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ABSTRACT

This paper compares presently available methods for long-range water supply
forecasting with theoretical statistical time-series models as a means of evaluating forecast
performance and reliability of long-range monthly probabilistic stream flow forecasts.
Seasonal AutoRegressive Integrated Moving Average (SARIMA) models are used in
conjunction with deseasonalized AutoRegressive Moving Average (ARMA) models to
produce forecasts for various inflow types under a range of flow scenarios. Evaluation of
model performance under these conditions provided possible insight into development of a
hybrid technique using engineering knowledge and experience to improve the quality and
reliability of the forecasts. Ranking of model choices from analysis of forecast errors
within a flow sensitivity analysis allowed the formation of a set of rules to govern the
selection of a single model when more than one model is available. These modelling
procedures provided a basis for comparison with existing methods of long-range
forecasting at large utilities such as Manitoba Hydro. Increased confidence in the optimal
forecasted operating and planning policies of a large utility are consequences of improved
forecasts.

Manitoba Hydro was chosen as a case study utility from a selection of several other
large utilities that were surveyed. Manitoba Hydro is a large utility which operates a multi-
reservoir electric power generation system in the province of Manitoba. The needs and
priorities of the system demand forecasts of up to a year in advance for planning of budgets
and release policies. Manitoba Hydro needs and requirements were used to govern the
scenario within forecasts are made, allowing forecasts from Manitoba Hydro to be

compared with forecasts produced from other statistical time series modelling techniques.
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1 INTRODUCTION

1.1 Hydrologic forecasting

Hydrologic forecasting plays an ever increasing role in water resource management
for improvement of irrigation practices, flood control, and hydro-electric generation
optimization. The ability of the engineer to make competent forecasts of natural inflows to
reservoirs has improved. Developments in statistical theory, contact with statisticians, and
experience in evaluating the interaction of various physical processes enable us to better
comprehend the content of our data sets. Techniques for forecasting vary with the system
purpose, physical characteristics, and availability of data.

Hydrologic forecasting, water supply forecasting in particular, can be separated into
two general types: short-term, or real-time forecasting; and long-range forecasting. Each
is suited for different, specific system requirements. They differ in physical nature and
require individual mathematical approaches. Short-term forecasting has been thoroughly
researched, and well documented, but long range forecasting remains somewhat
mysterious to engineers. Yet, it can not be ignored because optimization techniques for
reservoir release policies demand an indication of what inflows can be expected in the
coming months. This paper will explore time series analysis techniques as they apply to
long-range water supply forecasting, and use them as a basis for comparison with

forecasting within Manitoba Hydro.



1.2 Project scope

The purpose of this paper is to evaluate the effectiveness of long-term water supply
forecasting by several large utilities, Manitoba Hydro in particular, and compare their
capabilities with available theoretical statistical tools. A comparison of time series models

such as those produced by AR and MA (AutoRegressive and Moving Average) processes
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Figure 1. Project Overview
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with the current mathematical methods may indicate the relative quality of the forecasts, and
suggest improvements in use of the data.

A sensitivity analysis for flow scenarios is used to aid in the selection of a superior
model when several seemingly indistinguishable models are available. This type of
analysis is used to prepare a ranking of the models, defining a simple set of rules that
govern the choice of best forecast model under given specific flow conditions. A flow

chart of the project components is outlined in Figure 1.

1.3 The Manitoba Hydro System

Manitoba Hydro (frequently referred to as MH within this paper) operates a multi-
reservoir power generation system within the province of Manitoba, Canada. Large
reservoirs regulate a considerable portion of the downstream flow. The largest, Lake
Winnipeg, is approximately 23,700 square kilometres. The extent of natural or man-made
storage capacity provided by these reservoirs reduces the need for extensive management of
extreme or sudden flood events by damping the effects of precipitation and flow events.
Because of the level of flow regulation, or magnitude of capacity, time lags of natural
inflows do not greatly affect the performance of the system. For this reason, short-term
forecast improvements are not considered to be highly beneficial. Conversely, long range
forecasts up to a year in advance are necessary for the implementation of robust reservoir
release policies to maximize system benefits from power production.

Forecasting at Manitoba Hydro is dependent on stream flow data because flow
gauges are the only comprehensive source of available data. Other system information
regularly associated with real-time conceptual forecasting models such as precipitation data

and soil moisture conditions is available only on a regional basis. The information gained

3



from these regional or general data sets is more useful in defining short-term expectations.
Forecasts are used as input to a linear programming (LP) package that optimizes system
benefits, and develops an efficient operational plan of reservoir releases. At MH, various
forecasts are studied so that a robust plan can be developed. The operating plan developed
by the LP is optimal given that particular forecast materializes. At best, it is near optimal or
optimal given the percieved range of flow possibilities. At worst, it is one of many feasible
solutions. The quality of LP output is a function of the quality of forecasted inflows to the
system. Improvements in forecast accuracy will improve the quality of operation of the
system, although the magnitude of improvement will vary according to the system

characteristics (Georgakakos, 1989; Mishalani and Palmer, 1988).



2 WATER SUPPLY FORECASTING

2.1 Short-term forecasting

Short-term forecasts are primarily used to manage flooding events, although they
are also valuable for management of power generation and irrigation on a real-time basis.
They range from an hour to a number of days, up to a week. Modelling for short-term
forecasting, because of the recent nature of the system knowledge, is a matter of calculating
the system response to known events or situations.

Much of the work for real-time or short-term forecasting for stream flow approach
the problem as a dynamic state-space system to produce a conceptual rainfall-runoff model.
Various physical parameters such as precipitation, soil moisture content, and others are
used to form the state of the system. The system state is then forecasted, or estimated, with
the use of techniques such as Kalman filtering. For an in-depth study of dynamic state-
space systems and Kalman filtering, see Abraham and Ledolter (1983). The general

formulation of a dynamic linear state-space system is given (2.1a,b).

Yts1 = Ayt +Gar4 (2.1a)
2t = Hyr + by (2.1b)
yt = forecast, or dependent, variable
zt = known, independent, variable
A, G, H are coefficient matrices

at, bt are other functions such as error terms



The best known example of short-term forecasting is provided by the National
Weather Service River Forecast System (NWSRFS) in the US. Their Extended
Streamflow Prediction (ESP) program is frequently used and referenced in the literature
(Day, 1985; Georgakakos and Smith, 1990; Hudlow, 1988; Kitanidis, 1980a, 1980b).
It consists of a conceptual rainfall-runoff model that is estimated using Kalman filtering.
There are numerous examples of experiments in using different formulations of the system
ranging from linear to nonlinear, and variations of the Kalman Filter such as the Extended
Kalman Filter (EKF) (Georgakakos and Smith, 1990). Other work for real-time
forecasting with conceptual rainfall-runoff models experiment with various estimation
techniques. Puente and Bras (1987) reviewed the use of EKF along with other, more
complicated, filters for nonlinear systems. Another example is the work by Sen (1991)
who combined Kalman filtering with Orthogonal Walsh Series.

The practice of formulating rainfall-runoff models in state-space systems for real-
time forecasting has been well established. Possible improvements in the system
estimation method have been explored but reduction in estimation error is quickly
approaching the limits of the data, and the extent of our knowledge about these natural
processes. Nonlinear filtering using EKF has been demonstrated to be effective (Puente

and Bras, 1987; Georgakakos and Smith, 1990).

2.2 Long-term forecasting

The approach for long-term forecasting is not as clearly defined. These kinds of
forecasts range in length from weeks to months, up to a year, using time steps of a day,
week, or month. The problem with making forecasts of several months in advance is that
Nature is quite unpredictable. The timing, number, and intensity of precipitation events, or

changes in the state of the system, are more or less random occurrences that are not



strongly correlated. Long-term forecast accuracy is confined or constrained in that
engineers are restricted to making general observations about stream flow behaviour from
limited information within the data.

Some work has been done in conceptual state-space modelling to apply those
techniques to long range forecasting. Day (1985) used the ESP model at the NWS,
described in section 2.1, to produce probabilistic forecasts using simulation techniques.
However, examples of this are limited and the potential of this approach is uncertain
because the focus with conceptual models is based on the day to day calculation of
responses of a simulated or historical meteorological record, and general system flow
behaviours are merely implied, or ignored.

Instead, long range forecasting practices, and theory, concentrate on using some
form of pattern recognition regression, or correlation of time dependence of system

behaviour to forecast time series data such as stream flow.

2.2.1 Time series analysis

The theoretical statistical approach for modelling single variate time series data is to
correlate previous time lags with the present or forecast lag (Box and Jenkins, 1976).
Multivariate modelling is also possible by cross-correlating two or more data sets.
Correlation of time lags demands the calculation of 2 functions: the Autocorrelation
Function (ACF), and the Partial Autocorrelation Function (PACF). They are quite tedious
and complicated to calculate, but statistical packages such as the Statistical Analysis System
(SAS) will easily calculate these functions. Both functions are valuable aids in the
identification of a stationary series, and the identification of relevant significant time lags to

be included in a time series model. The general, biased, ACF is given below in (2.2) for



lag k of time series x¢. For a detailed discussion of these functions, see Abraham and
Ledolter (1983), or Bowerman and O'Connell (1987).
N-k

> (Xt - X)(Xtek - X)
{=1

Mg =
_7\2
(o) (2.2)

Mz

1

For a model to be considered stationary, it must first satisfy stationarity conditions

that state the roots of the equation (2.3)

UP - OuP1 - gpuP2-...- 9o =0 ,for AR(p) (2.3)

lie inside the unit circle. That is,

uj<1 Li=1...p (2.4

Where uj in (2.4) are the roots of the equation. In general, a stationary model has
coefficients ranging from -1 to +1. The practical application of this for identifying a
stationary series is to consider whether the two correlation functions, ACF and PACF,
become insignificant after a reasonabiy limited number of lags. This can become difficult
for a complicated seasonal data set. Experience in modelling time series data, and
familiarity with identifying stationary processes, is a great asset.

By correlating previous time lags, time series models are expressed as a
combination of AutoRegressive (AR) and Moving Average (MA) parameters (Box and

Jenkins, 1976) shown in (2.6a,b). Model notation commonly uses the backshift operator



(B) to simplify complicated model terms. It is not a variable, but operates on a variable, as

in (2.5a,b), to represent a variable lag according to the power in which B is raised.

th = Xi-1 (253_)
B%X; = X0 (2.5b)
MA(1) Xy = (1 - elB)at (2.63)
AR(2): (1- 3B - ¢BIx = a (2.6b)

The AR and MA processes are inversely related by the following equations (2.7a,b,¢,d):

(1- 3B )x =2 (2.72)
Xg=—1 &
(1-¢:B) (2.7b)

Then, by Taylor series expansion in (2.7¢):

A o1 ex+x@ x84 X< 1
1-x (270)

the AR(1) model can be represented by an infinite series of exponentially decreasing error,
or MA, lags as in (2.7d). In the same way, a MA(1) model is the equivalent of an infinite,

exponentially decreasing significant series of AR terms.

Xt=(1+ ¢;B + ¢282 + ¢3B3 +---)ay ,l¢i’ <1 2.7d)

s



The ACF is controlled by MA processes, and the PACF is controlled by AR
processes. Examination of these two functions will provide a thorough basis for analysis
of the system behaviour under time dependence, and will suggest the appropriate
parameters to include in the model. Model parameters can then be estimated using a

technique such as Maximum Liklihood estimation.

2.2.2 Time series application

In Civil Engineering, modelling with ARMA (AutoRegressive Moving Average)
processes have been available for years. An ARMA modelling approach has been
developed that is specific to stream flow. A complete discussion of this type of modelling
is available within Salas et. al. (1980).

Considerable data manipulation is usually required before an ARMA model can be
fit. The first manipulation stage is transformation of the data. Monthly stream flows
typically demand transformation to create a normal or gaussian data distribution. Stream
flow data is generally skewed such that there is a long tail on the high flow side and a non-
negative condition on the low flow side of the data distribution. A Box-Cox transformation
can be used (2.8a,b), but flows are generally lognormally distributed and can be

transformed accordingly by (2.8b).

(2.8a)

Zt = In[xt] ,A=0 (2.8b)

10



Flows are then deseasonalized, or standardized, to account for variations in
monthly mean (2.10) and standard deviation (2.11). Most stream flow series exhibit
significant seasonality, or changes in flow characteristics from month to month. Spring
flows tend to be high and winter flows tend to be very low. The variance also tends to
change. The range of possibilities for flow in spring is much greater than in the winter.
Nonparametric deseasonalization uses Fourier analysis to estimate the properties of mean
and standard deviation with a smoothing effect from the historical statistics. Another
technique is parametric deseasonalization. It simply uses the standard normalized variable,
with historical characteristics, to handle seasonality. Both parametric and nonparametric

deseasonalization employ the standard variable (2.9):

Yo =P e Zpt - e
P ox (2.9)
’ n
973 =‘ﬁz Zp,'c
p=1 (2.10)

n 1
| i e
p=1 (2.11)

Knowing that the historical monthly means and standard errors vary throughout the
year, Fourier analysis is used when the engineer expects the true monthly characteristics to
display a more smooth transition through the year than the historical approximations. This
technique is best suited for when the data set is limited. As the set gets larger, the historical
characteristics will approach the true values and Fourier analysis becomes unnecessary.

