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Abstract

The tangential field on the surface of a narrow axial slot on
the wall of a hollow waveguide or a coaxial line due to an incident
TEll excitation is obtained. The slot length is initially assumed to
be semi-infinite in length, but the results are then extended to a
finite slot by including the reflccteé field at the slot far end. The
propagating modes in the slotted guide a%e obtained by using the
transverse resonance method. A modal expansion of the fields with
unknown coefficicnts iﬁ both slotted and complete sections of the guide
are assumed,and the continuity of the field componcnts at the plane
separating the two sections is utilized to obtain two matrix equations
for the unknown cocfficients. These equations are solved to determine
the required coefficients. It is shown that these coefficicnts
together with the slot static ficld can be uscd to obtain a closed-
form solution for the slot tangential field. The solution satisfies
the cdge conditions and is valid only for narrow slots. An examination
of the results ;hows that the slot field is localized, which allows the
extention of the solution to successive slotted sections. Using this

approach a solution for the field of periodic leaky wave structures is

prescented.
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CHAPTER I
INTRODUCTION

The ever increasing progress of the communication
technology is continuously demanding more sophisticated and precise
devices to achieve efficient convoyaﬁcefof information. Antennas, -the
matching devices between the systems transmitting or receiving
signal and the free space, have always been the subject of extensive
research work. Among the most widely used antenna structures in micro-
wave communication are the slotted waveguides and the slotted coaxial
lines. These two structures have found numerous applications in both
microwave systems and antennas. As antennas they are used in multiple
feed systems for cylindrical, spherical and conical reflectors [ 1-6],
or as a broadband balun transformer for matching the balanced antenna
impedance to the unbalanced coaxial feed [7].

The axially slotted waveguide is a structure capable of
supporting leaky waves along its aperture. As the wave travels down
the structure, energy leaks in a prescribed direction through the
aperture. Extensive analyses of the leaky wave nature have been made
in the past decade. These waves were first pointed out by Marcuvitz
[8] in 1956. The treatment of guided waves along open structures was
further established by Tamir and Oliner [9]. The influence of the
guided leaky waves on the radiation pattern was treated by Collin [107],
Hessel [11],and Tamir and Oliner [12]. It is shown by several authors
[13-15] that these waves are characterized by a complex propagation
constant KZ =B_+ jaz (with time variation exp (-ywt) ) along the

z

structure. This shows a continuous leakage of energy as the waves




travel along the z direction. The wave is a fast wave with a phase

velocity faster than that of light (i.e. Bz < K A direct result of

O)'
this condition is that the wavenumber in the transverse direction p
takes the form Kp = Bp—iap, which shows an improper wave travelling in
the p-direction with ever increasing amplitude. It should be emphasized,
however, that the radiation from the leaky wave antenna is essentially
confined to certain regions and that the solution is restricted within
this region[13]-[14]. The leaky wave radiation is normally in the for-
ward direction [14]. However, in mnon- conventional structures such
as waveguides with dielectric rod or guides employing plasma or
ferrite structures, radiation could be achieved in the backward region.
This is demonstrated in the work of Clarricoats et al[16]-[17],Trivel-
piece et al[lS]—[l9]gnd Tamir and Oliner [207].

The particular leaky wave problem of the axially slotted
or coaxial line waveguide has received limited investigations in the
past. Collin [21] has calculated the characteristic impedance of a
slotted coaxial line. This was subsequently used by Duncan in designing
a broad -band balun|[7]. Quite recently the characteristic impedance
of the partially filled slotted hollow and coaxial guides have been
numerically calculated by Hatsuda [22]. The possible leaky modes
supported by the slotted structure was first investigated by Rumsey
.[23] who obtained a variational expression for the complex propagation
constant of the field interior to the rectangular slotted waveguide.
Harrington using a similar variational expression solved the problem in
the cylindrical waveguide case [24]. Later in 1960, Goldstone and
Oliner [25] employed the transverse resonance method based on the

knowledge of the slot impedance. Their work agreed well with the work




of Harrington [24] for narrow slots, but showed discrepancy at wide

slot case due to the approximation involved in their exprcssion.
Recently, Clarricoats and Slinn [26] solved the same problem numeri-
cally by matching the field expanations in three regions (assuming a
finite thickness for the waveguide). The condition that the determinant
of the system vanishes,allows the determination of the wave number.
However, in all these cases the slot field was usually assumed to have a
certain suitable form and was never calculated. It is the main
objective of this thesis to obtain this slot field and investigate

its behavior for various slot and waveguide parameters. Initially the
slot is assumed to be semi-infinite in length and be excited by a TEll
incident mode.

As mentioned previously the problem of determining the slot field
has not been attempted before. The form of this field and the parameters
influencing its intensity, distribution and the radiated power may
be important to many microwave, antenna and communication engineers.

Assuming TE.. excitation, an exact integral equation formulation of the

11
slot field could be obtained similar to the work of Chang and Wu [46],

and Wu [47] for the circumferential slot in coaxial guides. The solu-

tion of this integral equation, however, may be difficult to generate.
Therefore, one may look for other suitable techniques to tackle the problem.
The solution presented in this thesis is a quasi analytical solution,

where thce problem is solved by a combination of analytical and numerical
techniques. In Chapter 2 the different modes supported by the

structure are obtained using the technique of Goldstone and Oliner

[25]. This technique is later modified to allow the solution for any

single and double symmetrical slots with arbitrary slot




locations. In Chapter 3 the fields in both the slotted and the complete
sections of the hollow waveguide are expanded in their respective modes
with two sets of unknown coefficients. Matching these fields on the
plane separating the two waveguide sections converts the continuity
condition into two sets of infinite equations. These two sets of
equations are cast in a matrix form and are solved together to yield the
required unknown coefficients. When these coefficients are obtained,
it is shown that for a narrow slot the coefficients of the TE1m modes
in the slotted section are sufficient to determine the slot field.
Using this particular set of coefficients one can arrive at a closed
form solution for the tangential component of the field on a narrow
slot. In Chapter 4 the same technique is applied to axially slotted
coaxial waveguides, and the slot field is obtained in a manner much
similar to the method used in Chapter 3. The solution for a finite slot
is presented in Chapter 5 by considering the reflection at the slot
far end. When this field is obtained, one can study the radiation
characteriétics of a finite slotted waveguide section . This is
carried out in the second part of Chapter 5 and is extended to successive
slotted waveguide sections. It is shown that the results obtained
compare well with the limited data.available in the literature on slotted
waveguides [14], [33], [35].

The work is concluded in Chapter 6 by a general discussion of
the results and possible extensions of the work to other related

problems.




CHAPTER II

LITERATURE SURVEY

2.1. Introduction

The problem of slots on the surface of a waveguide is as old as
the waveguide itself. It was first utilized for two major objectives;
to provide means of entry into the waveguide to study thé internal field,
such that the presence of the slot does not influence the original field
configuration to any great degree [36] and to study the radiation due
.to the tangential field on the surface of the slot. This field, however,
in most earlier work was assumed to be known [33]-{35].

Quite recently, with the increasing interest in communication
technology, the problem of coupling between internal and external
fields of a waveguide or coaxial cable through holes or slots has
received a rather thorough investigation[37-41]. As mentioned before most
of the work dealt with either small holes on the outerISurface for which a
perturbation approach was employed [41] or a circumferential slot on the outer
sheath for which an integral equation was developed for the tangential
slot field [37-40].

The axially slotted waveguide, a structure which is capable of
supporting leaky waves along its surfacel13-15]has drawn some attention
recently because of its possible use as an efficient feed source
for conducting reflectors [1-6 ]. Most of the work done in
this area, however, dealt with the possible propagating modes inside the
structure [23-27] or along the surface of the finite slot [42-43].

Since the knowledge of the propagation constant inside the slotted

waveguide enables one to gain considerable knowledge about the leaky wave




field, determination of this constant is thus essential for any further

analysis of the field either inside or outside the slotted waveguide.
Rumsey [23]in 1953 has established a variational expression for the
propagation constant <Y which has been used by Harrington[24] for both

TE and T cases. Goldstone and Olinerlzs] employed the transverse
resonance technique with an equivalent susceptance for the slot to obtain
an explicit expression for 7Yy. Their method was quite accurate for narrow
slots, but showed discrepancies from the measured results and from that

of Harrington's for wide slots. Finally Clarricoats and Slinn solved the
problem numerically by matching the fields on both sides of the slot [26].
The result of their work is reported to be in good agreement with the
experimental results of Goldstone and Oliner[25]. The scattering para-
meter technique has also been used by Chen[27], which yields an expression
identical to Harrington's Variational expression.

In order to gain a better understanding of the problem, the first
part of this Chapter deals, in some detail, with the work of Harrington
as well as with that of Goldstone and Oliner, and Clarricoats and Slinn.

In the second part the integral equation approach for the tangential
field on a narrow circumferential slot is presented. It is shown that
the static solution as obtained by Hurd[37] and Chang[38] is a fairly
acceptable solution for the electric field as long as the slot is quite
narrow, a result which shall be used iﬁ later chapters to arrive at a
closed form formula for the axial slot field. The integral equation
formulation is exact. However, the solution presented is limited to
narrow slots. For wide slots the solution may not be valid since the
basic assumptions are violated. In addition, mode coupling is highly

probable, in which case the formulation of the problem itself may no




longer be accurate.

With these limitations in mind, we now proceed to present the
different analytical solutions for the propagation constant of an axially
slotted waveguide as discussed by Harrington[24], Goldstone and Oliner[25],

and Clarricoats and Slinn [26]

2.2. Variational Technique

Consider a rectangular waveguide with an infinitely long dxial
slot of width w cut on one of its sides as shown in Fig. 2.1 . Rumsey
has shown that a stationary expression for the propagation constant vy

is given by [23]

ik ]

|
| )
_______._*____j’f_,.x —_ ¢:=0.0
|
|
Fig. 2.1 Slotted rectangular Fig. 2.2 Slotted cylindrical
waveguide waveguide
v/2 i e i e
{Ey(HZ - H )+ EZ(Hy - Hy Y}dz = 0 (2.1)
-w/2
where the superscript e and 1 refer to the external and internal
fields respectively. For the cylindrical cross-section of Fig. 2.2
the expression could be shown to be [28]
$0 . .
i e i e
f_¢ {E¢(Hz - H )+ EZ(H¢ - H¢ J}do = 0 (2.2)
0

Assuming an expression for the field in the outside region to be in the

form




e B > (1) -
HZ (p,9) = nio bn Hn (Kpp) cos no (2.3)
where

Hi(p,¢) is the external =z component of the magnetic field,

Hﬁl)(K,p) is the Hankel function of the first kind of order n,

bn is the Fourier coefficient,
Kp is the complex propagation constant in p direction given
by
2 2 2 ' '
K~ + = K 2.4
oY 0 (2.4)
The coordinates p, ¢ and ¢O are as shown in Fig. 2.2 . The internal

magnetic field Hi(p,¢) can similarly be assumed as
) %

H;(p,¢) = nEO a_ Jn(Kpp) cos no (2.5)
with Jn and a being the cylindrical Bessel function and the Fourier
coefficient respectively.

Usiﬁg Maxwell's equations and assuming constant electric field on
the slot in the azimuthal direction, Harrington has obtained the coeffi-

cients a and bn§ By substituting the results in equation (2.2) ,he has

arrived at an expression which,for the TE modes,is given by

2

(1) y
J (K a) H (K.a)
—F LI )T =0 (2.6)

2 sin n¢
0

1 C

W™~ 8
™

0 n

' STy
Jn(Kpa) Hn (kpa)
where e is the Neumann number. This equation gives Kp as a function

of the waveguide radius a, and the slot half-angle ¢O. It has an

infinite number of solutions each corresponding to a waveguide mode
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similar to those of a closed circular waveguide. Thus assuming that

Kpa is nearly equal to a closed waveguide mode constant Knma’

one can set

kpa = Knma + 0 (2.7)

where & is a small complex number. Thus expanding the Bessel and the

Hankel functions around Knma and retaining only terms up to the second

order in &, one can arrive at an equation of the form

2
a26 + a15 +ay = 0 (2.8)

where ag, a; and a, are constants which depend on Jn and Hn in a

manner determined by the form of the excitation [24] and [28]. Once ¢

is known, Y can be found using the relation

1 2 2
- 3 Ay @yl - @m (2.9)

Y

with XO being the operating wavelength.
This technique adopted by Harrington is quite general and has
several advantages over the technique used by Goldstone and Oliner[25].

It retains terms of the order 62 which makes it valid for both narrow

and wide slots. The stationary characteristic of (2.6) in relation to the
type of the assumed tangential slot field also adds to its advantages.

The expression, however, has a major disadvantage. For small slot half

angle ¢O, it i$ insensitive to the variation of the slot location a.
Regardless of the change in the integration interval, one obtains a
solution which is always the same as the solution for the case o = 0°

(or o = 180°). This particular problem is discussed later in Section
P P

(3.2.1).
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Because of this drawback, it becomes necessary to resort to another
technique, which may be less accurate but more adaptable for arbitrary
slot location. This technique is the transverse resonance method used
by Goldstone and Oliner[25]. Because of frequent use of this technique
in the early stages of this thesis, a comprehensive review of their work

is given in the next Section.

2.3. Transverse Resonance Method

In this method the cross section of the structure is represented

by a transmission line network. The resonance of this network yields
values of Kp and hence vy for the travelling wave structure. Quanti-
tatively the resonance of a network occurs when the impedance looking

in one direction is cqual and opposite in sign to the impedance

looking in the opposite direction as discussed in Appendix [A]. Thus if
a network representation of a structure is set in p direction, then

according to [15]

< ->
Z+72=20

or equivalently (2.10)
<« >
Y+Y=20

I I ——

—_— 7.

p=0.0 p=a

Fig. 2.3 Direction of viewing the impedance
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where Z and Y represent the impedance and the admittance respectively.
The arrows to the left mean the quantity Z or Y is viewed in the
direction of decreasing p and an arrow to the right means viewing them

in the direction of increasing p, as shown in Fig. 2.2 .

2.3.1. Radial Transmission Line Modes

In general the field inside a waveguide can be expressed as a
product of two functions. The first is a function of only the coordinates
along which the transmission line representation is effected. It is
called the modal amplitude. The other function, which is called the mode
function, is usually independent of the modal amplitude coordinates [29].

In the treatment of the present problem, Goldstone and Oliner [25]
modified the mode function to permit it to be a function of p which
is taken to be the direction along which the network representation of
the slotted waveguide is set.

The transverse (to p) field can be represented by [29]

B, (920) = ZV5(6) €1 (0,0) » v 0) el 0,0

(2.11)

1l

LRMOENCDR (o) 1 (0,0)

Ht(o,¢)

where the 2z dependence exp(-Yz) has been dropped. In this equation
e(p,¢) and h(p,d) are the mode functions and the superscripts e and

h refer to T™ and TE modes respectively. V(p) and I(p) are the
modal amplitudes such that Ig(p) and Vﬁ(p) satisfy Bessel's different-

ial equation

13 3 2 n2 IE
[5-55 (p 529 + (kp - =] {Ve} =0 (2.12)
n
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Furthermore

M _ S5k - “2) Z
a0 I8 7727 “on
(2.13)
dIn 2 n2
T " CIKG - =) Yo V
2 K
© Ly w2 ongd b1 T 1
YOn 1/ZOn = KZ‘Q (Kp 2) ’ \HOn Zh wup 2 n2 L
o P On (K2 - =7
o 2
P
(2.14)

The mode functions and their orthogonality relations are given elsewhere

[25].

2.3.2. Transverse Resonance Applied to Slotted Cylindrical Waveguide -

The slotted guide shown in Fig. 2.2 could be represented by a
radial transmission line of length a terminated by an admittance Ys

which is due to the presence of the slot (see Fig. 2.4).

l
I Y(K 0 ) :
|

!

p =0.0 p= a

Fig, 2.4 Transmission line representation of the slotted waveguide
If Yl(Kpp) is the admittance of the radial transmission line,

the transverse resonance equation may be written as
Y. (k Y =0 2.15
+ =
NCESIERE (2.15)

where arrows on admittances indicate the direction of observation of each

admittance. Consider the TE1 case, ?I(Kpa) is given by [29]

1
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€ h, h
Y, (Ka) = - I,/V]

Using equations (2.11) - (2.14) or referring to references [25], [28],
+ . 0

Yl(hpa) is given by

K I, (K @)

p
jwua

§l(xpa) = (2.16)

t
Jl(Kpa)
Substituting back in (2.15) and with the knowledge of the slot

admittance Ys, one may solve for Kp using a suitable perturbation

technique, which will be given next for future reference.

2.3.3. Perturbation Solution for the Wave Number

As has been discussed in Section (2.2), the wave number in p-
direction Kpa can be set equal to a corresponding waveguide mode number
plus a small complex number as given by equation (2.7), which is rewritten

here for convenience as
Kpa =K a+§ (2.7)

The transverse resonance condition of equation (2.10) can be written as

<=

Z(Kpa) =0 (2.17)
where

R _ f K R X 2.18

Z(Kj2) = 2 (Kja) + Ry - X | (2.18)

and from equation (2.16)

]
wya Jl(Kpa)
iK J. (K a
? P 1( P )

<+
Zl(Kpa) = -
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the functions RS and XS arc given by

where Gs and BS arc the slot conductance and susceptance respectively.

Expanding (2.7) about Klla’ i.e., Xll’ it gives

<>

<> <
Z(Kpa) = Z(Klla) + 0 Z'(Klla) =0

where the prime denotes differentiation with respect -to Kpa. It is

simple to show that

2
o 1- (Klla) ~ wpa
Z (klla) =

-

] 2
J(K,;2) K,
where the derivatives of R_ and X_ are neglected [25]. Thus for the

TE;q mode . § : reduces to

(Klla)z 1 ]
§ = ——— {xS +j Rs} (2.19)
(Klla) -1

where

! ='-xs/(wua/xp) and R = -Ry/ (wha/K )

The complex perturbation § cannot be fully known before the slot admi-

ttance YS is calculated. This problem is quite involved. One.may employ

such methods as the integral equation method, the equivalent static method
or the transformation method. A comprehensive account of these mecthods
can be found in the work of Schwinger[31], Marcuvitz[29], and others.

In the following Section a brief account of the integral cquation method

is presented. The dctails may be found in refcrences [25],128],[29] and[31]
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2.3.4, Aperture Admittance

Referring to Fig. 2.2 an expression for the slot conductance

GS of the TE mode can be written as [25], [28] and Appendix [D]

11 |
¥ 90
Li’o do J_% do! E¢(a,¢) G (a;0,9") E¢(a,¢')
G = (2.20)

s

d) 1 2
I [ . h,n Ey(a,9)do |

where E¢(a,¢) is the electric field on the slot and

1 €
h =/ =2 cos nd - (2.21)

zZn 2m

G"(a,0,0') =Re { % Y'(a)h (4)h (41}
n=0 zZn zn
with

(1)
K Ho (K a)

(2.22)

(1)}

Hn (Kpa)
The expression for the conductance can be shown to be stationary

with respect to the variation of the aperture field about its correct

value [25]. Using the static slot electric field [37-38]

By = 1/ = (4/40)° (2.23)

which is derived from the integral equation solution given in Appendix [B],

one finds

1

En JO (nd)o) 2

o
i
™~ 8

(2.24)

| |
mopa’  n=0 [Hil)(Kpa)]z Jp(g)

The susceptance portion of the equivalent circuit can be calculated

from the following equation [25] and Appendix [D]
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-M

1 A IH h" 1"
V1 = Joe 11 l(a,O) h1 (a,0) (2.25)
where
LA is the modal voltage of the n = 1 mode at the slot
1"
I1 is the discontinuity in the modal current of the n = 1 mode
MZ is the magnetic polarizability of the slot given by [25]:
2
M =1 “o R S (2.26)
2 -2 772 In(2/é.) ]
Kp 0

A brief account of the derivation of equation (2.25) is given in Ap-
pendix [B]. Now, using (2.25) and (2.26), the slot susceptance is readily
obtained as

I K
= jB_ = -jw&:(l—(%) 2 1n(2/9) (2.27)

A straightforward substitution of (2.24) and (2.27) in equation (2.19)
determines §, which together with (2.7) and (2.9) fully determines both
Kp and 7vy. Further details and numerical results are given in reference
[25].

This method has several advantages. The slot impedances of many
structures have been thoroughly studied and are either available in the
literature or easily derived using kﬁown techniques, which makes the
method applicable to variety of structures. Also, when the perturbation
technique is applied, a relatively simple and explicit expression for 6
is obtained which saves a substantial computational time compared to
Harrington's method. Furthermore, the expression can be modified as

will be shown later allowing a solution for different slot locations to

be derived. The technique, however, has its disadvantages. For the
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case of wide slots, the results may not be accurate enough because of

the pertﬁrbation procedure used and due to the lumped susceptance analysis
performed in the small aperture limit. This particular drawback, however,
has no effect on the work of this thesis. In all the analysis to follow,

it is assumed that the slot is quite narrow, and thus the work of Gold-

stone and Oliner may be utilized. In defining the term narrow, the criterion

adapted by Silver[35] is used.This states that the slot is narrow if

length

2 1og) y —ideh

> 1. This definition will be used throughout this work.

The numerical solution of the problem is presented next. The
procedure is simple and straightforward, but the computational task is

tremendous and has its disadvantages as will be discussed later.

2.4. Computer Method of Determining the Propagation Constant of Slotted

Waveguides
In this method a field expansion in three regions is assumed. The

configuration of the slotted guide and the three regions are shown in

The electric and magnetic fields in the aperture plane of the dis-

continuity are expanded in terms of normal modes appropriate for the

region. Applying orthogonality relations at the surface of the dis-

continuity converts the discontinuity equations into two sets of infinite

Fig. 2.5 Thick slotted cylindrical waveguide



18

equations. They are truncated after a suitable number of terms and the
resulting finite sets may be solved together for the propagation constant.
In this analysis Clarricoats and Slinn [26] adopted the modal
representation introduced by Goldstone and Oliner [25] described in the
preceeding section. The modal functions for the TE modes assume the
following expressions
i) Region I

jwu

h — (1) O‘ s H
v (p) = A Ei—- kpo Jn(Kpp)
p .
h _ .M
1,(0) = A 3 (K 0)
ii) Region II
' . (2)
oo (2) %Mo ' . Bn
b n
h (2) s, ?
_ n
In(p) - An [Jp(Kpp) + A(z) Yp(Kpp)]
n
with
) P = nm/¢g

iii) Region III

1 ‘ jwu 1
V;(p) Aﬁs) —L K p Hﬁl) (K 0)

K P
p

ho o3 (1),
IN(D) = A7 H- (kpp)

where notations are the same as those of the previous Section, and An and
Bn are unknown coefficients. Applying the condition of continuity of

Ht at both p=a and p = a + w within the domain -¢O < ¢ < ¢0 will
yield a set of four homogeneous equations in the four unknowns Aﬁl),

Aéz), Béz) and Aés). The condition that the determinant of the




system should vanish permits the evaluation of the propagation constant
Kp. Clarricoats et al [26] using this approach has solved for the TEll
case [26] and has obtained results which are in good agreement with the
reported experimental rcsults of Goldstone and Oliner [25].

Further details on the numerical procedure as well as numerical
results are givén in reference [26]; The method; however, suffers from

several drawbacks. The. numerical procedure is quite tedious and time con-

suming., Moreover, for narrow slots only the first term n = 0 of the

field expansion in region II can practically be assumed since for higher

orders the order of the Bessel and the Neumunn functions becomes very high

In this case the ¢ variation of the field in region II becomes numerically

ingignificant,which makes the overall expansion insensitive to the variation of
the slot location. More serious is the parameter w, which is the width of

the window in Fig. 2.5 . The final expression apparently depends on W

which makes the evaluation of the propagation constant Y a function of

an uncontrolled parameter. Thus by using different values of W one

obtains different values for &. Even though this may seem logical, an
application of this method reverals that as W  approaches zero its

solution for & does not yield the expected solution obtained by the Harrington

or the Goldstone and Oliner methods.

