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Abstract

Advancements in classroom technology have resulted in new types of data collection

in educational settings. Along with improvements in the fields of artificial intelligence and

machine learning, this educational data can be used to study how we learn and create more

personalised learning environments. Starting in March 2020 all in-person courses were

abruptly moved to remote instruction in order to combat the COVID-19 pandemic. This

influx of students taking remote courses presented a new opportunity to study how students

interact with course materials. Remote learning courses at the University of Manitoba are

offered using a learning management system (LMS) that centralizes all course activities and

files and records user-activities.

The use of machine learning techniques with education-based data is an emerging disci-

pline that offers an opportunity to provide new insights in this area. This thesis presents a

code-based tool to create student timelines from raw LMS date-time stamp data and extract

features describing student behaviours within a single-term online course. The successes

and limitations of these features to predict student grade outcomes were investigated using

supervised and unsupervised machine learning models. The LMS data was also explored

using neural network-based CNNs and transformers.

The experiments presented in this thesis indicate that students predominately interact

with the system at the same time on any given day relative to their previous interaction.

The results further demonstrate that temporal features created from LMS interactions can

predict student outcomes with greater than random accuracy. The neural network-based

classifiers produced more accurate student outcome predictions than the feature-based ML

models at the expense of interpretability. This thesis contributes to the body of knowledge

on student modelling and prediction, as well as student behaviour within an LMS in an

online course, and suggests that educators can help to reduce students’ cognitive load and

improve students’ learning by updating the LMS at a consistent time of day.
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Prediction of Student Outcomes 1. Introduction

Chapter 1

Introduction

“I’d take the awe of understanding over the awe of ignorance any day.”

– Douglas Adams [Adam02]

The study of how we learn is a subject as complex as the human brain itself. It is widely

accepted that there is no one-size-fits-all approach to learning, however in large classes

there have traditionally been practical limitations for educators to provide individualized

attention to students. Recent advancements in classroom technology have resulted in new

types of data collection in educational settings. Along with improvements in the fields of

machine learning, this educational data can be used to study how students learn, and predict

student outcomes, in order to creating more personalised learning environments.

1.1 Problem Statement

In recent years more and different education-based data has become available as ed-

ucational software, such as learning management systems, have become more prevalent.
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At the same time, the fields of artificial intelligence and machine learning have advanced.

Techniques from these fields can provide insight into student interactions with learning

management software.

1.1.1 Motivation

Traditionally research in the field of education has included labour and time intensive

data collection techniques such as interviews, classroom observations, and surveys [FiBR15]

[RoVP11][SaFD18]. More recently, the adoption of new education software and technologies

has offered new avenues for research. However, the data collected for educational research

purposes often requires specialized education software [Kins88] [Kins90], or technology to

track mouse movements or eye movements across a screen [HuZZ19] [MaMP20].

Starting in March 2020 many in-person courses, including all offered at the University

of Manitoba, were abruptly moved to remote instruction in a response to the COVID-19

pandemic. Remote learning courses at the University of Manitoba were offered using a

learning management system (LMS) that centralizes all course activities and files while

recording user-activity data. The large influx of students taking remote courses presented

a new opportunity to study how students interact with course materials.

In large undergraduate classes it can be difficult for a single instructor to provide

personalized instruction. Even when every effort has been made to return student work

with feedback in a timely manner during the course, students may still struggle without

the instructor’s knowledge or realize at the end of the term that they have only a narrow

path to passing the course. This can result in negative situations such as increased stress

and anxiety, temptation to engage in academic misconduct, and ultimately, poor or failing

performance in the course.

If data from the learning management system (LMS) can be used to identify students’
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patterns of behaviour that correlate with or predict failing the course, then those patterns

can be intercepted earlier in the term, and additional support offered when it is needed.

Supports can be offered and interventions can be planned earlier in the course to potentially

set the student back on track, rather than leaving students with limited remedial options

near the end of the term. Techniques from artificial intelligence and machine learning

have already been successfully applied to a wide variety of fields including commerce and

medicine [Kins15]. Similarly, these techniques may be able to use the growing repositories

of education data to detect patterns in how students’ interact with course material and offer

insights into how to set up the LMS to better support students.

1.1.2 Problem Definition

The use of machine learning techniques with education-based data is an emerging dis-

cipline that offers an opportunity to provide new insights into learning. The purpose of this

work is to study how undergraduate students interact with a learning management system

over time during a single-term course. The first objective is to determine if there are time-

based features from the LMS data that correlate with and predict student behaviours and

learning outcomes in the course, and if it is possible to identify patterns to trigger earlier

interventions to provide a more individualized learning experience. The second objective

is to explore student outcome prediction from the perspective of time series classification

using machine learning techniques without feature engineering.

1.1.3 Proposed Solution

In remote learning environments a student’s entire experience in a course may be fa-

cilitated through an LMS that is organized by their instructor. Some of the ways that

instructors set up the LMS for a course are by posting and organizing content, providing
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dropboxes for assignment submissions, creating tests and quizzes, and linking marked work

to a grade book. Students interact with the LMS by logging on to the site at times and

durations of their choosing, opening files, and submitting assignments and tests. The LMS

also records the scores of any marked assessments, and the weighted final grade for each

student in the course.

These interactions create a set of user-activity data that is recorded by the LMS as

date-time stamps. The dates of the student interactions can be viewed and then analysed

using signal processing and machine learning techniques, to analyse learners’ patterns of

behaviours and correlations to learning outcomes with the ultimate goal of increasing the

personalization of learning. The raw data can be transformed into time-based features in

code, to view behavioural patterns, which can then be correlated with final grade outcomes.

The features will be used in machine learning models to predict student outcomes in the

course, and the strength of those predictions will be evaluated. In particular, the inter-

val of time between successive student interactions with the LMS will be calculated and

studied. Although previous research has been conducted in the area of student outcome

prediction, little is known about LMS intervals and their predictive value in online, syn-

chronous courses [HeHT19] [DeBr20]. As well, the time series created for each student by

their LMS interactions will be classified using neural network-based time series classification

techniques, as an alternative course outcome prediction method.

1.2 Thesis Formulation

To address the following thesis statement and objectives, this thesis is comprised of

three parts: (i) a background and literature review; (ii) an explanation of the experiment

design and results; and (iii) a discussion of the results as they relate to the research questions

and broader implications.
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1.2.1 Thesis Statement

The goal of this thesis is to use the information collected by an LMS in three undergrad-

uate computer science courses to analyse student patterns of behaviour for course outcome

prediction. This will be done by developing a tool to model a student in code as a set

of numeric features, and performing time series classification on the timelines created by

student interactions with the LMS.

1.2.2 Thesis Objectives

There are four main objectives in this thesis:

1. study students’ patterns of behaviour in terms of features based on their interactions

over time within a learning management system;

2. study the correlations and relationships between students’ patterns of behaviour over

the entire course and student course outcomes;

3. assess the predictive capabilities of the patterns of behaviour on student success in

the course, including how early within the term the student patterns of behaviour can

predict student learning outcomes; and

4. assess the predictive capabilities of neural network-based time series classification

techniques using with timelines of LMS interactions.

In addition, the following broader questions are included for further discussion:

• What can we learn about students’ behaviour by analysing an LMS?

• How can student behaviours on an LMS inform instructors?
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1.2.3 Research Questions

Predicting learner behaviour and outcomes is a challenging problem. The following is

a list of the topics and research questions addressed in full or part in this thesis.

1. What are students patterns of behaviour on an LMS in an undergraduate computer

science course in terms of:

1.1. Time (over time periods, within a single interaction/time, between interactions,

time spent on assignments/quizzes, in relation to course events such as assign-

ment deadlines and VW dates)

1.2. LMS Interaction and intervals (regular intervals, bursts, consistency, )

1.3. What are the predominate patterns of behaviour?

2. How are patterns of behaviour over an entire course correlated?

2.1. Are time and pattern correlated? If so, how?

2.2. Are time, pattern and events/content (e.g., quizzes, assignments, exams) corre-

lated? How?

2.3. Are time, pattern, and student grades correlated? How?

2.4. Are time, pattern, events/content, and student grades correlated? How?

2.5. Can these patterns be described in terms of high or low engagement?

2.6. Are there patterns of behaviour that are related with outcomes in the course

assuming students are grouped as pass/fail?

3. Which variables and features of behaviours (time, pattern, events) have the greatest

predictive capabilities of/are the most highly correlated with student outcomes?

3.1. What factors predict student success in an online environment?
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3.2. Can we define a set of archetypes (student behaviour + course outcome)?

3.3. How early within the term can these factors predict final grades?

3.4. Can these variables and features be used to predict course outcomes of pass or

fail before the end of the term, to indicate when intervention may be required?

4. Can student course outcomes be predicted from the timelines of LMS interactions

without feature engineering using neural network-based time series classification tech-

niques?

4.1. Can time series classification be used with the full timelines to predict students

into one of two groups: passing or failing?

4.2. Can time series classification be used with the full timelines to predict students

into one of three groups: passing with a high mark, passing with a low mark, or

failing?

4.3. Can time series classification be used for early prediction of students who will

fail the course?

1.3 Thesis Organization

This thesis addresses the problem of student modelling and prediction using machine

learning (ML) models. An introduction to the evolution of artificial intelligence (AI), ML,

educational learning theories, and how these fields have informed each other is presented

in Chapter 2. This chapter also presents the current state of education research using

ML methods. Chapter 3 provides an overview of the methodologies used including data

collection, the designing and building of a tool that will create student timelines with an

LMS and extract representative features of their interactions with the LMS over time, and
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how ML models were trained and tested. Experiments were designed to test the features

with multiple ML models, and the results are presented in Chapter 4. The analysis of the

results is continued into Chapter 5, with a discussion of the findings in view of the research

questions and in relationship to the broader fields of education and ML. Chapter 6 provides

a summary of the results, suggestions for future work, and concluding remarks.
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Chapter 2

Literature Review

This chapter presents the evolution of artificial intelligence (AI) and machine learn-

ing (ML), describing the historically fluctuating success characterised by promising ‘waves’

and stagnant ‘winters’ of the leading approaches and technologies, as well as current di-

rections within the fields. Following this, the development of three main learning theories,

behaviourism, cognitivism, and constructivism, are presented with parallels drawn to ad-

vancements within AI.

The current trends and some future directions for using AI and ML for research in

education and personalised learning are then discussed, made possible by the proliferation

of digital education data, increased access to educational technology, and growing numbers

of online or remote delivery courses. Applications of ML using education data are examined,

including student modelling and prediction, decision support systems, and adaptive learning

environments. The various types of prediction within education are introduced, including

course or cumulative grade prediction and dropout prediction. In particular, the application

of ML using different educational data sets for the purpose of student course outcome

prediction as seen in the literature is explored. Finally, the sub-area of research into student
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course outcome prediction using LMS interaction data is reviewed in more depth and the

gap in the literature that this doctoral thesis address are identified.

2.1 Understanding How We Learn

The quest to create “intelligent” computers is really the quest to understand human

intelligence: to explore how we think, learn, and rationalize; to define intelligence and be

able to conclusively determine whether something, or someone, has that quality or not; and

to uncover the fundamental building blocks of the human mind to support human learning,

and build machines that mimic, or possibly improve upon human intelligence.

The concepts of learning, cognition, and intelligence have long fascinated scientists

across many disciplines, owing to the sheer complexity of these subjects. Yet it is not an

esoteric or specialist topic: all of us make assessments in our everyday lives as to whether

something has intelligence and, if so, a judgement as to how much. Although it is difficult

to articulate how we make these assessments of intelligence, there is a sense of “we know it

when we see it”. Work in artificial intelligence (AI) challenges these assumptions. What we

learn from these attempts to create mechanical and digital thinking machines in our own

mental likeness can help us to not only advance technology, but shine a mirror on humanity

to challenge biases on human intelligence. Further, AI systems can expose, and poten-

tially counteract, implicit biases in human decision-making that occur due to insufficient

experience, faulty memory, and mental shortcuts [Bara20].

Understanding the history of AI and ML can help us to better appreciate where the

fields are at today, and how they are influencing research in other areas. No longer are AI

techniques and tools available only to the largest industrial or academic research laborato-

ries. Now, hardware and software advancements can support the widespread use of many

AI algorithms. AI can offer a fresh perspective in many disciplines, including the field of
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education.

Just as the dominant theories of intelligence have developed over time, ideas on why

and how learning occurs have also evolved. There are multiple educational learning theories

under consideration today that are still yet to be resolved into a single unified theory. What

is guaranteed, however, is that changes in technology have and will continue to influence

learning environments.

More data is being collected than ever before from classrooms, both from software

specifically designed for research purposes and from the software that facilitates everyday

classroom activities. These data provide a new way of observing what happens in the

classroom, and can be analysed in new ways with the growing prevalence and accessibility

of AI.

Educators, researchers, and students all stand to benefit from a better understanding

of how we learn, and under what conditions we learn best.

2.2 Evolution of Artificial Intelligence & Machine Learning

The fields of artificial intelligence and machine learning have evolved significantly over

time. There have been distinct eras of rapid growth in ideas, advocates, and research

dollars to tackle big problems. However, when the implied or promised results of AI fail

to materialize quickly enough these booms are followed by disillusionment, stagnation, and

outspoken critics, with only a few supporters left to carry the field forward. In addition to

the boom-and-bust cycles, the history of AI has been heavily influenced by the available

hardware, leading psychological theories, and societal values of the time.

Artificial intelligence can be a polarizing topic, one that sparks both passionate curiosity

and intense fear. Robot uprisings and HAL 9000 make for compelling fiction [Clar68], but
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remain fiction nonetheless. By all credible accounts we are nowhere close to a theoretical

point in time in which superintelligent computers threaten the survival of human life, often

called the singularity, if such a time is coming at all [Kurz05]. However, concerns about

the ethical use and implementation of AI are grounded in reality and will need to be

addressed [Kasp17][MaDa19][Mitc19]. Ultimately, AI is a tool and, like any tool, it will

be up to those who use it to do so responsibly.

There are many terms used to describe the study of machines that act with some

form of intelligence: artificial intelligence, machine learning, computational intelligence, and

thinking machines, among others. Each of these terms has risen and fallen in popularity

and has its proponents and detractors to this day.

Currently, research into machines that exhibit intelligent behaviour and algorithms to

do the same can generally be classified under the term AI. The field includes the lofty

goal of artificial general intelligence (AGI), which is to artificially create an intelligence on

par or exceeding human-level intelligence in all areas. However, most work in AI focuses

on solving specific problems, such as machine vision, speech recognition, or translation.

Although often used synonymously with AI, the term machine learning (ML) is intended

to distinguish the branch of AI research in which machines analyse large quantities of raw

data for patterns to acquire their own knowledge, rather than being given pre-written rules

to follow by programmers [GoBC16]. There are many different names for ML as well, such

as pattern recognition, statistical modelling, knowledge discovery, predictive analytics, data

science, adaptive systems, and self-organizing systems [Domi15]. Each of these terms has

also varied in popularity over time, and within different research communities.

Within this work, the terms “artificial intelligence” and “AI” will be used to broadly

describe any efforts to produce algorithms or machines that have or mimic intelligent be-

haviours. The terms “machine learning” and “ML” will be used distinguish the subset of
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AI tools and techniques in which machines acquire their own knowledge. Specific subfields

within AI, or within ML, will be named as such.

Section 2.2 provides an overview of the evolution of AI and ML, from the foundations

of the field, through the three ‘waves’ of AI prosperity and two AI ‘winters’ of slow progress,

showing how they have influenced the current state of the field.

2.2.1 Foundations of Artificial Intelligence

The foundations of artificial intelligence and machine learning began long before the

first digital computer was invented. Although not typically associated with engineering

and computer science today, ancient Greek scholars such as Plato, Socrates, and Aristotle

worked to develop philosophy and formalized logic that would later underpin these fields.

Meanwhile, the ancient Greek mathematician Euclid is credited with creating the first

algorithm, which was to find the greatest common divisor of two numbers [Knut14].

The first widely known machine created in the likeness of a human, called an automa-

ton, was a small mechanical monk built in the 1560s said to be a gift to the church on

behalf of King Phillip II of Spain [Wool20]. Attributed to Spanish clockmaker Juanelo

Turriano, the automaton was able to repeatedly perform a limited number of human-like

movements.

Although the automatons of this time were modelled after their creators, with faces and

limbs that moved in human-like gestures, they were still distinctively clockwork machines

and not people. However, by the mid-1600s philosophers were starting to ask questions

about what it means to be human, and what distinguishes us from other animals or ma-

chines. English philosopher Thomas Hobbes described human reasoning as computation,

and his French contemporary Ren Descartes declared “cognito, ergo sum” or “I think, there-

fore I am” [Brit16]. These ideas would lay the groundwork for many branches of philosophy,
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as well as future work in cognitive science. German philosopher and mathematician Got-

tfried Wilhelm von Leibniz directly linked us to machines, postulating that a human is a

complex machine in which the mind is a container holding instructions (or “the soul”). In

the early 1670s he described and built a new calculating machine called the step reckoner

which ran on primitive logic and hypothesized general purpose computers [SwFr17].

However, the next major step towards implementing general purpose computers would

not be until the early 1800s. In 1821 English mathematician and engineer Charles Bab-

bage invented his first Difference Engine. He would later go on to theorize the Analytical

Engine. English mathematician Ada Lovelace worked with Babbage, and wrote an algo-

rithm during this time for the Analytical Engine that is considered to be the first computer

program [Wool20]. Shortly thereafter in the 1840s, English mathematician George Boole in-

troduced the truth variable-based algebra which would later be named after him and would

form the foundation for digital computers [Bool47]. In the 1930s, the theoretical work of

the previous century was realized into a physical computer with Alan Turing’s invention of

the universal machine [Turi36].

2.2.2 First wave of Artificial Intelligence

The first wave of AI research began in the 1940s, and the work that came out of this

period of time is often referred to as “Classical AI” or Good Old-Fashioned AI (GOFAI).

Classical AI focused primarily on symbolic, rule-based systems in which knowledge was dis-

tilled into axioms by human experts and logically combined by machines to make assertions

or decisions. These systems were focused on solving problems that were relatively easy for

humans, but more difficult for machines.

However, the first wave of AI research also included work that was inspired by the

wetware used in biological learning, particularly neurons and their connections in the brain.
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This led to the development of artificial neural network (ANN) models. In contrast to

rule-based systems with pre-programmed axioms, ANNs attempted to emulate the physical

functionality of the brain, albeit on a much smaller scale. The main thrust of the argument

behind ANNs is that learning and intelligence in the brain does not need to be completely

understood to be modelled artificially, and perhaps intelligent behaviour can emerge from

a system created from artificial neurons as it does from a brain comprised of biological

neurons. One of the earliest models of brain functionality as an artificial neuron was the

McCulloch-Pitts neuron, introduced in 1943 [McPi43][Hebb49]. However, models with early

artificial neurons were much simpler and had far fewer connections than the models that

exist today due to the computational constraints of the time.

John von Neumann and Oskar Morgenstern published Theory of Games and Economic

Behavior in 1944 about game theory as it relates to economics, which would lead to von

Neumann’s collaboration on the Electronic Numerical Integrator and Computer (ENIAC)

where he developed a way to store programs on the computer itself [voMo44]. This de-

velopment was considered the transition from the era of computing as tabulation to the

programming paradigm that exists today.

In contrast to neural-inspired algorithms, another early branch of ML was based on

creating explicit rules for a system to follow. In 1947, Warren Weaver said:

One naturally wonders if the problem of translation could conceivably be treated

as a problem in cryptography. When I look at an article in Russian, I say: ‘This

is really written in English, but it has been coded in some strange symbols. I

will now proceed to decode’ [LoBo56].

Like much of AI, early attempts at machine translation used rule-based expert systems in

an attempt to mimic the implicit or explicit rules humans follow in order to complete certain

tasks. Both neural nets and rule-based systems would see many successes, and roadblocks,
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in the following decades.

Even though articles related to AI topics had been published previously, the article

“Computing Machinery and Intelligence” by Alan Turing is considered the first AI publica-

tion. It was in this article, published in Mind, that Turing proposed the “imitation game”

which would later more commonly be referred to as the “Turing Test”. Turing wrote: “I

propose to consider the question, ’Can machines think?’” [Turi50]. However, Turing noted

that part of the difficulty with such a question is in defining the terms “machine” and

“think”, and therefore he wrote, “instead of attempting such a definition I shall replace the

question by another, which is closely related to it and is expressed in relatively unambigu-

ous words.” He then proposed an imitation game with three participants consisting of an

interrogator, a man, and a woman. The man and woman are hidden from the interrogator,

and their voices are obscured. The interrogator must try to determine which of the other

participants is the man and which is the woman by asking them questions. If one of the

participants is replaced by a machine, Turing asks “Will the interrogator decide wrongly

as often when the game is played like this as he does when the game is played between

a man and a woman?” Followed by, “are there imaginable digital computers which would

do well in the imitation game?” By re-framing the discussion in this way, Turing created

a mechanism to empirically assess AI systems without first requiring answers to difficult

philosophical questions about the nature of thought and intelligence.

In 1955, John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon

proposed the Dartmouth Summer Research Project on Artificial Intelligence for the follow-

ing year [McMR55]. At this gathering, a group of experts in various fields got together to

work on Turings questions about what it means to think, how our minds work, and how to

teach machines to think like humans. It was also during this meeting that the phrase ar-

tificial intelligence was first used to describe this relatively new, and interdisciplinary field.

The participants included Allen Newell and Herbert Simon who, along with McCarthy
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and Minsky, would later come to be known as the “big four” pioneers of AI. However, all

the members officially invited to join the meeting were white men, and so the gathering

served as an early example of bias in AI work. In the coming decades, the intentional

and unintentional biases introduced into AI systems by their designers, and amplified by

a lack of diversity among members of the field, would become an area of study in its own

right [Gebr20].

The Golden Age of Artificial Intelligence: The 1956 Dartmouth Summer Research

Project on Artificial Intelligence ushered in the “Golden Age” of Artificial Intelligence,

which lasted until approximately 1974. During this period of time, the dominant approach

to tackling the major issues facing AI was to use a divide and conquer strategy. The

idea was that researchers would identify the necessary set of capabilities for intelligent be-

haviour and work on them separately, rather than trying to build a complete, general AI

all at once. Some of these capabilities were: perception (as well as development of sen-

sors and their interpretation); machine learning (i.e. learning from and making predictions

about data) [Wool20]; problem solving and planning; reasoning; and natural language un-

derstanding. The assumption was that once these individual problems were solved, putting

all the pieces into one complete system would be relatively easy. Although that assump-

tion later turned out to be incorrect, it stimulated many advances in artificial intelligence

research.

During this time, Allen Newell, Herbert Simon, and Cliff Shaw wrote a program in 1956

called “Logic Theorist” which is considered to be the first artificial intelligence program.

Another major milestone during the Golden Age was the introduction of the perceptron

by psychologist Frank Rosenblatt [Rose58][Rose62]. The perceptron is considered the first

ANN, as it could learn weights iteratively rather than requiring all connective weights to

be pre-determined.

Kathryn L. Marcynuk - 17 of 218 - April 14, 2023



Prediction of Student Outcomes 2.2 Evolution of Artificial Intelligence & Machine Learning

A number of significant AI projects were developed during this time. Using the divide

and conquer strategy of the era, each project focused on a particular problem within AI.

Some of these projects include:

• ELIZA, a novel chat program created by Joseph Weizenbaum at MIT in 1964-1966

that allowed users to type input and receive a response from the computer [Weiz66].

It was one of the first programs that was able to demonstrate the Turing Test, and

inspired future generations of chatbot programs;

• SHAKEY, created at the Stanford Research Institute from 1966-1972, was considered

the first autonomous mobile robot [KuFH17]. The robot was designed to move around

and interact with a controlled environment. As computers were still too big to fit on

a moving robot at this time, it used radio to interact with a mainframe that did all

the processing; and

• Terry Winograd developed SHRDLU in 1971 to demonstrate problem solving and

natural language understanding using an experimental scenario called the “Blocks

World” [Wino71].

First AI Winter: In 1965 Gordon Moore published the article Cramming More Compo-

nents onto Integrated Circuits, in which he observed that the number of transistors doubled

within the same area on an integrated circuit approximately every two years [Moor65].

What came to be known as “Moore’s Law” provided a quantitative way of showing the

pace of technological progress, and how computer hardware was becoming simultaneously

computationally faster and physically smaller. However, despite the rapid advances in com-

puting technology, the golden age of AI was failing to live up to the high expectations of

the previous decade, which resulted in the reputation of the field taking a serious hit and

funds for AI research being significantly cut. As well, after years of hype and fantastical
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predictions around AI, “2001: A Space Odyssey” was released in 1968 [Clar68]. Arthur

C. Clarke and Stanley Kubrick’s thought experiment into how an AI could go wrong was

brought to the big screen and began to negatively affect public perception towards the

field. These factors led to a period of time now known as the “first AI winter” which lasted

from the early 1970s to the early 1980s, during which progress and innovation in AI slowed

significantly.

Research in artificial neural nets was hit particularly hard during the first AI winter, so

this period of time is often also referred to as the first “neural net winter”. Although today

ML is considered a branch of AI, many ML researchers consider it a completely separate

field, and are even offended to be grouped together with AI. This is likely because of the

Minsky and Papert book, Perceptrons published in 1969, that was highly critical of neural

nets and is credited with the ensuing funding cuts to neural net research [MiPa69]. From

that point on, some research communities adopted alternate terms for their work or extended

the use of ML to refer to all work related to non-biological intelligence, no longer reserving

it just for fields in which machines acquire their own knowledge. To these ML researchers,

the field of AI was too closely associated with a list of failed ideas, whereas re-branding to

ML put the focus on the techniques that have continued to show promise [Wool20].

The Expert Systems Boom: Research in the late 1970s brought AI back into fashion

by focusing on what the previous decades, with a piecemeal problem-solving approach,

had ignored: knowledge. Knowledge-based expert systems, which codified domain-specific

expert human knowledge to solve very narrow problems, dominated the decade. In part, this

approach was popular because expert systems could be profitable when packaged and sold as

problem-solving tools with industry-specific applications. An example of an expert system

is MYCIN, which was developed at Stanford in the 1970s to assist doctors in diagnosing

blood diseases in humans [Shor75].
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Typically, expert systems are designed to resemble an interaction with a conversational

human expert who is willing to explain their reasoning. They are characterized by the

following behaviours: the system will ask a series of questions, to which the user provides

responses; the system uses the input to arrive at a conclusion by following a set of pre-

programmed rules; the system has some ability to cope with uncertainty in the input. The

expert system is able to show how it arrived at an answer by displaying the path through the

pre-programmed rules. This transparency is a key characteristic that distinguishes expert

systems from other types of AI such as neural networks. Expert systems were followed in

the late 1970s by logic-based AI systems, also called logical reasoners, as a way to reason

with and make deductions from the knowledge base rules.

The largest and longest-running knowledge-based AI system is Cyc, which was started

in 1984 by Douglas Lenat. The Cyc hypothesis was that the problem of artificial gen-

eral intelligence (AGI) was mostly one of knowledge, and therefore could be solved by a

knowledge-based system [LePS86]. Although Cyc continues to this day, by the end of the

1980s the majority of these types of systems fell out of fashion because of the difficulty of

extracting human knowledge and encoding it into rules.

2.2.3 Second wave of Artificial Intelligence

Whereas the first wave of artificial intelligence was dominated by systems that at-

tempted to mimic human behaviours and knowledge representation, the second wave was

dominated by statistical learning and inspired by human biology - particularly, our brains.

Connectionism, also called parallel distributed processing (PDP) was popular during the

1980s to 1990s. The idea behind PDP systems is to network many simple computational

units together in order to achieve intelligent behaviours, like many neurons working together

in a brain.
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The late 1980s also brought robotics back into the spotlight in AI. Unlike the previously

popular knowledge-based approaches, such as expert systems, which created logical systems

completely independent of their environments, in this new paradigm the behaviour of the

robot was directly related to its environment or situation. However, the drawback was that

this type of AI does not scale well, due to the physicality of the robots. This led to the rise

of agent-based AI in the early 1990s. Combining behavioural AI and logic-based AI, agents

had to be reactive, proactive, and social. Agent-based AI was the precursor to modern

software agents like Apple’s Siri and Amazon’s Alexa. However, in this paradigm the goal

was not necessarily to make choices that a human would make, but to make the optimal

choice. The main thrust of AI research today remains rooted in agent-based AI, in which

agents are built to help people and act on their behalf, rather than focusing only on the

lofty goal of artificial general intelligence (AGI). Better ways to optimize decision-making,

especially in the face of uncertainty, is still an active area of research, such as self-driving

cars or recommender systems. In the 1990s, the main way to deal with this uncertainty

was by using Bayesian inference to repeatedly update statistical models and calculate the

likelihood of relevant events as new information became available to the system.

It is worth noting that progress in AI and ML has always been directly connected

to technological advances in physical computer systems. Increases in available computing

speed and memory open the door to new ML research possibilities, whereas other branches

of research can be impeded or halted if the current hardware is unable to support them.

Computer hardware was continuing to advance rapidly throughout the twentieth century

and in 1981, near the beginning of the connectionism wave, Japan announced the Fifth

Generation Computer Systems (FGCS) project which was launched a year later [Garv19].

Each generation of computer systems represents a significant step forward in computing

capabilities. The first four generations of computers were vacuum tubes, transistors, in-

tegrated circuits, and very large integrated circuits. The FGCS was aimed specifically at
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creating computers that could support work in artificial intelligence. In response, the USA

formed the Microelectronics and Computer Technology Corporation (MCC) in 1982, which

lasted for twenty-two years. The MCC advanced computer systems research in the West on

several fronts, one of which was intelligent systems.

Along with advancements in computer hardware, another development that supported

neural nets during the second wave of artificial intelligence was the introduction of back-

propagation to systematically adjust the weights of connections in a multi-layer neural

network (NN), and therefore train them more efficiently. This concept had been explored

by multiple researchers, such as Paul Werbos, throughout the 1970s [Wass89], although the

work during that time was done independently and led to a duplication of effort. How-

ever, in 1986, David Rumelhart, Geoffrey Hinton, and Ronald Williams popularized the

concept [RuHW86], and Yann LeCun proposed the modern form of backpropagation the

following year [Lecu88].

The introduction of backpropagation led to a resurgence of interest in NN projects,

creating the second wave of AI. Some projects of note during this time include:

• 1987 1995 The PROMETHEUS project was one of the first driverless cars. Created

in Europe and funded by a multi-government cooperation entity called EUREKA, the

car drove from Munich, Germany to Odense, Denmark and back. Although human

intervention was required on average every 5.5 miles, there was a stretch 100 miles

that required no human intervention.

• 1990s The idea of statistical machine translation (SMT) was introduced as a branch

of Natural Language Processing (NLP) in which the translation algorithm learns from

the data rather than using human-created rules. SMT algorithms are trained on large

sets of content that has been translated by humans and learn to translate future input

using statistical models based on the context of the text [Koeh10]. By the early twenty-
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first century most major machine translation programs used this method, including

Google Translate and Microsoft Translator, before it was surpassed by other methods

in the mid-2010s [Wool20].

• 1994 The checkers-playing program CHINOOK drew against current World Checker

Champion Marlon Tinsley in all six championship games. Shortly after, Tinsley with-

drew from the competition and CHINOOK became the first program to be awarded

the world championship title in checkers [ScLL96].

• 1997 The chess-playing computer Deep Blue, created by IBM, defeated World Chess

Champion Garry Kasparov in a highly publicised match. [Kasp17]. The game of

chess had been considered a benchmark problem in AI as it posed a more significant

challenge for researchers compared to checkers due to far greater number of possible

moves at each turn.

• 1998 An early CNN called LeNet is introduced by French computer scientist Yann

LeCun, which is used to recognize handwritten characters [LeBB98]. CNNs would

become an more prominent during the third wave of AI.

Second AI winter: By the late 1990s AI was considered a mature field, primarily

because of DeepBlue and the development of SAT solvers. SAT solvers were named after

the boolean satisfiability problem, which is the NP-complete problem “of checking whether

simple logical expressions are consistent” [Wool20].

However, at this time, once again too many ambitious claims had been made of AI that

could not be fulfilled, and it began to lose popularity. Although some areas of ML were

still thriving, the attention was no longer on neural nets because computers were not yet

powerful enough to implement the new ideas in that area. At this point AI was dominated

by statistics, rather than philosophy, logic, or cognitive science as before. It remained this
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way until the new millennium, when computer hardware caught up and opened new avenues

of research in neural nets and deep learning.

2.2.4 Third wave of Artificial Intelligence

After a few years out of the spotlight, AI, and specifically neural networks, made a

comeback in a third wave starting in 2006 that continues to this day. The third wave of

AI is focused on contextual adaptation and was born out of developments with deep neural

networks and deep learning.

Deep learning was championed by Canadian computer scientists Geoffrey Hinton and

Yoshua Bengio, along with French computer scientist Yann LeCun [GoBC16]. Collectively

they are known as the “Godfathers of Deep Learning” and even the “Godfathers of AI”.

Compared to previous generations of multi-layer neural networks, deep learning has more

layers, more neurons, and more connections. The deepening of neural networks was made

possible by advances in computational power and larger datasets, which in turn meant that

algorithms that were previously impracticable to implement could now be used. Figure 2.1

shows the relationship of deep learning and other fields within the larger context of AI.

Fig. 2.1: Relationship between the major fields within artificial intelligence, including
machine learning and deep learning. (Partially adapted from [GoBC16])
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By 2016, it was a widely accepted rule of thumb that it would generally take about

5000 labelled examples per category for a supervised deep learning algorithm to achieve

acceptable performance, and when trained with a dataset containing at least 10 million

labelled examples it would match or exceed human performance [GoBC16].

It was also around this time that artificial intelligence left the research laboratories and

began entered our homes. Google Translate was first made available in 2006 and improved

over time by adopting a type of deep learning in 2016, that would be come to be used in

many translation projects, called neural machine translation (NMT) [WuSC16]. Already by

2010 Google was testing deep learning for speech recognition, and within two years similar

technology was commercialized and used by multiple companies in personal products such

as Apple’s Siri and Amazon’s Alexa [MaWa19].

In addition to commercial products, several significant milestones in artificial intelli-

gence research captured the public interest during the 2010s. These include:

• In 2011, IBMs Watson beat Ken Jennings at Jeopardy live on television [Chan14].

• In 2014, Google sparked major business and press interest in AI by acquiring the

United Kingdom-based company DeepMind for a reported $650 million. DeepMind

was first founded in 2010 with the mission statement “to solving intelligence, to ad-

vance science and benefit humanity”.

• Also in 2014, a computer program called AlphaGo beat professional Go player Fan

Hui. More complicated than checkers or chess, mastering the game of Go was seen as

a benchmark problem in AI research [Natu16][Gibn16].

• On February 14th, 2016, a “social humanoid robot” named Sophia made by researchers

in Hong Kong was first turned on. In October 2017 she was granted Saudi Arabian cit-

izenship and became the first robot to be granted citizenship in any country. Although
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this was largely a publicity stunt, with no claims that Sophia possessed human-level

intelligence, the move indicated a growing societal acceptance for AI research [Gres18].

• 2017 Final ImageNet competition (winning program had a 98% accuracy). The Ima-

geNet archive of images is classified into categories using WordNet.

• Also in 2017, Google created a new program to play Go called AlphaGo Zero (AGZ).

This version was able to significantly beat its predecessor, AlphaGo [SiSS17]. The

same year, the DeepMind team within Google announced AlphaZero (AZ) which was

a more generalized version of AlphaGo Zero capable of playing multiple games at a

superhuman level [SiHS17].

2.2.5 Artificial Intelligence Today

Today there is still strong interest in AI, in both research and commercial fields. Ad-

vancements in computing hardware have revitalized work in many fields of AI such as

artificial general intelligence (AGI), knowledge-based systems, robotics, computer vision,

and Natural Language Processing (NLP), among others [Wool20].

ML has received particular attention, and has been applied to an increasingly wide

field of tasks as ML software libraries and processing power have become more commonly

available. Within ML, deep learning (DL), and artificial neural networks (ANNs, or NNs

for short) continue to be popular as part of the third wave of AI. Just as the ability to

train NNs that are deeper and more connected has grown over time, newer NN models have

also been designed that can learn from sequential data. These NNs can leverage underlying

relationships that may exist within sequential data, such as in natural language data or

time series data, rather than treating each piece of input independently.

One area of interest that has been made possible through the development of deeper
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NNs is time series classification. Classification is a common ML task of recognizing and

categorizing input data into groups or “classes”. For example, a classifier can be used to

assign an e-mail to one of the groups of “spam” or “not spam” [ReRa17]. Time series data

are sequences of data points collected chronologically, such as speech, biomedical data, or

stock market prices. The task of categorizing these sequences is known as time series

classification, which is considerably more difficult than general classification due to the

larger data sets involved that have higher dimensionality [Sado19].

Convolutional neural networks (also known as ConvNets or, more commonly, CNNs)

have been used for time series classification tasks in a variety of fields [GoBC16]. These

deep NNs were first introduced in 1998 and are named after their use of convolution instead

of general matrix multiplication in one or more of the hidden layers [LeBB98]. Origi-

nally inspired by the biological visual cortex, CNNs were most commonly associated with

image recognition tasks before being applied to other realms including time series classi-

fication [Masl21]. CNNs have shown to be effective at processing information that has a

“grid-like topology” such as a time series, which can be thought of as a one-dimensional

grid of data, or images consisting of two-dimensional grids of pixels [GoBC16].

The transformer is another type deep NN that is starting to be used for time series

classification. Introduced in 2017, transformers were developed by a team at Google Brain

to process sequential data [VaSP17]. Transformers were first used in NLP tasks where

previously a recurrent neural network (RNN) was the most common choice. One of the

main advantages of transformers is that they process sequential input data all at once,

rather than in sequence as is done in RNNs. This reduces the relative time that it takes to

train a transformer by processing the input in parallel, which is particularly useful for large

datasets. However, transformers have quickly been applied to other areas with sequential

input data including computer vision and tasks involving time series data [WeZZ22].
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Fourth Wave of Artificial Intelligence: Time will tell if we are currently still in the

middle of the third wave of AI, or entering a fourth wave already. If the latter, the fourth

wave is largely an extension of the third, without the waves being delineated by a charac-

teristic winter in between. The fourth wave is sometimes referred to as “Autonomous AI”.

During this wave, AI technology is expected to have more decision-making capabilities with

less human oversight. Therefore, there will also be an additional push towards transparency,

and more focus on the ethical and moral implications of AI than before.

As the field of AI has grown, so too has the need to create common measures and

classification schemes to support a common framework for discourse. One example is the

Winograd schema challenge by Hector Levesque, with Ernest Davis and Leora Morgen-

stern. First proposed in 2011, the Winograd schema challenge consists of questions to

test whether a machine can think [Leve14][MoDO16]. As well, the Turing Test from 1950

continues to be an enduring, although no longer elusive, goal. In 2014 a chatbot named

“Eugene Goostman”, created by Ukrainian and Russian programmers, was publicly ac-

knowledged to have passed the Turing Test in a competition held by the Royal Society of

London [WaSh16].

As another example, by the 2010s autonomous cars were starting to become feasible,

albeit with some level of driver oversight. To describe and track this progress, in 2014 SAE

International produced a six-point scheme to classify levels of vehicle autonomy from no

autonomy to full automation [HoSc21].

In recent years the moral and ethical implications of artificial intelligence research, and

products derived from it, has become an area of research in its own right. In 2015 the Asilo-

mar principles were first developed for ethical AI research and since then many companies

have come up with their own AI ethics guidelines. In general, the guidelines are based on

the following core tenets: accountability, responsibility, and transparency [Wool20].
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2.3 Evolution of Learning Theories and their Relationship

with AI

As humans we are constantly learning new concepts, new ideas, new facts, new connec-

tions, new people, new places, and more. Sometimes what we learn is simply new to us, and

at other times the knowledge learned is new to everyone. Learning involves being exposed

to some new knowledge, either on purpose or by happenstance, processing or integrating

it with what we already know, and remembering it for the future. Learning can happen

quickly or gradually, perhaps with repeated attempts. It can be tempting to say that we

can recognize learning when we see it, but it is more difficult to explain why and how it

happened.

There are multiple fields that study what learning it is, how it occurs, and how it

can be supported. Branches of psychology are concerned with biological-based learning,

while education research focuses on how humans learn both naturally and in structured

environments. The field of AI, and the related subfield of ML, are concerned with algorithms

and machines for non-biological-based learning. These fields influence each other to advance

our overall understanding learning. The dominant theories of the time in psychology and

education have led to the development of new ML techniques and can be seen reflected in

the waves of AI. In return, the success of these techniques can provide insight into human

learning.

Over time, several educational learning theories have been developed to describe, under-

stand, and predict how humans integrate and retain new knowledge. The main educational

learning theories can be grouped into three categories of behaviourism, cognitivism, and

constructivism. Other prominent learning theories, such as humanism and connectionism,

are largely considered to be variants of, or responses to, the main three theories. However,

some researchers and educators prefer to distinguish some of these variants and propose a
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count of five or more main learning theories.

Section 2.3 explores the main educational learning theories of behaviourism, cogni-

tivism, and constructivism in more detail and their significance to AI.

2.3.1 Behaviourism

The earliest of the three primary learning theories is behaviourism. Behaviourism

was first formally introduced in the early twentieth century and is credited to John B.

