5.Õ 4.6 5"1 4.6 2.4 4"9 3.6
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Ne&worår

Winten Spring Su¡¡lmrer Fall

avg.
(%)

Fea[<
(vo)

avg.
(vo)

Fea[r
(Vo)

AvE"
(vo)

Fea[i
(vo)

Avg.
(%o)

Feak
(Vo)

1"A 5.I 2.7 7"6 2"1 5.! 4.E 5.t 2.&

Its 4.3 2.1 6.3 4.3 4.8 4.7 4.8 3.0

x.c 4) 2.1 6.6 4.5 4.9 5.2 5.3 3.2

fÐ 4.! 2.6 6"6 4.5 4.9 5.2 5.3 3.3

LÐ 5.¡ 5.8 8.3 6.8 5"(D 4.9 6.L 5.9

Table 3.3 : Test Results for Seasonal Tnaining

The testing results were good with an avelage close to or below five percentT, with

the exception of network lE, the network with serial input. Also the spring season had

higher averageerrors for the testing data, then the other seasons. This was expected as spring

and fall usually are the hardest to forecast, due to the variation in the weather from day to

day. I{owever the fall errors were more similar to the sufftmer season then to the spring

season, not as expected.

Network 1A again performed better than expected. It is consistent with 5.1 percent

error for the test data (except for the spring season 7.6), and gives excellentpeak forecasts.

This indicates that for peak forecasting at the seasonal level, the STLF application may not

need a hidden layer. However that still leaves the problem of the spring results, and the other

features associated with forecasting the daily load.

Networks 18, lC, and lD all performed simitarly in both training and testing.

However their response to the spring data was also quite poor. This leads to the possibility

that seasonal training does not provide sufficient data for the times of change between winter

and summer, or that the training set is to small, and the network is memorizing (using each

hidden neuron to recognize a particular training pair) instead of gener alizing.

Network 1E performed the worst throughout the four seasons, and did not perform

the peak forecasting as well as with the fiaining data.

7 . Five percent avelage error is the benchmark for good forecasting at MH.
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The next step is to retrain and test these networks with data from all four seasons at

one time to try and improve the results (particularly for the Spring). Table 3.4 shows a

comparison of the previous testing results, averaged over the four seasons, with the test

results for each network trained and tested with the composite annual data set.

Ne&work

TVith Seasonal
Tnaining

WÍth A,nnual
Training

AvE.
(7o)

Feak
(vo)

Avg.
(vo)

Feah
(%)

NA 5"7 2.9 7.3 5.2

1"8 5.n 3.5 4.9 3.6

IC 5.3 3.8 5.0 4.n

x.Ð 5.2 3.9 s.0 4.X

1Ð 6.3 5.9 5.9 6.2

Table 3.4 : Comparison of Test Results Eetween Seasona[ and Annual T]aining

It can be seen that with annual training, there is a drop in the average error of all of

the networks with hidden layer(s), 1B-1D. This reduction in error \Ãias mostly in the data

corresponding to the spring season.

Network 14, with no hidden layer had adramaticincrease in error, mostly from the

winter and summer seasonal data. This can be explained as an averaging effect over the

network with no hidden layer to identify more than one feature, as the peak load is no longer

consistent over all of the data as it was with the individual seasonal data. The result is the

averaging of high and low peak values, indicated by the dramatic increase in the average

peak error.

Networks 18, 1C, and 1D again had very consistent results, the best of which was

network 18. These results reinforce the idea that a network with more then one hidden layer

can be replaced by a network with a single hidden layer of the same total number of hidden

nourons in it as in the original network [24]. Furthermore, it indicates that 20 hidden neurons

is sufficient (though not necessarily optimal). The improvement in the results can be
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atfibuted to the larger composite taining set, which now is large enough so that we need

not fear memorization of the training data, and for each season the network has knowledge

of 'unseasonable' weather / load relationships.

Network 1E shows the most improvement, for similar reasons stated above, it still

performs quite poorly (even worse) for the peak hours. Due to this poor peak performance,

and continued higher average errors, the serial network configuration does not warïant

further investigation at this time.

The general network structure will be that of network 18, a feedforward ANN with

a single hidden layer of 20 neurons, and parallel input and output (24 output neurons). The

specific input configuration will be determined in the next section. The training set will be

comprised of the composite data set (representative of all seasons), and will be investigated

further in section 3.4.

3"3 STR.UCT'UR.E OF' HNPUT T,AVER.

The sffucture of the input layer will now be investigated, to determine both what type

of data should be used, and how it should be represented. Furtheûnore the use of feedback

dat¿ as input to the network will be tried for appropriate types of data.

3.3.I TNPLIT'T'VPES

The basic network configuration that was chosen from section 3.2 is summarized in

table 3.5, and will be considered as a base case and used for comparison to other input

configurations.
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Data Type # Neurons

Input Day of the Month Binary 31

Input Day of the Week Binary 5

Input Temperature Continuous 24

Input Wind Speed Continuous 24

Input Sky Cover Continuous 24

Hidden N/A N/A 20

Output Load Continuous 24

Table 3"5 : tsasíc l{etwork Configuration

Table 3.6 (on the next page) lists each variations on the base case, labeled network

21', that will be considered. Each variation is made one at a time, so that their individual

effect may be evaluated. The variations include removing each input type, except

temperatue whose relationship with load is mostprominent, as well as changing the manner

of representation of the temperature and wind speed inputs. Also two additional inputs are

evaluated, the month of the year (binary), and the hourly windchill (continuous). The

windchill is calculated from the temperature and wind speed at a given hour in the manner

used by Environment Canada, who cunently supply the weather forecasts to MH. The

calculation is :

windchilr = r.1626x 
[ro.+s 

* (ro o ffi)-*] o [lr - r] (1e)

where T is temperatue in degrees Celsius, and V/ is wind speed in meters per second.

From cases 28, 2D and 2N the training and testing results indicate that a network

without the day of the month, the month of the year and the sky cover inputs perform as well

or better than the network which include them.

From case 2C the training data indicates that the network could be Íained just as well

without the day of the week, however the test performance is slightly worse without it.

