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Abstract 

Meniere's disease is a common inner ear disorder that affects balance and hearing. 

Electrovestibulography (EVestG) is a relatively new vestibular driven test that measures 

spontaneous and driven field potential activity recorded in the external ear canal in 

response to various vestibular stimuli. The main objectives of this thesis were to record and 

analyze EVestG signals in order to 1) testify whether the EVestG technology is capable of 

classifying individuals with Meniere’s from healthy ones, and if it is, then 2) identify the 

EVestG tilt stimulus providing the most informative response in relation to identifying 

Meniere’s symptoms; thus, optimizing the EVestG experimental protocol as a Meniere’s 

disease diagnostic aid. 

EVestG signals of two groups of Meniere’s and control individuals during seven 

different EVestG tilt stimuli were recorded and analyzed by linear and nonlinear signal 

processing techniques. Data of 14 with Meniere’s disease and 16 healthy individuals were 

used as the training set, while additional data of 21 individuals with vertiginous disorders 

(and suspected of Meniere’s disease) and 10 controls were used as the test set. An ad-hoc 

voting classifier built upon single-feature linear classifiers was designed, and used for 

classification of the two groups of both training and test datasets. 

The results showed an overall accuracy of 87% and 84% for training and test datasets, 

respectively. Among the seven different tilts that each evokes a specific part of the inner 

ear organ, the side tilt which stimulates most of the labyrinth and particularly the utricle, 

was found to generate the best characteristic features for identifying Meniere’s disease 
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from controls. Thus, one may simplify the EVestG protocol to only the side tilt stimulus 

for a quick screening of Meniere’s disease.  

The proposed method encourages the use of EVestG technology as a non-invasive and 

potentially reliable diagnostic/screening tool to aid clinical diagnosis of Meniere’s 

diseases. 
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CHAPTER 1 Introduction 
 

 

1.1 Motivations and Objectives 

Meniere’s disease is an inner ear disorder that can cause severe episodes of vertigo, 

ringing in the ear (tinnitus), a feeling of fullness or pressure in the ear, and fluctuating 

hearing loss [1]. The prevalence of Meniere’s disease varies around the world (about 0.2% 

in US [2]) but it increases with age in a linear fashion up to the age of 60 [3]. Meniere’s 

disease is a persistent and recurrent problem for patients, and affects their quality of life 

especially during periods of acute symptomatology [4, 5]. Vertigo mainly influences the 

balance and physical movements, while tinnitus and hearing loss impact more the 

psychosocial aspects of patients’ lives [6]. 

Despite the magnitude of the efforts in the field, diagnosis of Meniere’s disease as well 

as its etiology has remained a challenge. Meniere’s diagnosis is usually based on a 

combination of a set of clinical symptoms and test results. However, differential diagnosis 

may be extremely difficult as the tests are mostly subjective and not highly specific [7]. 

Thus, misdiagnosis is a common problem as some of the symptoms of the disease overlap 

with other vestibular diseases, such as Benign paroxysmal positional vertigo (BPPV), 

Vestibular Neuritis, and Labyrinthitis [8, 9].  
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The process of diagnosis usually includes a hearing test (audiometry), 

Electronystagmography (ENG) and several blood tests. Magnetic resonance imaging 

(MRI) scans of the head and/or Electrocochleography (ECOG) assessments are also often 

helpful [1]. Given the frequent reoccurring nature of the disease, efforts to avoid 

misdiagnosis and deficiencies of the treatments highlight the great need for an objective 

assessment leading to a reliable diagnosis. A novel technology called 

Electrovestibulography (EVestG) [10, 11], has the potential to be considered as an 

objective and reliable diagnostic tool for diagnosis of Meniere’s disease from healthy 

subjects. This thesis investigates the application of EVestG signal analysis as a diagnostic 

aid for separating Meniere’s from other forms of dizziness as well as healthy controls. 

Electrovestibulography is a newly developed vestibular recording technique, which is 

able to detect specific background and driven vestibular field potentials (FPs) in response 

to passive tilt stimuli. It is believed that this technique can provide a quantitative and direct 

measure of activities of the vestibular system and associated neural pathways in the central 

nervous system (CNS) [3]. EVestG is fundamentally similar to ECOG but the acoustic 

stimuli are replaced by a series of vestibular stimuli (orthogonal tilts).  

Currently, the EVestG experiment has a relatively lengthy experimental protocol: data 

is recorded during seven different tilt stimuli. However, all the seven stimuli may not be 

needed to be recorded or analyzed as some of them may carry redundant information for 

detection of a specific disease. Therefore, it might be possible to identify the optimum 

tilt(s) best selective of the classification of Meniere’s from healthy subjects. 

In this thesis we examine whether application of advanced signal processing techniques 

on EVestG signals obtained from Meniere’s and healthy subjects leads to a reliable and 
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accurate  diagnostic aid for separating Meniere’s from other forms of dizziness as well as 

healthy controls. In addition, we investigate whether the EVestG experimental protocol can 

be optimized by identifying the most important stimulus among the seven current EVestG 

stimuli for Meniere’s diagnosis. 

Thus, the specific objectives are: 

1. To record and analyze EVestG signals of different stimuli, extract the most 

significant bio- features of the recorded signals specific to Meniere’s symptoms, and 

design a robust diagnostic classification algorithm. A classification algorithm, which its 

training and unbiased testing accuracies are close to each other and above 80%, is 

considered as a robust algorithm. 

2. To evaluate classification accuracies of each tilt’s data and investigate whether any 

tilt’s data could be removed without hampering the final diagnostic classification; thus, 

optimizing the EVestG recording protocol. 

1.2 Contribution of the Thesis 

This is the very first study on the novel EVestG technology investigating whether 

EVestG signals analysis would lead to a reliable, robust and accurate diagnostic aid for 

separating Meniere’s and healthy individuals; data used in this thesis were collected from 

two collaborating laboratories in Australia and Canada, with the similar equipment and the 

same protocol. The contributions of this thesis are listed in detailed as below: 

1-  Discovering EVestG signals biomarkers sensitive to Meniere’s disease.  

2-  Designing a robust classification method for classification of Meniere’s subjects 

from healthy controls. 
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3-  Identification of the most informative EVestG stimulus in Meniere’s/control 

classification. 

4-  Verification of superiority of suggested classification method versus a few 

structurally similar classifiers (specifically in dealing with missing data). 

1.3 Organization of the Thesis 

Chapter 2 provides background information on Meniere’s disease, its symptoms, 

and some common vestibular testing methods, as well as introducing EVestG 

technology and the classification scheme of this thesis. Chapter 3 presents the 

methodology including the measurement setup, recording protocol, and study subjects 

preparation as well as details of signal analysis and classification methods. Chapter 4 

displays the classification results and discussion of the results. Chapter 5 presents the 

conclusion of this study and suggests recommendations for future works.  
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CHAPTER 2   Background 

 

 

2.1 Overview 

In this chapter we present introductory information about Meniere’s disease, anatomy 

of the vestibular system, and different common vestibular testing methods in relation to 

Meniere’s disease. We also introduce EVestG, the technology used in this study, followed 

by a review of the biological data classification methods. 

2.2 Meniere’s Disease 

In 1861 the French physician, Dr. Prosper Meniere’s, theorized that attacks of vertigo, 

ringing in the ear (tinnitus) and hearing loss originate from the inner ear rather than the 

brain (which was generally believed to be the origin of the symptoms at the time). His 

hypothesis was confirmed [12]; thus the name of Dr. Prosper Meniere’s began its long 

association with this inner ear disease and inner ear balance disorders in general. 

A Meniere’s episode is usually preceded by hearing fluctuations or tinnitus, and 

involves severe vertigo (spinning), imbalance, nausea and vomiting, which may last two to 
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four hours [13]. Meniere’s episodes may occur in clusters; that means several attacks may 

happen within a short period of time, while years may pass between the acute attacks. This 

disease usually starts in one ear but often extends to both ears over time. In most cases, a 

progressive hearing loss occurs in the affected ear(s). The effect of the hearing loss first 

appears in the low frequencies but over time it can progress to either a peaked pattern with 

the peak in the frequency range of 250 Hz-8 kHz or to a flat loss over the entire frequency 

band [14]. 

The area affected by Meniere’s disease is the entire labyrinth, which includes the 

semicircular canals (SCC), otolith organs, and the cochlea. It appears that the main problem 

in Meniere’s disease is an increase of the volume and pressure of endolymph that can cause 

a dilation of the endolymph system (Figure 2-1) [15]; this is called "hydrops". This may 

happen when the drainage system, called the endolymphatic duct or sac, is blocked or too 

much endolymph fluid is secreted into the inner ear. The "hydrops" may be a marker for 

the Meniere’s disease, rather than necessarily being responsible for the symptoms [8]. 

More recent researches on the origin of Meniere’s disease show that hydrops is not 

found in all individuals with Meniere’s disease; hydrops is also commonly (6%) found on 

autopsy studies of individuals with no Meniere’s symptoms [16]. Because Meniere’s 

disease occurs in roughly 0.2% of population, and hydrops is found in 6% of temporal 

bones, there is more than an order of magnitude of larger population with hydrops than 

those with Meniere’s disease. Thus, logically, there must be something more than simply 

hydrops involved in Meniere’s disease. Viral infection, autoimmune disease, head injury, 

hereditary predisposition, and allergy are considered as the precipitating factors of 

Meniere’s disease [17]. 
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To have a better insight of the Meniere’s disease’s cause and effect the anatomy of the 

inner ear is briefly reviewed in the next section. 

2.3 Anatomy of the Vestibular System 

The human vestibular system is built upon three main components: a peripheral sensory 

apparatus, a central processor, and the (vestibular) motor outputs (Figure 2-2). There are a 

set of motion sensors within the peripheral apparatus, which send the vestibular 

information to the central nervous system (CNS), specifically to the vestibular nuclei and 

the cerebellum. The CNS receives these signals along with other sensory information (such 

as visual and proprioceptive sensory inputs) and estimates head and body orientation.  

The output of the CNS is sent to the ocular muscles and spinal cord to provide three 

important reflexes: the vestibulo-ocular reflex (VOR), the vestibulo-cervical reflex (VCR) 

and the vestibulo-spinal reflex (VSR). The VOR generates and controls eye movements in 

order to enable clear vision, while the head is in motion. The VCR works on the neck 

musculature to stabilize the head. The VSR generates compensatory body movement that 

preserves head and postural stability, and therefore prevents falling. The performance of 

the vestibular reflexes is monitored by the CNS, readjusted or controlled as necessary by 

the cerebellum, and completed by slower higher cortical processes. 

The following sub-sections describe the anatomy and the physiology of the vestibular 

system in the periphery and CNS as well as the clinical presentation of common peripheral 

vestibular disorders.  
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2.3.1 The Peripheral Sensory Apparatus 

The following overview of the peripheral vestibular system is extracted from reviews 

[1, 9, 18]. The peripheral vestibular system consists of: 1) the bony labyrinth, 2) the 

membranous labyrinth, and 3) the motion sensors of the vestibular system (hair cells) that 

are the end-organs of the SCCs and the otolith organs. The peripheral vestibular system 

(Figure 2-3) lies within the inner ear. It is extended laterally by the air-filled middle ear 

and medially by the temporal bone. It is located posterior to the cochlea [8]. The external 

ear (the pinna and ear canal) and middle ear (the tympanic cavity which includes the three 

ear bones or ossicles: the malleus, incus, and stapes, the Eustachian tube, and the mastoid 

air cell system) are auditory organs, which do not directly affect the vestibular function; t, 

disease or infection related to these parts, particularly the middle ear can affect the inner 

ear. The tympanic membrane or ear drum separates the external and middle ear. It has a 

diameter of 8.5 to 10 mm and a thickness of 0.1 mm [8]. 

The bony labyrinth consists of the bones of three SCCs, the cochlea, and otolith organs, 

which consist of the utricle and saccule (Figure 2-4). Note that one end of each SCC is 

widened in diameter to form an ampulla. The bony labyrinth is filled with perilymphatic 

fluid, in which the membranous labyrinth is suspended (by perilymphatic fluid and 

supportive connective tissue). The membranous labyrinth is filled with endolymphatic 

fluid. Under normal circumstances, there is no direct communication between the 

endolymph and perilymph compartments. 

Specialized hair cells contained in each ampulla of SCCs and in otolith organs are the 

biological sensors that convert the mechanical shearing forces generated by head motion 

into neural discharges or neural firings. Each hair cell is innervated by an afferent neuron 
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located in the vestibular ganglion (Figure 2-3), which is located close to the ampulla. When 

the hair cells (stereocilia) are bent toward or away from the longest one (kinocilium), firing 

rate increases or decreases in the vestibular nerve respectively (see Figure 2-5). The neural 

discharges will then be directed to specific areas of the brainstem and the cerebellum. 

Because of the orientation of the SCCs and otolith organs and due to the differences in their 

fluid mechanics, they are able to respond selectively to head motions in particular 

directions such that the SCCs respond to angular velocity, and the otolith organs to linear 

acceleration. 

The SCCs and their hair cells: In each ear there are three SCCs oriented approximately 

at right angles to each other as shown in Figure 2-3. One canal (the lateral) is located in a 

plane that forms a 30 degree angle with the horizontal plane. The other two canals (the 

posterior and anterior) are almost orthogonal with each other and with respect to the lateral 

canal plane.  

The hair cells in the ampullae rest on a tuft of blood vessels, nerve fibers, and supporting 

cellular tissue called cristae ampullaris. Within each crista, all hair cells are oriented in the 

same direction and a flexible and gelatinous membrane, called the cupula, covers them. 

When an angular head motion occurs, the inertial lag of the endolymph fluid causes the 

cupula to bend back or forth, which stimulates the hair cells (Figure 2-5) [19]. Neural firing 

in the vestibular nerve is proportional to the head velocity over the range of frequencies, in 

which the head commonly moves (0.5–7 Hz) [8].  

The semicircular canals are only able to detect the start and end of rotation but not the 

velocity during a prolonged rotation. They respond well in the first seconds of the initiation 

and termination of the rotation as they act like accelerometers. As the head rotates the duct 
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moves, but the endolymph resists and lags behind. This deflects the cupula, and bends the 

cilia within. Over time, the endolymph catches up to the movement of the duct, and the 

cupula is no longer affected [20]. However, when the rotation stops, the endolymph 

continues to move while the duct has stopped; hence, it stimulates the hair cells in the 

opposite direction.  

Each SCC co-works very closely as a pair with a SCC located on the same plane but in 

the other side of the head (see Figure 2-6). The individual SCCs make the following three 

coplanar pairs: (1) right and left lateral, (2) left anterior and right posterior, and (3) left 

posterior and right anterior. The hair cells within two SCCs of the same plane aligned 

oppositely. Thus, when an angular head motion occurs, the endolymph of the coplanar pair 

is displaced in opposite directions; consequently, neural firing increases in one vestibular 

nerve, and decreases on the other side.  

There are advantages due to the arrangement of coplanar pairing. First, it provides 

sensory redundant information, which is useful when a disease (such as vestibular neuritis, 

or benign paroxysmal positional vertigo) or ear surgery affects the SCC on one side. In that 

case, CNS will still receive vestibular information about head velocity within that plane 

from the contralateral SCC of the coplanar pair. Second, pairing allows the brain to ignore 

changes in neural firing that occurs without head motion and on both sides simultaneously 

(such as changes in body temperature or chemistry). 

The otolith organs and their hair cells: The otolith organs include structures that are 

similar to the cupulae. The otolith organs consist of utricle and saccule, which are located 

between the cochlea and the semicircular canals. Inside the utricle and saccule, there is a 
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layer of hair cells called macula. The macula of the utricle lies mainly in the horizontal 

plane, whereas the macula of the saccule is located mainly in the vertical plane. 

The hair cells of the macula are covered by a gelatinous layer, in which are embedded 

otoconia. The otoconia are calcium carbonate crystals, which have more mass than cupulae 

(Figure 2-7). The sensitivity to gravity and linear acceleration is obtained due to the mass 

of the otoconia inside the otolith organs. Therefore, when the head tilts or linearly 

accelerates, gravity causes the gelatinous layer to shift relatively to the hair cells, and bend 

them. In contrast with the macula, the cupulae (inside the SCC) normally have the same 

density as the surrounding endolymphatic fluid, and are insensitive to gravity [1].  

The otolith organs distinguish forces related to linear acceleration such as linear motions 

and static head tilts with respect to gravity. Their function is different from the SCCs in 

two main ways: 1) they respond to linear motion instead of angular motion, and 2) they 

respond to acceleration rather than to velocity [21]. Overall, the otolith organs have a 

simpler function than the SCCs. Unlike the SCCs that must convert head velocity into 

displacement to properly activate the hair cells of the cristae, the otolith organs need no 

special hydrodynamic system.  

Although the otolith organs have only two sensors for three axes of linear motion, they 

are capable of responding to motions in all three dimensions (Figure 2-7). In the upright 

position, the saccule and utricle are oriented vertically and horizontally, respectively. 

