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ABSTRACT

A study of the critical behaviour which is observed in numerical calcula-
tions of spherically symmetric scalar field collapse has been performed. The
gravitational collapse calculations are carried out using the field equations
of Einstein’s general theory of relativity in the context of a two dimensional

dilaton gfavity theory.

The problem is formulated by considering a spherically symmetric matter
distribution in an arbitrary number of space-time dimensions greater than
three. A spherical distribution will only depend on two space-time coordi-
nates, therefore, the action of the model can be reduced to a specific case
of a 1+ 1 dilaton gravity theory. The evolution equations of the problem
are simplified by carrying out a conformal transformation of the metric field.
The number of space-time dimensions then appears as an input parameter of
the field equations. Initial data is defined on a discrete space-time grid and

numerical simulations of gravitational collapse are carried out. The computer
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code is optimized to increase numerical stability near the critical solutions.

Discrete self-similarity and mass scaling in the near critical solutions are
observed for each of the dimensions studied. The critical phenomena are
described with a high level of confidence by smooth functions of space-time
dimension. It is hypothesized that the critical solution of the theory at
the limit of large dimension is discretely self-similar with a period of 5/2
and contains critical scaling with a constant of 1/2. Evidence will also be
presented which suggests the critical solution in three dimensions with zero
cosmological constant is not discretely self-similar but contains a critical

scaling constant of approximately 0.11.
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1. INTRODUCTION

It has long been known that strong field dynam.ics in gravitational collapse
produces universal, or critical, solutions. These critical solutions are inter-
preted as one parameter attractors in phase space. They have the propertiés
of universality, scaling, as well as discrete and continuous self-similarity, for
all varieties of initial matter shapes and profiles. The solutions do, however,
have some dependence on initial matter field type (for example, scalar field

versus yang-mills field) as well as a dependence on space-time dimension.

In this thesis I examine spherically symmetric scalar field collapse. The
system represents one of the most simple dynamical problems available. De-
spite the simplicity of this system, properties of critical solutions are found.
. The critical solutions will be analyzed numerically by constructing a dis-
crete grid in space and time and solving the evolution equations at each grid
point. In this way the problem is simplified by simultaneously solving a set

of linear differential equations. However, the problem is complicated by the
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discretization process which introduces a numerical error at each grid point.
The numerical errors can lead to instabilities in the evolution procedure.
A particular sequence of grid spacing refinements will he used to maintain
stability of the evolution for as many iterations necessary to extract useful

data.

In d space-time dimensions, the action for the model can he reduced to
a 1+ 1 dilaton gravity theory. Using an appropriate conformal redefinition
of the metric fleld, the kinetic term in the action (a term bilinear in the
dilaton field) is eliminated which will further simplify the field equations
derived in the model. The space-time dimension of the fields then appears as

a parameter of the evolution equations once a coordinate system is chosen.

Initial data is defined and the values of the fields are calculated at each
grid point on the initial hypersurface. The evolution equations and boundary
conditions determine the values of the fields on the adjacent hypersurface and
the system is allowed to evolve over several iterations to one of two classes of
solutions. Initial data can evolve to a final state which contains a black hole
61‘ one that does not. Initial data which evolves o a black hole solution are
-called supercritical, whereas, data which do not form a black hole are called

subcritical. The initial data parameters which lead to the solution separating
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these two states are called critical parameters.

The scaling constant and discrete self-similarity constant have been mea-
sured in supercritical collapse as a function of space-time dimension. Func-
tional forms of the critical constants as functions of d are found for space-time
dimension 3 < d < 14. In both cases, these forms will be used to extrapo-
fate a value of the scaling and discrete self-similarity constant for d = 3 and

d — oo,

This thesis is divided into five chapters. The second chapter introduces
and presents the relevant aspects of numerical relativity in the context of the
dimension dependence of critical phenomena observed in gravitational col-
lapse. The field equations and formalism of the model is presented in chapter
three by first parameterizing in the context of a 1+ 1 dilaton gravity theory,
then deriving the evolution equations and choosing boundary conditions. In
chapter four, the method is described and the results of the numerical anal-
ysis are presented together with a hypothesis on the nature of the critical
solution at the small and large d limits of the theory. In the concluding
chapter a summary of the results of the thesis is presented along with an

objective for future research.
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1.1 Einstein’s Field Equations

Einstein’s General Theory of Relativity is a generally covariant theory of
gravity based on the principle of relativity [1]. The theory is a generaliza-
tion of the Special Theory of Relativity to non-Euclidean manifolds. In the
General theory the space-time continuum is an m dimensional continuously
differentiable Riemannian space-time manifold M [2]. The manifold is cov-
ered with a Lorentz metric field g,, which divides vectors into three classes:
spacelike, timelike, and null. At each point in the manifold p € M we can
choose locally inertial coordinates so that at p the metric field takes on the
Minkowksi values. In general, however, the global structure of the space-time

does not remain Minkowski.

The most general field equations which possess general covariance and
contain at most second derivatives of the metric are given by the Einstein

field equations with cosmological constant {3]:
1 1
R, — ~2~gw,R + §gw,.z’\ == 87T, (1.1)

where R, is the Ricci curvature tensor, R is the curvature scalar, A is the

cosmological constant, T, is the energy momentum tensor of matter, G is
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the Newtonian coupling constant (a number which determines the strength
of the gravitational interaction), c is the speed of light, and 87 is the matter

coupling constant in relativistic units ¢ = ¢ = 1.

Soon after Einstein published his General theory, Schwarzschild [4] found
a solution which described the space-time external to a mass point located
at the origin of coordinates. In spherical coordinates (r,), the Schwarzschild

line element is given by
2G M 2G M\ ,
ds? = — (1 - w) dt? + (1 - -—i ) dr? + r?dQ?, (1.2)
T

where, M is the mass of the matter distribution, and dQ? is the metric on

the two-sphere with unit radius.

One of the more intriguing aspects of this solution is the existence of the
coordinate singularities in the metric. Specifically, supposing all the mass
resides within a sphere of radius 2G M, what can we expect to observe on the
surface r = 2GM? And what about below this surface? If one examines the
radial light rays in Painlevé-Giillstrand coordinates [5, 6, 7, it is found [§]
that,

—_ +1, (1.3)
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where dr/dt measures the local speed of radial light rays. Thus, at r = 2GM
one notices that dr/dt = 0, —2. This means that outgoing radial light rays are
standing still whereas ingoing light rays continue to approach the coordinate
ori.gin. Moreover, for r < 2GM, it is seen that dr/dt < 0 for both ingoing
and outgoing light rays meaning that the surface, or boundary, r = 2G A,
encioses a volume of space-time which is causally removed from the rest of
space-time. This boundary is called the event horizon and is interpreted as
the boundary of a black hole.

In the 1960’s, the singularity theorems showed that an essential singular-
ity {a point of infinite space-time curvature) must always oceur once a closed
trapped surface' has formed, independent of matter type or symmetry. Prior
to these theorems, Oppenheimer and Snyder {10] showed explicitly, in 1939,
that a black hole could be formed dynamically as the end point of gravita- |
tional collapse. Despite its very interesting properties, gravitational collapse
and the black holes which are subsequently formed did not receive very much
attention in the 1940’s and 1950’s on account of the rise of quantum mechan-
ics.

In 1976, Davies, Fulling and Unruh [11] demonstrated using a two dimen-

! In 1965, Penrose defined a trapped surface as a closed, spacelike, two-surface with the
property that orthogonal null geodesics converge locally in future directions [9].
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sional model that, in the case of massless scalar field, black holes evaporate
~ over time by contributing to the thermal flux at infinity. This result was con-
sistent with Hawking’s earlier speculations that quantum mechanical effects
will cause black holes to radiate away thermal energy in proportion to their
surface gravity [12]. In both of these cases, one attempts to include.quantum
mechanical effects in the gravitational field by only quantizing the matter
field in a background stationary solution of the classical gravitational field

equations.

The non-linearity of the gravitatioﬁal field equatibns often makes ana-
Iytical solutions diflicult or even impossible to obtain. Numerical relativity
offers insights to the dynamics of gravitational collapse by solving the field
equations iferatively using computer code. For a recent review on .numerical
relativity, see Gundlach [13] and Lehner [14]. In 1987, Goldwirth and Pi-
ran [15] studied the numerical collapse of massless scalar fields in spherical
symmetry. They observed that black holes form in the space-time for certain
configurations of initial field matter. In other cases, for weaker initial field
matter, the matter dispersed to infinity. Unfortunately, the data were not
sufficiently accurate for a detailed analysis of the central (physical) singular-

ity. Nevertheless, numerical relativity appeared to be capable of addressing
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the issue of the cosmic censorship conjectures.

"The weak cosmic censorship conjecture affirms that all singularities aris-
ing, generically, from the gravitational collapse of matter must be hidden
behind a black hole horizon and are thus hidden from any distant observer.
The conjecture has never been proven (nor disproven) [16] but the conse-
quences of its validity would forbid the existence of naked singuiarities?.

Intuitively, it seems reasonable to expect that sufficiently small amounts
of matter, parameterized by sufficiently small-valued initial data, would, at
late evolution times, disperse leaving the space-time free of singularities.
Indeed, this has been shown fél‘ certain types of matter [17, 18]. On the other
hand, sufficiently large-valued initial data would be expected to collapse to
form a black hole and a singularity. But even until the early 1990’s little was
known of the nature of dynamical gravitational collapse nor of what might
happen in the collapse of matter which was neither “sufficiently small” or
“sufficiently large”.

Beginning in the early 1990’s, Choptuik began a systematic numerical
study of the gravitational coliapse of a minimally coupled spherically sym-

metric massiess scalar field {19). He found several surprising properties in the

2 A naked singularity is a singular point in a space-time which is visible to distant
observers. See, Hawking and Ellis {2} for more on the singularity theorems.
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dynamics of coliapse including the appearance of naked singularities. This

finding appeared to violate the cosmic censorship conjectures.

Penrose describes the cosmic censorship conjecture in the following way:
Any generic suitable non-singular initial data which evolves according to the
field equations of classical general relativity will not develop any space—time
singularity visible from infinity [20]. This would mean that even an observer
falling behind the event horizon into a Schwarzschild black hole would not
observe the central singularity until they had met their fate. In 1981, Mon-
crief and Eardley [21] reformulated the cosmic censorship conjectures in the
context of a global existence conjecture for solutions of the Einstein field

equations.

Some form of cosmic censorship is essential for general relativity because
the existence of naked singularities in a space-time would not allow pre-
dictions of stable future evolution in regions outside of the horizon. This
would happen because arbitrary pieces of information from within the sin-
gularity could be visible from infinity thus modifying, in some arbitrary way,
the physics of the rest of the universe. Without the censorship conjectures

general relativity theory could predict its own demise.

Nevertheless, in 1991, Shapiro and Tuekolsky [22] were one of the first
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to numerically observe naked singularities during the collapse of coliisionless
gas spheroids. The black holes formed in this system where found to be
consistent with the hoop conjecture which states that black holes with mass
M will always form whenever that mass is compacted within a region whose
circamference in every direction is < 4xM. For initial data with sufficiently
large valued semi-major axis the authors observed spindle singularities with-
out an apparent horizon thus suggesting a violation of the cosmic censorship
conjectures.

Christodoulou [23] provided analytic examples of naked singularity for-
mation in scalar field collapse. In an important extension to this earlier work,
Christodoulou [24] later argued that because the naked singularities found in
scalar field collapse have positive codimension they are necessarily unstable
phenomena. This would suggest that, for the case of scalar field, one has not

vet lost cosmic censorship.

1.2 Conventions

Einstein summation is implied over repeated indices on tensors, e.g.

TH =) T, (1.4)
a=1
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where m is the number of independent coordinates and 17, is an arbitrary

mixed tensor. The metric tensor g,, is defined by
ds? = g, dzdz", (1.5)

where ds is the infinitesimal distance measure between adjacent points in
the manifold. The metric tensor is also the covariant tensor used to lower

contravariant indices, therefore,

T = Guadupl®?. (1.6)

The inverse of the metric tensor is the contravariant tensor ¢ defined by
g.ﬁu/gr/o_ = 55’ (]_7)

where 6% is the kronecker delta. For two dimensional spaces, we use a metric
~ signature of {~+). For higher dimensional spaces, the metric signature we

use is (— + -+ +). The length or norm of a vector X* is given hy

X% e X, XV =g, XHX". (1.8)
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Using our convention: vectors are timelike if X2 < 0, spacelike if X2 >
g P .

and null if X? = 0. We also define

(VX)Q = v,uXvHX = g'uuv,uXvuX' (19)

The metric determinant is defined such that

V=g = [~det (g)]'? (1.10)

i a scalar density of weight +1. Therefore, a tensor density for an arbi-
trary tensor T can be constructed by forming the product {(,/=g7"). The

- Christoffel connection is given by [3]

1 39»5 ag ag v
A Ao U L
I\,uu = "2"9' (83:# + Y a(ﬂa) . (111)

‘Alternative notation for the partial differentiation of a tensor 7}, is given by

T,
dz*

= BATW = LA (1.12)
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Covariant differentiation of a mixed tensor T is given by [3]

VAT, =T =T+ 15,10 = 13,77, (1.13)

The d’Alembertian operator is given by

O=V,VF=g"V,V,. (1.14)

The Riemann-Christoffel curvature tensor is given by [3]

R, =T _—T) +I"12 171 (1.15)

P p,o Ho,v uv™ on pot vn”

The Ricci tensor is obtained by contraction of the curvature tensor

Ry = R°

o

(1.16)

and the curvature scalar is given by

R=g"R,,. (1.17)



2. REVIEW OF THE CRITICAL PHENOMENA IN

GRAVITATIONAL COLLAPSE

In this chapter, a review of the critical phénomena observed in numerical
calculations of gravitational collapse is presented. The first section focuses .
on the numerical solution first reported by Choptuik in massless scalar field
collapse. Choptuik found a universal critical solution in the numerical col-
lapse of scalar field matter with spherical symmetry in a 3 + 1 dimensional
space-time. The properties of this critical solution are discussed. Although
the focus will remain largely on scalar field matter types, I include in Section
2.1.1 a brief discussion on the critical phenomena observed in gravitational

collapse of other matter types.

Scalar field collapse in space-time dimensions other than 3+ 1 will be dis-
cussed in Section 2.2. The section begins with a review of the BTZ black hole
in three dimensions and the interesting properties of this solution. The three

dimensional space-time is interesting because it only admits black hole solu-
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tions when a constant curvature term, i.e. cosmological constant, is included
in the action. In the literature, there exists numerical and analytic evidence
that the solution of scalar field collapse in three dimensions with cosmological
constant is a universal critical solution with continuous self-similarity.

The chapter is concluded by discussing contemporary theory on criti-
cal phenomena (Section 2.3). Critical solutions in gravitational collapse are
qualitatively similar to phase transitions and critical phenomena observed
in statistical physics. They display symmetry breaking, self-similarity, and

power law scaling. These concepts will also be discussed.

2.1 Choptuik Scalar Field Collapse in 3 + 1

Choptuik was first to discover critical behaviour in the gravitational collapse
of a massless scalar field [19]. He evolved one parameter families of initial
data and found that the matter field collapsed to form one of two possible end
states. The data either formed a black hole solution or dispersed to spatial
- Infinity leaving behind asymptotically flat space. The initial data could,
in general, be parameterized by several parameters. If one parameter was
allowed to vary while the others remain fixed the end state of the evolution

would depend on the initial value of this one parameter.
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Choptuik denoted an initial parameter by a and the solution to the evo-
lution equations which depend on a by S|a]. For sufficiently large concentra-
tions of matter, corresponding to sufficiently large values of a, a black hole
would form in the space-time. These types of solutions are conventionally
referred to as supercritical. On the other hand, for suﬁicigntly small values
of a the matter.would eventually disperse. These solutions are convention-
ally referred to as subcritical. Choptuik demonstrated explicitly that there
existed a critical value, a, € o, which separates black hole from dispersion
solutions and that the critical solution—i.e., S[a,]—is a universal solution

independent of the family of initial data.

Choptuik considered the evolution of four distinct families of initial data
with each family described by two or more parameters. In each case one of the
parameters was allowed to vary until the critical value of that parameter was
determined (within machine precision). Choptuik found that all supercritical
solutions with a ~ a, contain black holes with mass satisfying a power law

with the same critical exponent. Below, we formulate Choptuik’s model.

Consider a minimally coupled massless scalar field, x, coupled to the
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gravitational field g,,,. The energy-momentum tensor for the field is given by

1 o
Tyu - v,uXVUX - 'jgfiuva'xv X ' (21)

where the matter field is subject to the Klein-Gordon equation
Oy = 0. | (2.2)

The Einstein field equations for the system considered by Choptuik are given
by

1
G = Ry = 300 R = 87T, (2.3)

p

Notice in the above equation that we have dropped the cosmological term
from (1.1). In generally covariant form, the massless Klein-Gordon equation
is

1

—0u (V=99 0,x) =0 (2.4)

ﬁ

Consider further that the system is spherically symmetric so that the

following time-dependent Schwarzschild-like, metric tensor can be defined on
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the manifold_:

ds* = —a*(r, t)di* + §(r, t) dr® + r?d0)?, (2.5)

where, the radial coordinate r measures the proper surface area, ¢ is a time
coordinate, a(r,t) and §(r,t) are metric functions dependent on only two
coordinates, and d? is the metric on the two-sphere with unit radius. The
field equations in these coordinates yield four non-vanishing equations 4],
Only three of the field equations are independent due to the Bianchi identities
(see page 95). Choptuik chose to evolve initial data via the following two

field equations:

(R WL Q_H_l l._ 0 :
Gy = rﬁ?(ﬁ " +T2~——87TTD {2.6)
o (5 o 1\ 2

where a prime indicates partial differentiation with respect to the coordinate

.

During the calculation, Choptuik monitored the total conserved mass, M,
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of the space-time. From (2.6), the total mass is

M'=/ 47rr2ngr:/ (i@) dr, (2.8)
0 0 dr

where the mass aspect function m is related to the metric {2.5) via

(1-2)- L 29

Choptuik evolved several one parameter families of initial data profiles
using finite difference techniques and an adaptive mesh refinement algorithm
which varied the local grid spacings in response to the development of solution
structure. The mesh refinement technique used by Choptuik was a specialized
version of a method developed for hyperbolic partial differential equations
and enabled a more accurate analysis of the problem than had been achieved
previously.

Choptuik examined the strong field dynamics in the regime of solutions
near the critical solution of the model. In this region, he found several
interesting results: i) that arbitrarily small black holes could be formed in the
space-time as one approaches the critical solution (from supercritical values

of a); ii) near the critical solution, the masses of the black holes, Mgy, obey
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. the power law scaling relationship

Mgy o« |la —a,.|” (2.10)

where v is a universal constant independent of the family of initial data;
iii) the field profiles “echo”™, or repeat themselves, on increasingly smaller
spatiotemporal scales. That is, the solutions exhibit discrete self-similarity.

The results are summarized in more detail below.

Universal Critical Sclutions

Some aspects of Choptuik’s results were far from unexpected. For example,
it had long been known that a black hole could be formed dynamically as
the end point of gravitational collapse. This had already been shown ex-
plicitly by Oppenheimer and Snyder as we mentioned above. In contrast, it
has been shown, at least for certain types of matter, that small amounts of
initial matter will disperse leaving the space-time free of singularities [25].
What Choptuik set out to do in his research program was to determine what
features gravitational collapse might have in the region separating these two
exiremes.

Choptuik conjectured that there exists a universal critical solution which
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is independent of the family of initial data. Furthermore, that a zero mass
black hole is formed in the space-time when the initial parameter is exactly
tuned to the critical value. That is, the critical solution acted like a phase
transition separating two distinct end states of collapse and as he fine tuned
the initial parameter to near the critical value, Choptuik observed that the
strong field gravitational dynamics “washed out” any information the fields
contained of the initial data profile. Hence, all one-parameter families de-
scribing initial matter appeared to be attracted to the critical solution along
the same path in phase_ space'. Moreover, the evolution of Choptuik’s criti-
cal solution concluded in finite central proper time T;. The proper time of a

central observer is defined by
f' -~
%m/a@ﬂﬁ (2.11)
0

Hamadé and Stewart [26] also examined the gravitational collapse of a
massless scalar field in spherical symmetry. Using a double-null coordinate
chart and a similar algorithm to Choptuik, Hamadé and Stewart confirmed

the critical behaviour in scalar field collapse. Along with verifying the uni-

! The phase space picture of critical phenomena in the context of gravitational collapse
is treated in more detail below,
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versal critical constants, they also showed that the scalar curvature R and
scalar field energy density could reach arbitrarily large values in suberitical
collapse.

.In [27], Garfinkle and Duncan verified that the maximuwm curvature in
subcritical collapse scaled via power law relationship similar to (2.10). They
also observed that the scaling constant has the same value as the scaling
constant seen in supercritical mass scaling.

In 1995, Garfinkle [28] reported verification of the critical phenomena in
the Choptuik model using a null initial value formulation which did not use
adaptive mesh refinement. To increase stability in the algorithm, Garfinkle
expanded the matter and metric functions in a Taylor series near the center
of symmetry and adjusted the grid size iteratively to maximize resolution in
the result. In his study, Garfinkle also verified the discrete self-similarity in

the critical solution.

