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This paper compares presently available methods for long-range water supply

forecasting with theoretical statistical time-series models as a means of evaluating forecast

performance and reliability of long-range monthly probabilistic stream flow forecasts.

Seasonal AutoRegressive Integrated Moving Average (SARIMA) models are used in

conjunction with deseasonalized AutoRegressive Moving Average (ARMA) models to

produce forecasts forvarious inflow types under arange offlow scenarios. Evaluation of

model performance under these conditions provided possible insight into development of a

hybrid technique using engineering knowledge and experience to improve the quality and

reliability of the forecasts. Ranking of model choices from analysis of forecasr erors

within a flow sensitivity analysis allowed the formation of a set of rules to govern the

selection of a single model when more than one model is available. These modelling

procedures provided a basis for comparison with existing methods of long-range

forecasting at large utilities such as Manitoba Hydro. Increased confidence in the optimal

forecasted operating and planning policies of a large utility are consequences of improved

forecasts.

Manitoba Hydro was chosen as a case study utility from a selection of several other

large utilities that were surveyed. Manitoba Hydro is a large utility which operares a multi-

reservoir electric power generation system in the province of Manitoba. The needs and

priorities of the system demand forecasts of up to a year in advance for planning of budgets

and release policies. Manitoba Hydro needs and requirements were used to govern the

scenario within forecasts are made, allowing forecasts from Manitoba Hydro to be

compared with forecasts produced from other statistical time series modelling techniques.

ABSTRACT



There are many people who have made this thesis possible. First of all, I would

like to thank the Manitoba Hydro Research and Development committee for supporting this

project through a Manitoba Hydro post-graduate scholarship. I also appreciate the time and

effort that Dave Cormie has allocated to provide me with test forecasts from Manitoba

Hydro, data for the analysis, and hours of consultation time. My program advisor, Dr.

Slobodan Simonovic, was always very supportive, understanding, and encouraging.

Thank you, Simon, for offering me the chance to work for you.

For my progress, completion of this project, personal growth, and sanity, I would

like to express my sincere gratitude to, my buddies, my comrades, my friends in FIDS.

Thanks, guys, for always being there for me.

I would like to thank my pilents for always encouraging me, and supporting me. I
am very forn¡nate that they are such a positive impact on my life. Most importantly I would

like to thank my dearest love, Marilyn, for your thoughts and prayers, for putting up with

me, and for standing beside me every step of the way.

ACKNOWLEDGEMENTS

ii



ABSTRACT

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF NOTATION

TABLE OF CONTEI\TS

INTRODUCTION

1. 1 Hydrologic forecasting

1.2 Project scope

1.3 The Manitoba Hvdro Svstem

2 \ryATER. SUPPLY F'ORECASTING

2.1 Short-termforecasting

2.2 l,ong-termforecasting

2.2.1 Time series analysis

2.2.2 Time series application

2.2.3 Statistical time series approach

2.2.4 Comparison of approaches

2.2.5 Forecast selection

2.2.6 Current forecasting practices

2.2.7 Review of currentpractices

2.2.7 .1 Manitoba Hydro

2.2.7.2 BC Hydro

iii

Page

I

ü

vü

X

xi

I

i

2

a
J

5

5

6

7

10

t2

16

18

19

2l

2l

22



2.2.7.3 Quebec Hydro

2.2.7.4 Ontario Hydro

CASE STUDY

3.1 Requirements

3.2 Inflow sources

3.3 Model development

3.3.1 Grass River

3.3.2 RedRiver

3.3.3 PrAO

3.4 Model comparisons

3.4.1 Sensitivity analysis

3.4.2 Forecast scenario

3.4.3 Error analysis

3.5 Case study observations

3.5.1 Evaluation criteria

3.5.2 Grass River

3.5.3 Red River

3.5.4 PrAO

3.6 Model selections

24

1/1
L-

26

26

27

28

28

30

3T

31

32

.AJ+

35

38

38

39

40

4l

/l',
-L

DECISION SUPPORT APPLICATION

4.7 Purpose

4.2 System

4.3 Tools

4.4 User modes

iv

45

45

45

45

/l'7AI



4.5 Knowledge base

4.6 Consultations

4.6.1 Forecasting

4.6.2 Model Development

CONCI,USIONS

5.1 Research goals

5.2 Summary of results

5.3 Potential time series use

REFERENCES

APPENDIX A: Grass River

4.1 Historicalcharacteristics

4.2 High case

4.3 Median case

4.4 Low case

APPENDIX B: Red River

8.1 Historicalcharacteristics

8.2 High case

8.3 Median case

8.4 Low case

47

50

50

50

52

52

53

54

APPENDIX C: PIAO

C.1 Historicalcharacteristics

56

60

60

62

66

70

IJ

t3

77

81

85

88

88



C.2 Low case

APPEI\DIX D: Decision Support Application sz

D.l Knowledge base

D.2 Program listings

APPENDIX E: Time Series output

9Z

100

114

VI



1 Project Overview

2 Selection of forecast model

LIST OF FTGURBS

3 Manitoba Hydro long-range forecasting merhod

4 BC Hydro long-range forecasting method

5 Quebec Hydro long-range forecasting method

6 Selection of model sensitivity analysis years

7 Forecast scenario

8 MSE comparison: by forecast run

9 MSE comparison: by month

10 MSE comparison: by forecast lag

11 Ranking of the Grass River models

L2 DSA for water supply long-range forecasting tasks and tools

L3 Forecasting user mode

14 Model development user mode

4.1.1 Grass River data series

Page

2

19

22

23

24

aa
JJ

35

36

JI

38

/1',
-L

46

48

49

60

60

6I

62

62

63

63

64

64

4.1.2

4.1.3

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

annual characteristics

histo¡ical characteristics

high flow case forecast

high flow case MSE by forecast run

by month

vii



4.2.7

4.3.1

4.3.2

,A.3.3

43.4

4.3.5

4.3.6

4.3.7

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

B. 1.1

8.t.2

B.1.3

8.T.4

8.1.5

8.1.6

8.1.7

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

by lag

median flow case forecast

median flow case MSE by forecast run

by month

by lag

low flow case forecast

low flow case MSE by forecast run

by month

by tag

Red River data series

annual ch aracteristics

historical characteristics

65

66

66

67

6l

68

68

69

70

10

'7 1

71

7Z

72

73

-aIJ

74

74

75

75

76

'7',1

77

18

78

79

correlation of peak and average flow

correlation of peak flow: March

correlation of peak flow: Jan-March

correlation of peak flow with previous peak

high flow case forecast

high flow case MSE by forecast run

viii



8.2.6 by month

8.2.7 by lag

8.3.1 median flow case forecast

8.3.2

8.3.3

B.3.4

B.3.5 median flow case MSE by forecast run

8.3.6 by month

8.3.7 by lag

8.4.1 low flow case forecast

8.4.2

8.4.3

8.4.4 low flow case MSE by forecast run

8.4.5 by month

8.4.6 by lag

C.1.1 PIAO data series

C.\.2 historical characteristics

C.2.1 low flow case forecast

c.2.2

c.2.3

C.2.4 low flow case MSE by forecast run

C.2.5 by month

C.2.6 by lag

79

80

81

81

82

82

83

83

84

85

85

86

86

87

87

88

88

89

89

90

90

9l

9r

IX



I

aL

a
J

LIST OF TABLES

Summary of available forecast models

Case years for sensitivity analysis

Ranking of forecasting models

Page

32

JJ

43



at

B

d,D

Et...l

f ......

k

L

m

nrN

p,P

q,Q

rk

t,1

wi

xt,Yt, zt

X¡

0

e

p

I,IST OF NOTATION

white noise series

backshift operator

degree of differencing (nonseasonal, and seasonal)

expected value function

forecast value

time lag, number of forecasts

seasonal lag

number of harmonics

number of data points

number of AR terms (nonseasonal, and seasonal)

number of MA terms (nonseasonal, and seasonal)

autocorelation at lag k

position in time

forecast weight

data series

forecasted variable

AR coeffrcient

MA coefficient

mean

standard deviation

Box- Cox transformation parameter

parametric deseasonalization coefficient

historical statistical pammeter: F , or o

monttrly statistical parameter: F , or o

Xi

o

À

l"¡

V¡

V1



ú) time series periods

xll



1 INTRODUCTION

1.1 Hydrologic forecasting

Hydrologic forecasting plays an ever increasing role in water resource management

for improvement of irrigation practices, flood control, and hydro-electric generation

optimization. The ability of the engineer to make competent forecasts of natural inflows to

reservoirs has improved. Developments in statistical theory, contact with statisticians, and

experience in evaluating the interaction of various physical processes enable us to better

comprehend the content of our data sets. Techniques for forecasting vary with the system

purpose, physical characteristics, and availability of data.

Hydrologic forecasting, water supply forecasting in particular, can be separated into

two general types: short-term, or real-time forecasting; and long-range forecasting. Each

is suited for different, specific system requirements. They differ in physical nature and

require individual mathematical approaches. Short-tenn forecasting has been thoroughly

researched, and well documented, but long range forecasting remains somewhat

mysterious to engineers. Yet, it can not be ignored because optimization techniques for

reservoir release policies demand an indication of what inflows can be expected in the

coming months. This paper will explore time series analysis techniques as rhey apply to

long-range water supply forecasting, and use them as a basis for comparison with

forecasting within Manitoba Hydro.



L.2 Project scope

The purpose of this paper is to evaluate the effectiveness of long-term water supply

forecasting by several large utilities, Manitoba Hydro in particular, and compare their

capabilities with available theoretical statistical tools. A comparison of time series models

such as those produced by AR and MA (AutoRegressive and Moving Average) processes

tr
tr

ïme series modelling

Forecast improvement approaches :

FORECAST
SCENARIO

I rorecasting

Figure 1. Project Overview

2

I Model
I evaluation

v
I Tools for

I tl I notentiat
tmprovement



with the cturent mathematical methods may indicate the relative quality of the forecasts, and

suggest improvements in use of the data.

A sensitivity analysis for flow scenarios is used to aid in the selection of a superior

model when several seemingly indistinguishable models are available. This type of

analysis is used to prepare a ranking of the models, defining a simple set of rules that

govern the choice of best forecast model under given specific flow conditions. A flow

chart of the project components is outlined in Figure 1.

1.3 The Manitoba [Iydro System

Manitoba Hydro (frequently referred to as MH within this paper) operates a multi-

reservoir power generation system within the province of Manitoba, Canada. Large

reservoirs regulate a considerable portion of the downstream flow. The largest, Lake

Winnipeg, is approximately 23,700 square kilometres. The extent of natural or man-made

storage capacity provided by these reservoirs reduces the need for extensive management of

extreme or sudden flood events by damping the effects of precipitation and. flow events.

Because of the level of flow regulation, or magnitude of capacity, time lags of natural

inflows do not greatly affect the performance of the system. For this reason, short-term

forecast improvements are not considered to be highly beneficial. Conversely, long range

forecasts up to a year in advance are necessary for the implementation of robust reservoir

release policies to maximize system benefits from power production.

Forecasting at Manitoba Hydro is dependent on stream flow data because flow

gauges are the only comprehensive source of available data. Other system information

regularly associated with real-time conceptual forecasting models such as precipitation data

and soil moisture conditions is available only on a regional basis. The information gained

3



from these regional or general data sets is more useful in defining short-term expectations.

Forecasts are used as input to a linear programming (LP) package that optimizes system

benefits, and develops an efficient operational plan of reservoir releases. At MH, various

forecasts are studied so that a robust plan can be developed. The operating plan developed

by the LP is optimal given that particular forecast materializes. At best, it is near optimal or

optimal given the percieved range of flow possibilities. At worst, it is one of many feasible

solutions. The quality of LP oulput is a function of the quality of forecasted inflows to the

system. Improvements in fo¡ecast accuracy will improve the quality of operation of the

system, although the magnitude of improvement will vary according to the system

characteristics (Georgakakos, 1989; Mishalani and Palmer, 1988).

4



2 \ryATER SUPPLY FORECASTING

2.1 Short-term forecasting

Short-term forecasts are primarily used to manage flooding events, although they

a¡e also valuable for management of power generation and irrigation on a real-time basis.

They range from an hour to a number of days, up to a week. Modelling for short-term

forecasting, because of the recent nature of the system knowledge, is a matter of calculating

the system response to known events or situations.

Much of the work for real-time or short-term forecasting for stream flow approach

the problem as a dynamic state-space system to produce a conceptual rainfall-runoff model.

Various physical par¿rmeters such as precipitation, soil moisture content, and others are

used to form the state of the system. The system state is then forecasted, or estimated, with

the use of techniques such as Kalman filtering. For an in-depth study of dynamic state-

space systems and Kalman filtering, see Abraham and Ledolter (1983). The general

formulation of a dynamic linear state-space system is given (2.la,b).

Yr+1 = Ayl +Ga1-1

Zt=Hyt+bt

yt = forecast, or dependent, variable

zt = known, independent, variable

A, G, H are coefficient matrices

at, bt ¿tre other functions such as error terrns

(2.1a)

(2.1b)



The best known example of short-term forecasting is provided by the National

Weather Service River Forecast System (NWSRFS) in the US. Their Extended

Streamflow Prediction (ESP) program is frequently used and referenced in the literature

(Day, 1985; Georgakakos and Smith, 1990; Hudlow, 1988; Kitanidis, 1980a, 1980b).

It consists of a conceptual rainfall-runoff model that is estimated using Kalman filtering.

There are numerous examples of experiments in using different formulations of the system

ranging from linear to nonlinear, and variations of the Kalman Filter such as the Extended

Kalman Filter (EKF) (Georgakakos and Smith, 1990). Other work for real-time

forecasting with conceptual rainfall-runoff models experiment with various estimation

techniques. Puente and Bras (1987) reviewed the use of EKF along with other, more

complicated, filters for nonlinear systems. Another example is the work by Sen (1991)

who combined Kalman frltering with Orthogonal V/alsh Series.

The practice of formulating rainfall-runoff models in state-space systems for real-

time forecasting has been well established. Possible improvements in the system

estimation method have been explored but reduction in estimation error is quickly

approaching the limits of the data, and the extent of our knowledge about these natural

processes. Nonlinear filtering using EKF has been demonstrated to be effective (Puente

and Bras, 1987; Georgakakos and Smith, 1990).

2.2 tr-ong-term forecasting

The approach for long-term forecasting is not as clearly defined. These kinds of

forecasts range in length from weeks to months, up to a year, using time steps of a day,

week, or month. The problem with making forecasts of several months in advance is that

Nature is quite unpredictable. The timing, number, and intensity of precipitation evenrs, or

changes in the state of the system, are more or less random occurrences that are not

6



strongly corelated. Long-term forecast accuracy is confined or constrained in that

engineers are restricted to making general observations about stream flow behaviour from

limited information within the data.

Some work has been done in conceptual state-space modelling to apply those

techniques to long range forecasting. Day (1985) used the ESP model at the NWS,

described in section 2.1,to produce probabilistic forecasts using simulation techniques.

However, examples of this are limited and the potential of this approach is uncertain

because the focus with conceptual models is based on the day to day calculation of

responses of a simulated or historical meteorological record, and general system flow

behaviours are merely implied, or ignored.

Instead, long range forecasting practices, and theory, concentrate on using some

form of pattern recognition regression, or correlation of time dependence of system

behaviour to forecast time series data such as stream flow.

The theoretical statistical approach for modelling single variate time series data is to

correlate previous time lags with the present or forecast lag (Box and Jenkins, 1976).

Multivariate modelling is also possible by cross-correlating two or more data sets.