Fourier series estimations of the monthly characteristics are made by defining the means,

11



and standard errors, as a series of harmonics that vary about the annual mean of the statistic

in question (2.12).

m .
Vi=Vy + z (AjcosAst + Bjsinyt) o A _2m
= ® (2.12)
(O]
_2 2njt
A= 0 (Ve - v,()cos—(D
(0]
= %2 - Vx sm——% , ® = 12 for monthly data

A sensitivity analysis must also be performed to determine the optimal number of
harmonics, m, to be used.

After deseasonalization, the working data set is no longer a stream flow time series,
but a set of non-dimensional numbers expressed in terms of number of standard errors
from a mean value. The Autocorrelation and Partial Autocorrelation functions of this
transformed deseasonalized data set are usually stationary with significant AR terms, and

possibly an MA term. Typical model results are: AR(1), AR(2), ARMA(1,1).

2.2.3 Statistical time series approach

Current statistical practices for time series analysis consists of differencing the data
to achieve stationary correlation structures. Stationary structures of this kind are usually
more complicated than those representing the transformed deseasonalized data set. This is
because periodic trends or tendencies are not drowned out with differencing as they are
with deseasonalization. Seasonal AutoRegressive Integrated Moving Average (SARIMA)
models and other modern variations can be used to model stream flow by correlating recent

and seasonal time lags to the present or forecast time lag. Combinations of AR, MA

12



parameters, seasonal AR, MA parameters, seasonal, and nonseasonal differencing produce

a SARIMA model with general notation of:

SARIMA(p,d,q)x(P,D,Q)1., (2.13)

or

¢(B)®(BY)(1 - BYY(1 - BY) x; = 6(B)®(BL)a

p =no. AR terms P =no. seasonal AR terms
d = degree differencing D =degree seasonal differencing
q = no. MA terms Q =no. seasonal MA terms

L = seasonal lag

Initially, the stream flow data set needs to be transformed in the same manner as
deseasonalized ARMA models to produce a gaussian distribution. Differencing the data
series without transformation may also produce a gaussian distribution, but does not
stipulate strict non-negativity of the flows. This is why transformation should be used.

The transformed data set still exhibits all or most of the seasonal properties of the
original data set. The correlation structure is usually non-stationary with a general
periodicity that appears in the shape of a cosine series. To produce a stationary series, one
with a limited or finite number of significant time lags, data values from previous lags are
subtracted from the present lag to give a differenced series. Stream flow series usually
require differencing of similar months, seasonal differencing, such as April with April.
Typical seasonal differencing for annually periodic data series, such as stream flow, are

shown in (2.14, 2.15):

X(12): (1 -B2)X; = X; - Xe12 (2.14)

13



X(1,12): (1 -B)(1-B"2)X; = X; - X1 - X12 + Xe13 (2.15)

such that, for X(1,12)

E[Xt - Xt-1 = Xt12 + Xeaa] = E[X; - Xeo12] + E[-Xeet + Xe13) = 0 (2.16)

a stationary series is produced (2.16). This seasonal differencing is an implicit
measurement of variation in flows. Subtracting the monthly flow from one year ago
produced a series with an expected value of zero. In this way, seasonal differencing allows
variation of expected value forecasts for each month in accordance with the historical
monthly characteristics, with emphasis on recent behaviour.

Selection of relevant parameters to include in the model has been described in
section 2.2.1. Seasonal parameters are standard inclusions in the model structure.
Seasonal MA parameters represent the monthly mean, biased toward more recent flows in
that particular month. Seasonal AR parameters represent annual trends or patterns in the
data. Examples of SARIMA models follow in (2.17) and (2.18). Equation (2.17) has AR
terms which are nonmultiplicative. Equation (2.18) is a multiplicative seasonal model with
respect to the AR process. Most seasonal models tend to be more representative of the

system if they are multiplicative.

SARIMA(2,0,0)x(0,1,1)12 (2.17)
or

(1-B™)(1 - 4B - 02B%)x; = (1 - 64 12B™)a

SARIMA(1,1,0)x(1,1,1)12 (2.18)

or

14



(1-B)(1-B™)(1-01B)(1 - ¢1,12B")x; = (1 - 81,12B"P)ay

Developed models are evaluated for model adequacy by three tests. A t-test is used
to check the significance of individual parameters. A parameter is accepted if the t-ratio
exceeds 2.0. The greater the t-ratio, the more significant a parameter. The actual value of
the parameter will be proportional to the t-ratio. If a parameter is statistically insignificant
by the t-ratio test, it may be removed from the model structure and the remaining
parameters should be recalculated.

A Chi-square test is used to evaluate the validity of the model in general. The
probability values associated with the residual autocorrelation Chi-square test should be
greater than 5%. The greater the probabilities, the better the test. If one or more of the
calculated Chi-square probabilities are less than 0.05 (5%), and the model passes the other
tests, then the model structure may be completely inadequate and a new differencing
scheme should be found that gives a more stationary correlation structure.

Finally, the AutoCorrelation Function (ACF) and Partial AutoCorrelation Function
(PACEF) of model residuals can be checked for additional significant lags. Review of these
functions will give an indication whether all of the appropriate model parameters have been
included. If the residual correlation functions indicate a significant correlation at one of the
lags, the relevant parameter can be added to the model structure. Addition of another
parameter to the model also tends to increase the Chi-square probabilities.

More than one differencing scheme may produce a reasonably stationary series, so
more than one acceptable model structure may be found. These models may be
immediately compared by observing any differences in Chi-square probabilites. If one
model exhibits considerably greater probabilities, it may be chosen above the others.

To make this choice with a greater degree of confidence, forecasts of previous

flows, values already used to define the model, can be made and residuals compared. This
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kind of forecast is called a backcast. It can be used in conjunction with other tests to verify
observations about relative model adequacy. There are occasions, though, where one
model may not be recognizably superior to other models.

Care must also be taken that model structures from dissimilar modelling techniques
are not directly compared. Deseasonalized ARMA models do not easily compare to
SARIMA models with these tests. It is like comparing apples to oranges. Other statistics
for model adequacy are also unavailable. The Akaike Information Criterion (AIC) is one
statistic that is sometimes used to evaluate relative model improvement from the inclusion
of different parameters. It's value is irrelevant for comparing models of varied

differencing, or SARIMA models with deseasonalized ARMA models.

2.2.4 Comparison of approaches

There are several differences between ARMA modelling by deseasonalization, and
differenced SARIMA models. First of all, the reasoning for deseasonalization is the
perceived importance to preserve the historical monthly characteristics of mean and
variance. Once this priority condition is met, testing for additional information within the
data can begin. Unfortunately, in deseasonalizing the flow, the series is no longer in terms
of discharge but expressed as a number of standard errors from a mean value. This usually
drowns out any seasonal information not strictly related to the mean and variance. In this
way, a significant portion of information available within the data may be lost. Models of
this type display stationary correlation structures without differencing. They are usually
restricted to recent lags such as one, or two time steps to predict the next flows.

Deseasonalized ARMA models produce expected value forecasts, but are not
available to supply extreme value forecasts. The historical characteristics of the data series

are preserved, so that an extreme forecast for an individual month is historically,
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statistically correct, but it is not a conditional forecast according to the information already
available. If low percentile extreme forecast flow volumes are summed for all of the
months in the forecast interval, the total volume will be much more extreme than percentile
for the interval history. This is because the probability of extreme values occurring in
every single month, over the duration, is very low. For this reason, an extreme forecast
may be used for a single month, but has decreasing validity as the forecast interval
increases.

The differenced flow models are obtained in the same way as the deseasonalized
models, except the transformed data set is differenced instead of being deseasonalized. For
stream flows, differencing of the present flow with lag 12 usually represents the annual
periodicity, or mean, that states March flows tend to be like other March flows. A number
of differencing arrangements can be tested to generate one or more correlation structures
which are recognizably stationary. Monthly characteristics of the stream are not explicitly
defined, but a stationary, seasonally differenced series will ensure that forecasted flows for
March will be similar to historical March flows. The hope in using a SARIMA model is
that any possible annual trend or pattern in flows will be recognized in addition to flow
dependence on recent flows of one or two lags. The ability to detect annual or seasonal
behaviour trends is the advantage SARIMA has over a deseasonalized ARMA model which
tends to drown out these effects through extensive data manipulation. These kinds of
trends may be due to a number of natural occurrences. Meteorological patterns may cause
alternating wet and dry years, a progressive warming trend, or some system flushing effect
every few years. Regardless of the actual physical or meteorological processes, the effects
on flow can be detected with the correlation structure within the SARIMA "black box".

The weakness in applying SARIMA models to produce water supply forecasts is
that probabilistic forecasts are usually required to produce risk-based reservoir operating

policies. It is important that basic minimum needs are met. Overestimation of flows within
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the forecasts are very costly. Underestimation is rewarded with excess water for such
things as power production, or irrigation. For this reason, a "Price is Right" mentality
emerges where forecasts of the flow attempt to come close to the actual value without going
over. Low percentile forecasts are required by utilities like Manitoba Hydro to produce
risk-based policies. SARIMA models, in their most basic format, assume constant
variance throughout the year. This produces extreme forecasts that are meaningless for
most months of the year, and ridiculous for annual system flow volumes for the same
reason as deseasonalized ARMA models. In this way extreme forecasts for SARIMA
models are irrelevant on a monthly as well as an annual scale, where deseasonalized ARMA
models are also invalid, but are still statistically meaningful for an independent study of a

single month.
2.2.5 Forecast selection

Based on MSE analysis, and visual observations of forecast series of several
available models, models can be ranked for each flow scenario to generate simple
guidelines for selecting a specific model given the flow conditions. This is the forecast
strategy that will be used in this project to produce forecast improvements over single
forecast model development.

Another available approach is weighted model combinations. Research has been
conducted to produce various ingenious methods of weighting each model to reduce the

overall forecast error (McLeod et. al., 1987; Newbold and Granger, 1974). The general

formulation of a weighted forecast, fc, for k model forecasts is shown in (2.19):

K
i=1 (2.19)
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The motivation behind the use of combinations is that models produced from different
approaches will focus on different aspects of information available within the data. If more
than one model is used to make forecasts, then a more complete understanding of the
system processes will be achieved. Ultimately, the more models that are used the closer the
forecast should be to the actual value. However, in water supply forecasting, there are a
limited number of models available, and they will usually all overestimate the flow, or they
will all underestimate the flow as in Figure 2. In this case no combination, under any

weighting scheme, will provide a better forecast than the closest single model forecast.

flow flow

A A

> >
month month

actual flow forecast

Figure 2. Selection of forecast model

2.2.6 Current forecasting practices

The long-range flow forecasting techniques that large utilities have developed are
widely varying. Several Canadian utilities are presently developing statistical time series

models for long-range forecasts using SARIMA models, but most methods still tend to be
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empirical manipulations of traditional engineering tools such as multiple linear regression,
stepwise regression, curvilinear regression, simulation, and other less common methods
such as principal component analysis, and pattern recognition techniques (Shafer and
Huddleston, 1984). These empirical techniques are designed around the engineer's
experience with the physical processes at work. Providing forecasts in the long term
requires discharge state estimation for several time steps ahead, usually months. The
difficulty lies in the fact that forecast accuracy decreases as the number of time lags
increases, and the present state becomes less of a factor in determining future states.

Probabilistic forecasts are typically required from long-term forecasting procedures.
Presently used methods formulate the modelling tools within a framework such that some
determination of distribution is possible. However, the statistical significance and validity
of extreme forecasts is difficult to verify for methods or procedures that are not standard.
Care must be taken to produce extreme monthly forecasts that also produce annual or
seasonal flow volumes that are meaningful to the system. Disagreggation processes have
been accepted as the basis for stream flow generation, but this approach may also be a
viable method of ensuring long range forecasts are valuable to the engineer.

Our ability to forecast has been improving, but future improvements appear to be
limited. Forecast errors generally vary as a function of flow variation (Shafer and
Huddleston, 1984). Certainly, there is a limited amount of information that can be
extracted from a set of data, regardless of the complexity or quality of the model. These
limitations can be extended by combining several data sets or data types. Perhaps we are
approaching the limit of usable information from a single data source, but it is only recently
that more extensive data sets have emerged. There has not been a clearly defined procedure
or technique that will best suit the expanding databases that are quickly becoming available.
Forecast accuracy will improve with an increase in available relevant hydrometeorological

information. This will also be limited as the errors approach nil because we will always
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experience an element of randomness from Nature. Until a suitably flexible forecast
modelling tool and framework becomes standard, this limitation of total possible system

information will not be constraining.