Therefore, the saccule can sense linear acceleration in the vertical plane, which includes 

acceleration in up-down and in sideways directions. The utricle senses acceleration in 

horizontal plane that includes acceleration in forward-backward directions [22].  
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Note that the saccular and utricular maculae on one side of the head are mirror images 

of those on the other side. Thus, a tilt of the head to one side has opposite effects on the 

corresponding utricle or saccule hair cells of the other side [23]. In other word, there is a 

redundancy in the otolith organs, like the SCCs, with similar sensors on both sides of the 

head. 

There is also a redundancy related to the geometry of each of the otolithic membranes. 

Within each macula there is a curving zone, called the striola, which separates the direction 

of hair-cell polarization on each side. Consequently, head tilt increases afferent discharge 

from one part of a macula, while reducing the afferent discharge from another portion of 

the same macula. This extra level of redundancy in comparison with the function of SCCs 

makes the otolith organs probably less vulnerable to unilateral vestibular lesions. 

The Vestibular nerve: The auditory and vestibular end organs both share the vestibulo-

cochlear nerve (cranial nerve VIII) pathway to the brainstem, cerebellum and higher 

integrative centers in the brain. The hair cells of the vestibular apparatus stimulate the 

dendrites of the sensory bipolar neurons, the cell bodies of which reside within the 

vestibular ganglion. Vestibular nerve fibers are the afferent projections from the neurons 

of the vestibular ganglion. The vestibular ganglion is located in the Internal Acoustic 

Meatus (IAM), which is part of the Internal Acoustic canal (IAC). The vestibular nerve 

transmits afferent signals through the IAC. In addition to the vestibular nerve, the IAC 

contains the cochlear nerve, the facial nerve (the VII cranial nerve), and the labyrinthine 

artery. The vestibular nerve travels through the IAC in the petrous portion of the temporal 

bone, and reaches the vestibular nuclei that are located approximately at the junction of the 

medulla and the pons, and also reaches directly to the cerebellum [23]. 
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In all studied species, the vestibular fibers exhibit a high and steady spontaneous firing 

rate at rest, when no stimulus is applied. As a result, they can transmit information by either 

increasing or decreasing their firing rate [24].  

2.3.2 Central Vestibular System  

Afferents from the vestibular hair cells have two main targets as vestibular input: the 

vestibular nuclear complex and the cerebellum (Figure 2-2). The afferents that first reach 

the cerebellum, called primary afferent fibers, are axons of cell bodies located in the 

vestibular ganglion. The secondary afferents reach the cerebellum after passing through 

the vestibular nuclear complex (vestibular nuclei) [25]. The vestibular nuclei (VN) are the 

primary processor of vestibular input, and implements direct and fast connections between 

incoming afferent information and motor output neurons. The cerebellum works as the 

adaptive processor; it monitors vestibular performance, and readjusts central vestibular 

processing if necessary [8]. At both locations, vestibular somatosensory and visual sensory 

inputs are also processed along with the vestibular input. 

The vestibular nuclei (VN): The VN, located within the pons and also extended into 

the medulla, perform much of the processing that is needed to analyze head position and 

motion in order to maintain balance and posture. The VN consist of four “major” nuclei 

(superior, medial, lateral, and descending) and at least seven “minor” nuclei [17] . The 

primary afferent neurons are distributed to different parts of the ipsilateral VN. The VN 

between the two sides of the brainstem are connected together via a system of commissures 

that are mutually inhibitory. 

The information to be shared between the two sides of the brainstem, such as the 

function of pairing plane of the SCCs or the sub-sections of the otolith organs, is transferred 
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by system of commissures [26]. Other than the hair cells response, the VN receive inputs 

from cerebellum, spinal cord, and contralateral VN. 

In the VN, vestibular sensory input is processed simultaneously with other sensory 

information such as proprioceptive, visual, tactile, and auditory. There are extensive 

connections between the VN, cerebellum, ocular motor nuclei and brainstem reticular 

activating systems in order to provide appropriate (efferent) signals for the extra ocular and 

skeletal muscles that are the effector organs of VOR and VSR. 

The VN (or secondary vestibular neurons) outputs have projections to the motor nuclei 

of extraocular muscles as well as to cerebellum, vestibular organ (efferent vestibular 

system), contralateral VN neurons, spinal cord, reticular formation, and the thalamocortical 

pathways [6]. 

The superior vestibular nucleus (SVN) receives inputs from vestibular primary afferent 

of the SCCs while other inputs include otolith organs fibers that only project to the 

periphery of the nucleus, afferents from the cerebellum, and inputs from contralateral 

medial and descending VN. Due to SCCs connections, the superior vestibular nucleus is 

the major relay for VORs. 

The lateral vestibular nucleus (LVN) receives inputs mainly from vestibular primary 

afferents and fibers form the nuclei of the cerebellum. There are fewer inputs from spinal 

and commissural sources. The lateral nucleus sends efferent fibers to spinal cord that makes 

it the principal nucleus for the VSRs. 

The medial vestibular nucleus (MVN) is the largest of the VN in humans and receives 

afferents form SCC, OTO and cerebellum. There are also large projections from 

contralateral medial vestibular nucleus and a small projection from reticular formation. The 
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medial vestibular nucleus acts as a relay for VOR, while it is also involved in VSRs and 

coordinates head and eye movements that occur together. Most of the commissural 

connections from contralateral medial VN are probably involved in compensatory 

vestibular mechanisms (e.g., after peripheral vestibular lesions). 

The descending or inferior vestibular nucleus (DVN) is connected to all of the other 

nuclei and the cerebellum but has no exclusive outflow for a special reflex. A huge number 

of commissural fibers originate from the descending nucleus and innervate the contralateral 

VN. The descending vestibular nucleus acts as an integrative center for the vestibular 

signals from the two sides, the cerebellum, and the reticular formation.  

The Cerebellum: The cerebellum is a major recipient of the VN signals, and is also a 

major source of input to the VN. The cerebellum function is not required for vestibular 

reflexes, but if it is removed, vestibular reflexes become uncalibrated and ineffective. The 

parts of the cerebellum responsible for handling the dynamic equilibrium signals from the 

SCCs are the flocculonodular lobes. The uvular lobe of the cerebellum plays a similar role 

in static equilibrium (for outputs of otolith organs). In fact, the cerebellar projections to the 

VN have an inhibitory influence on the VN.  

The vestibular efferents coming from the VN and/or cerebellum, are joined by cochlear 

efferents, and enter the vestibular nerve. At the vestibular end organs, these few fibers 

branch off fully to innervate the entire sensory epithelium. Recent work suggests that the 

ipsilaterally projecting efferents supply the central regions of the crista, whereas the 

contralaterally projecting efferents supply the peripheral zone [9]. The efferent fibers 

terminate by making synaptic contacts with hair cells and afferent fibers [9]. 
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2.3.3 Vestibular System Disorders 

Peripheral vestibular dysfunction can produce a variety of signs and symptoms that 

overlap with some of those of Meniere’s disease. A thorough evaluation by a physician is 

needed to identify the specific pathology behind the patient’s complaints of vertigo or 

disequilibrium. This section describes the clinical presentation of the more common 

peripheral vestibular disorders.  

Benign Paroxysmal Positional Vertigo: Benign paroxysmal positional vertigo 

(BPPV) is the most common disorder of the inner ear’s vestibular system [8, 27]. It 

accounts for at least 20% of diagnoses made by specialists, and is the cause of 

approximately 50% of dizziness in older adults [28]. BPPV produces a sensation of 

spinning, called vertigo, which suddenly occurs with a change in head posture. In addition 

to vertigo, symptoms of BPPV include dizziness (lightheadedness), imbalance, difficulty 

concentrating, nystagmus (the rhythmic and cyclic movement of the eyes with a slow phase 

of vestibular origin and a fast phase of reticular origin) and nausea. Activities that bring on 

symptoms can vary in each person, but symptoms usually appear by changing the head’s 

position with respect to gravity. With the frequent involvement of the posterior 

semicircular canal in BPPV, common problematic head movements include looking up 

and/or rolling over and getting out of bed.  

The vertigo lasts only 30 seconds to 2 minutes, and disappears even if the precipitating 

position is maintained. Hearing loss, aural fullness, and tinnitus are not seen in this 

condition. About 70% of the cases in BPPV occur unilaterally [8]. Spontaneous recoveries 

are common, but recurrences can occur, and the condition may trouble the patient 

frequently for years.  
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The occurrence of BPPV is due to the displacement of loose otoconia. The otoconia 

may either adhere to the cupula of one SCC (usually to the posterior SCC as it has the 

lowest point with respect to gravity) or float freely in the long arm of the canal. The 

common cause of BPPV in people under age 50 is head injury, which may happen as a 

result of concussive force that displaces the otoconia. In people over 50, BPPV is mostly 

idiopathic but is generally associated with natural age-related degeneration of the otolithic 

membrane. BPPV is also associated with migraine [29]. Viruses affecting the ear, such as 

those causing vestibular neuritis and Meniere’s disease are significant but unusual causes. 

Diagnosis includes a medical history, physical examinations, the results of vestibular 

and auditory (hearing) tests, and possibly lab work to rule out other diagnoses. The key 

diagnostic maneuver is the Dix-Hallpike positioning test [30] while the examiner observes 

the patient’s eyes for nystagmus with position changes. A typical response is induced by 

rapid position changes from the sitting to the head-hanging right or left position. Vertigo 

and nystagmus begin with a latency of about 1 second after the head is tilted toward the 

affected ear, and increase in severity within about 10 seconds; they diminish gradually after 

10-40 seconds, even if the head position is maintained. The direction of nystagmus, which 

is usually vertical, corresponds very closely to the plane of the offending SCC; hence, the 

problematic semicircular canal can be identified by this method [28]. Repeating this 

procedure several times decreases the symptoms (adaptation of the response).  

If symptoms persist longer than expected, further investigation, such as MRI, is usually 

made to assess for unusual causes of positional vertigo. BPPV usually resolves 

spontaneously within 6 to 12 months. Simple vestibular exercises or maneuvers aimed at 

dispersing the otoconia from the cupula can speed recovery. 
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For more severe symptoms unresponsive to exercises, there are surgical options 

including nerve section and partitioning of the labyrinth using a laser technique. 

Vestibular Neuritis: Acute unilateral dizziness, known as vestibular neuritis, is the 

second most common cause of vertigo [8]. About 5% of all dizziness and perhaps 15% of 

all vertigo is due to vestibular neuritis. The condition mainly affects those aged between 

30 and 60 years, with a peak for women in the fourth decade and for men in the sixth 

decade.  

Although in most cases a definite cause is never uncovered, evidences of a viral 

etiology, which results in histopathologic changes of branches of the vestibular nerve (or 

sensory neurons or even the brainstem vestibular nucleus), are found. A clear distinction 

about the location of the lesion can only be made at autopsy.  

When one of the two vestibular nerves is infected and hence inflamed, there will be an 

imbalance between the two sides communicating with the cortex, brainstem and 

cerebellum resulting in the symptoms. The main symptom is prolonged and severe 

rotational vertigo that is worsened by movement of the head associated with spontaneous 

horizontal rotary nystagmus beating toward the good ear, postural imbalance, and nausea. 

Hearing loss is not present.  

It is common to have BPPV syndrome follow vestibular neuritis disease. This happens 

because the utricle is damaged (supplied by the superior vestibular nerve), and deposits 

loose otoconia into the preserved posterior canal. Therefore, evidences suggest the 

possibility of observation of an acute unilateral vestibulopathy and BPPV simultaneously 

in the same ear of an affected patient with Vestibular Neuritis [31, 32]. 
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The diagnosis initially includes other causes of vertigo, careful history and physical 

examination; an audiogram is required. In severe situations, other tests such as ENG (to 

document the reduced responses to motion of one ear), MRI (to be sure that there is no 

tumor or inflammation of cochlea) and blood tests may be advised. The symptoms usually 

stop after a period of 48 to 72 hours, and gradual return to normal balance occurs over 

approximately 6 weeks.  

Meniere’s disease: Meniere’s disease is a complex idiopathic disorder of the inner ear 

characterized by the three symptoms of vertigo, sensorineural hearing loss and tinnitus. It 

is the most common vestibular disorder after the BPPV and Vestibular Neuritis [8]. The 

characteristics and different aspects about this disease are described in this section. 

Epidemiology of Meniere’s disease: Meniere’s disease is a disorder of inner ear 

function that can cause devastating hearing and vestibular symptoms. It is almost equally 

distributed between the sexes, and usually has its onset in the fourth to sixth decades of 

life. Up to 15% of the Meniere’s patients have blood relatives with the same disease, 

suggesting a genetic link [33]. According to [34], 85% of Meniere’s patients have a 

peripheral disorder in the vestibular system and only 15% will have a central disorder. 

Meniere’s disease is usually confined to one ear in the first stages of the disease, but it 

often extends to involve both ears over time; after 30 years, 50% of patients with Meniere’s 

have bilateral disease [3]. 

Symptoms of Meniere’s disease: A typical attack is experienced as a sensation of 

fullness of the ear, a reduction in hearing and tinnitus followed by rotational vertigo, 

postural imbalance, nystagmus, nausea and vomiting. The vertigo persists approximately 

from 30 minutes to 24 hours. Gradually, the severe symptoms diminish, and the patient is 
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capable of walking within 72 hours; however, the weakness and postural unsteadiness 

persist for days or weeks. 

During the recovery time, hearing gradually returns. It may return to the pre-attack 

baseline, or there may be residual permanent sensorineural hearing loss, starting at lower 

frequencies.  

 Some patients may suddenly fall without warning; this event, which may occur in later 

stages of the disease, is called “otolithic crisis of Tumarkin” [35]. This is associated with 

sudden mechanical deformation of the otolith organs, causing an activation of vestibular 

reflexes. Patients unexpectedly feel that they are tilted or falling (although they may be 

straight), and make much of the rapid repositioning themselves. As this symptom occurs 

without warning, it can result in severe injuries. 

The symptom of vertigo usually happens due to the mismatch (conflict) between the 

converging sensory inputs and the expected sensory patterns existing in the CNS [36]. Due 

to the previous experiences and during years, the CNS has learned to assume the symmetry 

(same frequency and intensity) in the electric impulses generated in both labyrinths as 

normal. This symmetry is expressed clinically as a feeling of balance [37, 38]. 

During an attack, the affected labyrinth diminishes its activity which makes it incapable 

of maintaining even its basal firings [39]. The contralateral labyrinth, however, continues 

discharging normally in the CNS. In this manner, the impulses reach the CNS in an 

asymmetric form, even though the head is maintained in the neutral position and is still. 

The CNS will interpret this asymmetry as a rotating sensation of movement.  

On the other hand, information of this asymmetry will also be sent to the ocular nuclei. 

Consequently, the gaze sways in the direction of the affected labyrinth. In response to 
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change, excitatory reticular neurons are activated and direct the nuclei of the ocular muscle 

to bring the eyeballs rapidly back to their initial position (nystagmus). Then the reticular 

neurons undergo an absolute refractory period, and hence a new cycle of sway of gaze is 

restarting (nystagmus) [37, 38]. A series of neuro-vegetative signals and symptoms add to 

the vertigo and the nystagmus to create the final clinical picture (nausea, vomiting, cold 

sweating, etc). The attack doesn’t last endlessly as the nervous system sets up a series of 

mechanisms aiming to shut down the electrical activity of the contralateral healthy side and 

minimize the severity of the symptoms [37, 38]. 

Etiology of Meniere’s disease: A phenomenon fundamental to the development of 

Meniere’s disease is endolymphatic hydrops. However, it is still unclear whether 

endolymphatic hydrops itself is the cause of Meniere’s disease or is a pathologic change 

seen in the disease. Most researchers think that Meniere’s syndrome has several causes 

(etiologies). Reasonable possibilities are obstruction of endolymphatic outflow at the 

endolymphatic duct level, increased production of endolymph, or reduced absorption of 

endolymph caused by a dysfunctional endolymphatic sac [16].  

Recently, attention has been focused on the immunologic function of the endolymphatic 

sac as immune disease may contribute to a substantial percentage of Meniere’s disease 

[40]. Moreover, there is also reasonable case for Migraine being the cause of some cases 

of Meniere’s disease. Migraine is at least an order of magnitude more common than 

Meniere’s disease, and one can allow for the possibility that migraine may cause symptoms 

and complications similar in frequency to those due to Meniere’s disease. About 50% of 

the time Meniere’s patients have migraine [41]. 
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Thus, the bottom line is that the main cause of Meniere’s disease is unknown [8, 41]. It 

is most often attributed to viral infections of the inner ear, head injury, a hereditary 

predisposition, and allergy. Migraine possibly produces some symptoms that overlap with 

Meniere’s disease [41]. 

Diagnosis of Meniere’s disease: As defined by the American Academy of 

Otolaryngology-Head and Neck Surgery (AAO-HNS), there are 4 groups of certain, 

definite, probable, and possible Meniere’s patients.  

‘Certain’ Meniere’s can only be diagnosed by autopsy and includes the above criteria 

plus histopathologic confirmation of endolymphatic hydrops. ‘Definite’ Meniere’s disease 

is diagnosed when two or more definitive spontaneous episodes of vertigo 20 minutes or 

longer occurs with audiometrically documented hearing loss on at least one occasion and 

tinnitus or aural fullness in the treated ear while other cases are excluded. ‘Probable’ 

Meniere’s are considered when one attack of vertigo has occurred with documented 

hearing loss on at least one occasion and tinnitus or aural fullness in the affected ear while 

other cases are excluded. ‘Possible’ Meniere’s is considered if Meniere’s-type episodic 

vertigo occurs without documented hearing loss or fluctuating sensorineural hearing loss 

with disequilibrium, while other cases are excluded [42]. 