For the above reasons, together with the discussion of Sections

(2.2) and (2.3), the technique adopted by Goldstone et al [25] proves most

suitable for the work of this thesis and is used later for the analysis
of both the hollow and the coaxial slotted waveguides.
The remaining task of this Chapter is to present the integral

equation technique used in solving a closely rclated problem. The problem
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in question is to obtain the field on the surface of a circumferential
slot cut in the outer sheath of a coaxial waveguide. Several authors
have attempted this problem using different techniques [37 - 40],[44] and
[45]. These techniques are not, however, related to the problem of this
thesis, therefore only the formulation of the integral equation for the
aperture field is bresented. More specific details on the techniques

used and on the numerical results are given in references [37 - 40],

1441 and [45]

2.5. Integral Equation for the Field of Circumferential Apertures

Consider a coaxial cylinder of infinite extent with inner and
outer radii a and b respectively and a circumferential slot of

width 2d on the outer sheath as shown in Fig. 2.6 .

é%

+d
-d

|

R
T

Fig, 2.6 Circumferential slotted coaxial waveguide
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Let the relative permittiyity.of.the inner region be €, and assume
that the exterior region to be free space. An incident TEM current mode

1 -j(wt - K _a)
z 3
= e , Where KZ is

of unit amplitude is assumed in the form
the wavenumber in the dielectric in the z-direction.

In the coaxial region,the ¢ component of the magnetic field can
be expressed in terms of the tangential electric field at the aperture according

to [46] - [47] as

jK_ z  iK.b Jd

H¢(p,z) = §%5~e 2oy —;5—- B Ez(b,z')GC(p;z,z') dz! (2.28)
where
i -1 2oz
G.(psz,2') =5 Z (v A) " ¢ (o) ¢ (b)e
m=0
6 (0) = 3,8 p) WD (8 a) - g (8 a) nP (8 o)
_ -2 2 2
A= 2(m ) " [ - JO(me))/Jb(Bma)]
and
1
v = (- gl

with B~ being the cut-off wavenumber of a TM, mode and N = 1201/ /e 9

is the intrinsic wave impedance of the interior region.

In the exterior region op > b,,one has

—iK&) d
H¢(D,Z) = n J_d E, (b,2") G (p;z2') dZ (2.29)
0
where
4 5w
G (p3z,z') = - (mb) fm ———Tij———vcos[a(z -z' )]da
v 0 u HO {up)




and
e i
w= (G- aHT=i0? - kD)7
Ng= 1207 Q

An exact integral equation for the aperture field can be obtained from
(2.28) and (2.29) and the boundary conditions at the aperture lzl <d

and p=b as

d
-1 in .
J_d Ez(b,Z')[GC(b;Z,Z') + € Go(b;z,z')]dz' = 5 K;EQ exp(lKZz)

(2.30)
The solution for this equation may not be simple, and it depends usually
on the approximations involved. For the axially slotted waveguide, it
is possible to formulate a similar integral equation. However, because
of the different limitations and dimensions, the solution may not be easily
feasible as in the' case of the circumferential slot.
In the next Chapter a totally different approach for solving
the problem of hollow and axially slotted waveguides'is attempted. Based
on the knowledge of the different propagating modes in the slotted wave-.
guide as presented in Sec. (2.3) in conjunction with a scattering
technique, a closed-form formula for the field on the apérture is obtained.
It is shown that the technique could be extended to multi-slot
loadings as well as to other structures of interest such as the coaxial
waveguide. A comprehensive analysis of this problem will be presented

in a later Chapter.
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CHAPTER 111

FIELD SOLUTION ON THE APERTURE OF A HOLLOW SLOTTED WAVEGUIDE

3.1. Introduction

The ultimate aim of any antenna structure is to radiate (receive)
the electromagnetic power in a prescribed manner from certain directions
in space . To this end the distribution of the field on the sur-
face of the antenna is of prime importance since the knowledge of this
field gives the external field everywhere'in the space (the uniqueness
theorem) .

Thus in order to investigate the form of the radiation from a
slotted waveguide, the electric field on the slot has to be known. This
electric field will vary according to several factors such as the type of
excitation, the slot width and orientation, and the dimension of the wave-
guide.

In this Chapter an attempt is made to solve for the tangential
electric field on a narrow axial slot on the surface of a hollow wave-
guide, due to an incident dominant TE11 mode. For simplicity the slot is
assumed to be long compared to the wavelength; such that no coupling
between modes (TE and TM) may occur.

Extending the technique presented in Section (2.3) to cover any
azimuthal slot location one may solve for different modes supported by
the structure. Based on these modes a scattering problem is thgn formu-
lated at the interface between the solid and the slotted sections of
the waveguide. With the enforcement of the boundary conditions on the
metallic walls of the structure a closed~form formula for the tangential
electric field on the aperture is obtained. The solution is then extended

to waveguide sections with a set of two identical slots,symmetric with
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respect to the origin (i.e. 180° apart), but arbitrarily located on the guide
surface. It is of interest to note that because of the highly localized
nature of the field of each slot, as evident from the results of this

thesis (S&c. 3.6 and Sec. 4.6) and also reported in reference [38], the
result may also be extended to several successive slotted gections. This
allows a solution of problems such as the periodically slotted leaky

wave structures, or the penetration of an external field into an inter-

rupted shielded cable.

3.2, Propagation Constant for Axially Slotted Hollow Waveguide 'Arbitrary

Slot Location'

Consider an axially slotted waveguide as shown in Fig. 3.1 with
the slot location shifted an angle o from the reference angle ¢ = 0,

the slot angle being 2¢; and semi-infinite in length.

/

N 2¢O

/7 ) -~
‘I,\ ; _
/\I l/‘\/ [}
' e \
[

U

Fig. 3.1 Axially slotted waveguide with arbitrary slot location

Application of equation (2.20) for the TE11 case in the slotted

region for the slot conductance Gs yields

a+¢0 a+éo
( do J 49" Ey(a,0) - G'(a36,0")  Ey(a,¢")
d—¢0 a—¢0 . : .
s TN ‘
l [ P hyy By (a,0000 |°
-9 (3.1)
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with

6"(a;6,0') =Re {I Y (a) h (4) h (4}
n=0
" €
hZ (¢) = //;% cos no¢
and
o K Ilrgl)(Kpa)
Yn(a) = jwua H(l)'(K a)
n P

Since hzn(¢) is real, then

G"(a;,9") =h (¢) h (¢') - Re {Y_(a)}

But

Re  {Y"(a)} = =[¥"(a) + Yr(a)] = —2 .

n 2" n n (D) 0 2
mwua  |H (K a)|
n 0
Therefore
> 2 1 €
G"(a;9,¢') = L -2 cosnd - cosné'

n=0 m»uaz [H§1)'(Kpa)|2 2m

(3.2)
It is now recalled that the expression (3.1) is stationary with
respect to the variation of the aperture field about its true value

(Sec. 2.3.4).

Thus instead of the exact aperture field, one may use the static

aperture field, modified by a factor cosa (to take into account the
reduced field intensity as one moves away from the location of the

maximum field). Accordingly E, is given by [37] and [38]

¢
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cosa

E¢(¢) e —— (3.3)
A oo (%2
%
Using (3.2) and (3.3) in equation (3.1) one finds
FH% cos n¢ d¢ ((OH% cos n¢ d¢ S
S W “n S A Te-0/i12 %% AT e
ﬂwuaz n=0 IHHCI)(kpa)lz ] 0Hq)o‘- cos ¢ d¢12
“h A /61
(3.4)
Now, consider the integral
o+ _
I(n) = 0 cos nd do (3.5)
“h /T8 T
Introducing the change of variables u = ¢ - a, I(n) becomes
I(n) = 0  cosn(u + a) du
o /ST e
% %
COS nu . sin nu
= COS N du - sin no ——— du
0 /1= ey’ 0 S1-weg
let x = u/¢y, thus
1 cos(y n¢0) 1 sin{x né_)
I(n) = cos(na}¢0 J - dX - sin(na}¢0 J —_— 0 aX
T T
(3.6)

In the Appendix [C]it is shown that the second term of the right side

vanishes, while the first term yields

>I(n) = cO0S no %) m Jo(n¢0) (3.7)




Accordingly,(3.4). becomes.

@ T

1 n . ¢cosna Jo(n¢ )

s |H$1)'(Kpa)|2 coso. JO(¢O)

—— (3.8)
Twpa  n=0

This gives the value of the conductance for an axial slot shifted
by an angle o from the reference location ¢ = o. It is worth noticing
that as « approaches 90° the value of the conductance approaches in-
finity. It is shown in the following analysis that the slot susceptance
also approaches infinity as o approaches 90°. This means that the slot
is, in effect, é short circuit, i.e. is not seen by the wave. Accordingly
it has no effect on the internal field. This is in agreement Wwith the
experimental results [36] and with physical reasonings since the azimuthal
surface current at this location is identically zero, and hence is never

interrupted by the presence of the slot. Another way of looking at this

2
1

approaches zero

result is to consider the power radiated through the slot given by V Gs'

Although G approaches infinity, the slot voltage V,
and in the limit the power radiated is zero as is evident from equation (D-12)
together with (D-14) of Appendix [D]. This again is consistent with the
previous»afgument and with the results of this thesis where it is shown in
‘Tables (3-1) - (3-3) that the value of § approaches zero as o approaches
90°, This indicates that the system has minimal disturbance as the slot
location o approaches 90°,

Now, having investigated the slot conductance, we proceed to
evaluate the slot susceptance. Application of equation (D-20)of Appendix
[D] for the case of a single slot yields

K

0,2
N

j B, =-jue ( 21n(2/¢0)/c052a (3.9)
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Introducing the valuesof the conductance and susceptance obtained
in this section into equation (2.19) one may obtain values of ém (as

defined by equation (2.7)) for any TE. mode as

Im
2

(X ) ' '
8 _ ) {X_ + 3R} (3.10)
m 2 S s _

(X)) -1 ‘

]
where X Im are the roots of Jl(z) = 0 and

-X -R
1] 1
X :__._.._S.__.._. R = S

s (wua/Kp) > s (wua/Kp)

with

Using (2.7) and (2.9) the propagation constant in both z and p dir-
ection is completely determined. Tables 3.1, 3.2, 3.3 and 3.4 give some
computed values of both ¢§ and vy, which are discussed in the following

Section.

3.2.1. Numerical Results for the Propagation Constant

Equation (3.10) is solved for several slot locations and different

slot widths. Some of the results are shown in Tables 3.1 - 3.4 below

TABLE 3.1. Computer values of § and 7y for different slot
T
locations a . First mode (X11 = 1.841)-¢O = 5°,a./)0=0.5

Location o § YA
Real Imag. Real 0 Imag.

0° 0.1174 E O - 0.2558 E-1 0.4080 E-1 -0.4913 E 1
20° 0.1057 E O - 0.1740 E-1 0.2747 E-1 -0.4931 E 1
30° 0.9085 E-1 - 0.1121 E-1 0.1749 E-1 -0.4954 E 1
45° 0.6100 E-1 - 0.5470 E-2 0.8323 E-2 -0.5000 E 1
60° 0.3047 E-1 - 0.2878 E-2 0.4271 E-2 -0,5045 E 1
75° 0.8137 E-2 - 0.9090 E-3 0.,1323 E-2 -0.5079 E 1
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TABLE 3.2. Value for ¢ and Yy for different slot locations a. First
1
= - ° =
mode (X11 = 1.841) ¢O 3. a/XO 0.5
Location o 8 YAO
Real Imag. Real Imag.
0° 0.1021 E 0.0 -0.1920 E-1 0.3024 E-1 ~0.4937 El
20° 0.9153 E-1 -0.1297 E-1 0.2025 E-1 -0.4953 El
30° 0.7842 E-1 -0.8324 E-2 0.1285 E-1 -0.4973 E1
45° 0.5255 E-1 -0.4054 E-2 0.7126 E-2 -0.5013 E1
60° 0.2626 E-1 -0.2140 E-2 0.3164 E-2 -0.5052 E1
75° 0.7018 E-2 -0.6769 E-3 0.9850 E-3 -0.5080 E1
TABLE 3.3. Values for and vy for different slot locations «. First
1
a = = ° =
mode (X11 1.8412), ¢O 2 a/>\O 0.5
Location o § YA
' Real Imag. Real Imag.
.0° 0.9249 E- -0.1567 E-1 0.2447 E-1 -0.4952 E1
20° 0.8267 E-1 -0.1055 E-~1 0.1634 E- -0.4967 E1
30° 0.7071 E-1 -0.6756 E-2 0.1036 E-1 -0.4985 El
45° 0.4734 E- -0.3287 E-2 0.4946 E- -0.5021 E1
60° 0.2305 E-1 -0.1736 E-2 0.2562 E-2 -0.5056 E1
75° 0.6326 E-2 -0.5498 E-3 0.7996 E-3 -0.5081 E1
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TABLE 3.4. Values for & and vy for different modes o = 0.0 ¢O = 5°
a/A0=O.5
X § YA
0 .

Im Real Imag. Real Imag.
1.8412 0.1174 EO -0.2559 E-1 0.4080 E-1 -0.4913 E1
5,.3314 0.2953 E-1 -0.6665 E-2 0.8687 E 1 -0.1645 E-1
8.5363 0.1815 E-1 -0.3824 E-2 0.1591 E2 ~-0.8223 E-2

11.706 0.1326 E-1 -0.2495 E-2 0.2258 E2 -0.5180 E-2
14.863 0.1051 E-1 -0.1706 E-2 0.2907 E2 -0.3490 E-2

It is apparent from these tables that, for any fixed slot location,the
attenuation constant increases with the slot width. As an example for

a waveguide of a/AO= 0.5 and a fixed slot location, the attenuation
constant increased from 0.0244Np/)\0 to 0.0408Np/)\O as the slot width
increases from 4° to 10°. This simply indicated a higher loss of

energy due to the radiation through the wider slot. It is also clear

from these tables that as the slot location moves from a maximum tangential
field of ¢ = 0.0°, the attenuation constant decreases. Again considering
the waveguide dimension a/AO= 0.5, the attenuation constant for a slot
width of 6° decreases from 0.0SOZNp/%fo 0.00SléNp/ﬁ;s the slot moves

from its initial location at o = 0° to a = 60°. That is, the attenu-
ation constant -decreases by a factor of 10 within a 60° change in the

slot location. Both results are physically expected ones. Since, due

to the nature of the field configuration for the TE11 mode in the wave-

guide,the slot field decays as one moves away from the ¢ = 0.0° location.

Thus, the radiated field decreases with increasing silot location.Harrington's
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ié&hnique , although appearing quite general, does not yield accurate results
except for slot locations a = 00 or 1800. This is possibly because the field
expansion of both internal and external fields in the radial direction as ass-
umed by Harrington is incomplete. These assumed fields,as given by equs. (2.3)
and (2.5), should be extended to cover all possible p-variations. this means
one must introduce an extra infinite summation over the roots of Bessel and
Hankel functions. When the slot is at a = 0° or 180° its disturbance to the
p-component of the field is,however,minimal (see Fig. 3.2). In this case a
single summation over the azimuthal variations as given by (2.3) and (2.5)

is sufficient for accurate results. This argument is further pursued to test
cases where the presence of the slot has little effect on the radial. field
component. When o is close to QOO,good results were obtained using Harrington's
technique that compares favourably with the results obtained by the extended
Goldstone and Oliner's technique. This is in agreement with the present disc-
ussion,since at such locations the slot has very little effect on the field

inside the waveguide. For this reason Goldstone et al technique, as extended in

l

Fig. 3.2 TE 1 field inside axially slotted waveguide.

1

‘this Séction to cover any arbitrary slot location along the guide surface,
seems to be superior to Harrington's method. The technique,however, has its
shortcomings. It is valid only for narrow slots, and may not be easily mod-
ified for considering the interaction among several slots distributed

azimuthally on the waveguide surface. This is due to the fact that the
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analysis of the combined susceptance becomes extremely difficult. In
the next Section this particular difficulty, however, is overcome for the
special case of two symmetrically located slots. The problem in this
case becomes easier due to the symmetry of the surface azimuthal current

at the discontinuities as shown in Appendix [D].

3.3, ' Two Identical and Symmetrically Located Slots

In the previous Section, the propagation constant of propagating
modes supported by a waveguide section with an arbitrarily located
single slot has been solved in order to determine the surface field
distribution and hence the radiation pattern in.. free space. It may

'be'advantageous, however, to utilize more than one slot per section of
the waveguide since this provides a wider range of flexibility and control
over the radiétion pattern. The problem is quite involved since the
interaction between various slots has to be considered. In this Section
an attempt is made to obtain the propagation constant of a waﬁeguide
section with two identical slots symmetrically located with respect to
the origin. The analysis takes into consideration the possible inter-
action between the slots and yields results that compare favourably with
thét-of the single available result for double slots using Harrington's

technique (at o =0.0%nd 180°),

3.3.1. Propagation Constant for Two Identical Slots Symmectrically Located

With Respect to the QOrigin

The work of Section (3.2) for the propagation constant of a
slotted waveguide (one axial slot) can be readily extended to cover the
case of a wavcguide with two identical narrow axial slots separated by

180° as shown in Fig. 3.3 .




Fig. 3.3

Double slotted waveguide

As before, to determine the propagation constant of the structure,
one has to calculate the impedance or the admittance of two slots com-
bined together so that they represent the terminating load when effecting
the transmission line representation of the slotted waveguide as seen in

Fig. 3.4 .

|
\

p = 0.0 o

Ysy = Ggp* By,

|
l
|
|

Fig. 3.4 Transmission line representation of the Symmetrically
double slotted waveguide.

Referring to Appendix [D], the conductance G52 of two slots
located as shown in Fig. (3.2 is given by equation (D-13) as
0+¢ o T+O+0

G, = P/ fa_¢ h,1(a,0)E, (a,9)add + h, (a,0)E,(a,0)ado|’
0

f1r+oc-¢0

(3.11)

with
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e OH(bO TH+O+( )
P=Re {2Z Yn( E, (a,d)h (a,d) add + [ E¢ (a,d$)h (a,d)add) "}
n=0 a—¢o¢ zn w+a—¢0 zn
(3.12)

e
h (a,9) = //-E~ cos n¢
Zn ™

and

2 1
2 (H'" 2
Twya |H n (Kpa)]

_> - >
Re{Yn} = as established in Sec.(3.2.)

Assuming the slot field to vary as [App. D].

E,(a,0) = E, cosa/v 1 - (%:952 (3.13)
0

¢

Substituting (3.13) in (3.12) one finds

. B2 a+d
p = 5 0

7 * " 2
moua n=0 ]Hn (Kpa)|

9 cos nd add

€

n
— {COSO(. .
m

T+O+0
+ cos(m + a) f 0 cos n¢ ade } (3.14)
» ﬂ+u—¢0 V/l _ [¢ - éﬂ + a)]2
0

The integration in (3.14) is identical to I(n) of eq. (3.5)

whose result is given by (3.7). Accordingly P could be written as

-1 0 n 2
P = roa § SO 5 (g7 cosa)”[(cos no - cos n(m+a))
=0 B’ (K a)]
n P
2
Jo(n¢0)]
2
mopa w0 7 LCOS na J4ine,

(3.15)
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The denominator of eq. (3.11) may be written as

o+
Q ..¢osa E

]

- L coso

4(m ¢ cosu)2 E

1
=TS

where the integration is carried out similar to (3.14).

and (3.16) yields the slot conductance for two slots as

G, = 1

cds(ﬂ+a) ado

. cosza J2(¢ )
0 0

s2

z ;
ﬂwuaz n=1,3,5 [Hil) (Kpa)l2

/1@ (mra). (n+a) 2

(3.16)

Combining (3.15)

(3.17)

This gives the value of the combined conductance of two slots with the

interaction between them taken into consideration.

For the susceptance,

one may employ equation (D-20) of Appendix [D] where the value of

B52 is given by

w e

s2 Mz 2 cosza

K

—we(is?z'ln (2/¢O)/cosza

(3.18)

Now, the value of Gm as defined by equation (2.7) is readily

obtained by application of eq. (3.10).

§ =—‘2————(X2+JRZ)
where

Im

1
X is the root of Jl(Z) =0

(3.19)
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! 82 vt s2

Xs) = —wua7Kp ’ Rey = —wua/Kp

with

X s R = e
s2 2 2 ’ S2 2 2
B + G_ RS2 + B

(3.20)

Using (2.7) and (2.9), the propagation constant in the slotted section

of the waveguide is completely determined. Tables 3.5

and 3.6 below

give computed values for § and 7y for different slot locations and

slot widths. 1In the next Section these results are presented and are

discussed.

3.3.2. Numerical Results for the Propagation Constant of a

Double

Slotted Waveguide Section

The value of § is evaluated using equation (3.19) for several loc-

ations of the-two-slot:set and for different slot widths.,

Some of these

results are given in Tables 3.5 - 3.6 . The results shown in these

tables follow the general trend noticed before in Sec. (3.2.1).

The

attenuation constant drops considerably as the slot location moves far

from the location ¢ = 0. Considering for instance the case of ¢O = 2°

and a/k0=0.5 (Table 3.5), the attenuation constant drops from.0.0480

NP/AOt00.00387 Np/Kowithin 60°, This is about an 8% reduction of the

attenuation constant, It is also apparent that as the slot width in-

creases, the attenuation constant increases indicating a higher power

radiation into the free space. It may also be of interest to investigate

the relation between the results of a single and of double slots.One such

case is the case of a single slot located at an angle

slot-set one at ¢ = o and the other at ¢ = 180° + a.

o and a two-

The related
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information is tabulated in Table 3.7 for the slot width of 4°

TABLE 3.5. Computed values of 6 and Yy for arbitrary located two
slot set 180° apart. TE;; mode.  ¢,= 2° » a/Ag= 0.5
Location o 8 YAg
Real Imag. Real Imag.
0.0 0.18595 E 0O -0.2842 E-1 0.48012 E-1 -0.48006 E1
30 0.14135 E 0 -0.1393 E-1 0.2266 E-1 -0.4874 El
45 0.9459 E-1 -0.7230 E-2 0.1131 E-1 -0.4948 El
60 0.4743 E-1 -0.2576 E-2 0.3876 E-2 -0.5021 E1l
75 0.1274 E-1 -0.2492 E-3 0.3644 E-3 -0.5072 E1l
TABLE 3.6, Computed values of & and <Yy for arbitrary located two-
slot set 180° apart. TEll mode, ¢0 = 5°, a/AO= 0.5
Location o § YAO
Real Imag. Real Imag.
0.0 0.23679 E 0 -0.4662 E-1 0.8220 E-1 —0.47139 El
30 0.18153 E 0 -0.2312 E-1 0.3891 E-1 -0.48079 E1
45 0.1218 E O -0.1199 E-1 0.1919 E-1 -0.4905 E1
60 0.61197 E-1 -0.4252 E-2 0.6472 E-2 -0.5000 E1
75 0.1646 E-1 -0.4105 E-3 0.6020 E-3 -0.5067 El
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TABLE 3.7. Comparison between the results of a single and double slot

set ¢ = 4°
0

Attenuation ]
o a/)\O Case constant Ratio (azz/azl)
g Np/A_ -
0
single slot 0.0244
0.5 1.967
double slot 0.0480
0.0°
single slot 0.0826 :
0.35 2.32
double slot 0.192
single slot 0.00256
0.5 1.51
double slot 0.00387
60° .
single slot 0.00794
0.5 1.55
double slot 0.01233

It is evident that two identical slots, symmetrically located,do
not radiate twice as much power as a single slot located at the same
location. The ratio of the radiated power for a two-slot-set is dependent
on several factors, such as the frequency of operation and the slot
location. In addition,Table’ 3.8 shows that the radiation power also

depends on the slot width.
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TABLE 3.8. Comparison between single and double slots a/ko=0.5 a = 0.0

. Attenuation - .
Slot width case - constant - Ratio (azz/azl)
&g Np/}\O

single slot 0.0244

4° . 1.967
double slot 0.0480
single slot 0.0408

10° 2.014
double slot 0.0822

One, however, can see certain trends in the available results.
The interaction between the slots enhances the radiation when the slots
are located around o = (Q, or when a/>\O approaches its cut-off value,
for wider slots, the interaction causes a higher radiation power than
for that of narrow slots, and a single slot of width 2¢O radiates less
power than two slots each of width ¢p. For example, referring to Table

3.8 , two slots of width 4° give an attenuation constant of .048 NP/AO,,

while a single slot of width 10° yields - 0.04O8NP/A0. That is two slots
would disturb the system more than one slot even if its width is more
than their combined widths. These are general trends, which could be
used initially for design purposes. However, every single case should
be investigated individually. 1In a later Section the field variation on
the slot surface duc to their mutual interaction will be studied, where
other features will be investigated.