8. All va¡iations in this section are to the input layer only.
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Case Data Type # Neurons

Training Testing

Aug.
(7o)

Peak
(vo)

Avg.
(Vo)

Peak
(vo)

2A Base Case N/A 3.6 2.9 4.9 4.6

2B No Day of the Month 0 3.6 3.1 4.6 3.9

2C No Day of the Week 0 3.6 2.8 5.2 4.7

2D Add Month of the Year 72 3.6 3.0 4.9 4.5

2E Degree Days Temperature 48 J.J 2.9 4.3 4.3

2F Maximum Temperature 1 4.0 3.0 8.3 5.9

2G Maximum Temperature
and Temperature Range

1

1

4.1 3.2 8.1 6.0

2H Mean Temperature 1 4.1 3.0 8.1 5.8

2t Mean Temperature and
Temperature Range

1

1

4.7 3.2 8.1 6.0

2J No V/ind Speed 0 3.7 3.0 5.2 4.9

2K Maximum Wind Speed 1 3.7 3.0 5.1 4.9

2L Add \Vind Chill 24 3.4 2.8 4.0 4.5

2M Add Wind Chill and
No Wind Speed

24
0

3.4 2.9 3.8 4.2

2N No Sky Cover 0 3.5 3.1 4.2 4.4

Table 3.6 : Network rnput confÏguratÍons and Results for rnpuû Tlpes

From cases 28,2F,2G,2H, and2I again both the faining and the testing data confirm

that for the presentation of temperature input, the full set of daily temperature values, with

each hours data represented by 1 (base case 2A) or more (case 2E) neurons is appropriate.
'When single values representing an hourly temperature (with and without the temperature

range as well) the average errors nearly double, with a coresponding increase to the average

peak hour error. The manner of presentation in case 2E was to split temperature across two

inputs representing 'degree days'g. One input represents the temperature for heating days,

( <20'c ), and one for cooling days ( > 20' c ), for each hour of the day.

The training and testing results for cases 2J and2K indicate that the wind speed has

some affect and that as with temperature, hourly presentation is preferred. However as with

9. A reference to the division of days into heating or cooling days employed by MH.
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the cases 2C and 2D the differences are not very large. This leads us to investigate other

methodsofpresentationofthewindspeeddata. Onesuchinputiswindchillwhichcombines

both wind speed and temperature (this has the added advantage of reinforcing the

temperatüe input). Cases 2L and 2M show that replacing the wind speed input with the

corresponding hourly windchill input is the preferred manner of incorporating wind speed

data.

3"3"2 F'EÐÐBACK

Feedback is a connection made from a nouron in the network back into the network,

so that neurons' output at time t becomes some input at time t+l. The time increments we

are using are days, with each input from a given day presented in parallel and the days output

made in parallel. Therefore we will use the term feedback to refer to inputs from days

previous to the forecast day.

It makes sense at this point to feedback weather data, but not date information, as the

feedback of date datawould always be the same, (ie. Tuesday alwaysprecedes Wednesday).

Furthermore, from the previous section it was found that the inputs with the most affect on

the network were temperature and wind chill. Therefore these will be attempted as feedback.

The other, more commonly recognized, feedback will be from the ouþut, the load. Flowever

only one of the hourly loads will be used, in an attempt to give the network a starting point

as to the load in the recent past.

Table 3.7 shows the results for training and testing for each case of feedback.

Networks 2O-2P show that one or two days previous temperature data improves the network

performance the most. Increasing the number of previous days temperature furthe r QPaQ)

still gives better performance than the base case, but has increasing error.
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Case Data Type # Neurons

Training Testing

Arrg.
(vo)

Peak
(vo)

Avg.
(7o)

Peak
(vo)

2A Base Case N/A 3.6 2.9 4.9 4.6

20 Temperature 1 past day 48 3.3 2.7 3.7 3.9

2P Temperature 2 past days 96 J.J 2.8 3.7 3.8

2Q Temperature 3 past days TM J.J 2.8 4.1 3.9

2R Temperature 4 past days 192 J.J 2.8 4.5 4.2

2S Wind Chill I past day 24 3.4 2.7 3.8 4.2

2T Load from past hour 24 1 3.5 2.9 4.7 4.5

2U Load from past hour 1 1 3.6 2.9 4.7 4.3

2V Load from past AM peak I 3.6 2.9 4.6 4.3

Table 3.7 : Network Xnput Configurations and Results fon Feedbaclc

Network 25 indicates that a windchill feedback may also improve the network. This

result may be a reflection of the temperatue component of windchill, and if so would

probably react as networks zPlQwhen combined with temperature feedback.

The load feedback was tried for three different hours, 1:00, 24:00, and the AM peak

hour. How 24 was used to provide continuity to hour 1 of the forecast day however at

forecast time this value would not be known and present another source of error by using the

forecast value rather then an actual value. F{our 1 was then tried to see if it could convey

the same information. Finally the AM peak was tried as it would seem to be the most

appropriate, generally being the most recent known hour at the time of forecast, and giving

a consistent value to indicate recent load patterns. From networks 2T -ZY both the training

and testing results indicate that load feedback does enhance the network, and that each

choice ofhour for the feedbackprovides roughly equivalentresults.
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From section 3.3.1, it was found that the types of input which lent themselves to this

application were temperature (in degree day form), wind chill, and possibly the day of the

week.

Composites of these input types will now be considered to determine the best input

set. Furthermore due to the inherent relationship between temperature and load, temperature

will always be considered.

Table 3.8 presents the summary for the four cases considered :

Table 3.8 : Results for Cornposite nnput Variations

The average error for the training set for each of the cases were similar, with the cases

using windchill having better results for the daily peak hours. For the test set, network 2-3

ouþerformed the other networks both overall and for peak hours. Networks2-2 and24

both using the day of the week input had the highest average erïors, but better peak

performance then network 2-1 without it. It would seem though when comparing networks

2-3 and 24 that day of the week, if included, may possibly become to relied on by the

network. That is, conflicting weather and day dat¿ will result in chosing the day over the

'weather for the load forecast, when the weather should win out in influencing the final load.