Useful diagnostic tests for Meniere’s disease include an audiogram and 

Electronystagmography (ENG) test. Typically, the audiogram displays an ipsilateral 

sensorineural hearing loss involving the lower frequencies. ENG may demonstrate a 

unilateral vestibular weakness on caloric testing, again involving the ear symptomatic for 

pressure, hearing loss, and tinnitus. Electrocochleography is useful in cases that are 
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unclear. The finding of enlarged summating potentials (SP) in the suspected ear is 

diagnostic of endolymphatic hydrops. 

 A brainstem-evoked acoustic response (BEAR) procedure can also be performed to 

screen for cochlear nerve or brainstem pathology. If the BEAR is found to be positive, MRI 

should be obtained to assess for central nervous system or VIIIth nerve pathology.  

2.4 Vestibular Testing Methods 

As mentioned before, there are other disorders that can produce the same symptoms as 

Meniere’s disease and, thus, have to be ruled out or excluded by using different types of 

tests in order to develop an accurate diagnosis. An overview of general current methods as 

well as the EVestG, used in this study, is presented in the following sections. 

2.4.1 Initial Examination and Hearing Test 

The history of inner ear problems, such as information about infectious diseases or 

allergies, medication used in past ear problems, and the history of disease in patient’s 

family are important parts of evaluation. Moreover, initial evaluation based on physical 

examination of the ears (to rule out obvious infections), head and neck, and the part of the 

nervous system related to balance is helpful to be performed.  

Hearing test is a common assessment, which displays how well sounds are detected at 

different pitches and volumes and how well similar-sounding words are distinguished. 

According to AAO-HNS diagnostic criteria, hearing loss of Meniere’s patients is described 

as the followings [42]: 

- In unilateral cases the average of thresholds at 0.5, 1, 2 and 3 kHz is 20dB or poorer 

in the affected ear than on the opposite side. 
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- In bilateral cases the average of threshold values at 0.5, 1, 2 and 3 kHz is > 25 dB in 

each ear. 

2.4.2 Electronystagmography (ENG) 

ENG includes series of tests that record eye movements in order to examine vestibular 

function and visual-vestibular interactions using electro-oculography (EOG) [43]. ENG 

enables the quantitative measurement of the eye movement properties in terms of slow 

component velocity, frequency, and amplitude of the nystagmus. It can also measure how 

these variables change in absence of eye fixation (e.g., with eyes open in a dark room). 

ENG shows abnormality in Meniere’s patients with unilateral decreased vestibular 

response in the affected ear.  

Electro-oculography (EOG) is the simplest and most available system for recording eye 

movement. The basis of this method is the potential difference between cornea and retina, 

which is aligned parallel to the longitudinal axis of the eye. The EOG enables non-invasive 

recording of eye movements with accuracy of about 1º in horizontal and vertical ranges of 

≤40º and ≤20º, respectively. Main disadvantages of this method include eye blink artefacts, 

muscle activity interference, poor signal to noise ratio (SNR), and unstable baseline cornea-

retinal potential. Furthermore, torsional eye movement cannot be recorded; also, 

recordings of vertical eye movements are not accurate and depend on lighting condition of 

test room [1, 49]. 

Video-oculography is a relatively newer method for recording eye movements. This 

method includes an infra-red video camera which is connected to a computer running 

digital image processing routines to extract eye position form the images. The advantages 

of this method include better resolution (0.1-1º), fast set up time and absence of electrical 
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noise from sources inside or outside body. This method is also better tolerated by patients 

and can detect torsional eye movements. However, this method is only possible with eyes 

wide open, and shows poor contrast between pupil and iris in some patients [1, 49]. 

Magnetic coil is another technique for the recording of horizontal, vertical and torsional 

eye movement with a very high resolution with minimal fluctuations. In this method special 

contact lenses with embedded coils of fine wire are placed on top of cornea. Then, subject 

sits inside a cage that induces magnetic field. Eye movement causes a small current in the 

coil which is amplified and recorded. With this method the eye movements can be 

measured in all three dimensions and eye movement trajectories can be extracted, which 

are very useful for detecting SCC abnormality in vestibular diseases such as vestibular 

neuritis, benign paroxysmal positioning vertigo (BPPV) and isolated lesions of a particular 

canal. The clinical use of this method is not popular due to the difficulty of wearing this 

kind of contact lens which requires anaesthetic drops, making this method semi-invasive 

[44]. 

2.4.3 Caloric Irrigation Test 

Caloric testing analyzes eye reflexes. Caloric irrigation is frequently employed for 

examination of the VOR because each labyrinth can be studied separately, while stimulus 

can be applied with simple equipment. Caloric irrigation is ideal for detecting the unilateral 

lesions at the levels of labyrinth and vestibular nerve.  

In caloric test the external ear canal is subjected to air or water flow at a temperature of 

7ºC above or below body temperature (37ºC). The temperature difference is conducted 

from the external ear canal to the inner ear and causes a gradual temperature change from 

one side of the SCC towards the other side. Hence, the endolymph fluid will circulate (via 
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a convection current) within the canal, and causes deflection of cupula and eye movements 

away and towards the ear respectively [45].  

Among the SCCs, the horizontal canal is the closest to the external ear that is source of 

temperature change, therefore; most of the horizontal nystagmus responses are related to 

the horizontal canal excitation [1]. It is also possible to tilt the patient head in a way to 

stimulate the two other SCCs as well [46]. 

The functionality of the vestibular system periphery is determined via assessment of the 

induced VOR. The maximum velocity of the slow component eye movements is measured. 

As a general rule, speeds less than 5º per second are considered abnormal. In Meniere’s 

patients caloric response diminishes with increased disease duration, and a canal 

dysfunction of 35% to 50% is commonly observed in the affected ear.  

The main drawback associated with caloric irrigation is the efficacy of heat transfer 

between external canal and inner ear that varies with regional blood flow, size of ear canal, 

length of heat transmission path and heat conductivity of the temporal bone [47]. In 

addition, because of slow speed in heat transfer, the caloric irrigation is similar to a single 

and slow rotational vestibular stimulus around 0.003 Hz [45]. 

2.4.4 Rotational Testing 

In order to assess VOR, vestibular system can also be evoked by rotations of the head 

or the whole body. Rotational testing has two major advantages over caloric irrigation. 

First, the rotational testing is not related to physical properties of external ear and temporal 

bone, while in caloric stimulation these physical features affect the results [48]. Second, 

examination of VOR at different frequencies is possible with rotational testing, whereas 

caloric testing is equivalent to examination at only one frequency. Rotational testing is the 
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only reliable test for detecting bilateral vestibular dysfunction. However, since rotation 

stimulates both labyrinths simultaneously, it is not very useful for detecting unilateral 

vestibular abnormalities such as unilateral Meniere’s cases [49]. 

To quantify the vestibular function during rotational testing, magnitude (gain) and 

timing (phase shift) of the eye movements are determined. The gain of the VOR is defined 

by ratio of slow component eye velocity to head rotation velocity, and the phase shift is 

time delay between eye and head motion. In other words, a gain of 1 and phase difference 

of 180 degree resembles an eye movement with the same velocity of head but in an opposite 

direction, which is a perfect VOR [1]. The VOR is at its optimum level within frequency 

range of natural head oscillations (during walking and running), which is between 0.6-8 

Hz [50].  

The rotational chair is currently a standard method used for rotational testing. In this 

method a patient sits on the chair, and the velocity and frequency of the chair rotation are 

adjusted by the computer that enables recording VOR responses at different frequencies 

and velocities in terms of VOR gain and phase difference. Laboratories have provided 

normal range of VOR responses in age-matched groups, which can be used for evaluating 

recorded responses [45]. 

2.4.5 Electrocochleography (ECOG) 

ECOG is another method in assessment and monitoring of vestibular function, which 

has been claimed to be useful for Meniere’s diagnosis. ECOG records electrical activity 

generated in the cochlea and auditory nerve due to auditory stimulus. ECOG responses are 

recorded via two methodologies: trans-tympanic and extra-tympanic. Trans-tympanic 

recording (invasive) involves a needle electrode passed through the tympanic membrane, 
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while non-invasive extra-tympanic ECOG involves an electrode consisting of a wick being 

placed on extra-tympanic sites such as the ear canal or the lateral surface of the tympanic 

membrane. The ECOG responses are much smaller in amplitude when recorded at extra-

tympanic sites (smaller signal to noise ratio). On the other hand, extra-tympanic recording 

are non-invasive and generally painless. The reference and ground electrodes are 

positioned on the earlobe and forehead respectively [51]. 

The stimulus in ECOG usually consists of alternating polarity acoustic clicks in order 

to eliminate the appearance of stimulus artefacts [52]. The response that is measured in 

ECOG usually occurs within 10 millisecond of the stimulus onset [51]; however, recording 

should continue for at least 300-1000 stimuli in order to increase signal to noise ratio by 

averaging over many time intervals. The final response includes the following components: 

the cochlear microphonic (CM), cochlear summating potential (SP), and the auditory nerve 

action potential (AP) [52].  

Figure 2-8 shows an example of ECOG waveform recorded from a healthy subject. 

Different methods have been suggested for measurement of the SP and AP values. The 

amplitudes can either be measured with respect to a baseline [53] or measured with using 

the peak to peak amplitudes [51]. Peak to peak absolute amplitudes are preferred in extra-

tympanic recordings due to considerable amount of variation in the baseline values [51].  

Cochlear microphonic (CM): CM is an alternating current (AC) response generated 

by the instantaneous displacement pattern of the basilar membrane evoked by acoustic 

stimuli. CM is often difficult to be distinguished from the stimulus artefact in non-invasive 

recordings and is cancelled when using alternating polarity clicks [54]. 
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Cochlear summating potential (SP): The SP is a direct current (DC) response 

generated within the cochlea and represents the rectified smoothed basilar membrane 

displacement [51]. SP duration is closely associated with the duration of the acoustic 

stimulus. It has been reported the normal duration of the SP to be between 0.3 and 0.45 

milliseconds [52]. 

 It is believed that an increased endolymph volume and pressure alter the hydro mechanical 

properties of the cochlea which results in distorting the normal vibratory asymmetry of 

basilar membrane. Consequently, this distortion increases the magnitude of SP which is a 

property used in diagnosis of Meniere’s disease. 

Auditory nerve action potential (AP): The averaged activity of the potentials (as 

opposed to the resting potentials) caused by the synchronous firing of thousands of auditory 

nerve fibers is known as the compound action potential or action potential (AP). The AP 

represents the number of nerve fibers firing; thus a high degree of synchrony of neural 

firing is necessary for producing a well- defined AP. AP can also reflect the hair cell output 

[55]. 

The duration of AP from its onset to P1 (see Figure 2-8) is usually between 0.8 and 1.25 

milliseconds. The latency of AP in ECOG recording is the time between the onset of 

stimulus and the N1 peak. The magnitude of AP is known to reflect the number of fibers 

which are firing simultaneously [52]. 

The latency of AP, duration, and magnitude of the AP are usually used to interpret the 

ECOG waveform recordings. It is well documented that in Meniere’s patients, the 

amplitude of SP is greater than normal and also particularly with respect to AP. SP and AP 

amplitudes are subject to variation within normal population which can be due to electrode 
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placement. SP amplitude varies between 0.1 to 1 and AP changes between 0.6 and 3 μv 

[52]. Amplitude of ratio seems to be a more consistent measure of the ECOG response 

which varies from 0.1 to 0.4 in normal subjects (mean value of 0.25). 

The SP/AP ratio derived from ECOG greater than 0.4-0.5 is considered abnormal and 

may represent the hydrops which helps to rule out Meniere’s disease [51]. However, [56] 

states that “Of those with definite Meniere’s, (only) 66.7% had abnormally elevated SP/AP 

ratios”. It is mentioned that the sensitivity of the SP/AP ratio to diagnose Meniere’s is 60-

71%. 

It should be noted that subjects must be able to hear or nothing will be recorded while 

performing an ECOG test. Practically, it is unrealistic to get an ECOG on someone with 

more than a 40-50 dB sensorineural hearing loss [51]. Hence, in order to have the best 

candidate for diagnosis of Meniere’s patients via ECOG the patient is permitted to have a 

mild sensorineural hearing loss. This limitation reduces the feasible population of patients 

to those who are in early stage of Meniere’s disease and are not old enough (> 60 years) to 

lose their hearing due to age. Unfortunately, ECOG results are rarely reported as a function 

of hearing, making it difficult to interpret in most studies [57]. 

As about 6% of the population has hydrops on autopsy [16], this indicates 6% of a 

normal population would have a positive ECOG. Considering that only 0.2% people have 

Meniere’s disease, one would expect a high number of false-positives and low number of 

false negatives in ECOG testing.  

Recently, a variant ECOG ratio (SP/AP area ratio) is suggested as an improved method 

of detecting Meniere’s disease. In this method, the SP area is determined from the onset of 

response (compared to baseline), to the first point after the AP where the response returns 
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to baseline. In other words, it actually includes not only the SP but the entire AP. The AP 

area is determined from the onset of the AP through its negative peak, and to the first 

opposite polarity peak (only contains the AP notch). A study based on this method has 

reported a high testing sensitivity (92%) and specificity (84%) diagnostic results in which 

the ECOG ratio results of 178 suspected Meniere’s patients, collected within 5 years, were 

compared to the received diagnoses of these individuals from their physicians; however, it 

also mentions that the method is only applicable to individuals without much hearing loss 

and thus not suitable for the majority of Meniere’s subjects [51]. 

In summary, ECOG is a vestibular test that is proposed to be used as an additional 

assessment, when other tests have failed to produce a clear answer. Also, it has been 

suggested to be a useful test when one is planning an invasive treatment such as gentamicin 

injection. Nevertheless, ECOG has not been accepted as a screening test due to its low 

specificity (high false positives).  

2.5 Electrovestibulography (EVestG) 

The limitations of vestibular measurement techniques provide motivation to search for 

new, alternative diagnostic methods, specific to different vestibular disorders. EVestG [11, 

58] is a relatively new diagnostic technique that has been developed to detect specific 

vestibular field potentials; one of its applications is claimed to be in in diagnosis of 

vestibular disorders, particularly Meniere’s disease. EVestG is a technique similar to 

ECOG, wherein the acoustic stimulus is replaced by a passive whole body tilt. EVestG is 

a non-invasive technique to record neural activity from the vestibular apparatus and VN; it 

measures a vestibular driven response stimulated by passively whole body tilting the 

subject, who is seated in a hydraulic chair located in an electromagnetically and 
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acoustically shielded chamber. The EVestG signal is recorded during dynamic and static 

phases via an electrode in each ear resting proximal to the tympanic membrane [11, 58]. 

The electrodes are painlessly positioned and rested close to subject’s left and right ear 

drums. 

The vestibular response signal, extracted by EVestG technology, is called a field 

potential (FP). The FPs are generated by the synchronous firings of groups of vestibular 

hair cells both randomly and at the onset of the stimulus, and their shape, in general, is 

similar to the SP/AP plot observed in ECOG. However, in contrast to ECOG, FPs extracted 

from EVestG signals are not time-locked to the stimulus. Instead, a wavelet-based data 

mining technique, called Neural Event Extraction Routine (NEER), is used to detect 

average FP from the floor noise in the recorded signal [11, 58]. Compared to ECOG, 

EVestG technique has the advantage of recording a “direct” dynamic vestibular response 

to both excitatory and inhibitory inputs (an applied tilt). Moreover, unlike ECOG, EVestG 

measurements can be performed even in individuals with hearing impaired. Therefore, 

EVestG may act as a more specific technique for detection of vestibular dysfunctions. The 

detailed explanation of EVestG technology is presented in the next chapter.  

As discussed before, vestibular system makes extensive interactions with neural centers 

within the CNS in sending and receiving information. Thus, hypothetically, direct 

measurement of the vestibular system responses using EVestG can indirectly reflect 

activity in brain regions and neural pathways. EVestG has shown the potential to have other 

diagnostic applications, particularly in the area of Parkinson’s disease and depression [59, 

60]. 
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Regarding Meniere’s disease diagnosis, EVestG signals were analyzed in a preliminary 

early study in a small sample size, and showed significant differences in terms of increased 

Sp/Ap ratio as well as decreased dynamic range of response for Meniere’s subjects 

compared to control ones [61]. However, no specific classification was performed based 

on the introduced differences. Nevertheless, this suggests EVestG signal analysis may act 

as a useful adjunct to assist in diagnosis of Meniere’s disease.  

2.6 Classification Schemes 

The major contribution of this thesis is characteristic feature extraction sensitive to 

Meniere’s disease from EVestG signals and the design of a robust diagnostic classification 

scheme. Thus, this section briefly reviews different classification methods for biological 

data. 

Machine learning techniques and classification algorithms have found many 

applications in analysis of biological and clinical data [62]. In general, machine learning 

techniques are divided into three categories: supervised learning, unsupervised learning, 

and reinforcement learning [63], amongst which supervised learning has been frequently 

used in biological signal processing. 

