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ABSTRACT

A studt' of the critical l¡ehaviour which is observed in numetical calcula-

tions of spherically symmetric scalar field collapse has been per.for.med. The

gravitational collapse caìculations are car¡ied out using the field equations

of Einstein's general theory of relativity in the context of a two dimensional

dilaton glavity theory.

The problem is folmulated by considering a sphelically symmetric matter

distlibution in an ar-bitraly number of space-time dimensions gleater than

three. A spherical distlibution will only depend on two space-time coordi-

nates, therefore, the action of the model can be reduced to a specific case

of à 1 + 1 dilaton gravity theory. The evolution equations of the pr.oblem

are simplified by calrying out a conformal transformation of the metric field.

The number of space-time dimensions then appears as an input palametel of

the field equations, Initial data is defined on a discrete space-time grid and

numerical simrlations of gravitational collapse ar.e carried out. The computer



Abstract

code is optimized to inclease numerical stability neal the cr.itical solntions.

Discrete self-simrlarity and mass scaling in the near critical solutions are

obserr.ed fol each of the dimensions studied. The clitical phenomena ale

desclil¡ed wiih a high level of conficlence by smooth functions of space-time

dimension. lt is h¡,pothesized that the critical solution of the theorv at

the limit of large dimension is discretely self-similar with a per.iod of 5/2

and contains clitical scalilg rvith a, constant of 1/2. trvidence u,ill also be

presented which suggests the critical solution in thr.ee dimensions with zero

cosmological constant is not discletely self-similar. but contains a clitical

scaling constant of approximately 0-11.
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1. INTRODUCTION

It has long been known that stlong fleld dynamics in gravitational collapse

ploduces unir.er-sal, or clitical, solutions. These cr.itical solutions are inter-

pÌeted as one parameter âttÌâctors in phase space. They have the properties

of universalit;', scaling, as well as clisclete and contimrous self-similarity, for

all valieties of initial matter shapes and profiles. The solutions do, however,

have some dependence on initiâl mattel fielcl type (for example, scalar field

versus yang-mills fleld) as well as a dependence on spâce-time dimension.

In this thesis I examine spherically symmetric scalar field collapse. The

system represents one of the most simple dynarnical problems available. De-

spite the simplicity of this system, properties of critical solutions are found.

The critical solutions will be analyzed numerically by constr.ucting a dis-

crete glid in space and time and solving the evoiution equations at each grid

point. In this way the ploblem is simplified by simultaneousìy solvilg a set

of linear differentiaÌ equations. However, the problem is complìcated b), the
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discletization process l'hich intlodtces a nunlelical err-or at each grid point.

The numelical elroÌs can lead to instabilities in the er.olution procedur-e.

A par-ticulal sequerìce of gr-id spacing refinelrents u'ilÌ be rsed to maintain

stability of the evolution for- as many iterations necessàty to extlact useful

data.

In d space-time dimensions. the action for the model can be leducecl to

a 1 * 1 clilaton glavity theoly. Using an appropliate confor.n'ral redefinition

of the metlic field, the kinetic telm in the action (a term bilineal in the

dilaton field) is eliminated which will further simplify the field equations

derived in the model. The space-time dimension of the fields then appear.s as

a parameter of the evolution equâtions once a coordinate system is chosen.

Initial data is deflned and the values of thc fields are calculated at each

grid point on the initial hypcrsulface. The evolution equations and boundary

conditions determine the values ofthe fields on the adjacent hypelsulface and

the system is allowed to evolve over several iterations to one of two classes of

solutions. Initial data can evolve to a final state which contains a black hole

or one that does not. Initial data ¡vhich cvolves to a black hole solution are

calIed ntpercritical. u'hereas, data which do not for.m a ìrlack hole ale called

subcritical. The initial data parameters which lead to the solution sepârating
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these two states are called crztical pârâmeteÌs.

The scaling constant and disclete self-similality constant have been mea-

sured in super-clitical collaÌ)se as a function of space-time dirnension. Func-

tional forms of the clitical constants as ftnctions of d ar-.e found fol space-time

dimclsion 3 < d < 14. In both cases, these forms will be used to extr.apo-

late a value of the scaling and disc-r-ete self-similarity constant for. d : 3 and

d --r co.

This thesis is divided into five chapters. The second chapter- introduces

and plesents the relevant âspects of numerical r.elativity in the context of the

dimension dependence of critical phenomena observed in gr.avitational col-

lapse. The field equations and formalism of the model is presented in chaptel

three by first palametelizing in the context of a 1 + 1 dilaton gravity theor¡

then deriving the evolution equations and choosing boundar.y conditions. In

chapteÌ fouÌ, the method is described and the results of the numericål anal-

ysis are presented togethel with a hypothesis on the nature of the critical

solution at the small and large d limits of the theorSr In the concluding

chaptel a summary of the results of the thesis is presented along rvith an

objective for future reseal:ch.



7. Introduction

1.1 Einstein's Fidd Equations

Einstein's General Theory of Relativity is a gener.ally covariant tìreor.y of

gra\.it)' lrâsed on the principle of relativity [1]. The theoly is a generaliza-

tion of the Special Theoly of Relativity to non-Euclidean manifolds. In the

Gcnelal theoly the space-time continuum is an m dilnensional contiluousiy

diffelentiable Riemannian space-time manifold M [2]. "Ihe manifold is cov-

ered with a Lorentz metric field gp, which divides vector.s into thrce classes:

spacelike, timelike, and null. At each point in the manifold p e M we can

choose locally inertial coordinates so that at Z the metric field takes on the

\ilinkowksi values. In general, however, the global str.ucture ofthe spâce-time

does not remain \4inkowski.

The most general fleld equations which possess general covariance and

contain ât most second delivatives of the metlic are given by the Einstein

field equations with cosmologicat constant [3]:

11
Rr, - ittr"R + ,su,A, 8t;7,,. (1 1)

where Àr, is the Ricci culvature tensor',

cosmological constant, ?r, is the energy

ll is the curvâtut'e scalar. À is the

momentum tensol of matter', G is
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the Newtonian coupling constânt (a number whicll deternines the strength

of the gravitational interaction), c is the speed of light, and 8n is the malter

coupling constant in relativistic units G - c : 1.

Soon aftel Einstcin published his Genelal theorl,-. Schwalzschikl [4] found

a solution which described the space-time extel-.nâl to a rnâ,ss point located

at the origin of coor-dinates. In spherical coor.dinates (r, f), the Schwar.zschild

line element is given by

t2 -'z!! \ ar, + ( r - 
2cÀl) -;", .- r2dçt2. (r 2)r/ \ r)

where, \'I is the mass of the matter distribution, and dO2 is the metric on

the two-sphere with unit ladius.

One of the more intriguing aspects of this solution is the existence of the

coordinate singulalities in the metric. Specifically, supposing all the mass

resides within a sphere of ladius 2G M , what can we expect to observe on the

surface r -- 2G A.Il And rvhat about below this surface? If one examines the

radial light rays in Painlevé-Gùllstrand cooldinates [5, 6. 7], it is found 18]

that

I,

-('

dr
d,t

(1.3)
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wherc ù"f dt meâsLlres the local speed of râcliâl light rays. Tìrus, at r:2GAtl

one notices that drldt:0, -2. This means that outgoing radial light rays are

stancling still rvher-eas ingoing lighi rays continue to apploach the cooldinate

origin. Nloreover'. for r < 2GA4.1t is seer that drldt < 0 for. botÌr ingoing

and outgoing light r-ays meanitrg that the sur.face, or ìroundar'1., r : 2G IVI ,

encloses a volume of space-time u'hich is causalll' r.emoved fi'om the lest of

spacc-time. This bounclary is called the event holizon and is inter.preted as

the boundaly of a black hole.

In the 1960's, the singulality theolems showed that an essential singulâÌ-

ity (a point of infinite space-time curvature) must always occur once a closed

trappecl surfacel has formed, independent of matter type ol symmetry. Prior

to these theorems, Oppenheimer and Snyder [10] showed explicitly. in 193g,

that a black hole could be formed dynamically as the end point of glavita-

tional collapse. Despite its vely interesting ploperties, gr.avitational collapse

and the bÌack holes rvhich are subsequently formed did not r-eceive very much

âttention in the 1940's and 1950's on account of the lise of quantum mechan-

ics.

In 1976, Davies, Fulling and Unruh 111] demonstrated using a two dimen-

I ln 1965, Peuose deÊned a trapped surface as a closed, spacelike, t$'G,surfâce \1,ith the
property tbat orthogonal uuÌl geodesics converge locally iD future directions [9].
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sional model that. in the case of massless scala'l fleld. black holes evaporate

over time b]. contlibuting to the thermal flux at inflnrty. This result was con-

sistent with Hawlting's ear'lier speculations that quantum mechanical effects

'n'ill cause black holcs to ladiate arvay thelmal energy in proportion to theil

sulface gravity [12]. In both of these cases, one âttenpts to include quantum

mcchanical efiects in the glavitational field by only quantizing the mâtter

field in a background stâ,tioìlar-y solution of the classical gravitational field

cquations.

The non-lineality of the gravitational fielcl equations often makes ana-

lytical solutions difficult ol even impossible to obtain. Numelical relativity

offers insights to the dynamics of gravitational collapse by solving the field

equations iterativell. using computer code. For a r.ecent r.eview on numelical

relativity, see Gundlâch [13] and Lehner [14]. In 1987, Goldwirth and Pi-

r'ân [15] studied the numerical collapse of massless scalar fields in spherical

symmetr-y. The¡, 6þs6.rru¿ that black holes form in tìre space-time for certain

configulations of initial fleld matter. In other câses. for weaker initial field

mâ"tter, tlÌe mattel dispelsed to infinity. Unfoltunately, the data were not

sufñcientl)¡ accutate fol a detailed analysis of the central (physical) singular.-

ity. Nevertheless, numerical relativity appealed to be capable of addressing
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the issue of the cosmic censorship conjectures.

The weak cosmic censorship conjectule affirms that all singulalities alis-

ilg, generically. from the gravitational collapse of matter must be hidden

behird a black hole holizon and are thus hidden fi.on any distant obser.veL.

The corjectule has never been pr.oven (nor disproven) 116l but the conse-

quences of its validity would forbid the existence of naked silgularities2.

Intuitively, it seems leasonabie to expect that sufficieltly small amounts

of matter, pâl:ameterized by sufficiently small-valued initial data, would, at

late evolution times, clispelse leaving the space-time free of singulalities.

indeed, this has been slÌown for certain types of matter [17, 18]. On the other.

hand, sufficiently large-valued initial data would be expected to collapse to

form a black hole and a singulality. But even uttil the ear.ly 1g90's little was

known of the nature of dynamical gravitational collapse nor. of whai might

happen in the collapse of matter which was neither "sufficientlv small" or

"sufficiently lalge" .

Beginning in the eally 1990's, Choptuik began a svstematic mrmerical

stud¡r 6f the glavitational coìlapse of a minimally coupled spherically sym-

metric massless scalar field 119]. He forind several surpr-ising properties in the

2 A raked silgularity is a singuìar point in a spâce-iime which is visible to distant
obsen'ers. See, Harvkiug and Ellis 12] fo¡ mo¡e on the singularity tbeo¡eurs.
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d),namics of colla,pse including the appealance of naked singularities. This

finding appeared to vioìate the cosmic ccnso'-ship conjectures.

Penlose describes the cosmic ceûsoÌship conjectule in the foìlowing way:

Any genelic suitable non-singular initial clata which evolves accotding to tl.re

field equations of cla.ssical general relativity will not develop any sp¿ce-time

singularity r.isible fi'om infinity [20]. This would mean that even an observer

falling behind the event holizon into a Schu'arzschild black hole would not

observe the central singula,rity until they had met their fate. In 1981, Mon-

crief and Ealdley 121] reformulated the cosmic censorship conjectures in the

context of a global existence conjecture fol solutions of the Einstein field

equa.tions.

Some form of cosmic censorship is essential fol genetal relativity because

the existence of naked singulalities in a space-time would not allow pre-

dictions of stable future evolution in regions outside of the horizon. This

would happen because arbitrary pieces of information from within the sin-

gulality could be visible fi'om infinity thus modifying, in some arbitrary way,

the physics of the rest of the universe. Without the censolship coûjectules

general relativity theory could predict its own demise.

Nevertheless. in 1991, Shapiro and Tlrekolsky 122] wer.e one of the first
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to numericaìly obselve naked singular.ities during the collapse of collisionless

gas spheroids. The black holes fonned in this system where found to be

consistent with the hoop conjectulc which states that black holes rvith mass

,1.1 r'ill ahvays folm r.r'henever that m¿rss is compacted I,ithin a r.egion u'hose

cilcunrference in evely dilection is 1 4¡A.:t. For initial data rvrth sufficiently

Iarge valued semi-major axis the authols obselved spzndle singtlarities ¡vith-

out an appârent holizon thus suggesting a violation of the cosmic censorship

conjectures.

Chlistodoulou [23] providcd analytic examples of naked singularity for-

mation in scalar freld collapse. In an impoltant extension to this eallier u,ork,

Christodoulou [24] later argued that because the naked singularities found in

scalar field collapse have positive codimension they are necessarily unstable

phenomena. This would suggest that. for the case of scalar. field. one has not

yet lost cosmic censorship.

1.2 Conventions

Einstein summâtion is implied ovet' l..epeated indices on tetìsols, e.g.

10

?4 - \- ?o'ùu 1,',"' (1 4)
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$¡heÌe m is the number of independent coordinates and Tj,, is an albitrar.y

mixed tcnsor. The metric tensor g¿,, is defined bv

¿s2 : g *d.r| rh" , (i 5)

ï¡her-c ds is the infinitesimal distance measure betr,veen adjacent points ir

the manifold. The metlic tensor is also the cova::iant tensor used to lower

contlavariant indices, thelefore,

Tr, : gr.g,BT"þ (1 6)

The inverse of the metlic tensor is the contlavariant tensor or¿L defined bv

sI'''s"":6!, (1.7)

where df, is the kronecker delta. For two dimensional spacesr we use a metlic

signatule of (-+). For higher dimensional spaces, the metric signature rve

use is (- + . ..+). The length or norm of a vector Xl is given by

11

X2:XpXP:g,",,XPX" (18)
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Using our convcntion: vectors ¿ìre tirnelike if X2 < 0, spacelike if X2 > 0,

and null if X2 : 0. Wc also define

(Vx)' : V,,¡V"X : gþ'Y,"XY ði

The metlic dete¡minant is defined such that

aTu"
¿¡ 

: oÀ1u.: 1w.s

ur-¡ : l_det (e\1/, (1.10)

is a scalal density of weight +1. Therefore, a tensor density for an arbi-

trary tensor Tþ" can be constlucted by forming the product 6EgTr",). "lhe

Christoffel connection is given by [3]

ri" : (1.11)

Alternative notation for the partial differentiation of a tensor Q, is giræn bv

1- 
^. 

(ðs," . ô)9,, 0g",\
,s \41,-an-a*)

(1 e)

(1.12)
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Covaliant diffelentiation of a mixed tensor !í is given by [3]

V >.rí : T'r,¡ : Ti,t + r\,7í - rirT: (1.13)

The d'Aleml¡ertian opela,tol is given ìr1'

n : VpVP : qt'"V l,V,.

The Riemann-Chlistofïel cur:vature tensor is gir.en bv [3]

(1.14)

4"" : rì,," - rì"," + t1,t:,t - tl"t)n. (i.1b)

The Ricci tensor is obtained by contlaction of the culvature tensor

T) DOtt pL, - tLtou

and the curvature scalar is given by

(1.16)

P : gP" Rp, (1.17)



2. REVItrW OF THE CR,ITICAL PHÐNON/iENA IN

GRAVITATIONAL COLLAPStr

In this chapter, a levierv of the critical phenomena observed in numer.ical

calculations of gravitational collapse is presented. The filst section focuses

on the numerical solution first reported by Choptuik in massless scalâr field

collapse. Cìroptuik found a univelsal critical solution in the numerical col-

lapse of scalar' fleld matter with spherical symmetry in a 3 * 1 dimensional

space-time. The propelties of this critical solution are discussecl. Although

the focus will remain largely on scalar field matter types, I include in Section

2.1.1 a brief discussion on the clitical phenomena observed in glavitational

collapse of other matter types.

Scalar'field collapse in space-time dimensions other. than 3f 1 will be dis-

cussed in Section 2.2. The section begins with a review of the BTZ black hole

in three dimensions and the interesting properties of this solution. The thr.ee

dimension¿l spâce-time is interesting because it only admits bl¿ck hole solu-
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tions rvhen a constant curvature telm, i.e. cosmological constant. is inciuded

in thc ¿ction. In the litelatule, there exists nune¡ical and analytic evidence

that the solutior of scalar field collapse in three dimensions with cosmological

constant is a universal clitical solution with cottinuous self-similality.

The chaptel is conclucled ìry cliscussing contemporary theory on criti-

cal phenomena (Section 2.3). Clitical solutions in gr.avitational collapse are

qr-ralitatively similar to phase transitions and clitical phenomena obselved

in statistical physics. They display symmetr)' breaking, self-similarity, and

polvel law scaling. These concepts will also be discrssed.

2.1 Choptuik Scalar Field Collapse jn 3 f 1

Choptuik was first to discover critical behaviour- in the gravitational coÌlapse

of a mâssless scalar field [19]. He evolved one parameter families of initial

data and found that the matter field collapsed to form one oftwo possible end

stâtes. The data either formed a black hole solution or dispersed to spatial

infinity leaving behind asymptotically flat space. The initial data could,

in general, be parameterized by sevelal parameters. If one parameter rvas

aliowed to vary while the others lemain fixed the end state of the evoiution

would depend on the iritial value of this one pâ,rarneter.
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Choptuik denoted an initial parameter. by o, and the solutior to the evo-

lution equations rvhich depend on a by Slo]. For suffcientiy large concentr-a-

tions of matter', corlesponding to sufficiently large ralues of a, a black hole

would foÌm in the space-time. These types of solutiors ale conventionally

refellecl to as superclitical. On the other hand. for suflicicntly small values

of a the mattel u'ould eventually disperse. These soìutions are convention-

ally refelred to as subclitical. Choptuik demonstr.ated explicii;ly that there

existed a critical value, a* € a, which sepârå.tes black hole from dispersion

solutions and thât the critical solution-i.e., S[a.]--is a universal solution

independent of the family of initial data.

Choptuik considered the evolution of four distinct families of initial data

with each family isss¡1þs¿ by two or more pârameters. In each case one ofthe

parameters was allowed to vary until the criticaì value of that pârâmetet was

determined (within machine precision). Choptuik found that all supelclitical

solutions with ¿ - n* contain black holes with mass satisfying a power larv

with the same cl'itical exponent. Below, ne for.mulate Choptuik's model.

Consider a minirnally coupled massless scàlar field, X, coupled to the
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grar.itational freld gr". The enelgy-momentum tensor for the field is given by

T,, Vr\V,r - jl,,,v"rV'r.

v'here the mattcl field is suì.rject to the Klein-Gordol ecluation

(2.r)

!x: o (2 2)

The Einstein field equations for the system considered b), Choptuik ale given

by

G," : R,, - |n*o: 
y¡rTp,

Notice in the above equation that we have dropped the cosmological term

from (1.i). In genelally covariant form, the massless Klein-Gordon equation

is

(2 3)

(2 4)
I

J-Ua" 
(J-sn''"a"r) : o

Corsider furthel that the system is sphericalll' symmetric so that the

following time-dependent Schwarzschildlike, metric tensor can be defined on
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the manifold:

ds2 : -a2(.r,t) dt2 + B2(r,t) (1,r2 + 12t¿Q2 (2 5)

v'hele, the ladial coordinate r meastÌes the ptoper surface alea, ú is a time

cooldinate, a(r, f) and B(r, f) are metric functions dependent on only two

coor-dinates, and df,)2 is the metr-ic on the two-spher.e with unit racìius, The

field equations in these coordinates vield fotr non-vanishing equations [4].

Only th::ee ofthe field equations ar-e independent due to the Bianchi identities

(see page 95). Choptuik chose to evolve initial data via the follorving two

field equations:

^OLto

cl+ c!

1 /28', 1\ l_t___tr

'dr\P r)','
2 /ß' a' 1\_t: I

rû2 \B a r)

:8"4 (2 6)

2 ^ ..

Þ:s-(]iy+r,') (27¡

where a prime indicates partial differentiation with rcspect to the coordinate

r.

During the calculation, Choptuik monitored the total consel'ed rnass, M,
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of the space-time. From (2.6), the total mass is

o, : l,- 4nr2r[ct,r _ 
l"- (#) -, (2 8)

n'hele the nass aspect function m. is relatecl to the metric (2.b) via

(2 e)

Choptuik evolved several one parameteÌ families of initial data profiles

using finite difference techniques and an adaptir.e mesh refinement algorithm

rvhich varied the local grid spacings in response to the development ofsolution

structule. The mesh refinement technique used by Choptuik was a specialized

version of a method developed for hypelbolic partial diflerential equations

and enabled a more accuràte analysis of the problem than had been achieved

previously.

Choptuik examined the strong field dynamics in the r.egime of solutions

near the critical solution of thc model. ln this region, he found several

interesting results: i) that arbitlarily small black holes could be folmed in the

space-time as one approaches the clitical solution (from supercr.itical values

of a); ii) neal the clitical solution, the masses of the black holes, Ms¡7, obey

/2m\1tt __ l:_
\ r/ 132
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the polver law scaling relationship

\16¡1 x a-a*l'r (2.10)

r.r4re.-e 1 is a universal constant independent of the farnily of initial data;

iii) the fleld plofiles "echo", or repeat themselves, on incleasingly smaller

spatiotempolal scales. That is, the solutions exhibit discrete self-similaritv.

