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The talt¡1cntial fielcl on thc surfacc of a n¿rlrorv axial slot on

the rvall of a hotlow t"avcguide or a coaxi¿¡l lillc due to an incicìent

TE., excitatio¡t is obtaj-¡red, Thc sLot length is initially assuned toI1

be scnri-infinite i.n lengtli, but thc results ar.'e then cxtenricd to a

fj.nitc stot by inclucling the rcflc.te¿ fi"tcl at the sJ.ot far end. The

¡rropagating nocles in the slottcd guide are obtainecl by usilrg the

t::ansverse resona¡lcc nìethod. A nodal expansion of thc fields rvjth

unknorvn coefficic¡ìts in both slotted and cornplcte sections of the guicle

are assutncd,and the continuity of the field componcnts at the plane

separating the ttso sectio¡rs is utilizecl to obtain two matrix eqrrations

for the unknotvn cocfficicnts. Thcse eqtrations are solved to dctermine

the lequire<l cocfficicnts. It is show:r tllat these coeffjcicnts

togethcr rvith the slot static ficld can be uscd to obtain a clo-<e.l-

form solution for the slot tangential ficld. the solution satisfies

thc eclge conditions and is valid only for narroiv slots. An exanrination

of the results shows that the slot field is localized, which allows the

extention of. the solution to successive slottcd sectio¡ls. Using this

approach a solution for thc field of periodic leaky vrave structures is

prescnted.

::i!l
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CHAPTER I

INTRODUCTION

lhe ever increasing progress of the communication

technology is continuously demanding more sophisticated and precise

devices to achieve efficient convoyance of inforrnation. Antennas, the

matching clevices betleen ttr" ,yrt"ms.tralÌsmitting or receiving

signal and the free space, have always been the subject of extensive

research work. Among the most widely used antenna structures in micro-

rvave communication are the slotted waveguides and the slotted coaxial

1ines. These two structures have found numerous applications in both

microlave systems and antennas. As antennas tlìey are used in multiple

feed systens for cylindrical, spherical and conical reflectors [ 1-6],

or as a broadband balun transformer for matching the balanced antenna

impedance to the unbalanced coaxial fèeci 17l,

The axially slotted waveguide is a structure capable of

supporting leaky r\raves along its aperture. As the l^Iave travels doln

the structure, eneTgy leaks in a prescribed direction through the

aperture. Extensive analyses of the leaky wave nature have been made

in the past decade. These u/aves were first pointed out by Marcuvitz

I8l in 1956. The treatment of guided waves along open structures r^Ias

further established by Tamir and Oliner [9]. The influence of the

guided leaky rvaves on the radiation pattern tnias treated by Collin [10 ],

Hessel [11], and Tamir and Olinet [I21. It is shown by several authors

I13-151 that these waves are characterizeð by a complex propagation

constant K" = B, + iaz (rvith tirne variation exp (-.ir,rt; ) along the

structuïe. This shows a continuous leakage of energy as the trÍaves



1

travel along the z direction. The wave is a fast wave lvith a phase

velocity faster than that of light (i.e.Bz < K0). A direct result of

this condition is that the Isavenumber in the transverse direction p

takes the form K = ß--icr_, which shows an inproper wave travelling inppp
the p-direction with ever increasing amplitude. It should be emphasi-zed,

holever, that the radiation from the leaky wave antenna is essentially

confined to certain regions and that the solution is restricted within

this regionll3l-t14l.The leaky wave radiation is normally in the for-

ward direction [14]. However, in oorl= colventional stluctures such

as waveguides with dielectric rod or guides ernploying plasma or

ferrite structures, radiation could be achieved in the backward region.

This is demonstrated in the work of Clarricoats et aIt16l-[17],Trivel-

piece et aItf8l-[f9],and Tanir and 01iner [20].

The particular leaky wave problem of the axially slotted

or coaxial line waveguide has received limited investigations in the

past. Collin IZI-l tras calculated the characteristic impedance of a

slotted coaxial line. This was subsequently used by Duncan in designing

a broad-hand balun[7]. Quite recently the characteristic inpedance

of the partially fi11ed slotted hol1ow and coaxial guides have been

numerically calculated by Hatsuda lZZ1. The possible leaky modes

supported by the slotted structure was first investigated by Runsey

[23] rvho obtained a variational expression for the complex propagation

constant of the field interior to the rectangular slotted waveguide.

Harringtonrusing a similar variational expression,solved the problem in

the cylindrical waveguide case I24). Later in 1960, Goldstone and

0liner [25] ernployed the transverse resonance method based on the

knorvledge of the slot impedance. Their work agreed well with the work



of tlarrington l24l for narrow s1ots, but showed discrepancy at wide

slot case due to the approximation involved in their exprcssion.

Recently, Clarricoats and Slinn I26] solved the same problem numeri-

calIy by matching the fieLd expanations in three regions (assuning a

finite thickness for the waveguide). The condition that the determinant

of the system vanishes,allows the determination of the wave number.

Iìowever, in all these cases the slot field was usually assumed to have a

certain suitable form and was never calculated. It is the main

objective of this thesis to obtain this slot field and investigate

its behavior for various slot and waveguide parameters. Initially the

slot is assumed to be seni-infinite in length and be excited bI a TE'

incident mode.

As nentioned previously the problem of determining the slot field

has not been attempted before. The form of this field and the parameters

influencing its intensity, distribution and the radiated power may

be important to many microwave, antenna and communication engineers.

Assuming TE' excitation, an exact integral equation formulation of the

slot field could be obtained similar to the work of Chang and ltlu [46],

and Wu [47] for the circumferential slot in coaxial guides. The solu-

tion of this integral equation, horvever, may be difficult to generate.