Now, having studied the propagation constant of a single as

well as of double symmetrical slots, one may carry on to the next Section
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where a modal expansion of the field with unknown coefficients on both
sections of the waveguide is assumed. . When these coefficients are

determined, one may solve for the field on the slot surface(s).

3.4. Formulapion of the Scattering Problem

In Sections (3.2) and (3.3) the wavenumbers of the different
propagating modes supported by the slotted structure has been obtained.
. Using these wavenumbers, the field in the slotted section of the wave-
guide can be expanded into summation of infinite modes with an unknown sets
of coefficients in a way similar to the modes in the normal closed wave-
guide. However, these modes differ from the familiar closed waveguide
modes in that they are not completely orthogonal to each other in the
sense defined in reference [52]. They are, however, orthogonal in the
azimuthal direction. The field in each section of the waveguide is
expanded in its respective modes, each with a set of unknown coefficients.
When the field components are matched on the plane separating the closed
and the slotted waveguide, one may get two infinite sets of equations for
two infinite sets of unknown coefficients. Further, each one of these
equations contains infinite summations on.both ‘sides. Employing the
orthogonality relations among the modes, one may considerably reduce
their complexity. It is shown that the'problem is reduced to two
infinite independent matrix equations in two sets of unknown coefficients.
When these equations are truncated after an appropriate number of terms,
the unknown coefficients on both sides of the waveguide may be obtained.
In a later Section these coefficients will be used to completely deter-

mine the slot field.
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3.4.1. TField Representation Interior to the Waveguide

II

—— T 1T

l
¥
|
|

Fig. 3.5 Axially slotted waveguide with arbitrary slot location

Let the incident field in region I of Fig. 3.5 be the dom-

inant TE11 mode with a wave function in the form

. X ‘
V=T g (2L o) cosd exp(j0,2) (3.21)

where T 1is the intensity of the incident field, a 1is the waveguide

. . .. -jwt . .
radius and a time variation e J is assumed. Let the wave function

of the reflected field in the same region (region I) be represented by

[ee] [ee]

=T £ £ B_ J (X p/a) cos exp(-j6_ z) 3.22
v 220 qu1 D@ of g ) P exp(-]j nq (3.22)

where P and q are integers and

qu S are unknown constants to be determined
1]
X is the qth root of J (Z) = 0.
Pq — P
and
2 2 2
0 + (X a = K 3.23
P4 ( pq/ ) 0 ( )

Let the transmitted field in region II be represented by the wave function
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Eo Ars Jr(Kpil cos r¢ exp(—yrsg) (3.24)

where r and s are integers and

: /2 2 _ ./ 2m2 2 Sl
Y =a - =-/K -k =-3/ (D7 -k (3.25)
prs 0 p

Is Z

Ars's are constants to be determined

K 's are known for each mode and for each slot location accord-
TS
ing to the analysis of Sections (3.2) or (3.3).

The field componentsonboth regions can be derived from the relation [30]

1 3F o1 o°F
T Ho ™ Jun  Gpoz
SF 211 9%k
g = & H, = == 3.26
T ¢~ Jwn p 990z (3.26)
2
E =0 o=@ +K%F
z z jwu 322

where F stands for any of the TE wave functions of eqns. (3.21),(3.22)
and (3.24).

. . . . I I
It is convenient to introduce the mode functions , enm and hnm

for region I, and eié and hi; for region II,defined for region I as:

I _ 1 - I

e - e¢ a¢ + ep g (3.27)
nm nm p

n!l = hi 3¢ +ht 2

nm nm nm P

+ .—). . - . - -
where a¢ and ap are unit vectors in ¢ and p directions respectively

and

N, LBRARES
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With these mode representations and with the aid of (3.21), (3.22), (3.24)

and (3.26),the field components in regions I and II can be written as

I , Xnm '
e¢ = Jn(xnm p/a) cos. no
nm
el - 2 (x p/a)  sin nd
P p n- nm
nm
(3.28)
I+ ~ Jenm I
h¢ =t e
nm JOH Pnm
- i6
hI+ - ‘wnm e;
pnm - JuwH nm
-j@nﬁz +j8nmz
- where the upper and lower signs hold for e and e res-
pectively.
In region II
11 1 - 11 -~
e " = e¢ a¢ + ep ap
nm nm nm
(3.29)
nil . hy @y +h a
nm nm pnm 0
with
eII = K J'(K “p) cos n¢
¢nm pnm ™ Phm
eIl =1 5 (k) sin né
n-p
nm nm
(3.30) 2k
11 Yom 11
h = - T e
nm JOU nm
11 Ynm IT
h = -E]I e¢
nm 9 nm
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Region I
Eé =T ei exp(j@llz) + T L » B e; (-j6__z)
11 p=0 q=1 P9 ¥pq T~ PA

EI =T eI exp(jellz) +T ¥ ¥ B eI exp(-j6 qz)

P P11 p=0 =1 P9 Ppq P
i =1 nf* exp(jf,.z) + T £ % B hi° exp(-j6_ 2)

i 1 - -

¢ "1 ! p=0 1 P4 Ppq pd

Hé =7 pl* exp(j6,,z) +T L I B q hi” exp(-j6_ z)
P11 p=0 q=1 PT Ppq Pd
(3.31)
Region I1I

I1 11
EE" =T L I A e exp(-Y_ z)

¢ r=0 s=1 ?S ¢rs s

IT II
E-" =T T L A e exp(-v,_ z)

P r=0s=1 T Prg s

(3.32)
H;I =T 5 % A hiI exp(-Y_z)
r=0s=1 T TS r

II II
H* =T £ £ A_h exp(-Y_ z)

P r=0s=1 ¥5 Prg s

These equations give the field everywhere in regions I.and II.in terms of
the modes € and hnm' Certain mathematical relations among these
modes hold. These relations will be needed later to reduce the com-
plexity of the analysis in order to set the unknown coefficients in a

form that can be numerically solved. The next Section is devoted to

the task of developing these relations.
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3.4.2. 'Mode Orthogonality

In this subsection, some of the basic mathematical relationships
among the modes given by (3.28) and (3.30) will be established. These
relationships will constitute the main frame of the scattering formu-

lations to be followed in the next Section. Consider the integral

relation
¥ I I+ >
Mnm = f (enm X hpq) a, ds (3.33)
pq S

>, .
where S is the cross sectional area of the waveguide, a  is a unit

vector in the z-direction. Substituting (3.27) in (3.33) gives

- ¢ - _
M;m = J (ei ;¢ + eI 2 ) x (h$+ §¢ + h£+ ) - Zz ds
s nm Orm P jole pa
Pq
a 2T
- [ J (eé hé - e; héq Yo dodd
0=0 " =0 nm 'pq nm

which upon substitution of the mode functions (3.28) gives

; a 2’” X f je 1% X Ie !
M= f J (- 20y (X _p/a) cosng + il P4 3, (X P/ cos po

nm N a n - jwu a o
hq P=0'¢=0 S
n " jﬁpg P
+ —J (X a)sin n + = = J (X a)sin dpd
5 Ip (Xpe/a)sin no T P p( pqp/ ) pd)p dedd
: -jb_z jﬁnf
where again the upper and the lower signs hold for e ™M and e

respectively. Now using the orthogonality relationship

2m 2m
( cos np cos po do = J sin n¢ sin pddd¢ = 0 n # p
0 ¢

1}
N
=
je=]

1}

gel

i
(o]




7 T - ..jen( (Z'IT n2
Moo= Moo= _-ljwu | (-p— J (X p/a) Jn(anp/a)
n p=0
pq q
X

+

X
nm n 1 | . t '
— J (X e/a) J (X073 ede

which by change of variable y = p/a becomes

+ 2m Jen 1 n2
'—'— —— —
Mn + —a {[ J (Xnmy) Jn(Xnmy) dy

n e Jwu oY 'n
(1, 1
+ Xnm an Jo Jn(Xnmy) Jn(any) y dy (3.35)

It is shown in Appendix[E]that the integral in (3.35) exists

only for m =q and is equal to [Eq. (C-9)].

Xim' 1 2
7 - =) )
nm
Accordingly
+ [ 1 I+, | >
M = J (e h™ ") - ds
nm g nm Pq z
2
] X
=27 nm nm 1 2
=+ 2 T > 1 - > ) Jn(Xnm) (3.36)
n. X
nm
which establishes the orthogonality relation between the modes eI and
hI.

Another relation which should prove important in later analyses

is the integral:

N = J el xhlly -« 3 ds (3.37)
S
pq

Following similar steps as before and using the mode functions
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(3.30) and (3.28) ,one obtains

a 2m Xnm ' jﬁﬂf
N = [ J (-~ — J_(X__p/a)cos n¢ - K. J (X p)cos pod
aq p=0les0 BT FH - Ppq P Ppq

L ; - Ypay p ;
* 5 Jn(xnmp/a) sin n¢ (- 3559 0 Jp(Kppqo) - sin p9)pdpdd

let again y = p/a and using the orthogonality relation of the trigonom-

etric functions (3.34), an equation similar to (3.35) can be obtained as

21 Tngq {fl 2 In o) Jn(Kpnqa y)

N =N = - = n dy
nm nmg En Jwu 0 y
Pq
1 1 1
+ X (Kp a) J y Jn(Xnmy) Jn(Kp a)dy} (3.38)
nq 0 nq

It is shown in Appendix[Elthat the integral in (3.38) exists and is

equal to (eq. E-6)
1
Jn(Xnm) Jn(Kp < a)

2 nq
X (K a)
- Phq x> - (k. a)?
nm o
ng
Accordingly
k Nnm - I II R >
q f (enm X hpa) . ds
s
]
A an 2 Jn(Xnm) JnU\p a) .
= - =— —X X" (K a) ng (3.39)
En jwu nm pnq X2 - ( a)2
: nm lﬁ)nq

which establishes the second important relation of this Section. Finally,

consider the integral:

g %
N

X epq) *a_ds (3.40)

G| @
™ S

From (3.28) we have
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- je
i; = + .wnm (eI Z¢ - e; Z ) (3.41)
Jwu pnm nm P
and from (3.30)
U TR (3.42)
P P4 P4 P4

Using (3.42) and (3.41) in (3.40) one obtains

- L
Q =% == don [ Iz ol ayxmta cnllZy -7 s
m juu Yoq J ¢ ¢ p o9 b p z
Pq °s
P4
_ 38
- 7 _om [ (el hiI - ei pit )2+ 3 ds
qu S nm Pq nm P4
_ 38
-3 _mm J (el + hIf) c 3 ds (3.43)
qu g mm p4
But by virtue of (3.37), the integral
I 11, - _
Jé (enm X hpq) a, ds = Nnmq
Substituting back in (3.43) one finds
o I+ II >
Gy = Qg = | O x )+ 3y
Pq
_ 3
- . nm Nnmq
nq 1
j0 Jn(Xnm) Jn(Kp a)
2m nm 2 nq
- +‘E_ j W Xnm (K a) 2 2
- g JWM Pnq X2 - (K a)
nm 0
nq

(3.44)
Relations (3.36), (3.39) and (3.44) are the basic formulas which will

be used for the formulation of the scattering problem as discussed in the
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following Section,

3.4.3. Mode Matching

With the aid of the field representation in the slotted waveguide
of Fig. 3.2 and the orthogonal relations among the mode functions, the
field components on both sides can be determined by matching its tangential
components at the interface between the slotted and the solid sections
of the waveguide (i.e. at the plane 2z = 0). The technique used hcre is
similar to that used in reference [49], and is based on the integral

relation [52].

which is valid for any two non-degenerate modes in a waveguide of un-
iform cross-section provided that e and hn are normalized. This
relation has been established before for the TE11 mode in Sec. (3.4.2).

Consider the two identities:

.—}
*a,ds  (3.45)

and

3
* a ds (3.46)
A
z2=0

.
Y
(o)
4]
1
S—
n
~
jany
—
]
b
[¢]

which are basced on the fact that at the plane 2z = 0, the tangential

electric field E and the tangential magnetic field Ht are continuous,

and
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jan
1l

H

f I enl? a, ds = T [(9%1 xh*+ 1 % B el «x hl%y.
s 2=0 g p=0 q=1 P4 P4
But from (3.36) we have
. 2
- j0 X
I I+ e - 11 11 1 2
f 11 X by a,ds =+ o 3 (- =) i (Xgy)
s z=0
11
= M:L
|
and
. 2
I I+ > - Jenm nm 1 2
e h *a ds =+ 7 = > (1 - > ) Jn(X )
s Pd myj,_o 2 Juwu X nm
nm
T
= M
nm
Thus
(e hI+)t e A ds=TM. +TB M (3.47
* fhm lz=0 i h 11 nm  nm -47)
s
Similarly the R.H.S. of equation (3.45) gives:
f & x nlh ca2 ds=T T % A [eII x h* - a_ ds
nm” ' z=Q z TS TS nm z
S r=0 s=1 z=
= -T I A + (3.48
T s = DS Usm -48)

where in the last formula, use has been made of equation (3.44). Com-

bining (3.47) and (3.48), equation (3.45) could finally be written as:

[oe]
M + M = - I

- A
I

s Q;sm (3.49)
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+ T ) )
where Qnsm and an are given by (3.44) and (3.36) respectively.

In a similar way an expansion.of the L.H.S. of equation (3.46)

gives
f (HI X eIm) =0 " ZZ ds :J (T hﬁ +T % I B (hI’) X eim .
s n s p=0 g=1 P4a P9
Again using (3.36) gives
al x el -a ds=-TM_ -TB_ M
nm z 11 nm nm
z=0
S
=T Mll - nm 1nm
+ . -
where -M11 1s replaced by M11
The R.H.S. of equation (3.46) gives
Hlxell v 2 as=7 1 3 oA JhIIer - a_ ds
nm | z . s TS nm z
z=0 r=0 s=1 s z=()
which by virtue of (3.39) yields
= -T % N
ns ~nms
s
Therefore, collecting terms and substituting back in (3.46) gives
-M__ +B M =LA N : (3.50)

11 nm nm S ns nms

where again Mnm is given by (3.36) and NnmS is given by (3.39).

Equations (3.49) and (3.50) are solved together for the unknowns
Bnm's and Ang's. It is to be understood that allowing both n, m and
s to take discrete values 1, 2, 3,..,. up to infinity, an infinite

number of matrix equations is generated. Each matrix containing an

infinite number of terms. However, it is shown in the following Section
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that to determine the tangential electric field on the slot, it is suffic-

ient to consider only the case n =1 together with a. few terms in each mat-

rix. For the n # 1 <cases the excitation terms are zero, but the res-
pective coefficients are not required for the slot field due to the
orthogonality enforced on the slot field. Although it is not our interest
to find the field inside the waveguide, it could, however, be determined
once the slot field is known using the reciprocity theorem in a procedure

similar to that used by SilverfBS].

3.4.4, Sblution of the Unknown Coefficients

Consider the case n =1 of equation (3.49) and (3.50). It is

more instructive to write them in a matrix form as:

1 511 Q1M QoM o QMg | [ A
o e - M -
0 Bis QM5 Qo' 2 o Qe™Miz| | A2
+ = .

0 Bk Q /My QoM oo Q™| | Ak

A i ' 4L
(3.51)
In a similar way equation (3.50) may be written as

‘1-_ ~B ] N /M- N, .. /M N. . /M ] -A |

11 1117M11 112M1 0 0 MM 11

0 B1o Nio1/Mp, NigoMpp oo Npp/Mio| | A,

- + =
0 Bix N1k NkaMyg e N1KK/M1}§J Ak

(3.52)
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These matrix equations (3.51) and (3.52) are obtained by truncating equa-
tions (3.49) and (3.50) after an appropriate number of terms K. Sub-

tracting  (3.52) from (3.51) cancels the unknown coefficients Bln

(n =1,2,K) and gives

- T - o . - 1
1, Qv N Qo N, Qk1 * M A
- - . 11
My M1 M1
0 iz * Mo - Qgp * Ny, Qga * Ny A
- - L C . 2.5 12
M2 M2 Mo
0 Uik "M QU Mo L Ykt Mk Ay
Mk Mk Mg
- - _ I
(3.53)

The solution of this equation gives the unknown transmission coefficients (All,

Alé;m.; Alk) in the slotted sections of the waveguide. Substituting them
back in (3.52) or (3.51) the scattering coefficients Bll’ B12 e BlK in
the solid section can readily be obtained. Here, one may stress the fact
that physically B11 actually represents the reflection coefficient of
the electric field at the interface between the slotted and the solid

section, while A11 represents the transmission coefficient at this

plane,
A computer program is prepared to calculate both the coefficients
A1n and B1n as given by (3.53) and either of (3.51) or (3.52). Tables
3.9, - 3.12 give some of the computed results for a single slot while

Tables 3,13 - . 3.15. give corresponding values for double symmetric-

ally located slots,
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TABLE 3.9, The Transmission and Reflection Coefficients for TE11 Mode
¢0 = o = 0,00 K* = 8 a/Xy=0.5
Scattering Coeff. in Region II Reflect. Coeff. in Region
Real Imag. Real Imag. n
0.9944 E 0.0 -0.3637 E-03 0.1378 E-01 0.2574 E-02 1
-0.7875 E-02 -0.6589 E-02 0.9705 E-02 -0.3452 E-02 2
0.3705 E-02 0.1938 E-02 -0.4116 E-02 0.5086 E-03 3
-0.2278 E-02 -0.9547 E-03 0.2448 E-02 -0.8993 E-04 4
0.1604 E-02 0.5819 E-03 -0.1675 E-02 ~-0.1778 E-04 5
-0.1293 E-02 -0.4084 E-03 ~-0.1241 E-02 0.5063 E-04 6
0.9443 E-03 0.2895 E-03 0.9676 E-03 -0,5981 E-04 7
-0.7637 E-03 -0.2220 E-03 0.7820 E-03 0.6047 E-04 8
* K is the number of terms in the summation (3.49) or (3.50) before
truncating
TABLE 3.10. Transmission and Reflection Coefficients for TE11 Mode
= 450 = -
b o = 45 = 8 a/AO—O.S
Scattering Coefficients in Region II Reflect. Coeff. in Region I
Real Imag. Real Imag.
n
0.9962 E 0.0 -0.1440 E-03 0.6902 E-02 0.5198 E-03 1
-0.4211 E-02 -0.2872 E-02 0.4582 E-02 -0.2240 E-02 2
0.1918 E-02 0.7642 E-03 | -0.2000 E-02 0.4755 E-03 3
-0.1184 E-02 -0.3541 E-03 0.1201 E-02 -0.1767 E-03 4
-0.1098 E-03 -0,3971 E-04 -0.8263 E-03 0.8137 E-04 5
0.2181 E-05 0.6619 E-06 0.6140 E-03 -0.4158 E-04 6
-0.4418 E-06 -0.1150 E-06 —0.4790 E-03 0.2226 E-04 7
-0.3048 E-06 -0.,7096 E-07 0.3882 E-03 -0.1195 E-04 8
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TABLE 3.11. Transmission and Reflection Coefficients for TE11 Mode
dg = 5° a=0.0° K=38 a/Ay=0.5
Scattering Coefficient in Region II Reflection Coefficient in Region I| n
0.9938 E 0.0 -0.2308 E-03 0.1769 E-01 0.4317 E-02 1
-0.9782 E-02 -0.9018 E-02 0.1280 E-01 -0.3755 E-02 2
0.4676 E-02 0.2758 E-02 -0.5360 E-02 0.3648 E-03 3
-0.2893 E-02 -0.1392 E-02 0.3173 EL-02 0.5574 E-04 4
0.2038 E-02 -0.8632 E-03 -0.2166 E-02 -0.1400 E-03 5
-0.1617 E-02 -0.6152 E-03 0.1602 E-02 0.1518 E-03 6
0.1203 E-02 0.4397 E-03 -0.1247 E-02 -0.1445 E-03 7
-0.9758 E-03 -0.3401 E-03 0.1007 E-02 0.1324 E-03 8
TABLE 3.12. Transmission and Reflection Coefficients for TE11 Mode
00=5% a=0.0 K=6 a/1,=0.5

Séattering Coefficient in Region II Reflection Coefficients in Region I n
0.9938 E 0.0 -0.2330 E-03 0.1769 E-01 0.4314 E-02 1
-0.9784 E-02 -0.9019 E-02 0.1280 E-O01 -0.3755 E-02 2
0.4678 E-02 0.2759 E-02 -0.5354 E-02 0.3652 E-03 3
-0.2895 E-02 -0.1393 E-02 0.3172 E-02 0.5544 E-04 4
0.0240 E-02 0.8644 E-03 -0.2166 E-02 -0.1398 E-03 5
-0.1621 E-02 -0.6173 E-03 0.1602 E-02 0.1516 E-03 6
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TABLE 3.13. Transmission and Reflection Coefficients:Two Slots 180°
= 20 = 0 = =
Apart ¢, = 2 a = 0.0 K=6 . a/%)—O.S

n Transmission Reflect,

Coefficient Coefficient

Real Image. Real Image.

1 0.0042 E 0 -0.2028 E-2 0.2916 E-1 -0.5432 E-2
2 -0.1676 E-1 0.1339 " E-1 0.2045 E-1 0.7086 E-2
3 0.7873 E-2  -0.3979 E-2 | -0.8633 E-2 -0.1038 E-2
4 -0.4841 E-2 0.1966 E-2 0.5132 E-2 0.1843 E-3
5 0.3388 E-2 -0.1196 E-2 | -0.3513 E-2 0.3558 E-4
6 -0.2631 E-2 0.8270 E-3 0.2603 E-2 -0.1027 E-3

TABLE 3.14.

Transmission and Reflection Coefficients:Two Slots 180°

Apart ¢ =2° o = 459 K =6 a/x =0.5
0 : 0
n Transmission Reflection
Real Cofficient Imag Real COfolCIGngmag.
1 0.9944 E O 0.1229 E-3 0.1415 E-1 -0.1254 E-2
2. -0.8561 E-2 0.5875 E-2 0.9461 E-2 0.4423 E-2
3 0.3920 E-2 -0.1592 E-2 -0.4104 E-2 -0,9105 E-3
4 -0.2389 E-2 0.7401 E-3 0.2461 E-2 0.3271 E-3
5 0.1673 E-2 -0.4315 E-3 -0.1691 E-2 -0,1438 E-3
6 -0.1342 E-2 0.2947 E-3 0.1256 E-2 - 0.6880 E-4




.80

.70

.60

.50

.40

.30

.20

.10

Fig. 3.7. Reflection coefficient
versus the ratio a/xo of different

slot widths ¢;:symmetrically slotted
hollaw w,ﬂvegniﬂa .

—LlT .

0.30 _ 0.35 0.40




TABLE 3.15 Transmission and Reflection Coefficients:Two Slots 180° Apart

59

QO =50 a=0.0° K=6 a/AO=O.5
Transmission Reflection

n Coefficient Coefficient

Real Imag. Real Imag.
1 0.9958 E 0 -0.3107 E-2 0.3804 E-1 -0.9417 E-2
2 -0.2124 E-1 0.1856 E-1 0.2740 E-1 0.7609 E-2
3 0.1012 E-1 = -0.5771 E-2 | -0.1139 E-1 -0.6910 E-3
4 -0.6254 E-2 0.2922 E-2 0.6742 E-2 -0.1471 E-3
5 -0.5415 E-2 0.6313 E-2 | -0.4605 E-2 0.3092 E-3
6 0.5934 E-4 -0.3257 E-4 0.3407 E-2 -0.3276 E-3

It is of interest to point out the fact that basically the first
few terms in each group (A1n and Bln) are sufficient to determine the

field, and that the rest of the coefficients are increasingly negligible

as seen from Tables 3.9 - 3,15 .,

higher modes are actually non-propagating and have little effect on the

field.