2.2.7 Review of current practices

2.2.7.1 Manitoba Hydro

Long range forecasting is presently done for the Manitoba Hydro system streams
using linear regression models as the basic mathematical tool, equating historical water
volumes for the forecast interval to the month by month serial flow volume regressions.
The Manitoba Hydro method is a disaggregation process by definition, and acts in a
sequential manner from month to month as an AR(1) model, defined as the Serial
Correlation, that is controlled by the annual historical characteristics, or Period Correlation
(Fig. 3).

The Period Correlation, is used to correlate the response of the forecast period
historical flow volume with the most recent month on record. Expected value forecasts are
made for the months in the forecast interval by setting the sum of forecasted monthly
volumes equal to the annual or period volume.

Extreme percentile forecasts can be obtained by moving a number of standard
deviations from the expected line on the Period Correlation, forcing the Serial Correlations
to forecast flows in compliance with the annual volume. That is, forecasts for each month
are dependent on the previous one and extremities are dampened by knowing the range of
annual volumes. Both the Period Correlation and the Serial Correlations are functions of

the last known month of flow.
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Figure 3. Manitoba Hydro long-range forecast method

In practice, other sources of information are used to enhance the engineer's
knowledge about system conditions. They are the Manitoba Water Resources Branch,
Saskatchewan Water Corporation, and Alberta River Forecast Center. This additional

information is used to manually adjust the model forecasts.
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2.2.7.2 BC Hydro

BC Hydro produces real-time forecasts with a conceptual rainfall-runoff model, and
long range forecasts of monthly data with a multiple linear regression model called
VOLCAST (Fast, 1990). A comprehensive data set is gathered. In addition to natural
inflows: snowpack information, precipitation levels, and maximum monthly temperatures
are used. This monthly data is organized into a set of five indices that are used as variables
to forecast the stream flow at a number of gauging station locations for particular months.
In this way, the total number of multiple linear regressions is 12n, where n equals the
number of stations and there are 12 months in a year. Figure 4 depicts the general forecast

procedure.
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Figure 4. BC Hydro long-range forecast method
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Inclusion of snowpack, precipitation, and temperature data appear to significantly
improve the forecasting ability of BC Hydro. For snowmelt data in particular, forecast
errors tend to decrease as inflow becomes more dependent on snowmelt rather than

precipitation.

2.2.7.3 Quebec Hydro

Another technique used to produce a probabilistic forecast is simulation. Quebec
Hydro uses a conceptual model with precipitation and temperature data to generate series of
natural inflows from historical sequences of meteorological input (see Fig. 5). The
generated series are then statistically analyzed to infer a probabilistic forecast. Care is taken

to preserve the proper hydrograph shape.

2.2.7.4 Ontario Hydro

Ontario Hydro provides an example of several engineering tools being used in
combination. Long range forecasting at Ontario Hydro compares records of flows to
choose a flow sequence from the history of record (Tao, 1991). A probabilistic forecast
for each day up to 400 days is made based on comparison of volumes or peak flows.
Ontario Hydro's forecasting technique ranges from short-term expected forecasts, through
medium range heuristic forecasts, to the long-range probabilistic forecasts. Short-term
forecasts are made using either a conceptual model or a time series approach for daily
forecasts up to 4 days. To bridge the gap between short and long-term forecasts, medium
range heuristic forecasts use polynomial regressions to provide a smooth transition from

the two extremes.
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3 CASE STUDY

3.1 Requirements

The varying techniques of these large utilities are driven by the engineer's
understanding of the system behaviour and forecasting needs. For example, BC Hydro
incorporates a glacial melt index. Because of the mountainous terrain in BC and the
resulting fast runoff, flooding of valleys is a concern. BC Hydro has tailored their
forecasting capabilities to cope with such problems by incorporating other indicators such
as precipitation and temperature. Manitoba Hydro differs in that linear regression of
historical flows is used to forecast long range flows. Real-time or short-term forecasts
have limited applicability for water supply forecasting in general because of the lack of
sensitivity to the timing of natural inflows due to the large reservoir storage capacity in
relation to the size of the inflows.

Techniques for forecasting will differ due to the varying physical demands of the
system. Manitoba Hydro regulates flow over a large basin. Streamflow gauges are
supplied at key locations. Precipitation and soil moisture information is also available, but
only for general use to provide indications of relative physical system conditions. The
addition of more gauges may produce a reliable source of data for modelling and
forecasting. However, much of the flow originates from outside the province.
Cooperation with adjacent provinces and states is required to secure a reliable source of

data to improve the linear regression forecasting model capabilities.
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3.2 Inflow sources

There are three identifiable types of natural inflow to the Manitoba Hydro system.
They are: streams with considerable long-term upstream storage such as a series of small
lakes; streams with relatively little upstream storage dependent on the water supplied by
overland flow and spring runoff from snowmelt; and inflow data consisting of various,
minor processes.

Three data sets were chosen for analysis, one representing each type of natural
inflow. All three of the data sets are modelled and their forecasts are compared with
forecasts from Manitoba Hydro. The data is in terms of monthly average flow (kcfs) and
each data set is a minimum of 30 years of historical record.

The Grass River basin was selected as an example of a river with considerable
upstream storage. Measured at Standing Stone Falls, it is a small river that connects a
series of lakes and eventually drains into the Nelson River in northern Manitoba. These
lakes act as capacitors in an electrical circuit. Effects from precipitation events are
dampened by the lake storage, reducing the monthly variation of flow volumes.

The Red River was chosen to be examined as an example of a river basin with
relatively little upstream storage capacity, dependent on precipitation and spring snowmelt
runoff. The Red River data set consists of measurements taken at Lockport, a control
structure north of the city of Winnipeg. This river drains a large basin immediately north
and west of the Mississippi River head waters, entering Manitoba at the North Dakota,
USA, border and ending at Lake Winnipeg. Behaviour of the Red River is very seasonal.
Half of the annual flow volume occurs in the 2 peak months of April and May. Where
standard errors in peak months on the Red River are nearly as great as the mean flow, the

Grass River standard errors are only half of the mean.
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The third data set examined is the Partial Inflow Available for Outflow to Lake
Winnipeg (PIAO) data set. It consists of left over processes and inflow to Lake Winnipeg
after all known stream flow sources are subtracted from the total inflow of the lake. The
series appears as a random or white noise process with annual mean of zero. The data
consists of both positive and negative values because the data set is based upon changes in
storage. Negative values usually occur in the summer or fall seasons when depleting

processes such as evaporation outweigh the runoff from precipitation events.

3.3 Model development

3.3.1 Grass River

The Grass River data is a typical flow series. The monthly average flow means and
variances for each month are smooth in transition with the peak flow and peak variance
usually occuring in July. The data set was transformed by taking logarithms to produce a
gaussian distribution. Some skewness still remained, but was reasonably low and the non-
negativity condition was imposed.

Two general approaches were used to produce a stationary correlation structure, as
previously described. Nonparametric deseasonalization is one technique that was used.
The transformed deseasonalized data exhibited a stationary correlation structure with
nonstationary exponentially decreasing ACF, and a significant lag one PACF. For a
review of SAS output, see Appendix E.

The best resulting model structure, given the name GTD (3.1), is an ARMA(,1).
It passed all three statistical tests, including very high Chi-square probabilities: indicatin ga

good fit. The model equation is:

28



(1- 0.93B)X; = (1 + 0.24B)a (3.1)

Removing seasonality with differencing produced two reasonably stationary

correlation structures (3.2a,b) with the following differencing schemes:

(1-Bl12)X; = a (3.2a)
(1-B)(1-Bl2)X; = a (3.2b)

A SARIMA model was produced for each of these differenced series. The model in (3.3,

3.4) was produced from (3.2a).
SARIMA(2,0,0)x(0,1,1) (3.3)

It passed all 3 tests of t-ratio test, Chi-square model adequacy test, and residual correlation

functions. The equation for this model, called GS1, is:
(1-B12)(1 - 1.32B +0.392B2)X; = (1 - 0.91B12)a, (3.4)

The AR lag 1 parameter is greater than 1.0 but the model appears stable despite this. From
(3.2b), the model structure GS2 (3.5) was found:

SARIMA(1,1,1)x(0,1,1) (3.5)

and although it is reasonably adequate, the first Chi-square probability did not meet the 5%

requirement. This is a minor violation, and the model is still acceptable (3.6).
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(1-B)(1-B12)(1 + 0.175B3)X¢ = (1 + 0.38B)(1 - 0.92B12)a, (3.6)

Backcasts were produced for GS1, GS2, but no clearly superior model was chosen. A

complete summary of SAS output for the models is provided in Appendix E.

3.3.2 Red River

The Red River data is similar to the Grass River, except that spring runoff produces
a dominate peak. Transformation, deseasonalization, and differencing procedures are
similar to the Grass River. Nonparametric deseasonalization produced RTD (3.7), given

as:
AR(2):  (1-0.646B - 0.12B2)X; = a (3.7)

It passed all statistical tests of t-ratios, Chi-square probabilities, and residual correlations.
Differencing produced two SARIMA models, RS1 (3.8), and RS2 (3.9)

respectively:

SARIMA(1,0,0)x(1,1,1) (3.8)
or

(1-B12)(1-0.75B)(1 +0.114B12)X; = (1 - 0.845B12)q,

for RS1, and

SARIMA(1,1,1)x(1,1,1) (3.9

or
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(1-B)(1 -BI2)(1-0.64B)(1 +0.14B12)X; = (1 - 0.92B)(1 - 0.85B12)a;

for RS2. Examination of the Chi-square probabilities and backcasts suggested that RS2 is
superior to RS1. RS1 was then discarded. The two remaining models are RTD, RS2. A

complete summary is available in Appendix E.

3.3.3 PIAO

The PIAO data set is not a typical flow series. Because both negative and positive
values exist, and the series appears to be a white noise process, no transformation was

used. Examination of seasonality with differencing produced the model WS1 (3.10).

SARIMA(0,0,0)x(0,1,1) (3.10)
or

(1-B12)X; = (1-0.87B12)a; - 0.288

The constant, 0.288, is necessary to adjust the forecast because the mean value of the
differenced series is significantly different from zero. Very little significance was evident
for sequential lags of 1 or 2. The only correlation between time lags was seasonal. Since
deseasonalization will yield an ARMA model with only recent lags as significant, a TD

model was not produced.

3.4 Model comparisons

The modelling techniques previously described generally yield several models for

each data set which cannot be differentiated. For example, there are three available models
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for the Grass River. In the case of the Red River, one of the models was noticeably
inferior and was subsequently removed from the list, but there are still two models to

choose from. Table 1 summarizes the models available for forecasting.

TABLE 1. Summary of available forecast models

dataset | model notation AR lag MA lag diff.
Grass GTD ARMA(1,1) 1 1 0
GS1 SARIMA(2,0,0)x(0,1,1) |1,2 12 12
GS2 SARIMA(1,1,1)x(0,1,1) |3 1,12 1,12
Red RTD AR(2) 1,2 0 0
RS2 SARIMA(1,1,1)x(1,1,1) |1,12 1,12 1,12
PIAO | WS1 SARIMA(0,0,0)x(0,1,1) |0 12 12

3.4.1 Sensitivity analysis

Further examination is necessary to differentiate between possible forecast models.
One way in which this can be accomplished is to produce a number of forecasts and then
compare the errors (Oron et. al., 1991). This was initially done in the form of backcasts,
but was inadequate to show superior or inferior models. A more comprehensive forecast
comparison plan is required.

River flows change from year to year. They range from high flow years to years of
drought. It may be that the models developed in the previous section will vary in
effectiveness for different flow scenarios. A model sensitivity analysis to flow will
produce a large number of forecasts to compare, and evaluate the sensitivity of the models

to various flow conditions to provide an in-depth understanding of model performance.
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Figure 6. Selection of model sensitivity analysis years

For the Grass and Red rivers, historical annual volumes were plotted. From that,

recent years were selected that represent high, median, and low flow years, such as in

Figure 6. Care was taken to choose recent years in the record so that when forecasts are

made, they are based

on a sufficient number of previous flows. Table 2 lists the years

chosen to represent the flow conditions.

TABLE 2. Case years for sensitivity analysis

flow Grass Red PIAO
high 1985 1979
median 1982 1983
low 1990 1990 1990
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3.4.2 Forecast scenario

Once relevant years have been chosen for forecasting, a specific forecast procedure
or scenario must be defined. This should be specific to the system needs. It may be that
models behave differently when the demands on them vary. A modelling approach
represents a certain portion of the system. If a model represented all of the system, there
would be no error. However, there is always some error component within the model.
Depending on the focus of the system needs, and system characteristics, the model
performances may be sensitive to the forecast scenario.

For this project, the data was supplied by Manitoba Hydro and is presently
forecasted within their system. Therefore, the project forecast scenario should be
consistent with MH. That way, MH forecasts can be compared with these models and any
possibility of incompatability or inconsistency is removed. Forecast comparisons, then, can
only be made when the forecast scenario, or the demands, are consistent.