Depending on the nature of the input data, an appropriate algorithm can be selected 

leading to optimal classification achievements such as high accuracy and/or low processing 

time [64]. A major common challenge is the stochastic and heterogeneous nature of the 

biological data [65] that requires a large population in order to design a robust classification 

scheme; however, in investigational studies such as this thesis, recruitment of a large 

population of patients is almost impossible; thus the classification method should be 

designed considering these issues.  
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Another non-ideal factor is the missing values, which can originate from different stages 

of the experiment (e.g., the noise or artefact in the data collection system, withdrawal of 

the subject from part of the test or questionnaire, etc). In order to handle missing data 

several strategies can be considered, which are summarized in [66]. The basic approaches 

in handing the missing values are: discarding instances associated with missing values, 

acquiring missing values, imputation or employing reduced feature models. The first two 

methods are usually not feasible in real clinical applications with a small number of 

subjects. Imputation uses an estimation of the missing feature or of its distribution to 

generate predictions from a given classifier model. A simple example is to substitute the 

missing values in the training dataset by the mean value of the available training instances 

(samples) belonging to the same class, and in the test dataset by the mean value of the 

entire training feature vector independent of the class membership of the test sample. 

However, imputed data is not an actual data, and variance estimations need to reflect this 

uncertainty.  

The reduced-feature model technique represents an alternative approach, which is 

generating a new model that employs only the “available” features. Assuming there are 

measurements (features) from different modalities and a designed classifier for every 

modality, if a missing feature is encountered, no classifier is trained for that feature in that 

modality. Then, the decisions of all the available classifiers can be combined, in several 

different ways [67], in order to make a final decision. This is called “Fusion of classifiers” 

which has shown competitive results compared to imputation methods. This method is 

computationally less expensive compared to imputations; hence, might be preferred in 

practical applications [67]. This technique for handling missing data benefits from the idea 
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of using ensemble classifiers. According to the ensemble classifier systems [68], it is clear 

that no single approach is optimal and that multiple methods and approaches have to be 

used. The idea behind it is to consult “several experts”. It can be compared to the natural 

behavior of humans to seek a second (or third) opinion before making an important 

decision.  

In this project, in order to handle aforementioned non-idealities which reduce 

classifier’s performance, an ad-hoc classification scheme similar to classifier fusion 

scheme is proposed to address these challenges; that is described in the next chapter, in 

detail.  

For the described classification scheme, a suitable underlying classifier is needed. Since 

obtaining enough (training and testing) dataset is always with difficulty in real applications 

and “small” dataset is usually available, a simple classifier with few parameters to be 

estimated such as Linear, and Quadratic Discriminant Analysis (LDA and QDA) are 

beneficial.  

2.7 Summary 

This chapter reviewed the anatomy of vestibular system and periphery, common 

vestibular disorders including Meniere’s disease, and current vestibular testing methods 

such as hearing, ENG, caloric, and rotational tests as well as ECOG test. We also 

introduced the new EVestG technology and briefly explained the classification theme 

useful for EVestG data. In the forthcoming chapter, we will discuss about the methodology 

of using EVestG data for diagnosis of Meniere’s in detail.  
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Figure 2-1. The Normal membranous labyrinth (A), and Dilated membranous labyrinth in 

Meniere’s disease (B). Illustration is adapted with permission from [15]. 

 

 

 

 

 

 

 
Figure 2-2. Block diagram illustrating the main components of the vestibular system. Illustration 

is adapted with permission from [69]. 
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Figure 2-3. Anatomy of the peripheral vestibular system in relation to the ear. Marked locations 

are as follows: 1. Eardrum, 2. Malleus, 3.Incus, 4. Stapes, 5. Semicircular canals, 6. Auditory nerve, 

7. Facial nerve, 8. Vestibular nerve, 9. Cochlea, 10. Eustachean tube, 11. Temporal bone, 12. 

Labyrinth. Illustration is adapted with permission from [41]. 
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Figure 2-4. The bony labyrinth and membranous labyrinth [70]. 
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Figure 2-5.  The ampulla in horizontal semicircular canal: A) before, and B) at the head rotation 

[70]. 
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Figure 2-6. Orientation of the semicircular canals: The canals on each side are mutually 

perpendicular and are paired with conjugate canals on the opposite side of the head (e.g., the paired 

planes for left posterior and right anterior canals are marked). 

 

 

 

 
Figure 2-7. Macula of the utricle and saccule. (A) Structure of the macula. The kinocilia of the 

hair bundles are shown with thick lines. On each side of the striola, the hair cells have opposite 

orientation. (B) Otolith displacement and deflection of the hair cells. (C) Orientation of saccular 

and utricular maculae. Arrows show the direction in which the hair cells are maximally depolarised 

[71].  
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Figure 2-8. Normal electrocochleogram recorded from tympanic membrane in response 

to clicks with alternating polarity. Summating potential (SP) and action potential (AP) 

amplitudes can be measured from peak to peak (A) or with reference to a baseline value 

(B). Amplitude/time scale is 0.05μv/1 ms. Illustration is adapted with permission from [72]. 
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CHAPTER 3   Methodology 

 

 

3.1 Overview 

The purpose of this chapter is to provide introductory information on the EVestG 

recording system setup and recording protocol as well as the procedure of preparing study 

participants before recording. We will then explain the participants’ demographic 

information, EVestG signal analysis, feature extraction, feature selection, and the designed 

classification method. 

3.2 Recording Apparatus 

A schematic of the EVestG recording system is depicted in Figure 3-1. The EVestG 

recording technique is similar to that of electrocochleography (ECOG). Like ECOG 

waveforms EVestG signals are low in amplitude (microvolts or smaller); hence, electrodes 

must be placed as close as possible to the vestibular end organs. EVestG signals of this 

study were acquired using a specialty electrode called TM-ECOGtrode produced by Bio-

logic, France. The electrode consists of a fine silver wire protected with a soft plastic shield. 
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The tip of TM electrode has a soft, conductive hydro-gel (depicted in Figure 3-2A), which 

is moistened using conductive gel before it is inserted into the ear canal (Figure 3-2B). 

Conductive gel is applied to lower the overall electrode impedance as well as the electrical 

artefacts associated with relative electrode motion on the skin. Similarly, the thermal noise 

produced by the electrode‘s impedance would also be reduced [73]. 

The active electrode was placed in both ear canals proximal to the ear drum. Reference 

electrodes (Biopac EL254S for earlobe and EL258S for forehead) were placed on the 

ipsilateral earlobes, and a common ground electrode was placed on the forehead. The left 

and right ears’ signals were collected using Spike2 software using a CED-1902 signal 

amplifier (50Hz/60Hz notch filter, 10k-100k gain, and 1Hz high pass filter), and digitized 

by an analog to digital converter (CED1401) at a sampling rate of 41.666 kHz. Such high 

sampling rate was needed in order to detect any SP notch in the recorded signals and 

characterise the overall AP shape and surrounding regions well. The gain of the amplifier 

was adjusted in the mentioned range to prevent output saturation; typically it was set to 

20k.  

To stimulate the vestibular system, passive whole body tilts are delivered via a computer 

that controls hydraulic chair (Figure 3-3). The hydraulic chair can passively move the body 

and consequently the head in a way to resemble the head‘s pitch, yaw, or roll motions as 

well as a linear up and down translations. Hydraulic systems are beneficial in applications 

that require control of large forces to generate smooth motions. Other advantage of using 

hydraulic systems over electrical motors is their relatively lesser electrical noise. The bell-

shaped velocity profile and the resulted displacement profile of the chair movement used 

in this study are depicted in Figure 3-4. For every tilting stimulus, the chair movement (to 
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or from the tilting position) has acceleration and deceleration phases, which each take 1.5 

seconds and are called OnAA and OnBB segments, respectively. 

3.3 Participant’s Preparation  

Prior to commencement of the EVestG recordings, all participants signed a consent 

form, approved by the Biomedical Ethics Board of University of Manitoba, Canada or 

Alfred Hospital, Australia after they were provided with detailed information about the 

procedures involved in the experiment. The referred patients were already asked not to take 

any vestibular impacting medications 24 hours prior to the experiment. 

3.3.1 Primary Tests and Questionnaire 

Otoscopy was initially performed to dismiss the subjects with too much wax in their ear 

canal, or any signs of visible abnormality or damages to the eardrum (changes in colour of 

the ear drum can be an indication of middle ear disease). All participants went through 

three preliminary tests of otoscopy, audiometry, and balance test prior to EVestG 

recording.  

Participants’ balance was assessed by instructing them to stand on one leg with their 

eyes open, and then close their eyes for 5 seconds. While this test was run for all 

participants, however, its purpose was only for recruiting healthy control subjects and to 

ensure they had a normal level of balance skills.  

Moreover, for every subject two questionnaires, Montreal Cognitive Assessment 

(MoCA) scale [74] and Montgomery Asberg Depression Rating Scale (MADRS) [75] were 

completed. These were applied for cognitive decline and depression evaluation 

respectively. Again, the purpose of these tests was only to reduce the variability among 
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study participants such that they were all free of depression and had a normal cognitive 

score. 

The Vestibular Disorders Activities of Daily Living Scale (VADL) was also applied to 

patients in order to assess the level of vestibular impairments in their routine daily life 

tasks. The aim was to score patients’ functional limitations due to their inner ear disease 

and investigate the correlation of the scores with EVestG test results.  

Although we did the VADL test, the scores were not reliable. The reason was that, the 

individuals were expected to answer the questions according to their current vestibular 

conditions. However, many patients related their responses to their last attack period (either 

partially or totally) instead. Thus a correlation analysis between VADL and EVestG 

features would not be meaningful.  

A description about these questionnaires can be found in Appendix A.  

3.3.2 Electrodes Attachments 

To prepare participants for EVestG recordings, forehead and earlobe skin sites were 

cleaned using an alcohol wipe to reduce the impedance between the electrode and skin. 

Conductive gel was added to the electrodes contact surface before they were placed on the 

skin. Electrodes were fixated on the skin using medical adhesive tapes. The ground 

electrode was placed at the center of forehead and the reference electrodes were placed on 

the ipsilateral earlobes using double-sided adhesive ring tapes.  

After examination of the ear canal and eardrum, the hydro-gel end of TM electrode was 

moistened using conductive gel, and carefully inserted into the ear canal under the feedback 

of participant. Once the electrodes were inserted into the ear canal and secured to the ear 

with a piece of tape, a small foam ear plug was compressed and inserted into the ear canal 
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beneath the TM electrode to avoid its movement and to further attenuate unwanted auditory 

stimuli.  

Once the electrodes were connected subjects were asked to seat in the hydraulic chair, 

electrodes were connected to signal conditioning device and the raw EVestG signals were 

observed on the computer monitor outside the recording anechoic chamber. The raw 

signals were checked to have an acceptable SNR. That is, the raw signals and their 

frequency spectrum were monitored on computer, while all electrodes were attached to the 

subject. 

To avoid extra-vestibular influences, such as neck muscle artefacts, participants were 

instructed to relax and their head was secured using two head rests attached to the chair. 

To reduce ocular artefacts, the participants were asked to keep their eyes closed during the 

recording.  

3.4 Recording Protocol 

A complete EVestG recording [11, 58] includes seven different tilting stimuli: 15 cm 

upward movement of the chair, while the subject is either in upright sitting position 

(up/down tilt) or in supine position (supine up/down), 40 degree rotation of the chair to the 

right side, either in upright sitting position (rotation tilt) or in supine position (supine 

rotation), 40 degree tilting of the upright sitting chair to the right side (ipsilateral right and 

contralateral left tilts), 40 degree tilting of the upright sitting chair to the left side (ipsilateral 

left and contralateral right tilts) and 40 degree tilting of the upright sitting chair backward 

(back/forward tilt). The Contralateral (CT) and ipsilateral (IT) tilts together are called as 

side tilt. These movements are the motion settings of the EVestG system and the same for 

each trial. Each tilt goes back to center before starting another tilt. Each of these movements 
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can selectively and predominantly stimulate a vestibular sensory organ which is sensitive 

to motion in that direction. 

EVestG recording for every stimulus (chair tilt) takes 60 seconds including: 1) 20 

seconds, called Background recording (BG), while the chair is still in the center position; 

2) 3 seconds chair movement to one of the predefined motion profiles as selected by 

operator; 3) 17 seconds resting in the tilted position; 4) 3 seconds turning to the center; 5) 

17 seconds resting in center position. 

During the experiment the position waveform of the chair is also recorded together with 

the raw EVestG signals from left and right ears (Figure 3-5). It is used for synchronization 

of the segments of interest for analysis which will be explained later in this chapter.  

After seven tilts’ recordings are completed, the active ear electrodes are removed from the 

ears and left free in order to record the system response (for 60 seconds). Then, the ears 

recorded signals along with the system response are fed to the NEER algorithm to extract 

the FP signals. 

3.5 Participants 

As mentioned earlier, there was a study of Meniere’s disease via EVestG signals (11 

patients with Meniere’s and 18 age-matched controls) in [61], for which the signals were 

recorded at the EVestG Lab at the Alfred Hospital, Melbourne, Australia. In this study, we 

used the same dataset of the above study [61] and a few more unpublished data from the 

same Lab (Alfred Hospital) as training dataset to extract characteristic features and design 

a robust algorithm for classification of patients with Meniere’s disease while started to 

recruit patients in Canada for test dataset. Thus, our training dataset included EVestG 

signals of 14 Meniere’s patients (54.2±9.7 years, 4 males) and 16 healthy individuals 
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(56.1±5.5 years, 7 males). The test dataset included EVestG recorded signals of 21 

individuals (55.7±10.5 years, 12 males) with unknown “dizziness” diagnosis at the time of 

testing and analysis, recruited in Riverview Health Center (RHC) Lab, Winnipeg, Canada.  

Initially, we were informed to have 256 potential dizzy patients; however, only 91 agreed 

to be contacted for EVestG recording appointment. Although we planned to compensate 

the patients time, spent for EVestG experiment, with a ($15) gift card and mentioned this 

when contacting every individual, but only 21 subjects participated in our study. Once, the 

diagnoses of the referred patients were known, we also selected EVestG signals of 10 age-

matched healthy control volunteers (57.4±4.9 years, 4 males) that were already recorded 

and available at RHC Lab. 

 All the referred individuals recorded in Canada had undergone clinical assessments 

including hearing, ENG, caloric, and rotational chair test at the Health Science Center of 

Winnipeg, Canada, prior to EVestG recording; we were blind to those results, and were 

given the clinical diagnosis only at the stage of determining the accuracy of the algorithm 

on the test dataset. 

The control (train and test) subjects had all normal hearing and balance, with no history 

of vestibular or neurological conditions; their MoCA and MADRS scores were also in the 

normal category. On the other hand, one RHC referred patient had a MADRS score of 7/60 

indicating the patient has a mild depression. All Meniere’s training subjects achieved 

normal scores in MoCA and MADRS tests.  

 In this study, we had both training and test data of only five tilts (CT, IT, back/forward, 

up/down sitting position, and rotation in upright sitting position tilts); the supine up/down 
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and supine rotation Alfred (training) data were not collected due to recording room size 

constraints. In RHC (testing) data we recorded all the seven tilts stimuli. 

3.6 Signal Analysis 

In preprocessing stage, the recorded EVestG signals were analyzed offline via a 

patented signal processing technique, called the NEER [11], which detects and localizes 

individual vestibular FPs in the EVestG recordings.  

Through NEER algorithm, each recording was divided into different time segments 

according to the position waveform of the chair in a same pattern for every tilt. Figure 3-6 

shows the segmentation of the signal for side tilt stimulus. The six periods of interest in 

every tilt are 1.5 seconds before the movement which is labeled as background (BGi) 

segment, the 3 seconds tilting stimuli (acceleration and deceleration phases labeled as 

OnAA and OnBB segments), the 1.5 seconds before returning the chair to background 

position (labeled as return to center BGi or RTC BGi segment), and the 3 seconds stimuli 

following that (labeled as RTC OnAA and RTC OnBB segments). The 

acceleration/deceleration segments were selected as they give the largest differences 

compared to the background. 

The output of the NEER algorithm for the above 6 segments and in every tilt are two 

main signals: FP signal and its firing pattern (the registered locations of FPs occurrences 

in terms of sample/time). Figure 3-7 shows a typical output of the NEER’s FP signal 

including a potential SP notch, and AP notch. The firing pattern of the FP signal is 

presented by two signals: 1) the time intervals between each two successive FP loci or AP 

notch points (Figure 3-8), and 2) the probability distribution of the time intervals estimated 

by the normalized histogram of the time interval data (as shown in Figure 3-9). The 
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histogram was generated based on the calculated time intervals during each segment. The 

histogram consisted of 25 time bins logarithmically ranged from 0.5 to 25 millisecond. 

Each histogram was then normalized by dividing each bin number by the total number of 

time intervals. Therefore, from each of the aforementioned 6 segments three signals (FP 

signal and its two firing pattern representations) were analyzed (18 signals for each ear) for 

each subject. All signals were normalized by their maximum (absolute maximum) value 

prior to analysis. 