Black Hole Mass Scaling

One of the interesting results of Choptuik’s work was the discovery of univer-
sal black hole mass scaling. The mass of a black hole in dynamical gravita-

tional collapse is estimated by observing the apparent formation of a closed



2. Review of the Critical Phenomena in Gravitational Collapse 23

trapped surface and determining the position of the horizon. Black hole for-
mation is signalled by 2m/r — 1 for some rgg. The mass Mpy = 2rgy then
immediately follows. The parameter value a describing the initial matter
field profile which corresponded to the black hole solution with mass Mgy
WQS stored in a data file. In the region near the critical solution, Chop-
tuik collated the results (a, Mpg) for several a and found all one parameter

families of initial data satisfied the power law
Mgy = cpla — a.|” (2.12)

where, cp and . are family dependent constants, and ~+ ~ 0.37. | Gund-
lach [29] later reported, via perturbation calculation, v = 0.374 + 0.001 in
the gravitational collapse of massless minimally coupled spherically symmet-
ric scalar field. Several other authors have reported verification of ~ = 0.374,

including those mentioned above.

The initial data families Choptuik considered were:

o3 exp (— [T "(STOT) (2.13)

x(r) = xotanh (T;TO) o .(2-14)

i

x(7)
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x(r+m) = yor™® [exp (%) - 1} _1' (2.15)

A fourth family was also considered whose initial profile was a weighted
combination (weighting parameter i) of late-time fits to the suberitical and
supercritical evolution profile of a square barrier pulse shape. In all cases,
one of the parameters, either xo,ro,6,q, or 1, were allowed to vary over
several runs of the computer code. Critical values of the parameters were
determined via binary search of subcritical and supercritical evolutions (to
the limit of machine precision which was |a — a.|/a = 107!3). In this thesis,

1 will consider an initial family of data similar to (2.13).

Scale Echoing

Another of the fascinating and unexpected results of Choptuik’s work was
the discovery of the scale echoing or discrete self-similarity property of the
solutions. In order to show the scale echoing of the fields in the critical
solution, Choptuik introduced two new logarithmic variables p and 7 given
by

p = log (kr) T =log (kT — Tol). (2.16)
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The constants k and 7} were family dependent constants which represented
the scale invariance of the model. If Choptuik characterized a field profile
of the eritical solution—e.g. the curvature scalar, a metric function, or the
matter scalar itself—in terms of the logarithmic variables as Z*(p,7) then

the scale echoing of the field profiles was demonstrated by the relation:
Zp—A7—A)=Z%p,7), (2.17)

where A is the discrete, or periodic, self-similarity constant [30].

The scale echoing relation could be more readily seen by freezing a near
critical evolution at a certain time Ty (which is near T), advancing the
evolution by a time ¢75 and taking a snapshot of the field profiles (say, as a,
function of r). Then, at a later time Ty + §75(1 + ¢ 2) an identical profile
was observed to repeat itself over a space scale ¢® times smaller than the
profile observed at the time T + §7y. This process of increasingly smaller
- scale echoes of field profiles was conjectured to repeat itself indefinitely in

the critical solution.

Initially, Choptuik introduced a separate A, and A, into (2.17) because

he assumed the self-similarity would be different in the space and time di-
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rections. However, after sufficient analysis it was found A, = A, = A (to
within numerical accuracy). In his perturbation analysis, Gundlach [29] re-
ported A = 3.44534:0.0005 in the gravitational collapse of massless minimally
coupled spherically symmetric scalar field.

The discrete self-similarity constant A was also conjectured to be a uni-
versal constant in scalar field collapse because each field profile Choptuik
compared in his calculations exhibited the echoing property with the same
A. Furthermore, the periodic nature of the critical solution manifests itself
as a wiggle in the mass and curvature scalar power law scaling relationships.
The relation between the periodic wiggle in the scaling relationship and the

discrete self-similarity will be discussed in Section 2.3.3.

2.1.1 Other Matter Models in 3 + 1

Since Choptuik’s seminal paper on the subject, several other matter models
have been used to study dynamical gravitational collapse to black holes.
Universality, mass scaling and self-similarity have been shown to exist in the
critical solutions of these other matter types.

In 1993, Abrahams and Evans [31] reported critical behaviour in the

gravitational collapse of vacuum axisymmetric gravitational wave packets.
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The near-critical solutions found in that case were remarkably similar to those
found by Choptuik in scalar field collapse. Abrahams and Evans observed
evidence of discrete self-similarity in the strong field region as well as black
hole mass scaling approximately equal to the case of spherical massless scalar

field (v ~ 0.37).

Evans and Coleman [32] analyzed the gravitational collapse of radiation
fluid? in spherical symmetry. They found mass scaling with a universal scal- -
ing constant of v = 0.36 and demonstrated that the critical solution is con-
tinuously self-similar. Moreover, the solution they found was only locally
self-similar due to the fact the space-time is not asymptotically flat. Koike,
Hara and Adachi [33] performed a linear perturbation analysis, by employ-
ing a sell-similarity ansatz based on the Evans and Coleman solution. They
presented a general method of predicting the mass scaling constant using the
largest exponent of the perturbation. Using this perturbation method they
show that in the case of radiation fluid one should expect a mass scaling con-
stant v & 0.355 80192 which was in remarkable agreement with the Evans

and Coleman result.

2 Radiation fluid is perfect fluid matter with pressure, p, and energy density, p, related
by p = -é— p. The energy-momentum tensor for perfect fluid is given by T, = pu,u, +
P{Gpe +upty) = p g + du,u,) where ut is the four-velocity of fuid particles.
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In 1996, Maison [34] was one of the first to suggest that universal critical
solutions found in gravitational collapse may be, in fact, unique for differens
matter types. He found in the case of a perfect fluid that the mass scaling
constant was dependent on the equation of state—i.e., v = (k) where k is a
Ifarametel* of the equation of state p = kp. In his analysis, Maison confirmed
the known result for the special case of radiation fluid {(k = 1/3) using a
linear stability analysis as proposed by Evans and Coleman, however, he
demonstrated that the mass scaling constant is a very sensitive function of k
which monotonically increases from about 0.1 to about 0.8 as k is increased
from 0.01 to 0.9. As Maison’s analysis depended strongly on a continuous
self-similarity ansatz, there was some skepticism on whether the solution was
the attractor at criticality [35]. Neilsen and Choptuik [36] and Harada and

Maeda [37] would later provide numerical verification of the Maison result.

Hamadé, Horne and Stewart [35] reported strong evidence that a con-
timiously self-similar solution is the attractor in spherically symmetric ax-
ion/dilaton collapse. They carried out a numerical evolution in double-null
coordinates which supported an analytical argument based on a css ansatz.
The near critical solutions appeared to diverge from a css prediction in the

critical soluztion. In order to predict the mass scaling constant, they used a
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linear perturbation method similar to that in [33] and found excellent agree-
ment with the numerical estimate v = 0.264.

A numerical analysis of critical phenomena in the gravitational collapse of
a Yang-Mills field has been carried out by Choptuik, Chmaj and Bizon [38].
In their model, the authors observed both css and dss solutions. They re-
ported a dss solution mass scaling of v ~ 0.20 with self-similarity constant
& = 0.74. The interesting realization of the Einstein-Yang-Mills model is
that it appears to admit a critical solution for which certain two-parameter
families of initial data separate dispersal solutions from both Type I and
Type II solutions®.

Type I and Type II solutions are also observed in massive scalar field
collapse in spherical symmetry [39]. Further evidence of Type I critical phe-
nomena was reported in 1998 by Rein, Rendall and Schaeffer [40] and in
2001 by Olabarrieta and Choptuik [41]. In those cases, numerical studies
of spherically symmetric collisionless matter in the Vlasov-Einstein system

were carried out.

Critical phenomena were also found in the gravitational collapse of com-

3 Type T critical solutions with black hole mass as an order parameter contain a mass
gap. Hence, black holes “turn on” at some finite mass in the supercritical region. In
contrast, Type II critical solutions have a continuous order parameter meaning a zero
mass black hole resides at the critical solution.
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plex massless scalar field in [42, 43] and [44]. Analytic work on massive
scalar field collapse in a Schwarzschild background has also been performed
in [45, 46].

To this point, our review of the literature reporting critical gravitational
collapse of various matter types has been restricted to four dimensional space-
times. In the following section, we begin a discussion of scalar field collapse

in three dimensional and higher dimensional space-times.

2.2 Gravitational Collapse in Other Dimensions

We first review the three dimensional black hole and the interesting properties
of the space-time in this solution. We will also discusé numerical and analytic
solutions of gravitational collapse of scalar field in three dimensions. The
numerical calculations we consider include a cosmological constant term in
the action and the results indicate a Type II critical solution with black
hole mass scaling. An analytic solution in three dimensions performed by
Garfinkle [47] will also be shown to produce black hole solutions. In that case,
however, a scalar field css ansatz was used which assumed the cosmological
constant could be tuned to zero.

In the section following the three dimensional black hble, a summary of .
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numerical calculations of scalar field collapse in higher dimensional space-
times is presented. Included in the literature presented in this section, are
results initially reported Bland, Preston, Becker, Kunstatter and Husain [48]
which are also included in the results of this thesis. In [48] it was shown that
the critical constants observed in gravitational collapse can be described using
smooth functions of space-time dimension. It will also be shown, in higher
dimensional collapse, that the critical solution does not depend on the value

of a cosmological constant.

2.2.1 The Three Dimensional Black Hole

The Einstein field equations in vacuum are given by

1 1 '
G}w = Ryu - EQHVR “+ §g'LWA =0, (218)

Consider the case where A = 0 in three dimensions. In this case, contracting

the above equation yields R = 0, which in turn gives

R, =0. (2.19)
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In three dimensions, there are six independent components of both Rﬁm

and R,,. Thus, we can assume the Riemann tensor components are linear

combinations of the Ricci tensor components and the Ricci scalar. Indeed,

the relation between the two tensors is given by [3]

i
R)\;wrc = g)\uR,Lm - g)mR,uu - g,m/R)\rc + g#-HRAV o "2” (.g)wglm - gz\ﬁgﬁbl/) R. (220)
Therefore,
Ry = 0. | (2.21)

Thus, it is seen that there is no curvature in three dimensions if A = 0. With

no curvature there are no black hole solutions.

Consider now the case where A # 0. We find, using (2.18), R = 3A and

R = Agg,. Inserting these relations into (2.20) gives

1
R,\,uw\'. = 5 (Q,ng)w - g/\fig,uu) Ar (222)

and we find that the space now contains non-zero curvature. In fact, a space

with these properties is called a space of constant curvature [3].

In 1992, Bariados, Teitelboim and Zanelli (BTZ) {49] examined the Ein-
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stein equations with negative cosmological constant. They considered the

following action:

S = fd?’:t;\/—_g (R+ %) + B (2.23)

wherein the above equation B is a surface term. Applying the minimum
action principle to (2.23) and dropping the overall surface term indeed yieids

the Einstein field equations (2.18) with —A = 1/I%,

BTZ considered a Schwarzschild-like line element in three dimensions:
ds® = —a(t,r) dt* + B (t,7) dr’® + r2db?, (2.24)

where 6 is the angular coordinate. Inserting {2.24) into the field equations

gives the (non-rotating) solution
r? AN .
ds® = — (—M 4 "ﬁ) di? + (—M + E—g) dr? + rdf* (2.25)

where, the integration constant M is the total mass of the space-time mea-

sured at spacelike infinity, and ! is a scale factor with units of length. The
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metric becomes singular for values of the radius given by the condition

r = £VM2 (2.26)

with 7 = v/ MI? being the black hole horizon radius.

We now point out some interesting properties of this solution. The first is
that the biack hole mass M is dimensionless, therefore, A provides a length
scale with which to measure the horizon distance. Namely, if A is tuned to
zero the horizon radius is pushed to infinity and we are left only with the
interior (not to mention the lack of curvature). Secondly, and unlike it's 3+1
counterpart, there is no curvature singularity at the origin. This second fact
is made evident by examining the Riemann scalar invariant which is given
by

BN Ry = 3A%, (2.27)

Perhaps the most interesting aspect of the BTZ solution is that the space-
time is asymptotically anti-de Sitter, not asymptotically flat. This is seen by
setting M = —1 in {2.25). For an excellent review of the 2 + 1 biack hole cf.

Carlip [50].

The zere point of energy is usually chosen so that M = 0 when the horizon
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radius vanishes. BTZ considered this state as the vacuum, which has line

element

ds? = — (I)2 ar + (%) ~ dr® 4+ r2d6. (2.28)

The black hole spectrum lies above this state. For M < 0, M # —1, a
sequence of conical singularities exist at the origin which are expluded from
the physical spectrum. Thus, the BTZ space-time contains a mass gép, of
one unit, separating an anti-de Sitter “bound state” from the contimllous
black hole spectrum.

In 2000, Pretorius and Choptuik [51] presented the results of a numerical
study of non-rotating massless scalar field collapse in (2 + 1)-dimensional
AdS space-time. They observed the collapse and formation of BTZ black
holes and found critical behaviour similar to that found in four dimensional
collapse. One striking difference between scalar field collapse in 3 + 1 and
the observed collapse in 2+1 AdS was the appearance of a continuously self-
similar critical solution. Pretorius and Choptuik did not observe a discrete
self-similarity in the critical solution,

Pretorius and Choptuik reported a Type II critical solution with a black
hole mass scaling constant of approximately 1.2+0.05. In order to determine

the scaling exponent, they collated the maximum values of the Ricci scalar



2. Review of the Critical Phenomena in Gravitational Collapse 36

(at r = 0) with suberitical values of a keeping [ fixed. As the Ricci scalar
has dimensions of inverse length-squared, it was assumed that the scaling
exponent obtained in this way would be related directly to the biack hole

mass scaling exponent in supercritical collapse.

In 2001, Husain and Olivier [52] independently studied the collapse of
massless scalar field in a three dimensional space-time with negative cosmo-
logical constant. They used a double-null formulation of the Einstein-scalar
equations in circular symmetry (similar to the method used in [28] for the four
dimensional case) and verified the scaling behaviour observed by Pretorius
and Choptuik. For supercritical collapse, they reported a critical exponent

of 0.81.

Soon after publication of the Pretorius and Choptuik result, Garfinkie [47]
performed an analytic study of critical collapse in 2+1 AdS. Garfinkle found
an exact solution for the line element using a scalar field css ansatz that
required the vanishing of the cosmological constant. The method is outlined

below.

Following the work of Christodoulou [25], Garfinkle defined the metric

ds* = —exp () du® — 2exp (v + ) dudr + r°df?, (2.29)
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where v = v{u,r), A = Alu,r), u is the proper time of an observer at the
origin, and r is the proper radius of a circle of circumference 277 centered at

the origin.

Garfinkle considered the Einstein-scalar field equations with cosmological '
constant. These equations are given by {1.1) with energy-momentum tensor

(2.1). He defined the new quantities

g = expr+A) (2.30)

g = exp(¥—A). (2.31)

Solving the field equations gives

g = exp [zm fo E (a)éf)) df] (2.32)

g = 1-2A f Fg(7)dr. (2.33)
0

Note that in order to match the result of Garfinkle we have changed the

coupling in the field equations from 87 to 4.
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The scalar wave equation for this system is given by
Py 1oy 10 Iy
) — ——— {f —e = . 234
oudr * rdu  rdr (rg Or v (2:34)
Garfinkle used the scalar field css ansatz
x =l +¢(R), (2.35)
where the two new variables T and R are defined by
u = —exp(-1) (2.36)
r = exp(—-T)R. (2.37)

The constant of proportionality, ¢, is normally chosen so that the solution

best matches the numerical collapse result of Pretorius and Choptuik.

The ansatz required that the cosmological constant in (2.33) be neglected

which in turn reduced {2.34) to the flat space wave equation. Putting (2.35)

into (2.34) with g = 1 yields

R(1—2R)¢" + (1 —3R)¢ —c =0,

(2.38)
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where the primes indicate partial derivatives with respect to 2. The solution
of the ahove differential equation gave the exact form of the field equation

(2.32):

09 8we?

_ {(wmy

v (2.39)

The reader will notice that the line element in these coordinates is singular
when R = 1/2. After a change of coordinates, Garfinkle demonstrated that
this singularity is not physical and that the metric is smooth for values of ¢

given by

1 1
= 1 — — ), 2.4
c dx ( Qn)* (2.40)

where n was a positive integer. After comparison with the numerical results of
Pretorius and Choptuik, Garfinkle determined n = 4, ¢ = —0.2443. However,

Garfinkle was unable to determine 7.

2.2.2 Black Holes in Higher Dimensions

Garfinkle, Cutler, and Duncan [53] performed numerical simulations of criti-
cal gravitational collapse of massless minimally-coupled scalar field in spher-
ical symmetry in six space-time dimensions. They found a Type II critical

solution with discrete self-similarity.
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The authors began by defining a Schwarzschild-like metric in d dimen-

sions [54, 55, 56]:

5 167 M o
ds® = — 1 - at
° ( (d—2)A_2 Td‘3>

(1= 167 M
(d - Q)A(d_g) Td_‘?’

=1
) dr* + 20, 5. (241)
In the above line element, A is an ADM-like mass [57] and
Agaesy = 209D/ T{(d = 1)/2) 242

is the area of the unit (d — 2}-sphere with metric dQ%d_Q). The mass M has
dimension (length)? so it was expected that the mass scaling relationship

in supercritical coliapse will approach the scaling law
Mpy o |a — a, )2, (2.43)

where it was assumed v = y(d). In [58], naked singularities were found in d-
dimensional static spherically symmetric gravity coupled to a massless scalar

field.

In generic d-dimensional space-time, the Riccl scalar will always have
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units of inverse length squared. Together with the observation that the max-
imal curvature scales in subcritical coliapse just as the black hole mass does
in Choptuik’s 3 + 1 collapse it is conventional to define the scaling relation

in d-dimensional collapse as

Rarax o Ja — (I.*l_Q’)‘. (244)

Assuming guantities with dimension length scale with the same critical con-

stant we can define a new scaling constant y,qes such that

Mgy o |a — a,7m=es | (2.45)

and immediately make the identification

Ymass = (d — 3) 7. {2.46)

The matter field stress-energy tensor for this model was given by (2.1),

subject to the metric (2.29) with d6? replaced by dQ?d_Q). To help strabilize
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the collapse simulations, the following new matter variable was defined:

1 6°

Using this new matter variable, the wave equation for y became

27mg

Dh:?(gwg)(h+§—23)+ o (s —5)°, (2.48)
where,
2
5 = = ; Th{7)df, (2.49)
_ 3 5 ‘
§ = 3 0 72 5(F)dF, | | (2.50)
T =Y om0y 2
g = exp(v+A)=exp l:lS:rrf Ei(r)?:—é(vw))df}, (2.51)
0
_ 3 (" s s
g = explv—A)= 7"_3f 7 g(F)drF, {2.52)
0
and,
g 1_0 .
S 9.
D=5 3% (2:58)

is a derivative operator along ingoing light rays.
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The initial value of the matter field was chosen to be

g

x(0,7) = prlexp {—(?—_2@—2} . (2.54)

With constant 7 and o, discrete self-similarity of the matter field near crit-
icality was observed with a period A = 3.03. The critical exponent reported

was v = 0.424.

In 1999, Frolov [59] examined scalar field collapse in d dimensions. He
finds exact solutions for d = 3,4,5,6 using a css ansatz {which we will see

below is not valid for the case of massless scalar field).

A method of obtaining the mass-scaling exponent for any finite dimension
d >z 4 with arbitrary cosmological constant A, for the case of minimally-
coupled massless scalar fleld in spherical symmetry was first presented by
Birukou, Husain, Kunstatter, Vaz and Olivier [60]. The method involved
a conformal redefinition of the metric which was used to simplify the field
equations of the model. A double null formalism was used which resulted in
a similar set of field equations to [52]. As we shall see below, the formalism
presented by Birukou et al. [60] will serve as the main content of the formalism

presented in this thesis. In that paper, d and A appear as input parameters.
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The authors verified universality and scaling in the four and six dimen-
sional cases with zero cosmological constant. The critical exponent measured
in supercritical collapse for d = 4 and d = 6 agreed well with the results we
have quoted above and the solutions exhibited discrete self-similarity, how-
ever, the self-similarity constant was not measured. They presented new
results in five dimensions with zero and negative cosmological constant. See

Table 2.1 for a summary of the results in five dimensions. It shouid be noted

Initial data profile | A=0 | A = —1
Gaussian 0.52 0.49
Tanh 0.41 n/a

Tab. 2.1: Critical eﬁponent 7 in numerical scalar field collapse in five dimensions

as reported by Birukou, Husain, Kunstatter, Vaz, and Olivier [60].
that the results quoted in the d = 5 case had low precision but seemed to
indicate that v was independent of A.

In 2003, following the work of [60], Husain, Kunstatter, Preston and
Birukou [61] presented new evidence that the critical exponent in gravita-
tional collapse of scalar field in AdS space-time was independent of cosmo-
logical constant A.