Correlation of time lags demands the calculation of 2 functions: the Autocorrelation

Function (ACF), and the Partial Autoconelation Function (PACF). They are quite ted.ious

and complicated to calculate, but st¿tistical packages such as the Statistical Analysis System

(SAS) will easily calculate these functions. Both functions are valuable aids in the

identification of a stationary series, and the identification of relevant significant time lags to

be included in a time series model. The general, biased, ACF is given below in (2.2) for

2.2.1 Time series analvsis



lag k of time series x¡. For a detailed discussion of these functions,

Ledolter (1983), or Bowerman and O'Connell (1987).

N-kI
fk=

(x1-X)(x1*¡-x)

For a model to be considered stationary,

that state the roots of the equation (2.3)

N

L (xt - x)'
t=1

uP - 0luo-1 - Qzup-z 0p = 0 ,for AR(p)

lie inside the unit circle. That is,

luil<1 ,i=1,...,p

Abraham and

'Where ul in (2.4) are the roots of the equation. In general, a stationary model has

coefficients ranging from -1 to +1. The practical application of this for identifying a

stationa-ry series is to consider whether the two conelation functions, ACF and PACF,

become insignificant after a reasonably limited number of lags. This can become difficult

for a complicated seasonal data set. Experience in modelling time series data, and

familiarity with identifying stationary processes, is a great asset.

By correlating previous time lags, time series models are expressed as a

combination of AutoRegressive (AR) and Moving Average (MA) parameters (Box and

Jenkins, 1976) shown in (2.6a,b). Model notation commonly uses the backshift operator

it must first satisfy stationarity conditions

(2.2)

(2.3)

(2.4)



(B) to simplify complicated model terrns. It is not a variable, but operates on a variable, as

in (2.5a,b), to represent a variable lag according to the power in which B is raised.

BX1= X1-1

B2x1 - x1-2

MA(1): x1 = (1 - 018)a1

AR(2): (1 - 0rB - Q2B2)x¡ = ¿,

The AR and MA processes are inversely related by the following equations (2.7a,b,cd):

(1 - 0rB )Xt = at

xr = 
-a-ât(1 -0rB)

Then, by Taylor series expansion in (2.7c):

+=1 +x+x2+x3+...,1)4<1
1-x

the AR(1) model can be represented by an infinite series of exponentially decreasing error,

or MA, lags as n (2.7d). In the same way, a MA(1) model is the equivalent of an infinite,

exponentially decreasing significant series of AR tenns.

(2.5a)

(2.sb)

(2.6a)

(2.6b)

x1 = (1 + 0rB + þzB2 + q¡Bs +...)at ,lO'l . f

(2.7 a)

(2.7b)

(2.7c)

(2.1d)



The ACF is controlled by MA processes, and the PACF is controlled by AR

processes. Examination of these two functions will provide a thorough basis for analysis

of the system behaviour under time dependence, and will suggest the appropriate

parameters to include in the model. Model parameters can then be estimated using a

technique such as Maximum Liklihood estimation.

In Civil Engineering, modelling with ARMA (AutoRegressive Moving Average)

processes have been available for years. An ARMA modelling approach has been

developed that is specific to stream flow. A complete discussion of this rype of modelling

is available within Salas et. al. (1980).

Considerable data manipulation is usually required before an ARMA model can be

fit. The first manipulation stage is transformation of the data. Monthly stream flows

typically demand transformation to create a normal or gaussian data disribution. Stream

flow data is generally skewed such that there is a long tail on the high flow side and a non-

negative condition on the low flow side of the data distribution. A Box-Cox transformation

can be used (2.8a,b), but flows are generally lognormally distributed and can be

transformed accordingly by (2.8b).

2.2.2 Time series application

z, ={xit-t1 ,}u*o
1

-2 <?,, < 2

zt = In[xt] ,À=0

10

(2.8a)

(2.8b)



Flows ate then deseasonalízed, or standardized, to account for variations in

monthly mean (2.10) and standard deviation (2.11). Most stream flow series exhibit

significant seasonality, or changes in flow characteristics from month to month. Spring

flows tend to be high and winter flows tend to be very low. The variance also tends to

change. The range of possibilities for flow in spring is much greater than in the winter.

Nonparametric deseasonalization uses Fourier analysis to estimate the properties of mean

and standard deviation with a smoothing effect from the historical statistics. Another

technique is parametric deseasonalization. It simply uses the standard normalized variable,

with historical characteristics, to handle seasonality. Both parametric and nonparametric

deseasonalization employ the standard variable (2.9):

r, -zP,r 
- Ih

vp,f - 
""

n
l\alk=¡L zo,'

p=1

Knowing that the historical monthly means and standard errors vary throughout the

year, Fourier analysis is used when the engineer expects the true monthly characteristics to

display a more smooth transition through the year than the historical approximations. This

technique is best suited for when the data set is limited. As the set gets larger, the histo¡ical

characteristics will approach the true values and Fourier analysis becomes unnecessary.

Fourier series estimations of the monthly characteristics are made by defining the means,

o. =[-L$' 
Ln-rÉí

(2p,"
lr

*f l'

(2.e)

(2.10)

(2.rr)

11



and standard elrors, as a series of harmonics that vary about the annual mean of the statistic

in question (2.I2).

m

Vr = Vx + | 1n¡cos\t + B¡sinÀ¡r)
j=1

(Ð

R, = 2i (u. 2nit
' ot= ' s-v¡)CoS-

o

e = 2j (v" - v,)sin?Ilx' oi:i '

A sensitivity analysis must also be performed to determine the optimal number of

harmonics, m, to be used.

After deseasonalization, the working data set is no longer a stream flow time series,

but a set of non-dimensional numbers expressed in terms of number of standard erro s

from a mean value. The Autocorelation and Partial Autocorrelation functions of this

transformed deseasonalizeddata set are usually stationary with significant AR terms, and

possibly an MA term. Typical model resulrs are: AR(l), AR(2), ARMA(1,1).

2.2.3 Statistical time series approach

,7r,¡
2tci

ú)

, (Ð = 12 for monthly data

Current statistical practices for time series analysis consists of differencing the data

to achieve stationary correlation structures. Stationary structures of this kind are usually

more complicated than those representing the transformed deseasonalized data set. This is

because periodic trends or tendencies are not drowned out with differencing as they are

with deseasonalization. Seasonal AutoRegressive Integrated Moving Average (SARIMA)

models and other modern va¡iations can be used to model sream flow by correlating recent

and seasonal time lags to the present or forecast time lag. Combinations of AR, MA

(2.r2)

12



parameters, seasonal AR, MA par¿Lmeters, seasonal, and nonseasonal differencing produce

a SARIMA model with general noration of:

SARIMA (p,d,q)x(P,D,Q)¡

or

o(B)Õ(BL)(1 - B)d(1 - Br)o*, = o(B)@(BL)at

P = no. AR terms

d = degree differencing

Q = no. MA terms

L = seâsoflal lag

Initially, the stream flow data set needs to be transformed in the same manner as

deseasonalized ARMA models to produce a gaussian distribution. Differencing the data

series without transformation may also produce a gaussian distribution, but does not

stipulate strict non-negativity of the flows. This is why transformation should be used.

The transformed data set still exhibits all or most of the seasonal properties of the

original data set. The correlation structure is usually non-stationary with a general

periodicity that appears in the shape of a cosine series. To produce a stationary series, one

with a limited or finite number of significant time lags, data values from previous lags are

subtracted from the present lag to give a differenced series. Stream flow series usually

require differencing of similar months, seasonal differencing, such as April with April.

Typical seasonal differencing for annually periodic data series, such as stream flow, are

shown in (2.14,2.15):

P = no. seasonal AR terms

D = deg¡ee seasonal differencing

Q = no. seasonal MA terms

(2.13)

X(12): (1 - 812)Xr = Xt - Xuz

T3

(2.r4)



X(1,12): (1 - BX1 - ett)Xt = Xt - Xt-l - Xt-lz + Xt-ls

such that, for X(1,12)

E[& - X-l - Xt-lz + X-lg] = E[X1 - Xt-lz] + Ei-Xt-l + X-rsl = 0

a stationary series is produced (2.16). This seasonal differencing is an implicit

measurement of variation in flows. Subtracting the monthly flow from one year ago

produced a series with an expected value of zero. In this way, seasonal differencing allows

variation of expected value forecasts for each month in accordance with the historical

monthly characteristics, with emphasis on recent behaviour.

Selection of relevant parameters to include in the model has been described in

section 2.2.1. Seasonal parameters are standard inclusions in the model structure.

Seasonal MA parameters represent the monthly mean, biased toward more recent flows in

that parricular month. Seasonal AR parameteß represent annual trends or patterns in the

data. Examplesof SARIMAmodelsfollowin(2.17) and(2.18). Equation (2.17)hasAR

terms which are nonmultiplicative. Equation (2.18) is a multiplicative seasonal model with

respect to the AR process. Most seasonal models tend to be more representative of the

system if they are multiplicative.

(2.rs)

(2.16)

SARIMA(2,0,0)x(0, 1, 1 ) 1 2

or

(1 - 812)(1 - 0rB - qeB2)xt = (1 - 01,12812)a1

SARIMA(1,1,0)x( 1, 1, 1 ) 12

or

t4

(2.r1)

(2.18)



(1 - BX1 - et,Xl - 0rBX1 - Qr,rzB12)x1= (1 - 01,12812)a1

Developed models are evaluated for model adequacy by three tests. A t-test is used

to check the significance of individual parameters. A parameter is accepted if the t-ratio

exceeds 2.0. The greater the t-ratio, the more significant a parameter. The actual value of

the parameter will be proportional to the t-ratio. If a parameter is statistically insignificant

by the t-ratio test, it may be removed from the model structure and the remaining

pammeters should be recalculated.

A Chi-square test is used to evaluate the validity of the model in general. The

probability values associated with the residual autocorrelation Chi-square test should be

greater than 5Vo. The greater the probabilities, the better the test. If one or more of the

calculated Chi-square probabilities are less than 0.05 (5Vo), and the model passes the other

tests, then the model structure may be completely inadequate and a new differencing

scheme should be found that gives a more stationary correlation structure.

Finally, the AutoCorrelation Function (ACF) and Partial AutoCorrelation Function

(PACF) of model residuals can be checked for additional significant lags. Review of these

functions will give an indication whether all of the appropriate model parameters have been

included. If the residual correlation functions indicate a significant correlation at one of the

lags, the relevant parameter can be added to the model structure. Addition of another

parameter to the model also tends to increase the Chi-square probabilities.

More than one differencing scheme may produce a reasonably stationary series, so

more than one acceptable model stmcture may be found. These models may be

immediately compared by observing any differences in Chi-square probabilities. If one

model exhibits considerably greater probabilities, it may be chosen above the others.

To make this choice with a greater degree of confidence, forecasts of previous

flows, values already used to define the model, can be made and residuals compared. This
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kind of forecast is called a backcast. It can be used in conjunction with other tests to verify

observations about relative model adequacy. There are occasions, though, where one

model may not be recognizably superior to other models.

Care must also be taken that model structures from dissimilar modelling techniques

are not directly compared. Deseasonalized ARMA models do not easily compare to

SARIMA models with these tests. It is like comparing apples to oranges. Other statistics

for model adequacy are also unavailable. The Akaike Information Criterion (AIC) is one

statistic that is sometimes used to evaluate relative model improvement ftom the inclusion

of different parameters. It's value is irrelevant for comparing models of varied

differencing, or SARIMA models with deseasonatzed ARMA models.

There a¡e several differences between ARMA modelling by deseasonalization, and

differenced SARIMA models. First of all, the reasoning for deseasonalization is the

perceived importance to preserve the historical monthly characteristics of mean and

variance. Once this priority condition is met, testing for additional information within the

data can begin. Unfornrnately, in deseasonalizing the flow, the series is no longer in terms

of discharge but expressed as a number of standard errors from a mean value. This usually

drowns out any seasonal information not strictly related to the mean and variance. In this

way, a significant portion of information available within the data may be lost. Models of

this type display stationary correlation structures without differencing. They are usually

restricted to recent lags such as one, or two time steps to predict the next flows.

Deseasonalized ARMA models produce expected value forecasts, but are not

available to supply extreme value forecasts. The historical characteristics of the data series

are preserved, so that an extreme forecast for an individual month is historicallv.

16
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statistically colrect, but it is not a conditional forecast according to the information already

available. If low percentile extreme forecast flow volumes are summed for all of the

months in the forecast interval, the total volume will be much more extreme than percentile

for the interval history. This is because the probability of extreme values occurring in

every single month, over the duration, is very low. For this reason, an extreme forecast

may be used for a single month, but has decreasing validity as the forecast interval

increases.

The differenced flow models are obtained in the same way as the deseasonalized

models, except the transformed data set is differenced instead of being deseasonalized. For

stream flows, differencing of the present flow with lag 12 usually represents the annual

periodicity, or mean, that states March flows tend to be like other March flows. A number

of differencing arrangements can be tested to generate one or more correlation structures

which are recognizably stationary. Monthly characteristics of the stream are not explicitly

defined, but a stationary, seasonally differenced series will ensure that forecasted flows for

March will be similar to historical March flows. The hope in using a SARIMA model is

that any possible annual trend or pattern in flows will be recognized in addition to flow

dependence on recent flows of one or two lags. The ability to detect annual or seasonal

behaviour trends is the advantage SARIMA has over a deseasonalized ARMA model which

tends to drown out these effects through extensive data manipulation. These kinds of

trends may be due to a number of natural occunences. Meteorological patterns may cause

alternating'ù/et and dry years, a progressive warming trend, or some system flushing effect

every few years. Regardless of the actual physical or meteorological processes, the effects

on flow can be detected with the correlation structüe within the SARIMA "black box".

The weakness in applying SARIMA models to produce warer supply forecasts is

that probabilistic forecasts are usually required to produce risk-based reservoir operating

policies. It is important that basic minimum needs are met. Overestimation of flows within
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the forecasts are very costly. Underestimation is rewarded with excess water for such

things as power production, or irigation. For this reason, a "Price is Right" mentality

emerges where forecasts of the flow attempt to come close to the actual value without going

over. Low percentile forecasts are required by utilities like Manitoba Hydro to produce

risk-based policies. SARIMA models, in their most basic format, assume constant

variance throughout the year. This produces extreme forecasts that are meaningless for

most months of the year, and ridiculous for annual system flow volumes for the same

reason as deseasonalized ARMA models. In this way extreme forecasts for SARIMA

models are irrelevant on a monthly as well as an annual scale, where deseasonalized ARMA

models are also invalid, but are still statistically meaningful for an independent study of a

single month.

Based on MSE analysis, and visual observations of forecast series of several

available models, models can be ranked for each flow scenario to generate simple

guidelines for selecting a specific model given the flow conditions. This is the forecast

strategy that will be used in this project to produce forecast improvements over single

forecast model development.

Another available approach is weighted model combinations. Research has been

conducted to produce various ingenious methods of weighting each model to reduce the

overall forecast error (Mcl-eod et. al.,1987; Newbold and Granger,1974). The general

formulation of a weighted forecast, fç, for k model forecasts is shown in (2.19):

2.2.5 Forecast selection

k

f" = ) w¡f¡
i=1
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The motivation behind the use of combinations is that models produced from different

approaches will focus on different aspects of information available within the data. If more

than one model is used to make forecasts, then a more complete understanding of the

system processes will be achieved. Ultimately, the more models that are used the closer the

forecast should be to the actual value. However, in water supply forecasting, there are a

limited number of models available, and they will usually all overestimate the flow, or they

will all underestimate the flow as in Figure 2. In this case no combination, under any

weighting scheme, will provide a better forecast than the closest single model forecast.

flow

actual flow

The long-range flow forecasting techniques that large utilities have developed are

widely varying. Several Canadian utilities are presently developing statistical time series

models for long-range forecasts using SARIMA models, but most methods still tend to be

r9

month

Figure 2. Selection

2.2.6 Current forecasting practices

forecast

of forecast model

month



empirical manipulations of traditional engineering tools such as multiple linear regression,

stepwise regression, curvilinear regression, simulation, and other less common methods

such as principal component analysis, and pattern recognition techniques (Shafer and

Huddleston, 1984). These empirical techniques are designed around the engineer's

experience with the physical processes at work. Providing forecasts in the long term

requires discharge state estimation for several time steps ahead, usually months. The

difficulty lies in the fact that forecast accuracy decreases as the number of time lags

increases, and the present state becomes less of a factor in determining future states.