Watson who wrote that the “theoretical goal [of behaviourism] is the prediction and control

of behavior [sic]” [Wats13]. This school of thought focuses on behaviours that can be

objectively observed, without attempting to speculate about what is going on inside the

mind [SiAd13]. Through behaviourism, Watson approached psychology as an objective and

experimental science. In doing so, behaviourism offered an advantage over earlier trends in

psychology which focused on introspection that were more difficult to validate by way of

experiment.

Some of the early work in AI during the twentieth century appears to be influenced by

behaviourism. For example, the “imitation game” introduced by Alan Turing in 1950 was

focused only on observable behaviours to facilitate experimentation [Turi50]. The concepts

of behaviourism continue to underpin work in AI today. Intelligent systems are trained

using data collected from human behaviours, such as purchasing habits. Indeed, one of the

most noticeable examples is in the realm of advertising, where it is common to see phrases

such as “items similar to your previous purchase” or “similar customers also enjoyed”.

Recommender systems are based on the idea that people will be internally consistent in their

behaviours, and that people who behave in the similar ways will be interested in the same or

similar recommendations. For example, in an educational environment, recommendations

can be made to students based on their behaviour as it is observed through their time-
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stamped interactions with course materials in an LMS, and these interactions can be studied

as a proxy for student learning.

Behaviourism provides a lens to study learning from externally observable behaviours

and actions, without any knowledge of the internal thoughts of the learners. As such, the

collection of student behavioural data with specialised software (such as LMS timestamps,

mouse-click records, or eye movement tracking) to be used for student outcome prediction,

is rooted within the field of behaviourism. The underlying assumption in this doctoral

research is that if observable student behaviours can be used to predict student learning

outcomes (i.e. successfully passing a course), then those same behaviours can serve as a

proxy for learning. Studies that use LMS information as a representation of student learning

are explored further in Section 2.4.

Behaviourism has also influenced the development of ML techniques such as reinforce-

ment learning, in which desirable outcomes are reinforced and undesirable outcomes are

discouraged during training of ML models. This type of ML was inspired by biological

learning and the theories of classical conditioning, learning laws, and operant condition-

ing.

Classical Conditioning: The work of Russian physiologist Ivan Pavlov in classical con-

ditioning, also known as respondent conditioning, formed one of the fundamental building

blocks of behaviourism [Pavl27]. First published in 1897, his experiments were initially

directed towards non-human animal behaviour and learning. However, these findings were

later incorporated into educational learning theories for humans as well. Indeed, Pavlov’s

experiments with dogs, food, and bells were so straightforward yet striking that his name is

now synonymous with classical conditioning both in the field of psychology and in the pub-

lic consciousness. In these experiments, Pavlov demonstrated that an involuntary response

can be learned as a response to a repeated external stimulus.
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Learning Laws: Around the same time as Pavlov’s work in classical conditioning, an

American psychologist named Edward Thorndike was working on concepts that would help

lay the foundation for later work in educational psychology, and would heavily influence

the field of behaviourism. During his work with non-human subjects in comparative psy-

chology, Thorndike proposed the “Law of Effect” which posits that behaviour is influenced

by consequences [Broc20]. In this paradigm, behaviour that produces a “satisfying” result

will be “stamped in” to the animal, whereas behaviour that produces an “annoying” or

“unsatisfying” result will be “stamped out” [WaTS07].

Operant Conditioning: In the mid-twentieth century B.F. Skinner experimented further

with types of behaviourism and developed many advances in the field. He was influenced

by Thorndike, and among his many credits is the introduction of operant conditioning.

Skinner proposed that behaviour could be defined as the observable movements and actions

of an organism as it interacts with the world [Skin38]. Through operant conditioning, an

external stimulus is used to motivate a desired behaviour: either a positive stimulus to

motivate a desired behaviour or a negative stimulus to discourage an undesired behaviour.

However, unlike in classical conditioning, which is based on involuntary responses, operant

conditioning assumes that the organism has a choice in how to respond.

Although both respondent behaviours from classical conditioning and operant behaviours

from operant conditioning have their origins in the study of animal behaviour and are about

how animals learn as a reaction to stimuli, they are related but not the same. Classical con-

ditioning is primarily concerned with involuntary responses, whereas operant conditioning

involves the choice to do something to get a reward or avoid a punishment [WaTS07].

Additional Learning Theories Related to Behaviourism: As the field of behaviourism

evolved, several variations gained traction and became independent fields of study, some-
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times overlapping with other learning theories as well. These include connectionism, social

learning theory, and humanism learning theory, all of which have impacted AI in various

ways.

Connectionism, credited to Edward Thorndike, is one such learning theory. Like be-

haviourism, the connectionism learning theory is based on the ideas of stimuli and responses.

However, the focus in connectionism is on the associative relationship between pieces of

knowledge or events [Thor54]. That is, if two ideas are associated with each other, then

thinking abut one idea in the pair is likely to lead to thoughts of the associated idea. The

association may be due to similarity, an alikeness between the ideas, or contiguity, meaning

they are proximally or sequentially related. These ideas of association have been discussed

by philosophers for centuries, tracing back to Aristotle, and were tested by Thorndike in

his creation of the connectionism learning theory. Thorndike described the idea of a neu-

ral bond, ”between one mental fact and another” [Thor13] and learning as the creation

and strengthening of these bonds. As such, connectionism can be considered as a step be-

tween purely behaviourist models and later constructivist models [Thor54]. Connectionism

is closely associated with neural network (NN) research, which is predicated on the weight,

or strengths, of bonds between artificial neurons to produce intelligent behaviour.

Social Learning Theory is considered a subtype of behaviourism developed by Albert

Bandura. It builds on the behaviourist theories of classical conditioning and operant con-

ditioning to include the idea of observational learning [Band77]. In observational learning

a student learns from watching the behaviours and actions of someone else. The student

may then model the observed behaviour, or otherwise learn from it. Bandura described four

conditions that impact observational learning: the attentiveness of the student in watching

the behaviour; the ability of the student to remember what they have observed; the ability,

physically and mentally, of the student to repeat the behaviour; and the motivation of the

student to engage in the behaviour, possibly due to external stimuli. Tenets of social learning
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theory can be found in ML, such as in the field of reinforcement learning [BoPM17].

The concept of motivation underlies the Humanism learning theory, which was

developed as a response to behaviourism. Humanism is based on Maslow’s Hierarchy of

Needs, which consists of five levels of basic needs: physiological, safety, love, esteem, and

self-actualization [Masl43]. Maslow postulated that human behaviours and actions are mo-

tivated by a desire to satisfy one or more of these needs at any given time. Humanism was

developed by Carl Rogers and James F.T. Bugental, who built on Maslow’s model to con-

sider learning in the context of the individual as a whole and take into account the learner’s

individual preferences and motivations [Roge79]. Of all the learning theories, humanism

is uniquely human-centric with its foundations in concepts such as self-actualization. It

provides a contrast to other learning theories that could conceivably be applied to processes

that look like learning in non-biological, or non-sentient, entities such as machines.

2.3.2 Cognitivism

Cognitivism emerged in the mid-twentieth century, as a response to behaviourism, and

by the 1960s-1970s had surpassed behaviourism as the leading trend in psychology. While

behaviourism focused on outwardly observable aspects of human behaviour, and dealt with

thinking as a behaviour, cognitive theories recognize thought processes as a separate and im-

portant factor in learning. Cognitivism is interested in “how learning occurs in the brain”,

including how new information is received, processed, and stored in memory [SiAd13].

Therefore cognitivism is concerned with how external factors, including stimuli and ob-

servable behaviours, as well as internal mental states and internal processes impact learn-

ing.

The learning process is central to cognitivism. An example of this is Robert Gagne’s

model of learning that link nine events of learning with particular cognitive processes [Gagn85].
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How information is organized when presented to the learner is considered to be important to

facilitate learning. David Ausubel introduced the idea of the “advance organizer”, which is

a way of helping students to connect new information to what they already know [Ausu68].

During the presentation of new material, cognitivism posits that how that information is

organized impacts the learning process. To improve retention, larger or complex topics

should also be broken down into smaller parts. In contrast, concepts that are presented in

a haphazard way or as a mixture of relevant and irrelevant information may be difficult for

the student to process and store for later retrieval.

Memory also plays an important role in cognitivism, in which forgetting can be seen

as failure to retrieve information or a mechanism to remove pieces of information that are

no longer relevant. Cognitive Load Theory (CLT) describes knowledge as being transferred

from short-term memory, or working memory, to long-term memory [PaSe21] [Kirs02]. The

cognitive load is the amount of working memory that is required of the learner. Working

memory has a limited capacity and retention time, and information must be encoded into

long-term memory if it is to be remembered in the future. If there is too much information

for the working memory to hold, some information will necessarily be dropped before it can

be learned by being encoded into the long-term memory [PlMB10].

One way in which the mental processes that are central to cognitivism can be understood

is through the theory of computationalism, also called the computational theory of mind

(CTM) [Wats08]. In this theory, biological neural activity is a type of computation which

in turn produces cognition. The idea was first proposed by Warren McCulloch and Walter

Pitts, who also invented one of the earliest artificial neuron models [McPi43]. Cognitivism

was also fundamental to the foundation of the interdisciplinary field of cognitive science,

which studies intelligence drawing from multiple fields including AI to better understand

mental processes including learning.
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2.3.3 Constructivism

The most modern of the three major learning theories, constructivism was introduced

in the 1980s and is linked to Jean Piaget’s stages of cognitive development. In the construc-

tivism approach, the learner builds on previous knowledge and experience to construct an

understanding of new ideas and concepts [SiAd13]. An example of this is a spiral curricu-

lum approach, attributed to Jerome Bruner, in which concepts are repeated with additional

complexity each time [Brun60].

Learning theories that emphasize the importance of social and cultural context to the

learning process are considered to be related to constructivism as well. Lev Vygotsky’s

sociocultural learning theory, which emphasizes the importance of social interaction in the

learning process [Hass11] is an example of this. Vygotsky postulated that the cultural con-

text in which the learning occurs impacts the tools and techniques that are made available

to learner. He introduced the concept of the Zone of Proximal Development (ZPD), which

is the difference between what a learner is able to do without assistance compared to what

they can accomplish with the guidance of a mentor [Hass11]. This is also a type of situated

learning, in which learning occurs within a community of practice [JaSh19].

The constructivist paradigm parallels the return to robotics and rise of agent-based AI

in the 1980s and 1990s, with a focus on constructing knowledge and recognition of situated

learning.

2.3.4 Connectivism and Other Learning Theories

Beyond the three major learning theories of behaviourism, cognitivism, constructivism,

and their offshoots, there are other paradigms and frameworks with which to approach

discussions on learning. For example, models such as Bloom’s Taxonomy [Aira01], Fink’s
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theory of significant learning [Fink03], Kolb’s experiential learning cycle [Kolb84], and Gard-

ner’s Theory of Multiple Intelligences [Gard83], among others [Pete69], can provide common

language to discuss learning theories and inform organizations such as the Canadian En-

gineering Accreditation Board (CEAB) looking to create a taxonomy for understanding

learning outcomes.

Of particular note is connectivism, which is a learning theory directly inspired by tech-

nology. Connectivism recognizes that the connections a learner is able to make are directly

influenced by their personal learning networks consisting of their access to information via

Internet technologies [Duna11]. Learning theories continue to evolve over time as previous

theories are tested and new technology leads to new insights. In many ways, the fields of

study of human learning and AI and ML have symbiotic relationships. As such, ML is used

to study education. This is discussed in the next section.

2.4 Machine Learning for Studying Education

The fields of study of human learning and ML have a symbiotic relationship. Many

ML algorithms and methods are, and continue to be, inspired by the learning theories that

have emerged from research in biological learning. In turn, the study of learning processes

in machines can provide insights into biological learning as well.

Machine learning algorithms can advance the study of education and our theoretical

understanding of learning in two main ways. One way is that these tools can be used to

model learning behaviours, such as simulating autonomous agents and observing how they

interact and change. This allows for learning theories to be tested without the need for

biological subjects. Agent-based models are used in many areas, including in education.

An example is the NetLogo programming environment, which is able to simulate complex

systems comprised of individual agents that interact over time with various parameters
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and conditions [WiRa15]. NetLogo is also an educational tool to teach students about

agent-based models. Second, ML tools can also be used to analyse real student data that is

collected using specialized tracking education software, learning management system (LMS)

databases, or other software that is integrated into the classroom.

In the following sub-sections the application of ML to educational data is explored.

First, the proliferation of digital education data is examined as a result of advancements

in computer data collection and storage capabilities, increased access to educational tech-

nology, and growing numbers of online or remote delivery courses. Second, applications of

ML with education data are discussed, including student modelling and prediction, decision

support systems, and adaptive learning environments. Third, the particular application of

ML for student outcome prediction as seen in the literature is presented. Finally, research

into student course outcome prediction using LMS interaction data is analysed to identify

the gap in the research that this doctoral thesis explores.

2.4.1 Digital Education Data

Traditional research approaches in the field of education rely on labour and time

intensive techniques such as interviews, classroom observations, and surveys [FiBR15]

[RoVP11][SaFD18]. However, the adoption and expansion of technology, particularly tech-

nology in classrooms, offers new avenues for educational research through the collection,

storage, and use of digital education data. The proliferation of data-collecting technology

has created new data repositories that offer novel opportunities for ML to advance the field

of education [Bake14]. There are multiple groups that have started to bring ML techniques

to focus on a variety of educational research areas and goals [Bake14] [BaZE17] [Kins15]

[Pena14].

Using computers in education is not, in and of itself, new. Early behaviourist re-
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searcher B.F. Skinner experimented with a form of computer-assisted learning (CAL) in

1954, prior even to the Dartmouth Summer Research Project on Artificial Intelligence of

1956 [Bate19]. Skinner’s teaching machines used behaviourist principles to guide learning

through providing structured information, testing, and immediate feedback to students. As

other educational learning theories gained favour in the following decades, CAL fell out of

fashion as it was less effective for higher level learning. However, similar systems under the

term computer-based training (CBT) are still developed and used today for situations where

lower cognitive domain levels are deemed sufficient, such as training for a specific task in

the workplace.

By the 1980s, educational environments primarily used computers for CBT or to facili-

tate communication either between students and educators, or students and their peers [Bate19].

Starr Roxanne Hiltz and Murray Turoff pioneered the field of computer mediated commu-

nication (CMC) and did early work with online discussion forums in the 1970s [HiTu93].

However, the scope and reach of this type of research was limited until there was greater

connectivity between users through the invention and widespread adoption of the World

Wide Web in the 1990s. As technology continues to evolve, quantity and detail of educa-

tional data that can be collected has increased along with the number of ML techniques

that can be used to analyse that data. In 2005, the term Educational Data Mining (EDM)

was introduced to describe using data mining and ML techniques on data collected from

higher level education settings in computer science [BaZE17].

Today, research at the intersection of AI and ML with education is still considered an

emerging field [HeHT19] [HeIP18] [KoDM15]. Due to the field’s relative infancy, the collec-

tion of digital educational data used for research purposes is not standardized [RoVP11].

Some educational data exists in repositories such as the DataShop@CMU [Data21], IEEE

DataPort, Google Research, while other studies are conducted on a case-by-case basis.
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Much of the work being done uses sensitive personal information, such as course enrol-

ment and past grades [JiPa20] or relies on specialized software [HuZZ19][MaMP20]. Of note,

the computer-aided personalized system of instruction (CAPSI) program developed at the

University of Manitoba is an example of an innovative personalized system of instruction,

still in use in specific undergraduate courses [Kins88][Kins90][Pear88].

As well, multiple studies have been performed on data collected from courses offered as

a massive open online course (massive open online course (MOOC)) [Anto09]. The student

experience in a MOOC is different than that of a typical lecture-style class, in that these

courses are often asynchronous or may be taken not-for-credit. Thus, the type of learner that

chooses to enrol in a MOOC can have very different expectations and engagement compared

to students who enrol in a for-credit course. While there is an increasing number of these

alternate options available for continued learning, the traditional undergraduate degree from

brick-and-mortar universities is still the first choice for many students, particularly those

coming directly from a high school program.

Distance and online undergraduate courses at universities have also been available

for many years, usually asynchronously, for students who self-select to enrol. These dis-

tance courses are typically an option offered concurrently with a traditional in-person,

synchronous class section. The move to fully remote, online learning in 2020 due to the

COVID-19 pandemic has presented a new opportunity to study how students learn in a

synchronous class. In March 2020, partway through the winter academic term, most classes

were abruptly moved completely online with little warning or preparation. Subsequent

terms at many undergraduate institutions continued to deliver courses that were prepared

and run in a remote learning environment. These remote learning courses were offered using

an LMS that acted as a portal for most, if not all, student activities such as obtaining course

content, submitting work to be graded, writing timed exams, and potentially interacting

with classmates. An LMS is “a centralized web based information systems where the learn-
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ing content is managed and learning activities are organized. LMS represents a more general

term for a technology framework that supports all aspects of formal and informal learn-

ing processes, including learning management, content management, course management,

etc.” [Wang14] Since remote courses became the default rather than the exception during

the COVID-19 pandemic, the data collected by the LMS during these courses presents an

unprecedented opportunity to study how students interact with course materials on their

personal learning journey.

2.4.2 Overview of ML Applications in Education

Just as the amount and availability of education-related data has increased with ad-

vancements in computing technology, so too has the breadth of topics that are studied.

Today, there are multiple areas of research and groups interested in bringing together com-

puters and education through digital education data and ML.

Across all computer-related education research there are four main stakeholder groups:

students, educators, administrators, and researchers [BaZE17]. Applications of ML in ed-

ucation each target one or more of these groups. Traditionally work in this area has been

cross-disciplinary, with input from researchers in education, computing sciences, engineer-

ing, and psychology [Stem91]. Publications such as IEEE Frontiers in Education (FIE) and

ACM Transactions on Computing Education (TOCE) bring together researchers across

multiple disciplines. Over time, new inter-disciplinary fields have also emerged as well, such

as Engineering Education Research (EER), Computer Science Education, and EDM, with

their own priorities, publications, and taxonomies [SFMB21].

The applications of computer-related education research can be classified based on

their objectives into three broad categories: student modelling, decision support systems,

and adaptive systems [BaZE17] [Pena14].
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In the first objective, student modelling, student models are created for prediction

or structure discovery. Prediction may come in the form of predicting overall performance,

specific characteristics, or undesirable behaviours. The topic of ML prediction in education

is explored in greater detail in Section 2.4.3. In structure discovery, ML techniques are

used to create groups or profiles of students to find groups of similar students, for example.

An alternate use of structure discovery is to form teams of students with complementary

characteristics, which is also a form of social network analysis [BaZE17]. Applications of

student modelling typically indirectly benefit students and educators by uncovering new

patterns that can be applied to decision support systems.

The second objective of ML in education, decision support systems, directly benefits

students and educators through the development of tools that can lead to more informed

decision-making. These tools may be supported by research into how to present information

in new ways or at particularly relevant times. For example, these tools may include reports,

data visualization, alert systems, recommender systems, scheduling support, or software to

develop course content. These tools can provide feedback to educators and help students to

monitor their progress, and may rely on predictive results from student modelling research

in order to provide that feedback.

Lastly, adaptive systems in education refer to creating a learning environment that

is tailored to the needs of the individual learner. This is also known as the “personalization

of learning”. An example of this is the concept of cognitive digital twins (CDTs) [Kins19].

Digital twins have existed in engineering industries for years as “digital replicas of specific

electromechanical systems such as cars and airplanes to analyse and predict their behaviours.

Although there is much work to be done to reach a true digital replica of a student, ad-

vances in understanding how students learn could lead to the development of CDTs creating

much more personalised learning environments in the future (for a discussion on CDTs, see

Appendix A).
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Additional applications of ML in education include work into developing and testing

educational learning theories or methods of evaluation. To achieve these objectives a variety

of ML algorithms are used, such as regression, clustering, association rule mining, social

network analysis, and text mining [RoVe10].

2.4.3 Prediction as an Application of ML in Education

One of the main applications of applying machine learning to education data is in

the realm of student modelling for the purposes of prediction. Three main sub-areas of

research within this field were identified in a review of the literature: studies related to grade

prediction, dropout prediction, and predictions of student outcomes in learning activities.

(For details on how the literature review was conducted, see Appendix B.)

The first of the main sub-areas of research is the use of ML techniques for grade pre-

diction. ML techniques are used to predict student outcomes within a single course, where

student outcomes may be defined as a final grade percentage, a final letter grade, a final

grade level (ex. ‘high’, ‘middle’, or ‘low’), or as passing vs. failing the course [MBKK03].

Alternatively, there has been interest in predicting student outcomes over multiple courses,

such as a cumulative grade point average (CGPA) [MuAM22] or grade point average (GPA)

upon graduation [Ogor07].

The second main sub-area in the field of ML and education prediction relates to student

dropout prediction. In this sub-area, ML techniques have been studied for their ability

to predict the likelihood of a student dropping a course [MbMG22] [TeRN19], graduating

on time [PaJO17], or completing a certification or program [SiSL20].

ML has also been used to predict student outcomes in learning activities that occur

over a shorter span of time than a course or term. For example, studies have investigated

the suitability of ML to predict a student’s mastery of a singular skill [LoBe21] or ability to
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independently complete a particular task such as a programming exercise [MoGB21].

At this time, research is still being conducted to determine both the type of data and the

features derived from that data that may have predictive value. Overall, the field consists

of heterogeneous studies with mixed results and no singular set of metrics to compare

the accuracy or successfulness of the predictions. In the following sub-sections, attribute

properties and considerations of data sets used in student outcome prediction are briefly

described, considered in terms of the types of students studied, methods of course delivery,

and types of data collected. Then studies that use LMS time intervals as a predictive feature

are discussed. Finally, some considerations on the current limitations of educational data

for student outcome prediction are presented.

2.4.3.1 Attribute of Education Data: Types of Students

Research in student outcome prediction has been conducted using data collected from

different cohorts of students, such as elementary and high school, or undergraduate and

graduate students at universities [Spit21] [LoBe21] [LiCh20] [TiLW20] [SoOk20] [JiNT22].

The most common cohort of students studied in experiments of ML-based prediction

are students studying undergraduate-level material. This may be attributed to the wealth

of available data at this level, particularly data from more recent advances in educational

software to support course delivery.

2.4.3.2 Attribute of Education Data: Methods of Course Delivery

The use of ML for student outcome prediction has been investigated in LMS in a variety

of course deliveries, including traditional face-to-face classrooms [HaBH17] [RGPO21],

blended and hybrid instruction [VaBD20] [MaSG17] [OrVa20] [PaML19], and flipped
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classrooms [Wang21], as well as completely online courses that are delivered synchronously

or asynchronously [YuWu21] [YuPS19] [KuLB15]. The method of course delivery influences

how much the students are intended to interface with the LMS, and the course delivery

method is therefore typically identified and considered separately in the research. The

massive open online course (MOOC) is a type of course delivery method that has received

considerable research attention related to student outcome prediction due to the amount

of open access data available for researchers [Anto09] [BoSK16] [SiCa15] [MbMG22]

[QuLW19] [CrAA18] [MuAC21]. However, the relationship between student behaviours

and outcomes in courses delivered through tuition-based, degree-granting campuses such

as universities is not considered the same as the relationship between student behaviours

and outcomes in a freely-available MOOC. This is because of the different incentives and

levels of investment in each type of course. It has been posited that it is more valuable

to be able to understand and predict the former relationship given the additional costs of

tuition-based programs on stakeholders and the importance of successful outcomes in this

environment [DeDS22].

2.4.3.3 Attribute of Education Data: Types of Data Collected

Data collected from an LMS in a tuition-based course or a MOOC generally involves

timestamp information of students’ interactions with the system. However, the level of

granularity in terms of which activities within the LMS are recorded as timestamped inter-

actions may differ based on the particular software implementation. Information collected

by some LMS implementations that has been used for student outcome prediction includes

lecture video interactions [ZhUD22] [KuLB15] [MuAC21], general or specific time-on-task

measurements [OrVa20] [TeRN19] [KuGI11], and student-to-student or student-to-teacher

interactions on discussion boards or messaging [TiLW20] [Bail20] [ThPA13] [Kim14].
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Research into student outcome prediction typically uses these timestamped datasets of

activity logs in novel ways to create new features, or the timestamped data sets are supple-

mented with additional data. Examples of using the timestamped activity data to create

new features related to the intervals between LMS interactions are described in further

detail in Section 2.4.3.4. Supplemental data from outside the LMS may also be included

as features for student outcome prediction, such as demographic information (including

one or more of age, gender, and ethnicity) [HeLL18] [ArPi12] [MaCC21] [KuGI11]

[Kots12] [MaUW21]; past academic performance in the form of course enrolment or cur-

rent GPA [ArPi12] [MaME18] [JiPa20]; or student self-assessments in the form of surveys

[LiFJ19].

Alternatively, some prediction approaches use data collected from specialized software

or devices. For example, research has been conducted into how biological indicators such

as facial cues, heart rate, eye movement, or brain activity can predict student outcomes

[PeON20] [LaNL22]. Less intrusively, specialized software to capture additional details

such as navigation or mouse clicks has also been investigated [HuZZ19][MaMP20] [TeBP19].

These approaches are less common as they require significant resources that are not generally

available, which give the results a limited scope of applicability.

2.4.3.4 Research focused on: Time Intervals as a Feature for Student Outcome Pre-

diction

In studies of undergraduate-level university course outcome prediction that use LMS ac-

tivity logs, with or without supplementary data, there are certain features that are typically

created from the timestamp data. These common features include the number of logins,

number or percentage of items accessed over a defined time period (day, week, month, or

weekday vs. weekend), and time spent on an activity or on the course overall [OrVa20]
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[MaDa10]. The time in between the interactions, however, was found to be rarely consid-

ered. In one study, the number of inactive days (as a continuous stretch, and overall) was

calculated [BrPH22]. In another, the intervals between LMS interactions were calculated,

in a course that was delivered through in-person lectures and labs with LMS support for

content management [DeBr20]. In the literature, the use of intervals as a measure to explore

undergraduate student behaviour with an LMS in an online, undergraduate synchronous

course over time or as a feature to predict student outcomes using only standard LMS data

has not been explored.

2.4.3.5 Data Limitations and Bias Considerations

While previous work has claimed prediction accuracy results of up to 99%, direct com-

parisons between studies are challenging due to differences in what is considered a ‘suc-

cessful’ prediction [DeDS22] [Zach18]. Instead, rather than comparisons between prediction

models, this relatively young field is still focused on finding data and features that offer any

predictive value. Features such as past academic performance and demographic information

have been shown to be correlated with future academic performance, but there has been

less success so far in predicting course outcomes using features that rely solely on “low-

level student actions” in the form of timestamped interaction data [YuPS19]. Furthermore,

the additional data discussed above is not always available to instructors. Mouse-click and

eye tracking require specialized software and devices for data collection. As well, not all

LMS implementations collect nuanced discussion board data or time-on-task measurements,

making features from this information less generalizable. Student demographic or academic

history information may not be accessible to the instructor, be incomplete, or may include

reporting biases. Even when available, demographic or academic history data may unneces-

sarily bias predictive models by basing predictions on information that is not representative

of a student’s current behaviour in a course. As such, there is value in continuing to seek
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predictive features that do not rely on that type of personal information [DeDS22].

Due to these considerations, there is interest in predicting student outcomes predomi-

nately or exclusively using broadly available course behavioural data, such as data collected

through an LMS. Section 2.4.4 provides further detail on studies in student course outcome

prediction using LMS data.

2.4.4 Student Course Outcome Prediction Using ML with LMS Data

As described in Section 2.4.3, within the vast landscape of ML for prediction in educa-

tional contexts, one sub-area of interest is course outcome prediction. This sub-area uses ML

techniques to predict how students will perform in a single course, as measured by their final

grade, and has been gaining traction in recent years (see Appendix B for information on the

literature search). As discussed, the predictive models may use student demographic data

(such as gender or race), administrative data (such as program enrolment, past academic

performance, or financial aid received), current course behaviour data (such as LMS inter-

actions, interim course grades, discussion board activity, or mouse click activity), student

self-assessments (such as surveys) or a combination of these features.

Of these data types, course behaviour data collected through an LMS provides the most

opportunities to be studied in large quantities. This type of data does not require software

beyond what is commonly available at many educational institutions, nor does it contain

sensitive personal information like demographic or administrative data which may require

additional permissions and introduce biases as discussed in Section 2.4.3.

In the following subsub-sections, six representative studies on ML for course outcome

prediction using LMS data have been chosen for deeper analysis based on their high reported

accuracies and types of LMS features used. The studies are described and evaluated for

their strengths and limitations. Through these analyses, the novelty of this doctoral research
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study will be established.

2.4.4.1 Review of course outcome prediction models (Arizmendi et al.)

In a 2022 paper, Arizmendi et al. reviewed 82 course outcome prediction models

across 39 papers [ArBR22]. Of these, 29 prediction models used only current course be-

haviour data, which the authors refer to as “behavioural predictors.” A variety of ML

prediction algorithms were used and, of the 29 prediction models, twelve were decision

trees [BaLL15] [BeCU20] [KoTF13] [RoEZ10] [Zach18], ten were a type of regression

[BaLL15] [BeCU20] [Will19] [You16] [YuLF20] [Zach15], four were a Naive Bayes al-

gorithm [BaLL15] [BeCU20], and the remaining three were a W-K algorithm [BaLL15],

rule induction [RoEZ10], and genetic programming [XiGP15]. The size of the data sets

(i.e. number of students) and method of course delivery varied across the studies, making

it difficult to directly compare prediction accuracies. However, of interest is the high re-

ported accuracies in some of these studies. For example, the highest prediction accuracy

within this group of studies was 99% reported by Zacharis, using a decision tree prediction

algorithm [Zach18]. Three studies reported prediction accuracies of 80-82% from decision

trees [KoTF13], logistic regression [Zach15], and genetic programming [XiGP15]. The re-

maining 26 prediction models reported more modest course outcome prediction accuracies

in the range of 55-65%. These results indicate that there is potential for LMS data to

support student outcome predictions, and that there is still room to improve the predictive

models.

2.4.4.2 High Prediction Accuracy with LMS Data (Zacharis)

As introduced above, Zacharis experimented with decision trees and LMS data to

great effect, producing models with 82% and in 99% accuracy in 2015 and 2018, respec-
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tively [Zach15] [Zach18]. Both studies were conducted using data sets from undergraduate-

level blended courses, which consisted of both in-person lectures and labs as well as online

interactions, offered at a large technological university. In the first study the data set con-

tained LMS records from 134 students, while the second study consisted of records from 352

students. In both cases, the LMS data included the number of files viewed, quiz attempts,

student contributions to class content such as a wiki page, and volume of communication

through discussion boards and direct messages. Zacharis concluded that the amount that

a student made use of the available communication options was the most predictive factor

in a blended environment. In the 2013 study, the number of emails, chats, and messages

read or posted to an online class forum accounted for 37.6% of the variation in student’s

final grades. Later, in the 2018 study, Zacharis codified this relationship into two predic-

tive rules based on the number of text messages sent from a student to their instructor or

classmates [Zach18]:

“(a) IF messages exchanged ≤ 172 THEN student fails, and

(b) IF messages exchanged > 172 AND content creation contributions ≥ 13

THEN student succeeds.”

Although Zacharis achieved significant success with these two rules, and decision trees

in general, there is no indication that the results would be replicable in other courses.

Blended courses offer a different experience than fully online courses, with required in-

person components that provide structure and opportunities to meet and interact with

instructors, teaching assistants, and peers in the real world. The heavy reliance on student

communication for prediction in these studies suggests that the particular courses studied

were both well-suited for and encouraged this type of behaviour. For example, not all LMS

courses include a course-specific messaging function, discussion board or wiki, and those that

do are not equally monitored by the teaching staff, which may impact student engagement.

The potential power of ML was not harnessed, as only one ML was implemented and it
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could be replaced by a set of conditional expressions. There is no indication in the Zacharis

studies that 172 is an important number of messages that can predict student success in

other courses, nor that there exists a specific number of messages that can be discovered

for additional courses and used to predict student success therein. Zacharis postulates

that the course design, which encouraged collaboration, may have influenced the relative

predictive value of the features [Zach18]. Other features which are commonly found in other

course outcome prediction studies, such as total time online, number of LMS interactions,

and number of logins, were found to only weakly correlate with student outcomes in these

studies. Therefore, there is room to develop new features from LMS data that may better

correlate with student outcomes on individually or as combinations of features.

2.4.4.3 Prediction with Multiple Features (Macfadyen and Dawson)

In an earlier study, Macfadyen and Dawson also used LMS features including mail

messages and discussion board posts, as well as time on task features. They aimed to

predict students who failed and those who were at risk of failing (defined as a final grade of

< 60%), using a data set of 118 students enrolled in a fully online undergraduate university

course in 2008. With regression modelling they were able to accurately predict 80.9% of

the students who failed, and 70.3% of students in the “at risk” category. In this study, just

as in the Zacharis studies, the most predictive feature was related to the social aspect of

learning - in this case, student contributions to discussion boards. Therefore, Macfadyen

and Dawson indicate that student communication data has predictive value, however the

study also shows that simple conditional relationships using this data alone can not always

account for course outcomes.
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2.4.4.4 Prediction with Limited LMS Interaction Data (Orji and Vassileva)

Depending on the online learning environment, or how the course is structured, student

communication data is not always available. For example, in another study, Orji and

Vassileva explored the relationship between LMS data and student course outcomes in a

blended, undergraduate level university courses [OrVa20]. The data set consisted of records

from 490 students within an LMS (which is referred to as a technology-enhanced learning

system (TELS) in the paper). Unlike in the previously mentioned studies, the data set used

by Orji and Vassileva did not include student communication data. The features included

in the model were total time spent on a task type (homework, assignments, quizzes, or

readings), number of logins, percentage of activities accessed, and average assessment score.

Using a random forest model with an 80%-20% train-test split, Orji and Vassileva predicted

student course outcomes with 84.1% accuracy. However, the “AveAssessmentScore” feature

was the important factor to the prediction, contributing 60% to the prediction outcome.

This feature is the average score a student has achieved on all marked assessments in the

LMS, thereby indicating that the unweighted average of course marks is highly correlated

with a student’s final grade, as is to be expected.

2.4.4.5 LMS Data for Early Prediction (Brdnik et al.)

Some studies attempt to predict student outcomes using only a subset of the LMS data

for early prediction. For example, Brdnik et al. attempted to predict student outcomes at

each month during an undergraduate-level, online course from the UK-based Open Univer-

sity which offers low-cost distance course options that are similar to a MOOC [BrPH22]

[KuHZ17]. The course ran from October 2013 to May 2014, and students could obtain

grades between 0 and 100 with 40 set as the threshold to pass. In order to facilitate early

prediction, the LMS data collected for 777 students was augmented with demographic and
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administrative data. The study had access to demographic data including gender and age,

as well as past student performance such as whether the student had taken the course be-

fore, and their current education level. The data set also contained the number of clicks per

day in the LMS (which is referred to as a virtual learning environment (VLE) in the paper).

Using linear regression, Brdnik et al. were able to accurately identify 74% of students who

would fail the course one month before the final exam. However, it is notable that in this

study, the LMS data is augmented with demographic or administrative data that is not

always available. As well, the data set was obtained from a MOOC-type course, rather

than a degree-granting university, which may impact student motivation and behaviour. In

fact, due to the lower levels of time and financial investment in these types of courses, it has

been speculated that it is more valuable to study course outcome predictions from degree-

granting universities because of the relatively higher costs of their tuition-based programs

[DeDS22].

2.4.4.6 Comparison of Behavioural Data, Administrative Data, or Both for Prediction

(Bird et al.)

Bird et al. studied the predictive strength of administrative data relative to LMS

data [BiCS22]. Using a large data set, their study addressed criticisms that earlier work did

not include sufficient numbers of students. The data sets used by Bird et al. included 226,

784 students across 2646 courses in 23 community college institutions in the Virginia Com-

munity College System (VCCS). Each student record consisted of data from 2000 onward,

and LMS data from 2019 onward, omitting Spring 2020 to account for a different grading

scheme used during the initial COVID-19 pandemic shutdown. The administrative records

included “program of study, courses taken, grades earned, credits accumulated, financial aid

received, and degrees or certificates awarded”, and the LMS data included content page ac-

cesses, discussion board posts, messages, and assignment and quiz submissions. This study
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compared the predictive strength of the administrative-only data, LMS-only data, and the

combined administrative and LMS data when using a random forest prediction model. Bird

et al. found that the administrative data had the greatest predictive value, for students not

in their first term. The LMS data on its own was the least predictive (c-statistic of 0.779)

and combining it with the administrative data resulted in only marginal improvements from

the administrative data-only model. A drawback to this study was the use of data from

a wide variety of courses across multiple disciplines and delivery modes. The authors in-

dicate that there may be differences in prediction performance based on the course itself,

citing the example that instructors in an English course may set up their course on an LMS

differently compared to a Mathematics instructor. Therefore, there is value in focusing on

specific courses or course types when performing course outcome prediction studies, even

at the expense of larger data sets, in order to reduce confounding factors.

2.4.4.7 Summary of Previous Studies

Current course outcome prediction studies often make use of demographic or admin-

istrative data that is not available in all cases. Therefore, there is interest in exploring

the predictive value of LMS-only data, as shown in the review paper by Arizmendi et al.

which contains multiple LMS-only predictive models. Although Bird et al. indicate that

LMS-only data may be less predictive than other student information, Zacharis shows that

by narrowing the scope to homogenous course data it may be possible to achieve strong

prediction results using behavioural data alone depending on the features derived from the

LMS. As well, different ML models may be better suited to processing the type of data

recorded by LMS software. As observed in Arizmendi et al., current course outcome predic-

tion studies tend to employ only one ML predictive model, most commonly either regression

models or decision trees. This work addresses the gap in the literature of LMS-based course

outcome prediction through two main avenues. The first way is through the development
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of novel LMS-based features that encapsulate a student’s behaviour over time, including

intervals and burstiness features. The second way is the application of additional types of

ML models to generate predictions from LMS-only data.

2.4.5 Contributions to the Field

This work addresses the gap in the literature of LMS-based course outcome prediction

through in three main ways. The first is through the development of novel LMS-based

features that encapsulate a students behaviour over time, including intervals and burstiness

features. The second is the application of additional types of ML models to generate

predictions from LMS-only data. The third is the use of intervals as a measure to explore

undergraduate student behaviour with an LMS in an online, undergraduate synchronous

course over time or as a feature to predict student outcomes using only standard LMS data,

a context that has not been explored in the literature. These are the contributions this

research makes to the field.

2.5 Literature Review Summary

This chapter introduced the evolution of AI and ML over time. The three main learn-

ing theories of behaviourism, cognitivism, and constructivism were presented, with parallels

drawn to advancements within AI. The current trends and some future directions for us-

ing AI and ML for research on education and personalised learning were discussed, and

the proliferation of digital education data, increased access to educational technology, and

growing numbers of online or remote delivery courses. Applications of ML using education

data are discussed, including student modelling and prediction, decision support systems,

and adaptive learning environments. In particular, the application of ML to education data
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for the purpose of student outcome prediction was explored, including course or cumula-

tive grade prediction and dropout prediction. Literature on the application of ML using

different educational data sets for the purpose of student course outcome prediction was

examined. Then research on student course outcome prediction using LMS interaction data

was analysed and synthesized, supporting the contributions this doctoral thesis makes to

the field.
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Chapter 3

Methodology

In this chapter, the experiments that were designed to address the research questions in

Section 1.2.3 are presented. The processes of acquiring the LMS data available from the UM

Learn Data Hub, processing the raw data into course and student models, creating temporal

features from the models to represent students’ interactions with the LMS, and the design

of time series classification experiments are described. The temporal features are used in

the first three groups of research questions to perform an exploratory analysis of students’

patterns of behaviours within the LMS; discover correlations between the temporal features

and between the features and course outcomes; and evaluate the use of the features for

early prediction of course outcomes. The time series classification experiments address the

fourth group of research questions.

3.1 UM Learn Data Hub

This work focuses on a data-driven approach, wherein the data is analysed to create

models and draw conclusions. This differs from a model-driven approach in which models
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and theories are postulated first by assuming certain characteristics and statistical proper-

ties of the data in advance, and then tested for fit with the available data.

The data-driven approach is made possible by having sufficient data available to create

features for machine learning. The following section describes the types of educational data

collected, and the models created from that data.

This work uses the quantitative information that is already collected and stored in an

LMS to model and create new features and predictions, without requiring any additional

data collection.

The University of Manitoba uses an LMS called UM Learn that is an institution-specific

implementation of the Brightspace product from Desire2Learn. The UM Learn platform

records time-stamped user activity, some of which students and instructors are able to access

through course-specific webpages on UM Learn.

A companion product called the Data Hub stores the full set of user activity data, and

is managed by The Centre for the Advancement of Teaching and Learning (“The Centre”)

at the University of Manitoba. Although information in the Data Hub is linked to specific

student profiles, any such linking information is removed by The Centre. No identifying

information, such as personal or demographic data, is included in the dataset. That is, the

user activity data was used to create a profile of an anonymous learner. This is different from

some of the previous work in this area, which uses past course enrolment and grades [JiPa20].

In this work, only the anonymous data that is available through the Data Hub is used to

create the student timelines and predict course outcomes in order to examine how student

behaviour within the LMS relates to course outcomes without bias from previous course

performance. As well, this dataset mimics the information that could be made available to

an instructor teaching the course without requiring data collection beyond what is gathered

through the LMS.