In that model, and more generally in dilaton gravity, the dependence of

the field equations on A appear only in the definition of a scalar dilaton po-
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tential function. Moreover, the A-dependent term in the dilaton potential
is a second order correction term which vanishes at the origin for all finite
values of A. As near critical solutions will always have support very near tﬁe
origin 1t is not unreasonable to expect the critical solution to be generically
independent of A. Table 2.2 presents convincing evidence that « is not a

function of A. The authors verified the universality of their result by mea-

A ¥ v (cosh data)
—0.001 | 0.370 — 0.375
-5 0.37 - 0.38 0.37 - 0.38
—10 0.37 — 0.39
—20 0.36 — 0.38 0.36 — 0.38
~30 0.37 — (.40

Tab. 2.2: Mass-scaling exponent in critical scalar field collapse in four dimensions
demonstrating the independence of A as reported by Husain, Kunstatter,
Preston and Birukou [61]. The initial data profiles considered were a
Gaussian shell and cosh pulse. The calculated values for the exponent
clearly showed the universality of the result and that v was independent
of A.

suring the critical exponent for cosh initial data and finding the same scaling
constant -y.

Bland et al. [48] expanded on the work of [60, 61]. Similar to the previous
work, a conformal redefinition of the metric had been carried out, motivated
by two-dimensional dilaton gravity. The work composes the first system-

atic study of the dimension dependence of critical phenomena in scalar field
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gravitational collapse and will serve as the main content of this thesis.

Preliminary results of that analysis were originally presented in 2004 by
Kunstatter [62]. In that presentation, however, the nature of the limiting
solution in the limit of large dimension remained uncertain. The numerical
code had adjusted the cosmological constant to zero but in most other ways
had been kept the same as [60, 61]. Several changes to the code, which con-
siderably increased stability, were implemented later in 2004 and throughout

2005.

As it wili be seen, the key new difference in the present formalism was the
use of an integration by parts of the dilaton evolution equation. This change
amounted to an additional few lines of code and as a result of this procedure,
substantial stability of the evolution was achieved. The accuracy of the
scaling constants was greatly improved and a clear picture of the dependence

of v on d began to emerge ultimately leading to the results presented in [48].

In [48], it was determined that v monotonically increased to an asymptotic

value at large d. The numerical results were well fit by the simple relationship

v = 0.467 (1 — exp [0.408d]). . (2.55)
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The data had been analyzed over the range 3.5 < d < 14. Universality of

the critical solutions was verified and low precision estimates of A were also

calculated. Table 2.3 summarizes the critical constants reported in [48, 63].

d | A [63] 7 [63] A 48] ~ 48]
35 0,349 £ 0.003
4 1337007 | 0.3724£0.004 | 3.40 £ 0.1 | 0.374 - 0.002
4.5 1 3.30 0.1 | 0.398 4 0.002
10 3194006 0408 £0.008 | 3.10+£0.1 | 0.412 £ 0.004
6 ]3.014006]0422+0.008 | 298 +0.1 | 0.430 £ 0.003
7T 1283006 |0429+0.009 | 296+ 0.1 1 0.441 + 0.004
& 270008 | 0,436 £0.009 | 2.77 £0.1 | 0.446 &+ 0.004
9 | 261+£0.08 044240009 | 2.634+0.1 | 0.453 -+ 0.003
10 | 2.55£0.08  0.447+0.013 | 250+ 0.1 | 0.456 = 0.004
11 | 251 £0.08 | 0.444+0.01 | 246 0.1 | 0.459 4 0.004
12 244 £ 0.1} 0.462 £ 0.005
13 2404+ 0.1 0.463 4 0.004
1 0.465 £ 0.004

Tab. 2.3: The echoing periods A and scaling exponents =y as reported by Sorkin
and Oren [63] and Bland et al. [48). The initial data profiles were mass-
less scalar Gaussian shells placed in a d-dimensional space-time metric
with spherical symmetry. The critical constants reported in {63] were
calculated by measuring the maximal scalar curvature in suberitical col- -
lapse. In [48], calculations were performed in supercritical collapse. It
is expected that both methods will produce the same critical exponent
and, as it can be seen in the table, both sets of results agree within
uncertainty.

An independent numerical study of the space-time dependence of v and

A in gravitational collapse was reported by Sorkin and Oren {63]. In that

paper, the authors studied massless minimally coupled scalar field collapse
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in spherical symmetry as a function of space-time dimension d. In each
dimension examined, they observed the same qualitative behaviour as that
originally reported by Choptuik [19], however, the scaling exponent ~ was

determined to a larger uncertainty then in [48].

Sorkin and Oren used the double null coordinates
ds* = —a (u,v)” dudv + 7 (u,v)? dﬂ%d_g). (2.56)

They evolved the field equations for a Gaussian initial data using the coor-
dinate u like a time coordinate. A series-smoothing procedure was imple-
mented for points near the center of symmetry. The procedure updated the
field values, on a given u-slice, by taking a weighted average of the predicted
evolution value of the field with the value of the field on a past light cone.
This procedure had the effect of lowering the numerical errors at grid points
.near r = 0 especially in the higher dimensions where numerical stability was

most difficult to achieve,

Discrete self-similarity and mass-scaling was observed for integer dimen-
sions 4 < d £ 11. Sorkin and Oren determined that if the values of v were

extrapolated to higher dimension then ~+ appeared to have a maximum in
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the dimension range 11 < d < 13. However, the increase of relative error in

7 for d = 10 and d = 11 might have led to a numerical artifact,.

2.3 Theory of Critical Collapse

The simplest example of critical phenomena in statistical physics is the phase
transition at the liquid-gas boundary of a fluid. Figure 2.1 shows a typical
phase transition diagram for a fluid. It is seen that a discontinuity in the
fluid density occurs as one crosses the boiling curve. Define the difference in
density as

Ap = pliquid — Pgas: (257)

As the temperature increases from the tri'ple point, Ap decreases along the
boiling curve. The hoiling curve ends at the critical point ( p*,'T*) where
Ap = 0. For temperatures larger than the critical temperature 7., the fluid.
no longer boils and as a result one can no longer distinguish between liquid
~and gas phases.

In 1938, Landau and Lifshitz [64] showed that the critical point in a fluid
transition is an isolated point in the phase space. That is, there can be no

continuous series of critical points. Moreover, they showed that the specific
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Phase Transition Diagram for a Fluid

v critical point
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Fig. 2.1: A phase transition dlagram for a typical fluid. All three phases coexist at
the triple point. Along the boiling curve, the difference in fluid density
decreases as one moves toward the critical point. At the critical point
there is no difference in fluid density between the liquid and gas phases
and so it is not possible to distinguish between these two phases. At all
other points along the boiling curve, a discontinuity in fluid density exists
between the liquid and gas phases.
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heat of a fluid at constant pressure is allowed to become indeterminate at a
critical point. These facts suggest that there is no analytic function of the
order parameter at such a critical point®. It is observed that the density
difference varies as a non-integer power of temperature along the boiling
curve. That is,

Ap= Pliguid — Pgas = IT* - TP: (2-58)

where -y is a critical exponent.

Another example of a critical phase transition is the spontancous magne-
tization of a ferromagnetic material at low temperature [13]. At high tem-
peratures, a ferromagnetic material will exhibit an average magnetization m
which is determined by the presence of an external magnetic field. However,
at low temperatures, and in the absence of an external field, the material

may spontaneously magnetize according to

jmf = |T, - T, (2.59)

where T, represents the Curie temperature of the material and v is a new

critical exponent.

4 For more information on Landau theory the reader may also consult, for example,
Plischke and Bergersen [65].
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In the ferromagnetic case, the phase transition is symmetry breaking and
continucus. At temperatures higher than the Curie temperature, the spon-
taneous magnetization vanishes leaving the system in rotational symmetry
{when the external field is zero). This is in contrast to the spontaneous mag-
netization state which has a random direction even when the external field
is zero. Once the direction of m is determined, the system has a preferred

direction.

Phase transitions which break a symmetry are classified as Type 1I or
second order critical phase transitions and require a continuous order param-
eter which vanishes at the critical point. For the ferromagnetic case, the
order parameter is the average spontaneous magnetization m which vanishes

continuously as the temperature increases to the Curie temperature.

In the case of the liquid-gas phase transition of a fluid, the density of the
fluid, at constant pressure, changes discontinucusly across the boiling curve.
There is no change in the symmetry of the system and so transitions of this

type are classified as Type I or first order critical phase transitions.

The analogy that can be used for critical phenomena in gravitational
systems now seems more obvious. In the case of the spherical collapse of

scalar field to a black hole, symmetry is broken when crossing the black
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hole threshold. In the reflection solution, where no black hole is formed,
one is left with Minkowski space-time which is maximally symmetric. In
four dimensions this space will contain 10 Killing vectors. On the other
hand, the black hole solution will have a Schwarzschild metric possessing
a reduced number of symmetries. Thus, crossing the black Lole threshold
changes the dimension of the Killing algebra of the space-time.. Moreover,
as we saw above, Choptuik found that the critical solution in scalar field
collapse contained a zero mass black hole. Thus, gravitational collapse of
scalar field is a Type Il critical phenomena with black hole mass being the
order parameter.

The black hole mass Mgy vanishes continuously at the critical value of

an initial parameter® and varies according to the power law relation

MBH o |a - a*,’)fmass s (260)

where, a is a parameter describing the initial data, a, is the critical value
of a, and 7ynqss 15 a universal exponent. The scale invariance of Type 11

phenomena is associated with self-similarity of the matter and gravitational

5 There are, of course, many functions which can characterize the initial data in grav-
itational collapse. Choptuik {19] conjectured that in spherical scalar field collapse, the
critical behaviour of the system is universal for all one parameter families of initial data.
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fields. As discussed above, the spherical collapse of scalar field gives rise
fo a discretely self-similar critical solution. The collapse of perfect fluid
has a continuously self-similar critical solution. So it is seen that Type II
phenomena can be associated with either a discrete or a continuous self- -
s.imilarity. In the following section we will describe these phenomena in terms

of a phase space picture.

2.3.1 Phase Space Picture

The critical solution can be thought of as a point in an infinite dimensional
phase space [13]. The phase space, or manifold, consists of the set of all
possible smooth, asymptotically flat, initial data. The space of initial data is
a function space aﬁd is therefore infinite dimensional. As the system evolves
with respect to time, integral curves in the phase space represent solutions
to the Einstein equations.

Each point in this phase space represents one possible state corresponding
to the evolution of the set of parameters describing the initial matter profile
at one particular time. In the phase space of the spherically symmetric
scalar field data, two fixed points exist: the black hole attractor and the

reflection (or flat space) attractor. Also in the phase space is an unstable
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critical solution hypersurface (which contains the zero mass black hole or
naked singularity). The hypersurface is the boundary representing the phase
transition from supercritical to subcritical collapse.

For a given set of initial parameters, the system will evolve along an
integral curve in the phase space for some period of time before the evolution
ends at one of these fixed points®. Thus, the evolution proceeds for a finite
time {see Figure 2.2).

Choptuik showed in 1993 that, for massless scalar field, the black hole
threshold is universal for one parameter families of initial data’. Thus, it
is assumed the critical solution fixed point exists in a (critical solution) hy-
persurface of codimension one in the phase space. Any critical set of initial
parameters will exist within this surface and, as the evolution proceeds, re-
main in this surface until evolution is terminated at the critical point. All
smooth one parameter initial data profiles intersect the critical surface at
exactly one point.

Initial data which are tuned to near the critical value of a given parameter

set will initially be near to the critical surface in phase space. Evolution of the

5 Unless, of course, the initial data reside within the critical hypersurface. In those cases
the evolution will remain in this surface, eventually terminating at the critical point.

7 Of course, as we have seen above, several authors have since demonstrated the uni-
versality of critical solutions for a variety of matter types. :
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Critg..

a<<a,

}Criﬁcal point reflection solution

black hole solution

Fig. 2.2: The phase space picture in critical gravitational collapse [29]. The critical
point is embedded in a critical hypersurface of codimension one in an
infinite dimensional initial value function space. The solid line represents
a one parameter family of initial data which intersects the critical surface
at exactly a = .. The directed lines are examples of the evolution of
initial data which eventually terminate on either the black hole solution
point, the critical point, or the reflection solution point depending on
the initial value of a. For initial data very near the critical surface, the
evolution approximates the critical solution for some time before being
repelled toward the black hole or reflection solutions.
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data will proceed for awhile along an integral curve which is nearly parallel
to the critical hypersurface.. Because the critical hypersurface is unstable,
however, the evolution will eventually be repelled toward either a black hole
or reflection solution depending on which side of the critical surface the initial
data reside. Physically, if the initial data reside in the subcritical part of the
phase space then the matter distribution will never become dense enough to
form a black hole during the evolution.

When viewed in this way, |a — a.| is simply the first order measurement
of the distance from the critical surface during the time the evolution approx-
imates the critical solution. Let I be a smooth function of the parameter a
on phase space such that data sets with £ > 0 form black holes while those
with I” < 0 do not. Then, the black hole threshold corresponds to P = 0. If

P is analytic in a neighbourhood of this threshold then
P(p) = Cla— ad + O(a — a,)), (2.61)

where C and a, are family dependent constants. The black hole mass scaling

relation in 3 + I is given (to first order) by

ﬂ"{BH ~ P’Ymaﬁs NC ia _ a*|"l’muss . (2'62)
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We will use a dimensional argument in the next section to show that all

quantities with units of length will scale with the critical exponent ~.

2.3.2 Mass Scaling Derivation

Gundlach {13} provides an elegant summary of a derivation of the mass scaling
exponent using dimensional argurnents and a perturbation analysis originally
proposed in [33, 34]. The method is outlined below.

Consider the css case. Define a solution to the evolution equations by
Z{r,t). In a css solution, the metric depends on only one coordinate, there-
fore, let us denote the critical solution by Z.(z), where z is a some new
coordinate adapted to the css solution. An example of suitable new coordi-

nates (z,7) are given by

g o= L (2.63)
r = —In (-i“), (2.64)

where [ is an overall space-time scale factor with units of length and ¢, is the

time elapsed in the evolution of the critical solution.

For initial data very near the critical hypersurface, the solution Z will
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approximate the critical solution Z, for an intermediate time. Gundlach
calls this region the intermediate linear region where the general solution can
be determined using a linear perturbation of the critical solution. A general

linear perturbation is given by the polynomial expansion in (t — £.)

6 = Z Ciexp (A7) Zi(z), (2.65)

=0

where, the C; are dependent on a, and 7 is in some sense a measure of the
lifetime of the perturbed solution. We assume the perturbation spectrum is
discrete and that there is one growing mode, corresponding, say, to Ay being
the only real and positive A;. At exactly the critical value a,, we require
Colas) = 0 in order to completely suppress the growing mode at the critical
solution. For all other finite values of |a — a.|, the exponential function
will eventually dominate as 7 — oo (hence, as ¢ — ¢.), thus rendering the
linear perturbation invalid. Nevertheless, for intermediate times the lowest
non-zero eigenvalue Ag will dominate and we can linearize the perturbation.

Therefore, the solution will approximate

Z(x, )~ Zy(z) + %gaﬂ la — a.] exp (AoT) Zo(z). (2.66)
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Koike, Hara and Adachi [33, 66] divide the evolution of a near critical
solution into two parts. During early times for which 7 is < a particular
value, say, 7,, (2.66) is valid. Soon after , the evolution becomes non-linear
and the solution quickly becomes a black hole (or not, depending on the sign
of @ — a,). It is during this non-linear stage where (2.66) is no longer valid.

The time 7, is considered the lifetime of the perturbation and is defined by

€= exp {AoTy) gga—o ia— a., {2.67)

where € is a small, fixed, positive constant. Therefore

-1 '
T, = —logla — a. + C, (2.68)
Ao

where (' is a fixed constant. The perturbation is given by
Z(x,70) ~ Z{x) £ cZp{x), (2.69)

where the sign in front of € corresponds to the sign of {a — a.).

It is now possible to redefine the adapted coordinates by scaling (7, £) by



2. Review of the Critical Phenomena in Gravitational Collapse 61

a function of 7,. We define the new scaled coordinates by

r

— = 2.7
r- £ (2.70)
t — z (2.71)
L, ;
L, = Lexp(-m,). (2.72)

The dimensional argument is now made as follows. In d dimensions the black
hole mass has units {L]%~® and because the only length scale in the system
is given by L, we assume the black hole mass is proportional to an integer

power of this scale. Therefore,

(d—3)

Mgy o< L% o |a — a.] %o (2.73)

and we make the identification: v = 1/ = Ymass/(d — 3). Furthermore, any
field quantity which has units related to length can be expected to scale like
the black hole mass. For example, the curvature scalar R has units [L]~2 and

80 we expect

Roc L72 o o — au| % (2.74)

One advantage to measuring the power law scaling of the curvature scalar is
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that it can be measured in both the suberitical and supercritical regions.

2.3.3 Self Similar Solutions

Type I critical phenomena have either continuously or discretely self-similar
solutions. This is due to the scale-invariance of critical solutions in Type II
phenomena. Continuously self-similar solutions are invariant under a small
re-scaling of both the space and time coordinates (by a factor of 1 + ¢).
Discretely self-similar solutions are invariant under a re-scaling by integer
multiples of a discrete factor. The discrete factor is, in general, unique for
the space and time coordinates®. Figure 2.3 shows a phase space picture of

scale invariant or self-similar critical solutions.

Continuous Self-Similarity

In 1971, Cahill and Taub [67] defined a geometric version of css as a spheri-

cally symmetric solution which admits a vector field £* such that

ﬁﬁg,uu - f,u;u =+ fv;p = QQW- (275)

8 However, it was noted above that the dss scaling constant is the same for both coor-
dinates in the massless scalar field case, see page 26.
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Fig. 2.3: Self-similar solutions in critical gravitational collapse [29]. The critical
solution, or limit cycle, is represented by the darkened circle in the critical
solution hypersurface. The two solid, directed lines are embedded in the
critical surface and are attracted to the limit cycle. The broken line shows
an evolution of initial data near the critical surface. For some time, the
solution approximates the limit cycle but is eventually repelled by the
unstable critical surface.
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It can then be shown that the metric depends only on the adapted coordinate

‘& = r/t. This reduces the field equations to ordinary differential equations.

A relevant application of this method to scalar field collapse was per-
formed by Hirschmann, Wang and Wu [68]. In that case, the authors ana-
lyzed critical gravitational collapse of spherically symmetric scalar field mat-
ter in 2 + 1 space-time dimensions. They obtained a critical solution which
asymptotically approached a c¢ss eritical solution by using a linear perturba-

tion and a css ansatz in the limit of vanishing cosmological constant.

They confirmed the n = 4 single unstable mode of the css solution as
first found by Garfinkle [47], however, they do not determine a mass-scaling
exponent consistent with earlier findings reported in [51, 52, 69]. 1t is likely
that some of the differences in predicted mass-scaling exponents arise due to

a variation of boundary conditions used in the analyses.

In 1996, Soda and Hirata [70] reported an analytic study of the dimension
dependence of the mass-scaling exponent in critical gravitational collapse of
spherically symmetric massless scalar field. They began with a d-dimensional

line element using advanced Bondi coordinates in spherical symmetry:

ds® = —g(v,r)g(v, r)dv* + 29(v, r)dudr + rgdﬂ?dmm. (2.76)
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The matter field that Soda and Hirata studied was given by the.action
S = /d‘la:ﬁ [R — %g””ayxayx} . ' (2.77)
The authors then impose a css ansatz (2.75) given by
£ =rd. +vd,. (2.78)

If a new coordinate x = r/v is defined then, as above, the metric coefficients

and the scalar field became functions only of z. Therefore,

g = g(z) @
g = g2 (2.80)
x = x{z) (2.81)

As a result of the imposition of this ansatz, the set of field equations which
Soda and Hirata derived from (2.77) lead to a set of ordinary differential
equations which can be solved exactly via linear perturbation. The eigenvalue

of the relevant mode was found and the following expression for the black
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~ hole mass-scaling exponent was predicted:

d—3
Yo = s (2.82)

Table 2.4 shows the predicted values of the mass-scaling constant for a num-
ber of integer dimensions. The table also shows the corresponding horizon

radius scaling exponent.

Dimension d | gy ¥ v [48]

4 0.5 0.5 0.374 4 0.002
5 0.81650 | 0.40825 | 0.412 £ 0.004
6 1.06066 | 0.35355 | 0.430 £ 0.003
7 1.26491 | 0.31623 | 0.441 £ 0.004
8
9

1.44338 | 0.28868 | 0.446 + 0.004
1.60357 | 0.26726 | 0.453 = 0.003

10 1.75 0.25 | 0.456 = 0.004
11 1.88561 | 0.23570 | 0.459 £ 0.004
12 2.01246 | 0.22361 | 0.462 & 0.005

Tab. 2.4: Scaling exponent in massless scalar field collapse as predicted by Soda
and Hirata [70]. The centre column contains predicted values of the black
hole mass-scaling exponent based on a css ansatz and linear perturbation.
The right most column contains the horizon radius scaling exponent,
recall that vy = (d — 3)7y. Unfortunately, the theoretical values do not
match observation. For comparison, the results from Bland et al. [48]
are shown.

