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Abstract

New approaches to enhance ultrasound tomography (UT) and microwave tomog-

raphy (MWT) as well as their combination are investigated. These nondestructive

imaging techniques create five quantitative images of different properties of an object

of interest (OI): (i) compressibility, (ii) acoustic attenuation, (iii) density, (iv) real

part of the complex permittivity (related to the dielectric constant), and (v) the imag-

inary part of the complex permittivity (related to the conductivity and dielectric loss).

These images are reconstructed by solving nonlinear ultrasound and electromagnetic

inverse scattering problems, or using ray-based methods.

The overall objective of this research is to use UT and MWT so as to (1) enhance

the achievable image accuracy related to the detection and identification of various

tissues, and (2) to provide quantitative levels of confidence in those reconstruction.

This is performed by combining the above five quantitative images into one image

that is referred to as the composite tissue type image. For example, for the case

of breast imaging, this provides an image of the breast whose pixels correspond to

different tissue types (namely, fatty, fibroglandular, tumor, skin, or cyst) within the

breast. In addition, each pixel of the image is associated with a probability value that

determines the level of confidence regarding its corresponding reconstructed tissue

type. This approach is important and novel since existing individual UT and MWT

algorithms do not provide any indication regarding the level of confidence in their

reconstruction. Furthermore, the approach is “user friendly” in the sense that one
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viewing the image for diagnosis of disease (e.g., a physician) does not have to interpret

ultrasonic or electromagnetic properties in order to make a diagnosis.

Results of creating tissue-type images from various property images are shown for

MRI-based numerical phantoms as well as an experimental tissue mimicking phantom

and a human forearm. To perform the initial UT property reconstructions a new

balancing method is introduced into the Born Iterative Method (BIM) to deal with

the wide range of ultrasonic property values of breast tissues. The possibility of

including anatomical and epidemiological information to enhance the reconstruction

for the UT/MWT breast imaging application are also investigated.
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Introduction

Ultrasound tomography (UT) and microwave tomography (MWT) are nondestruc-

tive imaging modalities which can be used for different applications such as biomedical

imaging and industrial non-destructive testing [2–19]. The ultrasonic properties of

the object of interest (OI) to be determined in UT are compressibility, attenuation,

density and sound speed and the dielectric properties of the OI to be determined in

MWT are the real and imaginary parts of the complex permittivity profile [2].

In UT and MWT, the OI is surrounded by some transceivers as shown in Fig 2.1.

When the first transceiver works as a transmitter, the other transceivers operate as

receivers. This procedure continues until all the transceivers are used as transmit-

ters [20]. The collected data can be used by different methods to create qualitative

and/or quantitative images. For example, some of the main methods are: 1) ray-

based methods [5,21–25] , 2) diffraction tomography [26,27], and 3) full-wave inverse

scattering algorithms [4, 20,28–36].

The reconstruction algorithm is chosen based on different criteria. The form

of data (number of available data) and computational resources are two important

parameters for choosing the reconstruction algorithms. Ray-based methods are com-

putationally efficient, and in contrast to full-wave inverse scattering algorithms, do

not suffer from not converging to a proper solution due to being trapped in a local
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minimum [5]. In addition, full-wave inverse scattering algorithms often require many

data points and are computationally expensive. It should be noted that full-wave

inversion methods use a more accurate wave model than ray-based and diffraction

tomography methods. Thus, multiple scattering events are taken into account in

full-wave inversion [28]. Therefore, full-wave inversion methods lead to better recon-

struction∗ of the ultrasonic and/or dielectric properties of the OI as compared to the

ray-based and diffraction tomography methods. In the full-wave inversion algorithms,

the UT and MWT problems are mathematically formulated as non-linear inverse scat-

tering problems. Different inversion algorithms such as the Born Iterative Method

(BIM) [4,20,29,37], the Distorted Born Iterative Method (DBIM) [30,34,38,39] (or,

equivalently, the Gauss-Newton inversion algorithm), and the Contrast Source In-

version (CSI) algorithm [40, 41] can be used to solve this non-linear problem. The

full-wave inversion problem is non-linear and ill-posed. To handle the ill-posedness of

this problem, different regularization techniques need to be used, such as the standard

Tikhonov [32, 42], the L1-norm Tikhonov [43, 44], multiplicative regularizers [45, 46],

the truncated singular value decomposition [47, 48] and the conjugate gradient least

squares (CGLS) subspace regularization methods [8, 9, 20,47].

In this thesis, full-wave inversion algorithms are used to create the ultrasonic and

dielectric properties of the OI. The OI of primary interest in this thesis is the human

breast with the detection of breast tumours being the primary biomedical application.

Numerical MRI-based breast phantoms† are used to validate much of the research. We

∗In the context of this thesis, the terms inversion and reconstruction are used interchangeably.
However, we note that the term reconstruction may be considered broader than the term inversion.
The inversion is the step in which the measured data is inverted to produce property images. How-
ever, the reconstruction may include other steps such as filtering and post processing in addition to
the inversion step.
†Within the context of this thesis, these numerical breast phantoms are the numerical models

that have been derived from magnetic resonance imaging (MRI) scans.
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also use some ray-based methods for ultrasound imaging to create both quantitative

and qualitative properties of the OI.

Several quantitative property images can be obtained from UT (such as attenua-

tion, compressibility, density and sound speed) and from MWT (real and imaginary

parts of complex permittivity). One of the main ideas pursued in this thesis is to

create a single image that can interpret one or more of the five quantitate images for

end users (especially, medical doctors). This approach is more practical since medical

doctors not familiar with the properties of different tissues may have a difficult time

interpreting the quantitative property images (either individually or together). In-

spired by this idea, it was proposed, for the first time by the author, to introduce the

concept of creating a composite tissue type image that can integrate the quantitative

property images obtained from UT and MWT (including their combination). This

new approach is not limited to these two modalities, but can be extended to other

modalities as well. As part of this new approach, the probability of assigning a tissue

type to each pixel in the final image is also provided. This probability indicated the

level of confidence in assigning that particular tissue-type for a given pixel. In this

thesis, the reconstructions of the tissue-type along with the probability image for

MRI-based phantoms are shown for UT, MWT and their combination. In addition to

synthetic data, the experimental reconstruction of tissue-type for a tissue mimicking

phantom using UT data and a human forearm using MWT data are also shown. In

the following, the contents of each chapter are explained.

In Chapter 2, which is a background chapter based on a paper that resulted from

the candidate’s MSc research and published in the Journal of Acoustical Society of

America‡ [20], a fast and efficient forward scattering solver for ultrasound tomography

‡The writing of this paper and the answering of the reviewers’s comments were done during the
candidate’s Ph.D. studies; however, the main body of this paper is based on his M.Sc. work [33]
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is explained. This is important as having a fast and efficient forward solver is essential

in the use of inversion algorithms in ultrasound tomography as (nonlinear) inversion

algorithms require repeated calls to a forward solver, which solves the associated

wave equation for a given predicted ultrasound profile§ and a given excitation. This

forward solver can handle large and relatively high contrast objects in which all

the ultrasonic properties of the OI (i.e., compressibility, attenuation, and density)

can vary simultaneously, and the OI’s properties can also be inhomogeneous. This

forward solver is also equipped with some acceleration features based on marching-

on-source, fast Fourier transform (FFT), and the symmetric block Toeplitz matrix

with symmetric Toeplitz blocks property of the Green’s function matrix to increase

efficiency and to only store the first row of the resulting matrix to reduce the memory

requirement.

Chapter 3 investigates the use of non-linear inversion algorithms for the breast

imaging applications under three scenarios for UT. To have more relevance to the

breast imaging application, MRI-based numerical breast phantoms are considered.

The Born Iterative method (BIM) is investigated first for all three scenarios. Then

the multiplicative regularized Gauss-Newton inversion (GNI) method, originally de-

veloped for MWT, is adapted to the ultrasound imaging problem but is only applied

to the reconstruction of the compressibility and the attenuation. The use of GNI is

investigated because of the availability of a more sophisticated regularization tech-

nique. For all these algorithms, a balancing method is introduced; it is shown how

this balancing technique can improve the reconstruction accuracy. (The balancing

method considered in this chapter for UT was adapted from the balancing method

§In the context of this thesis, the term profile refers to a (property or contrast) function that
can vary with respect to position vector. This is important for inhomogeneous objects since their
properties are a function of position. For example, for two dimensional imaging in the xy plane, an
attenuation profile will be a function of (x, y), i.e., α(r) = α(x, y).
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proposed for MWT [49, 50].) In this chapter, the properties to be reconstructed are

the inhomogeneous compressibility, density and attenuation of breast tissues. Three

scenarios related to the interdependence of the ultrasonic properties are considered in

this paper. The first scenario corresponds to the case that all the ultrasonic properties

are assumed to be independent and unknown. The assumption of a linear relation

between the contrast of compressibility and the contrast of inverse density [4] is used

in the second scenario and finally the variation of density is neglected completely in

the last scenario. The balancing method substantially improves the reconstruction of

all the contrast profiles especially for the case that the contrast profiles for the breast

imaging application. As will be seen in this Chapter, the contrast corresponding to

the attenuation in the breast imaging application is much smaller than the other

contrast profiles and the image corresponding to this contrast is important because

tumor can be better identified using this image [51–53]. However, as will be seen, we

cannot obtain a good reconstruction for this contrast without applying the balancing

method. This is due to the fact that most optimization-based inversion algorithms

favour the reconstruction of unknowns with a larger magnitude. The balanced BIM

is used as an inversion algorithm for all the scenarios. Reconstructions of the contrast

profiles as performed for MRI-based numerical phantoms. We have also adapted the

MR-GNI method for the last scenario of our ultrasound tomography problem. This

inversion algorithm was originally developed for microwave tomography [50]. The reg-

ularization used in MR-GNI is more advanced compared to the regularization used in

the BIM. Thus, it leads to better reconstruction of the contrast profiles. However, the

MR-GNI is computationally more expensive in comparison with the BIM algorithm.

In any case, we see that the balancing method is also required for this inversion al-

gorithm. This chapter is based on the author’s journal paper published in the IEEE
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Transactions on Computational Imaging [28].

In Chapter 4, the concept of creating a composite tissue type image (cTTI) along

with an associated composite probability image is introduced for the first time for

UT, MWT, and their combination. This new imaging technique uses Bayes’ Theo-

rem to make a decision on the most probable tissue type occupying a pixel given the

reconstructed properties at the same pixel. The proposed concept not only integrates

the information available from different reconstructed quantitative property images

(obtained from different imaging modalities), but also provides an indication for the

level of confidence regarding the reconstructed tissue type. This tissue-type image

represents the most probable tissue type at each pixel. This work has the potential

to significantly impact the area of biomedical imaging as the proposed method not

only facilitates the diagnosis process by the physicians, but also provides indications

for the level of confidence for each image pixel, which is very crucial in some sensi-

tive situations such as making the decision for breast mastectomy. In addition, the

proposed method provides a mechanism to perform multi-physics imaging within an

inverse scattering approach. The reconstructions of the composite tissue type image

along with the probability image for the MRI-based phantoms based on the quan-

titative reconstructions of the ultrasonic properties and dielectric properties of the

breast phantoms as well as their combination are shown in this chapter. This chapter

is based on the author’s journal paper published in the IEEE Journal on Multiscale

and Multiphysics Computational Techniques [2].

In Chapter 5, the concept of a composite tissue-type image along with the prob-

ability image is experimentally evaluated based on the data provided by two differ-

ent systems: an ultrasound system as well as a microwave imaging system. The

experimental ultrasound data set for a tissue-mimicking phantom is provided by the
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Multimodal Ultrasound Breast Imaging (MUBI) system developed by the Ultrasound

Systems and Technology Group at the Spanish National Research Council (USTG-

CSIC) and the Group of Nuclear Physics at the Complutense University of Madrid

(GFN-UCM) [54–56]. The experimental Microwave data set for a human forearm is

provided by an in-house system at the University of Manitoba. The enhancement of

the cTTI algorithm based on differences in the accuracy of reconstructing one prop-

erty compared to another property is also shown using the experimental ultrasound

data. The cTTI algorithm is also improved based on changing the prior probabilities.

In the cTTI algorithm, we should define the prior probabilities of each tissue-type

occupying each pixel; in Chapter 4 [2] these probability values are chosen to be equal.

However, in this work, we show that the change of the prior probabilities can lead to

improved reconstruction of the cTTI. Some prior knowledge about the object of inter-

est can be used to provide improved prior probabilities (for example anatomical and

epidemiological information of the OI as explained in Appendix B). As will be seen,

two sets of improved prior probabilities based on the estimated skin and fat regions

for the numerical MRI-based phantom are considered. The results of this improve-

ment are shown with the simulated data using combined ultrasound and microwave

tomography property images. The ray-based methods are used for the reconstruction

of the ultrasonic properties (sound speed and attenuation) of the OI for the exper-

imental ultrasound data. These ray-based algorithms are described in this chapter.

Calculating the time-of-arrival (TOA) of the signal is critical in the time-domain ray-

based algorithms. In this chapter, the modified energy ratio (MER) [57, 58] is used

to calculate the TOA of the experimental ultrasound measured signal. The MR-GNI

method is used for reconstruction of electromagnetic properties using experimental

microwave data and simulated ultrasound and microwave data for the MRI-based
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breast phantom. This chapter is based on the author’s journal paper accepted in the

IEEE Journal on Multiscale and Multiphysics Computational Techniques [59].

This thesis also consists of two appendices, which also include the author’s work

during his PhD studies. However, due to the fact that this thesis is presented in the

sandwich style format with the author’s peer-reviewed journal papers as its chapters,

these two works are included as appendices.

Appendix A presents the experimental reconstructions of the ultrasonic properties

(sound speed and attenuation) of an OI using an in-house ultrasound system at the

University of Manitoba. This system has a small number of transducers situated in a

circular ring. Due to the limited number of transducers in our UT system, we restrict

the testing to simple homogenous objects. The preprocessing of ultrasound raw data

and also the calculation of the time-of-arrival of the signal using Akaike information

criterion (AIC) [60,61] are also explained.

Appendix B presents the potential use of anatomical and epidemiological infor-

mation to enhance the cTTI reconstruction for the breast imaging application for

both UT and MWT, and their combination. A general procedure for introducing this

information is first considered. It is shown how anatomical prior information can be

based on the expected position of different tissue-types in the breast. For example,

the skin position is in the outer region of the breast and tumors mainly emerge within

the radiodense tissue (specifically radiodense fibroglandular tissue) [62]. A discussion

of how epidemiological prior information consisting of where in the breast certain pix-

els belong and the age of the patient, can be incorporated into the cTTI procedure.

For example, the chance of having tumor varies in different breast quadrants [63].

This information can be taken into account in the future to improve the cTTI recon-

struction. This chapter is based on the author’s International Union of Radio Science
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(URSI) AT-RASC conference paper [64].
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2

Background∗:

Ultrasound Tomography for Simultaneous

Reconstruction of Acoustic Density,

Attenuation, and Compressibility Profiles

2.1 abstract

A fast and efficient forward scattering solver is developed for use in ultrasound

tomography. The solver is formulated so as to enable the calculation of scattering from

large and high-contrast objects with inhomogeneous physical properties that vary

simultaneously in acoustic attenuation, compressibility, and density. It is based on

the method of moments in conjunction with a novel implementation of the conjugate

gradient algorithm which requires the use of the adjoints of the scattering operators.

The solver takes advantage of the symmetric block Toeplitz matrix with symmetric

Toepltiz blocks property of the Green’s function matrix to increase efficiency and

only stores the first row of this matrix to reduce memory requirements. This row

is then used for the matrix-vector multiplication using the fast Fourier transform

∗Reprinted with permission from Pedram Mojabi and Joe LoVetri, “Ultrasound Tomography
for Simultaneous Reconstruction of Acoustic Density, Attenuation, and Compressibility Profiles,”
Journal of Acoustical Society of America, vol. 137, no. 4, pp. 1813-1825, 2015. c© 2015, Acoustic
Society of America.
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technique, thus, resulting in the computational complexity O(n log n). The marching-

on-source technique is also used to provide a good initial guess which allows the

conjugate gradient technique to converge faster than initializing with an arbitrary

guess. This feature is important in tomographic inversion algorithms which require

that the object to be imaged be interrogated via several incident fields. Forward

scattering and inversion examples, based on the Conjugate Gradient Least Squares

regularized Born Iterative method, are shown, in two-dimensions, for objects varying

in all three physical properties.

2.2 INTRODUCTION

Ultrasound tomography (UT) can be mathematically formulated as an inverse

scattering problem [4,29,33,34,65,66]. In this inverse scattering problem, the goal is

to find the shape, location, and some quantitative ultrasonic properties of the object

of interest (OI). Images of the acoustic attenuation, compressibility, and density of

materials can provide substantial information regarding the internal structure and

composition of the OI. Quantitative reconstructions of these properties can be found

using various nonlinear inversion algorithms. Such inversion algorithms iteratively

minimizes the discrepancy between measurements of scattered pressure and those

simulated from predicted profiles. Thus, one important component of these inversion

algorithms is the forward solver which calculates the corresponding simulated data

due to a predicted profile. The main focus of this paper is the development of an

appropriate forward solver for this purpose, which is then used in the Born Iterative

Technique (BIM) [4, 29, 37, 67] to invert scattered pressure data and create images

of three contrast parameters related to the acoustic attenuation, compressibility, and

density of the OI.
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In UT, the object of interest is surrounded by several transducers as shown in

Fig 2.1, and is located within a known background medium [33, 68, 69]. Each of

these transducers can work either as a transmitter or receiver. When one transducer

operates as a transmitter, the others work as receivers. This procedure continues until

all the transducers are utilized as transmitters. The pressure data at each transducer

is collected in two different scenarios. The pressure data collected in the absence of

the OI is called the incident pressure, and the pressure data collected in the presence

of the OI is called the total pressure. The scattered pressure is then defined as

the numerical difference between the total and incident pressure and serves as the

measurement data that is inverted by the inversion algorithm to create one or more

property images.

Some desirable features of the forward scattering solver used within the inversion

algorithm are: (1) it should be able to handle inhomogeneous compressibility, den-

sity and attenuation profiles, (2) it should handle large objects with respect to the

wavelength of operation, and (3) it must be computationally and memory efficient.

The first requirement is desirable so as to broaden the range of materials that can be

imaged within the OI. For example, human tissue at ultrasound frequencies typically

vary in all three of these properties. To the authors’ knowledge, most of the forward

solvers developed to-date for ultrasound imaging assume that the density profile of

the OI is constant; this is true, e.g., in the biconjugate gradient (BCG) imaging tech-

nique presented in [70], in the formulation of the inverse operator incorporated in the

DBIM as developed in [71], the parabolic approximation in [72], the multilevel fast

multipole algorithm (MLFMA) incorporated in the DBIM as developed in [30], as

well as in the time-domain and frequency-domain eigenfunction methods described

in [73, 74]. It is well known that the density profile in many biomedical applications
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such as breast imaging is not constant [4, 34, 75,76]. Using inversion algorithms that

assume a constant density profile can result in a large amount of modelling error, de-

fined as the discrepancy between the numerical model used in the inversion algorithm

and the actual measurement system, producing erroneous reconstructions. Although

inversion algorithms have been reported wherein the forward solvers do not assume

a constant density profile; e.g., the T-matrix and DF-DBIM approach as presented

in [34,35], the FMM method as used in [31], and the time-domain forward solver used

in [29], none of these simultaneously and quantitatively invert all three properties that

are considered herein. The only work the authors are aware of where three acoustic

parameters are simultaneously inverted is the work presented in [77] wherein speed of

sound, density, and absorption are simultaneously inverted. It should be noted that

treating these three profiles as independent unknowns have the potential to result

in more accurate reconstruction accuracy in different application areas ranging from

biomedical to non-destructive applications. On the other hand, this may result in the

increase of the number of unknowns to be reconstructed. Therefore, more ultrasound

scattering data points are then needed to be collected and used for the inversion.

The second desirable feature is due to the fact that for some biomedical UT ap-

plications, e.g., breast cancer imaging, the size of the OI is very large with respect

to the wavelength of operation. This relates to the third important feature, compu-

tational efficiency, because it is typical for nonlinear inversion algorithms to call the

forward solver many times for accurate quantitative reconstructions. For example, if

we assume that the number of ultrasonic transducers in a UT system is 30, collect-

ing scattered field data at 10 different frequencies, and that the inversion algorithm

converges after 10 iterations, then the forward solver will be called 3000 times. This

simple example demonstrates the need for having a fast and efficient forward solver.
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To handle this computational burden, a forward solver based on the Neumann series

was recently proposed in [4]. This forward solver assumes that there exists a fixed

linear relationship between the contrast of compressibility and contrast of density

throughout the OI. Such an assumption is not valid for a broad range of materials

and thereby limits the use of such imaging algorithms.

Finally, it is beneficial to utilize a forward solver that can handle OIs with large

contrast. Sometimes the use of a proper background immersion medium, such as a

matching fluid, can help reduce the contrast of the OI. When this is not feasible it

is important that the forward solver be able to handle large contrast values. This is

not true of the forward solver proposed in [4], which is based on the Neumann series.

In this paper, a Method of Moments (MoM) [78–81] forward solver, in conjunction

with the Conjugate Gradient method [82], is used to handle the scattering from

inhomogeneous objects which simultaneously vary in compressibility, attenuation,

and density. This forward solver can also deal with large high contrast objects [33,

66]. To handle the computational burden associated with the UT problem, this

solver is equipped with some accelerating and memory reduction features. It makes

use of the block Toeplitz matrix properties [83, 84] of the resulting Green’s function

matrices to significantly reduce the memory requirements. Secondly, it uses the Fast

Fourier Transform (FFT) method to accelerate the matrix-vector multiplications in

the Conjugate Gradient (CG) method. Finally, the so-called marching-on-source

technique is used to find a good initial guess for the CG method; thus, accelerating its

convergence. To use the CG method with the integral equation formulation described

herein, the adjoint of the integral operators for the inhomogeneous compressibility,

attenuation and density profiles are required. These adjoint operators are provided in

the continuous domain, that is, before discretization using the Method of Moments.
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Figure 2.1: UT setup in which the OI is enclosed by an array of ultrasound trans-
mitters/receivers. The discretization scheme employed in this work is also shown.

The structure of this paper is as follows. In Section 2.3, we provide the mathemat-

ical formulation of the UT problem for objects having inhomogeneous complex-valued

compressibility, which takes into account the attenuation and compressibility, as well

as inhomogeneous density profiles. We then describe the MoM operators required in

the formulation of the forward scattering problem in Section 2.4, providing details

on the adjoints of these operators required in the CG solution. The accelerating fea-

tures of the MoM-CG forward solver are described in Section 2.5. In Section 2.6 we

outline the Born Iterative Method (BIM) in conjunction with Conjugate Gradient

Least Squares (CGLS) regularization which is then used to invert some 2D data ob-

tained synthetically. Although only 2D data is considered herein, the basic method

is easily extended to 3D problems. Section 2.7 presents some numerical forward and

inverse scattering results to demonstrate the effectiveness and efficiency of the for-
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ward solver and simultaneous reconstruction of all the contrast profiles. Discussion

and conclusions are presented in Section 2.8 and 2.9.

2.3 Problem Formulation

The acoustic wave equation can be written as [31,33,36,85,86]

ρ(r)∇ · [ρ−1(r)∇p(r)] + k̂2(r)p(r) = −S(r) (2.1)

where ρ is density, p is pressure and S is an arbitrary acoustical source. The effect of

attenuation can be modelled by assuming a complex valued wavenumber [31,36] as

k̂(r) ,
ω

c(r)
− jα(r) (2.2)

where ω is the angular frequency, c(r) is the speed of propagation, and α(r) is the

attenuation. The minus sign in (2.2) is due to the fact an e+jωt time dependancy

is assumed. Similarly, the complex-valued background wavenumber, k̂b(r), is defined

as [33]

k̂b ,
ω

c0

− jα0 (2.3)

where c0(r) is the background speed of sound and α0(r) is the background attenua-

tion, both assumed to be constants. The scattered pressure for the inhomogeneous

compressibility and density profiles can be found as [4, 29, 33,66]

pscat(r) = k2
0

∫

D

g(r, r′)χc1(r′)p(r′)dr′ +

∫

D

g(r, r′)∇ ·
[
χ2(r′)∇p(r′)

]
dr′ (2.4)

where p and pscat are the total pressure and the scattered pressure. D is a domain

containing the OI within the known background medium. Note that the contrast pro-
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files, to be defined below, are zero outside D. The scattered pressure is defined as the

numerical difference between the total pressure and the incident pressure, pinc, that

is, pscat , p− pinc. In these equations, k0 is the real part of the complex background

wavenumber, g(r, r′) is the Green’s function for the background medium, and χc1(r)

is the contrast of complex compressibility. The complex compressibility profile takes

into account the contrast of compressibility and the variation of attenuation via its

real and imaginary parts†, respectively. It is defined as [33,66]

χc1(r) , χ1(r)− j 2δα(r)

k0

(2.5)

where the superscript c denotes that this contrast is complex valued. The contrast of

compressibility χ1(r), which is real valued, is defined as

χ1(r) ,
κ(r)− κb

κb
(2.6)

Here, κ(r) is the compressibility at position r and κb is the background compressibil-

ity. δα(r) is defined as the difference between the attenuation at position r and the

background attenuation (δα(r) , α(r)− αb). The contrast of inverse density, χ2(r),

is defined as

χ2(r) ,
ρ−1(r)− ρ−1

b

ρ−1
b

(2.7)

where ρ−1
b and ρ−1(r) are the background inverse density and the inverse density at

position r. This completes a brief description of the acoustic scattering problem. The

UT problem can then be formulated as finding χc1(r) and χ2(r) of an OI based on

the knowledge of pscat(r) at certain measurement points outside the OI. To this end,

we need to know the total pressure due to a predicted χc1(r) and χ2(r). This will be

†The real and imaginary parts of χc
1 are denoted by χc

1r and χc
1i in this thesis.
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done through an appropriate forward solver, which is the focus of the next section.

2.4 Forward Solver

The MoM technique [78–81] has been widely used for different scattering problems

to discretized the problem into a linear system of equations of the formAx = b. In this

section, the CG version of the MoM forward solver for solving the scattering from

inhomogeneous attenuation, density, and compressibility profiles will be described.

As noted above, the effect of inhomogeneous attenuation and compressibility will be

embedded in the inhomogeneous complex compressibility profile. This CG version

of the MoM forward solver requires the definition of the so-called domain operators

as well as their adjoints. In Section 2.4.1, these adjoint operators are provided in

the continuous domain. These are then discretized and used to solve the scattering

problem numerically.

Two fundamental physical domains are introduced for the UT problem. The first

one, called the imaging domain, contains the OI within the background medium and

is denoted by D, as shown in Fig 2.1. The data domain, which is outside the imaging

domain, is denoted by S. This domain contains the transmitters and receivers as

shown in Fig 2.1. The goal of the forward solver is to determine the total pressure

in the imaging domain given a transmitter location and predicted material profiles

of the OI. It is assumed herein that the incident field is known analytically and the

scattered field within D is then to be determined using 2.4. In this case, both r and

r′ in (2.4) belong to the imaging domain (r, r′ ∈ D). Once this total pressure in D

is found by the forward solver, the scattered pressure on S can be found using (2.4)

with r ∈ S, and r′ ∈ D.



2.4. Forward Solver 19

2.4.1 Method of Moments (MoM) Forward Solver

The CG-MoM forward solver is described using two new operators which are

defined as [33]

G1d(·) , k2
0

∫

D

g(r, r′)χc1(r′)(·)dr′ r, r′ ∈ D (2.8)

G2d(·) ,
∫

D

g(r, r′)∇′ · [χ2(r′)∇′(·)] dr′ r, r′ ∈ D (2.9)

both of which operate on the total pressure in the imaging domain. The subscript d

indicates that these operators are domain operators. The total-pressure equation can

now be written as

p(r) = pinc(r) + G1d

{
p(r′)

}
+ G2d

{
p(r′)

}
= pinc(r) + (G1d + G2d)

{
p(r′)

}
(2.10)

Defining Gd as the sum of G1d and G2d we have

(I − Gd)
{
p(r)

}
= pinc(r) (2.11)

As a linear system of equations in the form Ax = b, x is the unknown total pres-

sure inside the imaging domain, b is the known incident pressure within the imaging

domain and the operator A is

A = I − Gd = I − G1d − G2d (2.12)

We solve this linear-operator equation using the CG algorithm [82]. To use the CG

algorithm, the adjoint of A, denoted as Aa, is required. The adjoint of operator A
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can be found by taking the adjoint of G1 and G2:

Aa = (I − Gd)a = (I − G1d − G2d)
a = I − Ga1d − Ga2d (2.13)

Therefore, to obtain Aa, we need to determine Ga1 and Ga2 . To find Ga1 we use the

definition for the adjoint operator:

< G1d

{
p(r′)

}
, ψ(r) >D=< p(r′),Ga1d

{
ψ(r)

}
>D (2.14)

where < ·, · > is the inner product and the subscript D denotes that this inner product

is taken over the domain D. Here ψ(r) is an arbitrary function over D. After some

algebraic manipulation, the adjoint operators, Ga1d and Ga2d, are found as

Ga1d
{
·
}

=
[
k2

0χ
c
1(r)

]∗
∫

D

g∗(r′, r)(·)dr′ (2.15)

and

Ga2d
{
·
}

= ∇χ∗2(r) · ∇
∫
g∗(r′, r)(·)dr′ + χ∗2(r)∇2

∫
g∗(r′, r)(·)dr′ (2.16)

where ∗ denotes the complex conjugate operation [33].

After discretizing A and Aa, the CG algorithm can be applied to solve Ax = b,

for the total pressure x in the imaging domain. It should be noted that the only

assumption used to find the adjoint operators is that the contrast of the reciprocal

of the density is zero on the boundary of D [33]. This assumption is true in practice

because the OI is surrounded by the background medium, and the contrast value is

zero anywhere on the background medium. That being said, it can be concluded that

no approximations have been used in the derivation of this analytical formula. Note
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that in this paper the imaging domain is discretized into square cells using 2D pulse

basis functions and Dirac delta weighting functions are utilized [33,78–81].

The next task is to incorporate features in the numerical algorithm that will allow

us to handle large numerical values of the contrast and also large objects as compared

to the wavelength. The standard CG algorithm turns out to be too computationally

expensive for the UT problem. Thus, in the next section we focus on three acceleration

techniques that are used in conjunction with this CG-MoM forward solver.

2.5 Acceleration Techniques for CG-MoM Forward

Solver

As noted in the Introduction, the UT problem requires having a fast and efficient

forward solver due to the fact that (1) the size of the imaging domain is usually large as

compared to the wavelength of operation [4, 66], and (2) the forward solver is called

several times within the utilized inversion algorithm. To handle this issue, three

accelerating features are incorporated into the standard CG-MoM forward solver,

which will now be described.

2.5.1 Marching-on-source Technique

This technique was developed for the electromagnetic forward scattering problems

[87–89]. Herein, we apply this method to the ultrasound forward scattering problem.

The fundamental idea of the marching-on-source technique is to provide a good initial

guess for the CG algorithm. The initial guess given to the CG algorithm plays a

very important role in the number of iterations needed for its convergence. When

there is no prior information related to the distribution of the total field for a given
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source, the initial guess is usually chosen to be either zero or the incident pressure.

The intuitive idea behind the marching-on-source technique method can be explained

as follows. First, note that in an ultrasound tomography setup, we have several

transducers which are co-resident on a ring close to the object of interest. That we

have several transducers close to the OI indicates that neighbouring transducers “see”

the object similarly. This indicates that the corresponding total pressure distributions

of these neighbouring transmitters will be similar. The level of similarity can then

be determined based on comparing their incident pressure distributions. Therefore,

having the total pressure distributions for some previous neighbouring transducers to

the transducer of interest, and knowing the incident pressure for these transducers, a

good estimate for the total pressure of the transducer of interest can be calculated.

The marching-on-source technique is well suited for the UT problem in which the

forward solution needs to be found for several transmitters usually located close to

each other. For the first few transmitters, a typical initial guess, e.g., zero or incident

pressure, is used to find the total pressure in the imaging domain. An improved

initial guess for the next transmitter is then based on the total pressure that has been

calculated for these previous transmitters. For example, assume that we are looking

for a good initial guess for the forward scattering problem corresponding to the mth

transmitter. This initial guess is written as a linear combination of Q previously

found total pressures due to Q previous transmitters. The initial guess for the mth

transmitter is denoted by x0
m and the total pressure corresponding to the (m − q)th

transmitter is denoted by xm−q. Thus, the initial guess for the mth transmitter is

written as [33]

x0
m =

Q∑

q=1

aqxm−q (2.17)

where aq is the weighting coefficient for the total pressure inside the domain due to
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transmitter m − q. To find these coefficients, it should be noted that a good initial

guess should be close to the exact solution. In other words, we minimize the following

norm [33]

argmin
x0m

{
||Ax0

m − b||2
}

= argmin
aq

{
||

Q∑

q=1

aqAxm−q − b||2
}

(2.18)

where b is the incident field due to transmitter m. It should be noted that when A

operates on xm−q, it gives the incident pressure inside the domain due to transmitter

m− q. Thus, (2.18) can be written as

argmin
aq

{
||

Q∑

q=1

aqp
inc
m−q − pincm ||2

}
(2.19)

where pincm−q is the incident pressure inside the domain due to the transmitter m− q.

This minimization can be written in the following form:

argmin
aq

{∣∣∣∣
∣∣∣∣
(
pincm−1 pincm−2 · · · pincm−Q

)




a1

a2

...

aQ



− pincm

∣∣∣∣
∣∣∣∣
2}

(2.20)

where

(
pincm−1 pincm−2 · · · pincm−Q

)
is an N×Q matrix, and N is the number of cells in

the imaging domain. The solution to this least-squares minimization is easily found
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as




a1

a2

...

aQ




=

[(
pincm−1 pincm−2 · · · pincm−Q

)H (
pincm−1 pincm−2 · · · pincm−Q

)]−1

×
(
pincm−1 pincm−2 · · · pincm−Q

)H
pincm (2.21)

Once these coefficients are found, the appropriate initial guess can be given to the

CG algorithm. Note that the calculation of these coefficients can be pre-calculated

and stored since they are only dependent on the incident pressures. Therefore, their

calculation does not impose any additional computational cost to the forward solver.