 

Figure 3-10 shows a typical normalized EVestG FP signal of a control subject. The FP 

waveform's minimum point (AP notch) is called AP point, and the time duration 

approximately 3-6 millisecond before and after the AP are considered as the pre- and post- 

potential intervals. We observed a distinct difference between the pre- and post-potential 

parts of the FP curve between the Meniere’s and control groups of the training dataset. 

Thus, several linear and non-linear features were extracted from these two time regions for 

further analysis. Moreover, we investigated the changes in the difference between segments 

of each tilt’s signal to examine the effects of dynamic changes from resting to acceleration 

or deceleration, and also the differences between the two phases (acceleration/deceleration) 

of movement. In addition, the differences (L-R) between the left and right ears’ signals 

were investigated to test for vestibular asymmetry. We also used the sum of the left and 

right signals (L+R) in order to extract features resulted from any bilateral ear reaction. 

It should be noted that since the NEER algorithm [11] removes segments of the original 

signal that are corrupted by large artefact (due to hydraulic chair, muscle artefact, 

movements, poor electrode contact, etc.), not all the segments were of 1.5 seconds duration; 

we excluded the segments shorter than 1.36 seconds. Therefore, not every subject had all 
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the extracted features (missing data). In order to handle missing data in our small dataset, 

we designed an ad-hoc diagnostic classification system that is described in more details in 

the following sections. 

3.7 Feature Extraction 

Feature selection was made using the training data. We calculated several statistical and 

fractal features from the FP signal and its two firing pattern representations. Since these 

signals are considered as stochastic signals, hence we used their statistical properties in 

order to describe them. On the other hand, based on literature [76, 77] and our previous 

studies [59, 60], we found fractal measurements a powerful tool to differentiate between a 

healthy and a non- healthy signal. Thus, we chose two well-known fractal dimension 

measurements, Higuchi fractal dimension (HFD) [78], and entropy-based dimensions such 

as the Information dimension (ID) [79] and the Correlation dimension (CD) [79], which 

are suitable for calculating complexity of biomedical signals. 

Therefore, the mean, rectified mean, standard deviation, skewness, kurtosis, HFD, ID, 

and CD of the pre- and post-potential intervals of every FP signal. For a brief description 

of fractal dimension calculation, please see Appendix B. We also calculated the total 

energy and the average power of the aforementioned intervals for the range of 100-11000 

Hz. The 100 Hz low cutoff frequency was chosen to remove muscle’s interference. On the 

other hand, since the width of a dip in the vestibular response is in the range of 0.1 

millisecond, EVestG signals are extended up to 10000 Hz. The 11000 Hz is the frequency, 

at which the amplifier begins to roll off. Hence, we used the range of 100-11000 Hz. 

For the firing pattern signals we calculated the mean, standard deviation (SD), 

skewness, kurtosis, mode, median, the ID, CD, HFD of the time interval signals as well as 
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the number of firings of the firing signals (Nof). We also selected the time intervals smaller 

than one standard deviation from average; these represent the time intervals of high 

frequency firing rate. We calculated the average of these time intervals as a feature and 

called as average of minimums or “Ave – min”. 

We calculated the correlation of probability distribution function (PDF) of the time 

interval signals with the FP signals in order to investigate any relationship between the 

pattern of firing and the FP signal’s shape. 

3.8 Feature Selection 

There are two general approaches to feature selection: filters and wrappers [80, 81]. Filter 

type methods are essentially data pre-processing or data filtering methods. Features are 

selected based on the intrinsic characteristics, which determine their relevance or 

discriminant powers with regard to the targeted classes. Simple methods based on mutual 

information [82] or statistical tests (t-test, F-test) have been shown to be effective [83-85]. 

They also have the virtue of being easily and very efficiently computed. In filters, the 

characteristics in the feature selection are uncorrelated to that of the learning methods; 

therefore, they have better generalization property.  

In wrapper type methods, feature selection is "wrapped" around a learning method: the 

usefulness of a feature is directly judged by the estimated accuracy of the learning method. 

One can often obtain a set with a very small number of non-redundant features [80, 86], 

which gives high accuracy, because the characteristics of the features match well with the 

characteristics of the learning method. Wrapper methods typically require extensive 

computation to search the best features. 
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In order benefit from both above approaches and to reduce the number of features, we 

used minimal-redundancy-maximal-relevance (mRMR) feature selection method [87] in 

order to rank the features based on mutual information of the features with respect to the 

target class and to each other; we only used features that passed statistical significant test. 

Thus, at first stage of the study we applied normality Lilliefors [88] test on every feature 

values to make sure if we can reject the null hypothesis that data come from a normally 

distributed population at 5% significance level. Since we could not reject the null 

hypothesis, we confined statistical test to parametric statistical analysis; we applied 

Analysis of Variance (ANOVA) [89] on randomly selected 70% subsets of the training 

dataset for every feature to select features with most significant difference between the 

groups of Meniere’s and controls. In all statistical tests a p-value less than 0.05 was 

considered significant. Then, we applied mRMR on the selected features.  

The mRMR method has been shown to rank features based on the least redundancy 

among themselves and the highest relevance to the target class; this is done through 

selecting (adding) one feature at a time called “first-order” incremental search [87].  

Given the input data of 𝑁 samples and 𝑀 extracted features ( 𝑋 =  {𝑥𝑖, 𝑖 = 1, … , 𝑀} ) 

and the target classification variable 𝑐, the mRMR method finds from the M-dimentional 

observation space (𝑅𝑀) a subset (S) of m features ( 𝑆 = {𝑥𝑖, 𝑖 = 1, … , 𝑚} ) that optimally 

characterizes 𝑐. By “Optimal characterization” condition we mean identifying the set of m 

features by jointly selecting the features which obtain minimal classification error or 

maximal accuracy (maximal-relevance) and are almost uncorrelated features which can 

maximally represent the original space covered by the entire dataset (minimal-redundancy). 
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The maximum relevance and the minimum redundancy criteria are both measured based on 

mutual information calculation [90].   

In case of two random variables x and y, 𝐼 is defined in terms of their probabilistic 

density functions 𝑝(𝑥), 𝑝(𝑦), and 𝑝(𝑥, 𝑦)as follows: 

 𝐼(𝑥; 𝑦) = ∫ ∫ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦           (4.1) 

Maximum relevance (𝑚𝑎𝑥 𝐷(𝑆, 𝑐)) criterion is defined by the mean value of all mutual 

information values between individual feature 𝑥𝑖 and class c as follows: 

𝐷 =
1

|𝑆|
∑ 𝐼(𝑥𝑖 , 𝑐)𝑥𝑖∈𝑆                                                                                                       (4.2) 

It is likely that features selected according to Max-Relevance could have rich 

redundancy, i.e., the dependency among these features could be large. Therefore, the 

following minimal redundancy (𝑚𝑖𝑛 𝑅(𝑆)) criterion can be added to select mutually 

exclusive features [91]. 

𝑅 =
1

|𝑆|2
∑ 𝐼(𝑥𝑖 , 𝑥𝑗)𝑥𝑖,𝑥𝑗∈𝑆                                            (4.3) 

In this approach, the first feature is selected due to the Max-Relevance criterion. Then, 

an iterative search method adds one feature at a time such that by having a set of m-1 feature 

space, Sm-1, the mth feature is chosen to achieve the maximum of equation 4.2 and minimum 

of equation 4.3. The criterion combining the above two constraints is called Min-

Redundancy-Max-Relevancy (mRMR) [87], and simultaneously optimizes D and R spaces 

as below: 

𝑚𝑎𝑥 Φ(D, R);   Φ = D − R             (4.4) 

The respective incremental algorithm optimizes the following condition: 

max
𝑥𝑗𝜖𝑋−𝑆𝑚−1

[𝐼(𝑥𝑗; 𝑐) −
1

𝑚−1
∑ 𝐼(𝑥𝑗; 𝑥𝑖)𝑥𝑖𝜖𝑆𝑚−1

]                                                                 (4.5) 
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Using mRMR method, we selected the top 5 features ranked by mRMR algorithm for 

each tilt’s signals as the characteristic features for classification.  

3.9 Classification 

After selecting the top 5 features using mRMR algorithm, we designed an ad-hoc 

classification method, which is very similar to ensemble-base classification algorithms. 

Since Meniere’s disease occurs due to different vestibular and neural patho-physiologies, 

different measurements (features) can be considered as different symptoms/signs, which 

together characterize the medical condition exhibited by a Meniere’s patient. Considering 

the fact that some of these features may not be present (missing) at the time of diagnosis, 

we can use a simpler version of the reduced-feature models technique. Our ad-hoc 

diagnostic algorithm was developed using the training dataset, and then evaluated on the 

test dataset (unbiased testing).  

Once classification of training and test data of 5 tilts (in upright position) were fulfilled, 

we compared their results in order to identify the optimal stimulus/tilt for Meniere’s disease 

diagnosis. We then compared our classification method on the optimal tilt data with the 

most common versions of ensemble-based classification algorithms, which are structurally 

similar to our purposed classifier. 

3.9.1 Average Voting Classifier 

For each tilt we designed an ad-hoc voting classification system made of 5 single-feature 

classifiers using linear discriminant classification algorithm (LDA) [63]. Average voting 

classifier is an ad-hoc classification scheme that we suggest for 2-group classification data 

of heterogeneous populations (i.e. biological data), in which each feature is considered in a 
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similar manner of a symptom to vote as Meniere’s or non-Meniere’s for each subject using 

a classifier (LDA in this study). This design handles the missing data well without the need 

to remove the subject’s data or to replace it by mean value. 

To train the single-feature classifiers (and hence the average voting classifier), since our 

training dataset was small, we used leave-one-out routine to avoid over-fitting problem. 

Leave-one-out is a routine, in which in every fold one subject’s data is left-out for testing 

and the rest used for training the classifiers; this routine was repeated till every subjects’ 

data was used as test once. As we have had 2-group classification, for simplicity, we 

assigned a vote of 0 for non-Meniere’s or 1 for Meniere’s. Then, the votes of all single-

feature classifiers for every subject were averaged. If the average vote was > 0.5 (or < 0.5), 

then the subject was considered as Meniere’s patient (or non-Meniere’s). The average vote 

on the boundary line (=0.5) is considered as misclassification when calculating accuracy. 

We also replaced LDA method with Quadratic discriminant classification algorithm (QDA) 

[63] in order to investigate if the data are separable in quadratic way and compare the results 

with LDA classification results.  

The trained classifier using the features selected from the training dataset was then 

applied to the test dataset. Thus, the training and test results were completely independent. 

This routine was applied for all the 5 stimuli (tilt) data recorded for patients in the upright 

position. The same feature selection and leave-one-out classifier training was also done for 

the EVestG signals of the two movements with patients in supine positions; however, as 

only the RHC dataset included these movements’ data (due to having a newer version of 

the EVestG chair), those results are presented and discussed separately.  
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3.9.2 Ensemble Classifier 

The ad-hoc classification method’s performance was compared with that of three most 

common ensemble algorithms: Bootstrap Aggregation (Bagging) [92, 93], Adaptive 

Boosting (AdaBoost) [94-97] and Subspace [98] methods. All of these selected ensemble 

methods are capable of handling missing values and need minimal set of parameters which 

liken them to our non-parametrical approach. We expected AdaBoost algorithm to produce 

the closest results to our method as it is known to be one of the top 10 algorithms in data 

mining [99]. Our intent was to compare the performance of our ad-hoc classifier with its 

reasonable ensemble counterparts to investigate the best possible performance on our 

dataset.  

An ensemble learner is a meta-algorithm that tries to solve the classification problem by 

employing many identical classifiers, called weak learners, and combining their votes. We 

selected decision stumps (single threshold on a feature) as the weak learners of ensemble 

methods with the same type of classifier used in our ad-hoc method (LDA, QDA) so that 

the methods would be comparable. We also gave only mRMR selected features to the 

ensemble classifiers in order to make a fair comparison independent from feature selection 

techniques. 

 In Bagging classification [92] many replicas of the dataset would be generated by 

random selection with replacement, and decision trees would be built on these replicas. In 

testing, the Bagging ensemble takes simple voting among the built decision trees to predict 

the label of the test sample. The Subspace algorithm [98] first chooses random equal-size 

subsets of the available features without replacement and trains a weak learner on each of 

the non-overlapping sub-sets. The test sample would be assigned to the class that has 



Chapter3. Methodology                                                                                

58 
 

highest average score among the weak learners. In this study, we selected Discriminant 

Analysis classifier (instead of K Nearest Neighbor classifier) as the base learner for 

Subspace method to provide maximum similarity with the ad-hoc method.  

AdaBoost algorithm [94-97] performs its task by sequentially taking a weak leaner and 

invoking it several times on different subsets of training set. These consecutive subsets are 

constructed by pseudo-random selection of the training samples based on the latest 

probability distribution over them. In each AdaBoost round, the probability of selecting 

incorrectly labeled samples, in the next round, would be increased while the probability of 

correctly labeled examples would be decreased. The procedure starts with initiating a 

uniform probability distribution over samples and changing it in each round according to 

the outcome of last week learner. The next weak learner would be constructed by 

minimizing the summation of the weighted errors based on the selected training set and the 

weight of each sample in the modified distribution. After completing a pre-defined number 

of rounds, AdaBoost gives weight to each of the produced weak learner proportional to its 

classification performance on the training set. According to the number of available 

features (=10), for all boosting classifiers, a number of weak learners was set to 50 to avoid 

over-fitting problem. 

3.10  Summary 

In this chapter, we described our recording experiment, the data of the study, signal 

analysis and the designed classification method. We also addressed application of similar 

classifiers in order to compare their results with our classifier’s performance. The results 

and the discussion about them will be presented in the next chapter. 
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Figure 3-1. Summary diagram of recording setup. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-2 Bio-Logic electrode and its placement for recording. Illustration is adapted with 

permission from [11]. 
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Figure 3-3. The Hydraulic chair, and electrode placements in a volunteer.   
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Figure 3-4 Position and velocity profiles of the vestibular stimulus. Acceleration and deceleration 

of the chair movement (1st and 2nd 1.5 seconds) are separated by the dashed vertical line. 

Illustration is adapted with permission from [11].  

  

 

Figure 3-5 Screen capture of the recorded signals as displayed in Spike7 environment. Position 
waveform is displayed on top together with raw EVestG recordings from left and right ears (middle 
and bottom plots). 
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Figure 3-6 Segmentation of EVestG recordings according to motion profiles in side tilt. 

 

 

 

 

 

 
Figure 3-7 A typical output of the NEER algorithm; FP signal: (A) potential SP notch and (B) 

AP notch. 



Chapter3. Methodology                                                                                

63 
 

 

Figure 3-8 A typical time interval signal of the FP occurrences of the OnBB segment for a CT tilt, 
left ear of a control subject. 
 

 

 
Figure 3-9 The histogram of the time interval signal for IT tilt left and right ear (ITR, ITL) and 

for CT tilt left and right ear (CTR, CTL) for the same control subject in Fig 3-8. Horizontal axis 

corresponds to different time bins which are logarithmically spreaded and in millisecond. Vertical 

axis denotes the number of events in each bin. 
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Figure 3-10. The normalized EVestG field potential of a typical control subject. The time 

durations of 4.5 ms (4.5 – 9.0 ms) and 5.2 ms (11.0 – 16.2 ms) before and after the AP are 

considered the pre- and post- potential intervals, respectively.  
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CHAPTER 4 Results and Discussion 

 

 

4.1 Overview 

In this chapter, the results of our classification method for seperating Meniere’s from 

control subjects are presented followed by a discussion on selecting an optimum tilt, which 

results in the highest performance in terms of sensitivity and specificity. The results of the 

optimum tilt are then discussed in more details. Moreover, the results of similar classifiers 

in comparison to the designed ad-hoc classifier in this thesis are presented and discussed. 

4.2 Meniere’s/ Control Classification 

Out of many features extracted from the contralateral (CT), ipsilateral (IT), 

back/forward, rotation, and up/down tilts’ signals, 20, 50, 30, 15 and 17 features, 

respectively, were found significantly different among Meniere’s patients and controls of 

the training dataset. Out of these features we used the 5 top features ranked by the mRMR 

algorithm as the best features for classification (Tables 4-1 to 4-4). In these tables, other 
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than the name of the selected feature, the original signal from which the feature was 

calculated and the significance level of the feature is shown.   

The features are grouped in three categories based on their derivation: 1) the features 

calculated from the FP signals, 2) those calculated from one of the firing pattern 

representations, and 3) those calculated from the correlation calculation between the PDF 

of the time interval signals with the FP signals. The names of the features are summarized 

for the sake of space; also, the suffix of FP and frn_ptrn has been used to refer to the first 

(field potential signals) and second (firing pattern representation of FPs) categories of 

features, respectively. For example, the names of “Kurtosis_Pre_FP”, “Energy_Pre_FP” 

or “Mean_abs_Pre_FP” show that the features are found by calculation of the kurtosis, total 

energy (from the entire frequency range), or mean of absolute value of the pre potential 

interval of the field potential signal (pre and post potential intervals are shown in Figure 

3-10). The third category of features was simply named as correlation without any suffix. 