Kathryn L. Marcynuk - 58 of 218 - April 14, 2023



Prediction of Student Outcomes 3.1 UM Learn Data Hub

3.1.1 General UM Learn Data Sets

Conversations with The Centre have shown that research on information stored by the

UM Learn Data Hub has rarely been conducted [Nikn17] [Ronc19].

Personal and demographic information is not collected in the Data Hub and identifying

student information, such as student numbers, is removed from the data and replaced by

an anonymous user ID automatically at The Centre. Both The Centre and the Research

Ethics Board advised that Research Ethics Board approval was not required in order to

access and use the data stored in the Data Hub.

For each course on UM Learn, the Data Hub records information about the course

setup and student interactions with the course components. For each student enrolled in

the course, the Data Hub datasets include:

• An anonymised user ID;

• Most recent access date of the UM Learn course page;

• Date of each assignment submission (if submitted);

• Date of when assignment feedback was most recently read (if at all);

• Most recent access date for each course content item (ex. course slides, assignment

instructions, lab instructions, example code);

• Total number of times that the content item was visited;

• Date and time (to the second) that the student started each quiz;

• Date and time (to the second) that the student completed each quiz;

• Quiz score; and

• Final grade as a percentage.
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Taken together, these features were used to create models of student learning behaviour

within the course LMS.

The raw data from the LMS is stored in a series of tables for each course, each of

which can be opened individually as an Excel spreadsheet. The Brightspace software allows

for a number of different data sets [D2L22], although The Centre declined to disclose the

total number of data sets implemented in the UM Learn Data Hub. The four data sets

provided by The Centre and used in this work are: Content User Progress (i.e. content

page accesses), Grade Data, Quiz Data, and Assignment Data. All four data set tables

were acquired for each of the courses described in Section 3.1.2, for a total of twelve raw

data set tables to be processed as described in Section 3.2. Each data set table was stored

in a separate Microsoft Excel file by The Centre.

Tables 3.1-3.4 show examples of the raw data in each of the four types of data ta-

bles.
Table 3.1: Example of the header and two rows of the Grade data table. The UserId field
has been modified with dummy values for clarity.

Section Calculated Final Grade

COMP-1010-A01 - Introductory

Computer Science 1

38.952074152

COMP-1010-A01 - Introductory

Computer Science 1

85.462796942

Calculated Final Grade

Denominator

Calculated Final

Grade %

Users.UserId

100 38.952074152 111111

100 85.462796942 123123
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Table 3.2: Example of the header and two rows of the Content User Progress data table.
The UserId and Title fields have been modified with dummy values for clarity.

ContentObjectId UserId CompletedDate LastVisited IsRead

1951766 111111 None 2020-07-22 22:02:42 True

1958861 111111 None 2020-07-30 23:07:59 True

NumRealVisits NumFakeVisits TotalTime IsVisited

1 0 1 1

1 0 1 1

IsCurrentBookmark IsSelfAssessComplete LastModified

1 0 2020-07-22 22:04:12

1 0 2020-07-30 23:09:08

contentobject4courses.OrgUnitId contentobject4courses.Title

375277 Lecture1

375277 Lecture2
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Table 3.3: Example of the header and two rows of the Quiz data table. The UserId field
has been modified with dummy values for clarity.

AttemptId QuizId UserId OrgUnitId AttemptNumber

2096020 135883 610116 111111 1

2095456 135883 592109 123123 1

TimeStarted TimeCompleted Score IsGraded

2020-07-31 20:59:55.250000 2020-07-31 21:14:22.566000 11 True

2020-07-31 17:21:04.956000 2020-07-31 17:31:11.506000 11 True

OldAttemptNumber IsDeleted PossibleScore

False 12

False 12

IsRetakeIncorrectOnly QuizObjects.QuizName

False Quiz 9

False Quiz 9
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Table 3.4: Example of the header and two rows of the Assignment data table. The UserId
field has been modified with dummy values for clarity.

DropboxId OrgUnitId SubmitterId SubmitterType

99040 375277 111111 User

98421 375277 123123 User

FileSubmissionCount TotalFileSize FeedbackUserId FeedbackIsRead

4 129607 441042 False

2 23305 357728 False

Score IsGraded LastSubmissionDate Feedback

27.500000000 False 2020-08-17 08:31:55.653000

26.500000000 False 2020-08-02 05:04:15.113000

FeedbackLastModified FeedbackReadDate CompletionDate

2020-08-20 21:45:33.970000 2020-08-17 08:31:55.653000

2020-08-10 01:56:52.156000 2020-08-02 05:04:15.113000

AssignmentSummary.Name AssignmentSummary.Category

Assignment 5 Assignments

Assignment 4 Assignments

AssignmentSummary.Type AssignmentSummary.StartDate

Individual 2020-08-03 09:00:00

Individual 2020-07-20 09:00:00

AssignmentSummary.EndDate AssignmentSummary.DueDate

2020-08-17 09:00:00 2020-08-15 00:59:00

2020-08-05 01:59:00 2020-08-03 00:59:00
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As shown in the examples of Tables 3.1-3.4, each row represents information about

a student interaction in the course and each column contains a field related to the type

of data in the table. Each student interaction of the type specified in a table is in a

separate row. That is, a student’s information is not grouped into a single row but spread

across many rows. For example, if a student accessed 100 content pages, these interactions

will be represented as 100 distinct rows in the Content User Progress table for that course.

Similarly, in the Assignment Data and Quiz Data tables each student has a separate row for

each assignment and quiz submitted. In the Grade Data table, each student appears in only

one row storing their final grade. In addition, not all of the fields are relevant to a particular

course. For example, in the Content User Progress tables the ”IsSelfAssessComplete” field is

populated with all zeroes because self-assessments were not used in the course. Furthermore,

not all fields in each table are populated. For example, in the same Content User Progress

tables the ”CompletedDate” field is empty in all rows.

3.1.2 COMP 1010 UM Learn Data Set

The UM Learn Data Hub datasets presented here for this work are for three iterations

of COMP 1010: Introductory Computer Science 1 held over three separate terms. Although

students can come into the course with a range of programming experiences, COMP 1010 is

considered the first in a series of Computer Science courses. Prior knowledge of programming

is not required, however Grade 12 mathematics is a pre-requisite. An overview of the three

courses is shown in Table 3.5. The number of weeks refers to the length of time that the

course LMS page was available to students, and the enrolment is the number of students

who received a final grade in the course.

Kathryn L. Marcynuk - 64 of 218 - April 14, 2023



Prediction of Student Outcomes 3.2 Creating Models from LMS Data

Table 3.5: COMP 1010 Data Set

Term Number of Weeks Enrolment

Course A Summer 2020 13 101

Course B Fall 2020 18 124

Course C Summer 2021 18 101

All of the courses in Table 3.5 were offered as remote, synchronous courses. These

courses were chosen due to their consistency, repeatability, and availability. Sections of

COMP 1010 typically have a large enrolment cap (over 100 students), and are offered

multiple times per year. Due the number of sections per year of the course, there is a

standardized structure to the course that has stabilized over time to facilitate a common

presentation of the course material regardless of the current instructor. As well, there

are many opportunities for students to interact with the LMS, through the content pages,

quizzes, and assignments. The students who enrol in COMP 1010 are not a homogenous

group. Since there are minimal pre-requisite requirements, the students can register with a

wide range of both topic-specific programming knowledge and experience with a university

LMS. These three particular sections of COMP 1010 were also chosen because they were

delivered fully online during the COVID-19 lock downs, during which no alternate in-person

course offerings were available. Therefore, any student who wanted to take the course during

this time, needed to do so through with the remote delivery option through the LMS.

3.2 Creating Models from LMS Data

The LMS data was extracted from the UM Learn Data Hub into spreadsheets organized

by course and data type. Each student is represented by unique user ID number that

is unrelated to any personal information, such as an official student number. The LMS

student interaction entries in the spreadsheets are associated with a user ID to preserve
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anonymity. Two models were created to encapsulate the information about the courses and

the students. The first was a model of a generic course structure, which was designed to

provide a framework and context for the student LMS activity data relative to milestones in

each course such as start and end of term, Voluntary Withdrawal deadline (VW deadline),

and due dates. The second was a student model, which was designed to represent an

individual learner’s activity patterns and performance over the term.

3.2.1 Course Model

To describe the models, the term “course” will be used generically to refer to one sched-

uled section of one single undergraduate course that occurs over one term (Winter, Summer,

or Fall term). There may be more than one section offered in a given term, although stu-

dents typically do not have significant interactions with other sections. All students in

the course have access to the same lecture materials, and have the same assessments and

deadlines, other than exemptions or extensions for medical or compassionate reasons. For

the purposes of analysing the data for patterns of behaviour, all students in a course were

assumed to have the same deadlines. For example, handing in an assignment after the

deadline was considered a late submission in the course model, even if the student was

allowed to do so with an extension. This was done to reflect that a late submission, even

with a instructor approval, is different behaviour than submitting the work by the original

deadline.

Even though the set-up, lecture style, and assessment types can differ between courses,

there are some commonalities underlying the general course offerings that were used to

create a course model in Python. Courses each have a start and close date on UM Learn,

which is the time period that the course is available to students, often starting before the

first lecture and closing after the final exam at the end of the term. Each course has a
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VW deadline, which is the last day that a student can withdraw from the course without

penalty, and may have a mid-term break. These dates may impact a student’s activity

levels within the course. By creating the Python course model out of information that is

common to many undergraduate courses, the tool can also be extended to model courses

beyond COMP 1010 that follow a similar structure. A simplified depiction of the course

model created in Python is shown in Figure 3.1.

Fig. 3.1: Simplified visualization of the course model

In general, courses administered through an LMS have a series of assessments through-

out the term. The types of assessments captured in the course model are assignments, labs,

quizzes, midterm tests, and a final exam. The course model includes the number of each

assessment type, and the deadline and weight of the assessment as a part of the overall

course grade. Midterm tests and final exams are considered separately from the quiz assess-

ment type, in order to distinguish between these longer tests from from shorter, less-weighty

quizzes that may be administered more frequently. For each midterm test and exam, the

model also includes timing information about an Honesty Declaration (if it was required),

allowed writing time, and starting window. The model can be expanded to include addi-

tional assessment types that can be submitted through the LMS such as delineating different

types of assignments, as required. Some courses may also have a component, such as class

participation, that is measured outside of UM Learn. Course components for which the
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grade is not available on the LMS are currently not included in the course model.

Finally, the course model includes the number of lecture days per week and the anonymised

cohort of students associated with that course. Note that in this course model, the list of

students is a list of student objects. Each student object is an instance of the student model,

described in Section 3.2.2, storing information and features for one student.

3.2.2 Student Model

Students can interact with the course through UM Learn in a number of ways. The

types of interactions between a student and the LMS that are used to create the student

model are:

• UM Learn Assignments

• UM Learn Quizzes

• UM Learn Content page accesses

The student model pre-processes the raw LMS data for feature extraction by encapsu-

lating the LMS interaction data and course grades into a Student object. Each student is

a modelled in the same way, as an instance of the Student object, and a list of all Student

objects associated with a particular course is included in the course model object described

in Section 3.2.1.

As shown in Figure 3.2, every interaction that each student has with the LMS has data

associated with it. The data associated with each type of interaction was encapsulated into

custom Assignment, ContentPage, and Quiz objects. Any work completed independently

and then submitted as one or more files by the student is considered a UM Learn Assignment.

The type of work may fall under different assessment categories in the Course Syllabus. A

UM Learn Assignment submitted by the student will have a name, a range of dates that the
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assignment was allowed to be submitted, an actual submission date, a due date, a number of

submissions, a submitted file size, and a grade associated with it. If the student’s assignment

is marked, it will also have a date that the feedback was read by the student.

Fig. 3.2: LMS information associated with a student

Similarly, each quiz submitted by the student has a name, maximum score (or number of

possible marks), a date and time that it was started, a date and time that it was completed,

a number of attempts, and an earned score (the student’s grade on the quiz).

Each content page accessed by the student has a name, a date that the page was last

modified, a date that the page was last visited by the student, and a number of times the

student visited the page.

In Figure 3.2 the data fields for each type of interaction are shown in either plaintext

or italics. The data fields in plaintext are values that will be common across all students

in a course, whereas those data fields in italics are specific to the individual student. For

example, an assignment will have a common maximum score for all students, but each

student will have an individual earned score on that assignment.

The student model includes all of the LMS interactions described in Figure 3.2 organized
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into a timeline, as shown in Figure 3.3. A list of intervals is created from the amount of time

in between successive interactions in the timeline. The timeline and intervals are discussed

in further detail in Section 3.2.3. In addition, the student model also includes an anonymous

user ID and a final grade associated with the student, which is a cumulative weighted grade

of all coursework from the student for the term.

Fig. 3.3: Simplified visualization of the student model. The timeline consists of student
interactions organized chronologically. The timeline includes content page accesses (CP),
assignment submissions (A), and quiz submissions (Q). Each entry in the list of intervals
is the length of time between successive timeline interactions, in chronological order.

3.2.3 Student Timelines

Within the student model, the LMS interactions are arranged into a chronological

timeline. That is, for every student, each of their assignment submissions, quiz starts, and

most recent content page accesses were assembled in order by date and time to create a

timeline of activity within the structure of the course. Figure 3.4 illustrates this concept.

The timeline for each student consists of a list of Assignment, ContentPage, and Quiz

objects as described in Section 3.2.2, ordered chronologically by the date associated with

each object.
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Fig. 3.4: Visualize a student timeline

An interval, also known as an inter-event time, is defined as the time between

two successive timeline items for a student. For example, if a student accesses a content

page containing lecture slides followed by a content page containing assignment instructions

five minutes later, the interval between those interactions is five minutes. Intervals in

LMS interactions have been studied previously for a synchronous, in-person undergraduate

class, in which students still had face-to-face to contact with the instructor and offline

activities [DeBr20]. The datasets obtained from Courses A to C in Table 3.5 were from

fully remote, online, synchronous course offerings.

Each student can have a different number of items on their timeline, depending on

how many of the course pages, assignments, and quizzes they interacted with on the LMS

during the term. Different patterns of behaviour throughout the course are also possible,

characterised by different patterns of intervals. For example, student timeline items may

be evenly spaced, which would mean intervals of a consistent length. Student interactions

may also occur in bursts, characterized by multiple short intervals followed by a longer

interval, or in other patterns. Bursty patterns of activity have been shown to exist in some

human interactions with technology, such as sending emails [Bara05]. Intervals are used

to describe student interactions with the system temporally (i.e., via time events), beyond

simply counting the number of interactions.
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3.2.4 Student Model Features

The following numerical features were created based on the student timelines. Features

1-10 were calculated over the full timeline, as well as up to designated points in the timeline,

whereas features 11-12 were calculated once. All of these features are discussed in further

detail in sections 3.3 to 3.5.

1. Total number of student interactions (sum of the number of content page accesses,

number of assignment submissions, and number of quiz submissions)

2. Total number of timeline items

3. Fraction of days, out of all course days, in which at least one LMS course interaction

occurred (i.e. non-zero days)

4. Total number of intervals

5. Mean interval lengths in seconds

6. Variance of interval lengths

7. Skewness of interval lengths

8. Kurtosis of interval lengths

9. Burstiness of intervals

10. Time between assignment submission and assignment deadline, on average

11. Fraction of Midterm time used

12. Final Grade (out of 100)
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3.2.5 ML Learned Features

The features introduced in Section 3.2.4 were hand-crafted using the Student Models

and timelines. In addition, features were automatically generated using ML. In particular,

the Featuretools framework [Feat22] was used in Python to find relationships in the raw

LMS data.

To create these automatically learned features, the raw data was first pre-processed.

As described in Section 3.1.1, the original datasets were spread over multiple separate files.

Each file contained data about a type of LMS interaction, and therefore information about

a particular student was spread across the files. All of the data across the Content User

Progress (i.e. content page accesses), Quiz Data, and Assignment Data files was organized

into a single table, represented as a DataFrame in Python, called ‘interactions’. Each row

in the ‘interaction’ table represented a single student interaction with the LMS and had

three columns: the anonymous student ID, an interaction type (Content Page, Quiz, or

Assignment), a date (time, day, month, and year).

The data from multiple courses was used, as described in Section 3.1.2. Since each of

the courses was held in a different term, they each had a different start date and were not

directly comparable. To account for this, all of the dates were normalized to the course

start date. This means that an LMS] interaction on the first day of Course A would appear

in the table as the same day, month, and year as an interaction on the first day of Course

B or Course C, and so on.

In addition to the ‘interactions’ table, a second table with just one column was created

which contained all of the anonymous student IDs in the data set. This ‘student’ table was

also represented as a DataFrame in Python. The Grade data was not used to create the ML

learned features, as the final grade was target variable (or information to be predicted) so it

could not be incorporated into the features that would be used to make the predictions. A
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trial was conducted including the Grade data, to see if it influenced the output features. The

result was that the automated feature engineering algorithm simply identified the grades as

an additional feature.

Once the ‘interactions’ and ‘student’ tables were created, an entity set was created

from them. Using Deep Feature Synthesis (DFS)1 in Featuretools, a relationship between

the ‘interactions’ table and ‘student’ table was machine-generated using the anonymous

student ID to link the information in both tables.

The DFS algorithm produced eleven automatically generated features, which are listed

below:

1. COUNT(interactions)

2. MODE(interactions.type)

3. NUM UNIQUE(interactions.type)

4. MODE(interactions.DAY(time))

5. MODE(interactions.MONTH(time))

6. MODE(interactions.WEEKDAY(time))

7. MODE(interactions.YEAR(time))

8. NUM UNIQUE(interactions.DAY(time))

9. NUM UNIQUE(interactions.MONTH(time))

10. NUM UNIQUE(interactions.WEEKDAY(time))

11. NUM UNIQUE(interactions.YEAR(time))

1In this case, DFS refers to Deep Feature Synthesis as a type of automated feature engineering that has
been developed for temporal and relational data, and not Depth-First Search which is the more common
acronym.
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Of these eleven features, three were removed from the set. The feature MODE(interactions.type)

was removed because it contained non-numeric data. This feature calculated the most com-

mon LMS interaction type for each student and had one of three values: ‘ContentPage’,

‘Quiz’, or ‘Assignment’. Rather than using one-hot encoding to turn this non-numeric data

into numeric data2, the feature was simply removed because all but one student had the

same value (‘ContentPage’) and therefore the predictive value of the feature in this data

set was limited.

The two features related to the year, MODE(interactions.YEAR(time)) and

NUM UNIQUE(interactions.YEAR(time)), were also removed from the set. These features

were removed because the courses were all less than one year in length meaning that all

students had the same values for these features.

After removing the three features as described above, there were eight remaining fea-

tures generated from the ML algorithm to be used in the predictive experiments described

in more detail later on in this chapter.

3.3 Group 1 RQs: Patterns of Behaviours

In this section the first set of research questions and the experiments performed to

address them are introduced. The following two sections similarly introduce the experiments

for the other two groups of research questions.

The first group of research questions centres around student’s patterns of behaviours.

The overarching question is, what are students patterns of behaviours (as measured by time

2One-hot encoding is a method of converting non-numeric data into numeric data, particularly when
the non-numeric data has a limited number of values. In this case, one-hot encoding would transform the
feature of MODE(interactions.type) into three separate features, one for each interaction type of Content
Page, Assignment, or Quiz. If that interaction type was the most common for a student, then its feature
value would be 1, otherwise the feature value would be 0.
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and interaction)? To address this question, an exploratory data analysis was conducted by

creating features from the raw LMS data.

RQ 1.1: What are students’ patterns of behaviour on an LMS over time (over

time periods, within a single interaction/time, between interactions, time spent

on assignments/quizzes, in relation to course events such as assignment dead-

lines and VW dates)

To begin to explore patterns in the data, it was necessary to create features from

the raw LMS data. The first of these features was the number of interactions that each

student had with the course page (see Section 3.2.4 #1). This was defined as the total

number of assignment submissions, quiz submissions, and content page accesses. The second

feature was the number of timeline items, where the timeline was defined as in 3.2.3 (see

Section 3.2.4 #2).

Additionally, a feature was created out of students’ interactions with the assignments

(see Section 3.2.4 #10). In this feature, the amount of time between the assignment deadline

and student’s actual submission date was calculated. If there were multiple assignments,

then the average of this difference was calculated to account for changes over the term

while still maintaining a history of behaviour around assignments. The calculation of this

feature is shown in equation Equation 3.3.1, in which the number of assignment is n ≥ 1,

the deadline of the ith assignment is Ai, and the date of the student’s submission of the ith

assignment is si.

1

n

n∑
i=1

Ai − si (Equation 3.3.1)

Each of the above three features were computed over the full timeline, as well as up to

designated points in the timeline. These designated points were: one quarter of the way
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through the term, half of the way through the term, three-quarters of the way through

the term, the day after the VW deadline, the day after the midterm or first term test if

there were multiple term tests, and the day after the final exam. The term was divided

into quarters in order to observe the features at equally spaced points over time, with

sufficient time in between the chosen points for students to have multiple interactions with

the LMS. The additional designated points of the VW deadline, midterm (first term test),

and final exam were chosen to examine their potential as trigger points for changes in

student behaviour.

As well, an additional feature for each student was created out the amount of time that

the student used before submitting their midterm (see Section 3.2.4 #11). This feature was

calculated as the fraction of time the student used out of the total allowed writing time for

the midterm (first term test). For example, if the length of time between when a student

started and submitted their midterm was 45 minutes out of a maximum allowed writing

time of 60 minutes, their value for this feature would be 0.75. The fraction of writing time

was used as a feature, rather than the length of the writing time, in order to make the

feature more flexible and be able to account for courses with midterms of any length.

RQ 1.2: What are students’ patterns of behaviour on an LMS with regard to

interactions and intervals?

Additional features were introduced to quantify the regularity with which a student

interacts with the LMS, and whether those student interactions were predominately at

consistent intervals or can be characterized as bursts.

One measure is through the fraction of days in which the student had at least one

interaction with the course LMS (see Section 3.2.4 #3). This idea was encapsulated in the

fraction of non-zero days feature, which was created by counting the number of days in
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which the student had a non-zero number of interactions with the LMS within a given time

period, and dividing that by the total number of days within that time period. If only a

small fraction of the days contain LMS interactions, then the student is either interacting

with the LMS minimally or grouping their interactions within a small number of active

days. Alternatively, if the fraction is high then the student must be interacting with the

LMS at least once per day fairly consistently throughout the term.

A second feature that was created to examine the spacing between LMS interactions was

the Goh-Barabasi burstiness measure, defined in equation Equation 3.3.2 [GoBa08] (see

Section 3.2.4 #9). Introduced by Goh and Barabasi, this measure is a way of quantifying

activity patterns within a system as a value within the range −1 ≤ B ≤ 1. Bursts are

characterized as short periods of time with high levels of activity, followed by longer stretches

of time with decreased activity. Bursty patterns will have a B value close to 1, whereas

steadier activity patterns, with more consistent inter-event times (also known as intervals),

will have a B value close to 0. Bursty activity patterns have been observed in natural

phenomena like earthquakes, as well as human activity such as email patterns [Bara05]

[GoBa08]. The burstiness measure is calculated from the standard deviation σintervals and

mean µintervals, of the timeline intervals.

B =
σintervals − µintervals
σintervals + µintervals

(Equation 3.3.2)

Each of the above features were computed over the full timeline, as well as up to

designated points in the timeline. As with the previous features that were discussed, these

designated points were: one quarter of the way through the term, half of the way through

the term, three-quarters of the way through the term, the day after the VW deadline, the

day after the midterm or first term test if there were multiple term tests, and the day after

the final exam.
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RQ 1.3: What are the predominate patterns of behaviour?

Student behaviour within the LMS can be characterized not only by the number of

their interactions with the course content, but also by the amount of time in between those

interactions. A student may interact with the course content at regularly spaced intervals,

in quick succession with longer periods between bursts, or in varying patterns throughout

the term.

The student timelines introduced in Section 3.2.3 that form part of the student models

discussed in Section 3.2.2 were designed to study the periods of time between student

interactions with the LMS. Individual timelines were created for each student, three of

which were randomly selected from Summer 2021 and shown in Figure 3.5 as an example in

order to visually illustrate the concept. The length of each interval is shown on the vertical

axis, and the number of interactions each student had with the LMS is on the horizontal

axis. For example, it can be seen that each student has one or more longer intervals of at

least a week. This means that the student did not interact with any assignments, quizzes,

or content pages during that time for the duration of a week or more.

As well, students may not interact with every item in a course. Indeed, this is seen in

Figure 3.5 as the number of LMS interactions along the horizontal access is different for

each student. In this group, Student 1 has 107 interactions, Student 2 has 241 interactions,

and Student 3 has 207 interactions.

Kathryn L. Marcynuk - 79 of 218 - April 14, 2023



Prediction of Student Outcomes 3.4 Group 2 RQs: Correlation of Features and Outcomes

Fig. 3.5: Example student timelines from Summer 2021, selected at random.

The intervals are a variable that can be used to characterize the student timelines. The

probability mass function (PMF) of the intervals of all students was calculated in order

to explore the properties of this variable.

3.4 Group 2 RQs: Correlation of Features and Outcomes

What are the correlations between students’ patterns of behaviour over the entire course

and student final grades? Six sub-questions address how the features created from the raw

student LMS data are correlated with each other, as well as with course outcomes.
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RQ 2.1: Are time and pattern correlated? If so, how?

The intervals, or inter-event times, obtained from the student timelines have a probabil-

ity mass function as addressed in research question 1.3. To evaluate how the intervals may

change over the term, the statistical properties of the intervals were calculated at multiple

points in time.

The first four moments were calculated: mean, variance, skewness and kurtosis (see

Section 3.2.4 #5−8). The skewness is a measure to quantify the symmetry of a distribution.

A distribution that is nearly symmetrical will have a skewness close to zero, whereas a

distribution with a long tail is considered positively or negatively skewed depending on

the direction of the tail. A distribution with a tail extending to the right will have a

positive skewness, and if the tail extends to the left the distribution will have a negative

skewness. The Fisher-Pearson sample skewness, used in this work, is a common skewness

measure that is calculated as shown in Equation Equation 3.4.3. The skewness of the

interval lengths indicates whether shorter or longer intervals are more likely (positive or

negative skewness, respectively), or if they are equally likely (with near zero skewness).

The skewness of the distribution of interval lengths serves is a numerical measure that

can provide insight into behavioural patterns. If the distribution is largely symmetrical,

then the interactions are occurring at consistent intervals. Otherwise, a positively skewed

distribution indicates that the interactions are occurring in bursts (many short intervals

separated by fewer long intervals) and a negatively skewed distribution indicates a lack of

engagement with the LMS (that is, behaviour characterized by long spans of time between

successive interactions).

g1 =
m3

m
3/2
2

(Equation 3.4.3)

The kurtosis was similarly calculated as the Pearson kurtosis, defined in Equation Equa-
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tion 3.4.4. Kurtosis is a measure to quantify outliers in a distribution, as shown through

the tail of the distribution. A distribution with more outliers, or more extreme outliers,

will have a higher kurtosis. A high kurtosis of the interval lengths indicates that there are

many long intervals or that some intervals are much longer than the average. Like skewness,

the kurtosis is a numerical measure that can be used to characterize behavioural patterns

with the interval lengths. A higher kurtosis indicates the presence of more extreme out-

liers within the interval lengths, either more very short or very long intervals depending on

the skewness. Therefore, a higher kurtosis implies a that interactions with the LMS occur

in longer intervals punctuated by bursts of activity, and a lower kurtosis implies that the

lenght of time between intervals is consistent over time.

g2 =
m4

m2
2

(Equation 3.4.4)

In the calculation of both skewness and kurtosis, mi is the ith central moment calculated

from N samples with mean x̄ as shown in Equation Equation 3.4.5.

mi =
1

N

N∑
n=1

(x[n]− x̄)i (Equation 3.4.5)

RQ 2.2: Are time, pattern and events/content (e.g., quizzes, assignments, ex-

ams) correlated? How?

Six features have been introduced that are related to the timeline intervals: the number

of intervals, interval mean, variance, skewness, kurtosis, and the burstiness measure (B)

described in RQ 1.2 [GoBa08]. As well, five additional features were introduced related

to the midterm writing time, assignment hand in time, number of days with at least one

interaction, the number of interactions, and the number of timeline items.
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The number of intervals is directly related to the number of timeline items, so only one

of those features needs to be used to capture the same information. In order to see how

the other features are related, the correlation between each of the features with each of the

other features was calculated at each quarter point in the term, as well as at the first term

test (midterm) and VW deadline.

RQ 2.3: Are time, pattern, and student grades correlated? How?

To explore the relationship between the timeline intervals and final grades, the cor-

relation between the final grade and each of the features of the interval mean, variance,

skewness, kurtosis, and burstiness was calculated.

RQ 2.4: Are time, pattern, events/content, and student grades correlated?

How?

The relationship between the final grade and each of the five additional independent

features was also explored by calculating the correlation between the final grade and each of

these features related to the midterm writing time, assignment hand in time, number of days

with at least one interaction, the number of interactions, and the number of timeline items.

If some features are highly correlated, they may contain similar predictive information

and can be removed from predictive models to reduce the dimensionality of the input

vectors.

RQ 2.5: Can these patterns be described in terms of high or low engage-

ment?

To assess the level of engagement with the course material beyond the number of in-

teractions, the number of repeated interactions was calculated as the average number of
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interactions per student divided by the average number of timeline items per student.

RQ 2.6: Are there patterns of behaviour that are related with student out-

comes in the course assuming students are grouped as pass/fail?

Although student outcomes in a course can be measured as a percentage final grade,

it is often more useful to consider the outcome as whether or not a student has passed the

course. In the COMP 1010 dataset, the minimum passing grade was 50%.

The percentage final grade can also be used to define student outcomes as one of five

categories, based on the Canadian Engineering Accreditation Board (CEAB) taxonomy,

which engineering educators must report on for each student in each course as part of the

engineering program accreditation requirements. These categories, with the associated final

grade percentages for this dataset, are:

• Strong: a final grade of A+ or A, defined as ≥ 80%.

• Competent: a final grade of B+ or B, defined as ≥ 70%.

• Developing: a final grade of C+ or C, defined as ≥ 60%.

• Needs Work: a final grade of D, defined as ≥ 50%.

• Failed: a final grade of F, defined as < 50%.

The first four categories above (Strong, Competent, Developing, Needs Work) can also

be grouped together as a single ‘Passed’ category, for the purpose of evaluating students on

a binary pass/fail scale.
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3.5 Group 3 RQs: Feature-Based Prediction and Early Pre-

diction

Which variables and features of behaviours (time, pattern, events) have the greatest

predictive capabilities for student outcomes? How early within the term can these patterns

predict final course outcomes in terms of final grades, or passing or failing the course? Put

another way, what is the horizon of predictability? The following five sub-questions further

explore how the student features can be used for prediction.

RQ 3.1: What factors predict student success in an online environment?

The features introduced in Sections 3.2.4 and 3.2.5 were used as input to multiple

supervised ML prediction models.

The first ML model used was linear regression, which accepts quantitative independent

variables as input and predicts a continuous variable. The logistic regression model also

accepts quantitative independent variables as input, however it is used to predict member-

ship in a discrete class such ‘Passed’ or ‘Failed’. Similarly, the k-Nearest Neighbours model

is also used to predict membership in a class, rather than a final grade percentage.

For each model, the features to be used as input are chosen. Then, any students with

non-numeric feature values are removed from the dataset. For example, if a student has

only one item on their timeline then it is not possible to calculate interval statistics, and

that student is removed from the dataset. The k-Nearest Neighbour model is sensitive to

the feature values, so the features are scaled before use.

Next, the remaining students are randomly split into a training group and a testing

group. The training group is used to train the ML model being used, while the testing

group is used to test the predictive capability of the trained model. To ensure that the
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experiments are repeatable, the random number generator is seeded with a known value

before the random split occurs.

RQ 3.2: Can we define a set of archetypes (student behaviour + course out-

come)?

Dimension reduction using Principal Component Analysis (PCA) was applied to create

a set of two new features, called principal components, that are hybrids of the information

contained in the features introduced in Section 3.2.4. This was done so that the students

could be grouped and visualized on a two-dimensional scatterplot. Unsupervised clustering

was used to group the students according to the two principal components, and membership

in each cluster was compared to student outcomes. This experiment was repeated using the

ML learned features introduced in Section 3.2.5 to observe how students were clustered based

on the features that were hand-crafted from the Student Models compared to the features

that were created from learned relationships in the raw data by the ML algorithm.

RQ 3.3: How early within the term can these factors predict final grades?

Put another way, is there an horizon of predictability for student outcomes? If so,

what is the length of the horizon of predictability? To address this research question,

the features calculated at partial points in the timeline were used as input to the linear

regression prediction model described in RQ 3.1.

RQ 3.4: Can these variables and features be used to predict course outcomes

of pass or fail before the end of the term, to indicate when intervention may be

required?

It is not always necessary to predict final letter or percentage grades. To determine
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whether intervention is required, being able to predict an outcome of passing or failing the

course may be sufficient. To explore this question, the features calculated at partial points

in the timeline were considered for the ability to predict a passing or failing outcome rather

than final letter grade.

3.6 Group 4 RQs: Time Series Classification

With the advancement of ML techniques it can be valuable to see how well newer pre-

diction algorithms perform on data, particularly complex data such as human interactions

within an LMS. Techniques such as linear regression, logistic regression, k-Nearest Neigh-

bours, and unsupervised clustering require features to be extracted from the raw timestamp

data produced by an LMS. This feature extraction, also known as feature engineering, re-

quires domain-specific knowledge and human oversight to develop pertinent features from

the data at hand. In contrast, there is interest in ML techniques that can operate on the raw

data itself, thereby removing the majority of the human cognition and perhaps potential

human bias from the process.

Neural network models offer an opportunity to perform predictive analysis of time

series data, without human-defined features, through a branch of research called time series

classification. Although the raw data still needs to be pre-processed to ensure that it

is in a compatible format, the resulting input data is maintained as a time series rather

than a set of features. Although neural network-based models can make predictions of

which classification category an input sample belongs to, these models do indicate the basis

for that prediction. Therefore, these models are less interpretable than feature-based ML

models.
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3.6.1 Time series Classification Methodology Overview

A number of experiments were conducted to predict student course outcomes with the

LMS timestamp data, using multiple types of neural networks and methods of pre-processing

the raw data. In general, each experiment consisted of the following steps:

1. Pre-process the data

2. Build a Neural-network ML model

3. Evaluate the ML model

To address research questions 4.1 and 4.2, the full timeline data was processed and used.

For research question 4.3 on early prediction, only timeline data up to the VW deadline

was included. Although these three steps are described in more detail in Subsections 3.6.2

to 3.6.4, a brief overview of these steps is provided below:

Step 1: The data was preprocessed in the following ways:

1. intervals as input data

2. time stamps as input data

3. labelled time stamps as input data (multivariable data)

Step 2: For each of the three sets of preprocessed data, the following ML models were

built:

1. CNN binary classifier

2. CNN ternary classifier with categories based on letter grades: {A+, A, B+, B}; {C+,

C, D}; and {F}

3. CNN ternary classifier with categories of: {students with the top half of passing

grades}; {students with the bottom half of passing grades}; {students who failed}
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4. Transformer binary classifier

5. Transformer ternary classifier with categories based on letter grades: {A+, A, B+,

B}; {C+, C, D}; and {F}

6. Transformer ternary classifier with categories of: {students with the top half of passing

grades}; {students with the bottom half of passing grades}; {students who failed}

Step 3: Each of the three sets of preprocessed data was used as input in each of the six

ML models, resulting in eighteen experiments. The performance of the ML models were

evaluated individually and in relation to the other experiments, as described below.

3.6.2 Step 1: Data Preprocessing

The student timestamp data was preprocessed using four steps to create data sets that

were standardized and rectangular for input into the ML models. The neural-based ML

models required the data to be standardized as they can be sensitive to outliers [Theo19].

Further, the ML models required a rectangular data set, meaning that the length of each

student data vector must be the same.

The first preprocessing step was to standardize the data over time. The raw student

timestamp data was standardized over time in two ways: using intervals and by standard-

izing the start date. The first data set was created using the timeline intervals that were

developed for the earlier experiments (as described in 3). These intervals are naturally

date-insensitive. Intervals are the lengths of time between successive LMS interactions, and

are not anchored to a calendar date. For example, the interval between June 1, 2020 at

8:00am and June 1, 2020 at 9:00am is the same as the interval between September 1, 2020

at 10:00am and September 1, 2020 at 11:00am. Therefore, intervals provide a method of

standardizing the time dimension for courses held across multiple terms. The second data

Kathryn L. Marcynuk - 89 of 218 - April 14, 2023



Prediction of Student Outcomes 3.6 Group 4 RQs: Time Series Classification

set was created by standardizing all raw timestamp data relative to an initial start date.

The initial standardized start date was arbitrarily chosen to be June 1, 2000. This date

was substituted as the start date for each of Course A, B, and C described in 3.5, and the

timestamps in each course were shifted to be relative to the new start date. The end date

of each course was not standardized in order to retain the relational information between

the timestamps, under the assumption that humans work in units of minutes, hours, and

days, rather than in units of percentage of a course term.

The second preprocessing step was to normalize the data values. After standardizing

the raw data over time, using either method, the data was then normalized using the z-score

function to reduce the impact of outliers on the neural-based ML models. The z-score3 is

defined as shown in equation Equation 3.6.6, and normalizes the data to have a mean of

zero and standard deviation of one.

z =
(x− µ)

σ
(Equation 3.6.6)

The third preprocessing step was to standardize the lengths of each individual student

data array. As shown in 3.5, students did not each interact with the LMS the same number

of times. This means that the number of timestamps, and consequently the number of

intervals, recorded for each student was different. In order to standardize the number of

interactions across all students, the student with the greatest number of interactions in the

raw data set was found (the student array of maximum length). Then, all students arrays

with fewer interactions were extended to be the maximum length and filled with the mean

value of zero.

Finally, the optional fourth preprocessing step was to create multivariable data by

labelling the timestamps with interaction type. This step was only applied to the standard-

3The z-score was calculated in Python using the scipy.stats.zscore library.
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ized timestamp data (from the first preprocessing step) not the intervals. This was for two

reasons: the intervals between certain interaction types, such as quizzes, were dictated by

the instructor rather than the students; and the number of intervals between certain interac-

tion types, such as assignments, would be prohibitively small. The standardized timestamp

data was organized either as a 1-dimensional array per student with all interactions, or as

multivariable data in a 4-dimensional array per student with additional rows indicating the

type of interaction using one-hot encoding. Examples of the timestamp and multivariable

organization are shown in Table 3.6.

Table 3.6: Example of standardized timestamp data organized as a 1-dimensional array
(timestamps only) and as a multivariable array with one-hot encoding for interaction type.

Timestamp 00:00:00:01:06:2000 00:04:08:01:06:2000 21:30:10:05:06:2000

Timestamp 00:00:00:01:06:2000 00:04:08:01:06:2000 21:30:10:05:06:2000

Assignment 0 0 0

Quiz 0 0 1

Content 1 1 0

3.6.3 Step 2: Building the models

The specific ML models used were CNN and transformers for classification. CNN

classifiers are a more established type of neural network that have shown promise with time

series classification tasks [Fawa20] [RoTB21] [WaYO17], and transformers are a newer type

of neural network that have grown out of the field of Natural Language Processing (NLP)

and have more recently been applied to time series classification tasks as well [Ntak21].

The binary classifiers were trained to predict whether students would pass or fail the

course, based on a passing grade of ≥ 50%. The ternary classifier was trained to predict
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whether students would pass the course with a high grade, pass the course with a low grade,

or fail the course. A high and low passing grade was defined in two ways. In the first way,

the classification groups were defined based on the students’ final letter grades, with a high

passing grade was defined as ≥ 70% (a grade of B or higher), a low passing grade was defined

as ≥ 50% and < 70% (a grade of C+, C, or D), while < 50% was considered a failing grade

(a grade of F). In the second way, the classification groups consisted of students in the top

half of the passing group, students in the bottom half of the passing group, and students

who failed. That is, the classification groups were defined based on the median passing

grade. The second type of classification groups for ternary classification were chosen to

create more balanced group sizes. In both cases, students who passed the course with a

low passing grade were considered the “warning” group, to indicate that instructors (or

the students themselves) could be warned that these students are not firmly on track to

pass.

In order to train and test all of the models, the processed input data sets were split

into randomized sets in the following way:

• 70% of the students were put into a training set,

• 20% of the students were put into a testing set, and

• 10% of the students were put into a validation set.

Therefore, 70% of the students were used for training the models, and a total of 30%

of students were used for testing [PeVG11]. For each model, the training set was used to

train the model to produce either binary or ternary predictions. In all cases the maximum

number of training epochs was set to 500, and the validation set was used to allow for an

early training exit in order to minimize overfitting. Each trained model was then evaluated

based on its accuracy at predicting students in the associated testing set.
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3.6.4 Step 3: Evaluating the models

In each of the eighteen experiments, the ML models were evaluated for their perfor-

mance on the given data set in the following ways:

1. Testing accuracy, defined as the overall percentage of students in the testing set clas-

sified correctly.

2. Number of true positive, false positives, true negatives, and false negatives. The

number of false positives (i.e. students who were predicted to pass but did not) was of

particular interest, to identify students most in need of support who might be missed

using the model.

