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Abstract

Hidden Markov models (HMM’s) have been studied extensively both in the frequen-
tist and Bayesian literature. Typically, the expectation maximization (EM) algo-
rithm is used for likelihood inference, whereas Markov chain Monte Carlo (MCMC)
has been applied in the Bayesian setting when the number of hidden states is known.
When the number of hidden states is considered unknown, however, statistical com-
putation and analysis of HMM’s becomes extremely difficult due to the complexity
of the model. In the frequentist perspective, penalized likelihood and penalized min-
imum distance methods have been used to estimate the number of hidden states,
while the Bayesian approach typically relies on reversible jump MCMC to infer the
number of hidden states.

The contribution of this thesis is to propose an alternative to the use of reversible
jump MCMC for Bayesian inference in HMM’s. Our methodology is based on a
sampling procedure developed by Fu & Wang (2002). This method is based on the
discretization of density functions with respect to the Lebesgue measure. One of
the great features of this method is its mathematical simplicity which makes it easy
to implement relative to most other sampling procedures (including reversible jump
MCMC). In Chapter 5, several examples are used to show how this technique can
be used to estimate the parameters as well as the number of hidden components of

a HMM model.
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Chapter 1

Introduction

Consider a real world practical application in which a process of interest cannot be
directly observed. Rather, it might be observed through another process, with either
continuous or discrete state space. By analogy, we can think of a process (or signal)
being “corrupted” by noise, with the noisy signal being the only observable quan-
tity, the uncorrupted process being unobservable. When the unobservable process
is a Markov chain, such a pair of processes is known as a Hidden Markov Model
(HMM). In other words, a HMM can be thought of as a bivariate process, with
one process being an underlying unobservable (hidden) discrete stochastic process
which constitutes a Markov chain. The other process is observable given its hidden
counterpart.

HMM'’s have been applied to a variety of fields for modeling weakly dependent
observations, including genetics (Churchill, 1989), signal processing (Juang & Ra-
biner 1991), neurophysiology (Fredkin & Rice, 1992), biology (Leroux & Puterman,
1992), economics (Albert & Chib, 1993), and ecology (Guttorp, 1995). For an ex-
tensive list of applications, interested readers are referred to the monographs of
MacDonald & Zuccchini (1997) and Cappé et al. (2005).

Although the basic theory of HMM'’s was introduced in the late 1960’s, Baum et
al. (1970) were the first to develop an algorithm for obtaining the maximum likelihood
estimates for a HMM. Note also that, HMM’s were not extensively studied until the

late 80’s and early 90’s, when the consistency and asymptotic normality of HMM
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maximum likelihood estimators were proved. See the work of Leroux (1992), Bickel
et al. (1998) and Douc & Matias (2001) for details. A good tutorial to HMM’s can
be found in Rabiner (1989).

In parallel, inference for HMM’s from a Bayesian perspective was not considered
until after the development of Markov chain Monte Carlo (MCMC) techniques. For
that matter, Robert et al. (1993) were the first to apply MCMC techniques in the
context of HMM’s. Several important properties of the Markov chains thus intro-
duced were proved, including geometric convergence, ¢ mixing and the central limit
theorem. A method of simulating the hidden components of a HMM using data aug-
mentation was also proposed. Chib (1996) proposed another method for simulating
these hidden components using the so-called forward-backward recursion which will
be introduced in Chapter 3. Robert & Titterington (1998) considered the use of
non-informative priors based on a reparameterization of the model.

One of the important and difficult problems linked with HMM’s is the estimation
of the unknown number of states of the hidden component of a HMM. The likelihood
ratio test has been considered by Rydén et al. (1998) and Giudici et al. (2000).
The Akaike information criterion (AIC) and Bayesian information criterion (BIC)
have been used by Leroux & Puterman (1992) and MacDonald & Zucchini (1997).
However, these methods have not been proved to lead to consistent estimators of the
number of hidden states. Baras & Finesso (1992) developed a consistent estimator
using the penalized likelihood method, whereas Mackay (2000) proposed a consistent
estimator of the number of hidden states in the stationary hidden Markov model
based on a penalized minimum distance method. In the Bayesian setting, inference

for the number of hidden states has also been considered. Robert et al. (2000) applied
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the reversible jump MCMC technique developed by Green (1995) in the context of
HMM’s.

In this thesis, we apply the sampling method developed by Fu & Wang (2002)
to come up with an alternative to the use of reversible jump MCMC in performing
Bayesian inference for HMM’s. This method provides not only a way to estimate the
parameters of the HMM, but also the number of components (or hidden states) of
the underlying Markov chain when it is considered unknown. Specifically, Chapter 2
presents basic definitions and introduces HMM’s. In this chapter, we also discuss the
three important basic problems (as suggested by Rabiner, 1989) linked with HMM’s.
These are the evaluation of the HMM likelihood, the reconstruction (or estimation)
of the sequence of hidden states, and parameter estimation. In Chapter 3, we review
inference for HMM’s using MCMC techniques by focusing on the simulation of the
hidden chain, according to the methodologies suggested by Robert et al. (1993) and
Chib (1996). In Chapter 4, we introduce the sampling method developed by Fu &
Wang (2002) and present the methodology we developed for Bayesian inference in
HMM’s which relies on this technique. Chapter 5 presents various applications of our

methodology, including cases of HMM’s having an unknown number of components.



Chapter 2

Hidden Markov Models

As was previously mentioned, hidden Markov models can be thought of as bivariate
stochastic processes. One process, being unobservable, constitutes a Markov chain,
while the other process is observable given the hidden state of the Markov chain. In
the first section of this chapter, we give a very brief introduction to Markov chains
and discuss some related concepts that will be relevant later on. The rest of the

- chapter will focus on HMM’s.

2.1 Markov Chains

A simple way to describe a discrete time stochastic process is as follows: it is a
sequence of random variables X = {X;}, where t € 7 = {0,1,2,3...}. Let the
sample space of X be denoted by S. Throughout this thesis, we consider only cases
where S is a finite set. More specifically, we assume here that S = {1,2,..., &k}, for
some integer k.

In this setting ¢ is called the time index, X, is called the state of the process at
tume t, and S is called the state space of the process. Now suppose that the stochastic
process X has the property that the distribution of the next state X;.1 given the
current state X; and all the past states Xy, Xi,..., X;_1 depends only on the current

state. Mathematically, we then have

P(Xer =00 Xe =6, Xy = 4o, o, Xo = o) = P(Xig1 = 61| Xe = 42),  (2.1)
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for all ip,71, ..., %21 € S.

Definition 2.1.1 For a stochastic process X = {X:}, if (2.1) is satisfied for all

t > 0, then the process X is called a Markov Chain. Furthermore, if
P(Xi = j|Xy =) = P(Xpr = j| Xk = 1)
forallt,k €T, and alli,j € S, then the chain is said to be time-homogeneous.

Note that the condition that the chain is time-homogeneous is equivalent to
P(X = j§1X¢ = 1) = aij,

forallt € 7 and ¢,j € S, that is, the conditional distributions are the same as time
evolves. In this case, a;; is referred to as a one-step transition probability and the
square matrix A = (ay;), ;. Is called the one-step transition probability matriz. The
A matrix is a stochastic matriz, that is, every row {A; = (aij)jes : © € S} of A
defines a distribution, since

OSCLUSL

and

Zaijzl, foralli € S.
jes

Also, define the n-step transition probabilities as

a(n) = P(‘Xt+n = .7|Xt - 7)

ij

and let A™ denote the n-step transition probability matrix. The following theorem

can be obtained
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Theorem 2.1.2 Let X = {X;} be a time-homogeneous Markov chain. Then, the

n-step transition probabilities satisfy
1. the Chapman-Kolmogorov equations:
A = AOAM™  for all t.n > 0;
2. AW = A" foralln>0.

An important consequence of the previous result is that the transition probabilities
of the Markov chain X are fully determined by the one-step transition probabilities,

that is, by the A matrix.

Definition 2.1.3 The initial distribution of « discrete time Markov chain is the

probability mass function (p.m.f.) ™ = (7;)ics, where

m = P(Xo = 1).

In other words, © is the marginal distribution of X.

Proposition 2.1.4 If X has an initial distribution m, then (A™)Tn is the p.m.f. of

X, that is

PX,=3) = 3 mal

€S

= ((A")77);

forall 5 € S, where T denotes transposition of a matrixz or vector.
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The proof of this result is straightforward, as conditioning on Xy leads to

P(Xn=3) =Y _ P(Xy = j|Xo =4)P(Xo = i)

€S

= maf

€S

= (A™)Tm),
The result then follows from Theorem 2.1.2.

Definition 2.1.5 Let X be a Markov chain with one-step transition probability ma-

trizv A. Then, a distribution {r; : j € S} which satisfies

Ty = E i Aijs

ieS

for all j € S is called a stationary distribution of X.

Note that the previous set of equations can be written in matrix form, as
m=ATm,

implying that 7 is a properly normalized eigenvector of AT associated with the
eigenvalue 1. The terminology “stationary” in Definition 2.1.5 is due to the fact that
if the initial distribution of the chain is taken to be 7, then the marginal distribution

of X is unchanged as time evolves, that is, for any t € 7 and j € S,

In other words, both the conditional and marginal distributions are unchanged. A

formal proof of this is done by induction. We here consider only the case of ¢ = 1.
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In this case,

P(X;=j) =Y P(X; = j|Xo = 1)P(Xo = i)

€S

= § i i

€S

= P(Xo = j).

The general case of ¢ > 1 follows from using the same arguments.

The existence and uniqueness of the stationary distribution of X depends on the
specific properties of the Markov chain. There exist many results that can be used to
establish the existence/uniqueness of the stationary distribution of a Markov chain.
We state one here that is going to be good enough for our purpose. First, note that

a transition probability matrix A is said to be regular if there exists n > 0 such that
a’ >0  Vijes,

In other words, some power n > 0 of A leads to a matrix that is strictly positive in

all its entries.

Theorem 2.1.6 If the one-step transition probability matriz A of a time-homogeneous

Markov chain X is reqular, then X admits a unique stationary distribution.

We refer the reader to Taylor and Karlin (1998, section 4.1) for more details. How-
ever, as a note for readers that are experienced with Markov chain theory, we point
out that a finite state Markov chain having a regular transition probability matrix is

necessarily irreducible and ergodic. (The converse is also true.) The key point to be
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made here is that a stationary Markov chain having a regular transition probability
matrix is fully specified by its one-step transition probability matrix A. Indeed,
from Theorem 2.1.2, for any n > 0, the n-step transition probabilities are given by
A = A" Also, because of Theorem 2.1.6, this implied the initial distribution of

the chain is the unique distribution 7 which is a solution to
m=ATm,

that is, the unique distribution 7 that is an eigenvector of AT associated with the
eigenvalue of 1. For more details on Markov chains, we refer the reader to the

monographs of Karlin and Taylor (1998) and Ross (2007).

2.2 Hidden Markov Models: Notation, Definition and As-

sumptions
We now present the formal definition of a HMM (¢f. MacKay, 2002).