Probabilistic forecasts are typically required from long-term forecasting procedures.

Presently used methods formulate the modelling tools within a framework such that some

determination of distribution is possible. However, the statistical significance and vaiidity

of extreme forecasts is difficult to verify for methods or procedures that are not standard.

Care must be taken to produce extreme monthly forecasts that also produce annual or

seasonal flow volumes that a¡e meaningful to the system. Disagreggation processes have

been accepted as the basis for stream flow generation, but this approach may also be a

viable method of ensuring long range forecasts are valuable to the engineer.

Our ability to forecast has been improving, but future improvements appear to be

limited. Forecast errors generally vary as a function of flow variation (Shafer and

Huddleston, 1984). Certainly, there is a limited amount of information that can be

extracted from a set of data, regardless of the complexity or quality of the model. These

limitations can be extended by combining several data sets or data types. Perhaps we are

approaching the limit of usable information from a single data source, but it is only recently

that more extensive data sets have emerged. There has not been a clearly defined procedure

or technique that will best suit the expanding databases that are quickly becoming available.

Forecast accuracy will improve with an increase in available relevant hydrometeorological

information. This will also be limited as the errors approach nil because we will always
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experience an element of randomness from Nature.

modelling tool and framework becomes standard, this

information will not be constraining.

2"2"7 Review of, current practices

Long range forecasting is presently done for the Manitoba Hydro system streams

using linear regression models as the basic mathematical tool, equating historical water

volumes for the forecast interval to the month by month serial flow volume regressions.

The Manitoba Hydro method is a disaggregation process by definition, and acrs in a

sequential manner from month to month as an AR(1) model, defined as the Serial

Corelation, that is controlled by the annual historical characteristics, or Period Correlation

(Fig. 3).

The Period Correlation, is used to correlate the response of the forecast period

historical flow volume with the most recent month on record. Expected value forecasts are

made for the months in the forecast interval by setting the sum of forecasted monthly

volumes equal to the annual or period volume.

Extreme percentile forecasts can be obtained by moving a number of standard

deviations from the expected line on the Period Correlation, forcing the Serial Correlations

to forecast flows in compliance with the annual volume. That is, forecasts for each month

are dependent on the previous one and extremities are dampened by knowing the range of

annual volumes. Both the Period Correlation and the Serial Correlations are functions of

the last known month of flow.

2.2.7.1 Manitoba [Ivdro

Until a suitably flexible forecast

limitation of total possible system

zl



April...March

May

Feb.

--/

¿

April

/

Period Correlation

Serial Correlations

In practice, other sources of information are used to enhance the engineer's

knowledge about system conditions. They are the Manitoba Water Resources Branch,

Saskatchewan Water Corporation, and Alberta River Forecast Center. This additional

information is used to manually adjust the model forecasts.

Figure 3. Manitoba Hydro long-range forecast method

expected
response

March

std error
limits
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BC Hydro produces real-time forecasts with a concepmal rainfall-runoff model, and

long range forecasts of monthly data with a multiple linear regression model called

VOLCAST (Fast, 1990). A comprehensive data set is gathered. In addition to natural

inflows: snowpack information, precipitation levels, and maximum monthly temperatures

are used. This monthly data is organized into a set of five indices that are used as variables

to forecast the stream flow at a number of gauging station locations for particular months.

In this way, the total number of multiple linear regressions is 12n, where n equals the

number of stations and there are 12 months in a year. Figure 4 depicts the general forecast

procedure.

2.2.7.2 BC Hvdro

Figure 4. BC Hydro long-range forecast method

Regression equations

months

slations
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Inclusion of snowpack, precipitation, and temperature data appear to significantly

improve the fo¡ecasting ability of BC Hydro. For snowmelt data in particular, forecast

errors tend to decrease as inflow becomes more dependent on snowmelt rather than

precipitation.

Another technique used to produce a probabilistic forecast is simulation. Quebec

Hydro uses a conceptual model with precipitation and temperature data to generate series of

natural inflows from historical sequences of meteorological input (see Fig. 5). The

generated series are then statistically analyzú, to infer a probabilistic forecast. Care is taken

to preserve the proper hydrograph shape.

2.2.7.3 Quebec [Iydro

Ontario Hydro provides an example of several engineering tools being used in

combination. Long range forecasting at Ontario Hydro compares records of flows to

choose a flow sequence from the history of record (Tao, 1991). A probabilistic forecast

for each day up to 400 days is made based on comparison of volumes or peak flows.

Ontario Hydro's forecasting technique ranges from short-tenn expected forecasts, through

medium range heuristic forecasts, to the long-range probabilistic forecasts. Short-term

forecasts are made using either a conceptual model or a time series approach for daily

forecasts up to 4 days. To bridge the gap between short and long-term forecasts, medium

range heuristic forecasts use polynomial regressions to provide a smooth transition from

the nvo extremes.

2.2.7.4 Ontario Hvdro
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Figure 5. Quebec Hydro long-range forecasting method
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3 CASE STUDY

3.1 Requirements

The varying techniques of these large utilities are driven by the engineer's

understanding of the system behaviour and forecasting needs. For example, BC Hydro

incorporates a glacial melt index. Because of the mountainous terrain in BC and the

resulting fast runoff, flooding of valleys is a concern. BC Hydro has tailored their

forecasting capabilities to cope with such problems by incorporating other indicators such

as precipitation and temperature. Manitoba Hydro differs in that linear regression of

historical flows is used to forecast long range flows. Real-time or short-term forecasts

have limited applicability for water supply forecasting in general because of the lack of

sensitivity to the timing of natural inflows due to the large reservoir storage capacity in

relation to the size of the inflows.

Techniques for forecasting will differ due to the varying physical demands of the

system. Manitoba Hydro regulates flow over a large basin. Streamflow gauges are

supplied at key locations. Precipitation and soil moisture information is also available, but

only for general use to provide indications of relative physical system conditions. The

addition of more gauges may produce a reliable source of data for modelling and

forecasting. However, much of the flow originates from outside the province.

Cooperation with adjacent provinces and states is required to secure a reliable source of

data to improve the linear regression forecasting model capabilities.
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3.2 Inflow sources

There are three identifiable types of natural inflow to the Manitoba Hydro system.

They are: streams with considerable long-term upstream storage such as a series of small

lakes; streams with relatively little upstream storage dependent on the water supplied by

overland flow and spring runoff from snowmelt; and inflow data consisting of various,

minor processes.

Three data sets were chosen for analysis, one representing each type of natural

inflow. All three of the data sets are modelled and their forecasts are compared with

forecasts from Manitoba Hydro. The data is in terms of monthly average flow (kcfs) and

each data set is a minimum of 30 years of historical record.

The Grass River basin was selected as an example of a river with considerable

upstream storage. Measured at Standing Stone Falls, it is a small river that connects a

series of lakes and eventually drains into the Nelson River in northern Manitoba. These

lakes act as capacitors in an electrical circuit. Effects from precipitation events are

dampened by the lake storage, reducing the monthly variation of flow volumes.

The Red River was chosen to be examined as an example of a river basin with

relatively little upstream storage capacity, dependent on precipitation and spring snowmelt

runoff. The Red River data set consists of measurements taken at Lockport, a control

structure north of the city of V/innipeg. This river drains a large basin immediately north

and west of the Mississippi River head waters, enrering Manitoba ar the North Dakota,

USA, border and ending at Lake Winnipeg. Behaviour of the Red River is very seasonal.

Half of the annual flow volume occurs in the 2 peak months of April and May. Where

standard errors in peak months on the Red River are nearly as gïeat as the mean flow, the

Grass River standard errors are only half of the mean.

27



The third data set examined is the Partial Inflow Available for Outflow to Lake

Winnipeg (PIAO) data set. It consists of left over processes and inflow to Lake Winnipeg

after all known stream flow sources are subtracted from the total inflow of the lake. The

series appears as a random or white noise process with annual mean of zero. The data

consists of both positive and negative values because the data set is based upon changes in

storage. Negative values usually occur in the summer or fall seasons when depleting

processes such as evaporation outweigh the runoff from precipitation events.

3.3 Model development

The Grass River data is a typical flow series. The monthly average flow means and

variances for each month are smooth in transition with the peak flow and peak variance

usually occuring in July. The data set was transformed by taking logarithms to produce a

gaussian distribution. Some skewness still remained, but was reasonably low and the non-

negativity condition was imposed.

Two general approaches were used to produce a stationary correlation strucrure, as

previously described. Nonparametric deseasonalization is one technique that was used.

The transformed deseasonalized data exhibited a stationary correlation structure with

nonstationary exponentially decreasing ACF, and a significant lag one PACF. For a

review of SAS ouqput, see Appendix E.

The best resulting model structure, given the name GTD (3.1), is an ARMA(I,1).

It passed all three statistical tests, including very high Chi-square probabilities: indicating a

good fit. The model equation is:

3.3.1 Grass River
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(1 - 0.938)X¡ = (1 + 0.248)a¡

Removing seasonality with differencing produced two reasonably stationary

correlation structures (3.2a,b) with the following differencing schemes:

(1 -B12¡Xr=¿t

(1 -BXl-312¡¡¡=a¡

A SARIMA model was produced for each of these differenced series. The model in (3.3,

3.4) was produced from (3.2a).

SARIMA(2,0,0)x(0, 1, 1 )

It passed all 3 tests of t-ratio test, Chi-square model adequacy test, and residual correlation

functions. The equation for this model, called GS1, is:

1t - n12¡11 - r.3zB + o.t92B2)X¡ = (1 - o.rts12)at

(3.1)

The AR lag 1 parameter is greater than 1.0 but the model

(3.2b), the model srructure GS2 (3.5) was found:

(3.2a)

(3.2b)

SARIMA( 1, 1, 1)x(0, 1, 1 )

and although it is reasonably adequate, the first Chi-square probability did not meetthe 5Vo

requirement. This is a minor violation, and the model is still acceptable (3.6).

(3.3)

appea$ stable despite this. From

(3.4)
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(1-BX1-812¡6 + 0.17583)xt = (1 + 0.388)(1 - O.n sl})at (3.6)

Backcasts were produced for GS1, GS2, but no clearly superior model was chosen. A

complete summary of SAS oulput for the models is provided in Appendix E.

3.3.2 Red River

The Red River data is simila¡ to the Grass River, except that spring runoff produces

a dominate peak. Transformation, deseasonalization, and differencing procedures are

similar to the Grass River. Nonparametric deseasonalization produced RTD (3.7), given

AS:

AR(2): (1 - 0.646B - 0.1282)X¡= 4,

It passed all statistical tests of t-ratios, Chi-square probabilities, and residual correlations.

Differencing produced two SARIMA models, RSl (3.8), and RS2 (3.9)

respectively:

SARIMA( 1,0,0)x( 1, 1, 1 )

or

(1 - n12;11 - 0.7sBX1 + 0.1148r\x¡= (1 - o.tors12¡at

for RS1. and

SARIMA( 1, 1, 1)x(1, 1, 1)

or

(3.7)
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(t - BX1 - 812X1 - 0.648X1 +0.r487\xt = (1 - 0.928){r - o.ssnt2¡¿,

for RS2. Examination of the Chi-square probabilities and backcasrs suggested that RS2 is

superior to RS1. RSl was then disca¡ded. The two remaining models are RTD, RS2. A

complete summary is available in Appendix E.

3.3.3 PIAO

The PIAO data set is not a typical flow series. Because both negative and positive

values exist, and the series appears to be a white noise process, no transformation was

used. Examination of seasonality with differencing produced the model WS1 (3.10).

SARIMA(0,0,0)x(0, 1, 1 )

or

(1 - BIZ)X¡= (1 - O.t g12)at- 0.288

The constant, 0.288, is necessary to adjust the forecast because the mean value of the

differenced series is significantly different from zero. Very little significance was evident

for sequential lags of 1 or 2. 'the only correlation between time lags was seasonal. Since

deseasonalization will yield an ARMA model with only recent lags as significant, a TD

model was not produced.

3.4 Model comparisons

The modelling techniques previously described generally yield several models for

each data set which cannot be differentiated. For example, there are three available models

3T
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for the Grass River. In the case of the Red River, one of the models was noticeably

inferior and was subsequently removed from the list, but there are still two models to

choose from. Table 1 summarizes the models available for forecastine.

TABLE 1

dataset

Grass

Summa

model

GTD

GSl

GS2

Red

ol ava

notation

ARMA(I,1)

ilable forecast

PIAO

RTD

RS2

SARIMA(2,0,0)x(0, 1, 1 )

SARIMA(1, 1,1)x(0, 1, 1)

ws1

AR(2)

models

SARIMA(1, 1, 1)x(1, 1, 1)

Further examination is necessary to differentiate between possible forecast models.

One way in which this can be accomplished is to produce a number of forecasts and then

compile the errors (Oron et. al., 1991). This was initially done in the form of backcasrs,

but was inadequate to show superior or inferior models. A more comprehensive forecast

comparison plan is required.

River flows change from year to yeÍìr. They range from high flow years to years of

drought. It may be that the models developed in the previous section will vary in

effectiveness for different flow scenarios. A model sensitivity analysis to flow will

produce a large number of forecasts to compare, and evaluate the sensitivity of the models

to various flow conditions to provide an in-depth understanding of model performance.

ARlae

SARIMA(0,0,0)x(0, 1, 1 )

3.4.X Sensitivitv analvsis

1

1,2

a
J

MA lae

1

12

l,l2

1,2

1,1,2

diff.

0

72

I,T2

0

0

l,r2

12

0

r.12

T2
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For the Grass and Red rivers, historical annual volumes were plotted. From that,

recent years were selected that represent high, median, and low flow years, such as in

Figure 6. Care was taken to choose recent years in the record so that when forecasts are

made, they are based on a sufficient number of previous flows. Table 2 lists the years

chosen to represent the flow conditions.

Figure 6. Selection of model sensitivity analysis years

low median high

TABLE 2. Case

flow

hieh

median

Grass

low

1985

fl

1982

or sensltlvrtv a

Red

r990

1,979

1983

nal

PIAO

1990

1S

1990

-aJJ



Once relevant years have been chosen for forecasting, a specif,rc forecast procedure

or scenario must be defined. This should be specific to the system needs. It may be that

models behave differently when the demands on them vary. A modelling approach

lepresents a certain portion of the system. If a model represented all of the system, there

would be no elTor. However, there is always some error component within the model.

Depending on the focus of the system needs, and system characteristics, the model

performances may be sensitive to the forecast scenario.

For this project, the data was supplied by Manitoba Hydro and is presently

forecasted within their system. Therefore, the project forecast scenario should be

consistent with MH. That way, MH forecasts can be compared with these models and any

possibility of incompatability or inconsistency is removed. Forecast comparisons, then, can

only be made when the forecast scenario, or the demands, are consistent.

The MH forecast scenario consists of a series of updates over a period of a year that

begins with March being the last known month of the previous flow year (Fig. 7). That is,

forecasts run from April to April and are updated every month as new data is available. For

one forecast year to be completed, 12 forecast runs range from 12 lags to 1 lag in length.

ln all,78 forecasts are made for one forecast year, and 234indlidual forecasts are required

to complete the sensitivity analysis for one data set to various flow conditions.