The lesults are summarized in more detail belorv.

U nìver s al C út ic aJ S olutions

Some aspccts of Choptuik's results were far from urrexpccted. For example,

it had long been hnon'n that a black hole could be for.med dynamicaÌly as

the end point of gravitational collapse. This had already been shown ex-

plicitly by Oppenheimer and Snyder as we mentioned above. In contr.ast, it

has been shor¡¡n ) at least for certain types of matter. that small amounts of

initial mattel will disperse lear.ing the spâce-time fi'ee of singularities [25].

Wrat Choptuik set out to do in his research program was to determine what

features gravitational collapse might have in the region separating these trvo

extremes.

Choptuik conjectured that there exists a universal critical solution which
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is independent of the family of initial data. Furtl.rermore, that â, zero nìàss

black hole is folmed in the space-time when the initial parameter is exactly

tuned to the critical value. That is, the cr-itical solution acted like a phase

tlansition sepalating two distinct end states of collapse and as he fine tunecl

l;he initial parameteÌ to near the critical value, Choptuik observed that the

strong fieid gr-avitational dynamics "washed out" âny information the fields

contâined of tìre initial data profile. Hence, all one-par.ameter families de-

scribing initial matter appeared to be attlacted to the critical solution along

the same path in phase spâce1. Moreo\¡er, the evolution of Choptuik's criti-

cal solution concluded in finite centlal proper time {i. The pr.oper.time of a

central observel is defined by

lt_-
1:o - Jn 

a (0.t) dt (2. i 1)

Hamadé and Stewalt [26] also examined the gr.avitational collapse of a

massless scalar field in spherical symmetry. Using a double-null coordinate

char-t and ¿ similar algorithm to Choptuik, Hamadé and Stervart confirmed

the clitical behaviour in scalar field collapse. Along with verifying the u¡ri-

1 The phase space picture of critical phenonreua iD the context of gravitational collapse
is treated in ùÌore deta"il belo\\'.
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ver-sal critical coìtstants. they also shorved that the scalar cnrvaturelB ancl

scalar field enelgv density could reach arbitrarily large values in subclitical

collapse.

ln [27], Garfinkle and Duncan verified that the ma-ximum curvatnLe in

subclitical coll:r,pse scaled via power law lelationship similal to (2.10). They

also obselved that the scaling constant has the same value as the scaling

constart seen in supercritical mass scaling.

In 1995, Garfinkle [28] reported verification of the critical phenomena in

the Choptuik model using a null initial value formulation wìrich did not use

adaptive mesh refinement. To increase stability in the algorithm. Gar.finkle

expanded the matter and metlic functions in a Taylor series neal the center

of symmetry and adjusted the grid size iteratively to rlaximize resolution in

the lesult. In his study, Gar'finkle also verified the discrete self-similarity in

the clitical solutioÌr.

Black Hole À4ass Sca.lirg

One of the interesting lesults of Choptuik's \\¡or.k wâs the discovery of univer-

sal black hole mass scaling. The mass of a black hole in dynamicaÌ glavita-

tional collapse is estimated by observing the apparent formation of a closed
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trapped surface and detelmining the position of the horizon. Black hole for-

mâtion is signalled by 2m.lr -, 1 for some rB¡7. The mâss -À1s¡ : 2r¡¡r then

immediatelv follows. The parâmeter value ¿ desclibing the initial matter

lield profile t'hich colresponded to the l¡lack hole solution with mass,{,16¡7

was stoled in a data fìle. In the region neal the clitical solution, Chop-

tuik r:ollated the results (a,, À[pp) fol seve-,-'aÌ ¿ and found all one parameter

famiÌies of initial data satisfled the powel- law

Mø¡t: cr lo - o-]' (2.12)

where, c¡ and a* ale family dependent constants, and 1 - 0.37. Gund-

lach f29] later' repolted, via peltur-bation calculâ,tion, 1 :0.374 * 0.001 in

the glavitational collapse of m¿Ìssless minimally coupled spher.ically symmet-

lic scalar field. Several other authors have reported verifìcation o11 : 0.374.

including those mentioned above.

The initial data families Choptuik considered were:

x(r) : x6r3exp(-l+]')

x(') : ".*"n(T)

(2. i3)

(2.r4)
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¡(r + 16) - -11 ' (2.15)"l /1\
Àor " lexp | - IL \r./

A fourth famil)' lvas also co¡siderecl whose û.ritial proflle was â weighted

con'rbination (weighting palameter- 4) of late-tirne fits to the subclitical and

supelclitical e\.olutiôn plofile of a square ba'-'rier pulse shape. ln all câses,

onc of the parameteÌs, either' ¡6. rs, d, q, or ?, were allowecl to var-y over

several runs of the computcl cocle. Critical values of the parameters wele

detei-mined via binary seâlch of subcriticâl and super.cr.itical evoluiions (to

the limit of machine precision which was la - a-lla È 10-13). In this thesis,

I will consider an initial family of data similar to (2.13).

Scale Echoing

Anothel of the fascinating and unexpected results of Choptuik's work rvas

the discovery of the scale echoing or discrete self-similar.ity pr.oper.ty of the

solutions. In order to show the scale echoing of the fieÌds in the clitical

solution, Choptuik intloduced two new logarithmic variables p and r given

by

p: toe(kr) r : log (Å: tG - 
".1)

(2.16)
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The constants ,b and ft r'cre farnily dependent constants which _,-epresented

the scale invariance of the rnodel. If Choptuik character.ized a field profile

of the critical solution--e.g. tlÌe curvature scalar, â metric function, ol the

uratter scal¿,r' itself-in telms of the logarithmic variables as Z-(p,r) then

the sca.le echoing of the field proflles was clemonstrated by the relation:

z" (p - L, r - L) : z- (p,r), (2.r7)

wheÌe 
^ 

is the discr-ete, or periodic, self-similarity constant [30].

The scale echoing leÌation could be more readily seen by fi.eezing a near

critic¿l evolution at a certain time ?6 (which is near {i), advancing the

evolution by a time ô?6 and taking a srapshot of the field profiles (say, as a

function of r). Then, at a later time T6 * õTo(1, + e ^) an identical profile

was observed to lepeat itself over a space scale e^ times smallel than the

pl-ofile obselved at the time To * 6To This process of increasingly smaller

scale echoes of field plofiles was conjectuled to repeat itself indefinitely in

the critical solution.

Initially, Choptuik intloduced a separate Â, and A" into (2.17) because

he assumed the self-similal'ity would be different in the space and time di-
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rections. Hou'cver', aftel sufficient anâlysis it wâs found Ap : A, : A (to

within numerical accuracy). In his perturbation analysis, GLrndlach [29] re-

por-ted A : 3.4453+0.0005 in the glavitational collapse of nassless minimally

coupled spl.relically symmetric scalal fìeld.

The dtscrcte self-similality constânt A was also conjectur.ed to be a uni-

ver-sal consta.nt in sc¿lar' field collapse because each field profiÌe Choptuik

conpar-ed in his calculations exhibited the echoing plopertv with the same

A. Furthelmore, the peliodic nature of the cr.itical solution manifests itself

as a u.iggle in the mass and culvature scalâr power law scaling lelationships_

The relation between the periodic wiggle in the scaling relationship and the

discrete self-similality will be discussed in Section 2.3.3.

2.1.1 Other Matter -À4odeis in 3 + 1

Since Choptuik's seminâl påper on the subject. several other matter models

have been used to study dynamical glavitational collapse to black holes.

Universaìity, mâss scaling and self-similarity have been shorvn to exist in the

clitical solutions of these other matter types.

In 1993, Ablahams and Evans 131] reported critical behaviour in the

gravitational collapse of vacuum axisymmetlic gravitationâl wave packets.
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The near-clitical solutions found in that case rvere remarkably similar. to those

found by Choptuik in scalar'field collapse. Abrahams and Evans observed

eviclence of discrete self-similality in the str-ong field legion ¿s u'ell as black

iroÌe mass sc:r"ling apploximateiy equal to the case of sphelical massless scalar

field (1 = 0.37).

Evans ¿nd Coleman [32] analyzed the gravitational collapse of radiation

fluid2 irr spherical symmetly. They found ntass scàling rvith a univelsal scal-

ing constant of 1 = 0.36 and demonstrated that the critical solution is con-

tinuously self-similar. \rloleover, the solution they found was only locally

self-similal due to the fact the space-time is not asymptotically flat. Koike,

Hara and Adachi [33] performed a linear perturbation analysis, by employ-

ing a self-similatity ansatz based on the Evans and Coleman solution. They

pr-esented a general method of predicting the mass scaling constant using the

largest exponent of the pelturbation. Using this perturbation method they

show that in the case of radiation fluid one should expect a mass scaìing con-

stant J = 0.355 80192 u'hich was in remarkable agreement with the Evans

and Coleman result.

2 Radiatiou fluid is perlect fluid r¡atter q¡ith plessure,.¡r, ard energ-\, density, p, related
Ity p : àp. Tlre energ¡'-nomentum tensor for perfect fluid is given by Tp, - put"u, +
n(op, * uru,) : p (gp, + lupu") rvhelc up is the four-velocity of fluid particles.
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h 1996, \"laison f34] u'as one of the first to suggest that ur¿i,uersa| cril,;rcal

solutions found in gravitational collapse mày be, in fact, unique for difierent

matter types. He found in the case of a perfect fluid that the mass sca.ling

constant was clependent on the ecluation of state i.e., 1 - ^/(k) u'here À js a

parametel of the equation of state p : kp. h his ana,lysis, \'Iaison confir-mecl

the known lesult for the special case of ladiation fluid (À : 1/3) Lrsing a

Iinear stabilitv analysis as ploposed b). Evans and Coleman, horvever', he

demonstrated that the mass scaling constaflt is a ver.y sensitive function of k

which rnonotonicaìly increases from about 0.1 to about 0.8 as fr is incr-eased

fi'om 0.01 to 0.9. As Nlaison's analysis depended strongly on a continuous

self-similâÌity ansatz, there was some skepticism on whethel the solution rvas

the âttractor at criticality 135]. Neitsen and Choptuik [36] and Harada and

\4aeda [37] would later pr-ovide numerical verification of the N,faison result.

Hamadé, Holne and Stewalt [35] reported str-ong evidence that a con-

tinuously self-similar solution is the attractor in spher.ically symmetric ax-

ion/dilaton collâpse. They carr-ied out a numelical evolution in doubÌe-null

coordinates rvhich suppo::ted an analytical aÌgument based on a css ansatz.

The near criticai solutions appeâr'ed to diverge from a css pr.ediction in tÌre

critical solution. In o¡der to pledict the mass scaling constant, they used a
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linear: peltulbation method similar to that in [33] and found excellent agree,

mcnt n'ith the numerical estinìate t :0.264.

A numelical analysis of critical phenomena in the gr-avitational collapse of

a Yang-\'1[ills field has l¡een calried out bv Cl.roptuik, Chrnaj and Bizoú [38].

In their rnodel, the authols observed both css and dss solutions. They re-

ported a dss solution mass scaling of 1 = Q.!Q with self-similarity constant

L çv 0.74. The intelesting realization of the Einstein-Yang-\,f ills model is

that it appears to admit a ct'iticâl solution for which cettâin two-parameter

families of initial data separate dispelsal solutions fi'om both T¡'pe I and

Type II solutions3.

Type I and Tvpe II solutions are also observed in massive scalar field

collapse in spherical s)¡mmetry [39]. Fulther evidence of Type I critical phe-

nomera was lepolted in 1998 by Rein, Rendall and Schaefier'140] and in

2001 bv Olabarrieta and Choptuik [41]. In those cases, numer-ical studies

of spherically symmetric collisionless matter in the Vlasov-Ðinstein system

were carried out.

Clitical phenomeûa were also found in the gravitational collapse of com-

:l \pe I critìcal solutions $'itl'l black hole mass as an orcler paraureter contain a mass
gap. Hence, black holes "turl ou" at sorrre flnite mass in the supercritical regiou. In
contrast, Type II critical sohttioDs hâve a conl,iuuous order parameter nleat1ing a zero
mass black hole resides at the criticâl solrrtioìr
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plex massless scalar field in 142. 43] and [44]. Analytic worlt on massive

sc¿lar fleld collapse in a Schu'alzschiid backgror:nd has also been performed

in f45,461.

To this poìnt, our-. review of tÌlc litelatule reporting critical gravitational

collapse of valious matter types has been restricted to foul dimensional space-

times. In the following section, rve begin a discussion of scalar field collapse

in three dimensional and higher dinensional space-times.

2.2 Gravitational Collapse in Otlter Dinensions

We fir-st levierv the thlee dimensional black hole and the inte¡esting properties

of the space-time in this solution. We rvill also discuss numerical and analytic

solutions of gravitational collapse of scalar field in three dimensions. The

numelical calculations we consider include a cosmological constånt term in

the action and the results indicate a Type II critical solution with bìack

hole mass scaling. An analytic solution in three dimensions performed by

Garfinhle [47] will also be shown to produce black hole solutions. In that case,

horvever, a scalal freld css ansâtz was used which assurned the cosmological

constant could be tuned to zero.

ln the section following the three dimensional black hole, a surlmaly of
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numelic¿ìl calculations of scalar field collapse in higher dimensional space-

times is presented- Included irr the Ìiteratule presented in this section, are

results initially repolted Bland, Preston, Becker, Kunstatter and Husain 148]

which ar-e also inciudecl in the lesults of this thesis. In [48] it u'as shown that

the clitical constants ol¡selved in gravitational collapse can be described using

smooth functions of space-time dimersion. Ii will also be shown, in higher

din'rensional collapse, that the critical solution does not depend on the value

of a cosmological constånt.

2.2.1 The Three Dinensional Black Hole

The Ðinstein field equations in vacuum are given by

G,' : R,, - 1n,,,^ * |n*n : o (2.18)

Consider the ca.se whel'e Á. : 0 in three dimensions. In this case, contracting

the above equation )'ields Ã: 0, which in turn gives

Rr, : o' (2.1e)
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In thr-ee climensions, tirere are six independent components of both Ãf,"

and Rp", Thus. we can assume the Riemann tensor. components are lineal

coml¡inations of the Ricci tensor components and the Ricci scalar'. Indeecl,

the lelation between the tu'o tensols is givel by [3]

Rswn : g¡pRp^ gs,Rp,- gu,,Rs,tgu^Rs,. Ito.n^ - J¡^sp,) R. (2.20)

Therefore.

R¡t,* : o (2.2r)

Thus, it is seen that there is no cruvature in three dimensions if A : 0. With

no cLlÌvatuÌe there are no black hole solutions.

Considel now the case where Â 10. We flnd, using (2.18), Ã:3.{ and

Rr,: l\9p,. lnselting these relations into (2.20) gives

R¡p,n : |b,^n^, 9t^sr"\ L. (2.22)

and we find that the space now contains non-zelo curvatule. In fact, a space

with these proper-ties is called a space of constant curvatule 13].

In 1992, Bañados, Teitelboim and Zanelli (BTZ) [49] examined the Ein-
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steil equatioÌls with negatir.e cosmologicâl constant. They consider.ed the

following action:

(2.23)

lvherein the above equation B is a sur-face telm. Applying the minimum

âction principle to (2.23) and dropping tÌre ovelall surface telm indeed yields

the Einstein lield equations (2.18) with -l\ - 7lI2.

BTZ considered a Schrvarzschild-like line element in thr.ee dimensions:

ds2 : - a (t, r) ctt2 + B (t, r) d,r2 + 12 d02 , (2.24)

whele P is the angular coordinate. Inserting (2.24) into the field equations

givcs the (non-rot aiing) solrLrion

ds2 - dr2 + 12 do2 (2.25)

where, the integration constant M is the total mass of the space-time mea-

sured at spacelike infrnity. and I is a scale factor i.vith units of length. The

f ^ / 1\S-- ld"rJ-slß-11+ß./ \ r'/

- (-0, - i) 0,,+ (-,ru . ;:) 
'
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metlic becomes singular- fol values of the radius given b1' the condition

r : +ttMP (2.26)

'rvith r : J MP h"ing the black hole horizon radius.

Wc norv point ont some inteÌesting propelties of this solution. The filst is

that the black hole mass,l.f is dimensionless, therefore,,{ pr.ovides a length

scale with which to measure the horizon distance. Namely, rf Â is tuned to

zelo the horizon radius is pushed to infinity and we are left only with the

interior (not to rnention the iack of curvature). Secondly, and unlike it's 3* 1

counterpart, there is no cur\ature singulality at the or.igin. This second fact

is made evident by examining the Riemann scalar- invariant which is given

by

R^P"^ R^,,,^ : 31\2 (2.27)

Pelhaps the most interesting aspect of the BTZ solution is that the space-

time is asvmptotically antide Sitter', not asymptotically flat. This is seen by

setting 11 : -1 in (2.25). Fol an excellent review of the 2 * 1 black hole cf.

CaLlip [50].

The zelo point of energy is usually chosen so that 11 : 0 when the horizon
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radius vanishes. BTZ consideled this state as the vacuurn. I'hich has line

element

,r\2 ,-.-2
d'i.": (:) d/'+(;) ,t,2+,2d0!. (2.28)

Tlre lrlaclr lrole spectr-um lies above this state. For ,À1 < rJ. NI I -7, a

sequence of conical singular-itics exist at the origin which ale excluded fi.om

the physical spectl.'urn. Thus, the BTZ space-rime contains a mass gap. of

one unit, sepalating an anti-de Sitter' "bouncl state" from the contiluous

black hole spectrum.

In 2000, Pretorius and Choptuik [51] plesented the results of a numerical

study of non-r'otating massless scalar field collapse in (2 * 1)-dimensional

AdS space-time. They observed the collapse and folmation of BTZ black

holes and found clitica,l behaviour similar to that found in four dimensional

collapse. One striking diffelence between scalar freld cóllapse in 3 + 1 and

the obselved collapse in 2+ 1 AdS was the appealance of a continuously self-

similal critical solution. Pretolius and Choptuik did not observe a disclete

self-similarity in the critical solution.

Pr-etolius and Choptuik reported a Type Ii critical solution with a black

hole mass scaling constant of approximately 1.2+0.05. In oldel to determine

the scaling exponenb, they collated the maximrm values of the Ricci scalar
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(at r : 0) r,ith subclitical values of n keeping I fixed. As the Ricci scalal

has dimensions of inveÌse length-squaled. it u'as assumed that the scaling

exponent obtained in this way rvould be lelated directly to the black hole

rnass scaling exporent ir.r snperclitical collapse.

h 2001. Husain and Olivier [52] independently studied tlÌe collapse of

mâssless scalar fìeld in a three dimcnsion¿l space-time with negative cosmo-

logicaÌ constant, They used a double-null formulation of the Einstein-scalar.

equations in circular symmetlv (similal to the method used in [28] for. the four

dimensionaì câse) and verified the scâling behaviour observed b), Pretor.ius

and Choptuik. For superclitical collapse, they repor-ted a critical exponent

of 0.81.

Soon aftel publication of the Pretorius and Choptuik result. Garfinkle [47]

performed an analytic study of critical collapse in 2+l AdS. Garfinkle found

an exact solutior for the line element using a scâlar fleld css ansatz that

r-equirecl the vanishing of the cosmological constant. The method is outlined

below.

Following the work of Christodoulou [25], Garfinkle deflned the netric

ds2 : - exp (2u) d"u2 - 2exp (u -t À) dudr + r2d02, (2.2e)
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$¡here / : u(u,r), À: )(¿,r), z. is the ploper time of an observer at the

origin, ard r is the proper radius of a circle of circumference 2rr centered at

the origin.

Gar'finkìe conside-,-ed the Einstein-scalar field equations rvith cosmological

constant. These equations ale given by (1.1) rvith energy-momentum tensôl-'

(2.1). He defined the new quântities

I : exp(z+ À)

g : exP(z- ))

Solving the field equations gives

(2.30)

(2.31)

(2.32)e : exP l* I,'o(W)r4
s: r-ztlo'rsqr¡ar.

Note that in older to match the result of Gar'finkle we have changed the

coupling in the field equations fi'om 8r to 4n.
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o ô'r .1?r l â /_. ô1\ _ 
^'a,u*;aì ;u\'ou;1:o e34\

Galflnkle used the scalar' field css â,nsatz

The scalar wave equatiot fol this system is givel by

y:cf+(t(R),

where the two new variables 7 and ,R ale defined hr.

z : -exp(-?)

r : exp (-?) Ã.

(2.35)

(2.36)

(2 37)

The constant of proportionality, c, is normally chosen so that the solution

best matches the numerical collapse result of Pretorius and Choptuik.

The ansatz lequi-,-.ed that the cosmological constart in (2.33) be neglected

which in turn leduced (2.3a) to the flat space rvave equation. Putting (2.35)

into (2.34) with t: l yields

R(1 -2R)1þ" +(1 -3R)1þ'-c:O, (2.38)
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'"vìrere tìre prirnes indicate partial deril¡ati\¡es trith respect to .R. The solution

of the above diferenti¿l equation gave the exact form of the fleld equation

(2.3e)

The leader t'ill notice that the line element in these coordinates is singular

wlren .R : \12. Aftet a change of coordinates, Garfinkle demonstrated that

this singulality is not physical and that the metlic is smooth for values of c

given by

-(n) - r (2.40)

where n u'as a positive integel. After comparison with the nume¡ical lesults of

Pt'etot'ius and Choptuik, GarfinkÌe determined n: 4,c: -0.2443. However,

Gatfinlçle was unûble to detelmin,. f .