Definition 2.2.1 A pair of stochastic processes { Xy, Yi} is said to constitute a Hid-

den Markov Model (HMM) if it satisfies the following two conditions:
1. {X:} is a time-homogeneous Markov chain with transition probability matriz
A = {a;;} and initial probability vector ® = {m;}, where i,j € S = {1,2,...k}.
2. Conditionally on X, Y; is independent of Y1,Ys, ..., Yi_1,Yii1, Yiio, ..., Y7 and

X1, Xg, oo X1, Xy, Xega, oo X

Note that the condition of time-homogeneity is not necessarily required when

defining HMM’s. We, however include it here as it is going to be assumed by default
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throughout the rest of this thesis. Note also that this definition implies a HMM
is characterized by two probabilistic mechanisms: namely, an unobserved Markov
chain {X;} with k states, and a set of distribution functions for the observables {Y;}
given each hidden state. Commonly, the distribution of ¥; given the hidden state X;

is assumed to follow a specified parametric family, that is,
Yi|Xe =i~ f(ylo:),

where f is a generic function that denotes either a density function (continuous case)
or a probability mass function (discrete case) indexed by a parameter 6. Here, X,
can be thought of as a missing label that selects the parameter used to generate Y;,
but with the current label X; depending on the previous label X;_;.

Marginalizing over the hidden state X, gives the following interesting form for
the unconditional distribution of the observable Y; (¢f. Chib, 1996)

S Flyl)ms =1,
Swy=4"" @

Zf:l F@l0)p(X: =1) ift>2,

[\]
o
~—

which is the distribution of a finite mixture. Note that, since the hidden states consti-
tute a Markov chain, the observations {¥;} generated through a HMM are dependent
and possibly not identically distributed. However, if the initial distribution is taken
to be a stationary distribution of the hidden Markov chain, then the distribution of

Y: becomes
k
fly) = Zf(ytlé’i)m Vi1, (2.3)
i=1

thus leading to identically distributed, but dependent observations. Note that the

correlation between observations approaches zero as the time difference between these
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observations becomes large (¢f. Albert, 1991). Hence, HMM’s can be thought of as an
extension of i.i.d. mixture models which are suitable for modeling weakly dependent
observations. By opposition, the most common mixture setups call for independent
observations arising from the same mixture distribution. In this thesis, we will focus
on the identically distributed dependent mixture models of the type (2.3). That is,
we will concentrate on stationary HMM’s.

According to Rabiner (1989), there are three basic problems associated with

HMM'’s. They are:

1. How do we efficiently evaluate the likelihood function of the HMM?

[N

. How do we uncover the hidden states of the model parameters?
3. How do we estimate the model parameters?

The first problem is the problem of evaluating the likelihood function for specific
values of the parameters and is usually referred to as the scoring problem. The
second is the problem of “reconstructing” or finding the “most likely” hidden state
sequence given the observation sequence. This is at the core of areas such as speech
recognition, and is referred to as the decoding problem. Note that when the number
of components k (that is, the number of hidden states) is known, the third problem is
simply one of estimating the parameters of the model, whereas when k is unknown,
it also becomes a problem of model selection, that is, finding a model that best fits

the given observations among a class of HMM’s with different complexity.
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2.3 The Likelihood Function of a HMM

Let us assume for the moment that given X, the distribution of Y} is indexed by
a single parameter. For example, a Poisson distribution with mean 6, or a normal

distribution with mean zero and unknown variance o2.

In this setup, for a given
number of hidden states k, we have k? parameters to be estimated from the hidden
Markov chain (the elements of A), and k parameters to be estimated from the dis-
tribution of the observables {Y;}. Remember that we assume the initial distribution
7 is a stationary distribution of X, so that X is here fully specified by its one-step

transition probability matrix. Let ¢ = (a1, @12, ..., Gk, 01, 62, ..., 0;). Note that ¢

contains all the parameters to be estimated.

2.3.1 The Form of the Likelihood Function

For a fixed number k£ of components and given {X; : ¢ = 1,2,...,T}, the joint
distribution (density or mass function) of Y = (Y1, ..., Y7) is, by the assumption of

conditional independence,

P(y|x,¢) = P(y1, ..., yr|z1, ..., 1, @)
T
= H yflu,

=
H F(9210s,). (2.4)

On the other hand, the joint probability of the hidden state sequence X = (X, ..., X7)
is

T
P(x|¢p) = P(z1,...,x7|@) = 7 H Ay 205 (2.5)
t=2
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where @ = (71,...,7) is the initial distribution of X (and thus, by assumption,
is also the unique stationary distribution of the chain). Multiplying (2.4) and (2.5)

produces the joint density of x and y as
P(x,y|¢) = P(y|x, ¢) P(x|$)

T T
= <H f(ytlglt)> <7r.’L‘1 Haxt_l,m) . (26)
=1 =2

Thus, the likelihood of the observed sequence, obtained by summing over all the

possible hidden state sequences, is
k k T
E(qbly) = P(ylv “"yTl¢) = Z e Z Moy f(ylle”ﬂl) H(Lft_l,mzf(ytlea:t)~ (27)
21=1 rr=1 t=2

Note that this form of the likelihood involves a sum of k7 terms, each of which is
itself a product of T2 terms. Obviously then, it quickly becomes infeasible to evaluate
this likelihood except for very small values of k and 7. However, with a slight
modification, (2.7) can be expressed in the following matrix form (¢f. MacDonald &

Zucchini, 1997, p.78)

T
L(¢ly) = =* [H (ue) } : (2.8)

=2
with

D(y;) = Diag{f(y:l01), ..., f (%:|00) },

" =7 Diag{f(y1|01), ., f(y1|0k)},

1 =k x 1 vector of ones,
where Diag {di,...,d,} stands for a n x n diagonal matrix with diagonal entries
dy,...,d,. This form of the likelihood is actually a lot easier to compute than that
given in (2.7). However, evaluating the likelihood is still not a simple task. For

this, we rely on the so-called forward-backward algorithm developed by Baum et
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al. (1970). Note, Leroux & Putterman (1992) observed that this algorithm can be
unstable since it may converge to zero or diverge to infinity. All of these issues will

be addressed in the next two subsections.

2.3.2 The Forward-Backward Algorithm

It should be clear that the evaluation of the likelihood function is of particular impor-
tance as most statistical procedures typically depend on it (for example, likelihood
ratio testing and model selection). As was mentioned above, the likelihood can be
computed using the forward-backward algorithm. We present here a simple version
of the algorithm that was suggested by Baum et al. (1970), which is essentially a

“purely forward” version of their algorithm. For this, let

O’t(i) = P(yl) ey Yty ‘Xrt - Z|¢)a

fort=1,...,Tandi=1,...,k These are referred to as the forward variables and

can be solved for recursively. Indeed, for t = 1, we have
a1 (i) = Py, X1 = 1|9)

= P(Xy = i|0) f(y:] X1 = i, @)

= mif (y110:), (2.9)
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fori=1,...,k Also, fort =2,3,...,T, we can write

at(]) - P(yhy?: "'aytv‘Xt :71¢>

k
= ZP(yl.,yz, e Yy Xee1 = 1, X = J|¢)
i=1
k
= ZP(Xt =7 Z/tIXt~1 = UYLy s Yol s ¢)P(Xt—1 =1, Y1, -.3yt‘1|¢)
i=1
k
=3 P(Xy = julXeoy =1, ¢)P(Xooy =4, y1, .., Yo-1| @)
i=1
k
= > Pl X, = j, Xeey =4, ) P(Xe = j|Xems = 6, ) P(Xeos = 0,91, s o1 )
i=1
k
=Y f@elXe = j, d)asou(4)
i=1
k
= f(ul0) ) avr(i)a. (2.10)
=1

Equations (2.9) and (2.10) together allow a recursion to be set up that will lead to ob-
taining oy (¢) fori = 1,... kandt = 1,...,T. First, the values of a1 (1), ..., a;(k) are
calculated from (2.9). Then, ay(1),..., (k) are obtained from c_1(1), ..., a1 (k)
through equations (2.10) recursively for t = 2,...,T. Note that equations (2.9) and
(2.10) are known as the forward equations. The usefulness of the forward equations

comes from the fact that, in terms of the forward variables, the likelihood can be

written as
£(¢Iy) = f(yh Yoy oeey UT’(ﬁ)

k
=" P(y1,y2 - y7, X1 = i|$)
i=1

= ZaT(i).
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In principle, this last expression allows efficient computation of the likelihood. How-
ever, as was mentioned earlier, Leroux & Putterman (1992) observed that this
method of evaluating the likelihood can be unstable because o4 (i) may be too small
to be distinguishable from zero. One remedy to this instability is to rescale the oy (7)’s
throughout the recursion by dividing them by Z?':l oy (1). Other scaling techniques
are available, see for instance, MacDonald & Zucchini (1997, p.79). We outline one

such method in the next subsection.

2.3.3 Rescaling the Forward Equations

Evaluating the likelihood using the forward equations may suffer from the so-called
underflow /overflow problem, that is, the likelihood may converge to zero or diverge
to infinity as t increases. To see why this is the case, note that the forward variable

can also be expressed in the following vector form

t

o = oy [ [(D(ys)A) (2.11)

s=1

where
oy = {a (1), ae(2), ..., cu (k) },
D(ys) = Diag{f(ys|01), ..., f(ys|0) },

It can be seen from (2.11) that the forward variable contains a summation involving

(ﬁ ars,:vs+1> (H f(%l%)) .

Hence, in the case where f(-|0,,) is a probability mass function, each term of the

terms of the form

previous product is less than 1, and so, as ¢ gets large, o, converges to zero. On

the other hand, if f(-|0.,) is a highly concentrated density function, then each of the
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f(+]0z,) can be extremely large, possibly leading to a, diverging to infinity. One way
of getting around this difficulty is by way of rescaling the forward variables as we go

through the iterative process. To do this, define the first scaling coefficient as

X -1
= {Z Cl’l(.j)] :
=1
Hence, at ¢ = 1, the forward variables are rescaled by multiplying by ¢;, that is,
(1) = craq(3), fori=1,...,k,

where & is used to denote the rescaled coefficients. Then, applying (2.10) directly to

the rescaled forward variables, we define at ¢ = 2,

k
a3 (j) = f(y210;) Z@l(‘i)aiy‘

g==1

k

e f (u205) Y en(@)ay

=1

= c10(j).
Now, let

Ga(1) = c205(4),

where the second scaling coefficient is defined as

; -1
2 = !Z a%(])] .
j=1
Obviously,

G (%) = c1ca2(1),
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fori=1,..., k. For general ¢t > 1, using the same trick leads to
k
i (j) = flwl0;) Z (i)

t-1
= (H Cs) fyel6;) Z Q-1 (2)aiy

and allows us to further define

&u(f) = ot (4) [Zaf(z‘)] = 107 (j (Hcs> au(j (2.

As this last result is valid for ¢ = T, it is possible to compute the likelihood from

k T 1oy T -1
L(Ply) =) arli) = (HC> > ar(i) = (H cs) ,
i=1] s=1 i=] s=1

since, conveniently,

N
—
(O]
~

k k ,
AN > iz (%) _
2=

which should be clear upon looking at (2.12) once again. Obviously this implies that

the log-likelihood can be computed as

l(Ply) = Z log ¢,

and thus, involves only the scaling constants! Since the log-likelihood is computed
as a sum of the log scaling factors, this will avoid the underflow/overflow problems.
We point out that the rescaling method presented here was originally suggested by

Rabiner (1989).
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2.4 Reconstructing the Hidden States

In many practical applications, estimating the hidden states is the central question
of interest. For some applications, finding an individually most likely state is suffi-
cient, while other applications may require that a most likely sequence of states be
estimated. For example, in gene sequencing, X; could represent a DNA base ele-
ment whereas X = (X1, ..., X7) would then represent a gene. The implementation
of the first approach is done by calculating P(X; = |y, ..., yr, ¢) for each ¢ and ¢,
and determining which state ¢ gives the highest probability for each ¢t. The second
approach requires finding a sequence of states X = (X X, }A(T) maximizing the
joint probability P(zy, 22, ..., 2r|Y1, Y2, -, Y1, @). We now briefly outline how these

problems can be approached.