2.5.2 Symmetric Block Toeplitz Matrix with Symmetric Toe-

pltiz Blocks

The other method used in this forward solver to make it efficient in terms of

memory storage is based on using the block Toeplitz matrix properties. The key to

this method is that the Green’s function matrix in the domain equation is a symmetric

block Toeplitz matrix with symmetric Toeplitz blocks. It will be shown that only the

first row of this matrix is needed to be stored instead of storing all of the matrix

elements. This method was originally used in electromagnetic problems and signal

processing [83,84].

We start by noting that the term g(r, r′) is a common term in both integrals in

(2.4). If we assume that we have a 2D time-harmonic problem with e+jωt time de-
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pendancy, the Green’s function for each frequency is solely dependent on the distance

between positions r and r′ and can be found as [34, 85] 1
4j
H

(2)
0 (k0|r − r′|) where H2

0

is the zeroth-order Hankel function of the second kind. If we assume that the num-

Figure 2.2: A symmetric block Toeplitz Matrix. Each block is also a symmetric
Toeplitz matrix of the size of ny × ny.

ber of cells in the pulse basis function is N = nx × ny (see Fig 2.1) where nx and

ny are the number of discretized elements along the x and y axes respectively, then

each integral results in an N ×N matrix of the form shown in Fig 2.2. This N ×N

matrix is not only a symmetric block Toeplitz matrix but also each of its block is a

symmetric Toeplitz matrix. The size of each Toeplitz matrix in Fig 2.2 is ny×ny and

the total number of Toeplitz blocks is nx×nx. If each Toeplitz block is considered as

an element of the matrix, these elements make another Toeplitz matrix.

This specific structure allows us to store only the first row of the whole matrix

instead of all the N2 elements, thus saving significantly on storage memory. As

will be seen in the next section, only this first row is used for our matrix-vector

multiplications. That is, the whole matrix is never actually constructed. This is
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possible because the CG algorithm needs only matrix-vector product operations on

appropriately chosen vectors and not the actual operators themselves. Finally, we

note that this Toeplitz structure can also be applied to the 3D cases [83].

2.5.3 FFT Matrix-Vector Multiplication

The matrix-vector multiplications required in the CG algorithm are implemented

using FFT-based multiplication. This reduces the computational complexity from

order O(n2) to O(n log(n)) as compared to performing standard matrix-vector prod-

ucts.

Circulant matrix-vector multiplication can be performed using the FFT multipli-

cation [90–93]. For example, the following circulant-matrix vector multiplication can

be found as




w0 w1 · · · wp−1 wp

wp w0
. . . wp−2 wp−1

... wp w0
. . .

...

w2
. . . wp

. . . w1

w1 w2 · · · wp w0







k0

k1

k2

...

kp




= IDFT

[
DFT[W (1, :)]�DFT[K(:, 1)]

]
(2.22)

where W and K are the above circulant matrix and column vector respectively. The

Hadamard product (element-wise product) is denoted by �. IDFT and DFT are

the inverse discrete Fourier transform and discrete Fourier transform, respectively.

W (1, :) is the first row of the circulant matrix and K(:, 1) is the column vector that

should be multiplied with a circulant matrix.

To apply this technique to the block Toeplitz matrix of Section 2.5.2 each Toeplitz

block is first converted to a circulant matrix. As shown in Fig 2.2, the first row
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corresponds to the first rows of nx Toeplitz blocks where the size of each row is

ny. Therefore, the first row of each nx Toeplitz block is converted to the first row

of a corresponding circulant matrix. This is done in a similar fashion as reported

in [92, 93], where it was shown how to convert an asymmetric Toeplitz matrix to a

circulant matrix. For our symmetric Toeplitz matrix of size ny × ny, ny − 2 columns

are added to this matrix as shown in Fig 2.3 [33]. Specifically, a matrix having the

elements shown in the second box, which has a size of ny × (ny − 2), is added to

the original matrix shown in the first box. This converts our matrix to a circulant

matrix. As before, this is created implicitly via the first row only. That is, ny − 2

Figure 2.3: Converting a symmetric Toeplitz matrix to a circulant matrix. The first
block corresponds to a symmetric Toeplitz matrix. The second block is added to the
first block to create a circulant matrix.

elements are added to the first row of each Toeplitz matrix. Note that this conversion

makes the size of the corresponding vector to be multiplied different than in the

original multiplication. This means that ny − 2 elements should also be added to

the corresponding vector that is to be multiplied. These elements are denoted by

c1, c2, · · · cny−2. To have the same results for both matrix-vector multiplications as

shown in Fig 2.4, (1) the value of c1, c2, · · · cny−2 are set to zero and (2) the last

ny − 2 elements of resulting vector after multiplication are removed. This procedure
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is performed for the first row of each nx Toeplitz matrices and column vectors that

correspond to these Toeplitz matrices.

Figure 2.4: A circulant matrix-vector multiplication and a Toepliz matrix-vector
multiplication.

The basic idea behind the FFT matrix-vector multiplication for this matrix can

now be summarized as follows. To this end, consider the matrix shown in Fig 2.2

that consists of nx block rows. Since the whole matrix is symmetric block Toeplitz,

all the block rows can be simply generated merely by knowing the first block row. In

addition, since the first block row consists of Toeplitz matrices, its first row can be

simply used to generate the whole block row. Therefore, the very first row of the first

block row can represent the entire matrix. That’s why we only store this single row

instead of the entire matrix. Also, as described above, this single row can be used

with the FFT to operate on a vector of appropriate size so as to implicitly calculate

the operation of the entire matrix on that vector. To this end, this single row needs
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to be divided into nx parts, each of which belongs to one of the nx different Toeplitz

matrices of the first block row. Likewise, the vector by which the entire matrix is to

be multiplied are divided into nx parts. These nx parts of the first row operate on

the corresponding nx parts of the vector. The results of these nx operations will then

be summed up to produce the result of the operation of the first block row on the

vector. Using the result of this calculation, and re-ordering them, the results of the

operation of other block rows on that vector can also be found. Therefore, the result

of the operation of the entire matrix on that vector is now found.

Finally, we note that the whole idea behind this acceleration lies in the fact that the

Green’s function relies on |r−r′|. Since the complex conjugate of the Green’s function

also shares this property, the adjoint of the forward operators can also be accelerated

using this technique. (Note that these adjoint operators utilize the complex conjugate

of this Green’s function in their kernels.)

2.6 Inversion Algorithm

2.6.1 Born Iterative Method

The Born Iterative Method is used as the non-linear inversion algorithm to simul-

taneously reconstruct the contrast profiles. In the BIM, we start by assuming that

the unknown total pressure distribution within the imaging domain is the same as

the known incident pressure distribution. Using this approximation, we then solve

for the contrast profiles. These predicted contrast profiles are then used to find a new

total pressure distribution within the imaging domain. Using the new predicted total

pressure distribution, the new predicted contrast profiles are found. This procedure

continues until the convergence criterion is met. The steps of this algorithm can then
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be summarized as [4, 29, 37,67,94]:

1. Set the unknown total pressure inside the imaging domain to be equal to the

incident pressure in the first iteration (Born approximation).

2. Find the contrasts of OI by solving the resulting linearized integral equation.

3. Call the forward solver to find the total pressure inside the imaging domain

based on the predicted contrast profiles of the previous step.

4. Find the simulated scattered pressure at the receiver locations.

5. Calculate the discrepancy between the measured and simulated scattered pres-

sure (data misfit).

6. Go back to step 2 until the data misfit becomes sufficiently small.

Finally, as noted in [27], the BIM is capable of handling multiple-scattering events

within the OI. The BIM achieves this via its iterative nature. Intuitively speaking,

each iteration of the BIM attempts to recover one scattering event.

2.6.2 Data Operator

To find the contrast profiles, a linear equation, Ax = b, for the scattered pressure

at the receiver points, b, is formulated where x now contains the discretized values

of the unknown contrast profiles, and A is now the data operator that takes these

contrast profile values and calculates the scattered pressure at the receiver locations.

This data operator is decomposed into two operators denoted by G1s and G2s. The

scattered pressure based on these operators can be written as [65]

pscat(r) = G1s {χc1(r′)}+ G2s {χ2(r′)} (2.23)
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where subscript s denotes that these operators output field variables on the S domain.‡

G1s and G2s operate on the complex contrast of compressibility and contrast of inverse

density and are defined as

G1s(·) , k2
0

∫

D

g(r, r′)(·)p(r′)dr′ r′ ∈ D, r ∈ S (2.24)

G2s(·) ,
∫

D

g(r, r′)∇ ·
[
(·)∇p(r′)

]
dr′ r′ ∈ D, r ∈ S (2.25)

When discretized, the data equation§ produces an ill-conditioned matrix equation

which requires regularization to invert. We perform this regularization using the

Conjugate-Gradient Least-Squares (CGLS) technique which will be described in the

next section. The CGLS algorithm requires the use of the adjoint of the data operator

which operates on field values on S. These adjoints can be found as [4, 33, 65]

Ga1s{ · } =
[
k2

0p(r
′)
]∗
∫

S

g∗(r, r′)(·)dr (2.26)

Ga2s{ · } = −∇′p∗(r′) · ∇′
∫

S

g∗(r, r′)(·)dr (2.27)

2.6.3 CGLS Regularization

The UT problem is an ill-posed problem which requires a regularization technique

to obtain a physical solution. The CGLS regularization used herein is a well-known

technique which implicitly effects the truncated singular-value decomposition for solv-

ing the ill-conditioned matrix that results from discretizing the data operator [8,9,47].

‡The equation presented in (2.23) connects the unknown profiles to the measured data, and is
often referred to as the data equation. For microwave imaging, we have a similar data equation that
relates the unknown complex permittivity to the measured scattered fields.
§The data equation is shown in (2.23).
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The main reason for choosing this regularization is the computational efficiency with

which it can be implemented for our UT problem. In the implementation of BIM for

our problem, at each step 2 the data operator changes because the total field inside

D is updated. Thus, it is not efficient to store the complicated matrix representation

corresponding to these new data and adjoint operators at each step in the BIM iter-

ations. This is easily accommodated by CGLS because it only requires matrix-vector

multiplications which represent the action of the data operator on contrast values

and the operation of the data-operator adjoint on discretized functions defined on

S. Therefore, it does not require the full storage of the matrix representing the data

operator and its adjoint (even if it could be found).

The CGLS method projects the solution into a Krylov subspace for the problem at

each of its iterations [47,95]. The CGLS iteration loop must be terminated to obtain

a stable solution to the poorly conditioned matrix equation. At early iterations of the

BIM, where the estimation of the total field within the imaging domain is poor, the

CGLS iterations are terminated early. This corresponds to approximating the contrast

using low spatial frequency components. As the BIM gets closer to the solution,

higher frequency components for the contrast can be determined using CGLS by

allowing more iterations. This ad hoc technique was proposed in [9] to terminate the

CGLS iterations for microwave imaging algorithms. The number of CGLS iterations,

which determine the final size of the Krylov subspace being projected onto, acts as a

regularization parameter in CGLS regularization. The details of this regularization

technique are explained in [9, 33,47].

Finally, we again emphasize that the computational efficiency of the CGLS al-

gorithm which requires only a few matrix-vector multiplications is an important ad-

vantage of this regularization technique. In addition, that the CGLS regularization
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method does not require the full storage of the matrix provides another important

advantage for this method specially when dealing with large scale problems. On the

other hand, the appropriate dimension of the Krylov subspace should be determined

using ad hoc techniques [9].

2.7 Results

2.7.1 Forward Solver

In this section, the effects of the accelerating features of the CG-MoM forward

solver are demonstrated. We first tabulate the computational time required for stan-

dard matrix-vector multiplication compared with the case that only the first row of

the matrix is stored and FFT matrix-vector multiplication is utilized. We next show

the effect of marching-on-source on the convergence of the CG algorithm, by applying

the forward solver to a scattering problem which contains inhomogeneities in all three

physical acoustic parameters.

Consider imaging domains of various increasing sizes with respect to the wave-

length. Imaging domains for 16 different cases are tabulated in Table 2.1, where the

domain size varies from 2λ × 2λ to 150λ × 150λ. The number of unknowns in the

domain increases dramatically, given as nx × ny, where we have considered a mini-

mum discretization requirement of 10 cells per wavelength. For small domains the

time required to store the whole matrix (T1) and the time required to perform stan-

dard matrix-vector multiplication (T2) are almost comparable to the time required

for storing the first row of the matrix (T3), and the time required to perform FFT

matrix-vector multiplication using only this row, (T4). However, as the size of the

imaging domain increases, the values of T1 and T2 become significantly larger. Specif-
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ically, when the size of the imaging domain reaches 22λ× 22λ, the standard method,

when implemented on MATLAB running on a computer with 32 GB of RAM, fails

to provide the matrix-vector multiplication due to lack of memory. However, on the

same computer, MATLAB took less than a second to calculate the same matrix-vector

multiplication that the standard method fails to calculate. Interestingly, when the

size of the imaging domain reaches 100λ×100λ, the proposed method takes less than

100 seconds to calculate the matrix-vector multiplication. Therefore, the use of such

fast and efficient forward solvers is essential to solving UT problems.
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Figure 2.5: True contrast profiles for comparison between the final calculated total
pressure within the imaging domain with two different initial guesses.

UT problems also typically have a large number of incident fields where the

marching-on-source technique is able to find a good initial guess for the CG algorithm,

thus, leading to faster convergence. To demonstrate this feature of our forward solver,

consider a 2D scattering problem consisting of four cylinders each having a diameter

of 4λ. This scattering object is enclosed within a 15λ × 15λ imaging domain and

the frequency of operation is 250 kHz. The total number of transducers used in this

example is 400. (It should be noted that recent UT systems often have many more

transducers. For example, in [96, 97], 2048 transducers are used in a ring.) The UT

properties (χc1 and χ2) of this OI are shown in Fig 2.5. In this example, the total pres-
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sure in the imaging domain for the first Q transmitters are found using our forward

solver when the incident pressure is given as the initial guess to the CG algorithm.

The calculation of the total pressure corresponding to the remaining transmitters is

substantially accelerated by the use of the marching-on-source technique, which uses

the already-calculated total pressure of the previous transmitters. Table 2.2 shows the

number of CG iterations needed to converge to the solutions for the first 20 transmit-

ters using six different categories of initial guesses. The first column, denoted by C1,

simply uses the incident pressure as the initial guess. In the remaining five columns of

the Table, we show the required CG iterations based on using the marching-on-source

technique with varying values of Q, ranging from 2 to 6. For this example, using the

marching-on-source technique using the previous four transmitters, Q = 4, leads to

an overall fewer number of CG iterations. Using more transmitters may not lead

to a better initial guess if the total field due to the transmitters used in the linear

approximation are not very similar. Therefore, the criteria of using Q = 4 will change

depending on the separation between transmitters.

2.7.2 Inversion Results

We now consider a total of four different 2D inversion examples based on syn-

thetically generated data. The first two examples have imaging domains that are

8λmin × 8λmin, and contain two cylinders each. In the first, the two cylinders have

the same physical properties whereas in the second the two cylinders differ. The

third example has a much larger imaging domain of 15λmin×15λmin and contains two

identical cylinders. The fourth example is a very large problem of 20λmin × 20λmin

and contains two cylinders where now the density is assumed to be the same as the

background, that is, χ2 = 0. A summary of the information regarding the number of
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transmitters, receivers, domain size, the diameter of the OI, frequency of operations

and the contrast profiles of the OI for all these example are listed in Table 2.3. In

all examples, three percent noise, NP = 3%, is added to the synthetic data using the

following formula

pscatnoisy = pscatsimulated + |pscatsimulated| ×
NP× RV√

2
(2.28)

where −1 < RV < 1 is a uniformly distributed random vector. The range of frequen-

cies utilized for the inversions is 200 ≤ f ≤ 270 kHz. The multiple-frequency data sets

are utilized simultaneously to reconstruct the contrast profiles of the OI [65, 98, 99].

Assuming we have data from nRx receivers, nTx transmitters and at nf frequencies,

then the total amount of information used by the inversion algorithm at each fre-

quency is nRx× nTx. Thus, inverting using all frequencies simultaneously results in

nf complex valued data-vectors of length nRx×nTx concatenated into a single vector

of length nRx× nTx× nf . For these examples the background medium is chosen to

be water where the speed of the sound is set to cb = 1483[m
s
]. Contrast values for

these examples are chosen within ranges corresponding to the physical parameters of

human tissue. These specific contrast values are within the range of values typically

used to model breast tissues, as reported in [4].

The first example considers the reconstruction of two cylinders, each having a di-

ameter of 2λmin and the contrast profiles of χc1 = 0.15− j0.08 and χ2 = 0.1, enclosed

within an 8λmin × 8λmin imaging domain, as shown in the first row of Fig 2.6. Three

frequencies, f = [250, 260, 270] kHz, are simultaneously used for the reconstruction.

Thus, at these chosen frequencies the minimum wavelength with respect to the back-

ground medium is λmin ' 5.5mm. The number of transmitters and receivers utilized

in this example are 100. The BIM with CGLS regularization inversion algorithm
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took only 10 iterations to converge. The reconstruction of the contrast profiles for

the 10th iteration of the BIM is shown in the second row of Fig 2.6¶. The results of the

comparison between the exact value of the contrast profiles with the reconstructed

contrast profiles for the pixels on the main diagonal are shown in Fig 2.7. The first

and second rows of this figure correspond to the reconstruction of the contrast profiles

after the first and 10th iterations of the BIM. The number of CGLS iterations was

set to 2 in the first iteration and was increased systematically reaching a value of 200

by the 10th iteration. As can be seen in Fig 2.7, the first iteration of the BIM (Born

approximation) provides a reasonable qualitative reconstruction of the two cylinders

but does not reconstruct the actual values of the contrasts well. By the 10th iteration

the BIM achieves good accuracy in reconstructing these values.

The second example is similar to the first, but the contrasts of the two cylinders

differ. The contrast profiles for the top cylinder is χc1 = 0.2− j0.03, χ2 = 0.08 and the

contrast profiles for the bottom cylinder is χc1 = 0.1 − j0.06, χ2 = 0.05, as shown in

the top row of Fig 2.8. The BIM converged at the 10th iteration and the final contrast

profiles are shown in the second row of Fig 2.8. The exact value of the contrast profiles

as well as the reconstructed contrast profiles for the elements on the main diagonal

are shown in Fig 2.9. The number of CGLS iterations at the last iteration of the BIM

was set to 200.

The reconstruction of two cylinders each with a diameter of 4λmin and contrast

profiles of χc1 = 0.14 − j0.08 and χ2 = 0.1 enclosed within 15λmin × 15λmin imaging

¶There are artifacts in the reconstructed images. Broadly speaking, these artifacts are related to
the signal-to-noise ratio (SNR) of the data, the modeling accuracy (similarity between the actual
system and the inversion model), the choice of the regularization operator and its weight, etc. To
reduce these artifacts, the best approach is to make sure that the SNR of the data and the modelling
accuracy have been improved as much as possible. Then, the choice of regularization and its weight
are important. For example in Chapter 3, the effects of the regularization term can be seen in
Figures 3.5h and 3.9d in which the CGLS regularization and the weighted L2 norm total variation
regularization have been used for the same data.
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Figure 2.6: Simultaneous reconstruction of χc1 and χ2 for two cylinders with the same
contrast profiles enclosed within a 8λmin × 8λmin. The first row is the true contrast
profiles. The second row corresponds to the reconstruction of contrast profiles for the
10th iteration of the BIM.

domain is considered next. The true profiles are shown in the first row of Fig 2.10.

The number of transmitters and receivers were increased to 120 for this example

and now five frequencies, f = [200, 210, 220, 230, 240] kHz, were simultaneously used

for the inversion. Thus, the minimum wavelength at these chosen frequencies is

λmin ' 6.18mm. The reconstructions of the contrast profiles for the 8th iteration

of the BIM, in which the maximum number of CGLS iterations was set to 200, are

shown in the second row of Fig 2.10.

The final example shows the reconstruction of two cylinders each having a diameter

of 5λmin and contrast profiles of χc1 = 0.07 − j0.03 and χc1 = −0.07 − j0.05 enclosed

within 20λmin × 20λmin imaging domain. The density is assumed to be the same

as the background, giving χ2 = 0. The true profiles are shown in the first row

of Fig 2.11. The number of transmitters and receivers for this example was set to
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Figure 2.7: Diagonal cut from top left to the bottom right for the case that the OI
consists of two cylinders with the same contrast profiles. The first and second rows
correspond to the 1st and 10th iterations of the BIM. The solid line corresponds to the
actual contrast profiles and the dashed line corresponds to the reconstructed contrast
profiles. (The horizontal axis corresponds to the x value of the diagonal cut from the
top left to the bottom right with the unit of [m] and the vertical axis corresponds to
the value of the corresponding contrast).

200. Four frequencies, f = [200, 210, 220, 230] kHz, were used for the inversion. The

reconstructions of the contrast profiles for the fourth iteration of the BIM in which

the number of CGLS iterations was set to 80 are shown in the second row of Fig 2.11.

2.8 Discussion

These inversions provide promising results for using this algorithm within a practi-

cal biomedical UT device. The size of the imaging domain is sufficient for biomedical

applications such as breast imaging and the contrast values shown are also within

the ranges required for such applications. The value of the attenuation in the tissue,
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Figure 2.8: Simultaneous reconstruction of χc1 and χ2 for two cylinders with the
different contrast profiles enclosed within a 8λmin × 8λmin. The first row is the true
contrast profiles. The second row corresponds to the reconstruction of contrast profiles
for the tenth iteration of the BIM.
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Figure 2.10: Simultaneous reconstruction of χc1 and χ2 for two cylinders with the
same contrast profiles enclosed within a 15λmin × 15λmin. The first row shows the
true contrast profiles. The second row corresponds to the reconstruction of contrast
profiles for the 8th iteration of the BIM.

which is related to the imaginary part of χc1, was chosen slightly higher than expected

values for breast tissue in order to balance out the relative values of the three param-

eters being inverted. Future work will report on a new balancing technique which

we have developed to overcome this constraint, allowing any relative range of values

between the reconstructed parameter values. As can be seen from the figures, the

quantitative values for the inverse of density, χ2, are not reconstructed as well as for

the complex contrast of compressibility. This is most certainly due to the fact that

the inverse of density shows up in the more complicated field operator, (2.25), which

includes gradient and divergence operations within the integral. These differential

operators were discretized using simple finite differences and thus the numerical ap-

proximation may not be sufficient to recover the inverse of density in the inversions.

Similar observations were made in [77].
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Figure 2.11: Simultaneous reconstruction of χc1 for two cylinders with different
contrast profiles enclosed within a 20λmin × 20λmin imaging domain. The first row
shows the true contrast profiles. The density is assumed to be constant and equal
to that of the background. The second row corresponds to the reconstruction of the
contrast profiles for the fourth iteration of the BIM.

Although, the inversions take several hours of computation time, the algorithm

is well suited to parallelization and the time could easily be reduced. Extending the

algorithm to full 3D inversions is straight-forward from an algorithmic perspective,

but computation time will certainly have to be reduced. Future work will investigate

the application of this algorithm to physically realistic breast phantoms, the extension

to 3D, and the use of experimental scattered-field data from an in-house UT system.
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2.9 Conclusion

In this paper, we have presented an inversion algorithm to simultaneously recon-

struct three properties of the OI. This algorithm requires a fast and efficient forward

solver to compute the scattering from objects with inhomogeneous density, attenu-

ation, and compressibility profiles. The presented forward solver requires the use of

the adjoint of the operator which governs the scattering phenomenon in the imaging

domain. To make use of this forward solver for large domain problems, three compu-

tational features have been implemented. The first provides a good initial guess to

make the convergence of the algorithm faster. The second provides an efficient way

for storing the elements of the matrix, and the third provides an FFT matrix-vector

multiplication for the algorithm. Inversion results for synthetically generated data

representative of data that would be collected in a UT system designed for breast

imaging are shown. The inversion algorithm produces three images in each of the

three properties of the OI. Although the OI is qualitatively reconstructed well in all

three images, the quantitative value of the inverse density profile is not as well recon-

structed as are the two images associated with the complex contrast of compressibility.

A procedure for enhancing the accuracy of the all three reconstructions using a novel

balancing technique is the topic of future work, which will also investigate the use of

the algorithm on more realistic breast phantoms.
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Table 2.1: Calculation time required for the standard matrix storage
and matrix-vector multiplication as compared to the time required for
storage and matrix-vector multiplication as presented in this paper.

case nx ny Domain size T1[s] T2[s] T3[s] T4[s]
1 20 20 2λ× 2λ 0.26 0.009 0.02 0.007
2 40 40 4λ× 4λ 2.86 0.012 0.021 0.013
3 60 60 6λ× 6λ 12.97 0.070 0.023 0.045
4 80 80 8λ× 8λ 40.27 0.225 0.027 0.052
5 100 100 10λ× 10λ 89.69 0.495 0.029 0.065
6 120 120 12λ× 12λ 188.2 1.034 0.034 0.103
7 140 140 14λ× 14λ 326.3 1.84 0.041 0.378
8 160 160 16λ× 16λ 1324 23.74 0.047 0.464
9 180 180 18λ× 18λ 5836 1979 0.053 0.545
10 200 200 20λ× 20λ 11387 4094 0.061 0.655
11 220 220 22λ× 22λ 0.069 0.817
12 300 300 30λ× 30λ 0.1132 4.4582
13 400 400 40λ× 40λ 0.1707 7.681
14 500 500 50λ× 50λ 0.236 12.32
15 1000 1000 100λ× 100λ 0.8614 97.36
16 1500 1500 150λ× 150λ 1.9763 471.3

nx: Number of discretized elements in the x axis.
ny : Number of discretized elements in the y axis.
T1: Time taken to make the whole matrix.
T2: Time taken for standard matrix-vector multiplication.
T3: Time taken to make the first row of the matrix.
T4: Time taken to perform FFT matrix-vector multiplication by using the first row of the matrix.
———————————————————————————————
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Table 2.2: Comparison between the number of CG iterations
required for converging to the solution for some transmit-
ters using six different initial guesses. The first one uses
the incident pressure as the initial guess, and the remaining
columns show results using the marching-on-source technique
with varying Q to generate the initial guess.

Transmitter Index C1 C2 C3 C4 C5 C6

Tx1 178 178 178 178 178 178
Tx2 178 178 178 178 178 178
Tx3 179 92 179 179 179 179
Tx4 179 96 86 179 179 179
Tx5 181 91 90 57 181 181
Tx6 181 93 86 71 31 181
Tx7 181 93 88 60 52 23
Tx8 180 91 83 73 50 44
Tx9 180 90 84 53 57 46
Tx10 180 90 83 67 65 70
Tx11 180 89 84 69 64 85
Tx12 180 89 81 76 76 92
Tx13 180 88 80 66 80 102
Tx14 180 89 78 76 89 99
Tx15 180 89 79 65 94 106
Tx16 180 89 78 77 93 116
Tx17 179 88 77 74 98 135
Tx18 177 87 76 81 97 131
Tx19 176 88 76 77 97 126
Tx20 175 89 77 80 100 173

Required iterations for the CG algorithm using the following initial guesses:
C1: incident pressure.
C2: marching-on-source Technique with Q = 2.
C3: marching-on-source Technique with Q = 3.
C4: marching-on-source Technique with Q = 4.
C5: marching-on-source Technique with Q = 5.
C6: marching-on-source Technique with Q = 6.
———————————————————————————
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Table 2.3: The information of the examples shown in the inversion results. nRx and nTx denote the number of
transmitters and receivers respectively.

Example nTx nRx Size Domain Diameter OI Frequencies [kHz] Cylinder 1 Cylinder 2

1 100 100 8λmin × 8λmin 2λmin





f1 = 250

f2 = 260

f3 = 270





χ1r = 0.15

χ1i = −0.08

χ2 = 0.1





χ1r = 0.15

χ1i = −0.08

χ2 = 0.1

2 100 100 8λmin × 8λmin 2λmin





f1 = 250

f2 = 260

f3 = 270





χ1r = 0.2

χ1i = −0.03

χ2 = 0.08





χ1r = 0.1

χ1i = −0.06

χ2 = 0.05

3 120 120 15λmin × 15λmin 4λmin





f1 = 200

f2 = 210

f3 = 220

f4 = 230

f4 = 240





χ1r = 0.14

χ1i = −0.08

χ2 = 0.1





χ1r = 0.14

χ1i = −0.08

χ2 = 0.1

4 200 200 20λmin × 20λmin 5λmin





f1 = 200

f2 = 210

f3 = 220

f4 = 230





χ1r = 0.07

χ1i = −0.03

χ2 = 0





χ1r = −0.07

χ1i = −0.05

χ2 = 0
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3

Paper 1∗:

Evaluation of Balanced Ultrasound Breast

Imaging Under Three Density Profile

Assumptions

3.1 abstract

A balanced inverse scattering algorithm for ultrasonic breast imaging is developed

to simultaneously reconstruct quantitative images of the breast’s ultrasonic proper-

ties. These properties are the inhomogeneous compressibility, attenuation, and den-

sity. Three scenarios are considered for this inversion algorithm. First, all the prop-

erties are assumed to be independent. The assumption of a linear relation between

the contrast of compressibility and inverse density is then considered in the second

scenario whereas the density variation is neglected in the third scenario. The image

corresponding to the attenuation is of particular importance because breast tumors

can be better identified using this property in comparison with compressibility and

density images. However, this contrast is often poorly reconstructed because the mag-

nitude of this contrast in the mathematical formulation of the problem is generally

∗ c© 2017 IEEE. Reprinted, with permission, from Pedram Mojabi and Joe LoVetri, “Evaluation
of Balanced Ultrasound Breast Imaging Under Three Density Assumptions,” IEEE Transactions on
Computational Imaging, 2017.
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smaller than the magnitude of the contrasts of the other two properties. To over-

come this problem, a novel balancing method is applied to all these three inversion

algorithms so as to enhance the reconstruction results. Using synthetic data from

MRI-based breast models, it is demonstrated that the use of the proposed balancing

scheme enhances the reconstruction results of all these algorithms, and in particular

enhances their reconstructed images corresponding to the attenuation profile.

3.2 Introduction

Ultrasound tomography (UT) is a non-destructive imaging method that creates

quantitative images corresponding to some of the acoustical properties of an object of

interest (OI). This information is useful for several application areas such as biomed-

ical imaging and industrial non-destructive testing [3–7]. In biomedical imaging, the

main focus of this work, it can be used to distinguish healthy tissues from malignant

tissues without the use of biopsy.

The ultrasonic properties of interest for breast imaging applications are compress-

ibility, attenuation and density. In most of the published work related to the use

of quantitative UT for biomedical imaging, the effect of the variation of density is

neglected [30, 32, 72, 73]. However, this assumption is shown to be not accurate for

breast imaging and all three parameters are allowed to vary in the one of the al-

gorithms considered herein [4, 20, 31, 34, 35, 75]. The constant density assumption

increases the modelling error in the inversion problem and thereby adversely affects

the accuracy of the reconstructed contrast profiles. An improved approach based on

assuming a linear relationship between the contrast of compressibility and the density

was introduced in [4]. The effect of the variation of density is partially considered

using this linear relationship assumption while keeping the same number of unknowns
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for the OI in the imaging domain. However, this linear relationship assumption is

not always accurate for the types of tissues found inside the breast [100,101].

In this paper, we consider three different scenarios: 1) independent density, 2) lin-

ear relation between the contrast of compressibility and inverse density and 3) no

variation of density. When the density is considered as an independent unknown,

it leads to a more accurate model in the inverse problem; but, the price we pay for

this is having one extra unknown function in the imaging domain. However, we can

compensate for this extra unknown by providing more measurement data; e.g., by

collecting scattering data at multiple frequencies.

Broadly speaking, the papers taking into account the variation of the density as

an independent variable to be imaged can be classified into two categories [35]. In

the first category, the scattered pressure integral equation is formulated based on one

unknown function that depends on both density and the speed of sound [31, 34, 35].

In the second category, the scattered pressure integral equation is formulated as two

separate integrals. The first one is a function of a complex-valued compressibility

and the second one is a function of density [4, 20, 29, 33, 41, 102]. In this paper, we

take the second approach for the independent density case which builds on the work

of [20]. Noting that the complex compressibility profile consists of real and imaginary

parts, we formulate the UT problem as finding three real unknown profiles (three

quantitative images) from scattered data collected outside the OI.

To create the required ultrasonic images of the OI, the scattered-pressure data set

is inverted using a nonlinear inversion algorithm to create quantitative images of the

OI. There are several alternative set-ups and methods that have been used to collect

ultrasonic scattering information and create images from the acquired data. For

example: (1) time-of-flight tomography (TFT) [5, 21–24], (2) diffraction tomography
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(linear inversion algorithm) [26,27], and (3) full-wave inversion algorithms (nonlinear

inversion algorithms) similar to the one considered herein [4, 20,29–36].

Full-wave UT methods can produce better reconstructions of the OI than the

TFT and diffraction tomography methods. This is because the full behaviour of

the interrogating wave is modelled with fewer simplifying assumptions; specifically,

multiple scattering events are taken into account using this method. Thus, full-wave

methods suffer much less from modelling errors as compared to techniques based on

TFT and diffraction tomography formulations. In full-wave methods, the UT problem

is mathematically formulated as a non-linear inverse scattering problem where total

pressure and contrast profiles are unknown and non-linearly related to each other [4,

20,33]. Different inversion algorithms, some of which have also been used in microwave

tomography, can be applied to this non-linear problem; e.g., the Contrast Source

Inversion Method (CSI) [41], the Born Iterative Method (BIM) [4, 20, 29], and the

Distorted Born Iterative Method (DBIM) [30,32,34,39]. In this paper, BIM is chosen

as the non-linear inversion algorithm. We choose BIM because it is computationally

more efficient than CSI and DBIM and can therefore manage the resulting large UT

problems [4]. It should be noted that DBIM and CSI provide better reconstruction

as compared to the BIM for the high contrast objects [4, 27]. Low contrast profiles

for breast imaging applications can be obtained by the appropriate choice of the

background medium. For example, if water is chosen as a background medium for

breast imaging, the variation of the speed of sound will be ±6% [4,103]. In addition,

arranging a low contrast using a specifically chosen background medium allows more

interrogation energy to penetrate into the OI, thus, allowing the possibility to extract

more useful information for the reconstruction.