Therefore, one may look fol other suitable techniques to tackle the problem

The solution presented in this thesis is a quasi analytical solution,

wliere thc problem is solved by a combination of analytical and nurnerical 
.,.....r,,-,:,

techniques. In Chapter 2 the different modes supported by the

structure are obta;.ned using the technique <.rf Goldstone anci Oliner 
I

[25]. This technique is laier modified to allorv the solution for any

single and double symmetrical slots with arbitrary slot 
i.;,,.-t:,t



locations. In Chapter 3 the fields in both the slotted and the complete

sections of the ho11ow waveguidc are expanded in their respective modes

with two sets of unknown coefficients. Matchi-ng these fields on the

plane separating the two waveguide sections converts the continuity

condition into tlo sets of infinite equations. These two sets of

equations are cast in a matrix forn and are solved togcther to yield the

required unknown coefficients. l\rhen these coefficients are obtained,

it is shown that for a narrow slot the coefficients of the TEr* modes

in the slotted section are sufficient to determine the slot field.

Using this particular set of coefficients one can arrive at a closed

form solution for the tangentiat component of the field on a narrow

s1ot. In Chapter 4 the same technique is applied to axially slotted

coaxial waveguides, and the slot field is obtained in a manner much

similar to the method used in Chapter 3. The solution for a finite slot

is presented in Chapter 5 by considering the reflection at the slot

far end. l\Ihen this field is obtained, one can study the radiation

characteristics of a finite slotted waveguide section . This is

carriecl out in the second part of Chapter 5 and is extended to successive

slotted waveguide sections. It is shotvn that the results obtaine<l

compaïe well with the li¡nited data.avaiLable in the literature on slotted

waveguides Ifa], [33J, [35 ] -

T¡e work is concluded in C.hapter 6 by a general discussion of

the results and possible extensions of the work to other related

problems.
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CHAPTER I I

LiTERATURE SURVEY

2.I. Introduction

The problem of slots on the surface of a waveguide is as old as . :,

the waveguicle itself. It was first utilized for two major objectives;

toprovidemeanSofentryintothewaveguidetostudytheinterna1fie1d,

such that the presence of the slot does not influence the original field :',:',,;,,,

configuration to any great degree [36] and to study the radiation due " 
l

,,-,. :,i

to the tangential field on the surface of the stot. This field, horvever, :

in most earlier work was assumed to be known I33l-[35].

Quite recently, rvith the increasing interest in communication

technology, the problern of coupling between internal and external

fietds of a waveguide or coaxial cable tlirough holes or slots has

received a rather thorough investigation[37-41]. As mentioned before nost

of the work dealt with either sma11 holes on the outer surface for which a

perturbation approach rvas employed [4i] or a circumferential slot on the outel

sheath for which an integral equation was developed for the tangentia 
t,,r,t,,,,,,

slot field 137-401 '

ïre axial 1y slotted waveguide, a stnlcture which is capable of ,',,-',,:','

supporting leaky waves along its surfa."[tS-r5]nas draln some attention

Tecently because of its possible use as an efficient feed source

for conducting reflectors [ ]--6 l . lr¡lost of the work done in 
,1 

r,.,,,.,

this area, Itolever, dealt rvíth the possible pïopagating modes inside the

strucrure 123-271 or along the surface of the finite slot 142-431

Since the knowledge of the propagation constant inside the slotted 
:

waveguide enables one to gain considerable knowledge about the leaky tvave 
i:::,.;:



field, determination of this constant is thus essential for any further

analysis of the field either inside or outside tlìe slotted waveguide.

Rumsey [23] in 1953 has established a variational expression for the

propagation constant y which has been used by Iìarringtonl24l for both

TE and TTt'l cases. Goldstone and 0liner{25] employed the transverse

resonance t,echnique rvith an equivalent susceptance for the slot to obtain

an explicit expression for y. Their nethod was quite accurate for narrow

slots, but sholed discrepancies from the measured results and fron that

of llarringtonrs for wicle slots. Finally Clarricoats and Slinn solved the

problem numerically by matching the fields on both sides of the slot 1261.

The result of their work is reported to be in good agreement with the

experimental results of Goldstone and 01inerI25l. The scattering para-

meter technique has also been used by Chen[27J, which yields an expression

identical to Harrington's variational expression.

In order to gain a better understanding of the problem, the first

part of this Chapter deals, in some detail, lvith the work of I'larrington

as well as with that of Goldstone and Oliner, and Clarricoats and Slinn.

In the second part the integral equation approach for the tangential

fiel<i orì a narrow circumferential slot is presented. It is shown that

the static solution as obtained by Hurdl3Tl and ChangI3Sl is a fairly

acceptable solution for the electric field as long as the slot is quite

narror,r, a result which shal1 be used in later clìapters to arrive at a

closed form formula for the axial slot field. The integral equation

formulation is exact. However, the solution presented is limited to

narrow slots. For rvide slots the solution may not be valid since the

basic assumptions are violated. In addition, mode coupling is highly

probable, in which case the formulation of the problem itself may no

:: :: :'::'. ' fi::.:tÌ¡



longer be accurate.

With these limitations in mind, t^/e now proceed to present tlie

different anaLytícal solutions for the propagation constant of an axially

slotted rvaveguide as discussed b¡' Harringtorrl24l, Goldstone and 01iner'[25],

and Clarricoats and Slinn t26l

2.2. Variational Technique

Consider a rectangular waveguide with an infinitely long axial

slot of width w cut on one of its sides as shown in Fig. .2.I . Rumsey

has shown that a stationary expression for the propagation constant y

is given by [Xl

I

I

-1-
t

I

--f

- 
_û_>x
-.r

þ o:=o.o

Fig. 2.I Slottei rectangular Fie. 2.2 Slotted cylindrical
waveguide

r''
waveguide

{Eftii-uel+Elr¡ i
y-z z' z-y FI 

e)Ìdz = ov' (2.r)
-w/ 2

where the superscript e and i refer to the external and internal

fields respectively. For the cylindrical cross-section of Fig. 2.2

the cxpresqion could be shown to be l29l

{er{urt-Frze)+Er(tl*l -ro")}aç=o (2.2)

exirression for the field in the outside region to be in the

i*o
,_00

Assuming an

form

l"
tl

aa
+

I



ao

ur" I o, ó) ;b
n=o n

ru(1) {roo) cos nþ (2.3)

is the external z component of tl're magnetic fie1d,

first kind of orderis the ljankel function of the

is tl're Fourier coefficient,

the complex propagation constant in p direction given

where

Hl to, o)

uji) {x, o)

b
n

Kp

))*ã*t-

The coordinates

magnetic field

H;(e,O) =

g, S and 0 are as
0

r-rI f o, O) can similarly

oo

I a J (K_p) cos n0
^ n n'O''n=u

shown in Fig.

be assumed as

(2.4)

2.2 The internal

(2.s)

n,

1S

by

=K2
0

with J' and un being the cylindrical Bessel function and the Fourier

coefficient respectively.