The Soda and Hirata result, although a useful exercise, does not predict

values of the scaling exponent which are consistent with observation. This is
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due to the fact that critical solutions in massless scalar field collapse exhibit

discrete self-similarity thereby invalidating the css ansatz.

Discrete Self-Similarity

Gundlach [29] defines a discretely self-similar space-time as an invariance
under a discrete isomorphism on a re-scaled metric. Geometrically, this is
equivalent to requiring the existence of a discrete diffeomorphism® & such

that, for any integer n,
(©7)" gar = exp (2n4) gap, (2.83)

where ©* is the pullback of g, under the diffeomorphism ® and A is a real
dimensionless constant. In coordinate terms, consider a coordinate system
(o, z%) such that at a point p with coordinates (o, z°) the image of the dif-
feomorphism, ®(p), has coordinates (o + A, z%). Then, in these coordinates,

the dss is equivalent to

G (0,2%) = exp (20) G (0, 2%}, (2.84)

¥ A diffeomorphism is a differentiable map between two manifolds which also has a
differentiable inverse. :
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where

Gu (0, 2%) = G (0 + A, 27). (2.85)

In the context of a spherically symmetric collapse of scalar field, a dss
symmetry will manifest itself in a dynamical field, say Z(r, 1), in the following
way:

Zrt)=2 (e"A?“, e“At) . (2.86)

A suitable set of adapted coordinates for this symmetry is given by

T = log (i) {2.87)

z = log (z) —zo{(7), (2.88)

where #( is an arbitrary scale factor and xz; is a periodic function with period
A. The dss symmetry is then imposed by assuming the ansatz (2.86) on, for

example, the scalar field.

The dss symmetry also affects the mass-scaling relationship. Hod and
Piran [71] conjectured (and verified numerically) that discrete self-similarity

adds a periodic wiggle to the power law behaviour of the black hole mass
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formed during collapse. They show that

1
(_d — 3) log (M) = vlogla — a. + ¥ {logla — a.|} + cp, (2.89)

where ¢, is a family-dependent constant, and ¥ is a periodic function with
period

5 2 (2.90)

The above relationship will be used in this thesis to determine the discrete

self-similarity constant in the higher dimensions.



3. D-DIMENSIONAL SPHERICAL SYMMETRY AND

DILATON GRAVITY

In this chapter, the field equations of the model studied in this thesis are
derived in the context of dilaton gravity. Due to the symmetry in the metric
under consideration, it is possible to reduce the d-dimensional action for the
theory to a 1 + 1 effective theory. The introduction of a dilaton field and
conformal redefinition of the metric will simplify the reduced action, thus,
leading to a set of field equations which can be used to numerically evolve
initial data.

The chapter begins with a brief discussion of dilaton gravity theory. It is
then shown why dilaton theory is useful when analyzing higher dimensional
gravity theories with symmetries. The method to construct a dilaton fleld
with conformal redefinition of the metric is then introduced. In the final
section of the chapter, the relevant field equations of the model are derived

and a coordinate system is chosen.,
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3.1 Gravity in Two Dimensions

Beginning in the late 1980’s and early 1990’s, two dimensional theories of
gravity attracted attention in the physics community due to their tractability
and consequential utility as a model for quantum gravity. They are more
than just toy models. Dilaton gravity can also be directly linked to higher
dimensional gravity theories with spherical symmetries. The content of this
thesis is the examination of a classical theory using dilaton gravity as a tool

to simplify the numerical evolution equations.

Consider the vacuum Einstein equations with cosmological constant
1 1
R,:w - 5guuR + —2—9"(“,1’\ =0. (31)

- In two dimensions, the Riemann curvature tensor has only one independent

component given by [3]

1
Rywn = 3R (Qz\vgpr: - gAfiQ',uU) (3‘2)
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which on contraction yields

R

1
ig/\pR (g/\pg,uu - g)\ug.up)

1

§R (5}?9#” -0 Eg#p)

1
) (29#1/ = Guv)

1

Inserting (3.3) into (3.1) yields the two dimensional Einstein field equations

Agu =0, : (3.4)

For non-zero A, (3.4) yields the unacceptable result of a vanishing metric,

whereas, for A = 0 the field equations yield a trivial solution with no dynam-

ical content. Thus, for any meaningful theory of gravity in two dimensions,

the action must contain at least an auxiliary field.

Jackiw, Teitelboim, Banks and Susskind {72, 73] considered a constant

curvature (R = A) two dimensional theory of gravity coupled to an auxiliary
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dilaton field ¢. The action for this theory is given by

S = fdgm\/—_gqﬁ (R—A). (3.5)

Applying the minimum action principle to (3.5) yields the following field

ecuations

VuVyg = %g.ur/d’A (3.6)

R=A. (3.7)

In 1993, Achtcarro and Ortiz [74] showed that these equations are equiv-
alent to a dimensionally reduced three dimensional action on a metric with
axial symmetry. Thus, the constant curvature dilaton theory was equivalent
to a dimensionally reduced BTZ theory with no spin. Recall that the BTZ

line element yieids anti-de Sitter black hole solutions (see Section 2.2.1).

In 1992, Callan, Giddings, Harvey and Strominger analyzed the two di-

mensional gravitational action coupled to conformal matter [75]

S = / dPav—g {e—i’"’ (R+49"' VYV, 0 + 407) — %gﬂ"vﬂ_ IV.f|. (3.8
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They analyzed the system classically and found it is exactly solvable with
solutions that yield black holes. The black hole solutions can correspond to
either extremal higher dimensional black holes found in [76, 771, or to the
two dimensional quantum black hole found in [78]. In vacuum, the CGHS
action is

S = / d*z/=ge ™ (R + 49"V ,0V.b + 427) . (3.9)

If the dilaton field in (3.9) is redefined according to
¢ =22 (3.10)
the new CGHS action is obtained:
S = /dgcc\/—_g (éaﬂz + é—g*‘”v#&vucﬁ + ééw) . (3.11) .

‘The kinetic term in the action can be eliminated by the following conformal

redefinition of the metric (see Section 3.2.1):

G = O G- (3.12)
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Thus reducing (3.11) to
S = fdzx\/w_g (¢R+ é)@) , (3.13)
where we have performed a final redefinition of the dilaton field according to
1oy
gqb — . (3.14)

Bose, Parker and Peleg [79] analyzed the CGHS action in the semi-
classical approximation using an effective one loop quantum correction for the
matter field {they neglected quantum corrections for the gravitational and
dilaton fields). In order to find exact solutions they included a counter term
in the action. They found black hole solutions which evaporate to a naked
singularity. Bose, Luoko, Parker and Peleg [80, 81, 82, 83, 84] have produced
a series of papers on the quantum mechanics and black hole thermodynamics
of the CGHS system.

Other two dimensional dilaton theories which have been studied are equiv-
alent to higher dimensional gravity theories with symmetry. For example,
several authors [85, 86, 87, 88] have considered the reduction of higher di-

mensional spherically symmetric 3 + 1 gravity to a two dimensional action.
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The resulting action is given by
S = / d*z\/—ge™ (R + 20"V .6V 0 + 2e2¢) (3.15)
with the dilaton defined by

r=exp{—9). (3.16)

All of the above two dimensional dilaton gravity theories are specific
examples of the most general dilaton gravity theory given by the action {89,

- 90, 91, 92):
72 1 i
S = fd zv/—=g [D (6) R+ 59" V,ugV,6 + V (qﬁ)} , (3.17)

where V(¢) is an arbitrary function of ¢ and R is the Ricci scalar asso-
ciated with g,,. The action (3.17) is the most general diffeomorphism in-
variant action functional dependent on g,, and a dilaton scalar field ¢ in
two dimensions, such that it contains at most first and second derivatives
of the fields [93]. In the following two subsections, a specific case of (3.17),

corresponding to a d-dimensional metric with spherical symmetry, will be
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presented and which will serve as the model of study.

3.2 Action Functional and Field Equations in Spherical

Symmetry

Consider the action for Einstein gravity with cosmological constant in d
space-time dimensions, given by

S = dzy/—g ( ) [g9] — f\). (3.18)

lﬁﬂG{d)

In the above expression, (¥ is the d-dimensional Newton’s coupling constant
and A is the cosmological constant.

Spherical symmetry is imposed by assuming the d-dimensional metric can
be decomposed into a Kronecker sum (matrix direct product) of a 2 x 2 metric
and a d — 2 x d — 2 metric (representing the S92-sphere submanifold of the

complete Riemannian manifold):
g =gt g gld-2) (3.19)

where the components of the 2 x 2 metric g,s are only dependent on the two
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coordinates %, a = 1,2. We also define
n=d-—2 (3.20)

for notational compactness.

In spherical polar coordinates, with r = r(2*} representing the proper
radial distance from the origin, the metric of the S(-sphere takes the usual

diagonal form with determinant

(n—1)

det (S} = p*n H sin?" 8 g, (3.21)
Thus, the spherically symmetric d-dimensional metric has determinant
g'? = det (89} = det () det (S™). (3.22)

Using (3.21) and (3.22), the metric determinant in the d-dimensional

action is given by

(n—1)

V—gth = /=@ T] sin®-94,. (3.23)
il
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An equivalent way of expressing the symmetry of the metric can, of course,

be given hy the line element

ds%d) = gaﬁdxadmﬁ + Tg (IEQ) dQ{n): (324)

where df),,) is the metric on the subspace S,

An exact expression for the Ricci curvature scalar, in terms of the spher-
ically symmetric metric g, can be calculated directly. Tnserting (3.24) into
{1.11) and using (1.15}, (1.16) and (1.17), the d-dimensional curvature scalar

in spherically symmetric gravity is given by

R [} = R¥(g) + n P AV VI (3.25)

where V is the covariant derivative associated with g,z and R® is used to
denote the d = 2 curvature scalar which is only dependent on g,z
Inserting (3.23) and (3.25) into (3.18) and integrating over d{l, it is

found for the dimensionally reduced gravitational action:

Al — " _ nin-—1
e

nin—1)

72

GOV oV gr — f\) (3.26)
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" where

271.(11+})/2

2

is the volume of the unit n-sphere [94].

3.2.1 Dilaton Gravity Form

In this section, a dilaton field is defined and a conformal re-parameterization
of the metric is carried out in order to simplify the gravitational action of

the theory. Begin by defining a dimensionless dilaton field:

_ r n/2
- ()
n = G@ (3.29) -

Dropping the overall area term A", the gravitational action becomes

R n?
) (g) 852$4/”

T ) o

Se = ngdzﬁé(
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where

1 8{n-1)
TS e (3.31)

The expression {3.30} can now be more easily identified as a specific case of

the general two dimensional dilaton gravity theory (3.17)

1 - - 1 - e
V@) + 30 0,5V.6) (332)

with the following identifications:

T (nn_ 1)q52 (3.33)

n2{§(2nm4)/n niﬁ&?f\

Vig) = S TR (3.34)

D(¢) =

Conformal Re-parameterization

The following conformal re-parameterization of the two dimensional part of

the physical metric is considered:

Gop = 0 (gg)gf(x?
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1 ={2)x
g = giner (3.35)

7@ V=9 (3.36)

Using (3.35), the conformally related curvature scalar becomes
R9(g) = Q*($)RP(g) — 2g"'V OV, Q2 + 20g*V,V, 0. (3.37)
Inserting (3.35)-(3.37) into (3.32) we obtain

5= 55 [ ov7a| DR + 2

j20p2 29" VudVio
_ 2D(9)gV,0V.0 N 2D(¢)g"' V V.

0 O (3.38)
Let us now redefine the dilaton field
6 =D(@) = " (3.39)
8(n—1)
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| Therefore, |

o d -2
V.oV, 6 = (__l) V,6V,¢ = gg%vﬂwuqs. (3.40)

In the above line, we have explicitly used the equivalence of the covariant
derivatives V,, and V,, when they are used to differentiate scalar fields. It is

also found that

N\ /dD(g)\
V.OV,0 = EE) (W) V6V, (3.41)
dQ (dD\ ™!
vuvuﬂ = d_o,TD(E(Z—) V,uvbt@’s
d*Q dQ (dD\ T d2D| (dD(@)\
{a@‘ﬁ("&aﬁ) | (F) veve oo

After inserting (3.39)-(3.42) into (3.37), integrating by parts and dropping
surface terms, the new expression for the reduced gravitational action is

obtained

Sg = ;235 / dzxwfg[éR(2>(g) + V()

1 2dQde\ [dp\™®
@ ed oo
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with the additional redefinition of the scalar dilaton potential
V(o) = —U:)l_ (3.44)

The main advantage in considering the action functional in the above form is
seen after a conformal function which eliminates the kinetic term gV ,¢V,.¢
is chosen. The field equations which are derived from the that action are then
also simplified. This is achieved whenever the differential equation in (3.43)

is satisfied [90, 91]

1 /de\™" _ dlog
() -5t

The solution to this differential equation is

02(8) = Cexp {1 / (jg) das} , (3.46)

where (' is an arbitrary integration constant. Recall, from (3.39),

¢=8m_wf (3.47)
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therefore

do 7 -

Inserting (3;48) into (3.46) will give the appropriate conformal factor to elim-

inate the kinetic term from the action:

n—-1

Q) = 3" = ¢ [qu]( o (3.49)

H

Without loss of generality the constant C' is defined according to

for reasons which will be seen below (see Section 3.3.3). Hence, the final form

for the gravitational action becomes

St = 515 / PG SR+ V()] (351
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with
n r\" .
¢ = g (7) .
. i n 1/n o ?’L2 n ﬁ;—Z - i
Ve = s (S(n - 1)) o ["8‘ - (S(n = 1)> #* AJ(S )
R = R%¥g). (3.54)

To simplify the expression for the dilaton potential, let us redefine the
scale in the problem. In addition, we redefine the cosmological constant so

that it becomes dimensionless. Let us choose

R n =
A = ?(8(7};—1)) A {3.55)
» _ 8 (8n-D1\"",
{ WEE( - ) *. (3.56)
Therefore,
| gn/2 n W2 pen
- Z(E) @ e
Vigy = L g [1 -~ ¢?mA]. (3.58)
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3.2.2 The Matter Action

- Consider the case of a minimally coupled Klein-Gordon scalar field . The

field satisfies the well known Klein-Gordon differential equation [95]
gV Vox —mPx =0 (3.59)
and is associated with the stress-energy-momentum tensor

! ,
T = VuxVox — =9 (V‘,Xv”x + mgxz) . (3.60)

2

The Einstein equations with cosmological constant for a minimally coupled

massive scalar field are given by

1 1
le = R;w - EQ;WR + §gyuA = 167TG{d)Tpu (361)

Contracting (3.61} we obtain an expression for the scalar curvature in the

presence of matter

T

RO =166 (vt + (P22) ] + (S )
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* The matter action functional corresponding to the Klein-Gordon field in d-

dimensions is given by [95]

1 —
SM’ - "6 / d’dw _g(d} (g(d)yuvﬂxvux + mzxz) . (363)

Consider the case of a spherically symmetric massless (m = 0) scalar field
X. Therefore, assume the scalar field is dependent on only the two coordinates

z?. Integrating over the angular dependence in the matter action, it is found
1 = e
Sy = -3 P/ -G g2 5,5, (3.64)

As above, the unit n-sphere volume term is dropped from the action func-
tional. Inserting (3.29), (3.31), (3.35), {3.36), and (3.52), into (3.64), and
re-scaling the scalar field ¥ = x/v87G@), the following expression gives for
the matter action in the conformally related space-time:

1
Su = =55 &z =g V. x V. X (3.65)

The reduced total action functional used to derive the field equations for the

case of a minimally coupled massless scalar field is found by adding (3.51)
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and (3.65):

S = Se+ Sy = zla Pon/Zg[pR+V($) - 69 V,aVx] . (3:66)

3.2.3 Field Equations

The field equations of the problem are derived by examining the extremum
of the total action {3.66) using the minimum action principle. The extremum

of the fields are given by the condition:
dS =0. (3.67)
. Formally,

68 = 51@- / d*z6 [/ —gdR + v/=gV - v/=g69" V .xV.x]

= 35 /d" (V=gR) ¢+ 6 (V=) {V ~ ¢¢" V. xV.x}]
d%\/—[ ; % - f*“vuxvux} 56
F2/—g [@V XV x6g™ + 209"V X (V.6X)] . (3-68)

QG
1
26



3. d-Dimensional Spherical Symmetry and Dilaton Gravity 90

To simplify the expression in the final line, it is noted that:

V. (@gﬂvvfl.XfSX) = (Q#Uvuqf’vyx + ¢’gﬁwv,uvu)f) 5X

+¢g"Vux (Vubx) (3.69)
where the following identity [3] is used
Vg7 = 0. (3.70)
We also make usg of the identity [3]
5 (V=9) = — 5 V"G00 00" (3.71)

Inserting (3.69) and (3.71) into (3.68) and integrating out surface terms yields

. _
58 = —ﬁ dgﬂ’,‘\/ =g vazz(;b ™ g.u,ulziqs:| 6g,l-w
1 1 1
~3c d*z/—g :?'QWV - §¢Q,uv (VX)2 + ﬁbvvaux] rias
+— | d*z/"g|R+ v _ (Vx)* (60
2G | do
) -
+~2~é- A1/ ~g|2¢" V.6V X + 2¢gﬂ"v#vvx} 8, (3.72)
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where we have used the identity (A.10) in the first line.

The minimum action principle reguires that each of the fields ¢, ¢,
and x, be varied independently while ensuring (3.67) remains valid over the
entire solution space. This requirement demands that all three expressions
in square brackets identically vanish at the minimum of action. Hence, the

three simultaneous field equations are found:

(v,uvu - Q,WD) ¢+ %g.u.uv - %Cbgwg"“’vawix + qﬁv,uxvux = 0(3'73)
R+ 25 —g"VuxVux =0 (3.74)

gV LoV x + o'tV Vo, x =0 {(3.75)

The expression (3.73) can be simplified by contracting both sides with the

metric tensor. This gives the equality
O¢ =V {3.76)
The matter field constraint equation (3.75) can also be simplified by noting

GVedVux +0g"VuVux = 9" (Vo V,ux + ¢V Voux)

= g (Vo + dV,) Vux
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= gﬁwvu (va;LX)

= V¥ (@eVux). (3.77)

Using (3.76) and (3.77) the final form of the field equations with m = 0 are

given by!:

ViVid = 30V — ¢T,. (3.78)
R= -4+ (Vx)* (3.79)
VH (V) = 0. (3.80)

3.3 Evolution Equations and Boundary Conditions

In this section, a coordinate system is chosen from which the evolution equa-
tions of the model are defined. A double null coordinate grid (v and v co-
ordinates) will be chosen and a gauge choice specified. Boundary conditions

are then imposed which ensure Cauchy data on the initial null hypersurface.

! Normally, one should perform the dimensional reduction process at the level of the
field equations in order to ensure the correct solution space has been found. In spherically
symmetric gravity, however, it is well known that the field equations derived here (from
the reduced action) are equivalent to the reduced field equations [92, 96].
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3.3.1 Coordinate Choice

Notation representing partial differentiation of a function with respect to the
u coordinate is indicated using an overdot. A prime indicates differentiation

with respect to the v coordinate. Hence,

of

F= 3 (3.81)
F_ Y
=5 (3.82)

The coordinate system chosen is the same as in [28]. The metric is parame-

terized as follows:
ds® = —2lg{u, v)¢' (u, v)dudv. (3.83)

The physical metric can also be expressed in terms of an (r,¢} coordinate

system. Let z® = (u,v) and % = (r,t) then

o 1 z® Hz?
9 (%) = 53908(2) 55 (3.84)
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Using the characteristic definition of double null coordinates in flat space

u = t—r (3.85)

v o= t+r, (3.86)

gives the physical metric in {r, ) coordinates in flat space:

2gy’ | 10
= -5 (3.87)
0 —1
Q2 1 O
—=—1
Bl o= — (3.88)
2Age’
g¢ 0 —1

3.3.2 Evolution Equations

Inserting our preferred coordinate system (3.83) into {3.78)-(3.80) yields the

following five field equations:

L—ity 8 () (3.89)
g¢ = go(¥) (3.90)
¢' = —3Hgo'v (3.91)

()« % (%) = -Ho% -0 (6.02)
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3 (830 + 3 (9x) = 0. (3.93)

By virtue of the Bianchi identities, only three of the field equations (3.89)-
{3.93) are independent. The identities reduce the number of independent field
equations by two—one for each dimension of the space-time. The Bianchi
identities are given by [3]

VaAGy = 0, (3.94)

where (,,,, is the Einstein tensor. For our model, the following tensor plays

the role of the Finstein tensor
1
Guw =V, V¢ — EQWV. (3.95)

Thus, the Bianchi identities can be quickly verified by inserting (3.95) into

(3.94)

1
VaGy = V, (g”’\V”V,,qb)—iv,\ (62V)

= V,0O¢-V)

= 0, | (3.96)
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where we have used (3.70), (3.76), and the commutativity of the covariant
derivative. Indeed, the Bianchi identities can be shown explicitly by inserting

(3.90) and (3.91) into (3.92):

a[é . .9 [ 9 _dgovo

Ju [E 2 } “agy W) T Ty gy TR (3.97)
which gives,

L NIy ) (3.98)

2 77 )

We can simplify (3.98) by inserting (3.93), which gives the identity
GV =gV (3.99)

'The other Bianchi identity can be seen by inserting (3.91} into (3.89) and
differentiating with respect to v. Thus,

5(5) =5 % 4oV 000’

WLy — % (@' +20x) . (3.100)

e

A

| S
+
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Inserting (3.92)} and (3.93) into (3.100) and simplifying yields

0 (00) _g¢ lggp, lgg
du (Bu) g 2¢V 2¢V' (3.101)

Equating the right hand side of the above expression to the u derivative of
{3.91) gives the result

V' = 'V (3.102)

Recall that V = V{¢), therefore,

dv
Ve 2y 108
o @ (3.103)
Inserting (3.103) into (3.102) yields the identity
.dV av .
¢——¢' = ¢'—¢ (3.104)

de de

thus proving the Bianchi identities hold.