It is also apparent from Tables 3.9

or Tables 3.13 and 3.14 for double slot that the reflection coefficient
decreases as the slot moves away from the position of maximum surface
current. This confirms the fact that the slot effect on the internal

field decreases as it moves towards smaller surface current regioﬁs[Ba],This
has its important application in microwave measurements since it allows
probe penetration into the waveguide interior with a least perturbation

of the field configuration [36].

function of the operating frequency as is evident from Fig. 3.6 and

This result is physically clear since

and 3.10 for the single slot

The reflection coefficient is-also a




60

3.7 . It increases rapidly as one approaches the cut-off frequency, and
decays smoothly to a very small value for higher frequencies. It is also
instructive to note that the presence of two slots would disturb the
system (especially near the cut-off frequency) far more than what one
slot would do, even if the width of the single slot is equal to the widths
of the iwo slots combined together. Referring to Fig. 3.6 for one slot
together with Fig., 3.7: for two slots, one -can see that the power reflec-
tion coéfficient, P, (which is the magnitude squared of the field
reflection coefficient) due to double slots,each of width 4° (Fig. 3.7),
is always higher than the corresponding power reflection coefficient of
a single slot of width 10° (Fig. 3.6). For example at a/AO=0.34 the
first curve shows a. P of about .0.055, while the second curve shows a
value of 0.014. This is about 4 times greater. It is seen, however, that
at an a/%)=0.4 or more, which is generally the practical case, the
reflection coefficient in both single and double slot cases becomes
negligibly small. This seems =~ to be the best operating frequency.
However, as noticed before in Table 3.7, the radiated power (as indicated
by the value of the attenuation constant) drops sharply as the ratio
a/)\O increases. This suggests an optimum operating point in order to
achieve an acceptable P with reasonable power radiation in free
space,

- The accuracy of the numerical procedure seems acceptable. Tables

3.11 and 3.12 give results for the same slot case (¢O = 5° and
o = 0.0) with different numbers of terms considered before truncating
equation (3.53). It is clear from these tables that the result is very
stable and almost independent of the number of terms considered. The

relative error (absolute error divided by the value of the coefficient)
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of balancing each individual equation of the set(3.43)was calculated (not
shown in the tables) and was found to vary between 107> and 107° in a
single precision calculation. Different cases were examined to check
the accuracy of the procedure; and the results in all cases were satis-
factory and within the limit of 10_5 or less. This allows one to carry
on to the next step to evaluate the slot field as will be discussed in

the following Section.

3.5. Electric Field on the Slot

As it has been discussed earlier, the fundamental objective of

this Chapter is to evaluate the electric field on the surface of the slot

due to an incident TE11 dominant mode. Based on the scattering coefficients

determined in the previous Section and with the assumption of a narrow
slot, it is possible to work out a closed form formula for the tangential
field on the slot. The analysis is quite general and applied to both
single and double slotted waveguide sections.

For a narrow and long slot, the only tangential field that may

exist on the slot is the ¢ polarized field E, [24]. From equation

)
(3.32) and using (3.30) the electric field in the azimuthal direction

of the slotted region is given by

[ee) (o
'

E . (p,0,z) =T L X A K J (K p) cos nd exp(-y_ z)
¢ n=0 m=1 ™ Ppp T Py mm
(3.54)

This expression is valid for both single and double slotted sections as

long as the appropriate coefficients Anm and Kp are used.
nm
It has been shown by several authors [25], [37], [38], [50],

however, that a reasonable representation for the ¢ variation of the
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field on a narrow slot may be assumed in the form

Eo

- ‘ e 3.5
E¢(a,¢) y ’ cbo <9< ¢O (3.55)
1 - (9/dg)

When the =z variation and the slot location o are incorporated

into (3.55), the slot field may be assumed as

E(b(a’(b’ Z) = o - ¢0 < d) <o+ d)o (3'56)

where the factor coso is introduced here merely to adjust for the approp-

riate direction of the field as the slot location o varies between

0.0° and 360°, Combining (3.54) and (3.56) gives

Eo(a,z) Ccosa © '
- T ? § Aanp Jn(Kp a) cos no exp(-Yan)
6 _ (¢ - G) n=0 m=1 nm nm

)
0 (3.57)

where

o - ¢O < ¢ <o for single slot

+
©-
(]

and

+
©-

u-¢0<¢<a‘

T+a-0¢ <G <T+a+ ¢0 with o + 7 replacing o ffor double

in the expression (3.57)| symmetric slots

J

Multiplying both sides by cos¢ and integrating over the slot (slots) gives

(e o] oo}
1

E (a,z) fla,0 ) =T z L A K J (K a) exp(-v._2)
0 0 n=0 m=1 m pnm n pnm n

2T
J cos n¢ cosd d¢ {3.58)
0
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Where the integration of the R.H.S. is extended over the whole waveguide

wall since E, 1is zero at the metallic walls, and

¢

a+9 éés¢

f(a,¢0) = cosa 0 d¢ for single slot
/f—'"‘ﬁr””TT
= coso. {(a+¢0 CQEQ“———-d¢ - TPy _cosg db }
u-¢o 4 _ (§égj2' T+~ // (-0, (W+a)]2
0 0

for two symmetric slots
(3.59)
The integration of the function f(a,¢0) has been dealt with before in
ec. (3.2) and was shown to be equal to (equation (3.5) and (3.7)):

o+
0 cosd
—————— = ¢0S0 ¢O m %)(¢O) 4 (3.60)

a-¢0 / (¢ o. 2

Therefore f(u,¢0) is equal to

f(a,¢0) cosza ¢O i JO(¢O) for single slot

(3.61)

2 c052a~¢0 T J({¢0) for two symmetric slots

The R.H.S. of equation (3.58) is equal to zero except for n = 1, since

2m
f cos no cos¢ do
0

=7 n=1
(3.62)
=0 n#1
Using (3.61) and (3.62), equation (3.58) takes the form
N  cosa ¢O JO(¢O).. EO (a,z) cosa
o 1
=T E Anm Kp JI(Kp a) exp(-ylmz) (3.63)

m=1 nm Im
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where N =1 for single slot

2 for double slot

Using the value of Eo(a,z) as given by (3.63) in equation (3.56), a

closed form formula for the slot field is finally obtained as

. S ]T... . : él‘Alpr JI(K i al)Gf‘)(l:)("ylmz)
E,(a,0,2) = . I = a
¢ ¢0 JO(¢0) N cosa T2
vy 1 - ( ¢ )
0
(3.64)
The coefficients All’ A12 ces A1K are known according to the discussion -

of Sec. (3.4). The values of Kplm and Y1, 2Te also known [Sec. (3.2)
and (3.3)]. Thus equation (3.64) completely determines the slot field
for either single or double symmetrically located slots.

In the following Section equation (3.64) is utilized tostudy

the slot field. For different slot parameters some results are presented,

examined and discussed,

3.6. Numerical Results for the Slot Fields

In this Section some numerical results of the slot field as a
function of the distance along the guide as well :as slot . parameters,

such as the slot width 2¢, and location o , are presented. The values of

0
the slot field EO presented in this Section are such that the coefficient
T‘ of the incident wave function (3.21) equals unity. The results
cover both the single and the double slot cases in accordance with
equation (3.64).

The main features of the field such as the decay of its magnitude

along the z direction and the reduction in its intensity as the slot

location o moves from the position of maximum azimuthal surface current -
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(¢ = 0.0) are clear from Fig. 3.8 and Fig. 3.11 for the single and
double slots, respectively. The results also show that for any two
slots of different widths; keeping other parameters equal, the field
intensity on the narrower one is higher in value than the corresponding
wider slot, Fig. 3.8 and Fig. 3.11 . However; it is shown later in
Chapter 5 that the integration of the field on the slot surface area

s

slot E¢ ds is higher for the wider slot, indicating higher power rad-
iation. This is in .agreement with the results for the dttenuation con-
stant obtained previously for different Slot widths as presented in
Sec. ’3ﬁ2, for a single slot, and in Sec. 3.3 for double slots. Thus,
one may control the radiated power in different sections of space by
choosing adequate combinations of slot number , length , size and
location . This will be discussed in more details in Chapter 5. It is
also interesting to note that the field intensity on the slot increases
as we approach the cut-off frequency as is evident from Figs, 3.9 , '3.10
and 3.12 . This result, again, is in agreement with the discussion of
Sec. (3.4.4) and with the results of Table 3.7 Sec. (3.3.2). It shows
that as a/A; decreases, the attenuation constant increases indicating
higher power radiation in the space.

Figs. 3.13 and 3.14 compare the fields of a two-slot set, located
at ¢ -a and ¢ =T + a, with that of a single slot located at
¢ = a. This is equivalent to studying the change of the field of one
slot when another slot is introduced on the waveguide surface diagonally
across from the first one. The analysis reveals the important and inter-
esting result that the slot field is more or less localized especially, as

shown in. (3.14), where the ratio a/)\O is larger (i.e. at higher

frequencies). For example at a/k0=0.5 and o = 60°, the field changes
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by about 1% of its value when another slot is introduced. The same range
of change is also noticed for o = 0°. The change increases as a/%)
decreases but remains comparatively small, At a/%)= .35, it is about 3%,
This observation has been reported before by Chang in his treatment of @
circumferential slot in a radiating cylinder [38]. The result is

- important in that it allows extension of this work to multi-slotted

sections or to periodic structures where the solution of the field on

one scction may be extended to other similar adjacent structures. This

will have its application later in Chapter 5.

In conclusion, this Chapter has studied and presented the nature
of the field on the slot surface of both single and doubly slotted wave-
guides, This m;y prove important for several technical problems such as
the possible coupling .between adjacent waveguides, or using the structure
as a periodic feed line, cte, A more interesting and possibly more
practical problem is the slotted coaxial line with its varied applications

in microwave communications. In the next Chapter an attempt is made to

investigate this problem. The mathematical treatment may be more lengthy

and tedious, yet it follows precisely the same major lines as those of

the present Chapter.
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CHAPTER 1V

FIELD SOLUTION ON THE APERTURE OF

AN AXIALLY SLOTTED COAXIAL WAVEGUIDE

4.1. Introduction

Slotted coaxial waveguides, apart from the academic interest,
have rather important applications in modern communication. Interests
in slotted coaxial lines stem from their wide application in microwave
systems such as antenna feeds [35],[21],[22], wide band balun transform-
ers [7 ] or feeds for multiply-fed long cylindrical antenna [38]. Re-
cently, interest in problems such as sleeve antennas,coupling between
external and internal fields through a cracked shield of a toaxial cable,
prompted several authors to study the field distribution on a circumfer-
ential slot cut in the outer sheath of a coaxial line as presented in
Chapter 2. Yet not much has been done to study the field distribution:
on the surface of slots of different shapes and orientation.

In this Chapter, the problem of a narrow, infinitely long axial
slot cut in the outer surface of a coaxial line, excited by an incident

TE;; mode is investigated. "This problem reveals ‘along with. the circu-

mferential case , that in all applications Varying the shape

and location of the slot greatly modifies the radiatioﬁ pattern

of the structure. The treatment here follows the same lines as the work
of Chapter 3 for the case of the hollow waveguide. First, the solution
of the possible modes supported by the structure is obtained. A modal
expansions of the field with unknown coefficients in both the closed

and the slotted sections of the coaxial guide are assumed. The field is

then matched along the interface between two sections where the unknown




coefficients ére determined. Finally, enforcing the boundary conditions
on the outer wall of the coaxial line leads to a closed-form formula for
the tangential electric field on the slot much similar to the formula ob-
tained previously for the slotted hollow waveguide. The work is extended
to cover coaxial line sections with a set of two identical slots diagon-
ally symmetrical and arbitrarly located around the waveguide surface.
The coupling between slots is still small, but is shown to be higher
than the corresponding case of the hollow waveguide.
Now, in view of the analysis of the previous Chapter, and in or-

der to investigate the present problem, one first has to determine the
slot admittance (impedance) as a necessary step to evaluate the propagat-

ing modes of the structure. This is the subject of the following Section.

4.2 Propagating TE Modes in Axially Slotted Coaxial Waveguide

In this Section different propagating TE modes in the slotted
part of the coaxial line are investigated. The problem is solved using
the transverse resonance technique given previously in Sec. (2.3).

Harrington's technique could not be used here for the same reasons
discussed before in Sec. (2.2) and (3.2.1). They are, generally, the
difficulties encountered when the method is applied to study different
slot locations. Moreover, in this particular problem of a coaxial line, the
resulting expression for § proves to be rather cumbersome and the sol-
ution may be difficult to generate. The énalysis, therefore, is limited
to narrow slots and is valid for any slot location in the same way as

that of the hollow waveguide discussed in Sec. (3.2).
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4.2.1. Slot Impedance

Fig. 4.1 Axially slotted coaxial waveguide

Consider the axially slotted coaxial waveguide shown in Fig. ;4.1;.
Application of equation (2.20) for the hollow waveguide conductance is
possible here, since the same radial transmission line mode representation
is applicable to both structures. Accordingly, the slot conductance

Gz for the TE11 incident mode is given by [28] and Appendix [D]

u-¢0 até,
I dd)'f d¢ E¢(b,¢) G"(b;¢,9") E¢(b,¢')
a-9 a =g
G- = 0 A (4.1)
s a+¢0
1" 2
If hyy E,0s0) do |
a-¢
"0
where G"(b;¢,¢') = Re { ; Y"(b) h'z'n(cb) h'z'n'(cb') }
n=0
| h:n(¢) = /-;# cos n ¢

. _)—H
and Y (b} 1is the impedance of a radial waveguide at p = b looking
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toward the outside region. It has the same form as in the case of the

hollow waveguide, and is given by

(1)
K HU (K D)

Y”(b) _ 0

_ (2.22)
Jwub

1 @) '(kob)

Thus, one can see that all parameters involved in determining the slot
conductance of the coaxial line are exactly similar to these of the hollow
waveguide. Therefore, the slot conductance in the present case is similar

to that of equation (3.8) for the hollow waveguide and assumes the form

2
e = 1 n (cos na JO(n¢O))
0 IHIEU'(Kpb) |2 " cosa Jg (dg)

8

(4.2)

| |

ﬂwubz n

where the waveguide radius a in eqn. (3.8) is replaced in (4.2) by the
outer coaxial line radius b since GS here is evaluated at p = b.
Similarly, using the same argument, the susceptance of the slot

Bg is given by equation (2.25) as

c _._jwe 1
By ="M 7 (4.3)
Z COSsS QO

where MZ is the magnetic polarizability of the slot. The analysis
leading to the‘determination of MZ involves the radial transmission

line susceptance at p = b looking in the direction of decreasing P

(see Appendix B). For the coaxial line, this susceptance differs from

its counterpart of the hollow waveguide due to the presence of the metal
surface at p = a. However, it is shown in Appendix[F]that in spite of
this fact, the final expression for MZ remains unchanged. It is, there-

fore given by
2

K
Moo= o (K—g) / 12/, (2.26)
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which upon substitutien in (4.3) immediately yields
K 2

BS = -ue (K'%) 2 1n (2/4 ) / cos’a (4.4)

This gives an expression for the slot susceptance, which is the
same as that of the hollow waveguide. The expressions for Bg and Gg
represent a short circuit condition as the slot location o approaches

90°. This indicates that the slot at this location is not seen by the

wave, and accordingly has no effect on the field inside the coaxial line.

This point has been discussed previously in gec. (3.2).

The determination of the propagation constant using a perturbation
technique follows the same line as given in Section (2.3.3), but because
of different modal amplitudes in the present case, the resulting equation

differs from thét of (2.19) as shown in the following Section.

4.2.2. Perturbation Solution for the Coaxial Guide Wave Number

The transverse resonance condition as discussed in Section (2.3.3)

is given by

-~
Z(Kpb) = 0 4.5)
where
ZKb) = 7. (Kb) + RS - xS 6
(Kgb) = Zy(kjb) + RO - 5XT (4.6)

and %1(Kpb) is given by [29],[54].

Ji (K b) Y, (K 2) - 5, (K 2) Yi (K b)

fil (Kp) = - 3?‘”’ [ : , (4.7)
In the coaxial waveguide, the mode constants Zim of the TE1m

excitation are solutions of the equation [29]

3, (ezy ) Y, (2, ) - 3, (z,) Y, ©z,) = 0 4.8)
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where € = b/a. Now, assuming that the mode constants of the slotted
sections Kpa are very close to the corresponding mode constants of the

closed sections, one may set

Kpa =zt Glma 4.9
where 61m is a small complex number. Substituting (4.9) into (4.5) and
expanding the resulting expression in Taylor's series around Z1m and retain-
ing only the first term,gives

\
<> <>
Glm ——-Zl(czlm) / Zlﬁzzlm) (4.10)
where the prime indicates differentiation with respect to Kp.
It is shown in Appendix G that
< wib
Zl(Czlm) = - ja jq;- F@:zlm) (4.11)
where F(Czlm) is given by
! 1
Flezp) = (-5 [ ; I- e - =59
1m 22 Y. (z, )J,(cz, ) - J.(z, )Y (cz, ) czzz
Im 1Y 1Im" 71 Im 1"Im” 1 "Im 1m

(4.12)
Substituting (4.11) and (4.6) into (4.10) and with the aid of

(4.8), (4.2) and (4.4) ,an expression for § is obtained. as

Im
] 1]
Glma = (Xs(zlm) + JRS(zlm))/F(Czlm) (4.13)

where .

XI(Z ) B BS(Zlm)

s ~“im’ 2! 12

Gs (Zlm)+Bs (zlm)

and 6! (21,)

Rl(zq.) =
s 1m 2 21
GS (zlm)+BS (zlm)




t GC

6 (2. ) = ==

s 1m YO

B, (z, ) "

z = o

Y
st 1m 0
with
Y = - K /uub
o p/ !

Equation (4.13) has been used to determine the different propag-

ation modes in the slotted coax. line as presented in the following Section.

4.2.3. Numerical Examples of the Coaxial Wavenumber

Solution for the waveguide modes for different slot locations and
widths are considered for the case c¢.= 1.5, such that, mainly the Tﬁl‘mode
is allowed to propagate in the solid region [29],[54]. Some of the
results are given in Tables :4.1‘-}4.4; similar to Tables 3.1 - 3.4:,
given previously in Section (3.2.1) for the hollow waveguide.

The general features of the results and their variation with
the slot parameters arc in complete agrcement with the physical expect-
ations and are similar to those discussed in Sec. (3.2.1). Consider for
example the effect of slot locations o on the results. For a coaxial
Waveguidc dimension a/lo=o.35, c= 1.5 and slot width 10° Table 4.1
shows that the attcnuation constant varics from 0.0429 Np/AO at o = 0.0
to 0.00438 at o = 60°. This is about a 90% drop in the power radiated
within a change of location of 60°. This shows that the radiation power
drops apprecciably as the slot location méves away from the location of
the maximum azimuthal surface current. The slot width has also ‘a” not-
able cffect on the radiation power. As an cxample, comparing Tables 4.1
and 4.3 reﬁcals thaf though the wider slot radiates higher power than

the narrower onc, yet doubling the slot surface arca would not double
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the radiation power. The tables show that for slot widths 10° and
4°, the power ratio is always around 1.7 regardless of the slot loc-
ation. In fact, it has been shown before in Chapter 3 Sec. (3.3.2) and it
is confirmed here in Sec. (4.3.2), that to enhance the power radiation
one ‘should use a ‘greater number of narrow slots per section rather than use
few wider slots.

The higher order modes are next investigated. Table 4.4 gives some
values of Slm for m= 2,3....,etc. It is clear from the table that
these modes afe non-propagating and they vanish within a small fraction

of a wavelength.

location a Real § Imag. Real Y>‘0 Imag.
0° 0.1538 E 0 -0.3103 E-1 | 0.4296 E-1 -0.5655 E 1

20° 0.1372 E 0 -0.2393 E-1 | 0.3243 E-1 -0.5677 E 1
30° 0.1175 E 0 -0.1744 E-1 | 0.2303 E-1 -0.5703 E 1
45° 0.7905 E-1 -0.8921 E-2 | 0.1119 E-1 -0.5752 E 1
60° 0.3968 E-1 -0.3692 E-2 | 0.4389 E-2 -0.5800 E 1
75° 0.1064 E-1 -0.9314 E-3 | 0.1063 E-2 -05.834 E 1

TABLE 4.1 Values of § and vy for different slot
location o for the first mode(zyy= 0.8052).

a/>\0 = 0,35 ~¢0= 5
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TABLE 4.2 Values of & and vy for different slot location o and
for the first mode (z11 = 0.8052). a/AO=O.35 ¢O = 3°
i A
location o Real Imag. Real %o Imag.
0° 0.1336 E 0 -0.2319 E-1 | 0.3127 E-1 -0.5682 E
20° 0.1189 E 0 -0.1783 E-1 0.2359 E-1 -0.5701 E
30° 0.1016 E 0 -0.1296 E-1 0.1675 E-1 -0.5724 E-
45° 0.6819 E-1 -0.6609 E-2 | 0.8172 E-2 -0.5766 E
60° 0.3420 E-1 -0.2733 E-2 | 0.3225 E-2 -0.5807 E
75° 0.9170 E-2 -0.6902 E-3 | 0.7862 E-3 -0.5836 E
TABLE 4.3 Values of § and vy for different slot locations o and

for the first mode (z,, = 0.8052). a/A,=0.35
6 = 2° 11 0
0

location a Real Imag. Real YAO Tmag.
0° 0.1209 E 0 -0.1888 E-1 0.2505 E-1 ~0.5699 E
20° 0.1074 E 0 -0.1450 E-1 0.1889 E-1 -0.5716 E
30° 0.9170 E-1 -0.1052 E-1 0.1343 E-1 -0.5736 E
45° 0.6147 E-1 -0.5359 E-2 0.6566 E-2 -0.5774 E
60° 0.3081 E-1 -0.2215 E-2 0.2601 E-2 -0.5811 E
75° 0.8260 E-2 -0.5596 E-3 0.6366 E-3 -0.5837 E




TABLE 4.4 Values of § and vy for different modes
(o]
a=0 9y =5 a/Ap=0.35
v § Y, A
1
im Real ) Imag. Real Im"o Imag.
(.8052 0.1538 E 0O ~0.3103 E-1 0.4296 E-1 -0.5655 E 1
6.376 0.2433 E-1 -0.4962 E-2 0.1717 E 2 ~-0.1509 E-1
12.612 0.6322 E-2  -0.8010 E-3 0.3550 E 2 -0.2324 E-2
18.88 0.1762 E-1  -0.8372 E-3 0.5362 E 2 -0.2408 E-2
25.156 0.7188 E-4  -0.1139 E-5 0.7159 E 2 -0.3268 E-5

The technique used in this Section to determine & is similar
to the technique used by Goldstone and Oliner [25], which has been employ-
ed in Chapter 3 As discussed in Sec. (2.3.4), this technique is valid
only for narrow slots and the accuracy of the results presented here
should be considered within this limit. Moreover, in solving for multi-
slotted waveguide sections one should also consider the interaction among
the slots, which usually adds to the complexity of the problem. It is
shown in the following Section that the problem lends itself easily to a
solution for the special case of two identical, diagonally symmetrical
slots similar to the solution presented in Sec. (3.3).

4.3. Two Identical Symmetrically Located Slots

In Section (4.2) the propagation constants of different modes
supported by a coaxial line with a single axial slot along its surface
has been investigated. The knowledge of these propagation constants
would enable one to proceed to solve for the slot field distribution and
to study the factors that may influence it. It is clear, however, that

adding extra slots on the guide surface provides a more flexible parameter
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for controlling the radiation of the structure. The problem as discussed in

Chapter 3. may not be quite as simple since the interaction among these
slots has to be appropriately considered. 1In this Section the problem of
two identical and diagonally symmetric slots on the surface of a coaxial
guide is investigated. The analysis to follow is similar to the work

of Sec. (3.3.1), and therefore, will be given briefly.

4.3,1 Propagation Constants In A Coaxial Line With Two Identical

Diagonally Symmetric Axial Slots

In Sec. (4.2.1) the impedance (admittance) of a single axial slot
in an arbitrary location o on the surface of a coaxial gulde has been
determined. This work can be extended to the present case of two ident-

ical slots, 180° apart, as shown in Fig, 4.2.

Fig. 4.2  Symmetrically double slotted coaxial guide

As discussed before in Sec. (2.3), the structure could be repres-
ented by a transmission line in p direction terminated at p = b by

the effective impedance (admittance) of two slots combined together,




Fig. 4.3

|

|

I LY

(
p = 0.0 p=a.