2.4.1 Estimating Individually Most Likely States

In order to find individually most likely states, we define fori=1,...,k

Be(i) = f(Yes1s oo yr|Xe = 4, ),

fort =1,...,T — 1, and, by convention, fr(7) = 1.
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Note that

/31(5) = f(yt+17 "'7yTl‘Xrt - ’L, ¢)

1
Pt yr X, =i
P Yt _Zl¢) (yt.l yT t |¢)

N Z P(X; =i|¢) P(Yer1s - yr, Xo = 6, Xpay = j|9)
Z P( Xt =i|¢) FWer1s oy X = 4, Xop1 = J, @) P(Xe = 4, Xpi1 = j[@)

= Zf Yerts o YT Xo01 = J, Q)P (X1 = j|1Xi =1, 9)

j=1

k
= Z f(yt+1|Xt+1 =7 ¢)f(3/t+2~, ooy ZITlXtH =7, ¢)aij

Jj=1

k
= Z aijf(yt+1lgj)ﬁt+l(j)a

j=1
for t = 1,...,T — 1. Notice, however, that the #’s are computed recursively going
backwards, that is from T down to ¢, and thus are referred to as the backward
variables.

Now, finding the individually most likely state is to find a single state X; that

maximizes P(X; = i|yi, ..., yr, @), that is,

}%t = arg miaXP(‘th = Z‘yln cn YTy ¢)

= argmax P(y, ..., yr, Xi = i), (2.13)

this last equality holding because f(y1, ..., yr|@) = L{P|y) is a constant with respect
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to X;. However, note that

P(yla "'ﬁyTa‘Xt = Zld)) = f(yl, ce YT
= fyr, - uelXe = 4, 0) f(Yer1, - y7| Xo = 1, @) P(X; = 1] D)
= P(yl’ ""yt’)(t - 1’|¢>f(yf+l7 [EX) yT[/X't = i, ¢)

= (1) B (7). (2.14)

X =1, 9)P(X: =i|¢)

Thus the estimator of the individually most likely state can be found to be

A~

,‘th - argn1?X f(yls “-ayTa‘X't = I’|¢)

= arg max oy (Z),dt (1)3

which can be easily identified after having gone through the full forward-backward
recursion. Note that the caluculation of the backward variables can also lead to
underflow /overflow problems. However, remedial measures do exist. (For instance,

see Devijver, 1985.)

2.4.2 Estimating the Most Likely Sequence of States

In light of the argument leading to (2.13), estimating the most likely sequence of
states, that is, finding X = (X, ...,XT) that maximizes P(zy, ..., x7|y1, .-, Y13 @) I8
equivalent to maximizing the joint distribution P(z1,...,27,¥1, ..., yr|®). Thus, the
problem of finding the most likely sequence of states becomes the problem of max-
imizing the complete data likelihood (i.e. without averaging on the hidden states).
Even though the notation could be somewhat confusing, it should be clear to the
reacler that the most likely sequence of states X is not made from the individually

most likely states.
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A technique based on a recursive procedure, called the Viterbi algorithm (cf.
Viterbi, 1967) is designed to solve this problem. To carry out the Viterbi algorithm,

the following two quantities are needed,

0(7) = max Py, ..,Ce 1, Xe = F.Y1, oy Yt | D),

1 s
and

bi(7) = argmax(d;1(i)ay).
These definitions imply that 6;(j) is the highest density along a single path leading

to X¢ = j, and ¥,(j) stores each maximal stage as the algorithm progresses. It can

be shown that &;(j) satisfies the following recursion,

d¢(7) = f(u:l0;) nl?X[ét—1(i)aij] (2.15)

for t = 2,....T. To solve for X = (X1,..., X7), with initialization d;(¢) = m:f(11]6;),

run &;(j) recursively, storing the argument maximizing d;(j) in 1:(j). Then, choose

th = Q/)t+1()£'t+1)

= arg m?x[ét(i)ai)gm],

fort =T —1,T —2,...,1. Note that, the computation of the Viterbi algorithm
is similar to the forward procedure, except for the maximization of equation (2.15)
replacing the summation of equation (2.10). In additon, the Viterbi algorithm can
also suffer from underflow/overflow problems. For remedies to this problem, readers

are referred to Rabiner (1989) and Scott (2002).
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2.5 Parameter Estimation using the EM algorithm

Traditionally, parameter estimation in HMM’s is done through maximum likelihood.
In practice, the Maximum Likelihood Estimator (MLE) is often solved for using
the Expectation-Maximization (EM) algorithm (¢f. Dempster et al., 1977), which is
known to handle problems where missing data have occurred. The adaptation of the
EM algorithm to the context of HMM’s is credited to Baum et al. (1970). The basic
principle of the EM algorithm is to iterate between the E-step and the M-step. In
the E-step, the conditional expectation of the unobserved states is computed given
the parameters. This is done by using the forward-backward algorithm. Then, in
the M-step, the likelihood function is maximized given the data and the expected
states. The implementation of the EM algorithm always leads to explicit formulae
for the transition probabilities at the M-step if the parametric family f(y|6) under
consideration belongs to an exponential family. In specific cases, like in the case of
the Poisson family with unknown parameter 8, the M-step is also explicit in 6.

For a time-homogeneous HMM with unknown initial probabilities, the EM algo-
rithm can be carried out as follows. The complete-data likelihood function (that is,
if the hidden states were also observed) is

T
£(¢IY) - 7rl‘1f(y11911‘1> Ha'wg_l,mtf(ytleﬂsg)7

t=2

so that the complete-data log-likelihood, denoted #(¢), is

T T
(@ly) = logma, + Y _1og f(uel6e) + > 108 g, s

=1 t=2

kok T
Z log’r,+zzuz ) f (yel0:) +ZZZV1] (1) log aij,

i=1 i=1 t=] i=1 j=1 t=2

Eod
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where u;(t) and v;;(t) are indicator functions defined as

1 if ‘Xrt - ‘i,
Ui(t) =
0 otherwise,

and

1 if ‘X’t—l =1 and .Xt = ]
vij(t) =
0 otherwise.

The E-step replaces w;(t) and v;;(t) by their conditional expectations given by
fl/l(t) = E(ui(tﬂyla ey YT, ¢) = P(‘Xt = ilyla YT, ¢)a

and

0ii(t) = E(ui(Oly, -y, @) = P(Xom = 4, X, = jln, ., yr, @).

These quantities can be computed using the forward-backward recursions. Indeed,

we have that

Wi (t) = P(X: = ily1, o, y7, @)
Py, ey, X = 1]9)
L(ply)
_ a(D)B(7)
L(gly) '
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from equation (2.14), and that

Uii(t) = P(Xeo1 = 4. X0 = Jlyr, o, y1, @)
P(/Yt—l = Z.wX't = ] Y1, >yTI¢)

L(Ply)
Syl X =4 X = 5 @) P(Xey = 6 X = j(9)
L(9ly)
Sy Xy = 4, 0) f (s yr | X = ) @) P(Xiy = i P)ay;
L(dly)

_ Plyi, ooy Y1, Xeor = ‘i|¢)f(i§/t, --~7ZJT|Xt =7, ¢)Clij

L(Ply)
_ a1 Wl Xe =0, @) f (g1, - yr | Xe = §, Ba

L(oly)
o1 (9)Be(G) f (ye]0:) g

L(dly)

The M-step maximizes the expectation of the log-likelihood. For this, the maximizing

values for 7;, and a;; at iteration n + 1 are taken to be
" = (1),
and

T )
a(n+1) - Zt:2 Vi; (t)

i - T N ~(n
YRS DA )

In the case where the hidden Markov chain is assumed to be stationary, 7r£n+1) should

instead be obtained by finding the unique distribution 7 satistying
T = (A(TlTl))TTr

(See section 2.1.)

In addition, if the distributional form of f(y:|0,,) is known, then 8,, can also be

solved at the M step. This iterative process is repeated until convergence is reached.
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Practically, when changes in parameter estimates become negligible, the estimation
procedure is considered to have converged.

Note that there are some well known shortcomings of the EM algorithm. Firstly,
convergence is often slow. Secondly, due to the large number of parameters, the
likelihood surface usually contains many local maxima, so that the algorithm does
not necessarily locate the global maximum. In such a case, the algorithm may very
well converge to a local maximum or even a saddle point of the log-likelihood function.
In particular, starting values are very important for using this algorithm in the HMM
setup. Leroux & Puterman (1992) suggested a method to select reasonable starting
values.

Alternatives to the use of the EM algorithm do exist. For instance, the direct
numerical maximization suggested by MacDonald & Zucchini (1997, Chapter 2) uses
a derivative free method known as the downhill simplex algorithm to locate the
maximum likelihood estimates.

Different approaches to the estimation of HMM parameters are also possible.
In particular, Bayesian methodologies have been considered. Working from that
perspective, the hidden states can be treated as unknown parameters and simulated
along side with the other parameters of the model by Gibbs sampling methods. This
idea is known as data augmentation and is presented in the next chapter. Finally, we
present in Chapter 4 an alternative approach to Gibbs sampling that allows Bayesian

inference for HMM’s without using data augmentation.



Chapter 3

Bayesian Inference for Hidden Markov Models

3.1 The Idea of Bayesian Inference

The major difference between the so-called frequentist and Bayesian approaches to
inference is that from the frequentist perspective, the parameters are considered as
fixed constants, to be estimated from the observations whereas, from the Bayesian
perspective, the parameters and observations are put on the same conceptual level.
That is, the parameters are treated as random quantities, where the uncertainty on
the parameters can be modeled through a probability distribution.

Now, let z be the observed data and 6 be the vector of parameters. The sam-
pling distribution, or likelihood, is denoted f(x|6). The marginal distribution of the
parameters is denoted as 7(6), and is referred to as the prior distribution. This prior
distribution is used to model what is known about the problem at hand (including
the absence of any information, be it the case) prior to the gathering of data. (See
Robert 2001, Chapter 3 for more details.) Based on f(x|0) and 7 (), we can derive

the joint distribution of (X, 8), given by
h(z,0) = f(x|0)=(6),
and the marginal density of X as
m(x) = / h(z,0)d6
©
~ [ faloyre)as
©

27
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where © denotes the parameter space.
By applying Bayes’ theorem, we can obtain the conditional distribution of the

parameter vector € given the observed data z as

_ h(z,0)  f(z|0)n(0)
) =Ty T T f(z|0)r(0)do’

All Bayesian inference is driven by the above conditional distribution, called the pos-
terior distribution of 8. The posterior distribution can be thought of as a mechanism
that takes, as an input, the information that one has on the parameter 6 prior to
the experiment being conducted, and combines it with the information contained in
the observed data x as an input to produce a valuable output. Generally speaking,
prior distributions can be classified into two categories: informative and noninfor-
mative. When a reasonable amount of information on the parameters is available,
an informative prior can be used. When information on the parameters is too vague
or unavailable, then one can turn to a noninformative prior, usually a uniform, very
flat and/or heavy tailed distribution. In using such a noninformative prior, it is
usually hoped that the prior distribution will have minimal effect on the posterior
distribution and the resulting inference.

