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This paper presents a review and evaluation of real data sources relative to their role and applicability in an agent-based model
(ABM) simulating respiratory infection spread a large geographic area. The ABM is a spatial-temporal model inclusive of behavior
and interaction patterns between individual agents. The agent behaviours in the model (movements and interactions) are fed by
census/demographic data, integrated with real data from a telecommunication service provider (cellular records), traffic survey
data, as well as person-person contact data obtained via a custom 3G smartphone application that logs Bluetooth connectivity
between devices. Each source provides data of varying type and granularity, thereby enhancing the robustness of the model. The
work demonstrates opportunities in data mining and fusion and the role of data in calibrating and validating ABMs. The data
become real-world inputs into susceptible-exposed-infected-recovered (SEIR) disease spread models and their variants, thereby
building credible and nonintrusive models to qualitatively model public health interventions at the population level.

1. Introduction

Complex networks underlie the transmission dynamics of
many epidemiological models of disease spread, in particular
agent-based models (ABMs). Network-based epidemiologi-
cal models use a percolation-like principle to simulate disease
spread through the population [1], and there are a large
number of studies on ABMs and network-based epidemio-
logical models. Agent-based models are of increasing interest
due to their potential to capture complex emergent behav-
iours during the course of a simulated epidemic, where these
behaviours arise from the nonlinearities of human-human
contacts [2]. ABMs may employ an explicit or implicit social
contact network defined by structured agent interactions. In
the explicit case, a disease model (e.g., susceptible-exposed-
infected-recovered or SEIR type) can be implemented
directly on the network. In the case of ABM, these resemble
simulation models rather than the steady-state analysis of
network-based models mentioned in [1].

In all cases, though, the fidelity of the agent-based frame-
work (model) relies in part on the credibility of the social
contact network data that feeds it, defining agents’ character-
istics, behaviours, and interactions within the model. Poten-
tial data sources to define agents include census and demo-
graphic data (coarse) and finer-grained data made available
by various means of polling personal electronics such as cell
phones. In related work it was demonstrated that data to
model a social contact network can be collected through
web services or wireless sensor devices or “motes” worn by
individuals in the target population and subsequently used in
an infectious disease spread model [3]. Such an approach has
been previously undertaken to gather data, for example, in an
organization (workplace or school). The resulting estimated
social contact network was used to model an influenza-
like illness (ILI) within the setting [4], based on a standard
SEIR individual type model. In this time-stepped model,
infection spreads between two vertices (individuals) along
the weighted edges of the network which represent the degree



2 Epidemiology Research International

(frequency and duration, weighted) of social contact between
the two individuals. However, estimating fine-grained social
contact networks in larger populations (metropolitan scale
or larger) through real data sources is an area of research still
in its relative infancy and is the interest which is motivating
this current work.

In cases where precise contact network data is unavail-
able, an alternative is to mine data as done by EpiSims [5]
which uses United States Department of Transportation
information to estimate the schedules of the agents in several
metropolitan areas. This presumes that the choices of loca-
tions at which agents interact are constrained by the trans-
portation network (model), which itself is a complex net-
work. In EpiSims, schedules for the agents are synthesized
from census and USDOT data. A simulation is then run
during which a synthetic contact network is constructed
from the interactions of the agents and their locations. The
resulting dynamic bipartite graph [5] is used to simulate
disease spread in the manner stated earlier, except on a much
larger scale. Both EpiSims and another well-vetted infectious
disease simulator, BioWar [6], initially perform validation on
model components separately. This is an important com-
ponent of plausibly reasoned argument, supporting the
statement that the model as a whole functions as specified.

The overall objective of this work is to advance the devel-
opment of a flexible, accurate, and scalable ABM framework
by which to simulate respiratory infection spread within
communities of all sizes. This paper focuses specifically on
a systematic exploration of five real data sources that have
the potential to be integrated into infection spread models
(ABMs) to define model topographies as well as agent
profiles, behaviours, and interactions to a high degree of
accuracy. In particular, the work explores the potential of real
data sources as a calibration of the ABM relative to agent
behaviour under normal (i.e., nonepidemic) circumstances,
as both input into and check of results of an ABM, and
as part of the process of building ABMs from the ground
up. Thus, this paper situates the exploration of data sources
within an infection spread ABM in which the contagions of
interest are influenza-like illnesses (ILIs) or other respiratory
infections that are primarily contracted through direct or
proximal contact. The long-term goal is to develop an agent-
based model of high spatial resolution when required, as well
as spanning large geographic regions. A further objective is
to validate the evolving ABM framework in varying stages
of development, by comparing extracted contact networks
generated by the ABM to known theoretical or experimental
social contact network models.

While the focus of this paper is on real data sources for
an ABM, a discussion of the ABM itself is also required.
The model developed to date and outlined here is denoted
Simstitution, representing the intent to simulate an institu-
tion or community through a hierarchy eventually encom-
passing a province- or state-wide simulation. In this work,
the province of interest is Manitoba, Canada covering
649,950 square kilometres. The capital city of Winnipeg,
located approximately 100 km from the southern border of
the province, is home to 700,000 of the province’s 1.1 M
residents. Likewise, most of the other 400,000 residents of

Manitoba are also located within 200 km of the southern
border of the province. Modeling on this scale is complicated
by the fact that an ABM needs to account for the state of each
agent as well as their interactions. Although extensive effort is
made to exploit available data sources, there are still consid-
erable assumptions embedded in the current work. In some
cases, the data are used as input into the ABM while in other
cases, real data are analyzed, characterized, and compared
to similar data extracted from the ABM as a means of vali-
dation.

This paper is organized as follows. Five sources of real
data are described, in terms of their applicability as inputs
into an ABM framework. All data sources are oriented
toward the characterization of agents and their behaviours
(movements and interactions) during periods of normal
(nonepidemic) function and thus serve to calibrate the ABM.
These data include (1) fine-grained data from a 76-vehicle
travel study; (2) coarser municipal travel survey data; (3)
a smartphone app developed within our group, denoted
face2face, used to collect personal social network data; (4)
cellular communication service records. Subsequently, the
ABM framework being developed within our group, denoted
Simstitution, is outlined, along with sample simulations. The
observed outcomes, especially validation to data sources, and
implications are then discussed.

2. Materials and Methods

Materials required for these types of models essentially come
down to two entities. The first are data sources and the
second is the ABM framework itself, here denoted Simstitu-
tion. The data sources can act as inputs into the Simstitution
framework, as well as comparative data to validate the output
of an ABM simulation.