Using Maxwellts equations and assuming constant electric field on

the slot in the azimuthal direction, Harrington has obtained the coeffi-

cients un and br.,. By substituting the results in equation (2.z),he has

arrived at an expression which,for the TE modesris given by

æ J lK aì Il(1) rx rl 2 sin nó
I e* f_,l--!.-- nr,r,o' I (--i)z=0 (2.6)

n=o n -tn(Koo) u{''J'(Koo) n

where e_ is the Neumann number. This equation gives K^ as a functionnf)
of the waveguide radius a, and the slot half-angle 00. It has an

infinite nunber of solutions each corresponding to a waveguide mode



s imi 1ar

Ka is
p

one can

to those of a closed circular waveguide.

nearly equal to a closed wavcguide nlodc

set

Thus assurning that

constant Kn,nr,

where ô is a small complex

Hankel functions around Kn,n

order in ô, one can arrive

(2.7)

nurnber. Thus expanding the Bessel and the

a and retaining only terms up to the second

at an equation of the form

Ka=
p

K a+ô
nm

^162 
* ulô * uo = 0

where a0, aI and ^2 are constants which depend on J

manner determined by the form of the excitation I24l and

is known, y can be found using the relation

'tf-o)
y = - iollfrcrÐt @/Dl' - (2n)"

(2.8)

and Hnn
[28]. Once

]-na

6

(2.e)

rvith À_ being the operating wavelength.
0"
'lhis technique adopted by llarrington is quite general and has

several advantages over the technique used by Goldstone and 01inert25].

It retains terms of the order ô2 which nakes it valid for both narrow

and wide slots. The stationary characteristíc of (2.6) in relation to the

typc of the assumed tangential slot field also adds to its advantages.

The expression, however, has a najor disadvantage. For small slot half

angle 00, it is insensitive to the variation of the slot location o.

Regardless of the change in the integration inteTval, one obtains a

solution whích is always the same as the solution for the case c! = 0o

(or o, = 180o). This particular problem is discussed later in Section

(s.2.r) . ,:r!:1!l



Because of this drawback, it becomes necessary lo resoït to another

technique, rvhich may be less accurate but more adaptable for arbitrary

slot location. This technique is the transverse resonance method used

by Goldstone and 0liner[25] . Because of frequent use of this technique

in the early stages of this thesis, a comprehensive review of their work

is given in the next Section.

2.3. Transverse Resonance ltlethod

In this method the cross section of tlie structure is represented

by a transmission line network. The resonance of this network yielrls

values of K^ and hence y for the travelling wave structure. Quanti-p

tatively the resonance of a network occurs when the irnpedance looking

in one dilection is ccluzr I and opposite ill sign to the inrpecì;rnce:

looking in thc opposite direction as discussed in Appendix tA]. Thus if

a network representation of a structure is set in p direction, then

according to t15l i

+- -'Z+Z-0

or equivalently
<-->Y+f=g

(2. 10)

I

_-_-___>

I

I

L
I

I

+-
I

Z+

t__-t_
-------Ð L

I

i,Ì .,: , 'i), i:il r;

p = 0.0
I

0=a

Fig. 2.3 Direction of viewing the impedance
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where Z and Y represent the

The arrows to the left mean the

direction of decreasing p and

in the direction of increasing

inipedance and the admittance respectively.

quantity Z or Y is viewed in the

an arro\{ to the right means viewing them

Q, as shown in Fig. 2.3

2.3.1. Radial Transmission Line N{odes

In general the field inside a waveguide can be expressed as a

product of two functions. The first is a function of only the coordinates

along which the transmission line representation is effected. It is

cal1ed the modal amplitude. The other function, which is called the mode

function, is usually independent of the modal amplitude coordinates IZg] .

In the treatment of the pïesent problem, Goldstone and 0liner [25]

modified the mode functíon to permit it to be a function of p which

is taken to be the direction along which the network representation of

the slotted waveguide is set.

The transverse (to p) field can be represented by l29l

e.{0,ô) = r v;(p) ";(p,0)n
vlcol ulro,ot

(2.1i)

H.(0,0) = r r:(e) rrlco,o) * rlcol r.'lCo,ol
n

where the z dependence exp(-yz) has been dropped. In this equation

e(p,þ) and h(p,$) are the mode functions and the superscripts e and

h rcfcr to TM and TE modes respectively. V(p) and I(p) are the

modal anplitudes such that flCOl and VlCo) satisfy Bessel's different-

ia1 ecluation

hr fu (e ä) . (*3 +rr r'!r = o

'p'v;
(2.12)
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\2

Furthermore

dVn . -..¿
ãõ- = -: (Kp

din ..--¿
dp- = -: (Kp \/

n

2n.-a)
p

2n--a)
p

ztn rn

,UN

(2.r3)

,r€'0n

,,2
1 -^p

;.' - ,up
"0n

L/zeon= ry ß', - 
5r' ,fån =

*', - 
þ"

(2.14)

The mode functions and their orthogonality relations are given elsewhere

l2sl.

2.3.2. Transverse Resonance Applied to Slotted Cylindrical l\raveguidc

The slotted guide shown in Fig. 2.2 could be represented by

radial transmission line of length a terminated by an admittance y

which ís due to the presence of the slot (see Fig. 2.4).