From section 3.3.2thefeedback to be evaluated with this composite input will be two

days previous temperature, the previous days windchill, and the previous days AM peak

Case Input Data Type

Training Testing

Avg.
(vo)

Peak
(vo)

Arrg.
(vo)

Peak
(vo)

2-r Temperature alone 3.7 3.1 3.6 4.3

2-2 Temperatue, and Day of the V/eek 3.7 3.0 4.2 4.0
a2 Temperature, and Wind Chill 3.5 2.6 3.4 J.J

24 Temperature, Wind Chill, and Day of
the'Week

3.7 2.7 3.8 3.8



load. The two days temperature feedback was chosen over the one day feedback due to the

observed general performance increase with increased temperature data, and slightly better

performance of that network during peak hours. Temperature is again always considered,

and combined with each other combination of feedbacks.

Table 3.9 presents the summary for the four cases considered :

Tabtre 3.9 : Results for Composite Feedback Variations

All of the networks with feedback have nearly identical training results, better than

without feedback. Network 2-5 has the best testing results, with an averageerror equaling

that of network 2-3 without feedback, but with an even better average peak error.

Therefore the input sffucture of network 2-5 will be chosen, and the modified

network sfructure is shown in table 3.10.

Data Type # Neurons

Input Temperature of the Forecast Day Continuous 48

Input Temperature 1 Day before Forecast Day Continuous 48

lnput Temperature 2 Days before Forecast Day Continuous 48

Input Wind Chill of the Forecast Day Continuous 24

Hidden N/A N/A 20

Output Load Continuous 24

Table 3.n0 : IVÏodified l{etwonk Configuration

Case Feedback Data Type

Training Testing

Avg.
(To)

Peak
(7o)

Aug.
(vo)

Peak
(vo)

2-5 Temperature alone J.J 2.7 3.4 2.5

24 Temperature, and Load J.J 2.6 3.7 2.8

2_:7 Temperature, and Wind Chill J.J 2.8 3.6 2.7

2-8 Temperature, Wind Chill, and Load J.J 2.6 3.6 2.7
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With the basic network configuration determined a method of training the network

must be devised for the actual application of load forecasting.

For this application the network is to be trained with data from some period before

the forecasting period. Testing of the network is then performing forecasting by using input

data from the forecasting period, rather then randomly from the entire period. The amount

of training data to be used needs to be determined, as well as how often to update the training,

and whether or not to use the previously leamed weights as an initiat weight set when

updating the training.

The training data for all cases evaluated in this section will again be limited to

weekday data with no holidaysl0. The fraining set will be chosen from data for upro one

year before the forecast date, since that has proven sufficient so far and will have the most

similar magnitude to the current (forecast date) systempeaks. Each case will be trained so

as to perform forecasting on each month of the year for the year 1990.

Four cases will be investigated:

3A Training with a seasonal subset as previously used in sections I and},updated as new

seasonal information becomes available with new random weightll sets to start each update,

3B Training with the complete previous years data, updated each month with new

random weight sets to start each update,

3C Training with the complete previous years data, updated each month starting each

update with the previous months weight set,

3D Training with the complete previous years data, updated each week with new random

weight sets to start each update.

10. Holidays are defined :r:r3.5.2.

1i. For cases A, B, and D all initial random weight matrices are the same. For Case C the first random
weight set is the same used by the other cases.

31



The forecasting results are tabulated in t¿ble 3.11 for each month, and the year as a

whole. The training results are notpresented, as they were consistent through each case, with

only the results from case A (the seasonal subset) being on average 0.I Vo higher average

percent erTor.

Table 3.X.X. : Forecasting R.esults for Ðiffenent Tþaining Stnuctures

For case A the results show that tuaining with a seasonal subset is not adequate for

forecasting. This indicates that the seasonal subset is not a good enough representation of

the problem.

For cases B and C we see much improved, and far more consistent results. The

average error in all months except for July are acceptable. While case C, which used the

previous months weight set for initial weight values, did require on average 10 to 15 percent

fewer iterations, it did not perform as well as case B, starting from one random weight set.

Case A Case B Case C Case D

Avg.
(vo)

Peak
(vo)

Aog.
(vo)

Feak
(7o)

Arrg.
(vo)

Peak
(Vo)

Avg.
(vo)

Peak
(vo)

January 4.0 3.7 4.4 s.6 4.4 5.6 3.8 5.0

February 22.9 20.7 3.2 3.8 J.J 4.1 3.t 3.8

March 16.5 14.3 J.J 3.4 3.2 3.1 3.4 3.1

April 3.5 3.1 2.8 2.0 2.9 2.0 2.9 2.2

May 7.7 5.9 3.9 4.3 4.0 4.3 3.6 3.6

June 5.5 5.5 4.6 5.6 4.6 5.7 4.4 5.4

July 7.3 4.2 8.5 4.3 8.5 4.3 7.4 4.3

August 11.5 6.4 3.t 3.5 3.1 3.6 J.J J.J

September 10.0 7.7 3.4 2.7 3.4 2.7 3.3 2.3

October 5.0 6.2 4.3 5.7 4.5 5.4 4.3 4.8

November 4.3 5.2 4.4 5.6 4.3 5.6 4.2 5.4

December 19.4 19.6 5.3 7.8 6.0 8.4 5.2 7.2

Annual 9.7 8.4 4.3 4.5 4.4 4.6 4.1 4.2
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Case D performed the best overall, but still very close to cases B and C, except for

July, where it performed consicierably better than these cases (although still not good

enough)' This then indicates that the weekly training is superior to the monthly training, not

so much when the forecast weather /loads follow a predictable pattern, but instead when the

pattern is more difficult, as with July.

As well as the July data, the average peak error for December was quite high for each

of the cases. This was mainly due to higher peak eïrors in the days preceding Christmas, and

the week between Boxing Day and New Years. These days tend to act as pseudo holidays,

with similar daily load curves ro normal, bur lower daily peaks (by 300-500 Mw).

For ease of comparison, the remainder of this chapter will continue to use the

monthly training and forecasting, as it is the comparison of different cases, and not actual

forecasting which is being compared.

-i"5 Þ{ÐT'W@R K ruãOAWJA,AR.Kø,ET'ETN

There is a question as to the modular aspect of an ANN, for a particular application.

To make an ANN modular is to break up a network into several isolated sub-networks, each

of which have the same general architecture, but serve a different purpose.