Fig. 4.3 Transmission line representation of the symmetrically
double slotted coaxial ‘guide

The radial transmission line mode representation is exactly the
same for both the-hollow and the coaxial waveguide [29]. Therefore, the
equations for both the conductance and the susceptance of hollow waveguides
developed‘in Appendix [D] could as well be used for the present case of
the coaxial line. Accordingly, the effective slot conductance of the

double-slotted coaxial line of Fig. 4.2 is given by equation (D.3) as

a*é ) 2
6, = P/ @ e e [ 0 @) B sl
a-¢ m+o-9
- 0L+¢0 Trere 2
P = Re {Yn(Kpb) (J h, (a:9) Eya,9) + f h_(a,9) ‘E¢(a,¢)adm }
a—¢0 ﬂ+a—¢0

It has been shown in Sec. {(4.2.1) that Yn(Kpb) in the coaxial

. waveguide takes the same form as the hollow waveguide case. We also re-
call that the mode functions h:n(a,¢) are similar for both cases. There-
fore, the combined conductance ng of two slots takes a form identical

to the .effective conductance G52 of the double slotted hollow waveguide




presented in Sec. (3.3.1) by eqn. (3.17),that is

2
GC - 1 5 2 cos n o ig(n¢0)) (4.14)
; .

Similarly, the effective susceptance of two slots is given by

equation (D-20) as

c WET
B = - —=
s2 2 Mzcos o

where Mz’ according to Appendix[F]together with the discussion of
Section (4.2.1),takes again the same form for both coaxial and hollow

waveguides. It is, therefore, given by eqn. (2.26) as

2
x Ko
M, = 5 G/ In(2/¢)
P
Therefore, Bgz takes the form
c Kp ’ 2
BS2 = - (KBJ 1n(2/¢0) / cos“a (4.15)

Now, the value of 61m defined by equation (4.9) is obtained by

direct substitution of (4.14) and (4.15) in eqn. (4.13) as

Sm = [X; (z) + 3 R; (217 Flezy ) (4.16)

where F(Czlm) is given by (4.12) and

- S . ' 2 S

Xs(zlm) T2 , 2 s Rg(zqp) 2 2
B +G B +G
S S S S
with . c
B G
t !

B = s2 G = s2

s -wub/K . s -wpb/K
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Equation (4.16) together with (4.9) determine ' the different propagating
modes in 'thg slotted structure. The propagation constant is readily
obtained using equation (2.9). 1In the following Section some of the results
obtained using these equations are presented and compared with the case

of a single slot of Sec, (4.2.2).

4.3.2. Numerical Results for the Propagation Constant of a Double Slotted

Coaxial Waveguide

The value & as given by (4.16) is evaluated for several paramet-

ers such as the operating wavelength, the slot location and the slot width.

Some of the results are presented in Tables 4.5 and 4.6 . Upon study-
ing these results, one would notice the same trend as one noticed in
Sections (3.3.2). The radiated power decreases with the decrease of the
slot width or with the slot approaching locations where the surface curr-
ent is very small. However, the variation in this case is noticed to be
sharper, when compared to the corresponding double slotted waveguide of
Sec. (3.3). Consider for example the results given by Table 4.5 . As

o varies from 0.0° to 60° the attenuation constant drops from 0.656
Np/)\0 to 0.00345 Np/ko. This is a drop of about 95% compared to 92%

in the hollow waveguide case presented in Sec. (3.3.2). It may also be

interesting to compare cases of single and double slots that may be geom-
etrically related. Table 4.7 compares the results of a double slot

set located at ¢ = o and ¢ = T + &, with those of a single slot loc~-

ated at ¢ = a. The slots are assumed identical and have a 4° width.




TABLE 4.5
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Computed values of § and Yy for arbitréry
located two-slot set, 180° apart. First
mode excitation

¢O = 2 a/ky = 0.35 c = 1.5
§ Yo
location o Real Imag. Real Imag.
0.0 0.2402 E 0 .~0.4255 E-1 | 0.6567 E-1 -0.5529 E 1
30 0.1826 E 0 -0.2400 E-1 |-0.3448 E-1 -0.5614 E 1
45 0.1229 E0 -0.1088 E-1 | 0.1448 E-1 -0.5696 E 1
60 0.6181 E-1 -0.2825 E-2 | 0.3463 E-2 -0.5774 E 1
75 0.1660 E-1 -0.2105 E-3 | 0.2423 E-3 -0.5827 E 1
TABLE 4.6 ¢0 = 5° a/>\O = 0.35 ¢c=1.5
8 YAQ
location o Real Imag. Real Imag.
0.0 0.3043 E 0 -0.6965 E-1 | 0.11619E0 -0.5429 E 1
30 0.2334 E 0 -0.3966 E-1 | 0.6070 E 0 -0.5539 E 1
45 0.1580 E 0 -0.1804 E-1 | 0.2518 E-1 -0.5648 E 1
60 | 0.7978 E-1 -0.4709 E-2 | 0.5914 E-2 -0.5752 E 1
75 0.2144 E-1 -0.3511 E-3 | 0.4069 E-3 -0.5822 E 1
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TABLE 4.7 Comparison between results of single and
double slotted coaxial guide
= 4°
¢O
o a/\ case Atten. Const. o, Ratio (azz)/(a21)
0.3 Single slot 0.0355 2.66
Double slot 0.0944
0,0°
0.2 Single slot 0.1029 3.10
Double slot 0.3171
0.3 Single slot 0.00365 1.33
Double slot 0.00487
60° ,
0.2 Single slot 0.00987 1.36
Double slot 0.01346

Here again, it

is clear that two identical slots symmetrically located

do not radiate twice as much as a single set at the same location.

The

ratio of the radiated power varies with the slot location, the wavelength

and the slot width as is evident from the following table.
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TABLE 4.8  Comparison between results of a single and
double slotted coaxial guides.

a/y= 0.35 a = 0,0°
Slot Width Case - Attenu. Const, . o, Ratio_(uzz)/(a21)

Single Slot 0.0250 '

4° 2.62
Double Slot | . 0.065%6 . . .. | .. .
Single Slot 0.0429

Q
10 Double Slot | .. o0.1161 . - 270

‘It is also worth mentioning that as before the field disturbance

due to a wide angle slot is less than two narrow ones. It is evident from
Table 4.8 that two slots of width 4° would have an attenuétion constant
of 0.0656 NFVAO while one slot of width 20° has an attenuation of only
0.0429 Np/AO, However, one may notice that, the variation in this case,
is sharper than the corresponding case of the hollow waveguide of Section
(3.3.2).

The effect of the interaction between the fields of two slots will
be studied further in a later Section when the slot field is obtained.

To this end, and with the knowledge of the eigen-values of the slotted

section, it is possible now to proceed to the next Section. There, the
unknown coefficients of the modal expansion of the field on both sides of
the slotted coaxial line with TE11 excitation are obtained. This step

allows the determination of the field solution on the slot surface as

will be discussed in Section (4.4).

4.4 Formulation of the Scattering Problem

The analysis of the previous Section helps determining the prop-

agating TE modes supported by the slotted structure. In this Section
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these modes are used to form a modal expansion of the field in both closed

and slotted sections of the coaxial line each with a set of unknown coef-

ficients, These coefficients are then obtained in a way similar to that

followed in Sec. (3.

separating the two waveguide sections.

3), where the field components are matched at the plane

In a later Section these coeffic-

ients will be used to completely determine the slot field.

4.4.1. Field Representation Inside the Coaxial Waveguide (TE modes)

The field. inside a coaxial guide is usually given by a combination of

both the Bessel functions and the Neumann functions.,

It may be convenient

before introducing the mathematical form of this field to define a set

of functions that will be used extensively in the analysis of this Chapter.

Define the functions Cn(z p/a) and Dn(Kp p) and their derivatives as

Cl’l ( znm p/a)

CI: ( an p/a)

D (K )
n pnmp

D'(K )
n( pnmp

Now, let an

nm
nm

Y'(z ) I, (e p/a) - NARCINS) Y, @ p/a)

Z
nm ' 1 ' S N o
= Dz ) 3z p/a) - InCapy) Y2z 0/0)T

YN (K a) J (K p) - J' (K a) Y(K op)
1 pnm n pnmp n pnm n pnmp

K IYI(K  a) J'(K o) - J'(K &) Y'(K_ p)]
Pom nm 1 Pnm n Phm " Phm

(4.17)

incident field in region I of Fig, 4.4, be

Fig. 4.4 ~ Axially slotted coaxial guide

TE with a wave function in the form [29]

11
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Y o= T[Cl(zllo/a)]cosd>exp(j@llz) (4.18)

where T is the intensity of the incident field, a is the inner radius

of the coaxial waveguide © is the propagation constant of the TE

> 711 11
-jwt

mode,and e time variation is assumed. Let the wave function of the

scattered field in the same region (region I) be represented by
s
= T L ¥ B C (z a)] cos exp(-j8_ z 4,19
P sz pq{p(.pqo/)] p ¢ exp(-38 2) (4.19)
p=0 q=1
where p and q are integers and

qu's are unknown constants to be determined

zpq is the qth root of the equation

Y!'(z Jr(cz - J'"(z_ )Y Y'(cz = 0 4,20
p%pa) Tp %) T Tplipg) Ypezpg) (4.20)
with ¢ = b/a and b is the outer radius of the waveguide and
2 2 2
] + (z_ /a = K
Pq ( Pq/ ) 0

The scattered field in region II can be represented by the wave-
function

¢ = T L I A [D (K. p)] cos rode-exp(-y_ z) (4.21]
r=0 s=1 *° n prs rs

where r and s are integers and

Yy T 0,7 3B, = VK- Ky (4.22)
rs

K 's are known for each mode and each slot location according

prs

to Sec. 4.2.

Ars's are constants to be determined.




For convenience, the letter K will be used, in what follows, in place
of Kp cxcept in certain special cases to avoid confusion.
TS ,
The ficld components in both regions can be derived from the
relations (3.26) stated in Sec. (3.4). As in Chapter 3 , it is conven-

ient to introduce the mode functions o and hmn in both region 1

and II;defined as:

Region I:

¢ =& 7L 2

m ¢nm 0 Pom P

(4.23)
- -> '

ﬁ = ﬂ a, + ﬂ a

nm Sm @ P P

where

I . . .
e¢ = Cn(znmp/a) cos n ¢

nn

(4.24)

1 _ n .
ep T3 Cn(znmp/a) sinn ¢

nm
}{i‘ =+Jenm%

O Jwp Pom
g+ _ Jenm 1

== xS &

Phm Jwi ¢nm

and the lower and upper signs hold for exp(-j® z) and exp(jO z)
nm nm
variationerespcctively.

Region 1I:

I .10 > 1T >
Cnm = eq) ad) + Cp ap
nm nm
(4.25)
B, W 3 .W oz
nm nm

where
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1t

1
Dn(_Kp P) cos n ¢
nm nm

%J = I D (K P) sin n ¢
o n'p
nm nm
(4.26)
1 ~ Yam 1
TR
nm J nm
1 Y 11
= TBE' e¢
pnm J nm

These mode. represenations with the aid of (4.18), (4.19), (4.21)
and (3.26) give the field components in both regions I and II, which

takes the form

Region I:
I I _ v I .
E¢ = T e¢11 exp(Jellz) + T"piq qzl qu e(bpq exp(—Jepqz)
I I . I .
E, = T e¢11 exp(j0 ,2) + T pzq qu qu e » exP(-Jequ)
(4.27)
L I+ . I .
H¢ = Th¢11 exp(;ﬁllz) + T pio qzl qu h¢pq exp(—;@pqz)
I I+ . I '
Hp =T hpll exp(Jellz) + T pzo qfl qu h » exp(-Jepqz)
Region II
II II
E¢ = T rfo 551 A e¢rs exp(—yrsz)
11 11
Ep - rEO sil Ars eprs eXP(‘YrSZ) (4.28)
II IT
H¢ = T rio S§1 Ars h¢rs exp(—Yrsz)
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II II

H = T I ¥ A h exp(~y. z)
P r=0 s=1 rs prs rs

These equations give the field everywhere in regions I and II in terms of
the e and h modes.,
nm nm
Certain relations between these modes exist,. These relations
will help in reducing the resulting equations of the unknown sets A and
B to a simple form that can be numerically solved. The next Section deals

exclusively with these relations.

4.4.2. Mode Orthogonality

In this Section mathematical relations among the modes given by
(4.24) and (4.26) will be introduced. These relations are similar to
those discussed before in Sec. (2.4.2) and will be used extensively in
the formulation of the scattering problem to follow in a later Sectiom.

Consider the dintegral relation

I T
Mt = [ (6. xht).a ds (4.29)
nm nm jole| z
Pq S

where § is the cross-sectional area of the waveguide. Substituting (4.23)

in (4.29) gives

I T I I
ME = j (eg 3, + e 2a)x (ht 2 +nt 3p) .3 ds
nm ' © Pam P %q ¢ Ppq z
Pq s |
boo2m g I, I,
e e
p=a d):O nm Pq nm Pq

which upon substituting the mede values given by (4.24) gives
b 2m ;0
* n , P9 P .. .
Mnm [ f (p Cn(znmp/a) Cp(zpqp/a) + TR sinn¢ sinp ¢
Pq p=a 0

1t
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1 / Bl N . .
+ Cn(znmp,a) Cp(zpqp/a) cosn -cos p ¢) .epq/ wh  pdpdo

Using the orthogonality of the trigonometric functions as presented by

(3.34), this equation becomes

jo 2
+ + 2m n n '
= =+ 20 09 — '
Mo Moo= e Jn J G Culopyy) €l ¢ (2 ) € (2 ¥) Y)dy
Pq q y=1

(4.30)
where y = p/a .
This integration is evaluated . in Appendix[H],and is shown to. exist
only for z__ =z and is equal to zero otherwise. Using the result

nm nq

(H - 8) of appendix H, equation (4.30) may be written as

+ + ! L o
M = M = (e. xh_)+a_ds
nm nm nm Pq9° z
. s
or % Zim- 2 1 2 1
= £ CAm e _—— . C .
* € jwu 2 { (1 CZ 2) Cn(cznm) (1 Z2 )
Znm nm
¢ (z ) Gn@;znm)} (4.31)
where
= 1 - t
Cl’l (C an) Jn (Cznm) Yn (an) Yn (Cznm) Jn (an)
(4.32)
— - 1
Gn(cznm) = Jn(znm) Yﬂ@:znm) Yn(znm) Jn(cznm)

Equation (4.31) establishes the orthogonality relation between the
I I

modes e and h for the coaxial line.
Another integral which is of importance in later analyses is the

integral relation
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N = J(e xh )ea ds (4.33)
S

Substituting the mode values given by (4.24) and (4.26) into (4.33)

and evaluating . the trigonometric orthogonality relations, (3.34) gives

c c
Y 2
N = = .20 nq m” : 2 1
nm Nnmq e Jou {y’ J Cn(znmy) Dn(Kpnmay)dy +a I Cn(znmy)
Pq : y=1 y=1
Dﬁ(Kp ay) ydy
nm

where y = p/a

The result of this integration is given by (H-6) of Appendix[H].
Accordingly, one finds

2
ds = JZm Ynq *nm (Kopp?)

nm © pq’ Tz €, Jou 22

".(Kpnma)2
{c cpez ) Drll (c Kpnma) - C (2 ) D (Ko a)}

(4.34)
Where Cn(cznm) is given by (4.32) and
Cﬁ(cz) = Jﬁ&:z) Yﬁ(z) - Yﬁ(Cz) Jﬁ(z) ‘ (4.35)
This establishes the second integral relation to be encountered
later in the formulation of the scattering problem.
The third important relationship to be considered is
+ _ }I]i I - d
Qn = (h X epq) *a, ds (4.36)
Pq S

where S is the same as that in (4.29).
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Using (4.24) and (4.26) and following the same steps as in Sec.
(3.4.2) in the derivation of (3.43), one can easily show that (4.36) may

. be written as

j6 I 11

Qi = 4 DM J (e. x hf)e-a ds | (4.37)
m qu nm Pq z

pq s

which upon using (4.34) gives

I II 30 Jj6
Qi = Qi = J (hlL x et )'Z ds = =20y = 20 - nom
nm mq nm rq’ "z Yy nmq g, Jwu
pq 4
o (ng?)
1 _ '
Zz e a)2 {c Cn(cznm) Cn(cana) Cn(znm) Cn(ana)}
nm nq

(4.38)

This concludes the derivation of the three basic integral relations needed
for the formulation of the scattering problem as will be discussed in the

next Section.

4.4.3. Mode Matching

The next step in this analysis is to match the tangential comp-
onents of the field on both sections of the coaxial line (at the plane
z = 0). To this end, the technique presented in Sec. (3.4.3) is applied
here, employing the different relationships obtained previously in (4.31),
(4.34) and.(4.38).

Consider the two identities

I I+ N II I+ N
J (Et X h;m) *a ds = J (E, x h™ ) «a ds {(4.39)

[ z=0 S z=0

and
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>
* e ds (4.40)

-
®
o
n

I
S——y
-
eRs
"
[ ]
L —

which are based on the fact that the tangential electric field Et and
magnetic field H, are continuous at the plane separating the two wave-

guide sections. Analytically this means

I II

Et = Et
and

I II

Ho = H

Consider first equation (4.39). The R.H.S. using (4.27),could be written

as:
I I, N I I, I I
E, x h™ ‘a_ds = (T|le.,xh +T Z I B J x h™ )*a ds
t nm z 11 nm -0 g=1 jole] nm’ "z
s z=0 s p=- 9
But from (4.31)
I I N +
J xh* *a ds = -M
nm Pq  z nm
s
Therefore
I Ii > + + :
E xh *a ds = TM ., +TB M (4.41)
nm z 11 nm nm
S z=0
Similarly,using (4.28), the R.H.S. of (4.40) gives
11 1 N 11 I N
[E xhf Jea ds = T £ I A Je x ht *a_ds
t nm z r=0 s=1 TS TS nm z
s z=0 z=0
which upon using (4.36) becomes
E xnt 3 ds = -T £ A_Q 4.42
t nm z ¢ % <1 DS Usm (4.42)

[ z=0)
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Combining (4.41) and (4.42), -equation (4.39) could finally be

written as

I+
+

+
Mll * Bnm Mnm = - sfl Ans Qnsm (4.43)

Equation (4.43) is similar, in form, to equation (3.49) of Chapter
+ +
3 for the hollow waveguide. However, the values of M__ and Q;
nm sm
given here by equations (4.31) and (4.38) are fundamentally different
from their counterpart of Chapter 3.

Now, consider equation (4.40), in a similar way the L.H.S. using

(4.27) becomes

I I 5 I+ I r
H x e *a_ ds = (Th,,+T £ I B h )xe r*a ds
t nm yA : 11 -0 g=1 P4 P4 nm z
(S z=0 s pP=0q
+ -
= My - T M
= TMy - T M

where the result of (4.31) was employed, and M. s replaced by M

11 11
The R.H.S. of (4.40),using equation (4.28) ,gives
11 I N I1 r
J(H X e ) *a_ds = T.- % I A J h xe +a ds
t nm Z - rs rs nm z
r=0 s=1
z=0 ,
which when using (4.34) becomes
>
JH X e *a ds = -T 3 A N
t nm Z ns nms
s
z=0
Thus, equation (4.40) becomes
- Mll+ Bnm Mnm - E Ans Nnms (4.44)
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The unknown A's and B's could be determined by solving (4.43)
and (4.44) in a manner similar to that of Section (3.4.3). Allowing n,

m and s to take discrete values 1, 2, 3, .... these two equations
form a set of infinite simultaneous equations,

However, as in the case of the hollow waveguide, it‘is shown that
the n=1 mode and a few terms in each series are sufficient to determine
the slot field. For the n#1 modes, the excitation is zero. By enforcing
the orthogonality relationship on the slot field, it is shown that these

modes are not required to determine the slot tangential field.

4.4.4. Solution of the Unknown Coefficients

The solution of (4.43) and (4.44) follows exactly the same lines
as that of Sec. (3.4.4). Therefore, it will be briefly mentioned here.
Consider the case.of n=1, equation (4.43) and (4.44) becomes

M., + B, M = - 3
s=1

A15 lem (4.45)

My B M T <& A N (4.46)

Subtracting (4.46) from (4.45), and truncating after an approp-
riate number of terms L , gives a matrix equation similar to (3.53)

which is of the form

- - - LT
Qi1 N Qo * Nt
5 ___ﬁgj_____ e e ____;Ff_*__. Ay
11 11
ol = -1 """ | ) . (4.47)
: Qi * Mg Qrp * N
0 . . AL
M M
] i 1L IS I
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The coefficients All’ A12 ten AlL are easily obtained from equation
(4.72) by a simple matrix inversion. Substituting the results back in

either (4.45) or (4.46),the coefficients B B can readily

Bll’ 12 7" T1L

be obtained. Again, one should point out that B11 . and A11 represent
the reflection and the transmission coefficients respectively.

A computer program is established to calculate these coefficients
using (4.47) and either (4.45) or (4.46). Tables 4.9 - '4.12 give some
of the computed results for a single slot,while Tables.4.13 -:4.15 give -
corresponding values for the double slotted case. It is apparent that the
first few terms are enough to determine the field, and that the rest of
the coefficients are increasingly negligible as seen from above tables.
This result is physically feasible since, as in the case of the hollow
waveguide, higher modes are non-propagating and they vanish within very
short distance,

Most of the observations noticed before in Sec. (3.4.4) are en-
countered here again. The reflection coefficients for any mode decay
as the slot moves far from the position of maximum azimuthal field as is
shown in Tables 4,9-4.10 for the single slot and in 4{13 - 4.14 for the
double slot. This, again, has its important application in microwave
measurements. It allows a probe entry to the waveguide in places where
the slot has minimum effect on the field. Thus one may conduct experimental
investigation with the least disturbance to the interior field. The re-
flection coefficient is also shown to be a function of the wavelength.
Figs. 4.5 and 4.6 for single and double slots respectively, shows that
the value of the power reflection coefficient rises fast near the cut-off
frequency, and decays smoothly as the frequency increases, It is clear

also from these curves that the presence of two slots will cause higher




TABLE 4.9 The Transmission and reflection coefficients for TE

coaxial line mode. 1

og = 2° a= 0.0 a/},=0.36 L =5
Transmission Coefficients (TElm) in Region II Reflection Coefficients (TEll) in Region I

Real Imag. Real : Imag.

0.1174 E 1 0.2837 E-1 0.1278 E-1 0.2226 E-2
-0.4127 E-1 -0.2176 E-1 0.3187 E-1 -0.4877 E-2
-0.5188 E-4 -0.2738 E-4 0.3187 E-2 0.3309 E-4
-0.1538 E-4 -0.5268 E-5 0.3115 E-2 0.1987 E-3
0.2720 E-7 0.7787 E-8 0.2227 E-4 0.2016 E-5

£0T1




TABLE 4.10 The scattering and reflection coefficients for TE
coaxial line mode.