3.4.2 Forecast scenario
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Forecast scenario
(one forecast year)

Manitoba Hydro
forecast
scenario

Forecast

After forecasts are completed for the Grass and Red rivers, errors are analyzed to

give an efficient review of model performance. Visual examination of actual forecasts is

beneficial in making observations on model behaviour concerning the appropriateness of

35

one forecast run
(12 forecasts)

Updates

Figure 7. Forecast scenario

3.4.3 Error analvsis
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the model curve characteristics, or ability to handle large system fluxes such as spring

runoff. Because the model parameters are recalculated for each update within each forecast

run, variations in the parameters should also be evaluated by statistical confidence limits to

ensure stability and consistency of the parameters. A t-test of each model verified that the

model parameters are stable.

The Mean Squared Error (MSE) is a statistical parameter that provides a convenient

measure of performance in the same units and magnitude as variance.

n

MSE =s*E=+t6_xi)2

To ensure a thorough understanding of model performance from the errors, the MSE is

calculated in three ways. The first is to calculate MSE for each forecasr run (Fig. 8).

Twelve MSE values are available for each model, one for each run. MSE is a function of

average variance to the end of the forecast year. That is, after the high spring and summer

flows the errors should drop because variance in the fall and winter months is low.

i=1 (3.1 1)

Figure 8. MSE comparison: by forecast run

update

MSE = f(average variance)
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Another way MSE is evaluared is by month (Fig. 9). A

are available for each month of the year because the same month

forecast runs, where the lag depends on which forecast run

change with the variance of each particular month.

number of forecast errors

is included in a number of

is relevant. MSE values

Lastly, MSE is calculated for specific lags in the forecasr runs (Fig. 10), so MSE is

available for each lag (1 to 12). In general, MSE should increase with increased lag. This

is often offset by the fall and winter lags which have comparatively low errors regardless of

the lag.

Figure 9. MSE comparison: by month

MSE = f(monthly variance)

update
month
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Once the MSE analysis is complete, generalizations can be made concerning

choosing the appropriate model given the flow conditions. Choices need to be made for the

Grass River and the Red River.

Figure 10. MSE comparison: by forecast lag

update

3.5 Case study observations

The error analysis was completed for each model within the forecast scenario

previously described. Model selection is based on minimum MSE, and observations on

general forecast curye characteristics. Special attention needs to be focused upon

tendancies to overestimate or underestimate the flow. This is important because of possible

shortages resulting from allowing reservoir releases to be too high when forecasts

overestimate the flow.

3.5.1 Evaluation criteria

lag
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There are three time series models developed for the Grass River. One is a

transformed deseasonalized (TD) type model, GTD. Two seasonal models were also

selected for forecasting: GS1, and GS2. GS1 indicates dependence on the 2 most recent

months as well as the seasonal distinction of each monrh with a differencing of the lag 72

flows, and seasonal MA term. GS2 uses differencing of both lag one and lag 12 to

produce a stationary structure. A lag 3 AR term is also included. Its significance is not

especially high, but it does suggest the effect of the lakes on the travel time through the

basin. Or, it may suggest other natural tendencies within the forecast vear that have a

period of 3 months.

The two seasonal models had difficulty approximating the flow curve cha¡acteristics

as flow decreases month by month from the spring peak. In the median and high years,

they both tended to overestimate the flow from the peak to the end of the forecasr year.

This is evident in plots of the forecast run for the high flow case. For these high flows,

and also median flows, the GTD model performed much better, fîtting the general curve

shape, leaving relatively small errors, and only slightly overestimating the flow in places.

Error analysis for the Grass River high flow case can be found in Append,ix A.2. MSE

comparisons, for individual months in particular, shows the dominance of the GTD model

over the other time series models in that flow case. Median flow case analvsis for the

Grass River is in Appendix 4.3.

The low year case, 7990, was preceded by another low flow year (Appendix 4.4).

Together, these 2 years were the lowest combination in history. The GTD model did

poorly in this case because recent flows before the forecast years were several standard

deviations below the monthly means. No model did well in this case, but Manitoba Hydro

3.5.2 Grass River
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forecasts appear to do better than GS2 which was the most successful time series model for

that case.

Two models were selected for forecasting of the Red River: RTD and RS2. The

TD type model is an AR(2) which states the two most recent months affect the current

month. The SARIMA model for Red River, RS2, is seasonally differenced by both lag one

and lag 12, the same differencing as with GS2. The lag one AR term shows dependence

on recent flows, and the lag 12 term indicates a possible seasonal trend or dependence.

The MA terms of lag one and 12 show an exponentially decreasing dependence on both

recent lags and recent years. The MA lag 12 term is usually included in seasonal models as

a weighted monthly mean, but the AR lag 12 term suggests the possibility of annual trends

otherwise neglected by techniques such as the standard TD civil engineering approach.

Forecasts for the 3 flow cases confirmed this observation (Appendix 8.2,8.3,8.4). The

seasonal model, RS2, consistently outperformed RTD forecasts in all cases, and Manitoba

Hydro forecasts for the critical low flow year.

Both theoretical model types, and the MH technique failed to predict the spring

runoff. The runoff from snowmelt appears to have no correlation with previous flow. An

examination of dependence of the peak flow (Appendix B. 1) for plots of peak flow for the

Red River) found no month, year, or combination with which a dependence could be

associated. This inability to predict the peak flows in the spring, from srream flow data

alone, is a major weakness in the models. On the average the spring runoff surge accounts

for nearly half of the annual flow volume in the Red River. The two spring months of

April and May exhibit the greatest forecast errors, as well as the greatest variability in flow.

3.5.3 Red River
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In order to improve forecasts of the peak, other physical data such as snowpack

levels, and soil moisture indicators are needed. In practice, the MH technique uses the

Manitoba Water Resources Branch flow forecasts to establish a volume forecast for the

spring snow melt runoff. In this way, Manitoba Hydro is able to incorporate some of the

physical dependencies such as snowpack into forecasts. However, the mathematical

models alone, time series, regression, or other, are unable to estimate the peak from flow

data onlv.

The SARIMA model for PIAO required the estimation of only one parameter (MA

lag l2). This suggests that each month is distinct and that recent lags have little or no effect

on the outcome of the present state of the system. The seasonal differencing of the model

reinforces the annual dependence, and independence of the months.

The lack of significance from recent lags is evident in the forecast runs for the low

flow case of 1990 (Appendix C.2). As updates are made for each forecast run, the

forecasts for the upcoming months are largely unaffected. The MH regression procedure

also shows little dependence on recent lags. For the MH method, the month to month

Serial Correlation is not available but simply set to their historical characteristics of mean

and standard deviation. Manitoba Hydro does exhibit some adaptabiliry in updates for lag

one forecasts. This is due to the inherent AR(l) form of the MH forecasrs. SARIMA

forecasts were generally comparable to MH forecasts. However, MH forecasts were able

to adapt to a low period during the year for the one step ahead forecast while more distant

forecasts quickly reverted to the historical mean. SARIMA model forecasrs were

completely insensitive to new developments throughout the forecast year.

3.5.4 PIAO
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3.6 Model selections

If it is possible to determine which model produces the best forecast under a general

array of flow possibilities, then that model should be used. Table 3 summarizes the time

series model rankings for the case study, including Manitoba Hydro rankings where they

are available. Another way of showing the ranks of the models is in Figure 11 below for

the Grass River models. From Table 3, a simple set of rules can be derived to govern

model selection.

rank

3

Note: low year followed
lowest in history

Figure 11. Ranking of the Grass River models

low median high
flow
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dataset

Grass

flow

TABLE 3. Ranking of forecasting models

high

median

low

Red

year

1 985

1982

1 990

high

median

low

PIAO

GS1

2

2

2

GS2

Now the fuzzy terms of high, median, and low flow need to be defined so the

engineer can differentiate between them. One suggestion is to define median monthly flow

as being within 0.5 standard deviations of the historical monrhly mean. Then median flow

over a period of months would demand the average flow to be within 0.5 standard

deviations of the average mean over the relevant period of months. The high and low

flows are then above the 0.5 standard deviation threshold on the positive or negative side.

This project, for the decision support application in the following section, allows the user

to make a qualitative judgement without restrictions of statistical limits .

For PIAO, WSl is the only available time series model. A TD type model was not

attempted because of the limited correlation found in the data. If one had been developed, it

would have been an AR(l) that converged to the historical mean after 2 or 3 lags. This is

the same behaviour shown by the MH forecasts. PIAO is largely a random series of minor

processes.

In all flow cases, RS2 outperformed both RTD and MH forecasts. It should be

chosen in all situations, but care should be taken if the spring runoff has not yet occurred.
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1 983
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3

3

(
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rank
RS2

1 990
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1

2
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Additional information would be beneficial for this river because of the dependence of the

annual flow volume on the two peak months of April and May. April is the typical peak

month, but late springs will shift the peak to May.

The median and high flow cases for the Grass River are best forecasted by GTD.

There is some question about the low flow case because the previous year was also very

low. The MH method performed well for the low case. Of the time series models, a safe

choice may be GSl in the low flow case if the peak flow is still uncertain.
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4 DECISION SUPPORT APPLICATION

4.1 Purpose

As a means of documenting the techniques, procedures, and accumulated

knowledge in time series analysis, a prototype system was developed to aid users in

understanding and performing time series analysis for water suppty forecasting. The

model selection process and observations concerning the quality of forecasts suggests the

use of a rule-based system incorporating artifrcial intelligence techniques to represent the

knowledge.

4.2 System

A Unix workstation, SUN Sparc Station 1+, was chosen to develop the system. It

enabled the execution of multiple programs and displays for a more flexible environment.

Networking capabilities of the Unix workstation provided the ability to transfer data or

knowledge to and from numerous sources.

4.3 Tools

A user interface and system development tool was then chosen. Nexpert Object is

an expert system development tool that provides the means by which rules can be written

to: control the analysis process; execute external programs and packages to perform

various tasks; and control the display of text and questions for the user. Other tools used

to develop the system are SAS (Statistical Analysis System), Xgraph, Unix scripts, and
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FORTRAN programs. SAS is the primary tool used to perform statistical analysis of the

data. Xgraph is a plotting tool that graphs a specified set of data within the X-window

graphical environment. It is useful in plotting forecasts or historical series of data. Unix

scripts are analogous to DOS batch files. A script is a text file consisting of a series of

operating system commands that can be executed by the operating system. Several of these

files are used to control the formation of input fîles and execution of both SAS and Xgraph

applications. Numerous FORTRAN programs control data manipulation such as

transformation, deseasonalization, and transfer of data to other formats for input or display.

Summaries and printouts of programs can be found in Appendix D.2- Arrangement of

these tools is shown in Figure 12. They can be classified into two categories: control, and

execution. Nexpert Object uses a knowledge base, stored within the application, to control

access and execution of the programming, statistical, and display tools on the right of the

figure.

Forecasting

Model Development

System tasks

CONTROL

Figure 12. DSA for water supply long-range forecasting tasks and tools
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4.4 User modes

Nexpert Object controls the display from the session control window which asks

questions, and provides answer options. Text windows, defined within Nexpert, control

the display of textual instructions and discussion. The decision support application has two

specific modes or tasks (Figure 12). The first, forecasting, queries information from the

user for choosing a specifrc forecast model. Forecasts are then automatically produced for

the chosen model. Figure 13 represents the process of producing a forecast within the

application.

The second task is designed to aid the user in the development of a new model.

This model development mode provides the user with relevant knowledge and instruction

to produce an adequate model using one of the time series analysis procedures discussed in

this paper (Figure 14). The system allows the user to produce ad.vanced time series models

and forecasts of data without having to be an expert in this field of srudy.

4.5 Knowledge base

A set of If...Then rules control the direction of the application. By organizing the

knowledge in this fashion, the developer can restrict actions to knowledge that is relevant.

Model rankings for the study cases supplied Nexpert with a straight-forward means by

which the rules could be built. There are four different types of rules: to control direction

of the application; to assign properties describing the system; to govern the selection of a

model; and to check statistical tests for the system or model. A listing of all of the rules

within the water supply Forecasting DSA can be found in Appendix D.1.
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flow condition
modelrankings

ñ-

rule-based
knowledge
representation

Figure 13. Forecasting user mode
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ntrn
choose a
modelling
technique

estimate parameters and
test modelstructure

Figure 15. Model development user mode
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4.6 Consultations

Two consultations are discussed below

one for each task.

The initial application prompt requires the user to choose a task. If the forecasting

task is chosen, a text window appears with a list of data sets with available models. The

question "Which data set do you wish to use?" is posed to the user. If 'grass' is chosen, a

text window halts the program to allow for the user to perform an update of the data set.

Next, the user is queried in an attempt to pass rules for choosing the appropriate model as

in Figure 13. The user is asked to enter recent flow behaviour in general tenns of high,

median, or low. Uncertain is also an option if the user is unfamiliar with the data. If this is

selected, the data series is plotted with Xgraph and a text window advises the user on how

to decide which option to select. For the selection of 'low' flow behaviour, another

question asks "What is the relative magnitude of the peak flow?" with options of high,

median, low, and uncertain. If 'low' is selected, a text message states that model GS2 has

been chosen. SAS is simultaneously executed. The output file for the forecasts is

displayed on the screen, and then the forecasts are plotted against historical monthly means.

This ends the consultation.

4.6.1, Forecasting

to demonstrate the use of the application,

When the model development task is selected (Figure I4), amessage appears ro

remind the modeller of data requirements for an adequate model. Next, the relevant data set
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is chosen. The user is then allowed to update the flows. Information is then given

concerning transformation and techniques for handling seasonality including strengths and

weaknesses of each approach. The user must then choose the approach to proceed with.

Options are 'seasonal' and 'td' (transform and deseasonalize). If 'seasonal' is chosen, the

next question asks for the type of transformation with options of 'log' and 'none'. A text

window recommends that'log' be udes, so it is chosen.

SAS is then executed to generate the correlation functions (ACF, PACF) for a

number of differencing schemes. The user must then enter the desired differencing scheme

and parameters to include with help from text windows displaying typical selections and

describing properties of the functions. Once this is complete, SAS is executed to estimate

model parameters. The SAS ouçut is shown, including statistical tests and residual

correlation functions. Three questions then ask whether the model passed the tests for: t-

ratio test, Chi-square test, and residual correlations. If atl of the tests are satisfactory, the

model is accepted. Otherwise, the user is sent back to select new model parameters, or a

new model structure if all tests are passed except the Chi-square test. When the model is

accepted after this iterative procedure of adjustment, the user has the option of producing

forecasts. If the user chooses to, forecasts for the next year are produced and plotted for

the acceptable model. Otherwise, the consultation ends.
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5 CONCI,USIONS

5.L Research goals

This project applies advanced time series models to make better use of information

contained in data sets for forecasting monthly water supply. Improvements in the

forecasting accuracy were sought as a means of realizing benefits from more confident and

accurate optimal operating policies of a reservoir system. SARIMA models were chosen as

a likely candidate to improve currently used forecasting models at Manitoba Hydro.

Numerous models were developed and applied to three types of data series within a

sensitivity analysis study of flow conditions, using the Manitoba Hydro forecast scenario.

A method of analyzing the errors took advantage of the simpliciry and flexibility of the

MSE statistic. Ranking of the models under various flow conditions suggested a simple set

of rules to govem the choice of model for forecasting that will produce the best avaiiable

forecast.

Many of the methods that are used in large utitities to produce long-range forecasts

have been developed out of familiarity with the engineer and simplicity. previous use of

time series techniques in Water Resou¡ces engineering has been rigidly developed around

the engineer's impression of what is proper. Recognizing the possible improvements in

accuracy from our expanding quantitative knowledge of natural systems, SARIMA models

may form the basic tool around which an efficient and flexible standard forecastins

framework can be built.
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5.2 Summary of results

Linear regression and simulation are the most widely used techniques in use today

for long-range forecasting. Deseasonalized ARMA models a¡e theoretical engineering tools

already available for use to improve forecasts, but their potential is restricted compared to

more general techniques such as SARIMA models.