The BIM inversion algorithm used in this paper is able to perform simultaneous
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frequency inversion. This is important as the number of unknowns in the UT inversion

algorithm is usually large due to the small operating wavelength(s). To obtain good

reconstructions of the contrast profiles, one requires sufficient information about the

OI, and utilizing multiple-frequency data sets achieves this. Two methods can be

implemented for using multiple-frequency data: (1) frequency hopping techniques

[104,105] or (2) simultaneous frequency techniques [33,98]. In this work we implement

a simultaneous frequency technique because we’ve found that it results in enhanced

reconstructions.

The UT inverse scattering problem is ill-posed. Therefore, regularization in con-

junction with the BIM inversion algorithm is required. Different regularization meth-

ods have been proposed to handle the ill-posedness of inverse scattering problems;

e.g. the Truncated Singular Value Decomposition (TSVD) [47, 48], the standard

Tikhonov [32,42], the L1−norm Tikhonov [43,44], Multiplicative [45,46] and Conju-

gate Gradient Least squares methods [8, 9, 20, 47]. In this work, the CGLS regular-

ization in conjunction with the BIM inversion algorithm is used as a regularization

method to handle the ill-posedness of the UT inverse scattering problem. The main

reason to choose CGLS regularization is the computational efficiency of this method.

It can be implemented efficiently using some additional matrix-vector multiplications

at each iteration of the inverse algorithm. Furthermore, it can be implemented in

a such way that it does not require the full storage of the associated ill-posed ma-

trix [33]. The CGLS-BIM method used herein is sufficiently computationally efficient

to allow the inversion of large multiple-frequency data sets using a desk-top computer.

This paper contributes to the enhancement of ultrasound inversion results by in-

troducing a balancing method for all the three scenarios that have been described

above to effectively normalize the contrasts being inverted. This balancing scheme,
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which is borrowed from microwave tomography algorithms [49,50], is necessary when

reconstructing tissues where the contrast profiles of interest have significantly differ-

ent numerical magnitudes. It is well known that most optimization-based inversion

algorithms favour the reconstruction of unknowns with a larger magnitude [49]. For

example, if the overall value of the real part of the complex compressibility profile is

larger than the other two profiles, the inversion algorithm will tend to provide more

accurate reconstruction for the real part of the complex compressibility profile at the

expense of the reconstruction of the other two profiles. To overcome this numeri-

cal issue, we balance all the contrast profiles by creating balanced unknown contrast

variables which are used in the optimization problem. The actual unknown con-

trast variables are then recovered from the reconstructed balanced unknowns. This

method requires one to have prior estimates of the expected ranges of the contrast

profiles. These expected ranges are readily available in the research literature. It

should be noted that in UT the overall value of the contrast profile corresponding

to the attenuation is much smaller than the overall values of the other two contrast

profiles. (This will be shown in Table 3.1.) Therefore, if these three contrasts are

blindly reconstructed, the inversion algorithm often favours the reconstruction of the

other two contrast profiles. This is problematic since the image associated with the

contrast corresponding to the attenuation is of particular importance compared to

the compressibility and density images. As can be seen later in the paper, this is due

to the fact that the tumor is more readily identified in the attenuation profile image

in comparison with compressibility and density images [51–53]. Thus, having this

image leads to an improved method of distinguishing the tumor from healthy tissues.

It is essential to take advantage of the balancing method introduced here. As will

be shown in this paper using numerical MRI-based breast phantoms, the balancing
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method enhances the reconstruction results of all the three scenarios considered in

this paper. Therefore, the proposed method in this paper holds promise to be used

for ultrasound breast imaging.

The structure of this paper is as follows. We first present the problem statement

and mathematical formulation in Section 3.3. The inversion algorithm in conjunction

with a balancing method for all the scenarios is then described in Section 3.4. The

results are then presented and discussed in Section 3.5. Finally, conclusions and

recommendations for future work are presented in Section 3.6.

3.3 Problem Statement

In the UT setup assumed herein, the OI is surrounded by an array of ultrasound

transducers. The object is then successively irradiated by each of these transducers

operating at several chosen single frequencies over a wide-band frequency spectrum.

Thus, a time-harmonic formulation can be used where a time dependency of ejωt is

assumed (here j2 = −1, t is time, and ω is the angular frequency). Furthermore,

we consider UT applications in which images of a cross-section of the OI are created

using a 2D assumption for the wave propagation.

To reconstruct the unknown contrast profiles, the discrepancy between the mea-

sured and simulated scattered pressure is iteratively minimized. That is,

argmin
χc
1,χ2





nf∑

f=1

nTx∑

k=1

nRx∑

q=1

∥∥∥pscat
meas(f,k,q)

− pscat
simu(f,k,q)

∥∥∥
2

∥∥∥pscat
meas(f,k,q)

∥∥∥
2





(3.1)

where subscripts “meas” and “simu” denote the measurement and simulated pressure.

The simulated pressure is a function of two contrast variables: χc1 is the complex-

valued variable which holds the contrast of the complex compressibility, and χ2 holds
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the contrast of the inverse density. In addition, ‖·‖ denotes the L2-norm, nf , nTx

and nRx denote the total number of frequencies, transmitters and receivers, and pscat

is the scattered pressure, which is defined as the difference between the total pressure

and the incident pressure (pscat , p− pinc).

The integral equation for the simulated scattered pressure due to given inhomoge-

neous compressibility, attenuation and density profiles can be written as [4,20,29,33]

pscat(r) = k2
0

∫

D

g(r, r′)

[
χ1(r′)− j 2δα(r′)

k0

]
p(r′)dr′

+

∫

D

g(r, r′)∇ ·
[
χ2(r′)∇p(r′)

]
dr′ (3.2)

where g(r, r′) is the Green’s function of the background medium and k0 is the real

part of the complex background wavenumber. The contrast of compressibility and

inverse density are defined as

χ1(r) ,
κ(r)− κb

κb
(3.3)

χ2(r) ,
ρ−1(r)− ρ−1

b

ρ−1
b

(3.4)

where κb and κ(r) are the background compressibility and compressibility at position

r. Also, ρ−1
b and ρ−1(r) are the background inverse density and the inverse density

at position r. Also, δα(r) with the unit of 1/cm is defined as [30]

δα(r) , f × ln 10

20

[
α(r)− αb

]
(3.5)

where α(r) and αb are the attenuation at position r and the background attenuation

respectively with the units of dB/cm/MHz, and f is the frequency of operation. The
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complex contrast of compressibility is defined as

χc1(r) , χ1(r)− j 2δα(r′)

k0

(3.6)

Thus, in the inverse UT problem we must find the real and imaginary parts of χc1,

denoted by χc1r and χc1i, as well as χ2, which is assumed to be a real value, from pscat
meas

by minimizing (3.1). In the next section, we discuss how we minimize the above norm

using the BIM in conjunction with a balancing method.

3.4 Inversion algorithm in conjunction with a bal-

ancing method

In this paper, the Born iterative method (BIM) is utilized as an inversion algo-

rithm. The steps of this method are explained in [4, 20, 33]. Implementation of the

BIM requires an efficient solver for the forward scattering problem. The forward

solver utilized in this work with some accelerating techniques is explained in [20].

The BIM also requires an operator that maps the contrast profiles into the scattered

pressure at the receivers locations. This operator is described next.

3.4.1 Data Operator

At the core of the BIM algorithm are linearized so-called data operators that op-

erate on the contrast profiles to generate the simulated scattered pressure. These

linearized operators change at each iteration of the BIM as the estimated total pres-

sure inside the imaging domain is updated. In our formulation, we have two data

operators, one operates on the contrast of the complex compressibility, and the other
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operates on the contrast of the inverse density. The scattered pressure can be written

as [20,33]

pscat(r) = G1s {χc1(r′)}+ G2s {χ2(r′)} (3.7)

where G1s and G2s are the required data operators. The subscript s denotes that these

operators map to the data domain and the bold sign denotes that the contrasts which

these operators operate on are in the continuous domain. These operators and their

adjoints denoted by Ga
1s and Ga

2s are shown in [20]. It should be noted that inverting

the data operators in the UT problem is an ill-posed problem requiring some form

of regularization. The conjugate gradient least squares (CGLS) regularization chosen

here requires both the data operators and their adjoints.

3.4.2 Balancing of the Contrasts

In this paper, we consider OIs having contrast variables with significantly differ-

ent ranges of values such as those encountered in biomedical breast imaging appli-

cations where the imaginary part of the complex contrast of compressibility (χc1i) is

much smaller than the real part of complex contrast of compressibility (χc1r) as well

as smaller than the contrast of inverse density (χ2). This can be problematic for

optimization-based inversion algorithms because such algorithms favour the recon-

struction of variables having larger values and contrasts with variables having small

magnitudes are reconstructed poorly. To rectify this issue we introduce new variables

to balance the unknowns of the optimization. (This is inspired by a balancing ap-

proach in microwave tomography applications [49].) Thus, instead of reconstructing

profiles based on the contrast variables, we reconstruct profiles based on the newly

balanced variables. This requires prior information regarding the expected ranges of
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the contrast variables as well as a reformulation of the scattered field equations based

on the new balanced contrast variables. The required prior information for the ex-

pected contrast ranges in the biomedical breast imaging application can be obtained

from the literature [51,52,75,101,103,106]. This balancing method is applied to three

different scenarios of the inversion described next.

Scenario 1 (Independent Density)

The reformulated scattered-pressure integral equations, based on the balanced

contrast variables, can easily be written in the discretized domain. The data operators

and corresponding contrast profiles are first split into their real and imaginary parts

[33]. The operation of G1s on the complex contrast of compressibility in a discretized

form can be written as

G1s{χc1} = (G1sr + jG1si){χc1r + jχc
1i
}

=
[
G1sr{χc1r} − G1si{χc1i}

]

+ j
[
G1si{χc1r}+ G1sr{χc1i}

]
(3.8)

where the underscore identifies the discretized variables and bold-face type has been

removed from the operators to signify that they now operate on discretized variables.

The subscripts r and i, denote the real and imaginary parts of the variables. These

same subscripts on the operators signify that the real and imaginary parts are chosen

after the operator is applied, that is

G1sr{·} , Re (G1s{·}) , G1si{·} , Im (G1s{·}) (3.9)
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The same procedure is applied for the operation of G2s which operates on the real-

valued contrast of inverse density:

G2s{χ2
} = G2sr{χ2r

}+ jG2si{χ2r
} (3.10)

The discretized scattered pressure can be formally written in matrix form as




pscat
r

pscat
i


 =



G1sr −G1si G2sr

G1si G1sr G2si







χc
1r

χc
1i

χ
2r




(3.11)

where pscat
r

and pscat
i

are the real and imaginary parts of the discretized scattered

pressure. Note that in the above equation, each of the “matrix blocks” which operates

on a real vector containing one of the three contrasts, cannot easily be written down

as a matrix. In fact, each block represents a series of matrix operations which depend

on the form of the discretization chosen (i.e, the basis and weighting functions in

the Method of Moments, as well as the discretization of the gradient and divergence

operations). The overall result of these block-operations on the vector of discretized

contrast profiles gives a real vector containing the real and imaginary parts of the

scattered pressure.

Scalar balancing coefficients are now applied to this equation to balance the con-

trast variables. To this end, the right hand side of (3.11) is written as




Q1 G1sr −Q2 G1si Q3 G2sr

Q1 G1si Q2 G1sr Q3 G2si







Q−1
1 χc

1r

Q−1
2 χc

1i

Q−1
3 χ

2r




(3.12)
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where Q1, Q2 and Q3 are the chosen scalar balancing coefficients. These coefficients

are chosen based on the prior information about the expected ranges of the contrast

profiles. Thus, we can define the normalized contrast variables as

χcn
1r

,
χc

1r

Q1

, χcn
1i

,
χc

1i

Q2

, χn
2r

,
χ

2r

Q3

(3.13)

where the superscript n denotes that these contrast variables are normalized. It

should be noted that these scalar coefficients are chosen to ensure that the overall

magnitudes of all these normalized contrast profiles are within the same range. Then,

the normalized contrast profiles having the same range of magnitude are reconstructed

instead of the actual contrast profiles. As will be see later, this leads to much better

reconstruction for the small contrast profiles.

This problem can now be considered as an Ax = b where b is a real vector

of length 2 × nRx × nTx containing the real and imaginary parts of the measured

scattered pressure, x is a real unknown vector of length 3N containing the normalized

contrast variables, and A is a balanced data operator that operates on the normalized

contrast variables. The result of this operation is a real vector containing the real

and imaginary parts of the scattered pressure which can be found as [33]

pscat
r

= Q1Re
(
G1s{χcn1r}

)
−Q2Im

(
G1s{χcn1i }

)

+ Q3Re
(
G2s{χn2r}

)
(3.14)

pscat
i

= Q1Im
(
G1s{χcn1r}

)
+Q2Re

(
G1s{χcn1i }

)

+ Q3Im
(
G2s{χn2r}

)
(3.15)
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As mentioned in Section 3.4.1, the CGLS regularization requires the adjoint of the

data operator. Thus, the balancing coefficients must be incorporated into the adjoint

of the data operator. It should be noted that this adjoint operator operates on the

result of the operation of the balanced data operator on the predicted normalized

contrast variables.

To find the adjoint of the balanced data operator, we perform the same procedure

explained for the balanced data operator. Thus, both the predicted scattered pressure

and the adjoint operator should be split into real and imaginary parts. The operation

of Ga
1s on the scattered pressure in a discretized form can be written as [33]

Ga1s{pscat} = (Ga1sr + jGa1si){pscatr
+ jpscat

i
} (3.16)

where Ga1sr{·} and Ga1si{·} can formally be defined as the following operations

Ga1sr{·} , Re

(
Ga1s{·}

)
, Ga1si{·} , Im

(
Ga1s{·}

)
(3.17)

Thus, the real and imaginary parts of the result can be found as

Ga1s{pscat} =

[
Ga1sr{pscatr

}+ Ga1sr{jpscati
}
]

+ j

[
Ga1si{pscatr

}+ Ga1si{jpscati
}
]

(3.18)

The same procedure is performed for Ga2s as

Ga2s{pscat} = (Ga2sr + jGa2si){pscatr
+ jpscat

i
} (3.19)
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The real and imaginary parts of Ga2s{pscat} can be written as

Ga2s{pscat} =

[
Ga2sr{pscatr

}+ Ga2sr{jpscati
}
]

+ j

[
Ga2si{pscatr

}+ Ga2si{jpscati
}
]

(3.20)

At each iteration of the algorithm, this last equation returns a predicted contrast of

inverse density which is known to have a zero imaginary part. Thus, the imaginary

part is forced to be zero. The final form of the adjoint operator on the predicted

scattered pressure is written as




x1

x2

x3




=




Ga1sr Ga1sr
Ga1si Ga1si
Ga2sr Ga2sr







pscat
r

jpscat
i


 (3.21)

In accordance with the balanced data operator, we must apply the same balancing

coefficients in the adjoint operation




x1

x2

x3




=




Q1 Ga1sr Q1 Ga1sr
Q2 Ga1si Q2 Ga1si
Q3 Ga2sr Q3 Ga2sr







pscat
r

jpscat
i


 (3.22)

The adjoint operator returns a real vector of length 3N . The elements of this vector

are denoted by x1, x2, and x3; each of which is a real vector of length N . These

vectors can be found as

x1 = Q1Re

(
Ga1s{pscatr

}
)

+Q1Re

(
Ga1s{jpscati

}
)

(3.23)
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x2 = Q2Im

(
Ga1s{pscatr

}
)

+Q2Im

(
Ga1s{jpscati

}
)

(3.24)

x3 = Q3Re

(
Ga2s{pscatr

}
)

+Q3Re

(
Ga2s{jpscati

}
)

(3.25)

The balanced contrast variables which are reconstructed at each iteration of the BIM

are converted to the actual contrast variables based on (3.13).

Scenario 2 (assumption of a linear relationship between the contrast of

compressibility and inverse density)

Herein, the balancing method is applied for the scattered pressure equation with

the assumption of a linear relationship between the contrast of compressibility and

contrast of inverse density. Specifically, based on [4], we assume χc1r = 2.4χ2. To apply

a balancing method, the same procedure explained in 3.4.2 is utilized. It should be

noted that the inversion algorithm reconstruct the real and imaginary part of χc1

in each iteration. Therefore, only one scalar balancing coefficient denoted by Q is

utilized as shown below

χcn
1i

,
χc

1i

Q
. (3.26)

The result of the operation of the data operator on the contrast profiles with this

assumption is a real vector containing the real and imaginary part of the scattered

pressure which can be found as

pscat
r

= Re
(
G1s{χc1r}

)
−QIm

(
G1s{χcn1i }

)

+
1

2.4
Re
(
G2s{χc1r}

)
(3.27)
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pscat
i

= Im
(
G1s{χc1r}

)
+QRe

(
G1s{χcn1i }

)

+
1

2.4
Im
(
G2s{χc1r}

)
(3.28)

The adjoint of this operator returns a real vector of length 2N . The elements of this

vector are denoted by x1 and x2. It should be noted that each of them is a real vector

of length N and can be found as

x1 = Re

(
Ga1s{pscatr

}
)

+ Re

(
Ga1s{jpscati

}
)

(3.29)

+
1

2.4
Re

(
Ga2s{pscatr

}
)

+
1

2.4
Re

(
Ga2s{jpscati

}
)

x2 = QIm

(
Ga1s{pscatr

}
)

+QIm

(
Ga1s{jpscati

}
)

(3.30)

Scenario 3 (assumption of no variation in the density profile)

Neglecting the variation of density, i.e., χ2 = 0, is another assumption which can

be utilized in the inversion algorithm to simplify the scattered pressure equation. This

assumption leads to removing the second integral in (3.2). In this case, the inver-

sion algorithm reconstruct two contrast profiles, χc1r and χc1i, so that only one scalar

balancing coefficient is required. In our implementation, the balancing coefficient is

applied to χc1i as shown in (3.26) to make the overall magnitude of χcn1i be in the same

range of χc1r. The procedure of finding the balancing method for this case is similar

to 3.4.2. It should be noted that only G1s and its adjoint are utilized in this case.

3.5 Results

Herein, two 2D inversion examples using synthetically generated data are consid-

ered. The first example is the reconstruction of the contrast profiles for an MRI-based



3.5. Results 64

breast phantom containing a medium-sized tumor [2, 107] within a 12λmin × 12λmin

imaging domain. In the second example, we consider an MRI-based numerical phan-

tom of a dense breast (i.e., one containing a substantial amount of fibroglandular

tissue) [2, 107] enclosed within a 12λmin × 12λmin imaging domain. The true tissue

image of these phantoms are shown in Fig 3.1. It should be noted that the use of 2D

inversion algorithms for a 3D object results in some extra errors in the reconstruc-

tion. In this paper, our MRI-based numerical phantoms are 2D, and therefore, we

have not considered the errors associated with applying a 2D inversion algorithm to

a 3D object.

The ranges of the chosen values of the speed of sound, density and attenuation

for each tissue of these synthetic breast phantoms are chosen based on [2,51,52,100,

101,108]. To set the property values for each tissue we apply a uniformly distributed

random function to set values for every pixel within that tissue. For example, if the

upper and lower ranges of a property associated with a given tissue type are UR and

LR respectively, the true quantitative values for that property within that tissue are

chosen to be UR+ (LR−UR)× rand, where rand is a uniformly distributed random

number between 0 and 1. The range of the contrast profiles for each tissue based on

the chosen ranges of speed, attenuation and density is shown in Table 3.1. Water is

chosen as the background medium where the speed of sound, density and attenuation

at 22◦C are cb = 1483 [m
s
], ρb = 1000 [ kg

m3 ] and αb = 0.0022 [ dB
cm MHz

] [33, 108].

For all the examples, we first show reconstructions with and without balancing

assuming an independent density variation (scenario 1). Then, we show the recon-

struction with and without the balancing method with the assumption of χc1r = 2.4χ2

and χ2 = 0 (scenario 2 and scenario 3). It should be noted that all the synthetic mea-

sured data are generated based on assuming inhomogeneous complex compressibility
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and inverse density contrasts. For scenario 3, we also show reconstructions, with and

without the balancing method, using the Multiplicatively Regularized Gauss-Newton

Inversion (MR-GNI) method. The number of transmitters and receivers for these

examples are set as 120. The transducers are placed outside of the imaging domain

on a circle of radius 11 cm as depicted in Fig 3.2. In all the breast phantom ex-

amples except the one that we consider different noise levels, the synthetic data is

contaminated with two percent noise using the following equation [109]

pscatnoisy = pscatsimulated + max
(
|pscatsimulated|

)
× NP× RV√

2
(3.31)

− 1 < RV < 1

where RV is a uniformly distributed random vector and NP is a noise percentage. It

should be noted that although this type of synthetic noise has been already utilized in

literature to create synthetic noisy data, we are unsure whether this type of additive

noise is representative of that inherent in real US systems. The multiple frequencies

that are utilized are in the range defined by: 110 ≤ f ≤ 200 kHz. It should be

noted that these frequency ranges are not representative of current US technology

[51,110,111]; e.g., frequency ranges between 0.4-1MHz are utilized in [110]. The only

reason that the 100 to 200 kHz frequency range was chosen in this paper is to avoid

having a very large domain due to the increased computational complexity. However,

this balancing method can still be utilized for higher range of frequencies, but we

would require a faster computer with more memory and a parallel implementation.
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Table 3.1: The range of the contrast profiles for breast tissues.

Tissue χc1r χc1i χ2

Fat (0.0891, 0.1756) (−0.0054,−0.0005) (0.0411, 0.0627)
Cyst (−0.0995,−0.0472) (−0.0019,−0.0005) (−0.029,−0.012)
Glandular (−0.0886,−0.037) (−0.0081,−0.0043) (0.0215, 0.0384)
Tumor (−0.1654,−0.0975) (−0.0163,−0.0120) (0.0021, 0.0183)
Skin (−0.3728,−0.3333) (−0.0046,−0.0035) (−0.1266,−0.1135)
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Figure 3.1: The true tissue type images for MRI-based numerical breast phantoms.
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Figure 3.2: Transmitters and receivers positions. The transducers are in a circle
with a radius of 11 cm.
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Figure 3.3: The first column corresponds to the true contrast profiles for the MRI-based breast phantom with medium
size tumor. The second column corresponds to the reconstruction without using a balancing method (Q1 = Q2 = Q3 =
1). The third, fourth and fifth columns correspond to the simultaneous reconstruction of independent χc1r and χ2 using
a balancing coefficients set 1, set 2, and set 3 respectively.
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3.5.1 How to determine the balancing coefficients

To choose proper balancing coefficients, we utilize the available tissue contrast

information shown in Table 3.1. As noted earlier, the balancing coefficients should

be chosen so that the overall magnitude of all the normalized contrast variables are

within the same range. In this paper, we try to keep the values of all the contrast

profiles within the same range of the real part of complex compressibility contrast.

Thus, Q1 is chosen to be one. The ranges of Q2 and Q3 can be calculated as

NT∑
T=1

∣∣χc1i(T )

∣∣
min

NT∑
T=1

∣∣χc1r(T )

∣∣
max

< Q2 <

NT∑
T=1

∣∣χc1i(T )

∣∣
max

NT∑
T=1

∣∣χc1r(T )

∣∣
min

(3.32)

NT∑
T=1

∣∣χ2(T )

∣∣
min

NT∑
T=1

∣∣χc1r(T )

∣∣
max

< Q3 <

NT∑
T=1

∣∣χ2(T )

∣∣
max

NT∑
T=1

∣∣χc1r(T )

∣∣
min

(3.33)

where NT is the number of the chosen tissue types. The ranges obtained for Q2 and

Q3 via (3.32) and (3.33) for the case that we consider five different tissue types (i.e,

skin, fat, glandular, tumor and cyst) are

0.0231 < Q2 < 0.06, 0.2109 < Q3 < 0.4552

To show the robustness of our algorithm with respect to balancing coefficients chosen

from the above ranges, three sets of balancing coefficients are chosen for scenario 1.

The first, second and third sets are based on minimum (Q1 = 1, Q2 = 0.023, and Q3 =

0.21), average (Q1 = 1, Q2 = 0.04, and Q3 = 0.33) and maximum (Q1 = 1, Q2 = 0.06,

and Q3 = 0.45) ranges of balancing coefficients respectively. However, the result of
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the contrast profiles using a balancing method for scenario 2 and scenario 3 is only

shown for the average range (i.e, Q = 0.04).

3.5.2 MRI-based numerical phantom with a medium-sized

tumor

This example corresponds to the MRI-based numerical phantom having five re-

gions specified with properties corresponding to skin, fat, glandular, tumor and

cyst (or, Fibroadenoma) enclosed within about a 12λmin × 12λmin imaging domain

as shown in Fig 3.1 (the cyst region is added to the numerical phantom that was

developed at the University of Calgary, Canada [107]). The true contrast profiles

for this breast model are shown in the first column of Fig 3.3. Three frequencies,

f = [110, 150, 200] kHz, are simultaneously utilized for the inversion. The results of

the reconstruction of the contrast profiles for the independent density formulation

without applying the balancing method, i.e, Q1 = Q2 = Q3 = 1, is shown in the

second column of Fig 3.3. As can be seen, χc1i is poorly reconstructed due to small

value of this contrast in comparison with the other contrast profiles. Also, as can be

seen, the reconstruction of χ2 is not good either.

Three different sets of balancing coefficients are utilized for the scenario 1 ex-

plained in Section 3.4.2 (independent density). These sets are mentioned in Sec-

tion 3.5.1. The result of the reconstruction of the contrast profiles using these sets

of balancing coefficients are shown in the third, fourth and fifth columns of Fig 3.3.

Comparing the results obtained with and without a balancing method, it can be

seen that the reconstruction of χc1i and χ2 are improved using the balancing method.

Furthermore, the imaginary part of the complex contrast of compressibility is signif-
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icantly improved. The image obtained from χc1i is important due to the fact that it

is easier to distinguish the tumor from the healthy tissues in this image as compared

to the other two images [53]. This can be better understood by noting that the at-

tenuation in tumor tissue is much higher than the other tissues [51,52]. It should be

noted that although the reconstruction of inverse density is not very good, as will be

shown later the independent variation of density leads to better reconstructions of χc1r

and χc1i. This is consistent with the observation made in [29]. Finally, it should be

noted that three sets of values for balancing coefficients resulted in the enhancement

of the reconstruction results. Thus, based on this result, and other results (not shown

here), we speculate that the algorithm is not very sensitive to the choice of balancing

coefficients.

The reconstructions of χc1r and χc1i based on the scenario 2 explained in Sec-

tion 3.4.2 (χc1r = 2.4χ2) without and with applying the balancing method are shown

in the first and second rows of Fig 3.4. The reconstructions of χc1r and χc1i based on

the scenario 3 explained in Section 3.4.2 (χ2 = 0) without and with using a balanc-

ing method are shown in the third and fourth rows of Fig 3.4. As can be seen, the

reconstruction of χc1i is significantly improved using the balancing method for both

scenarios.

The residual errors for the real and imaginary parts of χc1 for different cases of

applying or not applying the balancing method for all the scenarios are tabulated in

Table 3.2. In this table, the residual errors for the skin, fat, glandular, and tumor

regions as well as the total errors (the background medium is not considered in cal-

culating the total errors) are calculated. This means that the error formulas listed at

the bottom of the table are applied to either the whole breast, for the total error, or

only in the region where each tissue is supposed to be reconstructed based on the true
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model. It should be noted that to calculate the residual error the meshes utilized in

the inversion algorithm are interpolated to the mesh utilized in the true value mesh

of the contrast profiles. The interpolation is based on the linear interpolation. As

can be seen, the residual errors for scenario 1 with different balancing sets (case 2, 3

and 4) are much smaller than the residual errors for scenario 1 without the balancing

method (case 1), especially for Error2 which corresponds to the imaginary part of χc1.

The residual errors are also decreased using a balancing method for scenarios 2 and

3 compared to unbalanced cases. Furthermore, the total residual errors and also the

residual errors for most of the tissue types are decreased in the balanced scenario 1

in comparison with the balanced scenario 2 and scenario 3.
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Figure 3.4: The first and second rows correspond to the reconstruction of the χc1
based on the scenario 2 without and with using the balancing method. The third and
fourth rows correspond to the reconstruction of χc1 based on scenario 3 without and
with using the balancing method.
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Figure 3.5: The first column corresponds to the true contrast profiles for the MRI-based breast phantom of a dense
breast. The second column corresponds to the reconstruction without using a balancing method (Q1 = Q2 = Q3 = 1).
The third, fourth and fifth columns correspond to the simultaneous reconstruction of independent χc1r and χ2 using a
balancing coefficients sets 1, 2, and 3 respectively.
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3.5.3 MRI-based numerical phantom of a dense breast

The MRI-based numerical phantom of a dense breast having four tissue regions

specified with properties corresponding to skin, fat, glandular and tumor enclosed

within a 12λmin×12λmin imaging domain is considered in this example [107]. The true

tissue image and contrast profiles for this breast phantom are shown in the Fig 3.1

(right side) and the first column of Fig 3.5, respectively. Three frequencies, f =

[110, 150, 200] kHz, are simultaneously utilized for the inversion. The reconstructions

of the independent χc1 and χ2 (scenario 1) without using a balancing method (Q1 =

Q2 = Q3 = 1) are shown in the second column of Fig 3.5. As can be seen, χc1i and

χ2 are poorly reconstructed. Three sets of the balancing coefficients used in the first

example are utilized to improve this results. The result of the reconstruction using

these three sets of balancing coefficients for the scenario 1 are shown in the third,

fourth, and fifth columns of Fig 3.5. As can be seen in Fig 3.5, the reconstructions of

the contrast profiles using the newly introduced balancing method are much better

than the reconstructions obtained without balancing the contrasts. Furthermore, all

the three balancing sets resulted in the enhancement of the reconstruction results.

The reconstructions of the real and imaginary parts of complex contrast of com-

pressibility using the balancing method based on scenario 2 are shown in the first

column of Fig 3.6. Results of the reconstruction of the contrast profiles based on

scenario 3 using different noise levels ranging from two to eight percent without and

with using the balancing method are also shown in Fig 3.6. The second column of this

figure corresponds to the reconstruction of the contrast profiles based on scenario 3

without applying the balancing method for the case that the data is contaminated

with two percent noise. The third, forth and fifth columns of Fig 3.6 correspond to

the reconstruction of the real and imaginary parts of χc1 based on scenario 3 using
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Table 3.2: Residual Error for the different reconstructions of χc1 with respect to the true value of the corresponding
contrast profile for the MRI-based numerical phantom with a medium sized tumor. Errors are provided for all three
scenarios.

Case Phantom Error Skin Error Fat Error Glandulart Error Tumor Error Total

1





Scenario 1

Independent ρ

No Balancing





Error1 = 0.227

Error2 = 4.29





Error1 = 0.218

Error2 = 4.03





Error1 = 0.772

Error2 = 1.03





Error1 = 0.352

Error2 = 0.25





Error1 = 0.247

Error2 = 1.925

2





Scenario 1

Independent ρ

Balancing set1





Error1 = 0.155

Error2 = 0.111





Error1 = 0.243

Error2 = 0.247





Error1 = 0.679

Error2 = 0.072





Error1 = 0.174

Error2 = 0.061





Error1 = 0.223

Error2 = 0.126

3





Scenario 1

Independent ρ

Balancing set2





Error1 = 0.178

Error2 = 0.103





Error1 = 0.234

Error2 = 0.269





Error1 = 0.493

Error2 = 0.076





Error1 = 0.167

Error2 = 0.063





Error1 = 0.22

Error2 = 0.135

4





Scenario 1

Independent ρ

Balancing set3





Error1 = 0.19

Error2 = 0.125





Error1 = 0.225

Error2 = 0.341





Error1 = 0.471

Error2 = 0.074





Error1 = 0.176

Error2 = 0.051





Error1 = 0.219

Error2 = 0.154

5





Scenario 2

χc1r = 2.4χ2

No Balancing





Error1 = 0.215

Error2 = 2.878





Error1 = 0.22

Error2 = 2.501





Error1 = 0.934

Error2 = 0.604





Error1 = 0.296

Error2 = 0.171





Error1 = 0.248

Error2 = 1.199

6





Scenario 2

χc1r = 2.4χ2

Q = 0.04





Error1 = 0.199

Error2 = 0.169





Error1 = 0.237

Error2 = 0.266





Error1 = 1.081

Error2 = 0.078





Error1 = 0.347

Error2 = 0.079





Error1 = 0.259

Error2 = 0.142

7





Scenario 3

χ2 = 0

No Balancing





Error1 = 0.168

Error2 = 4.04





Error1 = 0.311

Error2 = 3.392





Error1 = 0.526

Error2 = 1.029





Error1 = 0.157

Error2 = 0.359





Error1 = 0.258

Error2 = 1.735

8





Scenario 3

χ2 = 0

Q = 0.04





Error1 = 0.143

Error2 = 0.076





Error1 = 0.297

Error2 = 0.348





Error1 = 0.673

Error2 = 0.076





Error1 = 0.207

Error2 = 0.061





Error1 = 0.248

Error2 = 0.16

Error1 =

∥∥∥χc(True)1r −χc(simu)
1r

∥∥∥
2

2∥∥∥χc(True)1r

∥∥∥
2

2

, Error2 =

∥∥∥χc(True)1i −χc(simu)
1i

∥∥∥
2

2∥∥∥χc(True)1i

∥∥∥
2

2
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the balancing method for the 2%, 6% and 8% noise levels respectively. As can be

seen, the balancing method works properly for different noise levels. It should also

be noted that as the noise level increases, the image corresponding to the imaginary

part of the complex contrast of compressibility cannot reach to the exact quantitative

values.