2.2.2 Black Holes in Higher Dinensions

Garfinkle, Cutler, and Duncan [53] performed rumerical simulations of criti-

cal gravitatioral collapse of massless minimally-coupled scaÌar field in spher-

ical symmetly in six space-time dimensions. They found a Type II critical

solution with disclete self-similarity.

. 

- 

r- 8z¡2

| (r + /1- 2A)- 
|(l-l-l' t 4\/I - 2R l
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The authols began by defining a Schwarzschild-like metlic in d dimen-

sions 154, 55, 56]:

" / t6r t/\/tc.- 
- 

, II |Åt:
\ (d - 2\ A 

r¿ _:1 ra-3 f
_ l,_ t}r Xt \r.7_2,_:.76:* 

\' ta-zø,,,*t) dr'-r'dQld-2' (2 ll)

In the above Ìine element,,4.1 is an ADÀ,ilike mass [5[ and

A6_t) : 2r@ 1)/2 
ltl(d. - 1) 12) (2.42)

is the alea of the unii (d - 2)-sphere with metric d0f¿_2¡. The mass ,41 has

dimension (length)d 3 so it was expected that the mass scaling relationship

in supercritical collapse u'ill approach the scaling law

Mp¡1 cx a - a*1Ø-th , (2.43)

where it was assumed .l :1@) In 158], naked singularities wele found in ¿l-

dimensional static spher'ically symmetlic gr:avity coupled to a massless scalar.

field.

In generic d-dimensional spâce-time, the Ricci scalar. will allvays have
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urÌits of invcÌse length squaled. Togethel u'ith the obselvalion that the max-

imal culvature scales in subct'itical collapse just as the black hole mass does

in Choptuik's 3 + 1 collapse it is conventional to cìefine the scaling relation

in d-dimensional collapse as

ll,rlÁx o( a-a+l't (2.44)

Assuming quantities with dimension length scale with the same critical con-

stant we câ,n deflne a new scaling constant 1m"." such that

MBHx a - a*l'Y^*"

and irnmediately make the identrfication

(2.45)

r'-."" : (d - 3) r (2 46)

The matter field stress-energy tensor for this model u,'as given by (2.t),

subject to the metlic (2.29) with dg2 replaced by dOfa_:¡ To help stabilize
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tÌre collapse simulations, the follorving new natteÌ valiable was definecl:

r,-- ] fi êt

Using this new mâttel variable, the rvave equation fol X became

Dh:l@ s)(h+É-24*2J!!("-")', (2.48)

(2.47)

u'here,

" : 1 ['rntr¡or,r. J o

r:1[¡'zs(¡)d¡,
r" Jo

| /' (s(¡) - 
"ir))'? ,-ls : exp(u _ )): "xl Lr*/ 

.__;-r1 .

a : exp(u- À) : å l,' *nlùao,

(2.4s)

(2.50)

(2.51)

(2.52)

and,

* ô 7A
l) - - 

_ _0_
du 2" Ðr

is a derivative oller-âtot along ingoing light lays.

(2.53)
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The initial value of the matter field was chosen to be

(2.54)

lVith constant r0 and d, disc¡ete self-similality of the matter field near crit-

icality was obselved rvith a per:iod A : 3.03. The clitical exponent reported

wâs ? : 0.424.

In 1999, Flolov [59] examined scalai- field collâ,pse in d dimensions. He

finds exact solutions for d: 3,4,5,6 using a css ansatz (which we will see

below is not vaÌid for the case of massless scalar'field).

A method of obtaining the mass-scaling exponent for any finite dimension

d > 4 rvith arbitlary cosmological constânt .r\, fol the case of minimall)¡-

coupled massless scalar field in spherical symmetly was first presented by

Bimkou, Husain, Kunstatter, Vaz and Olivier [60]. The method involved

a conformal redeflnition of the metric which was used to simplify the field

equations of the model. A doubìe mrll formalism rvas used which resulted in

a simil set of field equations to [52]. As we shall see below, the formalism

plesented by Birukou et al. [60] u'ill serve as the main content of the formalism

pr-esented in this thesis. In that paper-, d and Â appear âs input patameters.

¡(0, r') : r,r'o*n f -'' io l'l
I o' l
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The authors verified uuivelsality and scaling in the four and six dimen-

sional cases tvith zelo cosmological constant. The critical exponent measured

in supercritical collapse for d: 4 and d: 6 agreed well l'itir the results rve

have quoted above and the solutions exhibited discrete self-similar-.ity, hol'-

ever, tlle self-similality corstant was rot measured. They plesented new

results in five dimensions rvith zelo and negative cosmological constant. See

Table 2.1 for a summary of the r-esults in five dimensions. It should be noted

lnitial data pro{rle À:0 À: -1
Gaussian 0.52 0.49

lhnh 0.41 Ðlà

Tab.2.1: Critical exponent 7 in numerical scalar field collapse in flve dimensions
as reported by Birukou, Husain, Kunstatter, Vaz, ald Olivier [60].

that the results quoted in the d : 5 case had low pr.ecision but seemed to

indicate that 7 was independent of .4..

In 2003, following the wolk of [60], Husain, Kunstatter, Preston and

Birukou [61] presented new evidence that the critical exponent in glavita-

tional collapse of scâlår field in AdS space-time was independenú of cosmo-

logical constant Â.

In that model, and more generally in dilaton gravity, the dependence of

the fleld equations ol ,4, appear only in the definition of a scâlâr dilaton po-
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tential function. \'foreover', the À-dependent term in the dilaton potential

is a second oldel colrection term which vanishes at the or.igin for atl flnite

values of Â. As neal critical solutions will always have suppor.t ver.y near.the

origin it is not unleasonable to expect the clitical solution to be generically

independent of Ä. Table 2.2 presents convincing evidence that 7 is not a

function of ,{. The autho¡s verified the universality of thei¡ result by mea-

1 1 (cosh data)

-0.001 0.370 - 0.375
u.J / - u.óð 0.37 - 0.38

-i0 0.1J7 - ().:J9

0.36 - 0.38 (J..Jll - t,.:J¿J

-50 0.1J7 - 0.40

Tab.2.2: Nlass-scaling exponert in critical scala.r fieÌd collapse in four dimensions
demonstratirg the ìndependence of Â as reported by Husain, Kunstatter,
Preston a¡d Birukou 161]. The initial data profiles considered were a.

Gaussia.n shell and cosh pulse. The calculated values for the exponent
clearly showed the universality of the result and that 7 was independent
of Â.

suring the critical exponent for cosh initial data and finding the same scaling

consta,nt f.

Bland et al. [48] expanded on the wolk of [60, 61]. Similar to the pr.evious

lvork, a conformal redefinition of the metlic had been carlied out, motivated

by trvo-dimensional dilaton gravity. The wor-k composes the first system-

atic study of the dimension dependence of criticaì phenomena in scalar. field
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glavitatiolal collapse and rvill serve as the rrlâin content of this thesis.

Pleliminary lesults of that analysis were olrginally presented in 2004 by

Kunstatter 1621. In that plesentation, howeve,-, the n¿rture of the limiting

solution in the limit of lalge dimension lemained unceltain. The mrmerical

code hàd adjusted the cosmological constant to zero but in most otl.rer rvays

had been kept tl-rc same as [60. 61]. Several changes to the code, which con-

sidelably incleased stability, wele implemented later in 2004 and thr.oughout

2005.

As it will be seen, the key new diffelence in the pleseni formalism was the

use of ân integration by parts of the dilaton evolution equation. This change

amounted to an additional few lines of code and as a result of this procedule,

substantial stability of the evolution was achieved. The accur.acy of the

scaling constants rvas greatly improvecl and a clear picture of the dependence

of 1 on d began to emerge ultimately leading to the results plesented in [48].

In la8]. it u'as detelmined tliat 1 monotonically increased to an asymptotic

value at lârge d. The numerical 
'-esults 

were well flt by the simple r.elationship

I 0.467 (l - exp | 0.408d1) . (2.55)
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The data had been analvzed over the r.ange 3.5 < d < 14. Universa.lity of

the cr-itical solutions was velifled and lou' precision estimates of A rvere also

calculated. Table 2.3 summaLizes the critical constants lepor.ted in [48, 63].

a 631 I 103 a 148 I l4ðl
3.5 0.349 + 0.003
4 3.37 + 0.07 0.372 + 0.004 iJ.40 + ( 0.374 + 0.U02

4.5 3.30 + 0 0.398 + 0.002
5 3.19 + 0,06 0.408 + 0.008 3.10 + 0 0.412 + 0.{J04

6 3.01 f 0.06 0.422 + 0.008 2.98 + 0 0.430 j' 0.003
7 2.¡3iJ + 0.{Xi 0.429 + 0.009 2.96 + 0 0.441 + 0 004

8 2.70 :l 0.08 tÌ.43ii + 0.009 2.77 +0 0.446 + 0.004
I 2.61 + 0.08 0,442 + 0.009 2.63 + 0 0.453 r 0.003
LO 2.55 + 0.08 0.447 + 0.013 2.50 + 0 0.456 + 0.004
11 2.51 + 0.08 0.44 + 0.01 '2.4b :L rJ. 0.459 + 0.004
72 2.44 + O. 0.462 + 0.005

2.40 +O 0.4ii3 :l 0.004
14 t).4ii5 + 0.(x)4

Tab.2.3: The echoing periods A and scer.ling exponerts 1a.s reported by Sorkin
and Olen 163] and Bland et al. l 8]. The initial data profiles were mass-
less scalar Gaussian shells placed in a d-dimensional space-time metric
with spherical symmetry. The critica.l constànts reported in 163] were
calculated by neasuriug the maximal scalar curvature in subcritical col-
lapse. h l48l, calculations were performed in supercritical collapse. It
is expected that both methods will produce the same critical exponent
and, as it can be seen in the table, both sets of results agree within
uDcertainty.

An independent numerical study of the space-time dependence of 7 and

A in glavitationaÌ collapse \r¡as Ìepolted by Sorkin and Oren [63]. h that

paper, the authors studied massless minimally coupled scalar fleìd collapse
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in spherical symmetr-y as a function of space-tine dimension d, In each

dimension exarnined. they oÌrselved the same qualitative behaviour. as that

originally repolted by Choptuik 119], howevel, the scaling exponert J $'âs

determilecl to a largel uncertainty then in [48].

Sorkin and Olen used the double null coordinates

dsz - -a (u, u)2 cludu r r çu,u)2 rl}la z¡ (2.56)

They evolved the field equations for a Gaussian initiaì data using the coor-

dinate t¿ like a time coordinate. A series-smoothing procedure was impìe-

mented for points near the centel of symmetry. The procedur.e updated the

field values, on a given ?¿-slice, by taking a weighted average of the predicted

evolution value of ihe field n'ith the value of the freld on a past light cone.

This procedule had the efiect of lowering the numerical er.rors at grid points

neâr r: 0 especially in the higher dimensions where numerical stabiìity u'as

most difficult to achieve.

Disclete self-similarity and mass-scaling was obselved for integel dimen-

sions 4 ! d < 11. Sorkin and Olen deter-mined that if the values of 7 were

extrapolated to higher dimension then .y appeared to have a ma-ximum in
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the dinrension range 11 < d < 13. However, the inclease of relative er.r-or. in

1 lor d - 10 and d : 11 might have led to a numerical artifâct.

2.3 Theory of Critical Collapse

The sirnplest example of clitical phenomena in statistical physics is the phase

transition at the liquid-gas bonndary of a fluid. Figule 2.1 shows a typical

phase transition diaglam for a fluid. It is seen that a discontinuity in the

fluid density occurs as one cÌosses the boiling curve. Define the diffe¡ence in

density as

^^aP-PLisutd-Pqos \z.J t )

As the tempelature increases from the tliple point, Ap decleases along the

boiling curve. The boiling cul-ve ends at the clitical point lp., fl) where

Lp : O. For temperatules larger than the critical tempeÌature ?1. the fluid

no longer boils and as a result one can no longer distinguish between liquid

â.nd gas phases.

In 1938, Landau and Lifshitz [64] showed that the clitical point in a fluid

trânsition is ar.r isoìated point in the phase space. That is, thele can be no

continuous series of critical points. À,foreover, they showed that the specific
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Phase Transit¡on Diagram for a Fluid

criÍicøl poinl

Solid phase Liquid
phase

À

Ê.

triplc po¡nt ,

/ Gas phase

Tempemture, T

Frg. 2.lr A phase tra.usition diagraur for a typicaì fluid. AII threc phases coexist at
tire triple point. Along the boiìing cur.r,e, the difference in fluid density
decrea-ses às one moves toward the critical point. At the critical point
there is no difference ir fluid density between the liquid and gas phases
a.nd so it is not possible to distinguish betr¡'een these t$'o phâses. At all
other points along the boiling curve, a discontinuity in fluid density exists
between the liquid ald gas phases.
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heat of a fluid at constant ìlÌessure is allowed to become indeter.minate at a

cr-itical point. These facts suggest that thele is no ânal)¡tic function of the

older parameteÌ- ât suclÌ a cr-itical point4. It is obser.ved that the density

differ-ence val'ies as a nol-integel powel of tenperatuÌe along the boriing

cur\¡e. Thât is.

LP : Ptis-i,r - Ps,,s - T- - T)' , (2.58)

where 1 is a clitÍcal exponent.

Anothel example of a clitical phase transition is the spontaneous mâgne*

tization of a ferlomagnetic mateÌial at low temperature 113]. At high tem-

peÌatures, a ferromâgnetic material will exhibit an average magnetization rn

u.hich is determined by the presence of an extelnal magnetic field. However.,

at low temperatures, and in the absence of an externaì field, the material

may spontaneously magnetize accolding to

lm:17--"11 (2.5e)

whele 4 represeûts the Curie temperature of the mater.ial and 1 is a new

criticâl exponent.

4 For n-rore irfo¡rtation on Landau theory the reacler may also colsuìt, for example,
Plischke and Bergersen [65].
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In the ferr-omagnetic case, the phase tlansition is symmetr¡' breaking and

continuous. At tempelatules }righer than the Curie temperatur-e, the sporr-

ta,neous magnetization vanishes leaving the system in Ìotâtionàl svmmetÌv

(when the extelnal fielcl is zero). This is in contrast to the spontaneous màg-

netization state u'hich has a random dilection even when the exter.nal field

is zero. Once the direction of m is determin€d, the system llas a pleferr.ed

direction.

Phase transitions which break a symmetry are classified as Type II or

second ordeÌ critical phase transitions and require a continuous order param,-

efer which vanishes at the clitical point. For the felromagnetic case, the

older par-ameter is the average sìlontaneous magnetizâtion rn which vanishes

continuously as the tempelature increases to the Curie tempetatrue.

In the case of the liquid-gas phase transition of a fluid, the density of the

fluid, at constant pressure, changes cliscontinuously across the boiling curve.

Thele is no change in the symmetry of the system and so transitions of this

type are classified as Type I or flr'st older critical phase transitions.

The analogy that can be used for critical phenomena in gr.avitational

systems now seems more obvious. In the case of the sphelical collapse of

scalar" field to a black hole, symmetry is broken rvhen crossing the black
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hole threshold. In the reflection solution. u'here no black hole is formed.

one is left rvith \'{inkowski space-time u'hich is naximally symmetric. In

four dimensiolrs this space will contain 10 Killing vector.s. On the other

hancì, the black hole solution wiÌl Ìrave a Schçvalzschild metr.ic possessing

a leduced number of symmetries. Thus, clossing the black hole threshold

changes the dimension of the Killing algebra of the space-time. Nforeover,

a"s we såw above, Choptuik founcl that the critical solution in scalar field

collapse contained a zero mass black hote. Thus, gravitational collapse of

scalar field is a Type II clitical phenomena with black hole mass being the

oldel parameter.

The black hole mass M¡¡7 vanishes continuously at the critical value of

an initial pârâmetets and varies accolding to the power law lelation

MB¡1 x la - ¿*11-""" , (2.60)

whe¡e, ¿ is a parameter describing the initial data, a* is the critical value

of a, and 6o"" is a univeÌsal exponent. The scale invariance of Type II

phenomena is associated with self-similarity of the mâttel-' and gravitational

5 TheÌe are, of corrrse, lnany furlctiorrs which can characterize the initial data i]t grav-
itational collapse. Choptuik [19] conjectured that in spherical scala¡ freld collapse. the
critical behar.iou¡ of the system is unive¡sal for all one parameter familjes of initial data.
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fields. As discussecl al)ove, the sphericâl collapse of scaÌar field gives Ìise

to a discretel¡' self-similar critical solution. The collapse of per.fect fluid

has a continuously self-sinilar clitical solution. So it is seen thàt T1.pe Il

phenonena can be associatcd with eithel a disclete or a contimrous self-

similarity. In the follou'ing section we will clescril¡e these phenomena in telms

of â phâse space pictule.

2.3.1 Phase Space Pìcture

The clitical solution can be thought of as a point in an infinite dimensional

phase space [13]. The phase space, or manifoìd, consists of the set of aÌl

possible smooth, asymptotically flat, initial daia. TÌre space of initial data is

â function space and is therefole inflnite dimensional, As the system evolves

with respect to time, integral curves in the phase space replesent solutions

to the Einstein equations.

Each point in this phase space represents one possible state colr.esponding

to the evolution of the set of parameteÌs describing the initial matter profile

at ole particular time. In the phase space of the spherically symmetric

scalar field data, two fixed points exist: the black hole âttractol- and the

reflection (or flat space) attractoÌ. AIso in the phase space is an unstable
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critical solution hvpersulface (u'hicÌr contains the zero mass black hole ol

naked singularity). The hypelsurface is the boundar.y r.epresenting the phase

tlansition fi'om sr:percritical to subclitical collapse.

Fol a given set of initial parametels, the system will evolve along an

integlal curve in the phase space for some per-iod of time befor.e the evolution

ends at one of these flxed points6. Thus, the evolutior proceeds for. a finite

time (see Figule 2.2).

Choptuik shorved in 1993 that, for massless scaÌar field, the black hole

threshold is universal for on,e parameter famzlies of initial dâta7. Thus, it

is assumed the critical solution fixed point exists in a (critical solution) hy-

persurface of codimension one in the phase space. Any cr.itical set of initial

parameteÌs will exist within this surface and, as the evolution proceeds, le-

main in this surface until evolution is telminated at the critical point. All

smooth one parameter initial data plofiles intersect the critic¿l sur-face at

exâctly one point.

Initial data which are tuned to near the clitical value of a given parametel

set wiìl initially be near to the cr-itical surface in phâse space. Evolution ofthe

0 UDless, of couÌse, the irritial data reside rvithin the critical hypersurface. In tltose cases
the evolutrion rvill remai[ in this surface, eveDtually te¡miDating at the criticâl point.

7 Of cou¡se. as we have seen above. sevet.ai ar¡thom have since demormt¡ated the uni-
versaÌity of critical solutions fo¡ a variety of mâtter types.
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F.ig. 2.2: The phase space picture in critical gravitational coÌìapse [2g]. The critical
point is embedded in a critical hypersurface of codimension one in an
infinite dimension¿.I initiaÌ value fuuction space. The solid line represents
a one parameter family of initial data which inte¡sects tlÌe critical suface
ât exactly ø : ¿*. The directed lines are exa.mples of the evolution of
initial data which eventuaily terminate on either the black hole solution
point, the critical point, ol the reflection solution point depending on
the injtial value of a. For initiaÌ data very near the critical surface, the
evolution approximâtes the critical solution for some time before being
repelled towa.rd the l:lack hoie or reflection solutions.
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data rvill proceed foÌ arvhile âlong an integral curve which is nearly parallel

to the clitical hypelsulface. Because the clitical hyper-sur.face is unstable,

ho¡l'er.er, the evolution will eventually be lepelled toward either a black hole

or rellectior solution depending on which sicle of the critical sur-face the initial

data reside. Physically, if the initiâi data leside in the subcr-.iticaÌ part of the

phase space then the mattel distribution ¡viìl never become dense enough to

form a blaclc hole during the evolution.

When viewed in tl.ris wa¡ lø - a- is simplv the first order measuÌ.ement

ofthe distance flom the critical surface duling the time the evolution approx-

imates the critical solution. Let P be a smooth function of the parameter a

on phase space sucÌr that data sets with P > 0 form black holes while those

with P < 0 do not. Then, the black hole threshold colresponds to P: 0. If

P is anal)'tic in a neighbourhood of this threshold then

P(p) : C la, - a.l + O((a - a.)'z), (2.61)

where C and a* are family dependent constânts

relation in 3 * 1 is given (to flr-st order) by

The black irole mass scaling

X,Ip¡¡ - Pt-*" - C )a - aÀ"r^'"" (2.62)
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\\'e rvill use a climensional argumcnt in the next section to shor,v that all

quântities with units of lengih will scale with the clitical exponent 1.

2.3.2 NI¿¡"ss Scalìng Deùvation

Gundlach [13] plovides an elegant stmmary of a delivation of the mass scaling

exponent using dimensional arguments and a pelturbation analvsis or.iginaliv

p-,.'oposed in [33, 34]. The method is outlined below.