P = 0.0 P=a
Fig. 2.4 Transmission line ïepresentation of the slotted waveguide

If Y,(K-p) is tire admittance of the radial transrnission 1ine,rtp

the transverse resonance equation may be written as

where arrorvs on admittances

admittance. Consider tl-re

(2.1s)

indicate the direction of observation of each

TE' case, il(KO") is given by t29l

irtxo")*lr=o
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Ír{roo) = - rfzu!

Using equations (2.i1) - (2.I4) or referring to references [25], Ï281,

Ír{rou) is given by

K J1(Koa)
Ír{xo") = # -T-J, (Koa)

Substituting back in (2.15) and with tire knowledge of the slot

adnittanc" Y,, one may solve for *O using a suitable perturbation

technique, which will be given next for future reference.

2.3.3. Perturbation Solution for the ltrave Number

As has been discussed in Section (2.2), the wave number in p-

direction K^a can be set equal to a corresponding waveguide mode numberp

plus a small complex nunber as given by equation (2.7), which is rewritten

here for convenience as

Ka=K a+6pmn (2.7)

The transverse resonance condition of equation (2.10) can be written as

(2.16)

(2.17)

(2. r8)

ãtxoo) = o

lvhere

and from equation (2.16)

?*ou) =2r{rc0Ð + R, - jx,

å,{xou) =-ïü #ffi
i:rt::.:.i::; )Ì i.:'l
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the functions R
s

and X arc givcn by

R=
s

G
s

G-+B-
X=

s

B
s

G-+B-
s

where G and B
s

Expanding

arc the slot conductance and
s

(2.7) about Ktl., i.e., Xll,

susceptance respective ly.

it gives

?*ou) =?Krr") * ô?(Krr") = Q

where the prime denotes differentiation with respect

simple to sholv that

to *pu. Ir is

where the derivatives of

TElt mode ô reduces to

- oua

R and s are neglected [25]. 1¡u5 for the

<=r- --- - (Krr") 2

Zr(K.,ra) = ----- .T-¡r i(Ktra)' K^
u

x

. (Krrt) 2

(Krrr) 2 - t

where

I
tx

s

I
+jRÌ-s (2.1e)

X, = -Xr/(t¡ua/Ko)
I

and R, = -Rr/(r,lpa/K')

The complex pcrturbation 6 cannot be fully knoln before the slot 
"9i-

ttance Y^ is calculated. This problem is quite involvecl. One may employ

such methods as the integral equation method, thc equivalent static mcthod

or the transformation method. A comprehensive account of these metltods

can be found in the rvork of Schwingerl3ll, lr{arcuvitz[29], and others.

In the follorving Section a brief account of the integral equation method

is presented. Tlre clctails may be found in refcrences [25], i281, l.2gl and[31J



2.3.4. Aperture Admittance
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Refe

G of the
s

1_(J-
c

rring to Fig.

TEtt mode can

f00 r00t. dó IJ4o J -Ao

))

be

an express].on

written as l25l,

for the slot conductance

128) and Appendix [D]

dO' Er(a,O) G"(a;0,0') r*(a,0')
(2.20)

where e*(a,0) is the electric field on the slot and

tr cos nQ

I f:- n"" uo(a,o)do l'

oo 
stl ll lt{r Y-(a)h (0)h (0')}

n= 0 tt ztr' zrl'

H(1) tK a)n 'p
;rÐã;n 'p'

It
þ=

zrL

^1u, = ----z
Toua.

, Jn (n0o) 
tzI Jñõ;t I

(2.2r)

(2.22)

be stationary

its correct

(2.24)

Gt'(a,0,0t) = Re

r.vi th

-+ll
vr, (a)

Eo=t/

which is derived from the integral

one finds

(2.23)

equation solution given in Appendix [B],

K

= ---8-_
Joua

The expression for the conductance can be shown to

with respect to the variation of the aperture field about

value [25]. Using the static slot electric field [37-38]

ó
I

n=0 ¡ujr) {rool ¡2

The susceptance portion of the equivalent circuit can be calculated

from the follorving equation [25] and Appendix [D]

@/ öù2
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1(r

,, -tr{" rru,=Ét,. nrCu,o) hi (a,o)

is the modal voltage of the

is the discontinuity in the

is the magnetic polarizabil
)

îT K-o 
1z 7' rrorw

(2.2s)

n = 1 mode at the slot

modal current of the n = I mode

ity of the slot given by [25]:

(2.26)

of equation (2.25) is given in Ap-

, the slot susceptance is readily

(2.27)

equation (2.19)

ly determines both

given in reference

where

vrt

tt
It

N,I
7

M=
a

p

A brief account of the derivation

pcndix llf l. Now, using (2.25) and (2.26)

obtained as

I' K^ .
* = js = -jure(ü)' 2 Ln(2/þo)
Vt5

A straightforward substitution of (2.24) and (2.27) in

deternines ô, rvhich together r^rith (2.7) and (2.9) ful

*O and Y. Further details and numerical results are

l2sl.

This method has several aclvantages. The slot impedances of many

structures have been thoroughly studied and are either available in the

literature or easily derived using known techniques, which makes the

nlethocl applicable to variety of structures. AIso, when the perturbation

techniquc is applicd, a relatively simple and expticit expression for ô

is obtained which saves a substantial computational time compared to

Harringtonrs method. Furthermore, the expression can be modified as

will be sholn later allorving a solution for different slot locations to

be derived. Tre tecirnique, holever, has its disadvantages. For the
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case of rvide s1ots, the results may not be accurate enough because of

the pert-urbation procedure used and due to the lumped sr:sceptance analysis

performed in the small aperture limit. This particular drawback, however,

has no effect on the work of this thesis. In all the analysis to follow,

it is assumed that the slot is quite narrow, and thus the work of Qold-

stone and Oliner may be utilized. In defining the term narrow, the criterion

adapted by Silverl35l is used.This states thar the slot is narrow if

2 logru +iåtlì >> l. This <lefinition witl be use<l throughout rhis work.