The cut passing through two tumours from bottom left to the top right for the

real and imaginary parts of the complex contrast of compressibility using the average

value of balancing coefficients for the independent density, χc1r = 2.4χ2 and χ2 = 0 are

shown in Fig 3.7 (data contaminated with 2% noise). As can be seen in this figure,

the reconstruction of χc1 is more accurate when density is inverted independently

(scenario 1). Therefore, it can be seen that although the reconstruction of inverse

density is not as good as the other contrast profiles (based on scenario 1), it leads to

a better reconstruction of the complex contrast of compressibility in comparison with

the reconstruction of χc1 using the assumption of χc1r = 2.4χ2 and χ2 = 0 utilized in

scenario 2 and scenario 3. We speculate that this will be the case in general.
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Figure 3.6: Reconstruction of the dense breast phantom based on scenario 2 and scenario 3. The first column corre-
sponds to the reconstruction of χc1 based on scenario 2 using the balancing method. The second column corresponds to
the reconstruction based on scenario 3 without applying the balancing method. The third, fourth, fifth columns corre-
spond to the reconstruction based on scenario 3 using the balancing method for the case that the data is contaminated
with 2%, 6% and 8% noise.
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Figure 3.7: Comparison of the reconstruction of χc1 using the balancing method
based on scenarios 1, 2 and 3 for a cut passing through two tumours from the bottom
left to the top right. The average balancing coefficients are utilized and the noise level
is 2%. (The horizontal axis corresponds to the x value of the cut passing through two
tumors from the bottom left to the top right with the unit of [m] and the vertical
axis corresponds to the value of the corresponding contrast).

3.5.4 Reconstructions using the MR-GNI method

In this section, we demonstrate that the balancing method considered herein is

not only applicable to the BIM-CGLS inversion algorithm but also to other inversion

algorithms where one of the contrast variables is much smaller than the others. To

this end, the MR-GNI algorithm is utilized for the reconstruction of the ultrasonic

properties of the OI for scenario 3 (χ2 = 0). We have adapted the MR-GNI algo-

rithm that was developed for the reconstruction of complex permittivity in microwave

tomography [50] to our scenario 3 of ultrasound tomography where complex compress-
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ibility is inverted. Only inversions for scenario 3 are possible using this code because

there is no equivalent of density in microwave tomography. The details of this algo-

rithm are presented in [50]. The utilized MR is a weighted L2-norm total variation

regularizer exhibiting two features: Laplacian regularization for smooth areas and

edge-preserving regularization for sharp transitions. Thus, the utilized MR is a more

advanced regularization compared to the CGLS regularization used in BIM. It leads

to better reconstructions and reduced image noise. However, MR-GNI is computa-

tionally much more expensive in comparison with our BIM-CGLS algorithm. The

result of the reconstruction of the medium-sized tumor breast phantom based on sce-

nario 3 using the MR-GNI algorithm without and with using the balancing method

are shown in the first and second rows of Fig 3.8. The results of the reconstruction

of a dense breast using the MRGNI algorithm are shown in Fig 3.9. As can be seen,

the reconstruction of χc1i is poor without using the balancing method.

3.6 Conclusion

The performance of a balanced ultrasound tomography inversion algorithm for

breast imaging is studied for the reconstruction of up to three ultrasonic properties:

compressibility, attenuation, and density. These are represented as contrasts with

respect to a homogeneous background and constitute the variables to be inverted

given scattered-pressure data surrounding an object-of-interest. Numerical results

are presented for three different scenarios that correspond to different approxima-

tions related to the density profile. The first scenario considers a density variation

that is completely independent of the other two properties. The second and third

scenarios, assume that either the contrast of density is linearly dependent on the

contrast of compressibility or that there exists no variation in the density profile.



3.6. Conclusion 81

 

 

−0.04 −0.02 0 0.02 0.04

−0.04

−0.02

0

0.02

0.04

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

(a) χc
1r-No Balancing- 2% Noise

 

 

−0.04 −0.02 0 0.02 0.04

−0.04

−0.02

0

0.02

0.04

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

(b) χc
1i-No Balancing- 2% Noise

 

 

−0.04 −0.02 0 0.02 0.04

−0.04

−0.02

0

0.02

0.04

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

(c) χc
1r-Balancing- 2% Noise

 

 

−0.04 −0.02 0 0.02 0.04

−0.04

−0.02

0

0.02

0.04

−14

−12

−10

−8

−6

−4

−2

0

x 10
−3

(d) χc
1i-Balancing- 2% Noise

Figure 3.8: Reconstruction of a medium sized tumor based on scenario 3 (χ2 = 0)
using the MR-GNI algorithm. The first and second rows correspond to the reconstruc-
tion of the complex contrast of compressibility without and with using the balancing
method respectively.

The CGLS regularization in conjunction with the BIM inversion algorithm is used

for all the scenarios. The MR-GNI algorithm is also used for the last scenario to

show that the balancing method is also applicable and required for other inversion

algorithms, especially for the case where one of the contrast variables is much smaller

than the others. It is observed that the reconstruction of the complex contrast of

compressibility is improved when considering an independent variation of the density

in comparison with the results obtained using the other two assumptions. For all the
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Figure 3.9: Reconstruction of a dense breast based on scenario 3 (χ2 = 0) using the
MR-GNI algorithm. The first and second rows correspond to the reconstruction of
the complex contrast of compressibility without and with using the balancing method
respectively.

scenarios the use of the balancing algorithm that has been introduced improves the

reconstruction of the attenuation profile. This is important as the attenuation allows

for a better detection and identification of tumor tissue compared to using only the

compressibility and density images.

In summary, this paper addresses two issues. First, it is shown that as we en-

hance our numerical model, we achieve better imaging results due to reducing the

modelling error. Second, the concept of balancing may be viewed as an effective way
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of incorporating prior information about the imbalance between different contrasts.

For application-specific imaging scenarios, such as breast imaging, we are often aware

of the imbalance between the unknown contrasts since we have prior knowledge about

the expected ranges for different properties. In this paper, we have shown that our

proposed balanced inversion algorithm, with a trivial initial guess (zero contrast),

can enhance the quantitative images. In particular, an enhanced quantitative atten-

uation image is very important for breast imaging applications since it is easier to

detect tumor in the quantitative attenuation image.
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4

Paper 2∗:

Composite Tissue-Type and Probability

Image for Ultrasound and Microwave

Tomography

4.1 abstract

The concept of creating a composite tissue-type-image (cTTI) along with an asso-

ciated probability image is introduced for ultrasound and microwave tomography. The

cTTI integrates information available within different quantitative property-images,

and the associated probability image provides an indication of the level of confidence

regarding the reconstructed tissue types. It is shown that the cTTI concept can be

applied to ultrasound tomography property images, microwave tomography property

images, as well as to their combination. Thus, the concept is generalizable to the

amalgamation of quantitative information derived from a wide variety of modalities

with the goal of increasing the confidence in the reconstructed cTTI. Validation of

the concept is performed on MRI-derived numerical breast phantoms containing up

to five different tissue types.

∗ c© 2016 IEEE. Reprinted, with permission, from Pedram Mojabi and Joe LoVetri, “Composite
Tissue-Type and Probability Image for Ultrasound and Microwave Tomography,” IEEE Journal on
Multiscale and Multiphysics Computational Techniques, 2016.
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4.2 Introduction

ultrasound tomography (UT) and microwave tomography (MWT) are two quan-

titative imaging modalities which are being investigated for several industrial non-

destructive testing and biomedical imaging applications [3, 5, 6, 8–12]. The focus of

this work is on the application of these techniques to biomedical breast tissue imag-

ing. Both of these imaging modalities rely on irradiating the object of interest (OI)

using incident waves (pressure waves in UT, and electromagnetic waves in MWT).

The scattered waves from the OI are collected, and are then utilized to reconstruct

images of related properties of the OI. In UT, these properties are the ultrasonic

properties; for example, in this work we consider the compressibility, attenuation and

density profiles. In MWT, the properties of interest are the real and imaginary parts

of the complex permittivity profile of the OI.

Both of these modalities can be mathematically formulated as an inverse scattering

problem, which is non-linear and ill-posed. Several non-linear inversion algorithms

have been utilized in the past to solve these problems, for example, the Born iterative

method (BIM) [4, 20, 29, 37], the distorted Born iterative method [30, 34, 38, 39] and

the contrast source inversion (CSI) algorithm [40,41]. Generally, such methods need

to be applied in conjunction with regularization techniques, such as the standard

Tikhonov [32, 42], the L1-norm Tikhonov [43, 44], multiplicative regularizers [45, 46],

truncated singular value decomposition [47, 48] and conjugate gradient least squares

(CGLS) subspace regularization methods [8,9,20,47]. These regularization techniques

are used to deal with the ill-posedness of inverse problem.

We have recently shown how to reconstruct the three aforementioned ultrasonic

properties of the OI using the BIM inversion algorithm in conjunction with the CGLS

regularization technique [20]. We have also shown how to improve the reconstruction
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of the contrast profiles using a balancing method for the case that the ranges of the

contrast profiles are significantly different from each other [28]. Similarly, several

inversion algorithms have been proposed to reconstruct the complex permittivity

profile of the OI using MWT data [8, 9]. Thus, UT and MWT inversion algorithms

exist to solve the inverse scattering problem and thereby produce quantitative images

corresponding to the relevant physical properties associated with the respective wave

propagation.

Often, especially in biomedical imaging, the goal is to infer the tissue type within

the image, but this can be quite difficult working from a single property image such

as ultrasonic wave-speed. Even when three ultrasonic properties are reconstructed

simultaneously, as in [20], it is difficult to infer the tissue-type at a particular pixel

location. Techniques to do so are typically ad hoc, relying on the expertise of the

person examining the image. Recently, we have proposed preliminary systematic

techniques to create such tissue type images (TTIs) [112, 113]. In this paper we

introduce a general systematic procedure, based on Bayesian inference, to derive a

tissue-type image from one or more property images.

Thus, three quantitative property images obtained from UT data, and/or two

quantitative property images obtained from MWT, are utilized to form a single TTI

which we refer to as the composite tissue type image (cTTI). Each tissue-type in

the inferred composite TTI is represented by a single colour. This approach offers

the following advantages. First, the cTTI is more robust and reliable than a TTI

derived from a single quantitative image because the most accurately reconstructed

part of each property-image is used toward the creation of the cTTI. Secondly, for

each pixel of the cTTI we construct an associated probability value that indicates

the level of confidence regarding the assignment of the final tissue-type to that pixel.



4.2. Introduction 87

(It should be emphasized that current UT and MWT algorithms do not provide

any indications regarding the level of confidence in their reconstruction, which is

a serious disadvantage for risk assessment associated with a diagnosis.) Thirdly, a

physician can more easily understand the cTTI without knowing the ultrasonic or

complex permittivity values of different tissues. The cTTI, along with the associated

probability image, can provide the physician with better information that is required

to evaluate patient health and risk factors. In addition, the physician would be

provided with a single image as opposed to several images obtained from different

imaging modalities.

For the creation of this cTTI, we require (1) quantitative reconstructions of at least

two properties of the OI, and (2) the probability density functions (PDF) for the prop-

erty values corresponding to the different tissues within the object being imaged. The

quantitative property reconstructions can be obtained using any available inversion al-

gorithm. The PDFs of different properties for each tissue are estimated from property-

value ranges available in the published literature [9, 51,52,100,101,108,114,115].

We further show that single-property TTIs, or the cTTI, can be used to improve

the quantitative reconstructions of the OI. In this method, we first utilize the quan-

titative reconstructions of the properties to create the TTIs, or the cTTI, and then

utilize these to provide a good initial guess for the inversion algorithm (for any of

the property reconstructions). As is well-known, the appropriate choice of an initial

guess is very important for avoiding local minima, and converging to a good solution.

The TTI concept presented in this paper can be applied to different biomedical

or industrial applications. However, in this paper, we limit ourselves to the breast

imaging application. In addition, although we consider two-dimensional MWT and

UT, the framework presented in this paper can be applied to three-dimensional prob-
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lems as well. The structure of this paper is as follows. In Section 4.3, the problem

statement is presented. Then, two methods to create the composite TTI based on

using the quantitative reconstruction of the properties of the OI are described in Sec-

tion 4.4. Results of applying the techniques to MRI derived numerical phantoms are

then presented and discussed in Section 4.5.

4.3 Problem Statement and Methodology

The methodology for creating the TTIs and the cTTI is independent of the number

and type of property images that are used. We thus describe the methodology as a

general procedure, but subsequently apply it to three cases in the Results section.

That is, we validate the methodology using quantitative UT images, or quantitative

microwave (MW) images, or combinations of these.

4.3.1 Tissue Property Data

A basic assumption of creating TTIs is that, not only is there some correlation

between tissue properties and tissue types, but that the tissue properties provide a

means of discriminating between different tissues of interest. As the discrimination

capacity of a single property may not be ideal, the use of several properties reinforces

the discrimination. In order to perform such a function quantitatively and in a sys-

tematic way, it is assumed that typical property values for specific tissue types are

available and that PDFs of the property values for the tissues of interest can be esti-

mated. This basic assumption is required for the methodology that will be presented,

and the inferences made about the tissue type at any particular pixel depend on the

form of the PDFs that are assumed. None the less, the procedure itself is indepen-
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dent of the form of the PDFs. If future experimental work reveals more accurate

property distributions for some or all of the tissues of interest the methodology can

easily incorporate these. For the examples shown in the Results section of this paper,

we describe how we approximate Gaussian PDFs for five properties of five different

tissue-types.

4.3.2 MW and US Property-Image Formation

The TTIs are inferred from property-images and thus a means of creating US

and MW property images is required. In this work we focus on three US properties:

compressibility, attenuation, and density, as well as two MW properties: the real and

imaginary parts of the complex permittivity. It is assumed that the US and MW

inverse scattering problems have been solved resulting in five quantitative images for

these properties. For the results considered herein the ultrasound inverse scattering

problem is solved using the algorithm presented in [20, 28], and the microwave in-

verse scattering problem is solved using the algorithm presented in [116]. These are

representative of state-of-the-art inversion algorithms available in the literature.

4.4 Formation of the Composite TTI

Two methods to create cTTIs are described and investigated. The first method

first forms single property TTIs along with their corresponding probability images

and then uses these to construct a cTTI. In the second method, all the property im-

ages of interest are used simultaneously to create the cTTI, bypassing the creation of

the single-property TTIs. Along with the reconstructed quantitative images obtained

from UT and/or MWT, both require approximate PDFs of property values for each
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Abstract—The concept of composite tissue type image (TTI)
along with an associated composite probability image is intro-
duced for ultrasound and microwave tomography. The proposed
concept not only integrates the information available within
different quantitative property images, but also provides indi-
cations for the level of confidence regarding the reconstructed
tissue types. It will be shown that this concept can be applied
to ultrasound tomography, microwave tomography, and their
combination.
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I. INTRODUCTION

UULTRASOUND tomography (UT) and microwave to-
mography (MWT) are two quantitative non-destructive

imaging modalities which are being investigated for several
industrial non-destructive testing and biomedical imaging ap-
plications [1]–[4]. Both of these two imaging modalities rely
on irradiating the object of interest (OI) using incident waves
(pressure waves in UT, and electromagnetic waves in MWT).
The scattered waves from the OI are collected, and will
then be utilized to reconstruct some properties of the OI.
In UT, these properties are the ultrasonic properties; namely,
compressibility, attenuation and density profiles. In MWT,
these properties are the real and imaginary parts of the complex
permittivity profile of the OI.

Both of these two modalities can be mathematically formu-
lated as an inverse scattering problem, which is non-linear and
ill-posed. Several non-linear inversion algorithms have been
utilized in the past to solve these two problems such as the
Born iterative method (BIM) [5]–[8], distorted Born iterative
method [9]–[12]. and contrast source inversion (CSI) algorithm
[13], [14] in conjunction with some regularization techniques,
such as the standard Tikhonov [15], [16], L1-norm Tikhonov
[17], [18], multiplicative [19], [20], truncated singular value
decomposition [21], [22] and conjugate gradient least squares
(CGLS) subspace regularization methods [6], [21], [23], [24],
to handle the ill-posedness of this problem.

We have recently shown how to reconstruct the three afore-
mentioned ultrasonic properties of the OI using the BIM in-
version algorithm in conjunction with the CGLS regularization
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technique [6], and also how to improve the reconstruction of
the contrast profiles using a balancing method for the case that
the ranges of the contrast profiles are significantly different
from each other [25]. Similarly, several inversion algorithms
have been proposed to reconstruct the complex permittivity
profile of the OI using MWT data [23], [24]. In summary, the
UT and MWT inversion algorithms are similar in the sense
that they are iterative algorithms, and both attempt to solve the
inverse scattering problem associated with their corresponding
physics.

In this paper, we introduce the concept of tissue-type
imaging for both UT and MWT. In this proposed concept,
the three quantitative images from the UT, and/or the two
quantitative images from the MWT, are utilized to form one
single image which we refer to as the composite tissue type
image (TTI). This composite TTI, which is derived from the
quantitative images, has a colorbar in which each color is
representative of a specific tissue type. This approach offers the
following advantages. First, this composite TTI is more robust
and reliable compared to each quantitative image as the most
accurately reconstructed part of each property are used toward
the formation of this composite TTI. Second, each pixel of the
composite TTI will be associated with a probability value that
determines the level of confidence regarding its corresponding
reconstructed tissue type. (It should be emphasized that current
UT and MWT algorithms do not provide any indications
regarding the level of confidence in their reconstruction, which
is a serious disadvantage for risk assessment associated with
a diagnosis.) Third, a physician can easily understand this
composite TTI without knowing the ultrasonic or complex
permittivity values of different tissues, and use it, along with
the associated probability values, to evaluate patient health and
risk factors. Last but not least, the concept of composite TTI
can be used to integrate the images obtained from different
imaging modalities into one single image to be used by
physicians.

Toward creating this composite TTI, we require (1) the
quantitative reconstruction of the properties of the OI, and
(2) the probability density function (PDF) for each property
of different tissues. We obtain the quantitative reconstruction
using inversion algorithms. On the other hand, The PDFs of
different properties will be constructed from the published
literature values for the expected range of different proper-
ties [26]–[30] [24], [31], [32]. These two sets of information
will be used together to form our composite TTI. We present
two different methods to arrive at this composite TTI. In the
first method, we find the TTI and the probability image for
each property of interest individually. We refer to this TTI as
the single-property TTI. Then, we use all the single-property
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I. INTRODUCTION

UULTRASOUND tomography (UT) and microwave to-
mography (MWT) are two quantitative non-destructive

imaging modalities which are being investigated for several
industrial non-destructive testing and biomedical imaging ap-
plications [1]–[4]. Both of these two imaging modalities rely
on irradiating the object of interest (OI) using incident waves
(pressure waves in UT, and electromagnetic waves in MWT).
The scattered waves from the OI are collected, and will
then be utilized to reconstruct some properties of the OI.
In UT, these properties are the ultrasonic properties; namely,
compressibility, attenuation and density profiles. In MWT,
these properties are the real and imaginary parts of the complex
permittivity profile of the OI.

Both of these two modalities can be mathematically formu-
lated as an inverse scattering problem, which is non-linear and
ill-posed. Several non-linear inversion algorithms have been
utilized in the past to solve these two problems such as the
Born iterative method (BIM) [5]–[8], distorted Born iterative
method [9]–[12]. and contrast source inversion (CSI) algorithm
[13], [14] in conjunction with some regularization techniques,
such as the standard Tikhonov [15], [16], L1-norm Tikhonov
[17], [18], multiplicative [19], [20], truncated singular value
decomposition [21], [22] and conjugate gradient least squares
(CGLS) subspace regularization methods [6], [21], [23], [24],
to handle the ill-posedness of this problem.

We have recently shown how to reconstruct the three afore-
mentioned ultrasonic properties of the OI using the BIM in-
version algorithm in conjunction with the CGLS regularization
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technique [6], and also how to improve the reconstruction of
the contrast profiles using a balancing method for the case that
the ranges of the contrast profiles are significantly different
from each other [25]. Similarly, several inversion algorithms
have been proposed to reconstruct the complex permittivity
profile of the OI using MWT data [23], [24]. In summary, the
UT and MWT inversion algorithms are similar in the sense
that they are iterative algorithms, and both attempt to solve the
inverse scattering problem associated with their corresponding
physics.

In this paper, we introduce the concept of tissue-type
imaging for both UT and MWT. In this proposed concept,
the three quantitative images from the UT, and/or the two
quantitative images from the MWT, are utilized to form one
single image which we refer to as the composite tissue type
image (TTI). This composite TTI, which is derived from the
quantitative images, has a colorbar in which each color is
representative of a specific tissue type. This approach offers the
following advantages. First, this composite TTI is more robust
and reliable compared to each quantitative image as the most
accurately reconstructed part of each property are used toward
the formation of this composite TTI. Second, each pixel of the
composite TTI will be associated with a probability value that
determines the level of confidence regarding its corresponding
reconstructed tissue type. (It should be emphasized that current
UT and MWT algorithms do not provide any indications
regarding the level of confidence in their reconstruction, which
is a serious disadvantage for risk assessment associated with
a diagnosis.) Third, a physician can easily understand this
composite TTI without knowing the ultrasonic or complex
permittivity values of different tissues, and use it, along with
the associated probability values, to evaluate patient health and
risk factors. Last but not least, the concept of composite TTI
can be used to integrate the images obtained from different
imaging modalities into one single image to be used by
physicians.

Toward creating this composite TTI, we require (1) the
quantitative reconstruction of the properties of the OI, and
(2) the probability density function (PDF) for each property
of different tissues. We obtain the quantitative reconstruction
using inversion algorithms. On the other hand, The PDFs of
different properties will be constructed from the published
literature values for the expected range of different proper-
ties [26]–[30] [24], [31], [32]. These two sets of information
will be used together to form our composite TTI. We present
two different methods to arrive at this composite TTI. In the
first method, we find the TTI and the probability image for
each property of interest individually. We refer to this TTI as
the single-property TTI. Then, we use all the single-property

Composite)
)TTI)

Method)2)
MWT1Proper4es)

Composite)
)Probability)Image)

Method)2)
MWT1Proper4es)

Composite)
)TTI)

Method)2)
UT)&)MWT)

Composite)
)Probability)

Image)
Method)2)
UT)&)MWT)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. ?, NO. ?, SEPTEMBER 2015 1

Composite Tissue-Type and Probability Image for
Ultrasound and Microwave Tomography

Pedram Mojabi, Student Member, IEEE, Joe LoVetri, Senior Member, IEEE,

Abstract—The concept of composite tissue type image (TTI)
along with an associated composite probability image is intro-
duced for ultrasound and microwave tomography. The proposed
concept not only integrates the information available within
different quantitative property images, but also provides indi-
cations for the level of confidence regarding the reconstructed
tissue types. It will be shown that this concept can be applied
to ultrasound tomography, microwave tomography, and their
combination.

8
<
:

1 5 8
0 2 4
3 3 -8

9
=
;

Keywords—Tissue-type image (TTI), Ultrasound tomography, Mi-
crowave tomography, Inverse scattering, Breast imaging, probability
density function.

I. INTRODUCTION

UULTRASOUND tomography (UT) and microwave to-
mography (MWT) are two quantitative non-destructive

imaging modalities which are being investigated for several
industrial non-destructive testing and biomedical imaging ap-
plications [1]–[4]. Both of these two imaging modalities rely
on irradiating the object of interest (OI) using incident waves
(pressure waves in UT, and electromagnetic waves in MWT).
The scattered waves from the OI are collected, and will
then be utilized to reconstruct some properties of the OI.
In UT, these properties are the ultrasonic properties; namely,
compressibility, attenuation and density profiles. In MWT,
these properties are the real and imaginary parts of the complex
permittivity profile of the OI.

Both of these two modalities can be mathematically formu-
lated as an inverse scattering problem, which is non-linear and
ill-posed. Several non-linear inversion algorithms have been
utilized in the past to solve these two problems such as the
Born iterative method (BIM) [5]–[8], distorted Born iterative
method [9]–[12]. and contrast source inversion (CSI) algorithm
[13], [14] in conjunction with some regularization techniques,
such as the standard Tikhonov [15], [16], L1-norm Tikhonov
[17], [18], multiplicative [19], [20], truncated singular value
decomposition [21], [22] and conjugate gradient least squares
(CGLS) subspace regularization methods [6], [21], [23], [24],
to handle the ill-posedness of this problem.

We have recently shown how to reconstruct the three afore-
mentioned ultrasonic properties of the OI using the BIM in-
version algorithm in conjunction with the CGLS regularization
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technique [6], and also how to improve the reconstruction of
the contrast profiles using a balancing method for the case that
the ranges of the contrast profiles are significantly different
from each other [25]. Similarly, several inversion algorithms
have been proposed to reconstruct the complex permittivity
profile of the OI using MWT data [23], [24]. In summary, the
UT and MWT inversion algorithms are similar in the sense
that they are iterative algorithms, and both attempt to solve the
inverse scattering problem associated with their corresponding
physics.

In this paper, we introduce the concept of tissue-type
imaging for both UT and MWT. In this proposed concept,
the three quantitative images from the UT, and/or the two
quantitative images from the MWT, are utilized to form one
single image which we refer to as the composite tissue type
image (TTI). This composite TTI, which is derived from the
quantitative images, has a colorbar in which each color is
representative of a specific tissue type. This approach offers the
following advantages. First, this composite TTI is more robust
and reliable compared to each quantitative image as the most
accurately reconstructed part of each property are used toward
the formation of this composite TTI. Second, each pixel of the
composite TTI will be associated with a probability value that
determines the level of confidence regarding its corresponding
reconstructed tissue type. (It should be emphasized that current
UT and MWT algorithms do not provide any indications
regarding the level of confidence in their reconstruction, which
is a serious disadvantage for risk assessment associated with
a diagnosis.) Third, a physician can easily understand this
composite TTI without knowing the ultrasonic or complex
permittivity values of different tissues, and use it, along with
the associated probability values, to evaluate patient health and
risk factors. Last but not least, the concept of composite TTI
can be used to integrate the images obtained from different
imaging modalities into one single image to be used by
physicians.

Toward creating this composite TTI, we require (1) the
quantitative reconstruction of the properties of the OI, and
(2) the probability density function (PDF) for each property
of different tissues. We obtain the quantitative reconstruction
using inversion algorithms. On the other hand, The PDFs of
different properties will be constructed from the published
literature values for the expected range of different proper-
ties [26]–[30] [24], [31], [32]. These two sets of information
will be used together to form our composite TTI. We present
two different methods to arrive at this composite TTI. In the
first method, we find the TTI and the probability image for
each property of interest individually. We refer to this TTI as
the single-property TTI. Then, we use all the single-property
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I.INTRODUCTION

U
ULTRASOUNDtomography(UT)andmicrowaveto-
mography(MWT)aretwoquantitativenon-destructive

imagingmodalitieswhicharebeinginvestigatedforseveral
industrialnon-destructivetestingandbiomedicalimagingap-
plications[1]–[4].Bothofthesetwoimagingmodalitiesrely
onirradiatingtheobjectofinterest(OI)usingincidentwaves
(pressurewavesinUT,andelectromagneticwavesinMWT).
ThescatteredwavesfromtheOIarecollected,andwill
thenbeutilizedtoreconstructsomepropertiesoftheOI.
InUT,thesepropertiesaretheultrasonicproperties;namely,
compressibility,attenuationanddensityprofiles.InMWT,
thesepropertiesaretherealandimaginarypartsofthecomplex
permittivityprofileoftheOI.

Bothofthesetwomodalitiescanbemathematicallyformu-
latedasaninversescatteringproblem,whichisnon-linearand
ill-posed.Severalnon-linearinversionalgorithmshavebeen
utilizedinthepasttosolvethesetwoproblemssuchasthe
Borniterativemethod(BIM)[5]–[8],distortedBorniterative
method[9]–[12].andcontrastsourceinversion(CSI)algorithm
[13],[14]inconjunctionwithsomeregularizationtechniques,
suchasthestandardTikhonov[15],[16],L1-normTikhonov
[17],[18],multiplicative[19],[20],truncatedsingularvalue
decomposition[21],[22]andconjugategradientleastsquares
(CGLS)subspaceregularizationmethods[6],[21],[23],[24],
tohandletheill-posednessofthisproblem.

Wehaverecentlyshownhowtoreconstructthethreeafore-
mentionedultrasonicpropertiesoftheOIusingtheBIMin-
versionalgorithminconjunctionwiththeCGLSregularization
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technique[6],andalsohowtoimprovethereconstructionof
thecontrastprofilesusingabalancingmethodforthecasethat
therangesofthecontrastprofilesaresignificantlydifferent
fromeachother[25].Similarly,severalinversionalgorithms
havebeenproposedtoreconstructthecomplexpermittivity
profileoftheOIusingMWTdata[23],[24].Insummary,the
UTandMWTinversionalgorithmsaresimilarinthesense
thattheyareiterativealgorithms,andbothattempttosolvethe
inversescatteringproblemassociatedwiththeircorresponding
physics.

Inthispaper,weintroducetheconceptoftissue-type
imagingforbothUTandMWT.Inthisproposedconcept,
thethreequantitativeimagesfromtheUT,and/orthetwo
quantitativeimagesfromtheMWT,areutilizedtoformone
singleimagewhichwerefertoasthecompositetissuetype
image(TTI).ThiscompositeTTI,whichisderivedfromthe
quantitativeimages,hasacolorbarinwhicheachcoloris
representativeofaspecifictissuetype.Thisapproachoffersthe
followingadvantages.First,thiscompositeTTIismorerobust
andreliablecomparedtoeachquantitativeimageasthemost
accuratelyreconstructedpartofeachpropertyareusedtoward
theformationofthiscompositeTTI.Second,eachpixelofthe
compositeTTIwillbeassociatedwithaprobabilityvaluethat
determinesthelevelofconfidenceregardingitscorresponding
reconstructedtissuetype.(Itshouldbeemphasizedthatcurrent
UTandMWTalgorithmsdonotprovideanyindications
regardingthelevelofconfidenceintheirreconstruction,which
isaseriousdisadvantageforriskassessmentassociatedwith
adiagnosis.)Third,aphysiciancaneasilyunderstandthis
compositeTTIwithoutknowingtheultrasonicorcomplex
permittivityvaluesofdifferenttissues,anduseit,alongwith
theassociatedprobabilityvalues,toevaluatepatienthealthand
riskfactors.Lastbutnotleast,theconceptofcompositeTTI
canbeusedtointegratetheimagesobtainedfromdifferent
imagingmodalitiesintoonesingleimagetobeusedby
physicians.

TowardcreatingthiscompositeTTI,werequire(1)the
quantitativereconstructionofthepropertiesoftheOI,and
(2)theprobabilitydensityfunction(PDF)foreachproperty
ofdifferenttissues.Weobtainthequantitativereconstruction
usinginversionalgorithms.Ontheotherhand,ThePDFsof
differentpropertieswillbeconstructedfromthepublished
literaturevaluesfortheexpectedrangeofdifferentproper-
ties[26]–[30][24],[31],[32].Thesetwosetsofinformation
willbeusedtogethertoformourcompositeTTI.Wepresent
twodifferentmethodstoarriveatthiscompositeTTI.Inthe
firstmethod,wefindtheTTIandtheprobabilityimagefor
eachpropertyofinterestindividually.WerefertothisTTIas
thesingle-propertyTTI.Then,weuseallthesingle-property
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I. INTRODUCTION

UULTRASOUND tomography (UT) and microwave to-
mography (MWT) are two quantitative non-destructive

imaging modalities which are being investigated for several
industrial non-destructive testing and biomedical imaging ap-
plications [1]–[4]. Both of these two imaging modalities rely
on irradiating the object of interest (OI) using incident waves
(pressure waves in UT, and electromagnetic waves in MWT).
The scattered waves from the OI are collected, and will
then be utilized to reconstruct some properties of the OI.
In UT, these properties are the ultrasonic properties; namely,
compressibility, attenuation and density profiles. In MWT,
these properties are the real and imaginary parts of the complex
permittivity profile of the OI.

Both of these two modalities can be mathematically formu-
lated as an inverse scattering problem, which is non-linear and
ill-posed. Several non-linear inversion algorithms have been
utilized in the past to solve these two problems such as the
Born iterative method (BIM) [5]–[8], distorted Born iterative
method [9]–[12]. and contrast source inversion (CSI) algorithm
[13], [14] in conjunction with some regularization techniques,
such as the standard Tikhonov [15], [16], L1-norm Tikhonov
[17], [18], multiplicative [19], [20], truncated singular value
decomposition [21], [22] and conjugate gradient least squares
(CGLS) subspace regularization methods [6], [21], [23], [24],
to handle the ill-posedness of this problem.

We have recently shown how to reconstruct the three afore-
mentioned ultrasonic properties of the OI using the BIM in-
version algorithm in conjunction with the CGLS regularization
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technique [6], and also how to improve the reconstruction of
the contrast profiles using a balancing method for the case that
the ranges of the contrast profiles are significantly different
from each other [25]. Similarly, several inversion algorithms
have been proposed to reconstruct the complex permittivity
profile of the OI using MWT data [23], [24]. In summary, the
UT and MWT inversion algorithms are similar in the sense
that they are iterative algorithms, and both attempt to solve the
inverse scattering problem associated with their corresponding
physics.

In this paper, we introduce the concept of tissue-type
imaging for both UT and MWT. In this proposed concept,
the three quantitative images from the UT, and/or the two
quantitative images from the MWT, are utilized to form one
single image which we refer to as the composite tissue type
image (TTI). This composite TTI, which is derived from the
quantitative images, has a colorbar in which each color is
representative of a specific tissue type. This approach offers the
following advantages. First, this composite TTI is more robust
and reliable compared to each quantitative image as the most
accurately reconstructed part of each property are used toward
the formation of this composite TTI. Second, each pixel of the
composite TTI will be associated with a probability value that
determines the level of confidence regarding its corresponding
reconstructed tissue type. (It should be emphasized that current
UT and MWT algorithms do not provide any indications
regarding the level of confidence in their reconstruction, which
is a serious disadvantage for risk assessment associated with
a diagnosis.) Third, a physician can easily understand this
composite TTI without knowing the ultrasonic or complex
permittivity values of different tissues, and use it, along with
the associated probability values, to evaluate patient health and
risk factors. Last but not least, the concept of composite TTI
can be used to integrate the images obtained from different
imaging modalities into one single image to be used by
physicians.