 

As described in previous chapter, the designed ad-hoc voting classifier uses single-

feature classifiers at its first level before getting the average vote. We examined both QDA 

and LDA as the first level classifiers. QDA classifiers’ results showed a small (1% or 2%) 

improvement in accuracy compared to those of LDA classifiers for every tilt. However, the 

improvements were not large enough to reduce the possibility of the overfitting problem; 

thus, we decided to use (and demonstrate) only LDA results as they show more robustness 

in terms of classification performances. 

The results of our ad-hoc voting system using LDA classifications in a leave-one-out 

routine of the training dataset (Alfred Hospital’s data) are shown through Figures 4-1 to 4-

4. Table 4-5 shows the summarized performance of classifications for the five upright 
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position tilts for the training dataset. The unclassified cases are those with a tie in vote as 

the assignment to either group. As can be seen in Table 4-5, using the training dataset, the 

side and up/down tilt classifiers achieved the highest accuracies (87% and 80%), 

respectively. Rotation and back/forward tilts showed a lower accuracy (70%). 

The results of classifications of the test dataset (independent of training set – RHC’s 

data) are shown in Figures 4-5 to 4-8. Among the 21 referred patients suspected of 

Meniere’s in the test dataset, 9 of them (S1, S3, S7, S10, S12, S15, S18, S20, and S21) 

were clinically diagnosed with Meniere’s disease, 3 subjects (S5, S8, and S13) were 

diagnosed with Benign paroxysmal positional vertigo (BPPV), 3 subjects (S2, S4, and S9) 

with Vestibular Neuritis, 1 Subject (S16) with Recurrent vestibulopathy, 1 Subject (S14) 

with VBI (Vertebra-basilar insufficiency), 1 subject (S19) with Barotrauma, and 3 subjects 

(S6, S11, and S17) were considered as non-Meniere’s with non-specified dizziness. To 

simplify reading the results in Figures 4-5 to 4-8, the names of the diseases that the subjects 

were diagnosed with, are aligned with the subjects’ numbers. 

Table 4-6 shows the summarized performance of classifications for the five upright 

position tilts for test datasets. As can be seen in Table 4-6, using the test dataset, the side 

tilt showed the highest accuracy (84%), while the back/forward, rotation, and up/down tilts 

showed much lower accuracies (63%, 50%, and 31% , respectively). It should be 

mentioned that the classification results of non-Meniere’s individuals with other types of 

dizziness were excluded from calculations of classifiers’ performances (sensitivity, 

specificity, and accuracy) within the test dataset.  

 Note that for training dataset, we had only two groups of Meniere’s and Healthy, while 

in the test dataset we also had non-Meniere’s who were not considered healthy, but they 
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were not Meniere’s patients either. However, as we were kept blind to the exact diagnosis 

of the individuals in the test dataset till the end of study, we only trained our classifier 

routine for two groups classification of Meniere’s and Healthy (non-Meniere’s); after all, 

the goal has been to provide an aid for Meniere’s diagnosis. In addition, the number of non-

Meniere’s individuals with other types of dizziness, was not enough to run a post-hoc study 

on 3 or 4 groups classification to identify each of those conditions separately.  

It is worth to note that side and back/forward tilts stimulate almost all the vestibular 

whilst the sitting up/down motion predominantly stimulates the saccule. The rotation 

predominantly stimulates the horizontal SCC suggestive the horizontal SCC has less 

impact on classification accuracy. Overall, the evidence suggests tilt selection may have 

an effect on classification accuracy. 

A contributing factor in the up/down tilt’s poor classification results, was probably due 

to the fact that this tilt’s signals of the controls in the test dataset were noisier than the 

others. This was found by comparing the average ± standard deviation of the all tilts’ 

signals in the two training and test dataset. We found that the up/down tilt signals of the 

test dataset were much noisier than the up/down tilt signals of the training dataset and also 

noisier than the other tilts’ signals of the test dataset. 

4.3 Supine Tilts Classification 

As mentioned earlier, supine up/down tilt mainly stimulates the utricle while supine 

rotation tilt stimulates utricle, saccule and SCC components. Since our training dataset 

(Alfred’s data) did not have the supine tilts’ signal, we could not investigate the 

classification results using supine tilts’ signals in the same manner as the other tilts. 

However, we did investigate the supine tilts’ signals for classification in the test dataset 
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(RHC dataset), but we acknowledge that even with using leave-one-out routine the results 

are considered as training results because there were no independent groups for training 

and testing for supine tilts’ signals; thus, the feature selection would be biased.  

We extracted 20 and 37 features for supine rotation and supine up/down tilts, 

respectively. The results presented in Tables 4-7 and 4-8 show the 5 top features selected 

by the mRMR algorithm as the best features of these tilts. The classification results (Table 

4-9) showed 89% and 83% accuracy for supine rotation and supine up/down, respectively. 

Data of one of the 10 RHC control individuals (S3) could not be analyzed due to noise 

corruption in rotation, supine up/down, and supine rotation tilts.  

4.4 Discussion 

So far, the classification results of the training and test datasets for the side, 

back/forward, rotation, and up/down tilts as well as classification of (training) results of 

supine tilts have been presented. In the following sections we discuss the candidate tilt for 

best classification of Meniere’s versus control individuals.  

4.4.1 Tilts’ Results Comparison 

In this study we aimed to investigate the seven orthogonal EVestG tilts for their use in 

Meniere’s classification from health controls, and possibly come up with an optimum tilt 

for such purpose and simplify the recording protocol. Overall, the results of the side and 

back tilts showed the highest classification accuracies for Meniere’s diagnosis compared 

to those of rotation and up/down tilts. The fact that side tilt stimulates almost the entire 

inner ear (including semicircular canals (SCCs) and otolithic organs) can be a strong 

justification for its best classification performance. Similarly, back/forward tilt stimulates 
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mostly anterior/posterior SCC, utricle and partially the saccule both in displacement and 

with respect to gravity. On the other hand, the upright rotation tilt stimulates predominantly 

the horizontal SCC, and the upright up/down tilt stimulates predominantly the saccule. 

Indeed, the rotation (in upright position) classification result was poor in both training and 

test datasets; this implies that horizontal SCC may have a lesser impact compared to the 

other vestibular organs. Extending this finding to the vertical SCCs (based on the supine 

recording data), we reason that the otolithic organs and more specifically the utricle (based 

on our sitting upright vertical (saccular) translation findings) might be the major 

contributors in Meniere’s disease. 

Generally, the endolymphatic fluid pressure (hydrops) is considered as the main cause 

of Meniere’s disease that can occur inside the SCCs as well as otolithic organ [41]. Studies 

suggest that hydrops may force the utriculo-saccular duct (which separates the utricle and 

SCCs from the saccule and cochlea) to open and let endolymphatic fluid flow into utricle 

resulting in a change of utricular function due to an increase in its volume [100, 101]. On 

the other hand, there is evidence confirming that the vestibular response to brief head tilt 

stimuli is mostly the response of neurons innervating the utricle [101, 102]. 

A previous study has shown that in a simple neural model including SCCs and utricle, 

the change in firing rate of the utricle in response to a head (side or back/forward) tilt is 

much larger (a minimum order of 2-3 orders of magnitude) than the changes in firing rates 

of the SCCs [101, 102]. This model did not consider the effect of saccule, and assumed it 

would be negligible as the electrical potential of the utricle has a greater dynamic range 

than that of the saccule [103]. This is congruent with our EVestG recording results 

implying that EVestG recordings might be dominated by utricle response in side and 
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back/forward tilts. Taking into account that utricular maculae is closer to stapes, and thus 

to the EVestG recording electrode than the saccule and SCC sensory structures, it is more 

likely that the EVestG response is mostly driven from utricle [11]. Therefore, the tilts 

which stimulate mainly the utricle, such as side and back tilts, appear to be most diagnostic 

to Meniere’s diagnosis through EVestG analysis. For this reason the supine rotation and 

supine up/down tilts are also expected to produce good results as they are designed to 

stimulate predominantly the labyrinth and utricle respectively.  

The supine up/down tilt mainly stimulates utricle, while the supine rotation tilt stimulates 

the labyrinth. The high classification performances for the supine tilts (on the RHC data) 

confirm the utricle is likely the major responder at the EVestG electrode. In addition, in 

supine tilts, compared particularly to side tilt there is much lower level of noise in terms of 

motion artefacts as the subject is not supporting their head. Thus, in future studies, when 

the supine tilt data are expanded, it may show superiority to back/forward or side tilts in 

terms of classification accuracy.  

4.4.2 Side Tilt’s Results in Detail 

Since the side tilt produced the best test classification accuracy, its results are discussed 

more in detail. For illustration purpose only, Figure 4-9 shows the mean and standard error 

region of two features (Feature #3 and #10 from Table 4-1); the classifiers of these two 

features showed the highest test accuracy among the 10 selected side tilt (both CT and IT 

stimuli) features. As can be seen, there is a clear separation of the mean values between the 

control and Meniere’s subjects. However, the actual data did have some overlap; note that 

the circles around the mean show only the standard error. 
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Since the population of patients in this study was not large, a thorough interpretation of 

the features and their relation to the pathological physiology of the disease or their 

physiological significance cannot be fully elucidated; however, a review about the 

performance of the selected best features (shown in Table 4-1) are as follow: 

Four out of the ten selected features (f1, f5, f9, and f10) resulted from fractal calculations. 

These features represent the complexity (either information dimension or Higuchi 

dimension) of the time interval signal as well as pre and post potential intervals of 

acceleration and deceleration segments from side tilt. Among these features, three of them 

(f1, f5, and f9) showed higher values for control group in comparison to those of Meniere’ 

while feature (f10) showed the opposite result. According to f1 and f9, which are calculated 

based on only one segment (OnBB), they indicate that control signals in the deceleration 

(and possibly acceleration) period could be more complex or contain more information 

compared to their comparative Meniere’s signals; however, this fact may not be true for 

the subtraction of two segments of the FP signal. Overall, the result is congruent with the 

general observation of higher complexity in healthy biological signals observed in other 

studies [76, 77].  

 One feature (f2) resulted from the mean of the post-potential interval for the 

acceleration phase of the IT tilt. It showed that control subjects had larger mean 

value in the post-potential interval compared to those of Meniere’s. This might be 

suggestive of an altered repolarization (K+) mechanism in patients.   

 Two of the selected features (f3 and f8) resulted from kurtosis calculations. Control 

subjects showed lower kurtosis values and closer to the zero line compared to those 
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of the Meniere’s subjects. This implies the probability distribution of controls’ 

signals is closer to a normal distribution than that of the Meniere’s signals.   

 Feature (f4) predominantly represents high frequency components of the firing rate. 

This feature was found to be higher in control group, congruent with complexity 

measure mentioned above. 

 One feature (f6) resulted from skewness calculation of the pre-potential interval for 

the difference between RTC OnAA and RTC OnBB (right) segments for the IT tilt. 

Skewness is a measure of asymmetry; for a normal curve it is equal to zero. This 

feature showed positive values for control group and negative values for Meniere’s 

group. This implies that there is an asymmetry in the vestibular response during 

acceleration and deceleration phases, but this asymmetry (skewness) in control and 

Meniere’s groups were in opposite directions. As OnAA and OnBB segments of IT 

tilt are reflective of excitatory and inhibitory stimulations, this may be indicative of 

a skew in excitatory and inhibitory signaling. 

 Feature (f7) was the mean of absolute value of post-potential interval of 

acceleration phase between left and right signals. It showed higher asymmetry 

between left and right ears signals for Meniere’s subjects compared to those of 

control subjects. Considering the fact that the majority of Meniere’s subjects were 

unilaterally affected by Meniere’s disease, this feature is likely reflective of the 

dysfunction in the more affected side. 

 

The voting classification results showed 78.5% and 94% sensitivity and specificity for 

the training dataset (Alfred Hospital’s data) and 78% and 90% sensitivity and specificity 
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for test dataset (RHC data).The results of our proposed classifications method in 

comparison with the clinical diagnoses are summarized as the followings:  

 Seven out of the nine (S1, S3, S7, S10, S12, S15, S18, S20, and S21) clinically 

diagnosed Meniere’s subjects were classified correctly (78% sensitivity). 

 One (S1) of the two miss-classified Meniere’s subjects (S1 and S15) had received 

5 Gentamicin injections (this treatment severely impairs/destroys the vestibular 

function) to the right side twice, each 12 months apart prior to our assessment. Thus, 

Subject S1 could be excluded. 

 Out of the nine subjects with BPPV, Vestibular Neuritis, VBI, Barotrauma, and 

Recurrent Vestibulopathy (S2, S4, S5, S8, S9, S13, S14, S16, S19), four of them 

(S9, S14, S16 and S19) were basically unclassified as they had a final vote of 0.5 

on the boundary line. It is possible to use the strength of the vote (the post-

probability of the voting LDA classifiers) to break the tie in the final vote; however, 

it should be noted that our classifier was not trained for these disorders; it was only 

trained to identify Meniere’s from controls. Thus, the fact that these individuals 

were not found as either healthy or Meniere’s, can be considered a positive outcome 

for the proposed classifier. 

 The three referred subjects with non-specified dizziness (S6, S11, and S17) were 

classified correctly as non-Meniere. 

 Out of the 10 age-matched control test subjects, 9 were classified correctly (90% 

specificity).   

These results indicate the proposed ad-hoc classification method using EVestG data is 

robust since the training and testing accuracies were close to each other despite the fact 



Chapter 4. Results and Discussion 

 

75 
 

that data were recorded at two different sites with two different hydraulic tilting chair (but 

with the same protocol). Although the method was designed for classification of control 

subjects from Meniere’s patients (using the training dataset), it showed adequate robustness 

for detecting other non-Meniere’s vestibular disorders.   

4.4.3 Classifiers Comparison 

Adopting the same selected features used for the proposed ad-hoc classifier, we applied 

three structurally similar ensemble methods (Adaboost, Subspace and Begging) only on 

side tilt data, which already showed the best performance compared to other tilts. The 

results of training classifiers showed 100% accuracy for Adaboost method and 97% 

accuracy for Subspace and Bagging methods. However, much poorer testing results were 

achieved for test dataset. Tables 4-10, 4-11, and 4-12 show the test accuracies for 

Adaboost, Subspace, and Bagging methods, respectively.  

Based on these results, while the accuracy of the three ensemble classifiers were much 

higher for training dataset they performed poorly in the test dataset; this is a classic example 

of overfitting problem and lack of robustness. On the other hand, our ad-hoc average voting 

classifier achieved a high accuracy for both training (87%) and test (84%) dataset. Thus, 

our ad-hoc classifier outperformed ensemble algorithms. The fact that the accuracy of 

designed classifier in training and test datasets were close, demonstrate its robustness. It is 

important to point out that due to randomness of feature selection in Bagging and Subspace 

methods, all of the algorithms were applied 50 times to the dataset and then, the average 

results on sensitivity, specificity and accuracy were reported. 

Among the ensemble classifiers applied to the test dataset, Subspace obtained highest 

accuracy compared to the other ensemble methods; however, it should be noted that 
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Subspace showed the lowest sensitivity to the class of Meniere’s patients compared to 

AdaBoost and Bagging. As expected, AdaBoost showed higher sensitivity in comparison 

with Bagging method, but it could not reach the sensitivity level of our ad-hoc classifier. 

As the training dataset was not noisy, the inferior performance of AdaBoost cannot be 

attributed to its well-known susceptibility to the outliers [104, 105], rather than lack of 

having fitness with the proposed classification problem. One explanation can arise from 

comparing the complexity of the employed algorithm. While the number of classifiers used 

by our ad-hoc method was equal to the number of the features (=10 classifiers), the 

proposed ensemble algorithms were developed based on a more complex combination of 

weak learners (=50 weak learners). This higher complexity could lead to over-fitting on 

the training dataset, which is congruent with the training accuracies. However, based on 

our empirical results using less number of weak learners for the ensemble method did not 

lead to better performances. Nevertheless, the number of weak learners for the ensemble 

algorithms cannot be tuned according to the test accuracies as it contradicts with the basic 

assumption that test data should be unseen.  

In general, the average voting classification showed more reliable results. This method 

seems logically reasonable as well; one advantageous of this method is its simplicity, which 

is also very similar to the way a physician diagnoses a condition or disease. Typically, a 

physician goes through the results of several tests each confirming the existence of a 

symptom; then, decides on a diagnosis based on the existence of the majority of the 

symptoms; our proposed ad-hoc method acts in the same manner. It would be advantageous 

to test its reliability in larger population as well as other datasets. 
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4.5 Summary 

In this chapter, we presented the results of our study regarding Meniere’s diagnosis. We 

first presented our designed classifier results over different EVestG tilts’ data, then 

introduced and reasoned the side tilt as the optimum tilt to be used in Meniere’s/control 

classification. We also investigated and discussed the supine tilts classification; though it 

could be only discussed as training results because we had supine tilts’ data only in RHC 

dataset. Finally, we compared and discussed our ad-hoc voting classification results for 

side tilt’s data with the results of three ensemble classification methods.   
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Figure 4-1. Classification results of the training subjects for side (CT&IT) tilt. 

 

 

 

 
Figure 4-2. Classification results of the training subjects for back tilt. 
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Figure 4-3. Classification results of the training subjects for rotation tilt. 