Consider the css case. Define a solution to the evolution equations by

Z(r,t). In a css solution, the metric depends on only one coordinate. there-

fore, let us denote the clitical solution by Z-(r), where r is a some new

coordinate adapted to the css solution. An example of suitable new coordi-

nates (r, r) are given bv

T

t
/ + +\. - _t- l_' '"1' ''"\ 1 )'

(2.63)

(2.64)

rvhel'e ¿ is an overall space-time scale fâctoÌ with units of length and l* is the

tirne elapsed in the evolution of the critical solution.

For initial data very near the critical hypersurface. the solution Z will
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approxirrate the clitical solution Zt for an inter.mediate time. Gundlach

câlls tlris region the intermediate li,near regi,on where tire general solution can

be detelmined using a linear perturbatior of the clitjcal solution. A genelal

lineal perturbation is given ì:y the pol¡'nomial expansion in (¿ - f-)

62 -\Qexp()¿r) Z¡Q:), (2.65)

where, the Ç ale dependent on a, and r is in some sense a meâsure of the

lifetime of the peltulbed solution. We assume the perturbation spectrum is

discrete and that there is one growing mode, co'-lespònding, say, to Às being

the only reâl ând positive À¿. At exactly the critical valüe o*, we require

Co(o-) - 0 in ordel to completely suppress the growing mode at the ci'itical

solution. For all other finite values of la - a-1, the exponential function

¡¡.ill eventually dominate as 1---+ co (hencc, as I ---+ l.), thus rendering the

linear perturbation invalid. Nevertheless, for intermediate times the lowest

non-zero eigenvalue À¡ will dominate and rve can linearize the perturbation.

Therefore. the soÌution will approximate

z (r.r) - z-(ù + #la - o-lexp (À6r) Zs(r) (2.66)
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I{oike, Har-a and Adachi [33, 66] divide the o'oiution of a neal critical

solution into two parts, DuÌing eally times for r4tich ¡ is I a palticular

valne, say. r., (2.66) is valid. Soon after ru the evolution becomes non,linear

and the solution quickly becomes a bÌack hole (ol not, depending on the sign

of a - a-). It is duling this non-linear stage rvhere (2.66) is no longer. valicl.

The time ro is considered the lifetime of the perturbation and is clefined b1'

¿:cxp()o¡,)o#r_r.r.

wherc e is a small, fixed, positive constant. Therefole

": r1 logla-a- +C'
\¡

where (7 is a fixed constant. The perturbation is given by

(2.67)

(2.68 )

(2.6e)Z (r,r") - Z-(") * eZ¡(r),

where the sign in front of e corresponds to the sign of (a - a-).

It is now possible to redefrne the adapted coordinates by scaling (r, f) by
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a functioÌ of 1". We define the ner.v scaled coor.dinates bv

T ----+

t --+

1-

h
t:

L"

I exp (-2") .

(2.70)

(2.7r)

(2.72)

The dimensional argument is now made as follows. In d dimensions the black

hole mass has units [tr]d-3 and because the only length scale in the system

is given by -Lo we assume the l¡lack hole mass is proportional to an integer

porær' of this scale. Therefole,

tJ_3)
MBn x Lw-¡t x la - a-l ro (2.73)

and we make the identificatiorr: .l:7f 
^o: 

h"""1?J-3) Fulthermore, any

field quantity which has units related to length can be expected to scale like

the black hole mass. For example, the curvatur.e scalar -R has units [I]-2 and

so we expect

Lf x Lo- o( l0 - a+l¡o (2.74)

One advantage to measuring the power law scaling of the curvatüre scalar is
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that it can be measured in both the subcÌitical and superclitical r-.egions.

2.3.3 Self Simila¡ Solutiorrs

Type lI clitical phenomena have either continuously ol discr.etely self-similar

solutions. This is due to the scale-invariance of critical solutions in Type II

phenomena. Continuously self-similar solutions ale inva,riant under a small

le-scaling of both the space and time coordinates (by a factor of 1* e).

Discretely self-similal solutions are invariant under a re-scaling by integer

multiples of a cliscrete factor. The discrete factoi' is, in general, uniqr:e for

the space and time cooldinâtes8. Figure 2.3 shows à phase space picture of

scale invâriant or self-similal critical solutions.

C o nt inuous S elf- S imìLar i ty

In 1971, Cahill and Taub [67] deflned a geometric version of css as a spher.i-

cally s}'mmetric solution which admits a vector field (i' r,t"¡ ,nu,

-ayLtu - \uttJ t \u,u -.guu (2.75)

8 Horuever', it \¡as noted ¿ì.bove that the dss scaliDg constaitt is the same fo¡ both coo¡-
dinates ir the llrassless scalar field ca.se, see page 26.
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Fig. 2.3; Self-similar solutions in critical gravitationa.l collapse [29]. The critical
solution, or limit cycle, is represelted by the darkened circle in the critical
solution hypersurface. The two solid, directed lines are embedded in the
critical surfâce and ¿.re attracted to the limit cycle. The broken line shows
an evoÌution of ititial data. near the critical surface. For some time, the
solution approximates the limit cycle but is eventually repelled by the
unstable clitical surfacc.



2. Review of the C¡itical Phenonena in Grat itational Collapse 64

It can then be shown thåt the metric depends only on the adapted coor.dinate

:x - r lt. This reduces the fleld equations to ordinary differential equations.

A relevant application of this rnethod to scalar field collapse \r'as per-

folmed by l{ilschmanrr, \4iang and Wu [68]. In ti.rat case, the âuthors ala-

lyzed critical gravitational collapse of sphericaliy symmetric scalar field mat-

ter in 2 * 1 space-time dimensions. They obtained a critical solution which

asymptotically approached a css clitical solution ìty using a lineal pertulba-

tion and a css ansatz in the limit of vanishing cosmological corstant.

They confirmed the n : 4 single unstable mode of the css solution as

first found by Garfinkle [47], however, they do not determine a mass-scaling

exponent consistent with earlier findings reported in [51, 52, 69]. It is likely

that some of the differences in predicted mass-scaling exponents arise due to

a valiation of boundary conditions used in the analyses.

In 1996, Soda and Hirata [70] reported aû analytic study of the dimension

dependence of the mass-scaling exponent in clitical gravitational collapse of

spherically symmetric massless scalai- field. They began with a d-dimensional

line element using adranced Bondi coordinates in spherical syrnmetÌy:

tl s2 . -g¡u.r)glu.r\dt2 -l2g\r.r)dudr+ 12 rJQ?¿_z¡ (2.76)
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The matter field that Soda and Hirata studied n'as given by the action

s: I a^"1-la 'Un,"a,ra"r)

The authols then impose a css ansatz (2.75) given by

(2.77)

€:rð,+uô" (2.78)

If a nerv cooldinate r - r/u is defined then, as above, the metric coefficients

and the scalar field became functions only of z. Thelefor.e,

I

s

x

s(x)

9(rl

x(¿)

(2.7s)

(2.80)

(2.81)

As a result of the imposition of this ansatz, the set of field equations which

Soda and Hi¡ata derived from (2.77) lead to a set of oldinary differ.ential

equations which can be solved exactly via linear peltulbation. The eigenvalue

of the relevant mode was found and the following expression for the blach
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hole mass-scaling exponent was pÌedicted:

0 -óìDrr: 

-

/o t.l o\vL\Q-L)
(2 82)

Table 2.4 shows the predicted values of the mâss-scaling coìlstant for a num-

ìrer of integei- cÌimensions. The table also shows the collesponding horizon

radius scaling exponert.

uìmensron d 1BH ^l 148
4 0.5 0.5 0.374 + 0.002
5 0.81650 0.4u825 0.412 + 0.004
6 1.0tt{)rri 0.35355 0.430 + 0.003
7 L.26491 ( ).:J I Ét23 0.441 + 0.004
8 1.44338 0.2¡l¡iô¡.t u.44ti + 0.004
I 1,60357 0.26726 t),45:J + {).{){):l

LO r.75 0.25 0.456 + 0.004
L1 1.88561 0.23570 0.459 + 0.004
T2 2.07246 0.22361 0.462 * 0.005

Tab.2.4: Scaling exponent il massless scalar field collapse as predicted by Soda
and Hirata [70]. The centre column contàins predicted values of the black
hole mass-scaling exponent based on a css ansatz and Iinear perturbation.
The right most column contalns the horizon radius scaling exponelt,
recall that jBH : (d - 3)7. Unfortunately, the theoretical values do not
match observation. For cornparison, the results from Bland et al. {48]
are shown,

Thc Soda and Hirata result, altÌrough a useful exercise, does not pledict

values of tlÌe scaling exponent which are corsistent with observation. This is
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due to the fact that critical solutions in massless scalar field collapse exhibit

discrete self-sirrilarity thereby invalidating the css ansatz.

D i sc r et e S elf- S i nì lat- i tv

Gundlach [29] defines a discletely self-similâr space-time as an inv¿r.iance

undel a <iisclete isomorphism on a le-scaled metric. Geometricall¡ this is

equivalent to r-equiling the existence of a discrete diffeomolphisms Õ such

that, for any integel n,

@-)" s"o: exp (2n^) e"ò, (2.83)

where Õ* is the pullback of 9o6 under the diffeomolphism Õ and A is a real

dimensionless constant. In coordinate terms, consideÌ a coordinate system

(a. z") such that at a point p with coordinates (ø, z") the image of the dif-

feomorphism, Õfur), has cooldinates (a + A, r"). Then, in these coordinates,

the dss is equivalent to

gr, (o. t"\ = exp(:d) 9!, (d. r"J . (2.84)

e A difieourorphism is a diflerentiable map between tu'o manifolds rthich also has a
dilïe¡entiable irve¡se.
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where

ãr, (o, r^) : sp" @ f A, r") (2 85)

In tire context of a sphelically s)¡rnmetric collapse of scalar field. a dss

synnretry rvill m¿nifest itself in a dynamical fleld. say Z(r,t), in the following

way:

Z(r,t)- Z lc"^r.e"^t). (2.36)

A suitable set of adapted cooldinates for this symmetry is given by

- ¿o (r) ,

(2.87)

(2.88)

* (;)

r* (;)

where ú6 is an ar-bitlary scale factor and z¿ is a peliodic function with per.iod

A. The dss symmetry is then imposed by assuming the ansatz (2.86) on, for

example, the scalar field.

The dss symmetry also affects the mass-scaling lelationship. Hod and

Piran [71] conjectured (and verified numelically) that discr-ete self-similarity

adds a periodic wiggle to the power law behaviour of the black hole mass
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formed durilg collapse. They show that

/1\
{ 
= 

)los(rì16a) : Tlogla-o- + q/ flog]o- a.ll + c¡, (2.S9)
\(r - .)./

u'hcle cr is a farnily-clepenclent constant, and ü is a periodic function witìr

peliod

"A
21

(2.e0)

The above relationship will be used in this thesis to determine the discrete

self-similarity constant in the higher dimensions.
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'_DI\4ENSIONAL 

SPHtrRICAI, SYN4METRY ANI)

DILATON GRAVITY

In this chapter, the field equations of the model studied in this thesis ar.e

delived in the context of dilaton gravity. Due to the symmetry in the metr-ic

under consideration, it is possible to reduce the d-dimensional action for the

theoly to a 1 * 1 effective theoly. The introduction of a dilaton field and

confolmal redefinition of the metlic will simplify the reduce<i action, thus,

leading to a set of field equations which can be used to numericalll. cvolve

initial dat¿.

The chapter begins rvith a brief discussion of dilaton gravity theory. It is

then shown why dilaton theory is useful when analyzing higher dimensional

gravity theolies with symmetlies. The method to constÌ'uct a dilaton field

u'ith confolmal ledefinition of the metric is then introduced. In the final

section of the chapter, the reievant field equations of the model are der-ived

and a coordinate system is chosen.
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3.1 Gravity in Two Dimensions

Beginning in the late 1980's and early 1990's. tu'o dimensional theories of

gravity âttracted attention in the physics community due to their tr.actability

ald corsequential utility as a model for quantum gravity. They àÌe mol.e

than just toy models. Dilaton gravity can also be directly linked to higher

dimensional gravity theories with spherical symmetries. The content of this

thesis is the examination of a classical theory usirrg dilaton gravity as a tool

to simplify the numericaÌ evolution equations.

Consider the vacuum Einstein equations with cosmological constant

R,,, -f,s,,n+|s,.r': o (3 1)

In two dimensions, the Riemann cur-vatllre tensor has onÌy one independent

component given by [3]

R¡u,n -- LoG^,n,^ - e¡,ep,) (3 2)
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r.r4rich on coìltraction ]¡ields

Inserting (3.3) into

t)

(3.1) yields

I
,9"e 

R ( 7togu, - gs,llpp)

!a(6is,,-6!s,,)

ToQn," sp,)

|n*, (3 3)

the two dimensional Einstein fieÌd equations

lrg r, -- 0. (31)

For non-zclo Â, (3.4) vields the unacceptable result of a vanishing metric,

whereas, for Â : 0 the field equations yield a trivial solution with no dynam-

ical content, Thus, fol any meaningful theory of gravity in two dimensions,

the action must contain at least an auxiliarv field.

Jackiw, Teitelboim, Banks and Susskind 172, 73] considered a constant

clrl-vature (Ã : ,4') trvo dimensional theory of gravity coupled to an auxiliary
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clilaton field þ. The action for this theory is given by

s: I a'"¡441n 
^)

(3 5)

Applying the minimum action principle to (3.5) yieids the following field

equâtions

v uv,þ : |s,,"þL (3.6)

(3 7)

In 1993, Achúcarro and Ortiz [74] showed that these equations are equiv-

alent to â dimensionally t'educed thÌee dimensional action ôn a metric with

a"xial sSrmrnsl¡5r. Thus. the constânt curvature dilaton theory was equivalent

to a dimensionally reduced BTZ theory rvith no spin. Recall that the BTZ

line element yields anti-de Sitter black hole solutions (see Section 2.2.1).

In 1992, Callan, Giddings, Harvey and Stromingel analyzed the two di-

rnensional glavitational action coupled to conformal matter' [75]

t I ^r I
S - J 

d':rJ- 
l.-'o {n -  st''vuoV,o+ as'z) - iop'vulvJ). t3.8)



3. rl,-D inensional Spherical Svnmett ancl Dilaton Gravi

They anaiyzed the system classically and found it is exactly solvable rvitl.r

solutions that yield black holes. The black hoie solutions can correspond to

eitlrer extr-emâl higher dimensional l¡lack holes fotnd ir [76,771, or to the

two climensional quantum blaclt l.role found in [78]. Il vacuum. the CGHS

action is

L
S - .l ÌrJ4e-24' (R+ 4sp"y,þy,þ + 4\2)

If the dilaton field in (3.9) is redefined accolding to

þ : z'/t"-ø

the new CGHS action is obtained:

t: I *,^(åt,o- )0,,v,av.,*),,*)

(3 e)

(3.10)

(3.11)

The kinetic term in the action can be eliminated by the following conformal

redefinition of the metric (see Section 3.2.1):

g,,, -. $' g W (3.12)
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Thus leducing (3,11) to

(3. i3)

rvÌlele we have performed a final rcdefinition of the dilaton field accor.ding to

s: f a:'¡4('o*l't')

'l--
- ó' --+ Ò.
8'

(3.14)

Bose, Palkel and Peleg [79] analyzed the CGHS action in the semi-

classical approximation using an effective one loop quantum corlection for the

matter field (they neglected quântum corrections for the gravitational and

dilafon fields). In order to frnd exact solutions they included a counter term

in the action. They found black hole solutions which evapolate to a naked

singularity. Bose, Luoko, Parker and Peleg [80, 81, 82, 83. 84] have produced

a series of papers on the quantum mechanics and blach hole thermodynamics

of the CGHS system.

Othel two dimensiona.l dilaton theories u'hich have been studied are eqriv-

alent to higher dimensional gravity theories with symmetly. For example,

several authors [85, 86, 87, 88] have consideled the reduction of higher di-

mensional spherically symmetric 3 * 1 gravitv to a two dimensional action.
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The resulting actior is given by

t^s: I d:r,[_Ae 2a (R+2gp"VpóV,þ+2e2'þ)
.t

with the dilaton defined by

(3 15)

r - exp (-d) (3.16)

All of the above two dimensional dilaton gravity theories ale specific

exampÌes of the most general dilaton glavity theory given by the action [89,

90,91,921:

r^ I 1 I
S : 

J 
d'.r\/-s 

lo 
(a\ R + ret'"V,oy,ot+ 

y(c,)] (3.17)

where ì,/(þ) is an arbitrary function of þ and Ã is the Ricci scalal asso-

ciafed with 9p,. 'Ihe action (3.17) is the most general difieonorphism in-

variant action functional dependent on gp, and a dilaton scalal' field ç in

two dimensions, such that it contains at most first and second delivatives

of the fields [93]. In the follov'ing two subsections, a specific case of (3.17),

corresponding to a d-dimensional metric with spherical symmetry, v/ill be



3. d"-Djntensiona) Spheùcal S¡,rnrneúry and Dìlaton Gravity 77

presented ard lvhich rvill serve as the modcl of study.

3.2 Action Functional and Field Equatlons in Splterical

S.yrarneúry

Conside¡ the actiol for Einstein gravity with cosmological constant in d

space-time dimensions, given by

(3.18)

In the above expr'ession, G(d) is the d-dimensional Newton's coupling constant

and Â is the cosmological constant.

Sphelical symmetry is imposed by assuming the d-dimensional metric can

be decomposed into a Klonecker sum (matrix dilect product) of a 2 x 2 metlic

and a d - 2 x d - 2 metlic (representing the,9d-2-sphere submanifold of the

complete Riemannian manifold):

o.(./) _ o(:) 6q(d-2) (3.1e)

.1r
s'l' : #no, f ao,¡j(n '' lr'' l n)

where the components of the 2 x 2 metric toÉ at'e only dependent on the two
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coordinates ro, a - L.2. \\tb also define

n:d-2 (3.20)

fol notational coìnpactness.

In splrcrical polar coordinates, r'ith r : r(x^) representing the proper

radial distance fi'om the origin) the metric of thc S(")-spher.e takes the usual

cliagonal form with determinant

("-r)
det (s{"'); : "- fI sin2("-i) g¿. (3.21)

¿:i

Thus, the spherically symmetric d-dimensional metric has detelminant

s(d) - der (stol; - det (g{r)) det (St")¡ (3.22)

Using (3.21) and (3.22), the metric determinant in the d-dimensional

action is givel bv

("-1)

J-1.õ : J-Nr" fl sin("-')en. (3.23)
i=1
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An equivalent ï'ay of expÌessing the symnetly of the metric cån, of course!

be given by tÌre line element

dsl¿, - a^Bdr"drÞ + 12(r') d91,,¡, (3.24)

wher'e dfl1"1 is the netric on the subspace S(").

An exact expression fol the Ricci culvatLrre scalar, in terms of the spher

ically symmetlic metric A, can be calculated dir.ectly. Inserting (3.24) into

(1.11) and using (1,15), (1.16) and (1.17), the d-dimensional curvature scalar

in spherically symmetric gravity is given by

prat ls,d'l: F'2,(e).4!! t Ç,,"uv",vo, (3.25)

where V is the covariant derivative associated with g*B and .R(2) is used to

denote the d: 2 curvature scalar which is only dependent ort Q"B.

Inserting (3.23) and (3.25) into (3.18) and integrating over d0i,l it is

found for the dimensionally reduced gravitational action;

'":#h [0,.¡1,(îï,H
+ p u--r or\ 6r - n) t:.zor
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1'n' - 
2tt'+t¡ z

" - r¡¡¡-llrr\ 2 i

is the volune of the unit n-sphere 194].

(3 27)

(3.28)

(3.2e)

3.2.1 Dilaton Gravitv Form

In this section, a dilaton field is defined and a confoÌmâl re-parameterization

of the metric is carlied out in ordel to simplify the gravitational action of

the theorv. Begin bv defining a dimensionless dilaton freld:

(î)"''

ç@).