There are several manners in which a network for load forecasting could be

distributed across modular networks. Seasonal networks are one manner of modulari zation,

ie. one sub-network for each season brought together as one network with only the

appropriate sub-network active atthe same time. This would be similar to combining one

of the individual networks trained with only seasonal data from section 3.2. However it was

determined that an annual network performed better than the individual seasonal networks.
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Furthermore the seasonal information is maintained through the periodic updates as new

data becomes available.

In section 3.3.1 the composite results indicated that we could remove the day of the

week input, but the individual results indicated that this input had some value. Furthermore,

until this point only weekdays have been considered, not weekends. This allows for further

evaluation of how to represent data from different days, and groups of days of the week, and

the possible exploitation of network modularization.

Other data that has yet to be evaluated are holidays. This again could lead to

increased modularization in the network, with a special network for holidays, or perhaps

holidays should be included with non-holidays, using an additional input to represent such

days.

3.5"1 ÐAVS 0F T'F{E WÐEK

There ate two general ways to pass information regarding the day of the week to an

ANN.

The first method is to directly supply the information to the ANN, in the form of an

input. This method has already tried and rejected in section 3.3.3.

The second method is to present the information indirectly. This is done by breaking

up the network into several modular networks operating independently, each representing

one or more days of the week. Then to forecast for a particular day, non-zero data would

be supplied to the network representing that day.

Table 3.12 shows the results (on a seasonal basis) for each network that was tried.

These include seven daily networks for each day of the week as a separate network (Monday

through Sunday), a network that just combines Tuesday, Wednesday and Thursday data
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(TV/T), two networks that combine Monday-Friday (weekday) and Saturday-Sunday

(weekend), and finally a network for the entire week (weekly). These results are brought

together in table 3.13 for comparison of average composite results on a weekly basis.

Table 3.î2 : Forecasting R.esutts for Farallet Ðay of the Week Netwonks

There are seven ways of combining this data for weekly results :

Daily, s, s - the average of Monday - Friday, saturday and sunday networks,

TIVT, S, S - the average of Monday, TW! Friday through Sunday networks,

v/eekday, s, s - the average of the v/eekday, saturday, and sunday networks,

Daily, Weekend - the average of the Monday - Friday, and weekend networks,

weekday, weekend - the average of the weekday and weekend networks,

T\¡/T, 'Weekend 
- the average of the Monday, Ts/T, Friday, and Weekend networks,

V/eekly - the average of the weekly nefwork.

Winter Spring Summer Fall

Avg.
(vo)

Peak
(vo)

Avg.
(7o)

Peak
(vo)

Avg.
(vo)

Peak
(To)

Avg.
(vo)

Peak
(vo)

Monday 3.1 4.5 3.1 1.8 7.9 4.8 5.0 7.1

Tuesday 4.3 4.8 4.9 2.9 7.7 5.5 4.9 6.8

V/ednesday 4.8 3.4 4.6 4.0 13.4 8.1 5.3 7.2

Thursday 6.5 8.1 5.5 3.8 TT.4 7.0 3.6 5.7

Friday 3.7 3.4 4.9 3"4 8.2 4.0 s.9 7.5

Saturday 3.0 4.t 3.8 2.2 7.4 5.8 5.2 5.7

Sunday 3.0 3.9 3.9 5.6 7.3 4.6 5.5 9.0

TWT 4.6 5.9 3.7 3.1 9.0 5.5 4.5 6.0

Weekday 4.4 5.6 2.8 2"t 8.5 4.3 4.3 5.7

Weekend 2.9 3.6 3.9 3.7 7.3 6.6 4.6 6.9

Weekly 5.1 6.1 6.8 8.9 9.3 8.9 8.3 tl.7
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Daily,
S,S
(vo)

T\Ã/T,
S,S
(7o)

V/eekday,
S,S
(vo)

Daily,
W'eekend

(vo)

TWT,
Weekend

(Vo)

Weekday,
'Weekend

(vo)

Weekly

(vo)

Winter 4.1 3.9 4.0 3.9 3.9 3.9 5"1

Spring 4.3 3.8 3.r 3.8 3.8 3.1 6.8

Summer 9.0 8.6 8.2 8.6 8.6 8.1 9.3

Fall 5.1 5.0 4.6 4.8 4.8 4.4 8.3

Annual 5.6 5.3 4.9 5.3 5.3 4.8 7.4

Table 3.n3 : Composite R.esults for,{verage Weekly Ferfo¡.rnance

The best results were obtained when training the network for weekdays and

weekends separately. The weekdays were best tained as a group including data from

Monday through Friday, with no day of the week indicator. The weekends produced similar

results when trained with both Saturday and Sunday, as when trained separately. The peak

hour forecast may be improved upon by separate network, to avoid averaging.

3"5.2 F{OI,mAYS

As with the days of the week, holidays can also be represented directly, or indirectly.

When represented directly they have an additional input to indicate that the day in question

is a holiday. Indirectly, they may be ûained in a separate network, with only holiday data.

Finally a combination of the two would result in holidays, and non-holidays in modular

networks, but with training of the holiday netwo¡ks including non-holiday data,and an input

indicating holidays.

For the holidays three cases were evaluated :

4A The network having a binary holiday neuron, with training data inco¡porating

holidays treated as either weekday or weekend depending on actual occurrence of holiday.

4B The network having a binary holiday neuron, with naining data incorporating
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holidays treated as weekends only no matter when the occurrence of the holiday.

4C The basic network trained exclusively with holiday dara.

At present holidays are treated as weekends by MH for STLF, regardless of when

they occur during the week. For thatreason network 4B is included, to see whether the ANN

holiday forecasts are better as weekends, or as they occur in the week (network 4A).

Table 3.14 shows the results for those days chosen as holidays by MH. It should be

noted that no distinction is made between statutory and non-statutory holidays, or between

holidays which vary in date from year to year (maintaining the same day of the week) and

those which occur on the same date each year.

Table 3.14 : Forecast R.esults fon each Floliday

The results clearly indicate that the networks for case 44, performs the best for

forecasting holidays. These are the weekday and weekend networks, modified to include

a holiday neuron, and nained with both horiday and non-holiday data.