2.1. Data Sources. It is becoming widely recognized that
data being generated greatly exceeds our abilities to process
it. This is recognized anecdotally as drowning in a “data
tsunami.” At the same time, the rise of a “data culture” also
affords new and significant opportunities including for
microsimulation and ABMs, as opposed to more monolithic
analytical tools. Data is becoming available for ABMs
oriented to infection spread, including demographics, agent
proximities, and agent movement patterns that can all be
used to define agent profiles within an ABM at both coarse
and fine scales. This section outlines sources that vary in
fidelity, each offering their own unique challenges in pro-
cessing and inferencing. These data sources are representative
rather than exhaustive. They demonstrate the implicit value
of data originally derived for completely separate purposes,
where its applicability to epidemiological modeling is a
secondary but invaluable contribution made possible by the
increasing availability of data.

2.1.1. Traffic Data Sources

76-Person Probe Vehicle Data. Our group is currently work-
ing with two sources of traffic data available for modeling.
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One data set consists of approximately 76 individuals whose
driving patterns were recorded in extremely high resolution
in both space and time for approximately one year. The total
number of data points is approximately 44 million and was
extracted from [7]. This data in its raw form was anonymized
and dereferenced from the city of interest to being located at
the North Pole. This data, and similar sources, was primarily
used to determine typical driving cycles; however, it also finds
application in ABM research. With a few simple heuristics,
the data can be easily converted back to its original GPS
coordinates. A difficulty with this data—although reasonably
voluminous—is that it represents only 0.006 percent of the
population and that of a self-selected proportion of the
population. However, it does cover a significant amount of
time and an opportunity to estimate a person’s schedule
percentage of time a person may spend at work, leisure and
recreation, and so on as well as providing some insight as to
variations in circadian and weekly behaviours. These can
help guide the agent profiles and behaviours in the Simstitu-
tion ABM, as it is essential for any data-driven ABM to have
input of this temporal nature.

Municipal Travel Survey Data. The second source of traffic
data in our group is derived from a traffic survey made
available from the City of Winnipeg Transportation Division
[8]. This data and others like it are collected periodically, pri-
marily as an aid in transportation planning. Once available,
the data has numerous other applications, including tertiary
roles in disease spread models. In this data set, approximately
33,000 users were involved, resulting in over 88,000 trips in
private vehicles. The resolution of the available data is the
GPS coordinates of nearest intersection for the start and stop
timestamps of a trip, and more importantly, labeled with the
purpose of the trip. This data has been aggregated within our
group and by others into traffic districts which are reasonably
close to census districts and, in some cases, very close
approximations to census districts. Like the first set of travel
data, these data also allow estimates of agent movement
patterns into and out of regions. A deficiency of the available
data is that it is limited to Winnipeg and surrounding muni-
cipalities as opposed to being provincewide. While the data
lacks spatial resolution, it carries the benefit of capturing
4.4 percent of the population. Traffic surveys represent an
excellent data source and because many are commissioned
by public entities (e.g., municipal governments), they are
usually readily available in electronic format amenable to
mining and analysis.

2.1.2. Cell Phone Data Sources

Face2face Smartphone Application. Our group is working
with two distinct sources of data related to personal elec-
tronic communications, each with various degrees of fidelity
and volume. The first is a smartphone application developed
within our group, denoted face2face which is an application
developed for Blackberry and Android smartphones that
are Bluetooth enabled. The face2face application is designed
to poll its local environment on regular intervals for other
close-proximity Bluetooth-enabled devices and then record
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Figure 1: A sample of data collected via face2face smartphone
application.

the date, time, and MAC of the discovered device. The
application is representative of automated and nonintrusive
proximity data collection methods where it is tacitly assumed
that consumer electronics serve as proxies for their users.
(In this context, “non-intrusive” means that the application
requires no active user interaction.) This assumption has
limitations, including the disproportionate distribution of
cellular devices within a given population to certain demo-
graphic subsets; yet, arguably these techniques have increas-
ing credibility as smartphones, and other Bluetooth-enabled
personal electronics become more ubiquitous. At the end of
2011, cellphone use was reported to be at 72% of the pop-
ulation, with smartphone sales surpassing feature phones for
the first time [9].

A proof-of-concept pilot test has been undertaken with
four individuals collecting data on close-proximity Blue-
tooth-enabled BlackBerry smartphones for just over a three-
month period. During this time approximately 500,000
records were collected, where each record is a contact to
another close-proximity Bluetooth-enabled device in the
general population. Face2face platforms to date include
Blackberry Storm and HTC Hero devices (Android). Data
includes the MAC and any user assigned metaidentity/type
of both the probe device (one of four in the pilot study) and
the polled (probed) device, the timestamp, and a location if
the probe device is GPS enabled or assisted.

Figure 1 illustrates samples of the data collected and
residing on the backend database. Some records provide
more information than others, and, as such, several records
are perhaps more interesting than others. The second high-
lighted row indicates a device called General Motors, scanned
while the Agent 2 probe was on a local highway. Many other
devices are much more easily identified and more easily
associated with actual persons. Culling of Bluetooth devices
that are not obviously a person is possible but has not been
undertaken here at this time. The number of records that
were not phones or personal mobile appliances was small in
comparison to the total number of records.

In addition to the MAC address and personal metadata,
Bluetooth also provides a “class of device/service” (data not
shown here) application programming interface (API) which
can be further used to differentiate the agent scans. For
example, a “class of device/service” entry may take the form
of 0x40020C, which a publicly available Bluetooth standard
identifies as a telephony service and a Smartphone device.
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The face2face contact data is conjectured to be a type of
data that can be described by empirical laws. The distribution
used follows the Pareto law. Pareto’s law is given in terms of
the cumulative distribution function (CDF); that is, in this
case the number of contacts (Nc) with duration larger than
or equal to a duration is an inverse power of the duration as
expressed below:

P[Nc > D] ∼ D−p. (1)

From the Pareto distribution, a power law exponent was
calculated and varied from 1.4 to 1.75 for the four probe
devices used (R2 values were consistently above 0.95). A
power law exponent less than 2 implies that there is no first
moment or mean associated with the distribution. As the
data obtained from the probe devices is finite, a mean can
be calculated, though.

An interesting but not surprising parameter that can be
extracted from the Pareto principle is the 80/20 rule. From
the data collected, the 80/20 rule was applied to indicate the
number of contacts that comprised 80% of the total contact
duration. From this, it was estimated that 80% of a person’s
time is spent with a number of personal contacts that varied
between 7 and 20, for the four probe devices. This was
extracted from the number and duration of contacts with
approximately 5,000 unique Bluetooth devices probed. This
is consistent with intuition that although the total number
of daily contacts may be large, the majority of one’s time is
spent with only a small number of people. Within the ABM,
this information is useful as it represents a parameter that
can be used to generate a person’s cohort group within an
institution or workplace. The Pareto distribution is directly
related to Zipf ’s law which is more easily calculated for this
type of data. An example of a simple ABM using this type of
data for contact distributions is illustrated in sequel.