These statistical approaches, TD ARMA models and SARIMA models, have been

used to provide a basis of comparison to evaluate long range forecasting techniques at

Manitoba Hydro. Both expected and low percentile probabilistic forecasts are needed by

Manitoba Hydro to produce risk-based release policies. Onty the mean forecasts could be

evaluated because low and high percentile forecasts for the time series models are

statistically colrect for a single month, but are meaningless for the system when several

time lags are involved. The standard errors typically provided with statistical forecasts do

not consider any possible ransition period for changes in flow patterns, only simple

historical extremes.

Manitoba Hydro forecasts performed well for Grass River, but was inferior to RS2

on the Red River for presented case study forecasts. This may be due to the fact that

changes in the Grass River basin are gradual, and sequential correlations are high. The

Red River experiences drastic changes from month to month, and is susceptible to physicat

and meteorological trends or patterns. SARIMA modelling provides a more flexible

framework of evaluating sources of correlation such as seasonal patterns so as to make

more complete use of the historical data. The Manitoba Hydro method is dependent on the

most recent month of known flow.

In general, standard SAzuMA modelling performed as well as the Manitoba Hydro

linear regression models, and has potential for improvement if an appropriate modelling

framework is developed to allow probabilistic forecasts to be made. Engineering concerns
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about manipulation of data by differencing is unsupported. Historical characteristics of the

data are maintained implicitty through the correlation of similar monrhs. In fact, the

differencing may be considered as the equivalent to deseasonalization of the data.

SARIMA modelling has been shown to be a good application of statistical time series

modelling to \¡/ater supply forecasting. Expected forecasts of system natural inflow for

hydroelectric utilities may benefit from the use of this technique.

5.3 Potential time series use

The SARIMA models presented in this paper are standard, basic, applications of the

work by Box and Jenkins (L976). There are advanced techniques that can be added to

these models to improve their effectiveness.

One possibility is the development of Transfer Function Noise (TFN) models by

adding additional data sets to the presently used flow. There may be other rivers in the

same proximity that display similar flow characteristics, precipitation data, temperarure

data, etc. A TFN model has the same form as SARIMA models in terms of AR and MA

processes, but simply adds crosscorrelation of data sets to identify any additional

information relating one data set to another. This type of modelling is the next logical

extension of time series modelling. The procedure and calculations are similar to those

presented in this paper.

Another extension to SARIMA modelling is to identify particular events that affect

the system, and estimate AR and MA processes within the event in the form of an

Intervention model. Intervention analysis can be used to model the effects of mud slides.

man-made diversions, or specifically addressing annual spring runoff effects.

In their present form, these SARIMA and deseasonalized ARMA models do not

supply probabilistic forecasts that have any meaning to the system. Extreme forecast
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values for each month are at best representative of the historical monthly extreme and do

not consider the system characteristics on an annual level where the sum of the extreme

monthly volumes are not indicative of the historical annual volumes. The sum of extremes

would be much more extreme for the annual volume history. It is this form of problem that

suggests the use of disaggregation processes. Disaggregation models simply approach the

data as being governed by a hierarchy of system control with 2 levels: annual, and monthly

(or weekly) to produce a modelling framework. The most beneficial possibility of

producing probabilistic forecasts that are meaningful to the system may be to formulate the

time series model in a disaggregation form. The linear regression method used by

Manitoba Hydro has been formulated within a disaggregation framework. For SARIMA

models to produce probabilistic forecasts, they may need to be formulated in a similar

fashion.
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Appendix 4.1 Historical characteristics

Figure 4.1.1 Grass River data series
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Figure 4.1.3 Grass River historical characteristics
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Figure 4.2.1, Grass River high flow case forecast
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Figure A.2.3 Grass River high flow case forecast
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Figure A.25 Grass River high flow case MSE by forecast run
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Figure 4.2.7 Grass River high flow case MSE by lag
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Figure A.3J, Grass River median flow case forecast
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Figure A.3.3 Grass River median flow case forecast
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Figure 4.3.5 Grass River median flow case MSE by forecast run
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Figure A.3.7 Grass River median flow case MSE by lag
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Appendix 4.4 Low case

Figure A.4.1 Grass River lo^Xxflow case forecast
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Figure A.4.3 Grass River low flow case forecast
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Figure A.4.5 Grass River low flow case MSE by month
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APPENDIX B: Red River

Appendix 8.1 Historical characteristics

Figure 8.1.1 Red River data series
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Figure 8.L.3 Red River historical characteristics

Figure 8.1,.4 Red River peak correlation: average
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Figure 8.1.7 Red River peak correlation with previous peak
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Appendix 8.2 High case

Figure B.2.L Red River high flow case forecast
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Figure B.2.3 Red River high flow case forecast
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Figure 8.2.5 Red River high flow case RMSE by forecast run
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Figure 8.2.7 Red River high flow case RMSE by lag
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Appendix 8.3 Median case

Figure 8.3.1 Red River median flow case forecast
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Figure 8.3.3 Red River m"Xxian flow case forecast
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Figure 8.3.5
l5

Red River median flow case RMSE bv forecast run
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Figure 8.3.7 Red River median flow case RMSE by lag
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Appendix 8.4 Low case

Figure 8.4.L Red River low flow case forecast
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Figure 8.4.3 Red River low flow case forecast
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Figure B.4.5 Red River low flow case MSE by month

B

7

c
¿Jt5
IE

LU
ct)

2

o

Figure 8.4.6 Red River low flow case MSE by lag

Jun Ju I Aug Scp Oct lÈrv Dcc
forecast month

. Flsz -ô_RTD _x_MH

ã

2.5

2

1.5

1

o,5

o
(ú

LU

=

¿+587
forecast I ag

. Fls2 1¡ trTD _*MH

87



APPENDIX C: PIAO

Appendix C.1 Historical characteristics

Figure C.1.1 PIAO data series
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Appendix C.2 Low case

Figure C.2.1 PIAO low flow case forecast
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Figure C.2.3 PLAO low flow case forecast
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Figure C.2.5 PIAO low flow cast MSE by month
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APPENDIX D: Decision Support Application

Appendix D.l Knowledge base

The following is a listing of the rules that make up the Decision Support
Application for water supply long-range forecasting developed within the Nexpert Object
expert system development tool on a Unix workstation.

RULE : Rule model_development steps (#1)
If

1 is precisely equal to 1

Then dofirst
is confirmed.
And Show " tf2.txt" @KEEP=TRUE; @WAIT=FALSE; @REgf =0,200,400, 650;
And identify is assigned to identifli
And Execute "rm -f sasfile"(@TYPE=EXE;)
And Execute'rmsas @V(set) @V(transform) idenrify"(@TYPE=EXE;)
And Show "sasfile.txt"

@KEEP=TRUE; @WAIT=FAISE; @REgt= 250,250,900,600;

RULE : Rule model_development steps (#2)
If

1. is precisely equal to 1

And estimate is assigned to estimate
And var is assigned to var
And plags is assigned to plags
And qlags is assigned to qlags

Then dosecond
is confirmed.
And Execute "rm -f sasfile"(@TYPE=EXE;)
And STRCAT( " \" ",STRCAT(var,STRCAT( " \" \" ",STRCAT(p l ags,STRCAT( " \"

\"",STRCAT(qIags,"\"")))))) is assigned to parms
And Execute " msas @v(set) @v(trans form) esti mate @v(parms) " (@TYpE=EXE;)
And Show "sasfile.txt"

@KEEP=TRUE; @WAIT=FAISE; @RECT=O,250,1100,600;

RULE : Rule model_development_forecast (#3)
If

make_forecast is TRUE
Then dothird

is confirmed.
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And Execute "rm -f sasfile"(@TYPE=EXE;)
And Execute " msas @v(set) @V(transform) forecast @v(parms) "(@TYPE=EXE;)
And Show "sasfile.txt"

@KEEP=TRUE; @WAIT=FAISE; @RECT=400,250,700,600 ;

And Execute " mfore"(@TYPE=EXE;)
And Execute "xgraph-for @V(set)

@V(transform) " (@TYPE= EXE; @WAIT=TRUE;)

RULE : Rule estimate-model structure (#6)
If

procedure is "seasonal"
And transform is "none"
And task is "model_development"

Then estimate
is confirmed-
And S how " sp arm.txt" @I(EEP =TRUE; @WAIT=FAI-SE; @RECT=0,200, 300, 650 ;

And Show "s_non_opt.txt"
@ KEEP=TRUE; @WAIT=FAISE; @RECT=0,O, 300,200;

RULE : Rule estimate_model_structure (#5)
If

procedure is "seasonal"
And transform is "log"
And task is "model_development"

Then estimate
is confirmed.
And S how " sp arm.txt" @KEEP=TRUE; @WAIT= FAISE; @RECT=0,200,300,650 ;
And Show "s log_opt.txt"

@KEEP=TRUE; @WAIT=FAIS E; @RECT=0,0, 300,200;

RULE : Rule estimate_model structure (#4)
If

procedure is "td"
And task is "model_development"

Then estimate
is confirmed.
And Show " dparm.txt" @KEEP=TRUE;@WAIT=FAISE;@RECT=0,2(Ð,300,650;
And Show "d-opt.txt" @KEEP=TRUE;@WAIT=FALSE;@RECT=0,0,300,200;
And "X" is assigned to var

RULE : Rule graph series (#7)
If

flow is "uncertain"
Then get_flow
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is confirmed.
And Show "flow-help.txt"

@ KEEP=TRUE;@WAIT=FAI5E;@RECT=0,0,350,300;
And Execute "xgraph-ser @V(seI)"(@TYPE=EXE;)
And Reset flow
And Reset get_flow

RULE : Rule get_flow-3 (#8)
If

flow is "low"
Then get flow

is confirmed.

RULE : Rule get_flow 2 (#9)
If

flow is "median"
Then get_flow

is confirmed.

RULE : Rule get_flow-1 (#10)
If

flow is "high"
Then get flow

is confirmed.

RULE : Rule identiff-model structute (#12)
If

procedure is "td"
Then identify

is confirmed.
And "td" is assigned to transform

RULE : Rule identify_model structure (#11)

If
procedure is "seasonal"

Then identify
is confirmed.
And set_transform is assigned to set-transform

RULE : Rule make_model (#13)
If

there is evidence of dofirst
And there is evidence of dosecond

And parameters is "significant"
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And chi square is "adequate"
And residuals is "insignificant"

Then make_model
is confirmed.
And Show " make.txt" @KEEP=TRUE;@WAIT=TRUE;@RECT=0,0,400,200;

RULE : Rule reject_model structure (#16)
If

parameters is "insignificant"
Then reject_model

is confirmed.
And Show " rjarms.txt" @KEEP=TRUE; @WAIT=TRUE; @RECT=0,0,400,200;
And Reset parameters
And Reset chi square
And Reset residuals
And Reset plags
And Reset qlags
And Reset reject_model
And Reset dosecond
And Reset make_model
And make_model is assigned to make_model

RULE : Rule reject_model_structure (#L5)
If

residuals is "significant"
Then reject_model

is confirmed.
And Show " r_res.txt" @KEEP=TRUE; @WAIT=TRUE; @RECT=O,O,400,200 ;

And Reset dosecond
And Reset plags

And Reset qlags
And Reset parameters
And Reset chi square
And Reset residuals
And Reset reject_model
And Reset make_model
And make model is assisned to make model

RULE : Rule reject_model structure @M)
If

chi square is "inadequate"
Then reject_model

is confirmed.
And Show "r_chi.txt" @KEEP=TRUE;@WAIT=TRUE;@RECT=0,0,400,200;
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And Reset parameters
And Reset chi square

And Reset residuals
And Reset qlags
And Reset plags
And Reset qlags
And Reset reject_model
And Reset dosecond
And Reset make_model
And make model is assigned to make-model

RULE : Rule choose_model_wsl (#17)
If

task is "forecasting"
And set is "piao"

Then set_model
is confirmed.
And "ws1" is assigned to model
And "none" is assigned to transform
And Show " pi ao.txt" @KEEP=FAISE; @WAIT=TRUE; @RECT=O,O,400,200;
And Show "ws1.txt" @KEEP=TRUE;@WAIT=FAISE; @RECT=O,0,400,200;

RULE : Rule choose_model_rs2 (#18)
If

task is "forecasting"
And set is "red"

Then set_model
is confirmed.
And "rs2" is assigned to model
And "log" is assigned to transform
And Show " red.txt" @KEEP=FAI-SE; @WAIT=TRUE; @RECT=O,O,400,200 ;

And Show " rs2.txt" @KEEP=TRUE; @WAIT= FALSE; @RECT=O,0,400,200 ;

RULE : Rule choose_modelg1d-a (#19)

If
task is "forecasting"
And set is "grass"
And there is evidence of get-flow
And flow is "low"
And peak is "median"

Then set_model
is confirmed.
And "gtd" is assigned to model

And "td" is assiened to transform
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And Show " gtd.txt" @KEEP=TRUE; @WAIT=FAI-S Ei @RECT=0,0,400,200;

RULE : Rule choose_modelgtd_3 (#20)
If

task is "forecasting"
And set is "grass"
And there is evidence of get flow
And flow is "low"
And peak is "high"

Then set_model
is confirmed.
And "gld" is assigned to model
And "td" is assigned to transform
And Show " gtd.txt" @KEEP=TRUE;@WAIT=FAI5E;@RECT=0,0,400,200;

RULE : Rule choose_modelgld Z (#2L)
If

task is "forecasting"
And set is "grass"
And there is evidence of get flow
And flow is "median"

Then set_model
is confirmed.
And "gtd" is assigned to model
And "td" is assigned to transform
And Show " gtd.txt" @KEEP=TRUE; @WAIT-FAI-SE; @REgf= O,0,400,200;

RULE : Rule choose_modelg¡d_l (#22)
If

task is "forecasting"
And set is "grass"
And there is evidence of get_flow
And flow is "hish"

Then set_model
is confirmed.
And "gtd" is assigned to model
And "td" is assigned to transform
And Show "gtd.txt" @KEEP=TRUE;@WAIT=FAL-SE;@REgf=0,0,400,200;

RULE : Rule choose_model3sZ (#23)
If

task is "forecasting"
And set is "grass"
And there is evidence of set flow
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And flow is "low"
And peak is "low"

Then set_model
is confirmed.
And "gs2" is assigned to model
And "log" is assigned to transform
And Show " gs2.txt" @KEEP=TRUE;@WAIT=FAI5E;@RECT=0,0,400,200;

RULE : Rule choose-mode|3s1' (#24)
If

task is "forecasting"
And set is "grass"
And there is evidence of get-flow
And flow is "low"
And peak is "uncertain"

Then set_model
is confirmed.
And "gs1" is assigned to model
And "log" is assigned to transform
And show " gs L.txr" @KEEP=TRUE; @WAIT=FAISE; @RECT=O,0,400,200;

RULE : Rule get seasonal-transform (#26)
If

transform is "none"
Then set_transform

is confîrmed.

RULE : Rule get seasonal-transform (#25)

If
transform is "log"

Then set_transform
is confirmed.

RULE : Rule end_session (#27)
If

task is "quit"
Then what_to_do

is confirmed.