The MH forecast scenario consists of a series of updates over a period of a year that
begins with March being the last known month of the previous flow year (Fig. 7). That is,
forecasts run from April to April and are updated every month as new data is available. For
one forecast year to be completed, 12 forecast runs range from 12 lags to 1 lag in length.
In all, 78 forecasts are made for one forecast year, and 234 individual forecasts are required

to complete the sensitivity analysis for one data set to various flow conditions.
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3.4.3 Error analysis

After forecasts are completed for the Grass and Red rivers, errors are analyzed to
give an efficient review of model performance. Visual examination of actual forecasts is

beneficial in making observations on model behaviour concerning the appropriateness of
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the model cufve characteristics, or ability to handle large system fluxes such as spring
runoff. Because the model parameters are recalculated for each update within each forecast
run, variations in the parameters should also be evaluated by statistical confidence limits to
ensure stability and consistency of the parameters. A t-test of each model verified that the
model parameters are stable.

The Mean Squared Error (MSE) is a statistical parameter that provides a convenient

measure of performance in the same units and magnitude as variance.

n
MSE = SSE - 1% (.- x)2
i=1 (3.11)

To ensure a thorough understanding of model performance from the errors, the MSE is
calculated in three ways. The first is to calculate MSE for each forecast run (Fig. 8).
Twelve MSE values are available for each model, one for each run. MSE is a function of
average variance to the end of the forecast year. That is, after the high spring and summer

flows the errors should drop because variance in the fall and winter months is low.

A month

MSE A

MSE = f(average variance)

] ] >
update

forecast run

Figure 8. MSE comparison: by forecast run
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Another way MSE is evaluated is by month (Fig. 9). A number of forecast errors
are available for each month of the year because the same month is included in a number of
forecast runs, where the lag depends on which forecast run is relevant. MSE values

change with the variance of each particular month.

month
A__ MSE A
MSE = f(monthly variance)
A
] > >
update

month

Figure 9. MSE comparison: by month

Lastly, MSE is calculated for specific lags in the forecast runs (Fig. 10), so MSE is
available for each lag (1 to 12). In general, MSE should increase with increased lag. This

is often offset by the fall and winter lags which have comparatively low errors regardless of

the lag.
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Figure 10. MSE comparison: by forecast lag

Once the MSE analysis is complete, generalizations can be made concerning
choosing the appropriate model given the flow conditions. Choices need to be made for the

Grass River and the Red River.

3.5 Case study observations

3.5.1 Evaluation criteria

The error analysis was completed for each model within the forecast scenario
previously described. Model selection is based on minimum MSE, and observations on
general forecast curve characteristics. Special attention needs to be focused upon
tendancies to overestimate or underestimate the flow. This is important because of possible
shortages resulting from allowing reservoir releases to be too high when forecasts

overestimate the flow.
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3.5.2 Grass River

There are three time series models developed for the Grass River. One is a
transformed deseasonalized (TD) type model, GTD. Two seasonal models were also
selected for forecasting: GS1, and GS2. GS1 indicates dependence on the 2 most recent
months as well as the seasonal distinction of each month with a differencing of the lag 12
flows, and seasonal MA term. GS2 uses differencing of both lag one and lag 12 to
produce a stationary structure. A lag 3 AR term is also included. Its significance is not
especially high, but it does suggest the effect of the lakes on the travel time through the
basin. Or, it may suggest other natural tendencies within the forecast year that have a
period of 3 months.

The two seasonal models had difficulty approximating the flow curve characteristics
as flow ”decreases month by month from the spring peak. In the median and high years,
they both tended to overestimate the flow from the peak to the end of the forecast year.
This is evident in plots of the forecast run for the high flow case. For these high flows,
and also median flows, the GTD model performed much better, fitting the general curve
shape, leaving relatively small errors, and only slightly overestimating the flow in places.
Error analysis for the Grass River high flow case can be found in Appendix A.2. MSE
comparisons, for individual months in particular, shows the dominance of the GTD model
over the other time series models in that flow case. Median flow case analysis for the
Grass River is in Appendix A.3.

The low year case, 1990, was preceded by another low flow year (Appendix A.4).
Together, these 2 years were the lowest combination in history. The GTD model did
poorly in this case because recent flows before the forecast years were several standard

deviations below the monthly means. No model did well in this case, but Manitoba Hydro
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forecasts appear to do better than GS2 which was the most successful time series model for

that case.

3.5.3 Red River

Two models were selected for forecasting of the Red River: RTD and RS2. The
TD type model is an AR(2) which states the two most recent months affect the current
month. The SARIMA model for Red River, RS2, is seasonally differenced by both lag one
and lag 12, the same differencing as with GS2. The lag one AR term shows dependence
on recent flows, and the lag 12 term indicates a possible seasonal trend or dependence.
The MA terms of lag one and 12 show an exponentially decreasing dependence on both
recent lags and recent years. The MA lag 12 term is usually included in seasonal models as
a weighted monthly mean, but the AR lag 12 term suggests the possibility of annual trends
otherwise neglected by techniques such as the standard TD civil engineering approach.
Forecasts for the 3 flow cases confirmed this observation (Appendix B.2, B.3, B.4). The
seasonal model, RS2, consistently outperformed RTD forecasts in all cases, and Manitoba
Hydro forecasts for the critical low flow year.

Both theoretical model types, and the MH technique failed to predict the spring
runoff. The runoff from snowmelt appears to have no correlation with previous flow. An
examination of dependence of the peak flow (Appendix B.1) for plots of peak flow for the
Red River) found no month, year, or combination with which a dependence could be
associated. This inability to predict the peak flows in the spring, from stream flow data
alone, is a major weakness in the models. On the average the spring runoff surge accounts
for nearly half of the annual flow volume in the Red River. The two spring months of

April and May exhibit the greatest forecast errors, as well as the greatest variability in flow.
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In order to improve forecasts of the peak, other physical data such as snowpack
levels, and soil moisture indicators are needed. In practice, the MH technique uses the
Manitoba Water Resources Branch flow forecasts to establish a volume forecast for the
spring snow melt runoff. In this way, Manitoba Hydro is able to incorporate some of the
physical dependencies such as snowpack into forecasts. However, the mathematical
models alone, time series, regression, or other, are unable to estimate the peak from flow

data only.

3.5.4 PIAO

The SARIMA model for PIAO required the estimation of only one parameter (MA
lag 12). This suggests that each month is distinct and that recent lags have little or no effect
on the outcome of the present state of the system. The seasonal differencing of the model
reinforces the annual dependence, and independence of the months.

The lack of significance from recent lags is evident in the forecast runs for the low
flow case of 1990 (Appendix C.2). As updates are made for each forecast run, the
forecasts for the upcoming months are largely unaffected. The MH regression procedure
also shows little dependence on recent lags. For the MH method, the month to month
Serial Correlation is not available but simply set to their historical characteristics of mean
and standard deviation. Manitoba Hydro does exhibit some adaptability in updates for lag
one forecasts. This is due to the inherent AR(1) form of the MH forecasts. SARIMA
forecasts were generally comparable to MH forecasts. However, MH forecasts were able
to adapt to a low period during the year for the one step ahead forecast while more distant
forecasts quickly reverted to the historical mean. SARIMA model forecasts were

completely insensitive to new developments throughout the forecast year.
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3.6 Model selections

If it is possible to determine which model produces the best forecast under a general
array of flow possibilities, then that model should be used. Table 3 summarizes the time
series model rankings for the case study, including Manitoba Hydro rankings where they
are available. Another way of showing the ranks of the models is in Figure 11 below for
the Grass River models. From Table 3, a simple set of rules can be derived to govern

model selection.

rank Note: low year followed
A lowest in history
3 Fl GS?2
2 & - -0 Gsi
1 ] GTD
I I >
flow

low median  high

Figure 11. Ranking of the Grass River models
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TABLE 3. Ranking of forecasting models

dataset flow year rank
GS1 | GS2 | GTD RS2 | RTD | WS1 | MH

Grass high 1985 2 3 1

median 1982 2 3 i 1

low 1990 2 f 3
Red high 1979 1 1

median 1983 1 2

low 1990 1 2 3
PIAO low 1990 1 1

Now the fuzzy terms of high, median, and low flow need to be defined so the
engineer can differentiate between them. One suggestion is to define median monthly flow
as being within 0.5 standard deviations of the historical monthly mean. Then median flow
over a period of months would demand the average flow to be within 0.5 standard
deviations of the average mean over the relevant period of months. The high and low
flows are then above the 0.5 standard deviation threshold on the positive or negative side.
This project, for the decision support application in the following section, allows the user
to make a qualitative judgement without restrictions of statistical limits .

For PIAO, WS1 is the only available time series model. A TD type model was not
attempted because of the limited correlation found in the data. If one had been developed, it
would have been an AR(1) that converged to the historical mean after 2 or 3 lags. This is
the same behaviour shown by the MH forecasts. PIAO is largely a random series of minor
processes.

In all flow cases, RS2 outperformed both RTD and MH forecasts. It should be

chosen in all situations, but care should be taken if the spring runoff has not yet occurred.
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Additional information would be beneficial for this river because of the dependence of the
annual flow volume on the two peak months of April and May. April is the typical peak
month, but late springs will shift the peak to May.

The median and high flow cases for the Grass River are best forecasted by GTD.
There is some question about the low flow case because the previous year was also very
low. The MH method performed well for the low case. Of the time series models, a safe

choice may be GS1 in the low flow case if the peak flow is still uncertain.
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4 DECISION SUPPORT APPLICATION

4.1 Purpose

As a means of documenting the techniques, procedures, and accumulated
knowledge in time series analysis, a prototype system was developed to aid users in
understanding and performing time series analysis for water supply forecasting. The
model selection process and observations concerning the quality of forecasts suggests the
use of a rule-based system incorporating artificial intelligence techniques to represent the

knowledge.

4.2 System

A Unix workstation, SUN Sparc Station 1+, was chosen to develop the system. It
enabled the execution of multiple programs and displays for a more flexible environment.
Networking capabilities of the Unix workstation provided the ability to transfer data or

knowledge to and from numerous sources.

4.3 Tools

A user interface and system development tool was then chosen. Nexpert Object is
an expert system development tool that provides the means by which rules can be written
to: control the analysis process; execute external programs and packages to perform
various tasks; and control the display of text and questions for the user. Other tools used

to develop the system are SAS (Statistical Analysis System), Xgraph, Unix scripts, and
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FORTRAN programs. SAS is the primary tool used to perform statistical analysis of the
data. Xgraph is a plotting tool that graphs a specified set of data within the X-window
graphical environment. It is useful in plotting forecasts or historical series of data. Unix
scripts are analogous to DOS batch files. A script is a text file consisting of a series of
operating system commands that can be executed by the operating system. Several of these
files are used to control the formation of input files and execution of both SAS and Xgraph
applications. Numerous FORTRAN programs control data manipulation such as
transformation, deseasonalization, and transfer of data to other formats for input or display.
Summaries and printouts of programs can be found in Appendix D.2. Arrangement of
these tools is shown in Figure 12. They can be classified into two categories: control, and
execution. Nexpert Object uses a knowledge base, stored within the application, to control
access and execution of the programming, statistical, and display tools on the right of the

figure.

CONTROL EXECUTION

—>FORTRAN

/. Nexpert Object I__)
L L >ISAS
i’ Unix scripts =
¢ Forecasting Xgraph
Model Development —>1IASCII text
d
System tasks kr?f)ivledge

System tools

Figure 12. DSA for water supply long-range forecasting tasks and tools
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4.4 User modes

Nexpert Object controls the display from the session control window which asks
questions, and provides answer options. Text windows, defined within Nexpert, control
the display of textual instructions and discussion. The decision support application has two
specific modes or tasks (Figure 12). The first, forecasting, queries information from the
user for choosing a specific forecast model. Forecasts are then automatically produced for
the chosen model. Figure 13 represents the process of producing a forecast within the
application.

The second task is designed to aid the user in the development of a new model.
This model development mode provides the user with relevant knowledge and instruction
to produce an adequate model using one of the time series analysis procedures discussed in
this paper (Figure 14). The system allows the user to produce advanced time series models

and forecasts of data without having to be an expert in this field of study.

4.5 Knowledge base

A set of If...Then rules control the direction of the application. By organizing the
knowledge in this fashion, the developer can restrict actions to knowledge that is relevant.
Model rankings for the study cases supplied Nexpert with a straight-forward means by
which the rules could be built. There are four different types of rules: to control direction
of the application; to assign properties describing the system; to govern the selection of a
model; and to check statistical tests for the system or model. A listing of all of the rules

within the Water Supply Forecasting DSA can be found in Appendix D.1.
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4.6 Consultations

Two consultations are discussed below to demonstrate the use of the application,

one for each task.

4.6.1 Forecasting

The initial application prompt requires the user to choose a task. If the forecasting
task is chosen, a text window appears with a list of data sets with available models. The
question "Which data set do you wish to use?" is posed to the user. If 'grass'is chosen, a
text window halts the program to allow for the user to perform an update of the data set.
Next, the user is queried in an attempt to pass rules for choosing the appropriate model as
in Figure 13. The user is asked to enter recent flow behaviour in general terms of high,
median, or low. Uncertain is also an option if the user is unfamiliar with the data. If this is
selected, the data series is plotted with Xgraph and a text window advises the user on how
to decide which option to select. For the selection of 'low' flow behaviour, another
question asks "What is the relative magnitude of the peak flow?" with options of high,
median, low, and uncertain. If 'low' is selected, a text message states that model GS2 has
been chosen. SAS is simultaneously executed. The output file for the forecasts is
displayed on the screen, and then the forecasts are plotted against historical monthly means.