Cellular Service Data. The second source of cellular data
analyzed consisted of data provided by a cellular service
provider (MTS Allstream). The data consists of all network
requests over four days, including the cell tower GPS and
antenna sector (if applicable) that the mobile device is
associated with, the AAA record (every time the phone
accesses the network excluding voice and SMS), and times-
tamp of the access. These data typically provide service pro-
viders with input for network planning, investments, and
management of evolving needs. These data also have con-
siderable application to public health interests, although at
this time it is difficult to derive its direct benefit in contrast
to more explicit inputs such as those associated with census
and demographic data, due to both technology and policy
issues.

In this work, four consecutive weekdays in November
2010 were extracted from the MTS Allstream dataset. Even
at four days, this represented just over 14 GB of data. These
data were processed, and an hourly record of anonymized
user trajectories was generated. The number of users was
approximately 182,000, representing approximately 15 per-
cent of the population. The trade-off in these data is that
that spatial resolution is at the scale of an antenna sector.

Typically, however, antenna sectors tend to correspond to
community areas where census demographic data is also
readily available from Statistics Canada. The data used here
represent just one of several telecom service providers in the
province of Manitoba, some of which share MTS’ towers as
well as operating their own. For epidemiological modelling,
it would be desirable for providers to share anonymized sub-
scriber trajectory data with epidemiological modelers. In
terms of contact-based infection spread modeling where
movement of (and intersection between) individuals in place
and time is of paramount importance, cell phone trajectories
are likely the best source of data on a large scale and will
remain so for the foreseeable future.

2.1.3. Census Data: Statistics Canada Data Sources. Data
sources available from Statistics Canada are the most obvious
and only mentioned here for completeness. An unprece-
dented amount of detail has accumulated from census par-
ticipation [10]. Within Winnipeg, details are associated with
urban neighborhood clusters, and these clusters are further
refined into neighborhoods with considerable levels of detail
related to households, dwellings, modes of transportation,
and so on. This is absolutely essential information for agent
characterization in an ABM or microsimulation, as the
agents need to have the phenotype of actual persons. Cor-
respondences between traffic districts, neighborhood clus-
ters, and cell tower sectors are not isomorphic but they are
similar, which is fortuitous when combining these data sets.
These province-wide community profiles also exist for Mani-
toba Rural Municipalities, Cities, Towns, Villages, Large Gov-
ernment Districts, Indian Settlements, and Indian Reserves
in Manitoba. The latter is very important for modeling of
respiratory infection spread, as census information provides
information related to overcrowding and conditions that
contribute to an outbreak. It is also recognized that First
Nations people have an incidence of underlying chronic
medical conditions that is higher than the national average,
putting them at increased risk of severe illness from respira-
tory infection [11].

2.2. The Agent-Based Model. While the focus of this paper is
on the potential and applicability of four real data sources,
the data are contextualized within an infection spread ABM,
and thus the discussion includes the ABM itself as the second
element in ABM microsimulation. The model described in
this paper is a project milestone in the process of designing
and implementing an ABM simulation framework geared
towards high-fidelity modeling of human institutions of
varying scales. The framework, inclusive of the four data
sources, is new; individual pieces of the framework and/or
data sources at earlier stages of development have been used
in previous publications. The ABM framework, denoted
Simstitution, has broad design goals based on the collective
experience of the authors while developing context-spe-
cific agent-based models of human institutions. Originally,
models of hospital emergency departments [12] and cities
[13] were implemented upon “one-shot” simulators, that
is, a simulator strongly coupled to the specific modeling
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application [14]. A one-shot simulator is comparatively easy
to implement and gives the modeler fine control over the
simulator processes, enabling them to fulfill their require-
ments. Typically, in order to minimize development effort,
the designer will make assumptions which ease the imple-
mentation of the model at hand, without consideration for
how these assumptions will constrain or complicate repur-
posing the simulator to implement a different model. From
a software engineering perspective, part of the reason that
one-shot models are so easy to produce is that little or no
effort goes into making the software reusable or extendible.
The large number of one-shot simulators observed in the
literature [14] is problematic because by their nature they are
difficult to reuse. The reusability of the simulator in turn
affects the reliability of the simulator. The more researchers
that (re)use a particular simulator, the more chances that
bugs will be identified and fixed. Furthermore, when a num-
ber of models produce reasonable results using a common
simulator, confidence in the simulator is increased. Publish-
ing results from a series of models built upon a common
simulator framework, combined with verification of model
components (or submodels), is a common path for building
confidence in simulator frameworks for epidemiological
modeling [5, 6].

2.2.1. Simstitution Design Goals. Although there are several
frameworks [15–21] which can be used to develop agent
based models, these are dwarfed by the number of one-
shot or otherwise domain-specific simulators, suggesting
that no framework has yet hit upon a “sweet-spot” between
flexibility, specificity, extendibility or scalability, and specific
support classes for human-centric domains [14]. Human-
centrism includes the notion that agents are spatially ori-
ented and situated, since humans are physical entities that
occupy and traverse space, rather than existing in some
abstract information domain. Simulator support for a range
of human time steps on the order of seconds to hours or
days is also desirable. We have used commercial simulators
such as AnyLogic [19] for building ABMs. In this case, a
custom simulator was used as it offered advantages in terms
of exploiting hierarchy, data fusion, and parallelization (grid
or cloud computing).

Other design features include adherence to software
engineering principles to improve reuse and maintainability
of the framework, as well as extendibility especially where
machine learning can be leveraged for automated generation
of agent policy [22].

For rapid model construction, a next generation of ABM
framework should facilitate the incorporation of real-time
data such as from a database, leading to increasingly data-
driven simulation. A tool for visualization and interacting
with the model in a graphical manner (GUI) also facilitates
model development, validation, and debugging. Visualiza-
tion is also key for communicating results with subject
matter experts and stakeholders [23]. Such a visualization
tool can also be extended to serve as a tool for model con-
struction or editing model parameters imported from real
data.

SimRegionSimAgent

SimObject

Figure 2: Class diagram for core Simstitution class hierarchy.

The accessibility of agent behavior development to per-
sons with a nonprogramming background can be improved
by first providing a scripting layer on top of the compiled
code and then perhaps adding a visual or block (e.g., Open-
Blocks [24]) programming (drag and drop) on top of that.
Over time, a library of useful scripted behaviors can be built
up.

The increasing availability of parallel or distributed com-
puting systems also suggests that contemporary or future
agent-based simulator frameworks should support distrib-
uted, parallel, or cluster computing. The increasing avail-
ability of cluster-based computing resources (a consequence
of Moore’s Law), sensitivity to real-time computational
constraints, and medical data privacy issues augur well for
cluster-based computing. As a result, the Simstitution frame-
work design emphasizes scalability with respect to multiple
processors and discrete memory spaces over efficiency in
executing one particular type of model.

Naturally limiting the degree of accessibility of the
environment limits what agents can perceive and interact
within the environment (including other agents). Localizing
agent perception not only fits in well with the agent paradigm
but also limits to what extent information needs to be shared
between processes in a distributed model, which should facil-
itate using spatial decomposition as a guide for distributing
computational load.