9 = 2° o =45° a/2=0.35 L =5

11

M Transmission Coefficients (TElm) in Region II Reflection Coefficients (TElm) in Region I

Real Imag. Real Imag.
1 0.1085 E 1 0.7917 E-2 0.6207 E-2 0.5759 E-3
2 -0.2121 E-1 -0.9264 E-2 0.1515 E-1 -0.3615 E-2 .
3 -0.1351 E-4 -0,4599 E-5 0.1532 E-2 -0,1072 E-3 R
4 -0.3823 E-5 -0.8739 E-6 0.1508 E-2 -0.2399 E-4
5 0.4011 E-8 0.7195 E-9 0.1080 E-4 0.1187 E-6




TABLE 4.11

Transmission and Reflection Coefficients for TE
coaxial line mode.

a = 0.0° a/>\0=0.35

Transmission Coefficients in Region II (TElﬁ) Reflection Coefficients in Region I (TElm)
Real Imag. Real Imag.
0.1223 E 1 0.4739 E-1 0.1664 E-1 0.3845 E-2
-0.5237 E-1 -0.3113 E-1 0.4211 E-1 -0.4073 E-2
-0.8750 E-4 -0.4867 E-4 0.4163 E-2 0.2690 E-3
~-0.2574 E-4 -0.1016 E-4 0.4069 E-2 0.4800 E-3
0.4590 E-7 0.1522 E-7 0.2905 E-4 0.4206 E-5

S0T




TABLE 4.12 ' Transmission and Reflection Coefficients for TE

coaxial line mode, 11 ,
¢y = 5° a = 0.0° a/dy= .35 L =4
M Transmission Coefficients in Region II (TElm) Reflection Coefficients in Region I (TEll)
Real Imag. Real Imag.
1 0.1223 E 1 0.4739 E-1 0.1664 E-1 0.3845 E-2 =
2 -0.5237 E-1 -0.3113 E-1 0.4211 E-1 -0.4073 E-2 ”
3 -0.8750 E-4 -0.4867 E-4 0.4163 E-2 0.2690 E-3
4 -0.2574 E-4 -0.1016 E-4 0.4069 E-2 0.4800 E-3
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13 Transmission and Reflection Coefficients

108

Two slots,180° apart, °  a=0.0°
L 5 a/Ad=O.35
Transmission Coefficient Reflection Coefficient
Real Imag. Real Imag.
0.1357 E 1 0.6837 E-1 0.2780 E-1 0.6059 E-2
-0.8697 E-1  -0.4930 E-1 0.6950 E-1  -0.7302 E-2
-0.2209 E-3 -0.1281 E-3 0.6877 E-2 0.3641 E-3
-0.6654 E-4  -0.2501 E-4 0.6729 E-2 0.7066 E-3
0.1284 E-6 0.4412 E-7 0.4807 E-4 0.6305 E-5
14 Transmissioﬁ and Reflection Coefficients
Two slots, 180° apart, a = 450
L =5 a/A0=0.35
Transmission Coefficient Reflection Coefficient
Real Imag. Real Imag.
0.1177 E 1 0.1638 E-1 0.1303 E-1 0.1302 E-2
-0.4308 E-1 -0.1900 E-1 0.3176 E-1  -0.7239 E-2
-0.5637 E-4  -0.1984 E-4 0.3204 E-2  -0.1984 E-3
-0.1603 E-4  -0.3709 E-5 0.3152 E-2  -0.2706 E-4
0.2798 E-7 0.5728 E-8 0.2258 E-4 0.4055 E-6
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TABLE 4.15 Transmission and Reflection Coefficients

0
¢=1.5 Two slots 180 apart ¢ = 5 o =0.00

0

L = 5 a/)\0= 0.35

Transmission Coefficient

Real Imag.

Reflection Coefficient

Real : Imag.

0.1461 E 1 0.1166 E 0.0

0.3676 E-1 0.1089 E-1

-0.1118 E 0 -0,7319 E-1

0.9331 E-1 -0.2807 E-2

-0.3778 E-3  -0.2355 E-3

0,9133 E-2 0.1142 E-2

-0.1131 E-3 -0.4985 E-4

0.8908 E-2 0.1576 E-2

0.2154 E-6 ~ 0.8620 E-7

0.6355 E-4 0.1291 E-4
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power reflection coefficient than one single slot, even if the surface
area of the single slot is equivalent to the surface area of both slots
together for a/AO=O.17. Figs, 4.5 and 4.6 show that the P,

for a single slot of width 20° is about .04, while the corresponding
value for two slots, each of width 4°, dis about 0.2. The change here
is noticed to be sharper than the corresponding case of the hollow wave-
- guide of Sec. (3,4.4). One may also point out that while the power re-
flection‘coefficient‘decreases as a/>\O increases, it was shown in Section
(4.3.2) that the radiated power in this case decreases. This suggests
an optimum operating frequency to compromise between the required radiation
power in the space and the minimum P, in the waveguide, depending on
the practical needs.

Finally, the stability and accuracy of the numerical procedure
again seems quite acceptable. Tables 4.11 and 4.12 give the values
of the coefficients A and B with two different number of terms con-
sidered. It is obvious from these tables that the results are very stable,
and good to the fifth significant figure. The accuracy of the results
is tested by substituting the values of the coefficients back into each
equation and calculating the error. This error was always in the range
of 10_6 or less in a single precision- calculation. Different cases
were tested to check the accuracy, and the results in all cases were with-
in the above limit.

This concludes the analysis of this Section, allowing one to carry

on to the next step to evaluate the field on the surface of the slot(s).

4.5. Electric Field on the Slot Surface
The final stage of this Chapter is to evaluate the tangential

electric field on the slot surface due to the incident TE11 coaxial




112

line mode. To this end, the scattering coefficients obtained in Sec. (4.3)
together wifh the assumption of a long narrow slot are employed to arrive
at a clgsed-form formula for this field, The approach is similaf to
that of Szc. (3.5) for the hollow waveguide case, and applies for both
single and double slotted coaxial guide sectionms.

It is shown by Harrington that for a long narrow slot the field
' remains essentially either TE or TM depending upon the excitation [24]
This suggests that there is only a tangential component of the field on the
slot surface and in this case it is the ¢:polariz¢d E¢- Accordingly,
by virtue of equations (4.26) and (4.28), the slot field could be written

explicitly as:

E(b(b,(b,z) = T § § A Di‘(Kp b) c0s T exp(-Y g2 . (4.48)
r=0 s=1 rs

where D'(K_. b) is given by (4.17).
T Prsg » .
This expression is valid for both single and double slotted sections as

long as the appropriate coefficients Ars and K are used. Further,
s
the field on a narrow slot could be shown to take the form [25], [37-38],

[45] and [50].
Eo
Ed)(b,(b) = - _(bo <9< (bo (4.49)

2
/1-(9/4 )
which, when introducing the slot location ¢ and the z variation may

take the form
.EO(b,z) cosa
E (b,$,z2) = =~ o - ¢O < ¢ <o + ¢O (4.50)

¢
/1 - (&%

%
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where the factor coso 1is introduced here merely to adjust for the approp-
riate direction of the field as the slot location « varies between 0.0°

and 360° around the guide surface. Combining (4.48) and (4.50) gives

Eo(b,¢) cosq, ®  ® .
— = T I I ATS_D%(Kper).cos rd exp(-Yrsz) (4.51)
2 r=0 s=1
1 - (919
)
with a - ¢0 <d<a+ ¢0 for-a single slot
and
- < <
a - ¢, ¢ <+ b

THa - ¢y <O<THat ¢0 for double slots
with m + a replaces o in (4.51)

Multiplying both sides by cos ¢ and integrating over the slot (slots)

gives c
g — 1 -
Ey (b,z) f(a, ¢O) T IEO SEI Ars Dr(Kprsb) exp Y-rsz){ cos rd cosddd
0

(4.52)

where the integration on the R.H.S. is extended over the whole waveguide

since the field is zero on the metal wall, and f(a,@b) is given by
a+¢0
cos ¢ .
fla,¢6.) = cosa ( —_ d¢ single slot
0 I ¢-a. 2
O¢g¥1 - 03;—
0.
a+¢0 ﬂ+a+¢0
- cosa { coso d¢ _ J - cos¢ do
/T o-o. 2 _
a-¢ 1 - (LQ’. 'n'+oL-¢O /1 - [M]

double slot

(4.53)
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The integration of (4.53) is given by (3.61) as

fla,9q) = cosa P - T Iy (dy) single slot  (4.54)
= 2 cos2a ¢0 T Jy (9 ) double slots
Also, since o
J cosrt dcos $ddp= T 1 =1
0 A (4.55)
= 0 r#1

therefore, the integration to the R.H.S. of eqn. (4.52) is equal to zero
except for r = 1.

Combining (4.52), (4.54) and (4.55) one can show that

T [eo]
: — X A D!(K, h)exp(-v, z) (4.56)
¢OJO(¢O)4Nc03<x o= 181 Py 1s

Eo(b,z) coso

I}

where N =1 for single slot

2 for double slot
Substituting from (4.56) into (4.50), a closed form formula for the slot

field is finally obtained so that

Ey (b, 6, 2) I T A DK, b) —r (V157
’,Z B
¢ $gJ0(dy) N cos a s=1 1s 1Y015": /_____75:75_
0 (4.57)
The coefficients A are known through the analysis of Section$

1s

(4.3) and (4.4) and the values of Kp and Yls are all known accord-
1s .
ing to Sections(4.2.2) and (4.3.1). Thus equation (4.57) completely dete-
rmines the slot field. Some numerical examples for different parameters

are presented in the next Section.

4.6. Numerical Results for the Slot Field

With the aid of equation (4.51) the field on the slot(s) surface for

both the single and double slotted coaxial lines are evaluated for several
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slot parameters. These are presented in Figs,6 4.7 - 4,13 . 1In all
these figures the value of the slot field Eo is such that the constant
T of the incident wave function (4.18) equals unity.

The field preserves the same general features as noticed in Sec.
(3.6). The intensity decays as the slot location moves from the position
of maximum azimuthal field as is apparent from Figs. 4.7 and. 4.10 - for
single and double slots, respectively, It is also shown that for two
slots of different width- with all other parameters kept equal, one finds
the field on the narrower slot highér than that on the wider one. However,

the field integration J ds on the slot surface is higher for the wider
S

slot indicating higher bower radiation .into . space. This is in agreement
with the previous results of Sections (4.2.3) and (4.3.2) for both the single and
the double slotted Sections,respectively.

The operating frequency has 'a. strong influence on the slot field.
It is shown in Figs. 4,8 and 4.9 for the single slot, and in Fig.4.11 for the
double slotted section,that as the ratio a/A(g decreases the slot field
increases,indicating higher power radiation. This is again in complete
agreement with the results of Sections (4.2.3) and (4.3.2), which shows a
higher attenuation constant in the slotted section (i.e. higher power rad-
iation) as the ratio a/A0 decreases.

Finally, it may be instructive to compare the field of the two-slot
set located at ¢ = a and ¢ = o + 7 with that of a single slot located
at ¢ = a. This is equivalent to studying the field on one slot when
another slot is introduced diagonally across from the first one. Figs,
4.12 and 4.13 shows that there exists a moderate degree of interaction

between slot fields and that this interaction increases with the field
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Single slotted coaxial guide with different slot parameters.
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Fig. 4.8 . Slot tangential field E, versus the distance z along the
slot. Single slotted coaxial guide with different operating wavelength.
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intensity. Referring to Fig. (4.12) we notice that when another slot is
introduced at a/AO=O.2 and o = 0.0, the field changes by an average
of about 8%. This change reduces to about 3% for a = 60°. The change
also décreases slightly as a/AO increases (i.e. as the slot field decreases).
These results show that the interaction between slots in coaxial lines is
sometimes appreciable and should not be neglected.

In conclusion, the work of this Chapter covers the determination
of the possible propagating modes and the slot field of a single or doubly
slotted coaxial line for a TE11 coaxial mode excitation, The coaxial
waveguide is an important element in microwave communications, and the
results of this Chapter may prove to be useful in analyzing leaky wave
antennas supported by periodically spaced slots, or coaxial slotted lines
as multiple feeds for reflectors.

Now that the field .on the slot(s) for both hollow and coaxial wave-
guides has been determined, one may proceed to study the radiation due to
these sléts. This analysis as well as the possible utilization of the

results are the main study objectives of the following Chapter.




124

CHAPTER V

RADIATION CHARACTERISTICS OF

SINGLE AND CASCADED SLOTTED SECTIONS

The main objective of this Chapter is to investigate the radia-
tion characteristics of the axially slotted waveguide structure,from

the slot tangential field as generated by an incident waveguide mode.

There are many published works which deal with solving this type of

external boundary value or radiation problem [33], [35]. However,
the slot field is always assumed to be known. This assumption may
not be accurate in cases which attempt to utilize the slotted wave-
guide or coaxial line as a feed system for reflectors or radiating
elements; since the true pattern is still unkown. In Chapters 3

and 4 , the field on the surface of a narrow semi-infinite slot on a
hollow or coaxial waveguide was obtained. Practically, any slot on
the waveguide surface has a finite length. The ficld on the surface
of a finite slot may be different from the semi-infinite case studied
in the previous Chapters. Therefore, for a more accurate radiation

AN

characteristic, the modified field due to the slot finiteness has to

be investigated first. Once this field is obtained, the radiation
characteristics can be determined easily.through the well known tech-

niques [33]}, [35] ., [53].

In this Chapter, the field on the finite slots is investigated
for both the hollow and the coaxial waveguide. The problem is solved
approximately by including the reflections at the slot ends and retaining

only the first order reflection at the far end of the slot. This
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approximation is a reasonable one as long as the slot length is suffi-
ciently long. The reflections contribute to the slot field according

to the magnitude and phase of the reflected waves. The analysis fol-
lows the same steps of Chapters 3 and 4 where different wave functions

with unknown coefficients are assumed on both the slotted and the closed

sections of the waveguide. fhese coefficients are later obtained by
matching the tangential field components at planes separéting the two
waveguide gections. The slot field is then obtained by using the me-
thod of Sec.(3.5)and Sec.(4.5). Once the analysis of the finite

slot field is completed, the radiation characteristics of a single or
doubly slotted waveguide section can be obtaine& by using well known
relétionships. The remaining part of this Chapter is devoted to this
analysis and for investigating the effect of different slot and wave-
guide parameters on this radiation pattern. The technique adopted

here fol}ows'closely that of Tyras [53] for the treatment of an aper-
ture on an infinite circular cylinder. Since, in the radiation problem,
the boﬁndary conditioné for both the coaxial line and the waveguide are
identical, the treatment of the problem, as presented here, covers both

cases.

The objective of this Chapter could be divided into two different,

but inseparable problems. These are the determination of the finite slot

field and investigation of the radiation patterns of that field. The
following Section is devoted completely to the study and discussion of the
field on a finite slot. The analysis of the other problem, i.e of the

radiation characteristics, will follow in a later Section.
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5.1 Field on a Finite Slot

In the treatment of the axially slotted guide in both Ghapters
3 and 4 , the slot is assumed to be narrow and infinitely long.
From a préctical point of view, any slot always has a finite length.
This fact introduces additional complexity to the problem. At each
end of the slot the wave is partially reflected back, which modifies
the slot field according to the phase and magnitude of the reflected
field. Moreover, if the slot is too short TMnm modes may be gene-
rated, in addition to the existing TEnm modes. The problem is great-
ly simplified, however, if the slot is long and narrow. In this case,
the mode coupling is unlikely to be appreciable and the field remains
essentially TE in accordance with the excitation [24]. The reflec-
tions at each end of the slot however, remain and regardless of the
slot dimension may not be neg1¢cted. This 1is especially true-
near the cut-off frequency, where the reflection coefficient has an ap-
preciable value, as shown in . Sec. "(3.4.4) and Sec. (4.4.4). 1t
will be assumed, however, that the slot length is large enough so that
only the first order reflection at the far end need .be considered. That
is, all other reflections can be neglected without significantly affect-

ing the slot field.

In this Section, the finite slot field for both hollow and co-
aXial guide is studied assuming that the slot is long enough to sup-
press mode coupling. The reflection coefficients at the far end of
the slot are calculated by matching the field in the slotted and closed
waveguide sections in a manner similar to the analysis of Chapters 3

and 4. The reflected field is added to the previously calculated field
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in the slotted section to give the total slot field. In a later Section

the resulting standing wave pattern of the field is presented and is

analyzed.

5.1.1 Formulation and Field Solution

Let a dominant 'TEll mode be incident from region I toward re-

gion II in the slotted circular waveguide shown in Fig. 5.1 . Let the

]
II ‘ 111
|

c | e
z=0.0 _ 2'=0.0
Fig. 5.1 Finite axially slotted waveguide

mode function of the incident field be given by eqn. (3.21), which takes

the form
i .
o = T.Jl(xllp/a)cos o) exp(Jellz) (5.1)
where T is the amplitude of the incident wave function, X is the

11
first root of Ji(z) = 0 and

2 2 2
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Let the reflected mode function ¢r (in region I) and the transmitted

mode functions wt (in region II) be given, respectively, by

co (o0}

¢r =T . nzo mzl BnmJn(xnmp/a) cos n¢ exp(-jO__z) (5.2)
Wt =T . ZO ) AnmJn(Kpp) cos n¢ exp(-y__z) (5.3)
n= m=1

where B and A are constants.
' nm nm

From these wavefunctions, the field components in region I and
II are obtained using eqn. (3.26). In the analysis of Chapter 3,
the coefficients Bnm and Anm were obtained, and the slot field was

shown to be

8

a)exp(-y,.2)

Il ~1

A, K JI(K
1 1m Pim 1 Pim
v ¢ - a 2

AR

1 m
¢(a,¢,z) - ¢0JO(¢O)N cos ¢ °

E

(5.4)

The field in region II will continue to propagate as a summation

of different modes, each with a different attenuation constant as given

by eqn. (5.3). If the slot length is not too short, all but the first
mode will vanish as the.wave approaches the plane C' - C' (see Fig.

5.1). Introducing the coordinate transformation

where L is the slot length. This transfers the origin from the plane

C - C to the plane C' - C'. In this case one may write an expression
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for the first mode in region II as

..'Y A
11 (5.5)

,i= 1
¢ T'J (Kplla) cos ¢ e
where T' =T . Allexp(—yllsL). This first mode could now be considered
as an incident mode from region II toward region III. Let the reflected
wave function ¢'r in region II and the transmitted wave function w't

in region III be given, respectively, by

=~
il

] - 1] 1
T . nZO L AnmJn(Kpp) cos né exp(ymnz ) (5.6)

i)

t .
P! T . ZO . B! J(x_ 0/a) cos ng exp(j6_ z') (5.7)
n= m=

where Aﬁm and Bﬂm are constants to be determined. Now, using eqn. (3.26)
the field components in both regions II and III can be obtained .. The
tangential components of these fields are matched at Z=O.".
Employing the proper orthogonalities among the mode functions, and follow-
ing the same steps as those of Chapter 3 , one may arrive at the follow-

ing two equations:

oo
+ +
_nt - - 1 - -
Bnm Mnm szl nsQnsm * Qllm (5.8)
and
! ' u = t —
Bnm Mnm Zl Ananms Nlml (5.9)

+ +
where M~ -
nm’ Q

s and Nnms are given by eqns. (336), (3.44) and (3.39),

respectively. In order to obtain the slot field, one need only consider
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the case n =1 of both (5.8) and (5.9). For the modes n # 1 the
excitation is zero and, as shown previously, the respective coeffi-
cients are not needed to solve for the slot field. Solving equ -

ations (5.8) “and (5.9) for the n =1 case by eliminating the co-

efficients Bim and truncating the infinite series after an appro-

priate number of terms L gives

- — ' N - -
Q7 *Ny54) s QNG| A N1~ Qap)
. . . ' = -0
T CeTe e ) Ao (Nyp1 - Q)
) ) ‘ -
(Quip *Nypy) e e QNG D A (Nyp1 Q)
(5.10)

Upon solving eqn. (5.10) by simple matrix inversion, the coeffi-

cients A Al of the reflected field in region II are

1 1
All’ 122 " 1L

obtained. Substituting these coefficients in either (5.8) or (5.9) for

the n = 1 case, the transmission coefficients in region III, i.e. Bil’
BiZ . . . can also be obtained. Having determined the coefficients Aim’

one can easily find the slot field by following the same steps as those

of Section(3.4.4 ). It is simple to show that this field takes a form

similar to eq, (3.26) and is given by
0

LAl K JIN(K

r T m=1 1n P1m 1Y p

Es(3:9:2) = 555 7N cos o
000

a)exp(y ,z')
im

vV é - o 2

(5.11)

- _ . vt A -
wherc z z L and T T.Allexp( Y11 L).
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The total slot field Es(a,¢;z) is- obtained by adding (5.4)and(5.11)

and is given by

B . - T 1 t
Es(d,d),Z) - q) .] (¢ )N cos o . { Z Alpr tJl(Kp. ,a)
070 ‘0. 7 m=1 1m 1n
v/ b - o :
1-( )
)
N o~ _ , \ 1 ) 1
exp(-¥yp2) *+ Agyexp(=Yy L), mzl AlnKo; 1 Kp; 2
exp(-Y (L - 2))} o (5.12)
where . N =1 for a single slot

N=2 for two diagonally symmetrical slots.

The analysis for the coaxial guide is similar to .the
above method and uses the results of Chanter 4. Carrying out this
analysis , ome easily = arrives at two equations similar to eqns. (5.8)
and (5.9) but in this case Mnm’ Qism and Nnms are given by eqns.
(4.31), (4.38) and (4.34), respectiveiy. Here again the n = 1 mode
is sufficient to solve for the slot field, therefore one needs only to
determine the coefficients Aim and Bim' These coefficients are found
by solving the two equations in a way similar to ‘the procedure
followed in Chapter 4 . Once thc coefficients Aim arc known, the slot

field according to Section(4.5) can be shown to be

i o~1 8

Al DMK "

T T m=1 In 1( plmb)'eXP(Ylm g )

B (b,b,2) = ' -
¢( ©.2) $gJy (9gIN cos o

v b - o 2
1 -¢( )
%)

(5.13)
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=7z o L 2 T = .
where z!.= z nd T A11 exlf(Y.llL)

The total slot field Es(b,¢,z) is obtained by adding eqn.(4.57)

and (5.13), and is given by

. T : 1 , .
I:s(b’c'b’z) 9 Jo(d,IN cos o { 2 ‘Alm_foK b).
0 0 -/ & -« 2 m=1 :
P
0

<o

- - B -~ . ) b .
exp( Yin?) . * A exp( (17 W) nZI \Aim.Di(§p1m )_,
n= )

exp(-y, (L - 2))} (514)

where N

1

1 -for a single slot,

I

2 for two diagonally symmetrical slots.

Equations (5.12) and (5.14) give the field on the surface of a
finite slot of length L due to an incident TE11 mode. The results,
as presented in the next Section. show a standing wave pattern on the

slot with a phase velocity that varies primarily with the operating fre-

quency. This result,as well as the different factors affecting the field

patterns is discussed in the following Section.

5.1.2 Numerical Results of the Finite Slot Fields

The slot electric field, given by eqn.(5.12),(5.14)1is évalJJated
for different slot length ., widths and ratio a/lO. Some of the results
are given in Figs. 5.2 - 5.11. The.graphs clearly reveal that the wave-
length As‘ of the slot field, which is double the distance between any

two successive maxima or minima, is always greater than the waveléngth :
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Fig. 5.10. Tangential field Ey
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of the operating frequency AO' This shows that the wave is a fast

wave propagating with a phase velocity faster than the veiocity of

light. This comes as a direct result of the leaky wave nature of

the field, where there is always a power flow away from the structure
[14], [15], [28]. The figures show that as a/)\O approaches that of

the cut-off frequency, the waves become faster as indicated by the

longer wavelength Asf This implies that more power is radiated into

the free space. This phenomenon was noticed before in Section (3.3.2)

and Section ( 4.3.2) where it was shown that the field interior to

the slotted waveguide is attenuated faster as a/&) decreases. This

fast attenuation of the field indicates more power radiation outside

the structure. Further, comparing.Figs. 5.5and 5.6 for the slotted

hollow waveguide»or Figs. 5.19 and 5.1i for the slotted coaxial line;we see
that for :the: double slotted guide the wave is faster than for the single
slot case. Again one expects this result , ~since from Sections |
(3.3) and (4.3), the attenuation constant in the double slot%ed

guide is higher than that of the sinéle slotted one. The slot width

does not scem to have much effect on the velocity of the waves, as 1s

seen by comparing Figs. 5.2 and 5.5 or Figs. 5.7 and 5.10. More power
radiation in the wider slot case may be attributed to its larger sur-

face area, as discussed previously in Sections (3.2) and (4.2)

One also should point out that the slot length has its influence on

the slot field. Figs. . 5.2 and 5.3 or Figs. 5.7 and 5.8 show that

while the wave velocity is not affected by the slot length, the shape

of the field changes. It is, however, interesting to note that for

the particular slof length 05 AO‘ (Figs. 5.4 and 5.9) the field varies

slowly along the slot and has no ripples. The form of the field in
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this case resembles an exponentially decaying wave. This form was noticed in
Sections (3.6) and‘(4.6) when studying the semi-infinite slotted guide. In
This case one expects that the radiation characteristics of such a slot exci-
tation are closely related to that of a semi-infinite slot. Here again the
analyses and the results of this Chapter are restricted to narrow long slots.
In defining a narrow long slot the criterion of Silver [35] introduced before

on page 17 may be used. For a practical waveguide of dimension a/A0= 0.35 and

slot width 2°,the criterion leads to a slot length L determined by log10(82 L)22>1_

This determines the limits of validity of the present analyses. The numerical

examples presented in this Chapter are merely for the purpose of illustrations.