Each type of model was built multiple times, using different random seeds, and both

the average performance and best performance of the model in each type of experiment was

reported. The number of random seeds used for each of the CNN classifiers was 100, and

the number of random seeds used for each of the transformer classifiers was 20, due to the

relatively long running time of the transformer classifiers. It took approximately 30 seconds

on average to train and test one CNN model, and 15 minutes to 2 hours to train and test

one transformer model, using the available hardware.

3.7 Methodology Summary

This chapter introduced the type of data collected by UM Learn, the University of

Manitoba implementation of the Brightspace LMS from Desire2Learn. The design of a

code-based tool was presented to model courses and students based on LMS data. Numeric,

temporal features were created from the models to represent students’ interactions with the

LMS over the term. Experiments for the first three groups of research questions were

proposed to explore students’ behaviours in an online and synchronous course, examine the
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relationship between students’ behaviours as their course outcomes, and test the suitability

of the features for student outcome prediction in ML algorithms. Experiments for the fourth

group of research questions related to time series classification without features were also

proposed and described.
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Chapter 4

Results

The following chapter presents the results of the experiments outlined in Chapter 3.

There are four groups of experiments related to the four groups of research questions in

Section 1.2.3. In the first set, an exploratory analysis of students’ patterns of behaviours

within the LMS is performed using intervals and other temporal features created from the

timelines in the Student Model of chronologically ordered interaction timestamp data. In the

second set, the correlations between these hand-crafted temporal features with each other

and with course outcomes are calculated. In the third set, the temporal features created

from the Student Model timelines are used in ML algorithms to predict student outcomes,

and the results are compared to student outcome predictions from features created by a

ML algorithm from the raw timestamp data. In the fourth set, time series classification is

performed with CNN and transformer neural networks using the LMS timestamp data to

predict student course outcomes.
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4.1 Group 1 RQs: Patterns of Behaviours

In this set of research questions, students’ patterns of behaviour throughout a term for

a class delivered fully online were explored by creating quantitative features to represent the

students’ temporal interactions with the LMS. These features were created from a dataset

created out of LMS interactions in three iterations of an undergraduate computer science

class.

RQ 1.1: What are students’ patterns of behaviour on an LMS over time (over

time periods, within a single interaction/time, between interactions, time spent

on assignments/quizzes, in relation to course events such as assignment dead-

lines and VW dates)

The first sub-question regarding patterns of behaviours looked at the statistical prop-

erties of four features: the number of interactions with the LMS per student, the number of

items on each student’s LMS timeline, the average difference in time between assignment

due dates and when they were submitted, and the fraction of the allotted midterm (first

term test) time that was used.

To explore the LMS interactions over time, the features were calculated at various

points throughout the term. The average values of these features were calculated at the

quarter-points in the term, at the VW deadline and at the midterm (first term test), and

exam. The LMS features, shown in Table 4.1, were the total number interactions with the

LMS course page, the total number of timeline items, and the amount of time between

assignment submissions and their deadlines.
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Table 4.1: RQ 1.1: Statistical Properties of Features

Num.

Interactions

1st

Quarter

Midterm 2nd

Quarter

VW 3rd

Quarter

Exam All

Average 91.41 121.13 183.38 221.98 277.10 345.17 353.24

Num.

Timeline

Items

1st

Quarter

Midterm 2nd

Quarter

VW 3rd

Quarter

Exam All

Average 44 58.16 83.74 100.66 121.85 142.70 144.38

Assign.

Hand-in

(hrs)

1st

Quarter

Midterm 2nd

Quarter

VW 3rd

Quarter

Exam All

Average 42.64 41.66 32.06 30.46 27.54 27.18 27.18

As shown in Table 4.1, the average number of interactions students had with the LMS

increased throughout the term at a constant rate. During each of the first quarter of the

term the average number of interactions per student was 91. During the second quarter of

the term, the average number of interactions was 92 (calculated as the average number of

interactions up to the 2nd quarter minus the average number of interactions up to the 1st

quarter, which was 183.384 − 91.4097 = 91.9743, rounded to the nearest whole number).

Similarly, the average number of interactions per student was calculated as 94 and 76 during

the third and last quarters, respectively. Also shown in Table 4.1, the average number of

timeline items students increased throughout the term at a nearly constant rate as well.

During each of the first, second, and third quarters of the term the average number of

timeline items per student was 44, 40, and 38, respectively. The average number of new

timeline items per student in the last quarter was lower, only 23. The lower number of
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interactions and timeline items during the last quarter could be due to the period of time

after the final exam when the LMS course page remained open to students.

Since there is only one first term test (midterm), the fraction of allowed time spent

writing the test does not change throughout the term. The properties of this feature were

calculated and are shown in Table 4.2. On average, students used 93.4% of the allowed

writing time for the midterm (first term test), with low variance. This means that the

majority of students used their allotted time, and that most midterm-writing times were

close to the average.

Table 4.2: RQ 1.1: Average fraction of time spent writing the midterm

Fraction of Midterm Time

Average 0.934

Variance 0.072

RQ 1.2: What are students’ patterns of behaviour on an LMS with regard to

interactions and intervals?

For the second sub-question regarding patterns of behaviours, two measures were used

to quantify whether a student interacts with the LMS in a consistent or bursty way: the

Goh-Barabasi burstiness measure and the fraction of days with at least one LMS interaction.

The average values of these features throughout the term is shown in Table 4.3.
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Table 4.3: RQ 1.2: Statistical properties of features related to patterns of behaviour

Fraction of

Non-Zero

Days

1st

Quarter

Midterm 2nd

Quarter

VW 3rd

Quarter

Exam All

Average 0.47 0.48 0.44 0.44 0.43 0.43 0.36

Burstiness 1st

Quarter

Midterm 2nd

Quarter

VW 3rd

Quarter

Exam All

Average 0.95 0.95 0.96 0.96 0.96 0.96 0.96

The Goh-Barabasi burstiness measure, or just ‘burstiness’ measure, is calculated be-

tween 0 and 1. Values close to 0 indicate consistent patterns of activity, and values closer

to 1 indicate bursty behaviours. At each point that it was calculated during the term, the

burstiness measure was nearly 1, implying that students are predominately accessing the

material in a bursty way, rather than in consistently spread out throughout the term. One

explanation for the high degree of burstiness could be if students are downloading multiple

files when they interact with the course LMS.

The fraction of non-zero days is the fraction of days that student’s interacted with the

course LMS at least once. On average, this value decreased over the term from approxi-

mately 0.47 at the one-quarter mark to 0.43 by the final exam, corresponding to a minimum

of three days with interactions every week (three out of seven days is a fraction of 0.43 non-

zero days). By the end of the term, the fraction of non-zero days dropped to 0.36, which

may be attributed to decreased activity during the period of time after the final exam when

the LMS course page remained open to students but the course was effectively over and

therefore, student interactions with the LMS are not expected.
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RQ 1.3: What are the predominate patterns of behaviour?

From Figure 4.1, it can be seen that the intervals were not all the same length and that

the different interval lengths did not occur with equal frequency. For example, the majority

of intervals were less than 48 hours long. The following two figures show probability mass

functions to examine trends in interval lengths over all students. In both Figure 4.1 and 4.2,

the vertical axis specifies the likelihood of each interval length in hours, when looking at

intervals from all student data.

The majority of intervals were less than one hour in length. However, the distribution

of intervals has a long tail in which the maximum interval length was 1029.1 hours (or over

42 days), and the minimum interval length was under one second.

Fig. 4.1: Probability Mass Function (PMF) of interval lengths over all COMP 1010 stu-
dents.

Due to the long tail in Figure 4.1, it is difficult to see any patterns in the distribution.

Visually, the large peak on the left side of the distribution dominates the vertical axis and
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the long tail to the right condenses the horizontal axis. In order to better visualize the

middle of the distribution, intervals that were less than one hour or more than 168 hours

(one week) were removed from the dataset to produce Figure 4.2. Intervals less than one

hour were removed so that, visually, the y-axis of the distribution would not be dominated

by the large peak near zero. Intervals of more than one week were removed so that, again

visually, the x-axis of the distribution would not be dominated by the long tail to the

right.

In Figure 4.2, it can be seen that not all interval lengths in the middle of the distribution

are equally common. For intervals greater than one hour long, the distribution follows a

decaying sinusoidal pattern with peaks corresponding to roughly 24-hour periods. This

means that intervals lengths that were multiples of 24 hours were more common than other

interval lengths, and that shorter intervals were more common than longer intervals. For

example, intervals of roughly 24 hours were more common than intervals of roughly 48

hours.

Fig. 4.2: Probability Mass Function (PMF) of interval lengths over all COMP 1010 stu-
dents, with intervals of less than one hour or more than one week removed.
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4.2 Group 2 RQs: Correlation of Features and Outcomes

Through the following research questions, the correlations between students’ patterns

of behaviour over the entire course and students’ outcomes are explored. The correlations

are calculated at each quarter point through the term. Students’ patterns of behaviour are

quantified through the interval characteristics including mean, variance, higher order mo-

ments, and the burstiness measure. Three event points are denoted: the first test (midterm),

VW deadline, and final exam. As well, three additional features to characterize students’

interaction with the LMS content are also calculated. These features are the amount of time

spent writing the first test (midterm), the average time between submission of assignments

and their deadlines, and the fraction of days with LMS interactions.

The correlation between features, as well as between the features and course outcomes,

was explored in this research question. Course outcomes were quantified as the final grade

as a percentage, as a binary pass or fail, and as a competency level based on the final

grade. For the binary pass or fail metric, a passing grade of ≥ 50% was used, keeping in

line with what was communicated to students in the course. The competency levels were

based on the Canadian Engineering Accreditation Board (CEAB) categories of strong (A+

or A), competent (B+ or B), developing (C+ or C), and needs work (D), with the additional

category of failed (F) included to encompass the full spectrum of grades.

RQ 2.1: Are time and pattern correlated? If so, how?

To observe student interaction behaviour with the LMS over time, the statistical prop-

erties of the interval lengths were calculated as shown in Table 4.4.
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Table 4.4: Statistical Properties of Interval Lengths Across All Students (units in hours)

1st Quarter Midterm 2nd Quarter VW 3rd Quarter Exam All

Mean 19.71 17.98 20.17 20.45 20.33 18.90 18.77

Variance 2027.78 1830.94 2481.44 2516.29 2482.41 2353.40 2356.38

Skewness 2.19 2.44 3.13 3.14 3.15 3.54 3.60

Kurtosis 5.04 6.87 13.47 14.24 14.62 19.30 20.27

As shown in Table 4.4, the average interval length stayed around 20 hours at each point

during the term, increasing from the midterm until the VW deadline and then decreasing

again. The variance of the interval lengths similarly increased towards the middle of the

term, and then decreases slightly. Both the skewness and kurtosis monotonically increased

over the term.

RQ 2.2: Are time, pattern and events/content (e.g., quizzes, assignments, ex-

ams) correlated? How?

The correlation between the independent features in the bulleted list below was calcu-

lated at multiple points in the term.

• Interval properties:

– mean of interval length

– variance of interval length

– skewness of interval length

– kurtosis of interval length

– burstiness
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• Other independent features:

– midterm writing time

– difference between assignment submission and due dates

– fraction of days with at least one interaction (non-zero days)

– number of interactions

– number of timeline items

The correlation between the features is shown in Figures 4.3 to 4.8. As observed in

these figures, the number of interactions is highly correlated with the number of timeline

items at all points during the term. The number of interactions, and number of timeline

items, is also highly correlated with the fraction of non-zero days.

As expected, the number of interactions and timeline items is negatively correlated with

the mean interval length at all points throughout the term: as the number of interactions

increases, the amount of time between those interactions must decrease on average. How-

ever, the number of interactions and timeline items is positively correlated with the higher

order moments of the interval lengths, skewness and kurtosis. As the number of interactions

increases, the distribution of the intervals becomes less normal.

Both the burstiness measure and average assignment submission time exhibit a low

correlation with each other and other features. The fraction of midterm writing time is

most correlated with the fraction of non-zero days.

The correlations between features shown in Figures 4.3 to 4.8 are colour-coded to based

on the strength of the correlation. Values closer to 1 are coloured in red, while values

closer to -1 are coloured in blue. The colour scale is shown on the right side of each

figure. To quantify the significance of these correlations, the p values are provided in
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Appendix C.

Fig. 4.3: Correlations between the temporal features with each other, at the first quarter
point in the term.

Fig. 4.4: Correlations between the temporal features with each other, at the midterm (first
term test).
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Fig. 4.5: Correlations between the temporal features with each other, at the VW deadline.

Fig. 4.6: Correlations between the temporal features with each other, at the halfway point
in the term.
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Fig. 4.7: Correlations between the temporal features with each other, at the three-quarters
point in the term.

Fig. 4.8: Correlations between the temporal features with each other, over the whole term.
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RQ 2.3: Are time, pattern, and student grades correlated? How?

The correlation between the interval features, listed below, and both the midterm and

final grade was calculated and are as shown in Figures 4.9 to 4.14.

Interval properties:

• mean of interval length

• variance of interval length

• skewness of interval length

• kurtosis of interval length

• burstiness

As shown in Figures 4.9 to 4.14, the mean of the interval lengths has a negative

correlation with the final grade. The variance of the interval lengths is also negatively

correlated with the final grade, albeit less strongly. The higher order moments of the

interval lengths, as well as the burstiness measure, do not exhibit a strong positive or

negative relationship with the final grade. These relationships are consistent at each point

of time examined during the term. Finally, the midterm grade strongly correlates with final

grade. However, this relationship does not provide insight on student behaviour throughout

the term over time.
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Fig. 4.9: Correlations between the interval features with each other, at the first quarter
point in the term.

Fig. 4.10: Correlations between the interval features with each other, at the midterm (first
term test).
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Fig. 4.11: Correlations between the interval features with each other, at the VW deadline.

Fig. 4.12: Correlations between the interval features with each other, at the halfway point
in the term.
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Fig. 4.13: Correlations between the interval features with each other, at the three-quarters
point in the term.

Fig. 4.14: Correlations between the interval features with each other, over the whole term.
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RQ 2.4: Are time, pattern, events/content, and student grades correlated?

How?

The correlation between the independent features listed below with each of the midterm

and final grade was calculated:

• midterm writing time

• difference between assignment submission and due dates

• fraction of days with at least one interaction (non-zero days)

• number of interactions

• number of timeline items

In Figures 4.15 to 4.20, the correlation between the final grade and the features not

related to interval lengths are shown. The number of interactions positively correlate with

the final grade, and this correlation increases over the term from about 0.2 to 0.35. The

correlation of the number of timeline items to the final grade is higher, increasing from

0.25 to 0.47 over the term. Overall, the correlation between the grades and the fraction of

non-zero days increases over the term as well, from 0.33 to to 0.58.

The average assignment submission time relative to the due date showed very little

relationship with the final grade at any point in the term. Whether students submitted

their work well in advance of the due date, just in time, or late within the grace period,

was not indicative of how they would finish the course. However, the amount of time a

student spent writing the midterm was positively correlated with both their midterm grade

(correlation of 0.58) and final grade (correlation of 0.55).

Kathryn L. Marcynuk - 112 of 218 - April 14, 2023



Prediction of Student Outcomes 4.2 Group 2 RQs: Correlation of Features and Outcomes

Fig. 4.15: Correlations between the temporal features with the grades, at the first quarter
point in the term.

Fig. 4.16: Correlations between the temporal features with the grades, at the midterm
(first term test).
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Fig. 4.17: Correlations between the temporal features with the grades, at the VW Deadline.

Fig. 4.18: Correlations between the temporal features with the grades, at the halfway
point in the term.
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Fig. 4.19: Correlations between the temporal features with the grades, at the three-quarters
point in the term.

Fig. 4.20: Correlations between the temporal features with the grades, over the whole
term.
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RQ 2.5: Can these patterns be described in terms of high or low engage-

ment?

The number of repeated interactions was calculated as the average number of interac-

tions per student divided by the average number of timeline items per student. As shown

in Table 4.5 the number of repeated interactions per student increased by less than one

repeated interaction, from 2.08 to 2.45 over the term, indicating that the content was not

frequently re-visited.

Table 4.5: The number of average repeated interactions per student was calculated as
the average number of interactions per student divided by the average number of timeline
items per student.

Point in

term

1st Quarter Midterm 2nd Quarter VW 3rd Quarter Exam All

Repeated

Interactions

2.08 2.08 2.19 2.21 2.27 2.42 2.45

RQ 2.6: Are there patterns of behaviour that are related with student out-

comes in the course assuming students are grouped as pass/fail?

In order to examine the relationship between student behaviours and course outcomes,

the features were compared based on whether students had passed or failed the course as

shown in Table 4.6.
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Table 4.6: Comparison of feature values based on passing and failing groups of students.
All times are in hours.

Average Feature Value Passing Group Failing Group

Number of Interactions 386.70 232.67

Number of Timeline Items 156.22 99.41

Interval Length Mean 16.23 24.68

Interval Length Variance 1265.77 5031.69

Interval Length Skewness 3.64 3.43

Interval Length Kurtosis 20.87 18.25

Burstiness 0.97 0.93

Assign. Hand In Avg. 27.54 27.22

Fraction of Non-Zero Days 0.39 0.24

Fraction of Midterm Time 1.00 0.66

Most of the average feature values were different between the group of students who

passed compared to the group of students who failed. However, the average difference

between assignment submission and due date was similar across both groups.

Since more students passed the course compared to those who failed, the group of

students who passed was further divided into four categories: strong, competent, developing,

and needs work. These categories are based on the CEAB taxonomy and were introduced

in Section 3.4. The average feature values for each group are shown in Table 4.7.
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Table 4.7: Comparison of feature values based on groups of students designated by final
grade categories. All times are in hours.

Average Feature Value Strong Competent Developing Needs Work

Number of Interactions 386.37 354.19 402.69 329.21

Number of Timeline Items 155.53 150.88 162.52 143.88

Interval Length Mean 16.99 17.81 15.31 16.87

Interval Length Variance 1546.01 1595.69 1141.71 1357.81

Interval Length Skewness 3.72 3.61 3.55 3.38

Interval Length Kurtosis 21.72 19.63 19.22 17.94

Burstiness 0.969402 0.97 0.97 0.97

Assign. Hand In Avg. 35.09 32.71 26.31 20.00

Fraction of Non-Zero Days 0.38 0.38 0.40 0.38

Fraction of Midterm Time 1.01 0.98 1.01 1.02

Within the four categories of students who passed, a larger number of LMS interactions

and timeline items was generally associated with a higher final grade. The exception to this

was in the developing category. These students, on average, had more interactions with the

LMS than any other group. The students in the developing category also had the smallest

interval length variance and highest fraction of days with at least one interaction. As well,

within the four categories of students who passed the course, students who earned a higher

final grade on average submitted assignments earlier.

4.3 Group 3 RQs: Feature-Based Prediction and Early Pre-

diction

Predictive ML models were used to explore which variables and features of behaviours

have the greatest predictive capabilities for student course outcomes as measured by final
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grade or as a binary pass/fail metric.

For early prediction, the feature values at earlier points during the term were used as

input to the predictive models.

RQ 3.1: What factors predict student success in an online environment?

The features introduced in the previous research questions were used as input into ML

prediction models, in order to see which features were most predictive of student success

at the end of the term. The ML models used were linear regression, logistic regression,

and k-Nearest Neighbours. In each case, results are shown from trials when the full set of

students was randomly divided such that 70% of the students were used to train the model

and the remaining 30% were used to test the model. Reserving 25%-30% of the data to

test a ML model is common practice [Theo19] [PeVG11]. Using a larger percentage of the

dataset to train the model resulted in relatively fewer false predictions, at the expense of

having less testing data to verify the model.
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Linear Regression with the Student Model Features

In the linear regression trials, the final grade was used as the dependent variable. To

predict the final grade with linear regression, the full set of students was randomly divided

such that 70% of the students were used to train the model, and the remaining 30% were

used to test the model. For each combination of features, the linear regression algorithm was

run one hundred times and the mean absolute error in final grade prediction was averaged

over those trials.

The maximum possible grade was 100, and the minimum possible grade was 0. In the

dataset, the actual range of grade values was 98.7864.

The features were calculated over the full timelines. The average mean average error

(MAE) in the final grade prediction when using only one feature at a time is shown in

Table 4.8.

Table 4.8: The average MAE in the final grade prediction when using only one feature

Feature Error (MAE)

Number of Interactions 18.54

Number of Timeline Items 17.83

Interval length mean 18.24

Interval length variance 17.81

Interval length skewness 19.14

Interval length: kurtosis 19.11

Burstiness 18.96

Assignment Hand-In Time 19.21

Fraction of Midterm Time Used 16.76

Fraction of Non-Zero Days 16.85
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Of the 10 features, defined above, there are 1023 ways to choose subsets of 1 to 10

(inclusive) of those features to use in linear prediction. However, not all of the features are

independent variables. Since the timeline intervals have a non-Gaussian distribution, the

moments of the interval lengths can not be considered independent of each other. Similarly,

since the Burstiness measure is created out of the mean and variance of the interval lengths,

it also can not be considered to be independent of those features. Therefore, when choosing

a subset of features for linear regression, at most only six independent features were chosen

at a time, and each subset included at most one of the interval length mean, interval length

variance, or burstiness measure. The higher order moments of the interval lengths, skewness

and kurtosis, were excluded as they correlated less strongly with the final grade.

The average mean absolute error over 100 trials was computed for each possible subset.

In each of the 100 trials, the students were divided into new randomized testing and training

groups. Each trial was guaranteed to be unique by seeding the random number generator

that facilitated splitting the students into the two groups1. The smallest mean absolute

error out of these trials for each subset size is shown in Tables 4.9 - 4.11, along with the

subset of features that were used in that trial.

For the subset containing the interval length mean:

1For all experiments in this dissertation that required splitting the students into testing and training
groups, the train test split() method from the sklearn.model selection library was used with shuffling en-
abled [PeVG11]. In the linear regression experiments, to create the 100 trials this method was seeded with
values 1 to 100 (inclusive).
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Table 4.9: Linear Regression with interval length mean

Error (MAE) Num

Interactions

Num

Timeline

Items

Interval

Mean

Assignment Midterm Non-

Zero

Days

15.4098 X X

15.3578 X X X

15.3937 X X X X

15.4671 X X X X X

15.5694 X X X X X X
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For the subset containing the interval length variance:

Table 4.10: Linear Regression with interval length variance

Error (MAE) Num

Interactions

Num

Timeline

Items

Interval

Variance

Assignment Midterm Non-

Zero

Days

15.4098 X X

15.3578 X X X

15.3937 X X X X

15.4671 X X X X X

15.5467 X X X X X X

For the subset containing the burstiness measure:

Table 4.11: Linear Regression with burstiness measure

Error (MAE) Num

Interactions

Num

Timeline

Items

Burstiness Assignment Midterm Non-

Zero

Days

15.4098 X X

15.3578 X X X

15.3937 X X X X

15.4608 X X X X X

15.5304 X X X X X X
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Linear Regression with the ML Learned Features

The linear regression experiments were repeated using the ML Learned Features that

were introduced in Section 3.2.5. The dependent variable was the final grade, and all eight

learned features were used as independent variables. The full set of students was again

randomly divided into two groups: one group of students was used to train the model, and

the other was used to test the model. The average MAE was calculated over 100 trials, in

which each trial had a different set of students in the training and testing groups2

The ML learned features created from the full set of LMS data were able to predict

students’ final grades using linear regression with an average MAE of 15.54 over 100 tri-

als. When the LMS data after the VW deadline was removed, and the features were

re-calculated, the average MAE of the linear regression model predicting students’ final

grades after 100 trials was 16.85 grade points.

Linear Regression: Comparison

As a comparison, the linear regression algorithm was run 100 times on generated random

values with a normal distribution and again with a uniform distribution. For both types of

random values, the mean absolute error was in the range of 19.3 to 19.5.

Using linear regression with just one Student Model feature at a time to predict the final

grade as a percentage resulted in a MAE of approximately 19 grade points for the features

of number of interactions, interval length skewness, interval length kurtosis, burstiness, and

average difference between assignment submission and due dates, as shown in Table 4.8.

Therefore, using just one of these features for linear regression prediction was only slightly

better than using random feature values as inputs. The MAE decreased to about 18 grade

2As before, the train test split() method from the sklearn.model selection library was used with shuffling
enabled to split the 70% of the students into a training group and the remaining 30% of students into a
testing group [PeVG11]. In the 100 trials, this method was seeded with values 1 to 100 (inclusive).
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points for the features of number of timeline items, interval length mean, and interval length

variance. The MAE decreased further to about 17 grade points for features of fraction of

midterm writing time, and fraction of non-zero days. A decrease in the MAE indicates that

the predictions are more accurate.

By using multiple Student Model features as independent variables, the accuracy of the

linear regression model increased to a MAE of approximately 15.4 grade points. The MAE

was 15.54 when using the ML learned features created from the full set of rawe LMS data,

making the results of linear prediction using either sets of features comparable.

Logistic Regression with the Student Model Features

In many instances, being able to the predict the specific value of a student’s final grade

is not necessary. It may be sufficient to predict the likelihood that they will pass or fail

the course overall, and identify students who are at an elevated risk of failure. Logistic

regression can be used to predict binary outcomes, such as passing or failing a course.

In the trials using logistic regression, the dependent variable was whether a student had

achieved a final grade above or below 50%, denoted as ‘Passed’ or not. To predict the final

grade with logistic regression, the full set of students was again randomly divided such that

70% of the students were used to train the model, and the remaining 30% were used to test

the model. Each of the below tables is from one run of the logistic regression model seeded

the same way. That is, the students were split into the same test and training groups in each

case in order to compare the effect of using different features on the predictive capabilities

of the model.

Error matrices are used to present the results from the logistic regression trials. The

error matrices show the total number of students whose outcomes were correctly by the

model, as well as the number of false positives (students who were predicted to pass, but in
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reality did not) and the number of false negative (students who were predicted to fail, but

in fact passed). These values are arranged in the error matrices as follows:

true negatives false positives

false negatives true positives

 (Equation 4.3.1)

In the first run, the independent features were the total number of interactions, total

number of timeline items, fraction of non-zero days, fraction of midterm time used, and

mean interval length. The classification report and accuracy score are shown in Table 4.12,

and the error matrix was as follows:

4 15

0 73


As can be seen from the error matrix and Table 4.12, the model was able to accurately

predict all 73 students in the test group who passed the course. Of the students in the

test group who failed the course, four were accurately predicted while 15 were incorrectly

predicted by the model to pass.

Table 4.12: Logistic Regression Feature Set 1 with Hand-crafted Features

precision recall f1-score support

0 1.00 0.21 0.35 19

1 0.83 1.00 0.91 73

accuracy 0.84 92

macro average 0.91 0.61 0.63 92

weighted average 0.86 0.84 0.79 92

In the second run, the independent features were the total number of interactions, total

number of timeline items, fraction of non-zero days, fraction of midterm time used, and mean

interval variance. The classification report and accuracy score are shown in Table 4.13, and
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the error matrix was as follows:

7 12

1 72


During this run, the model was able to accurately predict 72 of 73 students in the test

group who passed the course. One student was incorrectly predicted to fail, when they

belonged to the passing group. Of the 19 students in the test group who failed the course,

seven were accurately predicted to fail and the remaining 12 were incorrectly predicted to

pass. A total of 13 students were predicted incorrectly during this run, making it more

accurate overall compared to the first run which used the mean interval lengths. Even

though there was one false negative, the number of true negatives was higher.

Table 4.13: Logistic Regression Feature Set 2 with Hand-crafted Features

precision recall f1-score support

0 0.88 0.37 0.52 19

1 0.86 0.99 0.92 73

accuracy 0.86 92

macro average 0.87 0.68 0.72 92

weighted average 0.86 0.86 0.83 92

In the third run, the independent features were the total number of interactions, total

number of timeline items, fraction of non-zero days, fraction of midterm time used, and

burstiness measure. The classification report and accuracy score are shown in Table 4.14,

and the error matrix was as follows:

6 13

1 72


This run of the logistic regression model with the burstiness measure accurately pre-

dicted 72 of the 73 students who passed and 6 of the 19 students who failed. This means

that the model made a total of 14 errors, which is one more than the previous run.
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Table 4.14: Logistic Regression Feature Set 3 with Hand-crafted Features

precision recall f1-score support

0 0.86 0.32 0.46 19

1 0.85 0.99 0.91 73

accuracy 0.85 92

macro average 0.85 0.65 0.69 92

weighted average 0.85 0.85 0.82 92

In the fourth run, all interval data was removed and the independent features used were

the total number of interactions, total number of timeline items, fraction of non-zero days,

and fraction of midterm time used. The classification report and accuracy score are shown

in Table 4.15, and the error matrix was as follows:

6 13

1 72


The predictions of this run had the same performance as when the burstiness measure

was included. There was one false negative, and 13 false positives for a total of 14 prediction

errors.

Table 4.15: Logistic Regression Feature Set 4 with Hand-crafted Features

precision recall f1-score support

0 0.86 0.32 0.46 19

1 0.85 0.99 0.91 73

accuracy 0.85 92

macro average 0.85 0.65 0.69 92

weighted average 0.85 0.85 0.82 92

In the fifth run, only the timeline features were used. Running the logistic regression

model with the total number of timeline items and mean interval length produced the
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classification report and accuracy score shown in Table 4.16, and the error matrix was as

follows:

4 15

0 73


Using just the timeline features, the model accurately predicted all 73 students in the

test group who passed the course. However, it was only able to correctly predict four of the

19 students who failed the course, leading to a higher number of false positives.

Table 4.16: Logistic Regression Feature Set 5 with Hand-crafted Features

precision recall f1-score support

0 1.00 0.21 0.35 19

1 0.83 1.00 0.91 73

accuracy 0.84 92

macro average 0.91 0.61 0.63 92

weighted average 0.86 0.84 0.79 92

Logistic Regression with the ML Learned Features

In the logistic regression experiments were repeated with the eight ML learned features

as the independent variables. As previously, the dependent variable was whether a student

had achieved a final grade above or below 50%, denoted as ‘Passed’ or not. The students

were again split into the same training and testing groups.

The logistic regression model was first trained and tested using the eight ML learned

features created from the full set of LMS data. Upon testing, the model failed to converge

before it reached the limit on the number of iterations. However, the classification report

and accuracy score that were produced at the maximum number of iterations are shown in
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Table 4.17, and the error matrix was:

14 14

1 66



Table 4.17: Logistic Regression Feature Set 1 with ML Features

precision recall f1-score support

0 0.93 0.50 0.65 28

1 0.82 0.99 0.90 67

accuracy 0.84 95

macro average 0.88 0.74 0.77 95

weighted average 0.86 0.84 0.83 95

The logistic regression model was then trained and tested using the eight ML learned

features created from the set LMS data up to the VW deadline. Upon testing, the model

also failed to converge before it reached the limit on the number of iterations. Once again,

the classification report and accuracy score that were produced at the maximum number

of iterations are shown in Table 4.18, and the error matrix was:

9 20

3 62



Table 4.18: Logistic Regression Feature Set 2 with ML Features

precision recall f1-score support

0 0.75 0.31 0.44 29

1 0.76 0.95 0.84 65

accuracy 0.76 94

macro average 0.63 0.61 0.64 94

weighted average 0.76 0.84 0.72 94
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Logistic Regression: Comparison

In each of the logistic regression trials the number of false positives was higher than

then number of false negatives. The logistic regression models were able to successfully

identify most, or all, of the passing students but struggled to identify the students who

failed the course. When logistic regression was run using the features created from the

Student models, the algorithm was able to converge, even if it did not predict all of the

students accurately. However, when the ML learned features were used the algorithm was

not able to converge but just stopped at the maximum number of iterations.

k-Nearest Neighbour with the Student Model Features

In the k-Nearest Neighbour trials, the dependent variable was whether a student had

achieved a final grade above or below 50%, denoted as ‘Passed’ or not. The independent

variables used were the mean interval length, number of Interactions, number of timeline

items, fraction of midterm time used, burstiness, and fraction of days with at least one

interaction.

The full set of students was again randomly divided such that 70% of the students were

used to train the model, and the remaining 30% were used to test the model. A total of

10 students were removed from the data set due to having less than two timeline items,

leaving 218 students in the training set and 94 students in the test set. Again, using a larger

percentage of the dataset to train the model resulted in relatively fewer false predictions, at

the expense of having less testing data to verify the model. In this context, false positives

are students who were predicted to pass but failed in reality, and false negatives are students

who were predicted to fail but actually passed.

The model was run using different values of k, which is the number of data points closest

to the one being predicted as ‘Passed’ or ‘Failed’ that are to be used in the prediction. The
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number of prediction errors for values of k between 2-10 is shown in Table 4.19. Predictions

for values of k larger than 10 were similar, and predictions for values of k larger than 20

stayed the same (with 19 total errors).

Table 4.19: k-Nearest Neighbour Prediction Errors with Hand-crafted Features

k false positives false negatives Total Errors

2 13 20 33

3 16 2 18

4 13 6 19

5 16 1 17

6 15 2 17

7 16 1 17

8 15 2 17

9 16 1 17

10 13 2 15

k-Nearest Neighbour with the ML Learned Features

In the k-Nearest Neighbour experiments were repeated using the ML learned features

as independent variables and whether a student had achieved a final grade above or below

50%, denoted as ‘Passed’ or not as the dependent variable. The full set of students was

again randomly divided such that 70% of the students were used to train the model, and

the remaining 30% were used to test the model.

First the algorithm was run using features created from the full set of LMS data. There

were nine rows in this feature set with non-numeric values that were dropped3, leaving a

3If it was not possible to calculate a feature for a student, the value of that ML learned feature for the
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total of 314 rows (one row per student) as input to the algorithm. The number of prediction

errors for values of k between 2-10 is shown in Table 4.20.

Table 4.20: k-Nearest Neighbour Prediction Errors with ML Features

k false positives false negatives Total Errors

2 9 31 40

3 16 9 25

4 15 14 29

5 17 5 22

6 16 7 23

7 18 3 21

8 17 4 21

9 18 1 19

10 18 2 20

The k-Nearest Neighbour algorithm was then run using features created from the LMS

data up to the VW deadline. After dropping eleven rows in this feature set there were 312

rows as input to the algorithm. The number of prediction errors for values of k between

2-10 is shown in Table 4.21.

student was ’nan’, meaning ’not a number’, to indicate that the feature did not have a valid value. Non-
numeric values can not be used in the prediction algorithms, so any rows containing one or more of them
was dropped from the input set.
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Table 4.21: k-Nearest Neighbour Early Prediction Errors with ML Features

k false positives false negatives Total Errors

2 10 29 39

3 18 9 27

4 15 12 27

5 18 7 25

6 17 10 27

7 18 3 21

8 16 6 22

9 19 2 21

10 18 4 22

k-Nearest Neighbour: Comparison

In all of the k-Nearest Neighbour trials, the results when k = 2 produced more false

negatives than false positives, as well as the highest number of overall prediction errors.

For higher values of k, there were fewer overall prediction errors, but the number of false

positives was greater than the number of false negatives. For each value of k, the features

created from the Student Model resulted in fewer prediction errors compared to the ML

learned features.

RQ 3.2: Can we define a set of archetypes (student behaviour + course out-

come)?

Using the features identified in the earlier research questions, an unsupervised clustering

algorithm was used to group students by their behaviour.
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Clustering with the Student Model Features

Six of the Student Model features were included: number of interactions, number of

timeline items, fraction of midterm time, mean interval length, burstiness, and average time

to hand in assignments. A total of 16 students were excluded due to having not enough

timeline items to calculated the interval mean, or no submitted assignments. This left 307

students in the data set to be clustered. After scaling the features, the dimensionality was

reduced to two dimensions using PCA so that the clusters could be plotted on a 2D scatter

plot for visual inspection. Although PCA can be used to determine the optimal number of

meaningful reduced dimensions in a data set, it is also commonly used in ML research with

clustering algorithms to reduce the number of features so that the clusters can be visualized

in 2D or 3D plots [Lind20].

Each of the two principal components created by PCA are a weighted combination

of the original features. The explained variance ratio for the first principal component

was:

• NumInteractions (all): 0.421379

• Num Timeline Items (all): 0.489524

• Fraction of Midterm time: 0.301098

• Mean Interval Length S (all): 0.441346

• Fraction NonZero Days (all): 0.475323

The explained variance ratio for the second principal component was:

• Burstiness (all): 0.504109

• Assign Hand In Avg (all): 0.734704

After performing PCA to reduce the number of feature dimensions to two, the silhouette
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coefficient was calculated to evaluate the optimal number of clusters for the two principal

components. The silhouette coefficient was calculated starting at two clusters and going up

to ten clusters, as shown in Figure 4.21. This coefficient is a measure of evaluating a given

number of clusters based on the distance between those clusters [Scik22]. The silhouette

coefficient can range from -1 to 1, with higher values indicating better clusters due to

more separation between the clusters. Using the optimal number of two derived from the

silhouette coefficient in Figure 4.21, the student data was then clustered into two groups as

shown in Figure 4.22. Clustering is an unsupervised ML algorithm, meaning that the data

is not split into training and testing groups as was the case in supervised algorithms such as

Regression and k-Nearest Neighbours. Instead, the algorithm attempts to assign each data

point membership into the cluster to which it is most similar using the number of clusters

and features provided by the user. In this case, each data point represents one student in

the data set.

Fig. 4.21: Silhouette coefficient to determine the optimal number of clusters between 2
and 10 with Hand-crafted Features
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Fig. 4.22: Student clusters (unsupervised) using Hand-crafted Features

Student course outcomes, in terms of passing or failing, for each cluster is shown in

Table 4.22. The yellow cluster contains the majority of the students with a course outcome

‘Passed’. Of the 224 students who passed, 160 were included in the yellow cluster. Of

the 83 students who failed, 56 were included in the purple cluster. If the yellow cluster is

categorized as the group of students predicted to pass, and the purple cluster is considered

the group of students predicted to fail, 91 students will be misclassified. However, of these,

only 27 would be students who were incorrectly predicted to pass. The other 64 students

were incorrectly predicted to fail.
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Table 4.22: The number of students who passed or failed the course per cluster in Fig-
ure 4.22

# Passed # Failed Total Students in Group

Yellow Cluster 160 27 187

Purple Cluster 64 56 120

All Students 224 83 307

Clustering with the ML Learned Features

Unsupervised clustering was repeated using the eight ML learned features created from

the full set of LMS timeline data. Nine students were removed from the dataset for having

non-numeric feature values. As before, PCA was used to reduce the number of dimensions to

two, to allow the clusters to be meaningfully represented on the page for visual inspection.

Using the two principal components created from PCA, a silhouette analysis was again

performed to determine the optimal number of clusters. From Figure 4.23, it can be seen

that the optimal number of clusters was two. The clusters are depicted in yellow and purple

in Figure 4.24, with the centre of each cluster shown as a red circle.
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Fig. 4.23: Silhouette coefficient to determine the optimal number of clusters between 2
and 10 with ML Features

Fig. 4.24: Student clusters (unsupervised) with ML Features

Student course outcomes, in terms of passing or failing, for each cluster is shown in
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Table 4.23. The yellow cluster contains the majority of all students. All students who

passed the courses, as well as 79 of 90 students who failed the course, are grouped into the

yellow cluster. The purple cluster contains only 11 students, all of whom failed the course.

Therefore, if the yellow cluster is defined as the group of students expected to pass and

the purple cluster is the group of students expected to fail, then there would be 79 false

positives and zero false negatives.

Table 4.23: The number of students who passed or failed the course per cluster in Fig-
ure 4.24

# Passed # Failed Total Students in Group

Yellow Cluster 224 79 303

Purple Cluster 0 11 11

All Students 224 90 314

The unsupervised clustering was repeated using the eight ML learned features created

from the LMS timeline data up to the VW deadline. After removing eleven students for

having non-numeric feature values, the features were then reduced using PCA to two di-

mensions. A silhouette analysis was performed to determine the optimal number of clusters

using these two principal components, which was found to again be two as shown in Fig-

ure 4.25. The clusters are depicted in yellow and purple in Figure 4.26, with the centre of

each cluster denoted by a red circle.
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Fig. 4.25: Silhouette coefficient to determine the optimal number of clusters between 2
and 10 with ML Features up to the VW Deadline

Fig. 4.26: Student clusters (unsupervised) with ML Features up to the VW Deadline

The correspondence between student course outcomes and each of the two clusters is
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shown in Table 4.24. As with the clusters created from the ML learned features over the

full set of LMSdata, the yellow cluster contain the majority of all students. The yellow

cluster contains all students who passed the courses and 79 of the 88 students who failed

the course. The purple cluster consists only of students failed the course, but only 9 of

them. Therefore, if the yellow cluster is defined as the group of students expected to pass

and the purple cluster is the group of students expected to fail, then there would be 79 false

positives and zero false negatives.

Table 4.24: The number of students who passed or failed the course per cluster with ML
Features up to the VW Deadline

# Passed # Failed Total Students in Group

Yellow Cluster 224 79 303

Purple Cluster 0 9 9

All Students 224 88 312

Clustering: Comparison

The clusters created from both the Student Model features and the ML learned features

had some errors when mapping the clusters to passing and failing groups. However, the

Student Model features created two more equally sized clusters, compared to the ML learned

features which created one large and one small cluster. The number of misclassified students

overall was higher in the clusters created from the Student Model features, with a total of 91

students given the wrong group membership. Of these, 27 were students grouped into the

passing cluster who had actually failed (false positives). In comparison, while the clusters

created from the ML learned features mislabelled fewer students overall, all 79 of the errors

were false positives.
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RQ 3.3: How early within the term can these factors predict final grades?