The nunerical solution of the problen is presented next. The

proccdure is sinrple and straightforward, brrt the computationat task is

trenendous a¡rd has its disadvantages as will be discussed lateï.

?A ComDutcr Method of Determinin the P aqation Constant- of Slotted

lVavegui de s

In tiris rnetltod a field expansion in three regions is assumed. fte

configuration of the slotted guide and the three regions are shown in

Fig. 2.5

Tire electric and nagnetic fields in the aperture plane of the dis-

continuity are expanded itr terms of nornal modes appropriate for the

region. Applying orthogonality relations at the surface of the clis-

continuity converts the discontinuity equations into trvo sets of infinite

III
ó

- --0
0=o'o

- - .--,h
'0

I

Fie. 2,5 Thick slotted cylindrical rvaveguiCe
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equations. They are truncated after a suitable number of terms and the

resulting finite sets may be solved together for the propagation constant.

In this analysis Clarricoats and Slinn 126l adopted the modal

repïesentation introduced by Goldstone and Oliner 125] described in the

preceeding section. The modal functions for the TE modes assume the

following expressions

i) Region I

vlcol = oÍt' *oo J;(Kee)
lruo

?
K-

p

rlcol = ojt) .rn[*oo)

ii) Region II

vlcol =

ilrol =

rvi th
p - trrlþ0

iii) Region III

,{,cot = oÍ') þ 
*oo n,lt' ' (Kpp)

p

rlicol = oÍ') It(1) troo)

where notations are the same as those of the previous Section, and Ar., and

B- are unllnown coefficients. Applying the condition of cont-inuityof
n

FIa atboth e=a and p=¿+r{ withinthedomain -00.Ô.00 will

yield a set of four homogeneous equations in the four unknowns A(i) -'h '
oj'), uj') and oj'). The condition that the determinant of the

^j" ä rcoot.ii(Kpp)

p

oÍ" up(Kpp).Ë Y

n

. (2)
D-l

. iÐ Yo (Koo) ì

n

o 
(Koo) J
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system should yanish permits the evaluation of the propagation constant

Kp. Clarricoats et al 126l using this approach has solved for the TO'

case 126l and has obtained results which are in good agreement with the

reported experirnental rcsults of Goldstone and 0liner [25].

Further details on the numerical procedure as well as numerical

results are given in reference f,261. The metho<ì, however, suffers from

several dralbacks. The numerical procedure is quite tedious and time con-

suming. Irforeover, for narror.J slots only the first term n = 0 of the

field expansion in region If can practically be assumed since for higher

orders the order of the BesseI and the Neumunn functions becomes very high

In this case the Q variatlon of the field in region II becomes nurnerically
insignificant,which makes the overall expansion insensitive to the variation of
the slot location. More serious is the parameter w, which is the wi.dth of

the window in Fig . 2,5 The final expression apparently depends on w

which makes the evaluation of the propagation constant y a function of

an uncontrolled paraneter. Thus by using different values of w one

obtains different values for ô. Even though this may seem logical, an

application of this method reverals that as w approaches zero its

solution for 6 does not yield the expected solution obtained by the Harrington

-or the Goldstone and 0liner methods.

For the above reasons, together with the discussion of Sections

(2.2) and (2.5), the technique adoptecl by Goldstone et al l25l proves most

suitable for the work of this thesis ancl is used later for the analysis

of both the hollow and the coaxial slottcd rr'avcgtridcs.

The renaining task of thj.s Chapter is to present thc integral

equation technjque used in solving a closely rclated problcm. The problem
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in question is to obtain the field on the surface of a circumferential

slot cut in the outer sheath of a coaxial wavegui<le. Several authors

Ilave attempted this problem using different techniques [37 : 40], [44] and

1451. lhese techniques are not, hor^rever, Telated to the problem of this

thesis, t¡erefore only tire formulation of the integral equation for the

aperture field j,s presented. More specific details on tire techniques

used a¡rd on the numerical results are given in references 137 - 40],

[44] and [4s]

2.5.

Consider a coaxial cylinder of infinite extent with inner and

outer radii a ancl b rcspectively and a circumferential slot of

wicltlr 2d on tlte outer sheath as shown in Fig. 2.6

I

Circumferential slotted coaxial waveguide

+d
-d

Circumferentia

Fig, 2 .6
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Let the relative pennittivity,'of tÏrc.inner region be.e, and assune

that the exterior region to be free space. An incident TEI\Í current mode
', -j(trtt - K.a)

of unit amplitude is assumed in the form i e " , where K- isaz
the wavenumber in the dielectric in the z-direction.

In the coaxial regionrthe Q conrponent of the magnetic field can

expressed in terms of the tangential electric field at the aperture according

146l - l47l as

be

to

I'iO(p, z) =

iK z

(vrAr)
m=u

rd

f r- (b , z')G ^(pizi,,z 
r ) dzt

J-¿ L v

-, orto) om(b) "i\^lz'z'

- Jn(ß*a) uf 1) 
te,no)

(2.28)

[ = 12M//r a

(2.2s)

0n,(o) = J, (ßro) u[1) tor')

Gù(P;z,zt) =- (nb)-i

iKb
L

n

I
¿Tr p

lvhere

and

with ß

is tlie

Gc(P; z,z') 1

2

n, = 2(r,ßr)-2 t(1 - {ce*01)/.12 co*ul l

vn= $:- ult"

rn being the cut-off wavenumber of u nb*

intrinsic wave impedance of the interior

In the exterior region 0 > b, , one has

mode and

region.