Dropping the overall area term ¿("), the gravitational action becomes

- I I '" r 
'zt,z( . 

n przt,or* -n2r": 
2G J 

o'rV-n- " \8þJ)" 
retT{þra,

1/Vo\' n .\*¡[;,1 -8("-I)^/ (330)
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8(n-1)
I6nn

(3.31)

The erpression (3.30) can now be more easil5' idertified as a specific case o{

the general two dimensional dilaton gravity theory (3.17)

1r/tr\
Sc : ;'^ | d"J-n'r' ( D1otR,2,¡¡t + -' y(o) + )gryV,,ov"q ) ta.szl'¿G J \ '" 12 2" '" ')

with the following idcntifi cations:

1

D(ó)

v(ö) "î" ó'L
8("rT

(3.33)

(3.34)

ft:z
8 (,' - 1)(,

n2 ó(2n-a) /n

C o nfo r mal Re- p ar ame t eûz at ion

The foÌlowing confor-¡nal le-palametelization of the two dimensional part of

the physical metric is considered:

s"o : o'(@)s:)
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oo'r - u!U,n'''"'

which affects the metr-ic determinant

(3.35 )

(3.38)

(3.3e)

,/_a,t: ffi (3.36)

Usirg (3,35), the confolmally related culvature scalar becomes

J?(r)(g) - er@)nrztln¡ - 2sþ"V,py,e *2esþ"y ry,e. (3.37)

lnserting (3.35)-(3 37) into (3.32) we obtain

s. : # f a,,l-lo,*tl,2,\s1 +ffi , )0,"*,a, "a
2Dlo\gwY rç9,Q, 2Dtó)gp,v t v "Qf0'r-al

Let us norv redeflne the rliìaton field

a: D(a):-' n - "ò[n-1.)
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Thelefole,

I ,tD\ù \-' _ ne
Y 

"oY "o 
: 

\ o; ) v 
'óv 'ó 

: 
\n y¡v uav 'a' (3 40)

In the above line, we have explicitly used the equivalence of the covaliant

derivatives V,, and V, rvhen they ale usecl to clifferentiate scalar flelds, It is

also found that

v/,f^¿v"O :

v/,v"f¿ :

/ (lQ\2 / (lD(o\\ 2

(;a/(ø)Yuav"a r34r)

(lQ / dD \-1
ø\¡a ) Y,v'ö

l¿'ç¿ de / dD\ ' ,t,Dl t ¿Drol\ -'?

lø,- o.\;a) dF)\-;) vt'¿v"ó (3r2)

Aftel inserting (3.39)-(3.42) into (3.37), integrating by palts and dropping

surface terms, the new expr-ession for the leduced gravitational action is

obtained

s" : h I o",l=lr^")tu) + v (þ)

-(J -?¿ç¿'\ /gl 's,'v,'v".f
\2 adódE) \dþ)

(3.43)
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with the ¿dditional redefinition of the scalar dilaton potential

V 1,1'( rh\\Y(ó): /.,CI--üe, G44)

The main advantage in considering the action functional in the above forrn is

seen aftel a conformal function which eliminates the kinetic term gr'"Y rþY,(.,

is chosen. The field equations u'hich are derived fiom the that action are then

also simplifled. This is achieved whenever the diffelential equation in (3.a3)

is satisfred i90, 911

I /do\-r dÌogQ2
t\da) = -d{

The solution to this differential equation is

,n12
' 8 (n - 1)

0,(d): 
""* [å I (#)' ,r],

(3 4s)

(3.46)

whele C is an arbitrary integration constant. Recall, flom (3.39),

(3.{7)
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ther-efore

--l-¿4 (n - 1)

s.:# 
Ia'zr¡-¡lóR+v(þ¡1

q:
d4)

(3 48)

(3.51)

Inserting (3.48) into (3.46) u'iil give the applopliate confornal factol to elim-

inate the kinetic term fi'om the action:

/n I\

0'(é) : có!+: c 
l8("- 

tlrl" ' (3.4e)

Without loss of generality the constant C is deflned accolding to

. , 1l2n
/-_ , /ö(n-IJ \

128(n- 1) \ ri /
(3.50)

for reasons which will be seen below (see Section 3.3.3). Hence, the flnal form

for the gravitational action becomes
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, : m:r(;)" (352)

v(ot : I/--l )'" *-,nll-¿l-l ì "'lcl. \ s,r - ll/ L 
b \ ò{n - r)/ c,, 

"Alr3 
53t

R : ¡¿\z)çn¡ (3 b4)

To simplify the expression fol the dilaton potential, iet us ledefine the

scale in the ploblem. In addition, we redefine the cosmological constant so

that it becomes dimensionless. Let us choose

Therefore,

(3.55)

(3.56)

(3.57)

(3.58)

^ 
: #(q':Ð)*o

¡2 8 /8(n-1)\1/"D, - ,r"\ " i L.
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3.2.2 The Mattet Action

Consicler the case of a minimall¡' coupled Klein-Gordon scalar'field x. The

freld satrsfies the well known Klein-Gordol difiercntial equation [951

9!'Y tY,X - ^,"x 
: 0

and is associated with the stress-energy-momentLlm tensor

(3 5e)

Tr" : Y rvY,tr - f,s,* 
(v "tv"À + -'\') (3.60)

The Einstein equations with cosrrological constant for a minimally coupled

massi'r'e scalar field are given by

_ I -t ,.C,,,: Rr,- ,sr"n I ¡Su,A: l6rG\o'T,," f3.61)

Contracting (3.61) we obtain an expression fo¿.. the scalar curvature in the

presence of mattet

R,dt:16trctd,livr,,* (y-rt, ^ ^l /n-t-o\
L ' \'i'''"] '('rn (362)
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The matter âction fùnctional corr-espording to the Klein-Gordon field in d-

dimensions is given by [95]

s^,: -;.l o""J-O (n(.)þ'vþxv,,x¡ m2x2) (3.63)

Consider the case of a spherically symmetric massless (m. - 0) scalar' field

Thelefore, assume the scalar field is dependent on only the two cooldinates

Integlating over the angulal dependence in the matter action, it is found

'1 f
5r, : -i I d'tl-n'z'r'n'')u"VriV,i. (3.64)

As above, the unit n-spher-e volume te-,-.m is dropped from the action func-

tional. Inserting (3,29), (3.31), (3.35), (3.36), and (3.52), into (3.6a), and

re-scaling the scaìar'fleld ¡: Xl.vtrTrcl't). ihe following expression gives for

the mattel action in the conformally lelated space-time:

t,: -# | d""¡nqn"vpXY,x (3 65)

The reduced total action functional used to derive the fieìd equations for the

case of a minimally coupled massless scalar field is found by adding (3.51)



3.2.3 Field Equatìols

The fleld equations of tì.re ploblem are derivcd by examining the extremum

of the total action (3.66) using the minimum action principle. The extremurr

of the fields are given by the condition:

ô.9:0 (3.67)
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and (3:65):

c-c c I f "5: 5Z - 5u : 
zG .l 

d'.r\/-slaR + V(ro) - ogl'"V,qV"11. {3.66)

Formally,

6s : + [ a'ñ lr¡--s4n+ \/4v - t/4,þs,"v,xv,x),2G 
J

1t: n ld:.r16(yf-s+)a- õ(fi¡{Iz oe!"V,1V,1}]

1 I ^ 
-l 

.tV I
-2C J 

d,.r\/- ol * 
^ 

_e/,"V, 1V"¡] ôo

I t^
- zc .l d"¡-n lrþv rvv "v6sþ' + 2þs,'v,,v(v"ôx)l (3 68)
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To simplifv the exp'-ession in the final line. it is noted that

Y , (ó7t'"Y ,"yõx) : kwV ,óV py * þsþ'V ,Y ,y) 6y

+þst'"V,"y(Y,6y) , (3.69)

where the follou'ing identity [3] is used

v ùll : u

We also make use of the identity [3]

(3.70)

6 (J-\ : -1UJ=0,,õ0". (3.21)

inserting (3.69) and (3.71) into (3.68) and integrating out sur:face terms yields

1 f ^ _l IuS : -o J 
o'rtl olv,v,,a - o,,Zaj16se'

1f n 
-11 

,. 1 _.2 l.
-Tc J 

a"¡-nlro,'' - ,ós,'{V1)'I oV, 1V"11 ós""

-! [ æ,t=lo-(- (v¡.r']ae¿t J L oo I
t t^ I I+¡ J 

d'tt/-sl2s!'Y,oY,t+2ost''v"Y,¡)61. 13.72)
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î,here \\¡e have i:sed the identity (4.10) in the first line.

The r¡inimum action principle requires that each of the fields ga", þ,

and X, be varied independentl)¡ $.hile ensuling (3.67) remains valid over the

entiÌe solutior space. TÌris requilement demands that all thl'ee expÌessions

in squale brackets identically vanish at tlie minimum of action. Hence, the

three simultaneous field equâtions are found:

(VrV, - sr"Z) ë + Lsu,v - iósr"s"'v "xv..y + þv ,"aY ,x: 0(3.73)

R+#- sþ"YpxV,x:0

9þ'V ,þV t X + þgþ"Y uV ,y : Q

(3.74)

(3.75)

The explession (3.73) can be simplified

metric tensor'. This gives the equality

by contracting both sides with the

tró: v. (3.76)

The matter field constlaint equation (3.75) can also be sirnplified by noting

gþ'V ,óY px + þgt'"V ,Y "y 
: 

t 

,' _'_, ,!,"rr" ïfJ:: ,:r,
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s"'Y " (,þY ,x)

v'(pV,x) (3.77)

Using (3.76) and (3.77) the final folm of the field equations with m : 0 are

given by1:

V þV,þ : |u*v - óT*

ñ ¡lV t- '211 : -dd + tv{/

vP (þv,1) : a

(3.78)

(3.7e)

(3.80)

3.3 Evolution Equations and Boundary Conditions

In this section, a coordinate system is chosen from which the evolution equa-

tions of the model are defined. A double null coordinate glid (z and u co-

ordinates) will be chosen and a gauge choice specified. Boundary conditions

are then imposed which ensure Cauchy data on the initiat null hyper-surface.

1 Norurally, one should perform the dimensional reduction process at the level of the
fieìd equatiots in orde¡ to eusure the correct solution space has been found. In spherically
syìnnet¡jc gravity, hou'ever, it is well knorvn that the field equations der'ìved here (from
the ¡educed action) are equivalent to the ¡educed freld equations [92. 96].
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3.3.1 CootdinateChoice

Notation representing paltial differentiation of a function rvith lespect to the

r¿ coordinate is indicated using an overdot. A prime indicates differentiation

with r:espect to the u cooldinate. Hence,

, ô.f
ou,

. af
./--

dt)

(3.81)

(3.82)

The coordinate s)'stem chosen is the same as in [28]. The metric is parame-

terized as follows:

rl s2 : - 2l g (u, u) þ' (u, u)dudu (3.83)

The physical metric can also be explessed in terms of an (r, ú) coordinate

system. Let a" - (u,u) and rû : (r, r) then

7 .ôf ôrß
9p" \r) : ars"p@) í)it ar! (3.84)
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Using the ch¿rlacter-istic deflnition of douÌ¡le rull coordinates in flat space

t-T

t + r,

H:++ff_otÐ,
g'ó' : srþ(x)'

)t \t ^ltrv - -;rqv v

* (#) . e(,9: -àIsK -xx'

(3.85)

(3.86)

gives the physical metric in (r. f) coordirrates in lìat space:

E: -'z#(r:,)

s,= !(' 'l_ z¿sø,Io ,)

(3.87)

(3.88)

3.3.2 Evolution Equations

Inserting our preferred coordinate system (3.83) into (3.78)-(3.80) yields the

following frve field equations:

(3.8e)

(3.e0)

(3.e1)

(3.e2)
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&rox)+*@x'):o (3.e3)

By viltue of the Bianchi identities, only three of the fleld equations (3.89)-

(3.93) are independent. The identities leduce the number of independent field

equations by two one for each dimension of the space-time. The Bianchi

identities ale given by [3]

v\c):0, (3.e4)

where G' is the Einstein tensor. For our model, the following tensor pla¡'s

t hc role of the Einstein tenso:'

Gr,:YrY"ë-];¡n*,

Thus, the Bianchi identities can be quickly velifled by inserting (3.95)

(3.e4)

(3.s5)

(3.e6)

v ¡ (g'^v,"v,,6)

vp (nd - v)

0,

- ]v^ 1a¿v¡
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where we have used (3.70), (3.76), ând the commutativity of the covariant

derivative. Indeed, the Bianchi identities can be shown explicitly by inserting

(3.90) and (3.91) into (3.92):

rvhich gives,

*,1i, ur1- lftø"t : 
ji# 

- oo,

# ('.'.'r; -#r'') -f,s'v: -xx'

(3 e7)

(3.e8)

We can simplify (3.98) by inserting (3.93), which gives the identity

g'v : g'v. (3.ee)

The other Bianchi identity can l¡e seen by inserting (3.91) into (3.89) and

differentiating with respect to z. Thus,

e (#) : *l+ - tsóv - aa)')

: óle (t). e (#)) + + * Yþ'v - x(ó'x+ 2þx') (3 100)
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Inserting (3.92) and (3,93) into (3.100) and simplif¡,ing ylslis

ù4t _
I

a
A"

/ae\
\,,/ - '!rr' ,l!^',

2', ?
(3.101)

(3.103)

(3.104)

Equating the right hand side of the aì¡ove expression to the z derivative of

(3.91) gives the lesult

óv' : ë'v (3.102 )

Rccali ihar V : V(o). therefore.

v, : {6,.
dþ

Inselting (3.103) into (3.102) vields the identity

. d,v .dv .

,þ -ó':þ'-þdQ dQ

thus proving the Bianchi identities hold.

Two other useful quantiiies to calculate are the trvo dimensional Ricci

scalar, Il. and the d-dimensional Ricci scalar, Ã(¿). From (3.79), the Ricci
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scalar is given bv

Da=;).2',- ^,c llro"A --ir' (3.105)
\ nt' - t9ç

From (3.62) with nr. - 0, the d-dimensional Ricci scalar is given by

prtt - (ü\À + r6nc,d' 1v¡.¡2\n,/
(n+2\ lStn - t) \ïr 

^( ",(-i n+2Q'e""V'1V"1

: (ç)*l(+) þ_ffi,t.-,1 (3106)

Without loss of generalit¡ the following thlee field equations are used to

evolve initial clala:

g'ó' : gþ(x)"

Ó' : -TIsþ'v

*,@Ð+ *@x):o

(3.107)

(3.108)

(3.1oe)
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Define the new functiol

(3.110)

Integlating (3.108) rvith r-.espect to u gives the dzlaton euolution function

(3.111)

As shown by Christodoulou [25, 97] and as implemented by Garfinkle [28].

the scalar field constraint equation (3.109) can be decoupled by the intro-

duction of the auxiliary sca,lar freld

ø - | oO'vr"t {,t) au

' ls
'2

Integ::ating (3.107) with respect to u gives the m,etric t'u,ncti,on,

s(u,u):c1(u)exp I tgly^]. (3.112)lral

. 2J6ô t n \n: u u\veÀ/' (3.113)
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r¡'hrch gives

(3.114)

The matter' fleld is. therefore, defined explicitiy in terms of this new palam*

eterization by

. 2þs'n:\+ 
d

^. 1 [ ho' ,^., Cr(r)\-2.'øJ 
'ra"'- uø

,: -(?) l, xl
: ,(?) 

ln*uø¡-u\

(3.115)

Differentiating (3,114) with respect to z and inserting (3.109) gives the mafler

euolut'ion Juncti,on which, in telms of the nerv matter parameter iz, is given

hv

(3.116)

Tteaiing the z coordinate like a time coordinate and the u coor-dinate like

a space coordinate, the e<truations (3.111) and (3.116) can be used to evolve

initial data and simulate gravitational collapse by numerical iter-ation. In the

next subsection, a new function which stabilizes the numelical calculations
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rvill l¡e defrned.

Integration Bv Parts

If orre examines the dilaton evolution function (3.110), ii is noticeci tìrat the

integr-and is singular at the origin due to the dilaton potential term (recall,

V x r-l). Duling the evolution, field values ar.'e integrated outwald from the

origin in the ¿ direction (for a given value of z). For points nea¡ the centeÌ

of symmetry, whele r is small, the dilaton potential becomes nearly singulâr

and creates rumerical inacculacies duling the calculation of the integrand in

(3.110). The numerical elrols are then added to each grid point on the z slice

as the functions are integlated, thereby, propagating the error thr-oughout the

entire grid.

Fortunately, the neighboulhood of the oligin, where the integrand is not

well behaved, is small and typically contains only a few grid points. More-

over, the range of integration is very small so it is assumed the result of the

integration is flnite. This can be seen explicitly by calculating- (3.110) via

integration by parts2. Once the problematic function is redefined it is seen

that, indeed, ! approaches zero as one approaches the origin.

2 It should be roted that prior to ill1plemeDtation of this procedure the numer.ical evo
lution u'as highly sensitive neat tlre origin for most space-tine dirnensions studied. Itr fact.
the se¡sitivity of ! rvill gtow very rapidl¡' $'jth j¡creasing n rear fhe origil.
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Notice

ø : f so'vø) (,þ) ¿u : # I nr' (,þ-'t" - þ't"tr) ¿u

Thelefore,

tl n \ / A / n \ /..ù : v("_,) Jo,tto'-'/'\ å(,-,) Jodk'"")
nget t/' /n+1- Atn - I lErr'' 1

Cl2 \ (n'l)(n l) )
n f-- c6-t6¡t| Jlh +t)a'-'r'- A(n -t1|l+t/"laq 6'ttz)

From (3.112)

¿o:g#d,:frO,-x)'d,, (3.11s)

i n I l,lt-'t" ^ 
ó'1"1h: 

4t, J f;- -n"*rj sþ'(h-v)2du' (311e)
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Then

(3.1:0)

Vierved in this rvay it is also immediately seen that the evolution equations

are unavoidably singrlâr in the d: 3 (n : 1) case. On the othel hand, for

space-time dimensions greatel than three, ! ' Or-r/n as <ó * 0. This is clue

to the fact that the correction term ñ approaches zero faster-than the teading

oldeÌ teÌm in !. As a lesult, the functions are well behaved near the oligin.

In the limit of large n, these functions become

- ngï / Q t/' À@th\o-_ t-_- |- 6'¿z \n_1 n+I)

orb ñ-
e.": jl}g : fl, (t -^) - C.

À-: ri- ¡ : l+) [ sa'th- ¡1'zdo\4t" /J

t,_C

(3.121)

(3.122)

3.3.3 Residual Gauge and Boundary Conditions

It is requiled ihat the initial matter profile be a collapsing spherically sym-

metric shcll of matter with no black hole in the intelior [60]. Thus, the metric

should be flat, iniiiallr', until an asymptotically flat sphelical shell of matter

"appears" on the initial time slice. Ðxterior to the mat¡el distribution, the
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metric will approach the N{inkorvski metlic at spatial rnflnity. ln addition,

even at lâte times. a flat space-time metric in the vicinity of the cooldinate

origin (r : 0) is maintained.

As discussecl al¡ove. the Bianchi identities leduce the nunbel of inde-

pendent field eqr.rations. This is duc to the genelal covar-iânce of the Ðin-

stein equations. The field equåtions derived undet the metric (3.83) are only

unique up to a general coordinate transfor-mation of the form

" 
(")

, (u)

(3.123)

(3.124)

(3.125)

(3.126)

To fix this lesidual gauge freedom, I set z : 0 on the initial surface and

?r : 0 at the center of symmetry (" : 0) Then, using the characteristic

definition of double null coordinates given by (3.86), it is found that on the

initial z :0 null sulface, r : u12. This gauge choice also frxes the origin on

the initial surface at u: u :0. Furthermore, at the oligil.

0r.
^ (r:0; z: tt)
o'Ù,

â.
f (r:0: u: u)
01)

1_;

1
I
'2



3. d-Dinensional Spherical Symnet a.nd Dilaton Gravitv 105

Tìre boundar¡' conditions at the oligin should be examined in mole detail.

I have requiled that the metric be flat for ¿ < 0 throughout the entire

manifold. To ensure continuity at tr : 0, 1ve need to solve the vacuum dilâton

equations fol zelo mass and show tha,t they can be smoothly connected to a

flat space-time at the position of the origin.

For- geneÌal Iz(þ), r'ith .4. : X : 0, the action (3.66) is that of geneÌic

vacuum dilaton gravity. The theory has been studied in great detail [90, 92,

96, 981 and the vacuum equations can be solved exàcthr The action for the

theory is given by

s -- # I d' \/- l,þR + v(,þ)1.

The field equations derived from this action ale given bv

otdV 
^

VrY"ë-Is*V:O.

(3.127)

(3.128)

(3.12e)

It is possible to choose an adapted coordinate system in which the metlic is

locally time-independent. In this case, the exterior solution to (3.128)-(3.129)
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is given by

ds2 : - ls @) - zG tttl ¿t'z + ls kù - 2G ],[l-l df (3.130 )

wher-e,

u't !') ' l2v ro;l . {3. l3I)
dd,,

z: ld, and 11 plays the role of a mass point located at the oligin.

In the model studied here, tÌre initial null surface contains no black hole

in the intelior', therefore, it is requiled to set,41 :0 in (3,130). Considel a

coordinate tÌansformation to the null coordinates

AI

u _ L_rV \ (3.132)

where ó* is the generalized tor-toise coordinate

^, , [" ,]õ
9'-, 1 /-\.

"o J \a)

The line element for generic dilaton gravity with

(3.133)

|t:AI:X:0then
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becomes

ds2:-j(ó)dud.u (3.134)

Solving (3.131) for the speciflc case of d-dimensional spherically symmeti-ic

gravityrvithÀ:0gives

Hence, fi'om (3.133) and (3.132),

I n l r,"-',,"
\ir - 1/ '

¿t,- : ¿(n - 1)ó'1" : trø 
- "l

j(") (þ) : l,' o-,-uø: (3.135)

(3.136)

Therefore,

ó'= (3.137)

Using the above relation and comparing (3.134) to (3.83) it is seen that the

boundary condition at the oligin is equivalent to the requirement

s:1 (3.138)

aó:
ðu

i Ø')
21,

Demanding also that the physical metlic approach the \,Iinkowski metric
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near the origin, it is found, by (3.87)

Thelefore,

(3.13e)

(3.140)

Ctfetn- t, / , \"t'gltt'u) 2r/ lt¡, - ,7
- 1,

which agrees with (3.i38) and justifies the choice for the integration constant

C first defined in Section (3.2.1). Also, from (3.112),

C1@): s(u,u): t. (3.141)

To detelmine the integration constant C2(u) in (3.115) it is necessaly to

examine how the ternr 2þy'fþ' behaves nea¡ the origin. From the definition

of the scalar dilaton.

n,rþr'

T
(3.142)
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therefore,

: 2,X,
NT,

As r -- 0, r' - Il2, therefore,

lir,r 
2ót' : li- 4t\ 

or-o ¿pt r-o n

Thus, À:1 at the origin which, in turn, requires

2óx'
,þ'

(3.143)

(3.144)

Cr(u) : s (3.145)

Let us denote the d-dimensional Ricci scalar at the origin by -i{d) then,

using the boundary conditions at the oligin and (3.106), we find

"y 
: ('#) ({rï)'"å-u,.'á (3.146)

where !6 and ¡[ denote the paltial derivatives of the matter' fleld (evaluated

at the origin).