Two other useful quantities to calculate are the two dimensional Ricei

scalar, R, and the d-dimensional Ricci scalar, 2%, From (3.79), the Ricci
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scalar is given hy

-1

; 2
1+ ¢*"A] — —x. (3.105)
lgg/

= Cni?

From (3.62) with m = 0, the d-dimensional Ricei scalar is given by

R = ( 2) £ 167G (vx)

A
-1
) ( I )) E§_+_9£22 “v‘7MX‘7vX

8(n n+2\ A  4C ..,
=( ) K )ﬁ_1g¢'¢”xx' (3:106)

Without loss of generality, the following three field equations are used to

evolve initial data:

‘¢ = go (x') (3.107)

¢ = —Lig'V (3.108)

7 (%) + & (#x) =0. (3.109)
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Define the new function
i [ 9V () au (3.110)
Integrating (3.108) with respect to v gives the dilaton evolution function
b=-4 | (3.111)
Integrating {3.107) with respect to v gives the metric function

g (u,v) = Cy (u)exp {f %dv:‘ . (3.112)

As shown by Christodoulou [25, 97] and as implemented by Garfinkle {28},
the scalar field constraint equation (3.109) can be decoupled by the intro-
duction of the auxiliary scalar field

h= %{—ag& (Véx), - (3.113)
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 which gives,

20
gs.'

ho=x+ (3.114)

The matter field is, therefore, defined explicitly in terms of this new param-

eterization by

1 [h¢ Calu)
X=57 \/_d+ N (3.115)

Differentiating (3.114) with respect to u and inserting (3.109) gives the matter

evolution function which, in terms of the new matter parameter h, is given

by

Nl |

- z(‘%ﬁ) [g@vw)w%] (3.116)

Treating the u coordinate like a time coordinate and the v coordinate like
a space coordinate, the equations (3.111) and (3.116) can be used to evolve
initial data and simulate gravitational collapse by numerical iteration. In the

next subsection, a new function which stabilizes the numerical calculations
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will be defined.

Integration By Parts

If one examines the dilaton evolution function (3.110), it is noticed that the
integrand is singular at the origin due to the dilaton potential term (recail,
V o< ™). During the evolution, field values are integrated outward from the
origin in the v direction (for a given value of u}). For points near the center
of symmetry, where r is small, the dilaton potential becomes nearly singular
and creates numerical inaccuracies during the calculation of the integrand in
{3.110). The numerical errors are then added to each grid point on the u slice
as the functions are integrated, thereby, propagating the error throughout the
entire grid.

Fortunately, the neighbourhood of the origin, where the integrand is not
well behaved, is small and typically contains only a few grid points. More-
over, the range of integration is very small so it is assumed the result of the
integration is finite. This can be seen explicitly by calculating (3.110) via
integration by parts?. Once the problematic function is redefined it is seen

that, indeed, § approaches zero as one approaches the origin.

2 It shouid be noted that prior to implementation of this procedure the numerical evo-
lution was highly sensitive near the origin for most space-time dimensions studied. In fact,
the sensitivity of § will grow very rapidly with increasing » near the origin. .
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Notice

1

5 = [eovied =g [ g6 (670 - nn) av

Therefore,

) [ ) f o

(3.118)

g =
_ ongd' VT (n+1— A(n — 1)¢?/"
-ocr ( (n+1){n—1) )
T Cn- 1)n CESE / [(n+ D" = A(n —1)¢"]dg. (3.117)

From (3.112)
"2 '
d9=g¢(§,) dv = %(h—xfdu.
. Define

i n @ml/n QSI/R , 5
h_ﬁf[n—l_An—l—l g9 (h=x)"dv.

(3.119)
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Then

~1/n 1/n A
SEES) L e
Viewed in this way it is also immediately seen that the evolution equations
are unavoidably singular in the d = 3 (n = 1) case. On the other hand, for
space-time dimensions greater than three, § — ¢'~'/™ as ¢ — 0. This is due
to the fact that the correction term h approaches zero faster than the leading

order term in §. As a result, the functions are well behaved near the origin.

In the limit of large n, these functions become

P TR g¢ _ . P

Joo = lim g = =5 (1-A) = — (3.121)
7 : 7 1—A ! 2

hoo = lim b = (—74[7) /gqb (h —x)" dv. (3.122)

3.3.3 Residual Gauge and Boundary Conditions

It is required that the initial matter profile be a collapsing spherically sym-
metric shell of matter with no black hole in the interior [60]. Thus, the metric
should be flat, initially, until an asymptotically flat spherical shell of matter

“appears” on the initial time slice. Exterior to the matter distribution, the
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metric will approach the Minkowski metric at spatial infinity. In addition,
even at late times, a flat space-time metric in the vicinity of the coordinate

origin (r = 0) is maintained.

As discussed above, the Bianchi identities reduce the number of inde-
pendent field equations. This is due to the general covariance of the Ein-
stein equations. The field equations derived under the metric (3.83) are only

unique up to a general coordinate transformation of the form

= o(u) (3.123)

7 o= wlv). (3.124)

To fix this residual gauge freedom, I set u = 0 on the initial surface and
v = { at the center of symmetry (r = 0). Then, using the characteristic
definition of double null coordinates given by (3.86), it is found that on the
initial w = 0 null surface, r = v/2. This gauge choice also fixes the origin on

the initial surface at v = v = 0. Furthermore, at the origin,

1
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The boundary conditions at the origin should be examined in more detail.
I have required that the metric be flat for u < 0 throughout the entire
manifold. To ensure continuity at v = 0, we need to solve the vacuum dilaton
equations for zero mass and show that they can be smoothly connected to a

flat space-time at the position of the origin.

For general V(¢), with A = y = 0, the action {3.66) is that of generic
vacuum dilaton gravity. The theory has been studied in great detail [90, 92,
96, 98] and the vacuum equations can be solved exactly. The action for the

theory is given by
1
S = 5G /d%/—g [oR + V(o). (3.127)
The field equations derived from this action are given by

R+45=0 (3.128)

V.Vt — 29,V = 0. (3.129)

1t is possible to choose an adapted coordinate system in which the metric is

locally time-independent. In this case, the exterior solution to (3.128)-(3.129)
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is given by
ds* =~ [j (¢) — 2GM] dt* + [ (¢) — 2GM] ™" da®, (3.130)
where,
dj(#) _ :
a0 = [*V (¢}, (3.131)

z = ¢, and M plays the role of a mass point located at the origin.

In the model studied here, the initial null surface contains no black hole
in the interior, therefore, it is required to set M = 0 in {3.130). Consider a

coordinate transformation to the null coordinates

v o= t+ ¢, (3.132)

where ¢* is the generalized tortoise coordinate

.
¢*=z/ _49 (3.133)
Q

1(9)

The line element for generic dilaton gravity with A = M = x = 0 then
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hecomes

ds* = —j (¢) dudv. (3.134)

Solving (3.131) for the specific case of d-dimensional spherically symmetric

gravity with A = ( gives

]
R R e (3.35)
G

7 — 1

Hence, from (3.133) and (3.132),

¢ =1l{n—~1)p¥" = % (v—wu). . (3.136)
Therefore,
=99 _1l9)
¢ = 5 = o {3.137)

Using the above relation and comparing (3.134) to (3.83) it is seen that the

boundary condition at the origin is equivalent to the requirement

g=1 (3.138)

Demanding also that the physical metric approach the Minkowski metric
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near the origin, it is found, by (3.87):

2g (u,u) @' (u,u)
=" (3.139)

Therefore,

g{u,u)

c\/é(n—n( n ))”2“

2nr’ 8(n—1
= 1, (3.140)

which agrees with (3.138) and justifies the choice for the integration constant

C first defined in Section (3.2.1). Also, from (3.112),

Cy(u) =g (u,u) = 1. {3.141)

To determine the integration constant Ch(u) in (3.115) it is necessary to
examine how the term 2¢y’/@’ behaves near the origin. From the definition

of the scalar dilaton,

¢ = : (3.142)
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therefore,
2¢x"  2ry
= 143
@' nr! (3.143)
Asy — 0, v — 1/2, therefore,
20y’ 4y’
lim 290 _ gy X (3.144)
730 qb" r—0 N

Thus, h = y at the origin which, in turn, requires

Ca(u) = 0. (3.145)

Let us denote the d-dimensional Ricei scalar at the origin by R[(]d) then,

using the boundary conditions at the origin and (3.106), we find

1/n
0= (222) ()T A g
fo m( n )(S(n—l)) 2 8XoXu, (3.146)

where xo and xj denote the partial derivatives of the matter field (evaluated

at the origin).



4. NUMERICAL SIMULATIONS OF CRITICAL SCALAR

FIELD COLLAPSE IN D DIMENSIONS

Iﬁ this chapter, the results of the numerical analysis of the d dimensional
spherically symmetric collapse of massless minimally coupled scalar field mat-
ter will be presented. In the previous chapter, a coordinate formalism was
chosen and the evolution equations derived. Coordinate conditions were then
imposed and the boundary conditions of the model calculated. Focus will
now change to the details of the particular method used to extract data.
Numerical simulations of gravitational collapse are inherently unstable due
to the non-linearity of the field equations and as a result several particular
techniques needed to be used. These techniques will be discussed throughout
- the chapter.

The primary focus of research has been on determining the dependence of
space-time dimension on the critical scaling phenomena. As discussed above,

these phenomena have already been observed in a few particular cases in
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the massless scalar field system. The research program presented here will
expand to include resulis from several new dimensions and the data will be
used to determine properties of the critical solutions in the limiting cases of
large and small numbers of dimension.

The results section of this chapter is divided into three main subsections.
The first subsection is a case study of the well known 3 + 1 dimensional case
and it is where the validity and stability of the method is confirmed with
the known results. The second subsection presents the results of collapse
simulations for d > 4 as first reported in [48]. The third subsection presents
the results of new simulations for d < 4 [99]. The chapter is concluded by
presenting a hypothesis on the relationship between critical phenomena and

space-time dimension.

4.1 Numerical Method

A grid is constructed in {,v) space as shown in Figure 4.1.

On the initial u = 0 surface, the specification ¢ (0,v) = v was used. The
initial grid size ranged between 6,000 and 12,000 grid points along the v
axis. The initial v spacing (Av) was set at 0.0005 for the d > 4 supercritical

collapse simulations. For the d < 4 simulations, Av ranged between 0.00029
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Fig. 4.1:

(Laras Vasaxd

another ustep refinement {1755

ustep refinement

r=0; u=v
.

[}

(0.0)
v (0. vpax)

The (u,v} domain of integration for the collapse simulations. At wu = 0,
the initial values of the scalar functions are calculated from the origin
(v = 0) to upsax. The fields are recalculated after each iteration from
u=v to vy 4x on each u slice according to the evolution equations and
boundary conditions. Qccasionally, depending upon certain conditions,
the u step is reduced to increase resolution in the final result. This may
happen several times bhefore the collapse is terminated. The spacing in
the v coordinate, however, remains unchanged throughout the collapse.
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and 0.0015'. To avoid placing the first grid point on the coordinate origin,
th.e first grid point was offset by 0.000001. Let vy denote this offset. Let ¢}
denote the dilaton value at the #** grid point on the u = 0 initial surface
and let N denote the total number of grid points on this surface. Then, the

initial values of the dilaton field were specified as follows
Ph=vg+idv i=0,1,... (N —2),(N-1). (4.1)

Using this specification: vprax = vg + (N — 1)Aw. In the lower dimensional
studies, N was kept fixed and Av was adjusted so that varax was just beyond
the apparent horizon in supercritical collapse. This was a similar technique
to that used in [28] for the case of subcritical collapse. And was implemented
to maximize resolution in the near critical solutions.

The initial values of the remaining functions were calculated as functions
of #%. The initial matter field was defined as a Gaussian shell of matter with

profile centered at radius ¢q

2
X = ag”/" exp {— (¢ ;%) } : (4.2)

! The numerical method was slightly modified for the lower dimensional collapse studies.
Some of the changes to the code included modifying the initial grid spacing in the v
direction.
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where a was the amplitude of the shell and ¢ was the width of the profile.
‘For the supercritical collapse data, ¢ = 0.3 and ¢y = 1.0. Once the critical
- value of @ was determined for a given dimension, a check for the universality

of the critical phenomena could be carried out by varying one of ¢ or ¢q.

Given the value of the dilaton qﬁ; and the dilaton evolution function qi)j;
at grid point (4, 7), the lowest order evolved value of the dilaton on the next

u slice (at constant v) is given by

Bron = @ + $iuy, (4.3)

where Aw; is the spacing between adjacent u slices. The initial spacing in
u was set at 0.001 for all of the collapse runs. However, the collapse code
was written to allow for refinements in Awu as solution structure developed.
The numerical error in (4.3) is of the order of the correction term involving
Awu;. The accuracy of qﬁ;- 1, however, can be considerably improved by using
a higher order evolution (or time step) procedure. To improve the overail
accuracy of the calculations reported here a higher order evolution procedure

was implemented.

Once the values of the fields were determined on the initial surface, evolu-
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tion proceeded via fourth order Runge-Kutta procedure. The Runge-Kutta
method of order four uses a set of four derivative estimates to determine the
value of a given functipn at the endpoint of a discrete step. The method
combines derivative estimates at the initial point of the step, two estimates

at the midpoint of the step, and the derivative at the end point of the step.

The Runge-Kutta method of order four is given by
G =05+ = (Al + 2ks + 2ka + ka) (4.4)

where

k']_ = QS (u_]: ¢ ) Au’ﬂ
1
ke = ¢ (uj + —J gﬁ + 2k1> Au;
Au 1
k3 = ¢' ('U,J + — J z 51»2) Auj
ky = ¢> (ujJri: 45; + ks) Au,
o k=]
uj = / dﬁ = z A’U,k
. 0 k=0

Ujr1 == Uj"f‘AUj.

The local truncation error in this method is O((Aw;)*). The Runge-Kutta
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~order four method is derived from the fourth order Taylor polynomial ex-
pansion in two variables. The method indeed requires four calculations per
step, however, the approximation error is smaller than a douhle order single
variable Taylor technique at one-half step size {100]. For this reason, Runge-
Kutta methods are popular hecause they offer both efficiency and accuracy
for cpu-intensive calculations. The Runge-Kutta method was used through-
out the calculations. During each Runge-Kutta step, ¢ and h ﬁrei‘e evolved

simultaneously according to the field equations (3.111) and (3.116).

In double null coordinates, all fields are determined as functions of in-
coming and outgoing wave fronts. Thus, as the evolution proceeded, some of
the ingoing wave packets passed through the origin. The computer code did
not track reflected wave pulses, therefore, as grid points reached the origin

the overall grid became smaller.

If the evolved value of the dilaton qb:fi was less than zero (hence, the incom-
ing null wave had reached the origin during the j** iteration) then the point
was removed from the grid. In the cases where all the v slices were removed
from the grid it was assumed that the solution had reflected enough or all of
the matter to infinity without the formation of an apparent horizon surface.

These solutions were considered subcritical and the initial parameter values
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stored as such.

After each iteration, the new ¢ values were scanned and the origin shifted
to the first grid point with non-zero ¢. All of the other functions on the u

slice were calculated using the evolved values of ¢ and h.

So long as evolution proceeded, a check throughout the grid for the con-
ditions of an apparent horizon surface was performed. The apparent horizon
is the outermost surface from which outgoing null geodesics stand still. In
dynamical gravitational collapse the event horizon expands as external mat-
ter is contracting. lun the case of spherical collapse, the event horizon will
asymptotically expand until its surface coincides with the apparent horizon.
Thus, in numerical relativity, it is useful to check for an apparent horizon as

one always knows an event horizon will be contained within it.

If an apparent horizon was observed, the evolution would be terminated
and all information about the fields on the grid surface just prior to apparent
_ horizon formation would be dumped into data files. The signal for horizon
formation is given by the vanishing of the following function

¢

TAN = g"‘ﬁaagbaﬁgb = —25. (45)
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The function ¢4y vanishes at finite radius where outgoing null rays don’t
expand. In practice, however, evolution was terminated when the above

function fell below some predetermined threshold value?.

Partial derivatives of functions with respect to the null coordinate v were

calculated via the four point central difference scheme:

7 1 7 i i-+-2 i—
o5 = Toay GO =897 — ¢ + 6777). (4.6)

The computer code uses a five point forward, and backward, difference
scheme to calculate derivatives at the first two, and last two, grid points,
respectively. These calculations ensured that an equal order of truncation
error existed for all grid points. The error in these derivative approximations
are of the order O((Av)*).

Numerical integration on constant u slices was carried out via simple

trapezoid method which begins near the coordinate origin® and then in-

tegrating outward. The method of integration is also called a composite

2 The value of the apparent horizon threshold used to terminate evolution was dependent.
on the space-time dimension analyzed. Often, when a horizon was nearly pinched off,
oap changed very rapidly and passed through the threshold and become negative during
a single iteration. The evolution was, nevertheless, terminated at that point.

3 Numerical integration did not begin exactly at the coordinate origin as wiil be seen
below. The values of the fields for the first few grid points near the origin were estimated
using a Tavlor series expansion and analytic integration.
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Newton-Cotes formula for N equally spaced points [94]. In symbols, the
composite Newton-Cotes formula for the integral of the function f{z) be-

tween the interval x;, — z, is given by

/ f(ar)dﬂ:=g[f(a)Jr?if(xj)Jrf(b) , @)

where h is the spacing between grid points. The numerical error of (4.7) is
of the order @O(h*). Higher order methods of integration were found to lead
to bifurcations in the solution after multiple iterations and it was concluded
that, in the case of integration, a simple trapezoid approximation was the

most stable method.

4.1.1 Small ¢ Approximation

To improve numerical accuracy near the origin, a similar procedure to {28]
was employed in which the matter field constraint is expanded in a power
series in ¢ near ¢ = 0. On each u slice the matter field is fit (using a least

squares fitting procedure) to

h = ho+ b1+ ha¢? (4.8)
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for the first n grid points from the origin. All other field values for the
first n grid points were calculated analytically using the values of the fitting
constants. This procedure elegantly handled the problematic 1/¢ factor in

the matter evolution equation, h, for small values of the dilaton.

The remaining values of the fields for the first n grid points are given by:

1 1 :
X = ho+ ‘“h1<?5 + ”h“z@z (4.9)
g = 1+ —h 2% + ———hlhgqb + —h"‘qb (4.10)
B _ nzhg 5 Qf) i/n _ Ad)l/n (4 11)
(n—-103Bn-1) (n+1)(3n+1) '
1—1/n 1+1/n 7
_ _ ng (¢ Ag _h
NGTE (n~1 ntl ) C (4.12)
. 1
ho= Cl(m hgq)){( ) i
B 1+ 2 141/n . 127
A (n+ 1) el +1°h (4.13}
. ng ¢1—~1/n A¢1+1/n E o
¢ = T3 (n-i nr1 ) T (4.14)

It should be noted that the lowest order term in the evolution function h
vanishes if n = 2 which corresponds to d = 4. As a result, the numerical

evolution is considerably more stable in four space-time dimensions. In the

4 For the higher dimensional study, d > 4, the fit was performed on the first 8 grid
points. For the lower dimensional study the number of grid points used in the fit was
reduced to 4.
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- next subsection, the method of determining uncertainty in the calculations

“of the critical phenomena will be presented.

4.1.2  Determining Error Estimates

For any given set of initial parameters, either a black hole will form under
gravitational contraction, or not. As stated previously, it is assumed that
for massless scalar field collapse there exists one universal critical solution
Sla.) for all one parameter families of initial data. In the collapse code, two
extremal values of the parameter which lead, in the one case, to a super-
critical collapse and a black hole solution, and in the other, to a subcritical
or reflection solution are first determined. Once these two extremal values
have been determined, a binary search is carried out which narrows the range
separating the two phases. This method of determining a, is called the direct
observation.

The sensitivity of the evolution equations to numerical errors has been
found to be very significant as the space-time dimension is increased. This
was due to the decreasing fractional power of the dilaton in the evolution
equations. The effect this has on the evolution of initial data is to create

instability near criticality and a subsequent loss of accuracy. Often, in the
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large dimensional study the range of possible critical values of a exceeded the
limit of machine precision®. - The code became increasingly unstable as the
space-time dimension increased and eventually broke down after 14 dimen-
sions. It was not possible to extract stable results beyond this limit. In the
lower dimensional study, however, the numerical scheme was stable enough
to reduce the range of possible critical values to the level of machine code
precision.