The ML prediction methods employed in RQ 3.1 were used again. However, this time

they were provided with only a subset of the timeline data.

Linear Regression In the linear regression trials, the full set of students was randomly

divided such that 70% of the students were used to train the model, and the remaining 30%

were used to test the model. As before, for each combination of independent features,

the linear regression algorithm was run one hundred times and the mean absolute error in

final grade prediction was averaged over those trials. The dependent feature was the final

grade.

When the features were calculated at each quarter of the timelines, the average MAE

in the final grade prediction when using only one feature at a time is shown in Table 4.25.

The feature of the fraction of midterm writing time used was omitted, as this feature does

not change over the term.
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Table 4.25: MAE of each feature calculated at each quarter of the timeline

Feature 1st Quarter 2nd Quarter 3rd Quarter

Number of Interactions 18.9327 18.8767 18.5517

Number of Timeline Items 18.7414 18.6308 17.9725

Interval length mean 18.5506 18.4449 18.2003

Interval length variance 19.1915 18.4953 17.8150

Interval length skewness 19.2487 18.9059 19.0729

Interval length kurtosis 19.2636 18.7403 18.9797

Burstiness 19.0283 19.2092 18.9995

Assignment Hand-In Time 19.1950 19.2169 19.2625

Fraction of Non-Zero Days 18.6482 18.3132 16.9079

As shown in Table 4.25, the MAE using only one feature at a time was close to 19

grade points, making the predictions similar to random guesses. The predictions improved

slightly by the three-quarter point in the term for the features of the number of timeline

items and interval length variance.

The average mean absolute error over 100 trials was computed for each possible subset

of the features above, at each quarter point during the term. The smallest mean absolute

error out of these trials for each subset size is shown in Tables 4.26 - 4.28, along with

the subset of features that were used in that trial. For trials conducted using only the

first quarter of the timeline, the feature of the fraction of midterm writing time used was

excluded as this feature would not be available at that point in the term.

In the subset containing the interval length mean, using multiple features improved the

predictive ability of the model, as shown in Table 4.26. Using two or more features over

three-quarters of the timeline, the predictions improved to an MAE of roughly 15.5 grade

points.
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Table 4.26: RQ 3.3: Linear Regression with interval length mean

Number of

Features

Error at 1st Quarter Error at 2nd Quarter Error at 3rd Quarter

2 18.4711

(Interval length mean;

Non-Zero days)

16.3409

(Fraction of Midterm

time;

Non-Zero days)

15.5042

(Fraction of Midterm;

Non-Zero days)

3 18.5172

(Interval length mean;

Non-Zero days;

Num Interactions)

16.3645

(Assign Hand In;

Non-Zero days;

Fraction of Midterm)

15.5235

(Assign Hand In;

Non-Zero days;

Fraction of Midterm)

4 18.5983

(Interval length mean;

Non-Zero days;

Num Interactions;

Num Timeline Items)

16.4328

(Interval length mean;

Non-zero days;

Assign Hand In;

Fraction of Midterm)

15.5801

(Num Interactions;

Assign Hand In;

Fraction of Midterm;

Non-Zero days)

5 18.7157

(Interval length mean;

Non-Zero days;

Num Interactions;

Num Timeline Items;

Assign Hand In)

16.5234

(Non-Zero days;

Num Interactions;

Num Timeline Items;

Assign Hand In;

Fraction of Midterm)

15.6430

(Num Interactions;

Num Timeline Items;

Assign Hand In;

Fraction of Midterm;

Non-Zero days)

6 n\a 16.6563 (all features) 15.7474 (all features)

In the subset containing the interval length variance, using multiple features also im-
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proved the predictive ability of the model, as shown in Table 4.27. Using two or more

features over three-quarters of the timeline, the predictions improved to an MAE of roughly

15.5 grade points which was similar to the predictions in which interval length variance was

included as a feature.

Table 4.27: RQ 3.3: Linear Regression with interval length variance

Number of

Features

Error at 1st Quarter Error at 2nd Quarter Error at 3rd Quarter

2 18.6837

(Num Timeline Items;

Non-Zero days)

16.3409

(Fraction of Midterm;

Non-Zero days)

15.5042

(Fraction of Midterm;

Non-Zero days)

3 18.7076

(Num Timeline Items;

Non-Zero days;

Num Interactions)

16.3645

(Assign Hand In;

Non-Zero days;

Fraction of Midterm)

15.5235

(Assign Hand In;

Non-Zero days;

Fraction of Midterm)

4 18.8256

(Assign Hand In;

Non-Zero days;

Num Interactions;

Num Timeline Items)

16.4494

(Num Interactions;

Non-zero days;

Assign Hand In;

Fraction of Midterm)

15.5801

(Num Interactions;

Assign Hand In;

Fraction of Midterm;

Non-Zero days)

Continued on next page
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Table 4.27 – continued from previous page

Number of

Features

Error at 1st Quarter Error at 2nd Quarter Error at 3rd Quarter

5 18.9567

(Interval length vari-

ance;

Non-Zero days;

Num Interactions;

Num Timeline Items;

Assign Hand In)

16.5234

(Non-Zero days;

Num Interactions;

Num Timeline Items;

Assign Hand In;

Fraction of Midterm)

15.6430

(Num Interactions;

Num Timeline Items;

Assign Hand In;

Fraction of Midterm;

Non-Zero days)

6 n\a 16.6473 (all features) 15.7187 (all features)

In the subset containing the burstiness measure, using multiple features improved the

predictive ability of the model, as shown in Table 4.28. Using two or more features over

three-quarters of the timeline, the predictions improved to an MAE of roughly 15.3 grade

points which was slightly better than when either the interval length mean or variance was

included.
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Table 4.28: RQ 3.3: Linear Regression with burstiness

Number of

Features

Error at 1st Quarter Error at 2nd Quarter Error at 3rd Quarter

2 18.6837

(Num Timeline Items;

Non-Zero days)

16.3409

(Fraction of Midterm;

Non-Zero days)

15.5042

(Fraction of Midterm;

Non-Zero days)

3 18.7076

(Num Timeline Items;

Non-Zero days;

Num Interactions)

16.2146

(Burstiness;

Non-Zero days;

Fraction of Midterm)

15.3078

(Burstiness;

Non-Zero days;

Fraction of Midterm)

4 18.8177

(Burstiness;

Non-Zero days;

Num Interactions;

Num Timeline Items)

16.2812

(Burstiness;

Non-zero days;

Assign Hand In;

Fraction of Midterm)

15.3555

(Burstiness;

Num Interactions;

Fraction of Midterm;

Non-Zero days)

5 18.9364

(Burstiness;

Non-Zero days;

Num Interactions;

Num Timeline Items;

Assign Hand In)

16.3717

(Burstiness;

Non-Zero days;

Num Interactions;

Num Timeline Items;

Fraction of Midterm)

15.4162

(Burstiness;

Interactions;

Num Timeline Items;

Fraction of Midterm;

Non-Zero days)

6 n\a 16.4504 (all features) 15.5198 (all features)
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RQ 3.4: Can these variables and features be used to predict course outcomes

of pass or fail before the end of the term, to indicate when intervention may be

required?

As shown in Tables 4.26 - 4.28, the predictions at the quarter-point during the term

using linear regression had a MAE of approximately 18.5 to 19 grade points, making these

predictions little better than random. At the half way point in the term the predictions

improve to a minimum MAE of 16.3 grade points, depending on the features used. By

three-quarters of the way through the term the predictions again improve to a minimum

MAE of 15.3 grade points, which is similar to the prediction error over the whole timeline.

Therefore, it is possible to predict final grades before the end of the term with greater than

random accuracy.

4.4 Group 4 RQs: Time Series Classification

The results of student course outcome prediction with binary and ternary CNN and

transformer models trained on the full timelines are now provided. These experiments

address research questions 4.1 and 4.2. Subsections 4.4.1 to 4.4.3 report on the accuracy of

the CNN models, while subsections 4.4.4 to 4.4.6 present the results from the transformer

models.

4.4.1 CNN Binary Classifiers

CNN binary classifiers were used to predict whether students passed or failed the course.

For each type of input data, Table 4.29 shows the average training and and testing accuracies

as percentages after running the model 100 times with different random starting seeds. The

average number of epochs over the 100 trials is also provided in the table. When the CNN
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binary classifier was provided with interval data as input, the average prediction accuracy

of the test set was 74.51% and the average number of epochs was 171. Using the timestamp

data (the one-dimensional timestamp data as shown in Table 3.6) as input instead, the

average prediction accuracy of the test set increased to 82.10% and the average number

of epochs also increased to 286. However, of the three data types, the multivariable data

produced the most accurate results in the CNN binary classifier.

Table 4.29: Average values for CNN binary classifier (entire term)

Type of Data Train (%) Test (%) Epochs

Intervals 74.10 74.51 171

Timestamp 81.88 82.10 286

Multivariable 89.53 86.35 310

Tables 4.30 to 4.32 show, for each input type of data provided to the CNN binary clas-

sifier, the average number of students who: actually failed and were predicted to fail (true

negatives), actually failed but were predicted to pass (false positives), actually passed but

were predicted to fail (false negatives), and actually passed and were predicted to pass (true

positives). The interval, timestamp, and multivariable data all produced approximately the

same average number of true positives and false negatives. That is, the CNN binary clas-

sifier was able to correctly identify students who passed the course with roughly the same

accuracy regardless of the format of the input data.

However, the format of the input data impacted the ability of the CNN binary classifier

to identify students who failed the course - arguably the group of students that are most

important to identify. As shown in Table 4.30, when using the interval data the CNN

binary classifier correctly identified only roughly 17% of the failing students in the test

group (true negatives) on average. The CNN binary classifier was better able to identify
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failing students using the timestamp data. On average the CNN binary classifier correctly

identified approximately 47% and 67% of the students who failed using the timestamp data

and multivariable data, respectively.

Table 4.30: Average error matrix for CNN binary classifier with Intervals data (entire term)

Predicted Fail Predicted Pass

Actual Fail 3 15

Actual Pass 2 43

Table 4.31: Average error matrix for CNN binary classifier with Timestamp data (entire
term)

Predicted Fail Predicted Pass

Actual Fail 8 9

Actual Pass 4 42

Table 4.32: Average error matrix for CNN binary classifier with Multivariable data (entire
term)

Predicted Fail Predicted Pass

Actual Fail 12 6

Actual Pass 3 42

In order to better compare how the format of the input data impacts the predictions of

the CNN binary classifier, the statistics fo the best predictive model using each type of input

data is shown in Table 4.33. The best model was defined as the model with the highest

testing accuracy.For each type of input data, the best model performed approximately 10-

15% better than the average shown in Table 4.29. The best predictive model had a test

accuracy of 88.89% using intervals as input, 90.48% using timestamp data, and 98.41%

using multivariable data.
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Table 4.33: Best values for CNN binary classifier (entire term)

Type of Data Train (%) Test (%) Epochs

Intervals 78.75 88.89 167

Timestamp 82.30 90.48 467

Multivariable 86.08 98.41 157

Tables 4.34 to 4.36 show the error matrices that correspond to the best CNN binary

classifier model produced by each of the interval, timestamp, and multivariable input data.

In each case the model was able to accurately predict the majority or all of the passing

student correctly. The models were also able to predict the majority of failing students

correctly, although the number of false positives was relatively higher than the number of

false negatives in each case.

Table 4.34: Best error matrix for CNN binary classifier with Intervals data (entire term)

Predicted Fail Predicted Pass

Actual Fail 11 4

Actual Pass 3 45

Table 4.35: Best error matrix for CNN binary classifier with Timestamp data (entire term)

Predicted Fail Predicted Pass

Actual Fail 10 6

Actual Pass 0 47

Table 4.36: Best error matrix for CNN binary classifier with Multivariable data (entire
term)

Predicted Fail Predicted Pass

Actual Fail 11 1

Actual Pass 0 51
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4.4.2 CNN ternary classifiers: Letter Grades

In addition to predicting students who will fail a course, it would also be useful to

be able to predict students who are at risk of failing the course. Ternary CNN classifiers

were trained to predict whether students were members of one of three groups, based on

final letter grades. The first group consisted of students who achieved a high passing grade

defined as ≥ 70% (a grade of B or higher); the second group consisted of students at risk of

failing (or “warning” group), defined as achieving a low passing grade of ≥ 50% & < 70% (a

grade of C+, C, or D); and the third group consisted of students who failed the course with

a final grade of < 50% (a grade of F). Table 4.37 shows the average training and testing

accuracies, as well as average number of epochs, over 100 trials of CNN ternary classifiers

with different random seeds.

As with the CNN binary classifiers, the format of the input data impacted the accuracy

of the results. Using interval data as input, the CNN ternary classifiers achieved a 46.52%

accuracy on average. This increased to an average of 57.33% when using the timestamp

data as input, and increased further to an average of 64.57% when the models were trained

on the multivariable data.

Table 4.37: Average values for CNN ternary classifier based on letter grades (entire term)

Type of Data Train (%) Test (%) Epochs

Intervals 47.74 46.52 169

Timestamp 58.99 57.33 300

Multivariable 73.36 64.57 303

The average numbers of students who were correctly and incorrectly classified into each

of the three classification groups, using each of the three types of input data, are shown in

Tables 4.38 to 4.40. In these tables, each row contains the students who were actually in
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each of the three groups of failing, warning, or passing. The columns indicate the average

predictions of the CNN ternary classifiers. For example, in 4.38, the first row shows that

of the students who actually failed, 5 were predicted to fail, 1 was predicted to be in the

“warning” group, and 12 were predicted to pass, on average.

For all three types of input data, the CNN ternary classifier was able to correctly

predict the majority of the passing students. However, the CNN ternary classifiers struggled

to identify students in the “warning” group, predicting that many of those students would

pass (on average: using the intervals, timestamp, and multivariable data, the models placed

78%, 61%, and 53%, respectively, of the students who should be in the “warning” group

in the passing group). Given that the students in the “warning” group did indeed pass,

this is not an altogether surprising result. Though it does mean that these students would

not be identified by the models for additional course support. The CNN ternary classifiers

on average identified 33% of the students who actually failed as being in either the failing

or “warning” groups when using the interval data. Using the timestamp data, the average

number of students who actually failed and were predicted to be in either of those two groups

improved at 77%. With the multivariable data, the CNN ternary classifiers labelled 82% of

the students who actually failed as being part of the failing or “warning” groups.

Table 4.38: Average error matrix for CNN ternary classifier based on letter grades with
Intervals data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 5 1 12

Actual Warning 3 1 14

Actual Pass 4 1 22
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Table 4.39: Average error matrix for CNN ternary classifier based on letter grades with
Timestamp data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 10 2 5

Actual Warning 4 4 11

Actual Pass 2 4 20

Table 4.40: Average error matrix for CNN ternary classifier based on letter grades with
Multivariable data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 12 2 3

Actual Warning 3 6 10

Actual Pass 1 4 22

The CNN ternary classifiers, with the group divisions as described above, that produced

the best results are shown in Table 4.41. The model, for each input type of data, with the

highest testing accuracy was considered the best. As shown in the table, the best model

produced by both the intervals and timestamp data had a testing accuracy of 68.25%,

although the number of epochs was different. By including the additional elements in

the multivariable data, the best CNN ternary classifier model achieved an accuracy of

82.54%.

Table 4.41: Best values for CNN ternary classifier based on letter grades (entire term)

Type of Data Train (%) Test (%) Epochs

Intervals 61.06 68.25 254

Timestamp 56.64 68.25 419

Multivariable 71.34 82.54 294

The error matrices for each of the best CNN ternary classifiers using each input type
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of data are shown in Tables 4.42 to 4.44. In all cases, the majority of passing students were

predicted correctly. As well, in all cases the majority of students in the failing group were

correctly predicted to fail.

However, the type of input data influenced the ability of the CNN ternary classifier to

predict students in the “warning” group. While neither of the best CNN ternary classifiers

trained on the interval or timestamp data correctly identified many of the students in

the “warning” group (only 15.4% and 37.5% of those students were classified correctly,

respectively), the best model trained on the multivariable data correctly identified 62.5% of

the students in the “warning” group. Alternatively, we may only be interested in whether

the students who are actually in the “warning” group would be identified as requiring help

(i.e. predicted to be in either of the “warning” or failing groups), rather than requiring

that they be accurately classified in the “warning” group itself. In that case, then the best

CNN ternary classifiers achieved that goal with 38.5%, 43.8%, and 75% accuracy with the

interval, timestamp, and multivariable data, respectively.

Table 4.42: Best error matrix for CNN ternary classifier based on letter grades with
Intervals data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 11 1 8

Actual Warning 3 2 8

Actual Pass 0 0 30

Table 4.43: Best error matrix for CNN ternary classifier based on letter grades with
Timestamp data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 12 4 3

Actual Warning 1 6 9

Actual Pass 0 3 25
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Table 4.44: Best error matrix for CNN ternary classifier based on letter grades with
Multivariable data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 17 1 1

Actual Warning 2 10 4

Actual Pass 0 3 25

4.4.3 CNN ternary classifiers: Median Grade

The CNN ternary classifier experiments were repeated with a different set of classi-

fication groups. In these experiments, the group of students who passed the course was

divided in half. The students with the top half of the passing marks were labelled as the

“passing” group, and the other half of the students were labelled as the “warning” group.

The “failing” group consisted of all students who failed the course. Table 4.45 shows the

average training and testing accuracies, as well as the average number of epochs, over 100

trials of CNN ternary classifiers with different random seeds under this paradigm.

The type of input data affected the testing accuracy of these models. The interval

data, on average, performed the worst with a testing accuracy of 40.38%. The timestamp

data produced better results, with average testing accuracies of 52.30% and 61.95% for the

timestamp and the multivariable data respectively.

Table 4.45: Average values for CNN ternary classifier based on median passing grade
(entire term)

Type of Data Train (%) Test (%) Epochs

Intervals 43.65 40.38 169

Timestamp 55.56 52.30 274

Multivariable 73.26 61.95 310
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The average error matrices for the CNN ternary classifiers with the second type of

classification groups are shown in Tables 4.46 to 4.48. As shown in these tables, the interval

data resulted in many of the students being misclassified across all three groups. When using

either of the timestamp data sets as input, the CNN classifiers were able to accurately

classify the majority of the failing students. However, these models still had difficulty

distinguishing between students in the “warning” and passing groups.

Table 4.46: Average error matrix for CNN ternary classifier based on median passing grade
with Intervals data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 4 7 6

Actual Warning 3 10 11

Actual Pass 3 9 10

Table 4.47: Average error matrix for CNN ternary classifier based on median passing grade
with Timestamp data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 10 5 3

Actual Warning 4 10 9

Actual Pass 2 9 11

Table 4.48: Average error matrix for CNN ternary classifier based on median passing grade
with Multivariable data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 12 3 2

Actual Warning 3 12 8

Actual Pass 1 7 14

The CNN ternary classifiers, with the group divisions as described above, that produced
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the highest testing accuracy are shown in Table 4.49. As shown in the table, the best model

produced by intervals, timestamp data, and multivariable data, had a testing accuracy of

60.32%, 68.25%, and 76.19%, respectively.

Table 4.49: Best values for CNN ternary classifier based on median passing grade (entire
term)

Type of Data Train (%) Test (%) Epochs

Intervals 59.74 60.32 164

Timestamp 57.30 68.25 500

Multivariable 75.81 76.19 423

Tables 4.50 to 4.52 show the error matrices that correspond to each of the best CNN

ternary classifier models in Table 4.49. For each type of input data, the best model correctly

predicted half or more of the students in each group, as indicated along the diagonal of each

error matrix.

Table 4.50: Best error matrix for CNN ternary classifier based on median passing grade
with Intervals data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 8 4 4

Actual Warning 4 10 6

Actual Pass 0 7 20

Table 4.51: Best error matrix for CNN ternary classifier based on median passing grade
with Timestamp data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 12 5 1

Actual Warning 0 14 7

Actual Pass 1 6 17
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Table 4.52: Best error matrix for CNN ternary classifier based on median passing grade
with Multivariable data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 9 6 3

Actual Warning 1 23 1

Actual Pass 0 5 15

4.4.4 Transformer Binary Classifiers

The experiments described above with CNN classifiers were repeated with transformers,

which are a relatively newer type of ML. Like CNNs and other neural network types of ML,

transformers produce prediction results without an explanation of why or how the model

arrived at those predictions. The transformer models were more computationally intensive

than the CNN models, and therefore fewer iterations with different random seeds were

run.

Table 4.53 shows the average training and testing accuracy, as well as average number

of epochs, for the transformer binary classifier over 20 iterations. As shown in the table,

on average the model was less accurate using the interval data compared to the timestamp

or multivariable data (70.00% compared to 78.89% and 79.37%, respectively), but required

more epochs.

Table 4.53: Average values for transformer binary classifier (entire term)

Type of Data Train (%) Test (%) Epochs

Intervals 81.52 70.00 247

Timestamp 82.68 78.89 80

Multivariable 83.54 79.37 101
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Tables 4.54 to 4.56 show the average number of students who were correctly predicted

to pass or fail, for each type of input data provided to the transformer binary classifier.

The tables include the average number of students who: actually failed and were predicted

to fail (true negatives), actually failed but were predicted to pass (false positives), actually

passed but were predicted to fail (false negatives), and actually passed and were predicted

to pass (true positives).

The transformer binary classifiers were able to correctly predict the majority of students

who passed the course, regardless of the type of input data. However, the classifiers were

less successful at classifying students who had failed the course. On average, only 17.6% of

students who failed the course were predicted to fail (true negatives) when the interval data

was used. With timestamp and multivariable data 35% and 44% of students who failed

were correctly classified, respectively.

Table 4.54: Average error matrix for transformer binary classifier with Intervals data (entire
term)

Predicted Fail Predicted Pass

Actual Fail 3 14

Actual Pass 5 40

Table 4.55: Average error matrix for transformer binary classifier with Timestamp data
(entire term)

Predicted Fail Predicted Pass

Actual Fail 6 11

Actual Pass 4 42
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Table 4.56: Average error matrix for transformer binary classifier with Multivariable data
(entire term)

Predicted Fail Predicted Pass

Actual Fail 8 10

Actual Pass 8 37

As shown in Table 4.57, the transformer binary classifier was capable of producing

highly accurate predictions, depending on how it was initialized with the random seed. The

best transformer binary classifier model, with the highest testing accuracy, for each type of

input data is included in the table. Using interval data, the transformer binary classifier

achieved a testing accuracy of 82.54%. The transformer binary classifier models were more

successful with the timestamp data, achieving a best testing accuracy of 88.89% and 90.48%

with the timestamp and multivariable data respectively.

Table 4.57: Best values for transformer binary classifier (entire term)

Type of Data Train (%) Test (%) Epochs

Intervals 97.21 82.54 78

Timestamp 80.73 88.89 77

Multivariable 87.14 90.48 91

The best transformer binary classifier models produced in these experiments were able

to correctly predict the majority of passing students, as shown in Tables 4.58 to 4.60. In

fact, the best models produced with either the timestamp or the multivariable data correctly

predicted all students in the passing group. However, the models were less successful at

classifying the students who failed the course, leading to a higher percentage of false positives

compared to false negatives.
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Table 4.58: Best error matrix for transformer binary classifier with Intervals data (entire
term)

Predicted Fail Predicted Pass

Actual Fail 5 8

Actual Pass 3 47

Table 4.59: Best error matrix for transformer binary classifier with Timestamp data (entire
term)

Predicted Fail Predicted Pass

Actual Fail 6 7

Actual Pass 0 50

Table 4.60: Best error matrix for transformer binary classifier with Multivariable data
(entire term)

Predicted Fail Predicted Pass

Actual Fail 10 6

Actual Pass 0 47

4.4.5 Transformer ternary classifiers: Letter Grades

Ternary transformer classifiers were trained to predict whether students were members

of one of three groups, based on final letter grades. The first group consisted of students

who achieved a high passing grade defined as ≥ 70% (a grade of B or higher); the second

group consisted of students at risk of failing (or “warning” group), defined as achieving

a low passing grade of ≥ 50% & < 70% (a grade of C+, C, or D); and the third group

consisted of students who failed the course with a final grade of < 50% (a grade of F).

Table 4.61 shows the average training and testing accuracies, as well as average number of

epochs, over 20 trials of transformer ternary classifiers with different random seeds.

Using interval data as input, the transformer ternary classifiers achieved a 42.22%

accuracy on average. This increased to an average of 48.02% and 49.84% when using the
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timestamp and multivariable data as input, respectively.

Table 4.61: Average values for transformer ternary classifier based on letter grades (entire
term)

Type of Data Train (%) Test (%) Epochs

Intervals 63.57 42.22 176

Timestamp 64.90 48.02 80

Multivariable 66.43 49.84 90

The average numbers of students who were correctly and incorrectly classified into each

of the three classification groups by the transformer ternary classifiers, using each of the

three types of input data, are shown in Tables 4.62 to 4.64. Each row contains the students

who were actually in each of the three groups of failing, warning, or passing. The columns

indicate the average predictions of the transformer ternary classifiers.

Using the interval data, the transformer ternary classifiers predicted that that majority

of students would pass, no matter which group they actually belonged to, on average. This

is demonstrated in the third column of Table 4.62. With the timestamp data as input,

the transformer ternary classifiers were typically able to identify more of the students who

failed. However, the majority of students in the “warning” group were still predicted to be

in the passing group instead.

Table 4.62: Average confusion matrix for transformer ternary classifier based on letter
grades with Intervals data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 4 1 13

Actual Warning 2 2 14

Actual Pass 4 3 20
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Table 4.63: Average confusion matrix for transformer ternary classifier based on letter
grades with Timestamp data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 7 5 6

Actual Warning 3 4 11

Actual Pass 3 7 18

Table 4.64: Average confusion matrix for transformer ternary classifier based on letter
grades with Multivariable data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 9 3 5

Actual Warning 5 3 11

Actual Pass 6 5 17

The training and testing accuracy of the best transformer ternary classifiers with the

groups described above, for each type of input data, are shown in Table 4.65. A determina-

tion of the best model was made based on the highest testing accuracy. The accuracy of the

best model increased depending on the type of input data, with the interval data producing

an accuracy of 50.79%, and the timestamp and multivariable data producing models with

accuracies of 55.56% and 58.73%, respectively. The number of epochs used by each model

is also shown in Table 4.65. For all three of the best transformer ternary classifier, the

number of epochs was less than one hundred.

Table 4.65: Best values for transformer ternary classifier based on letter grades (entire
term)

Type of Data Train (%) Test (%) Epochs

Intervals 41.04 50.79 76

Timestamp 62.72 55.56 77

Multivariable 73.97 58.73 91
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The error matrices for each of the best transformer ternary classifiers using each input

type of data are shown in Tables 4.66 to 4.68. The type of input data influenced the ability of

the transformer ternary classifier to predict students in each of the the three groups. Using

the interval data, the best transformer ternary classifier result of 50.79% testing accuracy

was achieved by unhelpfully predicting that all students would pass the course.

The models produced using the timestamp data were better able to identify students

in the failing and “warning” groups. The best model using the timestamp data correctly

predicted 41% of the students who actually failed. The model also predicted that 82% of

the students who failed would be in either the failing or “warning” groups, meaning that

the majority of those students could be identified for further support. The same model

correctly predicted 47% of students in the “warning” group. Of the students who were

actually in the “warning group”, 42% were predicted to pass.

Finally, the best model using the multivariable data correctly predicted 42% of students

who failed, and identified 58% of that group as either failing or in the “warning” category.

The model was less successful at identifying students that were truly in the “warning”

group, correctly predicting of 7% of those students. Of the students who were actually in

the “warning” group, 93% were predicted by this model to pass the course.

Table 4.66: Best confusion matrix for transformer ternary classifier based on letter grades
with Intervals data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 0 0 13

Actual Warning 0 0 18

Actual Pass 0 0 32
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Table 4.67: Best confusion matrix for transformer ternary classifier based on letter grades
with Timestamp data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 7 7 3

Actual Warning 2 9 8

Actual Pass 0 8 19

Table 4.68: Best confusion matrix for transformer ternary classifier based on letter grades
with Multivariable data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 8 3 8

Actual Warning 0 1 13

Actual Pass 1 1 28

4.4.6 Transformer ternary classifiers: Median Grade

The transformer ternary classifier experiments were also repeated with a different set

of classification groups. In the following experiments, the group of students who passed the

course was divided in half. The students with the top half of the passing marks were labelled

as the “passing” group, and the other half of the students were labelled as the “warning”

group. The “failing” group consisted of all students who failed the course. Table 4.69 shows

the average training and testing accuracies and the average number of epochs over 20 trials

of transformer ternary classifiers with different random seeds.

The transformer ternary classifiers in these experiments were sensitive to the format

of the input data. On average, the classifiers trained on the interval data performed the

worst with a testing accuracy of 37.54%. The classifiers trained on the timestamp data

produced slightly better results, with average testing accuracies of 48.97% and 48.49% for

the timestamp and the multivariable data, respectively.
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Table 4.69: Average values for transformer ternary classifier based on median passing
grade (entire term)

Type of Data Train (%) Test (%) Epochs

Intervals 60.25 37.54 204

Timestamp 66.21 48.97 82

Multivariable 68.43 48.49 87

Tables 4.70 to 4.72 show the average numbers of students who were correctly and

incorrectly classified into each of the three classification groups by the transformer ternary

classifiers, using each of the three types of input data. Each row contains the students

who were actually in each of the three groups of failing, warning, or passing. The columns

indicate the average predictions of the transformer ternary classifiers.

The type of input data influenced the predictive results of the transformer ternary

classifiers. Using the interval data as input, the transformer ternary classifiers were not able

to correctly classify the majority of students. Of the students who failed, only 24% were

predicted to do so. However, 82% of the students who failed were, on average, predicted to

be part of the failing or “warning” groups, meaning they would be identified for additional

support. On average, the classifiers trained on the interval data did a good job identifying

students in the “warning” group, correctly classifying 61% of these students. However, only

28% of students in the “passing” group were classified correctly.

The transformer ternary classifiers trained on the timestamp data produced fewer false

negatives on average. Using the timestamp data, the classifiers correctly predicted 35% of

failing students (and classified 76% of the failing students as either “failing” or “warning”).

In the warning group, 48% of students were classified correctly (and 65% were classified

as either “failing” or “warning”), and 50% of the passing group was classified correctly on

average. When the models were trained on the multivariable data, 59% of failing students

were classified correctly (and 82% of the failing students were classified as either “failing”
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or “warning”). About 30% of student actually in the “warning” group were classified as

such, but 61% of students in that group were classified as one of “failing” or “warning”,

and 43% of students in the “passing” group were correctly predicted.

Table 4.70: Average confusion matrix for transformer ternary classifier based on median
passing grade with Intervals data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 4 10 3

Actual Warning 3 14 6

Actual Pass 3 15 5

Table 4.71: Average confusion matrix for transformer ternary classifier based on median
passing grade with Timestamp data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 6 7 4

Actual Warning 4 11 8

Actual Pass 2 9 11

Table 4.72: Average confusion matrix for transformer ternary classifier based on median
passing grade with Multivariable data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 10 4 3

Actual Warning 7 7 9

Actual Pass 6 7 10

The training and testing accuracy of the best transformer ternary classifiers with the

classification groups described above are shown in Table 4.73 for each type of input data.

As previously, a determination of the best model was made based on the highest testing

accuracy. The accuracy of the best model with the interval data was 46.03%, and the best
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timestamp and multivariable data producing models had accuracies of 61.90% and 58.73%,

respectively. The number of epochs used by each model was less than one hundred, as

shown in the table.

Table 4.73: Best values for transformer ternary classifier based on median passing grade
(entire term)

Type of Data Train (%) Test (%) Epochs

Intervals 95.48 46.03 77

Timestamp 61.92 61.90 76

Multivariable 71.50 58.73 97

The error matrices for each of the best transformer ternary classifiers using each input

type of data are shown in Tables 4.74 to 4.76. Using the interval data, the best transformer

ternary classifier correctly predicted 50% of the failing students, 48% of students in the

“warning” group, and 42% of students in the “passing” group. If students who were pre-

dicted to be in either of the “failing” or “warning” categories received additional support,

then 94% of students who failed would have received that support.

The best model using the timestamp data correctly predicted 46% of the students who

actually failed, 86% of students in the “warning” group, and 43% of students in the “pass-

ing” group. Using the multivariable data, the best model correctly predicted 37.5% of

the students who actually failed but 88% of students in the warning group were classified

correctly. Yet, if students who were predicted to be in either of the “failing” or “warn-

ing” categories received additional support, then 96% of students who were actually in the

“failing” group would have received that support.

Kathryn L. Marcynuk - 170 of 218 - April 14, 2023



Prediction of Student Outcomes 4.5 Group 4 RQ: Time Series Classification (Early Prediction)

Table 4.74: Best confusion matrix for transformer ternary classifier based on median
passing grade with Intervals data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 8 7 1

Actual Warning 1 10 10

Actual Pass 7 8 11

Table 4.75: Best confusion matrix for transformer ternary classifier based on median
passing grade with Timestamp data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 6 5 2

Actual Warning 2 19 1

Actual Pass 1 13 14

Table 4.76: Best confusion matrix for transformer ternary classifier based on median
passing grade with Multivariable data (entire term)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 9 14 1

Actual Warning 0 22 3

Actual Pass 0 8 6

4.5 Group 4 RQ: Time Series Classification (Early Predic-

tion)

The experiments of Sections 4.4.1 and 4.4.4 of pass/fail prediction using CNN and

transformer binary classifiers were repeated using timeline data only up until the VW

deadline for earlier prediction. These experiments address research question 4.3. The

results of these experiments are provided in Sections 4.5.1 to 4.5.2. Tables 4.77 to 4.84

show the results from the CNN models, while Tables 4.85 to 4.92 show the results from
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the transformer models. The results of early prediction at the VW deadline using ternary

classifiers are available in Appendix D.

4.5.1 CNN Binary Classifiers (Early Prediction)

Tables 4.77 to 4.80 present the average results of early prediction with a CNN binary

classifier. The CNN models trained with the multivariable input data had the highest

testing accuracy on average at 82.32%. These models also had the fewest false positives

on average, however the number of false positives was relatively higher than the number of

false negatives regardless of the type of input data.

Table 4.77: Average values for CNN binary classifier (up to VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 73.81 72.81 145

Timestamp 79.95 78.70 244

Multivariable 87.13 82.32 245

Table 4.78: Average error matrix for CNN binary classifier with Intervals data (up to VW
date)

Predicted Fail Predicted Pass

Actual Fail 2 16

Actual Pass 1 44

Table 4.79: Average error matrix for CNN binary classifier with Timestamp data (up to
VW date)

Predicted Fail Predicted Pass

Actual Fail 6 12

Actual Pass 2 43
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Table 4.80: Average error matrix for CNN binary classifier with Multivariable data (up to
VW date)

Predicted Fail Predicted Pass

Actual Fail 10 8

Actual Pass 4 41

Tables 4.81 to 4.84 present the results of the best early prediction CNN binary classifier

model out of 100 trials. At the VW deadline, the best CNN models were able to achieve high

prediction accuracies. The testing accuracies were 84.1%, 90.48%, and 90.48% for the best

models trained using interval, timestamp, and multivariable data, respectively. However,

each of these models still had a relatively higher number of false positives compared to false

negatives, as shown in the error matrices of Tables 4.82 to 4.84.

Table 4.81: Best values for CNN binary classifier (up to VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 77.67 84.13 136

Timestamp 77.84 90.48 500

Multivariable 87.49 90.48 151

Table 4.82: Best error matrix for CNN binary classifier with Intervals data (up to VW
date)

Predicted Fail Predicted Pass

Actual Fail 8 8

Actual Pass 2 45

Table 4.83: Best error matrix for CNN binary classifier with Timestamp data (up to VW
date)

Predicted Fail Predicted Pass

Actual Fail 9 4

Actual Pass 2 48
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Table 4.84: Best error matrix for CNN binary classifier with Multivariable data (up to VW
date)

Predicted Fail Predicted Pass

Actual Fail 5 6

Actual Pass 0 52

4.5.2 Transformer Binary Classifiers (Early Prediction)

Tables 4.85 to 4.88 present the average results of early prediction with a transformer

binary classifier. On average, all of the transformer models had similar testing accuracies,

regardless of the format of the input data. The models trained with the timestamp and

multivariable data had slightly higher testing accuracies (76.19% and 75.56%, respectively)

on average compared to those trained on the interval data (72.22%). For each type of input

data, the majority of students who would go on to pass the course were predicted correctly.

However, the transformer models had a tendency to predict that most students would

pass the course. The average number of students who actually failed and were incorrectly

predicted to pass was 94%, 71%, and 59% using the interval, timestamp, and multivariable

data, respectively.

Table 4.85: Average values for transformer binary classifier (up to VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 76.60 72.22 180

Timestamp 81.85 76.19 81

Multivariable 78.24 75.56 84
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Table 4.86: Average error matrix for transformer binary classifier with Intervals data (up
to VW date)

Predicted Fail Predicted Pass

Actual Fail 1 16

Actual Pass 2 44

Table 4.87: Average error matrix for transformer binary classifier with Timestamp data
(up to VW date)

Predicted Fail Predicted Pass

Actual Fail 5 12

Actual Pass 5 41

Table 4.88: Average error matrix for transformer binary classifier with Multivariable data
(up to VW date)

Predicted Fail Predicted Pass

Actual Fail 7 10

Actual Pass 12 34

Tables 4.89 to 4.92 present the results of the best early prediction transformer binary

classifier model out of 20 trials. At the VW deadline, the best transformer models achieved

testing accuracies of 80.95%, 85.71%, and 82.54% for the best models trained using interval,

timestamp, and multivariable data, respectively. However, each of these models still had

a relatively higher number of false positives compared to false negatives, as shown in the

error matrices of Tables 4.90 to 4.92. The best model achieved using the interval data

did so by predicting that all students would pass the class, resulting in a relatively high

testing accuracy but not very actionable predictions. Both of the best models trained using

the timestamp and multivariable data were able to correctly predict just over half of the

students who would eventually fail the course.
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Table 4.89: Best values for transformer binary classifier (up to VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 69.56 80.95 218

Timestamp 80.73 85.71 78

Multivariable 75.68 82.54 76

Table 4.90: Best error matrix for transformer Binary classifier with Intervals data (up to
VW date)

Predicted Fail Predicted Pass

Actual Fail 0 12

Actual Pass 0 51

Table 4.91: Best error matrix for transformer binary classifier with Timestamp data (up
to VW date)

Predicted Fail Predicted Pass

Actual Fail 7 6

Actual Pass 6 44

Table 4.92: Best error matrix for transformer binary classifier with Multivariable data (up
to VW date)

Predicted Fail Predicted Pass

Actual Fail 7 6

Actual Pass 5 45

4.6 Results Summary

The results of the experiments from the four groups of research questions were pre-

sented in this chapter. In the first group it was shown that the intervals between student

interactions with the LMS do not follow a normal distribution. Shorter intervals were more

common, and the distribution also had a long tail extending to the right indicating that
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there were extreme outliers of long interval lengths. The correlations between the temporal

features based on the Student Model timelines and student outcomes, at various points

during the term, were presented in the second group of research questions. Both the hand-

crafted temporal features and the features learned by a ML algorithm were used to predict

student outcomes in multiple ML regression models, as well as to group students based on

the features with unsupervised clustering. In each case, the ML models trained on the hand-

crafted features performed as well or slightly better than when the models were trained with

the learned features. When student outcomes were defined as passing or failing the course,

the ML models with either set of features had more false positive errors relative to false neg-

ative errors. The experimental results of time series classification indicate that both CNN

and transformer neural networks are promising techniques to classify students as passing or

failing using only the LMS timestamp information without hand-crafted features,
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Chapter 5

Discussion

The experimental results that were presented in Chapter 4 are discussed further in this

chapter. In Sections 5.1 to 5.4 the observed trends are grouped into the four sets of research

questions, and the numerical results are examined in the context of the people behind the

data: undergraduate students interacting with a synchronous and fully online course. In

Section 5.5, the implications of the results are discussed within the context of education

and online courses.

5.1 Group 1 RQs: Patterns of Behaviours

Students’ patterns of behaviour throughout a term for a class delivered fully online were

explored in this set of research questions by creating quantitative features to represent the

students’ temporal interactions with the LMS.

The average number of interactions per student during the term was double the average

number of timeline items when rounded to the nearest whole number, as shown in Table 4.5.

This implies that, on the whole, students were not returning to the same LMS pages many
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times. This finding is notable because all of the interval-based features were created using

the date-timestamped interactions recorded in the Data Hub, which does not record the

dates or repeated interactions with the same content. Since the number of number of

timeline items relative to the number of interactions per student remained nearly constant,

the timelines can be considered to be a reasonable representation of student interactions

with the course LMS.

The amount of time between when students, on average, submitted assignments com-

pared to the due date decreased over the term from nearly two days (43 hours) to just over

one day (27 hours). This means that students submitted later assignments closer to the

due date compared to earlier assignments in the term. There could be a variety of reasons

for this trend, such as: assignments that cover more course material require more time,

students become busier as the term progresses and need to balance their time, or students

begin to start assignments later either out of necessity or because they have a better idea

of how long they will need to complete the work.

At each point that it was calculated during the term, the burstiness measure was nearly

1, implying that students are predominately accessing the material in a bursty way, rather

than in consistently spread out throughout the term. One explanation for the high degree

of burstiness could be if students are downloading multiple files when they interact with

the course LMS.