-il( b rd
II*(o,z) =:- J_oor(b,z') 

Go(o;z,z') d.z,, rìg

f
uÍ1) (up)

cos [o( z -zt )lda
u Hå'r (up)

wh ere
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and

u=(rd-o')\=

no = 
''2or 

Q

.1L
iça' - rcfi)''

An exact in

(2.28) and

and g=b

rd
I

J-¿

tegral

(2.2s)

AS

Ez(b,

equation for the

and the boundary

aperture field can be obtained from

conditions at the aperture |rl . ¿

z') [Gc (b;z,z'1 * .-1 co(b; z,zt)fdzt = #*-æ exp(iKrz)
a

(2.30)

The solution for this equation may not be sinple, and it depends usually

on the approximations involved. For the axially slotted waveguide, it

is possible to fornulate a similar integral equation. However, because

of the different limitations and dimensions, the solution may not be easily

feasible as in the' case of the circumferential slot.

In the next Chapter a totally different approach for solving

the problem of hollow and axially slotted rvaveguides is attempted. Based

on the knowledge of the different propagating modes in the slotted wave-

guide as presented in Sec. (2.3) in conjunction with a scattering

teclinique, a closed-form formula for the field on the apeïture is obtained.

It is shown that the technique coulcl be extended to multi-slot

loadings as well as to otller structures of interest such as the coaxial

waveguide. A comprehensive analysis of this problem will be presented

in a later Chapter.
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CHAPTER

FIELD SOLUTION ON TI-IE APERTURE OF

;:..j: t:|::a'a :'1:i l t : :'::¿.:::.!r'a1:t:.

III

A HOLLOI\I SLOTTED WAVEGUIDE

3.1. Introduction

The ultimate aim of any antenna structure is to radiate (receive)

the electromagnetic power in a prescribed manner ,from certain directions

in space To this end the distribution of the field on the sur-

face of the antenna is of prime inportance since the knowledge of this

field gives the external field everywhere in the space (the uniqueness

thcorem) .

'lhus in order to investigate the form of the radiation from a

slottecl waveguide, the electric field on the slot has to be known. This

electric field will vary according to several factors such as the type of

excitation, the slot width and orientation, and the dimension of the wave-

guide.

In this Chapter an attempt is macle to solve for the tangential

electric field on a narrow axial slot on the surface of a hollow wave-

guide, due to an incident dominant TE' mode. For simplicity the slot is

assumed to be long compared to the wavelength; such that no coupling

between modes (TE and TM) may occur.

Extending the technique presented in section (2.3) to cover any

azimuthal slot location one may solve for different modes supported by

t5e structurc. Basecl on these modes a scattering problcm is thcn forntu-

lated at the interface between the solid and the slotted sections of

the waveguide. lvith the enforcement of the boundary conditions on the

metallic walIs of the structure a closed-forn formula for the tangential

electric field on the aperture is obtained. The solution is then extended

to tvaveguicle sections with a set of two identicaI slots,symmetric with
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respect to the origin (i.e. 180o apart),but arbitrarily located on the guide

surface. It is of interest to note that because of the highly tocalized

nature of the field of each s1ot, as evident from the results of this

thesis (Sêc.3.6 and Sec. 4.6) and also reported in reference [3S], the

result may also be extended to several successive slotted sections. This

allorvs a solution of problems such as the periodically slotted leaky

tvave structures, or thc penetration of an external field into an inter-

rupted shielded cable.

3.2. Propagation Constant for Axially Slotted lJollow lVaveguide tArbitrary

Slot Location I

:i:ia:ü11",'.jûi*ii

the

the

Consider an axial

slot location shifted

slot angle being 2QO

ly slotted waveguide as shown in

A,n angle cr from the reference

and semi-infinite in length.

Fig. 3.1 with

angle 0 = 0,

ll
tr

-J-rl
l,
\r

t_

I

ï
I

Fig. 3.1

I

z=0.0

Axially slotted waveguide with arbitTary slot location

Application of equation

region for the slot conductance

(2.20) for the TE,

G, yields
I case in the slotted

Í"--: '- Lï: d0' e*(a,0)

G

uo
f0*00

'J o-oo
hr, (a,0) dó

G" (a;0,0') Er(a,0' )

(3. r)
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with

and

But

Therefore

G"(a;Ô,0t) = Re

lìzn (0)

co
- -+ll
{I Yla)^ n- -

n=u

cos nS

ll lt
hzn (0' ) hrr, (0 ) Ì

/an={- ¿'Ï

_>t I

Y
n

K

(a) = jriã
II(l) rr orn tp'

;GTl- 
".,n 'p

since t',"r., {O) is real , tiren

G" (a; o, o' ) = n;; [61 ir"n ¡p' ; Re
+ll

{Y (a) }n

+l+ti;cult = |tV;c"l * Ì;.{o)1 =RC
2

2
'riüJua '( *or) i'

It is nol recalled that

respect to the variation of the

(Sec. 2.3.4).

G"(a;O,O')- r 2=
n= 0 nrru2 I Hrr(1) '(*0") 

I '

the expression

apeTture field

n;j cosnô cosnþt
¿Tt

(3.2)

(3.i) is stationary with

about its true value

Thus instead of the exact aperture fíeld, one may use the static

aperture field, nlodified by a factor coso (to take into account the

reduced field intensity as one moves away from the location of the

maximum field). Accordingly E* is given by 1,371 and t38l :
v
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coscxEo(0) =

Us ing (3 .2) and

Now, consider thc integral

i - (9-12
(rÐ

q=-l--o ; 
t''

5 ,r1,ut n=o lflfPr

(5.3) in equation (3.1) one finds

(3.3)

(3.4)

(3.s)fo.to,o-ôo

chan

.ô

fo
, -00

cos n$ dSI(n) =

Introducing the

i(n) =

ge of

du

-2

/ I - (u/00ì-

r00

J _ôo

/h
rvo

ncx, I

J -oo

cos nu sln nu
= cos du - sin ncr

1et X = u/fu, thus

I (n) = cos þ") 0O

In the Appendix [c] it is shown

vanishes, while the first tern

%Í

sin(X n00)¡1
dX - sin (no).ô^ 

Iu J-t IL-:7-
d'x

that the

yie 1ds

J 
o(noo )

(3.6)

second terrn of the right side

-.)