In particular, Bayesian inference is often based on the posterior expectation of

some function f(0) given by

[ £(8)f(x]0)7(8)dd

[ f(z]o)m(0)do (3.1)

Ef(0)|z] =

and/or the maximization of the posterior distribution. In many practical appli-
cations, computing the above posterior expectation and maximizing the posterior

distribution may be very difficult because no analytical expression of this posterior
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distribution is available. Furthermore, when an explicit expression is available for the
posterior distribution, posterior expectations like (3.1) might still not be available
in closed form. Finally, there are cases where everything can be obtained in closed
form but where computation may still be intractable due to a large sample size.
This is the so-called “information paradox”. (See Robert 2001, Chapter 6, p.319
for more details.) This is the case, for instance, with mixtures where the posterior
distribution takes into account all the possible partitions of the sample. To address
these issues, many techniques have been developed for approximating (3.1), one of
which is known as the Markov Chain Monte Carlo method (¢f. Tanner, 1993 and
Evans & Schwantz, 2000). For a complete treatment of the Bayesian approach to
inference, including the role, impact and selection of prior distributions, we refer the
reader to the books of Berger (1985), Robert (2001), Carlin and Louis (2000), and

for a manuscript more geared towards application, Gelman el al. (2003).

3.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a method that allows for (approximately)
sampling from posterior distributions, and thus, can be used for approximating pos-
terior expectations as in (3.1). The idea of MCMC is to construct a Markov chain
on the parameter space ©, which is irreducible and aperiodic, and whose station-
ary distribution is the posterior w(f|z). Then, this Markov chain is run for a long
time to generate a sequence of identically distributed (but not independent) random
variables or vectors. In practice, some large value A is selected and the random

variables @M+ gM+2) gIM+N) are used to mimic random sampling from the
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posterior 7w(f|x). These values can be used to approximate the expected value of
some function f of the parameter vector with respect to the posterior distribution.
Specifically, we consider

Bl O] ~ L 3 700,

N N

In this context M is referred to as the burn-in period, that is, the first M randomly
generated values are discarded. This is done to reduce the influence of the starting
value, and to ensure that the randomly generated values come from a distribution
that is “close” to the stationary distribution. The convergence of the above empirical
average to the proper expectation is ensured by the Ergodic Theorem. Thus, if
one can construct a Markov chain having 7(0|x) as its stationary distribution, then
inference based on 7(f|z) can be done by simulating realizations from this Markov
chain. A widely applicable method of constructing such a Markov chain, due to
Gelfand and Smith (1990), is known as Gibbs sampling.

The main idea behind Gibbs sampling is to sequentially generate random sam-
ples from many low-dimensional conditional distributions in order to approximate
sampling from a high-dimensional (and possibly more complex) joint distribution.
To illustrate how this is done, let 8 = (61,0,,...,60,) be a random vector, such
that the conditional distribution of 6;|6y,...,0;_1,0;11,--- ,0, is available for all
i=1,2,...,p. Note that 6;,0,...,6, can themselves be vectors, although the sim-
plest implementation of the method usually considers univariate components. Then,
given an arbitrary starting point 80 = (9(10), e ,97(,0)), the iteration scheme of the

Gibbs sampler can be summarized in the following manner.
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For m = 1,2, ..., draw

Hgm.) (0 le(m 1) 9(772 1)’ ' ’6(7nw1))
ng) 9 le(m) 0(m—~ ’ “’ej()m—l))

O(m) f(93l95m)’0§m)7 61(1771 1) . e(m 1) )

' Vp

Hz(;n) ~ f(eplegm)’ 0%772.)’ o e(m))

bl ])~

The above steps are to be repeated many times to ensure the Gibbs sampler has
converged (or is close enough) to the distribution of interest. Typically, a rea-
sonably long burn-in period would be considered and only the generated vectors
M+ gM+2) - (for some large M) are used at the next stage of the analysis. The
vectors 09 0 . can be shown to form a Markov chain and, under mild condi-

tions, the joint distribution of (8™, 6™ ..

.,0™) can be shown to converge geomet-
rically to the joint distribution of (6, 65, ..., 6,) asm — oo. Typically, this allows the
user to generate random vectors 89, 8 . by effectively sampling from univariate
conditional distributions, making the use of the technique fairly straightforward. For
more on advantages and potential pitfalls of Gibbs sampling, see Gelfand & Smith
(1990), Casella & George (1992) and Fu & Wang (2002). We also refer the readers
to the monograph of Robert & Casella (2004) for an in-depth discussion of MCMC

and Gibbs sampling.
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3.3 Bayesian inference for HMM’s with a Known Number

of Hidden States

In this section, we discuss Bayesian inference for HMM’s using Gibbs sampling. In

the HMM setup, recall that the likelihood is

k

k
£(¢ly) = P(yl,...,yquﬁ Z Z Tllf y1|911 HCL“ 1, rzf ytw%t

=1 zp=l
when the number of hidden states is known to be k. Given a prior distribution 7 on
the parameter vector ¢ = (8, A), the posterior distribution of ¢ given the observed
data y involves a sum of kT terms. This makes it very difficult to sample directly
from the posterior distribution of ¢, even in the case of a moderate sample size.
(Note, however, that this is the approach we will be taking later, using the sampling
method of Fu & Wang, 2002). The usual way around this difficulty is to sample
using the idea of data augmentation. The principle behind data augmentation, in
the current setup, is that by augmenting the observed data by generating the hidden
states (thus treating them as missing data), the complete-data likelihood P(x,y|®)
has a simple form, which in turn produces a simple posterior distribution 7(¢|x,y),
so that, using a proper prior, all the parameters can be simulated from 7(¢|x,y). For
this to work, the hidden states are sampled from the conditional density P(x|y, ¢).

In the HMM setup, the implementation of the Gibbs sampling thus alternately

simulates x and ¢ by iterating between the following two steps:

1. simulate

X" . Plxly, ¢7),
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2. simulate

B~ w(Bly,x ")

Iterating between the above two steps produces a random sequence {(¢, x)(™) i =
1,2,...} that forms a Markov chain, which under some general conditions will admit
the posterior of interest n(¢,x|y) as its stationary distribution. In addition, the

sequence (x™) also forms a Markov chain with transition kernel density
P(x,x') = / m(¢ly, x™ = x)7 (x™ = x'|$,y)d6.
)

Under the assumption that the state-space of the hidden chain is finite (keep in
mind we have assumed S={1,2,---,k}), many convergence results can be easily
established, and tranferred to the sequence ¢(m) by the so-called duality principle
(see Robert et al., 1993 and Diebolt & Robert, 1994). These results include geometric
convergence, ¢ mixing, and a central limit theorem. We now take a closer look at

each of the two steps used in the iterative scheme outlined earlier.

3.3.1 Simulating from 7 (¢|y,x)

Let #(@) and 7(A) be respectively the prior distribution of the distributional pa-
rameters and the prior distribution of the transition probability matrix. We here
assume as is commonly done in the literature, that @ and A are a priori indepen-
dent. Then, when the observed y is augmented by the vector of hidden states x, the

HMM model becomes hierarchical with the following structure

le =X~ f(YlX>9)’

x ~ P(x|A),
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6 ~(6),
A ~m(A),
and, the joint posterior distribution of ¢ = (8, A) given y and x satisfies
r(lx,y) o< f(y[x, 0)P(x|A)r(8)7(A)
(8%, y)T(Alx). (3.2)

So that @ and A are independent a posteriori. Note that A is also a posteriori
independent of the observed data y. These independence properties make generating

from 7w(¢|x,y) very simple in many cases. Indeed, we can write

m(0]x,y) (Hf Jt|9u> 6),

so that a priori independence of 04,...,0; and the use of conjugate priors lead to

7(0|x,y) having a form that is easy to simulate from. Similarly, we have that

T
T(Alx) (H a) T(A),
t=1

when assuming a start in a fixed state zp (as done by Robert et al., 1993), which

can also be written as

m(Alx) o (Hl‘h) m(A), (3.3)

=1 j=1

where n;; = Z?:l I{zi_y = i,2¢ = j) is the number of transitions from state i to
state 7. Now let A; denote the " row of A and assume prior independence between
A, ..., Ax. Given the multinomial form of the first term on the right hand side
of (3.3), a family of conjugate prior distributions for A; is the family of Dirichlet

distributions defined on the k-dimensional simplex, with density

k
m(Ay) o< [ [ a5 L, =1y, (3.4)
7=1
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which we denote A; ~ Dy(au, ..., ), with a;; > 0. From (3.3) and (3.4), we get

posterior independence and the following posterior distributions
Ajlx ~ Dilair + it ooy i + M) (3.5)

for each row 7 = 1,...,k of A. This makes simulating from 7(A|x) very easy when

working with independent Dirichlet priors for the rows of A.

3.3.2 Simulation of the Hidden States

When simulating x from

T
P(XIY> ¢) X 7T$1 f(ylle'tl) H a$z~1,$tf(yt|6$t)> (36)

t=2

the dependence structure between hidden states must be taken into account. There
are two methods available for simulating x. One possibility is working from a se-
quence of univariate conditional distributions (cf. Robert et al. 1993) to simulate
each of the T components of x individually. This is done through a sequential univari-
ate update of P(z¢|x\¢,y, @), fort = 1,2,..., T, wherex\¢ = (%1,..., %1, Tea1,- -, TT)
corresponds to the sequence of hidden states with component ¢ omitted. It turns out

that, fort=1,2,... T =1,

P($t]X\t>Y7¢) = P(z¢|zeo1, Ts1, Y, @)

a/l‘g_l,.‘bzf(ytIel‘t)a’rtﬂ:x+l

_ _ , (3.7)
Zj:l a’?l:t—l,if(ytwi)ai,wt+1
and that
Pzr|x\1,y,¢) = P(ar|2r-1,Y, @)
_ a;rT,l,rch(yTlefvT) (3 8)

Zf:l a’l‘t—l,if(yTlei) ‘
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The realization of the hidden states can then be simulated, z; being obtained from
(3.7), for t < T, and from (3.8) when t = T.

An alternative simulation method for generating a realization of the hidden states
is to simulate x as a full sequence each time, that is, to sample x directly from the
joint distribution 7(x|y, ¢). Note that P(x|y, ¢) can be decomposed in the following

way

Pxly, ¢) = P(arly, @) P(zr_i|ar,y, @) Pler_a|er_,y, @) - P(x1|z2, &)
T-1

= P(?L’le’ﬁb) H P(fﬂtl}ﬂ Ter1, @),

t=1
by simply making use of the general multiplication rule for conditional probability.
Hence, x is generated by first drawing 7 from P(zrly. ¢), and then by sequentially
simulating z; going backwards making use of P(z;|z;. 1, ¢). For full details, readers
are referred to Chib (1996). Note, however, that generating the x vector directly
from its joint distribution can speed up the convergence of the Gibbs sampler (¢f.

Chib, 1996 and Scott, 2002).

3.4 Bayesian Inference for HMM’s with an Unknown Num-

ber of Hidden States

So far, we have considered the MCMC algorithm that is only suitable for a fixed
number of hidden states k, and thus only valid for a fixed number of parameters.
However, in many practical applications, inference for a fixed k is too restrictive
since k is itself unknown and a quantity of greatest interest. Assuming that k varies

between 1 < k < K, and letting £(¢"|y) denote the likelihood conditional on there
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being exactly k hidden states, the full likelihood becomes

K
L(ply) = > Ik = DL('ly) = Li(d"]y), (3.9)

=1
where ¢ = (k, ¢', &%, ..., d)K), and includes the parameters involved with each pos-

sible number of hidden states.

3.4.1 Models with a Random Number of Hidden States

The Bayesian way to tackle the difficulties linked with having an unknown number
k of hidden states consists of assuming k is random, that is, to treat k just like any
other parameter. Then, given the full likelthood (3.9), and a prior distribution on k,

the posterior distribution of the complete parameter vector is of the form

(ply) = 7(¢"ly) P(k).