The fraction of non-zero days is the fraction of days that student’s interacted with

the course LMS at least once. On average, this value decreased over the term from ap-

proximately 0.47 at the one-quarter mark to 0.43 by the final exam, corresponding to a

minimum of three days with interactions every week (three out of seven days is a fraction

of 0.43 non-zero days). By the end of the term, the fraction of non-zero days dropped to

0.36, which may be attributed to decreased activity during the period of time after the final
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exam when the LMS course page remained open to students. Since it was shown earlier

that the number of interactions with the LMS remained, on average, relatively constant

during the term while the fraction of non-zero days decreased, this implies that students’

behaviour became more bursty over time.

The distribution of intervals was calculated, as shown in Figure 4.1. From this proba-

bility mass function (PMF), the length of the intervals does not have a normal distribution.

The PMF of the intervals instead had a very long right tail, meaning that although the

majority intervals were relatively short, there were some intervals that were much longer.

The distribution is best described using multiple units of time: the shortest intervals were

seconds or minutes long, and longer intervals could be measured in days or weeks. The

longest interval in this dataset was just over 42 days. Figure 4.2 shows the same PMF with

intervals less than one hour or greater than one week cut off. In doing so, it can be seen that

the distribution follows a decaying sinusoidal pattern, with peaks corresponding to roughly

24-hour periods. This implies that students were most likely to access course material at

the same time of day as their previous interaction. Each student effectively set a personal

schedule.

5.2 Group 2 RQs: Correlation of Features and Outcomes

The second set of research questions explored the correlations between students patterns

of behaviour at different points in time during the course and student outcomes. As observed

in the figures, the number of interactions is highly correlated with the number of timeline

items at all points during the term. This again shows that although the timelines do not

capture every interaction the students have with the course LMS, they are representative

of those interactions.

The number of interactions, and number of timeline items, are also highly correlated
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with the fraction of non-zero days. This indicates that students who interact with the

course LMS more, do so across a larger number of days compared to students who have

fewer interactions.

The fraction of non-zero days at the quarter-point in the term with the midterm

grades is 0.18. However, the correlation between the fraction of non-zero days with the

final grade increases from 0.33 to 0.58 over the term. These trends support the assertion

found in the literature and supported by behaviourism that students who are more en-

gaged with the course material, whatever their motivation may be, tend to have higher

final grades [BrPH22][MaDa10].

5.3 Group 3 RQs: Feature-Based Prediction and Early Pre-

diction

In the third set of research questions, predictive ML models were used to explore which

features of the temporal behaviours had the greatest predictive capabilities for student

course outcomes. The results were then compared to predictions using features that were

automatically generated from the raw timestamp data. Overall, the temporal features that

were hand-crafted from the LMS data yielded similar or fewer prediction errors compared

to the predictions with the automatically generated features, indicating that these hand-

crafted temporal features may add predictive value.

For early prediction, the feature values at earlier points during the term were used as

input to the predictive models. Using linear regression with multiple features in combina-

tion, the MAE could be reduced to just under 15.5, meaning that the final grade could be

predicted to within nearly 15 percentage points. Although this is not accurate enough to

predict final letter grades, it could be helpful in predicting students who will be closer to a
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failing grade.

Logistic regression was used to predict whether students passed or failed the course,

based on a minimum final grade of 50% needed to pass. Overall, the logistic regression

algorithm was successful at predicting students with passing final grades. False positives,

students predicted to pass but who actually failed, were common. In each trial using the

hand-crafted features from the Student Model, approximately 20% of the outcomes were

false positives. Larger training sets decreased the number of false positives, and it is possible

that with larger student datasets to train the model, the number of false-positives could

decrease further. The number of false negatives, students predicted to fail but who actually

passed, were rare with at most one student out of each trial in this category. Logistic

regression trials using the automatically generated features, that were learned from the raw

data using ML, were inconclusive as they failed to converge.

The nearest neighbours algorithm had fewer prediction errors than logistic regression.

All values of k greater than two performed as well as, or better, than logistic regression

at predicting pass or fail outcomes. For this dataset, using the temporal features from the

Student Model, the optimal value of k was 3, which resulted in 10 false positives and 4 false

negatives. The number of overall prediction errors, as well as false positive errors, using

the ML generated features was higher for all values of k. From an educational standpoint,

in order to identify students at risk of failing the course, minimizing the number of false

positives is more helpful than minimizing the number of false negatives.

5.4 Group 4 RQs: Time Series Classification

In the fourth set of research questions, NN classifiers were used for student course out-

come prediction using LMS data. After performing the student course outcome prediction

experiments with CNN and transformer classifiers, a number of trends were observed. Both
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types of classifiers showed promising results, with testing accuracies of up to 98.41%, indi-

cating that these types of models can provide insights into LMS data. The binary classifiers

in these experiments produced testing accuracies that met or exceeded those of other models

in the literature [ArBR22].

As shown in the tables presented in Subsections 4.4.1 to 4.4.3, the accuracy of the CNN

classifiers was influenced by the format of the input data. Across both the binary and

ternary CNN classifiers, the prediction accuracy was lowest with the interval input data

and highest with the multivariable data. Across the experiments, the multivariable data

produced results in range of 10-20% more accurate than when the interval data was used as

input. The best CNN binary classifier model was 98.41% accurate using the multivariable

data. The best CNN ternary classifier model achieved a testing accuracy of 82.54%, also

using the multivariable data, when the classification groups were based on the final letter

grades.

Similarly, the accuracy of the transformer classifiers was also influenced by the format

of the input data. The transformer classifiers that were trained on the interval input data

were also the least accurate, producing results that were approximately 10% less accurate

than the timestamp data on average. However, for both the binary and ternary transformer

classifiers, the accuracy between the models trained on the timestamp and multivariable

data was negligible. The best binary transformer classifier model was 90.48% accurate

using the multivariable data, and the best ternary transformer classifier model was 61.90%

accurate using the timestamp data.

Another observed trend was the relative performance of ternary classifiers using classi-

fication groups based on letter grades compared to the groups based on the median passing

grade. Both the CNN and transformer ternary classifiers achieved slightly higher accura-

cies when the groups were based on the final letter grades, as shown in Table 5.1. This
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suggests that these types of models may be useful in predicting students who may receive

a near-failing grade, but how that is defined impacts the accuracy and therefore usefulness

of the model.

Table 5.1: Comparison between ternary classification groups accuracies using multivariable
data

Model Type Groups based on Average (%) Best (%)

CNN letter grades 64.57 82.54

CNN median of passing grade 61.95 76.19

Transformer letter grades 49.84 58.73

Transformer median of passing grade 48.49 58.73

Trends were also observed between the performance of the CNN and transformer classi-

fiers, when they were run under the same conditions. Tables 5.2 to 5.4 compare the average

and best predication accuracies of the CNN and transformer binary and ternary classifiers

using the multivariable data as input. As shown in these tables, in each case the CNN

models outperform the transformer models. The number of training epochs was also higher

for the CNN classifiers, with the specific numbers provided in the results section.

Table 5.2: Comparison between average and best binary CNN and transformer models
using multivariable data

Average (%) Best (%)

CNN 86.35 98.41

Transformer 79.37 90.48
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Table 5.3: Comparison between average and best ternary CNN and transformer models
using multivariable data and groups based on letter grades

Average (%) Best (%)

CNN 64.57 82.54

Transformer 49.84 58.73

Table 5.4: Comparison between average and best ternary CNN and transformer models
using multivariable data and groups based on the median passing grade

Average (%) Best (%)

CNN 61.95 76.19

Transformer 48.49 58.73

In addition to the testing accuracy, another way to quantify the performance of the

CNN and transformer models is with the number of false positives and false negatives.

Table 5.5 shows the average number of false positives and false negatives for each type of

binary classifier and type of input, as well as the percentage of passing and failing students

that were classified incorrectly in each case.
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Table 5.5: Average false positives and false negatives binary CNN models and binary
transformer model

False

Positives

Failing students

classified

incorrectly

False

Negatives

Passing students

classified

incorrectly

CNN intervals 15 83.0% 2 4.4%

Transformer

intervals

14 82.0% 5 11.1%

CNN

timestamps

9 52.9% 4 8.7%

Transformer

timestamps

11 64.7% 4 8.7%

CNN

multivariable

6 33.3% 3 6.7%

Transformer

multivariable

10 55.6% 8 17.8%

Table 5.6 also shows the number of false positives, false negatives, and percentage of

passing and failing students that were classified incorrectly for the best model trained on

each type of input data.
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Table 5.6: False positives and false negatives in the best binary CNN models and binary
transformer models

False

Positives

Failing students

classified

incorrectly

False

Negatives

Passing students

classified

incorrectly

CNN intervals 4 26.7% 3 6.3%

Transformer

intervals

8 61.5% 3 6.0%

CNN

timestamps

6 37.5% 0 0%

Transformer

timestamps

7 53.8% 0 0%

CNN

multivariable

1 8.3% 0 0%

Transformer

multivariable

6 37.5% 0 0%

As shown in Tables 5.5 and 5.6, the number of false negatives (i.e. students who passed

but were predicted to fail) is low across nearly all models, and also lower than the number

of false positives (i.e. students who failed but were predicted to pass) in most cases. The

percentage of failing students who were, on average, classified incorrectly ranged from 33.3%

to 83% depending on the type of model and type of input data. In contrast, the percentage

of passing students who were classified incorrectly on average was in the lower range of

4.4% to 17.8% over the same models. This implies that some students who failed had LMS

interaction patterns which were similar to students who passed the course.

For student course outcome prediction, the number of false positives is more important

than the number of false negatives. Students who are predicted to pass, but who actually
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are more at risk of failing, are done a disservice by being misclassified compared to students

in the opposite situation. On average, the number of false positives was influenced by the

type of input data as shown in Table 5.5. For both the CNN and transformer models,

the models trained on the interval data resulted in the highest number of false positives,

while the models trained on the multivariable data resulted in the fewest number of false

positives.

It was also observed that in these experiments the CNN models produced the same

or fewer mis-classifications (false positives or false negatives) compared to the transformer

models, when comparing average results of models trained with the same type of input data.

As shown in Table 5.5, on average the percentage of failing students who were classified

incorrectly was the same or lower for the CNN models with each type of input data (between

33.3% and 83.0%) compared to the transformer models trained on the same type of input

data (55.6% to 82.0%).

An additional way to directly compare the performance of the CNN and transformer

classifiers is shown in Table 5.7. This table shows the results of training both a CNN

and transformer binary classifier with multivariable data as input using the same random

starting seed and same test-train split of the input data. After training these specific

models, the CNN binary classifier had a testing accuracy of 88.89% and the transformer

binary classifier had a testing accuracy of 76.19%. Table 5.7 presents the number of students

who were classified correctly by both of these models, only one of these models, or by neither

model, delineated by course outcome. As shown in the table, both models correctly classified

the majority of students who passed, as well as just over half of the students who failed. The

CNN model correctly classified an additional 7 passing students and 5 failing students over

the transformer model, while the transformer correctly classified an additional 4 passing

students over the CNN model. All of the passing students were correctly classified by at

least one of the CNN or transformer models, however both models failed to predict 3 of the
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students who failed.

Table 5.7: Comparison of a CNN binary classifier and transformer binary classifier trained
with the same initial conditions and multivariable input data.

True Pass True Fail

Total number students in group 46 17

Number of students predicted correctly by both CNN & Transformer 35 9

Number of students predicted correctly by CNN only 7 5

Number of students predicted correctly by Transformer only 4 0

Number of students predicted correctly by neither 0 3

The experimental results of prediction at the VW deadline using both CNN and trans-

former binary classifiers indicate that this approach may be useful for course outcome

prediction earlier in the term as well. The best CNN binary classifiers achieved testing

accuracies of 90.48% and the best transformer binary classifier had a testing accuracy of

85.71%. These results were lower than the predictions achieved using the full timelines

(98.41% and 90.48%, respectively), which is to be expected with less input data.

The results suggest that the CNN models are better suited to student course outcome

prediction using behavioural data based on LMS timestamps than transformers, at this time,

when using the metrics of testing accuracy and false positives. However, unlike feature-

based prediction methods, neither the CNN or transformer classifiers offer insight into why

students were classified into each group. Nevertheless, in many settings it may not be

necessary to know the reasoning behind the prediction. For example, in deciding whether

to offer additional support to a student, their predicted course outcome may be sufficient

to act upon. To that end, both types of neural network classifiers produced promising

results at course outcome prediction, and there is room for future study on optimizing

CNN, transformer, and other types of neural networks for time series classification of LMS
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data.

5.5 Broader Implications in Education

A number of trends and points for future consideration emerged through the exper-

iments presented in Chapters 3-4 that could be informative to educators and students.

However, it is important to note that the correlations discussed in this work are observed

trends. In particular, correlations between features and final grades do not mean that the

final grade was caused by those feature values.

From the study of timeline interval characteristics, including the PMF, it was found

that students naturally develop a schedule of interacting with the LMS at daily or multi-

day intervals around a personally consistent time of day. Working within this structure,

educators can potentially help to minimize the cognitive burden on students by uploading

new course content at the same time each day. Doing so will mimic students’ behaviour

of consistent daily or multi-day interaction within the LMS, possibly creating a sense of

stability that new content will not be missed. As well, since the number of timeline items

was about half of the student’s total number of interactions with the LMS at all points

during the term, it implies that students did not revisit the same content pages many

times over. This could be because each LMS item was visited only a few times, or because

students downloaded the content and did not need to revisit it on the LMS. The high

degree of burstiness in the intervals also could be explained by multiple content pages

being downloaded in quick succession every few days. Once students have downloaded

files (such as course notes, practice problems, or assignment instructions) from the LMS to

their own devices, they have little reason to check that material again on the LMS for any

updates.

In previous research, the impact of sending messages to students as reminders to visit
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content was inconclusive [HaBH17]. By understanding how students naturally engage with

the LMS, it may be possible to optimize the timing of such messages. Furthermore, if in-

structors interact with the LMS in a predictable pattern of behaviour, implicitly or explicitly,

students may respond by incorporating this knowledge into their own patterns of behaviour

in order to avoid missing content. If an instructor deviates from their established pattern,

they can potentially help students by prominently communicating this change in classroom

and LMS announcements, to ensure the changes aren’t missed. This could streamline both

instructor’s and students’ interactions with LMS, making the interactions more efficient and

thereby potentially more effective (e.g., students won’t miss uploaded content), which could

reduce students’ cognitive load and improve students’ learning [Kirs02].

Using the feature-based ML prediction algorithms, it was shown that students’ be-

haviour interacting with the LMS was more successful at predicting a binary outcome of

pass or fail, compared to membership in a final grade group (strong, competent, develop-

ing, passing, or failing). The neural network-based classifiers were also more successful at

predicting a binary groups compared to ternary groups using the LMS data. In part, this

can be attributed to the relatively larger sizes of the binary groups compared to when the

students are divided into three or more grade groups. Performing the analysis on larger

data sets with additional real or synthetic student data could yield better results. However,

from a practical standpoint, it is more important to be able to predict whether a student is

likely to pass or fail, rather than which letter grade they will receive [DeDS22] [MBKK03].

For example, additional supports are more critical for a student who is not on track to

pass at all, compared to one who is on track to complete the course between ‘strong’ and

‘developing’.

It is possible that course outcome predictions based on interactions with the LMS

may be improved through the implementation of additional behavioural features, such as

the fractal dimension and learning entropy for polyscale and multiscale analysis discussed
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earlier. At this time, the LMS software does not track and record sufficient data to calculate

these features. Computer storage continues to become more affordable and accessible, and

as the importance and interest in tracking educational data increases the range of what is

available through LMS may also grow.

Through the lens of behaviourism, students’ observable behaviours can be used as a

proxy for their learning. However, encouraging students to behave in certain ways through-

out the term based on the feature correlations will not guarantee that the students learn, or

even pass the course. Indeed, no prediction algorithm was able to use student behaviours

with the LMS to predict course outcomes with complete accuracy. However, students’ be-

haviours in terms of their interactions with an LMS can help to identify when to provide

additional support and who may most benefit from it. Furthermore, educators can pro-

mote the behavioural features that correlate with higher grades, or are predictive of higher

grades, for all students as well as particularly to help students who are new to an online

course environment and who are forming new habits as they learn how to learn within the

environment. Although the NN classifiers can not provide an indication of how students

should behave, given the predictive success of these classifiers with the LMS data it is con-

ceivable that they could be used to develop decision support tools to support educators in

determining where to direct their support.

Even with additional data there would still be much work to be done to improve the

accuracy of student course outcome predictions. There is an art to the science of ML. Fea-

ture selection and hyperparameter tuning can be aided by algorithms, but the development

of features from the raw data is still often a human endeavour [Feat22]. The data can be

overfit to the ML models, making the model very good at predicting the training data but

bad at predicting any new data points. Overfitting is of particular concern in datasets where

one of the prediction groups is has many more members than the other. This can make it

difficult to accurately predict data points in the group with fewer members. For example, if
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only 1% of students in a dataset are in the ‘failed the course’ group, then a ML model will

be correct 99 out of 100 times just by predicting everyone as passing. In this dataset, there

was a nearly 70-30 split between students who passed and those who failed. However, with

the goal of increasing the number of students who pass, the datasets will become even more

imbalanced. Data sets from other courses may naturally have a higher pass-to-fail ratio al-

ready and would therefore be more susceptible to overfitting. Additional data collection, or

the creation of synthetic data, may be required to overcome this imbalance[DoAB19].

It is also important to note that the dataset in this study contained LMS interactions

from students in a first year computer science course. One of the characteristics of this

course is the large number opportunities for interaction with the LMS since there are many

quizzes, assignments, and files (content pages) throughout the term. It is expected that

student course outcome prediction using LMS data would be relatively more difficult in

courses with limited opportunities for interaction within the LMS. As well, as discussed

in Chapter 2, most studies on student outcome prediction focus on a set of students at

the same education level [Spit21] [LoBe21] [LiCh20] [TiLW20] [SoOk20] [JiNT22].

The behaviours that correlate with and predict success may differ between these different

types of students. Even within an undergraduate degree, introductory courses have different

expectations compared to upper-level courses, and also typically cater to students who have

less experience with learning management systems. As well, the behaviours that correlate

with and predict success in a course may differ depending on the format of the course,

such as discussion-based course compared to a programming course [YuPS19]. The method

of course delivery may also impact student behaviours, and typically studies on student

outcome prediction focus on courses with the same mode of delivery, whether that is face-

to-face, online, or a mixture [HaBH17] [RGPO21] [PaML19] [YuWu21].

Kathryn L. Marcynuk - 193 of 218 - April 14, 2023



Prediction of Student Outcomes 5.6 Discussion Summary

5.6 Discussion Summary

Students’ behavioural patterns as represented by their interactions with an LMS during

a synchronous online course, the correlation of the temporal features and student outcomes,

the predictive capabilities of the temporal features to predict student outcomes, and the

suitability of neural network-based classifiers for LMS timestamp data were discussed. Al-

though there was not one feature or subset of features that was highly predictive of student

outcomes, the features illustrated trends in student behaviours within the LMS. The neu-

ral network-based classifiers produced more accurate student outcome predictions than the

feature-based ML models at the expense of interpretability. That is, it was not possible

to identify why these models classified a student into a particular course outcome group.

Broader implications of the findings were also discussed in the context of education and

student support, including potential considerations on how to work with students’ natural

patterns of interaction with the LMS in order to reduce their cognitive load.
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Chapter 6

Conclusions

This thesis presented a code-based tool to create features describing student interactions

over time within multiple iterations of a single-term online course, which were extracted

from raw LMS date-time stamp data. This was followed by an investigation of the successes

and limitations of these features to predict student grade outcomes using ML models. Then

the suitability of CNN and transformer NN classifiers for student course outcome prediction

using LMS data was investigated. Chapter 2 began with an introduction to the evolution of

AI and ML; trends in educational learning theories; and a discussion of how ML methods

can support research in education. As well, the current state of ML being used in education-

based research was presented. The method of developing individual student timelines out

of LMS interaction intervals and assessing time-based features from the raw LMS data was

presented in Chapter 3, and ML prediction models were introduced. The statistical analysis

of the features and experimental results of the ML prediction models were presented in

Chapter 4. In Chapter 5, the results were discussed in relationship to the research questions,

and within the broader context education field.
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6.1 Thesis Conclusions

This thesis addressed several research questions related to using time-based features

created from raw LMS data to understand student behaviour and predict final grade out-

comes. This section links back to the research questions first outlined in Section 1.2.3, to

provide insight into them from the experimental results.

A statistical analysis of the student timeline intervals showed a highly skewed distribu-

tion. Although the majority of intervals measured less than two days, some intervals were

as long as 42 days. Within the PMF, there was a decaying sinusoidal pattern with periods

of approximately twenty-four hours.

The number of student interactions with the LMS was found to be highly correlated

with the number of timeline items at all points during the term, showing that the timelines

are a reasonable representation of student interactions with the LMS over time. The number

of interactions, number of timeline items, fraction of days with at least one interaction (e.g.

non-zero days), and fraction of allowed writing time spent on the midterm (first term test)

each positively correlated with the final grade, whereas the average interval length and

variance of the interval length negatively correlated with the final grade. The correlation

between the features and the final grade remains consistent or increases over the term.

Using ML models, the time-based features predicted students’ final grades or whether

a student would pass or fail with greater than random accuracy. The features that most

contributed to the predictions were the fraction of days with at least one interaction, and

the fraction of allowed writing time spent on the midterm (first term test). In the binary

prediction algorithms, the number of false positives was higher than the number of false

negatives. Of the prediction models used, the k-Nearest Neighbours algorithm was the most

accurate. Features created from the student timelines at the one quarter point in the term

were little better than random chance at predicting final grade outcomes. However, by the
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halfway point in the term the predictions improved, and by the three-quarter point in the

term the predictions were nearly the same as using features from the full timelines.

Student course outcome prediction was also performed with CNN and transformer

neural network classifiers, using LMS data without hand-crafted features. After training,

the binary classifiers for pass/fail prediction achieved testing accuracies above 90%, reaching

as high as 98%. Both CNN and transformer classifiers produced promising results at course

outcome prediction, and there is room for future study on optimizing these models for time

series classification of LMS data.

6.2 Contributions

This thesis contributes to the body of knowledge on student modelling and prediction,

as well as student behaviour within an LMS in an online course. The following are the main

contributions:

1. A tool was designed and built in code to process date-timestamp information from an

LMS in a novel way. The tool is generalizable to large, online undergraduate courses

that make use of LMS assignments, quizzes, and content pages, as it uses standardized

data collected from an LMS. Further, the models built in this work use anonymous,

quantitative measurements that are already collected by post-secondary institutions.

Therefore, other researchers can build on this work. For example, the model could be

further trained with additional features to improve pass/fail and grade predictability.

2. The statistical properties of the intervals between student interactions with the LMS in

a synchronous and fully online environment were studied. Previous work on intervals

was in a face-to-face class, which did not capture as many student interactions with

the course through the LMS [DeBr20]. It was found that students predominately
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interact with the system in bursts, and in patterns of interactions at the same time

on any given day relative to their previous interaction. These patterns emerged by

studying the intervals between interactions, rather than the dominant access times.

The findings can also help inform instructors with how to manage their own LMS

interactions. By limiting LMS updates to the same time each day, and using LMS

announcements if a deviation from this pattern is necessary, instructors may students

to be confident that they are not missing any content; this would lead to a reduction

of the cognitive load on students as per Cognitive Load Theory (CLT).

3. The hand-crafted time-based features for early prediction of student course outcomes,

as measured by final grade, were used. It was found that these features could predict

student final grades, as well as whether students would pass or fail the course, with

greater than random accuracy before the end of the term. Furthermore, there were

the same number or fewer prediction errors when using these features based on the

Student Model timeline compared to when the automatically generated features were

used. Therefore, the results can help identify the students who are potentially on a

path of behaviour to fail and can notify instructors of the need for an intervention,

which is particularly useful in large classes of students.

4. Student course outcome prediction from LMS timestamp data without hand-crafted

features was explored using CNN and transformer time series classifiers. The input

time series data was prepared in three ways: as intervals, as unlabelled timestamps,

and as timestamps labelled with the type of LMS interaction. After training, both

CNN and transformer time series classifiers were shown to be able to achieve testing

accuracies above 90% with the labelled timestamp data. This indicates that high

course outcome prediction accuracies can be achieved with ML techniques using only

behavioural data sets that are readily available from an LMS.
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5. The work supports the collection of temporal data in LMS data sets, and can inform

developers of features that could be added to support student learning and successful

course outcomes. For example, personalized notifications could let students see their

own patterns of behaviour and how their behaviour correlates with students who have

previously passed the course. Early warning systems with messages directed to the

learner, instructor, or both are a current area of study [MaDa10]. These messages

could be displayed within the LMS, sent as automated e-mails, or integrated into other

digest e-mails such as MS Teams which already tracks general account usage. This

research into students’ natural behavioural patterns can support work currently being

done to determine when messages to students would be most effective [HaBH17].

6. This study illustrates preliminary ways in which an LMS can be used to identify

students’ behaviour, encourage interventions, and potentially increase the number of

students who can positively increase their learning outcomes by being made aware of,

and changing their behaviours.

6.3 Limitations and Future Work

There is still much work that can be done to improve the area of student course out-

come prediction. Humans are complicated and individual, and so is human behaviour and

learning. Completely accurate early prediction of course outcomes may not be achievable,

but there is room for future improvements. There are still limitations and unanswered

questions within the field that provide rich ground for further research.

In this study, the student interaction data within an LMS consisted of just over 300

students. Increasing the sample size to more students could increase the accuracy of the

ML prediction models. One way to increase the sample size is to increase the number of

students included in the study [MbMG22] [TeBP19]. This is the most common approach,
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however it requires time to collect the data. For example, if data is being collected about a

particular type of course, such as COMP 1010 from UM Learn, increasing the sample size

requires waiting for the course to be held over multiple terms. Additionally, this approach

requires coordination between the researchers and the team managing the LMS or MOOC

data.

Another way to increase the sample size of the data set is to create synthetic data.

Synthetic data is generated artificially, such as by a computer, and can be created to have

particular statistical characteristics. It can be useful to explore how a ML model will handle

cases that rarely occur naturally or were previously unknown [DiRM19]. Synthetic data is

also advantageous when there are privacy concerns with the real-world datasets, as is the

case with many types of education data, which may include demographic information or

past academic performance. The generation of synthetic time series data is still an active

area of research. Approaches such as dynamic stationary processes, Markov models (MM

models), and auto-regressive models (AR models) have been used to generate large quanti-

ties of synthetic time series data in multiple fields. However the ability of these techniques to

accurately represent the characteristics of the original data set have so far been limited and

may rely on a priori knowledge of correlations in the data, making them unsuitable for pat-

tern discovery [FoPD17] [LiJW20]. More recently, RNN and generative adversarial network

(GAN) methods are being researched for synthetic time series generation with promising

results that approximate the distributions of the original data sets in areas such as medical

and transmission systems time series [ZhKK18]. However, these models are less effective at

generating synthetic data when the original time series can be variable in length or is highly

skewed, such as in networking data or LMS interaction data [LiJW20]. Therefore, there is

room for additional research into this area of synthetic time series generation.

Future work in this area could benefit education research as well, by supporting the

creation of an open repository that would provide researchers with a common set of syn-
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thetic datasets allowing for greater transparency in student outcome prediction research and

support the creation of standard metrics for comparisons between studies [DoAB19].

Even when using data directly collected from an LMS, a limitation to student modelling

and prediction is the amount and type of data currently available about a given set of

students, as collected by education software. Although the education software is always

changing and improving, at present it was not possible to implement features such as the

fractal dimension and learning entropy using the amount of data currently collected by the

LMS. The UM Learn LMS only records the date-time stamp of the most recent interaction

with each content page and total number of interactions, rather than a date-time stamp for

every interaction. There are also interactions that are not recorded, such as attendance at

the lectures, time-on-task measurements, or participation on the discussion forums. Some

of these features are implemented in other LMS software packages and have been shown to

have value in student outcome prediction [OrVa20] [TeRN19] [KuGI11] [TiLW20] [Bail20]

[ThPA13] [Kim14]. Having access to the temporal information of all these interactions would

allow for more complete and accurate student timelines in the Student Model presented here,

without introducing features composed of private student information such as demographic

or transcript data.

In this study, the dates and times stored by the LMS were assumed to be accurate.

However, further study should be done to ensure the accuracy and reliability of the timing

information as doing so would increase the effectiveness of the features and models for

predicting student outcomes.

As well, the data in this study came from students who were enrolled over three terms

in the same first-year computer science course delivered fully online. The high testing accu-

racies in this research indicate the potential of ML techniques for student course outcome

predictions. Additional experiments could be performed to assess how the time-based fea-
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tures and time series classification perform when the input data is collected from different

types of online post-secondary courses such as courses in different subject areas, courses

held at different years within an undergraduate program, courses offered during different

academic terms, or courses of different durations. Future work that builds on this research

using larger and more diverse input data sets could help to produce more generalized student

course outcome prediction models for use in decision support system research.

The results of student outcome predictions using machine learning could also be ex-

plored within the context of different educational learning theories. For example, Fink’s

categories of significant learning [Fink03] includes “learning how to learn”, which could be

explored further using students’ behavioural patterns within an LMS as well as support

research into the personalisation of learning.
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Appendix A

Cognitive Digital Twins

Although the field of CDTs is still in its infancy, there is great potential for it to help

prepare students for the demands of the future workforce. There are three main motivating

factors behind bringing CDTs from the realm of manufacturing into education. The first is

that todays students are not just training for one career, but they are studying to become

the future workforce that will need to be capable of adapting to new jobs. Most people will

undergo multiple career changes throughout their lifetimes, by choice or as the availability

of jobs changes. The Prussian education model, that has influenced education since the 18th

century, will no longer be sufficient to train workers for a set of tasks. The second factor

is that CDTs can be predictive, aiding student’s with personal recommendations to learn

new material and suggestions to reinforce previously studied concepts. The third factor is

that it is becoming increasingly difficult for learners to stay abreast of current developments

in their field because the sum total of human knowledge is increasing exponentially, and

information is also becoming irrelevant more quickly.

CDTs could help to address these factors by curating knowledge for the learner and

performing up-to-date error checking to identify and remove erroneous or outdated infor-

mation, also called “knowledge fusion” and “knowledge sunsetting” respectively. Such a

personalised system could also aid learners in their work by detecting plagiarism and ver-

ifying sources, or “knowledge vetting.” Further, CDTs could provide intellectual property

(IP) management tools, to separate public and private information [Kins19].

Companies and institutions, including educational institutions already collect vast amounts

of data about individuals. These data are the “distributed elements of our digital twins” [Kins19],
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some of which could be pulled together and made to benefit the individual through CDTs.

In order to be support the individual and their learning, a digital twin in an educational

context should “represent our current skills, knowledge, and wisdom”; support knowledge

retention by accounting for the loss of skills and knowledge over time without practice; and

curate an educational plan that is proactive.

As outlined in [Kins19], an individual and their CDT would be considered a symbion,

and the CDT would consist of three main parts: (i) a digital model as a “mirror of our

knowledge”; (ii) a digital shadow, that “can learn what we learn; and (iii) digital threads,

that know “the way we learn” and “can support new learning.” However, before CDTs can

be realized, there is still work to do to better understand how we learn so that the process

can be modelled and accurately reflected in the CDTs.
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Appendix B

Literature Review Search

A literature review search was conducted on ML in Education for prediction in ERIC,

PsycInfo, Scopus, and Compendex (Engineering Village) databases.

Titles, abstracts, and keywords were searched on ERIC using the terms (”machine

learning” or ”artificial intelligence” or ai or predict* or supervise* or unsupervise* or cluster*

or ”feature engineering” or ”feature selection”) AND (temporal or time-based or interval or

”inter-event time” or pattern or burstiness) AND (”learning management system” or lms

or ”learning management systems” or ”learning system” or ”learning systems” or ”remote

delivery” or ”massive open online course” or mooc or moocs or ”massive open online courses”

or ”data hub” or brightspace or d2l or ”education software” or elearning or e-learning or

synchronous or blackboard) AND (student near/3 outcome* or course near/3 outcome* or

grade or pass or fail or ”competency level” or ”learning objective” or ”learning objectives”

or ”competency levels”). The search returned 46 results.

Titles, abstracts, heading words, tables of contents, and key concepts in PsychInfo

were searched using the similar keywords (machine learning or artificial intelligence or ai or

predict* or supervise* or unsupervise* or cluster* or feature engineering or feature selection)

AND (temporal or time* or interval* or pattern* or burstiness) AND (learning management

system or lms or learning management systems or learning system or learning systems or

remote delivery or massive open online course or mooc or moocs or massive open online

courses or data hub or brightspace or d2l or education software or elearning or e-learning

or synchronous or blackboard) AND ((student adj3 outcome*) or (course adj3 outcome*)

or grade or pass or fail or competency level or learning objective or learning objectives or
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competency levels). The search returned 71 results. A similar search of the titles, abstracts,

and keywords was conducted in Scopus, which returned 155 results.

Titles abstracts, and keywords were searched in Compendex (Engineering Village) using

the similar keywords (temporal OR inter-event or interevent or interval* or pattern* or

burstiness) AND ( learning management system or lms or learning management systems

or learning system or learning systems or remote delivery or data hub or brightspace or

d2l or education software or elearning or e-learning or synchronous or blackboard) AND

( (student near/3 outcome) or (course near/3 outcome) or (student near/3 outcomes) or

(course near/3 outcomes) or grade or pass or fail or competency level or learning objective

or learning objectives or competency levels ) AND (machine learning or artificial intelligence

or ai or predict* or supervise* or unsupervise* or cluster* or feature engineering or feature

selection). The search returned 103 results. The inclusion of “time*” as a keyword yielded

3400 results, of which 480 included in the category of ‘Students’ and 118 were included in

the category of ‘Education Computing’.

A first combined keyword and subject headings search was further conducted in Com-

pendex (Engineering Village) which returned 28 results using the keywords (interevent OR

inter-event OR temporal OR pattern* OR burstiness) combined with the subject headings

(Machine learning AND Education computing AND Students).

A second combined keyword and subject headings search in Compendex (Engineering

Village) returned 620 results using the keywords ((interevent or inter-event or temporal

or pattern* or burstiness) combined with the subject headings ((artificial intelligence) or

(machine learning)) AND (e-learning or education computing) AND (students)).

All searches were from the database inception to November 2022. Each keyword search

included some results directed to other fields, most commonly medicine and medical edu-

cation.

Inclusion/exclusion criteria for the search were as follows:

• In order to be present in the review, the studies required the following elements: the

course or courses in the study were undergraduate level; the data was collected from an

online or remote learning course; the study contained data collected through a LMS;

the LMS data included timestamps, time intervals, or other time information; and

the goal of the study was student course outcome prediction in the form of pass/fail

or final grade prediction.
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• Studies with the following elements were excluded: courses in the study were at

the grade school level; the data was collected from a MOOC; studies that included

specialized data collection software not commonly available in an LMS, such as mouse-

click or eye tracking software; studies that used surveys or student journals as part of

the data sets; or ML techniques were used in the study for course dropout prediction.

Previously, a hand search of the UM Libraries, Google Scholar, Google, IEEE, and

CEEA-ACÉG and EDM conference proceedings (Canadian Engineering Education Association-

Association Canadienne de léducation en génie and Educational Data Mining) was con-

ducted broadly on artificial intelligence, machine learning, and educational learning theo-

ries, and more narrowly on machine learning in education and machine learning for student

outcome prediction.
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Appendix C

Correlation and p values

In all of Sections C.2-C.7, p values between 0.01 and 0.05 are highlighted in yellow and

p values greater than 0.05 are highlighted in red.