This ends the consultation.

4.6.2 Model Development

When the model development task is selected (Figure 14), a message appears to

remind the modeller of data requirements for an adequate model. Next, the relevant data set
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is chosen. The user is then allowed to update the flows. Information is then given
concerning transformation and techniques for handling seasonality including strengths and
weaknesses of each approach. The user must then choose the approach to proceed with.
Options are 'seasonal' and 'td' (transform and deseasonalize). If 'seasonal' is chosen, the
next question asks for the type of transformation with options of 'log' and 'none'. A text
window recommends that 'log' be udes, so it is chosen.

SAS is then executed to generate the correlation functions (ACF, PACF) for a
number of differencing schemes. The user must then enter the desired differencing scheme
and parameters to include with help from text windows displaying typical selections and
describing properties of the functions. Once this is complete, SAS is executed to estimate
model parameters. The SAS output is shown, including statistical tests and residual
correlation functions. Three questions then ask whether the model passed the tests for: t-
ratio test, Chi-square test, and residual correlations. If all of the tests are satisfactory, the
model is accepted. Otherwise, the user is sent back to select new model parameters, or a
new model structure if all tests are passed except the Chi-square test. When the model is
accepted after this iterative procedure of adjustment, the user has the option of producing
forecasts. If the user chooses to, forecasts for the next year are produced and plotted for

the acceptable model. Otherwise, the consultation ends.
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S CONCLUSIONS

5.1 Research goals

This project applies advanced time series models to make better use of information
contained in data sets for forecasting monthly water supply. Improvements in the
forecasting accuracy were sought as a means of realizing benefits from more confident and
accurate optimal operating policies of a reservoir system. SARIMA models were chosen as
a likely candidate to improve currently used forecasting models at Manitoba Hydro.
Numerous models were developed and applied to three types of data series within a
sensitivity analysis study of flow conditions, using the Manitoba Hydro forecast scenario.
A method of analyzing the errors took advantage of the simplicity and flexibility of the
MSE statistic. Ranking of the models under various flow conditions suggested a simple set
of rules to govern the choice of model for forecasting that will produce the best available
forecast.

Many of the methods that are used in large utilities to produce long-range forecasts
have been developed out of familiarity with the engineer and simplicity. Previous use of
time series techniques in Water Resources engineering has been rigidly developed around
the engineer's impression of what is proper. Recognizing the possible improvements in
accuracy from our expanding quantitative knowledge of natural systems, SARIMA models
may form the basic tool around which an efficient and flexible standard forecasting

framework can be built.
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5.2 Summary of results

Linear regression and simulation are the most widely used techniques in use today
for long-range forecasting. Deseasonalized ARMA models are theoretical engineering tools
already available for use to improve forecasts, but their potential is restricted compared to
more general techniques such as SARIMA models.

These statistical approaches, TD ARMA models and SARIMA models, have been
used to provide a basis of comparison to evaluate long range forecasting techniques at
Manitoba Hydro. Both expected and low percentile probabilistic forecasts are needed by
Manitoba Hydro to produce risk-based release policies. Only the mean forecasts could be
evaluated because low and high percentile forecasts for the time series models are
statistically correct for a single month, but are meaningless for the system when several
time lags are involved. The standard errors typically provided with statistical forecasts do
not consider any possible transition period for changes in flow patterns, only simple
historical extremes.

Manitoba Hydro forecasts performed well for Grass River, but was inferior to RS2
on the Red River for presented case study forecasts. This may be due to the fact that
changes in the Grass River basin are gradual, and sequential correlations are high. The
Red River experiences drastic changes from month to month, and is susceptible to physical
and meteorological trends or patterns. SARIMA modelling provides a more flexible
framework of evaluating sources of correlation such as seasonal patterns so as to make
more complete use of the historical data. The Manitoba Hydro method is dependent on the
most recent month of known flow.

In general, standard SARIMA modelling performed as well as the Manitoba Hydro
linear regression models, and has potential for improvement if an appropriate modelling

framework is developed to allow probabilistic forecasts to be made. Engineerin g concerns
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about manipulation of data by differencing is unsupported. Historical characteristics of the
data are maintained implicitly through the correlation of similar months. In fact, the
differencing may be considered as the equivalent to deseasonalization of the data.
SARIMA modelling has been shown to be a good application Qf statistical time series
modelling to water supply forecasting. Expected forecasts of system natural inflow for

hydroelectric utilities may benefit from the use of this technique.

5.3 Potential time series use

The SARIMA models presented in this paper are standard, basic, applications of the
work by Box and Jenkins (1976). There are advanced techniques that can be added to
these models to improve their effectiveness.

One possibility is the development of Transfer Function Noise (TFN) models by
adding additional data sets to the presently used flow. There may be other rivers in the
same proximity that display similar flow characteristics, precipitation data, temperature
data, etc. A TFN model has the same form as SARIMA models in terms of AR and MA
processes, but simply adds crosscorrelation of data sets to identify any additional
information relating one data set to another. This type of modelling is the next logical
extension of time series modelling. The procedure and calculations are similar to those
presented in this paper.

Another extension to SARIMA modelling is to identify particular events that affect
the system, and estimate AR and MA processes within the event in the form of an
Intervention model. Intervention analysis can be used to model the effects of mud slides,
man-made diversions, or specifically addressing annual spring runoff effects.

In their present form, these SARIMA and deseasonalized ARMA models do not

supply probabilistic forecasts that have any meaning to the system. Extreme forecast
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values for each month are at best representative of the historical monthly extreme and do
not consider the system characteristics on an annual level where the sum of the extreme
monthly volumes are not indicative of the historical annual volumes. The sum of extremes
would be much more extreme for the annual volume history. It is this form of problem that
suggests the use of disaggregation processes. Disaggregation models simply approach the
data as being governed by a hierarchy of system control with 2 levels: annual, and monthly
(or weekly) to produce a modelling framework. The most beneficial possibility of
producing probabilistic forecasts that are meaningful to the system may be to formulate the
time series model in a disaggregation form. The linear regression method used by
Manitoba Hydro has been formulated within a disaggregation framework. For SARIMA
models to produce probabilistic forecasts, they may need to be formulated in a similar

fashion.
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APPENDIX A: Grass River

Appendix A.1 Historical characteristics

Figure A.1.1 Grass River data series
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Figure A.1.3 Grass River historical characteristics
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Appendix A.2 High case

Figure A.2.1 Grass River high flow case forecast
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Figure A.2.2 Grass River high flow case forecast
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Figure A.2.3 Grass River high flow case forecast
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Figure A.2.4 Grass River high flow case forecast
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Figure A.2.5 Grass River high flow case MSE by forecast run
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Figure A.2.6 Grass River high flow case MSE by month
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Figure A.2.7 Grass River high flow case MSE by lag
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Appendix A.3 Median case

Figure A.3.1 Grass River median flow case forecast
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Figure A.3.2 Grass River median flow case forecast
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Figure A.3.3 Grass River median flow case forecast
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Figure A.3.4 Grass River median flow case forecast
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Figure A.3.5 Grass River median flow case MSE by forecast run
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Figure A.3.6 Grass River median flow case MSE by month
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Figure A.3.7 Grass River median flow case MSE by lag
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Appendix A.4 Low case

Figure A.4.1 Grass River lo"Xxflow case forecast

s

monthly average flow (kcfs)

1890

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
—a-G51 —_- G52 - Peasant
—»-GTD —actual _y-MH

Figure A.4.2 Grass River low flow case forecast
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Figure A.4.3 Grass River low flow case forecast
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Figure A.4.4 Grass River low flow case MSE by forecast run

MSE

41990

FTorecast run
—a— G511 G52 5 GTD o MH

71



Figure A.4.5 Grass River low flow case MSE by month
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Figure A.4.6 Grass River low flow case MSE by lag
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APPENDIX B: Red River

Appendix B.1 Historical characteristics

Figure B.1.1 Red River data series
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Figure B.1.3 Red River historical characteristics

30

25

20

15

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nowv Dec
- Mean _, std

Figure B.1.4 Red River peak correlation: average
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Figure B.1.5 Red River peak correlation: March
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Figure B.1.6 Red River peak correlation: average flow from January through the end of
March
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Figure B.1.7 Red River peak correlation with previous peak

t peak flow (kcfs)

S0

80

70

650

50

40

30

20

10

»® 7B
» B5
»® 73
¥ B8 * 88
w77
ws§5 % B5 % 74 * 58
¥ B4 o 7S
¥ 71
» B# 61 »*® 82 % 70
# B8 ¥ B3
%50 B3 %54 x6z * 78
* 89 87
% 50 %57 » 72 "‘*320
% 80 * 76
I3 I3 13 i 1 I3 1 3
-“10 20 ao 40 =1n] BO 4" an

t-1 peak flow (kcfs)

76

=1n]



Appendix B.2 High case

Figure B.2.1 Red River high flow case forecast
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Figure B.2.2 Red River high flow case forecast
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Figure B.2.3 Red River high flow case forecast
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Figure B.2.4 Red River high flow case forecast
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Figure B.2.5 Red River high flow case RMSE by forecast run
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Figure B.2.6 Red River high flow case RMSE by month
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Figure B.2.7 Red River high flow case RMSE by lag
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Appendix B.3 Median case

Figure B.3.1 Red River median flow case forecast

70

60 -

S0 -

40 |-

306 -

20

monthly average flow (kcfs)

B
o 1 i i ) 1 ! 1 1 T o d 1
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
—a RS2 ——RTD ——Peasant __actual

1883

Figure B.3.2 Red River median flow case forecast
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Figure B.

Figure B.

3.3 Red River m™Xxian flow case forecast
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Figure B.3.5 Red River median flow case RMSE by forecast run

e}-]

RMSE

Torecast run

—m— RS2 -« RTD —a Peasant
1983

Figure B.3.6 Red River median flow case RMSE by month

35

AMSECmonth)

1 i 1

Oct Nov Dac Jan Fata Mar

Apr Mesy Jun Jul Aug Sap
forecast month
= RS2 —a-RTD —» Peasant

41983

83



Figure B.3.7 Red River median flow case RMSE by lag

11

10 =

RAMSEC 1a@)
A U 4 a

W

n

forecast Iag
—m RS2 ——RTD —a Peasant

1983

84



Appendix B.4 Low case

Figure B.4.1 Red River low flow case forecast
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Figure B.4.3 Red River low flow case forecast
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Figure B.4.4 Red River low flow case MSE by forecast lag
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Figure B.4.5 Red River low flow case MSE by month
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Figure B.4.6 Red River low flow case MSE by lag
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APPENDIX C: PIAO

Appendix C.1 Historical characteristics

Figure C.1.1 PIAO data series
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Appendix C.2 Low case

Figure C.2.1 PIAO low flow case forecast
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Figure C.2.3 PIAO low flow case forecast
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Figure C.2.4 PIAO low flow case MSE by forecast run
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Figure C.2.5 PIAO low flow cast MSE by month
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APPENDIX D: Decision Support Application

Appendix D.1 Knowledge base

The following is a listing of the rules that make up the Decision Support
Application for water supply long-range forecasting developed within the Nexpert Object
expert system development tool on a Unix workstation.

RULE : Rule model_development_steps (#1)
If
1 is precisely equal to 1
Then dofirst
is confirmed.
And Show "tf2.txt" @KEEP=TRUE; @WAIT=FALSE; @RECT=0,200,400,650;
And identify is assigned to identify
And Execute "rm -f sasfile"(@TYPE=EXE;)
And Execute "msas @V(set) @V(transform) identify"(@TYPE=EXE;)
And Show "sasfile.txt"
@KEEP=TRUE;@WAIT=FALSE;@RECT=250,250,900,600;

RULE : Rule model_development_steps (#2)
If
1 is precisely equal to 1
And estimate is assigned to estimate
And var is assigned to var
And plags is assigned to plags
And qlags is assigned to qlags
Then dosecond
is confirmed.
And Execute "m -f sasfile"(@TYPE=EXE;)
And STRCAT("\"",STRCAT(var,STRCAT("\" \"",STRCAT(plags,STRCAT("\"
\"",STRCAT(qlags,"\"")))))) is assigned to parms
And Execute "msas @V(set) @V (transform) estimate @V(parms)"(@TYPE=EXE;)
And Show "sasfile.txt"
@KEEP=TRUE; @WAIT=FALSE;@RECT=0,250,1100,600;

RULE : Rule model_development_forecast (#3)
If

make_forecast is TRUE
Then dothird

is confirmed.
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And Execute "m -f sasfile"(@TYPE=EXE;)
And Execute "msas @V (set) @V(transform) forecast @V(parms)"(@TYPE=EXE;)
And Show "sasfile.txt"
@KEEP=TRUE; @WAIT=FALSE;@RECT=400,250,700,600;
And Execute "mfore"(@TYPE=EXE;)
And Execute "xgraph_for @V(set)
@V(transform)"(@TYPE=EXE; @WAIT=TRUE;)

RULE : Rule estimate_model_structure (#6)
If
procedure is "seasonal"
And transform is "none"
And task is "model_development"
Then estimate
is confirmed.
And Show "sparm.txt" @KEEP=TRUE;@WAIT=FALSE;@RECT=0,200,300,650;
And Show "s_non_opt.txt"
@KEEP=TRUE; @WAIT=FALSE;@RECT=0,0,300,200;

RULE : Rule estimate_model_structure (#5)
If
procedure is "seasonal"
And transform is "log"
And task is "model_development"
Then estimate
is confirmed.
And Show "sparm.txt" @KEEP=TRUE; @WAIT=FALSE; @RECT=0,200,300,650;
And Show "s_log_opt.txt"
@KEEP=TRUE; @WAIT=FALSE;@RECT=0,0,300,200;

RULE : Rule estimate_model_structure (#4)

If
procedure is "td"
And task is "model_development"

Then estimate
is confirmed.
And Show "dparm.txt" @KEEP=TRUE; @WAIT=FALSE;@RECT=0,200,300,650;
And Show "d_opt.txt" @KEEP=TRUE;@WAIT=FALSE;@RECT=0,0,300,200;
And "X" is assigned to var

RULE : Rule graph_series (#7)
If

flow is "uncertain"
Then get flow
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is confirmed.