Inference on k is based on its marginal posterior distribution, which is easily approx-

imated by

Pk =ily) = E[I(k = 1)|y]

1 N " .
~ D IR = 4), (3.10)
j=1
for i = 1,2,..., K and where k™+7) are values obtained through Gibbs sampling

or some other form of MCMC simulation method and using a burn-in period of
M steps. Note that the dimension of ¢* = (Ok,A’“) varies with k, so that the
usual MCMC described in the previous section is not applicable to HMM's with an
unknown number of hidden states. More sophisticated methods are required. One
such method, called reversible jump Markov chain Monte Carlo is briefly discussed

next.



Chapter 3. Bayesian Inference for Hidden Markov Models 38

3.4.2 Reversible Jump MCMC

Reversible jump MCMC was first introduced by Green (1995) and applied to multiple
change point problems in one and two dimensions. It is a sampling algorithm that
allows the dimension of the parameter vector to vary within the sampling process.
Richardson and Green (1997) applied this methodology to univariate normal mix-
ture models with an unknown number of components. More recently, Robert et al.
(2000) considered this methodology and applied it in the context of HMM’s. In par-
ticular, their version of reversible jump MCMC augmented the Gibbs sampler with

the following two steps:
1. splitting a component (or hidden state) into two, or combining two into one,
2. birth or death of an empty component.

We refer the reader to Robert & Casella (2004, Chapter 11) for more details.

It should bhe noted that although reversible jump MCMC provides a way of gener-
ating samples with a varying number of components, its algebraic complexity makes
it very difficult to implement and its use is mainly restricted to a limited number of
experts. We will see in the next chapter that another sampling algorithm developed
by Fu & Wang (2002) can be used to generate samples with a varying number of
components k. This method only requires the knowledge of the joint distribution
function up to a multiplicative constant and is easy to implement relative to the

reversible jump MCMC algorithm.
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Discretization-Based Sampling in the Bayesian

HMM Setup

In this chapter we describe the sampling method introduced by Fu & Wang (2002)
and discuss its use in the context of Bayesian analysis of HMM’s (see also Wang &
Fu, 2007 and Xue et al., 2005). The basic idea behind their method is to discretize
the density function with respect to Lebesgue measure. Compared with the MCMC
methods mentioned in Chapter 3, this method is dimension-free and non-iterative.
The approach has many advantages over the Markov chain Monte Carlo (MCMC) or
reversible jump MCMC. Firstly, it is easy to implement. Secondly, knowledge of the
density function is required only up to a normalizing constant, and the full set of uni-
variate conditional distributions related to the complete joint posterior distribution
is not required. Thirdly, we can simultaneously approximate the posterior expec-
tation, posterior mode (also known as generalized MLE, or sometimes, penalized
MLE), and maximum likelihood estimate at no extra cost in terms of computational

effort.

4.1 Sampling Algorithm

Suppose that we have a d-variate density function f(x), either known completely
or up to a multiplicative constant with support S(f) € R? Now, assume our

objective is to generate a random sample of size m from the significant region of

39
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this density function. (Note that, the significant region is defined to be the region
where f(z) > 0, thus the region with f(x) ~ 0 is regarded as a negligible region).
Following the method of Fu & Wang (2002), this can be accomplished in the following

five steps.

1. Determination of the initial compact cover:
Lower and upper limits 0 < a(o) bgo) < oo fori=1,...,d are determined

that constitute an initial compact set
(0) 1(0 0) 4(0 0
So(f) = [ai”, 6] x [af”, 7] x - x [al”, b,

which is large enough to cover the significant region of the density function
f(z). In the case where f(x) has bounded support S(f), the initial region is

chosen to be Sp(f) = S(f).

2. Discretization:
With the initial compact cover determined in step 1, a set of independent ran-
dom uniform points D,(f) = {z; € So(f),j = 1,2,...,n} is generated, where
x; = {x1, %9, ...,%ja}. For large n, the set of points D, (f) approximates the

initial support So(f).

3. Contourization:
The points generated in step 2 are first rearranged such that f(z;) > f(z;), if

t < j. Then, for a given integer N € N, we partition D,(f) into N contours,
Ei={z;: i—-Dl<j<il}, i=12,...,N

where [ = n/N is the number of points within each contour. Note that these
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contours form a partition of the sample space D,(f), that is,
Ué\;lEi = Dﬂ(f)a

and
E.l‘ n Ej = @,
for ¢ # j.
4. Sampling;:
To sample m points from f(z), first sample m contours with replacement from
the set of contours {F;, i = 1,2,..., N} according to the contour probabilities
{Pn(1),1=1,2,..., N} defined by

fi

Ji =19,k (4.1)
Yu fi

Py(i) =

where
- 1
zeE;

that is, f; represents the average value of f(x) over all points included in the

h contour. Let m; denote the number of occurrences of E; in the m draws.

’l:t
It should be clear that Ef\;l m; = m. Then, randomly sample m; (again with
replacement) points with equal probability from FE;. Denote O; as the set of

points sampled within contour E;, for each i = 1,2,..., N. Then UY,0; gives

the desired sample of size m.

5. Visualization:
To visualize the significant region and the negligible region of the sample space

So(f), plot histograms over all dimensions using the sample obtained in step 4
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above. Alongside, calculate the minimum and maximum values of the sample

for each coordinate. Denote
1) (1 1) .(1 1) (1
Si(f) = [ai?, 6] x [as? BV) > . x a0,

where af-l) = min(z;) and bgl) =max(z;), fori =1,2,...,d. If S1(f) = So(f),
Y J

the sample generated from step 4 is accepted. Otherwise, replace Sp(f) with

S1(f) and repeat steps 2 to 5 until the significant region is formed.

Unlike Gibbs sampling, where samples are generated using marginal conditional dis-
tributions, the above procedure samples directly from the joint distribution f(x),
so that even complicated dependence structures are taken into account. Also, the
procedure does not become more complex when d gets large. Finally, the contour-
ization step of the procedure provides information on the shape and location of the

distribution f(z), and the visualization step enables us to view the significant region.

4.2 Sampling from the Posterior in the HMM Setup

In this section, we adapt the sampling method of Fu & Wang (2002) described in
Section 4.1 to the Bayesian HMM setup. The methodology we introduce here requires
knowledge of the joint posterior distribution up to a multiplicative constant only, and
allows us to omit using data augmentation, so that full knowledge of P(x|y, ) is
not required. In addition, cases where the number of hidden states k is unknown

can be handled in a convenient way.
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4.2.1 The Log-Posterior Density

Recall the likelihood of the HMM model is

k k
£(¢|Y) = Z z 7%1f yllell Halt 11tf yt‘elz
T1=1 =1

when the number of hidden states is known to be k& and where ¢ = (A, 8). Thus, for
a fixed number of hidden states k, assuming prior independence for A and 6, and

given priors 7(A) on A and 7(8) on 8, the full posterior distribution is

m(Ply) o< L(dly)n(A)7(6).

However, as mentioned in Chapter 2, computation of the likelihood using the forward-
backward recursion can lead to underflow/overflow problems as the sample size T
increases. Hence, instead of working directly from the posterior distribution, all

calculations are based on the log-posterior distribution

log (m(ly)) = {(@ly) +log7(A) +logn(6) + C(y), (4.2)

for some constant C(y) related to the normalizing constant of 7(¢|y) (actually we
have that the normalizing constant is e“®)), and where £(¢y) is the log-likelihood
to be computed using the scaling method of Section 2.3.3.

Now suppose that the number of hidden states &k is unknown, but it is known
that k € {1,..., K}. In other words, we have K models to choose from and our
objective is no longer only to estimate the parameters; we are also interested in
finding the best model that fits the given data. As was discussed in Section 3.4, the
Bayesian approach to this problem treats the number of components k as a random

parameter to be estimated along with the other parameters. It should be clear that
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the parameters A and @ both depend on k, so that the full posterior distribution

takes the following hierarchical form
7(@ly) o< Li(@*y)m(Alk)m(6]k)P(k).

(cf. Section 3.4 and, in particular equation (3.12)). As before, all calculations have

to be based on the log-posterior
log (7(#ly)) = (i(¢*[y) + log (A k) +log 7(6]k) +log P(k) + C(y),  (4.3)

in order to avoid difficulties linked with underflow/overflow problems, and where
C(y) again denotes some constant related to the normalizing constant of m(¢|y).
We next outline how contour probabilities can be computed in the current setup,

and show that the exact value of C(y) plays no role in the sampling process.

4.2.2 Defining the Contour Probabilities

In the current setup, the contour probabilities are calculated from the posterior
distribution. We outline how this is done from the log-posterior. First, assume
that we have generated n independent random uniform points denoted ¢,,..., @,
according to steps 1 and 2 of the Fu & Wang algorithm, and that logm; has been

calculated for each of the n points, where
i = Lo (8 y)m(Ailki) (8l k:) P(ks).
Note that equation (4.3) and this definition allow us to write
log w(¢;ly) = logm: + C(y),

or

m($ily) = mc®.
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Now, define M = m‘?x(log m;) and, fori=1,....,n,
7 = exp(logm; — M).
It turns out that the contour probabilities can be obtained as
Py(i) = = i=1,2,..., N, (4.4)

where

1 .
773:727?7"

¢;eE;

and [ = n/N corresponds to the number of points falling into each contour. Note
that the contour probabilities obtained through (4.4) are exactly the same as the
contour probabilities that would be obtained working directly from the posterior

distribution provided the normalizing constant were known. Indeed, we have that

1 )
’/'_I'I*:*Z‘Z’/T;
" ¢.€E;

1
=7 Z exp(logm; — M)
(l)jEEi
_exp{—(M +C(y
B [

)} 3" exp{logm; + C(y)}

¢;EE;

_ exp{—(Ml+ C(y)} Z (b,1y),

¢;€E;
so that the extra constants naturally cancel out when computing the contour prob-
abilities using equation (4.4). The important advantage of working from the log-

posterior and calculating the contour probabilities from the previous scheme using

*
7

the 7, is the computational stability of the resulting procedure. We now move on

to apply this methodology to a series of examples (most of which have appeared in
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the literature) to see how it can perform in practice. Some of the practical issues

that arise with the use of this technique will also be discussed.



Chapter 5

Applications

In this chapter, we apply the method outlined in Chapter 4 to the Bayesian analysis of
various data sets for which stationary and time-homogeneous HMM’s are considered
adequate. We also compare our results with those obtained by other authors using
maximum likelihood estimation and other Bayesian approaches based on reversible
jump Markov chain Monte Carlo. The numerical analyses and simulations presented

in this chapter were done on R (version 2.2.1) on a Windows platform.

5.1 A Two-state Poisson HMM

We first look at the so-called epileptic seizure count data. The data records the
number of myoclonic seizures a patient suffered on each day for 225 consecutive
days. Le et al. (1992) fit a two-state hidden Markov model to these data. As noted
in MacDonald & Zucchini (1997, Chapter 4, p. 147), this is not a correct version of
the data, and observations 92-112 inclusive should be discarded. However, for the
purpose of comparison with the result of Le et al. (1992), we will use the full set of
225 observations. These data are replicated in Figure 5.1.

For these data, we assume a Poisson distribution for the seizure counts Y; given

the true state of the process X;, linked with the patient’s epileptic activity level

47
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Figure 5.1: Myoclonic seizure series
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according to

1 if the patient is in a period of low seizure activity at time ¢,
:’Yt =

2 if the patient is in a period of high seizure activity at time .

It shoud be clear that the true activity level X; of the patient’s epilepsy is not
observable and that the conditional independence implied by the use of a HMM is

reasonable here. In other words, we use a HMM where

Y:

Xi =i ~ Poisson(6;),

for i =1,2 and {X;} is a two-state Markov chain.