These disparate goals will require balance in feature
choice and design.

2.2.2. Simstitution Design Details. Simulated entities within
Simstitution fall into either of two major categories: agents
(SimAgent), which are the autonomous entities that make
decisions and interact with the environment, and instances
of the SimRegion class, which represent spatially partitioned
subdivisions of the environment. Note from Figure 2 that
the SimObject is abstract and exists because SimAgent and
SimRegion have much of their interfaces in common.

One of the core design tenets of Simstitution is that the
spatial division is closely intertwined with the division of
computational work across processors and discrete memory
boundaries. Therefore, SimRegion is unit of spatial decom-
position as well as a convenient unit of computation. In the
latter role, it can be considered as a container for agents that
need to have their next state computed. Figure 3 illustrates
the details of this relationship. A particular instance of
SimRegion can be the parent container of SimAgents or
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SimAgent
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∗∗

1 1

Figure 3: Relationships between core class instances, forming a tree.

SimRegions but not both types at the same time. This restric-
tion will in practice result in tree hierarchies of SimRegions,
with SimAgents contained in the leaf SimRegions and the
“top region” at the root of the tree. The SimRegion spatial
decomposition granularity becomes increasingly fine as it
moves away from the root and towards the “leaf regions” of
the tree.

Time advances in the simulation when the simulator
advances the time of the top region (root of the tree) by some
discrete time step. The top region will then advance the time
of its children by the same time step in a recursive fashion
such that the tree is traversed in a depth-first manner, until
all the SimAgents in the leaf regions have been simulated for
that time step. The simulator will restart this process again,
until a certain number of time steps have elapsed.

IndividualPolicy is a modular unit that affects the behav-
ior of the subscribed SimAgent, which may also require the
IndividualPolicy to store encapsulated SimAgent state data
specific to that IndividualPolicy. Examples are a schedule
policy which causes the SimAgent to observe a particular
day/night work/home schedule or, in the case of a hospital
being modeled, a doctor policy which causes the SimAgent
to treat patients within a hospital. Within a SimRegion, each
possible concrete-derived IndividualPolicy class has a corre-
sponding GroupPolicy for that SimRegion. The GroupPolicy
acts as a factory for the corresponding IndividualPolicy and,
if required, facilitates coordination between one or more
derived IndividualPolicy classes (e.g., healthcare worker pol-
icy in a hospital that coordinates interaction between nurse
and doctor IndividualPolicies). Implicit here is the assump-
tion that the properties of the local environment constrain
the behavior of agents (e.g., airport security lineup, swim-
ming pool, hospital, bank, etc.). The associations between
SimRegion, SimAgent, GroupPolicy, and IndividualPolicy
are shown in Figure 4.

Communication or interaction between SimAgents
exclusively uses messages passed between SimAgents. Mes-
sages received by a SimAgent are relayed to its Individu-
alPolicies which can lead to an internal change of state or an

action to be taken which could lead to additional messages
being sent to other IndividualPolicies on the same subscribed
SimAgent or messages sent to other SimAgents. Message
passing fits well with the agent paradigm, since the alternative
implies a direct mapping between external events and
internal agent state which violates the principle of agent
autonomy [25]. It is in the message passing and the Indivi-
dualPolicies that changes in individual agent behaviour are
triggered in response to agent-specific characteristics com-
bined with specific external conditions. This models infec-
tion control and mitigation strategies by modeling individual
behaviour change or behaviour management during infec-
tion outbreaks.

3. Results and Discussion

This section provides visualizations of the data sources and
how they can be applied within the ABM to model agent
behaviours relative to movement patterns and interactions.
The following discussion then demonstrates the ABM using
aspects of the data in microsimulation scenarios.

3.1. Visualizations: Traffic Data

3.1.1. 76-Person Probe Vehicle Data. Within the detailed 76-
person (probe vehicle) traffic data itself and from a summary
report of these data, one is able to discern areas of interest,
such as parking lots frequented. These are typically associated
with airports, malls, places of work, and residences. The
value of these data is the extraction of duty cycles for various
routine activities. This level of detail is required with an
ABM, as each agent is basically operating on a schedule which
may be potentially interrupted depending upon their health
state within each agent’s SEIR (susceptible-exposed-infected-
recovering) stochastic infection model.

An example of a concatenation of two trips is illustrated
in Figure 5, demonstrating the geomapping of the data.
Reverse engineering of one trip indicates that the destina-
tion is a fitness centre and the second trip originates from
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per concrete IndividualPolicy
subclass}
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Figure 4: Relationships involving modular agent policies.

Figure 5: Geomapping of probe vehicle same data: a person visiting
a local commercial facility.

the fitness centre. Automating the inference of activity is
error prone, but an estimate of activity is sufficient for the
ABM as we are not concerned with any specific individual,
but rather a prototypical individual. While the origins and
destinations may be inferenced from the data, the identity
of the person or persons involved remains anonymous and
unknown to the researchers.

From this type of data, an estimate of the most common
parking lots and time durations spent there can be compiled.
Parking lots serve as proxies for the institutions (e.g., work-
places, schools, leisure facilities) with which they are associ-
ated. To some degree, these data have already been similarly
analyzed by others, as one of its original intents was to use
the data to estimate where PHEV recharging stations could
be ideally located. For our ABM purposes, the interest is
in extracting duty cycles associated with an agent’s schedule
of activity in order to add credibility to assumptions made
within the model.

3.1.2. Municipal Travel Survey Data. From the data available
within the Winnipeg Area Travel Survey (WATS) (33,000

Work (usual)

Figure 6: Geomapping of travel survey sample data: origin and
destination.

users), we are able to generate coarser flow maps within the
main urban center (Winnipeg) and its surroundings. Again
for visualization purposes, a limited number of trajectories
are overlayed on Google maps using GPSVisualizer [26] and
illustrated in Figure 6.

Although considerably coarser than data from probe
vehicles, the data in the WATS dataset is labeled in such a
way that one is able to determine the purpose of trip, mode
of transportation, and number of persons in the vehicle. As
the number of trips is approximately 88,000, over time this
provides a reasonable estimate of intracommunity flow from
a macroscopic perspective. This data is relatively easy to
generalize and allows for reasonable models of flow, peak and
nonpeak times. The value of the data relative to the ABM is to
use the data both as an input and as an instrumented output.
The flows within the ABM should ideally resemble those
extracted from the WATS dataset.
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Figure 7: All agents (aggregated) ranked in order of contact dura-
tion.

3.2. Visualizations: Smartphone Data

3.2.1. Face2face Smartphone Application. From the face2face
smartphone application, one can analyze data from at least
two perspectives. The first is a measure of rank ordering
of a person’s contacts. In this manner, a Pareto distribution
and/or directly related Zipf ’s law exponent can be extracted.
The results of this analysis are summarized as follows.