And Show "flow_help.txt"
@KEEP=TRUE;@WAIT=FALSE;@RECT=0,0,350,300;

And Execute "xgraph_ser @V(set)"(@TYPE=EXE;)

And Reset flow

And Reset get_flow

RULE : Rule get_flow_3 (#8)
If

flow is "low"
Then get_flow

is confirmed.

RULE : Rule get_flow_2 (#9)
If

flow is "median"
Then get_flow

is confirmed.

RULE : Rule get_flow_1 (#10)
If

flow is "high"
Then get_flow

is confirmed.

RULE : Rule identify_model_structure (#12)
If

procedure is "td"
Then identify

is confirmed.

And "td" is assigned to transform

RULE : Rule identify _model structure (#11)
If
procedure is "seasonal”
Then identify
is confirmed.
And set_transform is assigned to set_transform

RULE : Rule make model (#13)

If
there is evidence of dofirst
And there is evidence of dosecond
And parameters is "significant”
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And chi_square is "adequate"
And residuals is "insignificant"

Then make_model

is confirmed.
And Show "make.txt" @KEEP=TRUE; @WAIT=TRUE;@RECT=0,0,400,200;

RULE : Rule reject_model_structure (#16)

parameters is "insignificant"

Then reject_model

is confirmed.

And Show "r_parms.txt" @KEEP=TRUE;@WAIT=TRUE;@RECT=0,0,400,200;
And Reset parameters

And Reset chi_square

And Reset residuals

And Reset plags

And Reset glags

And Reset reject_model

And Reset dosecond

And Reset make_model

And make model is assigned to make_model

RULE : Rule reject_model_structure (#15)

residuals is "significant"

Then reject_model

is confirmed.

And Show "r_res.txt" @KEEP=TRUE;@WAIT=TRUE;@RECT=0,0,400,200;
And Reset dosecond

And Reset plags

And Reset glags

And Reset parameters

And Reset chi_square

And Reset residuals

And Reset reject_model

And Reset make _model

And make model is assigned to make_model

RULE : Rule reject_model_structure (#14)

chi_square is "inadequate"

Then reject_model

is confirmed.
And Show "r_chi.txt" @KEEP=TRUE;@WAIT=TRUE;@RECT=0,0,400,200;
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And Reset parameters

And Reset chi_square

And Reset residuals

And Reset glags

And Reset plags

And Reset qlags

And Reset reject_model

And Reset dosecond

And Reset make _model

And make_model is assigned to make_model

RULE : Rule choose_model_wsl (#17)

If

task is "forecasting"
And set is "piao"

Then set_model

is confirmed.

And "ws1" is assigned to model

And "none" is assigned to transform

And Show "piao.txt" @KEEP=FALSE;@WAIT=TRUE; @RECT_O 0,400,200;
And Show "wsl.txt" @KEEP=TRUE; @WAIT=FALSE;@RECT=0,0,400,200;

RULE : Rule choose_model_rs2 (#18)

If

task is "forecasting"
And set is "red"

Then set_model

is confirmed.

And "rs2" is assigned to model

And "log" is assigned to transform

And Show "red.txt" @KEEP=FALSE; @WAIT=TRUE; @RECT=0,0,400,200;
And Show "rs2.txt" @KEEP=TRUE;@WAIT=FALSE;@RECT=0,0,400,200;

RULE : Rule choose_model_gtd_4 (#19)

If

task is "forecasting"

And set is "grass"

And there is evidence of get_flow
And flow is "low"

And peak is "median"

Then set_model

is confirmed.
And "gtd" is assigned to model
And "td" is assigned to transform
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And Show "gtd.txt" @KEEP=TRUE; @WAIT=FALSE;@RECT=0,0,400,200;

RULE : Rule choose_model_gtd_3 (#20)
If
task is "forecasting"
And set is "grass"
And there is evidence of get flow
And flow is "low"
And peak is "high"
Then set_model
is confirmed.
And "gtd" is assigned to model
And "td" is assigned to transform
And Show "gtd.txt" @KEEP=TRUE; @WAIT=FALSE;@RECT=0,0,400,200;

RULE : Rule choose_model gtd 2 (#21)
If
task is "forecasting"
And set is "grass"
And there is evidence of get_flow
And flow is "median"
Then set_model
is confirmed.
And "gtd" is assigned to model
And "td" is assigned to transform
And Show "gtd.txt" @KEEP=TRUE;@WAIT=FALSE; @RECT=0,0,400,200;

RULE : Rule choose_model_gtd 1 (#22)
If
task is "forecasting"
And set is "grass"
And there is evidence of get flow
And flow is "high"
Then set_model
is confirmed.
And "gtd" is assigned to model
And "td" is assigned to transform
And Show "gtd.txt" @KEEP=TRUE; @WAIT=FALSE;@RECT=0,0,400,200;

RULE : Rule choose_model_gs2 (#23)
If

task is "forecasting"

And set is "grass"

And there is evidence of get flow
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And flow is "low"
And peak is "low"
Then set_model
is confirmed.
And "gs2" is assigned to model
And "log" is assigned to transform
And Show "gs2.txt" @KEEP=TRUE; @WAIT=FALSE;@RECT=0,0,400,200;

RULE : Rule choose_model_gs1 (#24)
If
task is "forecasting"
And set is "grass"
And there is evidence of get_flow
And flow is "low"
And peak is "uncertain”
Then set_model
is confirmed.
And "gs1" is assigned to model
And "log" is assigned to transform
And Show "gsl.txt" @KEEP=TRUE; @WAIT=FALSE; @RECT=0,0,400,200;

RULE : Rule get_seasonal_transform (#26)
If

transform is "none"
Then set_transform

is confirmed.

RULE : Rule get _seasonal_transform (#25)
If

transform is "log"
Then set_transform

is confirmed.

RULE : Rule end_session (#27)
If

task is "quit"
Then what_to_do

is confirmed.

RULE : Rule decide_to_forecast (#28)
If

task is "forecasting"
Then what_to_do

is confirmed.
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And Show "forecast.txt" @KEEP=TRUE;@WAIT=TRUE;@RECT=0,0,400,200;
And set_model is assigned to set_model

And Execute "fsas @V(set) @V(model)"(@TYPE=EXE;)

And Show "sasfile.txt" @KEEP=T
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Appendix D.2 Program listings

Program td.f is written in FORTRAN to transform and deseasonalize a set of monthly
flow values and return the deseasonalized values to ’td.out’ output file to be used by SAS.

c sk ke 3k ok ok sk ok 3k sk ok sk ok sk sk ok 3k 3k ok sk ok sk ok ook sk ok ok sk ok Rk ok sk ok sk Kk

c Transform deseasonalize program
3k sk ok ok ok sk sk sk ok ok sk sk ok ok ok sk e sk sk sk ke sk ok sk ok sk ok ok sk sk sk sk sk ki ke
DIMENSION X(12,50), x1(12), x2(12)
OPEN (1,FILE="td.in’)
OPEN (2,FILE="td.out’)
J=1
2 READ (1,*,END=99) (X(1,J), I=1, 12)
DO 6 1=1,12
X(L,I)=ALOG(X(LY))
x1(1)=x1(1)+X(i,j)
x2(1)=x2(1)+X(i,j)**2
6 continue
j=j+1
goto 2
99  close (1)
I=I-1
do 7 k=1,1
X(k,j)=alog(x(k.J))
x1(k)=x1(k)+X(k,j)
x2(k)=x2(k)+X(k,j)**2
7 continue
do 8 k=1,12
x2(k)=(x2(k)-x1(k)**2/j)/(j-1)
x1(k)=x1(k)/j
8 continue
do 9 1=1,j-1
do 11 k=1,12
X(k,D=(X(k,})-x1(k))/x2(k)
11 continue
write (2,10) (X(k,]), k=1,12)
9 continue
do 12 k=1,i
X(k,)=(X(k,)-x1(K)/x2(K)
12 continue
write (2,10) (X(k,)), k=1,1)
close (2)

¢}
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10 format (12£7.2)
stop
end
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Program real0.f is written in FORTRAN to produce a compatible data file for plotting
when no transformation or deseasonalization manipulation is used to produce the model
forecasts.

c 3 ok ok ok 3k ok o ok Ak 3k ok ok sk ok sk ok ok sk ok sk ok ok ok sk ok ke ok ok ok ok %k ok %k ok ko

(¢}

de - program
c kkkkEkEk kKRR kkkokkkkkkkkskkkkkkkkkkkk
DIMENSION X(12,50), q1(12)
OPEN (1,FILE="real.in’)
OPEN (2,FILE="xsas.dat”)
OPEN (3,FILE="real.out’)
OPEN (4,FILE="means.out’)
J=1
2 READ (1,*,END=99) (X(LJ), I=1, 12)
DO 6 I=1,12
q1(i)=q1()+X (i, )
6 continue
j=j+1
goto 2
99  close (1)
I=I-1
do 7 k=1,1
q1(k)=q1(k)+X(k,j)
7 continue
do 8 k=1,12
qL(k)=q1(k)/j
8 continue
do 12 k=i+1,12
READ (2,10,end=14) obs, rmum
write (3,10) obs, rnum
write (4,10) obs, q1(k)
12 continue
do 14 k=1,i
READ (2,10,end=14) obs, rnum
write (3,10) obs, rnum
write (4,10) obs, q1(k)
14 continue
close (2)
close (3)
close (4)
10 format (i3,x,£8.3)
stop
end
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Program reall.f is written in FORTRAN to produce real value forecasts for plotting when
the data set has been transformed by the model to generate forecasts.

Cc Sekkkkkkopkkkkkkkkkkkkkkkkkdkkkkkkkkkk

¢]

de - Transform program
c Sk 3 ok 3k ok ok ok sk skodk sk ke sk sk sk sk ke sk sk sk ko sk sk kR sk sk sk ok ke kosk sk sk k
DIMENSION X(12,50), q1(12)
OPEN (1,FILE="real.in’)
OPEN (2,FILE="xsas.dat’)
OPEN (3,FILE="real.out’)
OPEN (4,FILE="means.out’)
J=1
2 READ (1,*, END=99) (X(1,J), I=1, 12)
DO 6 1=1,12
q1(i)=q1()+X(i,j)
X(LH=ALOG(X(LJ))
6 continue
j=j+1
goto 2
99  close (1)
I=I-1
do 7 k=1,1
q1(K)=q1(K)+X(k,)
X(k,j)=alog(x(k,))

7 continue
do 8 k=1,12
qL(k)=q1(k)/j
8 continue
do 12 k=i+1,12

READ (2,10,end=14) obs, tnum
rnum=exp(tnum)
write (3,10) obs, rnum
write (4,10) obs, ql(k)
12 continue
do 14 k=1,i
READ (2,10,end=14) obs, tnum
rnum=exp(tnum)
write (3,10) obs, rnum
write (4,10) obs, q1(k)
14 continue
close (2)
close (3)
close (4)
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10  format (i3,x,£8.3)
stop
end
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Program real2.f is written in FORTRAN to produce real value forecasts for plotting when
the data set has been transformed and deseasonalized by the model to generate forecasts.

sk ok ok ok ok sk ok 3k sk ok %k ok sk sk sk ok sk 3k sk Sk ok sk ok ok ok sk ok ok ok ok ok sk sk sk sk ok