Once the smallest range of a, had been determined by direct observation
the code would be run again for several supercritical values of a and the
horizon radius information at collapse would be collated into a data file along
with the initial parameter information. Let ¢ g(a) denote the value of ¢
corresponding to the position of the apparent horizon for a given value of the
initial matter pulse amplitude a. From the definition of the dilaton field, the

radius of the apparent horizon is, therefore,
rag <X ¢ (4.15)

From (2.43) and the above relation, it is expected in the case of super-

5 The code was written in C using double precision real numbers, Thus, the level of
machine code precision is roughly one part in 1019,
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critical collapse

1
n log (¢an) = vlog(a —a.) + ¢, (4.16)

. where ¢y is a family dependent constant. For each dimension studied, the
resuits {¢apla),a} are collated and the function (4.16) is plotted. The data
is fit to a line using a least squares fit and the r-squared goodness of fit is

calculated. The goodness of fit is given by

= ——. .
> (v —7)
In practice, the fit is a very sensitive function of the estimated value of the

critical parameter.

The critical parameter a. is then adjusted within the observed range (of
direct observation) in order to maximize R?. For the supercritical collapse
data, this would result in maximal values of X2 of between 0.9998 and 1.0000
indicating a high quality of fit. The value of a, which would produce the
maximum value of R? would then become the best estimate of the critical
value of a. Refitting (4.16) with the best estimate of a, produced the best

estimate of the scaling exponent .

To determine an uncertainty in the best estimate of a., the data is plotted
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~and the maximum value of R? is allowed to drop by 0.0001 by varying the
input value of a,. It was found that this method of determining a range of
a,. would reduce the overall range of possible values of a, as compared to the
range observed by direct observation. The uncertainty in v was determined
by calculating the range of fit results v which corresponded to this new
reduced range of values of a,. In the higher dimensional study, the relative
error of gamma remained roughly constant using this method. It should
also be noted that this method of determing error estimates for the critical

constants is consistent with the method used to quote the results in [48].

4.2 Results

The numerical code was first tested in four dimensions with zero cosmological
constant. This was done to verify known results in four dimensions as well
as to debug the code and establish the validity of our method. The results
of collapse simulations in four dimensions are presented as a case study in
order to show they are in agreement with previous work on this system.

As discussed above and shown in [61], it was expected that the critical
solution of massless scalar field collapse in spherical symmetry is independent

of any finite cosmological constant term in the action. Henceforth, these
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~ results are quoted with the cosmological constant tuned to zero. Without
loss of generality, the length scale in the problem was fixed by setting | = 1.

In the remaining subsections of this chapter, the results of numerical
caiculations of the critical solutions in other finite dimensions are presented
in detail. The chapter is concluded after a speculation on the nature of the
dimension dependence of scaling and self-similarity in critical gravitational

collapse.

4.2.1 Critical Collapse in Four Dimensions: Case Study

The evolution equations for the case of four dimensions are ideal in the sense
that they are naturally more stable®. The evolution equations near ¢ = 0

withn =2, A=0and C == 1 are given by

h = ho + hld) + hg¢2 (418)
1 1.,
x = ho+ *h1¢ + —h2¢' (4.19)
g = 1+—h 10* + —hlhggb +—h2¢ (4.20)
2
5 o= oal/? L 2 .5/2 772y 2 ,9/2 :
7 2¢ 45:’11@ + 315 h1]12¢ 225]1,2qb (4.21)

Tt should be noted that the supercritical numerical solution in four dimensions did
not involve the integration by parts procedure discussed above. All the other collapse
simulations did, however, incorporate the function h.
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. 2 16 . 8 6

h = ——_p3 :5/2 L h2h (T/2 - h% 19/2 h3 131/2 4.99
v gt pggihed ™+ geghaeg 4 oshad T (4.22)
. , 1 5 4 1

¢ = —¢'* - %hfqﬁ - 3—15"h41h2¢‘?/2 - “2*55}1§¢9/2~ (4.23)

As seen in the equations above, the matter evolution equation is a slower
changing function near the origin than the dilaton evolution function. The
effect this has on numerical stability is remarkable and is evident by the
number of echoing periods observed in this case. As discussed in the previous
section, however, this effect only occurs for (n = 2, A = 0). In fact, it was
this numerical stability that provided the motivation in [28] to deline the

matter function h instead of using yx (as is done here as well).

Nevertheless, one can parameterize the matter field to a more general
function which stabilizes the numerical evolution at the origin for space-time
dimensions other than four [53]. As seen in Section 2.2.2, an example of this
function was presented for the case of six space-time dimensions. The general
| matter function is defined by

m — 1) O™, ot
h.=((2m__11))!7“1_m (5;) (r*™ ), (4.24)

where m = n/2. The new matter function h, defined in this way, not only
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satisfies the wave equation but is constant along ingoing light waves in flat
space-time. As a result, the numerical procedure is greatly stabilized near

the origin.

There are, however, considerations for defining the matter function in
this way. First, (4.24) is only valid in even space-time dimensions. Second,
a separate set of code would need to be written for each dimension ana-
Iyzed. This would impede the basic objective of developing a single code
which accepts space-time dimension as an input parameter. Third, in order
to evaluate (4.24), one would require additional higher order derivatives as
one analyzed higher dimensional space-times. From a more pragmatic stand-
point, the numerical accuracy of differentiation falls off substantially as the
order of differentiation is increased, hence the gains made in stability come
at the expense of accuracy. For these reasons, only the auxiliary scalar field

given by (3.114) was used in the collapse simulations.

Figure 4.2 shows the horizon radius scaling observed in four dimensional
collapse. The graph is equally spaced in log{a—a.). To determine the slope, a
least squares fit to the function log (r45) = vlog (a — a,) +cp was performed
as described in the previous subsection. The value of the slope of the graph

- is given in Table 4.1.
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Horizon sgaling in 4 dimensions
'1 T T T 3 T

10 //T' 1 I I L
30 -25 20 -15 -10
log(a-a™)

Fig. 4.2: Supercritical collapse in four space-time dimensions. The graph shows
one of the first results obtained using space-time dimension as an in-
put parameter. The high number of complete echoing periods—in this
case four and evidenced by the deviation of the data from a line—are
attributed to the unique stability in the evolution equations. The ini-
tial surface contained 12,000 grid points. The critical exponent was es-
timated to be v = 0.374 & 0.002, in excellent agreement with earlier
findings [29, 48].
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Ly v R?

af | 0.3723 | 0.99983
a, | 0.3744 | 0.99993
a; | 0.3767 | 0.99983

Tab. 4.1: Mass scaling in four dimensional scalar field coilapse. In the table, a,
corresponds to the maximum value of R? in a least squares £it to a line.
a; is the lowest value of the amplitude that did not produce a reflection
solution or a black hole by direct observation. a} is the largest value
of the amplitude which reduced the maximum value of R? in the fit by
0.0001. The critical exponent was estimated to be v = 0.374 4+ 0.002, in
excellent agreement with earlier findings [29, 48].

During the numerical calculations the spacing between u slices was de-
creased prior to collapse. This was done if one of a few basic conditions
were met and the effect of doing this was found to increase the accuracy of
the final result. In most cases, a particular sequence of Au divisions were

essential for the code to remain stable. It was also essential to ensure that
the same set of conditions were used for all the data points used to calculate
v.

If one of the following conditions were met then Aw would be decreased:
1} if the number of grid points passing the origin in a single iteration exceeded
some small amount; ii) if a relative minima formed in o4p; iii) if a minima
that did form in 044 fell below a certain value; and iv) after a pre-determined

amount of u coordinate time.



4. Numerical Simulations of Critical Scalar Field Collapse in d Dimensions 130

In order to determine the discrete self-similarity in the critical solution A,
one needs to examine the periodic wiggle in the power law behaviour of the
black hole mass. Recall, from (2.90) that the period of the wiggle is related

to A by

A

= —,
2y

To calculate 6, the periodicity of the residuals in the log(a — a,) graph were
calcuiated. Figure 4.3 shows a sine wave fit to the residuals in the log(a — a.)
graph. The period of the residuals was analyzed by KaleidaGraph Demo
which uses a Levenberg-Marquardt algorithm. The fit to the residuals is the

three parameter function:

y = Asin[Tlog{a — a.) + B], (4.25)

where y = log (rag) — cp — vlog(a — a.). The period was determined to be

2
T = —;5 = 1.3682 = 0.0070. (4.26)

The error in T represents the standard error as calculated by KaleidaGraph
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Discrete self-similarity in four dimensions
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Fig. 4.3: Discrete self-similarity in four dimensions. A line is subtracted from the
log{a—a.) graph and KaleidaGraph Demo is used to fit a sine wave to the
residuals. It was estimated that A = 3.44 £ 0.02, in excellent agreement
with earlier findings [29, 48].
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Demo. The r-squared goodness of the fit was R? = 0.91362. The low value of
R? (relative to other fits in this analysis) clearly shows that the residuals are
not likely to be sine functions {which is also evident by visual inspection),
nevertheless, one expects the oscillation of the residuals to have the same
period of a sine function with the same approximate shape. In the lower
dimensional studies (presented below), the discrepency between the fitted
data and a sine function becomes even more evident and, as a result, only
using R? as an indicator of the quality of the fit can be misleading in these

cases.

Scalar curvature in subcritical collapse

An alternative method of determining the critical phenomena in gravita-
tional collapse is to examine the maximum scalar curvature at the origin in
subcritical collapse. It had already been shown that the scalar curvature in
suberitical collapse scaled during gravitational collapse and that the scaling
constant was the same as the black hole mass scaling constant in supereriti-

cal collapse [27]. From (3.146), the Ricci curvature scalar at the origin with
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d=4and A =0 is given hy

REY = —8xoxi, (4.27)
where
: dy de¢ .
o = —— Tl 4.2
A.D dd) dTTrT—O ( 8)
. dxdg

Xo = dqﬁd_rr |r=0- (4.29)

For the subcritical collapse calculations the matter function 2 was fit to

a linear function of r near the origin

h = hy + hi¢'/2, (4.30)
This gives the small ¢ approximation to y

X = ho + %hlﬁblﬁ- (4.31)

Therefore, with I =1,

1.
5 ) = p2. (4.32)
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The above relation shows that the Ricci curvature scalar is simply pro-
portional to the square of the gradient of the matter field at the origin. For
a subhcritical collapse (a < a,) the absolute value of the gradient will steadily
increase to a maximum where the density of matter near the origin is great-

! is maximized”. As the

est. Let upsayxy represent the value of v when Rgl
parameter a approaches a, from the subcritical region, uprax approaches u,
from below, where, u, is the value of u at criticality. If the collapse is sub-
critical, the matter will disperse to spatial infinity for u > upax, a black

)

hole will not form, and Rff will then decrease to zero as u — oo.

Let us define a new variable

~log (u, — u) + log (us — tprax) if u < uprax

iog (’LL* + u— ZUMA)() — lOg (u* — 'U:MAX) u>uyax.

Figure 4.4 shows the logarithm of (4.32) as a function of z for a near critical
collapse simulation in four dimensions.

The initial null hypersurface contained 8000 grid points with a spacing
of Av = 0.0003. To refine Au during the collapse, a different method is

used then for the four dimensional supercritical cotlapse. In the supercritical

7 Recall that we assigned v =0 on the initial null hypersurface, therefore, uarax > 0.
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Scalar curvature {at origind in 4d subcritical collapse
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Fig. 4.4: Scalar curvature at the origin in four dimensional subcritical collapse.
The curvature maximizes at x = 0 and decreases to zero as u — co. For
x < 0, log (%Ré4)) oscillates at a period that approaches A/2 as o — 0.
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case, the grid spacing was decreased in the u direction in discrete steps.
_ For example, if one of the conditions described above were met during a
supercritical collapse, Au was decreased by as much as a factor of 10 {in
some cases by factors of 2 or 5). In the subecritical collapse calculations the

spacing in v was decreased using the smooth function

W — e\
Au; = (1 — a,,) Augexp {— ( : *) } , {4.33)

where, a, and b, were adjusted to maximize resolution while keeping overall
computing time to a manageable level. For the subcritical collapse data,
a, = 0.999, b, = 0.2, and Auy = 0.001 (the u spacing on the initial surface).
The parameter u, was determined through iteration. Using these values, a
typical subcritical run would involve roughly 24, 000 iterations and require

approximately 7 minutes of computing time.

Let us define the maximum curvature for a subcritical amplitude as

—
R.(*é')f-l}f = §R[(] )|u:u}|{AX' (434)
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It is then expected that

4
log (R_(M)AX

) = cp — 2vlog (a. — a) + U [log {a. — a)].

(4.35)
Figure 4.5 shows log(R%?AX) as a function of log(a. — a). KaleidaGraph
Maximum scalar curvature (at arigin) in 4d subcritical collapse
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Fig. 4.5: Scaling of curvature in four dimensional subcritical collapse. The max-

imum value of the curvature at the origin obeys a power law with the
same scaling constant as apparent horizon radius in supercritical collapse.

The scaling exponent was estimated to be v = 0.374 £ 0.002, in excellent
agreement with earlier findings {29, 48].
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Demo was used to fit the data to the five parameter function
log (Rg\j,)_AX) = ¢~ 2ylog (a. — a) + Asin[T'log(a, —a) + B].  (4.36)

Table 4.2 lists the results of the fitting procedure. Figure 4.6 shows the

y A K>
0.3743 = 0.0024 | 3.448 4 0.024 | 0.9999

Tabh. 4.2: Critical phenomena in four dimensional subcritical collapse. The -
squared goodness of fit was maximized by varying a. within the range
of possible critical values of a. The mean values of the fit parameters
were calculated at the maximum of R?. The uncertainty in A includes
contributions from the standard error in the fit and the relative error in
~ added in quadrature.

residual of the curvature scaling after a linear fit is subtracted. A sine wave

fit is shown on the graph. We estimate A = 3.45+0.02, and v = 0.374::0.002,

both in excellent agreement with earlier supercritical collapse calculations.

Discrete self-similarity in supercritical collapse

An alternative method of measuring the period of self-similarity is by mea-
suring the periodicity of the matter field at the origin. For these data, the
numerical code was run with the function & in the evolution equations (that

is, performing the integration by parts procedure). The code used an initial
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Residual from linear fit in 4d suberitical collapse
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Fig. 4.6: Discrete self-similarity of the maximum curvature in four dimensional
subcritical collapse. The discrete self-similar period was estimated to be
A == 3.4540.02, in excellent agreement with earlier findings (29, 48]. The
flat bottoms on the graph were also observed by Garfinkle in [27]. What
causes this effect is unknown.
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grid size of 7000 with spacing Av = 0.00034. The spacing between u-slices
was calculated using the function (4.33).
Figure 4.7 shows the periodicity of the matter field at the origin for a

nearly critical collapse in four dimensions. The data were fit to a sine wave

Matter field at origin in four dimensional supercritical collapse
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Fig. 4.7: Matter field at the origin in four dimensional supercritical collapse. The
solid line represents the best estimate of a sine wave fit to the data. The
discrete self-similarity period was estimated to be A — 3.44 £ 0.01, in
excellent agreement with earlier findings [29, 48].

function using KaleidaGraph Demo.

For the purposes of the fitting, data were excluded with — log (u. — u) <
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2.5. These data were excluded because they represent the state of the matter
field early in the evolution. This is typically before the evolution begins to
approximate the critical solution. One should expect a near critical evolu-
tion to approximate the critical solution only for intermediate times. After
inspecting matter field ringing data, it was determined that the transition
from “early” to intermediate times occurs around —log (u. — u) < 2.5.

The discrete self-similarity constant was determined to be A = 3.445 £+
0.013. The same error procedure was used as described above, That is, the
unknown critical value (in this case u,) was varied until B? was maximized.

The error in A corresponds to the range found by allowing the maximum in

" R? to fall by 0.0001.

4.2.2  Critical Collapse in Higher Dimensions: 4 < d < 14

In each dimension in the range 4 < d < 14, an initial grid size of 6,000
was used with spacing Av = 0.0005. Supercritical collapse was observed
for d = 4.5 as well as the remaining integer dimensions between 5 and 14,
inclusive. In addition to the same procedure used for the d = 4 supercritical

scaling results, the formalism included the integration by parts for these data.

The numerical solution became increasingly unstable as the dimension in-
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creased above four. As a result, considerable care was needed in determining
the sequence of Au divisions for each dimension. In all cases, the parameter
values of ¢g = 1 and o = 0.3 were used for the Gaussian initial data and
the amplitude a was allowed to vary in order to determine a range for the
critical amplitude a, separating supercritical and subcritical collapse. The
cosmological constant was tuned to zero and the length scale set at [ = 1.

Table 4.3 summarizes the results of the study.

d A ¥
4.5 | 3.30 £ 0.1 | 0.3984 -+ 0.0014
5 | 3.10£0.1}0.4119 = 0.0037
6 | 29840104302 £ 0.0042
71 2.96x£0.1 | 0.4405 £ 0.0058
8 12.77+0.1 ] 0.4459 4 0.0054
9 | 2.63+0.1] 04524 +0.0054
10 | 2.50 £ 0.1 | 0.4562 £ 0.0060
11 | 2.46 £0.1 | 0.4588 £ 0.0053
12 | 2.44 £ 0.1 | 0.4616 £+ 0.0067
13 1240+ 0.1 | 0.4639 + 0.0089
14 0.4645 £ 0.0052

Tab. 4.3: Critical phenomena for 4 < d < 14. The results presented here are
found by using the same data reported in Bland et al. [48]. In this table,
however, the error bars were recalculated and include an additional digit
for v. The code was optimized for the determination of the scaling
constant v on a case by case basis. As a result, the relative error in
estimates of v are much lower than for A. The self-similarity constants
were determined by analyzing the periodicity in the scaling graphs. This
method of determining A is highly sensitive to y and, therefore, lead to
a larger relative uncertainty.
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As described above, the data were fit to a line (with slope +) and the
maximum of R* was found within the direct observation range of critical
values of a. This procedure is further complicated by the appearance of mul-
tiple relative minima in the apparent horizon function. Figure 4.8 shows an
example of the complex structure of o 45 near a typical collapse in ten space-

time dimensions. It was found that just prior to the moment of collapse,

x10" Apparent hotizon minima in ten dimensions

Fig. 4.8: Multiple relative minima near collapse in ten dimensions. The rightmost
minimum (largest ¢ value) corresponds to the apparent horizon position
at the moment of collapse. The appearance of multiple minima in ¢ g
can lead to additional uncertainty when estimating rap.
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new minima in ¢4y would appear ever closer to ¢47. This can be seen in
_ fhe figure. The new structure in the solution would also be accompanied by
increasing numerical instability in the evolution equations, however, even if
the code crashed prior to o4 = 0, the position of the outermost minimum
would asymptotically approach ¢apy. As a rvesult, if the code could be made
to remain stable long enough during a given collapse then a fairly accurate

estimate of 44 could be determined.

Moreover, it was observed that the relative minima would also possess
the critical scaling behaviour seen in r45. Thus, it was found that one could
approximate the critical phenomena observed in gravitational collapse by
tracking a particular relative minimum in ¢45. In fact, it was determined
that the scaling constant calculated in this way agreed very well with ~
calculated using the last surviving outermost minimum at collapse. Figure
4.9 shows the comparison of the two calculations in the case of 10 dimensions.
In Table 4.3, calculations of v are calculated based on graphs of the type

shown on the upper right of Figure 4.9.

The periodicity of the residuals in the scaling graphs can provide a rough
estimate of the discrete self-similarity constant. Over the range of dimen-

sions studied, data was obtained which contained between 1.5 and 3 periods
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Fig. 4.9: Comparing relative minima in o 4p. The left hand graphs show the scal-
ing exponent {upper) and residuals (lower) from a linear fit using the
best estimates of r 4. As the critical amplitude is approached the code
becomes unstable leaving points scattered about the linear fit. The right
graphs track a particular minimum over the same range of amplitudes.
The estimates of v for both cases are in strong agreement but the graph
on the right displays the self-similarity of the solution and can therefore
provide a rough estimate of A.
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of oscillations in the residuals of the linear fit graphs. In order to obtain
the most reliable estimates for A {as in the d = 4 case above and in the
d < 4 cases presented below) one requires about 4 periods for a given di-
mension. Because the code was originally optimized for the scaling study,
I attempted to compensate for the lack of accuracy in A hy increasing the

relative uncertainty in the final calculations for A by 1%.

In [48], the period of oscillations of the residuals were estimated at the op-
timal value of a,. Calculating the period of the wiggle lead to an uncertainty
in ¢ of roughly 1%. To calculate A we also required an accurate estimate
of v, however, v is known to roughly 1% in the higher dimensional study.
To determine a conservative estimate of the total uncertainty in A, all three
error contributions were added linearly. This leads to an estimate of a 3%
relative error in A. For simplicity, the error is estimated to one digit {(£0.1)

for all the higher dimension estimates of A.