Figure 7 illustrates the rank ordering aggregated over all
agents in the pilot study of the face2face app running on four
probe devices. The rank order exponent (Zipf ’s law) is
approximately 1.63. This yields an estimated power law expo-
nent of approximately 1.61. The implication is that an agent’s
contact pattern would follow a power law distribution (heavy
tail) without finite moments. This result is expected from
both the face2face application pilot study as well as intuitive
perceptions of real face-to-face contact patterns. The value
of this type of measure is for credibility checks after-ABM
simulation. As contacts can be easily instrumented within
the ABM, similar contact pattern distributions are to be
expected.

A second application of the face2face application is
simply logging the GPS of cellular-assisted location services.
An example is shown in Figure 8. The left hand side is simply
the uploading of GPS coordinates as a person traverses a local
golf course. Samples were taken every 30 seconds and are
sufficiently fine for most applications. The right hand side
includes a visualization of contacts as well as GPS data. The
contacts are merely represented as being in concentric circles
and do not have any further spatial meaning. This type of
data—although easily collected with Smartphones—would
still require participant buy-in. The face2face application
using Bluetooth tracking has been described in considerably
more detail elsewhere [27]. Furthermore, we are in the
process of extending the face2face application in a manner
that would explicitly facilitate and encourage use and sharing
of the data.

3.2.2. Cellular Service Data. Cellular data made available
from MTS Allstream was analyzed to explore its use in
infection spread modeling. The data consist of timestamps of
anonymized users and associated cell tower sectors. The data

Table 1: Self-entropy estimates.

Time period Average Entropy Towers Visited

00:00:00 to 07:00:00 0.773 1.71

07:00:00 to 18:00:00 1.770 3.41

18:00:00 to 23:59:59 1.393 2.63

was processed to provide a given cellular phone’s most likely
associated cell sector tower, once per hour. This parameter
was input into the ABM and in this manner can provide
a coarse movement pattern (trajectory) of the person for
whom the cellular phone is a proxy. Example trajectories are
illustrated in Figure 9, each representing approximately four
days. For visualization purposes 330 trajectories are illus-
trated.

In Figure 9, the majority of activity is within the main
urban centre, with approximately 10% of the trajectories
in rural and northern regions of the province of Manitoba.
The number of trajectories is approximately 182,000, with
approximately 1/3 of those being more or less complete
(when a phone is off or a person is roaming, there is no local
record of the associated cell tower, and the agent trajectory is
interrupted). This type of data can be directly used within the
ABM, although still only representative of a sample of agents
with a degree of inherent self-selection bias. Analysis of the
data provides meaningful measures in order to parameterize
schedules for prototypical agents within an ABM simulation.
Some preliminary analysis was to treat the trajectories as
antenna sector generators and measure their entropy for
various times of day. Figure 10 illustrates the entropy for
users between 00:00:00 h to 07:00:00 h and from 07:00:00 h to
18:00:00 h. The entropy is calculated as the self-entropy and
is a measure of the number of towers a user would typically
visit during a given period of time. Higher entropy correlates
with greater mobility over a greater geographic area. Self-
entropy is defined here as

Self− enropy = −
∑

celltowers

pilg
(
pi
)
, (2)

where pi is probability that a cell phone user is associated cell
tower/sector i, providing a measure of the number of towers
a user visits and where lg is log2 providing the measurement
in bits.

For Figure 10, 12,000 trajectories were sampled at ran-
dom, and the self-entropy overnight and during weekday
business hours was generated. The 7:00 to 18:00 h time
period captures both early morning and afternoon peak
traffic periods.

An interpretation of the self-entropy measure is as
follows as shown in Table 1.

As expected, the activity measured in terms of cell sector
towers visited during the day is greater than the activity in
the evening, with the least activity occurring overnight. In all
three time periods, there is a pronounced peak at entropy
of zero, that is, one cell tower repeatedly recorded for a
given cell phone, indicating that the person (cell phone)
remained within that specific cell tower sector. The aggregate
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Figure 8: Sample face2face data: agent trajectory (a) and close-proximity discovered contacts (b).

Figure 9: Geomapping of cellular record sample data: 300 cellular
phone trajectories by cell tower.

entropy was also calculated in the manner that included all
cell tower records from all users. For 07:00:00 h to 18:00:00 h,
the aggregate entropy was 6.99. The implication is that the
majority of the records were for approximately 128 sectors
out of just over 450 possible sectors. During the night, fewer
than two towers were recorded while during the peak period,
3.41 towers were visited. Apart from using the data directly to
represent specific agent schedules, this can also be instru-
mented from the ABM and can again be used as a check on
model credibility.

3.3. Geographical Integration: Communities, Cell Towers, and
Traffic Districts. While each data set uses slightly different
descriptions for regional areas, they follow similar patterns
roughly guided by population. Figure 11 illustrates the align-
ment of geographical regions as parameterized from the dif-
ferent types of data available.

A decision was made to standardize on cell tower sector
areas, as they span most of the province and reasonably
closely capture similar areas as the census and traffic sectors.
One challenge is that the density of tower sectors in some
regions (e.g., downtown Winnipeg) greatly exceeds a neigh-
borhood or a traffic district, and some interpolation is
required.

3.3.1. Summary of Data Sets. Table 2 provides a comparison
of the data sets in terms of their coverage, spatial resolution,
potential for real-time acquisition, and their potential for
enhancement through technologies like Bluetooth.

In comparing data, the most promising is that associated
with cell phone trajectories, and in the future an expectation
would be that the % covered would increase and the asso-
ciated spatial resolution decrease. However even in the
present case of low spatial resolution the cell phone trajectory
data tracks data from the municipal travel survey data set (in
a comparison of person trips in and out of the core versus
time of day) [28].

We note that while the size of some of respective data
sets is sufficient to infer statistical representation of the res-
pective populations, such a generalization is nonetheless pre-
mature since not all details of the respective sampling strate-
gies are known. In the case of the 76-person probe vehicle
data set, the sample was very small and further biased by the
use of self-selected volunteers [7]. The municipal travel
survey (WATS) data are reasonably voluminous and were
derived from a telephone survey with associated biases and
constraints of availability and willingness to participate [8].
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Table 2: Data comparisons.

Data set % of Population Spatial resolution Real-time potential Bluetooth potential

Probe vehicles 0.006 (Province) 0.01 (city) Very high (m) Somewhat Yes
Municipal travel survey 2.75 (Province) 4.4 (city) Medium (100 m) No No
Face2face smartphone
application

Negligible for pilot study; potential is ubiquitous Very high (m) Yes Yes

Cell phone trajectories 15 Low (km) Yes Yes

Table 3: SEIR modeL health state transition diagram parameters estimates.