For the Poisson parameters, we use independent Gamma, priors

0; ~ gammal(a,b)

for 1 = 1 and 2, but with the extra restriction that 8; < 65 so that the model is
identifiable. The parameters for the prior distributions are specified to be a = 1, and
b = 0.0001 so as to make the prior “nearly noninformative”. Such a prior (with a
very large variance) is sometimes referred to as a diffuse or vague prior (cf. Robert,
2001). Each row A; = (a1, a;z) of the transition probability matrix A is assigned an
independent Dirichlet prior,

Ai ~ D(ala al2)

with (o, a) = (1, 1), implying A; is uniformly distributed over the two-dimensional
simplex. This is usually considered as a noninformative prior specification and is a

standard procedure in the Bayesian literature.
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With the above specifications, we have essentially four unknown paramters, namely
ai1, as1, 01, and 6y, the other two being fixed as a;; = 1 —ay; (¢ = 1,2). The pos-
terior simulation was run according to the steps outlined in Section 4.1 and using
the rescaled forward-backward recursion. The reader might want to refer to Section

4.2.2 for the notation.

1. The initial compact intervals were chosen to be

ai, az € (0,1),

91, g, ¢ (0, 6),

with the requirement that 6; < 6,.

N

. We generated 10° uniform points from the initial compact interval, and eval-
uated logm; for ¢ = 1,...,10°% These points were then partitioned into 10°

contours, so that each contour contained 10 points.

3. The contour probabilities Py(j) for j = 1,...,10° were then calculated using

(4.4).

4. A random sample of m = 2000 was drawn by first sampling contours (with
replacement) from the probability mass function obtained in step 3, and then

by drawing points from within each contour with equal probability.
5. Marginal histograms were plotted using the sample obtained in step (4).

After the first iteration, the initial compact intervals were reduced to

a1y € (07, 1), Q91 € (0,026),
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Figure 5.2: Approximated posterior distributions of a;; (¢, j = 1, 2), epileptic seizure
count data.
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Figure 5.3: Approximated posterior distributions of 6; (i = 1,2), epileptic seizure
count data.
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These results are compared to the results given in Le et al. (1992). The MLE given
in their paper is
b1 prre = 0.287, Oy ppp = 1.255,

and

N 0.986 0.014
Ayre =
0.024 0.976

These results are very similar to our approximate posterior mode.

5.2 A Two-state Normal HMM

The S & P 500 stock index data consists of 1700 observations of daily returns dur-
ing the 1950’s. These data were previously analyzed by Rydén et al. (1998) using
maximum likelihood estimation and in a Bayesian framework by Robert et al. (2000)
using mixtures of zero-mean normal distributions. The data were preprocessed such
that each observation falling outside the range § & 4s was replaced by the limit of
the interval, where 7 is the sample mean and s is the sample standard deviation. For
more information, readers are referred to Rydén et al. (1998). For computational
issues (since the data set contains 1700 observations), we will analyze this set of data
with a fixed number of components k = 2 (note that, Rydén et al. (1998) and Robert
et al. (2000) both concluded & = 2). A histogram of this data set is shown in Figure
5.4.

To analyze these data, we use the following Bayesian HMM model. First, like
Rydén et al. (1998) and Robert et al. (2000), we assume the daily returns Y; follow a

normal distribution with mean zero and unknown variance linked to the unobservable
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Figure 5.4: Histogram of S&P 500 Stock index data
true state X; of the U.S. economy at time ¢ according to
Y| Xy =i~ N(0,0?),

where X; is assumed to be a two-state Markov chain.

For the prior distributions, we use an inverse-gamma distribution for ¢?, that is
2 ‘ 2
o; ~1G(2, (Ry/6) )

with again, for identifiability, 02 and o2 being sorted in an ascending order, and where
R, is the range of the data (see Wang & Fu (2007) for this prior specification). Again,

as before, the priors on each row A; = (a;1, a;2) of the transition probability matrix
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are taken to be independent Dirichlet
A; ~ D(1,1).

Again, these prior distributions, that are uniform over the two-dimensional simplex,
were selected because they are often considered to be noninformative.

When sampling from the posterior distribution, the initial compact intervals were
chosen to be

a,as € (0,1),

0%, 02 €(0,9.0 x 107,

? < o2. Following the steps outlined in Section 5.1, we generated 10° uni-

with ¢
form points to discretize the support. These points were then partitioned into 10°
contours, so that each contour contained 10 points. Then, a random sample of size

2000 was obtained, and marginal histograms were plotted to visualize the significant

regions. After three iterations, the significant regions were found to be
a; € (09, 1), Q21 &€ (0,02),

ol € (1.6 x107°,2.8 x 107%), 02 € (6.0 x 107°,1.2 x 107%).

From these intervals, a final sample of size 2000 was obtained, leading to the approx-
imated posterior distributions displayed in Figure 5.5 and 5.6.

The posterior mean and standard deviation of o, 02 are found to be
E ((0F,02)]y) =~ (2.1724 x 107°,8.6983 x 107°),

S(o?ly) = 1.607 x 107,
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Figure 5.5: Approximated posterior distributions of a;; (7,7 = 1,2), S & P 500 data.
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and

S(o2ly) = 8.1680 x 107°,

whereas, the posterior means and standard deviations of the elements of A are found

to be, respectively,

0.9571 0.0429
E(Aly) =~
0.0820 0.9180

S(CLniy) = S(a12|y) ~ 0.0127,

and

S(am]y) = S(a22|y) =~ 0.0268.

We found the AMLE and APM also gave the same values for this data. These values
are

A2 A2 . . -5
Oy AMLE = O app = 2.1882 % 1077,
6 = &5 = 8.5683 x 10~°
02 AMLE — 02, APM = ©- ,

and
-~ . 0.9630 0.0370
Asmre = Aapy =
0.0686 0.9314
These values are very close to those given by Rydén et al. (1998) and by Robert et

al. (2000). For the purpose of comparison, we report their results here. The MLEs

for 0%, 02 and A reported by in Rydén et al. (1998) are
é-i]\JLE - 2116 X 10M5, &Z,A’ILE = 8464 X 10~57

and

. 0.963 0.037
Ayie = ;
0.069 0.931
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while the posterior mean of ¢, 02 and A found in Robert et al. (2000) are
2=12116x107%, 52 =8.464 x 1075,

and

_ 0.956 0.044
A =
0.083 0.917

respectively.

5.3 A First Example where k£ is Unknown

We generated a random sample of size N = 750 observations from a normal HMM
with & = 3 hidden states, under the specifications u; = 0, ps = 2, puz = 4, with

common variance o2 = 0.25 and the following transition probability matrix

0.8 0.1 01

A=1025 05 0.25

0.1 03 06
A histogram of the simulated data set is shown in Figure 5.7. We here investigate the
performance of our sampling approach to Bayesian inference for HMM’s when the
number of components k is unknown. In particular, we wish to see if the Bayesian

methodology will correctly identify the number of components k.

In accordance with the methodology presented in Section 3.4, we analyzed this
data set by considering k as an unknown parameter to be estimated along with all
other parameters. In this example, given the number of hidden states & and X; =4

(with 1 <7 < k), we assumed Y; satisfies

y;l)(t - ia ka Hi, Ok ~ jv(;u’k‘ia 012;):
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Figure 5.7: Histogram of simulated data set

where X; has no physical sense but is used as an index generating Y;. Note that
this implies the true state of the process X; only affects the mean of the normal
distribution.

The prior distribution for k is chosen to be uniform over the set {1,2,..., K},
where the maximum number of hidden state is set to K = 4. Given k, the rows of
the transition probability matrix Ay are again assumed independent, with a prior
distribution that is taken to be Ay; ~ D(ag 1, @iz, - ., ok). Thus, for general
values of the hyperparameters cy ;;, the joint prior for the elements of Ay is

k k k
w80 =T] (F(Xijzl ki) (LZ,A},?_1> .
[Tz ks j=1
For objectivity reasons, we again set ax;; = 1 (4,7 = 1,...,k) so that each row of

Ay is uniformly distributed over the k-dimensional simplex.
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Given k, we choose ordered normal priors for the vector means o, = (fr1, - - - 5 fhkk),
with the restriction pig; < prg < -+ < gy for identifiability purposes. The joint prior

distribution of the location parameters is thus

k
1 (frg — p)*
m(p,lk) = k!H Wexp {———-%)—02— :

j=1
For the hyperparameters p and o2, we follow Richardson and Green (1997), and
Wang & Fu (2007) by using = M, and ¢* = R2, where M, and R, are the mid-
range and range of the data respectively. For our simulated data set, M, = 2.1303

and R, = 6.8462.

Finally, the inverse gamma is used as a prior distribution for o2, with density

g
W(UZ-

Here, we set & = 1 and § = 2 as this corresponds to a vague prior (none of its

m(ol|k) = Yo le=Alok,

moments exist).

With the above specifications, the full parameter vector becomes
¢=(k¢'.... 0",
where we have that ¢! = 6, and
¢* = (6x, Ay),

for k > 2, with
Bk = (,ukl: -y Mk 012;))
and

Ap = (k115 -+ Ok k)
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Thus here, the parameter vector ¢ has

4
(k+1)+> k* =44

k=1 k=2

1+

]~

components since for all values of k, 0, has k 4 1 components, and Aj; has k?
components for k > 2.
For this data set, we sampled from the posterior distribution of ¢ using the

following steps:

1. The initial compact cover is shown in Table 5.1.

o

We discretized the sample space by generating 7 x 10° uniform base points from
the initial compact intervals (we explain below what we mean by base points)
and partitioned these values into n = 3.5 x 10° contours, so that each contour

contains only 2 points.

3. The contour probabilities were then calculated using the method outlined in

4. A random sample of m = 2000 was drawn by first sampling contours (with
replacement) from the probability mass function obtained in step 3, and then

by drawing points from within each contour with equal probability.

5. Finally, we visualized the significant region by constructing histograms using

the sample from step 4 above.

This process was repeated 4 times and the significant regions located. These
regions are shown in Table 5.2. Note that £ = 1 and k = 2 were excluded from the

significant region. From these intervals we repeated the above steps 2-5 to draw a
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k Ay My at
1 w1 € (0,5) o? €(0,2)
2 a;j € (0, 1) 1,7 =1,2 o1 € (—13) Moz € (1\ 3) 0'% S (0,2)
. —9.9 )
3 aye1) ij=123 SRR umE0A e gy
p3s € (2,6)
—92,2 ~1,
4 ayE(0,1) ij=1,234 HFn€2 ) paz € (=1.3) o2 € (0,2)

[43 € (1, 5) Jag € (2,6)

Table 5.1: Initial compact intervals, simulated data set

sample of size 10%. In this example, we generated approximately 77 x 10° uniform
points in order to keep 7 x 10° base points. The following rule was used to determine
our base points. Let Pua be the maximum log posterior value of the previous

iteration and P; be all the log posterior values of the current iteration. Finally, let
di = Pi - ]Dmax-

Then, if e% ~ 0, the point is dropped, otherwise the point is kept and is included in
the base points. Thus, base points are “good points” in the sense that points that
are kept do not have a zero probabibility of later being sampled. Unfortunately, this
is very often the case in such high-dimensional setups as the likelihood function can
become mostly flat with spikes that are difficult to detect. This explains why, for
example, 77 x 10° uniform points were generated to retain only 7 x 10°® “reasonably”
useful points.

The prior and approximate posterior distributions for k are given in Table 5.3.