4. NU\{ERICAL SI\'{ULATIONS OF CRITICAL SCALAR

FIELD COLLAPSE IN 
' 

DIN,ÍENSIONS

In this chapter. the results of the numerical analysis of the d dimensional

sphelicaìly symmetric collapse of massless minimally coupled scalai- field mat-

ter will be presented. In the previous chapter, a cooldinate formalism was

chosen and the evolution equations derived. Coordinate conditions were then

imposed and the boundary conditions of the model calculated. Focus will

now change to the details of the particular method used to extract dâtå,.

Numerical simulations of glavitational collapse are inherently unstable due

to the non-lineality of the field equations and as a lesult several palticular

techniques needed to be used. These techniques will be discussed thloughout

the chapter'.

The primary focus of resear-ch has been on determining the dependence of

space-time dimension on the c¡itical scaling phenomena. As discussed above,

these phenomena have aheady been observed in a few pa.r-ticular cases in
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the rnassless scalar field system. The research progrâm pr-esented here will

expand to include r-esults from sever-al new dimensions and the data will be

used to determine plopelties of the clitical solutions in the liniting cases of

Jalge and srnall rrunrl¡cr- of dim¡lrsion.

The results section of this chapter is divided into thlee main subsections.

The first subsection is a case studv of the rveìl known 3 * 1 dimensional case

ald it is whele the validity and stability of the method is confilmed with

the known resuìts. The second subsection presents the lesults of collapse

simulations for d)> 4 as flrst leported in [48]. The third subsection plesents

the results of new simulations for- d < 4 [99]. The chapter is concluded by

presenting a hypothesis on the relationship between critical phenomena and

space-time dimension.

4.1 Numerical Method

A glid is constructed in (2, u) space as shown in Figure 4.1.

On the initial z : 0 sulface, the specification d (0, ¿') : u was used. The

initial grid size ranged between 6,000 and 12,000 gr-id points along the tr

a-xis. The initial tr spacing (Aa) was set at 0.0005 for the d ) 4 supelcriticaì

collapse simulations. For the d < 4 simulations, Au ranged between 0.00029
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Fig. 4,1: The (2, u) domain of integration for the collapse simrrlations. At z : 0,
the initial values of the scalar functions are calculated from the origin
(l : 0) to u¡,¡¡¡. The fields are recalcuÌated after each itera"tion from
'u: u to uuAx on each z slice according to the evolution equations and
bouldary conditions. Occasionally, depcnding upon certain conditlons,
the u step is reduced to increase resolution in the final result. This may
happen several times before the collapse is terminated. The spacing in
the u coordinate, however, remains unchanged tbroughout the collapse.
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and 0.00151. To avoid placilg the fi::st grid point on the coor-dinate origin,

the first glid point was offset by 0.000001. Let u6 denote this offset. Let 4r[

denote the dilaton value at the i¿À grid point on the r¿:0 initial stlface

and let .l{ der.rote the total number of gr-id points on this su¡face. Then, the

initial values of the dilaton field wele specified as follows

på - uo +¿Ar r' - 0, 1....,(¡\¡ - 2),(N - 1) (4 1)

Using this specification: u^tAX - oo * (Ir' - 1)Au. In the lower dimensional

studies, 1ú was kept fixed and A¿, was adjusted so that u¡¡_a¡ wa"s just beyond

the apparent horizon in supercritical collapse. This was a similal technique

to that used in [28] fol the case of subcritical collapse. And was implemented

to maximize resoìution in the near critical solutions.

The initial values of the lemaining functions wele calculated as functions

of /fi. The initial matter field was defined as a Gaussian shell of matter with

profile centered at radius {6

(4.2)

1 The nunerical method was slightly rnodified fo¡ the lo¡'er dir¡ensional collapse studies.
Some of the cìranges to the code included modjô'ill. the iuitial grid spacilg in the tr

direcliou.

\:co2.*r{-(=)'}



4. Nume¡jcai Sirnulaúìors of Critical Scalar Field Collapse in d, Dinensions 174

r\¡here a rvas the amplitude of the shell and o ü'ås tlìe rvidth of the plofile.

Fol the supercritical collapse data, o - 0.3 and þ6 : 1.0. Once the critical

\'àlue of ¿ was detelmined for a given dimension, a check fol the universality

of the clitical phenomena could be cauied out bv varying one of ø or þ¡.

Civnrr the vaìue of the dilaron oj and lhe dìlarorr evolutior funcriolr ál

at grid point (?, r), ihe lorvest oldel evolved value of the dilaton on the next

z slice (at constant r-') is given by

ë"i+t: 4S¡ + þiA.u¡, (4 3)

where Azi is the spacing between adjacent r,l slices. The initial spacing in

u wâs set at 0.001 fol' all of the collapse runs. However, the collapse code

was written to allow for reflnements in A,u as solution structure developed.

The numelical el'ror in (4.3) is of the order of the correction term involving

Âzy. The accuracy of þ]*r, however, can be considerably improved by using

a higher order evolution (or time step) procedure. To implove the overall

accur'åcy of the calculations reported here a higher oldel evolution procedure

'rvas implemented.

Once the values of the fields were determined on the initiàl surface. evohr-
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tion ploceeded via fourth older Runge-Kutta procedrue. The Runge-Kutta

method of o-,-der fou-,-' uses a set of four delivative estimates to determine the

vâlue of a given function a,t the elrdpolnt of a discrete step. TI]e method

combires delivativc estimâtes at the initial point of the step, two estimates

at tìre midpoint of the step, and the derivative åt the end point of the step,

The Runge-Kutta method of order four is given by

h+,--ó",¡+|ir'+ 2kzt2-*k+), (4'4)

where

h : þ(u¡,5,)Lui

A,: a(,,**,1*lr,)n,,
\--/

t., - q ( u, - L_-:' .r,,+ llr) ¡r,\, 2 r 2-/
kn : ,þ (u,*r, ôi + ,k3) Az,

uj : I at,:lsr*
'to ¡¡ o

u¡+1 : u¡* Lu¡.

The local truncation e¡ror in this method is O ((Lu¡)a). The Runge-Kutta
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ordel four method is delived fi'om tl.re foulth ordel Taylor poh¡nomiâl ex-

pansion in two valiables. The method indeed requiles foul calculations per-

step, howevel, the approximation eÌror- is smallet than ¿ double order single

vari¿lble Taylor technique at one-half step sizc 11001. For this reason, Runge-

Kutta methods are popular- because they offer both efliciency and accur.acy

for cpu-intensive calculations. The Runge-Kutta method was used through-

out the calculations. Duling each Runge-Kutta step, þ and /¿ were evolved

simultaneously according to the field equations (3.111) and (3.116).

In double mrll coordinates, all flelds are determined as functions of in-

corning and outgoing wave fr-onts. Thus, as the evolution proceeded, sorne of

the ingoing wave packets passed through the origin. The computer code did

not tÌack Ìeflected ll'ave pulses, therefore, as gdd points reached the oligin

the ovelall grid became smaller.

If the evolved value of the dilaton @l was less than zelo (hence, the incom-

ing null wave had reached the origin during the j¿À iteration) then the point

u'as lemoved from the glid, In the cases rvhere all the u slices rvele removed

from the grid it rvas assumed that the solution had reflected enough or all of

the mattel to infinity without the formation of an appalent horizon sulface.

These solutions were considered subcÌiticâl and the initial palameter values
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stoled as such.

Aftel each iteration, the new þ values u'eÌe scanned and the origin shifted

to the first grid point rvith non-zero þ. All of the other functions on the z

slice weÌe calculated usiÌrg the evolvecl values of þ and h.

So long as evolution pÌoceeded, a check throughout the gtid fo-,- the con-

ditions of an appàrent holizon surface was performcd. The appalent horizon

is the outermost sulface from which outgoing null geodesics stand still. ln

dynamical gravitational collapse the event horizon expa.nds as external mat-

ter is contractiûg. In the ca^se of spherical collâpse, the event horizon will

asymptotically expand until its surface coincides with the apparent horizon.

Thus, in numerical relativity, it is useful to check for an appalent horizol as

one always knows an event horizon will be contained ll.ithin it.

If an apparent holizon was observed, the evolution would be telminated

and all information about the fieìds on the grid surface just prior to apparent

horizon formation s'ould be dumped into data files. Tire signal for horizon

fotmation is given by the vanishing of the follou'ing function

o¡,¡: g^Pô*þlBë: -t (4 5)
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The function d_4ã \¡ârishes ¿t flnite 
'-adius 

whele outgoing null lays don't

expand. In pr-actice, hou'ever, evolution u,as terminated u'hen the above

function fell below some predeter-mined thleshold value2.

Partial delivatives of functions with r-espect to the mrll coordinate ¿r r'ere

calculated via the four point central difference scheme:

(4 6)

The computel code uses a flve point folwald, and backward, difierence

schene to calculate derivatives at the first two, and last trvo, glid points,

respectively. These calculations ensured that an equal order of truncation

error existed fol all glid points. The elror in these derivative approximations

are of the ordel O((Atr)a).

Numerical integration on constant r¿ slices was carlied out via simple

trapezoid method which begins near the coordinate origin3 and then in-

tegrating outward. The method of integlation is also called a composite

2 The value ofthe apparent horizon th¡eshoid used to terniuate evolutio¡ rvas dependent
ol the spacel,irue dimension analyzed. Olten, u'heu a horizon rvas nearJy pinched of,
o,4ã changed r.ery rapidly and passed througll lhe threshold and become negative dùrirg
a single iteration. The evolution was, neveftheless, terminaied ôt that point.

3 Numelical integration did not begj[ exactly at tlìe coordinate orìgin as rvill be seen
below. The valucs of thc fields fol the first few grid pojnts neù tlìe oligin were estimated
usi[g a Taylor series expaDsion alld analytic i[tegratioD.
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Newton-Cotes formula for' -ly' equally spâced points l9a]. In symbols.

composite Nervton-Cotes foÌmula for the integ|al of the function /(z)

tween the interval z¿ - zo is given by

the

be-

l"'rav,:L
N1

f(a)+2!/("i)+l(t)
j:1

(4 7)

whele l¿ is the spacing between grid points. Tire nunrerical error of (4.7) is

of the oldel O(lz'?). Highel older methods of integration were found to lead

to bifurcations in the solution after multiple iter'âtions and it tvas concluded

that, in the case of integlation, a simple trapezoid approximation was the

most stable method.

4.1.1 Snall þ Approximation

To implove numericaì accurâcy near the origin, a similar pr-ocedule to [28]

was employed in which the matter' field constraint is expanded in a power'

selies in þ neat þ: 0, On each z slice the matter fleld is flt (using a least

squar-es fitting procedure) to

h -- lto * htó + h2þ2 (4.8)
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for the filst rz grid points fi'om the origina. All other field values for the

frrst n grid points wele calculated ânâlyticâlly using the values of the fitting

constants. This procedule elegàntly handled the problematic 1/þ factol in

the rratteÌ evolution equation, À. fol snall values of thc dilaton.

The remaining values of the fields for thc flr'st n grid points at'e given by:

X

s

h

ó:

1iItsl ah¡Qn inrr'
t + Lh?a" * o- h,h".t + lt'.ro18' 45 ' 25',
rt2hl -rl a'r, Lot/n I
9P " L(" - lr(3n 1) - (, J;(&, + t,)l
ng I et-r 4 

^@r 

' r'l1\ h

C/'?\n-I nrI ) C

!, (1,',+ :h,,) I ( -1\ nr "c'¿\6 5" /l\n-ll
- ^ 

ft:l o(bt+tt, + t2it1
\n+1/" )

ng ler-r ,r 
^@r'rn\ 

lh

(4.e)

(4 1(r)

(4.11)

(4.12)

(4.13)

(4. i4)

It should be noted that the lowest orcler term in the evolution function l¿

vauishes Ín:2 which corresponds to d - 4. As a result, the numelical

evolution is considelably more stable in four space-time dimensions. In the

a Fo: tlte Ìrigher dimensional study, d ) 4, the fit rvas performed on the first I glid
points. For the lower dimensional study tìre number of glid points used itì the fit wâs
redlce.l to ,1-
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next Subsection. the method of deterrnining unceltainty ir.r the calculations

of the critical phenomena will be presented.

4. 1.2 Detenttittino Error -Ðsóilrafe-s

Fo'- any given set of initial på,r'âmeters, either a bìack hole will form under

glavitational contraction, or not. As stated previously, it is assumed that

fol massless scalar fìeld collapse there exists one universal clitical solution

5[a-] for all one parameter families of initial data. In the collapse code, two

extremal values of the parameter which lead, in the one case, to â super-

critical collapse and a blâck hole solution, and in the otheÌ, to a subcritical

or reflection solution ar-e first determined. Once these two extremal values

have been detelmined, a binaly sealch is carried out v¡hich narrows the range

sepârating the two phases. This method of determining ¿* is called the direct

ob s eru ation.

The sensitivity of the evolution equâtions to numerical errors has been

found to be very significant as the space-time dimension is increased. This

\¡¡as due to the decreasing fractional power of the dilaton in the evolution

eqrìations. Thc effect this has on the evolution of initial data is to cleate

instability near criticality and a subsequent loss of accut'acy. Often, in the
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large dimensional study the l'ange of possible critical values of ¿ exceeded the

Iimit of machine plecisions. The code became increasingly unstable as the

spâce-time dimension increased and eventually broke dorvn aftel 14 dimen-

sions. It was not possible to extract stable results beyond this limit. In the

lor¡'er dimensional study. hou'ever', the numelical scheme was stable enough

to reduce the range of possible cliticaÌ values to the leveì of machine code

precision.

Once the smallest range of a* had been determined by direct observation

the code would be run again for several supercritical values of ¿ and the

horizon radius information at collapse would be collated into a data file along

with the initial par'ameter information. Let þ¡¡7(a) denote the value of @

corresponding to the position of the apparent horizon for a given value of the

initial matter pulse amplitude a. From the definition of the dilaton field, the

radius of the apparent horizon is, therefole,

,1 /n.r,tn cx Q Àn. (4.15)

From (2.43) and the above r-elatiol, it is expected in the case of super-

5 TÌre code $'as $'Ìitten in C using double precision ¡eal numbe¡s. Thus, the level of
machine code precision is loughly oue part in 1015.
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clitical collapse

r¡,'hele cl is a famil¡' depeldent constant. For-. each dimension studied, t[e

lesults {@a¡7(a), a} ale collated ar.rd the function (a.16) is plotted. The data

is fit to a Ìine using a least squales fit and the r-squared goodness of fit is

calculated. The goodness of fit is given ìry

(1.16)

(4.17)
, ,2ñ? , ),\A,-a or,)

),\Ai - Y)

In plactice, the fit is a very sensitive function of the estimated value of the

critical parameter.

The critical palameteÌ a* is then adjusted wiihin the observed range (of

dir-ect observation) in ordel to maximize 42. For the supercritical collapse

data, this v¡ould result in maximal values of J?2 of between 0.9998 and 1.0000

indicating a high qualit¡, of fit. The value of ¿* which would produce the

maximum ralue of ,R2 would then become the best estimate of the ci-itical

value of a. Refìtting (4.16) with the best estimate of o* produced the best

estimâte of the scalirg exponent 1.

To determine an uncertainty in the best estimâte of a*, the data is plotted
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and the ma-ximum value of A2 is allorved to drop by 0.0001 by varying the

input value of a.. It rvas found that this method of determining a range of

a* would reduce the overall range of possibÌe vâlues of a* as compaled to the

ralge obselved l¡v direct observatìon. The uncertainty in 1 rvas determir.red

by caìculating thc range of fit results ? which corresponded to this nerv

leduced lange of vâlues of o*. In the higher dimensional study, the lelative

erro¡ of gamma remained roughly constant using this method. It should

also be noted ihat this method of determing ellol estimates for tìre critical

constants is consistent rvitìr the method used to quote the results in [48].

'1.2 ResuJús

The numerical code was fir'st tested in foul dimensions with zero cosmological

constant. This was done to ver ify known results in four dimensions as well

as to debug the code and establish the validity of our method. The results

of collapse simulations in foul dimensions are presented âs ¿ì case study in

order to show they a::e in agreement with plevior,rs worlc on this system.

As discussed above and shorvn in [61], it rvas expected that the critical

solution of massless scalar' fleld collapse in spherical symmetry is independent

of any finite cosmoÌogical constant term in the action. Henceforth. these
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results are quoted with the cosmological constant tunecl to zelo. Without

ìoss of genelality, the length scale in the pÌoblem wâs fixed by setting I : 1.

In tÌre lemaining subsections of this chapter, the lesults of numerical

calcuÌations of tÌre critical solutions in other' finite climensions ale presented

in detail. The chapter is conclucled after a specuÌation on the nature of the

dimension dependence of scâling and self-similarity il critical gravitational

collapse.

4.2.1 Crìtical Collapse in Four Dir¡errsjorrs: Case Study

The evolution equations for the case of four dimensions are ideal in the sense

that they ale naturally mole stable6. The evolution equations near d : 0

with r¿: 2, .A:0 and C: l: 1 are given bv

h : ho*hú¡+ttzþ2

x : ho*ír,o*In"ø"

s -- r * *n?r' + ftn,n,4" * *nif^
s zor''? - |tlo''- fih,t,rt'z - Jrt,?,r",'

(4.18)

(4.1e)

(4.20)

(4.21)

0It slìould be uoted that the supercritical [ur¡erical solution in four. dimenslons did
uol involve the integration by parts procedure discussed above. All fhe other collapse
¡i¡lrularions did, horvever, incorporar e r lle funcriolt /¡.
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As seer in the ec¡rations above, the rrrâttcl-- evolutioÌl equàtion is a slower

changing furction neal the oligin than the dilaton evolution function. The

effect this has on mrmerical stability is remarkable and is evident by the

number- of echoing pe-,..iods observed in this case. As discussed in the plevious

section, however, this effect only occuls for (n : 2, 
^ 

- 0). In fact, it was

this numerical stability that provided the motivation in [28] to define the

matter function l¿ instead of using 1 (as is done here as well).

Nevertheless. one can parâmetel-ize the matter freld to a more generâl

function which stabilizes the nurnelical evolution at the origin for space-time

dimensions other thân four 153]. As seen in Section 2.2.2, an example of this

function was plesented for the case ofsix space-time dimensions. The general

matter function is defined by

fm-1)! /a\-./r_ \" - 
"r-,, I" I rrz--t,¡." - (2n - 1)!' \a./ \ (4.24)

rvhe'-e m : n,12. The nerv matter function h., defined in this wa¡', not only
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satisfies the u'ave equation but is constant alor.rg ingoing light waves in llat

space-time. As a lesult, the numerical p-,-ocedule is gleatly stabilized near

the origin.

There ale, hot'ever, consiclerations for: defrning the màtter ftnction in

this wa¡,. First. (4.24) is only valid in even space-time dimensions. Second,

a sepârâte set of code would need to be wi-itten fol each dinension ana-

lyzed. This u'ould impede the l¡asic objective of developing a single code

which accepts space-time dimension as an input patameter. Third, in order

to evaluate (4.24), one would require additional higher order derivatives as

one analyzed higher dimensional space-times. Flom a more pragmatic stand-

point, the numerical âccuracy of difierentiation falls off substantially as the

order of differentiation is increased. hence the gains made in stability come

at the expense of accuracy. For these Ìeâsons, only the auxiliary scalar field

given by (3.114) was used in the collapse simulations.

Figule 4.2 shows the horizon ladius scaling observed in four dimensional

collapse. Tire graph is equally spaced in ìog(a-a-). To determine the slope, a

least squares fit io the function log (r,1.¡¡ ) : 7 log (a - a,) * cp u'as pelformed

as descr-ibed ir the plevious subsection- The value of the slope of the glaph

is given in T¡ble 4.1.



1. Nunerical Simulations of Critical Scalar Fjeld Collapse jn d Dimensions 728

-2

Horizon scalinü in 4 dimensiûns

,-

-28
log(a-a1

Fig. 4.2: Supercritical collapse in four space-time dimensions. The graph shows
one of the first results obtained using space-time dimension as an in-
put pâra.meter. The high number of compÌete echoing periods in this
case four and evidenced by the deviation of the data from a line are
attributed to the unique stability in the evolution equations. The ini-
tial surface contained 12,000 grid points. The criticaì exponent was es-
timated to be 7 : 9.374 t 0.002, in excellent agreemerìt rvith earlier
flndirgs [29, 48].

10
t¡30
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(.¿+ 1 R"
üi 0.99983
a* 0.3744 0.99993
o 0.3767 0.99983

Tab. 4.1: \4a-ss scaling iu four dinensional scalar fìeld collapse. Ir the table, a-
corresponds to the maximum value of ,R2 jl ¿ least squares fit to a liue.
a* is the lowest value of the a.nplitude th¿t did not produce a leflectiolr
solution or a black hole by direct observatioìr. af is thc ìargest value
of the amplitude which reduced the uraximum value of Ã2 in the fit by
0.0001. The critical exponent was estimated to be 1 : 0.374 t 0.002, in
excellent agreemeDt with earlier findings 129, 48].

Duling the numerical calculatiors the spacing between ? slices wâs de-

creâsed pÌiol- to collapse. This was done if one of â few basic conditions

were met and the effect of doirrg this was found to inclease the accu.-acy of

the final result. In most cases, a particular sequence of Äz divisions wele

essential fol the code to rernain stable. It was also essential to ensure that

the same set of conditions rvere used for all the data points used to calculate

1.