1- KÖ-cr) /þ l'
0

variables u=0-c)¿, I(n) becomes

cosn [u + cl)

Ê*Óò cos n0 ctô l'o*oo cos nó ctó -.J.-ø ¡i- r,r-.v*jz .l*oo nr*"*v*
-- 

' 
fq' .o, o do 12,o-oo 

,tr l@_dVW,

(u/Qù2 1- (u/0s)

I (n) = cos n0 (s.7)
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Accordingly, (J.4). becomes

õ_1ts - 
--Zîujua

6ç

1 
--I-- 

,
nl o ln",t, '(Ko") I 

2

K^
j B- =-jr. (Jl2 zln(z/þ^)/coszo.>tr¿U

cosnc
cos0

-ln(n0o)., z];Gil/ (3.8)

This gives the value of the conductance for an axial slot sliifted

by an angle s from the reference location 0 = o. It is worth noticing

that as o approaches 90" the value of the conductance approaches in-

finity. It is shown in the following analysis that the slot susceptance

also approaches infinity as o approaches 90". This means that the slot

is, in effect, a short circuit, i.e. is not seen by the wave. Accordingly

it has no effect on the internal field. This is in agreement with the

experinental results [36] and with physical reasonings since the azimuthal

surface current at this location is identically zero, and hence is never

interrupted by the presence ot the slot. Another way of looking at thts

result is to consider the power radiated through the slot given by Ular.

Althoush G approaches infinity, the siot voltage Vt approaches zero

and in the limit the poruer radiated is zero as is evident from equation (D-12)

together with (D-14) of Appendix [D]. This again is consistent with the

previous argurnent and with the results of this thesis where it is shorrn in

'Tables (3-1) - (3-3) that the value of ô approaches zero as o approaches

90". This indicates that the system has minimal disturbance as the slot

location o approaches 90o

Now, having investigated the slot conductance, we proceed to

evaluate the slot susceptance. Application of equation (D-20)of Appendix

[D] for the case of a single slot yields

(3. e)
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Introducing tlìe values of the conductance and susceptance obtained

section into equation (2.19) one may obtain values of ôrn (as

by equation (2.7)) for any TEr,n mode as

( \*)'6-
m (\r)2 - t

I

are the roots of J,(z) - 0 and
_t

(3.10)

in both z and p dir-

3.2, 3.3 and 3.4 give some

discussed in the following

tt
{x + iR }s -s

rvhere X -
1m

I

X-
s

_X
q

-rç
-RS

GuaZEf
l)

I

,R_=5

with

G
S_1- 

?G-+B-

Using (2.7) and (2.9) the propagation constant

ection is completely deternìined. Tables 3.1,

computed values of both ô and .(,

Section.

which are

3.2.I. Numerical Results for the Propagation Constant

Equation (3.10) is solved for several slot locations and different

slot widths. Some of the results are shown in T¿þ1s5 S.1 - 5.4 belorv

TABLE 3.1. Computer values of ô and y

locations clt . First mode CXff

for different slot
= 1.841).00 = 5o, ê/lO=0.5

Location o,

0"
20"
30"
450
60"
75"

Real

0 .rI7 4

0. 1057
0 .9085
0.6100
0.3047
0. 81 37

Imag.

0. 2ss8 Il- 1

0.1740 E-1
0.1r21 E-1
0.5470 E-2
0.2878 E-2
0.9090 E-3

ReaI

0.4080
0.2747
0 .77 49
0.8323
0.427I
0.1323

Imag.

-0.4913 E

-0.4931 E

-0.4954 E

-0. 5000 E

-0.5045 E

-0.5079 E

EO
EO
E-1
E-1
E-1
t,)

E-1
E-1
E-1
E-2
E-2
E-2

1

1

I
1

I
1



for
I

(xi i

and y for different slot locations

I.841) O0 = 3o. a/ÀO=0.5

TABLE 3.2. Value

mode

Location o

ct. First

Imag.

-0.4937 EI

-0.4953 El

-0.4973 Er

-0.5013 E1

-0.5052 EI

-0. 5080 El

0. First

00

20"

300

45"

600

t5

E-1

E-1

E-I

E-2

E-2

E-3

Real

0.3024

0.202s

0.1 285

0.7726

0.3L64

0.9850

TABLE 3.3. Values for

mode fxff

ô and y for

= I.8412), 00

different slot locations

= 2o a/Ào =o .5

Location o yÀo

,00

20"

30"

450

60"

75"

E-1

E-1

E-1

E-2

E-2

E-3

Real

0.2447

0.7634

0. i 036

0.4946

0.2562

0. 7996

Imag.

-0.4952 EI

-0.4967 Er

-0.4985 El

-0.5021 E1

-0.50s6 El

-0.5081 El

ô

Real Imag.

0.1021 E 0.0 -0.1920 E-l

0.91s3 E-l -0.1297 F.-r

0.7842 E-I -0.8324 E-2

0.5255 E-1 -0.4054 E-2

0.2626 E-r -0.2140 E-2

0.7018 E-2 -0.6769 E-3

ô

Real Imag.

0 .9249 E,-r -0. 1567 E- I
0.8267 E-r -0.1055 E-i
0.707t E-t -0.67s6 E-2

0.4734 E-L -0.3287 E-2

0.2305 E-l -0.L736 E-2

0.6326 E-2 -0.5498 E-3

i l1,: r



and for different modes c = 0.0 %=5o

Real Imag.

30

TABLE 3.4.