The highest posterior probability (and by far) is P(k = 3|y) =~ 0.838 suggesting
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k Ay T o}

a1y € (0.6,1) ag € (0,0.4) iy € (—0.16,0.1)
3 4y €(0.35,0.85) ags € (0.15,0.65)  pp € (1.74,2.06) 03 € (0.21,0.34)
asy € (0.18,0.5) ass € (0.5,0.82)  ps € (3.94,4.18)
(
(

ap; € (0.6,1) a2 € (0,04) p1 € (—0.11,0.1)
4 a3 €(0,0.4) Lo € (1.5,2.2) 0% € (0.22,0.33)
()
ai; € (0,1) 2,3,4 ps € (1.6,4.2)
j =1,2,3,4 iy € (3.8,4.24)

Table 5.2: Significant regions after 4 iterations, simulated data set.

k 1 2 3 4

1 1 1 1

Prior - - ~ -

Hot 1 4 1 1
Posterior 0.000 0.000 0.838 0.162

Table 5.3: Prior and approximate posterior distribution of k, simulated data set.

k = 3 is the best candidate for k. The posterior means, standard deviations and
approximate MLEs for & = 3 are given in Table 5.4 along with the true values.

It is interesting to note that, in the current setup, our proposed methodology
recovers the number of components k& = 3 and leads to conditional estimates that
are quite close to the true parameter values. The approximate posterior distributions

of Az, py and o2 are shown in Figures 5.8, 5.9 and 5.10.
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As

H3

0.8000 0.1000 0.1000
True 0.2500 0.5000 0.2500
0.1000 0.3000 0.6000

0.0000  2.0000 4.0000

0.2500

0.7364 0.1505 0.1131
Mean 0.2207 0.4882 0.2911
0.0569 0.2992 0.6439

—0.0261 1.8978 4.0598

0.2677

0.0294 0.0243 0.0209
Std. Dev. 0291 0.0349 0.0313
0.0149 0.0291 0.0305

0.0356  0.0402 0.0330

0.0160

0.7357 0.1454 0.1189
AMLE 0.2232 0.4675 0.3092
0.0635 0.3362 0.6003

—0.0255 1.9015 4.0653

0.2680
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Table 5.4: True values, posterior means, standard deviations and approximate MLE

of Az, 03 and o3, simulated data set.



Chapter 5. Applications 67

N
- ©
® e
< [t} w0
o O e e o —T T o ]
0.60 0.70 0.80 0.10 0.20 0.05 0.10 0.15 0.20
agy a2 a3
o o
=4 @ ©
n - <r
Q o o
0.15 0.25 035 045 055 0.20 0.30 0.40
azy az azs
g o~
o -~
~ © w©
(=]
- < -
o o (=]
T T T 1 T 1 T 1 1 1 1T 11
002 006 0.10 0.20 0.30 0.40 050 060 070
azq aszz asz

Figure 5.8: Approximate posterior distributions of as;;, (4,7 = 1,2,3), simulated
data set.
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Figure 5.9: Approximate posterior distributions of us;, (¢ = 1,2, 3), simulated data

set.
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Figure 5.10: Approximate posterior distribution of ¢2, simulated data set.
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5.4 A Poisson HMM where £k is Unknown

We now consider the fetal lamb movement data which were studied by Leroux &
Puterman (1992) and Scott (2002). These data consist of the number of movements
produced by a fetal lamb over 240 consecutive 5 second intervals. These data are
shown in Figure 5.11. In their paper, Leroux and Puterman (1992) concluded that
the best model included & = 2 hidden states using the BIC method, whereas they
favored k& = 3 with the AIC method. Here, we treat the number of hidden compo-
nents as random rather than a fixed constant, and apply our sampling method to do
Bayesian inference on k as well as other unknown parameters.

For this data set, we assume that the movement count Y; during the t** interval

satisfies

. ~ Poisson(6y;),

where X; € {1,...,k} stands for the level of fetal activity during the ¢ interval (see
Scott, 2002 for details).

The prior distribution for % is taken as
Pk =1)=1/K,

for ¢ = 1,2,..., K, and where K is again set to 4. As before, the prior for each
row Ay ; of the transition probability matrix Ay is taken to be a Dirichlet prior with
ari; = 1 (4, = 1,...,k). For the unknown Poisson means, we use independent
Gamma priors, but sorted in increasing order so that the model is identifiable, that

is
/80( —BOAJ

_k'HQQ 1
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number of movement

Il ’Hl 1

0

50 100 150 200

5 second interval

Figure 5.11: The fetal lamb movement series
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for Opy < Or2 < --+ < Oy, and where the hyperparameters were set to oo = 1 and
B = 0.1, leading to a vague prior (¢f. Section 5.1). Under the above specifications,

we see that the full parameter vector is

¢=(k ¢ ....8%,

where ¢! = 0, and for k > 2,
¢* = (61, As),
where
Or = (Or1, .-, 0kr),

and

A= (Qk,lh ceay ak,kk)a

Note that ¢ here has

4 4
1+Zk+2k2:40
k=2

k=1
components.

For our analysis, the initial compact intervals are displayed in Table 5.5. We
followed the exact same steps as those outlined in Section 5.3. After 5 iterations,
the significant regions were reduced to the intervals given in Table 5.6. Note that
k =1 was excluded from the significant region. In this example, the total number of
uniform random points that we generated to keep 7 x 10° base points in the final run
is approximately 15 x 107. Here, we used the same rule as in Section 5.3 to determine
the base points. The prior and resulting approximated posterior distributions of k

are shown in Table 5.7, with k = 3 having the highest posterior probability.
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k A, 0,

! 6, € (0,2)

2 el 1j=12 01 €(0,1) 6 €(0,7)

3 a; €(0,1) i,j=1,23 6: € (0,1) 6, €(0,4)
05 € (0>7)

4 a; € (0,1) 4,j=1,2,3,4 6, € (0,1) 0, €(0,3)
0; € (0,4) 06, €(0,7)

Table 5.5: Initial compact interval, fetal lamb movement data.
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k Ay 0
2 ay €(0.86,1) ay € (0.01,0.8) 6, € (0.07,0.38) 6, € (0.87,5.6)
,  an€(06,1) ap € (0,0.4) €(0,0.31) 6, € (0.19,2.63)
a; €(0,1)  i=23j=1,23  6;¢ (13 5.5)
A 6, € (0,0.32) 6, € (0,2.14)
(

ai; € (0,1) i, =1,2,3,4 05 € (0.17,3.22) 6, € (0.98,6.1)

Table 5.6: Significant region after 5 iterations, fetal lamb movement data

k 1 2 3 4
- 1 1 1 1
Prior 1 1 1 1

Posterior 0.0000 0.2744 04730 0.2526

Table 5.7: Prior and posterior distribution of k, fetal lamb movement.
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A2 92

2
Mean 0.9759  0.0241 ) oorg 57143

0.3505 0.6495

Std. Dev. 0.0165  0.0165 0.0433  0.8451

0.1410 0.1410

Table 5.8: Posterior means and standard deviations of A; and 8,, fetal lamb move-
ment data.

We here report the posterior means and standard deviations along with all ap-
proximate posterior distributions for both k = 2 and k& = 3. The posterior means and
standard deviations are given in Table 5.8 (k = 2) and Table 5.9 (k = 3), whereas
the approximate posterior distributions of the elements of 85 and A, are displayed
in Figures 5.12, 5.13 and those of 83 and Asj, in Figures 5.14, and 5.15, respectively.
We also report the approximate MLE of Ay and 8, for k = 2, 3 in Table 5.10.

For comparison, the results of Leroux & Puterman (1992) are given in Table 5.11.
Note that the posterior means of Ay and 84 are similar to Leroux & Putterman’s
MLE, whereas the posterior means of As and 63 are quite different from their results.
Note, however, that the AMLE of A, and 8, we obtained for k£ = 2 and k = 3 are

very similar to their MLE, except for the estimated value of 033.

5.5 A Normal HMM where k is Unknown

The last example we consider consists of the wind velocity data, a series of the first
500 hourly wind velocity differences measured at Athens in January 1990. This

data set was first considered by Francq & Roussignol (1995), and later by Robert
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A3 03
0.9167 0.0611 0.0222
0.2417 0.2001 0.5583
0.0579 0.0564 0.0182
Std. Dev. 1536 09001 01014 00650 0.3370 0.7814
0.1628 0.1640 0.1843

75

Table 5.9: Posterior means and standard deviations of Az and 83, fetal lamb move-

ment data.

k 9 3
0.9503 0.0291  0.0206
A 0.9886  0.0114 0.0415 0.9505 0.0080
0.3112 0.6888 0.1928  0.0272  0.7800
0 0.2582  3.1280 0.0328 0.4639 4.3720

Table 5.10: Approximate MLE of A, and 6, (k = 2,3), fetal lamb movement data.

k 2 3
0.9468 0.0433  0.0099
A 09884 00116 00424 09576 0
0.3083  0.6917 01838 0 0.8162
@ 02560 3.1006  0.0447 0.5090 3.4138

Table 5.11: MLE of Ay and 0y, (k = 2, 3) obtained by Leroux & Puterman (1992),

fetal lamb movement data.



Chapter 5. Applications 76

o |
< -
S
(o —]
m S
| - o
<+ o~ —
o
N - =
o
o _,—I_l' g _
| I I [ I ] | ] ] I ]
010 020 0.30 1 2 3 4 5
91 92

Figure 5.12: Approximate posterior distributions of 8y; (i = 1,2), fetal lamb move-
ment data.



Chapter 5. Applications 77

0 | 0

[aV} [qV}

L 4 L 4

n - 0 —

o - 3 o t

I T T T T 1 I T T T T 1
0.90 0.4 0.98 0.00 0.04 0.08

aiq a2

(] ] (e} RN

o7 o~

o o

S o |

© T T T 1 S T T T 1

0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1.0

a4 axp

Figure 5.13: Approximate posterior distributions of ay;; (4,7 = 1,2), fetal lamb
movement data.
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Figure 5.14: Approximate posterior distributions of 8s; (i = 1, 2, 3), fetal lamb move-

ment data.
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Figure 5.15: Approximate posterior distributions of as;; (7,7 = 1,2,3), fetal lamb
movement data.
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et al. (2000). The model we consider in what follows is identical to the one used
by Robert et al. (2000), although they relied on reversible jump MCMC for all
computations. Note this model differs considerably from the one originally used by
Francq & Roussignol (1995).

The HMM that was used here is based on zero-mean normal distributions with
unknown variances. Specifically, let V; denote the wind velocity measured at time ¢,
and

Y=V, -V, fort=1,...,500,

denote the wind velocity differences. Then, the observable differences ¥; were as-
sumed to satisfy

Y| X: = 4,k, 02 ~ N(0, 0%,).

where X; € {1,...,k} stands for the planetary geomagnetic activity index. In their
paper, Robert et al. considered k to vary between 1 and K = 7. They concluded
that the number of components is k& = 3 with the approximate posterior probability
for k > 5 being shown to be less than 1%. For the purpose of comparison with their
results, we analyzed these data by also treating k as an unknown parameter and
estimating it alongside with other unknown parameters. However, for computational
issues, we considered the maximum number of hidden states to be K = 4. The
histogram of the data set is reproduced in Figure 5.16.

As with previous examples, the prior distribution for k was chosen to be uniform,
thatis P(k =1) = 1/4fori = 1,...,4, whereas each row of the transition probability
matrix Ay was assigned a uniform prior on the k-dimensional simplex. For the

variance parameters, the prior distribution is taken to be the joint distribution of a
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Figure 5.16: Histogram of hourly wind velocity differences.

set of k ordered inverse gamma random variables, that is

k Ce
2 /6 —a-1 — 2 2
n(o)k) = k! I l @) (azj) a=le=Blo o2 <ol <o <0k,
J=1

for k =1,...,4. The hyperparameters were set to o = 2 and 3 = 1. The complete
parameter vector for this problem is
¢ = (k¢ ....0"

with ¢' = &2 and, for k > 2,

¢* = (0%, Ay),
where

2 2 2
O'k - (akl’ PPN ’0-1»1»)’
and

A= (ag11,- - Gkkk),



Chapter 5. Applications 82

and so, has

elements.