As a diagnostic during the numerical collapse runs, the matter field was
consistently examined near the origin to ensure our fitting procedure re-
mained accurate. Figure 4.10 shows the matter field near the origin for a
typical collapse run in eight dimensions. The matter field is shown at a late

time just prior to o4p = 0. In the following subsections, the collapse results
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Late tima ¢ field near criticality in eight dimensions
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Fig. 4.10: Matter field near the origin in eight dimensional supercritical collapse.

The graph indicates that, for this particular collapse run, a significant
amount of matter remains behind the apparent horizon position.
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from the lower dimensional study and an attempt to determine the functional

dependence of critical phenomena on space-time dimension will be presented.

4.2.3  Critical Collapse in Lower Dimensions: 3 < d <4

The numerical code was modified to carry out the lower dimensional study.
As had been done for the four dimensional subcritical collapse calculations,
the u spacing between iterations was calculated using the smooth function
(4.33). After running the collapse code through several iterations for each
dimension, the critical parameters u, and a, were simultaneously determined
within a small range. The parameters a, and b, were adjusted, along with
Av, to maximize resolution in the final result for a given value of N. For
the resuits quoted below, initial grid sizes of between 8,000 and 12, 000 grid
points were used.

This method of numerical calculation, coupled with a greater numerical
stability in lower dimensions, enabled determination of very accurate esti-
mates of the critical amplitude. The numerical accuracy obtained was at
or near the level of machine code precision for the lower dimension results
quoted here. Once a rough estimate of the critical parameters was deter-

mined the collapse code was run over a range of amplitudes and the results
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(a,745) collated.

- The self-similarity period was determined for each dimension by observing
the periodic behaviour of the matter field at the origin. This method con-
siderably decreases the uncertainty in determining the discrete self-similarity
constant. Consistent with the 4-dimensional study, data was excluded for
which —log{u, —u) < 2.5 and the remaining data fit to a sine wave function
using KaleidaGraph Demo. For these calculations, a stable collapse run with
a supercritical amplitude closest to a, was used. Table 4.4 summarizes the

results of the low dimension study.

d FAN ¥
3.02 | 2.083£0.024 | 0.1379 £ 0.0042
3.05 | 2.526 £ 0.025 | 0.1628 £ 0.0008
3.1 | 2.783 £ 0.015 | 0.1989 4 0.0014
3.2 | 3.097 £ 0.011 | 0.2495 £ 0.0010
3.3 | 3.254 £ 0.019 | 0.2853 £ 0.0024
3.4 | 3.354 £0.016 | 0.3053 £ 0.0027
3.5 1 3.411 £0.017 | 0.3235 £ 0.0018
3.7 | 3.451£0.013 } 0.3476 + 0.0015
3.9 1 3453 £0.014 | 0.3672 £ 0.0023
40 | 3.445+0.013 | 0.3744 £ 0.0022

Tab. 4.4: Critical phenomena for 3 < d < 4. The eritical amplitude was deter-
mined to a higher degree of accuracy than for the high dimension study
by modifying the collapse code. As a result, the estimates of the critical
constants have a lower relative uncertainty.

Figure 4.11 shows an example of the ringing of the matter field at the
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origin in d = 3.5. The period of the ringing was estimated to be A =

3.411+0.017.

Matier field at origin in d=3.5 supercritical collapss
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Fig. 4.11: Matter field at the origin in d = 3.5 supercritical collapse. The period
was estimated to be A = 3.41 &+ 0.02,

It was desired to determine the functional relationship between the critical
constants and space-time dimension in order to predict their value at d = 3.
Recall from above that the field equations become singular at d = 3 and so
it is not possible to run collapse simulations for that value of d. Moreover,

the dilaton field becomes negative for d < 3. For these reasons, the lower
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dimension collapse calculations were limited to the range 3 < d < 4.

A weighted fit to the data for two classes of functions using KaleidaGraph

Demo was performed. The data was fit to the following forms

' {A(d), 'y(d)} = mqlog(d —meo) — malog (d) + my, (4.37)
AD @V o T8 4,
{ 77 } My (d L mz)'nn ( 38)

The question of whether the data are well fit by other forms remains open.
Nevertheless, in [48] it was suggested that v could be described by a function

either of the form (4.38) or of the form

’}’(d) =M — Mg eXp (-m;;d) . (439)

Fitting the low dimension data to the form (4.39) did not yield results with
a high degree of confidence. The results of the best fit (corresponding to the

lowest x?) are shown in Table 4.5.

Function my M9 ms R X5
y=1m; —meexp(—mad) | 0.376 £0.002 | (6+1) x 10° | 3.35£0.07 | 0.9992 | 6.1

Tab. 4.5: Poor quality fit for v with 3 < d < 4. As a result of the fit, the function
(4.39) was excluded as a likely form of 49, Even so, if one uses this
function to predict the critical exponent, one finds v® = 0.12 + 0.07.
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In the lower dimensional study, it was found that A and v were very
wel! fit by functions of the form given by (4.37) and (4.38). The results of

several fits to these functions are shown in Table 4.6. In these fits, the data

Fit | Function omy | ma [ ma | my R: | xi |
1 T 5 aaiyr 0.62 | 2.80 | 0.1408 0.9999 | 0.54
2 T e — 06 | 280 | 0.14 | 050 | 0.9999 | 0.63
3 ¥ =my— 7oA 270 | 0.099 | 0.449 | 0.9998 @ 0.64
4 y= Lo 2551 | 0.167 0.9948 | > 15
5 | y=log|“=ma™ Loy | 004 | 290 | 0.3 | 0.8 | 00998 | 0.89
6 | y=rmlog (=) +my | 0.107 | 2.939 0.518 | 0.9996 | 1.59
7 | y=log @™ T 1 [ 0105 | 2942 | 0.094 0.9995 | 1.74
8 | y=mlog(&22)+ 1 10.0962 | 2.950 0.9987 | 4.36
9 | A=log |9 Ly | 063 | 2987 | 28 | 7.4 | 09988 | 1.08
10 | A=log ¥ 4 my 6.234 | 0.9969 | 1.82
11 | A=log |80 4 m, | 051 2.1 6.4 | 0.9970 | 2.25

Tab. 4.6: Fits of the functional form of the critical phenomena in massless scalar
field collapse for 3 < d < 4. Only the significant digits in the fitted
values of the coefficients have been included.

is weighted and the fit parameters determined using KaleidaGraph Demo.
In the table, the goodness of fit B? and the reduced chi-squared 2 [101] of
the fits are included, and the fits have been ranked according to the latter.
The scaling constant v was best fit to a function which had the form
(4.38). If the functional form for Fit 1 is indeed a good representation of the
data then the low value of x2 could be an indication that the uncertainty in

« has been over-estimated. This can be interpreted as verification that the
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- method of determining uncertainties presented here is, in fact, conservative.

Perhaps the most interesting aspect of the fit result is that the additional
constraint of forcing the data to asymptote to a value of 1/2 at large d did not
deteriorate the quality of the fit even though the data is being extrapolated
over a such a large range in d. Indeed, as can be seen by the result of Fit 2,
the most likely value of my overlaps with the value of 1/2. Therefore, any
increase in x* due to the additional constraint is more than compensated for

by the extra degree of freedom recovered.

Figure 4.12 is a graph of the critical scaling data with Fit 1 and Fit 5
shown with the data. Using the coefficients of Fit 1 to predict the value of

at d == 3 and d — oo gives
v = 011 £0.02
1
5
It is also desired to determine the form of A as a function of d. From the
lower dimension data, A appears to reach a maximum around d = 3.7 which

rules out the form (4.38). The results of the fitting procedure are included

in Table 4.6. In this case, the self-similarity constant appears to diverge very
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Fig. 4.12: Fits of the critical scaling constant for 3 < d < 4. The solid line is Fit 5
with a quality of fit given by x* = 0.89. The dashed line is the best fit
function, Fit 1, with a quality of fit given by x2 = 0.54. Both functions
extrapolate to a value of approximately 0.1 at d = 3.
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near d = 3, however, the best fit result indicates that A is still finite at d = 3.
If the fit is constrained by forcing the divergence at d = 3, the quality of the
.ﬁt is noticeably degraded (Fit 11).

Figure 4.13 is a graph of the discrete self-similarity with Fit 9 and Fit 10

shown with the data. [f one uses the coefficients of Fit 9 to predict the value

Self-similarity constant at low space-time dimension
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Fig. 4.13: Fits of the critical self-similarity constant for 3 < d < 4. The solid line
is Fit 10 with a quality of fit given by x2 = 1.82. The dashed line is the
best fit function, Fit 9, with a quality of fit given by x2 = 1.08. Fit 9
extrapolates to a value of 1.5+ 0.6 at d = 3, whereas, Fit 10 diverges at
this value of d.
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of Aat d =23 and d — oo it is found

AB = 15406

Al o

The prediction of A in 3 space-time dimensions is still not very accurate and,
strictly based on the fit results, it may not be prudent to assume A does not
diverge at d = 3. If indeed A diverges in three space-time dimensions how

might one interpret that?

If one examines the definition of a discretely self-similar space-time given
by (2.83), it isseen that the diffeomorphism is entirely suppressed if
A — —0o. One might, therefore, conclude from the results presented here
that the critical solution in spherically symmetric gravitational collapse of
scalar field in three space-time dimensions is, at most, continuously self-
similar and not discretely self-similar. This conclusion could be consistent
with the findings of Pretorius and Choptuik [51] and Husain and Olivier [52]
for the case of scalar field collapse in 2 + 1 AdS, see Section 2.2.1. In the

model studied here, however, different boundary conditions are used.

In the foliowing subsection, both sets of results (for all d) will be used
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to develop a hypothesis of the functional form of the critical phenomena

observed in gravitational collapse of scalar field.

4.2.4  Dimension Dependence of Critical Phenomena

The results in Tables 4.3 and 4.4 were combined and a weighted fit to func-

tions of the form (4.37) and (4.38) was performed in order to determine the

functional dependence of the critical constants on the full range of d. The

results of those fits are given in Table 4.7.

[Fit | Function [ m; e g my | RT ] 3]
12 v ma = e 0.66 | 2.80 | 0.134 | 0.493 | 0.9599 | 0.25
i3 LR e — 061 | 2.513 | 0.1407 0.9590 | 0.28
14 Y=y g 2.658 0.118 0.464 | 0.5992 2,06
15 Tm L - gree 2.518 0.177 0.6921 | > 20
16 v = log {L"—:al’;.%q"l] +my 0.110 | 2.938 | 0137 | 0.556 | 0.9898 | 0.99
17 v=milog{ =F2) + 0.0962 | 2.958 0.9994 | 3.28
18 v =mylog [ T5N2) 4y 0.095 | 2.960 0.423 | 0.9994 | 3.43

19 ] ¥ == T — 79 eXpl—mad) | THALS 280 2.31 [ 65926 | > 40 |
20 | &= (log [T 4 my) exp [—ma (d - mg)] + mag 3.7 0.05 3.9 2.5 | 0.9951 | 1.68
21 A = log 13’3—;3] + g 6.233 | 0.9934 | 1.91
22 A = log [ L ] oy 0.504 2.05 | 6.30 | 0.0936 | 2.06
23 A = log l L‘;“}#} + g 8.52 2.998 2.09 6.36 | 0.9038 | 2.11

Tab. 4.7: Fits of the functional form of the critical phenomena in massless scalar
field collapse for 3 < d < 14. Only the significant digits in the fitted
values of the coefficients have been included. A damping term was added

te Fit 20.

The data and best fits of the self-similarity constant are shown in Figure

4.14. Even though the higher dimensional results are less accurate, A does

appear to approach a constant at large dimension. If so, the previous fits
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Dimension dependence of critical self-similarity
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Fig. 4.14: Fits of the critical self-similarity constant for 3 < d < 14. The solid line
is Fit 21 with a quality of fit given by x2 = 1.91. The dashed line is the
best fit function, Fit 20, with a quality of fit given by x2 = 1.68. Fit 20
asymptotes to a positive constant at large d whereas Fit 21 diverges to
—00.
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would not be valid to describe A at large d. To include this consideration, a
damping term was added to Fit 20. The fit was noticeably improved. Using

the results of Fit 20, it is hypothesized that

A [log( ‘;2_3)+3.7] exp [—0.05 (d — 3.9)] + 5/2  (4.40)
Al = g (4.42)

The data and best fits of the scaling exponent are shown in Figure 4.15.
Including the higher dimension results did not affect the qualitative aspect of
the apparent functional dependence of the critical scaling exponent on space-
time dimension. Similar to the findings given in the previous subsection, the
data were better fit to a function of the form (4.38) which asymptotes to
& positive constant at large d. The only difference being that constraining
the fit to asymptote to a value of 1/2 slightly reduces the quality of the
_fit. Even so, the standard error of the fit parameter my in Fit 12 overlaps
with 1/2: that is, my = 0.493 £ 0.007. Moreover, the relative errors for the
remaining parameters of Fit 12 are considerably larger compared to Fit 13

as is seen when the fit is extrapolated to d = 3. Using the results of Fit 12,
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Dimension dependence of critical exponent
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Fig. 4.15: Fits of the critical scaling constant for 3 < d < 14. The solid line is
Fit 16 with a quality of fit given by x2 = 0.99. The dashed line is the
best fit function, Fit 12, with a quality of fit given by x% = 0.23. Fit
13 (x2 = 0.29) has also been included in the graph (the dash-dot line).
Fit 12 and 13 asymptote to positive constants at large d whereas Fit 16
diverges to —o0.
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it is predicted that

—0.134
(d — 2.80)*%

43 = (.11 +0.04

Y9 = 0.493 +

In order to reduce the uncertainty in the extrapolation, it is hypothesized

that the functional form of vy (using the results of Fit 13) is, instead, given

by
1 0.1407 |
@ _ - _ 4.43
Y 2 - 2813)0.61 ( )
Y3 = 0.11+0.01 (4.44)
1
o) = 4.4
7 (4.45)



5. CONCLUSIONS

In this thesis, I have analyzed the dependence on space-time dimension of
the critical phenomena observed in gravitational collapse. The matter field
analyzed is a d-dimensional, spherically symmetric, massless, minimally cou-
pled scalar field. 1 have numerically calculated the properties of the critical
solution of this matter field in the context of dilaton gravity over the finite
range 3 < d < 14 and shown that the results agree qualitatively with pre-
vious studies. The critical solutions in these dimensions exhibit power law
scaling, universality, and discrete self-similarity analogous to that originally

- seen by Choptuik in the case of 3 + 1.

A single computer code, written in C, which has been designed to carry
out the simulations, uses space-time dimension as an input parameter. In
practice there are no impediments in either the field equations, or the nu-
merical code, which prevents the user to input a fractional dimension in the

calculation. As a result, I have analyzed both integer d and non-integer d
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cases. In each case, I calculated the black hole horizon radius power law scal-
ing constant vy and discrete self-similarity constant A in supercritical collapse.

I also analyzed these constants in 3 + 1 subecritical collapse.

Once the values of the critical phenomena were estimated, the results
were collated as a function of d. I find that v and A are accurately described
by general smooth functions of d and, in both cases, developed a hypothesis
for the particular form of both functions. Using these forms, the data were
extrapolated to d = 3 and d — 0. I predict that v approaches a finite pos-
itive constant at both extremes, whereas, A asymptotes to a finite constant

as d — co and probably diverges to —oo as d — 3.

Figure 5.1 shows the results for the scaling exponent as a function of d
along with my prediction of the form of . The graph also shows known
results from earlier studies. Included on the graph are the results of Sorkin

~and Oren [63], Garfinkle, Cutler and Duncan [53], and Gundlach [29).

Figure 5.2 shows the results for the discrete self-similarity constant as a
function of d along with my prediction of the form of A. The graph also shows
known results from earlier studies. Included on the graph are the results of

Sorkin and Oren [63], Garfinkle, Cutler and Duncan [53], and Gundlach [29].
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Critical scaling in scalar field collapse
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Fig. 5.1: Final values of the scaling constants. The graph also shows known results
from earlier studies and the hypothetical form for (%),
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Critical self-similarity in scalar field coliapse
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Fig. 5.2: Final values of the self-similarity constant. The graph also shows known
results from earlier studies and the hypothetical form for A,
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5.1 Properties of the critical solution at d = 3

I have hypothesized, based on extrapolation, that the critical solution in grav-
itational collapse of spherically symmetric minimally-coupled massless scalar
field in three space-time dimensions with vanishing cosmological constant
is a Type II critical 8011..1’61011 without a discrete self-similarity. It has also
been predicted that in supercritical collapse, the black hole horizon radius

approaches the power law given by
TAH = Cp (a——a*)q’, (5.1)

where ¢ is a one parameter family of initial data, a, is the critical value of a,

cr is a family dependent constant, and v = 0.11 & 0.01.

In our coordinate system {3.83), the matter field equation (3.80) in three
dimensions becomes

%+ 7Y+ 2y = 0. (5.2)

The metric function is given by

g(u,v) = C) {u)exp [f T—(?—"}%—’l—dv} : (5.3)
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| Following the work of Garfinkle [47], we now impose a css ansatz on the field

equations by defining the new coordinates

T = —log{—u) (5.4)
_1—w/ju
R = ——, (5.5)

where, the u coordinate has been shifted so that w increases to the central

critical singularity at u = 0. The matter field will take the form [47]

x=cT+p(R), (5.6)

which requires us to assume the space-time is approximately flat. Therefore,

r=—(v—u). (5.7)

Inserting (5.6) into (5.2) and using (5.7) we find for the wave equation [47]

R(1-2R)¢" +(1=3R)¢ —c =0, (5.8)

Garfinkle finds the solution to this equation, which in our coordinates is given
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g () = Cr () (%)2 ‘ (5.9)

In [69], a perturbation analysis of the css solution given above was carried
out in an attempt to determine the scaling constant in three dimensional col-
lapse. Using regularity conditions at the origin and a Minkowksi background
near the origin, several perturbative modes were found. The perturbation
with one unstable mode gave a scaling constant of v = 4/3. Unfortunately,
this mode did not reproduce the numerical results at intermediate times as
reported by Pretorius and Choptuik [51]. As stated above, Pretorius and
Choptuik reported a scaling constant of 1.2 4 0.05. In their numerical analy-
sis, however, Pretorius and Choptuik used a background AdS space-time and
Dirichlet boundary conditions. Husain and Olivier {52] numerically analyzed
the same system using a double null parameterization and a background AdS
space-time. They reported a scaling constant v ~ 0.81. In our analysis we
have used a Minkowski background with A = 0 for d > 3 and estimated the
properties of the critical solution at d = 3. 1t is, therefore, not clear whether
we should expect to see a continuously self-similar critical solution as well.

Clément and Fabbri [102] analyzed the Garfinkle result and derived, by

a limiting process, a new css solution which can be extended to the full
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A < 0 equations. The equations they derived will describe collapse to a null
central singularity and they find no curvature singularities in the space-time.
Nevertheless, they performed an perturbation analysis using the methods
of Frolov [103] and Hayward [104] to estimate the scaling constant in the
critical solution. These authors estimate v = 0.4. As one can now see, it is
important to continue analysts of three dimensional collapse as there remains

several unresolved issues in the problem.

Table 5.1 summarizes the various predictions of the scaling constant in

three dimensional collapse of spherically symmetric scalar field. Clearly there

Author Method v
Pretorius and Choptuik {51] | Numerical, A # 0 1.240.05
Husain and Olivier [52] Numerical, A # 0 0.81
Garfinkle and Gundlach |69] | Perturbation, A # 0 4/3
Clement and Fabbri {102] | Perturbation, A # 0 0.4
Bland and Kunstatter [99] | Extrapolation, A=0]0.114+0.01

Tab. 5.1: Comparing predictions for «v in three dimensional collapse.

is discrepancy on the nature of the critical solution in three dimensional
collapse. It would be useful to continue work on this case until an analytic

solution could be obtained which matches the numerical observations.
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5.2 Properties of the critical solution in the large d limit

Assuming v and A can be described by smooth functions of d I have pre-
dicted, using an extrapolation argument, that both critical quantities asymp-
tote to finite positive .consta-nts as d — oco. This suggests that they are the
critical phenomena of a limiting theory at large 4. This limiting theory ap-

pears to contain a Type II discretely self-similar critical solution.

In order to study the d — oo case, let us recall the evolution equations

with A = 0 in the large d limit:

ﬂg¢{n_1)/n

_ _h
7T Rl C

- _ 99 he

9o = Cp T T
. g
b = -2

In the limit of large d, the dilaton potential becomes

V== | (5.10) .
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and the total action is, therefore, given by
1 2 1 2
S = YE d*zy/—g | R+ o (Vx)| - (5.11)

One can now see that in vacuum, the action is equivalent to the CGHS action
in the form {3.13). The total action in the current form differs from that of
CGHS in the coupling to the matter field. Interestingly, however, Peleg,
Bose and Parker [105]) numerically examined the classical CGHS action and
observed Choptuik mass scaling Mpy  |a — a.|? with v = 0.53 £ 0.01. This
value of 7 is suspiciously similar to our extrapolated value at the limit of
large d. It would be interesting to see whether a connection exists between
the two theories.