RULE : Rule decide_to_forecast (#28)

If
task is "forecasting"

Then what_to_do
is confirmed.
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And S how " forecast.txt " @ KEEP=TRUE; @WAIT=TRUE; @RECT=0,0,400,200 ;

And set_model is assigned to set-model
And Execute "fsas @V(set) @V(model)"(@TYPE=gXE;)
And Show "sasfile.txt" @KEEP=T
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Appendix D.2 Program listings

Program td.f is written in FORTRAN to transform and deseasonalize a set of monthly
flow values and return the deseasonalized values to 'td.out' output file to be used by SAS.

c
c
c

*** * * * * * * * * * * *+t< {< ***** +*** * * * * * i<* ***

Transform deseasonalize program
t< * *c *c * * * * * {< * * * * * * * * * * * * * * * * * * * {< * i< * * + *

DIMENSION X( 12,50), x'1.(72), x2(12)
OPEN (L,FILE='td.in')
OPEN (Z,F[LE=' td.out' )
J=1,

READ (1,*,END=99) (X(I,J), l=L, 12)
DO 6l=L,12

X(I,I¡=4¡OG(X(I,Ð)
x1(i)=x11¡+X(ij)
x2(i)=x2çi¡+X(ii)**2

continue
j=j+1
gotoZ
close (L)
I=I-1
do 7 k=1,I

X(ki)=¿16t(*(Li))
x1(k)=x11¡¡+X(kj)
x2(k)=¡21¡)+X(kj)**2

continue
do I k=1,12

xÀ(k) =(xz(k) -x 1 ( k) * * 2 I j) I Q - 1)

x1(k)=x11¡¡7¡
continue
do 9 l--1,j-1

do 1L k=L,I2
X ( k, l) =(X(k, l) -x 1 ( k))/x2( k)

continue
wrire (2,10) (x(k,l), k=L,72)

continue
do 12 k=1,i

x(k j) =(x(k,j) -x 1 ( k))/x2(k)
continue
write (2,10) (X(k,j), k=1,i)
close (2)

99

11

L2
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10 format Q2f7.2)
stop
end
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Program real0.f is written in FORTRAN to produce a compatible data file for plotting
when no transformation or deseasonalization manipulation is used to produce the model
forecasts.

c
c
c

de - program
************************************

DIMENSION X( 12,50), q1,(12)

OPEN (L,FILE='real.in')
OPEN (2,F[LE=' xsas.dat' )
OPEN (3,FILE=' real.out')

OPEN (4,FILE=' means.out')
J=1
READ (1,*,END=99) (X(I,J), l=1, 12)
DO 6 l=1,t2

q1(i)=q1(i)+x(ij)
continue
j=j+1
goto2
close (1)
I=I-L
do 7 k=1,I

q1(k)=q1(k)+x(kj)
continue
do 8 k=1,12

q1(k)=q1(k)/j
continue

do 12 k=i+1,12
READ (2,10,end=14) obs, rnum
write (3,10) obs, rnum
write (4,10) obs, q1(k)

continue
do 14 k=1.i

READ (2,1-0,end=L4) obs, rnum
write (3,10) obs, rnum
write (4,10) obs, q1(k)

continue
close (2)
close (3)
close (4)
format (i3,x,f8.3)
stop
end

99
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L4
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Program reall.f is written in FORTRAN to produce real value forecasts for plotting when
the data set has been transformed by the model to generate forecasts.

c
c
c

de - Transform program
* t< * * * + * * * * * * * * t( i( ì< * * * * * *'$ * * * *'k * * * *,F * *

DIMENSION X(12,50), q1,(\2)
OPEN (L,FILE=' real.in')
OPEN (2,FILE=' xsas.dat')
OPEN (3,FILE=' real.out')

OPEN (4,FILE=' means.out')
J=1
READ (1,*,END=99) (X(I,J), l=1, 12)
DO 6l=L,12

q1(i)=q1(i)+x(ij)
X(l,J)=4¡OqX(I,Ð)

continue
j=j+1
goto2
close (1)
I=I-L
do 7 k=1-,I

q1(k)=q1(k)+x(kj)
X(ki)=alos(*(k,j))

continue
do 8 k=1,12

q1(k)=q1(k)/j
continue

do 12 k=i+1-,12
READ (2,10,end=14) obs, tnum
rnum=exp(tnum)
write (3,10) obs, rnum
wrire (4,10) obs, q1(k)

continue
do 14 k=1,i

READ (2,1.0,end=14) obs, tnum
rnum=exp(tnum)
write (3,10) obs, rnum
write (4,10) obs, q1(k)

continue
close (2)
close (3)
close (4)

99

I2
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10 format (i3,x,f8.3)
stop
end
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Program real2.f is written in FORTRAN to produce real value forecasts for plottingwhen
the data set has been transformed and deseasonalizedby the model to generate forecasts.

c
c
c

de - Transform deseasonalize program
* * * *'k * * * * * * * *'{< i< * * x * * * * * ìt i( * * * * * {< * *< i< * {<

DIMENSION X(12,50), xL(72), x2(12), qI(Lz), q2(12)
OPEN (1,,FILE=' real.in')
OPEN (2,FILE='xsas.dat')
OPEN (3,FILE=' real.out')
OPEN (4,FILE=' means.out')
J=1
READ (1,,*,END=99) (X(I,J), l=1, LZ)
DO 6l=1,12

q1(i)=q1(i)+x(ij)
q2(i)=q2(i)+X(ij)**2
X(I,J)=4¡OG(X(I'Ð)
x1(i)=x111¡+X(ii)
x2(i)=x2çi¡+X(ii)**2

continue
j=j+1
goto2
close (L)
I=I- 1

do 7 k=L,I
q1(k)=q1(k)+x(kj)
q2(k)=q2(k)+X(kj)**2
X(kj)=alog(*(Lj))
x1(k)=x1(k)+x(ki)
x2(k)=x2ç¡¡+X(ki)*+2

continue
do 8 k=1,12

q2(k)=(q2(k)-q 1 (k) * * 2 I j) I (J -1)
q1(k)=q1(k)/j
x2(k)=(x2(k)-x 1(k) * *2 /j) l(J-I)
x1(k)=x11¡¡7¡

continue
do 12 k=i+1,12

READ (2,10,end=14) obs, tdnum
rnum=exp(tdnum *x2(k) +x 1 (k))
write (3,10) obs, rnum
\¡irite (4,10) obs, q1(k)

continue
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do L4 k=1,i
READ (2,1.0,end=L4) obs, tdnum
rnu m=exp(tdnum *x2(k) +x 1(k))
write (3,10) obs, rnum
write (4,10) obs, q1(k)

continue
close (2)
close (3)
close (4)
format (i3,x,f8.3)

L4

10

stop
end
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Program mfore.f is written in FORTRAN to translate SAS output for model forecasts into
a compatible form for plotting.

c MFORE

c reads forecast values from sasfile.txt
c writes in x,y format to xsas.dat for XGRAPH
c -----------

character*80 line, sasline
dimension x(5)

open (1,fi le-'sasfile.txt')
open (2,fi le='xsas.dat')

sasline='Obs'
do while (line .ne. sasline)
read (L,*,end=99) line
write (*,*) line
end do
do 10 i=L,12
read (1,*,end=99,err=99) n, (xfi), j=1,4)
write (*,*) (x0), j=1,4)
wnte (2,20) n, x(1)
continue
continue
close (1)
close (2)
format (i3,x,f8.3)
stop
end

10

99

r07



Program data.f is written in FORTRAN
plotting historical data series.

c -----------
c DATA
c
c write out data set (from data.in) in
c X,y format for XGRAPH

DTMENSTON X(12)
OPEN (L,FllE='data.in')
OPEN (2,FILE=' data.out')
n=0
READ (1,*,END=99) (X(Ð,
DO 6l='J-,12
m=n+i
'ùirite (2,10) m, X(l)
continue
n=n+12
gotoZ
close (1)
I=l- L

do 7 k=l,i
m=n*k
wrire (2,10) m, X(k)
continue
close (2)
format (i3,x,T7.2)
stop
end

to translate data files into a compatible form for

I='1,,72)

10
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fsas is a Unix script that controls the formation
previously developed model, and executes SAS.

echo DATA FLOSA; > sasfile
echo INPUT X@@\; >> sasfile
if[$2=?td]
then

echo CARDS\; >> sasfile
cp $L td.in
td
cat td.out >> sasfile

else

echo D(=LOC(X\)\; >> sasfile
echo CARDS\; >> sasfile
cat $L >> sasfile

fi
echo PROC ARIMA\: >> sasfile
cat fi2 >> sasfile
echo FORECAST LEAD=12\; >> sasfile
sas sasfile
mv sasfile.lst sasfile.txt

of a SAS input file to forecast a
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msas is a Unix script that controls the formation of a SAS input file for various stages

of model development, and executes SAS.

echo DATA FLOW\; > sasfile
echo INPUT X@@\; >> sasfile
if[$2=td]
then

echo CARDS\ >> sasfile
cp $1 td.in
rd
cat td.out >> sasfile

fi
if[$2=log]
then

echo LX=LOG\X\)\; >> sasfile
echo CARDS\; >> sasfile
cat $1 >> sasfile

- none ]

fi
if[$2
then

echo CARDS\; >> sasfile
cat $L >> sasfile

fi
echo PROC ARIMA\: >> sasfile
if [ $3 = identify ]
then

if[$2=td]
then

fi
if[$2=log
then

echo IDENTIFY VAR=X\: >> sasfile

l

IDENTIFY VAR=LX\ >> sasfile
IDENTIFY VAR=LX(12\)\; >> sasfile
IDENTIFy VAR=LX(t, 12\)\; >> sasfile

echo
echo
echo

fi
if[$2-none]
then

echo IDENTIFY VAR=X\; >> sasfile
echo IDENTIFY VAR=X(l2\)\; >> sasfile

echo IDENTIFY VAR=X\1,t2\)\; >> sasfile
fi
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if [ $3 - estimate ]
then

echo IDENTIFY VAR= $4 NOPRINT\; >> sasfile
echo ESTIMATE P= $5 Q= $6 NOCONSTANT METHOD=ML PLOT\; >>

sasfile
fi
if [ $3 = forecast ]
then

echo IDENTIFY VAR= $4 NOPRINT\; >> sasfile
echo ESTIMATE P= $5 Q= $6 NOCONSTANT METHOD=ML NOPRINT\; >>

sasfile
echo FoRECAST LEAD=].2\; >> sasñle

fi
sas sasfile
mv sasfi le.lst sasfi le.txt
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xgraph for is a Unix script that controls the execution of FORTRAN programs for data
manipulation of model forecasts, and executes the plotting utility Xgraph.

cp $1 real.in
if[$2=td]
then

rcalZ
fi
if[$2=log]
then

real 1
fi
if[$2=none]
then

real0
n
echo \"forecast\" > xsas.dat
cat real.out >> xsas.dat
echo"">>xsas.dat
echo \"monthly means\" >> xsas.dat
cat means.out >> xsas.dat
xgraph -P -t "Forecasts" -x "month" -y "kcfs" xsas.dat
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xgraph ser is a Unix script that executes Xgraph to plot historical data series.

cp $1 data.in
data
xgraph -t "Data series" -x "month" -y "kcfs" data.out

1.1.3



APPENDIX E: Time Series Output
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Aut ocorrelations
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Lag Covariance
0 1 .323977
1 0.902389
2 0.470937
3 0.145206
4 -0.103843
5 -0.137886
6 -0.122699
7 -0.162624
B -0.77528I
9 0.0022527

10 0.246083
11 0.575453
12 0.801899
13 0.514288
L4 0.779672
15 -0.087535
16 -0.290877
t7 -0.300328
18 -0.264040
I:' -U.IYOOUÐ
20 -0.295432
2t -0.097345
ô^ 

^ 
I --^--¿z v. IccÕ I I

23 0.467163
24 0.715406

Correlation
1 . 00000
v. o<trol.
0 .35571
0. 10968

-0.0784+
-0.10415
-0 .09268
-0.L2284
-0.13240
0.00170
0. 18588
0.43466
0.60570
u . óutt+b
0. 13571

-0.06612
^ õ¿ ^r¿-v . ¿LY ( r

-0.22685
-0.19944
-0.22404
-0.22315
-0.07353
^ ¿ ¿-^^
\J.l-_L/JO

0 .35286
0.54037

-1 9876543270 1234567897
**********xxx*******
* *{<* ** xr<******
*******
**.

-r_ -

****

.**

.**
**

. *{<

***

Lag Correl-ation
1 0.68161
2 -0.20334
3 -0.08471
4 -0.12000
5 0.10379
6 -0.04516
T -0.rr772
B -0.02769
I 0.25836

10 0.77867
fi 0.32210
72 0.20741
13 -0.40052
14 -0.07358¿-rc -u.uÕotö
16 -0.06381
t7 -0.01061
18 -0.02219
19 -0.05090
20 -0.02044
2t 0.fi1t7
22 0.05792
23 0.08163
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T ^-r.d.Ë
0
1

z

4
tr

o

8
q

10

0.21466

Covariance
0 .839831
0.074225

-0. 102873
-0 .069821
-0.215834
-0.051150
0.054891

-0.029480
-0. 189769
-0.069298
-0.089083

0 . 0996 15
0 . 5 10733
0.055483

-0.063687
-0.059554
-u . l_vo t-.Jv

-0.046492
0.068548

-0.035019
-0.199562
-0.057185
-0.059055

0.058877
0.528477

Lo6
I
T

2

4
tr
!

ñ

7
P
q

10
11
I2
l_ it
t4
1Ð

Name of variable
Period(s) of Differencing - 1.
Mean of working series = 0.005073
Standard deviation = 0.916423
Number of observations = 399

Correlatíon
1 .00000
0.01694

-0.12249
-0.08314
-0.25700
-0.06091
0.06536

-0.03510
-0.22596
-0.08251
-0. 10607
0.11861
0.60814
\,r . uoouo

-u.ulÐö.J
-0.07091
-0 .23355
-0.05536
0.08162

-0.04170
-0.23762
-0.06809
-0.07032
0.07011
0.62927

11
72

1AfT
1-
IO

t_o
47IT

t-u
19
o^
2T
22
23
z.t

. l**x'r

Aut ocorrelat ions
-1 9 B 7 6 5 43 2 t 0 t 23 45 67 B I 7

{< {<
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****x

.:r

.x
*****

**
**

**** ******* * *t<** * ** *

>F.

Correlation
0.01694

-0.12281
-0.07996
-0.27577
-0.09058
-0.02063
-0.17251
-0 .34862
-0.22777
-0 .33715

^ 
¿ 

^¿nry-v. LJrt I

0 .39888
0.05013

-0 .00235
0.01407

. *{<
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.)ß
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Part ial Autocorrelat ions
-1 9 8 7 6 5 432 L 0 123 45 67 8 I 7
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22
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-0.04061
-0.02304
0.00146

-0.03154
-0. 16208
-0.08262
-0 . 086 18
-0 .20564
0.27742

Lag Covariance
0 0.989152
r u.o/colJ
2 0.500144
3 0 .373571
4 0.265750
5 0.194367
O U.IÐO'Jl..l
7 0.130990
8 0 .070454
9 -0.029069

10 -0.132142
11 -0.227715
12 -0.432635
13 -0.29741r
74 -0.216554
15 -0.171407
16 -0.162975
77 -0.139171
18 -0. 137908
19 -0.130479
20 -0.139479
27 -0. 136049
22 -0.103201
23 -0.101209
24 -0.062898

Name of variable = LX.
Period(s) of Differencing
Mean of working series =

Correlation
1 .00000
0.68302
0.50563
A 

^--^'u.ð/ /ot
0.26866
0.19650
0. 15853
0.13243
0.07123

-0.02939
-0. 13359

^ 
ôô^ôf,-v. ¿ðv¿r

-0 .43738
-0 .30067
-0.21893
-0.17328
-0.76476
-0. 14070
-0.L3942
-0.13191
-0 . 14101
-0. 13754
-0. 10433
-0.70232
-0 .06359

.:F

.*
***
**
*+

Standard deviation
Number of observations =

Autocorrel-at ions
-1 98765432r

- ,nl
- LZ.