C.1 Correlation and p values for features at the first quarter

in the term

Feature 1 Feature 2 Correlation p value

Num Interactions (1/4) Num Timeline Items (1/4) 0.835 6.712e-82

Num Interactions (1/4) Fraction NonZero Days (1/4) 0.593 8.008e-31

Num Interactions (1/4) Mean Interval Length S (1/4) -0.4992 6.162e-21

Num Interactions (1/4) Var Intervals Length H (1/4) -0.2101 0.0001952

Num Interactions (1/4) Skewness Intervals H (1/4) 0.4172 1.755e-14

Num Interactions (1/4) Kurtosis Intervals H (1/4) 0.3813 3.627e-12

Num Interactions (1/4) Burstiness (1/4) 0.05235 0.3583

Num Interactions (1/4) Fraction of Midterm time 0.1828 0.001223

Num Interactions (1/4) Assign Hand In Avg (1/4) 0.3155 1.357e-08

Num Interactions (1/4) Midterm Grade 0.1371 0.01569

Num Interactions (1/4) Final Grade 0.2007 0.0003768

Num Timeline Items (1/4) Num Interactions (1/4) 0.835 6.712e-82

Num Timeline Items (1/4) Fraction NonZero Days (1/4) 0.5508 5.469e-26
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Num Timeline Items (1/4) Mean Interval Length S (1/4) -0.5774 5.858e-29

Num Timeline Items (1/4) Var Intervals Length H (1/4) -0.2305 4.166e-05

Num Timeline Items (1/4) Skewness Intervals H (1/4) 0.5289 9.607e-24

Num Timeline Items (1/4) Kurtosis Intervals H (1/4) 0.4692 2.253e-18

Num Timeline Items (1/4) Burstiness (1/4) 0.08099 0.1549

Num Timeline Items (1/4) Fraction of Midterm time 0.2762 7.821e-07

Num Timeline Items (1/4) Assign Hand In Avg (1/4) 0.3074 3.306e-08

Num Timeline Items (1/4) Midterm Grade 0.2264 5.75e-05

Num Timeline Items (1/4) Final Grade 0.248 9.917e-06

Fraction NonZero Days (1/4) Num Interactions (1/4) 0.593 8.008e-31

Fraction NonZero Days (1/4) Num Timeline Items (1/4) 0.5508 5.469e-26

Fraction NonZero Days (1/4) Mean Interval Length S (1/4) -0.484 1.32e-19

Fraction NonZero Days (1/4) Var Intervals Length H (1/4) -0.3063 3.718e-08

Fraction NonZero Days (1/4) Skewness Intervals H (1/4) 0.09064 0.1112

Fraction NonZero Days (1/4) Kurtosis Intervals H (1/4) 0.1017 0.07371

Fraction NonZero Days (1/4) Burstiness (1/4) 0.1047 0.06556

Fraction NonZero Days (1/4) Fraction of Midterm time 0.3507 2.108e-10

Fraction NonZero Days (1/4) Assign Hand In Avg (1/4) 0.2386 2.172e-05

Fraction NonZero Days (1/4) Midterm Grade 0.1805 0.001415

Fraction NonZero Days (1/4) Final Grade 0.3316 2.16e-09

Mean Interval Length S (1/4) Num Interactions (1/4) -0.4992 6.162e-21

Mean Interval Length S (1/4) Num Timeline Items (1/4) -0.5774 5.858e-29

Mean Interval Length S (1/4) Fraction NonZero Days (1/4) -0.484 1.32e-19

Mean Interval Length S (1/4) Var Intervals Length H (1/4) 0.8115 7.442e-74

Mean Interval Length S (1/4) Skewness Intervals H (1/4) -0.3278 3.39e-09

Mean Interval Length S (1/4) Kurtosis Intervals H (1/4) -0.2879 2.494e-07

Mean Interval Length S (1/4) Burstiness (1/4) 0.1211 0.03306

Mean Interval Length S (1/4) Fraction of Midterm time -0.3367 1.181e-09

Mean Interval Length S (1/4) Assign Hand In Avg (1/4) -0.1962 0.0005115

Mean Interval Length S (1/4) Midterm Grade -0.2587 3.931e-06

Mean Interval Length S (1/4) Final Grade -0.3227 6.037e-09

Var Intervals Length H (1/4) Num Interactions (1/4) -0.2101 0.0001952

Var Intervals Length H (1/4) Num Timeline Items (1/4) -0.2305 4.166e-05
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Var Intervals Length H (1/4) Fraction NonZero Days (1/4) -0.3063 3.718e-08

Var Intervals Length H (1/4) Mean Interval Length S (1/4) 0.8115 7.442e-74

Var Intervals Length H (1/4) Skewness Intervals H (1/4) -0.04367 0.4435

Var Intervals Length H (1/4) Kurtosis Intervals H (1/4) -0.05451 0.3388

Var Intervals Length H (1/4) Burstiness (1/4) 0.05138 0.3673

Var Intervals Length H (1/4) Fraction of Midterm time -0.2869 2.742e-07

Var Intervals Length H (1/4) Assign Hand In Avg (1/4) -0.1196 0.03527

Var Intervals Length H (1/4) Midterm Grade -0.2069 0.0002451

Var Intervals Length H (1/4) Final Grade -0.2584 4.049e-06

Skewness Intervals H (1/4) Num Interactions (1/4) 0.4172 1.755e-14

Skewness Intervals H (1/4) Num Timeline Items (1/4) 0.5289 9.607e-24

Skewness Intervals H (1/4) Fraction NonZero Days (1/4) 0.09064 0.1112

Skewness Intervals H (1/4) Mean Interval Length S (1/4) -0.3278 3.39e-09

Skewness Intervals H (1/4) Var Intervals Length H (1/4) -0.04367 0.4435

Skewness Intervals H (1/4) Kurtosis Intervals H (1/4) 0.9587 3.247e-170

Skewness Intervals H (1/4) Burstiness (1/4) 0.1935 0.0006153

Skewness Intervals H (1/4) Fraction of Midterm time 0.006913 0.9035

Skewness Intervals H (1/4) Assign Hand In Avg (1/4) 0.08862 0.1194

Skewness Intervals H (1/4) Midterm Grade 0.01971 0.7296

Skewness Intervals H (1/4) Final Grade 0.0271 0.6346

Kurtosis Intervals H (1/4) Num Interactions (1/4) 0.3813 3.627e-12

Kurtosis Intervals H (1/4) Num Timeline Items (1/4) 0.4692 2.253e-18

Kurtosis Intervals H (1/4) Fraction NonZero Days (1/4) 0.1017 0.07371

Kurtosis Intervals H (1/4) Mean Interval Length S (1/4) -0.2879 2.494e-07

Kurtosis Intervals H (1/4) Var Intervals Length H (1/4) -0.05451 0.3388

Kurtosis Intervals H (1/4) Skewness Intervals H (1/4) 0.9587 3.247e-170

Kurtosis Intervals H (1/4) Burstiness (1/4) 0.1122 0.04839

Kurtosis Intervals H (1/4) Fraction of Midterm time -0.01466 0.7971

Kurtosis Intervals H (1/4) Assign Hand In Avg (1/4) 0.05471 0.337

Kurtosis Intervals H (1/4) Midterm Grade 0.01014 0.8588

Kurtosis Intervals H (1/4) Final Grade 0.01787 0.7541

Burstiness (1/4) Num Interactions (1/4) 0.05235 0.3583

Burstiness (1/4) Num Timeline Items (1/4) 0.08099 0.1549
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Burstiness (1/4) Fraction NonZero Days (1/4) 0.1047 0.06556

Burstiness (1/4) Mean Interval Length S (1/4) 0.1211 0.03306

Burstiness (1/4) Var Intervals Length H (1/4) 0.05138 0.3673

Burstiness (1/4) Skewness Intervals H (1/4) 0.1935 0.0006153

Burstiness (1/4) Kurtosis Intervals H (1/4) 0.1122 0.04839

Burstiness (1/4) Fraction of Midterm time 0.1675 0.003099

Burstiness (1/4) Assign Hand In Avg (1/4) 0.04464 0.4336

Burstiness (1/4) Midterm Grade 0.1126 0.04762

Burstiness (1/4) Final Grade 0.1141 0.04473

Fraction of Midterm time Num Interactions (1/4) 0.1828 0.001223

Fraction of Midterm time Num Timeline Items (1/4) 0.2762 7.821e-07

Fraction of Midterm time Fraction NonZero Days (1/4) 0.3507 2.108e-10

Fraction of Midterm time Mean Interval Length S (1/4) -0.3367 1.181e-09

Fraction of Midterm time Var Intervals Length H (1/4) -0.2869 2.742e-07

Fraction of Midterm time Skewness Intervals H (1/4) 0.006913 0.9035

Fraction of Midterm time Kurtosis Intervals H (1/4) -0.01466 0.7971

Fraction of Midterm time Burstiness (1/4) 0.1675 0.003099

Fraction of Midterm time Assign Hand In Avg (1/4) -0.004458 0.9377

Fraction of Midterm time Midterm Grade 0.5811 2.168e-29

Fraction of Midterm time Final Grade 0.5539 2.544e-26

Assign Hand In Avg (1/4) Num Interactions (1/4) 0.3155 1.357e-08

Assign Hand In Avg (1/4) Num Timeline Items (1/4) 0.3074 3.306e-08

Assign Hand In Avg (1/4) Fraction NonZero Days (1/4) 0.2386 2.172e-05

Assign Hand In Avg (1/4) Mean Interval Length S (1/4) -0.1962 0.0005115

Assign Hand In Avg (1/4) Var Intervals Length H (1/4) -0.1196 0.03527

Assign Hand In Avg (1/4) Skewness Intervals H (1/4) 0.08862 0.1194

Assign Hand In Avg (1/4) Kurtosis Intervals H (1/4) 0.05471 0.337

Assign Hand In Avg (1/4) Burstiness (1/4) 0.04464 0.4336

Assign Hand In Avg (1/4) Fraction of Midterm time -0.004458 0.9377

Assign Hand In Avg (1/4) Midterm Grade 0.09139 0.1083

Assign Hand In Avg (1/4) Final Grade 0.1066 0.06084

Midterm Grade Num Interactions (1/4) 0.1371 0.01569

Midterm Grade Num Timeline Items (1/4) 0.2264 5.75e-05
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Prediction of Student Outcomes C.1 Correlation and p values: 1st Quarter

Midterm Grade Fraction NonZero Days (1/4) 0.1805 0.001415

Midterm Grade Mean Interval Length S (1/4) -0.2587 3.931e-06

Midterm Grade Var Intervals Length H (1/4) -0.2069 0.0002451

Midterm Grade Skewness Intervals H (1/4) 0.01971 0.7296

Midterm Grade Kurtosis Intervals H (1/4) 0.01014 0.8588

Midterm Grade Burstiness (1/4) 0.1126 0.04762

Midterm Grade Fraction of Midterm time 0.5811 2.168e-29

Midterm Grade Assign Hand In Avg (1/4) 0.09139 0.1083

Midterm Grade Final Grade 0.7792 1.942e-64

Final Grade Num Interactions (1/4) 0.2007 0.0003768

Final Grade Num Timeline Items (1/4) 0.248 9.917e-06

Final Grade Fraction NonZero Days (1/4) 0.3316 2.16e-09

Final Grade Mean Interval Length S (1/4) -0.3227 6.037e-09

Final Grade Var Intervals Length H (1/4) -0.2584 4.049e-06

Final Grade Skewness Intervals H (1/4) 0.0271 0.6346

Final Grade Kurtosis Intervals H (1/4) 0.01787 0.7541

Final Grade Burstiness (1/4) 0.1141 0.04473

Final Grade Fraction of Midterm time 0.5539 2.544e-26

Final Grade Assign Hand In Avg (1/4) 0.1066 0.06084

Final Grade Midterm Grade 0.7792 1.942e-64
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Prediction of Student Outcomes C.2 Correlation and p values: Midterm

C.2 Correlation and p values for features at the midterm

Feature 1 Feature 2 Correlation p value

Num Interactions (test) Num Timeline Items (test) 0.8056 5.439e-72

Num Interactions (test) Fraction NonZero Days (test) 0.6047 2.678e-32

Num Interactions (test) Mean Interval Length S (test) -0.4657 4.346e-18

Num Interactions (test) Var Intervals Length H (test) -0.1948 0.0005612

Num Interactions (test) Skewness Intervals H (test) 0.4861 8.646e-20

Num Interactions (test) Kurtosis Intervals H (test) 0.4436 2.219e-16

Num Interactions (test) Burstiness (test) 0.06416 0.26

Num Interactions (test) Fraction of Midterm time 0.2669 1.87e-06

Num Interactions (test) Assign Hand In Avg (test) 0.07222 0.2048

Num Interactions (test) Midterm Grade 0.1639 0.003817

Num Interactions (test) Final Grade 0.2605 3.346e-06

Num Timeline Items (test) Num Interactions (test) 0.8056 5.439e-72

Num Timeline Items (test) Fraction NonZero Days (test) 0.5595 6.266e-27

Num Timeline Items (test) Mean Interval Length S (test) -0.5251 2.279e-23

Num Timeline Items (test) Var Intervals Length H (test) -0.2132 0.0001557

Num Timeline Items (test) Skewness Intervals H (test) 0.5584 8.308e-27

Num Timeline Items (test) Kurtosis Intervals H (test) 0.4866 7.896e-20

Num Timeline Items (test) Burstiness (test) 0.09162 0.1074

Num Timeline Items (test) Fraction of Midterm time 0.3507 2.121e-10

Num Timeline Items (test) Assign Hand In Avg (test) 0.03148 0.5809

Num Timeline Items (test) Midterm Grade 0.27 1.41e-06

Num Timeline Items (test) Final Grade 0.3392 8.725e-10

Fraction NonZero Days (test) Num Interactions (test) 0.6047 2.678e-32

Fraction NonZero Days (test) Num Timeline Items (test) 0.5595 6.266e-27

Fraction NonZero Days (test) Mean Interval Length S (test) -0.5148 2.252e-22

Fraction NonZero Days (test) Var Intervals Length H (test) -0.3326 1.934e-09

Fraction NonZero Days (test) Skewness Intervals H (test) 0.07895 0.1655

Fraction NonZero Days (test) Kurtosis Intervals H (test) 0.08253 0.1472

Fraction NonZero Days (test) Burstiness (test) 0.114 0.04496

Fraction NonZero Days (test) Fraction of Midterm time 0.4511 6.001e-17

Fraction NonZero Days (test) Assign Hand In Avg (test) 0.2263 5.811e-05
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Prediction of Student Outcomes C.2 Correlation and p values: Midterm

Fraction NonZero Days (test) Midterm Grade 0.2653 2.165e-06

Fraction NonZero Days (test) Final Grade 0.4188 1.355e-14

Mean Interval Length S (test) Num Interactions (test) -0.4657 4.346e-18

Mean Interval Length S (test) Num Timeline Items (test) -0.5251 2.279e-23

Mean Interval Length S (test) Fraction NonZero Days (test) -0.5148 2.252e-22

Mean Interval Length S (test) Var Intervals Length H (test) 0.7324 2.375e-53

Mean Interval Length S (test) Skewness Intervals H (test) -0.2694 1.483e-06

Mean Interval Length S (test) Kurtosis Intervals H (test) -0.2002 0.0003896

Mean Interval Length S (test) Burstiness (test) 0.1046 0.06599

Mean Interval Length S (test) Fraction of Midterm time -0.4142 2.795e-14

Mean Interval Length S (test) Assign Hand In Avg (test) -0.1649 0.003601

Mean Interval Length S (test) Midterm Grade -0.2975 9.363e-08

Mean Interval Length S (test) Final Grade -0.3553 1.178e-10

Var Intervals Length H (test) Num Interactions (test) -0.1948 0.0005612

Var Intervals Length H (test) Num Timeline Items (test) -0.2132 0.0001557

Var Intervals Length H (test) Fraction NonZero Days (test) -0.3326 1.934e-09

Var Intervals Length H (test) Mean Interval Length S (test) 0.7324 2.375e-53

Var Intervals Length H (test) Skewness Intervals H (test) -0.0145 0.7993

Var Intervals Length H (test) Kurtosis Intervals H (test) -0.02219 0.6972

Var Intervals Length H (test) Burstiness (test) 0.05085 0.3723

Var Intervals Length H (test) Fraction of Midterm time -0.3057 3.977e-08

Var Intervals Length H (test) Assign Hand In Avg (test) -0.1098 0.05351

Var Intervals Length H (test) Midterm Grade -0.2174 0.0001138

Var Intervals Length H (test) Final Grade -0.2573 4.462e-06

Skewness Intervals H (test) Num Interactions (test) 0.4861 8.646e-20

Skewness Intervals H (test) Num Timeline Items (test) 0.5584 8.308e-27

Skewness Intervals H (test) Fraction NonZero Days (test) 0.07895 0.1655

Skewness Intervals H (test) Mean Interval Length S (test) -0.2694 1.483e-06

Skewness Intervals H (test) Var Intervals Length H (test) -0.0145 0.7993

Skewness Intervals H (test) Kurtosis Intervals H (test) 0.9411 4.74e-147

Skewness Intervals H (test) Burstiness (test) 0.1987 0.0004321

Skewness Intervals H (test) Fraction of Midterm time 0.07251 0.2029

Skewness Intervals H (test) Assign Hand In Avg (test) -0.004767 0.9334
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Prediction of Student Outcomes C.2 Correlation and p values: Midterm

Skewness Intervals H (test) Midterm Grade 0.001062 0.9851

Skewness Intervals H (test) Final Grade 0.02773 0.6267

Kurtosis Intervals H (test) Num Interactions (test) 0.4436 2.219e-16

Kurtosis Intervals H (test) Num Timeline Items (test) 0.4866 7.896e-20

Kurtosis Intervals H (test) Fraction NonZero Days (test) 0.08253 0.1472

Kurtosis Intervals H (test) Mean Interval Length S (test) -0.2002 0.0003896

Kurtosis Intervals H (test) Var Intervals Length H (test) -0.02219 0.6972

Kurtosis Intervals H (test) Skewness Intervals H (test) 0.9411 4.74e-147

Kurtosis Intervals H (test) Burstiness (test) 0.1106 0.05177

Kurtosis Intervals H (test) Fraction of Midterm time 0.0576 0.312

Kurtosis Intervals H (test) Assign Hand In Avg (test) -0.04237 0.4572

Kurtosis Intervals H (test) Midterm Grade 0.01236 0.8285

Kurtosis Intervals H (test) Final Grade 0.04422 0.4378

Burstiness (test) Num Interactions (test) 0.06416 0.26

Burstiness (test) Num Timeline Items (test) 0.09162 0.1074

Burstiness (test) Fraction NonZero Days (test) 0.114 0.04496

Burstiness (test) Mean Interval Length S (test) 0.1046 0.06599

Burstiness (test) Var Intervals Length H (test) 0.05085 0.3723

Burstiness (test) Skewness Intervals H (test) 0.1987 0.0004321

Burstiness (test) Kurtosis Intervals H (test) 0.1106 0.05177

Burstiness (test) Fraction of Midterm time 0.168 0.003013

Burstiness (test) Assign Hand In Avg (test) 0.04544 0.4253

Burstiness (test) Midterm Grade 0.1076 0.05845

Burstiness (test) Final Grade 0.1076 0.05838

Fraction of Midterm time Num Interactions (test) 0.2669 1.87e-06

Fraction of Midterm time Num Timeline Items (test) 0.3507 2.121e-10

Fraction of Midterm time Fraction NonZero Days (test) 0.4511 6.001e-17

Fraction of Midterm time Mean Interval Length S (test) -0.4142 2.795e-14

Fraction of Midterm time Var Intervals Length H (test) -0.3057 3.977e-08

Fraction of Midterm time Skewness Intervals H (test) 0.07251 0.2029

Fraction of Midterm time Kurtosis Intervals H (test) 0.0576 0.312

Fraction of Midterm time Burstiness (test) 0.168 0.003013

Fraction of Midterm time Assign Hand In Avg (test) -0.01132 0.8427
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Prediction of Student Outcomes C.2 Correlation and p values: Midterm

Fraction of Midterm time Midterm Grade 0.5811 2.168e-29

Fraction of Midterm time Final Grade 0.5539 2.544e-26

Assign Hand In Avg (test) Num Interactions (test) 0.07222 0.2048

Assign Hand In Avg (test) Num Timeline Items (test) 0.03148 0.5809

Assign Hand In Avg (test) Fraction NonZero Days (test) 0.2263 5.811e-05

Assign Hand In Avg (test) Mean Interval Length S (test) -0.1649 0.003601

Assign Hand In Avg (test) Var Intervals Length H (test) -0.1098 0.05351

Assign Hand In Avg (test) Skewness Intervals H (test) -0.004767 0.9334

Assign Hand In Avg (test) Kurtosis Intervals H (test) -0.04237 0.4572

Assign Hand In Avg (test) Burstiness (test) 0.04544 0.4253

Assign Hand In Avg (test) Fraction of Midterm time -0.01132 0.8427

Assign Hand In Avg (test) Midterm Grade 0.09233 0.1047

Assign Hand In Avg (test) Final Grade 0.09836 0.08379

Midterm Grade Num Interactions (test) 0.1639 0.003817

Midterm Grade Num Timeline Items (test) 0.27 1.41e-06

Midterm Grade Fraction NonZero Days (test) 0.2653 2.165e-06

Midterm Grade Mean Interval Length S (test) -0.2975 9.363e-08

Midterm Grade Var Intervals Length H (test) -0.2174 0.0001138

Midterm Grade Skewness Intervals H (test) 0.001062 0.9851

Midterm Grade Kurtosis Intervals H (test) 0.01236 0.8285

Midterm Grade Burstiness (test) 0.1076 0.05845

Midterm Grade Fraction of Midterm time 0.5811 2.168e-29

Midterm Grade Assign Hand In Avg (test) 0.09233 0.1047

Midterm Grade Final Grade 0.7792 1.942e-64

Final Grade Num Interactions (test) 0.2605 3.346e-06

Final Grade Num Timeline Items (test) 0.3392 8.725e-10

Final Grade Fraction NonZero Days (test) 0.4188 1.355e-14

Final Grade Mean Interval Length S (test) -0.3553 1.178e-10

Final Grade Var Intervals Length H (test) -0.2573 4.462e-06

Final Grade Skewness Intervals H (test) 0.02773 0.6267

Final Grade Kurtosis Intervals H (test) 0.04422 0.4378

Final Grade Burstiness (test) 0.1076 0.05838

Final Grade Fraction of Midterm time 0.5539 2.544e-26
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Prediction of Student Outcomes C.2 Correlation and p values: Midterm

Final Grade Assign Hand In Avg (test) 0.09836 0.08379

Final Grade Midterm Grade 0.7792 1.942e-64
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Prediction of Student Outcomes C.3 Correlation and p values: 2nd Quarter

C.3 Correlation and p values for features at the second quar-

ter in the term

Feature 1 Feature 2 Correlation p value

Num Interactions (1/2) Num Timeline Items (1/2) 0.7884 6.022e-67

Num Interactions (1/2) Fraction NonZero Days (1/2) 0.5983 1.722e-31

Num Interactions (1/2) Mean Interval Length S (1/2) -0.4054 1.084e-13

Num Interactions (1/2) Var Intervals Length H (1/2) -0.2054 0.000272

Num Interactions (1/2) Skewness Intervals H (1/2) 0.1768 0.001775

Num Interactions (1/2) Kurtosis Intervals H (1/2) 0.1588 0.005059

Num Interactions (1/2) Burstiness (1/2) 0.05553 0.3298

Num Interactions (1/2) Fraction of Midterm time 0.2343 3.09e-05

Num Interactions (1/2) Assign Hand In Avg (1/2) 0.1708 0.002553

Num Interactions (1/2) Midterm Grade 0.1543 0.006498

Num Interactions (1/2) Final Grade 0.2334 3.329e-05

Num Timeline Items (1/2) Num Interactions (1/2) 0.7884 6.022e-67

Num Timeline Items (1/2) Fraction NonZero Days (1/2) 0.627 2.882e-35

Num Timeline Items (1/2) Mean Interval Length S (1/2) -0.5059 1.514e-21

Num Timeline Items (1/2) Var Intervals Length H (1/2) -0.2478 1.009e-05

Num Timeline Items (1/2) Skewness Intervals H (1/2) 0.2536 6.176e-06

Num Timeline Items (1/2) Kurtosis Intervals H (1/2) 0.2231 7.425e-05

Num Timeline Items (1/2) Burstiness (1/2) 0.08651 0.1286

Num Timeline Items (1/2) Fraction of Midterm time 0.3508 2.092e-10

Num Timeline Items (1/2) Assign Hand In Avg (1/2) 0.215 0.0001363

Num Timeline Items (1/2) Midterm Grade 0.2549 5.507e-06

Num Timeline Items (1/2) Final Grade 0.2966 1.034e-07

Fraction NonZero Days (1/2) Num Interactions (1/2) 0.5983 1.722e-31

Fraction NonZero Days (1/2) Num Timeline Items (1/2) 0.627 2.882e-35

Fraction NonZero Days (1/2) Mean Interval Length S (1/2) -0.4811 2.315e-19

Fraction NonZero Days (1/2) Var Intervals Length H (1/2) -0.3245 4.935e-09

Fraction NonZero Days (1/2) Skewness Intervals H (1/2) -0.1268 0.02556

Fraction NonZero Days (1/2) Kurtosis Intervals H (1/2) -0.1061 0.06213

Fraction NonZero Days (1/2) Burstiness (1/2) 0.09032 0.1125

Fraction NonZero Days (1/2) Fraction of Midterm time 0.4454 1.625e-16
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Prediction of Student Outcomes C.3 Correlation and p values: 2nd Quarter

Fraction NonZero Days (1/2) Assign Hand In Avg (1/2) 0.1361 0.01647

Fraction NonZero Days (1/2) Midterm Grade 0.2847 3.424e-07

Fraction NonZero Days (1/2) Final Grade 0.4318 1.647e-15

Mean Interval Length S (1/2) Num Interactions (1/2) -0.4054 1.084e-13

Mean Interval Length S (1/2) Num Timeline Items (1/2) -0.5059 1.514e-21

Mean Interval Length S (1/2) Fraction NonZero Days (1/2) -0.4811 2.315e-19

Mean Interval Length S (1/2) Var Intervals Length H (1/2) 0.8876 1.054e-105

Mean Interval Length S (1/2) Skewness Intervals H (1/2) -0.1797 0.001492

Mean Interval Length S (1/2) Kurtosis Intervals H (1/2) -0.1415 0.01264

Mean Interval Length S (1/2) Burstiness (1/2) 0.1079 0.05766

Mean Interval Length S (1/2) Fraction of Midterm time -0.375 8.665e-12

Mean Interval Length S (1/2) Assign Hand In Avg (1/2) -0.1385 0.01466

Mean Interval Length S (1/2) Midterm Grade -0.2559 5.021e-06

Mean Interval Length S (1/2) Final Grade -0.3118 2.041e-08

Var Intervals Length H (1/2) Num Interactions (1/2) -0.2054 0.000272

Var Intervals Length H (1/2) Num Timeline Items (1/2) -0.2478 1.009e-05

Var Intervals Length H (1/2) Fraction NonZero Days (1/2) -0.3245 4.935e-09

Var Intervals Length H (1/2) Mean Interval Length S (1/2) 0.8876 1.054e-105

Var Intervals Length H (1/2) Skewness Intervals H (1/2) -0.04873 0.3925

Var Intervals Length H (1/2) Kurtosis Intervals H (1/2) -0.02912 0.6095

Var Intervals Length H (1/2) Burstiness (1/2) 0.04795 0.4002

Var Intervals Length H (1/2) Fraction of Midterm time -0.2871 2.693e-07

Var Intervals Length H (1/2) Assign Hand In Avg (1/2) -0.09774 0.08577

Var Intervals Length H (1/2) Midterm Grade -0.1977 0.000463

Var Intervals Length H (1/2) Final Grade -0.2356 2.792e-05

Skewness Intervals H (1/2) Num Interactions (1/2) 0.1768 0.001775

Skewness Intervals H (1/2) Num Timeline Items (1/2) 0.2536 6.176e-06

Skewness Intervals H (1/2) Fraction NonZero Days (1/2) -0.1268 0.02556

Skewness Intervals H (1/2) Mean Interval Length S (1/2) -0.1797 0.001492

Skewness Intervals H (1/2) Var Intervals Length H (1/2) -0.04873 0.3925

Skewness Intervals H (1/2) Kurtosis Intervals H (1/2) 0.9733 5.343e-199

Skewness Intervals H (1/2) Burstiness (1/2) 0.1997 0.0004032

Skewness Intervals H (1/2) Fraction of Midterm time 0.1557 0.006001
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Prediction of Student Outcomes C.3 Correlation and p values: 2nd Quarter

Skewness Intervals H (1/2) Assign Hand In Avg (1/2) 0.08009 0.1595

Skewness Intervals H (1/2) Midterm Grade 0.119 0.03621

Skewness Intervals H (1/2) Final Grade 0.1801 0.001452

Kurtosis Intervals H (1/2) Num Interactions (1/2) 0.1588 0.005059

Kurtosis Intervals H (1/2) Num Timeline Items (1/2) 0.2231 7.425e-05

Kurtosis Intervals H (1/2) Fraction NonZero Days (1/2) -0.1061 0.06213

Kurtosis Intervals H (1/2) Mean Interval Length S (1/2) -0.1415 0.01264

Kurtosis Intervals H (1/2) Var Intervals Length H (1/2) -0.02912 0.6095

Kurtosis Intervals H (1/2) Skewness Intervals H (1/2) 0.9733 5.343e-199

Kurtosis Intervals H (1/2) Burstiness (1/2) 0.1336 0.01861

Kurtosis Intervals H (1/2) Fraction of Midterm time 0.1382 0.01491

Kurtosis Intervals H (1/2) Assign Hand In Avg (1/2) 0.06511 0.253

Kurtosis Intervals H (1/2) Midterm Grade 0.1232 0.03014

Kurtosis Intervals H (1/2) Final Grade 0.1932 0.0006245

Burstiness (1/2) Num Interactions (1/2) 0.05553 0.3298

Burstiness (1/2) Num Timeline Items (1/2) 0.08651 0.1286

Burstiness (1/2) Fraction NonZero Days (1/2) 0.09032 0.1125

Burstiness (1/2) Mean Interval Length S (1/2) 0.1079 0.05766

Burstiness (1/2) Var Intervals Length H (1/2) 0.04795 0.4002

Burstiness (1/2) Skewness Intervals H (1/2) 0.1997 0.0004032

Burstiness (1/2) Kurtosis Intervals H (1/2) 0.1336 0.01861

Burstiness (1/2) Fraction of Midterm time 0.1792 0.001539

Burstiness (1/2) Assign Hand In Avg (1/2) 0.05356 0.3473

Burstiness (1/2) Midterm Grade 0.1158 0.04154

Burstiness (1/2) Final Grade 0.1215 0.03247

Fraction of Midterm time Num Interactions (1/2) 0.2343 3.09e-05

Fraction of Midterm time Num Timeline Items (1/2) 0.3508 2.092e-10

Fraction of Midterm time Fraction NonZero Days (1/2) 0.4454 1.625e-16

Fraction of Midterm time Mean Interval Length S (1/2) -0.375 8.665e-12

Fraction of Midterm time Var Intervals Length H (1/2) -0.2871 2.693e-07

Fraction of Midterm time Skewness Intervals H (1/2) 0.1557 0.006001

Fraction of Midterm time Kurtosis Intervals H (1/2) 0.1382 0.01491

Fraction of Midterm time Burstiness (1/2) 0.1792 0.001539
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Prediction of Student Outcomes C.3 Correlation and p values: 2nd Quarter

Fraction of Midterm time Assign Hand In Avg (1/2) -0.02692 0.6368

Fraction of Midterm time Midterm Grade 0.5811 2.168e-29

Fraction of Midterm time Final Grade 0.5539 2.544e-26

Assign Hand In Avg (1/2) Num Interactions (1/2) 0.1708 0.002553

Assign Hand In Avg (1/2) Num Timeline Items (1/2) 0.215 0.0001363

Assign Hand In Avg (1/2) Fraction NonZero Days (1/2) 0.1361 0.01647

Assign Hand In Avg (1/2) Mean Interval Length S (1/2) -0.1385 0.01466

Assign Hand In Avg (1/2) Var Intervals Length H (1/2) -0.09774 0.08577

Assign Hand In Avg (1/2) Skewness Intervals H (1/2) 0.08009 0.1595

Assign Hand In Avg (1/2) Kurtosis Intervals H (1/2) 0.06511 0.253

Assign Hand In Avg (1/2) Burstiness (1/2) 0.05356 0.3473

Assign Hand In Avg (1/2) Fraction of Midterm time -0.02692 0.6368

Assign Hand In Avg (1/2) Midterm Grade 0.08797 0.1222

Assign Hand In Avg (1/2) Final Grade 0.118 0.0378

Midterm Grade Num Interactions (1/2) 0.1543 0.006498

Midterm Grade Num Timeline Items (1/2) 0.2549 5.507e-06

Midterm Grade Fraction NonZero Days (1/2) 0.2847 3.424e-07

Midterm Grade Mean Interval Length S (1/2) -0.2559 5.021e-06

Midterm Grade Var Intervals Length H (1/2) -0.1977 0.000463

Midterm Grade Skewness Intervals H (1/2) 0.119 0.03621

Midterm Grade Kurtosis Intervals H (1/2) 0.1232 0.03014

Midterm Grade Burstiness (1/2) 0.1158 0.04154

Midterm Grade Fraction of Midterm time 0.5811 2.168e-29

Midterm Grade Assign Hand In Avg (1/2) 0.08797 0.1222

Midterm Grade Final Grade 0.7792 1.942e-64

Final Grade Num Interactions (1/2) 0.2334 3.329e-05

Final Grade Num Timeline Items (1/2) 0.2966 1.034e-07

Final Grade Fraction NonZero Days (1/2) 0.4318 1.647e-15

Final Grade Mean Interval Length S (1/2) -0.3118 2.041e-08

Final Grade Var Intervals Length H (1/2) -0.2356 2.792e-05

Final Grade Skewness Intervals H (1/2) 0.1801 0.001452

Final Grade Kurtosis Intervals H (1/2) 0.1932 0.0006245

Final Grade Burstiness (1/2) 0.1215 0.03247
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Prediction of Student Outcomes C.3 Correlation and p values: 2nd Quarter

Final Grade Fraction of Midterm time 0.5539 2.544e-26

Final Grade Assign Hand In Avg (1/2) 0.118 0.0378

Final Grade Midterm Grade 0.7792 1.942e-64
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Prediction of Student Outcomes C.4 Correlation and p values: VW

C.4 Correlation and p values for features at the VW dead-

line

Feature 1 Feature 2 Correlation p value

Num Interactions (VW) Num Timeline Items (VW) 0.779 2.074e-64

Num Interactions (VW) Fraction NonZero Days (VW) 0.6019 6.165e-32

Num Interactions (VW) Mean Interval Length S (VW) -0.4215 8.782e-15

Num Interactions (VW) Var Intervals Length H (VW) -0.217 0.0001177

Num Interactions (VW) Skewness Intervals H (VW) 0.2166 0.0001212

Num Interactions (VW) Kurtosis Intervals H (VW) 0.1986 0.0004354

Num Interactions (VW) Burstiness (VW) 0.06082 0.2857

Num Interactions (VW) Fraction of Midterm time 0.2654 2.155e-06

Num Interactions (VW) Assign Hand In Avg (VW) 0.1462 0.009973

Num Interactions (VW) Midterm Grade 0.1763 0.001831

Num Interactions (VW) Final Grade 0.2846 3.445e-07

Num Timeline Items (VW) Num Interactions (VW) 0.779 2.074e-64

Num Timeline Items (VW) Fraction NonZero Days (VW) 0.6419 2.161e-37

Num Timeline Items (VW) Mean Interval Length S (VW) -0.5264 1.712e-23

Num Timeline Items (VW) Var Intervals Length H (VW) -0.2614 3.096e-06

Num Timeline Items (VW) Skewness Intervals H (VW) 0.3278 3.366e-09

Num Timeline Items (VW) Kurtosis Intervals H (VW) 0.3013 6.323e-08

Num Timeline Items (VW) Burstiness (VW) 0.09546 0.0934

Num Timeline Items (VW) Fraction of Midterm time 0.3873 1.567e-12

Num Timeline Items (VW) Assign Hand In Avg (VW) 0.2085 0.0002184

Num Timeline Items (VW) Midterm Grade 0.2912 1.784e-07

Num Timeline Items (VW) Final Grade 0.3644 3.611e-11

Fraction NonZero Days (VW) Num Interactions (VW) 0.6019 6.165e-32

Fraction NonZero Days (VW) Num Timeline Items (VW) 0.6419 2.161e-37

Fraction NonZero Days (VW) Mean Interval Length S (VW) -0.5007 4.431e-21

Fraction NonZero Days (VW) Var Intervals Length H (VW) -0.3352 1.414e-09

Fraction NonZero Days (VW) Skewness Intervals H (VW) -0.06917 0.2246

Fraction NonZero Days (VW) Kurtosis Intervals H (VW) -0.0536 0.3469

Fraction NonZero Days (VW) Burstiness (VW) 0.09494 0.0952

Fraction NonZero Days (VW) Fraction of Midterm time 0.4836 1.407e-19
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Prediction of Student Outcomes C.4 Correlation and p values: VW

Fraction NonZero Days (VW) Assign Hand In Avg (VW) 0.0867 0.1277

Fraction NonZero Days (VW) Midterm Grade 0.3216 6.867e-09

Fraction NonZero Days (VW) Final Grade 0.5031 2.709e-21

Mean Interval Length S (VW) Num Interactions (VW) -0.4215 8.782e-15

Mean Interval Length S (VW) Num Timeline Items (VW) -0.5264 1.712e-23

Mean Interval Length S (VW) Fraction NonZero Days (VW) -0.5007 4.431e-21

Mean Interval Length S (VW) Var Intervals Length H (VW) 0.883 3.298e-103

Mean Interval Length S (VW) Skewness Intervals H (VW) -0.1862 0.0009868

Mean Interval Length S (VW) Kurtosis Intervals H (VW) -0.1458 0.01016

Mean Interval Length S (VW) Burstiness (VW) 0.1089 0.05551

Mean Interval Length S (VW) Fraction of Midterm time -0.3785 5.396e-12

Mean Interval Length S (VW) Assign Hand In Avg (VW) -0.1378 0.01521

Mean Interval Length S (VW) Midterm Grade -0.2562 4.881e-06

Mean Interval Length S (VW) Final Grade -0.3296 2.74e-09

Var Intervals Length H (VW) Num Interactions (VW) -0.217 0.0001177

Var Intervals Length H (VW) Num Timeline Items (VW) -0.2614 3.096e-06

Var Intervals Length H (VW) Fraction NonZero Days (VW) -0.3352 1.414e-09

Var Intervals Length H (VW) Mean Interval Length S (VW) 0.883 3.298e-103

Var Intervals Length H (VW) Skewness Intervals H (VW) -0.0507 0.3737

Var Intervals Length H (VW) Kurtosis Intervals H (VW) -0.03214 0.5729

Var Intervals Length H (VW) Burstiness (VW) 0.04864 0.3935

Var Intervals Length H (VW) Fraction of Midterm time -0.2929 1.502e-07

Var Intervals Length H (VW) Assign Hand In Avg (VW) -0.09918 0.08124

Var Intervals Length H (VW) Midterm Grade -0.202 0.0003451

Var Intervals Length H (VW) Final Grade -0.2526 6.722e-06

Skewness Intervals H (VW) Num Interactions (VW) 0.2166 0.0001212

Skewness Intervals H (VW) Num Timeline Items (VW) 0.3278 3.366e-09

Skewness Intervals H (VW) Fraction NonZero Days (VW) -0.06917 0.2246

Skewness Intervals H (VW) Mean Interval Length S (VW) -0.1862 0.0009868

Skewness Intervals H (VW) Var Intervals Length H (VW) -0.0507 0.3737

Skewness Intervals H (VW) Kurtosis Intervals H (VW) 0.9695 3.711e-190

Skewness Intervals H (VW) Burstiness (VW) 0.1863 0.0009816

Skewness Intervals H (VW) Fraction of Midterm time 0.1567 0.005696
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Prediction of Student Outcomes C.4 Correlation and p values: VW

Skewness Intervals H (VW) Assign Hand In Avg (VW) 0.07985 0.1608

Skewness Intervals H (VW) Midterm Grade 0.09365 0.09979

Skewness Intervals H (VW) Final Grade 0.1331 0.01906

Kurtosis Intervals H (VW) Num Interactions (VW) 0.1986 0.0004354

Kurtosis Intervals H (VW) Num Timeline Items (VW) 0.3013 6.323e-08

Kurtosis Intervals H (VW) Fraction NonZero Days (VW) -0.0536 0.3469

Kurtosis Intervals H (VW) Mean Interval Length S (VW) -0.1458 0.01016

Kurtosis Intervals H (VW) Var Intervals Length H (VW) -0.03214 0.5729

Kurtosis Intervals H (VW) Skewness Intervals H (VW) 0.9695 3.711e-190

Kurtosis Intervals H (VW) Burstiness (VW) 0.1194 0.03562

Kurtosis Intervals H (VW) Fraction of Midterm time 0.1344 0.0179

Kurtosis Intervals H (VW) Assign Hand In Avg (VW) 0.05087 0.372

Kurtosis Intervals H (VW) Midterm Grade 0.08795 0.1223

Kurtosis Intervals H (VW) Final Grade 0.1323 0.01981

Burstiness (VW) Num Interactions (VW) 0.06082 0.2857

Burstiness (VW) Num Timeline Items (VW) 0.09546 0.0934

Burstiness (VW) Fraction NonZero Days (VW) 0.09494 0.0952

Burstiness (VW) Mean Interval Length S (VW) 0.1089 0.05551

Burstiness (VW) Var Intervals Length H (VW) 0.04864 0.3935

Burstiness (VW) Skewness Intervals H (VW) 0.1863 0.0009816

Burstiness (VW) Kurtosis Intervals H (VW) 0.1194 0.03562

Burstiness (VW) Fraction of Midterm time 0.1802 0.001442

Burstiness (VW) Assign Hand In Avg (VW) 0.05485 0.3358

Burstiness (VW) Midterm Grade 0.115 0.04295

Burstiness (VW) Final Grade 0.1163 0.04071

Fraction of Midterm time Num Interactions (VW) 0.2654 2.155e-06

Fraction of Midterm time Num Timeline Items (VW) 0.3873 1.567e-12

Fraction of Midterm time Fraction NonZero Days (VW) 0.4836 1.407e-19

Fraction of Midterm time Mean Interval Length S (VW) -0.3785 5.396e-12

Fraction of Midterm time Var Intervals Length H (VW) -0.2929 1.502e-07

Fraction of Midterm time Skewness Intervals H (VW) 0.1567 0.005696

Fraction of Midterm time Kurtosis Intervals H (VW) 0.1344 0.0179

Fraction of Midterm time Burstiness (VW) 0.1802 0.001442
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Prediction of Student Outcomes C.4 Correlation and p values: VW

Fraction of Midterm time Assign Hand In Avg (VW) -0.03564 0.5319

Fraction of Midterm time Midterm Grade 0.5811 2.168e-29

Fraction of Midterm time Final Grade 0.5539 2.544e-26

Assign Hand In Avg (VW) Num Interactions (VW) 0.1462 0.009973

Assign Hand In Avg (VW) Num Timeline Items (VW) 0.2085 0.0002184

Assign Hand In Avg (VW) Fraction NonZero Days (VW) 0.0867 0.1277

Assign Hand In Avg (VW) Mean Interval Length S (VW) -0.1378 0.01521

Assign Hand In Avg (VW) Var Intervals Length H (VW) -0.09918 0.08124

Assign Hand In Avg (VW) Skewness Intervals H (VW) 0.07985 0.1608

Assign Hand In Avg (VW) Kurtosis Intervals H (VW) 0.05087 0.372

Assign Hand In Avg (VW) Burstiness (VW) 0.05485 0.3358

Assign Hand In Avg (VW) Fraction of Midterm time -0.03564 0.5319

Assign Hand In Avg (VW) Midterm Grade 0.07264 0.2021

Assign Hand In Avg (VW) Final Grade 0.09821 0.08428

Midterm Grade Num Interactions (VW) 0.1763 0.001831

Midterm Grade Num Timeline Items (VW) 0.2912 1.784e-07

Midterm Grade Fraction NonZero Days (VW) 0.3216 6.867e-09

Midterm Grade Mean Interval Length S (VW) -0.2562 4.881e-06

Midterm Grade Var Intervals Length H (VW) -0.202 0.0003451

Midterm Grade Skewness Intervals H (VW) 0.09365 0.09979

Midterm Grade Kurtosis Intervals H (VW) 0.08795 0.1223

Midterm Grade Burstiness (VW) 0.115 0.04295

Midterm Grade Fraction of Midterm time 0.5811 2.168e-29

Midterm Grade Assign Hand In Avg (VW) 0.07264 0.2021

Midterm Grade Final Grade 0.7792 1.942e-64

Final Grade Num Interactions (VW) 0.2846 3.445e-07

Final Grade Num Timeline Items (VW) 0.3644 3.611e-11

Final Grade Fraction NonZero Days (VW) 0.5031 2.709e-21

Final Grade Mean Interval Length S (VW) -0.3296 2.74e-09

Final Grade Var Intervals Length H (VW) -0.2526 6.722e-06

Final Grade Skewness Intervals H (VW) 0.1331 0.01906

Final Grade Kurtosis Intervals H (VW) 0.1323 0.01981

Final Grade Burstiness (VW) 0.1163 0.04071
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Prediction of Student Outcomes C.4 Correlation and p values: VW

Final Grade Fraction of Midterm time 0.5539 2.544e-26

Final Grade Assign Hand In Avg (VW) 0.09821 0.08428

Final Grade Midterm Grade 0.7792 1.942e-64
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Prediction of Student Outcomes C.5 Correlation and p values: 3rd Quarter