Holiday Date

Case 4A Case 4B Case 4C

Avg.
(vo)

Peak
(To)

Avg.
(7o)

Peak
(vo)

Avg.
(7o)

Peak
(vo)

New Years Jan. 1,1990 3.6 0.4 5.3 9.3 4.6 .6

Good Friday Apr. 13, 1990 2.9 0.3 4.8 2.2 8.1 7.6

Easter Apr. 15, 1990 9.9 9.0 5.5 5.2 8.9 10.9

Easter Monday Apr. 16, 1990 9.9 13.8 11.0 75.2 5.8 7.7

Victoria Day May 21, Igg0 4.5 2.8 6.1 2.7 8.6 6.3

Canada Day Jul. 7,1990 7.6 1.0 6.1 3.0 9.2 4.3

August Aug. 6,1990 3.2 8.4 15.5 11.3 12.4 5.0

Labor Day Sep. 3,1990 3.5 0.3 4.9 5.6 5.4 7.9

Thanksgiving Oct. 8, 1990 3.9 2.2 3.2 r.3 4.1 3.5

Remembrance Day Nov. 11, 1990 3.6 5.1 4.9 r.7 3.1 5.6

Christmas Dec.25, 1990 2.9 6.0 2.6 8.7 8.3 6.8

Boxing Day Dec.25, 1990 1.1 0.8 2.1 0.2 14.3 17.2

Average 4.7 4.2 6.0 5.5 7.7 7.0
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Now the question remains of whether modular net\trorks for holiday and non-holiday

forecasting is required. Table 3.15 shows the average error and avera1epeak error for each

months' weekday and weekend network for which there is a holiday. In each case it is

specified whether the network is weekday or weekend, and in the case of April both are used.

For proper comparison the average for the networks trained with holiday data is only over

the days of the month which were not holidays, rather than over the entire forecast period.

The results indicate that the average error is consistent over both cases, however the

average peak error results show that there is a difference over the distribution of the average

error. The networks trained with holiday data show average peak eTrors which are

consistently greater than or equal to the networks frained without holiday data, (with the

exception of May 4.2Vo < 4.3Vo). In particular the difference in the November peaks is

unacceptable.

Month Nerwork

With Holidays Without Holidays

Avg.
(7o)

Peak
(vo)

Avg.
(vo)

Peak
(vo)

January Week Day 4.4 5.6 4.4 5.6

April Week Day 3.0 2.4 to 2.0

April Week End 4.2 3.8 4.0 3.7

May Week Day 4.0 4.2 4.0 4.3

July Week End 7.3 6.5 7.3 6.4

August V/eek Day 3.2 3.6 3.1 3.6

September Week Day 3.4 3.r 3.4 2.7

October Week Day 4.6 6.1 4.5 5.4

November V/eek End 4.0 8.5 4.0 3.8

December V/eek Day 5.8 8.8 6.0 8.4

Table 3.15 : Forecast R.esults for Non-F{olidays T'rained WÍth & Without Flolidays

For this reason the holiday and non-holiday networks will be implemented as

separate modular networks.
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With the network structure in place, as to basic configuration, input t)T)es, training

method and parallel structures, the original decision to use twenty hidden neurons in the

hidden layer will now be analyzed. The weekday andweekend networks were trained and

used to forecast for each season of the year (represented now by January, April, July, and

October). This was repeated ten times with diffe¡ent initial random weight sets each time.

The results were then averaged and normalized. The results are graphed on the following

page in figures 3.1 and 3.2 for weekdays and weekends respectively.

Only the non-holiday networks were used, since the holiday networks performed

quite similarly to the the non-holiday networks in previous cases.

From these graphs an approximate curve is fit to the plotted data. The data, and the

curve, indicate that for both weekday and weekend networks at least four or fîve hidden

neurons are required to produce satisfactory results. Furthermore from the approximate

curve it is evident that minimum average error occurs with approximately ten hidden

neurons for each network. Therefore ten hidden neurons will be used for the final network

configuration.

These results are interesting, since before any actual analysis was performed, simple

observation of an annual set of daily load curves yielded at least four recogn izable features.

These were :

- double AM and PM peak with a valley between them for Summer daily load curves,

- a broad peak continuing between the AM and PM peaks for Winter daily load curves,

- the system peak over Winter loads, and

- the system minimum peak in Spring and Fall.

This reinforces the idea of hidden neruons acting as feature extactors, and that

ANN's can extract features that are not readily apparent.
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It was quickly determined in section 3"2 that Artificial Neural Networks using

supervised learning and feedforward networks is applicable to the problem of short term load

forecasting. Furthermore it was apparent that a network featuring parallel input and output

for daily load forecasting was the most suiøble. Performance for this network was enhanced

with a single hidden layer, and that additional hidden layers performed similarly, with no

performance improvement in exchange for their added computational burden.

From the basic network structure illustrated in table 3.5, the input sfiucture was

evaluated, both adding and subtracting input types12, as well as the manner in which these

ty¡les were presented to the network, resulting in the updated network structüe of tabte 3.10.

With the network input determined, the method of training (that is how often, and

with what range of data), to perform actual load forecasting was investigated. Training with

complete annual data was found to perform much better than training with composite

seasonal data, and more frequent retraining was found to give only modest improvements

when forecasts were good, but considerable improvement when forecasts were not so good.

Also by restarting each taining update from a random initial weight set, while taking a little

longer to train, found better minimizations for each new forecast period, than starting from

the previous final weight set.

The modularization of the network was then evaluated. It was found that rather than

one network with the given configuration for all days of the year, that four networks of

similar configuration would make up the load forecasting network. These networks are one

for weekdays, one for weekends, one for holidays on either weekdays or weekends. The

networks for holidays differ only with the addition of an extra input neuron to indicate

whether the input is a holiday or not, and that their trainin g dataincludes past holiday data.

12. This includes feedback, modeled as inputs.
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Finally the hidden layer was examined to verify the initial choice of twenty hidden

neurons. It was found that the performance could be maintained with a minimum of four

to five hidden neurons. However the avenge (over all seasons, and a variety of initial

random weight sets) indicateda need for ten or eleven hidden neurons.