If one of the foliowing conditions were met then Az would be decleased:

i) if the number of grid points passing the oligin in a single iteration exceeded

some smâll amount; ii) if a relative minima formed in o.a7¡; iii) if a minima

that dicl form in o¡¡1 fell below a certain value; ard iv) after a pre-determined

amount of z coorriinate time-
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In otder to cletermine the discrete self-similality in the critical solution 4.,

one needs to examine the pcliodic wiggle in the powel law behaviour of the

black holc mass. Recail, from (2.90) that the period of the u'iggle is lelated

to A l.x'

.^
ô : 

2.t'

To calculate ó, the periodicitv of the residuals in the log(a - a-) graph were

calculated. Figure 4.3 shows a sine wave fit to the residuals in the log(a - o-)

graph. The peliod of the i-esiduals was analyzed by KaleidaGlaph Demo

which uses a Levenber*g-Marquardt algorithm. The fit to the residuals is the

three parameter function:

9: Asin [" log (a - a-) + Bl , (4.25)

where g : log (r¿¡¡) - c¡ - llog (o - a-), The period was determined to be

r:+:1.3682+o.oo7o (4.26)

The error in 7 r'eplesents the standard error as calculated by KaleidaGraph
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-0.82
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Fig 43

,30 -25 .24 -15 "10
log(a-a,)

Discrete self-simiìarity in four dimensions. A line is subtracted from the
log(a-o*) graph and KaleidàGraph Demo is used to fit a sine wave to the
residuàls, It wa"s estimated that.À - 3.44+0.02, in excellelt agreement
with earlier findings 129, 48].

Discrete self-similarity i¡ four d¡mensioÍs
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Deno. The r-squared goodness of the fit wâs Â2 : 0.91362. The lorv value of

-112 (relative to other fits in this analysis) cleally shows that the residuals are

not likely to be sine functions (which is also evident by visual inspection),

nevertheless. one expects the oscillation of tire residuals to have the sarnc

period of a sine function with tÌre same a1:proximate shâpe. In the lower

dimensional studies (presented belou'), the discrepency between the fitted

data and a sine function becomes even more evident and, as a lesult, only

using -R2 as an indicatol of the quality of the fit can be misleading in these

Scalat cutvature in subcútical cdlapse

An aìternative method of determining the critical phenomena in grâvita-

tional collapse is to examine the maximum scalar curvature at the origin in

subcritical collapse. It had alreadv l¡een shown that the scalar curvatule in

subcritical collapse scaled duling gravitational collapse and that the scaling

constânt was the same as the black hoÌe mass scaling constant in supercliti-

cal collapse [27]. From (3.146), the Ricci curvature scal¿lat the origin with
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d:4 and,{ : 0 is given by

Âå') - -8xor6, (127)

whele

. d,y d(t .,lo - - , r.:o
dQ dr

, dr d4' ,,
t0 .'. 1r 1, tr:\)

AQ üT

(4.28)

(4.2s)

For the subclitical coÌlapse calculations the matter function l¿ was fit to

a Iineal funcl ion of r near thc orìgin

h:hoIhtö1/2

This gives the small þ approximation to ¡

(4.30)

Therefore, rvith l:1,

x: ho + Th'ö't' (4.31)

I o(r) L2 (1.32)
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The above relation shows that the Ricci curvatute scalal is simply pr.o-

portional to the square of the gradient of the mâtteÌ field at the origin. For

a subclitical collapse (a < a,) the âbsolute vâlue of the gradient r¡"'ill steadily

inclease to a naximum u'hele the dcnsity of mattet neaÌ the or.igin is gr.eat-

est. Let u ¡1.4x lepresent the value of t¿ when .,R[a) is ma-ximizedT. As the

parameter a appÌoaches a* fr-om the sui¡critical legion, u¡,¡,1¡ appr-oaches z*

fi'om below, r'here, z* is the value of ¿ at criticality. If the collapse is sub-

criiical, the matter will dispelse to spatial infinity for z ) z¡¿¡¡, a black

hole will not form, and ÆÍ1) will then dec¡ease to zero as z,-r oo.

Let us deflne a new valiable

- log (2. - z) + log (z- - u tt.q.x) rf u ! u¡a¡a

ìog (2. + u - 2u¡l ny) - log (2. - uM.Ax) if u )> u¡any.

Figure 4.4 shows the logarithm of @.32) as a function of z for a near clitical

coììapse simulation in four djnrensions.

The initial null hypersulface contained 8000 gi'id points \\'ith a spacing

of Âu : 0.0003. To Ìefine A¿ during the collapse, a diffelent method is

used then for the four dimensional supelcliticaì collâpse. In the supercritical

_t.t

7 Recali that we assigred u:0 oÌì tlìe ititial uulÌ hypersurface, tlìerefore, u¡1¡¡ ) 0
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Scalar cuNature (at origin) in 4d subtr¡ti'tal Ðoilapse

Gq -lu
=
!

-2t)

-12-10,8-6.4-20246
X

Fig.4.,1: Scalar curvature at the origin in four dimensional subcritical collapse.
The curvature maximizes a,t z:0 and decreases to zero as z -* oo. For/. ,¡,\r < 0. log (iRo-',) osciìlates at a perìod tha,t approaches L,f2 as r - Q.
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case, the grid spacing u'as dec'-eased in the z dir-ection in discrete steps.

Fol example, if one of the conditions clescribed above $¡eÌe met during â

supelclitical collapse. Az was decreased by as rr-tuch âs a factor of 10 (in

some cases b), factors of 2 or 5). In the subclitical collapse calculations the

spacing in z r¡.'as decreased [sing the smooth function

(4 33)

rvhere, o, and ö¿ were adjusted to maxi¡nize resolution rvhile keeping overall

computing time to a manageable level. For the subcritical collapse datar

4." : 0.999, b": 0.2, and Az¡ : 0.001 (the LL spacing on the initial surface).

The parameter ?¿* wâs deteÌmined tìrrough ite¡ation. Using these values, a

typical subcritical ::un woulcl involve roughly 24,000 itcr-ations and requile

approximaiely 7 minutes of computing time.

Let us define the maximum curvature for a subcritical amplitude as

4,,; : 11 - n,rari6cxp 
l- t"*)'l

o(4) 1 r,(c) rr r¡1,1-Y - trùo lL:ur¡¡x (4.34)
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It is then expected that

i"g (n';ir..) = r¡ -21logrn. - n; - 'T, [Jogta. d)] . (4.35)

Figule 4.5 sho$'s log (Âl]r)A, ) as a function of log(ø* - a). KaleidaGraph

26 -24 .22 -20 -1Ê -16

Iog(a- - a)

Fìg. 4.5; Scaìing of cunature in fou¡ dimensional subcritica,l collapse. The ma-x-

imum value of the curvature at the origin obeys a power law with the
same scaling constalt as apparent horizon radius in supercritical collapse.
The scaling expoìrent was estimâted to be 7 : 0.374 f 0.002, in excellent
agreement with ea¡lier findings 129, 48].

É

hlarimum scalar rrurlature (at 0rigin) in 4d subcrit¡câl c0llaFse
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Demo was used to flt the data to the five par.âmeter function

-a)+al. (136)

Table 4.2 lists the resuìts of the fitting procedure. Figure 4.6 shows the

r"s- (nf¿") : cp - 21,Icts(a. - a) + ,4 sin lT tog (a.

A R'
0.3743 t 0.0024 3.448 + 0.024 0.9999

Tab. 4.2: Critical phenomena il four dimensional subcr.itical collapse. The r-
squared goodness of fit was maximized by varying a* rvithin the ra.nge
of possibie critical values of ø. The neau values of the fit para.meters
were calculated at the maximum of À2. The uncertainty in A inclutles
contributions from the standard error in the fit and the relative error in
7 aclded in quadrature.

residuaì of the curvature scaliûg after a linear flt is subtracted. A sine rvave

fit is shou'n on the graph. \\¡e estimate A : 3.45+0,02, and 1 : 0.374*0.002,

both in excellent agreement with earliel supercritical collapse calculations.

Discrete self-sinìlarity in supercriticaL co apse

An altelnative method of measuring the period of self-similar.ity is by mea-

sudng the peliodicity of the matter field at the origin. FoÌ these data. the

numelical code was run with the function À in the evolution equâtions (that

is, per-forming the integlation by parts plocedure). The code used an initiâl
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20 -1rl ,1 6

iog(a- - a)

Fþ. 4.6: Discrete self-similarity of the ma-ximum curvature in four dimensional
subcritical collapse. The discrete self-similar period tvas estimated to be
A :3.45:l0.02. in excellent agreement with earljer findings 129, 48]. Tììe
flat bottoms ou the graph were also observed by Garfinkle in 1271. What
causes this effect is unknown.

0.

0.

0

.E

g-0

Residual from linear fit if 4d subcritiDal Drllapse
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glid size of 7000 rvrih spacing At, : 0.00034. The spacing betrveen z-slices

was calculated using the function (4.33).

Figule 4.7 shou's the peliodicity of tlle matteÌ field at the origin fol a

nearll¡ criticàl collapse in four- dimensions. The data r,r'el e fit to a sine wave

tl 6

0.4

û.2

€0

-o.2

-0.4

-0.6

-2 46
-log(u" - u)

Fig. 4.7: Ma\ter field at tÌre origin in four dimensional supercritical collapse. The
solid line represents the best estimate of a sine wave fit to the data. The
discrete self-simila,rity period was estimated to be A : 3.44 t 0.01. in
excellent agreement I'ith earlier findings [29, 48].

function using KaleidaGraph Demo.

For the pulposes of the fitting. data wele excluded with - log (r. - ,) <

lllalter lleld at ûrigin in four dimensi0nal supercrit¡cal D0lfapse
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2.5. These data rvele exclucled because they lepresent the state of the matter

field early in the evolution. This is typically befole tÌre evolution begins to

apploximate the clitical solution. One should expect a, neal critical evolu,

tion to apploxirnate the critical solution onlv fol intelmecliate times. After

inspecting matter fleld ::inging data. jt u'as determined that the tlansition

fi'om "ea-,..ly" to intelmediate times occur-s alound - Iog (z* u) < 2.5.

The disclete self-simiialitv constant u'as determined to be A : 3.445 +

0.013. The same error procedule was used as described above. That is, the

unknorvn cr'itica,l value (in this case z*) was varied until Â2 was maximized.

The error in À corresponds to the range found by allowing the maximum in

Ã2 to fall by 0.0001.

4.2.2 Critical Collapse in HigIrcr Dimensions: 4 < d < 14

In each dimension in the lange 4 < d < 74, an initial glid size of 6,000

was used with spacing Ar,, : 0.0005. Supercritical collapse was obselved

fol d:4.5 as well as the remaining integer dimensions betrüeen 5 and 14,

inclusive. In addition to the same procedure used fol the d:4 superclitical

scaling lesuìts, the formalism included the integration by palts fol these data.

The numerical solution became increasingly uÌrstable as the dimension in-
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creaseci ¿bove four. As a lesult, considelable câÌe was needed in detelmining

the sequence of Âtr divisions fol each dimersion. In all cases, the parameter-

valnes of éo : 1 and ø : Cl.3 r'ere used for the Gaussian initial data ard

the amplittcle ¿¡ was allou'ed to valy in order to detenline a r-ange for. the

critical arnplitude a* separating supercritical and sul¡clitical collapse. The

cosmological constant rvas tuned to zero and the length sc¿le set at I : 1.

Table 4.3 summalizes the results of the stuclv.

Q, A 1
4.5 3.30 + 0.1 0.3984 + 0.0014
5 3.10 + 0.1 0.4119 + 0.0037
ti 2.98 + 0.1 0.4302 + 0.0042
7 2,9ti + (Ì.1 0.4405 + 0.0058
8 2.77 + O.1 0.4459 + 0.0054
I 2.63 + 0.1 t).4524 + 0.(X)54

l0 2.50 + 0.1 0.4562 * 0,0060
L1 2.46 + 0.1 0.4588 + 0.0053
t2 2.44 +0.1 0.4616 + 0.0067
t3 2.40 + 0.1 0.4639 + 0.0089
74 0.4645 + 0.0052

Tab.4.3 Critical phenomena for 4 < d. < 14. The results presented here are
found by using the same data reported in Bland ei al. þ8]. In this table,
however', the error bars rvere reca.lculated and include an additional digit
for 7. The code was optirnized for the determinatiol of the scaling
constant 1 oìì a case by case basis. As a result, the relative erlor in
estimates of 1 are much lower than for A. The self-similarity constants
were determiued by analyziug the periodicity in the scaling grapìrs. This
method of deternining A is highly sensitive to 1 and, therefore, lead to
a lalger relative uncertainty.
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As desc¡ibecl al)ovc, tlÌe data were flt to a line (rvith slope 1) and the

maximum of l?2 was found within the direct observation lange of critical

values of a. This procedu-,-e is further complicated by the appealance of mul-

tiple relative nillima in the apparent holizon function. Figur.e 4.8 shows an

example of the complex structuÌe of d_4À nea.r a typical collapse in ten space-

time dimensions. It rvas found that just priol to the rnoment of colìapse,

x 1o-18 Apparent horizon minima in ten dirnensions
4

3

2.5

oo2

1.5

1

0.5

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

0 x 10'18

Fþ. 4.8; i\,lultiple relative minima near collapse in ten dimensiotìs. The rightmost
minimurn (iargest þ value) corrcsponds to the âppâ"rent horizon position
at the moment of collapse. The appearance of muÌtiple miuima in o4¡7
can lead to additioral u[certâinty I'hen estimating r¡s.
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ne\1' minimâ in d_4Ë would appear e\¡er closel to þa¡¡. This catr be seeû i]Ì

the figure. Thc new structLrÌe in the solution u'ould also be accompanied b¡'

increasing numelical instability in tìre evolutior] equâtions, howeve-,-, evel if

the code clashed pr:iol to o,¡t¡ - 0, the position of the ou1,er-most lr. iuinum

would asyrnptotically approach d.,r¡¡. As a r-csult, if the code couÌd be made

to remain stable lolg enough duling a given coÌlapse then a fairly âccuÌate

estimate of r¡¡7 conld be detelmined.

Moreover, it was observed that the relative minima would also possess

the clitical scaling behaviour seen in r,1¡¡. Thus, it was found that one could

approximate the critical phenomena observed in gravitational collapse by

tracking a particulal i-elative minimum in ø,1¡7. In fact. it u'as detelmined

that ihe scaling constant calculated in this way agreed veÌy well with 1

câlculâted using the last surviving outermost minimum at collapse. Figure

4.9 shows the comparison of the two calculations in the case of 10 dimensions.

In Tal¡le 4.3, calculations of 1 are calculated based on graphs of the type

shown on the uppel right of Figure 4.9.

The periodicity of the lesiduals in the scaling graphs can provide a rough

estimate of the disclete self-similarity constant. Over the range of dimen-

sions studied. data rvas obtained rvhich contained between 1.5 and 3 peliods
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=

-4

.t

d = 10 (outer minimum) d = 1ll {same minirnurrl

lnla-a.)

-18.22

E

0.01

û.005

0

-0.005

-0.01

0.0't

rl.0rl5

0

-0.0t5

-û.012D -'18

lnfa-a,)
16

Frg. 4.9; Comparilg relatir.e minima in on¡1 . The left hand graphs show the scaÌ-
irg exponent (upper) and residuals (lower) from a liuear fit using the
best estimâtes of r¿¡7. As the critical ampìitude is a.pproached tire code
becomes unstable leaving points scattered about the linea¡ fit. The right
graphs track a particular minirnum over the same range of amplitudes.
The estimates of 1 fol both câses are in strorg agreement but the graph
on the right displays the self-simiiarity of the solution ând can therefore
provide a rough estimate of A.
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of oscillations in the lesiduais of the linear fit glaphs. In older to obtain

the most leliable estimates for A. (as in tÌre d : 4 case above and in the

d < 4 cases plesented below) one r-.equiles about 4 periods fol a given di-

mension. Because the code was or-iginally optimrzed fol the scaling stud1.,

I attempted to compensâte for the lack of acculacy in A by incleasing the

relative uncertainty in the final calculations for A by 1%.

In 148], ti.re peliod of oscillations of the residuals were estimated at the op-

timal value of rz*. Calculating the per-iod of the wiggle lead to an uncertâint)¡

in ô of roughl¡' 1%. To calculate A we also required an accurate estimate

of 7, however, 1 is known to roughly 1% in the higher dimensional study.

To determine a conservative estimate of the total uncertainty in A, all three

elr..or contributions weÌe added linearly. This leads to an estimate of a 370

relative e¡¡or in A. Fol simplicity, the er*ror is estimated to one digit (*0.1)

fol all the highel dimension estimates of A.

As a diagnostic during the numerical colÌapse runs, the matter field was

consistently examined near the oligin to ensure our fitting procedule re-

mained acculate, Figure 4.10 shows the matter field neal the oligin for a

typical collapse run in eight dimensions. The matter field is shown at a late

time just prior to o¡¡¡ : 0. In the following subsections, the collapse results
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Lale time l ileld near cr¡ticality in eight dimensi0ns

.¡.1 ' ', ' ' ' ' ' I

-78 "65 -6t -55 -50 -45 .AtJ

los(ö)

Fig.4.10: tr'fatter field near the origin in eight diurensionaÌ supercritical collapse.
The graph indicates that, for this particuÌar collapse run, a signiflcant
amount of matter remains behind the appareÌt horizon position.
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flom the lower dimensional study and an attempt to detelmine the functional

dependence of critical phenonena on space-time dimension will be presented.

4.2.3 Critical Co apse in Lover Dimelsjol.s; 3 < d < 4

The numerical code was modified to carly out the lower dimensior.ral study.

As irad been done fol the foul dimensional subcritical collapse calculations,

the z spacing between itelations wâs calculated using thc smooth function

(4.33). After lunning the collapse code through several iterâtions foÌ each

dimension, the critical pâr'¿ìmeters ¿* and ¿* were simultaneously detelmined

within a small range. The parameters a,, and ò, were adjusted, along with

Au, to maximize resolution in the final result for a given value of ly'. For

the results quoted below, initial glid sizes of between 8,000 and 12,000 grid

points were used.

This method of numerical calculation, coupled with a gÌeater numerical

stability in lower dimensions, enabled determination of very acculate esti-

mâtes of the critical amplitude. The numerical âccurâcy obtained was at

or near- the level of machine code precision for the lorver dimension results

quoted heÌe. Once a rough estimate of the critlcal pâr-ameteÌs was deter-

miled the collapse code wâs run over a range of amplitudes and the resuìts
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(a, r¡77 ) coilated.

The self-similality period rvas detelmined for each dimension by observing

the periodic behaviour- of the rnattet field at the origin. This method con-

siderably clecleases the uncettainty in dctelmining the disclete self-similarity

constânt. Consistent rvith the 4-dimelsional study, datâ wâs excluded for

which -log(z* - z) < 2.5 and the remainilg data fit to a sine wave function

using KaleidaGlaph Demo, Fol these calculations, a stable collapse lun with

a sr:percritical amplitude closest to a* was used. Table 4.4 summarizes the

results of the low dimension studlr

d. A 7
2.083 + 0.024 0.1379 + 0.0042

3.05 '¿.5'¿6 + 0.O25 0.1628 + {).0008
2.783 + 0.015 0.1989 * 0.0014

3.2 3.097 + 0.011 u.2495 + 0.(X)t 0

3.254 r 0.019 0.2853 + 0.0024
t/, 3.354 + 0.0i6 0.3053 + 0.0027

3.411 + 0.017 0.3235 + 0.0018
3.451 + 0.013 0.3476 + 0,0015

'to 3.453 + 0.0i4 0.3672 + 0.0023
4 3.445 + 0.013 0.3744 + 0.0022

Tab.,1.4: Critical pheuomena for 3 < d < ,1. The critical amplitude was deter-
mined to a higher degree of accuracy than for the high dimension studv
bv modifying tÌre collapse code. As a result, the estimâtes of the critical
constants have a lower reìative uncerta.intv-

Figure 4.11 shows an example of the ringing of the matter field at the
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origin in d : 3.5. The period of the ringing was estimated to be Â :

3.411 + 0.017.

û.8

tl.6

0.4

t2

€ù

-u.2

-0.4

-0.6

-O,E L

-2
-log(u, - u)

hg 4.11: \4atter field at the origin in d : 3.5 supercritical collapse. The period
was estimated to be A : 3.41 + 0.02.

It was desiled to determine the functional relationship between the critical

constants and space-time dimension in oldel to predict theit value at d:3.

Recall from a,bove that the freld equations become singular at d:3 and so

it is not possible to run collâpse sinulations for that value of d. \{oreover.,

the dilaton field becomes negative fol rC < 3. For these reasons, the lower

Matter feld ai 0rigin in d=3.5 supercrilical DDllapsE
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dimension collapse calculations lvele limited to the range 3 < d < 4.

A weighted fit to the data for two classes of functions using KaleidaGraph

Derlo was perfolned. The clata il'as fit to the follou'ing forms

Lr (¿) 
^ 

(¿) l.t I

fn(¿) ^,(¿)ì.

(4.37)

(4.38)

m1 log (d - rr") - ra,3 Ìog (d) + m1,

'ft73rnt- (d-ìizy'

The question of whether the data are well fit by other folms r.emains open.