5.2 Radiation Characteristics of Axial Slots

In this Section the radiation characteristics of the slotted waveguide
in free space are studied. These radiation patterns present valuable and import-
ant information, especially when the structure is used as a radiating element to
meet certain specific requirements. Since the slot field is alréady known, the
radiation problem becomes simple. Application of the technidue presented. by Tyras
[53] will serve to fully determine the far radiation field every where in space.
In the following Section the radiation pattern of a single and two symmetrically
1oqated slots, as well as that for several successive slotted sections,is analy-

zed. The variation of the radiation field in both ¢ and & are plotted and

discussed.

- 5.2.1 Radiation Pattern of a Single and Double Axial Slots

Consider an axially slotted waveguide or coaxial line of infinite
length, as shown in Figs. 3.5 and 4.4 , with a TE11 mode incident from the

closed section ( region I in both figures ). Let the incident
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field be given by eqn. (3.21) for the hollow waveguide and by eqn. (4.18)
for the coaxial line. The resulting tangential field on the slot for
both cases is given by eqns. (5.12) and (5.14), respectively - These

can be written in the form

| 2 Pq q
3 1 1 gq=1 g=1
E (d,d),Z) -
[ ¢0Jo(¢O)N cos o

2
" d - a
1 -
( %0 )
(5.15)
where for the hollow waveguide
P =A K JI(K_ ~a)
1 P 1.
and {(5.16)
P' = A exp(-y,. L)A! K. J'(K_ a)exp(-y, L)
q 11 11 1q plq 1 1q 1q
with d = a, while for the coaxial guide
P =A, . D! (K. b
q 1q 1 qu)
and _ (5.17)

a=)
O -
i

o 1 ;
Allexp( Yi1 L)Alq.Di(Kplqb)

with d = b.

Define a function F¢(m,6) such that
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F¢(m,9) = J J E¢(d,¢',z')exp[—j(m¢' + Ko cos B z')]do'dz' (5.18)
aperture
where m is an integer, ¢' and z' are the local coordinates of the
aperture, and 6 and ¢ are the general spherical coordinates with
the origin on the cylinder axis. With the definition of F¢ as given
by (5.18), the electric and magnetic Hertzian potentials 7 j and Hz

(chosen in the z-direction) due to the aperture ¢ - polarized field

are given by [53]

Hg = 0.0
. om+1
exp(jK,.T) : ®© ('-J)m+ F, (m,0)
- _ 0~ J y ¢ exp(jmd)

2 . T G O .
2m Kowuo sin 6 m= Hm (Kod sin 0)
(5.19)

where d stands for the radius of the hollow waveguide or the outer
radius of the coaxial line. The radiated far electric and magnetic

fields are given by [53]

- . m -
E¢ = wKOUO sin © HZ s Ee =0
(5.20)
Hy = PL-E H =0
0 Ny ¢ ’ ¢

where no is the free space intrinsic impedance.

Now, using the slot field expression as given by (5.15} in eqn.

(5.18) to determine the function F, (m,0) ,one gets

¢
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L
1 ' '
F (m8) = ——F+— f P - ' ' '
59 oo G (e, 95) [ 221 q eXP(-Y1q2") * qzl Riexp(y) 2"))
0
exp(—jKO cos 0 z')dz!' (5.21)
where
a+¢0: .
flo, 0 ) = 1 exp(-jmé') do" for a single.slot
» 7y cos a P 5
I
0 94
a+dg T+t
.1 exp(-jmp") O exp(-jm$") :
" cos o t ————5 ) ’ - j o
V- “(r+a
=4, I - (975’25 T+a-bg SR T

0

for. a. two -diagonally
symmetrical slots
.Using the result of Appendix[C],the function f(a,¢0) is shown to be

equal to

o0, = ¢0J0(m ¢01W exp(-jma)/cos o for a“single slot

(5.22)
i ¢d%(m ¢01ﬂ

Gos o (exp(-jmo) - exp[-jm(a + mM])

for a double slot

Substituting (5.22) in (5.21),and carrying out the simple integration

in eqn. (5.21),gives an explicit expression for F¢(m,6). Using this
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"expression in eqn. (5.19) and with the aid of (5.20) the radiation

field can be written as

eXP(—jKOI’) J 1
E(b(r’ d) :e) = —IT"""""" '2'?1." coSs a R(‘b :a’m) S(B»Y,a) (5-23)
where
- L] 0 + -1
s(6,y,a) ={] P (exp[ - EJKKO Z:z = qu;] )
e=1 9 o 1q
-jK 8 - - L
' exp(-jKg cos L) - exp( qu )
¥ z P -(jK, cos 8 - v. ) ) (5.24)
q=1 0. 1q
and

R( wam) = ] e (-5)™) 3w ) . cos m(p - @)/Iy(0) - Hél)’(Kod sin 0)
m

(5.25)

As shown in Appendix[I],the summation over m is from 0 to <« for a sin-
gle slot. For the double symmetrically located slot, the summation is

over odd integers (i.e. 1, 3, . . . ),

Tﬁis expression gives the radiation field of a single or double
slot on a waveguide or a coaxial line. The expression contains the mul-
tiplication of two infinite summatiohs, one over q and the other over
m. It‘was shown in Sections (3.6) and (4.6) that the first few terms of
Pq or Pa is - suffieient to achieve . .. convergence. The summation o?er
m depends largely on 'KO d sin 6 (or d/ko) and Jo(m¢b). Since in
practice Kva or Kéb will always remain within the limit 0,15 < d/k0<0.5,

i.e. 0 < Knd sin 8 < w, the limiting values of the Hankel functions for

large orders and the Bessel functions for large amplitudes [51] are-
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m

Z Z_mm (1)' i o
/%m (P = <H (Kod sin 6) <

for larpe m

. 2 ; 2
Jo(m¢0) = V%m¢0 cos(m¢0 T/4) ﬁ-/%m¢0
This yields
Jo (méy) moemm 1

Hrﬁl)'(l(od sin ) /3y o m

which shows that the magnitude of the terms in the infinite summation
decreases rapidly for 2m > ew. This means that the first five or six

terms are actually sufficient to obtain satisfactory results.

It is apparent that the radiation field depends on several fac-
tors such as the slot parameters ¢O and ‘L, the slot location o and
Kod. It is worthwhile to throughly examine the influence of these para-
meters on the radiation pattern . The next Section is mainly devoted to

this task.

5.2.2 Numerical Examples of the Radiation Pattern

of a Single Slotted Waveguide Section

The radiation due to a finite slot,igiven by eqn. (5.23), is
evaluated for several cases in koth ¢ and 0 directions. Figé:.5.12—

5.14 'give the ¢ variation of the field for double and single slots,

respectively. The pattern of a single slot has a major forward lobe as shown

in Fig. 5.12 . This agrees perfectly with the results reported by Wait[33].
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Fig. 5,13 , Radiation pattern of a ginite slot in_the ¢-direction. Double
symmetrical slots: a/), =0.4,¢0 =5,a =(0.0, 180),c = 1.5
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Fig. 5.14 . £
slotted waveguide: a/ij = .5,¢O =5,a =(0.0,180°'),,,C

Radiation pattern of a finite slot in the ¢«difection.
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Fig. 5.16 . Radiation pattern of a finite slot in the 6 -direction.
Single slotted waveguide. L = 0.5)\0
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Fig. 5.19 . Radiation pattern of a finite slot in the 6-direction.
Single slotted waveguide, L = 10: 4,
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The fadiation pattern of two symmetrical slots as shown in Figs. 5.13

and 5.14 is worth further study. Inspection of the positions of maxima

and minima of these patterns and their displacement with the varia-

tion of frequency reveal quite an interesting result. Two slots act

similar to two dipoles, 180° out of phase and separated by almost 2a/ké,the
distance sepafating the two slots.It is known that the pattern of twa dipoles,
180° out of phase and at a distance £ from each other, is given by

cos(KOZ/Z cos ¢ - m/2) [55]. This pattern goeé to zero at ¢ = 90°

and 270°, and its maxima occur at ¢max= arc COS(AO/Zz)- For E/AO=0.8

one finds ¢max = 51.3°, 138.7°, 231.3° and 308.7°. The corresponding
case of two slots is shown in Fig. 5.13 for 2a/§)=0.8. The maxima

occur at about 54°, 126°, 234° and 306°. This resemblence of slot and
dipole patterns preserves itself as a/)\O decreases. However, és a/A
increases, the slot pattern Shows two extra lobes at ¢ = 0.0, 180° as
shown in Fig. 5.14. This may be due to the greater separation distance of
two interacting slots, where their mutual interaction decreases. As a
result, the back lobe of ~each . slot tends to appear. Nevertheless,

the location of the maxima still coincides with'the corresponding case

of two dipoles.

The patterns in a plane passing through the axis Z-, i.e. the
variation with respect to 6 are presented in Figs. 5.15 - 5.19 for

different slot lengths and a/ko_ One can see that each pattern has a

number of major lobes in the forward direction. Further inspection of

these figures shows that for every half wavelength along the slot each of
the incident and reflected waves generate one major lobe. Thus, for a

slot length SAO, the pattern has 6 major lobes. This is shown in
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Fig. 5.17. Similar cases are shown in Figs. 5.15 - 5.19. However, as

the slot length increases, the patterns tend to generate a distinct

main lobe with progressively reducing side lobes, most of which are

20 dBs below the main lobe. It is interesting to note that, for a

slot length of one half wavelength, the pattern has a major lobe with

a 3dB beam width of about 50° . The presence of a single lobe is obtained
when the slot is infinetly long [14]. This shows similarity of radiation
characteristics between the AO/Z and the infinetly long slot. The similarity
was predicted in Section (5.1) when the slot fields were evaluated and

plotted. The slot field in the AO/Z case was shown to vary along the slot

in a manner similar to‘that of an infinetly long slot. It is also. illumin-.
ating to point out that changing frequency steers the major lobe in space,
but preserves its general features as shown in Fig. 5.18 - 5.19. In the
following Section , further ‘investigation of the radiation pattern is pur-
sued. The radiation due to cascaded slotted sections are presented and

discussed.

5.3 Cascaded Radiating Slotted Sections

The radiation pattern of a single slotted section was analysed

in gection (5.2). It is apparent that with a single radiating section ,
both the radiated power and control of the radiation pattern is limited.

It is therefore advantageous to study the radiation characteristics of
several cascaded radiating slotted sections. The préﬁlem will be treated
“such that each section is a rédiating element placed along the z axis,whose

radiation pattern is already known. This is equivalent to taking the
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integration of eqn.(5.18) over all the slots on the waveguide wall.

5.3.1 Analysis of the Radiation Pattern of Cascaded Slotted Sections -

Consider the waveguide shown in Fig. 5.20. Let a dominant TE

11

mode be incident toward section (1) with a waye function given by eqn. (5.1)
as
it .
¢Cl)— T Jl(xllp/a) cos ¢ exp(Jellz) (5.26)
Cq a; Cy a, Cq
I L
: L ! L L l 15
¢1 e 1——%»{1 1 > € 2 > < A
—_— | i
) . —
%) !
a1 |
{ | .
' I [ -
l I
.. 2y G .3y C3

. . . '
. section 1 - section 2 -

Fig. 5.20

Let the reflected field at C1 - C1 be represented by the wave function
0 o«
r — - .
¢ =T ) ) B .y (Xp/2) cos né exp(-38_ 2) _ . (5.27)

n=0 m=l




and the transmitted field toward the slotted section be

t .
vo=T nZO mzl AnmJn(Kpp) cos n¢ exp(-y, z) (5.28)

At the plane a, - a the main remaining field is the first mode of

1 1’

the summation of eqn. (5.28) with its wave function-given by
wll =T AllJl(Kpp) cos ¢ exp(-ynz)

Now, at the plane a, -3 the field suffers another reflection as

previously analyzed in Section (5.1). According to that analysis,

. . T T
the reflected and the transmitted wavefunction ¢ '" and w'”, at the

‘plane a, - a,, respectively, are given by
P 1 1° P
r-:. evnl_ vy ¥V ¥ { Y rog nd e - AR
¢' T 'A‘ll*"r( YlliLl n:O mi,l A;\mJT‘l‘kpaJ cos ne -YP( Ynm( L P
(5.29)
t _ A i : s '
P! = T AllexP(—Yll‘L) Z X BémJﬁ(xnmp/a) cos n¢ exp(JOnmz )

n=0 mn=1
(5.30)
where z' =2 - L '

The field given by (5.30) will continue to propagate toward
tﬁe next section [ section (2) in Fig. 5.20]. B'1 is the only transmitted
coefficient that has an appreciable value and the rest of the coefficients
B' are very small ( with values similar to values of Table 3.9 ). Thus

one can assume that the field incident on section (2) of Fig. 5.20 is given

. by
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i ) . ,
¢(2) =T AllBil exp(-'Y11 L) exp(JGllL') Jl(xllp/a) cos ¢ exp(;@llz")
(5.31)

where 2" =z - L. - Lt

Now, comparing (5.31) and (5.26), one can see that as the field
crosses successive sections, each section modifies the field by a fac-

tor VZ givén by
YK = [AllBil exp(-Yll'L) eXp(JgJLJ){Z . (5.32)

where all the coefficients and parameters of (5.32) are those of the Kth
section, and L' is the spacing between the Kth and the £ + fﬂl slot,
The factors VK will then modify the radiation field given previously

by eqn. (5.23) such that for the Zth section it takes the form

0 exp(-JKyTp) 1
E¢ (r,4,8) = Yp 2T coS ap (V1V2 Vﬂ)
Rp(9,0,m)Sy (6,7,a) (5.33)

where R£(¢,a,m) is given by (5.25) and Ty and 6£ are given by

T, = /}3 + n? - 2r cos 6
r .
8, = sin_l(—g sin 8 )
. . i3 th
Where h is the ‘spacing between the first and the £+1 — slot,and r ,

6y are the observation point.

The function Sé(G,Y,a), however, is slightly different from the func-

tion given by (5.24). The analysis of Section (5.2), which led to
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eqn. (5.24), assumes a single slotted section such that once the field
passes this section it never reflects back. Thus the slot field in

this case consists of two components only. These are the transmitted

one at the plane C1 - C1 and the reflected one at a, - a; as shown
in eqn. (5.15). The  presence of another slotted section beyond

the plane ‘ay - ay causes a reflection at C2 - C2 back toward
a; - 2a; . At a; - ap;’ this reflected field will be decomposed in-

to two components. One component is transmitted to the slotted part of

the first waveguide section and the other is reflected back toward the second
section. The reflected component is negligibly small since it is the

result of two successive reflections between _al - a2_ and‘C2 - C2
It's‘value does not exceed 2% of the existing field (eqn. 5.31) for

a hollow waveguide of a/XO= .5,and 1% for a coaxial guide of a/AO=0_3
Therefore it -can . be neglected. The second component which is trans-

mitted into the slotted part of section(l) cannot, however, be ne-

glected. For the ﬂth section the mode function of this component

t :
wﬂ-(£+l) could be shown to be equal to

t _ , . .
Ve (eeny T 1T AppexpCoyyy 1) Byy expGO L] By expl0yyh D)

z z A' J (K a) cos p¢ exp(-y ( Lz)) (5.34)
p=0 q=1 pg P Pq

This field has to be added to the field of eqn. (5.29). This will
change the slot field such that the factor R{ of eqn. (5.24), which

was given by (5.16) or (5.17), now assumes the form
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Voo ) cn PP

Py = (A exp(-yyy WL+ (B] exp(38 L)) (B) exp(38,,10) |

£ : 4 L+l
[A! Ko, JI(K, a) eXP(-Yqsb)] for the hollow (5.35)
1q7P1g 1¥Pqq . 19 L waveguide :
~and ) ' _ f;if
D!(K_ b) replaces K J!(K, a)for the.coaxial guide
1701, P1q "17P1q

The radiation field of all sections 'can finally be written as

L exp(-jK r,)
= 0L 1
E¢(r,¢,e) - Zzl T, 2T cos ay (V1V2 Tt VZ)
R‘e(d).-";va’m) SL(G:Y)a) ’ (S°36)

where L 1is the total number of slotted sectioms, vﬂ, R£(¢, o,m)

B 1
and SZ

in (5.24) is replaced by its value given by (5.35)

are given by (5.32), (5.25) and (5.24), respectively,where P;

The magnetic field is readily obtained from eqn. (5.20) as

He(r,¢,6) = E¢(r,¢,6)/120 m ' (5{37)

This concludes the analysis of the radiation field of L cas-

caded slotted sections. Equation (5.36) is plotted for several parameters

and the resulting pattern examined in each case.
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5.3.2 The Radiation Pattern of * Cascaded Slotted’ Sections

Equation (5.36) gives the radiation field of cascaded slotted wave-
guide sections in" the far field zone. The waveguide diameter and the
dimensions of various slotted sections as well as the mutual location of
slots introduce a large number of parameters into the far field equation.

-‘All these parameters affect the radiaéion characteriﬁtics. " Detailed
investigation of their effects is too lengkhy and beyoﬁd the scope of this
Chapter. An attempt is made therefore to present the general features
of the patterns for a particular arrangement of the slotted sections.
which simulates an array of in- phase slots , located at a fixed

~azimuthal location a = 0. The slot length L and the axial distance L'
beéween‘suCCESsive slots is chosen such that the incident field:, on all
slotted séctions is in phase. Because of the reflected fields the slot
fields are not completely in-phase. However, if the reflected components
‘are §ma11 { which depends on a/ko),the‘Slot fields will almost havé the

:same phase distribution,

Fig. 5.21 shows the radiation patterns for two different arrays
of foﬁr and eight slotted sections. Since the slot fields are in phase,
the generél featﬁres of these patterns are similar to those of equi-phase
point sources [55]. Thus, the beam width of the main and side lobes de-
creases as the number of radiating elements increases. This is also
clear from Fig. 5.22 which shows the radia£ion pattern of 10 successive
slotted sections. It is interesting to note that the slot length
has considerable effect on the radiation pattern. Comparing Figs. 5.22
and 5.23, one can see that at the particular slot length L =0.5 g,

the back lobe is reduced and the radiation is mainly in the foward
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Fig. 5.21 . Radiation pattern in the 0direction of four and eight
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direction. This 1is possibiy due to the fact that if the incident fields
at the terminals of all slots are in phase, and if the values of [

and L ére close, then for any slot the two reflected components of
the slot field (discﬁssed in Section 5.1) will be out of phase and . -
almést cancel out. This leaves only.the incident component responsible
for forward radiétion. It is also worth mentioning that the results for
L =0.3 AO (with parameters of Fig. 5.23) show that the radiated power
of each section is about 5% of the power incident on that section. For
the same.parameters with L = 0.5 AO the radiated power rises to about
8.2% of the incident power. It is clear that each successive section

- radiates less power than the previous.one. In the general. case

the amount of the radiated power per section can be controlled by chang-
ing the siot’parameters. This opens a great number of possibilities for
design of slotted waveguide antennas with a variety of interesting appli-

cations. The problem is certainly worth "study.-and is left for future

investigations.

This concludes the analysis of the present Chapter for the radia-
tion characteristics of axially slotted hollow waveguides. The examples
présented here were for the hollow waveguide case. The results of the

coaxial line are similar and are not repeated.

It is advantageous to have a general look at problems discussed

throughout this thesis and the possible extension of this work to related

problems. The concluding Chapter is devoted to this purpose.
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CHAPTER V1
CONCLUSION AND DISCUSSION

The leaky wave radiation through an axially slotted waveguide
was studied throughout this thesis. The work was carried out for both
hollow and coaxial waveguides, each with 'TE11 mode-excitation.'

Several different electromagnetic techniques were employed in order to

solve for the slot tangential field. The integral equation formulation for

the slot impedance in the p direction was constructed. This formulation
was modified to allow for the determination of the slot impedance in any
arbitrary location around the waveguide. It was further extended to
cover the combined impedance of two symmetrical and diagonally located
slots along the guide wall. Following this, the transverse resonance
technique was applied to the waveguide cross-section in the transverse
plane (i.e. p and ¢ plane). To apply for this technique, the guide
cross-section was represented by a radial transmission line in the
po-direction terminated by the slot(s) impedance. When the transverse
resonance equation was solved, the propagating modes in the slptted
section of the waveguide (and coaxial line) were obtained. With the
knowledge of these propagation constants,'it was possible to set up a modal
expansion of the field with unknown coefficients in the élotted section
of the waveguide. A similar field expansion in the complete waveguide
section was assumed and the tangential fields were matched across the
plane separating the two guide sections. The resulting equations were
solved numerically to yield the unknown coefficients of the field.

In order to introduce the slot edge field‘condition an electrostatic

field solution was utilized. This static solution together with the
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coefficients of the electromagnetic field expansion as determined before,gave
an approximate solution for the slot field.

The obtained solution shows clearly the leaky wave nature of
" the radiated field. For example, in Tables (3.1-3.6) and (4.1-4.6),
one can see that the propagation in the transverse direction (p direc-
tions) is improper and the field magnitude is an ever increasing
function of p. This was also apparent in Chapter 5 when the finite
‘slot field was plotted and was shown to have a phase velocity faster
than the velocity of light. The ahalyses show that the propagation in
the p-direction is dependent on the geometry of the structure and not
on the frequency of operation. The slot width 2¢0, the slot orienta-
tion with respect to the incident field and the number of slots per
section control the value of §, and hence Kp. Stronger 1eaky waves
were observed with wider slots and with slots located at ¢ = 0.0. When
the structure was modified to have two slots along the guide wall, it
was shown that larger values of § were obtained and accordingly faster
waves were generated along the slot. One should also point out that the
TE11 waves are characterized by the strongest leaky wave radiétion,
and that higher modes have less radiation as is evident from the values of
§ given in Tables 3.4 and 4.4

The operating érequency seems to have two effeéts: it controls
the magnitude and phase of the slot field, and it changes the direction
of the main radiation beam in space. It is shown in Sections
(3.6) and (4.6) that as one approaches the cut-off frequency, the ratio
of‘the slot field to - the field value at the waveguide centre (p= 0)

increases. Because of this magnifying effect, it seems that the slotted

waveguide acts as a step-up transformer with a transformation ratio
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which depends on the ratio a/AO, This transformation ratio depends also
on the slot width 2¢O and on the slot location a. As an example, for an
incident TEll‘wave function with unit amplitude in a hollow waveguide, the
highest value of the field is at the origin and is equal to E¢a = 0.9205 V.
This guide with a slot width 2¢0 = 4° ,located at o = 0.0° will generate an
average slot field of approximately EOa = 2.2 V. at a/}0'= 0.35. At a/k0= 0.5
the average slot field drops to EOa = 2.1 v. as shown in Fig. 3.13 and 3.14.
There is, however, one point to consider when,varying the ratio a/AO. The
PRC at the interface between the slotted and the complete section rises
rapidly as a/kO approaches the cut-off frequency, as indicated in Figs. 3.6-
3.7 and 4.5-4.6. Thus one must choose a suitable operating point according
to these curves and avoid working too close to the cut-off point.

It is also interesting to notice that the transmitted field
in the slotted section is basically TE11 as is evident from the results
of Sections (3.4.4) and (4.4.4) . The slotted structure with the given
dimensions is not able to support higher modes efficiently. This makes the
¢ - radiation pattern a rather uniform one as was demonstrated in Chapter 5.