In order to simulate from the posterior distribution 7(¢|y) using our method-
ology, the initial compact regions we used are shown in Table 5.12. Again, we
followed the steps outlined in Section 5.3, generating 7 x 10% uniform base points
from the initial intervals, which we partitioned into 3.5 x 10° contours. We then
sampled m = 10000 points from these contours and studied the associated marginal
histograms. After 5 iterations, the significant regions were obtained for all the co-
ordinates. These are given in Table 5.13. In this case, we generated approximately
71 x 10° uniform random points to keep 7 x 10 base points. The prior and resulting
approximated posterior distributions of k& are given in Table 5.14. These show that
k = 3 has by far the highest posterior probability, which agrees with the results ob-
tained by Robert et al. (2000). The posterior means and standard deviations along
with the approximate MLE are shown in Table 5.15. The approximate posterior

2

distributions of the elements of Az and o3 are displayed in Figure 5.17 and 5.18

respectively.

5.6 Concluding Remarks

Through the examples given above, we see that our approach to sampling from the
posterior distribution, which is based essentially on the sampling method of Fu &
Wang (2002) and the use of the forward/backward recursion, seems to work quite well

in HMM setups with both a fixed and unknown number of hidden states. The results



Chapter 5. Applications 83

k Ak 0'226

1 o? € (0,4)

2 aij €(0,1) i,j=1,2 1) 02 e(0,12)
2

3 a;€(0,1) 4,j=123 ”1 € (0 b € (0.6)

2¢(0,1) o2€(0,6)

4 Qij € (0, 1) L,] = 1, 2,3,4
2 (0,12) o?€(2,18)

Table 5.12: Initial compact intervals, wind velocity data.

k Ak 0',%
2 a1 € (0.88,1) az € (0.02,0.2) 0?2 €(0.12,0.28) o2 € (4,8.5)
, €(06,1)  an€(0,04) o? € (0.09,0.24) o2 € (0.1,4)
g o= 2
a €(0.1)  j=1.2 o2 € (4,14.7)
a3y € (O 0. 55) Qa3 € (045, 1)
, €(0L1) @€ (0,09 o? € (0.09,0.23) o2 € (0.1,2.3)
ws € (0,0.9) o2 €(0.2,6) 02 € (4.7,14.7)
(Lij (, ) 222,3]:1,2,3

Table 5.13: Significant region after 5 iterations, wind velocity data.

K 1 2 3 4

1 1 1 1

Pri - - - -
Trior 4 1 4 4

Posterior 0.000 0.0153 0.8055 0.1792

Table 5.14: Prior and approximated posterior distributions of &, wind velocity data.
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Figure 5.17: Approximate posterior distributions of as 5, (¢, 7 = 1, 2, 3), wind velocity

data.
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Figure 5.18: Approximate posterior distributions of ¢3;, (1 = 1,2,3), wind velocity
data.
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A o
0.9286 0.0386 0.0328
Mean 0.1220 0.7957 0.0822 0.1476 0.9353 7.3905

0.0297 0.1063 0.8640

0.0243 0.0266 0.0168

0.0252 0.0477 0.0519

0.9563 0.0212 0.0225

0.0422 0.0824 0.8755

Table 5.15: Posterior mean, standard deviation and approximate MLE of Aj, and
o3, wind velocity data.

obtained in this thesis for fixed & (¢f. Section 5.1 and 5.2) are comparable to those
available in the literature, using MLE and MCMC methodologies. For the simulated
data set (¢f. Section 5.3), our method not only correctly identified the number of
hidden states, but also gave estimates that are very close to the true parameter
values. For the wind velocity data (cf. Section 5.5), the conclusion of k = 3 agrees
with the results of Robert et al. (2000). Finally, for the fetal lamb movement data
(¢f. Section 5.4), locating the significant regions was much more difficult than with
the other examples, requiring the sampling of about twice as many random uniform
points (150 x 10 versus 70 x 10° for the other examples where k is also unknown).
Interestingly, the simulated data example even had more parameters to be estimated.
One possible explanation for this is that the joint posterior distribution for the fetal

lamb movement data example might be extremely flat with a few isolated highly-
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peaked regions. Also, by inspecting the histograms of Figure 5.15, the posterior
distributions of some of the elements of A seem to be highly concentrated close to
1. This could be problematic because generating uniformly distributed points over a
k-dimensional simplex, where k > 2, makes it difficult to visit the “corners” of that
simplex (i.e., regions corresponding to one element being close to one). Obviously,
then, a lot more points are required if a good approximation to the significant region
is to be obtained. However, the method still produced reasonable results, but with

a considerable increase in computational effort.
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Conclusion

Reversible jump MCMC has been used for Bayesian inference in hidden Markov
models with an unknown number of hidden states. However, the algebraic complexity
of the method makes it very difficult to implement. This thesis adapted a direct
sampling approach based on the algorithm of Fu & Wang (2002). This method allows
one to sample over the significant region of the posterior distribution and ignore the
insignificant part. It is suitable for Bayesian inference in hidden Markov models
with both a known and unknown number of hidden states. It is easy to implement
and the knowledge of the density function is required only up to a multiplicative
constant. Unlike Gibbs sampling and reversible jump MCMC, this method does
not required data-augmentation to handle the hidden states. Furthermore, we can
simultaneously obtain the posterior expectation, posterior mode and approximate
maximum likelihood estimate at no extra cost in terms of computational effort.

The method was used on both simulated data and real-life data. It turns out that
this method not only correctly identified the unknown number of hidden states but
also produced estimates of the model parameters that agrees with those previously
obtained in the literature.

Therefore, with the availability of powerful computing devices, the simplicity of
this method (and its ability to consider cases where the number of hidden states k

is unknown) make it a promising tool for inference in the HMM setup.
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Appendix A

R Code for the Epileptic Seizure Count Series

O’B’O)O,O!Ollil101211!1)2)0)0’

y<—c(

1,2,1,8,1,38,0,4,2,0,1,1,2,1,2,

1)1’1,0,11012’2’1?2!110}0)0)2)

1}Q’OJ110111071’0701010)010)0)
O}llo’o)oﬁolo)l,olololl!O)O)O)

1)O)OJO)1101011’01012’170)111)

0)01012121031’1’8’1’1’2’110’3’

6,1’3)1’2}2’11010’2)2)0’1’1}3)

1,1,21170131671’3)1’2)2)110’1)

2}1}O)1)210101212)110111010}21

O)1’O)O’O)l’OJOJ1JO’O’Oiolo,O,

0,1,S,O’O’0,0’O,1,0’1,1’1’0’0,

0,0,0,1,0,1,2’1,0,0,0’O’O’O’l’

4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

logD <- function(a) {

sum(lgamma(a)) - lgamma(sum(a))

ddirichlet<-function(x,alpha) {

s<-sum((alpha-1)*log(x))
exp(sum(s)-logD(alpha))

¥

rdirichlet<-function(n,a) {

1<-length(a)

1,byrow=TRUE)

x<-matrix(rgamma(l*n,a),ncol

sm<-x%*%rep(1,1)
x/as.vector(sm)
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ks
hmm . sim.pars<-function(k,N){

hmm<-1ist ()

hmm$tpm<-array (0,c(k,k,N))
hmm$theta<-matrix(0,N,k)
hmm$post<-rep(0,N)

n<-length(y)
c<~rep(0,n)
alpha <- matrix( O, n, k)

hmm$mle_loglik<--Inf

for (i in 1:N){
a<-runif(1,0,1)
b<-1-a
c<-runif(1,0,1)
d<-1-c
tpm<-matrix(c(a,b,c,d) ,k,k,T)
ssd<-abs(eigen(t (tpm))$vec[,1])
ssd<-ssd/sum(ssd)
theta<-c(runif(1,0,6) ,runif(1,0,6))
theta<-sort (theta)

fmat<-sapply(1:k,function(k){dpois(y,thetalk])})

alphall,] <~ ssd * fmat[1,]

c[1]<-1/sum(alpha(1,])

alpha(1,]<-alphal1,]*c[1]

for( j in 2:n ){
alpha(j,] <- (alphalj-1,] %*% tpm) * fmat[j,]
cl[jl<-1/sum(alphalj,])
alphalj,l<-alphal[j,]l*c[j]

}

loglik<--sum(log(c))

d<-sapply(1l:k,function(k){ddirichlet(tpm[k,],rep(1,2))})
g<-dgamma(theta,1,0.0001)
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post<-loglik+sum(log(d))+sum(log(g))
hmm$post [i] <-post

hmm$tpm[, ,i]<-tpm
hmm$thetali,]<-theta

if (loglik>hmm$mle_loglik){
hmm$mle _loglik<-loglik
hmm$mle_tpm<-tpm
hmm$mle_theta<-theta
+
by

hmm$tpm<-hmm$tpm{, ,order (hmm$post,decreasing=T)]
hmm$theta<-hmm$theta[order (hmm$post,decreasing=T),]
save (hmm,file="hmmpb")
hmm

}

hmm . sample . contours<-function(m,k,N,c){

sample<-list()
hmm<-hmm.sim.pars(k,N)

hmmpost<-exp(sort (hmm$post-max (hmm$post) ,decreasing=T))

contours<-function(i,N,c){
sum(hmmpost [ ((i-1)*(N/c)+1) : (*(N/c)) 1)

}

i<-¢

C<-sapply(1l:i,function(i){contours(i,N,c)})
p<-C/sum(C)

s<-sample(l:c,m,replace=T,prob=p)
ss<~rep(0,m)

1<-0

for (i in 1:max(s)){
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if (length(s[s==1]) 1=0)
ss[((1+1): (1+length(s[s==1])))]<-sample (((i-1)*(N/c)+1) : (i*(N/c))
,length(s[s==i]),replace=T)
1<-1+length(s[s==1])
}

sample$tpm<-hmm$tpm[, ,ss]
sample$theta<-hmm$thetalss,]
save(sample,file="sampleb™)
sample

windows ()
par(mfrow=c(1,2))
for (i in 1:k)
hist(sample$thetal,i], main="")
windows ()
par (mfrow=c(k,k))
for (i in 1:k){
for (j in 1:k)
hist(sample$tpm[i,,] [j,], main="")
}

Meantheta<-apply(sample$theta,2,mean)

stdevtheta<-apply(sample$theta,2,sd)

Mean=matrix(sapply(1:k,function(k){apply(sample$tpmlk,,],1,mean)})
Jk,k,T)

stdev=matrix(sapply(1:k,function(k){apply (sample$tpm(k,,],1,sd)})
kL k| T)

min_theta<-apply(sample$theta,2,min)

max_theta<-apply(sample$theta,2,max)

min_tpm<-matrix(sapply(l:k,function(k){apply(sample$tpm(k,,],1,min)
P ,k,k,T)

max_tpm<-matrix(sapply(l:k,function(k){apply(sample$tpm(k,,],1,max)
Lk, T)

return(list(Mean=Mean, std.dev=stdev,Meantheta=Meantheta,
std.dev_theta=stdevtheta,mode_tpm=hmm$tpm[,,1],
mode_theta=hmm$theta[l,] ,mle_tpm=hmm$mle_tpm,
mode_post=sort (hmm$post,decreasing=T) [1],
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mle_theta=hmm$mle_theta,mle_loglik=hmm$mle_loglik,
Min_theta=min_theta,Max_theta=max_theta,
Min_tpm=min_tpm,Max_tpm=max_tpm))

##hmm . sample . contours (2000,2,1000000, 100000)
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