 

  

 
Figure 4-4. Classification results of the training subjects for up/down tilt. 
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Figure 4-5. Classification results of the testing subjects for side (CT&IT) tilt. 
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Figure 4-6. Classification results of the testing subjects for back tilt. 
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Figure 4-7. Classification results of the testing subjects for rotation tilt. 
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Figure 4-8. Classification results of the testing subjects for up/down tilt. 
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Figure 4-9. Scatter plot of the mean and standard error regions of two best features of side tilt 

derived from Meniere’s (red) and healthy (blue) data of training (solid curve) and testing (dashed 

curves) dataset. 
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Table 4-1. Five best features for CT (feature 1-5), IT (feature 6-10) tilts. 

Feature 
Number 

Feature Name Original Signal 
controls 
(mean±std) 

Meniere’s 
(mean±std) 

1 ID_ frn_ptrn *  OnBB – (L+R) 0.75±0.18 0.58±0.18 
2 Mean_Post_FP* RTC OnAA – (L) 0.15±0.22 -0.02±0.11 
3 Kurtosis_Post_FP* OnAA – (R) 2.3±0.65 3.5±1.50 
4 Ave_min_ frn_ptrn * OnAA – OnBB – (L+R) 0.05±0.017 0.03±0.018 
5 Higuchi_Pre_FP* BGi – OnBB – (R) 1.38±0.11 1.26±0.08 
6 Skewness_Pre_FP** RTC OnAA– RTC OnBB – (R) 0.57±0.26 0.02±0.38 
7 Mean_abs_Post_FP** RTC OnAA – (L–R) 0.15±0.06 0.39±0.19 
8 Kurtosis_ frn_ptrn * RTC OnAA – (R) 6.15±1.24 8.85±4.60 
9 Higuchi_Post_FP* OnBB – (R) 1.27±0.085 1.19±0.06 
10 Higuchi_Post_FP* RTC BGi – RTC OnAA (L) 1.29±0.056 1.42±0.17 

            * MEANS P<0.05 AND ** MEANS P<0.01. 

 

 

 

 

 

 

 

 

Table 4-2. Five best features for Back/forward tilt. 

Feature 
Number 

Feature Name Original Signal 

1 CD_Post_FP*  OnBB – (L) 

2 mode_ frn_ptrn ** BGi – OnBB – (L+R) 

3 PreEnergy_FP** RTC OnBB – (L–R) 

4 Correlation* BGi – OnAA – (L) 

5 ID_Pre_FP* BGi – OnAA – (R) 
                                            * MEANS P<0.05 AND ** MEANS P<0.01. 

 

 

 

 

 

 

 

 

Table 4-3. Five best features for Rotation tilt. 

Feature 
Number 

Feature Name Original Signal 

1 Std_Pre_FP** BGi – OnBB – (L) 

2 Skewness_Post_FP* OnBB – (L–R) 

3 Kurtosis_Pre_FP* RTC BGi – RTC OnAA – (R) 

4 Mean_abs_Pre_FP* OnAA – (R) 

5 Mode_ frn_ptrn * RTC BGi – RTC OnAA – (L–R) 
                                          * MEANS P<0.05 AND ** MEANS P<0.01. 
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Table 4-4. Five best features for Up/down tilt. 

Feature 
Number 

Feature Name Original Signal 

1 Higuchi_Pre_FP** RTC OnAA – (R) 

2 Mode_ frn_ptrn ** RTC OnAA – RTC OnBB – (L+R) 

3 Mean_abs_Pre_FP* RTC OnBB – (R) 

4 Skewness_Pre_FP** RTC BGi – (L–R) 

5 Higuchi_Post_FP* BGi – (R) 
                                            * MEANS P<0.05 AND ** MEANS P<0.01. 

 

 

 

 

 

 

 

Table 4-5. True and EVestG-assigned classes of the training dataset  

 True/Assigned Classes Meniere’s Non-Meniere’s Unclassified 

 
Side Tilt 

Meniere’s (n=14) 11 2 1 
Healthy controls (n=16) 0 15 1 
Sensitivity of detecting Meniere’s (%): 11/14= 78.5 
Specificity of detecting controls (%): 15/16= 94 
Accuracy (%): 87 

 
Back/ 

forward 

Tilt 

Meniere’s (n=14) 10 2 2 
Healthy controls (n=16) 3 11 2 
Sensitivity of detecting Meniere’s (%): 10/14=71 
Specificity of detecting controls (%): 11/16= 69 
Accuracy (%): 70 

 
Rotation 

Tilt 

Meniere’s (n=14) 9 1 4 
Healthy controls (n=16) 3 12 1 
Sensitivity of detecting Meniere’s (%): 9/14=64 
Specificity of detecting controls (%): 12/16= 75 
Accuracy (%): 70 

 
Up/ down 
Tilt 

Meniere’s (n=14) 11 1 2 
Healthy controls (n=16) 2 13 1 
Sensitivity of detecting Meniere’s (%): 11/14= 78.5 
Specificity of detecting controls (%): 13/16= 81 
Accuracy (%): 80 
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Table 4-6. True and EVestG-assigned classes of the test dataset (RHC)  

 True/Assigned Classes Meniere’s Non-Meniere’s Unclassified 

 
Side Tilt 

Meniere’s (n=9) 7 2 0 
BPPV or VN (n=6) 0 5 1 
RV, VBI or Barotrauma (n=3) 0 0 3 
Non-specific dizziness (n=3) 0 3 0 
Healthy controls (n=10) 1 9 0 
Sensitivity of detecting Meniere’s (%): 7/9 =78 
Specificity of detecting controls (%): 9/10=90 
Accuracy (%): 84  

 
Back/ 

forward 

Tilt 

Meniere’s (n=9) 4 5 0 
BPPV or VN (n=6) 1 4 1 
RV, VBI or Barotrauma (n=3) 0 2 1 
Non-specific dizziness (n=3) 1 2 0 
Healthy controls (n=10) 2 8 0 
Sensitivity of detecting Meniere’s (%):4/9=44 
Specificity of detecting controls (%): 8/10= 80 
Accuracy (%): 63 

 
Rotation 

Tilt 

Meniere’s (n=9) 5 1 3 
BPPV or VN (n=6) 3 3 0 
RV, VBI or Barotrauma (n=3) 1 2 0 
Non-specific dizziness (n=3) 1 2 0 
Healthy controls (n=10) 3 4 2 
Sensitivity of detecting Meniere’s (%): 5/9= 56  
Specificity of detecting controls (%): 4/9=44 
Accuracy (%): 50 
Note: one control data (S3) is out of analysis due to noise. 

 
Up/ down 
Tilt 

Meniere’s (n=9) 4 2 3 
BPPV or VN (n=6) 4 2 0 
RV, VBI or Barotrauma (n=3) 1 2 0 
Non-specific dizziness (n=3) 2 0 1 
Healthy controls (n=10) 7 2 1 
Sensitivity of detecting Meniere’s (%): 4/9= 44  
Specificity of detecting controls (%): 2/10=20 
Accuracy (%): 31.5 
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Table 4-7. Five best features for Supine up/down tilt 

Feature 

Number 
Feature Name Original Signal 

1 SD_ frn_ptrn ** OnAA – OnBB – (L–R) 

2 Mode_ frn_ptrn * BGi – OnAA – (R) 

3 median_ frn_ptrn ** RTC BGi – RTC OnBB – (L–R) 

4 Higuchi_Pre_FP** BGi – OnBB – (L) 

5 Kurtosis_Post_FP** RTC BGi – RTC OnAA – (L) 
            * MEANS P<0.05 AND ** MEANS P<0.01. 

 

 

 

Table 4-8. Five best features for Supine rotation tilt 

Feature 
Number 

Feature Name Original Signal 

1 Higuchi_Pre_FP** BGi – OnAA – (L) 

2 ID_Post_FP* OnAA – OnBB – (R) 

3 Mean_Post_FP** RTC OnBB – (R) 

4 NoF_ frn_ptrn * RTC BGi – (L) 

5 Higuchi_Post_FP** BGi – OnAA – (L) 
            * MEANS P<0.05 AND ** MEANS P<0.01. 

 

 

 

 

 

 

 

Table 4-9. True and EVestG-assigned classes of the RHC dataset 

 True/Assigned Classes Meniere’s Non-Meniere’s Unclassified 

Supine 

rotation 

Tilt 

Meniere’s (n=9) 8 1 0 

Healthy controls (n=10) 1 8 0 

Sensitivity of detecting Meniere’s (%): 8/9= 89 

Specificity of detecting controls (%): 8/9=89 

Accuracy (%): 89 

Note: one control data (S3) is out of analysis due to noise. 

Supine  

up/ down 

Tilt 

Meniere’s (n=9) 6 1 2 

Healthy controls (n=10) 0 9 0 

Sensitivity of detecting Meniere’s (%): 6/9= 67 

Specificity of detecting controls (%): 9/9= 100 

Accuracy (%): 83 

Note: one control data (S3) is out of analysis due to noise. 
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Table 4-10. True and EVestG-assigned classes of side tilt test dataset using AdaBoos method 

 True/Assigned Classes Meniere’s Non-Meniere’s 

 

Side Tilt 

Meniere’s (n=9) 5 4 

BPPV or VN (n=6) 1 5 

RV, VBI or Barotrauma (n=3) 2 1 

Non-specific dizziness (n=3) 0 3 

Healthy controls (n=10) 4 6 

Sensitivity, Specificity, Accuracy (%): 56 , 60 , 58 

 

 

 

 

 

Table 4-11. True and EVestG-assigned classes of side tilt test dataset using Subspace method 

 True/Assigned Classes Meniere’s Non-Meniere’s 

 

Side Tilt 

Meniere’s (n=9) 3 6 

BPPV or VN (n=6) 1 5 

RV, VBI or Barotrauma (n=3) 2 1 

Non-specific dizziness (n=3) 0 3 

Healthy controls (n=10) 0 10 

Sensitivity, Specificity, Accuracy (%): 33 , 100, 68.4   
 

 

 

 

 

 

 

 

 

 

Table 4-12. True and EVestG-assigned classes of side tilt test dataset using Bagging method 

 True/Assigned Classes Meniere’s Non-Meniere’s 

 

Side Tilt 

 

 

Meniere’s (n=9) 4 5 

BPPV or VN (n=6) 1 5 

RV, VBI or Barotrauma (n=3) 3 0 

Non-specific dizziness (n=3) 0 3 

Healthy controls (n=10) 3 7 

Sensitivity, Specificity, Accuracy (%):44, 70, 58 
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CHAPTER 5 Conclusion and Future Work  

 

 

5.1 Conclusion 

The result of this study has been encouraging on the use of EVestG signals to extract 

characteristic features sensitive to Meniere’s disease. Specifically, the side tilt’s signals 

showed characteristic features with more sensitivity and specificity compared to other tilts’ 

signals. Additionally, supine tilts have shown the potential for Meniere’s/control 

classification; as inherently the noise level in supine tilts’ data is lesser than in other tilts, 

it should be tested in future with a larger dataset.  

One reason for the noisy data in our experiment were due to the use of different types 

of (active and reference) electrodes with different impedances. Hence, background signals 

such as power line interferences, which typically appear as peaks of 50/60 Hz harmonics 

in frequency domain and occur from a common mode voltage, will be converted to 

differential mode by mismatched differential electrode impedances and will seriously 

affect SNR. This causes NEER to detect a noisy FP or firing pattern signal. Recently, in 

our team EVestG signals with two similar active and reference electrodes were recorded 
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and shown to yield a significant (p<0.05) higher SNR [72]. The results confirmed the use 

of mentioned electrodes instead of different electrodes in the traditional ECOG method. 

Overall, the results of this study show the potential of EVestG signals towards 

generating an adequate set of bio-features as a diagnostic and monitoring aid for dizziness 

related diseases, especially Meniere’s disease. The importance of this method is that it may 

prove to be also an assistive tool for differentiating different confounding pathologies. The 

results may lead to a more accurate objective and non-invasive clinical assessment assist 

of Meniere’s disease diagnosis. It can be a quick screening tool as the experiment in an 

optimized system will take about half an hour and the analysis, once written as a user-

friendly software, will take only a few minutes. 

5.2 Future Work Recommendations 

While we are encouraged by the results, we must point out that the size of the dataset is 

still small. In fact, 256 potential participants (dizzy patients) were identified by the 

collaborating physician, out of which 91 agreed to be contacted about EVestG recording. 

However, only 21 individuals actually participated and completed the EVestG test. The 

rest of patients who agreed to be contacted, either did not show up at the EVestG recording 

appointment or rejected to be a participant in the study when contacted. This illustrates the 

difficulty in recruiting patients for the study. Although EVestG testing is safe, quick and 

free of adverse effects, Meniere’s patients, particularly those who do not feel well, are 

reluctant to participate. 

On the other hand, as mentioned before, EVestG signals have shown potential in 

diagnosis of other diseases such Parkinson’s and depression diseases in other studies [59, 

60]. Additionally, most of Meniere’s patients are also suffering from a mild/moderate 
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depression and anxiety disorders as they become debilitated in their daily living lifestyle 

due to this disease. Although we had only one patient with mild depression in our dataset, 

still there is a chance of having more depressed patients in a larger dataset. Hence, it is 

necessary to investigate if the selected features in this study are exclusive for diagnose of 

Meniere’s disease rather than representative of other diseases or other abnormal 

neurological conditions. This requires using separate datasets of patients with relevant 

diseases and improving our two-class classifier to a multi-class classifier algorithm.  

Moreover, classification results may be improved by using Support Vector Machine 

(SVM) classifier instead of LDA classifier in our ad-hoc classification method. This is due 

to the fact that SVM computes the optimal hyper plane with respect to margin 

maximization, which usually ends up in better performances in classification results 

compared to LDA [106].  

Considering the above points, the following improvements and works are suggested as 

future studies: 

 Apply the same selected features on the available datasets from patients with 

Parkinson’s, concussion and depression.  

 Evaluation of the proposed algorithms on a larger dataset using all the tilts including 

supine tilts and perhaps modifying the experiment by utilizing similar recording 

electrodes.   

 Development of classifiers for patients with only depression or one vestibular 

illnesses, such as BPPV and Vestibular Neuritis and avoid correlated features. 

Then, prepare a similar average voting system for the results of classification so 

that each test subject would have a final vote of diagnosis for every disease. Thus, 
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building a smart classifier which identifies every patient with the disease that is 

associated with the highest achieved vote. 

 Substitution of LDA classifiers with SVM ones in our ad-hoc method. 

This is an ongoing study and we hope to extend this research until it will be a beneficial 

practical method in clinical diagnostic area.  
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Appendix A.      Questionnaires  

 

 

A.1 Montreal Cognitive Assessment (MoCA) 

MoCA is designed as a rapid screening instrument for mild cognitive dysfunction [74]. 

It assesses different cognitive domains such as the followings: 

 Attention  

 Concentration 

 Executive functions 

 Memory 

 Language  

 Visuoconstructional skills 

 Conceptual thinking 

 Calculations 

 Orientation  

Administering the MoCA for cognitively healthy people takes about 10 minutes. The 

total possible score is 30 points; it is calculated by the sum all sub-scores with adding one 
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point for an individual who has 12 years or fewer of formal education. A final total score 

of 24 and above is considered normal. 

A.2 Montgomery Asberg Depression Rating Scale (MADRS)  

MADRS is a rating scale comprised of ten items and used for assessment of depression 

levels. Each item is rated between 0 and 6 (a 7-point scale) where 0 indicates absence of 

the symptom and 6 indicates extreme presence of the symptom [75]. The time frame of the 

scale covers 1 month prior to the test.  

The items rated are: 

 Apparent and reported sadness 

 Inner tension 

 Reduced sleep and appetite 

 Concentration difficulties 

 Lassitude 

 Inability to feel 

 Pessimistic and suicidal thoughts 

 

A score of 0-6 indicates normal or recovered from depression, 7-19 mild depressive 

symptoms, 20-34 moderate depression and 35-60 exhibits severe depression. 
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A.3 Vestibular Disorders Activities of Daily Living Scale 

(VADL) 

VADL is an assessment tool designed to evaluate self-perceived disablement in 

individuals with vestibular impairment [107]. It includes 28 items each evaluating the 

effects of vertigo and balance disorders in everyday activities of daily living. The tool is 

initially designed to be useful for evaluating functional limitation and perceived disability 

before and after therapeutic intervention.   

The items are broken down into 3 subscales: functional, ambulatory, and instrumental. 

The functional subscale evaluates the individual’s perception of basic self-maintenance 

tasks (such as sitting up from lying down or dressing up the body); the ambulatory subscale 

evaluates perception of mobility related skills (such as walking on surfaces or going on 

steps) and the instrumental subscale looks at self-perception in higher-level more socially 

complex tasks (such as driving a car or playing a sport). 

 The questionnaire requires individuals to rate their self-perceived disablement level on 

a scale that ranges from 1 (independent) to 10 (too difficult, no longer performed);    the 

maximum score would be 280. Subject are also supposed to rate every item based on their 

current performance compared to their performance before developing an inner ear 

problem.  
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Appendix B.      Fractal Dimension Calculations  

 

 

B.1 Introduction 

Fractal objects arise from a variety of sources and have been observed frequently in 

nature as well as in theoretical models [108]. These objects can be a geometrical figure, a 

process or a set of data like a time series, etc. FD is usually interpreted as the measure of 

the degree of space-filling (meandering, roughness, brokenness, or irregularity) of an 

object.  