This leads to the final configurationsl3 shown in table 3.16 for the non-holiday

networks and table 3.I7 for the holiday networks. The training for each network can be

performed at one week intervals, for forecasting of the following week. The weekday

networks may be rained during the weekend before they are to be used, and similarly the

weekend networks may be trained during the week (Monday to Friday) before they are to

be used. This allows for plenty of time for training the networks in advance of their use, while

allowing for frequent updates as indicated.

Data Type # Neurons

Input Temperature of the Forecast Day Continuous 48

Input Temperature 1 Day before Forecast Day Continuous 48

Input Temperature 2 Days before Forecast Day Continuous 48

Input Wind Chill of the Forecast Day Continuous 24

Hidden N/A N/A 10

Output Load Continuous 24

Table 3.16 : Final Netwonk Confîguration Fon the Non-F{oliday Networks

Data Type # Neurons

Input Temperature of the Forecast Day Continuous 48

Input Temperature 1 Day before Forecast Day Continuous 48

lnput Temperature 2 Days before Forecast Day Continuous 48

Input Wind Chill of the Forecasr Day Continuous 24

Input Holiday Binary 1

Hidden N/A N/A 10

Ou@ut Load Continuous 24

Table 3.17 : Final Network configuration For the Fnoliday Networks

13. These networks will be used for the comparisons to be performed in chapter 5.
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For a comparison of the methods used, one month was chosen to be forecast for

Manitoba Hydro from the recent past. The month chosen by MH is May, 1992. This month

contains one holiday, Victoria Day.

4.4 &/ã.&NäT'OBA X{YK}R.@ F OR ÐC^&STS

As discussed in chapter 2,thereis much work that goes into making these forecasts.

This involves developing coefficients, chosing a reference day, and then adjusting the

forecast. The results for the actual forecasts used by Manitoba Hydro for May !992, arc

shown in table 4.1. As well as the overall average percent error (Avg) and the peak hour

average percent error (Peak), the results include the overall absolute average load error (Abs

Avg), and the peak hour absolute average load error (Abs Peak). The absolute average errors

in Mega-Watts, (MW), are given to reflect the magnitude of the errors, and to illustrate the

occturence of seemingly better average forecasts (based on percent error alone). That is, for

the same absolute error for two load forecasts (where the actual loads are different), the

porcent error will be smaller for the forecast corresponding to the larger actual load.
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The results are broken up as with the modularity of the ANN's, displaying averages

separately for week days, week ends, and holidays, where the holiday (falling on a weekday)

is not included in the results for week days. Then the averages for the entire month are shown

for overall performance.

avE"
(vo)

Feak
(Vo)

Abs,&vg
(Mw)

Abs Feat<
(Mw)

lVeek Ðays 4.8 4.1, 98 95

lVeek Ends 5.9 5.2 1.00 99

Flolidays 8.1 o.5 x58 148

Average 5.2 4.5 99 98

Table 4.1 : Manitoba F[ydro Forecasting Resutts for ll fLay Tgg2

The chosen month had better than average forecasts for Manitoba Hydro, reflected

in the need to adjust only I2La of the 3 1 days after forecasting with the MLR technique. The

results of the actual forecasts made, using the reference days chosen by the system user but

without adjustrnent, are shown in table 4.2.

Avg.
(vo)

Feak
(vo)

Abs Avg
(IWw)

Abs Peak
(MIv)

Week Ðays 5.5 4.5 108 104

lVeetr< Ðnds 6.3 6.8 x0s 130

Flolidays 7.4 6.2 t4s t.4x

Average 5.8 5.3 108 t'1,4

Tabtre 4.2 : M[,R. Forecasting Results for May tr992

It can be seen that the adjustments made by the system user resulted in a small

decrease of average percent er¡or of approximately 0.67o overall and,0.\Vo for peak hours.

However that still required the choice of a good reference day.

14. Note that 2 other days had no reference <iay associated with them (an indication that the MLRforecast
was not used at all), but were treated as though they were forecast by the MLR technique.
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For just one day, Manitoba Hydro supplied a forecast using a reference day not

chosen by an expert user, but by following there guidelines presented in chapter 2. The

forecast was made for May 1, 1992, and the results are presented in table 4.3.

The reference day chosen using the guidelines was the Friday from one week before

the forecast day, while the expert user chose a reference day of more than one year previous

to the forecast day, and from a different day of the week.

Choice of
R.eference Ðay

Avg
(Vo)

Feak
(Vo'¡

Abs Avg
(Fdw)

Abs Feak
(Mw)

by Expert Llser 4.6 1.7 77 37

by guidelines 1.4.2 î7.4 260 372

Table 4.3 : Companison of'Ctroice of R.eference Day for May n, îggz

The results clearly indicate just how important the choice of the reference day is,

when a poor choice results in an overall increase of 9.67o error, and a peak er¡or increase

I5.7Vo. This is the risk when an arbitrary reference day is chosen which fits the criteria, the

MLR forecast becomes unreliable. This necessitates the presence of an expert to choose an

appropriate reference day, with the assumption that the weather forecast is accurate.

4"2 AR.T'TF'ä CXAK, NÐqJR. AX, NÐT'W TR.K FTR.Ð C.&S?'S

Forecasting performed with the ANN uses the method described in Chapter 3. The

month of May 1992 was forecast, first with 24 how weather data, and then with 4 hour

weather data (as supplied for the MLR forecast).

The results for the forecast using 24hotn weather data is displayed in table 4.4.
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Avg.
(vo)

FeaX<

(Vo)
Abs,{vg
(Mw)

Abs Feak
(Mw)

Week Ðays 5.2 4"4 99 99

Week Ends 6.3 6.0 110 r20

FIoXidays 7.L 6.9 L26 x31

,{verage 5.6 5.0 103 î07

Table 4.4 : ,{NN Fonecasting R.esults for May î992 wittt 24 F{our Weathen

The results are very close to those obtained using the MLR technique, with the

system users reference day.

At present MH does not receive 24 hour weather forecasts, but instead weather

forecastfor4hoursofthedayareusedl5. Thesefourhoursareg:00,72:00,17:00,and,22:00.

These hours correspond to the AM and PM peak ranges as described in Chapter 2.