Q

c de - Transform deseasonalize program
Cc sk 3 3k ok ok sk 2k 3k sk ok ok 3k ok ok sk sk ok sk sk sk ok sk okook ok kol sk ok sk sk sk sk sk ke ke
DIMENSION X(12,50), x1(12), x2(12), q1(12), q2(12)
OPEN (1,FILE="real.in’)
OPEN (2,FILE="xsas.dat’)
OPEN (3,FILE="real.out’)
OPEN (4,FILE="means.out’)
J=1
2 READ (1,*,END=99) (X(1,J), I=1, 12)
DO 6 1=1,12
q1(i)=q1()+X(i,)
02(1)=q2()+X(i,)**2
X(1L,NH=ALOG(X(1,J))
x1(1)=x1(1)+X(1,j)
x2(1)=x2(1)+X(i,j)**2
6 continue
j=j+1
goto 2
99  close (1)
I=1-1
do 7 k=1,1
q1(k)=q1(k)+X(kj)
q2(K)=q2()+X (k) **2
X(k,j)=alog(x(k}))
x1(k)=x1(k)+X(k,j)
x2(k)=x2(k)+X(k,j)**2
7 continue
do 8 k=1,12
q2(k)=(q2(k)-q1(k)**2/3)/G-1)
q1(k)=q1(k)/j
x2(k)=(x2(k)-x1(k)**2/)/(j-1)
x1(k)=x1(k)/j
8 continue
do 12 k=i+1,12
READ (2,10,end=14) obs, tdnum
rnum=exp(tdnum*x2(k)+x1(k))
write (3,10) obs, rnum
write (4,10) obs, q1(k)
12 continue
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14

10

do 14 k=1,i
READ (2,10,end=14) obs, tdnum
rnum=exp(tdnum*x2(k)+x1(k))
write (3,10) obs, rnum
write (4,10) obs, q1(k)

continue

close (2)

close (3)

close (4)

format (i3,x,£8.3)

stop

end
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Program mfore.f is written in FORTRAN to translate SAS output for model forecasts into
a compatible form for plotting.

c
¢ MFORE

c

c reads forecast values from sasfile.txt

¢ writes in X,y format to xsas.dat for XGRAPH
c

character*80 line, sasline
dimension x(5)

open (1,file="sasfile.txt")
open (2,file="xsas.dat’)

sasline="Obs’
do while (line .ne. sasline)
read (1,*,end=99) line
c write (*,*) line
end do
do 10 i=1,12
read (1,*,end=99,err=99) n, (x(j), j=1,4)
c write (*,*) (x(j), j=1,4)
write (2,20) n, x(1)
10 continue
99  continue
close (1)
close (2)
20  format (i3,x,£8.3)
stop
end
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Program data.f is written in FORTRAN to translate data files into a compatible form for

plotting historical data series.

Q000060

DATA

write out data set (from data.in) in
x,y format for XGRAPH

99

10

DIMENSION X(12)
OPEN (1,FILE="data.in’)
OPEN (2,FILE="data.out’)
n=0

READ (1,*,END=99) (X(I), I=1, 12)

DO 6 1=1,12
m=n-+i

write (2,10) m, X(I)
continue

n=n+12

goto 2

close (1)

I=1-1

do 7 k=1,i

m=n+k

write (2,10) m, X(k)
continue

close (2)

format (i3,x,£7.2)
stop

end
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fsas is a Unix script that controls the formation of a SAS input file to forecast a
previously developed model, and executes SAS.

echo DATA FLOW\; > sasfile
echo INPUT X@@)\; >> sasfile

if[$2=2td ]

then
echo CARDS\; >> sasfile
cp $1 td.in
td
cat td.out >> sasfile

else
echo LX=LOG\(X\)\; >> sasfile
echo CARDS)\; >> sasfile
cat $1 >> sasfile

fi

echo PROC ARIMA); >> sasfile

cat $2 >> sasfile

echo FORECAST LEAD=12\; >> sasfile
sas sasfile

mv sasfile.Ist sasfile.txt
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msas is a Unix script that controls the formation of a SAS input file for various stages
of model development, and executes SAS.

echo DATA FLOW); > sasfile
echo INPUT X@@)\; >> sasfile

if[$2=1td ]

then
echo CARDS)\; >> sasfile
cp $1 td.in
td
cat td.out >> sasfile

fi

if [ $2 = log ]

then
echo LX=LOG\(X})\; >> sasfile
echo CARDS\; >> sasfile
cat $1 >> sasfile

fi

if [ $2 = none ]

then
echo CARDS\; >> sasfile
cat $1 >> sasfile

fi

echo PROC ARIMA); >> sasfile
if [ $3 = identify ]
then
if [ $2 =1td ]
then
echo IDENTIFY VAR=X)\; >> sasfile
fi
if [ $2 = log ]
then
echo IDENTIFY VAR=LX\;, >> sasfile
echo IDENTIFY VAR=LX\(12\)\; >> sasfile
echo IDENTIFY VAR=LX\(1,12})\; >> sasfile
fi
if [ $2 = none ]
then
echo IDENTIFY VAR=X\; >> sasfile
echo IDENTIFY VAR=X\(12)\; >> sasfile
echo IDENTIFY VAR=X\(1,12})\; >> sasfile
fi
fi
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if [ $3 = estimate ]
then
echo IDENTIFY VAR= $4 NOPRINT)\; >> sasfile
echo ESTIMATE P= $5 Q= $6 NOCONSTANT METHOD=ML PLOT\; >>
sasfile
fi
if [ $3 = forecast ]
then

echo IDENTIFY VAR= $4 NOPRINT)\; >> sasfile
echo ESTIMATE P= $5 Q= $6 NOCONSTANT METHOD=ML NOPRINT\; >>
sasfile
echo FORECAST LEAD=12\; >> sasfile
fi
sas sasfile
mv sasfile.lst sasfile.txt
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xgraph_for is a Unix script that controls the execution of FORTRAN programs for data
manipulation of model forecasts, and executes the plotting utility Xgraph.

cp $1 real.in

if [ $2 =td ]
then

real2
fi
if [ $2 = log ]
then

reall
fi
if [ $2 = none ]
then

real0
fi

echo \"forecast\" > xsas.dat

cat real.out >> xsas.dat

echo " " >> xsas.dat

echo \"monthly means\" >> xsas.dat

cat means.out >> xsas.dat

xgraph -P -t "Forecasts" -x "month" -y "kcfs" xsas.dat
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xgraph_ser is a Unix script that executes Xgraph to plot historical data series.

cp $1 data.in
data

xgraph -t "Data series" -x "month" -y "kcfs" data.out
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APPENDIX E: Time Series Output
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Number of observations = 387
Autocorrelations
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.21754 | Kkokok |
.12938 |
.08602 |
.10692 |
.11561 |
.09313 |
.00484 |
.04625 |
.02549 |
.01023 |
.20929 |
.48253 |
.12283 | %% |
.07611 |
.00850 |
.11200 |
.04773 |
.09972 |
.04815 |
.04281 |
.03544 |
.00525 |
.11276 |
.27484 |

*kk |
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*% |
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|
[*.
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[ .

| skkskok
skokok Kok ok ok %k |
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o
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x|
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RER
k|
.
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Partial Inflow Available for Outflow (PIAO) for Lake Winnipeg
correlation structure
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i1
12
13
14

Name of variable = X.

Mean of working series = 4.01445

Standard deviation = 20.02696

Number of observations = 400

Autocorrelations

Covariance Correlation -1 987 65432101234567891
401.079 1.00000 | sk skeokok sk skok sk okok sk ok ok skok ok sk ok |
146.663 0.36567 | | ok keokeok o ok |
13.941080 0.03476 | RER [
-63.108661 -0.15735 | *kk | I
-41.001195 -0.10223 | *5k | l
-49.201587 -0.12267 | K | |
-58.073120  -0.14479 | kKK | I
-58.163076 -0.14502 | *kx| |
-49.281789  -0.12287 | *x| | [
-36.393983  -0.09074 | *k| |
31.106511 0.07756 | | |
123.507 0.30794 | EE T |
196.241 0.48928 | | kokokok koK |
136.556 0.34047 | | okokskokokok |
24 .643295 0.06144 | [* . |
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509.870
121.888
.528494
-99.331
.175566
.050295
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.13335
.16164
.14524
.14079
. 13242
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.09538
.02127
.26194
.43861

Correlation

. 36567
.11423
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.01971
.11047
.11049
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.09346
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.10178
.23805
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.00097
.04267
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.06488
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Partial Autocorrelations
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of variable = X.

Period(s) of Differencing = 1.

Mean of working series = 0.029617

Standard deviation = 22.58029

Number of observations = 399
Autocorrelations

Correlation -1 987 65432101234567891
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7 =-8.486393
8 -4.160920
9 -54.411047
10 -26.275392
11 20.152826
12 133.136
13 52.267683
14 -33.957597
15 -67.157258
16 -15.957831 -
17 1.970417
18 -0.332363
19  4.051435
20 -15.391792
21 -32.298937
22 -49.908632
23 24.993043
24 112.845
Lag
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8

9
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13

14
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20

21

22

23

24

Correlation
.23906
.17612
.29284
.12426
.12014
.14398
.11822
.12357
.26355
.33576
.37743
.16467
.01475
.02737
.02116
.02071
.00116
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.01917
.03241
.02801
.10083
.18022
.08971

.01664
.00816
.10672
.05153
.03953
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.06660
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.00386
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.00795
.03019
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.04902
.22132
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Partial Autocorrelations
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* |
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*k |

I
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I
|
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Name of variable = X.
Period(s) of Differencing = 12.

Mean of working series = -0.16992
Standard deviation = 20.20382
Number of observations = 388

Autocorrelations
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Covariance

760.427

-320.183
-53.005333
-74.269242

77.340248
10.335637
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-22.498589
-23.575200
22.405083
55.806903
135.433
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166.730
2.141605
28.808010
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-12.972307
14.027837
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-15.320286

49.009062
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Name of variable = X.
Period(s) of Differencing = 1,12.

Mean of working series = 0.017615

Standard deviation = 27.57583

Number of observations = 387
Autocorrelations

Correlation -1 987 6543210123456 7891
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Grass River
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22
23

24

GS1 model structure

B W= O

To
Lag
6

12
18
24
30
36
42

.07354
.09321
.07973
.08435
.16258
.05707
.03664
.22068
.15981

¥k |
%k |
%k |
*kx |
K|

KKk |

| kkoxk

Maximum Likelihood Estimation
T Ratio

Parameter Estimate Std Error
MAL,1 0.90913 0.03600
AR1,1 1.31841 0.04779
AR1,2 -0.39233 0.04865
Variance Estimate = 0.02654837
Std Error Estimate = 0.16293671
AIC = ~-252.17185
SBC = -240.58096
Number of Residuals= 352

Chi

Square
6

9

.44
77

13.84
15.77
16.80
24.53
25.16

25.26
27.59
-8.06

Autocorrelation Check of Residuals
Autocorrelations

DF P
3
9

15

21

27

33

39

QOO OOOO

rob

.092 0.
.370 0.
.538 0.
.782 0
.936 -0.
.856 -0.
.968 -0.

Model for variable LX
Period(s) of Differencing = 12.
Autoregressive Factors
Factor 1: 1 - 1.3184 B**x(1) + 0.
Moving Average Factors
Factor 1: 1 - 0.90913 B**x(12)

0.026548

0.0012785

-0.0014007
-0.0023414

-0.0011351

1
0
-0
-0
-0

.009 0

048 -0.
017 0
092 -0.

025 0
010 -0
012 -0.

053 -0.088 -0
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.044
.016
.008

012

0.038
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.026
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-0.013

[eNeNe N

39233 B**(2)

.043 -0.
0.
.036 0.
.048 0.
.029 -0.
.073 0.
.015 0.

055 -0.

Autocorrelation Plot of Residuals
Covariance Correlation -1 9 8 76 5432101234567 891
| sk ok sk sk ke ok sk ok sk sk skokok sk Kk K |
|*.
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I
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~0.0005
0.0014
0.00044
0.0014
0.0010
10 0.0014
11 -0.0009
12 0.00004
13 0.0024
14 -0.0001
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864
095
591
703
112
531
797
156
405
722

15 0.00054567

16 0.00096
17 0.00031
18 -0.0006
19 0.00022
20 0.001t
21 0.00054
22 0.0012
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23 0.00054264

24 -3.098

Grass River
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Correlation
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.04439
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.00625
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GS2 model struc

ture

Maximum Likelihood Estimation

Parameter Estimate Std Error T Ratio Lag
MAL,1 -0.38200 0.04862 -7.86 1
MA2,1 0.91662 0.03621 25.31 12
AR1,1 -0.17546 0.05198 -3.38 3
Variance Estimate = 0.02668969

Std Error Estimate = 0.1633698 —

AIC = -250.58946

SBC = -239.0071

Number of Residuals= 351

Autocorrelation Check of Residuals
Autocorrelations

To Chi
Lag Square DF P
6 9.1 3 O
12 12.563 9 0
18 16.33 15 0
24 18.11 21 0
30 18.84 27 0
36 29.06 33 0
42 29.69 39 0

rob

.019
.185
.360
.642
.876
.664
.8569

Model for variable LX
Period(s) of Differencing = 1,12.

Autoregressive Factors

-0

~0.