One of the exceptional mathematical characteristics of a fractal object is that it can be 

described by a non-integer or a fractional value called “Fractal dimension (FD)” that 

exceeds its topological dimension [109, 110]. This non-integer value results when 

measuring an intrinsic property (associated with fractal’s geometry, entropy, variance, etc.) 

of the fractal called self-similarity or self-affinity. In fact, the self-similarity of the object 

is confirmed if a portion of the object is exactly or approximately a scaled down version of 

itself; however, this is only true for theoretical fractals. In contrast, for natural fractals the 

scales are different in different directions (several scaling factor); hence, they are called 

self-affine fractals. 
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Assuming frequent measurements of a length of a simple object like a curve with a 

measurement scale of size 𝑟, the length of the curve, 𝐿(𝑟), will be the number, 𝑁(𝑟), of 

such scale required to cover the curve length from one end to the other. If the scale size 

approaches zero, the length of the curve will approach a finite value (in Euclidean space) 

as below:  

𝐿(𝑟) = lim
𝑟→0

𝑁(𝑟) r = constant     𝐿(𝑟) = lim
𝑟→0

𝑁(𝑟) 𝑟𝐷𝜀 = constant <∞      (B.1) 

This is contrary in a fractal object; meaning that if the scale size decreases toward zero, 

the length of the fractal increases to an unlimited value (𝐿(𝑟) ∞). In fact, 𝐿(𝑟) can only 

be constant in a specific condition when assuming an exponent, 𝐷, for the scale size, 𝑟, in 

a power-law relationship such as below: 

𝐿(𝑟) = 𝑁(𝑟)𝑟𝐷            (B.2) 

 Thus, the new exponent, which was 𝐷 = 1 in equation (B.1), may suppress the rate of 

diverging 𝐿(𝑟) to a point that it may become constant (at some critical value 𝐷𝐿) according 

to the following criteria: 

{

𝑖𝑓 𝐷 < 𝐷𝐿                          𝐿(𝑟) ∞ 

𝑖𝑓 𝐷 = 𝐷𝐿            𝐿(𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑖𝑓 𝐷 > 𝐷𝐿                            𝐿(𝑟) 0

          (B.3) 

This critical exponent value 𝐷𝐿 is no longer an integer value and is called length fractal 

dimension. It can be shown that 𝐷𝐿 is related to the slope of the log-log plot of successive 

measurements of 𝐿(𝑟) [111]. 

In the same way as the above simple example, if a power-law relation for a self-similar 

fractal object satisfies as below; 

 𝑁𝑟~(
1

𝑟
)𝐷   𝑓𝑜𝑟  𝑟 0                                                                                                                (B.4) 
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Where 𝑁𝑟 is the number of self-similar objects used to cover the original object, and 𝑟 is 

the ratio used to subdivide the original object into 𝑁𝑟 self-similar objects [79, 112]; then, 

FD is defined as: 

𝐷 =
log(𝑁𝑟)

log(1/𝑟)
                                                                                       (B.5) 

For real (natural) objects, which are not self-similar, we cannot apply the formula in 

(B.5) directly to obtain the FD. Instead, the estimated FD based on empirical approach 

must be used. Many methods have been proposed, and developed in the literature [79, 112]. 

These methods differ in the ways they approximate the quantity 𝑁𝑟 in the above equation, 

but similarly they use some version of the power-law relationship between the measured 

quantities of an object and step sizes to derive the estimates of the critical exponent.  

The quantity of an object is expressed in terms of, for example, length, area, or number 

of boxes (cells) needed to cover the object. The step size refers to the scale or resolution of 

measuring units used. The common procedure for most of methods consists of three 

following steps: 

  Measure the quantities of the object under consideration using various step sizes.   

  Plot log of measured quantities versus log of step sizes and fit a least squares 

regression line through the data points.  

  Use the slope of the regression line to derive the critical exponent of the object 

called as FD. 

Fractal objects can be analyzed in three different aspects: 1) measuring the geometry or 

the shape of the projection of a fractal object while relied on the uniform distribution 

assumption of the shape properties called as morphological fractal dimension, 2) measuring 

the information (uniform or non-uniform) distribution of a fractal object called as entropy 
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fractal dimension, 3) measuring fractal properties of a changed version of the original 

fractal using a transformation function called as transform fractal dimension. 

FD analysis is widely used as an analytical tool in a variety of research areas particularly 

signal processing (of biological signals) [111, 112]. It measures the irregularity or the 

complexity of the signal; complexity is defined as patterns and their organization into 

hierarchies, which often change by time and can be grouped into several classes such as 

structural, dynamic, functional, synergetic, and design complexity [113]. As the dimension 

of a line or segment is equal to one and the dimension of a plane is equal to two, then FD 

of a signal is a continuous real value between one and two depending on the degree of 

irregularity of it. The more complex the signal, the higher the FD value will be.  

We will explain Higuchi fractal dimension and Entropy based fractal dimension, which 

are two effective methods for calculation of FD, used in this work. 

B.2 Higuchi Fractal Dimension 

 Among the various morphological fractal dimension methods, the Higuchi fractal 

method is well suited for studying signal fluctuation in one dimension. In 1988 Higuchi 

proposed an efficient algorithm for measuring the FD of discrete time sequences [78]. 

Higuchi’s algorithm calculates the FD directly from time series. It has already been used 

to analyze the complexity of biological signals [114]. 

Given a one dimensional time series  𝑋 =  𝑥[1], 𝑥[2], . . . , 𝑥[𝑁] , the algorithm to 

compute the HFD can be described as follows:  

Form 𝑘 new difference time series 𝑋𝑘
𝑚 with different lags which is defined by  

𝑋𝑘
𝑚 = {𝑥[𝑚], 𝑥[𝑚 + 𝑘], 𝑥[𝑚 + 2𝑘], … , 𝑥 [𝑚 + 𝑖𝑛𝑡 (

𝑁−𝑚

𝑘
) × 𝑘]}                     (B.6) 
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 where 𝑘  and 𝑚  are integers, 𝑖𝑛𝑡 (
𝑁−𝑚

𝑘
)  means the integer part of the number, 𝑘 

indicates the discrete time interval between points, whereas 𝑚 =  1, 2, . . . , 𝑘 represents the 

initial time value. The length of each new time series can be defined as follows: 

𝐿(𝑚, 𝑘) =  
1

𝑘
(∑ | 𝑥[𝑚 + 𝑖𝑘] −  𝑥[𝑚 + (𝑖 − 1) × 𝑘] |

𝑖𝑛𝑡(
𝑁−𝑚

𝑘
)

𝑖=1
) × [

𝑁−1

(𝑖𝑛𝑡(
𝑁−𝑚

𝑘
)×𝑘)

],      (B.7) 

Where 𝑁 is length of the original time series 𝑋, and [
𝑁−1

(𝑖𝑛𝑡(
𝑁−𝑚

𝑘
)×𝑘)

] is a normalization 

factor as the number of terms in a k-series varies and normalization must be used.  

Then, the length of the curve for the time interval 𝑘 is defined as the average of the 𝑘 

values 𝐿(𝑚, 𝑘), for 𝑚 = 1, 2, . . . , 𝑘: 

𝐿(𝑘) =  
1

𝑘
(∑ 𝐿(𝑚, 𝑘)𝑘

𝑚=1 )                                        (B.8) 

Finally, when 𝐿(𝑘) is plotted against 1/𝑘  on a double logarithmic scale, with  𝑘 =

 1, 2, . . . , 𝑘𝑚𝑎𝑥, the data should fall on a straight line, with a slope equal to the FD of 𝑋. 

Thus, HFD is defined as the slope of the line that fits the pairs {𝑙𝑛[𝐿(𝑘)], 𝑙𝑛(1/𝑘)} in a 

least-squares sense. In order to choose an appropriate value of the parameter 𝑘𝑚𝑎𝑥, HFD 

values were plotted against a range of  𝑘𝑚𝑎𝑥 . The point at which the FD plateaus is 

considered a saturation point; that should be selected as the 𝑘𝑚𝑎𝑥 value. A value of 𝑘𝑚𝑎𝑥 

= 8 was chosen for our study (the minimum value of 𝑘 starts from 2). 

B.3 Entropy-Based Fractal Dimensions 

 Entropy can be defined as the amount of information needed to specify the state of a 

system to a resolution of r. Entropy is known as the measure of disorder in physical 

systems, or the amount of information that may be gained by observations of disordered 

systems [115]. Entropy-based fractal dimensions differ significantly from the 
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morphological dimensions since they can deal with non-uniform distributions in the 

fractals. This is understandable because the morphological dimensions are purely metric 

and not following probabilistic concepts. The information dimension (ID) and correlation 

dimension (CD) are special cases related to generalized entropy concept as introduced by 

Alfred Renyi in 1955 [116]. Both dimensions are improvements of the geometric definition 

of covering a fractal object by 𝑁𝑘  volume elements (vels) with a diameter or radius 

𝑟𝑘 (which 𝑘 shows the order of covering). 

B.3.1 Information Dimension (ID) 

 The simplest entropy-based fractal dimension is related to the first-order Shannon 

entropy [117]. Let's consider an arbitrary fractal that is covered by 𝑁𝑘 vels, each with a 

diameter 𝑟𝑘 at the 𝑘𝑡ℎ covering. The estimation of the information dimension, considers 

the density of the fractal, as determined from the relative frequency of occurrence of the 

fractal in each intersecting vel. If 𝑛𝑗𝑘  is the frequency with which the fractal enters 

(intersects) the 𝑗𝑡ℎ vel of size 𝑟𝑘 in the 𝑘𝑡ℎ covering, then its ratio to the total number of 

intersects, 𝑁𝑇𝑘 , of the fractal with all the vels is an estimate of the probability of the fractal, 

𝑝𝑗𝑘 , within the 𝑗𝑡ℎ vel, and is given by: 

𝑝𝑗𝑘 = lim
𝑘→∞

𝑛𝑗𝑘

𝑁𝑇𝑘
 ,                                  (B.9) 

where  

𝑁𝑇𝑘 = ∑ 𝑛𝑗𝑘
𝑁𝑘
𝑗=1                          (B.10) 

With this probability distribution at the kth covering (counted through the box-counting 

method [111], the average (expected) self-information (i.e., 𝐼𝑗𝑘  =  𝑙𝑜𝑔 (1 / 𝑝𝑗𝑘)) of the 

fractal contained in the 𝑁1𝑘 vels can be expressed by the Shannon entropy 𝐻1𝑘 given as: 



Appendix B. 

103 
 

𝐻1𝑘 = ∑ 𝑝𝑗𝑘𝐼𝑗𝑘
𝑁𝑘
𝑗=1 =  − ∑ 𝑝𝑗𝑘 𝑙𝑜𝑔(𝑝𝑗𝑘)

𝑁𝑘
𝑗=1                                           (B.11) 

Notice that the subscript 𝐻1𝑘 denotes that the Shannon entropy is of the first order which 

assumes independence between all the vels. If the following power-law relationship holds: 

𝐶𝐻1𝑘~ (
1

𝑟𝑘
)𝐷1,                                                                (B.12) 

where 𝐶 is a constant, then the information fractal dimension is 

𝐷𝐼 = lim
𝑘→∞

𝐻1𝑘

log (1 𝑟𝑘⁄ )
,                                                               (B.13a) 

or 

𝐷𝐼 = lim
𝑟→0

𝐻1𝑟

log (1 𝑟⁄ )
                                                               (B.13b) 

𝐷𝐼 can be obtained from the slope of a log-log plot of Shannon’s entropy 𝐻1𝑘 versus 

precision (1 𝑟𝑘⁄ ). 

B.3.2 Correlation Dimension (CD) 

 The information dimension reveals the expected spread in the non-uniform probability 

distribution of the fractal, but not its correlation. The correlation fractal dimension was 

introduced to address this problem. Let’s consider a setting identical to that required to 

define the information dimension, ID. If the following power-law relationship holds: 

( ∑ 𝑝𝑗𝑘
2𝑁𝑘

𝑗=1  )−1 ~ ( 
1

𝑟𝑘
 )𝐷𝑐 ,                        (B.14) 

then the correlation dimension is  

𝐷𝐶 = lim
𝑘→∞

− log ∑ 𝑝𝑗𝑘
2𝑁𝑘

𝑗=1

log (1 𝑟𝑘⁄ )
 ,                                                               (B.15a) 

or 

𝐷𝐶 = lim
𝑘→∞

log ∑ 𝑝𝑗𝑘
2𝑁𝑘

𝑗=1

log (𝑟𝑘)
                                                                               (B.15b) 
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𝐷𝐶  can be obtained from the slope of a log-log plot of the second-order entropy 𝐻2  versus 

precision (1 𝑟𝑘⁄ ) and called as CD. It is clear that the numerator is different from the 

Shannon first-order entropy in the information dimension. It can be shown that it has the 

meaning of a correlation between pairs of neighboring points in the fractal. This correlation 

can be expressed in terms of a density-density correlation (or pair correlation) function. It 

is also known as the correlation sum, or correlation integral. This interpretation can lead to 

a very fast algorithm for computing the correlation dimension [76, 118]. There are 

numerous examples in the literature for computing the correlation dimension of natural 

fractal objects. Correlation dimension is, in fact, the information dimension between the 

pairs of points which the distance of each pair of points is less than a resolution (the 

diameter of a vel in a kth covering). Both ID and CD represent a weighted average measure 

of the actual distribution of self-information over the fractal in each cover.  
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Appendix C.   Linear and Quadratic Discriminant 

Analysis  

 

 

Linear Discriminant analysis (LDA) is a standard classification method originally 

developed in 1936 by R. A. Fisher. It is simple, mathematically robust, and often produces 

results whose accuracy is as good as more complex methods especially when dealing with 

low dimensional data. LDA separates data of different classes based on the assumption that 

the data are from normal distribution with equal covariance matrices. Having 𝑥 as the 

feature vector and 𝑐𝑗 as 𝑗 classes, according to Bayes rule 𝑥 is assigned to a class in which 

it has the highest posterior probability. This criteria results as following: 

Max Pr(𝑐𝑗 |𝑥) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑗[𝑥𝑇∑𝑗
−1µ𝑗 + 𝑐],           (4.6) 

where Pr(𝑐𝑗 |𝑥) is the posterior probability, µ𝑗 is the mean vector, and ∑𝑗 is the covariance 

matrix of vector 𝑥. 𝑐 is a constant in the above formula. In a two class problem, this results 

in a decision boundary that maximizes the distance between the two classes’ means and 

minimizes the variance of within classes [63]. 

Quadratic Discriminant analysis (QDA) is a generalization of LDA in terms of 

covariance matrices of classes. In QDA, the LDA assumption changes to data of classes 
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with normal distribution but with different covariance matrices; hence the covariance 

matrix needs to be estimated for every class and the decision boundary will be a quadratic 

function. The classifier formula is as follows, 

Max Pr(𝑐𝑗 |𝑥) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑗 [−
1

2
𝑥𝑇∑𝑗

−1𝑥 + 𝑥𝑇∑𝑗
−1µ𝑗 + 𝑐]        (4.7) 

In general, QDA tends to fit the data better than LDA as it allows for more flexibility 

for the covariance matrix. However, it has more parameters to estimate, and it may over fit 

the data in a small sample set.  
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List of publications by candidate: 
 

 

Published Journal Papers:   
               

1. Dastgheib Z., Lithgow B, Blakley B and Moussavi Z, Application of 

Vestibular Spontaneous Response as a Diagnostic Aid for Meniere's 

Disease, Annals of Biomedical Engineering, Vol. 44(5), Sept 2015.  

 

2. Dastgheib Z., Lithgow B, Blakley B and Moussavi Z, A New Diagnostic 

Vestibular Evoked Response, Canadian Journal of Otolaryngology - Head & 

Neck Surgery, Vol. 44(1), No. 14, April 2015.  

 

3. Blakley B, Dastgheib Z, Lithgow B and Moussavi Z, Preliminary Report: 

Neural Firing Patterns Specific for Meniere’s Disease, Canadian Journal of 

Otolaryngology - Head & Neck Surgery, Vol. 43(1), No. 52, 2014.  

 

4. Dastgheib, Z. A., B. Lithgow, and Z. Moussavi. Diagnosis of Parkinson's 

disease using Electrovestibulography, J. Medical and Biological 

Engineering and Computing (MBEC), Vol. 50, No. 5, PP: 483-91. May 

2012.  

 

 

 

Published Conference Papers:  

                                      
1. Dastgheib, Z., Omid Ranjbar Pouya, B. Lithgow., Z. K. Moussavi. 

Comparison of a new ad-hoc classification method with Support Vector 

Machine and Ensemble classifiers for the diagnosis of Meniere’s disease 

using EVestG signals, 29’th IEEE Canadian Conference on Electrical and 

Computer Engineering, Vancouver, Canada, May 2016.  



Appendix D. 

108 
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Response as a Signature for Parkinson’s Disease. 34rd Annual International 

IEEE EMBS Conference of the IEEE Engineering in Medicine and Biology 

Society. San Diego, California, USA, 3704-07, Sep 2012. 
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