-0.03185
0.994561

?ce

0723456789I
| *x***xx*************
I xxxxx*xx******
| *x*x**xx**

*****{<**

*****
***x
***
***.
x

,)F

. ***
**+**
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******

****
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. ***
. ***
. ***
. ì(*t<
. ***
. ***

**

r --L,4Ë
I

2

4

ô
a
I

Correlat ion
0.68302
0.07331
0.01424

-0 .02304
0.00561
0.02927
0.01707

Part ial Autocorrelat ions
-1 9 8 7 6 5 4 3 2 7 0 t 2 3 4 5 6 7 8I7

**l
*l

************r<*
r.

r23



B -0.06877
9 -0.13422

10 -0.12806
11 -0.72762
t2 -0.36840
13 0.35881
t4 0.04345
15 0.00451
16 -0.07848
77 0.03499
18 -0.01615
19 0.03887
20 -0.10883
2t -0.12270
22 -0.04643
23 -0.07388
24 -0.20463

Lag Covariance
0 0.626117
1 -0.136207
2 -0.047542
3 -0.021147
4 -0.037942
5 -0.032960
6 -0.071787
7 0.035216
B 0.036971
9 0.0037377

10 -0.0043012
41 

^ 
¿^n-ãFJ_r v.J-U/ÐCtÌ)

72 -0.336994
]Õ U. Uþó+õO
74 0.032640
15 0.039259
16 -0.016885
77 0.023020
18 -0.0066232
19 0.015626
20 -0.012233
2t -0.027836
22 0.029348
23 -0.033933
24 0.044244

Name of variable = LX.
Period(s) of Differencing = !,!2.
Mean of working series = 0.000098
Standard deviation = 0.791276

**

**
**
*

.*
****

Correlation
1.00000

-0.21754
-0.07593
-0 .03378
-0.06060
-0 .05264
-0.01883
0.05625
0.05905
0.00597

-0.00687
0. 17183

-0.53823
0.08542
0.05213
0.06270

-0.02697
0.03677

-0.01058
0.02496

-0.01954
-0.04446
0.04687

-0.05420
0.07066

*.

Number of observations = 387
Aut ocorrelat ions
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Lag Correlation
1 -0 .2IT54
2 -0.12938
3 -0.08602
4 -0.10692
c -u. rl_Ðo1
6 -0.09313
7 -0.00484
B 0.04625
9 0 .02549

10 0.01023
11 0.20929
t2 -0.48253
13 -0.12283
t4 -0.07611
15 0.00850
16 -0. 11200
t7 -0.04773
18 -0.09972
19 0.04815
20 0.04287
2t -0.03544
22 -0.00525
23 0.tI276
24 -0.27484

-1 9876 5432L072
*.xx* |

xxx I

*xl
x*l
**l
**l
.l

I. lr.. l*. .

.l

. | +x**
x*****x*xx 

I

Partral l-nflow Available for 0utflow (PIAO) for
correlation structure

Name of variable = X.
Meal of vorking series =

34567891

Lag Covariance
0 401 .079
r rto . oo.l
2 13.941080
3 -63.108661
4 -47.001195
5 -49 .201587
6 -58.073120
7 -58.163076
8 -49 .281789
v -Jo.óvóvöó

10 31.106511
11 I23.507
72 196.24I
13 136.556
74 24.643295

**l

**
.*
**

.*

*****

**

Nunber of observations =
Aut ocorrel-at ions

Correlation -1 I I 7 6 5 4 3 2 I

Standard deviation

+.
*.

1 . 00000
0 .36567
0.03476

-0. 15735
-0.10223
-0.12267
-0.L4479
-0. 14502
-0.12287
-0 .09074
0.07756
0 .30794
0.48928
0.34047
0 .06144

t*

Lake Winnipeg

4.0L445
20.02696

400

r234567891
*** ** *** **** ** *<*****

,<******
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15 -53.482776
76 -64.832376
t7 -59.857698
18 -s6.469570
19 -53.710472
20 -s3.292721
21 -38.254258
22 8.529879
23 105.059
24 175.918

-0. 16164
-0.14924
-0.14079
-0.13242
-0.13287
-0 .09538
0.02127
0.26794
0.43861

Lag Correlation
1 0.36567
2 -0.11423
3 -0.75174
4 0.01971
5 -0.17047
6 -0.11049
7 -0.07910
8 -0.09346
9 -0.08077

10 0.10178
11 0.23805
rz u ..Jiti1Ð ¿

I.f v. L+ÐÞI
74 0.00097
15 -0.04267
16 -0.04L2L
t7 -0.04399
18 -0.02390
19 -0.00403
20 -0.04597
¿L -V.UOÕI_C
22 -0.06488
23 0.06779
24 0. 15697

{<**

***
***
***
***
***
.**

Part ial
-1 98

Aut ocorrelat ions
765432I0I234567897

***t*
**:k******

**
***

**
**
**
**
**

x**{<***

Lag Covariance
0 509.870
1 -121. BBB
2 -55.528494
? -qq ??'l
4 30.175566
5 1.050295
6 -9 .214640

**
*****
*{<*****

***

Name of variable = X.
Period(s) of Differencing = 1.
Mean of working series = 0.029617
Standard deviation = 22.58029
Number of observations = 399

Correlation
1 . 00000

-0.23906
-0. 10891
-0. 19482
0.05918
0.00206

-0.01807
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.*

.*
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.)F
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Autocorrelations
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7 -8.486393
8 -4.160920
9 -54.4L1047

t0 -26.275392
11 20.152826
tz r.tJt. t-.Jo
13 52.267683
14 -33.957597
75 -67.757258
16 -15.957831
77 7.9704L7
18 -0.332363
19 4.051435
20 -15.391792
2t -32.298937
22 -49.908632
23 24.993043
24 II2.845

-0.01664
-0.00816
-0.10672
-0.05153
ô ô?oq"
0.26112
0.10251

-0.06660
-u.tó1tJ-
-0.03130
0.00386

-0.00065
0.00795

-0.03019
-0.06335
-0.09789
0.04902
0.22132

Lag Correlation
1 -0.23906
2 -0.77612
3 -0 .29284
4 -0.12426
5 -0.12014
6 -0.14398
7 -0.17822
8 -0.72357
9 -0.26355

10 -0.33576
11 -0.37743
!¿ -u. tÞ+o/
13 -0.01475
t4 0.02737
1s 0.02116
16 0.0207I
L7 -0.00116
18 -0.02258
19 0.01917
20 0.03241
2t 0.02801
22 -0.10083
23 -0.L8022
24 -0.08971
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*.
****{<

**
.*

***
x

Partial
-1 987

Autocorrelat ions
6543210I234567891

.x
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. I xx*x
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***x**
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*t
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x*
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**t*t<***
t<* *

Nane of variable = X.
t/ \Period(s) of Differencing = 12.

Mean of working seríes = -Q. 16992
Starrdard deviation = 20.20382
Number of observations = 388

Autocorrel-ations
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Lag Covariance
0 408. 194
7 28.513655
^ ô/ ^¿^^õÀ¿ -ÕL. ZrZYð+
3 -37.287606
4 31 .326836
5 21.095786
6 0.8078s4
7 -r2.477876
B -3.203905
9 29.446L08

10 41.031840
11 -5.245924
12 -184.531
13 -10.818843
t4 -3.645224
15 0.881887
t6 -23.202877
t7 -21.245833
18 -4. 136355
19 -0.701995
ô^ õ F-^A^^¿v -J. ooo\.,2:,
2t 8.726806
22 -28.553314
23 -I4.208605
24 -2I.I72I15

Correlat ion
1.00000
0.06985

-0.07647
-0.09135
0.07674
0.05168
0.00198

-0.03057
-0.00785
0.072L4
0. 10052

-0.01285
-0.45207
-0.02650
-0.00893
0.00216

-0.05684
-0.05205
-U.UIUIð
-0.00172
-0.00898
0.02138

-0.06995
-0 .03481
-0.05187

-1 98765432 10L234567891
| **x*xx*******x*r<x***

. lx.
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**l
. lxx

ã<.

.>F

*********
.*

.*

.>F

Lag Correlation
1 0.06985
2 -0.08174
3 -0.08079
4 0.08442
5 0 .0277L
6 -0.00006
7 -0.01141
I -0.00418
9 0.06577

10 0.08714
77 -0.01568
12 -0.44070
13 0.04622
74 -0.08973
15 -0.07853
16 0.01895
t7 -0.04033
18 -0.01169
19 -0.01675
20 -0.00724
2t 0.08820
22 -0.00504
23 -0.02381
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Lag Covaríance
0 760.427
1 -320.183
2 -53.005333
3 -74.269242
4 77.340248
5 10.33s637
6 -7.113473
7 -22.498589
e -23.575200
I 22.405083

10 55.806903
11 135.433
12 -353.899
-LJ l-OO. t.f\.r
t4 2.741605
15 28.808010
t6 -28.714098¿- ¿^ ^-^õ^-tt -rz.Y( ¿óvl
18 74.027537
19 6.256454
20 -15.320286
27 49.009062
22 -49.829953
23 18.894520
24 -34.697409

-0 . 30 107

Name of variable
Períod(s) of Differencing = !,!2.
Mean of working series = 0.017615
Standard deviation = 27.57583

Correlation
1 . 00000

-0.42106
-0.06970
-0.09767
0.10171
0.01359

-0 .00935
-0.02959
-0 .03100
0.02946
0 .07339
0.17810

-0.46540
0.21926
0.00282
0.03788

-0.03776
-0.01706
0.01845
0.00823

-0.02015
0.06445

-0.06553
0 .02485

-0.04563

Number of observations =

x*x**x I

- x.

Autocorrelat rons
-1 98765432r0

****t<***
.)r

,< i<

387

1234567891
********************

.#

:*

*******t<*

Lag Correlation
1 -0 .42106
2 -0.30022
3 -0.35032
4 -0.21903
5 -0.15582
6 -0.12502
7 -0.11811
B -0.76772
9 -0.76298

10 -0.05244
11 0.34669
t2 -0.18522
13 -0.03611
t4 -0.05093
15 -0.13539

*.
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Part ial Autocorrelat ions
-1 9876543210123
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16 -0.07354
77 -0.09321
18 -0.07973
19 -0.08435
20 -0.16258
27 -0.05707
22 -0.03664
23 0.22068
24 -0.15981

Grass River
GS1 model structure

Maximum Likelihood Estimation
Parameter Estimate Std Error T Ratío L.g
M41,1 0.90913 0.03600 25.26 L2
4R1,1 1 .31841 0 .04779 27 .59 1

AR1,2 -0.39233 0.04865 -8.06 2

Variance Estimate = 0.02654837
Std Error Estimate = 0.7629367I
AIC = -252.17185
SBC = -240.58096
Number of Residuals= 352

.*
t( {<

t*
t*

***
.t
*

***
****

To Chi
Lag Square DF Prob

6 6.44 3 0.092 0.048 -0.053 -0.088 -0.043 -0.022 0.053
t2 I .77 I 0.370 0.017 0.055 0.038 0.055 -0.037 0.002
18 13.84 15 0.538 0.092 -0.006 0.021 0.036 0.0I2 -0.026
24 I5 .77 27 0 .782 0.009 0 .044 0.021 0.048 0.020 -0.000
30 76.80 27 0.936 -0.025 0.016 0.026 0.029 -0.010 -0.015
36 24.53 33 0.856 -0.010 -0.008 0.007 -0.073 0.118 0.016
42 25.16 39 0.958 -0.012 -0.0I2 -0.013 -0.015 0.026 0.014

Model for variable LX
Period(s) of Differencing = !2.
Autoregressive Factors
Factor 1: 1 - 1.3184 g*x(1) + 0.39233 B**(2)
Moving Average Factors
Factor 1: 1 - 0.90913 e{.x(12)

Autocorrelation Check of Residuals
Aut ocorrelat ions

Autoc
Lag Covariance Correlation

0 0.026548 1 .00000
1 0.0012785 0.04816
2 -0.0014007 -0.05276
3 -0.0023474 -0.08819
4 -0.0011351 -0.04275

orrelation Plot of Residuals
-1 9 B7 654321 0 1 2345 67 B 9 1

| ****x*x****x**xx*x*x I. l*. I.*l I**l I.xl I
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24

-0.0005864
0.0014095

0.00044591
0 .0014703
0.0010112
0.0014531

-0 .0009797
0.00004156
0.0024405

-0 .0001722
0.00054567
0.00096159
0.00031619
-0.0006902
0.00022598
0.0011715

0.00054667
0 . 00 12663

0.00054264
-3.098E-6

-0.02209
0.05309
0.01680
0.05538
0.03809
0.05474

-0 .03690
0.00157
0.09193

-0.00649
0 .02055
v.vÕoz¿
0 . 01191

-0.02600
0.00851
0.04413
0.02059
0.04770
0.02044

-0 . 000 12

*,

*
x.
*.

*;

Lag CorreLation
1 0.04816
2 -0.05521
3 -0.08330
4 -0.03782
5 -0.02777
6 0 .04439
7 0.00326
8 0.05477
I 0.04136

rv v. uoú.tt_
11 -0.02570
t2 0.01960
13 0.10425
74 -0.01834
15 0.03037
16 0.04011
17 0.01567
18 -0.02472
19 0.00838
20 0.04587
2L 0.00625
22 0.04079
23 0.01103
24 0.01445
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GS2 model structure

Parameter Estimate
MÂ1 1

M42,1
4R1,1

Maximun Likelihood Estimation

Variance Estimate =
Std Error Estimate =

cÞnuÐv
Nunber of Residuals=

-0 .38200
0.91662

-0.77546

To Chi
L.g Square DF Prob

6 9.91 3 0.019 -0.000
72 12.53 9 0.18s -0.057
18 16.33 15 0.360 0.086
24 t8.tL 2t 0 .642 0.000
30 78.84 27 0.876 -0.021
36 29.06 33 0.664 -0.034
42 29.69 39 0.859 -0.006

Std Error T Ratio Lag
0.04862 -7 .86 1

0.03621 25 .3r t2
0.05198 -s.38 3

u . uzooat:roY
0. 1633698

-250.58946
-239.0077

Autocorrelation Check of Residuals

Model for variable LX
Period(s) of Differencing = !,L2.
Autoregressive Factors
Factor 1: 1 + 0.L7546 e**(3)
Moving Average Factors
Factor 1: 1 + 0.382 B**(1)
Factor 2: 1 _ 0.9L662 g**(12)

Autoc
Lag Covariance Correlation

0 0.026690 1.00000
1 -5.51058-7 -0.00002
2 0.00074492 0.00543
3 -0.0001891 -0.00709
4 -0.0030330 -0.11364
5 -0.0031053 -0.11635
6 -0.0009132 -0 .03422
7 -0 .0015128 -0.05668
8 -0.0001063 -0.00398
9 -0.0001436 -0.00538

10 0.00097503 0.03653
11 -0.0013662 -0.05119
t2 -0.0001179 -0.00442
13 0.0022869 0.08568
t4 -0.000831 -0.03114
15 0.00014185 0.00531
16 0.00075248 0.02819

Aut ocorrelat ions

0 .005
-0 .004
-0.031
0.042
0 .008

-0 . 011
0.017

-0.007 -0.t14
-0.005 0.037
0.005 0.028
0.011 0.044
0.008 0.009
0.019 -0.082
0.008 -0.006

orrelation Plot of
-1 98765432

-0.116 -0.034
-0.051 -0.004
-0.005 -0.034
0.030 0.006

-0.028 -0 .02L
0.I32 0.021
0.031 0.012

Residuals
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t7 -0.0001348
18 -0.0009189
19 6.54339E-6
20 0.0011124
2t 0.00030237
22 0.0011752
23 0.00079693
24 0.00014889

L.g
I
I

az
U

=̂q

o
-I
x

o

I t,

11
72
¡Ô
1AI=

1()
LI
18
19
ô^zv
2t
ôôzz

z¿
AA¿'+

-0 .00505
-0.03443
0.00025
0.04168
0.01133
0.04403
0.02986
0.00558

Correlation
-0.00002
0.00543

-0.00709
-0.11368
-0 . 1 1789
-0 .03566
-0 .05976
-0.02116
-0.03445
0.01288

-0.07490
-0.02622
0.07s85

-0.03474
-0.00767
0.0L232
0 .00889

-0.03245
-0.00412
0.05410
0.01830
0.03996
0.02346
0 .03037

Partial
-1 987

Autocorrelat ions'-
65432r012
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{<.
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.*

.x

*

3456789r

Grass River
GTD model structure

Lag Covariance
0 1 .228390
1 1.099397
2 0.956644

*{<

,rr

Name of variable = X.
Mean of working series =
Standard deviation =
Number of observations =

Correlation
1 .00000
0 .89499
0.77878

>r.