Parameter Value
ΔE Duration of incubation period (e.g., 24 hours avg)
ΔIW Duration of infectious period (at work), for example, 2–5 days avg
ΔIH Duration of infectious period (at home), for example, 3 days avg
ΔR Duration of recovered (immune) period, for example, 200 days avg
α, p Contact graph transmission probability from home contacts
β, p Contact graph transmission probability from work contacts

The face2face Smartphone application data are the least rep-
resentative but hold considerable promise for scalability and
illustrate how fine grained contact resolution is technolog-
ically feasible. The cellular service data cover a substantial
fraction of the population but also carry inherent bias. While
the cellular service data used in this work were anonymized,
market studies [29] provide typical demographic profiles of
Smartphone users that could be incorporated into subse-
quent ABM simulations.

3.4. ABM Simulations. Simulations were carried out to
explore the potential of the data sets as constituent compo-
nents of an ABM and as a means of calibrating normal agent
movement patterns in normal, nonepidemic periods.

3.4.1. Simulation 1: 5000-Agent, Isolated Community. Initial
ABM simulations within the Simstitution framework began
with a consideration of integrating the face2face application
data. The model developed is, in essence, an individual-
based model. Using notions of the 80/20 rule extracted
from the data collected, an SEIR infection spread model was
built and run, simulating the dynamics of an influenza type
illness (ILI) similar to pH1N1 of 2009/2010. In the case of
Manitoba, isolated northern communities were particularly
hard hit during the first wave of the pH1N1 outbreak, and,
hence, a community in relative isolation is of interest for
simulation. Although the work is not attempting to replicate
any specific community, the population considered was a
model with 5000 people in relative isolation. This also pro-
vides a closed system for modeling purposes.

The model used as a base was a simple SEIR agent-based
or discrete model. It is a phase-type model where an indi-
vidual can be in one of a number of health states, typically
denoted susceptible, exposed, infected, and recovered. This
is a minimal type phase space and is illustrated in Figure 12.
Parameters associated with the model are shown in Table 3.

In this work, the infected state consists of two phases
(work and home). In general, a person may be infected and

infectious at work prior to a period where they may be ill
and at home (immobile with probability q). Each person has
essentially two contact lists: one associated with their day-
to-day business activities with parameters governed by the
80/20 rule and their home contact list consisting of more
direct family members. Using data collected from the four
face2face application probe devices, each person (agent) had
a contact list of approximately 10 close contacts, reflecting
the 80/20 rule found from the Pareto distribution associated
with contacts. The simulation—although coarse—includes a
circadian rhythm where each individual was also provided
with a contact list of a small number of persons during
the night (every second 12 h cycle), in addition to their
daytime contacts. The probability of becoming infected was
P = 0.005. This was implemented as a 0.005 probability of
becoming infected if one of your close contacts was infected,
per hour of contact with that agent. This measure of infection
probability is an adjustable parameter within the simulation
but is consistent with considerably larger models.

Figure 13 illustrates the spread of an infection through a
population of 5000 persons, with curves typical of compart-
mental susceptible-infected-recovered (SIR) models. The
only significant difference here is that these simulations are
the result of individual stochastic models with contact lists
governed by the observation of the 80/20 rule arising from
the Pareto distribution of inferred contacts from an auto-
mated proximity contact pattern generator. In epidemiology,
Ro is denoted the basic reproduction number of the infection
and is the number of secondary infections a single infected
case will cause. In the case of an influenza strain (e.g., 1918)
Ro has been estimated to be between 2 and 3. In the data of
Figure 13, Ro is approximately 1.9.

To further explore conditions that may be representative
of remote northern communities, which also tend to have
lower average personal income levels, the number of close
proximity contacts during the “at home” cycle was varied
from 2 to 5, as illustrated in Figure 14. This represents a tend-
ency towards overcrowding in homes. Qualitatively, the sim-
ulations indicate that overcrowding is a major contributing
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Figure 10: Self-Entropy of users for various times of day.

factor in the spread of an ILI. The overcrowding exacerbates
the infection spread as a consequence of increased exposure
due to increased agent-agent contact [30]. This finding
makes one common public health intervention inappropriate
in that context—that being the recommendation for an
infected individual to stay home. In environments with
severe overcrowding in homes, this recommendation may in
fact be deleterious. In these scenarios, it may be worth inves-
tigating the impact on overall community infection rates, if
temporary mobile facilities are established to house and treat
infected individuals.

3.4.2. Simulation 2: “Morden Simulation” of 16,500 Agents in
Adjacent Communities. Towards continued evolution of the
ABM under the Simstitution framework, the next iteration

saw the development of a model approximating a small com-
munity, inclusive of census data and cellular service records,
as well as a degree of spatial behavioral modeling. Toward the
development of a provincewide simulation, our work devel-
oped a small-scale ABM of two adjacent communities in the
Rural Municipality of Stanley, Manitoba with a combined
population of approximately 16,500 residents: Winkler,
Manitoba at 10,000 residents and Morden, Manitoba at 6500
residents. This is a spatial temporal model with demographic
data from Statistics Canada [10]. From this perspective,
agents are provided with schedules, and a model of disease
spread is run. Figure 15 illustrates the topography of the
region of interest.

The towns of Morden and Winker are roughly seven
miles apart in southwest Manitoba. One of the reasons for
selecting this geographical area is that it is representative of
many North American rural municipalities. Figure 15 also
illustrates the location of three cellular service towers with
MTS Allstream as the service provider. The ABM is discussed
in terms of model validation using data that is mined from
anonymized cell phone use records. In addition to cell phone
usage, the model is also improved using the face2face Smart-
phone application to provide high-fidelity contact patterns.

This simulation incorporated the ABM framework fea-
tures outlined earlier, as well as visualization capabilities to
observe emergent model behavior during execution. In this
model, the SimRegion tree only consists of two layers: the
root or top SimRegion (Morden) and the leaf SimRegions
which represent the home, school, and work locations that
agents occupy. The leaf SimRegions are arranged in a grid
with empty spaces between structures to allow for SimAgent
travel. Agents are assigned work, school, and home locations
based on demographic data [10].

Figure 16 shows a screenshot of the Morden simulation
at a particular time step. On the left side, the entire city is
shown. On the right side is a detailed view of six classrooms
in a school in the center of town in which individual
SimAgent details can be seen. Details include the gender and
age of the SimAgent, as well as disease status. Disease status
is the most interesting and is indicated by the color of the
SimAgent icon. The icon changes color, with green indicating
a susceptible state. Once the agent is infected, it turns yellow,
orange, and red depending on how long they have spent in
the infected state. Finally, recovered SimAgents turn blue.
The leaf SimRegions are depicted as colored squares. Sim-
Regions with no SimAgents contained inside are white. Sim-
Regions with one or more SimAgents display a blended color
tile based on the aggregated disease state of the SimAgents
inside. For example, the green tiles (Figure 16) indicate that
most of the agents within that tile are in a susceptible state.
Further, the purple tile is due to the large number of recov-
ered agents present at that location. This type of visualiza-
tion is very useful to allow a user to watch a time sequence of
the simulation and observe movement and infection spread.
In effect, this becomes part of the debugging process.