Nevertheless, in l48l it was suggested that l could be described by a function

eithcr of the folm (a.38) ol of the form

^l(d) : -¡ - m2 exp (-^"d,) . (4.3e)

Fitting the low dimension data to the form (4.39) did not vield results with

a high deglee of confidence. The results of the best flt (corresponding to the

lowest 12) are shown in Table 4.5.

Fu¡ctior m1 Ìn2 m3 Y:,
'Ì : ??¿1 - n12 exp (-??¿3d) u.:J76 + tl.0l)2 (6+l)x10" 3.35 + 0.07 0.9992 6.1

Tab. 4.5: Poor quality fit for 1 with S < d < 4. As a result of the fit, the fulctiou
(4.39) u'as excluded as a likely form of 1(d). Even so, if one uses this
fuuctiou to predict the critical expone t. oue finds .t(3) : 0.12 + 0.07.
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In the lower dimensional stucly, it $¡as found that A and J were very

well fit by functions of the form given by (4.37) and (a.38). The results of

sevelaì fits to these functions a'-e shown in Tal¡le 4.6. In these flts, the data

l. ìt f,ì)nc{,ioìì tn,1

t-2 u. o2 2.81' f).1/¡0ll 0.9999 0.54

0.ô 2.8{J 0.r4 0.50 0.9999 0.63

3 1: m1 - i:*: 2.70 0.099 0.449 0.9998 0.b4
4 2.551: 0.167 0.9948 > 15

5 r : l.g Js;"rir lmt 0.1,1 2.90 0.3 0.8 0.9998 0.89

6 1: ?7¿1 log (]+ +1n 0.107 2 939 u.518 0.9996 1.59

7 t:Ioel\+ l'tt 0.105 2.942 0.091 0.9995 1.74

8 l: mrloe(+ 0.0062 2.959 {J.9987 4.3ti

I ¡:logl("-jlå/ + n7,r 0.63 c oe7 2.8 4 0.9988 1.08

10 A-log !j#l*,n.r 6.234 0.9969 1 .82

11 +tn 0.51 2.1 6.4 0.9970

Tab. 4.6: Fits of the functional fo¡m of the critical phenomena. in massless scalar
fleld collapse for 3 < d < 4. Onl¡' the signìficant digits in thc fitted
values ol the coefficients have been inciuded.

is weighted and the fit parameters determined using KaleidaGÌaph Demo.

In the table, the goodness of fit rR2 and the reduced chi-squared X7 [101] of

the fits are included, and the fits have been lanked according to the latter.

The scaling constant ? was best fit to a function which had the folm

(4.38). If the functional form for Fit 1 is indeed a good representation of the

data then the low value of Xf could be an indication that the unceÌtainty in

t has been ovel-estimated. This can be intelpreted as verification that the
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method of detelmining uncer-tainties presented hele is, in fact, conservative.

Perhaps the most interesting aspect of the fit result is that the additional

constraint of folcing tì.re datâ to âsynptote to a valne of I 12 at Ìalge d did not

deter-iorate tl.re quality of the fit even though tl.re data is being extlapolated

over a such â large rânge in d. Indeed, as can be seen by the result of Fit 2,

the most likell. l¿i¡s of m.a overlaps with the value of 1/2. The¡efore, any

increase in ¡2 clue to the additronal constraint is more than compensated for

by the extla degree of fi'eedom recovered.

Figure 4.12 is a graph of the clitical scaling data with Fit 1 and Fit 5

shown with the data. Using the coefficients of Fit 1 to predict the value of 1

atd:3andd--+cogives

r(3) : 0.11 t0.02

. '*' - 
I

' -2'

It is also desired to determine the form of À as a function of d. From the

lower dimension data, A appeals to reach a maximum around d: 3.7 which

lules out the fo¡m (4.38). The results of the fitting proceduÌe are included

in Table 4.6. In this caser the self-similarity constant appears to diverge very
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Sråhng erponent at l0w späce-time dirrensi0n

û.35
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Fig. 4.12: Fits of the critical scaling constant for 3 < d < 4. The solid line is Fit 5

with a quality of fit given by X3 : 0.89. The dashed lire is the best fit
function, Fii 1, wiih a qua.lity of frt given by X7:0.54. Both functions
extrapolate to a value of apploximately 0.1 ai d: 3.
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rear d : 3, however. the Ì¡est fit lesult indicates that A is still finite ¿rt d:3.

If the flt is constlaincd by forcing the divergence at d : 3, the quality of the

fit is noticeably degraded (Fit 11).

Figure 4.13 is a graph of the disclete self-similarity witÌr Fit 9 and Fit 10

showr \\'ith the data. If one uses tl.re coefücients of Fit I to pledict the vaiue

2.8

< 2.6

2.4

2.2

2

'1 .6

Self-similarity constant al l0w space{irne dimenslon

d

Fig. ,1.13: Fits of the critical self-similarity constant for 3 < d < 4. The solid Ìile
is Fit 10 r¡'ith a quality of fit given bv X3 : 1.42. The dashed line is the
best fit furction, Fit 9, r,ith a quality of fit given by X3 : 1.08. Fit 9

extrapola.tes to a value of 1.5 f 0-6 at d : 3, whereas, Fit 10 diverges at
this value of d.
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of Â at d : 3 and d ---+ oo it is found

¡(r) : 1.5+0.6

A(-) -, -oc.

The plediction of A in 3 space-time dimensions is still not very accurate and,

strictly based on the fit lesults, it may not be pr-udent to assume A does not

cliverge at d : 3. If indeed Ä diverges in three space-time dimensions how

might one interpret that?

If one examines the deflnition of a discletely self-similar space-time given

by (2.83), it is seen that the difieomorphism is entirely suppressed if

.A -* -oc. One might, therefole, conclude fi'om the results presented here

that the critical solution in sphelically symmetric gravitational collapse of

scâlar field in three space-time dimensions is, at most, continuously self-

similar and not discretely self-similar. This conclusion could be consistent

with the findings of Pretorius and Choptuik 151] and Husain and Olivier 152]

for the case of scalar field collapse in 2 + 1 AdS, see Section 2.2.1. In the

model studied here, however, clifierent boundaly conditions â,Ìe used,

in the following subsectionj both sets of results (for all d) will be used
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to develop a l.rypothesis of the functional form of the clitrcal phenomena

observed in glavitational collâpse of scalar field.

4.2.4 Dinension Dependence c¡f Critical Plrcnomena

The results in Tabìes 4.3 and 4.4 rver-e combined and a weighted fit to func-

tions of the form (4.37) and (4.38) was perfolmed in order to detetmine the

functional dependence of the critical constânts on the full lange of d. The

results of those fits aÌe given in Table 4.7.

240 r3

â _ ã:;ii'ii 413

2 653 114

o.137 556

1? o.9994

ta 0 095 2.060 499 999¡l 43

(roe r¿Ít-J + '¡r )cxp I m2Q-n3)l+nra
Â=lôslrj;9 +rl 6.233

2.05 2.46

23
^=loe 

\+'?- 994

Tab. 4.7: Fits of the functional forrr of the critical phenomena in massless scalar
field collapse for 3 < d < 14. Only the significant digits in the fitted
values of the coefûcients have been included. A damping term was added
to Fit 20.

The data and best fits of the sclf-similaritv constânt are shown in Figure

4.14. Even though the higher dimensional lesults are less accürâte, A does

appeal to approach a constant at large dimension. If so, the previous fits
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Fig. '1.14: Fits of the critical self-similarity constant for 3 { d < 14. The solid line
is Fit 21 with a quality of fit given by ¡] - f.Sf. The dashed line is the
best fit function, Fit 20, with a quaÌity of fit given by X3 : 1.68. Fit 20
asymptotes to a positive corstant at Ìarge d whereas Fit 21 diverges to

-oo.
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would not be ralid to desclibe Â at large d. To include this consideration, a

dampilg term was added to Fit 20. TlÌe fit u'as noticeably improved. Using

the results of Fit 20. it is hypothesized that

4(a)

¡(r)

¡{oc)

I /.,Æ=\ 'l

llos('-J+3.71 exp [ 005(d-3.e)] -512 \4.40)L\u-/)
-co (4 41)

5

t (4.42)

The data and best fits of the scaling exponent ale shown in Figure 4.15.

Including the higher dimension results did not affect the qualitative aspect of

the appalent functional dependence of the critical scaling exponent on space-

time dimension. Sir¡lilal to the findings given in the previous subsection, the

data wele better fit to a function of the form (4.38) which asymptotes to

â positive constânt at lalge d. The only diffe¡ence being that constlaining

the fit to asymptote to a value of 1/2 slightly leduces the quality of the

fit. Even so, the standârd error of the flt parameter ?¿4 in Fit 12 overlaps

with 712: that is, ma : 0.493 + 0.007. \¡Ioreover, the relative errors for the

remaining pararneters of Fit 12 are considerably largel compaled to Fit 13

âs is seen when the frt is extrapolated to d: 3. Using the lesults of Fii 12,
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Fig. 4.15: Fits of the critical scaling constant for 3 < d < 14. The soli<l line is
Fit 16 with a quality of fit given by X3 : 0.99. The dashed line is the
best fit function, Fii 12. with a quality of fit given by X7 :0.23. Fit
ß Q7:0,29) has also been included in the graph (the dash-dot line).
Fit 12 and 13 asymptote to positive constaDts at large d whereas Fit 16
diverges to -cc.
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it is pledicted that

-,"r' 0.403 - -0 134=

(d - 2.E0)u ""

l(3) : 0.1110.04

"(oo) 
: 0.493+0.007.

In ordel to leduce the unceltainty in the extrapolation, it is hypothesized

that the functional form of 7 (using the results of Fit 13) is, instead, given

bv

1@)

?(r)

,(-)

1 0.1407

2 (d _ 2.8i3)" "'

0.11+ 0.01

1

t

(4.43)

(4.44)

(4.45)



5. CONCLUSIONS

In this tl.resis, I have analyzed the clependence on space-time dimension of

the clitical phenomena observed in glavitational collapse. The m¿tter. fleld

analyzed is a d-dimensional, spherically symmetric, massless, minimally cou-

pled scalar field. I have numerically calcuÌated the properties of the critical

solution of this matter field in the context of dilaton gravity over the finite

range 3 < d < 14 alJ shown that the results agree qualitatively with pr.e-

vious studies. The critical solutions in these dimensions exhibit power law

scaling, univelsality. and discrete self-similality analogous to that originally

seen by Choptuik in the case of 3 + 1.

A single computer code, written in C, rvhich has been designed to carly

out the simulations, uses spâce-time dimension as an input parameter. In

plactice there are no impediments in eithel the field equationsr or the nu-

merical code, which prevents the uset to input a flactional dimension in the

calculation. As a lesult, I have anal)'zed both integer d and non-integer d
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cases. In each câse. I calculated the blaclç hole horizon r.adius power. law scal-

ing constant 1 and discrete seif-sinilarity constant Ä in supercr-itical collapse.

I aìso analyzed these constants in 3 + 1 sul¡critical collapse.

Once the values of the clitical phetomena rvere estimated, the r-esults

rvele collated as a function of d. I flnd that 7 and A ar.e accurately described

by genelal smooth functions of d and, in both cases, developed a hypothesis

for the palticular folm of both functions. Using these for.ms, the data were

extrapolâted to d: 3 and d--- oo. I predict that 7 approaches a finite pos-

itive constant at both extlemes) whe,r*eas, Â asymptotes to a finite constant

as d -+ co and probably divelges to -oo as d -+ 3.

Figule 5.1 shows the results for the scaling exponent as a function of d

along with my prediction of the folm of 1. The graph also shows known

results from earlier studies. Included on the graph are the results of Sor.kin

and Oren [63], Garfinkle, Cutler and Duncan [53], and Gundlach [29].

Figure 5.2 shows the results for the disclete self-similarity constant âs â

fi:nction of d along n'ith my prediction of the form of Â. The graph also shows

known lesults fi'om earlier studies. Included on the graph ale the results of

Sorkin and Oren [63], Garfinkle. Cutler and Duncan [53], and Gundlach [29].
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5. Conchtsions

5.1 Properties of the critical solution at d,:3

I have l.rypothesized. based on extrapolation, that the critical solution in grar'-

itational collapse of sphericall;' s1.¡¡¡"¡ti" minimalil-ç6¡1pled nassless scalar

field in ihree space-time dimensions rvith r.anishing cosnological constânt

is a Type II critical solution rvithout a cliscrete self-similarity It has also

been pleclicted that in superclitical collapse, the black hole horizon raclius

approaches the power law given by

rAH : cF (o - o.), , (5 1)

where ø is a one parameter family of initial data, a* is the critical value of rz,

c¡ is a family dependent constant, and 1:0.11+ 0.01.

In our cooldinate system (3.83), the matter field equation (3.80)

dimensions becomes

r'*+ìx'*2r"!':g

The metlic function is given by

in three

(5 2)

s(u,u):c1(z)exp llry^l (5.3)
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Following the s'ork of Gar-finkle [47], rve now impose a css ânsatz on the field

equations by defining the new coordinates

167

1)

- log (-¿)

1 ufu
2'

(5 4)

(5.5)

where. the z cooldinate has been shifted so that z incleases to the central

critical singularit)¡ at z: 0. The matter field will take the form [471

¡:cr+{,(1ì) , (5 6)

which requires us to assume the space-time is approximately flat. Ther.efor.e,

':f,a - "l ' (5.7)

Inselting (5.6) into (5.2) and using (5.7) we find fol the wave equation [47]

R(t 2R) c;" - (r - 3n) u'- c:0 (5 8)

Garfrnhle finds the solution to this equation, which in our coordinates is given
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by

(5 e)

In 169]. a pertulbation analysis of the css solution given abor.e was carried

out in âr âttenpt to detelrnine the scaling constant in three dimensional col-

lapse. Using regularity conditions at the origin and a \,Iirkowksi backglound

near- the origin, severâl per-tur-bative modes wele found. The pertuÌbation

with one unstable mode gave a scaling constant of j : 413. Unfortunately.

this mode did not leploduce the numerical lesults at intermediate times as

reported by Pretolius and Choptuik [51]. As stated above, Pretorius and

Choptuik reported â scaling constant of 1.2 * 0.05. In theil numerical aûaly-

sis, howevel, Pleto,t-ius and Choptuik used a backgrou.nd AdS space-time and

Dirichlet boundary conditions. Husain and Olivier' [52] nunericalll' analyzcd

the same system using a double null parameterization and a hackglound AdS

space-time. They reported a scaling constant f - 0.81. In our analysis we

have used a Minkou.ski background rvith Â:0 for d > 3 and estimated the

properties of the clitical solution at d : 3. It is, therefole, not cleal whetheÌ

we shouìd expect to see a contilluously self-similar critical solution as well.

Clément and Fabbli 1102] analyzed the Garfinkle lesult and derived, by

a limiting process, a new css solution which can be extended to the full

s(u,u) - c,ø (zl:13/-"')""
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-4. < 0 ec|.rations. The equations the¡' d6.i'rn¿ rvill describe collapse to a null

central singularity and the¡' find no cur-vature singulalities in the space-time.

Nevertheless, they perfolmecl an pe::tur-bation analysis using the methods

of Frolor. [i03] and Ha¡'¡'¿r'¿ [104] to estinate the scaling constant in tÌre

clitical solution. These autÌlo,t-s estimâte ?:0.4. As one can now seer it is

important to continue analysis of three dimensional collapse as there remains

severai unlesoived issues in the pl.oblem.

Table 5.1 summalizes the various pledictions of the scaling constant in

thr-ee dimcnsional coilapse of spherically symmetric scalar field. Clearly there

Author' Method Ì
Pretorius and Chontrrik 151 -\ umeÌrcât, 1\ + u r.2 + 0.05

Husain and Olivier [52 Numerical, Â I 0 0.81
Garfinkle and Gundlach 169l Pertulbation, .4. I 0 413

Clement and Fabbri 11021 Perturbation, Â I 0 {J.4

Bland and Kunstatter l99l Extrapolation. Â : 0 0.11+ 0_{)I

Tab. 5.1: Comparing predictions for 1 il three dimensional collzr"pse

is discrepancy on the nature of the ciitical solution in thlee dimensional

collâpse. It rvould be useful to continue work on this case until an analytic

solution could be obtaincd which matches the numerical observations-

169
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5.2 Properties of the critical solutioir in the large d linit

Assuming 1 and A can be desclil¡ed by smooth functions of d I have p-,-'e-

dicted, using an extlapolation argument, that both clitical quantities âsymp-

tote to finite positive constants as d -- co. This sùggests that they are the

critical phenomena of a ìimiting theoly at large d. This limiting theory ap-

peaÌs to contain a Type II discretely self-similar critical solution.

In ordel to study the d --+ co case, let us recall the evolution equations

with À : 0 in the large d limit:

- nn6(n-t)/n ¡
v - g¡zç71 _7) c

_ gÓ _h*
CL2 C

Ls

2'

In the limit of large d, the dilaton potential becomes

s,-

I

a

1

t",
(5.10)
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and the total âction is, thelefole, given Ìry

One can no$'see thå,t in vacuum, the action is equivalent to the CGHS action

in the form (3.13). The total action in the curlent form diflers fi'om that of

CGHS in the coupling to the mâtter field. Interestingl¡,, however, Peleg,

Bose and Parker [105] numelically examined the classical CGHS action and

observed Choptuik mass scaling AIB¡1 x la - a*11 with 1 - 0.53 * 0.01. This

value of 7 is suspiciousll' similar to oul extrapolated value at the limit of

large d. It would be intelesting to see whether a connection exists between

the two theolies.

In the computel code written for this thesis, the dilaton field at constant

z, is er.olved using discrete steps in u. Hence, the evolved freld to first order

is given by

s : # I 0,,^lo,. þ- d(vx),] (5.11)

þ(a+Az,u) : 4'@,u) + þ(u,u) Lu

(nC11u1Etn 1t' ¿À \ .

'- ['ffi- o)o' (512)

With 1 : 1 and C1(z) : 1, grid points very near the origin are approximately
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given by

(5.13)

As statcd in the previous chapter, iÎ Q-¡*, < 0 then the position of tl.re origin

in the glid is shiftecl and the corresponding grid point is removed, Ther-efor-e,

the condition for lost gr:id points at sm¿ll d is given by

¡,1 - ^., - 
( n(ø',\h'tt'1rb'¡1:ó''-( à,í_" 7^,'

r\t /n r a ,"
:(n - 1)

(5.14)

where A.z, : e . We notice fr-om (5.14) that âs n gro\À¡s, the demand for

numerical accuracy grows to the power of n, otherwise, grid points will begin

to pile up at the origin and the stability of the numerical code breaks down.

In practice, we found that for n > 12 (1, > 14) tlìe code could no longer

be made stable enough to extract useful data. N{oreover, if we examine the

condition for losing grid points in the limit of large d we find the unacceptable

result

n€ \ l
,\n t)lø. ""0 l-, (,

Our current parameterization u'ould not be capable of performing calcula-
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tions ¿¡t tire limit of lalge d and as 1\¡e ltave seen in the previous section the

paraureterization also bleaks down at the d : 3 limit.

In conclusion, the clitical phenomena in the gravitational coìlapse of

sphelicall"v symmetÌic minimally-coupled nâssless scalar' field in finite di-

mensions gr--eateÌ thàn thr-ee ha,s been studied. Generaì forrns for the scaling

constant 1 and discrete self-similal'iiy constant A in this tange of dimensions

have been found and an extlapolation of these results has been carriecl out in

order to predict the values of these constants at d : 3 and the limit tC ---+ oo.

It has also been shown that the curr-ent parameterization breaks down at

these tr,r'o extremes and so numericâl confilmation of these pledictions is not

possible at present. It would be interesting to frnd a new parameterization, in

the context of dilaton gravity, so that one can investigate these two extremes

and attempt to verify the pledictions for 7 and Â.
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A. DERIVATION OF THE F'ItrLD trQUATIONS

We wish to examine the first line of (3.72). Formally,

/i\
6 (J-R) : J-s I R,* - ;0,,R | 6sp" + J-sp"6Ru,. (A 1)

\z/

However, as discussed in chapter 3, the Riemann curvature tensor has only

one independent component in two dimensions. In fact, in exactly two di-

mensions (from 3.3),

1

Rr": 5s,,R. (4.2)

which simplifies (A.1) to

õ (,/=R) : u--nnuu5P,,. (,{.3)



A. Derivation of the Fie]d Equations

The variatior of the Ricci tensol is given by the Palatini identitv 11061

3R,,,,:y, (ôfi^) _ vr (ôf)") ,

v'here ôl),, is the change in the affine connection. Expliciily,

(A 5)

The valiation in the affine connection cân âlso be expressed as the tensor' [3]

3t), : -s^eõ!tî"ri,,, ln^oly * -*l

õl)" - ! n^c lv, (6s or) + y, (ðg p,) - V, (6 s r,)lLLv2"

We insert (A'.6) into (4.4) and use (3.70) to obtain

1

6R,,, : )o^, [v,v, t6g>,0) ] V ¡y ot6gu,)l

;
- 4o^o lV rV " 

(õgrr) r V 1V, tð9r,)]

(A 1)

(A 6)

(A 7)

Therefore,

sr"" 6Rp,: (VrV" * gþ't) 6su" : - (VrV" - sr"J) 6ou" , (A 8)
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where we have made use of the definition (1.14) ard of the identity 13]

6qttv : _gpp gvo 6gpo

Hence, we le-exÌlÌess (4.1) as

(A.e)

6 (^/-R) : -^/-g (v ,v " - eu,r) õsþ' (4.10)
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