Toward creating this composite TTI, we require (1) the
quantitative reconstruction of the properties of the OI, and
(2) the probability density function (PDF) for each property
of different tissues. We obtain the quantitative reconstruction
using inversion algorithms. On the other hand, The PDFs of
different properties will be constructed from the published
literature values for the expected range of different proper-
ties [26]–[30] [24], [31], [32]. These two sets of information
will be used together to form our composite TTI. We present
two different methods to arrive at this composite TTI. In the
first method, we find the TTI and the probability image for
each property of interest individually. We refer to this TTI as
the single-property TTI. Then, we use all the single-property
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I.INTRODUCTION

U
ULTRASOUNDtomography(UT)andmicrowaveto-
mography(MWT)aretwoquantitativenon-destructive

imagingmodalitieswhicharebeinginvestigatedforseveral
industrialnon-destructivetestingandbiomedicalimagingap-
plications[1]–[4].Bothofthesetwoimagingmodalitiesrely
onirradiatingtheobjectofinterest(OI)usingincidentwaves
(pressurewavesinUT,andelectromagneticwavesinMWT).
ThescatteredwavesfromtheOIarecollected,andwill
thenbeutilizedtoreconstructsomepropertiesoftheOI.
InUT,thesepropertiesaretheultrasonicproperties;namely,
compressibility,attenuationanddensityprofiles.InMWT,
thesepropertiesaretherealandimaginarypartsofthecomplex
permittivityprofileoftheOI.

Bothofthesetwomodalitiescanbemathematicallyformu-
latedasaninversescatteringproblem,whichisnon-linearand
ill-posed.Severalnon-linearinversionalgorithmshavebeen
utilizedinthepasttosolvethesetwoproblemssuchasthe
Borniterativemethod(BIM)[5]–[8],distortedBorniterative
method[9]–[12].andcontrastsourceinversion(CSI)algorithm
[13],[14]inconjunctionwithsomeregularizationtechniques,
suchasthestandardTikhonov[15],[16],L1-normTikhonov
[17],[18],multiplicative[19],[20],truncatedsingularvalue
decomposition[21],[22]andconjugategradientleastsquares
(CGLS)subspaceregularizationmethods[6],[21],[23],[24],
tohandletheill-posednessofthisproblem.

Wehaverecentlyshownhowtoreconstructthethreeafore-
mentionedultrasonicpropertiesoftheOIusingtheBIMin-
versionalgorithminconjunctionwiththeCGLSregularization

P.MojabiandJ.LoVetriarewiththeDepartmentofElectricaland
ComputerEngineering,UniversityofManitoba,Winnipeg,MB,Canadae-
mail:Pedram.Mojabi@UManitoba.caandJoe.LoVetri@UManitoba.ca.

technique[6],andalsohowtoimprovethereconstructionof
thecontrastprofilesusingabalancingmethodforthecasethat
therangesofthecontrastprofilesaresignificantlydifferent
fromeachother[25].Similarly,severalinversionalgorithms
havebeenproposedtoreconstructthecomplexpermittivity
profileoftheOIusingMWTdata[23],[24].Insummary,the
UTandMWTinversionalgorithmsaresimilarinthesense
thattheyareiterativealgorithms,andbothattempttosolvethe
inversescatteringproblemassociatedwiththeircorresponding
physics.

Inthispaper,weintroducetheconceptoftissue-type
imagingforbothUTandMWT.Inthisproposedconcept,
thethreequantitativeimagesfromtheUT,and/orthetwo
quantitativeimagesfromtheMWT,areutilizedtoformone
singleimagewhichwerefertoasthecompositetissuetype
image(TTI).ThiscompositeTTI,whichisderivedfromthe
quantitativeimages,hasacolorbarinwhicheachcoloris
representativeofaspecifictissuetype.Thisapproachoffersthe
followingadvantages.First,thiscompositeTTIismorerobust
andreliablecomparedtoeachquantitativeimageasthemost
accuratelyreconstructedpartofeachpropertyareusedtoward
theformationofthiscompositeTTI.Second,eachpixelofthe
compositeTTIwillbeassociatedwithaprobabilityvaluethat
determinesthelevelofconfidenceregardingitscorresponding
reconstructedtissuetype.(Itshouldbeemphasizedthatcurrent
UTandMWTalgorithmsdonotprovideanyindications
regardingthelevelofconfidenceintheirreconstruction,which
isaseriousdisadvantageforriskassessmentassociatedwith
adiagnosis.)Third,aphysiciancaneasilyunderstandthis
compositeTTIwithoutknowingtheultrasonicorcomplex
permittivityvaluesofdifferenttissues,anduseit,alongwith
theassociatedprobabilityvalues,toevaluatepatienthealthand
riskfactors.Lastbutnotleast,theconceptofcompositeTTI
canbeusedtointegratetheimagesobtainedfromdifferent
imagingmodalitiesintoonesingleimagetobeusedby
physicians.

TowardcreatingthiscompositeTTI,werequire(1)the
quantitativereconstructionofthepropertiesoftheOI,and
(2)theprobabilitydensityfunction(PDF)foreachproperty
ofdifferenttissues.Weobtainthequantitativereconstruction
usinginversionalgorithms.Ontheotherhand,ThePDFsof
differentpropertieswillbeconstructedfromthepublished
literaturevaluesfortheexpectedrangeofdifferentproper-
ties[26]–[30][24],[31],[32].Thesetwosetsofinformation
willbeusedtogethertoformourcompositeTTI.Wepresent
twodifferentmethodstoarriveatthiscompositeTTI.Inthe
firstmethod,wefindtheTTIandtheprobabilityimagefor
eachpropertyofinterestindividually.WerefertothisTTIas
thesingle-propertyTTI.Then,weuseallthesingle-property

Figure 4.1: The flowchart of creating a composite TTI (cTTI) using Method 1 and
Method 2 for both UT and MWT. In Method 1, single-property TTIs and single-
property probability images for all the properties of interest are created. This in-
formation is then utilized to create the cTTI along with its composite probability
image. In Method 2, we do not create single-property TTIs. All the properties of in-
terest are simultaneously utilized to directly create the cTTI along with its composite
probability image.
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tissue being considered. The first method requires only single variate PDFs for each

combination of property/tissue-type pair, whereas the second method utilizes multi-

variate PDFs for all the properties for each tissue-type. The flowchart showing how

these two methods work is depicted in Fig 4.1.

The goal of the methodology is to construct a cTTI wherein each pixel is labeled,

via a specific color, with the most-probable tissue type. The probability of the label

being correct is provided by the corresponding probability image. This probability

represents the confidence one should have that the particular pixel corresponds to

that tissue-type given all of the available information.

4.4.1 Method 1: cTTI derived from single-property TTIs

The first step of this method is to first construct a single-property TTI and its

corresponding probability image for each quantitative property image. Thus, for

example, if we have available three quantitative property images, we will obtain six

images. These six images are then used to form one composite TTI with a correspond-

ing composite probability image. For ultrasound imaging the properties being imaged

will be, e.g., compressibility, attenuation and density, whereas for microwave imaging

the properties will be the real and imaginary parts of the complex permittivity.

The number of tissue types of interest should also be specified. For example,

four or five different tissue types can be chosen for breast imaging; namely, skin, fat,

glandular, tumor and/or cyst. (The number of chosen tissue types can be adjusted

for different applications.)

The steps for creating the single-property tissue-type and probability images are

summarized below.

1. Consider each of the quantitative property images in turn.
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2. At each pixel within the quantitative property image, we calculate the proba-

bility that that pixel corresponds to tissue type, Tk, using Bayes’ formula [117]:

P (Tk|x) =
p(x|Tk)P (Tk)
Nt∑

i=1

p(x|Ti)P (Ti)

(4.1)

where x is the property value of that pixel in the property image. In this

formula Nt is the total number of tissues, and p(x|Tk) is the value of the PDF

at property value x for tissue Tk. The term P (Tk) is the prior probability

of assigning tissue-type Tk for that pixel. In this work, we assume no prior

information and therefore set all of the prior probabilities to be equal amongst

the tissues being considered. That is, for the case that we consider five tissue

types, we set P (Tk) = 0.2. At the end of this step we will have Nt probabilities

assigned to each pixel, one for each tissue-type.

3. To form the TTI, we assign each pixel the tissue type with the highest proba-

bility calculated in step 2. Thus,

if P (Tk|x) > P (Tj|x) =⇒ choose tissue Tk (4.2)

where j = 1, · · · , Nt and j 6= k

We also keep this highest probability of each pixel and introduce it at the

corresponding pixel in the probability image. Thus, we have two images for each

property of interest as shown in Fig 4.1. The first image is called the single-

property TTI and the second image is called the single-property probability

image.
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4. Once we obtain the single-property TTI and single-property probability image

for this property, we go back to Step 1, and repeat these procedures until all

the properties are covered.

Now, we can utilize all these single-property TTIs and single-property probability

images to create a cTTI. To this end, for each pixel within the cTTI, we scan all the

corresponding pixels in single-property TTIs and their single-property probability

images. We then choose the tissue type of the highest probability, and assign it to

that pixel of the cTTI. We also keep this highest probability to form the composite

probability image. This procedure continues until all the pixels of the cTTI are

covered.

4.4.2 Method 2: cTTI derived from simultaneous use of dif-

ferent properties

Whereas Method 1 treated the information within the individual quantitative

property images as independent, Method 2 makes some assumptions regarding how

this information is correlated. That is, Method 2 forms the cTTI by simultaneously

considering all the quantitative images, without creating single-property TTIs, and

assumes that for each tissue-type we have available a multivariate PDF that takes

into account all of the properties. Although having an accurate multivariate PDF

may seem demanding, we will show that simple assumptions as to the form of this

multivariate PDF improves the predicted cTTI. Specifically, we assume that a mul-

tivariate normal PDF, in d dimensions (corresponding to the number of properties),

can be used. Thus, we assume that the multivariate normal PDF for tissue Tk is of
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the form [117]

p(x|Tk) =
1

(2π)d/2|Σ|1/2 × e

[
− 1

2
(x−µ)tΣ−1(x−µ)

]
(4.3)

where x is a vector of length d corresponding to the value of d properties for each pixel,

µ is the mean vector of length d corresponding to the mean value of each property,

and Σ is the d × d covariance matrix. Also, |Σ| and Σ−1 are the determinant and

the inverse of the covariance matrix. For simplicity, it is assumed that the properties

are statistically independent; thus, the covariance matrix is diagonal.

The steps of this method are summarized below.

1. For each pixel, considering all the property images of interest simultaneously,

the value of multivariate PDF for each tissue type is calculated based on (4.3),

i.e, p(x, T1), p(x, T2), · · · , p(x, Tk).

2. The probability that any particular tissue, Tk, occupies a pixel is calculated

using Bayes’ formula, where (4.1) is used with vector argument x rather than

x.

3. Bayesian decision theory [117] is then applied where the tissue-type with the

highest probability is assigned to each pixel. As in Method 1, two images will

be obtained from this method. The first image is the composite TTI and the

second image is the composite probability image (i.e., the highest probability).

4.5 Results

To validate the effectiveness of the TTI methodology, numerical experiments with

synthetically derived data were performed. For these experiments two different 2D
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MRI-based numerical phantoms were considered [107]. The first phantom contains a

medium sized tumor and a total of five tissue types: skin, fat, glandular, cyst, and

tumor. The second phantom is a dense breast having four tissue types (no cyst) and

two medium sized tumors. The true tissue images of these phantoms are shown in

Fig 4.2. The discrete colorbar of each image is used to identify the tissue-type. Note

that for all of the synthetic examples considered herein noise is added to the scattered

field data according to a percentage value of the maximum scattered field. Details

are provided in [109].
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Figure 4.2: The true TTI for MRI-based numerical breast phantoms.

The results are presented in the following format. First, in Section 4.5.1, the

reconstructions of the ultrasonic properties for each phantom are shown. Then, these

reconstructions are utilized to create single-property TTIs and cTTIs using Method 1

and Method 2. In Section 4.5.2, the reconstructions of the electromagnetic properties

for the phantoms are shown. Then, these quantitative MWT properties are utilized to

create single-property TTIs and a cTTI. In Section 4.5.3, UT and MWT are utilized

together to create a cTTI. Finally, in Section 4.5.4, we show how the concept of cTTI
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can be used to provided an enhanced initial guess for the inversion algorithm. It

should be noted that the prior probabilities for all the tissue types are assumed to be

the same unless otherwise stated.

4.5.1 cTTI for UT

Formation of the true quantitative profile

The ranges of the ultrasonic properties for breast are shown in Table 4.1†. These

ranges are chosen based on [51,52,100,101,108]. To create numerical phantoms from

the MRI-based tissue-phantoms for each property being considered we randomize the

property values at each pixel for each tissue. That is, to set the property values for

each tissue we apply a uniformly distributed random function to pick up values for

every pixel within that tissue. For example, if the upper and lower ranges of a property

associated with a given tissue type is a and b respectively, the true quantitative values

for that property within that tissue are chosen to be a + (b− a)× rand where rand

is a uniformly distributed random number from 0 to 1.

Formation of the PDFs

Based on the expected ranges of each property for a given tissue, we create the

required PDFs. For example, if we consider 5 tissue types and 5 properties, we will

have 25 single variate PDFs. These PDFs are all assumed to have normal distributions

with their mean values coinciding with the mean value of the expected range for each

property associated with a certain tissue. Furthermore, to find the standard deviation

†It should be noted that the units of these ultrasonic properties have been provided in this
Table, and therefore for brevity, we do not repeat these units in the reconstructed images. In the
reconstructed images, the colorbars of reconstructions represent the quantitative values of these
properties.
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Table 4.1: The ranges of the speed of the sound (c = 1√
κρ

), attenuation and density

for breast tissues.

Tissue Speed of Propagation [m/s] Attenuation[ dB
cm MHz

] Density[ kg
m3 ]

Skin 1710 < c < 1750 0.65 < α < 0.85 1128 < ρ < 1145
Fat 1410 < c < 1450 0.1 < α < 1 941 < ρ < 960.5
Glandular 1540 < c < 1570 0.8 < α < 1.5 963 < ρ < 979
Tumor 1575 < c < 1625 2.2 < α < 3 982 < ρ < 998
Cyst 1510 < c < 1540 0.1 < α < 0.35 1012 < ρ < 1030

of the PDF, it is assumed that the value of the PDF at the minimum and maximum

values of the expected range is 40% of the maximum value of the PDF. These standard

deviations and means are also utilized to create the multivariate normal PDF for

Method 2.

Inversion setup

Three ultrasonic frequencies of operation, f = [110, 150, 200] kHz, are considered.

The number of transmitters and receivers is set to be 120 and water is chosen as

the background medium‡. The datasets corresponding to these three frequencies are

simultaneously inverted. Due to the fact that attenuation is dependent on frequency,

we reconstruct the slope of the attenuation at these frequencies (which can be assumed

to be a constant). The term attenuation is used throughout the paper to refer to this

quantity.

First phantom (phantom with a medium sized tumor)

The true TTI for this phantom is shown in Fig 4.2a. The true compressibility,

attenuation and density profiles for this phantom are shown in the top row of Fig 4.3.

‡Although the choice of the background medium has not been investigated in this thesis, it should
be noted that an important criterion toward the choice of the background medium, also known as
the matching fluid, is to choose a safe medium that minimizes the reflection from the object so as
to maximize interrogation of the internal regions of the object.



4.5. Results 98

x [m]

y
 [

m
]

 

 

−0.04 −0.02 0 0.02 0.04

−0.04

−0.02

0

0.02

0.04

3

3.5

4

4.5

5

x 10
−10

(a) True κ

x [m]

y
 [

m
]

 

 

−0.04 −0.02 0 0.02 0.04

−0.04

−0.02

0

0.02

0.04

0.5

1

1.5

2

2.5

(b) True α

x [m]

y
 [

m
]

 

 

−0.04 −0.02 0 0.02 0.04

−0.04

−0.02

0

0.02

0.04

950

1000

1050

1100

(c) True ρ

x [m]

y
 [

m
]

 

 

−0.04 −0.02 0 0.02 0.04

−0.04

−0.02

0

0.02

0.04

3

3.5

4

4.5

5

5.5

x 10
−10

(d) Reconstructed κ

x [m]

y
 [

m
]

 

 

−0.04 −0.02 0 0.02 0.04

−0.04

−0.02

0

0.02

0.04

0

1

2

3

(e) Reconstructed α

x [m]

y
 [

m
]

 

 

−0.04 −0.02 0 0.02 0.04

−0.04

−0.02

0

0.02

0.04

950

1000

1050

(f) Reconstructed ρ

Figure 4.3: The first row corresponds to the true compressibility, attenuation and
density profiles. The second row corresponds to the reconstruction of compressibility,
attenuation and density profiles for the data contaminated with 2% noise.
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Figure 4.4: The PDF, single property TTI and probability image for the compress-
ibility (top row) and attenuation (bottom row) are shown.
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The reconstruction of the properties with two percent noise added to the data are

shown in the bottom row of Fig 4.3§. As can be seen the reconstruction of the density

is poor and we thus do not use this property for creating the composite TTI. That is,

we only use reconstructed compressibility and attenuation property images. (It will

be shown in Section 4.5.4 that the reconstruction of density can be improved using

a good initial guess based on the reconstructed composite TTI.) The PDFs for the

compressibility and attenuation for all tissue types are shown in the first column of

Fig 4.4. Using these PDFs and the reconstructed properties, a single-property TTI

and a single-property probability image for each property are constructed. These are

shown in the second and third columns of Fig 4.4, respectively. It is worthwhile to

note that the fat region can be well distinguished from the other tissues, with high

probability values, using the single-property compressibility TTI. The tumor is also

well detected using the single-property attenuation TTI, again with high probability

values. Note though, that if one were to utilize only the attenuation property there

would be many false skin designations within the fat region. Similarly, using only

compressibility, there would be many false cyst designations within the glandular

region.

The cTTI based on κ and α properties can then be created by either Method 1

or Method 2. The cTTI, correct-pixel image and probability image using Method 1

and Method 2 are shown in the first and second rows of Fig 4.5, respectively. Here,

using two properties, we already see a substantial reduction in the number of false

designations of tissue type. As can be seen in the title bar of the correct-pixel images,

the error which is defined as the ratio of the number of wrong pixels to the total

§The achievable resolution may be enhanced by utilizing higher frequencies of operation. To the
best of the author’s knowledge, the achievable resolution using the inverse scattering approaches is
object dependent, e.g., see [118].
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Figure 4.5: The first and second rows correspond to the reconstruction of a cTTI,
correct pixel image and probability image using Method 1 and Method 2, respectively.

number of pixels within the OI for the reconstructed cTTI using Method 2 (0.10325)

is smaller than that using Method 1 (0.16659).

Second phantom (dense breast with two tumors)

The true TTI for this phantom is shown in Fig 4.2b. The true compressibility,

attenuation, and density profiles for this phantom are shown in the first row of Fig 4.6.

The reconstruction of these properties for two different noise levels (2% and 9%) are

shown in the second and third rows of Fig 4.6, respectively. The PDF and TTI as

well as the probability image for the compressibility and attenuation are shown in

the first and second rows of Fig 4.7 for the case that the noise level is 2%. Similar

to the previous example, it can be seen in Fig 4.7 that fat can be well distinguished,

with high probability values, from the other tissues using the single-property TTI
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Figure 4.6: The first row corresponds to the true compressibility, attenuation and
density profiles for dense breast. The second and third rows correspond to the recon-
struction of the profiles for 2% and 9% noise respectively.
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Figure 4.7: The PDF, single property TTI and probability image for the κ and α
are shown in the first and second rows for 2% noise.
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Figure 4.8: Create a cTTI based on the reconstruction of κ and α. The first and
second rows correspond to the reconstruction of a cTTI, correct pixel image and
probability image based on Method 1 and Method 2 for the 2% noise. The third and
fourth rows correspond to the cTTI, correct pixel image and probability image based
on Method 1 and Method 2 for a 9% noise level.
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derived from compressibility. The tumor region can also be well distinguished using

the single-property TTI derived from attenuation. The cTTI, correct-pixel image as

well as probability image for both noise levels using Method 1 and Method 2 are

shown in Fig 4.8. As can be seen, this TTI obtained from the nine percent noise still

allows one to distinguish the tissue types.

4.5.2 cTTI for MWT

Formation of the true quantitative profile and PDFs

The range of electromagnetic properties for breast at a frequency of 1.1 GHz are

shown in Table 4.2. These value are chosen based on values published in [9,114,115].

For each value in this table, we consider ±10% variation. The complex permittivity of

the background is assumed to be 23.3−j18.46 as in [9]. To create the true quantitative

values for each tissue within this phantom, we utilize the same method used for UT

explained in Section 4.5.1. The formation of PDFs is also the same as the method

for UT explained in Section 4.5.1.

Inversion setup

Five frequencies of operation, f = [1.1, 1.5, 2, 2.4, 2.8] GHz are considered. The

datasets corresponding to these frequencies are simultaneously utilized for the inver-

sion. The number of transmitters and receivers are set to be 30. We note that the

inversion algorithm takes into account the variation of the imaginary part of the com-

plex permittivity with respect to frequency of operation using the so-called Maxwell

model [119].
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Table 4.2: The values of the electromagnetic properties (real and imaginary parts
of the relative complex permittivity) of the breast tissues at 1.1 GHz. We consider
±10% variation for these values.

Tissue εr εi

Skin [115] 35 -23

Fat [9] 12.6 -10.13

Glandular [9] 32.7 -20.92

Tumor [9] 53.4 -18.8

Cyst [114] 60 -16.34

First Phantom (phantom with a medium sized tumor)

The true TTI and the complex permittivity of this phantom are shown in Fig 4.2a

and the top row of Fig 4.9. The reconstruction of the complex permittivity for the

case that the data is contaminated with 9% noise is shown in the bottom row of

Fig 4.9. The PDF, single-property TTI and its probability image for the real and

imaginary parts of complex permittivity are shown in the first and second rows of

Fig 4.10. The cTTI using Method 1 and Method 2 are shown in the third and fourth

rows of Fig 4.10.

Second Phantom (dense breast with two tumors)

The true TTI and electromagnetic properties for this phantom are shown in

Fig 4.2b and the first row of Fig 4.11. The reconstruction of the complex permittivity

for the case that the data is contaminated with 9% noise is shown in the second row

of Fig 4.11. The cTTI, true pixel and probability images obtained using Method 2

are shown in Fig 4.12.
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Figure 4.9: The first and second rows correspond to the true and reconstructed
real and imaginary parts of the complex permittivity for the case that the noise is 9
percent.
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Figure 4.10: The first and second rows correspond to a single property TTI for the
εr and εi respectively. The third and fourth rows correspond to the cTTI and its
probability using Method 1 and Method 2 respectively.
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Figure 4.11: The first and second rows correspond to the true and reconstruction of
real and imaginary parts of permittivity for the case that the noise percentage is 9
percent.
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Figure 4.12: cTTI, correct pixel and probability images obtained using Method 2
for the second phantom using MWT properties.

4.5.3 cTTI for Combined UT and MWT

We now consider the case where both UT and MWT properties are utilized to-

gether to create a composite TTI. The first phantom with a true TTI shown in Fig 4.2a

is utilized in this example. The true UT and MWT properties for this phantom are

shown in the top row of Fig 4.3 and Fig 4.9 respectively. The data for both UT and

MWT are contaminated with 9% noise. The reconstruction of the UT properties and

MWT properties for 9% noise are shown in first row of Fig 4.14 and the bottom row of

Fig 4.9 respectively. The cTTI obtained using Method 2 for UT properties is shown

in the last row of Fig 4.14. The cTTI obtained using Method 2 for MWT properties

is shown in the last row of Fig 4.10.

Next, both UT and MWT properties are simultaneously utilized based on Method 2

to create a cTTI. The result of the cTTI using UT and MWT properties are shown

in Fig 4.13. As can be seen, the cTTI using both UT and MWT properties leads to

a better reconstruction in comparison with the cTTIs based solely on UT properties

or MWT properties. It should be noted that the cyst region is not detected in the

cTTIs using UT and MWT separately. However, when both UT and MWT prop-
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Figure 4.13: Composite TTI, correct pixel and probability images obtained using
Method 2 for the case that both UT and MWT properties are utilized.

erties are simultaneously utilized, some parts of cyst region start to appear in the

cTTI. Furthermore, note that the probabilities of those pixels which are mistakenly

assigned as tumor (instead of cyst) are low. That is, even in the case of wrong recon-

struction for some pixels, the fact that one cannot be confident in the reliability of

the reconstructed tissue type for those pixels is indicated in the composite probability

image.

It should be noted that the fat region is well distinguished using the single-

property compressibility TTI with high probability values as shown in the second

row of Fig 4.14. Therefore, for the previous example, we utilized this information to

provide better prior probabilities for those pixels. To this end, we gave higher prior

probabilities for fat compared to other tissues for those pixels.

4.5.4 Enhanced Reconstruction using TTI

Next, we show that the concept of TTI can be used to enhance the quantitative

reconstruction. As will be explained below, in this approach, we use the TTI to create

a better initial guess for the inversion algorithm. That is, the TTI concept is used as
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a feedback mechanism: we first reconstruct the quantitative properties using a blind

initial guess (e.g., an initial guess of zero which was used in all the examples above),

form the TTI images, and then finally use these TTI images to create a better initial

guess for the inversion algorithm so as to converge to a more accurate quantitative

reconstruction. It should be noted that the choice of initial guess is important for

the success of inversion algorithms as a bad choice for the initial guess may cause the

inversion algorithm to be trapped in wrong local minima.

The proposed method to create a good initial guess for each property can be

explained as follows. For a given property, say compressibility, consider its corre-

sponding single-property TTI and its associated probability image. Now, consider

one pixel of this single-property compressibility TTI. If its corresponding probability

value is above a threshold level, say 0.9, we consider this as a ‘fit’ pixel. Therefore, for

that pixel, we use its corresponding reconstructed compressibility value in our initial

guess. Otherwise, for that pixel, we consider the single-property TTI of the next

property, say attenuation. For that pixel, if the corresponding attenuation probabil-

ity value is greater than the threshold level, we consider the tissue-type of that pixel

as a ‘fit’ tissue type, and assign this pixel a compressibility value as the average of

the expected minimum and maximum compressibility values of of that tissue. This

process continues until we cover all the single-property TTIs. If the probability value

of that pixel is never above the threshold level, we simply use the reconstructed values

as there is no ‘smart’ estimate on the value of that pixel. This procedure continues

until all the properties associated with each pixel are estimated. Then, the resulting

initial guess will be provided to the inversion algorithm.

To understand this approach better, we apply it to the first MRI-based phantom in

the UT framework. For this case, we consider that the UT data is contaminated with
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9% noise. The reconstruction of the UT properties is shown in the first row of Fig 4.14.

(These have been obtained assuming a zero initial guess.) The PDF, tissue-type and

probability images for compressibility and attenuation property using Method 1 based

on each single property are shown in the second and third rows of Fig 4.14. The

composite image, correct-pixel image as well as probability image using the κ and α

based on Method 2 are shown in Fig 4.14. We then apply our method to create an

enhanced initial guess. To this end, we utilize the single-property TTI and probability

images obtained from κ and α. We also utilize the composite TTI obtained from κ and

α using Method 2 to create an initial guess for the density property. The initial guess

obtained from this method for compressibility, attenuation and density are shown

in the first row of Fig 4.15. The reconstruction of the ultrasound properties using

this initial guess is shown in the second row of Fig 4.15. The diagonal cut from top

left to the bottom right for the true, previous reconstruction and the reconstruction

using the initial guess provided by TTI are shown in the third and fourth rows of

Fig 4.15. Comparing this result with the previous reconstruction shown in the first

row of Fig 4.14, it can be seen that all the property reconstructions are improved.

For example, the density reconstruction is significantly improved, the attenuation is

also improved, and the value of the tumor attenuation is now more accurate.

4.6 Conclusion

We have introduced the concept of composite TTI and probability image for UT,

MWT, and their combination. To arrive at the composite TTI, we have utilized

reconstructed quantitative images, and the PDFs associated with these properties

for different tissue types. The reconstructed quantitative properties are obtained by

the use of inverse scattering algorithms, whereas the PDFs are constructed based
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Figure 4.14: The first row corresponds to the the reconstruction of ultrasonic prop-
erties for the case that the noise level is 9%. The second and third rows correspond
to the PDF, single property TTI and probability image for κ and α respectively.
The last row corresponds to the composite TTI, correct pixel and probability images
obtained from Method 2.
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Figure 4.15: The first row corresponds to the initial guess provided by TTI. The
second row corresponds to the reconstruction of the properties using this initial guess.
The third and fourth rows correspond to the diagonal cut for the true and the recon-
struction with and without using an initial guess (the horizontal axis corresponds to
the x value of the diagonal cut from the top left to the bottom right with the unit of
[m] and the vertical axis corresponds to the value of the corresponding properties).
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on the expected range of values that tissue properties can take. Specifically, we

have utilized two methods to create the composite TTI. The first method utilizes the

single variate PDF of each tissue property whereas the second method uses the multi-

variate PDF for the all tissue properties. For the examples considered here, Method

2 outperformed Method 1 in creating the composite TTI. The main advantage of the

proposed concept is that it integrates all the quantitative information of the recon-

structed property images into one composite image that represents the most probable

tissue type at each pixel. The use of multimodality imaging based on multiphysics

properties provides and enhanced ability to identify tissue types within images and

better reveals their structure. This will have important advantages for the diagnosis

of disease by physicians.
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5

Paper 3∗:

Experimental Evaluation of Composite

Tissue-Type Ultrasound and Microwave

Imaging

5.1 abstract

The recently proposed concept of composite tissue-type image (cTTI), which pro-

vides an easy-to-interpret image constructed from quantitative ultrasonic and electro-

magnetic properties, is experimentally investigated. The experimental data set used

for the ultrasound investigation is obtained from the Multimodal Ultrasound Breast

Imaging (MUBI) system. The experimental data set utilized for microwave imaging

is provided by an in-house system at the University of Manitoba. To this end, a tissue

mimicking phantom and a human forearm are utilized for experimental ultrasound

and microwave imaging. In addition, the cTTI algorithm is modified to take into

account differences in the quantitative accuracy of reconstructing one property com-

pared to other properties so as to increase the achievable accuracy in the resulting

∗ c© 2019 IEEE. Reprinted, with permission, from Pedram Mojabi and Joe LoVetri, “Experimen-
tal Evaluation of Composite Tissue-Type Ultrasound and Microwave Imaging,” IEEE Journal on
Multiscale and Multiphysics Computational Techniques, 2019.
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cTTI. In addition to experimental ultrasound and microwave data, the cTTI method

is also applied against synthetic data obtained from an MRI-based numerical breast

phantom to further demonstrate the performance of the cTTI not only with respect

to microwave and ultrasound tomography data but also with respect to their com-

bination. Finally, the improvements of the cTTI reconstructions based on changing

the prior probabilities compared with equal prior probability distribution are shown

for combined ultrasound and microwave tomography of a numerical breast phantom.

5.2 Introduction

Ultrasound tomography (UT) and microwave tomography (MWT) are non-destructive

imaging modalities which can provide both qualitative and quantitative images of

the object of interest (OI) by processing the measured ultrasound and microwave

data collected by transceivers outside the OI. These imaging modalities are being

investigated for various industrial non-destructive testing and biomedical applica-

tions [1, 2, 6, 10,17,20,28,120–133].

In UT and MWT, the OI is illuminated by an incident wave using a transceiver.

The resulting scattered waves are then collected by other transceivers and this pro-

cess continues for, possibly, all the remaining available transceivers. The collected

data is then used by an appropriate reconstruction algorithm to yield ultrasonic and

electromagnetic images of the OI. The choice of reconstruction algorithms depends

on various parameters including the form of the data, how many data points are

available, and the available computational resources. For example, full-wave inverse

scattering algorithms [1,4,20,28,30,34,39,110,126,129,134] often require many data

points, and are computationally expensive. On the other hand, ray-based techniques,

e.g., time-of-flight tomography (TFT) [21, 22], are computationally efficient, and in
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contrast to inverse scattering algorithms, do not suffer from not converging to an

appropriate solution due to being trapped in a local minimum [5]. Note that both

methods provide quantitative images but based on the measurement configuration

and the choice of reconstruction algorithm images can be obtained of different quan-

titative parameters for a given OI. In this paper, ray-based algorithms† are used for

reconstruction of the ultrasonic properties for the experimental ultrasound data and

Multiplicatively Regularized Gauss-Newton Inversion (MR-GNI) method [1, 28, 136]

are utilized for reconstruction of the electromagnetic properties using experimental

microwave data and simulated ultrasound and microwave data for the MRI-based

breast phantom (for reconstruction of both ultrasound and microwave tomography

properties). Having knowledge of several physical properties at a pixel location is

an advantage to more accurately infer the tissue-type associated with that pixel. In

our case, we consider ultrasound and microwave tomography modalities to recon-

struct ultrasonic and electromagnetic properties respectively. (The individual use

of these properties to form cTTIs is investigated experimentally, whereas their si-

multaneous use is merely considered using synthetic data.) The use of ultrasound

data with microwave radar imaging has been synthetically considered in [128]. We

have also showed the advantage of simultaneously using microwave and ultrasound

tomography data for numerical breast phantoms in [2]. (The method to create the

numerical breast models from MRI scans as well as some available numerical breast

models are reported in [137–139]). In addition, a combined microwave and ultrasound

†The choice of the ray-based methods for the MUBI experimental ultrasound imaging system
is due to the following reason. The MUBI system uses a high center frequency (3.5 MHz) which
corresponds to a wavelength of about 0.42 [mm] (with the background medium of water). For an
imaging domain with the size of 13 [cm] × 13 [cm], this will translate to 307λ × 307λ. Therefore, the
problem will be very large compared to the wavelength. Thus, it will be extremely computationally
expensive for the inverse scattering algorithms. In addition, the inverse scattering algorithms often
require the calibration of the data using a calibration object, e.g., see [135]. Unfortunately, we did
not have access to a calibration dataset for the MUBI system.
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tomography system has been proposed in [140].

As far as the end users (medical doctors) are concerned, it is important to be

able to provide one image which represents the most important and most practical

information. To this end, the composite tissue-type imaging (cTTI) concept was

recently introduced in [2], along with other methods such as those based on artificial

neural networks (ANNs) [141], and Support Vector Machines (SVM) classifiers [142].

The objective of this work is to combine the reconstructed quantitative images of the

ultrasonic and/or electromagnetic properties of an OI, obtained using experimental

systems or simulated data, into one image, referred to as the composite tissue type

image (cTTI). Instead of associating a quantitative value to each pixel of the cTTI, we

associate tissue types and probability levels to the pixels of the cTTI. The probability

level is represented by a probability image which can potentially help medical doctors

toward making a more reliable diagnosis.