Four concrete IndividualPolicy subclasses were used to
generate the SimAgent behavior in the Morden model. The
SchedulePolicy determines whether a particular agent wants
to be at its assigned work, school, or home, depending on
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Figure 11: Traffic districts (top left), census regions (top right), and dell tower locations (bottom) for Winnipeg, Canada.

the demographic profile of the particular SimAgent and the
current time which advances in increments of one hour.
The SchedulePolicy sends messages containing the desired
destination to the SimAgent’s MovementPolicy which han-
dles the actual movement. The InfluenzaPolicy maintains
the particular SimAgent’s disease state and, if in the infected
state, sends “infection” messages to other SimAgents in the
same SimRegion, which is how disease spreads between Sim-
Agents. Finally, the BluetoothTrackingPolicy emulates the

face2face Smartphone app and is the source of the synthetic
contact data. Currently, the corresponding GroupPolicies
were used to facilitate aggregation of data in a spatially
explicit manner to achieve the tiling effect in Figure 16.

Thus, the data sources in this simulation include demo-
graphic data, coarse grained data from anonymized cellular
records, and the finer grained face2face Smartphone appli-
cation programmed to log close-proximity Bluetooth device
contacts. In this simulation, the face2face Smartphone app
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Figure 13: Infection spread simulation using contact data extrapo-
lated from Table 3 P = 0.005 and population of 5000.

data was used as a verification check. In essence, the ABM was
instrumented with tracking capabilities and contact distribu-
tions generated for comparison with those measured.

Once processed for the connections with the towers of
interest (Figure 15), this amounted to just under 500,000
records of the overall four-day dataset from MTS Allstream.
Although statistical in nature, the data can be further
processed to estimate flux of persons between the two neigh-
boring towns. Within an infection spread model, this helps
in estimating patterns of movement that contribute to infec-
tion spread. Once stored in a database, queries allowed for
extracting anonymized device activities. Figure 17 illustrates
the breakdown of mobile cellular devices accessing the cell
towers in Morden and/or Winkler. For an individual, a duty
cycle can be estimated, illustrating the percentage of time a
person is likely to be in one region or another. The timestamp
can also be used to infer primary community of residence.
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Figure 14: Infection spread simulation assessing the impact of over-
crowding.

User counts here indicate that approximately 2650 users
remained in Morden, approximately 485 users remained in
Winkler, while 2285 users spent time in both Morden as well
as Winkler over the four-day data collection period.

This data can be refined further based upon those with
cellular network access records in both Morden and Winkler.
Figure 18 illustrates the breakdown of users who accessed cell
towers in both communities over the duration of a single
connection of their cellular device to the network, implying
travel from one community to the other community during
the time period of the device’s network connection. The
actual device accesses between the two communities break
down as approximately 65/35, reflecting durations more
accurately.

3.5. Validating and Evolving the ABM Based on the Outcomes
of the Morden Simulation. In addition to their role as inputs
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Figure 15: ABM model topography of adjacent small communities:
Winkler, Manitoba and Morden, Manitoba.

Figure 16: Screenshot of running simulation. Morden (left), close-
up of 6 classrooms (right).

governing and calibrating agent behaviour in ABMs, real data
sets can also validate models, in this case the Simstitution
ABM framework. The first and most obvious would be using
as accurate demographic data as possible. The Morden sim-
ulation relied on data obtained through the federal census by
Statistics Canada, and the Simstitution framework in general
is designed for the inclusion of these federal census data. In
addition, models of schools in the Morden simulation were
refined to provide for reasonable class sizes, data which are
estimated here but would benefit from using real data. With
this model, a disease spread simulation was run and provided
a baseline for modeling the spread of a respiratory infection
or ILI. Figure 19 illustrates the infection spread within the
Morden simulation.

In the first effort to improve the basic ABM within the
Morden simulation, it was instrumented in terms of agent
contacts and durations which should be validated by reflect-
ing the patterns in data extracted from the Bluetooth probe
devices. The objective was to see how well the model reflected
real person-person networks. For the baseline simulations in
the Morden simulation, contact patterns for all agents were
instrumented. From these simulations and the aggregated
rank orderings, an 80/20 rule can also be estimated. In this
case, 80% of the contact durations are spent with approxi-
mately 4% of a person’s contacts (25/670). This again is con-
sistent with data extracted from the face2face Smartphone
pilot study. Figure 20 illustrates the rank ordering of contact
parameterized by demographics. Intuitively these profiles
appear reasonable. School age children spend considerable
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Figure 17: Morden and/or Winkler cellular user aggregates.
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Figure 18: Breakdown of users with cellular records in both com-
munities.

Table 4: Zipf exponents for various demographics.

Age Zipf exponent R2

2 1.85 0.85
6 1.91 0.82
12 2.23 0.81
16 1.89 0.87
20 2.28 0.86
30 2.26 0.91
40 2.16 0.91
50 1.97 0.91
70 1.35 0.90

time with three groups, household members, school class-
mates, and friends. The knee in the curve of school age
children is between 20 and 32. For samples of age groups, the
exponents associated with Zipf ’s law are presented in Table 4.
Perhaps it is also intuitive that a 2-year old and a 70-year-
old person have similar—and somewhat limited—contact
patterns.

The consequence of the rank ordering implies that the
coefficient associated with the corresponding Pareto distri-
bution would be between 0 and 1. The lack of a finite mean in
the corresponding contact PDF approximation would imply
that a few long duration contacts are a significant vector of
infection spread.

Other means of validating the data from a simulation
includes its relation to other types of published data. For
example, in [31] contact patterns are analyzed as derived
from a large population survey that indicated that for their
preliminary modeling “5- to 19-year-olds are expected to
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suffer the highest incidence during the initial epidemic phase
of an emerging infection transmitted through social contacts
measured here when the population is completely suscep-
tible.” These expectations are consistent with the contact
patterns generated by our ABM.