C.5 Correlation and p values for features at the third quarter

in the term

Feature 1 Feature 2 Correlation p value

Num Interactions (3/4) Num Timeline Items (3/4) 0.7796 1.444e-64

Num Interactions (3/4) Fraction NonZero Days (3/4) 0.6066 1.526e-32

Num Interactions (3/4) Mean Interval Length S (3/4) -0.4028 1.613e-13

Num Interactions (3/4) Var Intervals Length H (3/4) -0.2107 0.0001866

Num Interactions (3/4) Skewness Intervals H (3/4) 0.1719 0.002392

Num Interactions (3/4) Kurtosis Intervals H (3/4) 0.1588 0.005069

Num Interactions (3/4) Burstiness (3/4) 0.05122 0.3688

Num Interactions (3/4) Fraction of Midterm time 0.2847 3.42e-07

Num Interactions (3/4) Assign Hand In Avg (3/4) 0.09807 0.08473

Num Interactions (3/4) Midterm Grade 0.2092 0.0002078

Num Interactions (3/4) Final Grade 0.3386 9.448e-10

Num Timeline Items (3/4) Num Interactions (3/4) 0.7796 1.444e-64

Num Timeline Items (3/4) Fraction NonZero Days (3/4) 0.6742 1.917e-42

Num Timeline Items (3/4) Mean Interval Length S (3/4) -0.5181 1.089e-22

Num Timeline Items (3/4) Var Intervals Length H (3/4) -0.2621 2.889e-06

Num Timeline Items (3/4) Skewness Intervals H (3/4) 0.3089 2.801e-08

Num Timeline Items (3/4) Kurtosis Intervals H (3/4) 0.2835 3.839e-07

Num Timeline Items (3/4) Burstiness (3/4) 0.08885 0.1185

Num Timeline Items (3/4) Fraction of Midterm time 0.4141 2.839e-14

Num Timeline Items (3/4) Assign Hand In Avg (3/4) 0.1648 0.003616

Num Timeline Items (3/4) Midterm Grade 0.3192 8.976e-09

Num Timeline Items (3/4) Final Grade 0.4311 1.857e-15

Fraction NonZero Days (3/4) Num Interactions (3/4) 0.6066 1.526e-32

Fraction NonZero Days (3/4) Num Timeline Items (3/4) 0.6742 1.917e-42

Fraction NonZero Days (3/4) Mean Interval Length S (3/4) -0.4942 1.707e-20

Fraction NonZero Days (3/4) Var Intervals Length H (3/4) -0.3299 2.633e-09

Fraction NonZero Days (3/4) Skewness Intervals H (3/4) -0.04554 0.4243

Fraction NonZero Days (3/4) Kurtosis Intervals H (3/4) -0.02276 0.6898

Fraction NonZero Days (3/4) Burstiness (3/4) 0.08912 0.1174

Fraction NonZero Days (3/4) Fraction of Midterm time 0.5076 1.04e-21
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Prediction of Student Outcomes C.5 Correlation and p values: 3rd Quarter

Fraction NonZero Days (3/4) Assign Hand In Avg (3/4) 0.04506 0.4292

Fraction NonZero Days (3/4) Midterm Grade 0.3534 1.503e-10

Fraction NonZero Days (3/4) Final Grade 0.5743 1.338e-28

Mean Interval Length S (3/4) Num Interactions (3/4) -0.4028 1.613e-13

Mean Interval Length S (3/4) Num Timeline Items (3/4) -0.5181 1.089e-22

Mean Interval Length S (3/4) Fraction NonZero Days (3/4) -0.4942 1.707e-20

Mean Interval Length S (3/4) Var Intervals Length H (3/4) 0.8799 1.429e-101

Mean Interval Length S (3/4) Skewness Intervals H (3/4) -0.1846 0.001094

Mean Interval Length S (3/4) Kurtosis Intervals H (3/4) -0.1438 0.01124

Mean Interval Length S (3/4) Burstiness (3/4) 0.1102 0.0525

Mean Interval Length S (3/4) Fraction of Midterm time -0.3765 7.109e-12

Mean Interval Length S (3/4) Assign Hand In Avg (3/4) -0.1149 0.04327

Mean Interval Length S (3/4) Midterm Grade -0.255 5.452e-06

Mean Interval Length S (3/4) Final Grade -0.3371 1.126e-09

Var Intervals Length H (3/4) Num Interactions (3/4) -0.2107 0.0001866

Var Intervals Length H (3/4) Num Timeline Items (3/4) -0.2621 2.889e-06

Var Intervals Length H (3/4) Fraction NonZero Days (3/4) -0.3299 2.633e-09

Var Intervals Length H (3/4) Mean Interval Length S (3/4) 0.8799 1.429e-101

Var Intervals Length H (3/4) Skewness Intervals H (3/4) -0.05581 0.3274

Var Intervals Length H (3/4) Kurtosis Intervals H (3/4) -0.03705 0.5158

Var Intervals Length H (3/4) Burstiness (3/4) 0.0486 0.3938

Var Intervals Length H (3/4) Fraction of Midterm time -0.291 1.822e-07

Var Intervals Length H (3/4) Assign Hand In Avg (3/4) -0.08708 0.126

Var Intervals Length H (3/4) Midterm Grade -0.205 0.0002791

Var Intervals Length H (3/4) Final Grade -0.2569 4.589e-06

Skewness Intervals H (3/4) Num Interactions (3/4) 0.1719 0.002392

Skewness Intervals H (3/4) Num Timeline Items (3/4) 0.3089 2.801e-08

Skewness Intervals H (3/4) Fraction NonZero Days (3/4) -0.04554 0.4243

Skewness Intervals H (3/4) Mean Interval Length S (3/4) -0.1846 0.001094

Skewness Intervals H (3/4) Var Intervals Length H (3/4) -0.05581 0.3274

Skewness Intervals H (3/4) Kurtosis Intervals H (3/4) 0.9689 6.842e-189

Skewness Intervals H (3/4) Burstiness (3/4) 0.1867 0.0009572

Skewness Intervals H (3/4) Fraction of Midterm time 0.1653 0.003505
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Prediction of Student Outcomes C.5 Correlation and p values: 3rd Quarter

Skewness Intervals H (3/4) Assign Hand In Avg (3/4) 0.0999 0.07906

Skewness Intervals H (3/4) Midterm Grade 0.08595 0.131

Skewness Intervals H (3/4) Final Grade 0.1234 0.02978

Kurtosis Intervals H (3/4) Num Interactions (3/4) 0.1588 0.005069

Kurtosis Intervals H (3/4) Num Timeline Items (3/4) 0.2835 3.839e-07

Kurtosis Intervals H (3/4) Fraction NonZero Days (3/4) -0.02276 0.6898

Kurtosis Intervals H (3/4) Mean Interval Length S (3/4) -0.1438 0.01124

Kurtosis Intervals H (3/4) Var Intervals Length H (3/4) -0.03705 0.5158

Kurtosis Intervals H (3/4) Skewness Intervals H (3/4) 0.9689 6.842e-189

Kurtosis Intervals H (3/4) Burstiness (3/4) 0.116 0.04121

Kurtosis Intervals H (3/4) Fraction of Midterm time 0.1421 0.01225

Kurtosis Intervals H (3/4) Assign Hand In Avg (3/4) 0.07353 0.1967

Kurtosis Intervals H (3/4) Midterm Grade 0.08008 0.1596

Kurtosis Intervals H (3/4) Final Grade 0.1301 0.02198

Burstiness (3/4) Num Interactions (3/4) 0.05122 0.3688

Burstiness (3/4) Num Timeline Items (3/4) 0.08885 0.1185

Burstiness (3/4) Fraction NonZero Days (3/4) 0.08912 0.1174

Burstiness (3/4) Mean Interval Length S (3/4) 0.1102 0.0525

Burstiness (3/4) Var Intervals Length H (3/4) 0.0486 0.3938

Burstiness (3/4) Skewness Intervals H (3/4) 0.1867 0.0009572

Burstiness (3/4) Kurtosis Intervals H (3/4) 0.116 0.04121

Burstiness (3/4) Fraction of Midterm time 0.1787 0.001583

Burstiness (3/4) Assign Hand In Avg (3/4) 0.05545 0.3305

Burstiness (3/4) Midterm Grade 0.1132 0.04648

Burstiness (3/4) Final Grade 0.1116 0.04961

Fraction of Midterm time Num Interactions (3/4) 0.2847 3.42e-07

Fraction of Midterm time Num Timeline Items (3/4) 0.4141 2.839e-14

Fraction of Midterm time Fraction NonZero Days (3/4) 0.5076 1.04e-21

Fraction of Midterm time Mean Interval Length S (3/4) -0.3765 7.109e-12

Fraction of Midterm time Var Intervals Length H (3/4) -0.291 1.822e-07

Fraction of Midterm time Skewness Intervals H (3/4) 0.1653 0.003505

Fraction of Midterm time Kurtosis Intervals H (3/4) 0.1421 0.01225

Fraction of Midterm time Burstiness (3/4) 0.1787 0.001583
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Prediction of Student Outcomes C.5 Correlation and p values: 3rd Quarter

Fraction of Midterm time Assign Hand In Avg (3/4) -0.05921 0.2987

Fraction of Midterm time Midterm Grade 0.5811 2.168e-29

Fraction of Midterm time Final Grade 0.5539 2.544e-26

Assign Hand In Avg (3/4) Num Interactions (3/4) 0.09807 0.08473

Assign Hand In Avg (3/4) Num Timeline Items (3/4) 0.1648 0.003616

Assign Hand In Avg (3/4) Fraction NonZero Days (3/4) 0.04506 0.4292

Assign Hand In Avg (3/4) Mean Interval Length S (3/4) -0.1149 0.04327

Assign Hand In Avg (3/4) Var Intervals Length H (3/4) -0.08708 0.126

Assign Hand In Avg (3/4) Skewness Intervals H (3/4) 0.0999 0.07906

Assign Hand In Avg (3/4) Kurtosis Intervals H (3/4) 0.07353 0.1967

Assign Hand In Avg (3/4) Burstiness (3/4) 0.05545 0.3305

Assign Hand In Avg (3/4) Fraction of Midterm time -0.05921 0.2987

Assign Hand In Avg (3/4) Midterm Grade 0.0711 0.2119

Assign Hand In Avg (3/4) Final Grade 0.08859 0.1196

Midterm Grade Num Interactions (3/4) 0.2092 0.0002078

Midterm Grade Num Timeline Items (3/4) 0.3192 8.976e-09

Midterm Grade Fraction NonZero Days (3/4) 0.3534 1.503e-10

Midterm Grade Mean Interval Length S (3/4) -0.255 5.452e-06

Midterm Grade Var Intervals Length H (3/4) -0.205 0.0002791

Midterm Grade Skewness Intervals H (3/4) 0.08595 0.131

Midterm Grade Kurtosis Intervals H (3/4) 0.08008 0.1596

Midterm Grade Burstiness (3/4) 0.1132 0.04648

Midterm Grade Fraction of Midterm time 0.5811 2.168e-29

Midterm Grade Assign Hand In Avg (3/4) 0.0711 0.2119

Midterm Grade Final Grade 0.7792 1.942e-64

Final Grade Num Interactions (3/4) 0.3386 9.448e-10

Final Grade Num Timeline Items (3/4) 0.4311 1.857e-15

Final Grade Fraction NonZero Days (3/4) 0.5743 1.338e-28

Final Grade Mean Interval Length S (3/4) -0.3371 1.126e-09

Final Grade Var Intervals Length H (3/4) -0.2569 4.589e-06

Final Grade Skewness Intervals H (3/4) 0.1234 0.02978

Final Grade Kurtosis Intervals H (3/4) 0.1301 0.02198

Final Grade Burstiness (3/4) 0.1116 0.04961
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Prediction of Student Outcomes C.5 Correlation and p values: 3rd Quarter

Final Grade Fraction of Midterm time 0.5539 2.544e-26

Final Grade Assign Hand In Avg (3/4) 0.08859 0.1196

Final Grade Midterm Grade 0.7792 1.942e-64
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Prediction of Student Outcomes C.6 Correlation and p values: Exam

C.6 Correlation and p values for features at the final exam

Feature 1 Feature 2 Correlation p value

Num Interactions (exam) Num Timeline Items (exam) 0.7731 7.251e-63

Num Interactions (exam) Fraction NonZero Days (exam) 0.6082 9.617e-33

Num Interactions (exam) Mean Interval Length S (exam) -0.4182 1.498e-14

Num Interactions (exam) Var Intervals Length H (exam) -0.2065 0.000252

Num Interactions (exam) Skewness Intervals H (exam) 0.3892 1.184e-12

Num Interactions (exam) Kurtosis Intervals H (exam) 0.3959 4.506e-13

Num Interactions (exam) Burstiness (exam) 0.06791 0.2332

Num Interactions (exam) Fraction of Midterm time 0.2839 3.723e-07

Num Interactions (exam) Assign Hand In Avg (exam) 0.04919 0.3881

Num Interactions (exam) Midterm Grade 0.218 0.0001093

Num Interactions (exam) Final Grade 0.3534 1.499e-10

Num Timeline Items (exam) Num Interactions (exam) 0.7731 7.251e-63

Num Timeline Items (exam) Fraction NonZero Days (exam) 0.7204 7.162e-51

Num Timeline Items (exam) Mean Interval Length S (exam) -0.566 1.173e-27

Num Timeline Items (exam) Var Intervals Length H (exam) -0.2834 3.877e-07

Num Timeline Items (exam) Skewness Intervals H (exam) 0.3908 9.352e-13

Num Timeline Items (exam) Kurtosis Intervals H (exam) 0.3622 4.858e-11

Num Timeline Items (exam) Burstiness (exam) 0.1016 0.07396

Num Timeline Items (exam) Fraction of Midterm time 0.4414 3.287e-16

Num Timeline Items (exam) Assign Hand In Avg (exam) 0.1229 0.03051

Num Timeline Items (exam) Midterm Grade 0.3346 1.523e-09

Num Timeline Items (exam) Final Grade 0.475 7.5e-19

Fraction NonZero Days (exam) Num Interactions (exam) 0.6082 9.617e-33

Fraction NonZero Days (exam) Num Timeline Items (exam) 0.7204 7.162e-51

Fraction NonZero Days (exam) Mean Interval Length S (exam) -0.5172 1.324e-22

Fraction NonZero Days (exam) Var Intervals Length H (exam) -0.3456 3.985e-10

Fraction NonZero Days (exam) Skewness Intervals H (exam) 0.1122 0.04834

Fraction NonZero Days (exam) Kurtosis Intervals H (exam) 0.1385 0.01465

Fraction NonZero Days (exam) Burstiness (exam) 0.1066 0.0609

Fraction NonZero Days (exam) Fraction of Midterm time 0.5217 4.897e-23

Fraction NonZero Days (exam) Assign Hand In Avg (exam) 0.03597 0.5281
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Prediction of Student Outcomes C.6 Correlation and p values: Exam

Fraction NonZero Days (exam) Midterm Grade 0.3663 2.796e-11

Fraction NonZero Days (exam) Final Grade 0.6021 5.768e-32

Mean Interval Length S (exam) Num Interactions (exam) -0.4182 1.498e-14

Mean Interval Length S (exam) Num Timeline Items (exam) -0.566 1.173e-27

Mean Interval Length S (exam) Fraction NonZero Days (exam) -0.5172 1.324e-22

Mean Interval Length S (exam) Var Intervals Length H (exam) 0.838 5.314e-83

Mean Interval Length S (exam) Skewness Intervals H (exam) -0.1964 0.0005039

Mean Interval Length S (exam) Kurtosis Intervals H (exam) -0.1557 0.006005

Mean Interval Length S (exam) Burstiness (exam) 0.1127 0.04737

Mean Interval Length S (exam) Fraction of Midterm time -0.4108 4.73e-14

Mean Interval Length S (exam) Assign Hand In Avg (exam) -0.1058 0.06276

Mean Interval Length S (exam) Midterm Grade -0.2863 2.913e-07

Mean Interval Length S (exam) Final Grade -0.3706 1.576e-11

Var Intervals Length H (exam) Num Interactions (exam) -0.2065 0.000252

Var Intervals Length H (exam) Num Timeline Items (exam) -0.2834 3.877e-07

Var Intervals Length H (exam) Fraction NonZero Days (exam) -0.3456 3.985e-10

Var Intervals Length H (exam) Mean Interval Length S (exam) 0.838 5.314e-83

Var Intervals Length H (exam) Skewness Intervals H (exam) -0.04987 0.3816

Var Intervals Length H (exam) Kurtosis Intervals H (exam) -0.03738 0.5121

Var Intervals Length H (exam) Burstiness (exam) 0.05006 0.3798

Var Intervals Length H (exam) Fraction of Midterm time -0.3097 2.568e-08

Var Intervals Length H (exam) Assign Hand In Avg (exam) -0.08684 0.1271

Var Intervals Length H (exam) Midterm Grade -0.2248 6.527e-05

Var Intervals Length H (exam) Final Grade -0.2777 6.791e-07

Skewness Intervals H (exam) Num Interactions (exam) 0.3892 1.184e-12

Skewness Intervals H (exam) Num Timeline Items (exam) 0.3908 9.352e-13

Skewness Intervals H (exam) Fraction NonZero Days (exam) 0.1122 0.04834

Skewness Intervals H (exam) Mean Interval Length S (exam) -0.1964 0.0005039

Skewness Intervals H (exam) Var Intervals Length H (exam) -0.04987 0.3816

Skewness Intervals H (exam) Kurtosis Intervals H (exam) 0.9723 1.977e-196

Skewness Intervals H (exam) Burstiness (exam) 0.1757 0.0019

Skewness Intervals H (exam) Fraction of Midterm time 0.1613 0.004416

Skewness Intervals H (exam) Assign Hand In Avg (exam) 0.09616 0.091
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Prediction of Student Outcomes C.6 Correlation and p values: Exam

Skewness Intervals H (exam) Midterm Grade 0.04223 0.4588

Skewness Intervals H (exam) Final Grade 0.1141 0.04473

Kurtosis Intervals H (exam) Num Interactions (exam) 0.3959 4.506e-13

Kurtosis Intervals H (exam) Num Timeline Items (exam) 0.3622 4.858e-11

Kurtosis Intervals H (exam) Fraction NonZero Days (exam) 0.1385 0.01465

Kurtosis Intervals H (exam) Mean Interval Length S (exam) -0.1557 0.006005

Kurtosis Intervals H (exam) Var Intervals Length H (exam) -0.03738 0.5121

Kurtosis Intervals H (exam) Skewness Intervals H (exam) 0.9723 1.977e-196

Kurtosis Intervals H (exam) Burstiness (exam) 0.1089 0.05546

Kurtosis Intervals H (exam) Fraction of Midterm time 0.1314 0.02062

Kurtosis Intervals H (exam) Assign Hand In Avg (exam) 0.06892 0.2263

Kurtosis Intervals H (exam) Midterm Grade 0.0281 0.6221

Kurtosis Intervals H (exam) Final Grade 0.1062 0.06193

Burstiness (exam) Num Interactions (exam) 0.06791 0.2332

Burstiness (exam) Num Timeline Items (exam) 0.1016 0.07396

Burstiness (exam) Fraction NonZero Days (exam) 0.1066 0.0609

Burstiness (exam) Mean Interval Length S (exam) 0.1127 0.04737

Burstiness (exam) Var Intervals Length H (exam) 0.05006 0.3798

Burstiness (exam) Skewness Intervals H (exam) 0.1757 0.0019

Burstiness (exam) Kurtosis Intervals H (exam) 0.1089 0.05546

Burstiness (exam) Fraction of Midterm time 0.1818 0.001308

Burstiness (exam) Assign Hand In Avg (exam) 0.05591 0.3265

Burstiness (exam) Midterm Grade 0.1104 0.05205

Burstiness (exam) Final Grade 0.1131 0.04663

Fraction of Midterm time Num Interactions (exam) 0.2839 3.723e-07

Fraction of Midterm time Num Timeline Items (exam) 0.4414 3.287e-16

Fraction of Midterm time Fraction NonZero Days (exam) 0.5217 4.897e-23

Fraction of Midterm time Mean Interval Length S (exam) -0.4108 4.73e-14

Fraction of Midterm time Var Intervals Length H (exam) -0.3097 2.568e-08

Fraction of Midterm time Skewness Intervals H (exam) 0.1613 0.004416

Fraction of Midterm time Kurtosis Intervals H (exam) 0.1314 0.02062

Fraction of Midterm time Burstiness (exam) 0.1818 0.001308

Fraction of Midterm time Assign Hand In Avg (exam) -0.05681 0.3188
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Prediction of Student Outcomes C.6 Correlation and p values: Exam

Fraction of Midterm time Midterm Grade 0.5811 2.168e-29

Fraction of Midterm time Final Grade 0.5539 2.544e-26

Assign Hand In Avg (exam) Num Interactions (exam) 0.04919 0.3881

Assign Hand In Avg (exam) Num Timeline Items (exam) 0.1229 0.03051

Assign Hand In Avg (exam) Fraction NonZero Days (exam) 0.03597 0.5281

Assign Hand In Avg (exam) Mean Interval Length S (exam) -0.1058 0.06276

Assign Hand In Avg (exam) Var Intervals Length H (exam) -0.08684 0.1271

Assign Hand In Avg (exam) Skewness Intervals H (exam) 0.09616 0.091

Assign Hand In Avg (exam) Kurtosis Intervals H (exam) 0.06892 0.2263

Assign Hand In Avg (exam) Burstiness (exam) 0.05591 0.3265

Assign Hand In Avg (exam) Fraction of Midterm time -0.05681 0.3188

Assign Hand In Avg (exam) Midterm Grade 0.08531 0.134

Assign Hand In Avg (exam) Final Grade 0.09878 0.0825

Midterm Grade Num Interactions (exam) 0.218 0.0001093

Midterm Grade Num Timeline Items (exam) 0.3346 1.523e-09

Midterm Grade Fraction NonZero Days (exam) 0.3663 2.796e-11

Midterm Grade Mean Interval Length S (exam) -0.2863 2.913e-07

Midterm Grade Var Intervals Length H (exam) -0.2248 6.527e-05

Midterm Grade Skewness Intervals H (exam) 0.04223 0.4588

Midterm Grade Kurtosis Intervals H (exam) 0.0281 0.6221

Midterm Grade Burstiness (exam) 0.1104 0.05205

Midterm Grade Fraction of Midterm time 0.5811 2.168e-29

Midterm Grade Assign Hand In Avg (exam) 0.08531 0.134

Midterm Grade Final Grade 0.7792 1.942e-64

Final Grade Num Interactions (exam) 0.3534 1.499e-10

Final Grade Num Timeline Items (exam) 0.475 7.5e-19

Final Grade Fraction NonZero Days (exam) 0.6021 5.768e-32

Final Grade Mean Interval Length S (exam) -0.3706 1.576e-11

Final Grade Var Intervals Length H (exam) -0.2777 6.791e-07

Final Grade Skewness Intervals H (exam) 0.1141 0.04473

Final Grade Kurtosis Intervals H (exam) 0.1062 0.06193

Final Grade Burstiness (exam) 0.1131 0.04663

Final Grade Fraction of Midterm time 0.5539 2.544e-26
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Prediction of Student Outcomes C.6 Correlation and p values: Exam

Final Grade Assign Hand In Avg (exam) 0.09878 0.0825

Final Grade Midterm Grade 0.7792 1.942e-64
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Prediction of Student Outcomes C.7 Correlation and p values: All

C.7 Correlation and p values for features calculated over the

full term

Feature 1 Feature 2 Correlation p value

Num Interactions (all) Num Timeline Items (all) 0.7763 1.124e-63

Num Interactions (all) Fraction NonZero Days (all) 0.564 1.981e-27

Num Interactions (all) Mean Interval Length S (all) -0.4095 5.819e-14

Num Interactions (all) Var Intervals Length H (all) -0.2026 0.0003299

Num Interactions (all) Skewness Intervals H (all) 0.462 8.539e-18

Num Interactions (all) Kurtosis Intervals H (all) 0.4792 3.326e-19

Num Interactions (all) Burstiness (all) 0.07541 0.1854

Num Interactions (all) Fraction of Midterm time 0.2864 2.899e-07

Num Interactions (all) Assign Hand In Avg (all) 0.05062 0.3744

Num Interactions (all) Midterm Grade 0.2104 0.0001898

Num Interactions (all) Final Grade 0.3474 3.18e-10

Num Timeline Items (all) Num Interactions (all) 0.7763 1.124e-63

Num Timeline Items (all) Fraction NonZero Days (all) 0.6942 6.898e-46

Num Timeline Items (all) Mean Interval Length S (all) -0.5596 6.018e-27

Num Timeline Items (all) Var Intervals Length H (all) -0.2809 4.954e-07

Num Timeline Items (all) Skewness Intervals H (all) 0.4487 9.139e-17

Num Timeline Items (all) Kurtosis Intervals H (all) 0.4305 2.022e-15

Num Timeline Items (all) Burstiness (all) 0.108 0.05758

Num Timeline Items (all) Fraction of Midterm time 0.4441 2.048e-16

Num Timeline Items (all) Assign Hand In Avg (all) 0.1214 0.03262

Num Timeline Items (all) Midterm Grade 0.3253 4.518e-09

Num Timeline Items (all) Final Grade 0.4685 2.547e-18

Fraction NonZero Days (all) Num Interactions (all) 0.564 1.981e-27

Fraction NonZero Days (all) Num Timeline Items (all) 0.6942 6.898e-46

Fraction NonZero Days (all) Mean Interval Length S (all) -0.5079 9.945e-22

Fraction NonZero Days (all) Var Intervals Length H (all) -0.3335 1.733e-09

Fraction NonZero Days (all) Skewness Intervals H (all) 0.1233 0.02995

Fraction NonZero Days (all) Kurtosis Intervals H (all) 0.1515 0.007555

Fraction NonZero Days (all) Burstiness (all) 0.1027 0.07104

Fraction NonZero Days (all) Fraction of Midterm time 0.5097 6.712e-22
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Prediction of Student Outcomes C.7 Correlation and p values: All

Fraction NonZero Days (all) Assign Hand In Avg (all) 0.003906 0.9454

Fraction NonZero Days (all) Midterm Grade 0.3533 1.521e-10

Fraction NonZero Days (all) Final Grade 0.5836 1.089e-29

Mean Interval Length S (all) Num Interactions (all) -0.4095 5.819e-14

Mean Interval Length S (all) Num Timeline Items (all) -0.5596 6.018e-27

Mean Interval Length S (all) Fraction NonZero Days (all) -0.5079 9.945e-22

Mean Interval Length S (all) Var Intervals Length H (all) 0.8397 1.123e-83

Mean Interval Length S (all) Skewness Intervals H (all) -0.2004 0.0003858

Mean Interval Length S (all) Kurtosis Intervals H (all) -0.1597 0.004833

Mean Interval Length S (all) Burstiness (all) 0.111 0.0508

Mean Interval Length S (all) Fraction of Midterm time -0.4147 2.572e-14

Mean Interval Length S (all) Assign Hand In Avg (all) -0.1026 0.07125

Mean Interval Length S (all) Midterm Grade -0.2837 3.782e-07

Mean Interval Length S (all) Final Grade -0.3674 2.424e-11

Var Intervals Length H (all) Num Interactions (all) -0.2026 0.0003299

Var Intervals Length H (all) Num Timeline Items (all) -0.2809 4.954e-07

Var Intervals Length H (all) Fraction NonZero Days (all) -0.3335 1.733e-09

Var Intervals Length H (all) Mean Interval Length S (all) 0.8397 1.123e-83

Var Intervals Length H (all) Skewness Intervals H (all) -0.05083 0.3724

Var Intervals Length H (all) Kurtosis Intervals H (all) -0.0384 0.5005

Var Intervals Length H (all) Burstiness (all) 0.04956 0.3845

Var Intervals Length H (all) Fraction of Midterm time -0.3098 2.557e-08

Var Intervals Length H (all) Assign Hand In Avg (all) -0.08618 0.13

Var Intervals Length H (all) Midterm Grade -0.224 6.909e-05

Var Intervals Length H (all) Final Grade -0.2763 7.719e-07

Skewness Intervals H (all) Num Interactions (all) 0.462 8.539e-18

Skewness Intervals H (all) Num Timeline Items (all) 0.4487 9.139e-17

Skewness Intervals H (all) Fraction NonZero Days (all) 0.1233 0.02995

Skewness Intervals H (all) Mean Interval Length S (all) -0.2004 0.0003858

Skewness Intervals H (all) Var Intervals Length H (all) -0.05083 0.3724

Skewness Intervals H (all) Kurtosis Intervals H (all) 0.968 6.697e-187

Skewness Intervals H (all) Burstiness (all) 0.1707 0.002559

Skewness Intervals H (all) Fraction of Midterm time 0.1617 0.004315
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Prediction of Student Outcomes C.7 Correlation and p values: All

Skewness Intervals H (all) Assign Hand In Avg (all) 0.09068 0.1111

Skewness Intervals H (all) Midterm Grade 0.02909 0.6099

Skewness Intervals H (all) Final Grade 0.1069 0.06012

Kurtosis Intervals H (all) Num Interactions (all) 0.4792 3.326e-19

Kurtosis Intervals H (all) Num Timeline Items (all) 0.4305 2.022e-15

Kurtosis Intervals H (all) Fraction NonZero Days (all) 0.1515 0.007555

Kurtosis Intervals H (all) Mean Interval Length S (all) -0.1597 0.004833

Kurtosis Intervals H (all) Var Intervals Length H (all) -0.0384 0.5005

Kurtosis Intervals H (all) Skewness Intervals H (all) 0.968 6.697e-187

Kurtosis Intervals H (all) Burstiness (all) 0.103 0.07003

Kurtosis Intervals H (all) Fraction of Midterm time 0.1279 0.02434

Kurtosis Intervals H (all) Assign Hand In Avg (all) 0.06379 0.2628

Kurtosis Intervals H (all) Midterm Grade 0.01343 0.8138

Kurtosis Intervals H (all) Final Grade 0.09643 0.09008

Burstiness (all) Num Interactions (all) 0.07541 0.1854

Burstiness (all) Num Timeline Items (all) 0.108 0.05758

Burstiness (all) Fraction NonZero Days (all) 0.1027 0.07104

Burstiness (all) Mean Interval Length S (all) 0.111 0.0508

Burstiness (all) Var Intervals Length H (all) 0.04956 0.3845

Burstiness (all) Skewness Intervals H (all) 0.1707 0.002559

Burstiness (all) Kurtosis Intervals H (all) 0.103 0.07003

Burstiness (all) Fraction of Midterm time 0.1827 0.001234

Burstiness (all) Assign Hand In Avg (all) 0.05577 0.3277

Burstiness (all) Midterm Grade 0.1097 0.05369

Burstiness (all) Final Grade 0.1131 0.04657

Fraction of Midterm time Num Interactions (all) 0.2864 2.899e-07

Fraction of Midterm time Num Timeline Items (all) 0.4441 2.048e-16

Fraction of Midterm time Fraction NonZero Days (all) 0.5097 6.712e-22

Fraction of Midterm time Mean Interval Length S (all) -0.4147 2.572e-14

Fraction of Midterm time Var Intervals Length H (all) -0.3098 2.557e-08

Fraction of Midterm time Skewness Intervals H (all) 0.1617 0.004315

Fraction of Midterm time Kurtosis Intervals H (all) 0.1279 0.02434

Fraction of Midterm time Burstiness (all) 0.1827 0.001234
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Prediction of Student Outcomes C.7 Correlation and p values: All

Fraction of Midterm time Assign Hand In Avg (all) -0.05681 0.3188

Fraction of Midterm time Midterm Grade 0.5811 2.168e-29

Fraction of Midterm time Final Grade 0.5539 2.544e-26

Assign Hand In Avg (all) Num Interactions (all) 0.05062 0.3744

Assign Hand In Avg (all) Num Timeline Items (all) 0.1214 0.03262

Assign Hand In Avg (all) Fraction NonZero Days (all) 0.003906 0.9454

Assign Hand In Avg (all) Mean Interval Length S (all) -0.1026 0.07125

Assign Hand In Avg (all) Var Intervals Length H (all) -0.08618 0.13

Assign Hand In Avg (all) Skewness Intervals H (all) 0.09068 0.1111

Assign Hand In Avg (all) Kurtosis Intervals H (all) 0.06379 0.2628

Assign Hand In Avg (all) Burstiness (all) 0.05577 0.3277

Assign Hand In Avg (all) Fraction of Midterm time -0.05681 0.3188

Assign Hand In Avg (all) Midterm Grade 0.08531 0.134

Assign Hand In Avg (all) Final Grade 0.09878 0.0825

Midterm Grade Num Interactions (all) 0.2104 0.0001898

Midterm Grade Num Timeline Items (all) 0.3253 4.518e-09

Midterm Grade Fraction NonZero Days (all) 0.3533 1.521e-10

Midterm Grade Mean Interval Length S (all) -0.2837 3.782e-07

Midterm Grade Var Intervals Length H (all) -0.224 6.909e-05

Midterm Grade Skewness Intervals H (all) 0.02909 0.6099

Midterm Grade Kurtosis Intervals H (all) 0.01343 0.8138

Midterm Grade Burstiness (all) 0.1097 0.05369

Midterm Grade Fraction of Midterm time 0.5811 2.168e-29

Midterm Grade Assign Hand In Avg (all) 0.08531 0.134

Midterm Grade Final Grade 0.7792 1.942e-64

Final Grade Num Interactions (all) 0.3474 3.18e-10

Final Grade Num Timeline Items (all) 0.4685 2.547e-18

Final Grade Fraction NonZero Days (all) 0.5836 1.089e-29

Final Grade Mean Interval Length S (all) -0.3674 2.424e-11

Final Grade Var Intervals Length H (all) -0.2763 7.719e-07

Final Grade Skewness Intervals H (all) 0.1069 0.06012

Final Grade Kurtosis Intervals H (all) 0.09643 0.09008

Final Grade Burstiness (all) 0.1131 0.04657
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Prediction of Student Outcomes C.7 Correlation and p values: All

Final Grade Fraction of Midterm time 0.5539 2.544e-26

Final Grade Assign Hand In Avg (all) 0.09878 0.0825

Final Grade Midterm Grade 0.7792 1.942e-64
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Prediction of Student Outcomes D. Early Prediction with Ternary Classifiers

Appendix D

Early Prediction with Ternary

Classifiers

D.1 CNN ternary classifiers: Letter Grades (VW)

Tables D.1 to D.4 present the average results of early prediction with a CNN ternary

classifier using classification categories based on the letter grades.

Table D.1: Average values for CNN ternary classifier based on letter grades (up to VW
date)

Type of Data Train (%) Test (%) Epochs

Intervals 46.73 43.60 160

Timestamp 54.64 50.87 259

Multivariable 71.95 57.19 289

Table D.2: Average error matrix for CNN ternary classifier based on letter grades with
Intervals data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 3 1 13

Actual Warning 3 1 15

Actual Pass 3 2 21
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Prediction of Student Outcomes D.1 CNN ternary classifiers: Letter Grades (VW)

Table D.3: Average error matrix for CNN ternary classifier based on letter grades with
Timestamp data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 7 3 8

Actual Warning 3 4 11

Actual Pass 2 6 19

Table D.4: Average error matrix for CNN ternary classifier based on letter grades with
Multivariable data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 10 2 6

Actual Warning 3 4 11

Actual Pass 1 4 21

Tables D.5 to D.8 present the results of the best early prediction CNN ternary classifier

model out of 100 trials, using classification categories based on letter grades.

Table D.5: Best values for CNN ternary classifier based on letter grades (up to VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 40.98 58.73 75

Timestamp 49.25 65.08 75

Multivariable 69.63 69.84 192

Table D.6: Best error matrix for CNN ternary classifier based on letter grades with Intervals
data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 0 0 11

Actual Warning 0 0 15

Actual Pass 0 0 37

Table D.7: Best error matrix for CNN ternary classifier based on letter grades with Times-
tamp data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 5 5 8

Actual Warning 0 14 3

Actual Pass 0 6 22
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Prediction of Student Outcomes D.2 CNN ternary classifiers: Median Grade (VW)

Table D.8: Best error matrix for CNN ternary classifier based on letter grades with Mul-
tivariable data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 9 1 2

Actual Warning 2 6 8

Actual Pass 2 4 29

D.2 CNN ternary classifiers: Median Grade (VW)

Tables D.9 to D.12 present the average results of early prediction with a CNN ternary

classifier with classification categories based on the median passing grade.

Table D.9: Average values for CNN ternary classifier based on median passing grade (up
to VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 42.26 38.06 152

Timestamp 52.54 47.94 256

Multivariable 71.98 54.89 282

Table D.10: Average error matrix for CNN ternary classifier based on median passing
grade with Intervals data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 3 7 8

Actual Warning 3 9 11

Actual Pass 2 9 11

Table D.11: Average error matrix for CNN ternary classifier based on median passing
grade with Timestamp data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 7 6 4

Actual Warning 3 12 8

Actual Pass 2 10 10
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Prediction of Student Outcomes D.2 CNN ternary classifiers: Median Grade (VW)

Table D.12: Average error matrix for CNN ternary classifier based on median passing
grade with Multivariable data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 10 4 4

Actual Warning 3 9 10

Actual Pass 1 7 15

Tables D.13 to D.16 present the results of the best early prediction CNN ternary clas-

sifier model out of 100 trials, with the classification groups based on the median passing

grade.

Table D.13: Best values for CNN ternary classifier based on median passing grade (up to
VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 58.38 53.97 285

Timestamp 49.08 66.67 175

Multivariable 74.16 68.25 236

Table D.14: Best error matrix for CNN ternary classifier based on median passing grade
with Intervals data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 8 6 5

Actual Warning 2 12 7

Actual Pass 3 6 14

Table D.15: Best error matrix for CNN ternary classifier based on median passing grade
with Timestamp data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 15 2 6

Actual Warning 1 17 6

Actual Pass 2 4 10
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Table D.16: Best error matrix for CNN ternary classifier based on median passing grade
with Multivariable data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 10 3 7

Actual Warning 0 12 9

Actual Pass 0 4 18

D.3 Transformer ternary classifiers: Letter Grades (VW)

Tables D.17 to D.20 present the average results of early prediction using data up to the

VW deadline with a transformer ternary classifier using classification categories based on

the letter grades.

Table D.17: Average values for transformer ternary classifier based on letter grades (up
to VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 53.03 42.54 225

Timestamp 65.28 44.44 83

Multivariable 65.33 43.08 91

Table D.18: Average error matrix for transformer ternary classifier based on letter grades
with Intervals data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 1 1 15

Actual Warning 1 1 17

Actual Pass 1 1 24

Table D.19: Average error matrix for transformer ternary classifier based on letter grades
with Timestamp data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 5 4 9

Actual Warning 4 4 12

Actual Pass 3 6 17
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Table D.20: Average error matrix for transformer ternary classifier based on letter grades
with Multivariable data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 5 3 9

Actual Warning 3 5 12

Actual Pass 3 5 17

Tables D.21 to D.24 present the results of the best early prediction transformer ternary

classifier model out of 20 trials trained with data up to the VW deadline, using classification

categories based on letter grades.

Table D.21: Best values for transformer ternary classifier based on letter grades (up to
VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 39.63 55.56 500

Timestamp 64.94 52.38 75

Multivariable 56.20 50.79 76

Table D.22: Best error matrix for transformer ternary classifier based on letter grades with
Intervals data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 0 0 12

Actual Warning 0 0 16

Actual Pass 0 0 35

Table D.23: Best error matrix for transformer ternary classifier based on letter grades with
Timestamp data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 7 2 4

Actual Warning 7 4 12

Actual Pass 1 7 19
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Table D.24: Best error matrix for transformer ternary classifier based on letter grades with
Multivariable data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 4 1 10

Actual Warning 2 1 15

Actual Pass 0 3 27

D.4 Transformer ternary classifiers: Median Grade (VW)

Tables D.25 to D.28 present the average results of early prediction with a transformer

ternary classifier with classification categories based on the median passing grade and input

data up to the VW deadline.

Table D.25: Average values for transformer ternary classifier based on median passing
grade (up to VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 47.88 37.19 102

Timestamp 65.73 42.25 84

Multivariable 60.31 42.33 86

Table D.26: Average error matrix for transformer ternary classifier based on median passing
grade with Intervals data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 1 9 7

Actual Warning 1 13 10

Actual Pass 1 12 9

Table D.27: Average error matrix for transformer ternary classifier based on median passing
grade with Timestamp data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 5 6 6

Actual Warning 3 10 10

Actual Pass 3 9 11
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Table D.28: Average error matrix for transformer ternary classifier based on median passing
grade with Multivariable data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 6 6 6

Actual Warning 4 10 9

Actual Pass 3 8 11

Tables D.29 to D.32 present the results of the best early prediction transformer ternary

classifier model out of 20 trials, with the classification groups based on the median passing

grade and input data up to the VW deadline.

Table D.29: Best values for transformer ternary classifier based on median passing grade
(up to VW date)

Type of Data Train (%) Test (%) Epochs

Intervals 37.40 47.62 75

Timestamp 62.72 55.56 75

Multivariable 59.91 55.56 98

Table D.30: Best error matrix for transformer ternary classifier based on median passing
grade with Intervals data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 0 13 0

Actual Warning 0 30 0

Actual Pass 0 20 0

Table D.31: Best error matrix for transformer ternary classifier based on median passing
grade with Timestamp data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 7 5 6

Actual Warning 4 12 8

Actual Pass 1 4 16
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Table D.32: Best error matrix for transformer ternary classifier based on median passing
grade with Multivariable data (up to VW date)

Predicted Fail Predicted Warning Predicted Pass

Actual Fail 4 7 2

Actual Warning 0 18 12

Actual Pass 0 7 13
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Appendix E

Colophon

This thesis is typeset in LATEXusing a version of the custom template created by Steve

Woodrow, modified by Dario Schor, and further modified by Kathryn Marcynuk in texstudio

version 3.0.1. BibDesk version 1.6.3 was used to manage the references using BibTeX. The

body of the report is written in 11 point Times New Roman, while the figure captions are

printed in 10 point Arial.

The work was performed using macOS Mojave version 10.14.6 with a 2.3 GHz Intel

Core i7 processor and 8 GB of 1600 MHz DDR3 memory using Python 3 in Spyder 4.1.5,

and macOS Ventura version 13.3.1 with a Apple silicon M1 processor and 8 GB of LPDDR4

memory using Python 3 and TensorFlow 2.10.0.
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