The cTTI approach is important because 1) it can integrate all the available quan-

titative ultrasonic or electromagnetic images of the OI into a single cTTI image, 2)

it can be used for multi-physics imaging such as combined ultrasound and microwave

imaging, thus, impacting the worldwide efforts toward integrating different imaging

modalities to harness the complementary benefits thereof, 3) in contrast to current

ultrasound or microwave tomography algorithms, it provides a probability image rep-

resenting the level of confidence in the obtained reconstruction, and 4) it provides

a user-friendly image in the sense that the end user (e.g., a medical doctor) only

needs to look at the resulting tissue-type image, and evaluate the risk based on the

associated probability values instead of looking at many different quantitative images

corresponding to ultrasonic and/or electromagnetic properties of the OI.

When the cTTI concept was originally proposed in [2], its performance was eval-
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uated utilizing merely synthetically generated ultrasound and microwave data from

numerical (breast) phantoms. In particular, in [2], we synthetically evaluated this

concept using quantitative reconstruction of compressibility, attenuation, and den-

sity as well as complex permittivity obtained from both ultrasound and microwave

imaging techniques. In this paper, the main focus is on the experimental evaluation

of this approach for ultrasound and microwave imaging. Differences in the accuracy

of reconstructing one property compared to another property are also now taken into

account in the cTTI algorithm to improve the reconstruction of the composite tissue

type. This improvement is shown using the experimental ultrasound data. We also

further improve the cTTI algorithm based on changing the prior probabilities‡. In the

cTTI algorithm, we should define the prior probabilities of each tissue-type occupying

each pixel; in [2] these probability values are chosen to be equal. However, in this

work, we show that the change of the prior probabilities can lead to improved recon-

struction of the cTTI. The results of this improvement are shown with the simulated

data using combined ultrasound and microwave tomography property images.

In the ultrasound experimental study reported herein, we utilized data provided

by the Multimodal Ultrasound Breast Imaging (MUBI) system developed by the

Ultrasound Systems and Technology Group at the Spanish National Research Council

(USTG-CSIC) and the Group of Nuclear Physics at the Complutense University of

Madrid (GFN-UCM) [54–56]§. The MUBI data set used herein is freely available to

the public based on the USCT Data Exchange and Collaboration initiative [143] and

can be accessed at [144]. More detailed information on their system is also available

on that web-site. For the microwave experimental study, an in-house microwave

‡In the context of this thesis, prior probabilities refer to the prior information that is available
regarding probability values of each tissue types occupying each pixel.
§Experimental results using ultrasound system at the University of Manitoba are also shown in

Appendix A.
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tomography system at the University of Manitoba [1] is utilized. It should be noted

that the reconstruction of the complex permittivity profile of the human forearm

used in this paper was already published in [1]; herein, we utilize these quantitative

reconstructions to create a tissue-type image along with a probability image.

The structure of the paper is as follows. In Section 5.3, we present the cTTI

method along with the associated probability image and we also present some im-

provements of this method based on changing the prior probabilities. In Section 5.4,

we briefly describe the experimental ultrasound and microwave systems from which

data were collected. The algorithms for the reconstruction of the ultrasonic and elec-

tromagnetic properties of the OI based on ray-based methods and full-wave inversion

algorithm are briefly explained in Section 5.5. Results are presented in Sections 5.6,

5.7 and 5.8. Finally, conclusions are presented in Section 5.9.

5.3 Composite Tissue Type Image and Probability

Image

The composite tissue type image (cTTI) along with the composite probability

image can be created using the quantitative reconstruction of the object of interest.

In [2] three quantitative property reconstructions based on synthetic date were uti-

lized: compressibility, attenuation and density. Herein, experimental reconstruction

of the sound-speed and attenuation for UT and complex permittivity for MWT are

utilized to create the cTTIs. Some improvements on the cTTI algorithm based on

1) changing the prior probabilities and 2) taking into account differences in the ac-

curacy of reconstructing one property compared to another are also presented and

shown using experimental and simulated data. The other requirement for creation
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of the cTTI is some knowledge (assumptions) of the probability density functions

(PDFs) for the different properties of each tissue type expected within the object

being imaged. These PDFs can be created based on the expected ranges of the tissue

properties. These ranges are available in the literature for different biological tissues.

For example, the property ranges for skin, fat, fibroglandular, cyst, and tumor for the

breast have been studied and can be found in [51,52,100]. Information of what these

property ranges are is required for the cTTI method, even if only in an approximate

fashion. We have utilized two different methods of creating cTTIs and the associated

composite probability image [2]. These two methods are now briefly described.

5.3.1 Method 1

In Method 1, we first create a single property TTI and a single probability im-

age for all the properties of interest. These TTI images are then utilized to form a

single cTTI; the individual probability images are also converted to a single prob-

ability image, which we refer to as the composite probability image. To create a

single property TTI, at each pixel of the previously reconstructed property image,

the probability that tissue type (Tk) occupies that pixel is calculated based on Bayes’

formula [2, 117]

P (Tk|x) =
p(x|Tk)P (Tk)
Nt∑
i=1

p(x|Ti)P (Ti)

(5.1)

where Nt refers to the total number of tissue types and x is the quantitative value of

that pixel in the corresponding property image. p(x|Tk) is the value of the conditional

PDF for property value x assuming the tissue type is Tk. The prior probability of

assigning tissue type Tk for that pixel is denoted by P (Tk). Then, the tissue type with
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the highest probability is chosen for each pixel to create a single property TTI. The

highest probability for the tissue type occupying that pixel is also stored to create a

probability image. The same procedure is performed for all the properties to create a

single TTI and an individual probability image for each property. To create a cTTI

and composite probability image, we utilize all the single property TTIs and their

probability images. To assign a tissue value and probability to each pixel in the cTTI,

we first check the probability of each single property probability image and choose

the tissue type corresponding to the highest probability. We also assign this highest

probability at each pixel as the probability for that pixel in the composite probability

image.

5.3.2 Method 2

In this method, all the quantitative properties are utilized simultaneously to create

a cTTI along with the probability image without first creating individual TTIs and

probability images for each property. In this method, as opposed to Method 1, a

multivariate PDF is required instead of single-variate PDFs. For details, see [2]. In

summary, in Method 2, the probability of each tissue type occupying a particular

pixel is again calculated based on (5.1), but this time using the multivariate PDFs

with x being a vector of properties. Then, we choose the tissue type with the highest

probability and we also keep the highest probability to create a composite probability

image.
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5.3.3 Setting the Prior Probabilities

The prior probability of each tissue type, P (Tk), is required in Bayes’ formula as

shown in (5.1). If we do not have any prior information about the OI, then one can

do no better than to set the prior probability of all the tissue types for each pixel the

same (obviously, adding up to one). For example in breast imaging application, if we

consider five different tissue types (skin, fat, glandular, tumor and cyst), then we set

P (Tk) = 0.2 letting each of the five tissue types have the same chance of occupying

that pixel.

Prior information about the OI, can be incorporated by modifying these prior

probabilities in the composite tissue type method [64]. For example, for most biomed-

ical imaging cases, one could increase the prior probability of the skin tissue-type in

the outer regions of the reconstruction and set these to zero deep within the recon-

structed volume. More complicated scenarios are possible. For example, for breast

cancer imaging, if one knows that the tumor is mainly contained within radiodense

fibroglandular tissue [62] then the neighbouring pixels of a pixel that has been tissue-

typed as tumor can be checked. If the tissue types of neighbouring pixels are fat or

skin, then we might reduce the prior probability of the pixel in question being tu-

mor. The probabilities for a region being a cyst or solid lesion varies as a function of

the sound speed [145]. This information can be incorporated in the cTTI algorithm

to provide a better prior probability, potentially leading to distinguishing these two

regions more accurately.

Epidemiological information can also be taken into account in the cTTI algo-

rithm to enhance the discrimination between cyst and tumor [64]¶. For example,

the chances of finding a tumor varies among different breast quadrants. Based on a

¶More information about the potential use of anatomical and epidemiological information to
enhance microwave and ultrasound breast imaging can be found in Appendix B.
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study that included 13,984 women having breast tumors the location of the breast

having the greatest chance within which the tumor was located was the upper-outer

quadrant (UOQ) (58%) compared to upper-inner quadrant (14%), the lower-inner

quadrant (9%), the lower-outer quadrant (10%), and the nipple complex (9%) [63].

Furthermore, the chance of having a tumor or cyst is also dependent on the age of

patient [146, 147]. This information might be used in future work to set the prior

probability values for cancerous tissues at a pixel.

The above description shows some of the potentials for this approach. In this

paper, we show the use of improved prior probabilities for both experimental and

synthetic data. For example, for the synthetic study, the first set of prior probabilities

is based on estimating the skin region and the second set is based on estimating skin

and fat regions. The reconstruction of the cTTI using these sets of prior probabilities

are compared with the reconstruction of the cTTI with the assumption of equal prior

probability.

5.4 Experimental Ultrasound and Microwave Imag-

ing Systems

The ultrasound and microwave systems from which data were collected are now

briefly described. Note that these ultrasound and microwave systems produce sampled

time-domain and frequency-domain data respectively.
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5.4.1 Multimodal Ultrasound Breast Imaging (MUBI) Sys-

tem

The MUBI system [54–56,144] consists of two arrays of movable transducers‖. One

of the array is used as a transmitter array and the other is used as a receiver array.

For each fixed position of the transmitter array, the receiver array can be moved to

different positions, allowing one to cover a large angle of interest. For the example

shown in this paper, for each fixed position of the transmitter array, the receiver

array is moved to 11 different positions in front of the transmitter array as shown in

Fig 5.1a. Each 0.22 mm pitch array (P2-4/30EP, Prosonic, Korea) consists of 128

transducers each radiating with a centre frequency of 3.5 MHz, but only 16 elements

of each array are used. Thus, for each fixed position of the transmitter array, we have

2816 so-called A-scans. It should be noted that the transmitter array is also moved to

23 different positions to cover 360◦ of the object of interest. Thus, the total number

of A-scans is 64768. A depiction of the tissue mimicking phantom that is part of the

USCT Data Exchange and provided by the USTG-CSIC and GFN-UCM groups is

shown in Fig 5.1b.

5.4.2 Experimental Microwave Imaging System

We consider an in-house experimental microwave imaging system at the University

of Manitoba for the reconstruction of the TTI and probability image of the human

forearm. This system consists of 24 dipole antennas with the operation frequency

of around 1 GHz immersed in salt water matching fluid as shown in Fig 5.9. More

details and calibration methods for this system are explained in [1].

‖Each transmitting transducer transmits a pulse waveform in the MUBI system.
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Figure 5.1: Experimental system configuration and the tissue mimicking phantom
for the Multimodal ultrasound breast imaging (MUBI) system. (a) Positions of the
first transmitter array and the corresponding receivers array position (11 positions
of the receiving arrays are utilized per transmitter array). (b) The true tissue type
image for the tissue mimicking phantom used for the MUBI system.

5.5 Quantitative Reconstruction of ultrasonic and

electromagnetic properties

In order to construct tissue-type images one requires quantitative reconstruction

of material properties expected in the object being imaged. The quantitative recon-

struction of the complex permittivity profile, which is an electromagnetic property,

is addressed in Section 5.5.1, whereas the reconstruction of ultrasonic properties are

discussed in Sections 5.5.2, 5.5.3 and 5.5.4.
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5.5.1 Complex Permittivity Reconstruction

The MR-GNI method is utilized for the reconstruction of the complex permittivity

profile from microwave imaging data. The details for the MR-GNI method for the

reconstruction of the complex permittivity are explained in [1], and therefore is not

presented herein.

5.5.2 Sound-Speed Reconstruction

To create a sound-speed image one works with the travel time between each trans-

mitter and receiver pair while making the assumption that the ultrasonic wave prop-

agates as a ray between the two. Herein, we follow the work of Duric et. al. for the

two-dimensional (2D) case [21]. Travel time, Ttr, between transmitter t and receiver

r is written as

Ttr =

ny∑

m=1

nx∑

n=1

dtrm,n

cm,n
(5.2)

where cm,n is the sound-speed associated with pixel (m,n) and dtrm,n denotes the

length of the portion of the ray line from transmitter t to receiver r passing through

the pixel (m,n). The number of pixels in the imaging domain are nx × ny. It is

assumed that the sound-speed is constant in each pixel. The travel time, Ttr, must be

inferred from the arrival time of the received waveform. (In this paper, the calculation

of this arrival time is performed using the modified energy ratio algorithm which will

be descried later.) In most experimental systems the actual absolute time at which

the waveform is transmitted is unknown, so we write (5.2) for both the incident (in

the absence of the OI) and the total (in the presence of the OI) received waveforms.

Then, the difference between the travel time for the total and incident waveform can
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be calculated as

T tot
tr − T inc

tr , ∆Ttr =

ny∑

m=1

nx∑

n=1

dtrm,n

[ 1

ctot
m,n

− 1

cinc
m,n

]

=

ny∑

m=1

nx∑

n=1

dtrm,nχ
c
m,n (5.3)

where T inc
tr and T tot

tr are the travel times in the absence and presence of the OI for

the particular transmitter/receiver pair. Here cinc
m,n and ctot

m,n are the sound-speeds for

pixel (m,n) in the absence and presence of the OI, respectively. It should be noted

that in both cases the ultrasound waves are assumed to propagate in a straight ray

path between the transmitter and receiver and any potential refraction effect between

different regions having different sound-speed is neglected.

Time of arrival calculation

In this paper, the modified energy ratio (MER) algorithm [57, 58] is utilized to

calculate TOA of the MUBI signals. An odd DC bias exists in the experimental data

and this is removed before applying this method. The MER automatic TOA picker

method has been used in seismic [58] and in microwave radar imaging [57]. In this

method, the energy ratio between two energy windows from each side of each time

sample is calculated as [57,58]

ER(j) =
[ j+Nw∑

i=j

S2(i)
]
/
[ j∑

i=j−Nw

S2(i)
]

(5.4)
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Figure 5.2: Calculation of the time-of-arrival of the signal using the MER method
for the typical preprocessed signal obtained by the MUBI system.

S(i) =





S(1)+S(2)
2

if i ≤ 0

S(N−1)+S(N)
2

if i > N

where N is the total number of data points in the time-domain signal and j is a

value from 1 to N . Nw corresponds to the number of samples in the window. The

method we use for choosing Nw is described in [57]. The modified energy ratio is then

calculated as

MER = (|S| × ER)3 (5.5)

The point corresponding to the maximum value of MER is utilized as the the arrival

time of signal. For the representative signal shown in Fig 5.2 the MER curve is shown

in red.
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5.5.3 Attenuation Reconstruction

Attenuation is another quantitative ultrasonic property of the OI which is of

importance due to the fact that cancerous tissues are better distinguished from benign

tissues by their attenuation than by the difference in their sound-speed [53]. Herein, to

reconstruct the tomographic attenuation image, three different ray-based methods are

utilized: 1) amplitude decay, 2) spectral ratio method, and 3) complex signal energy

ratio [3]. In these methods a ray-propagation assumption is made for modelling the

ultrasonic wave between each transmitter and receiver pairs. In addition, a pixel-

based attenuation is assumed. These amplitude decay method is briefly described

below.

Amplitude Decay Method

The decay of the amplitude of the transmitted signal (source signal) after travelling

between transmitter/receiver pair can be written as [3]

Atot
tr = Ainc

tr × e(−fc
∑ny

m=1

∑nx
n=1 αm,ndtrm,n ) (5.6)

where Atot
tr and Ainc

tr correspond to the amplitude of the signal in the presence and

absence of the OI for the particular transmitter/receiver pair being considered. Here,

αm,n is the attenuation within pixel (m,n) at the central frequency of the spectrum

of the signal being used, fc. Equation (5.6) can be written as

1

fc
ln
Ainc
tr

Atot
tr

=

ny∑

m=1

nx∑

n=1

dtrm,nαm,n (5.7)

which now clearly shows the measured signal parameters as the data. The size of the

column vectors and the matrix in the above equation are the same as in (5.3). For
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brevity, the details of the spectral ratio and complex signal energy ratio methods for

the reconstruction of the attenuation are not described here, but can be found in [3].

5.5.4 Nonlinear Reconstruction of Compressibility and At-

tenuation

In addition to the ray-based methods above, the MR-GNI algorithm was adapted

in [28] to reconstruct the ultrasonic properties of compressibility and attenuation

(with the assumption of no variation of density). As will be seen, in this paper,

we also utilize the MR-GNI algorithm to reconstruct ultrasonic (compressibility and

attenuation) properties of an MRI-based breast numerical phantom.

5.6 Experimental Ultrasound Results

Developers of the MUBI system provide one set of data for a tissue mimicking

phantom [54–56,144]. The tissue structure of this phantom is shown in Fig 5.1b. Wa-

ter, gelatin, graphite powder, and alcohol are utilized to create this phantom. This

phantom is composed of a homogenous background denoted as “BG”. The structure

within this BG region consists of two 0.25 mm diameter steel needles, and two cylin-

drical hollows: one filled with water and the other filled with a gelatin preparation.

The ultrasonic properties of the gelatin-filled hollow are meant to mimick cyst tissue

(the sound-speed of this cyst region has only a small difference compared to that of

the BG region [55]). Measurements are taken with this phantom immersed in a water-

filled tank. The sound-speed of the water used for this experiment was measured to

be 1479.7 [m/s], provided by the MUBI developers. We assume that the attenuation

in water is close to zero [148]. Using the provided data, we first show quantitative
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Figure 5.3: Reconstruction of the sound-speed and attenuation for the tissue mim-
icking phantom. The first row corresponds to time of arrival of incident, total signals
and their difference. The second and third rows correspond to the reconstruction of
the sound-speed and attenuation.

reconstruction of the sound-speed and attenuation. We then utilize these quantita-

tive images to create one composite tissue-type image (cTTI) with its corresponding

probability image.
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5.6.1 Property Reconstructions using the MUBI System Data

The TOA of the incident, total signals, and their subtraction are shown in the

first row of Fig 5.3. The reconstruction of the sound-speed is shown in Fig 5.3d. The

reconstructed value of the sound-speed for the BG and cyst regions are very close

to each other and it is difficult to distinguish these two regions from each other. In

Fig 5.3 (e, f, g) the attenuation reconstructions are shown. The cyst region can be

better distinguished from the BG region using the attenuation property because of

the larger difference that exists in the attenuation contrast as compared to the sound-

speed contrast for these two materials [51,53,55]. It should also be noted that in the

reconstructed attenuation image, the size of the reconstructed water hollow is smaller

than its actual size and we also see some wrongly reconstructed pixels having high

values for the reconstructed attenuation around the water hollow. These artifacts

show up irrespective of the attenuation algorithm being used.
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Figure 5.4: Calculate the sound-speed and attenuation for the cyst and BG regions in
tissue mimicking phantom using two different straight ray-paths (transmitter/receiver
pairs).
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5.6.2 Estimation of the Actual Sound-speed and Attenuation

We now show how the quantitative property images obtained from the MUBI

system can be used to create a cTTI along with the associated probability image.

Unfortunately the MUBI developers do not provide the actual sound-speed and at-

tenuation values for the different materials used in their phantom. To estimate the

actual value of these two properties for the two tissue mimicking materials used in

the phantom, cyst and BG, we consider two different straight ray-paths as shown in

Fig 5.4. These two paths correspond to two different transmitter/receiver pairs also

shown in the figure. The first pair is chosen to be between Tx = 9 and Rx = 86 as

shown in Fig 5.4a. The straight line between this transmitter/receiver passes through

the main diameter (D = 94 mm) of the phantom which includes only the BG ma-

terial. Thus, the sound-speed and attenuation of the BG material can be estimated

using the incident and total signal for this transmitter/receiver pair based on (5.3)

and (5.6), respectively. The second transmitter/receiver pair path is chosen to be

between Tx = 66 and Rx = 89 as shown in Fig 5.4b. The straight line path between

this transmitter/receiver pair approximately passes through the main diameter of the

cyst region (20 mm). The two points where this line intersects with the phantom are

denoted as P1 and P2. We can calculate the sound-speed and attenuation for the

cyst region based on the estimated distance between these two points as well as on

the ultrasonic properties of the BG regions using (5.3) and (5.6). Using this method,

the estimated sound-speed and attenuation for the different materials making up the

tissue mimicking phantom are tabulated in Table 5.1.
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Table 5.1: The calculated sound-speed and attenuation for different regions of the
tissue mimicking phantom.

Tissue Sound-Speed [m/s] Attenuation [dB/cm]

Water 1479.7 0

BG 1546.7 0.4929

Cyst 1572.1 0.9227

5.6.3 Assigning the PDFs

Quantitative reconstruction of the object of interest as well as the probability

density functions (PDFs) of each property for the different tissue types are required

to create the cTTI and its corresponding probability image. The PDF of each property

for each tissue type is approximated based on the expected range of that property for

each tissue. Using the estimated sound-speed and attenuation tabulated in Table 5.1,

we assume that these properties will be centered at the tabulated value and vary

by ±15 [m/s] for the sound-speed and ±0.2 [dB/cm] for the attenuation. Then, the

standard deviation of an assumed normally distributed PDF is calculated based on

the assumption that the value of the PDF at the minimum and maximum values of

the expected ranges is 40% of the maximum value of the PDF [2]. The multivariate

normal PDF used for Method 2 of creating a cTTI is created using these standard

deviations and mean values.

5.6.4 Single Property TTI Results

The sound-speed and attenuation property PDFs for all tissue types are shown

in the first row of Fig 5.5. The single-property TTI and single-property probability

images are shown in the second and third rows of Fig 5.5. The region filled with

water is well distinguished with high probability in the single-property sound-speed
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Figure 5.5: PDF, single property TTI, and probability image for sound-speed (c)
and attenuation (α) are shown in the first and second columns.

TTI. The sound-speed of the cyst and BG are close to each other [55] as shown in

the Fig 5.3d and Table 5.1. This leads to the sound-speed PDFs for cyst and BG

overlapping significantly. The result is that the probability of the cyst region in the

associated probability image is low as shown in Fig 5.5e. The cyst region is well
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distinguished with high probability in the single-property attenuation TTI. However,

some pixels close to the perimeter of the water hollow are wrongly chosen to be cyst

in the single-property attenuation TTI. This is due to the fact that these pixels are

wrongly reconstructed with high attenuation in the property image shown in Fig 5.3e.
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Figure 5.6: Reconstruction of cTTI and composite probability image. The first and
second rows correspond to the Method 1 and Method 2 respectively.

5.6.5 Composite Property TTI Results

We now show the benefits of utilizing either of the two composite tissue type recon-

struction methods previously described. In Method 1, we utilize the single property
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TTIs and associated probability images based on the sound-speed and attenuation.

The cTTI and composite probability image, based on Method 1, are shown in the

first row of Fig 5.6. Alternatively, in Method 2, all the property reconstructions

are simultaneously used to create the cTTI and its probability image. The resulting

images are shown in the second row of Fig 5.6. As expected, both methods pro-

duce TTIs that are an improvement over the single property TTIs. Note that the

associated probability images indicate that some pixels are reconstructed with a low

probability. This is especially true at the borders between regions, and around the

water hollow where the attenuation reconstruction is poor. Methods of ameliorating

the poor performance of the cTTI algorithm for some regions are now described.

5.6.6 Improvements Based on Trust in Property Reconstruc-

tions

In this section we propose some possible improvements to the TTI framework.

First is the concept of potentially having more trust in the reconstruction of one

property over another. For example for the MUBI phantom, the reconstruction of

the sound-speed is more accurate than the reconstruction of the attenuation. This

can be seen around the water hollow in the MUBI phantom as shown in Fig 5.3.

In this region, the reconstruction of the attenuation is poor whereas the sound-speed

reconstruction is good. It is obvious from the MUBI phantom imaging results that one

might have more trust in the reconstruction of the water hollow over the cyst in the

sound-speed reconstruction. This is clearly shown by the probability image associated

with the single-property TTI for sound-speed in Fig 5.5e, where the reconstruction

of the water hollow has a probability of close to 1. It is important to note that the
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low probability (≈ 0.6) associated with cyst reconstruction in the sound-speed image

is not due to poor reconstruction; it is due to the fact that the PDFs of cyst and BG

have much more overlap compared to with the water hollow (see Fig 5.5a).
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Figure 5.7: Reconstruction of cTTI and composite probability image using Method 1
and Method 2 with the prior information of having more trust in the reconstruction
of the sound-speed compared to the attenuation. The tissue types with the high
probability value (greater than 0.9) in the single-property TTI probability image
based on the sound-speed are chosen in the cTTI.

Unfortunately, the cTTIs reconstructed using either Method 1 or 2, shown in

Fig 5.6, erroneously reconstruct some cyst pixels around the water hollow instead of

BG or water with high probability. Note that the water hollow itself is reconstructed

with a slightly smaller radius than its true radius but those pixels on its perimeter are

reconstructed with lower probability. Thus, if we decide to trust more in the quanti-
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tative reconstruction of the sound-speed property we could take the single-property

TTI reconstructed using the sound-speed and keep the pixels that are associated with

a probability that is greater than a chosen threshold. This is applicable to cTTI re-

construction using either method. This is a simple way of including prior information

into the cTTI.

For our particular example of the MUBI phantom, we choose this threshold to

be 0.9 in the single-property TTI probability image based on the sound-speed. Then

in the cTTI these pixels are replaced using the pixels from this single-property TTI

(including their associated probability). The new cTTI and composite probability

image using this method is shown in Fig 5.7. Note the improvement, especially

utilizing Method 2.

The prior information and/or the knowledge about the geometrical structure of the

OI can be taken into account in the prior probability. This information can provide a

better prior probability when utilizing Bayes’ equation. The equal prior probability

for different tissue types is utilized for the case that one has no prior information. On

the other hand, we can infer some information based on any particular reconstruction.

For example, for the MUBI phantom we now show how the single property TTI sound-

speed and its associated probability image can be used to modify the prior probability

of a pixel considering the reconstructed tissue type of neighbouring pixels and their

corresponding probability values. If we consider a pixel (q, w) and neighbours up to

m pixels away (m = 1 in this example), then all the pixels between rows q −m and

q +m and columns w−m and w+m are utilized to calculate a prior probability for

pixel (q, w). To calculate a prior probability for tissue type Tk occupying this pixel,

we first check the neighbours including pixel (q, w) having tissue type Tk and then

add the probability corresponding to these pixels. Finally, this number is divided by
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Figure 5.8: Reconstruction of the cTTI and composite probability image using
the prior probability obtained from the single property sound-speed. The first row
corresponds to the prior probability calculated using the single property TTI sound-
speed.

total number of neighbouring pixels plus one. We perform the same procedure for all

the tissue types to find the prior probability of each tissue type for pixel (q, w) and

for all pixels. Then, the new prior probability is applied to the composite tissue type

method to enhance the reconstruction of the cTTI. It should be noted that we only

apply this method to those pixels having the probability greater than a threshold (0.9

in this example) in the probability image of the single property sound-speed. For the

other pixels having the probability is less than 0.9 in the single probability of the

sound-speed, equal prior probability for different tissue types are utilized. Using this

method, the newly calculated prior probabilities of each pixel being water, BG, and
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cyst for the MUBI phantom are shown in the first row of Fig 5.8. The reconstruction

of the cTTI and composite probability image using Method 2 based on the new prior

probabilities is shown in the second row of Fig 5.8. As can be seen, the reconstruction

of cTTI using the new prior probabilities is improved compared to the reconstruction

using equal prior probabilities.

5.7 Experimental Microwave Results

The experimental data obtained from the human forearm using the MWT system

at the University of Manitoba is utilized to create a tissue-type image along with

the probability image. In this experiment, which was originally reported in [1], salt

water is used as a background medium (Salt-15 in [1]). The reconstruction of the real

and imaginary parts of the relative complex permittivity profile of the volunteer’s

forearm, denoted by εr and εi respectively, are shown in the first row of Fig 5.9 using

the balanced MR-GNI algorithm at the frequency of 0.8 GHz. (The development of

this MWT system and the reported inversion are from [1]; herein, we will use these

to experimentally evaluate our TTI framework.)

To reconstruct the tissue-type image for the human forearm, only the real part

of the complex permittivity is used. This is due to the fact that the reconstruction

of the real part of the complex permittivity is much more accurate in comparison

with the imaginary part of the complex permittivity as shown in the first row of

Fig 5.9. The PDF for each tissue type of the real part of the complex permittivity

is approximated based on the expected range of each tissue. The expected values of

the relative complex permittivity for salt water, muscle, and bone at 0.8 GHz are

εSalt Water = 77− j17, εmuscle = 56− j20 and εbone = 13− j3 [1]. (A time-dependency

of exp(jωt) is assumed.) We assume that these expected values will be centered and
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formation in the literature regarding the expected values of rel-

ative complex permittivities [21], [22]. The differences in value

of the dielectric properties between in vivo and ex vivo tissues
is also well known [23] and could be taken into account. Blind

MWT reconstructions of biological targets that neglect avail-

able prior information put the already difficult job of inverting
the data at a disadvantage resulting in: 1) poor qualitative ac-

curacy, i.e., the different parts of the tissue are not discernible

and 2) poor quantitative accuracy, i.e., the obtained complex

permittivities may be incorrect. For the case of limb imaging,

the inversion problem is especially difficult because of the wide
range of complex permittivity values associated with the tissues

involved: skin, adipose, muscle, and bone. In addition to the

ill-posed nonlinear characteristics of the mathematical problem

and the wide variety of tissues involved, MWT tissue imaging

is also difficult because of the large difference between the real
and imaginary parts of the permittivity. That is, MWT algo-

rithms may favor either the real or the imaginary part of the

reconstruction [24]. These difficulties are also compounded by
the fact that most numerical algorithms do not fully model the

complete MWT experimental system where the measurements

are made. This leads to modeling error, which is the mismatch

between the numerical model being used in the inversion algo-

rithm and the experimental system.

In this paper, we investigate the use of prior information

in the form of estimated complex permittivity values for

the various tissues as a means of improving the imaging

performance of MR-GNI [25]. For this study, four different

implementations of MR-GNI are utilized with or without the

use of prior information. The OIs being imaged are ex vivo
animal tissues: two bovine legs with and without skin, and

in vivo human forearms: two volunteers one with a thin and
another with a thick adipose layer. The former objects, ex
vivo targets, are used for quantitative evaluation because their
dielectric properties can also be measured using a dielectric

probe. The in vivo human forearms are used for qualitative
evaluation because the MRI image of the volunteers are also

available. We first present blind reconstructions without the
use of any prior information (Section IV-A). We then present

the results obtained by balancing the real and imaginary parts

of the image (Section IV-B), as well as shape-and-location

reconstruction of the tissues (Section IV-C). Finally, we recon-

struct the images of each tissue using a novel combination of

the shape-and-location and balanced MR-GNI (Section IV-D).

From the results obtained (presented in Section VI), the use

of balanced shape-and-location reconstruction enhances the

quality of the images where different parts of the tissue are

clearly distinguished. We also measured the permittivity of the

bovine legs using a commercial dielectric probe (Section V)

and found that the complex permittivity values for the different

tissue regions agree with the direct dielectric probe measure-

ments.

II. SYSTEM DESCRIPTION

The measurement system consists of a metallic enclosure

comprising 24 dipole antennas designed for operation at 1 GHz

in the water matching medium. The antennas are held by rigid

coaxial cables that feed through to a vector network analyzer

Fig. 1. Measurement system. (a) Schematic diagram (dimensions in centime-

ters). (b) Photograph during measurement of a skinless bovine leg. (c) Bovine

leg with skin. (d) Photograph during measurement of a volunteer’s forearm.

(VNA) that collects the scattering parameter, , between each

pair of the antennas. The two ports of the VNA connect to the

antennas via a 24-2 port multiplexer. The VNA and multiplexer

are controlled through a general purpose interface bus (GPIB)

using a custom designed data acquisition program. A schematic

diagram of the system is shown in Fig. 1(a). Photographs of the

system during measurements are shown in Fig. 1(b)–(d).

A. Matching Fluid

A matching fluid consisting of simple table salt in deion-
ized water was used to decrease the dielectric contrast between

the OI and the background medium. Saltwater was used be-

cause it is readily available, inexpensive, and comfortable, as

well as nontoxic for the volunteers. Its matching performance

is good for high-permittivity tissues such as skin and muscle.

The high dielectric constant increases the amount of energy that

couples into the OI while the introduction of loss (i.e., conduc-

tivity) ensures that reflected waves from the boundary will be
sufficiently attenuated to make image reconstruction possible
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Figure 5.9: Experimental measurement of the forearm using MWT. The first row
corresponds to the reconstruction of the complex permittivity. The second row corre-
sponds to the PDF and probability image. Experimental MWT set up for measuring
forearm as well as MRI and TTI of the volunteer’s forearm are shown in the last row.
(The photo of the experimental system and MRI image were taken from [1])
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vary by ±6 for the real part of the complex permittivity. Then, the standard deviation

of an assumed normally distributed PDF is calculated based on the method explained

in Section 5.6.3. The PDF and probability image for the real part of the complex

permittivity of the volunteer’s forearm are shown in the second row of Fig 5.9. In

the probability image of the single property εr, the probability of choosing specific

tissue type for each pixel is high except for the pixels at the boundary between

different tissue types. The single property TTI (using only εr property) and magnetic

resonance image (MRI) of the volunteer’s forearm are shown in Fig 5.9e. Comparing

the reconstruction of the TTI with the MRI image of the volunteer’s forearm, it can

be seen that the reconstruction of the TTI (with only using one property-εr) for the

volunteer’s forearm is promising.