A far more interesting result was obtained when the field of
a single slotted section was compared to that of a doubly slotted section.
In the hollow waveguide case the field changes by about 2% on aveage, which
shows weak interaction between the slot fields. For the coaxial case the
interaction is stronger, though still small, and the change may rise to

about 7% . The interaction between slot fields of the same section is there-

fore weak and in most cases can be neglected as was discussed in Chapters
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3 and 4. This suggests that the interaction between successive sections
may as well be weak and can be neglected. This result is an important
one in as much as it allows the analysis of this thesis to be extended
to periodic  leaky wave structures. An example of pefiodic,structure consis-
ting of a successive series’of slotted sections was analyzed in Chapter 5.
The finite slot was also studied considering only the reflec-
tion at the slot far end. The slot field,when plotted, clearly reveals
its fast-wave nature. It was shown that for the particular case of a
half-wavelength slot the field variation is very much like that of
a semi-infinite slot as studied in Chapter 3 and 4. This was tested
further by inspecting the radiation pattern of this particular slot
length ,: given in Fig. 5.15 and comparing it with the infinite slot
‘as presented in reference [14].
The analyses was extended to a series of slotted Sections
forming an array of finite slots. The parameters of such an array can
be utilized to control,over a very wide range, the radiation field of
the array. It was shown that when the phase. of the slot fields are
adjusted such that they are all equal, the radiation pattern tends to

have the same characteristics as those of .a system of equi-phase point

sources [55]. One more advantage of this structure was demonstrated in
Section (5.3.2) . It was shown that about 60% power radiétion was achieved
for the case and parameters of Fig. 5.22. Extending the structure with
several extra sections or changing the geometry of the slots will lead

to very little power being carried to the far end of the structure. This

reduces any possible mismatch problems, and provides an advantage over other

radiating structures.
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A comment on the accuracy and range of validity of the results
is due . The stability of the numerical part of the analysis was tested
by increasing the number of terms and then examining the magnitude of the

coefficients. There were basically no changes in their values and the

solution was found to be quité stable as. presented in Section (3.4.4),
Tables 3.11-3.12 and in Section (4.4.4), Tables 4.11-4.12 . The

computational time to obtain these coefficients ‘was very small and never

exceeded 1 second on the IBM 370/157 computer model. The computation

accuracy was tested by . substituting-.back these coefficients into

their respective equations and calculating the balancing error for each
equation. The error was in all cases less than 10—5 in a single
precision calculation, which shows an acceptable degree of accuracy.

The analytical part of the work is restricted to narrow and
long slots since both the slot impedance and the static field used to
introduce the edge condition are valid only in the narrow aperture limit.
Further, for wide or very short slots mode coupling may arise and the
analysis presenfed here may have to be modified to include the TMnm

excitation.

Suggestions For Future Investigations

Several interesting and challenging topics have arisen during

the course of this work. The first and most related problem is to

investigate the case of the multi-slotted waveguide. This can be done

by studying the equivalent slots' impedance terminating the transmission
line representation of the slotted guide,then proceeding as in Sec.(3.3) and

Sec.(4.3) . This may provide extra control over the radiation pattern

especially in the ¢- direction. A second interesting problem would be to

analyze the axially slotted guide for TM excitation. In this case the slot
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tangential field is comprised of two components,E¢ and EZ ,and if their
relative magnitudes sétisfy the McCormick relation[57] one may design a
simple and efficient feed line suitable for spherical reflectors. A third
problem would be to investigate the circumferentially slotted waveguide
having TE11 excitatioﬁ. The slot field in this case will also have both
Eg and EZ field components. Thus, to achieve a prescribed pattern in
space one may use circumferential slots or a comBination of circumferential
and axial slots placed in succession.

A further problem is the tapered slotted Qaveguide, where the
guide diameter is not constant but varies in the axial direction. 'This
is necessary if it is required to maintain a variable main angle of
radiation [6].

In most of these cases, as long as mode coupling does not exist,
an integral equation.formulation for the slot field can be constructed. This
formulation involves a scalar Green's functién similar to the analyses of
Section (2.5). The solution, however, has to be investigated and it depends
on the individual problem.

A problem that may be challenging is to investigate the wide axially
slotted waveguide under TE excitation. In this case the mode coupling is
certain to arise. The application of the scalar Green's function may not be
valid in this case. One has to resort to fhe vector Green's function form-
ulation, which makes the analysis highly complicated.

Finally, one may study in more depth the radiation problem of
cascaded slotted sections as presented in this thesis. The parameters
involved in the radiation equation (5.36) and their possible combinations

are numerous. An optimization problem is likely to provide a variety
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of patterns that may be important in feed lines and antenna designs.
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APPENDIX A

TRANSVERSE RESONANCE EQUATION

Consider the system shown in Fig. A.l

I
—_—
+*
- W Z
Zin i t

Fig. A.1 = Transvrese resonance circuit

Zt is a terminating impedance and Zin is the input impedance of the

system looking in the direction shown. Applying Qhm's law one gets
V=12 I (A.1)
If the network is source-free, then V 1is also equal to

V=~ 7, I (A.2)

in
Thus
Zt I=- Zin I
which yields
Z, + 2, =0 (A.3)

which is the resonance equation of the system.
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APPENDIX B

ELECTRIC FIELD AND MAGNETIC POLARIZABILITY
OF AN. AXIAL SLOT IN CYLINDRICAL WAVEGUIDE

In a cylindrical structure with an axial slot, it could be
shown that the modal currents at the metallic surface and the elec-
tric field on the slot for the TE11 case are related through the
relation [25]

. q)o .
Il(a)hzl(a,¢) = nzo f?;(a)hzn(a,¢)hzn(a,¢')E¢(a,¢')ad¢'
—¢O n#l

(B.1)

where

€
hzn(a,¢) =V/§% cos n¢

f?;(a) = ?n + Yn (looking in the direction of
increasing p)
= ' - !
1,(a) = I}(a) - I}(a)

Ii(a) and Ié(a) are the modal current of the first ‘mode at p = a~
and p = a+, respectively, and

(1)
N K Hn (Kpa)

n jwua

(B.2)

('
Hn (Kpa)

X Jn(Kpa)
3 1
n jwua Jn(Kpa)

<t

{(B.3)
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<>
In order to diagonalize the above kernel Y(a), a set of static

admittances is introduced: as follows

2
Y (a) = o B
nst? T 7 jwun (B.
so that
-ﬁi(a) T (a) -~ 0 for =n >> K.a (B
n ns P -

Using (B.4) in (B.1) and following the work in reference [25]

one can show that for small ¢0 s

fo2 1 1 1

0

The magnetic polarizability of the slot MZ could be defined
as [25]

¢
1

jwe z71 zl

0
J pXEt(¢)ad¢ = =—— M1Ih_ .(a,0) (B.

..(bo
which by using (B.6) in (B.7), can be shown to have the form
K ‘
2 1
(7 s ' (B

Kp 1n(2/¢0)

=
I
YT

(B.

4)

5)

6)

7)

.8)
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APPENDIX C

EVALUATION OF THE INTEGRAL (3.6)

The integral I(n) is given by

I(n) =
Now, let

I,m) =
and

I,(n) =
“such that'

I(n) =

In the
let

Zx —

1 cos(xn¢o) . 1 sin(xn¢0)
cOSs no’ ————— dXx - sin no —_— dx
J /1 2 ) J v 2
e - X , ‘ Y 1-~-x
(C.1)
1 cos(xn¢o) -1 cos(xn¢0) 1 cos(xn¢0)
—_——dx = - ——ee— dX + —————— dX
v, 2 V. 2 v, 2
21 1 -x 0 1 - x ) 1 -x
(C.2)
1 sin(xn¢0) -1 bsin(xn¢0) 1 sin(xn¢0)
——dx = - —— dx + ———e——e dX
Vl 2 v 2 v 2
A - X 0 1 -x 0 1 -x
(C.3)
cés no Il(n) - sin no Iz(n) (C.4)

first term on the right-hand.side of both (C.2) and (C.3)

= -X

thus
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1 cos(xn¢0) 1 cos(xn¢0) 1 cos(xn¢0)
Il(n) = —— dx + —— dx = 2
v 2 v 2 v 2
1 - x 1 -x 1 -x
0 0 0
(C.5)
1 sin(xn¢0) 1 sin(xn¢0)
Iz(n) = - — dx + - dx = 0.0 (C.6)
vy .2 V.2
1 - x 1 -x
0 0
The integral (C.5) is known [48] and is equal to
1 cos ax s
———— dx = E—JO(a)
v 2
1l - x
0
Thus one finds
I(n) = W%{n¢(9cos no. (c.7)

e ‘//_\\'.

dx
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APPENDIX D

CALCULATION of SLOTS CONDUCTANCE and SUSCEPTANCE

Fig. D.1 Symmetrically double slotted waveguide

Consider the slotted waveguide shown in Fig. (D.1). The struc-
ture could be regarded as a radial transmission line with the slots

acting as terminating admittance at p = a as shown in Fig. (D.2.)

Ys= Gs+ JBS .

|
|
|
|
|
.
p= a

Fig. D.2 Transmission line representation of the

double slotted waveguide

The transverse (to p)fields for the TE case (TE to z) are

given by (equation 2.11)

E (p,0) = ngo V(e (p,0) (.1)
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H(p,9) = ] I (0h (p,0) (D.2)
n=0
where Vn(p) and In(p) are the voltage and current modal amplitude
respectively, and are related by [25]
(2)
KP Hn (Ka)

- Yn N jwua H(Z)'(Ka) (0-3)
n

<
E

=]

>
with Yn the admittance of the nth mode looking in the direction

of increasing p at the slot (p = a), and the mode functions

e (0,6), h (p,$) are given by [25]

£ .
h - /,_%1_ cos nb hon = 5 2 sin ng
k5 P
(D.4)
€n cos no
e =20 s e, Tf— ——
zn éon W P
for which the fdllowing brthogonality relation holds
(D.5)

27 N
{ (hmxaben)pd¢ = amn

0

SLOT CONDUCTANCE

The conductance portion of the equivalent circuit which ter-

minates the radial transmission line can be calculated from the

relation [25]

6, = p/lv| ? (D.6)
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where P 1is the radial power flow per unit length and V1 is the

mode voltage of the n = 1 radial mode at the slot. The power P
is given by

a+d T+o+0
0 *> 0 *>
Re{ E x H.apadd) + E x'H'.apadd)}

vl
i}

u—¢0 ﬂ+a-¢0

a+¢0 T+O+¢

* 0 * >
Re{( J E¢Hz + E¢Hz)apad¢} (D.7)

a—¢o ﬂ+a-¢0

From (D.2) and (D.3) we have

H,(0,0) = } I h (p,9)

nz zn
n=0

8

]

o~1
~<¥
<

h, (0,$) (D.8)

Using (D.1) and (D.5) Vn is readily obtained as

i
It~
=

2m N N
( hn(p,(b)x.abﬁt(ﬂ,‘b) ad(b

2m 5
[ h, (p.¢)xaze, (p,9)add
0 0

=V (D.9)

The integration on the left hand side of (D.9) exists only on the

surfaces of the slots. Upon simplification, Vn becomes
a+¢0 ﬂ+u+¢0
V (a,0) = J h, (a,0)E (a,¢)add + [ h,, (a,0)Ey(a,0)add

u—¢0 ﬂ+a+¢0

(D.10)
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Substituting anack in (D.8) gives

. o+ ' ﬂ+a+¢0
Hy(p,0) = ] Vb, (a,0)[ J Eghn(a:01)add! + J
n=0
a—¢0 w+a—¢0 :
E¢hzn(a,¢’)ad¢'] (D.11)

the power P wusing (D.7) and (D.11l) becomes

o a+¢0 w+u+¢0
P = Re{ngo YL J Ey(2,0)h_(a,0) + 3[ - Ey(a,0)h, _(a,6)]adg
@‘¢O ﬂ+a—¢0
a+¢0 T+o+¢ :
[ J By (2,00, (a,¢") + I Ey(a,0')h, (a,0")]adg!}
a—¢0 ﬂ+a-¢0
(D.12)
The conductance GS .. by virtue of (D.6), (D.10) and (D.12) is given by
a+¢0 ﬂ+a+¢o 2
G =P/ J hzl(a,¢)E¢(a,¢)ad¢ + [ | hzl(a,¢)E¢(a,¢)ad¢
a-¢o w+a—¢0
(D.13)

with P given by (D.12).

SLOT SUSCEPTANCE

To calculate the slot susceptance, it is shown in . Appendix[B]
that the slot tangential field is related to the current discontinuity

at the slot,I,and the slot dimension, ¢0,‘by the relation
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-1 fo2 1 i 1 ,
jwe K

P 2avm 1n(2/¢0) V.2 2

E¢(¢) =

for the case o = 0. For any arbitrary location one may assume the
field to vary with a factor of cos o. This is in agreement with the

type of excitation,TE It is to be noted that the factor cos a

117

will adjust both the amplitude and the relative sign (i.e. direction)

of the field. Accordingly,

K 1,
_ 1 0.2 1 o cos O
D TSRS s BT g
0

(D.14)

Where the expression has been modified to the slot location
0 - ¢y <¢<ar+ ¢0 .The modal voltage of the n = 1 mode at the slot was

given before [eqn. (D.9)], and is equal to

27
— * +‘
V1 = J h1 x apEt(a,¢)ad¢

0

a+dg ﬂ+a+¢0
h;lca’(b)gp X Et(a.’d))add) + [ » h;l(a,(b)'

a—¢0 n+a—¢0

ap X Et(a,¢)ad¢

* a+¢0 > *
= h_ (a,9) ay x E (2,0)adp + b (a ,mr0)
o-¢,
mHot¢
a) x E(a,0)add (D.15)
-

0
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Now, the integration

o+

0.
In = J ap X Et(a,¢)ad¢
a-¢0
o+
o102 1 | cos o St e
jue'K” s Tn(2/6 ) s 0
agy  1- &Y

.Upon substituting u = ¢-o then y = u/¢0 the integration on the

right hand side becomes

1 1
_y - 4y . 2[sin‘1]é m
V. 2 vy, 2
Z 1 -y 1-vy
y=- 0
Thus
o+ K
> -1 cos a ., 0.2 1
a x E_(a,$)adp = — |I_| D5
0 t jwe ol oo Kp 2 1n(2/¢0)
a—¢0
(D.16)
cos a . ;
But = hzl(a,¢), therefore (D.16) could be written as
VT
a+d ) ,
> _ Z
J a, x E,(a,$)add = 365“1u| h,,(a,a)h%; (a,0) (D.17)
a—¢0
with
K
_ . 0.2 m 1
M, = (Kp) 2 Tn(2/%,) (D.18)
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Substituting (D.17) in (D.15) taking into consideration that due to

symmetry ]Ial =| Iﬂ+a| one may write
MZ * *
V1 =_Ioc %—E{hzl(a,a)hzl(a,a) + hzl(a,mon)hzl(a,moc)} (D.19)
so that
Ia -jwe cos2 o COSz(ﬂ + )
v, - IB T /(vﬂ + = ) (D.20)
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APPENDIX E

INTEGRATION OF (3.25) AND (3.28)

Consider the integral

dy + oB
y y

1 J_(ay)Jd_(By) 1
n’ J ol J 3 (ey) I (By)y dy (E.1)
0

0

where o and B are constants. Using integration by parts applied to

the second term of the right hand side one finds

" dy + afy J_(By)J} (oy)}

5 Jl Jm(ay)Jm(By) 1
I =m
oB 0

0

1 1
- a J In(BY)y Jp(oy)a dy - o I I (By)d (ay)dy

0 0
2 (1 Jm(OLY)Jm(BY) 1
= q Jm(B)JI;l(oc) +m J " dy - o [ Jm(By)Jr;l(ay)dy
0 0

2 2
- o J oy I - 51}7 J (ay) - (1 - —Ig—z)Jm(ocy)}dy
o’y
0

(E.2)

where the Bessel equation
2
z J" + z J' + (z2 - mz)J =0
m m m

has been used;
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Collecting terms in (E.2) gives IaB in the form

1
Iy = @ J (B} (@) +va2 J y I, (BY)J (ay)dy

0

which by interchanging o and B modifies to
) 1
- 1
Ig =8 J,(@Jp(8) +8 J y I, (ey)Jd (By)dy
0

Equating these two equations, i.e. (E.3) and (E.4), gives

1
[ y 3, (0y)J_(By)dy = [8 J_(0)J1(8) - o J_(B)I! ()]1/(a” - 8

0

Now consider the integral in (E.5) for
i. o is a root of Jé(u) =0

Thus, from (E.5) we have

y 3 (ay)Jd_(By)dy = — 2

{1 B I, (@3 (8)
(@ - 89
0

Substituting this value back in (E.3) gives

5 J (@I (B)

I = B ——F
aB (az _ 82)

(E.3)

(E.4)

%

(E.5)

(E.6)
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iii.

iv.
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If both o and B are roots of Jé(z) =0, a# B, then
the integral in (E.5) is zero, which upon substitution

in (E.3) gives

IaB =0 (E.7)
If both o and B are roots of J'(z) = 0 and o = 8 then
by a simple limiting process of (E.5), or considering di-

rectly the results presented in [51], one has

1 2
[ yJ;(ow)dy = ~;—(1 - %)Ji(oc)
o

0

which upon substituting back in (E.4) or (E.3) gives

az m2 2
Iau = 77{1 - QEJJm(a) (E.8)

For o and B being any two constants, other than the previous
cnes, one finds
o 8 3, (@3I1@B) - 8% o I (B ()
1 1 1 1

IaB =

(0t2 - 82)
(E.9)
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APPENDIX F

MAGNETIC POLARIZABILITY OF AN AXIAL SLOT IN A COAXIAL GUIDE

In order to show that the magnetic polarizability of the slot
in the coaxial line is approximately the same as in the hollow waveguide,
one has to consider first the analysis of Appendix- [B]. The same-steps and
equations as given there are applied in the case of the coaxial line,
except for equation (B.3) which here takes the form

K D_(K b)
n = _ _ P n-o
Yn(b) T [Kp Dﬁ(K ) (F.1)
p

>

where Y;(b) for both the coxaial line and the hollow waveguide is

identical and given by (B.2), and Dn(Kpb) and DA(Kpb) are given by

(4.17).
The kernel .?E(b) of equation (B.1), namely
Yoy = Yuep) + Yob)
may be written here as
K D, (K ) Hﬁl)(pr)

R0 = -5k D, (K;b) Hrcxl)'(Kpb)] )

Using the asymptotic values of the Bessel and the Hankel functions

for large orders gives [51]
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J_ (Kb)Y'(Ka) = (g)n _ﬁ%
Ji(Ka) Y(kb) = - (BT L
J! (Kb)Y' (Ka) = %(%)n ﬁ
J1(Kb)Y' (Kb) = D" Lo
and
m{Y (kb = -j/%(geg)n(l(b)_n
) - +j‘/?r?(‘2‘eﬂ)n(l<b)'“‘l for 1 >> Kb

Substituting the above expansions in eqn. (F.2) gives

K Kb 2n Kb
_Y*"(b)z— p[p (c +1)+p]
n juubt n 2n n
(¢ - 1)
where ¢ = b/a.
But since
2n
c_*1., n>>1
2n
c -1
therefore (D.3) becomes
2
2K
YY) = - F

jwun

(F.3)

(F.4)
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Equation (F.4) is identical to equation (B.4), Therefore, the
steps and the results that follow there are applied here, and the
expressions for E¢ and Mz’ given by (B.6) and (B.8), are valid

expressions for the coaxial line case.
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APPENDIX G

EVALUATION OF Z'(Kpb)

From equation (4.7) we have

D! (K b)

- n_p

1 K~ KD (Kb
o oPpn (Kb)

with Dn(Kb) and Dﬁ(Kb) given by (4.17). Now

<> <
K Kb
dZ( pb) ) 821( 0 )
aK ok
b p

jwub {Ji(cz)a H(z) + bJY(cz)Yi(z) - aJE(z)Yi(cz) - in(z)Y"(cz)}

Kp Jl(cz)Yi(z) - Ji(z)Yl(cz)
(G.1)

where the relationship

Ji(cz)Yi(z) - Ji(z)Yi(cz) =0

has been used, and the subscript Im has been dropped for typing convinience.

Also, the derivative of the slot impedance has been neglected [25].

Simplifying the expression (G.1l) gives the required derivative

>
of the Z(Kpb) as

3Z(K_b) G, (cz)

0 _ . wpb 1 1 1
BN =i - Gy o0 )
P Kpb = cz s z €z

(G.2)
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where Gl(cz) is given by (4.32) and Cl(cz) is given by (4.17).
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APPENDIX H

EVALUATION OF THE INTEGRAL (4.30) and (4.33)

Consider the integral

2 (€ dy . 2 |©
I=n J Cplzp)C(ty) 5+ 2 ‘J Cplz YIC (ty)ydy  (H.1)
1

1

where Cn(zy) and Cﬁ(zy) are given by (4.17), and znm'and C satis-
fies the condiction (4.20). In the following analysis all subscripts
will be dropped for typing convgnience. The integration of equation
(H.1) can be written as |

2 (€ 1 ' N
I =Y'(2)Y'(t){n J J(zy)J(ty) ;-dy + zt J J'(zy)J' (ty)ydy}

1 |

; [ C
+ J1(2)3" (1) {n° J Y(zy)Y(ty) %dy vzt J Y' (zy)Y' (ty)ydy}
1

1.

I

' C
- Y'(z)J'(t){n2 J J(zy)Y(ty)

c
dy + zt J J'(zy)Y' (ty)ydy}
1 1

c
- Jv(z)Y'(t){n2 '[ Y(zy)J(ty)

c
dy + zt l Y (zy)J ' (ty)ydy}
1 1

An integral similar to any of these four integrals has been carried out in
Appendix[E],but with different limits. The result of these integrals

upon simplification becomes
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[
1=z J y C_(zy)C_(ty)dy | (H.2)
1

where the function Cn(ty) is given by (4.17). Apparently both

Cn(zy) and Cn(ty) satisfy the Bessel differential equation, namely

2

zz._._dw+z§ﬂ+(zz-n2)w=o (H.3)
2 dz
dz
Thus letting
U = Cn(zy) and V = Cn(ty) (H.4)
one finds
2d% . a2 2 2
Y —m*ry g+t @y -n)u=0
dy y
and
245 av 22 2
y —2—+y—55,—+(yt -n)Vv=0
dy

Multiplying these equations, respectively, by V/y and U/y, their

subtraction gives

C
° - % J Y Cu(zn)C (0)dy = [yt C (zy)C}(ty) < vz Cy(zy)C, (9]

1

The second term on the right hand side is zero at both limits, which gives




199

C
J y € (zy)C_(ty)dy = —5—3——§{c Cn(CZ)Cﬁ(ct) - Cn(Z)Cﬁ(t)}
1

z -t
(H.5)
Accordingly, using (H.5) and (H.2) one finds
zzt
I = ;E—t—zi{c Cn(cz)Cﬁ(ct) - Cn(Z)Cﬁ(t)} (H.6)

Consider now the two cases:

i. t 1is a root of eqn. (4.20), different from z. 1In this
case both Cﬁ(ct) and Cﬁ(t) are zero, and the integra-

tion is zero.
ii. t 1is a root of eqn. (4.20) and equal to z

Letting t = xz, and considering the limit as x = 1, one
finds

X

1 - x2

I = lim. z {c Cﬁ(cz) (I (xcz)Y'(xz) - Y'(xcz)J'(xz2))

x~>1

+ C_(2) 1 (' (x2)Y' (x2) - Y' (x2)J" (x2)) }

1 -x

where the second term is always zero and I reduces to

1

I =- 5 cz Cn(cz){cz J"(cz)Y'(z) + z J'"(cz)Y"(z) - cz Y'"(cz)

J'(z) -z Y'(cz)J"(2)} (H.7)
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Utilizing the Bessel equation (H.3) in (H.7) and simplifying the

results one finds

I_zz{Z , L2 1
=5 lc (1 - [J(ecz)Y'(2) - Y(cz)I'"(2)]™ - (1 - —§J

1
2 2)
cz z

[J(cz)Y'(2) - Y(cz)J'(2)1[I(2)Y'(cz)~Y(2)T'(c2)]} (H.8)
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APFENDIX I

DERIVATION OF THE SUMMATION (5.25)

Consider the summation

oo Jo(m¢0) (_j)m+1

S = exp[jm(¢ - a)]

m=-o J0(¢0) Hél)'(KOd sin 0) -

-

Choosing the»pth and the -pth terms one finds

I (pdg) P+l I (-pby)
_“0'P% (-3) : 0'P%
S - eXP[JP(‘b - CX.)] + Jo(q)o)

P ol 1 (ko sin 0

- Pt

(1)1 exp['jp(¢ - 0‘)]
Ho," (Kgd sin 0)

This equétion can be simplified by the following characteristic

relations of the Bessel and the Hankel functions [51]

and
) @ - exp(ipm(D (2
1" ()
__p B

[exp(-jm) 1P

1’ 2
=2

(-i) %P

(I.1)

(1.2)

" (1.3)

(1.4)




That is, by substituting (I.3) and (I.4) in (I.2), it reduces to

o Tty (-3)P*

= . 2 cos[p(¢ - )] (1.5)
P 0% 1Y a sin e)

Thus, the summation S of eQn. (I.1) can be modified to

J (mg) (i)™

= — cos m($ - a) (1.6)
m=0 " J (¢O) H&l) (Kpd sin 6)
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