In the computer code written for this thesis, the dilaton field at constant
v is evolved using discrete steps in u. Hence, the evolved field to first order

is given by

d(u+Auv) = ¢(uv)+¢(u,v)Au

nCy (u) o™ 1/ 1h
qs—( et e) S CRE)

With [ = 1 and C;(u) = 1, grid points very near the origin are approximately
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given by
iy (n—1)/n

"As stated in the previous chapter, if ¢j» +1 < 0 then the position of the origin
in the grid is shifted and the corresponding grid point is removed. Therefore,

the condition for lost grid points at small ¢ is given by

Tie

fl/n': "
TP Tk

(5.14)

where Au; = e. We notice from {5.14) that as n grows, the demand for
numerical accuracy grows to the power of n, otherwise, grid points will begin
to pile up at the origin and the stability of the numerical code breaks down.
In practice, we found that for n > 12 {d > 14) the code could no longer
be made stable enough to extract useful data. Moreover, if we exarmine the
condition for losing grid points in the limit of large d we find the unacceptable

result

scenlen o)

Our current parameterization would not be capable of performing calcula-
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tions at the limit of large d and as we have seen in the previous section the
parameterization also breaks down at the d = 3 limit.

In conclusion, the critical phenomena in the gravitational collapse of
spherically symmetric minimally-coupled massless scalar field in finite di-
mensions greater than three has been studied. General forms for the scaling
constant «y and discrete self-similarity constant A in this range of dimensions
have been found and an extrapolation of these results has been carried out in
order to predict the values of these constants at d = 3 and the limit d — oo.
It has also been shown that the current parameterization breaks down at
these two extremes and so numerical confirmation of these predictions is not
possible at present. It would be interesting to find a new parameterization, in
the context of dilaton gravity, so that one can investigate these two extremes

and attempt to verify the predictions for v and A.



APPENDIX



A. DERIVATION OF THE FIELD EQUATIONS

We wish to examine the first line of {3.72). Formally,

1
0 (\’ _.,qR) =g (R,uu - 59”;;3) 59‘”” -+ _QQ“V(SR#U. (Al)

However, as discussed in chapter 3, the Riemanu curvature tensor has only
one independent component in two dimensions. In fact, in exactly two di-
mensions {from 3.3},

1

Ry = §Q‘WR’ (A.2)

which simplifies {A.1) to

5 (V=gR) = v=99""6 R, (A
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The variation of the Ricci tensor is given by the Palatini identity [106]

dRy, =V, (61,) — Va (6T, ) (A4)

where 6T is the change in the affine connection. Explicitly,

fLs

ST = _g,\pég 7 4+ }_g/\p aégp,u 359,0:} _ afsg,tw
i PO v

2 dz Js dzxp (A.5)

The variation in the affine connection can also be expressed as the tensor [3]
1
0T = 58 [V (3gpu) + Vi (3g) =V, (9,0)]. (4.6)
We insert (A.6) into {A.4) and use (3.70) to obtain

1
5R.m/ = “59’)\'0 [vvvﬂ (59&0) + VAV, (59#1—’)]

1
‘5‘59/\0 [VAV,, (59.0;4) + v)\v# (5Qpr/)] : (A-T)
Therefore,

G Ry, = (VEVY — ¢ 0) 8, = — (V1Y — g [) 694, (A.8)
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“where we have made use of the definition (1.14) and of the identity [3]
dg" = —g" 9" 69, (A.9)
Hence, we re-express (A.1) as

0 (\/*_QR) =—/—g (VuV. — g ) 56 (A.10)



[1]

3]

REFERENCES

A. Emstein, The Foundation of the General Theory of Relativity, in
The Collected Papers of Albert Finstein Volume 6: The Berlin Years:
Wiitings, 1914-1917: English Translation of Selected Texts, A. Engel,
translator, Princeton University Press, New Jersey (1997). Originally

published in Annalen der Physik 49, 769 {1916).

S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-

Time, Cambridge University Press; Cambridge (1973).

S. Weinberg, Gravitation and Cosmology: Principles and Applications

of the General Theory of Relativity, Wiley, New York (1972).

K. Schwarzschild, On the Gravitational Field of a Mass Point according

to Einstein’s Theory, Gen. Rel. Grav. 35, 951 {2003). English translation

by S. Antoci and A. Loinger. Originally published in Sitzungsberichte

der Kéniglich Preufliische Akademie der Wissenschaften, 189 (1916).



References 179

[5] P. Painlevé, La Méchanique classique et la théorie de la relativité, C. R.

Acad. Sci. (Paris) 173, 677 (1921).

(6] A. Gullstrand, Allegemeine Lisung des statischen Einkorper-problems
in der Einsteinschen Gravitations theorie, Ark. Mat., Astron. Fys. 16,

1(1922).

[7] K. Martel and E. Poisson, Regular coordinate systems for Schwarzschild

and other spherical spacetimes, Am. J. Phys. 69, 476 (2001).

{8] P. Kraus and F. Wilczek, Some applications of a simple stationary line
element for the Schwarzschild geometry, Mod. Phys. Lett. A9, 3713

(1994).

[9] R. Penrose, Gravitational Collapse and Space-Time Singularities, Phys.

Rev. Lett. 14, 57 (1965).

[10] J. R. Oppenheimer and H. Snyder, On Continued Gravitational Con-

traction, Phys. Rev. 56, 455 (1939).

[11] P. C. W. Davies, S. A. Fulling and W. G. Unruh, Energy-momentum

fensor near an evaporating black hole, Phys. Rev. D13, 2720 (1976).



References 180

[12] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Fhys.

43, 199 (1975).

[13] C. Gundlach, Critical phenomena in gravitational collapse, Phys. Rep.
376, 339 (2003); Critical Phenomena in Gravitational Coliapse, Liv-
ing Rev. Relativity 2, 4 (1999). URL: http://www.livingreviews.org/Irr-

1999-4

[14] L. Lehner, Numerical relativity: a review, Class. Quantum Grav. 18,

R25 (2001).

[15] D. S. Goldwirth and T. Piran, Gravitational collapse of massless scalar

field and cosmic censorship, Phys. Rev. D36, 3575 (1987).

[16] R. M. Wald, Gravitational Collapse and Cosmic Censorship, unpub-

lished report, April 1997 APS meeting, gr-qc/9710068.

[17] G. Rein and A. D. Rendall, Global Existence of Solutions of the Spheri-
cally Symmetric Viasov-Einstein System with Small Initial Data, Com-

mun. Math. Phys. 150, 561 (1992}.

(18] A. D. Rendall, Theorems on Existence and Global Dynamics for



References 181

[19]

[20]

[21]

[22]

[23]

[24]

25]

the Einstein Equations, Living Rev. Relativity 8, 6 (2005). URL:

http://www.livingreviews.org/lir-2005-6

M. W. Choptuik, Universality and Scaling in Gravitational Collapse of

a Massless Scalar Field, Phys. Rev. Lett. 70, 9 (1993).

R. Penrose, Singularities and time-asymmetry, in General Relativity: An
Finstein Centenary Survey, eds. S. W. Hawking and W. Isreal, Cam-

bridge University Press, New York (1979).

V. Moncrief and D. M. Eardley, The Global Existence Problem and Cos-

mic Censorship in General Relativity, Gen. Rel. Grav. 13, 887 (1981).

5. L. Shapiro and S. A. Teukolsky, Formation of Naked Singularities:

The Violation of Cosmic Censorship, Phys. Rev. Lett. 66, 994 (1991).

D. Christodoulou, Examples of Naked Singularity Formation in the

Gravitational Collapse of a Scalar Field, Ann. Math. 140, 67 (1994).

D. Christodoulou, The Instability of Naked Singularities in the Gravi-

tational Collapse of a Scalar Field, Ann. Math. 149, 183 (1999).

D. Christodoulou, The Problem of a Self-Gravitating Scalar Field, Com-

mun. Math. Phys. 105, 337 (1986).



References 182

[26] R. S. Hamadé and J. M. Stewart, The spherically symmetric collapse of

3 massless scalar field, Class. Quantum Grav. 13, 497 (1996).

[27] D. Garfinkle and G. C. Duncan, Scaling of curvature in subcritical grav-

itational collapse, Phys. Rev. D58, 064024 (1998).

[28] D. Garfinkle, Choptuik scaling in null coordinates, Phys. Rev. D51,

5558 (1995).

[29] C. Gundlach, Understanding critical collapse of a scalar field, Phys. Rev.

D55, 695 (1997).

130} D. Garfinkle, Choptuik scaling and the scale invariance of Einstein’s

equation, Phys. Rev. D56, 3169 (1997).

[31] A. M. Abrahams and C. R. Evans, Critical Behaviour and Scaling in Vac-
uum Axisymmetric Gravitational Collapse, Phys. Rev. Lett. 70, 2980

(1993).

132] C.R. Evans and J. S. Coleman, Critical Phenomena and Self-Similarity
in the Gravitational Collapse of Radiation Fluid, Phys. Rev. Lett. 72,

1782 (1994).

(33] T. Koike, T. Hara and S. Adachi, Critical Behavior in Gravitational



References 183

Collapse of Radiation Fluid: A Renormalization Group (Linear Pertur-

bation) Analysis, Phys. Rev. Lett. 74, 5170 (1995).

[34] D. Maison, Non-universality of critical behaviour in spherically symmet-

ric gravitational collapse, Phys. Lett. B366, 82 (1996).

[35] R.S. Hamadé, J. H. Horne and J. M. Stewart, Continuous self-similarity

and S-duality, Class. Quantum Grav. 13, 2241 (1996).

[36] D. W. Neilsen and M. W. Choptuik, Critical phenomena in perfect fluids,

Class. Quantum Grav. 17, 761 (2000).

[37] T. Harada and H. Maeda, Convergence to a self-similar solution in gen-

eral relativistic gravitational collapse, Phys. Rev. D63, 084022 (2001).

[38] M. W. Choptuik, T. Chmaj and P. Bizos, Critical Behavior in Gravita-

tional Collapse of a Yang-Mills Field, Phys. Rev. Lett. 77, 424 (1996),

{39] P. R. Brady, C. M. Chambers and S. M. C. V. Goncalves, Phases of

massive scalar field collapse, Phys. Rev. D56, 6057 (1997).

[40] G. Rein, A. D. Rendall and J. Schaeffer, Critical collapse of collisionless

matter: A numerical investigation, Phys. Rev. D58, 044007 (1998).



References 184

[41] I Olabarrieta and M. W. Choptuik, Critical phenomena at the threshold
of black hole formation for collisionless matter in spherical symmetry,

Phys. Rev. D65, 024007 (2001}.

[42] E. W. Hirschmann and D. M. Eardley, Universal scaling and echoing
in the gravitational collapse of a complex scalar field, Phys. Rev. D51,

4198 (1995).

[43] E. W. Hirschmann and D. M. Eardley, Critical exponents and stability
at the black hole threshold for a complex scalar field, Phys. Rev. D52,

5850 (1995).

[44] S. Hod and T. Piran, Critical behavior and universality in gravitational

collapse of a charged scalar field, Phys. Rev. D55, 3485 (1997).

[45] D. J. Rowan and G. Stephenson, The massive scalar meson field in a

Schwarzschild background space, J. Phys. A9, 1261 (1976).

[46] D. J. Rowan and G. Stephenson, Solutions of the time-dependent Klein-
Gordon equation in a Schwarzschild background space, J. Phys. A9,

1631 (1976).



References 185

- [47] D. Garfinkle, Exact solution for (2+1)-dimensional critical collapse,

Phys. Rev. D63, 044007 {2001).

[48] J. Bland, B. Preston, M. Becker, G. Kunstatter and V. Husain,
Dimension-Dependence of the Critical Exponent in Spherically Sym-

metric Gravitational Collapse, Class. Quantum Grav. 22, 5355 (2005).

[49] M. Bafados, C. Teitelboim and J. Zanelli, Black Hole in Three-

Dimensional Spacetime, Phys. Rev. Lett. 69, 1849 (1992).

[50] S. Carlip, The (2+1)-dimensional black hole, Class. Quantum Grav. 12,

2853 (1995).

[51] F. Pretorius and M. W. Choptuik, Gravitational collapse in 2-+1 dirnen-

sional AdS spacetime, Phys. Rev. D62, 124012 (2000).

[52] V. Husain and M. Olivier, Sealar field collapse in three-dimensional AdS

spacetime, Class. Quantum Grav. 18, L1 (2001).

(53] D. Garfinkle, C. Cutler and G. Comer Duncan, Choptuik scaling in six

dimensions, Phys. Rev. D60, 104007 (1999).

[54] F. R. Tangherlini, Schwarzschild Field in N Dimensions and the Dimen-

sionality of Space Problem, Nuovo Cimento 27, 636 (1963).



References 186

[55]

[56]

(58]

[59]

[60]

{61]

R. C. Myers and M. J. Perry, Black Holes in Higher Dimensional Space-

Times, Ann. Phys. 172, 304 (1986).

X. Dianyan, Exact solutions of Einstein and Einstein-Maxwell equations

in higher-dimensional spacetime, Class. Quantum Grav. 5, 871 {1988).

R. Arnowitt, S. Deser and C. W. Misner, in Gravitation: An Introduction

to Current Research, ed. L. Witten, Wiley, New York (1962).

B. C. Xanthopoulos and T. Zannias, Einstein gravity coupled to a mass-
less scalar field in arbitrary spacetime dimensions, Phys. Rev. D40, 2564

(1989).

A. V. Frolov, Self-similar collapse of a scalar field in higher dimensions,

Class. Quantum Grav. 16, 407 (1999).

M. Birukou, V. Husain, G. Kunstatter, E. Vaz and M. Olivier, Spheri-
cally symmetric scalar field collapse in any dimension, Phys. Rev. D65,

104036 (2002).

V. Husain, G. Kunstatter, B. Preston and M. Birukou, Anti-de Sitter

gravitational collapse, Class. Quantum Grav. 20, L23 (2003).



References 187

' 162] G. Kunstatter, “Dimension dependence of the critical exponent in spher-
ical black hole formation”, contributed talk given at GRI7, Dublin

(2004).

163] E. Sorkin and Y. Oren, Choptuik’s scaling in higher dimensions, Phys.

Rev. D71, 124005 (2005).

[64] L. Landau and E. Lifshitz, Statistical Physics, Oxford University Press,

London (1938).

[65] M. Plischke and B. Bergersen, Equilibrium Statistical Physics, Prentice

Hall, New Jersey (1989).

[66] T. Koike, T. Hara and S. Adachi, Renormalization group and critical

behaviour in gravitational collapse, unpublished report, gr-qe/9607010.

[67] M. E. Cahill and A. H. Taub, Spherically Symmetric Similiarity So-
lutions of the Einstein Field Equations for a Perfect Fluid, Commun.

Math. Physics 21, 1 (1971).

[68] E. W. Hirschmann, A. Wang and Y. Wu, Collapse of a scalar field in 2

+ 1 gravity, Class. Quantum Grav. 21, 1791 (2004).



References 188

(691 D. Garfinkle and C. Gundlach, Perturbations of an exact solution for

[70]

[71]

[72]

(73]

[74]

(2+41)-dimensional critical collapse, Phys. Rev. D66, 044015 (2002).

J. Soda and K. Hirata, Higher dimensional self-similar spherical symmet-
ric scalar fieid collapse and critical phenomena in black-hole formation,

Phys. Lett. B387, 271 (1996).

S. Hod and T. Piran, Fine structure of Choptuik’s mass scaling relation,

Phys. Rev. D55, 440 (1997).

C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-
time Dimensions, Phys. Lett. B126, 41 (1983); in Quantum Theory of
Gravity, ed. S. Christensen, Adam Hilger, Bristol (1984); R. Jackiw in
Quantum Theory of Gravity, ed. S. Christensen, Adam Hilger, Bristol

(1984).

T. Banks and L. Susskind, Canonical Quantization of 1+1 Dimensional

Gravity, Int. J. Theor. Phys. 23, 475 (1984).

A. Achicarro and M. E. Ortiz, Relating black holes in two and three

dimensions, Phys. Rev. D48, 3600 (1993).



References 189

[75] C. G. Callan, S. B. Giddings, J. A. Harvey and A. Strominger, Evanes-

cent black holes, Phys. Rev. D45, 1005 (1992).

[76] G. W. Gibbons, Antigravitating Black Hole Solitons with Scalar Hair in
N = 4 Supergravity, Nucl. Phys. B207, 337 (1982); G. W. Gibbons and
K. Maeda, Black Holes and Membranes in Higher-Dimensional Theories

with Dilaton Fields, ibid. B298, 741 (1988).

(77} D. Garfinkle, G. Horowitz and A. Strominger, Charged black holes in
string theory, Phys. Rev. D43, 3140 (1991); G. Horowitz and A. Stro-

minger, Black Strings and p-Branes, Nucl. Phys. B360, 197 (1991).

[78] E. Witten, String theory and black holes, Phys. Rev. D44, 314 (1991).

[79] S. Bose, L. Parker and Y. Peleg, Semi-infinite throat as the end-state
geometry of two-dimensional black hole evaporation, Phys. Rev. D52,

3512 (1995).

[80] S. Bose, J Louko, L. Parker and Y. Peleg, Hamiltonian thermodynamics
of two-dimensional vacuum dilatonic black holes, Phys. Rev. D53, 5708

(1996).



References 180

[81] S. Bose, L. Parker and Y. Peleg, Hawking Radiation and Unitary Evo-

- lution, Phys. Rev. Lett. 76, 861 (1996).

182} S. Bose, L. Parker and Y. Peleg, Predictability and semiclassical ap-
proximation at the onset of black hole formation, Phys. Rev. D53, 7089

(1996).

[83] S. Bose, L. Parker and Y. Peleg, Validity of the semiclassical approxi-

mation and back reaction, Phys. Rev. D54, 7490 (1996).

[84] S. Bose, L. Parker and Y. Peleg, Lorentzian approach to black hole
thermodynamics in the Hamiltonian formulation, Phys. Rev. D56, 987

(1997).

[85] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D14, 870

(1976).

_ [86] P. Thomi, B. Isaak and P. Hajicek, Spherically symmetric systems of
fields and black holes. I. Definition and properties of apparent horizon,

Phys. Rev. D30, 1168 (1984).

{871 J. Gegenberg and G. Kunstatter, The Conformal Anomaly and One-



References 191

[88]

[89]

[90]

(91]

93]

[94]

Loop Effective Action in a Midisuperspace Model, Phys. Lett. B233,

331 (1989).

J. Gegenberg and G. Kunstatter, Quantum theory of black holes, Phys.

Rev. D47, 4192 (1993).

R. B. Mann, Conservation laws and two-dimensional black holes in dila-

ton gravity, Phys. Rev. D47, 4438 (1993).

D. Louis-Martinez and G. Kunstatter, Birchoff’s theorem in two-

dimensional dilaton gravity, Phys. Rev. D49, 5227 (1994).

B. Louis-Martinez, Dirac’s Constrained Systems: Two-Dimensional
Gravity and Spinwing Relativistic Particle, Ph. D. thesis {unpublished),

University of Manitoba, Winnipeg (1994).

J. Gegenberg, D. Louis-Martinez and G. Kunstatter, Observables for

two-dimensional black holes, Phys. Rev. D51, 1781 (1995).

T. Banks and M. O'Laughlin, Two-Dimensional Quantum Gravity in

Minkowski Space, Nucl. Phys. B362, 649 (1991).

D. Zwillinger ed., Standard Mathematical Tables and Formulae 30th Ed.,

CRC Press, Boca Raton (1996).



References 192

[95] R. M. Wald, General Relativity, The University of Chicago Press,

Chicago (1984).

[96] D. Louis-Martinez and G. Kunstatter, Two-dimensional dilaton gravity

coupled to an Abelian gauge field, Phys. Rev. D52, 3494 (1995).

971 D. Christodoulou, A Mathematical Theory of Gravitational Collapse,

Commun. Math. Phys. 109, 613 (1987).

[98] G. Kunstatter, R. Petryk and S. Shelemy, Hamiltonian thermodynam-
ics of black holes in generic 2D dilaton gravity, Phys. Rev. D57, 3537

(1998).

[99] J. Bland and G. Kunstatter, Asymptotic Behaviour of Choptuik Scaling
and Scale Fchoing in Spherically Symmetric Gravitational Collapse of

Scalar Field, in preparation.

[100] R. L. Burden and J. D. Faires, Numerical Analysis Jth Ed., Prindle,

Weber & Schmidt, Boston (1988).

[101] P. R. Bevington and D. K. Robinson, Data Reduction and Error Anal-

ysis in the Physical Sciences 3rd Ed., McGraw-Hill, New York (2002).

{102} G. Clément and A. Fabbri, Analytical treatment of critical collapse in



References 193

(241)-dimensional AdS spacetime: a toy model, Class. Quantum Grav.

18, 3665 (2001).

- 1103] A. V. Frolov, Perturbations and critical behavior in the self-similar
gravitational collapse of a massless scalar field, Phys. Rev. D56, 6433

(1997).

[104] S. Hayward, An extreme critical spacetime: echoing and black-hole

perturbations, Class. Quantum Grav. 17, 4021 (2000).

[105] Y. Peleg, S. Bose and L. Parker, Choptuik scaling and quantum effects

in 2D dilaton gravity, Phys. Rev. D55, 4525 (1997).

{106] A. Papapetrou, Lectures on General Relativity, D. Reidel Publishing

Company, Holland (1974).