5.8 Synthetic combined UT and MWT Results

In this section, we reconstruct the composite tissue type along with the prob-

ability image using ultrasound, microwave tomography properties as well as their

combination for an MRI-based numerical breast phantom having a more complicated

structure compared to the tissue mimicking and human forearm used in the previous

sections. (In addition to being a more complicated object, the use of this numerical

phantom enables us to create a cTTI from combined UT and MWT data.) The ef-

fect of improving prior probability compared to having equal prior probability is also

considered in the reconstruction of the cTTIs. The true tissue type image of this

phantom is shown in Fig 5.10. The simulated data is provided by a two-dimensional

(2D) forward solver and data is contaminated with 2% noise for both ultrasound

and microwave imaging according to the equation presented in [109]. To avoid the

inversion crime for both ultrasound and microwave tomography, the mesh used in
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the generation of the synthetic data is different from the one used for inversion. The

background medium is chosen to be water and a 2D point source is utilized as a

transmitting source. It should be noted that the error associated with applying a 2D

inversion to a 3D object has not been considered. The number of transceivers for

UT and MWT is set to be 120 and 40 respectively as shown in Fig 5.10. (Due to

having a smaller wavelength for UT, the number of UT transceivers are more than

those for MWT.) The formation of the true ultrasonic, electromagnetic properties of

this breast phantom as well as the PDFs are based on [2]. The MR-GNI algorithm

is utilized as a non-linear inversion algorithm for the reconstruction of the ultrasonic

and electromagnetic properties of this MRI-based breast phantom. The cTTIs for

this numerical phantom is reconstructed based on Method 2.
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Figure 5.10: The true tissue type image of the MRI-based numerical phantom. The
positions of transceivers for UT and MWT are also shown in this image.
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Figure 5.11: The first row corresponds to the true ultrasonic properties of the breast
phantom used in the forward solver. The second row corresponds to the reconstruction
of the compressibility and attenuation.
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Figure 5.12: The first and second row correspond to the true and reconstructed
electromagnetic properties of the MRI-based breast phantom.
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5.8.1 Single Property TTI Results

The true ultrasonic properties (i.e., compressibility, attenuation and density) for

this phantom are shown in the first row of Fig 5.11. The reconstruction of the com-

pressibility and attenuation is shown in the second row of Fig 5.11. It should be noted

that the variation of all three ultrasonic properties are considered in the creation of

the simulated data. However, the variation of density is neglected in the non-linear

inversion algorithm∗∗ (Scenario 3 in [28]). Three frequencies, f = [110, 150, 200] kHz,

are simultaneously utilized for this UT inversion algorithm. True and reconstructed

electromagnetic properties (i.e., real and imaginary parts of the complex permittiv-

ity) for this phantom are also shown in the first and second rows of Fig 5.12. Five

frequencies, f = [1.1, 1.5, 2, 2.4, 2.8] GHz, are simultaneously utilized for the MWT

inversion algorithm. The PDF, single property TTI and probability image for com-

pressibility, attenuation, real and imaginary parts of the complex permittivity are

shown in different rows of Fig 5.13. In the reconstruction of these TTIs, the chance of

each tissue-type occupying each pixels is assumed to be the same (equal prior prob-

ability). In other words, the chance of occupying each pixel for skin, fat, glandular,

tumor and cyst is the same and equal to 0.2.

5.8.2 Forming Improved Prior Probabilities

The prior probability utilized in the Bayas’ equation can be improved to enhance

the reconstruction of TTIs. We consider two different sets of improved prior probabil-

ity based on the estimated skin and fat regions for this breast phantom. To estimate

∗∗Herein, although the density variation is considered in the generation of the synthetic data, the
inversion of the density profile is not considered herein; i.e., the contrast of density is assumed to be
zero. Of course, this results in modelling error in the inversion process. It should be noted that we
have avoided this assumption in Chapters 2, 3 and 4 in which all the contrast functions are inverted.



5.8. Synthetic combined UT and MWT Results 151

2 4 6 8

10
-10

0

2

4

6

8
10

10

Skin

Fat

Gland

Tumor

Cyst

(a) PDF κ

-0.05 0 0.05

-0.05

0

0.05

Backg

skin

Fat

Gland

Tumor

Cyst

(b) TTI-κ

-0.05 0 0.05

-0.05

0

0.05

0

0.2

0.4

0.6

0.8

1

(c) Probability Image κ

-2 0 2 4 6
0

2

4

6
Skin

Fat

Gland

Tumor

Cyst

(d) PDF α

-0.05 0 0.05

-0.05

0

0.05

Backg

skin

Fat

Gland

Tumor

Cyst

(e) TTI-α

-0.05 0 0.05

-0.05

0

0.05

0

0.2

0.4

0.6

0.8

(f) Probability Image α

0 50 100
0

0.1

0.2

0.3

0.4

0.5
Skin

Fat

Gland

Tumor

Cyst

(g) PDF εr

-0.05 0 0.05

-0.05

0

0.05

Backg

skin

Fat

Gland

Tumor

Cyst

(h) TTI-εr

-0.05 0 0.05

-0.05

0

0.05

0

0.2

0.4

0.6

0.8

1

(i) Probability Image εr

-40 -30 -20 -10 0
0

0.2

0.4

0.6
Skin

Fat

Gland

Tumor

Cyst

(j) PDF εi

-0.05 0 0.05

-0.05

0

0.05

Backg

skin

Fat

Gland

Tumor

Cyst

(k) TTI-εi

-0.05 0 0.05

-0.05

0

0.05

0

0.2

0.4

0.6

0.8

(l) Probability Image εi

Figure 5.13: PDF, single property TTI, and probability image for compressibility,
attenuation, real and imaginary parts of complex permittivity. It is assumed that the
prior probability of each tissue type occupying each pixel is equal.
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the skin region for this phantom, we utilize the reconstruction of attenuation as shown

in Fig 5.11e. This is due to the fact that the attenuation of water is close to zero

which leads to better classification of breast from the background medium. This clas-

sification based on attenuation image is shown in Fig 5.14a. Then, the intersection

line between background medium and OI can be found as shown in Fig 5.14b. Finally,

some thickness (4 mm from inner side and 2 mm from other side) are considered for

the skin region as shown in Fig 5.14c. Once the skin region is identified, an improved

prior probability based on its knowledge can be utilized to enhance the cTTI recon-

struction. It should be noted that the skin is in the outer region of a breast. For the

region shown in Fig 5.14c (estimated thickness of skin), we consider that this region

can be skin or fat and the equal prior probabilities of 0.5 for the skin and fat for this

region are utilized. In addition, the probability of having skin tissue in the central

parts of the reconstructed breast volume is set to zero. The chance of having fat,

glandular, tumor and cyst anywhere inside the breast but outside the skin region is

set to be equal. The improved prior probabilities based on the estimated skin region

is shown in the first column of Fig 5.15.
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Figure 5.14: Find Skin region based on the reconstructed attenuation image. (a)
Distinguish background from OI, (b) Outer Skin Region, and (c) Defined estimated
thickness skin.
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In the second improved prior probabilities, we consider both estimated skin and

fat regions. The fat region is well distinguished in the single property TTI of com-

pressibility with the probability close to one in the probability image as shown in

Figs 5.13b,c. This is due to the fact that the range of the fat value in the compress-

ibility property is totally different from the other tissue types as shown in Fig 5.13a.

Once the skin and fat regions are identified, for the region shown in Fig 5.14c, we

consider that this region can be skin or fat and the equal prior probabilities of 0.5 for

the skin and fat for this region are utilized. For the region that is chosen as a fat in

the single property TTI of compressibility property shown in Fig 5.13b, we consider

that this region can be only fat and prior probabilities of one for the fat for this

region is utilized. Finally, the chance of having skin and fat for the other pixels are

considered to be zero and these pixels only have a chance to be glandular, tumor and

cyst with the equal prior probability of 1/3. The second improved prior probabilities

are shown in the second column of Fig 5.15.

5.8.3 Composite Property TTI Results from UT, MWT, and

Their Combination

The cTTI, probability image and correct pixels with the assumption of having

equal prior probabilities using solely ultrasound or electromagnetic properties are

shown in the first and second columns of Fig 5.16. As can be seen in the cTTI

reconstruction using electromagnetic properties with the assumption of equal prior

probability as shown in Fig 5.16b, some pixels inside the breast are wrongly chosen

to be skin. However, these pixels can be fixed using the first set of improved prior

probability (based on skin region) as shown in the third columns of Fig 5.16. In this



5.8. Synthetic combined UT and MWT Results 154

Prior Probability Skin

-0.05 0 0.05

-0.05

0

0.05

0

0.1

0.2

0.3

0.4

0.5
Prior Probability Skin

-0.05 0 0.05

-0.05

0

0.05

0

0.1

0.2

0.3

0.4

0.5

Prior Probability Fat

-0.05 0 0.05

-0.05

0

0.05

0

0.1

0.2

0.3

0.4

0.5
Prior Probability Fat

-0.05 0 0.05

-0.05

0

0.05

0

0.2

0.4

0.6

0.8

1

Prior Probability Glandular

-0.05 0 0.05

-0.05

0

0.05

0

0.05

0.1

0.15

0.2

0.25
Prior Probability Glandular

-0.05 0 0.05

-0.05

0

0.05

0

0.1

0.2

0.3

Prior Probability Tumor

-0.05 0 0.05

-0.05

0

0.05

0

0.05

0.1

0.15

0.2

0.25
Prior Probability Tumor

-0.05 0 0.05

-0.05

0

0.05

0

0.1

0.2

0.3

Prior Probability Cyst

-0.05 0 0.05

-0.05

0

0.05

0

0.05

0.1

0.15

0.2

0.25
Prior Probability Cyst

-0.05 0 0.05

-0.05

0

0.05

0

0.1

0.2

0.3

Figure 5.15: The improved prior probability for the reconstruction of the composite
tissue type image. The first column corresponds to the set 1 of the improved prior
probability based on the estimation of the skin region. The second column corre-
sponds to set 2 of the improved prior probability based on the knowledge about the
skin and fat regions.
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case, the error decreases from 0.387 to 0.238 using the first set of improved prior

probabilities.

It should also be noted that the cyst region is not detected in the cTTI reconstruc-

tions using solely ultrasonic or electromagnetic properties as shown in Figs 5.16a,b.

When both ultrasound and electromagnetic properties are simultaneously used in the

cTTI reconstructions, the cyst region starts to appear. (This further confirms the re-

sults obtained in [2].) The reconstruction of the cTTI, probability image and correct

pixels using both ultrasound and electromagnetic properties with the assumption of

having equal prior probability is shown in the first column of Fig 5.17. When both

ultrasonic and electromagnetic properties are simultaneously used to create a cTTI

as shown in Fig 5.17a, we lose some resolution compared to the cTTI using only

ultrasonic properties as shown in Fig 5.16a. This is due to the fact that the ultra-

sonic wavelength is much smaller than electromagnetic wavelength. Thus, a higher

resolution image can be obtained from the ultrasound properties. For example, the

glandular region is well reconstructed with high resolution using the cTTI of the ul-

trasonic properties as shown in Fig 5.16a compared to the glandular region obtained

from cTTI using only electromagnetic properties and combined ultrasound and elec-

tromagnetic properties as shown in Fig 5.16b and Fig 5.17a.

To solve this resolution problem, we can utilize the second set of improved prior

probability instead of using equal prior probability. The reconstruction of cTTI, prob-

ability image and correct pixels using both ultrasonic and electromagnetic properties

based on the second set of improved prior probability is shown in the second column

of Fig 5.17. As can be seen in Figs 5.17a,b, we can obtain a higher resolution image

using set 2 of improved prior probability compared to equal prior probability and the

error also decreases from 0.204 to 0.098. The other approach to get a higher resolution
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image using both ultrasonic and electromagnetic properties is that we can first recon-

struct cTTI image using ultrasonic properties having higher resolution then extract

cyst from the cTTI using combined ultrasonic and electromagnetic properties. The

reconstruction of the cTTI, probability image and correct pixel using this approach

with the assumption of equal prior probability is shown in last column of Fig 5.17.

5.9 Conclusion

We have experimentally investigated the concept of tissue type image along with

the probability image using ultrasound and microwave tomography properties. To

this end, the ultrasound data for a tissue mimicking phantom was considered from

the MUBI experimental system. The ray-based methods were utilized to create quan-

titative images of sound speed and attenuation for this phantom. The sound speed

reconstruction was more accurate compared to the attenuation reconstruction for this

phantom using ray-based methods. Thus, the cTTI algorithm was modified to take

into account the differences between the accuracy of the sound speed reconstruction

compared to attenuation reconstruction for this phantom. This modification led to

improvement of the cTTI reconstruction.

We then considered evaluating this concept using experimental microwave imag-

ing data. To this end, the microwave imaging data for a human forearm obtained

from an in-house experimental microwave system at the University of Manitoba was

considered. A full-wave tomographic inversion algorithm was utilized for the recon-

struction of the complex permittivity profile of the human forearm. To reconstruct

the TTI for the human forearm, only the real part of the complex permittivity was

utilized. The TTI of the volunteer’s forearm was also compared with its MRI image

which demonstrated a good accuracy for the achieved TTI.
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Figure 5.16: Reconstruction of the cTTI, probability image and correct pixels. First
column corresponds to the reconstruction of the cTTI using ultrasonic properties with
the assumption of equal prior probability. Second and third columns correspond to
the reconstruction of the cTTI using electromagnetic properties based on equal prior
probability and set 1 of the improve prior probability.
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Figure 5.17: Reconstruction of the cTTI, probability image and correct pixels.
first and second columns correspond to the reconstruction of the cTTI using both
ultrasonic and electromagnetic properties based on equal and set 2 of the improve
prior probability. Last column corresponds to the reconstruction of cTTI using two
ultrasonic properties and extract cyst from cTTI based on both ultrasonic and elec-
tromagnetic properties with the assumption of equal prior probabilities.

To further explore the potentials of this concept, the cTTI along with the prob-

ability images were also reconstructed for an MRI-based numerical phantom using

ultrasound tomography properties, microwave tomography properties as well as their
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combination. When ultrasonic or electromagnetic properties of the breast phantom

were separately utilized to create a cTTI, the cyst region was not detected. However,

the cyst region started to appear for the case that both ultrasonic and electromagnetic

properties were simultaneously utilized. The effect of improving the prior probability

on the reconstruction of the cTTI of the breast phantom was also considered using

two different sets of prior probabilities based on the estimated skin and fat regions.

These sets of the improved prior probability enhanced the reconstruction of the cTTI

compared to having the equal prior probability.

In summary, using experimental data, we have shown that the cTTI framework

can be advantageously used with properties obtained from nonlinear inversion algo-

rithms as well as simplified methods (ray-based methods in our case). In addition,

using synthetic data, we have shown that the cTTI framework can accommodate

different prior probabilities based on our knowledge about the object being imaged

as well as the data from another imaging modality to improve the final image accu-

racy. This work motivates our plans to build a multimodal US/MW breast imaging

system wherein US and MW data can be collected without moving the breast being

imaged. The construction of up to five property images (three ultrasonic and two

electromagnetic) should produce very high quality cTTIs of the breast.
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6

Conclusions and Future Work

6.1 Conclusions

In this thesis, ultrasound tomography (UT) and microwave tomography (MWT)

were used as two nondestructive imaging modalities to reconstruct the quantitative

ultrasonic and dielectric properties of an object of interest (OI). In this work, these

properties are reconstructed using non-linear inverse scattering algorithms (for both

UT and MWT) and ray-based methods (for UT). The quantitative ultrasonic proper-

ties are compressibility, attenuation, density (and, sound speed), while the quantita-

tive dielectric properties are the real and imaginary parts of the complex permittivity.

These quantitative images were then used in a new type of imaging technique that

has been introduced by the author: the tissue-type imaging (TTI) method. The TTI

is referred to as a composite TTI (cTTI) when more than one property is used to

form the TTI. In the TTI, each pixel identifies a single tissue out of a set of potential

tissues that may exist at the location of the pixel. An associated probability image

whose pixels store the level of confidence in the tissue-type reconstruction is also con-

structed as part of the method. This TTI approach is novel as (1) we can combine

different imaging modalities such as UT and MWT to yield one single image, and (2)

the final tissue type image has a corresponding probability for each pixel within the
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image. The following summarizes the work presented in this thesis and draws some

overall conclusions for this thesis.

• As background, the Born Iterative Method (BIM) in conjunction with the CGLS

regularization was described as the techniques that was used as the non-linear

inversion algorithm for UT. The actual research for this solver was performed

during the author’s MSc research. The forward solver used for this inversion

algorithm was equipped with some acceleration features based on marching-on-

source, fast Fourier transform, and the symmetric block Toeplitz matrix with

symmetric Toeplitz blocks property of the Green’s function matrix to increase

efficiency and to only store the first row of this matrix to reduce memory re-

quirements.

• For the breast imaging application, three scenarios were considered to evalu-

ate the BIM inversion algorithms to reconstruct the ultrasonic properties of

MRI-based breast phantoms. The first scenario corresponds to the case that

all the ultrasonic properties (i.e., compressibility, attenuation and density) are

assumed to be independent and unknown. The assumption of a linear relation-

ship between the contrast of compressibility and the contrast of inverse density

is used in the second scenario, and finally the variation of density is neglected in

the last scenario. The inversion algorithms for all three scenarios were equipped

with the balancing method to enhance the reconstructions of all the properties.

The reconstructions of the ultrasonic properties for the breast phantoms using

the balanced BIM under three scenarios were shown and compared. It was

shown that it is essential to use such a balancing technique.

• The multiplicative regularized Gauss Newton inversion (MR-GNI) algorithm,
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which was originally developed for microwave tomography by another member

of the Electromagnetic Imaging Laboratory (EIL) at the University of Mani-

toba, was adapted for ultrasound tomography under the last scenario which as-

sumes no variations for the density profile. (In addition, the MR-GNI algorithm

was also used as a non-linear inversion algorithm for microwave tomography to

reconstruct the dielectric properties of the OI.)

• The concept of tissue-type image was proposed and developed for the first time

to integrate the information obtained from different reconstructed quantitative

property images. These quantitative properties can be obtained from different

physical modalities such as UT and MWT, which was the focus of our work. The

output of this algorithm is one composite tissue-type image (instead of having

multiple quantitative properties) along with the probability image. This com-

posite tissue type image is advantageous for clinical applications as it integrates

different types of quantitative images into a single image that can be used by

medical doctors for diagnostics. In particular, this is useful for multi-modality

imaging systems, e.g., MWT and UT systems. In addition, the concept of the

probability image is also useful as it demonstrates the level of confidence in the

diagnostics. For example, if a region of interest corresponds to a low probability

value, the medical doctor may require a follow-up study on that region, possi-

bly with a different imaging modality. The reconstruction of the cTTI along

with the probability image for MRI-based breast phantoms using ultrasound to-

mography property images, microwave tomography property images and their

combination were shown.

• The potential use of anatomical and epidemiological information to enhance the

cTTI reconstruction for the breast imaging application was introduced. The im-
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provement of the cTTI reconstruction based on the knowledge of skin and fat

regions using ultrasound tomography property images, microwave tomography

property images and their combination was shown. A new approach to prop-

erly combine all the ultrasonic and electromagnetic properties to get a high

resolution cTTI was also shown using an MRI-based numerical phantom.

• Using experimental ultrasound data, ray-based methods were used to create

quantitative (sound speed and attenuation) and qualitative images of simple

targets as well as a simplistic 2D breast phantom. Calculating the time-of-

arrival of the time-domain signal as well as the preprocessing of the raw data

were also explained. (The experimental ultrasound data sets were obtained

from two different experimental systems: one developed in the EIL and one by

a Spanish group [54–56])

• The concept of cTTI along with the probability image from quantitative ul-

trasonic and electromagnetic properties was experimentally validated using the

experimental data for the tissue mimicking phantom (obtained from the Multi-

modal Ultrasound Breast Imaging system) and a human forearm (obtained from

an in-house system at the University of Manitoba). The difference between the

accuracy of the reconstruction of one property compared to another property

was also considered in the reconstruction of the cTTI for the tissue mimicking

phantom.

6.2 Future Work

• Creating an enhanced ultrasound experimental system having many more trans-

ducers compared to the current ultrasound system existing in the EIL, which
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has only 32 transducers in each ring, is an important goal for future work. (For

our current in-house UT system, see Appendix A.) This is due to the fact that

the minimum number of data points required to image an object in a circu-

lar ring, see (A.1) needs to be satisfied. This will enable the investigation of

different reconstruction approaches and develop new ones by utilizing different

forms of experimental data. It should be noted that the choice of the ultra-

sound reconstruction algorithms may affect the data acquisition system. For

example, inverse scattering algorithms are computationally much more expen-

sive than the ray-based methods. This may limit the choice of the maximum

frequency of operation for the inverse scattering algorithms. This is due to the

fact that if the frequency of operation becomes too large, the wavelength of

operation becomes too small, and as a result the imaging domain will be very

large with respect to the wavelength, thus making the inverse scattering algo-

rithms even more computationally expensive. For example, in the Techniscan

medical system presented in [52, pg. 421-422], two data acquisition arrays have

been employed: one for the ray-based reconstruction, and the other for inverse

scattering reconstruction. In addition, for inverse scattering algorithms, it is

important that the inversion model is sufficiently close to the actual system;

this can also affect the design of the ultrasound system.

• Other important future work will be to experimentally validate our balanced

UT inversion algorithms under the three scenarios explained in this thesis. This

can only be done once an enhanced system is built. Then, the tissue-type

method can be applied to the UT quantitative reconstructions obtained from the

inversion algorithms to create a composite tissue-type along with the probability

image.
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• The next step would be to perform research on integrating the ultrasound to-

mography system and the microwave tomography system. One of the advan-

tages of integrating these systems is to remove the difficulty of image regis-

tration [149]. This integrated system would provide an opportunity to exper-

imentally reconstruct the ultrasonic and dielectric properties of the OI. Then,

these quantitative ultrasonic and dielectric properties of the OI could be used

to create a composite tissue-type image.

• New inversion algorithms that simultaneously invert UT and MWT data can be

developed, and their inversion results can be compared with individual inversion

of each data set.

• The implementation of these algorithms can also be extended to three dimen-

sions. This will be more computationally expensive and can benefit from parallel

processing. For example, at each iteration of the inverse scattering algorithms,

the solution of the forward problem corresponding to each transmitter is re-

quired for the BIM. That is, if we illuminate the object being imaged with 256

transmitters, each iteration of the BIM requires solving the forward problems

256 times. Noting that the BIM may take for example 10 iterations to converge,

this will result in solving the forward problem 2560 times. To reduce the com-

putational complexity of the problem, the forward problem corresponding to

each transmitter may be solved in parallel using parallel processing techniques.

In addition, three dimensional imaging will also increase the required number

of measured data points which will make the resulting system more expensive

and will make the acquisition time longer.

• In practice, we may encounter special situations, e.g., a patient with a metallic



6.2. Future Work 167

implant. We have not investigated these situations, which can be part of the

future work of this thesis. However, some researchers have used similar mi-

crowave inversion algorithms to reconstruct metals, e.g., see [119]. This cited

work included a metallic object in the vicinity of a dielectric object. When

reconstructed, the metallic object demonstrated itself as an object with a high

value for the imaginary part of the complex permittivity, which is associated

with the high conductivity of the metallic object.

• In Chapter 3, we have considered the simultaneous inversion of the ultrasonic

properties for breast imaging applications. It is also interesting to consider

this simultaneous property inversion for other applications. For example, the

authors in [150] have recently considered a simultaneous inversion of acoustic

properties for human thorax imaging.

• The methods developed for solving ultrasound and microwave inverse (scatter-

ing) problems can also be investigated for other emerging imaging modalities,

for example, photoacoustic tomography [151,152] and thermoacoustic tomogra-

phy [153,154].
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A

Experimental Results Using Ultrasound

System at the University of Manitoba

The ultrasound system at the University of Manitoba is shown in Fig A.1 [155–

158]. The diameter of this system, at the location of the piezoelectric transducers, is

about 12.9 [cm]. This system consists of eight rings of transducers which are connected

to arbitrary waveform generators and oscilloscopes via a switch. Each circumferential

ring consists of 32 transducers∗. The ultrasound transducers and switch that are used

in this system were provided by Sonometrics Corporation [156]. The frequency range

of optimal operation for these transducers is between 1.1 to 1.5 MHz and they have

a resonant frequency near 1.3 MHz. The cylindrical piezoelectric crystals are made

of lead zirconate titanate (PZT-5H).

The quantitative reconstruction algorithms used herein require that a specific

spatial location be identified as the source of energy for each transducer (as well as

for the receiver location). However, the size of our transducer is on the order of some

millimetres as shown in Fig A.2. Thus, a specific spatial point should be identified

as the transducer’s location (its phase center). The multidimensional scaling (MDS)

method [155, 159] has been used in the past to identify this position. The technique

determines this location for an assumed background sound-speed and using the time-

of-arrival (TOA) of the incident signal for different pairs of transmitter and receiver.

∗Each transmitting transducer transmits a pulse waveform in this system.
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Figure A.1: Ultrasound tomography system at the University of Manitoba. This
system has 8 rings, each of which consists of 32 transducers.

For this work, the TOA of the incident signal is found using methods described in

Section A.2. It should be noted that water is used as a background medium its speed

can be estimated based on its measured temperature [160]. The transducer locations,

first based on the physical diameter of the system and then corrected using the MDS

algorithm, are shown in Fig A.3. Note that only a slight correction is required for the

position locations.

Figure A.2: A piezoelectric transducer used in our UT system.
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B. Multiple Frequency Method
The frequency domain data is used in this method instead

of the time domain signal. Therefore, the time domain data
for both incident and total fields should be converted to the
frequency domain. Then, we can utilize some frequencies
around the centre frequency. In this method, we use the
assumption of linear relation between changes of attenuation
with the frequency [] [8]. Therefore, (12) can be written as

nfX

i=1

1

fi
ln

Ainc
tr (fi)

Atot
tr(fi)

=

nfX

i=1

 nyX

m=1

nxX

n=1

di,trm,n
↵m,n

�
(13)

where nf is the total number of frequency of interest. Atot
tr(fi)

and Ainc
tr (fi) are the values of the frequency domain of the total

and incident signal at frequency of interest fi for the special
pair of transmitter and receiver. It should be noted that if we
consider all transmitters, receivers and frequencies, then the
size of the left side of (13) is (nf ⇥ nTx⇥ nRx)⇥ 1 and the
size of d is (nf ⇥nTx⇥nRx)⇥N . The time window should
be defined for each integral.

C. Complex Signal Energy
In this method, attenuation is reconstructed based on the

energy of the incident and total signal as shown below [8]

1
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R
|Stot

tr |2R
|Sinc

tr |2 ) =

nyX

m=1

nxX

n=1

dtrm,n
↵m,n (14)

where Stot
tr and Sinc

tr correspond to the total and incident signal
for a special pair of transmitter and receiver. It should be noted
that we can utilize the time window explained in Section IV-A
for each integral.

V. ULTRASOUND SYSTEM IN UOM
The ultrasound system at the University of Manitoba is

shown in Figure 2 [6], [10], [11]. The diameter of this system
is about 12.9 [cm]. This system consists of eight rows of trans-
ducers which are connected to transceivers. Each row consists
of 32 piezoelectric transducers. The ultrasound transducers of
our system were provided by Sonometrics Corporation [10].
The frequency range of operation for these transducers are
between 1.1 MHz to 1.5 MHz and they have a resonant
frequency near 1.3 MHz. These cylindrical crystals are made
of lead zirconate titanate (PZT-5H). Each transducer has the
ability to both transmit and receive an acoustic ultrasound
signal.

It should be noted that the reconstruction algorithms require
only one point for each transducer as a transducer position.
However, the size of our transducer is in the order of some
millimetres as shown in Figure 3a. Thus, we should find the
point which can be represented as a transducer position. The
Multidimensional scaling (MDS) method [6], [12] is utilized
to find the transducer localization with the knowledge of
background sound speed and also TOA of incident for different
pairs of transmitter and receiver. TOA of incident signal can
be found using methods explained in Section II. It should be
noted that water is used as a background medium. The sound

speed in water can be calculated with the knowledge of water
temperature [13]. The ideal positions of transducers and the
positions calculated from MDS are shown in Figure 3b.

It should be noted that the minimum number of sampling
points which is required to image an object in a circular ring
can be calculated as [14], [15]

Minimum Number Sample Point >
4⇡r0

�
(15)

where r0 is the radius of the object of interest and � is
the wavelength. For example, the minimum number of the
sampling points for the object with a radius of 3 [cm] at
frequency of operation 1 MHz with the assumption of water as
a background medium is about 252. The number of transducers
that we have in a circular ring in our system is only 32,
much smaller than the minimum number of sampling points
explained above.

We are planning to make a bigger ring and mounted more
transducers in the new ring in future to fix the lack of data.
In this work, we try simple objects (homogenous nylons)
using our UT experimental system. We also utilize a more
complicated object using the experimental data provided by
Spanish National Research Council (CISC) and the Com-
plutense University of Madrid (UCM), under the projects
ARTEMIS and TOPUS. This system has much more number of
transmitters and receivers compared to our system as explained
in the next section.

VI. EXPERIMENTAL SYSTEM SPAIN GROUP

This system consists of two arrays of transducers. One of the
array is used as a transmitter array and the other one is used
as a receiver array. For each fixed position of the transmitter
array, the receiver array is moved to 11 different positions
to cover the angle of 80� in front of the transmitter array as
shown in Figure 4. Each array has 128 elements with the centre
frequency of 3.5 MHz and only 16 elements of each array is
used. Thus, for each fixed position of the transmitter array, we
have 11 ⇥ 16 ⇥ 16 = 2816 A-scan. It should be noted that
the transmitter array is also moved to 23 different positions to
cover 360� of the object of interest. Thus, the total number of
A-scan is 23⇥2816 = 64768. This configuration of collecting
data is used for the phantom shown in Figure 9.

TR = 1

VII. CONCLUSION
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B. Multiple Frequency Method
The frequency domain data is used in this method instead

of the time domain signal. Therefore, the time domain data
for both incident and total fields should be converted to the
frequency domain. Then, we can utilize some frequencies
around the centre frequency. In this method, we use the
assumption of linear relation between changes of attenuation
with the frequency [] [8]. Therefore, (12) can be written as
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=
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where nf is the total number of frequency of interest. Atot
tr(fi)

and Ainc
tr (fi) are the values of the frequency domain of the total

and incident signal at frequency of interest fi for the special
pair of transmitter and receiver. It should be noted that if we
consider all transmitters, receivers and frequencies, then the
size of the left side of (13) is (nf ⇥ nTx⇥ nRx)⇥ 1 and the
size of d is (nf ⇥nTx⇥nRx)⇥N . The time window should
be defined for each integral.

C. Complex Signal Energy
In this method, attenuation is reconstructed based on the

energy of the incident and total signal as shown below [8]
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where Stot
tr and Sinc

tr correspond to the total and incident signal
for a special pair of transmitter and receiver. It should be noted
that we can utilize the time window explained in Section IV-A
for each integral.

V. ULTRASOUND SYSTEM IN UOM
The ultrasound system at the University of Manitoba is

shown in Figure 2 [6], [10], [11]. The diameter of this system
is about 12.9 [cm]. This system consists of eight rows of trans-
ducers which are connected to transceivers. Each row consists
of 32 piezoelectric transducers. The ultrasound transducers of
our system were provided by Sonometrics Corporation [10].
The frequency range of operation for these transducers are
between 1.1 MHz to 1.5 MHz and they have a resonant
frequency near 1.3 MHz. These cylindrical crystals are made
of lead zirconate titanate (PZT-5H). Each transducer has the
ability to both transmit and receive an acoustic ultrasound
signal.

It should be noted that the reconstruction algorithms require
only one point for each transducer as a transducer position.
However, the size of our transducer is in the order of some
millimetres as shown in Figure 3a. Thus, we should find the
point which can be represented as a transducer position. The
Multidimensional scaling (MDS) method [6], [12] is utilized
to find the transducer localization with the knowledge of
background sound speed and also TOA of incident for different
pairs of transmitter and receiver. TOA of incident signal can
be found using methods explained in Section II. It should be
noted that water is used as a background medium. The sound

speed in water can be calculated with the knowledge of water
temperature [13]. The ideal positions of transducers and the
positions calculated from MDS are shown in Figure 3b.

It should be noted that the minimum number of sampling
points which is required to image an object in a circular ring
can be calculated as [14], [15]

Minimum Number Sample Point >
4⇡r0

�
(15)

where r0 is the radius of the object of interest and � is
the wavelength. For example, the minimum number of the
sampling points for the object with a radius of 3 [cm] at
frequency of operation 1 MHz with the assumption of water as
a background medium is about 252. The number of transducers
that we have in a circular ring in our system is only 32,
much smaller than the minimum number of sampling points
explained above.

We are planning to make a bigger ring and mounted more
transducers in the new ring in future to fix the lack of data.
In this work, we try simple objects (homogenous nylons)
using our UT experimental system. We also utilize a more
complicated object using the experimental data provided by
Spanish National Research Council (CISC) and the Com-
plutense University of Madrid (UCM), under the projects
ARTEMIS and TOPUS. This system has much more number of
transmitters and receivers compared to our system as explained
in the next section.

VI. EXPERIMENTAL SYSTEM SPAIN GROUP

This system consists of two arrays of transducers. One of the
array is used as a transmitter array and the other one is used
as a receiver array. For each fixed position of the transmitter
array, the receiver array is moved to 11 different positions
to cover the angle of 80� in front of the transmitter array as
shown in Figure 4. Each array has 128 elements with the centre
frequency of 3.5 MHz and only 16 elements of each array is
used. Thus, for each fixed position of the transmitter array, we
have 11 ⇥ 16 ⇥ 16 = 2816 A-scan. It should be noted that
the transmitter array is also moved to 23 different positions to
cover 360� of the object of interest. Thus, the total number of
A-scan is 23⇥2816 = 64768. This configuration of collecting
data is used for the phantom shown in Figure 9.

TR = 7
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B. Multiple Frequency Method
The frequency domain data is used in this method instead

of the time domain signal. Therefore, the time domain data
for both incident and total fields should be converted to the
frequency domain. Then, we can utilize some frequencies
around the centre frequency. In this method, we use the
assumption of linear relation between changes of attenuation
with the frequency [] [8]. Therefore, (12) can be written as
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where nf is the total number of frequency of interest. Atot
tr(fi)

and Ainc
tr (fi) are the values of the frequency domain of the total

and incident signal at frequency of interest fi for the special
pair of transmitter and receiver. It should be noted that if we
consider all transmitters, receivers and frequencies, then the
size of the left side of (13) is (nf ⇥ nTx⇥ nRx)⇥ 1 and the
size of d is (nf ⇥nTx⇥nRx)⇥N . The time window should
be defined for each integral.

C. Complex Signal Energy
In this method, attenuation is reconstructed based on the

energy of the incident and total signal as shown below [8]
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where Stot
tr and Sinc

tr correspond to the total and incident signal
for a special pair of transmitter and receiver. It should be noted
that we can utilize the time window explained in Section IV-A
for each integral.

V. ULTRASOUND SYSTEM IN UOM
The ultrasound system at the University of Manitoba is

shown in Figure 2 [6], [10], [11]. The diameter of this system
is about 12.9 [cm]. This system consists of eight rows of trans-
ducers which are connected to transceivers. Each row consists
of 32 piezoelectric transducers. The ultrasound transducers of
our system were provided by Sonometrics Corporation [10].
The frequency range of operation for these transducers are
between 1.1 MHz to 1.5 MHz and they have a resonant
frequency near 1.3 MHz. These cylindrical crystals are made
of lead zirconate titanate (PZT-5H). Each transducer has the
ability to both transmit and receive an acoustic ultrasound
signal.