.000
.057 -0
.086 -0.
.000
.021
.034 -0

006

Factor 1: 1 + 0.17546 B**(3)

Moving Average Factors

Factor 1: 1 + 0.382 B#*x(1)
Factor 2: 1 - 0.91662 B*x(12)

[
)
[0¢}

0.026690
~-5.5105E-7
0.00014492
~-0.0001891
.0030330

-0.00310563

-0.0009132

-0.0015128

-0.0001063

-0.0001436
10 0.00097503
11 -0.0013662
12 -0.0001179
13 0.0022869
14 -0.000831
15 0.00014185
16 0.00075248
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0

.005
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.008
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.017

~0.
~-0.
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Autocorrelation Plot of

1.00000
-0.00002
0.00543
~-0.00709
-0.11364
-0.11635
-0.03422
-0.05668
~0.00398
-0.00538
0.03653
-0.05119
-0.00442
0.08568
-0.03114
0.00531
0.02819
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007 -0.114 -0.116 -0.034
005 0.037 -0.051 -0.004

.005 0.028 -0.005 -0.034
.011 0.044 0.030 0.006
.008 0.009 -0.028 -0.021
.019 -0.082 0.132 0.021
.008 -0.006 0.031 0.012

Residuals
101234567891
| ke ok ke ke ek sk skok sk sk skok ok sk ok o |

X ¥ -



17 -0.0001348 ~0.00505
18 -0.0009189  -0.03443
19 6.54339E-6 0.00025

| )
| Lk
l .
20 0.0011124 0.04168 |
|
|
|
I

*

21 0.00030237 0.01133
22 0.0011752 0.04403 *,
23 0.00079693 0.02986 *,
24 0.00014889 0.00558

: Partial Autocorrelations--
Correlation -1 987 65 432101234567891

Lag
i -0.00002 | o |
2 0.00543 | l |
3  -0.00709 | O |
4 -0.11368 | *k | |
5 -0.11789 | *ok | |
6 -0.03566 | k| |
7 -0.05976 | x| |
8 -0.02116 | . |
9 -0.03445 | x| |
10 0.01288 | . |
i1 -0.07490 | 3 |
12 -0.02622 | x| |
13 0.07585 | N E L |
14 -0.03474 | I |
15  -0.00767 | | |
16 0.01232 | I [
17 0.00889 | O [
18 -0.03245 | x| |
19  -0.00412 | | . |
20 0.05410 | [*. [
21 0.01830 | | . |
22 0.03996 | [*. |
23 0.02346 | [ . |
24 0.03037 | [*. |
Grass River
GTD model structure
Name of variable = X.
Mean of working series = -0.05472
Standard deviation = 1.108327
Number of observations = 364
Autocorrelations
Lag Covariance Correlation -1 987 654321012345678291
0 1.228390 1.00000 | | sheskskoskok sk ok ok sk sk sk sfok ok ok oK |
1 1.099397 0.89499 | . PEskokskokskkskokkdoRk RNk |
2 0.956644 0.77878 | L | esekskskokskokkok ok skokokok |
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Partial Autocorrelations

Correlation -1 987 6543210123456 7891
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Maximum Likelihood Estimation

Parameter Estimate Std Error T Ratio Lag
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MAl,1 ~-0.24337 0.05451
AR1,1 0.93434 0.02513
Variance Estimate = 0.15786028
Std Error Estimate = 0.39731635
AIC = 365.555783
SBC = 373.35009
Number of Residuals= 364

Autocorrelation Check of Residuals

Autocorrelations
001 -0.008 -0.027 -0.062
004 0.002 0.034 0.009
.067 -0.044 0.003 0.031
006 -0.027 -0.013 0.027
031 0.004 0.005 0.036
015 -0.022 -0.032 -0.013
064 0.023 0.002 0.023

-4.46 1

37.

QO OO OOO

Autocorrelation Plot of Residuals

Correlation ~1 987 65432101234567891
| skt skt stk sk okeskskok sk ok oK |

To Chi

Lag Square DF  Prob

6 2.97 4 0.562 0.

12 4.45 10 0.925 -0.

18 7.87 16 0.953 0

24 10.33 22 0.983 0.

30 11.60 28 0.997 -0.

36 18.01 34 0.989 -0.

42  20.49 40 0.996 -0.

Covariance

0.157860 1.00000 |
0.00022611 0.00143 |
-0.0012845 -0.00814 |
-0.0042822 -0.02713 |
-0.0097580 -0.06181 |
-0.0065229 -0.04132 |
0.0064947 0.04114 |
-0.0005866 -0.00372 |
0.00031778 0.00201 |
0.0053270 0.03374 |
0.0014601 0.00925 |
0.0051662 0.03273 |
0.0062946 0.03987 |
0.010582 0.06703 |
~0.0069974  -0.04433 |
0.00050561 0.00320 |
0.0049395 0.03129 |
0.0060448 0.03829 |
0.0013258 0.00840 |
0.00091207 0.00578 |
-0.0042733  -0.02707 |
-0.0021087 -0.01336 |
0.0043018 0.02725 |
0.010714 0.06787 |
-0.0003076 -0.00195 |

Partial Autocorrelations

.041 0
.033 0.
.038 0.
.068 -0.
.004 -0.
.117 0.
.029 0.

19 1

.041

040
008
002
029
015
012

Lag Correlation -1 987 654321012345678291

1
2

0.00143
-0.00814
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20 ~-0.01822
21 ~0.00976
22 0.02222
23 0.06450
24 -0.01102

3 -0.02711 | x|

4 -0.06186 | x|
5 -0.04191 | x|
6 0.03948 | [ *,

7 -0.00771 | |
8 -0.00343 | | .
9 0.03094 | [*.
10 0.01236 | I .
11 0.03616 | .
12 0.04015 | E
13 0.07361 | R ES

14  -0.03773 | x|
15 0.00910 | | .
16 0.04248 | | %,
17 0.04633 | f*,

18 0.00637 | |

19  -0.00001 : =

| I

| |

| |

I I

Model for variable X
Autoregressive Factors
Factor 1: 1 ~ 0.93434 B*%(1)
Moving Average Factors
Factor 1: 1 + 0.24337 B**(1)

Red River
RS2 model structure

Maximum Likelihood Estimation
Parameter Estimate Std Error T Ratio Lag
1

MAdl,1 0.92022 0.03132 29.38
MA2,1 0.85106 0.03633 23.43 12
AR1,1 0.63660 0.05751 11.07 1
AR2,1 -0.13845 0.05814 -2.38 12
Variance Estimate = 0.27856633

Std Error Estimate = 0.52779384

AIC = 627.456813

SBC = 643.290512

Number of Residuals= 387

Autocorrelation Check of Residuals
To Chi Autocorrelations
Lag Square DF  Prob
6 3.66 2 0.160 -0.034 0.013 0.055 -0.026 0.038 -0.053
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

12 8.91
18 13.88
24 17.18
30 19.82
36 22.06
42 27 .06
Model for
Period(s)

Autoregressive Factors
Factor 1: 1 - 0.6366 B¥*(1)

8
14
20
26
32
38

variable LX

QOO OO0

.350 0.0%6
.459 -0.060
.642 0.026
.800 -0.062
.906 -0.033
.907 -0.026

.011
.017
.049
.031
.033
.065

of Differencing = 1,12.

Factor 2: 1 + 0.13845 B**(12)

Moving Average Factors

Factor 1: 1 - 0.92022 B**(1)
Factor 2: 1 - 0.85106 B*%(12)

Covariance Correlation

0.278566
-0.009607
0.0035767

0.015241

-0.0071437

0.010627
-0.014887

0.026765
0.0031815
0.0023078
-0.013560

0.009675
0.0039572
-0.016798
0.0048010
0.0094919
-0.015040

-0.0008532
~-0.018136
0.0071681
-0.013694

-0.0083699

-0.0040182
~0.014525

-0.0092161

Lag

DO W

Correlation
.03449
.011686
.05562
.02210
.03524
.05371

.008 -0.049 0.035 0.014
.034 ~0.054 -0.003 -0.065
.030 -0.014 -0.052 -0.033
.015 0.026 -0.019 -0.017
.063 0.008 -0.014 -0.004
.029 0.020 0.070 0.021

Autocorrelation Plot of Residuals
-1987654321012345673891
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. 03449
.01284
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.03815
.05344
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.01142
.00828
.04868
.03473
.01421
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Partial Autocorrelations
-198765432101234567891
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Red River
RTD model structure
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o
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Covariance Correlation
.929730
.686436
.559787
LA466477
.379770
.342725
.297936
.282650
.254463
. 209550
.179784
.182101
.139867
.124335
.115164
.103701
.098628
.080267
.056834
.0551865

QOO OO O OO0 OODIODOODODOOOCO

QO OO OOOOO

1

.09517
.01379
.01502
.06425
.038565
.00683
. 04465
.00229
.04019
.06764
.00318
.07116
.02524
. 04840
.01265
.03632
.03778
.04124

*

Name of variable = X.

Mean of working series =
Standard deviation = 0.964225
Number of observations =

.00000

0.73832

[eNoRoloReoNoNeoNoNoNoNeoRoRoeNoNoNoNoRe

.60210
.50173
.40847
.36863
.32045
.30401
.27370
.22539
.19337
.19586
.15044
.13373
.12387
.11154
.10608
.08633
.06113
.05933

-0.01841
400

Autocorrelations
-198765432101234567891
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23
24

0.023621
0.0052139
0.022715
0.026625
0.048733

To
Lag
6
12
18
24
30

QOO OO

Lag Correlation

.02541
.00561
.02443
.02864
.056242

*

I
|
|
| *
|

Partial Autocorrelations
-1987654321012345678891
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Maximum Likelihood Estimation

1 0.73832
2 0.12527
3 0.04555
4 -0.00904
5 0.07660
6 0.00578
7 0.06252
8 -0.00212
9 -0.03753
10 -0.00209
11 0.07397
12 -0.07188
13 0.01384
14 0.01364
15 0.00881
16 0.00446
17 -0.01295
18 -0.04035
19 0.02878
20 -0.05303
21 ~-0.01556
22 0.05406
23 0.01948
24 0.04173
Parameter
AR1,1
AR1,2

Variance Estimate
Std Error Estimate

AIC
SBC

Number of Residuals

Chi

Square DF

2.03
9.561
10.64
17.30
18.35

Estimate

Std Error T Ratio
0.04976 12.98
0.04976 2.48

0.41780608
0.64637921
788.865442
796.848371

400

Autocorrelation Check of Residuals

Prob

Autocorrelations

4 0.731 -0.004 -0.032 0.021 -0.046
10 0.484 0.060 0.063 -0.006 -0.029
16 0.831 -0.006 0.015 0.005 0.040
22 0.747 0.057 -0.023 -0.068 0.015 -0.013 0.083
28 0.917 -0.020 0.011 -0.013 0.010 -0.036 0.019
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Lag
1
2

0.035 -0.011
0.096 -0.022
0.016 -0.023



£
)
o]

OO~ O W= O

36 21.04 34 0.960 0.004 -0.010 0.013 -0.020 0.061 -0.041
42 24.33 40 0.976 -0.019 0.057 -0.023 0.015 0.054 0.013
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Autocorrelation Plot of Residuals
Covariance Correlation -1 98 765 43210123456738291
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20
21
22
23
24

-0
-0
-0
-0

0

.02100
.06019
.004568
.01065
.07547

Model for variable X

Autoregressive Factors

Factor 1: 1 - 0.6461 B**(1) - 0.12355 Bx*(2)

WS1 model structure

P W - O

Maximum Likelihood Estimation
Estimate

Parameter
MU
MA1,1

Constant Estimate
Estimate

Variance

AIC

SBC

-0.28839
0.87153

Std Error Estimate

Number of Residuals=

To  Chi
Lag Square
6 11.73
12 14.05
18  16.79
24 20.04
30 23.29
36 24.61
42  32.59

Std Err
0.127
0.031

-0.2883877
234.669861
15.318938
3237.96752
3245,88953
388

or
35
45

T Ratio
-2.26
27.71

Autocorrelation Check of Residuals
Autocorrelations

PF P
5
11
17
23
29
35
41

OO OO OO0

rob

.039
.230
.469
.640
.763
.905
.823

Model for variable X
Estimated Mean = -0.2883877
Period(s) of Differencing = 12.

Moving Average Factors
Factor 1: 1 - 0.87153 B**(12)

234.670
25.181145
-14.150375
-20.103261
18.164470
8.804776

OO OO OO0

.107
.012
.062
.000
.058
.011
.035

-0.060 -0
0.031 0
-0.018 -0
0.001 0.
0.046 -0
-0.015 -0
0.090 O

Autocorrelation Plot of
Lag Covariance Correlation -1 9 8 7 6 5 4 3 2

.00000
.10730
.06030
.08567
.07740
.03752
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Correlation
.10730
.07265
.07214
.09270
.00885
.00110
.00552
.02927
.03754
.03454
.02111
.02337
.05945
.03437
.03305
.01492
.02776
.00833
.00106
.00146
.03351
.06665
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Partial Autocorrelations
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