>r.

¡<.

-t- v
Aut ocorrelat ions

8765432r0

-0.0s472
r.108327
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3 0 .829294
4 0.779714
5 0.653898
6 0.603831
ar v,ccLc¿l
I 0.502193
I 0.460548

10 0.424906
1r u.ðìrÕÕcr
r¿ u. ito+:r:ro
13 0.345587
L4 0.318034
15 0.295253
16 0.271140
17 0.247505
18 0.277003
19 0. 189289
20 0.169803
21 0.163856
22 0.165815
23 0.165240
24 0.155850

0.67511
0 .58590
0.53232
0.49156
0 .44898
0 .40882
0.37492
0 .34590
0.32022
0.29713
0.28133
0 .25890
0.24036
0.22073
0.20149
v.t/ooo
0. 15410
0. 13823
0. 13339
0. 13499
0.t3452
0.12687

Lag Correlation
1 0.89499
2 -0.11170
3 0.00113
4 0.00491
s 0.12024
6 0 .07473
7 -0.02618
8 0 .00346
9 0.03091

10 0.07326
11 -0.00128
t2 0.00363
13 0.03670
t4 -0.03684
15 0.01929
16 -0.01462
77 0.00473
18 -0.04545
19 0.00381
20 0.01786
21 0.04315
22 0.01578
23 -0.00667
24 -0.02047

Partial
-1 987

Autocorrelations
65432I0123456789

**
*t*x*t************
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Maxirnum Likelihood
Parameter Estimate Std

1qA1.t+

.{<

Est imation
Error T Ratio T ^---Õ



MA1 1

AIÍ,I , 1

Variance
Std Error
AÏC

Number of

To Chi
L.g Square

6 2.97
72 4.45
18 7 .87
24 10.33
ÕU II. OU

36 18.01
42 20.49

-0.24337
0.93434

Estimate = 0.75786028
Estimate = 0.39731635

= 365.555783
= 373.35009

Autocorrel-ation Check of Residuals

DF Prob
4 0.562

10 0.925
t_o u . :/Ð.J
22 0.983
28 0.997
34 0.989
40 0.996

Lag Covariance
0 0.157860
1 0.00022611
2 -0.0012845
3 -0.0042822
4 -0.0097580
5 -0.0065229
6 0.0064947
7 -0.0005866
I 0.00031778
9 0.0053270

10 0.0014601
11 0.0051662
12 0.0062946
13 0.010582
14 -0.0069974
15 0.00050561
16 0.0049395
t7 0.0060448
18 0.0013258
19 0.00091207
20 -0.0042733
21 -0.0021087
22 0.0043018
23 0.010714
24 -0.0003076

Residuals=

0.05451
0.02513

Autocorrelat ions

0.001 -0.008 -0.027 -0.062 -0.041 0.041
-0.004 0.002 0.034 0.009 0.033 0.040
0.067 -0.044 0.003 0.031 0.038 0.008
0.006 -0.027 -0.013 0.027 0.068 -0.002

-0.031 0.004 0.005 0.036 0.004 -0.029
-0.015 -0.022 -0.032 -0.013 0.177 0.015
-0.064 0.023 0.002 0.023 0 .029 0.012

Autocorrelation Plot of Residuals
Correlation -1 9 8 7 6 5 4 3 2 I 0 t 23 4 5 6 7 I I I

-4.46 1

37.L9 1

1 . 00000
0.00143

-0.00814
-0.02713
-0.06181
-0.04732
0.04114

-0.00372
0.00201
0.03374
0 .00925
0.03273
0.03987
0.06703

-0.04433
0.00320
0.03129
0 .03829
0 .00840
0 .00578

-0.02707
-0.01336
0.02725
0.06787

-0.00195

364
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Correlation
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3 -0 .027tI
4 -0.06186
5 -0.04191
6 0.03948
7 -0.00771
8 -0.00343
I 0.03094

10 0.01236
11 0.03616
72 0.04015
13 0.07361
14 -0.03773
15 0.00910
16 0.04248
17 0.04633
18 0.00637
19 -0.00001
20 -0.01822
2L -0.00976
22 0.02222
23 0.06450
24 -0.01102

Red River
RS2 model structure

)F.

>F.

*
{<,

*.
t<

Model for variable X
Autoregressive Factors
Factor 1: 1 - 0.93434 B**(1)
Moving Average Factors
Factor 1: 1 + 0.24337 B*x(l)

Maximum Likelihood Estimation
Parameter Estimate Std Error T Ratio Lug
MA1, 1 0 .92022 0.03132 29.38 1

M42,1 0.85106 0.03633 23.43 t2
4R1,1 0.63660 0.05751 !7.07 t
4R2,1 -0. 13845 0.05814 -2.38 t2

Variance Estimate = 0.27856633
Std Error Estimate = 0.52779384
AIC = 627.456813
SBC = 643.290512
Number of Residuals= 3BT

To
L.g

o

chi
Square DFõ ^^,J. OO Z

Autocorrelation Check of Residuals
Aut ocorrelat ions

Prob
0.160 -0.034 0.013 0.055 -0.026 0.038 -0.053
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72

AA

?ô

42

8.91 B 0.350 0.096 0.011 0.008 -0.049 0.035 0.014
13.88 14 0.459 -0.060 0.017 0.034 -0.054 -0.003 -0.065
77.18 20 0.642 0.026 -0.049 -0.030 -0.014 -0.052 -0.033
rg .B2 26 0 .800 -0 . 062 0 . 031 -0 . 015 0 .026 -0 .019 -0 .017
22.06 32 0.906 -0.033 -0.033 0.053 0.008 -0.014 -0.004
27 .06 38 0.907 -0.026 0.065 0.029 0.020 0.070 0 .021

Model for variable LX
Period(s) of Differencing = I,!2.
Aut oregressive Fact ors
Factor 1: 1 - 0.6366 B*x(l)
Factor 2: 1 + 0.13345 Bt*(12)
Moving Average Factors
Factoi 1: 1 - 0.92022 gx*(1)
Factor 2: 1 _ 0.85106 gx*(12)

Autoc
Lag Covariance Correlation

0 0 .278566 1.00000
1 -0.009607 -0.03449
2 0 .0035767 0.01284
3 0 .015247 0.054T1
4 *0.0071437 -0.02564
5 0 .070627 0.03815
6 -0.014887 -0.05344
7 0 .026765 0.09608
B 0.0031815 0 .01742
I 0.0023078 0.00828

10 -0.013560 -0.04868
11 0.009675 0.03473
t2 0.0039572 0 .0142r
13 -0.016798 -0.06030
14 0.0048010 0.01723
15 0.0094919 0.03407
16 -0.015040 -0.05399
t7 -0.0008532 -0.00306
18 -0.018136 -0.06511
19 0.0071681 0.02573
20 -0.013694 -0.04916
2t -0.0083699 -0.03005
22 -0.0040182 -0.0t442
23 -0.014525 -0.05274
24 -0.0092161 -0.03308

orrelation Plot of
-1 98765432

Residuals
101234s67891
,*

* * **{<* *** ***** ** ****

*.

:r.

**

Lag Correlation
1 -0 .03449
2 0.01166
3 0.05562
4 -0.02210
5 0 .03524
o -u. ucöt r
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7
R

9
10
11
t2
l-.J

T4

t-o
1aLI

1B
19
20
27
22
¿.)
24

0.09517
0.01379
0.01502

-0.06425
0.03955
0.00693

-0.04465
-0.00229
0.04019

-0.05764
0.00318

-0.07116
0.02524

-0.04840
-0.01265
-0.03632
-0.03778
-0.04124

Red River
RTD model structure

Lag Covariance
0 0 .929730
1 0.686436
2 0.5s9787
3 0 .466477
4 0.379770
5 0 .342725
6 0 .297936
7 0.282650
8 0 .254463
9 0.209550

10 0.179784
11 0. 182101
72 0.139867
13 0.124335
L4 0.115164
15 0.103701
16 0.098628
t7 0.080267
18 0.056834
19 0.055165

Name of variable = X.
Mean of working series = -Q.01841
Standard deviation = 0.964225
Number of observatíons = 400

Correlat ion
1 . 00000
0 .73832
0.60210
0.50173
0.40847
U . JÞöOö
0 .32045
0 .30401
0.27370
0.22539
0.19337
0. 19586
0. 15044
u.tit.l/ð
0.12387
0.11154
0.10608
U . UöbóJ
0.06113
0 .05933

*
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.*

Aut ocorrelatrons
-1 987654321 r23456789r
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20 0.023627
27 0.0052139
22 0.022715
23 0.026625
24 0.048733

0.0254L
0.00561
0.02443
0 .02864
0.05242

Lag Correlation
1 0 .73832
2 0.L2527
3 0.04555
4 -0.00904
5 0.07660
6 0.00578
7 0.06252
8 -0.00212
9 -0.03753

10 -0.00209
11 0 .07397
t2 -0.07188
13 0.01384
t4 0.01364
15 0.00881
16 0.00446
77 -0.01295
18 -0.04035
19 0.02878
20 -0.05303
27 -0.01556
22 0.05406
23 0.01948
24 0.04173

Part ial Autocorrelations
-1 9 B7 65 4321 0 1 2345 67 I 9 1

lx
I

I

l*
l*.

* {<** ******* * *>k*
**+
*.

**

*

Maximum Likelihood Estimation
Parameter Estimate Std Error T Ratio
4R1,1
ARl ,2

Variance Estimate =
Std Error Estimate =
d¿v

JÐV

Number of Residuals=

To Chi
Lag Square DF

6 2.03 4
t2 9.51 10
18 10.64 16
24 17.30 22
30 18.35 28

0.64610
0. 12355

.*

0.04976
0.04976

0 .41780608
0.6463792I
788.865442
796.84837t

400

*.

Autocorrelatíon Check of Residual-s
Aut ocorrelat ions

Prob
0.731
0.484
0 .831
0.747
0.917

-0.004 -0.032 0.021
0.060 0.063 -0.006

-0.006 0.015 0.005
0.057 -0.023 -0.068

-0.020 0.011 -0.013
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2.48

Lag
I

2

-0.046 0.035
-0.029 0.096
0.040 0.016
0.015 -0.013
0.010 -0.036

-r,J . v t l_

-0.022
-0 .023
0.083
0.019



Lag Covariance
0 0 .477806
1 -0.0017655
2 -0.013433
3 0.0087647
4 -0.019421
5 0.014554
6 -0.0047474
7 0.024981
B 0.026436
9 -0.0024212

10 -0.012055
11 0.040179
t2 -0.0091266
13 -0.0025685
t4 0.0061810
15 0.0021996
16 0.016864
t7 0.0068258
1B -0.0094156
19 0.023638
20 -0.009594
2L -0.028378
22 0.0062004
23 -0.0055417
24 0.034789

A'
=L

21.04 34 0.960 0.004
24.33 40 0.976 -0.019

Autoc
Correlation

1 . 00000
-0 .00423
-0 .03215
0.02098

-0.04648
0.03484

-0.01136
0 .05979
0.06327

-0.00580
-0.02885
0.09617

-0.02784
-0 . 006 15
0.01479
0.00526
0.04036
0.01634

-0.02254
0 .05658

-0.02296
-0.06792
0.01484

-0.01326
0.08327

orrelatÍon Plot
-1 9876543

-0.010 0.013 -0.020 0.061 -0.041
0.057 -0.023 0.015 0.054 0.013

of Residuals
2L01234567891

| * x x+ *x xr.*** **t** * *t<*
I

.*

.x

Lag Correlation
1 -0.00423
2 -0.03217
3 0 .02072
4 -0.04742
5 0.03601
6 -0 .0t482
7 0.06447
8 0.05920
9 0.00280

10 -0.03015
11 0.10118
12 -0.02296
13 -0.00091
t4 0.00404
15 0.01033
16 0.02784
17 0.02505
18 -0.02995
19 0 .04935
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Partial
-1 98

Autocorrelat ions
765432101
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20 -0.02100
2r -0.06019
22 -0.00458
23 -0.01065
24 0.07547

Model for variable X

Autoregressive Factors
Factor 1: 1 - 0.6461 g**(1)

PIAO
I'üS1 rnodel structure

Parameter Estimate
MU -0.28839

_ 0.123sS g**(2)

MA,f 1

Constant Estinate = -Q.2883877
Variance Estimate = 234.669861
Std Error Estimate = 15.318938
AIC = 3237.96752

Maximurn Likelihood Estimation

To Chi
Lag Square DF

^ 
¿ ) 

-4 -o r1./o c
12 14.05 11
18 t6.79 t7
24 20.04 23
30 23.29 29
36 24.61 35
42 32.59 41

SBC
Number of Residuals= 388

0 .87153

Std Error T Ratío L.g
0.12735 -2.26 0
0.03145 27 .7r t2

Autocorrelation Check of Residuals
Autocorrelat ions

Prob
0.039 0.107 -0.060
0.230 -0.012 0.031
0.469 0.062 -0.018
0.640 0.000 0.001
0.763 0.058 0.046
0.905 0.011 -0.015
0.823 0 .035 0.090

Model for variable X
Estimated Mean = -0.2883877
Period(s) of Differencing = !2.
Moving Average Factors
Factoi 1: 1 : 0.87153 g**(12)

= 3245.88953

Auto
Lag Covariance Correlation

0 234.670 1.00000
t 25.181145 0.10730
2 -t4.150375 -0.06030
3 -20.103261 -0.08567
4 t8.164470 0.07740
s 8 .804776 0.03752

-0.086 0 .077 0.038 0.001
0.048 0.041 0.019 0 .021

-0.04s -0.026 -0.010 -0.001
0.036 -0.053 -0.050 -0.03s

-0.012 -0.011 0 .042 0 .016
-0.015 -0.016 -0.047 -0.006
0.081 0.034 -0.030 0.021

correlation
-1 9876

Plot of Residuals
5432r01234567891
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6 0.291505
7 -2.701569
8 7.254238
9 11.271778

10 9.592490
11 4.360850
t2 4.849970
13 14.543168
t4 -4. 141506
15 -10.120450

^ ^Â^¿^-ro -o. vturoc
t7 -2.249870
18 -0.143186
19 0.095656
20 0.306964
2t 8.448963
22 -r2.s81445

-4^^^-2,5 -rL.tÕ¿zzl
24 -8.329319

Lag
t
ôz

4
5
o
n
I
x
q

10
11
T2
l_Õ

t4
IC
¿^IO
T7
1B
19
20
2t
22
¿,)
õAz+

0.00124
-0.01151

0 .03091
0.04778
0.04088
0.01858
0 .02067
0.06197

-0.01765
-0.04313
-0.02574
-0.00959
-0.00061
0.00041
0.00131
0.03600

-0.05276
-0.04999
-0 .03549

*.
*.
+.

Correl-at ion
0.10730

-0.07265
-0.07214

0 .09270
0.00885

-0.00110
0.00552
0.02927
0.037s4
0.03454
0 . 02111
0.02337
0.05945

-0.03437
-0 .03305
-0.01492
-0.02776
-0 .00833
-0.00106
-0.00146
0.03351

-0 .06665
-0 .03599
-0.02407

x,

Part ial Aut ocorrelat ions
-1 98765432101
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