It should be noted that the reconstruction algorithms require
only one point for each transducer as a transducer position.
However, the size of our transducer is in the order of some
millimetres as shown in Figure 3a. Thus, we should find the
point which can be represented as a transducer position. The
Multidimensional scaling (MDS) method [6], [12] is utilized
to find the transducer localization with the knowledge of
background sound speed and also TOA of incident for different
pairs of transmitter and receiver. TOA of incident signal can
be found using methods explained in Section II. It should be
noted that water is used as a background medium. The sound

speed in water can be calculated with the knowledge of water
temperature [13]. The ideal positions of transducers and the
positions calculated from MDS are shown in Figure 3b.

It should be noted that the minimum number of sampling
points which is required to image an object in a circular ring
can be calculated as [14], [15]

Minimum Number Sample Point >
4⇡r0

�
(15)

where r0 is the radius of the object of interest and � is
the wavelength. For example, the minimum number of the
sampling points for the object with a radius of 3 [cm] at
frequency of operation 1 MHz with the assumption of water as
a background medium is about 252. The number of transducers
that we have in a circular ring in our system is only 32,
much smaller than the minimum number of sampling points
explained above.

We are planning to make a bigger ring and mounted more
transducers in the new ring in future to fix the lack of data.
In this work, we try simple objects (homogenous nylons)
using our UT experimental system. We also utilize a more
complicated object using the experimental data provided by
Spanish National Research Council (CISC) and the Com-
plutense University of Madrid (UCM), under the projects
ARTEMIS and TOPUS. This system has much more number of
transmitters and receivers compared to our system as explained
in the next section.

VI. EXPERIMENTAL SYSTEM SPAIN GROUP

This system consists of two arrays of transducers. One of the
array is used as a transmitter array and the other one is used
as a receiver array. For each fixed position of the transmitter
array, the receiver array is moved to 11 different positions
to cover the angle of 80� in front of the transmitter array as
shown in Figure 4. Each array has 128 elements with the centre
frequency of 3.5 MHz and only 16 elements of each array is
used. Thus, for each fixed position of the transmitter array, we
have 11 ⇥ 16 ⇥ 16 = 2816 A-scan. It should be noted that
the transmitter array is also moved to 23 different positions to
cover 360� of the object of interest. Thus, the total number of
A-scan is 23⇥2816 = 64768. This configuration of collecting
data is used for the phantom shown in Figure 9.

TR = 27
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B. Multiple Frequency Method
The frequency domain data is used in this method instead

of the time domain signal. Therefore, the time domain data
for both incident and total fields should be converted to the
frequency domain. Then, we can utilize some frequencies
around the centre frequency. In this method, we use the
assumption of linear relation between changes of attenuation
with the frequency [] [8]. Therefore, (12) can be written as
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where nf is the total number of frequency of interest. Atot
tr(fi)

and Ainc
tr (fi) are the values of the frequency domain of the total

and incident signal at frequency of interest fi for the special
pair of transmitter and receiver. It should be noted that if we
consider all transmitters, receivers and frequencies, then the
size of the left side of (13) is (nf ⇥ nTx⇥ nRx)⇥ 1 and the
size of d is (nf ⇥nTx⇥nRx)⇥N . The time window should
be defined for each integral.

C. Complex Signal Energy
In this method, attenuation is reconstructed based on the

energy of the incident and total signal as shown below [8]
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where Stot
tr and Sinc

tr correspond to the total and incident signal
for a special pair of transmitter and receiver. It should be noted
that we can utilize the time window explained in Section IV-A
for each integral.

V. ULTRASOUND SYSTEM IN UOM
The ultrasound system at the University of Manitoba is

shown in Figure 2 [6], [10], [11]. The diameter of this system
is about 12.9 [cm]. This system consists of eight rows of trans-
ducers which are connected to transceivers. Each row consists
of 32 piezoelectric transducers. The ultrasound transducers of
our system were provided by Sonometrics Corporation [10].
The frequency range of operation for these transducers are
between 1.1 MHz to 1.5 MHz and they have a resonant
frequency near 1.3 MHz. These cylindrical crystals are made
of lead zirconate titanate (PZT-5H). Each transducer has the
ability to both transmit and receive an acoustic ultrasound
signal.

It should be noted that the reconstruction algorithms require
only one point for each transducer as a transducer position.
However, the size of our transducer is in the order of some
millimetres as shown in Figure 3a. Thus, we should find the
point which can be represented as a transducer position. The
Multidimensional scaling (MDS) method [6], [12] is utilized
to find the transducer localization with the knowledge of
background sound speed and also TOA of incident for different
pairs of transmitter and receiver. TOA of incident signal can
be found using methods explained in Section II. It should be
noted that water is used as a background medium. The sound

speed in water can be calculated with the knowledge of water
temperature [13]. The ideal positions of transducers and the
positions calculated from MDS are shown in Figure 3b.

It should be noted that the minimum number of sampling
points which is required to image an object in a circular ring
can be calculated as [14], [15]

Minimum Number Sample Point >
4⇡r0

�
(15)

where r0 is the radius of the object of interest and � is
the wavelength. For example, the minimum number of the
sampling points for the object with a radius of 3 [cm] at
frequency of operation 1 MHz with the assumption of water as
a background medium is about 252. The number of transducers
that we have in a circular ring in our system is only 32,
much smaller than the minimum number of sampling points
explained above.

We are planning to make a bigger ring and mounted more
transducers in the new ring in future to fix the lack of data.
In this work, we try simple objects (homogenous nylons)
using our UT experimental system. We also utilize a more
complicated object using the experimental data provided by
Spanish National Research Council (CISC) and the Com-
plutense University of Madrid (UCM), under the projects
ARTEMIS and TOPUS. This system has much more number of
transmitters and receivers compared to our system as explained
in the next section.

VI. EXPERIMENTAL SYSTEM SPAIN GROUP

This system consists of two arrays of transducers. One of the
array is used as a transmitter array and the other one is used
as a receiver array. For each fixed position of the transmitter
array, the receiver array is moved to 11 different positions
to cover the angle of 80� in front of the transmitter array as
shown in Figure 4. Each array has 128 elements with the centre
frequency of 3.5 MHz and only 16 elements of each array is
used. Thus, for each fixed position of the transmitter array, we
have 11 ⇥ 16 ⇥ 16 = 2816 A-scan. It should be noted that
the transmitter array is also moved to 23 different positions to
cover 360� of the object of interest. Thus, the total number of
A-scan is 23⇥2816 = 64768. This configuration of collecting
data is used for the phantom shown in Figure 9.

Imaging Domain
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B. Multiple Frequency Method
The frequency domain data is used in this method instead

of the time domain signal. Therefore, the time domain data
for both incident and total fields should be converted to the
frequency domain. Then, we can utilize some frequencies
around the centre frequency. In this method, we use the
assumption of linear relation between changes of attenuation
with the frequency [] [8]. Therefore, (12) can be written as

nfX

i=1

1

fi
ln

Ainc
tr (fi)

Atot
tr(fi)

=

nfX

i=1

 nyX

m=1

nxX

n=1

di,trm,n
↵m,n

�
(13)

where nf is the total number of frequency of interest. Atot
tr(fi)

and Ainc
tr (fi) are the values of the frequency domain of the total

and incident signal at frequency of interest fi for the special
pair of transmitter and receiver. It should be noted that if we
consider all transmitters, receivers and frequencies, then the
size of the left side of (13) is (nf ⇥ nTx⇥ nRx)⇥ 1 and the
size of d is (nf ⇥nTx⇥nRx)⇥N . The time window should
be defined for each integral.

C. Complex Signal Energy
In this method, attenuation is reconstructed based on the

energy of the incident and total signal as shown below [8]
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where Stot
tr and Sinc

tr correspond to the total and incident signal
for a special pair of transmitter and receiver. It should be noted
that we can utilize the time window explained in Section IV-A
for each integral.

V. ULTRASOUND SYSTEM IN UOM
The ultrasound system at the University of Manitoba is

shown in Figure 2 [6], [10], [11]. The diameter of this system
is about 12.9 [cm]. This system consists of eight rows of trans-
ducers which are connected to transceivers. Each row consists
of 32 piezoelectric transducers. The ultrasound transducers of
our system were provided by Sonometrics Corporation [10].
The frequency range of operation for these transducers are
between 1.1 MHz to 1.5 MHz and they have a resonant
frequency near 1.3 MHz. These cylindrical crystals are made
of lead zirconate titanate (PZT-5H). Each transducer has the
ability to both transmit and receive an acoustic ultrasound
signal.

It should be noted that the reconstruction algorithms require
only one point for each transducer as a transducer position.
However, the size of our transducer is in the order of some
millimetres as shown in Figure 3a. Thus, we should find the
point which can be represented as a transducer position. The
Multidimensional scaling (MDS) method [6], [12] is utilized
to find the transducer localization with the knowledge of
background sound speed and also TOA of incident for different
pairs of transmitter and receiver. TOA of incident signal can
be found using methods explained in Section II. It should be
noted that water is used as a background medium. The sound

speed in water can be calculated with the knowledge of water
temperature [13]. The ideal positions of transducers and the
positions calculated from MDS are shown in Figure 3b.

It should be noted that the minimum number of sampling
points which is required to image an object in a circular ring
can be calculated as [14], [15]

Minimum Number Sample Point >
4⇡r0

�
(15)

where r0 is the radius of the object of interest and � is
the wavelength. For example, the minimum number of the
sampling points for the object with a radius of 3 [cm] at
frequency of operation 1 MHz with the assumption of water as
a background medium is about 252. The number of transducers
that we have in a circular ring in our system is only 32,
much smaller than the minimum number of sampling points
explained above.

We are planning to make a bigger ring and mounted more
transducers in the new ring in future to fix the lack of data.
In this work, we try simple objects (homogenous nylons)
using our UT experimental system. We also utilize a more
complicated object using the experimental data provided by
Spanish National Research Council (CISC) and the Com-
plutense University of Madrid (UCM), under the projects
ARTEMIS and TOPUS. This system has much more number of
transmitters and receivers compared to our system as explained
in the next section.

VI. EXPERIMENTAL SYSTEM SPAIN GROUP

This system consists of two arrays of transducers. One of the
array is used as a transmitter array and the other one is used
as a receiver array. For each fixed position of the transmitter
array, the receiver array is moved to 11 different positions
to cover the angle of 80� in front of the transmitter array as
shown in Figure 4. Each array has 128 elements with the centre
frequency of 3.5 MHz and only 16 elements of each array is
used. Thus, for each fixed position of the transmitter array, we
have 11 ⇥ 16 ⇥ 16 = 2816 A-scan. It should be noted that
the transmitter array is also moved to 23 different positions to
cover 360� of the object of interest. Thus, the total number of
A-scan is 23⇥2816 = 64768. This configuration of collecting
data is used for the phantom shown in Figure 9.

8[cm] ⇥ 8[cm]

VII. CONCLUSION
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Figure A.3: Transducer localization for the University of Manitoba system, “ideal”
based on physical construction and corrected using MDS.

As will be shown in the results section, a major disadvantage of this particular

imaging setup is the small number of fixed transducers that are used. These stationary

transducers only allow one to collect data from a fixed number of transmitter-receiver

pairs. To understand how the number of transducers affects the image quality, a

formula for an estimate of the minimum number of data sampling points required to

image an object using a circular ring of transducers has been previously published

[73,161]:

Minimum number of data points >
4πr0

λ
(A.1)

where r0 is the radius of the object of interest and λ is the wavelength. For example,

the minimum number of the sampling points for the object with a radius of 3 [cm] at

frequency of operation 1 MHz with the assumption of water as a background medium

is about 252. The number of transducers in our circular ring is only 32, much smaller



A.1. Preprocessing of Raw Data 171

than the minimum number of sampling points required according to this formula†. In

addition, for algorithms that reconstruct the sound-speed and attenuation based on a

ray model of propagation, only the transmitter-receiver pairs having a corresponding

ray line that passes through the imaging domain will contain useful information. In

our system, for example, only 21 transducers ranging from 7 to 27 can be used as

receivers for the case that transducer one operates as a transmitter (as depicted in

Fig A.3). Thus, we only have 672 information containing rays for the size of the

imaging domain shown. However, to handle the lack of sufficient data points in this

work, we use simple objects (homogenous cylinders) as our test phantoms. The point

herein is to evaluate our reconstruction techniques on our experimental data. More

complicated tissue-mimicking phantoms are scanned using the MUBI system and

shown in Section 5.6.

A.1 Preprocessing of Raw Data

In general, the raw data collected from any ultrasound system cannot be used di-

rectly when implementing these methods. Various amounts of random and systematic

noise will corrupt the raw data, including the multi-path reflections generated within

the system. The type and amount of noise will vary with the system being used.

Thus, the experimentally collected time-domain data must be preprocessed before it

can be used in the reconstruction algorithms.

The raw data from this system considered herein contained a DC bias of varying

amount and a small amount of ripple, of unknown origin. We remove these unwanted

signal components in the frequency domain. details can be found in [155]. A typical

†The choice of the ray-based methods for the experimental ultrasound imaging systems at the
University of Manitoba is due to the following reason. The UM system does not satisfy the re-
quirement for sufficient data sampling [161] for the inverse scattering algorithm at its frequency of
operation. Due to this, we have used ray-based methods in conjunction with this system.
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Figure A.4: Typical raw and preprocessed signal obtained by the UM system.

noisy raw signal measured in the University of Manitoba system, clearly displaying

the DC bias and the small amount of ripple, as well as the preprocessed signal are

shown in Fig A.4.

A.2 Calculating the Time-of-Arrival

Accurately calculating the time-of-arrival (TOA) of a signal is very critical for var-

ious different applications such as seismic and biomedical imaging [58,60]. TOA-based

imaging algorithms can be used to study the internal structure of the earth and find

the hypocenter location in seismic applications [58]. Different methods can utilized

to find the TOA of the signal: manually, semi-automatically or automatically. Man-

ually choosing the TOA is very time consuming and is also operator-dependent [162].

Different automatic TOA picker algorithms have been proposed. The easiest way is

to use a thresholding algorithm that determines the TOA of the signal simply by

setting a threshold as the detection point. This method does not perform well for low

signal-to-noise ratio data [60]. Here, we investigate the performance of the Akaike
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information criterion (AIC) [60, 61] for its use in conjunction with the previously

described sound-speed imaging algorithm which is described in Section 5.5.2.

The AIC function is defined as [60,61]

AIC(k) = k log

[
var
(
S(1, k)

)]

+ (N − k − 1) log

[
var
(
S(k + 1, N)

)]
(A.2)

where N is the total number of data points in the time-domain signal and k is a

value from 1 to N . S(1, k) and S(k + 1, N) corresponding to the (1 to k) and (k + 1

to N) data points of the signal, respectively. In addition, var corresponds to the

variance function. The value of k corresponding to the minimum value of AIC is

chosen as the arrival time of the signal. A typical time domain signal obtained from

the experimental system is shown in Fig A.5. The AIC function is shown as the

red dashed line in the figure. The MER method explained in Section 5.5.2 for the

calculation of the time-of-arrival of the signal is also shown in black in Fig A.5. For

this particular example, it should be noted that both the AIC and MER methods

identify the same sample point for the arrival time of the signal.

A.3 Results

Two examples are considered using the ultrasound experimental system at the

University of Manitoba. In both examples water is used as a background medium.

For each experiment the temperature of the water is measured so that the sound-speed

of the background can be estimated for use in the different algorithms [160].

The first target is a non-centered cylinder where the size and position within the

chamber are as shown in the first row of Fig A.6. The TOA of the incident, total,
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Figure A.5: Calculation of the time-of-arrival of the signal using the AIC and MER
methods for the typical preprocessed signal obtained by the MUBI system.

and their subtraction are shown in the second row of Fig A.6. Each row corresponds

to the particular transmitter while the column corresponds to the particular receiver.

It should be noted that when one transducer operates as a transmitter, it cannot be

used as a receiver so we give a zero value to that TOA. It is evident from this figure

that the sound-speed of nylon cylinder is greater than the background sound-speed.

The reconstruction of the sound-speed is shown in Fig A.7a. For this target, we also

consider the reconstruction of the so-called reflection image using the Delay-and-Sum

(DAS) method described in [21, 163]. This reconstruction is shown in Fig A.7b (in

applying this algorithm it is assumed that the sound-speed everywhere is the same as

the background sound-speed). The reconstruction of the attenuation using the three

techniques previously described: amplitude decay, complex signal energy ratio, and

the spectral ratio, are shown in Fig A.7 (c, d, e).

In the second example, we use two cylinders as shown in the first row of Fig A.8.
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Figure A.6: Experimental measurement of the Nylon cylinder using the ultrasound
system at the University of Manitoba. The first row corresponds to the experimental
set up for measuring the Nylon cylinder. The second row corresponds to the time of
arrival for the incident, total and their subtraction.

The TOA of the incident, total, and their subtraction are shown in the second row

of Fig A.8. The sound-speed reconstruction is shown in Fig A.9a. The attenuation

reconstructions are shown in Fig A.9 (b, c, d). Two cases are considered for con-

structing the reflection image using the DAS method. In the first case, it is assumed

that the sound-speed is homogeneous and equal to the background medium. The

reflection image using this assumption is shown in Fig A.9e. In the second case, the

inhomogeneous sound-speed calculated in Fig A.9a is used within the DAS algorithm
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Figure A.7: Reconstructions of the sound-speed [m/s], attenuation [db/cm] and
reflection for the non-centered nylon cylinder. The reconstructions of the sound-
speed and reflection are shown in the first row. The reconstructions of attenuation
using amplitude decay, complex signal energy ratio and spectral ratio methods are
shown in the second row.

by first finding the time between each transducer position and each pixel in the imag-

ing domain. The reflection image based on this inhomogeneous sound-speed estimate

is shown Fig A.9f. As can be seen in the last row of Fig A.9, only the boundary of

the cylinders are reconstructed assuming a homogenous sound-speed, whereas more

of the inside of the cylinders are reconstructed using the inhomogeneous sound-speed.
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(a) Two cylinders in chamber (b) Two cylinders (top view)
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Figure A.8: Experimental measurement of two cylinders using the ultrasound system
at the University of Manitoba. The first row corresponds to the experimental set up
for measuring two cylinders. The second row corresponds to the time of arrival for
the incident, total and their subtraction.
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Figure A.9: Reconstructions of the sound-speed [m/s], attenuation [db/cm] and
reflection for two cylinders. The reconstructions of the sound-speed and attenuation
are shown in the first and second rows. The reconstruction of the reflection image
using the homogeneous and inhomogeneous sound-speed is shown in the third row.
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B

On the potential use of anatomical and

epidemiological information to enhance

microwave and ultrasound breast imaging∗

B.1 abstract

This paper proposes the use of available anatomical and epidemiological (statis-

tical) information regarding breast cancer in conjunction with microwave and ultra-

sound breast imaging. This information, which can be extracted from the broader

medical research effort, can be used in conjunction with image reconstruction al-

gorithms to further guide those algorithms towards a more accurate solution. In

particular, we propose to consider the following anatomical and statistical informa-

tion into the image reconstruction process via the tissue-type framework. Anatomical

information is utilized in assigning a tissue-type and its corresponding probability to

a given pixel by considering the neighbouring reconstructed pixels (epidemiological

information related to the anatomical surroundings of the pixel is used to modify

the prior probabilities in the Bayes prediction model). Two types of epidemiological

∗ c© 2018 IEEE. Reprinted, with permission, from Pedram Mojabi and Joe LoVetri, “On the
potential use of anatomical and epidemiological information to enhance microwave and ultrasound
breast imaging,” 2nd URSI AT-RASC, Gran Canaria, Spain, May 2018. (Invited).
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information are used in reconstructing the tissue-type image to improve the discrim-

ination between tumor and cyst: the quadrant of the breast within which a pixel is

located provides statistical information regrading whether of being cancerous, and

the age of the patient can provide similar information.

B.2 Introduction

Microwave and ultrasound imaging (MWI and UI respectively) can create quan-

titative images corresponding to the electromagnetic (i.e., real and imaginary parts

of complex permittivity) and ultrasonic (i.e., sound speed, attenuation, compressibil-

ity and density) properties of the object of interest (OI) [2, 6, 17, 20, 28]. Integrating

all these quantitative images into one image that incorporates the most important

information of each individual image can be very useful; for example, in biomedical

imaging applications, it is more practical and efficient for medical doctors to diagnose

based on one single comprehensive image rather than checking several quantitative

images with different range of color-bars. Furthermore, this concept (i.e., integrating

different images into one image) avoids the necessity for medical doctors to know

the expected ranges of quantitative values for different tissue types of each quanti-

tative image and also avoids the necessity for doctors to know which (part of the)

quantitative image to trust more as compared to other images.

To this end, we introduced the concept of composite tissue-type image (cTTI)

along with the probability image which can integrate all the quantitative images

obtained from different modalities into one image; see [2]. Each pixel of this composite

image corresponds to the special tissue type (e.g., breast tumor) as opposed to having

quantitative values. In other words, reconstructed quantitative values of various

images (e.g., conductivity image and sound speed image) can be combined to infer
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the tissue type. In addition, in this approach, the probability of choosing the special

tissue type for each pixel is also provided in another image to help medical doctors

determine the level of confidence for each pixel within the composite tissue type image.

The reconstruction of cTTI along with its associated probability image based on the

numerically generated data for ultrasound tomography and microwave tomography as

well as their combination are presented in [2], in which, an inverse scattering approach

(the Born iterative method or the Gauss-Newton inversion algorithm) is utilized to

create the quantitative images. The experimental evaluation of this technique using

ultrasound data for a tissue mimicking phantom based on ray-type methods is also

described in [59].

In this approach, the prior probability of each tissue-type occupying each pixel

is required to create a cTTI image based on Bayes’ formula [2, 59]. When we do

not have any prior information about the OI, we choose the prior probability of all

the tissue types for each pixel to be the same. For example, in the case of breast

imaging, we can consider five different tissue types: skin, fat, fibroglandular, tumor

and cyst. Assuming that we do not have any prior information about where these

tissue types are located within a breast, each pixel within the imaging domain will

have a probability of 0.2 that it is occupied by one of these five tissue types. In this

paper, we propose to take advantage of some anatomical information about the breast

to provide a better prior probability for some of the pixels in the imaging domain,

instead of naively assuming the same prior probability for each tissue-type. As will

be shown in the presentation, this information can enhance the reconstruction of the

cTTI.

A simple example of the use of anatomical information is the taking into account of

the position of the skin tissue-type which is in the outer regions of the breast. Thus,
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the chance of having a skin tissue in the central parts of the reconstructed breast

volume is zero. Therefore, we can assign a zero prior probability for skin tissue-type

to the pixels residing in the central parts of the breast. Furthermore, the tissue-

types of the neighbouring pixels can also help to provide a better prior probability for

that pixel. For example, if we know that the chance of a tumor occurring inside the

fibroglandular tissue is high [62], then we can always check the neighbouring pixels

of that pixel that has been reconstructed as tumor. That is, the prior probability of

a pixel reconstructed as tumor might be reduced if its neighbouring pixels are skin

and fat. Similarly, we can apply the same procedure for any cyst regions.

The statistical information about relevant to breast cancer can also take into

account the case in which we have an ambiguity of choosing a pixel as being tumor

or cyst. For example, this might happen when the associated probabilities of a pixel

for being tumor or cyst are close to each other. In this case, in addition to creating

a cTTI along with the probability image, we also provide another cTTI to provide

further insight and guidance regarding such pixels based on the statistical information

to help medical doctors. For example, this statistical information can be based on

the location of the pixel in the breast and also the age of the patient, or any other

statistical information available from the medical research community.

The structure of this paper is as follows. In the next section, we briefly explain

the formation of a cTTI. Then, in Section B.4, we discuss how to use anatomical and

statistical information (available from epidemiological research) to enhance breast

cancer diagnosis. Finally, our methodology will be described.
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B.3 Composite Tissue Type Image (cTTI)

Two different methods are proposed in [2] to create a cTTI along with the prob-

ability image. In the first method, a single property tissue type along with the

probability image is created for each property. Then, all these single property TTIs

and probability images are utilized to create a cTTI. In the second method, all the

properties are simultaneously used to create a cTTI. In both methods, Bayes’ for-

mula is utilized to calculate the probability of tissue-type Tk occupying the pixel of

interest [2, 59]

P (Tk|x) =
p(x|Tk)P (Tk)
Nt∑
i=1

p(x|Ti)P (Ti)

(B.1)

where Nt and x correspond to the total number of tissue types and the quantitative

value of that pixel in the corresponding property image. Also, p(x|Tk) is the value

of the conditional probability density function (PDF) for property value x assuming

the tissue type is Tk. As noted earlier, the prior probability of assigning tissue type

Tk for that pixel is denoted by P (Tk). Without any prior information it is usual to

choose the same prior probability for all the tissue-types.

B.4 Anatomical and Statistical Information

In this section, previously published reports related to breast cancer are discussed

as an example of how one might extract prior information to improve our cTTI

reconstructions. The specific information in these studies relates to the anatomical

structure, the chances of a tumor being found in different breast quadrants, and

the age of patients. We propose that taking into account this information can be

very useful in the detection and identification of tumors via breast imaging. (This



B.4. Anatomical and Statistical Information 184

UIQ	–	14%				UOQ	–	58%				

LOQ	–	10%				 LIQ	–	9%				

9%				

Figure B.1: The chance of tumor arising in four different breast quadrants (dented
by Q). This figure corresponds to the right breast with U indicating the upper, L
indicting the lower, O indicating the outer and I indicating the inner; e.g., UOQ
denotes the upper outer quadrant. The orange ellipse represent the nipple area.

framework is general enough so that information obtained from other studies can

easily be used to further enhance the reconstruction process.)

B.4.1 Anatomical Structure

Mammographic density (MD) which corresponds to the amount of fibroglandular

tissue in the breast is one of the most important markers for breast cancer [62, 164].

The chance of breast cancer is four to six times for patients having dense breast tissue

(occupying more than 75% of the breast) as compared to those having a low density

(occupying less than 5% of the breast) [62, 164]. The study in [62] also shows that

breast tumors emerge mainly within the radiodense tissue, specifically radiodense

fibroglandular tissue. Furthermore, the fluid accumulation inside the glands leads to

developing cysts in the breast [165]. Therefore, if a pixel is firstly identified to be
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Table B.1: The average age of cancer and non-cancer cases based on 300 cancer cases
and 200 non-cancer cases.

Decade Cancer Cases [%] Non-cancer Cases [%]

10-20 0 0.02

20-30 0.01 0.15

30-40 0.18 0.34

40-50 0.346 0.39

50-60 0.22 0.08

60-70 0.2 0.015

70+ 0.043 0.005

tumor or cyst in the cTTI (using the equal prior probability assumption), we can

subsequently check the neighbouring pixels of a pixel that has been identified to be

tumor or cyst. Based on these studies, it is clear that the prior probability of a

particular pixel being tumor or cyst can be reduced if the neighbouring pixels are

skin and fat. The same procedure can also be considered for the skin tissue-type

which should be in the outer region of the breast.

B.4.2 Epidemiological Information

A study conducted from 1990 to 2005 found that among 13,984 women having

tumors that these breast cancer tumors occurred 58% of the time in the upper-outer

quadrant (UOQ), 14% in the upper-inner quadrant (UIQ), 9% in the lower-inner

quadrant (LIQ), 10% in the lower-outer quadrant (LOQ), and 9% in the nipple com-

plex [63] (these anatomical regions are shown in Fig B.1 [63] ). The same observation

was also reported in [166]. Furthermore, an annual increase of breast cancer in UOQ

was reported in [167]. Also, breast cancer in the UOQ is the highest among the

youngest age group in this study (Age ≤ 49) [166,167].
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Table B.2: The average age of cancer based on 2248 cases.

Age Number Percentage

≤ 35 104 4.6

36-59 1503 66.9

≥ 60 641 28.5

The chance of having tumor and cyst varies among different ages. For example, 300

cancer cases and 200 non-cancer cases were used in [146]. The average age of people

having cancer and non-cancer based on these samples is tabulated in Table B.1 [146].

Many more cancer cases (i.e., 2,248) were considered in [147]. The percentage of

cancer for three different age ranges using 2,248 cancer cases is tabulated in Table B.2

[147]. As can be seen in Table B.1, the percentage of cancer and non-cancer cases

for the age below 30 is 0.01 and 0.17 respectively. Therefore, if after improving

the cTTI using the previously discussed prior-modification methods we are still not

sure whether to identify a pixel as being cancer or non-cancer (i.e., there is till an

ambiguity), we can guess that the chance of being non-cancer is higher compared to

cancer for a person in this age range. If in addition, the position of this pixel is not in

the UOQ region (the quadrant having the highest chance of there arising a tumor),

then the chance of being non-cancer may also be increased. For women of age greater

than 60, the percentage of cancer and non-cancer cases is 0.243 and 0.02 respectively

based on Table B.1. Therefore, if there is ambiguity that a pixel has a tissue-type

of cancer or non-cancer, for a patient in this age range, the chance of being cancer

would be reported as being higher, especially for pixels in the UOQ region.
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Table 1. The average age of cancer and non-cancer cases
based on 300 cancer cases and 200 non-cancer cases based
on the study in [13].

Decade Cancer Cases [%] Non-cancer Cases [%]

10-20 0 0.02

20-30 0.01 0.15

30-40 0.18 0.34

40-50 0.346 0.39

50-60 0.22 0.08

60-70 0.2 0.015

70+ 0.043 0.005

3.2 Epidemiological Information

A study conducted from 1990 to 2005 found that among
13,984 women having tumors that these breast cancer tu-
mors occurred 58% of the time in the upper-outer quad-
rant (UOQ), 14% in the upper-inner quadrant (UIQ), 9%
in the lower-inner quadrant (LIQ), 10% in the lower-outer
quadrant (LOQ), and 9% in the nipple complex [10] (these
anatomical regions are shown in Fig 1). The same observa-
tion was also reported in [11]. Furthermore, an annual in-
crease of breast cancer in UOQ was reported in [12]. Also,
breast cancer in the UOQ is the highest among the youngest
age group in this study (Age  49) [11, 12].

The chance of having tumor and cyst varies among different
ages. For example, 300 cancer cases and 200 non-cancer
cases were used in [13]. The average age of people hav-
ing cancer and non-cancer based on these samples is tabu-
lated in Table 1 [13]. Many more cancer cases (i.e., 2,248)
were considered in [14]. The percentage of cancer for three
different age ranges using 2,248 cancer cases is tabulated
in Table 2 [14]. As can be seen in Table 1, the percent-
age of cancer and non-cancer cases for the age below 30
is 0.01 and 0.17 respectively. Therefore, if after improving
the cTTI using the previously discussed prior-modification
methods we are still not sure whether to identify a pixel
as being cancer or non-cancer (i.e., there is till an ambigu-
ity), we can guess that the chance of being non-cancer is
higher compared to cancer for a person in this age range.
If in addition, the position of this pixel is not in the UOQ
region (the quadrant having the highest chance of there aris-
ing a tumor), then the chance of being non-cancer may also
be increased. For women of age greater than 60, the per-
centage of cancer and non-cancer cases is 0.243 and 0.02
respectively based on Table 1. Therefore, if there is ambi-
guity that a pixel has a tissue-type of cancer or non-cancer,
for a patient in this age range, the chance of being cancer
would be reported as being higher, especially for pixels in
the UOQ region.

Table 2. The average age of cancer based on 2248 cases
reported in [14].

Age Number Percentage

 35 104 4.6

36-59 1503 66.9

� 60 641 28.5

Object of Interest (OI)

Reconstruct Quanti-
tative Images of OI

from MWI and/or UI

Set Uniform Prior
Probabilities

Create a cTTI

Is Anatomical
Structure Info

Available?

Update Prior
Probabilities

Update cTTI
Confident

regarding Cyst
versus Tumor?

Use Epidemiolog-
ical Information

(e.g., Breast Quadrants
& Age of the Patient)

stopCorrect cTTI
(based Statistical Info)

YES

NO

NO

YES

Figure 2. Flowchart of the proposed method for using
anatomical and epidemiological information to enhance the
cTTI reconstruction for breast imaging.

Figure B.2: Flowchart of the proposed method for using anatomical and epidemio-
logical information to enhance the cTTI reconstruction for breast imaging
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B.5 Framework

The flowchart of the framework for using anatomical structure and statistical in-

formation to improve the reconstruction of the cTTI for the breast is shown in Fig B.2.

In this method, we first create quantitative images of the breast. These quantitative

images can be of the electromagnetic (i.e., complex permittivity) and/or the ultra-

sonic properties (i.e., sound speed, attenuation, density, and compressibility) of the

breast. Different methods such as full-wave non-linear inverse scattering algorithms,

and ray based methods can be used to create these images [2, 6, 17,20,28,59]. In the

next step, the prior probabilities of all the tissue-types occupying each pixel are set

to be the same. The cTTI along with the probability image is then reconstructed

based on the two methods explained in [2]. After creating a cTTI based on the equal

prior probability, we can check the neighbouring tissue-types of each pixel to provide

a better prior probability based on the anatomical structure of the breast as discussed

in Section B.4.1. The new prior probability which is now modified based on the neigh-

bouring tissue-types is used to enhance the reconstruction of the cTTI. Finally, if the

cyst and tumor cannot be properly distinguished from each other (i.e., the probability

of being tumor or cyst is close to each other in a composite probability image), then

the statistical information such as the chance of cancer in different breast quadrants,

the age of patient (discussed in Section B.4.2) or any other statistical information can

be used to better determine the tissue type. Finally, another cTTI image based on all

the statistical information is created. This final cTTI could be provided to medical

doctors who would make the final diagnosis.
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B.6 Conclusion

We have proposed a framework wherein one can incorporate available anatomi-

cal and epidemiological information about a breast being imaged into microwave and

ultrasound imaging algorithms. Herein, we discussed some of forms of useful informa-

tion which can be utilized to provide enhanced imaging or increased certainty about

the reconstructed breast tissue type. A particular framework on how to incorporate

this information into the cTTI reconstruction algorithm has been described using a

flowchart†.

†Examples demonstrating this approach are shown in Chapter 5
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