Forecasting for May l992was then repeated using these four hours, extapolating to Z|hot;l.

inputs using linear interpolation (as described in Chapter 2 for extrapolating 24loads). The

results for this forecast are presented in table 4.5.

avg.
(vo)

Feak
(vo\

Abs Avg
(Mw)

Abs Feak
(Nrw)

Week llays 5.5 4.7 ,t4 [0s

Week Ðnds Õ.5 6.8 ffi5 n48

tlolidays 8.5 9.1 x,45 173

Avenage 5.9 5.5 1.08 t24

Table 4.5 : Al{ld Fonecasting Results fon May Tgg2 with4 F{oun TVeather

There is a small (0.37o) increase in the overall error using 4 hour weather, however

it still performs at neff to the same level as the ANN with 24 hour input. This increase comes

mainly from the weekends and holidays, and particularly for the peak hour, as opposed to

the overall average. This would imply that there is arelationship between the daily weather,

and the individual (hourly) load forecasts. One reason for the decline inperformance could

15. Note that forecast not actual weatïer is being used.
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be the method for extrapolation is not a good enough method, perhaps the use of a 4 to 24

ANN for the weather extrapolation would work better. However the most effective remedy

would be to obtain 24hour weather forecasts, rather than the representative 4 hour forecasts,

and eliminate the need for extrapolation.

For each of the ANN's the results for forecasting of May 1, 1992, ue presented in

table 4.6 for comparison to the forecasts by Manitoba Hydro with good and arbitrary

reference days.

Choice of
Reference Ðay

Avg.
(vo)

Feak
(vo)

Abs Avg
(]\{w)

Abs Feak
(nÆw)

24 hour ANN 3.3 1.0 56 22

4 hour ANN 3.9 t.1 67 23

Table 4.6 : Cornparison of Choice of Reference Ðay fon May L nggz

While for the particular day, the ANN forecast outperformed the MLR forecast, what

is most important to note is the comparison to the MLR forecast with an arbitrary reference

day. TheANNdoes notrequireareferenceday, and thereforeits'results aremoreconsistent,

notbeingeffectedbyapoorreferenceday. FurthermoretheANNdoesnotrequirethesystem

operator to spend valuable time in determining an appropriate reference day.

4"3 S&JWï&/ãARV

The month of Ma¡ 1992, was chosen by Manitoba Hydro for a comparison of

forecasting techniques. This month was well forecast by the MLR technique, as fewer than

half the forecast days needed to be adjusted by the system operator.
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The resultsl6 indicated that when the system operator chose a suitable reference day

that the MLR forecasts were approximately equivalent to the forecasts made using the

Artificial Neural Networks. The ANN using 24 hovt weather information forecast on

average 0.3Vo better than the ANN using 4 hour (exhapolated to 24 hour) weather data.

Figure 4.1 shows a graph of the actual daily load curve for May 1992. Also graphed

are three forecasts,

the MLR forecast using an arbitrary reference day following the MH guidelines for

choosing a reference day,

the MLR forecast using the reference day chosen by the system operator, and

the ANN forecast.

4000

1000
12 3 4 5 6 7 8 910 11 1213 14 15t6r7 18 192021 222324

FIGIJRÐ 4.tr : cornparison of Ðaily x-oad Fonecasts fon May îrrggz

This graph reinforces the importance of choosing a good reference day, with errors as high

as32Vo for individual hours (7:00), an arbinary reference day provides unreliable forecasts

16. Daily load curves are graphed in Appendix A.

Actual Load
- - - M[,R Forecast with ,A.nbitnany Refenence Ðay

MLR Forecast with Good Reference Ðay

- ANN Forecast (No Reference Ðay P{eeded)
3000
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e
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Þà

2000
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using MLR. This is one of the main advantages of using an ANN to forecast STLF, as it does

not rely on a reference day.

A further advantage of the ANN for STLF is depicted by the decline in performance

from the forecasts using 24 weather data to the forecasts using 4 hour weather data. This

illustrated the reliance of a single hours load on not just the weather at the corresponding

hour, but on the daily weather. This relationship is overlooked by the MLR technique.
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5. C@NCK,KjSK@ru AN& R.ÐC&VÃEåÐNÐAT'ã@NS

5"n CTNCã,USX@NS

In this investigation it was found that Artificial Neural Networks are well suited to

the application of short term load forecasting.

It was found that ANN's have the ability to incorporate both weatherfload patterns

and time sequence patterns to perform STLF. It was found that the best forecasts are

performed when weather data is provided directly (as numerical input), and time sequence

data indirectly (position of input or output indicates hour or day for particular data).

It was also determined that for the three basic types of weather input, that only

temperature has a direct affect, with performance improvements by neglecting sky cover,

and using wind chill (a function of wind speed and temperature), rather then using the wind

speed.

Whiie numerical data representing day of the week information was found to not

offer any benefit, it was found that separating weekday and. weekend data into modular
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notworks gave the better performance overall. Furthermore for the daily peak forecasts of

weekends, it is worth investigating t\¡/o separate networks, for Saturdays and Sundays, (but

this rnay require more than a single years training datato be sufficient).

This modularization was aiso used to forecast holidays, but with the inclusion of a

holiday input, to differentiate holidays from non-holidays during training.

For Manitoba Hydro the optimal feedforward networks with supervised learning that

were determined a¡e described in tables 3.16 and 3.17. Under actual forecasting conditions

for the month of May 1992,itwas found that the ANN forecast (with average error of 5.9o/o,

or 108 MW) performed nearly as well17 as the experienced user ( with average ewor of 5 .2To,

or 99 MW), and very close to the MLR (with average error of 5.BTo, or l0g Mw).

Even though in direct comparison the performance of the ANN's wero not much

different from the forecasting employed by MH18, they have the advantage of being easily

automated, adaptable, consistent, and perform this well with no adjustment or input from the

system user, (such as choosing a good reference day).

5.2 R Ð C t Vã&il ÐN E) AT'X t tV S

For the application of ANN's to STLF using supervised learning, two main network

sffuctures were evaiuated. These are parallel input and output, and serial input and output.

The serial network did not perform very well in comparison to the parallel network, however

the use of serial load with unsupervised learninglg, parallel input was found to work.