In the second instance of enhancing the ABM based on
the observed outcomes of the Morden simulation, it was rec-
ognized that Morden does not exist in isolation, and, as such,
flux of persons into and out of the area is required. This is not
unlike large-scale efforts where simulations are based upon
data extracted from airline travel, for example. In this case
the data—albeit voluminous—is reasonably extractable. It is
more difficult to obtain inter-community travel in rural
settings as one cell tower may cover the entire town. In this
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Figure 21: Temporal sequence diagram of three users accessing
cellular towers in Morden and Winkler.

environment, there are few (if any) directly available data
sets; however, there are opportunities for inferencing from
more disparate data sources. Although an ABM running a
bounded topography may be applicable to geographically
isolated communities, in semirural settings there is consid-
erable interaction with surrounding towns that need to be
accounted for. From Figures 17 and 18, an indication of inter-
actions between Morden and Winkler can potentially be
inferred from cellular tower access. The data suggests that of
the cell-phone-carrying persons (approximately 4000) with
primary residence in Morden, approximately 34% are seen to
have records in both Winkler and Morden, with that person
spending on average 65% of their time in Morden and 35% in
Winkler. Similarly of the approximately 1400 phone-carrying
persons with primary residence in Winker, approximately
65% are seen to have records in both Winkler and Morden,
with that person spending on average 65% of their time in
Winkler and 35% in Morden. These very coarse estimates
nonetheless allow one to begin modeling multiple commu-
nities and their interactions.

One can burrow deeper into the data and determine
periods of time a representative individual would spend in
each community. Figure 21 illustrates a typical daily duty
cycle associated with randomly selected users and their access
to cellular towers in Morden and Winkler. The first two user
data duty cycle plots reinforce routine activity theory as users
are primarily seen in Morden during the night with inter-
town tower records primarily during the day. The third user’s
behavior is considerably more erratic. In either case, these
types of trajectories are required in improving interacting
ABMs and improving the specificity and accuracy of agent
behaviours and interactions within an ABM framework.
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Ongoing ABM framework evolution is depicted in
Figure 22 where external sources are integrated as they
become available. At present, these are done in a manual
fashion but are amenable to automation and/or machine
learning, and thereby further adapting the model to the real
world.

A benefit to developing an ABM framework in this fash-
ion is that it provides opportunities for increasing levels of
computational efficiencies by exploiting parallel computing
paradigms, since many communities tend to be autonomous
with limited interaction between communities. The next
significant milestone in the development of a provincewide
simulation using the Simstitution ABM framework will be to
decompose major urban areas, utilizing the municipal travel
survey data for gross flows and generating trajectories for
all agents based on generalized but detailed profiles extracted
from the cellular record data. Cohort groups will be cor-
related to that of the face2face Smartphone app data, and
schedules of activities will be guided by detailed trip data.

4. Limitations and Opportunity

There are a number of limitations in attempting to incor-
porate real data from somewhat disparate sources into an
ABM framework, including two primary challenges in fusing
data to a model, regardless of data source. The first challenge
is the collection of the data, with assurances that the data
collected is meaningful and accurate, and then mining or
interpreting the data for parameters or characteristics useful
to the model. The second challenge relates to integrating the
data into the model itself, running simulations, and then
attempting to qualify (and ideally quantify) the outputs.
In many instances, the results of the simulations may be
self-fulfilling and somewhat self-evident, as vercrowding in
isolated and impoverished communities leads to increased
infection spread. The infection spread interventions that one
could model may provide guidance for policies that may
then be considered. For example, an intervention associated
with reducing infection spread may be a recommendation to
stay home while ill; in overcrowded settings, a more effective
intervention may be quarantine or a modified quarantine
policy whereby an infected person may be advised to seek
temporary housing in a facility set up specifically for that
purpose. This may also not be unobvious, but modeling with
real data may help to elucidate and verify these options and
interventions [32].

Ideally one would like to compare the output of a disease
spread model with major outbreaks. For a number of reasons
this is not always possible. The purposes of models are to aid
in understanding how effective the anticipated public health
interventions will be in the event of future outbreaks. As
such, when using ABMs, an objective is to make the models
as accurate as possible using real data to the greatest degree
possible. This is one of the major advantages of using ABM,
in that they lend themselves to inclusion of real data which is
correspondingly becoming increasingly available. Although
not modeled here, there is also a significant medical facility
intermediate between Morden and Winkler in the Morden
simulation, providing an effective vector for infection spread
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Figure 22: SEIR disease spread simulation.

as both patients and health care workers largely come from
both Morden and Winkler. These low-level details and data
are required as one attempts to generate a comprehensive
disease spread ABM on the scale of a province or state.

The opportunities for using real data within an ABM and
related microsimulations are considerable. There are obvious
challenges in dealing and interpreting data but the access and
availability and the availability of computer power to mine
and analyze data have never been greater. The ABMs under
development in our group are not limited to ILIs but are
also amenable to other contact-based infections such as STIs.
In that case, modifications would include extensions to the
stochastic health state process associated with each individ-
ual, as asymptomatic states would need inclusion. It could
be that to simulate STI transmission, an ABM would be par-
ticularly suitable, as it would have to attempt to account for
infection predispositions within various demographic pro-
files; this is something that would be difficult within a more
general modeling method. A related project in our group
is to build a hybrid ABM combining behaviors and move-
ments extracted from real data sources such as those des-
cribed here, in conjunction with the interaction with elec-
tronic social networks at particular sites, with the express
objective of finding real-life social connections. An advantage
of ABM microsimulation in this application would be the
ability to apply mock infection interventions and estimate
their efficacy.

Work in progress includes developing the simulation
of SEIR model of infection spread within the Simstitution
ABM framework based on agent contact data extracted from
cellphone trajectories in a provincewide simulation scenario
(188,000 agent trajectories interpolated to 1.1 M agents).
Each antenna sector GPS coordinate represents a location
where persons can come into contact with one another,
given their cellphone trajectory. Limitations to this model are
somewhat self-evident, as the cellular data have biases not yet
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taken into consideration, as well as the rather obvious fact
that even though agents may be within the same antenna
sector range, it is unlikely that all agents are in proximate
contact. Cohort profiles extracted from the face2face Smart-
phone application data can be used to generalize the contact
profiles. Another challenge within the pending simulation
is associated with agent susceptibility, which is a con-
sequence of many factors including economic and envi-
ronmental conditions such as overcrowding. However, in
model building—much like many design problem solving
initiatives—a divide-and-conquer paradigm is often a rea-
sonable approach. Our longer term-goals are to acquire
real-time trajectory data feeds and integrate these into the
Simstitution ABM framework in a way that may also facilitate
prediction and simulation of infection mitigation policies.

The value of this type of data fusion within an ABM is
closely related to Stein’s phenomena, which implies that as
more data is added, the estimators tend—on average—to be
more accurate.

5. Summary

This work has explored the potential of real yet disparate
data sources in an agent-based modeling framework for
simulation of infection spread within populations. The
data serve as calibration for agent profiles (behaviours and
interactions) during normal, nonepidemic periods, and the
use and cross-references of multiple data sets improve the
credibility and validity of the model. The data sources
included a Smartphone application (face2face) that esti-
mated proximate contacts and durations to similar devices,
cellular service records that allow one to estimate a person’s
trajectory, municipal travel survey data, and fine-grained trip
data from a pilot study of 76 vehicles over one year. The
unique contribution of the work is the integration of tech-
nologies that generate real contact data with existing sources
of real contact data into the ABM framework, then applied
to govern infectious disease spread models.
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