Therefore one area of supervisect learning that should be investigated, is the network

structure ofparallel input and serial output.

17. Note that all ANN forecasts aro performed without benefit of industrial load dat¿.
18. See daily load curves Appendix A.
19. See Appendix C.
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For training the ANN, the backpropagation algorithm with conjugate gradient

minimization was used. This algorithm was used so as to train a network with hidden units,

in a reasonable amount of time. Training is performed to a certain point, to balance how well

the training set is learned, with the ability to generalize. Both the learning algorithm, ancl

the point to which the network shoulcl be trained, for optimal forecasting, should be further

investigated.

Forecasting for the hoiidays should also be investigated further. Hoiiclays might be

classified into more then one type of holiday input, for example statutory and festive. Also

the use of a continuous neuron for holiday input rather than a binary neuron may allow for

better forecasts of days which are pseudo holidays. These might be in-service days for

schools, festival days in individual towns and regions, or the days preceding and following

holidays, (in particular the week between christmas and New years).

Other recommendations are to extend the weather forecast data from 4 to 24 hours,

and to investigate other weather data types. Other weather inputs that may be helpful to short

term load forecasting are humidity, precipitation (perhaps type of precipitation), and wind

direction.
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The BP algorithm using Conjugate Gradient minimization is :

X,. t = 0, count = 0, Randomly initialize weight values (of dimension N), set line

minimum 0, set maximum iterations t,,'u*,

2. For each training pattern in the training set :

a. Apply randomly chosen input pattem to network inputs and propagate

through to network outputs,

b. Calculate error function based on output training pattern, and partial

derivatives of the error function for the ouþut layer,

c. Propagate error back through each hidden layer, calculating remaining

partial derivatives,

d. Sum error derivatives over entire training set,

3. Determine conjugate direction hl for step t

(__
h, = l-VE(w(t)) ,count=0

[S, * Tçtht-t ,0 < count < N

whereforcount>0 : gt = -VE(w¡),and

yt_t = 
(gt-gt-r)'gt

8t-r'8t-i

4. calculate line minimum along conjugate direction, À1, if iess then line

minimum 0 stop,

" gf'ht/r=hË^ñ 't>o

5. Update weights :

w(t+ 1) = w(t) +Aùrt

6. Increment t and count, if t > tmax then stop, else if count = N, the dimension

of the weight vector, then resta¡t count = 0, goto step 2.
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Self organizing techniques appliecl to short term load forecasting have been investigated in

the rnicl 1970's by T.S' Dillon 1251. Theresurgence of neural networks in the 1980's, in particular

the development of the backpropagation algorithm, led to an interest in ANN's appliecl to STLF

using supervised techniques [8-1 8]. However the ¡esearch of unsupervised learning techniques for

STLF has remained for the most part unexpiored.

Unsupervised learning differs from supervised learning in that there is no target output

vectors in the training set. Each training pattern consists solely of an input vector.

This means that there is no method for evaluating an error function based on the output

produced by these networks. Learning of synaptic weights is therefore unsupervised, meanin gthat

upon presentation of an input vector, the network determines these weight updates dynamically -
such that closely related input vectors will activate neurons which are near to each other. This is

called clustering, and in general is performed on an arrangement of neurons in one two or three

dimensions so as to be evaluated in real space.

The input vector consists of three components of information, as opposecl to two for

supervised learning. The first two are the same as for supervised learning, weather and date/tirne

data, while the third component is the load (since there is no particular output for unsupervised

learning).

These unsupervised algorithms require much more computational overhead then the

supervised learning algorithms. This computational overhead grows rapidly with the size of the

network. Therefore to keep the training time manageable it was decided to investigate networks with

serial load presentation, and overall small input vector climensions (<10).

'When training the network, the weightvectors are updated to become similar to the training

vectors. In this way the weight vectors become a representative set of vectors for the training set.

Then when some unknown input vector, with one or more elements of the vector missing, is

presented to the network, the neuron whose weight vector is most similar to the input vector becomes
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the winner. The winner's weight vector becomes the model for the input vector, and any missing

elements can be supplied with the corresponding elements from the weight vectoï. Once trained,

load forecasting will be performed by showing the network input vectors with the ioad element

missing. The load forecast is then suppliecl by the corresponding element of the weight vector

chosen as most similar to the input vector.

Two algorithms for unsupervised learning were Íied, Kohonen Self Organizing Maps [26]

(KSOM) andFtzzy Kohonen Clustering Networks t27l (FKCN). The KSOM algorithm was used

initially, but the FKCN algorithm was found to have advantages over KSOM, (not label dependent

and terminates naturally), and therefore replaced it in the research [27].

In general these networks did not perform as well for load forecasting as those using

supervised learning. For May 1992, the month for which Manitoba Hydro chose for comparison,

unsupervised learning using the FKCN algorithm with 51 ciuster cente¡s (neurons) hacl an overall

average error of 8.37o or 152 MW.

While for forecasting itself, unsupervised learning did not perform as well as desired, it still

proved a useful tool for STLF. The KSOM weight maps yielded information which could be

translated into rules for an expeft or fuzzy system, while also reenforcing the results obtainecl that

indicate which input types should be usecl and which have no real correlation to the loacl. In

pafiiculil they indicated that there was no coherent mapping for sky cover, and while the wind speed

had some relevance, the mapping of windchill and wind together indicated that again wind speed

was best presented as a component of windchill. With the FKCN algorithm, ove¡all forecasting

improved, and it was found that by tailoring the faining set to suffrmer2O and winter sets that many

of the problems with averaging could be eliminated (that is the averaging of high winter peaks, with

low spring / fall peaks).

20. Summer training includes Spring and FaII.
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Furthermore unsupervised techniques yielded information, not available to supervised

techniques, on the actuai reiationships between weather and 1oad. That is, forecasting of load is just

one area that a trained network can be used for. Just as easily could one or more other vector

element(s), such as temperature or wind chill, could be left out. The result is to find weather

conditions that wouid result in certain types of loads, for instance system peak loads. This would

give the system operator knowledge about specific weather conditions to look out for, and to aicl in

the task of scheduling (maintenance, load salesþurchases, etc.), which is the basic purpose of STLF.
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