1.84t2
5.3314

8 .5363

LI.706
14.863

Values for

a/ÀO= 0.5

0.4080

0 . 8687

0.1591

0.22s8

0.2907

E-1

E1
E2

E2

E2

-0.4913 E1

-0. 1645 E-1

-0.8223 E-2

-0.5180 E-2

-0.3490 E-2

It is apparent from these tabres that, for any fixed slot location,the

attenuation constant increases with the slot width. As an example for

a waveguide of a/Ào= 0.5 and a fixed slot location, the attenuation

constant increased from 0.0244Np/Ào to 0.0408Np/Io as the slot width

increases from 4" to 10o. I'his simply indicated a higher loss of

energy due to the radiation through the wider slot. It is also clear

fron these tables that as the slot location moves from a maximum tangential

field of 0 = 0.0", thc attenuation constant decreases. Again considering

the waveguide dimension a/ÀO= 0.5, the attenuation constant for a slot

rvidth of 6o decreases from 0.0302 Np/\to 0.00316 Np/\a tlie slot moves

from its initial location at o = 0o to o. = (r0o. That is, the attenu-

ation coltstant decreases by a factor of 10 rvithin a 60" change in the

slot location. Botir resr¡lts are physically expectcd ones. Since, due

to the nature of the field configuration for the TE' mode in the wave-

guide,the slot fj-cict dccays as one moves arvay from the 0 = 0.0o location.

Thus, the radiated field decreases rvith increasing slot location.HarrÍngtonrs

ô

Real Imag.

0.rr74 E0 -0.25s9 E-1

0.2953 E-l -0.6665 E-2

0.1815 E-l -0.s824 E-2

0.L326 E-r -0.2495 E-2

0.1051 E-1 -0.1706 E-2
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ieêhnfque , although appearing quite general, does not yield accurate results

except for slot locations o, = 0o or 1800. This is possibly because the field

expansion of both internal and external fields in the radial direction as ass-

uned by Harrington is incornplete. These assumed fields,as given by equs. (2.3)

and (2.5), should be extended to cover all possible p-variations. this mea,ns

one nust introduce an extra infinite sumrnation over the roots of Bessel and

Hankel functions. When the slot is at cr, = 0o or 1B0o its disturbance to the

p-conponent of the field is,however,minimal (see Fig.3.2). In this case a

single surnrnation over the azimuthal variations as given by (2.3) and (2.5)

is sufficient for accurate results. This argurnent is further pursued to test

cases where the presence of the slot has little effect on the radial, field

component. When o is close to g0orgood results were obtained using Harringtonts

technique that compares favourably with the results obtained by the extended

Goldstone and Oliner's technique. This is in agreement with the present disc-

ussion,since at such locations the slot has very little effect on the field

inside the waveguide. tr'or tlús reason Goldstone et al technique, as extended in

Fig. 3.2 TE' field inside axial.ly s,lotted waveguide.

this Section to cover any arbitrary slot location along the guide surface,

seems to be superior to Harringtonts method. The technique,however, has its

shortcomings. It is valid only for narrow slots, and may not be easily mod-

ified for considering the interaction anong several slóts distributed

azinuthally on the waveguide surface. This is due to the fact that the
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analysis of the combined susceptance becomes extremely difficult. In

the next Scction this particular difficulty, holever, is overcorne for the

special case of two symmetrically located slots. The problem in this

case becomes easier due to the syrffnetry of the -surface azimuthal current

at the discontinuities as shor'rn in Appendix tD].

3.3. T\^ro ldentical and Sfmmetrically Located Slots

In the previous Section, the propagation constant of propagating

modes supported by a waveguide section with an arbitrarily tocated

single slot has been solved in order to determine the surface field

distribution and hence the radiation pattern in. free space. It may

be'advantageous, however, to utilize more than one slot per section of

the waveguide since this provides a wider range of flexibility and control

over the radiation pattern. The problen is quite involved since the

interaction between various slots has to be considered. In this Section

an attempt is made to obtain the propagation constant of a waveguide

section with two identical slots symmetrically located with respect to

the origin. The analysis takes into consideration the possible inter-

action between the slots and yields results that compare favourably with

that of the single available result for double slots using Harringtonfs

technique (at o. =0.Oóa¡rd 1800)

3.3.1. Propagation Constant for Trvo Idcntical Slots SFnmctricalLy Located

With Rcsltcct to the Origjn

The work of Section (3.2) for the propagation constant of a

slotted waveguide (one axial slot). can be readily c.rtended to cover thc

case of a tvavcgui dc with two identical narrotv axial slot-s -sepalated by

1B0o as shown in Fig. 3.3
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Fig.j.J
Doub1e slotted waveguide

As before, to determine the propagation constant of the structure,

one has to calculate the impedance or the admittance of ttvo slots com-

bined together so that they represent the ternninating load when effecting

the transmission line representation of the slotted waveguíde as seen in

Fig. 3 .4

I

l-__l

I I*ì Y'2 G'2* jB,z

J
0 = 0.0 P=a

Transmission line representation of the syrnmetrically
double slotted waveguide.

Referring to Appendix [D], the conductance Gs2 of two slots

located as shown in Fig. i-3,2 is given by equation (D-13) as

Fie. 3,4

,.o*o o
Grz=P/l I . h"1(a,ô)E*(a,O)adO

'cÌ-90

tr+o,+ör '0
*l

Jn*o-6 
6

hr1(u,O) EO(a,O) 
^aþi'z

(3.11)

r.r i th
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{¡
n=0

[a, ô) h (a, ô)
zn

cos nó adó
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+)
ne{Y } = --:---^n¿

II(r-)Ua

EÁ(a,0) = E0
a

Substituting (3.13) in

T

n=0

1

FTçT

coso/ rt -ffi2
e0

establ ished in Sec . (5.2.)

(3.13)

{coss
cos nQ ad$

(a, 0) h Ia, ô) a¿O) 
2]

zn

(3.12)

Ì ( 3.r4)

of eq. (3.s)

written as

P=Re
f1T+cx+0 0adQ+l 

F¿¡ n+o_Q ,

'o*Ô o
v" r 

J._ofo

(a,0) = cos nS/rT
and

AS

Assuming the slot field to vary as [App. D] .

(3.I2) one finds

o- 1r-2
îüJUa

E3

l',PÇ7
o+ô

fo
, o-00

c
n

'tT

+ cosfn + o)

1'he integration

lvhose result is given by

æ ' Qo

is identical to I(n)

¡r+o+00
j 
n*o-oo

in (3.14)

(3.7) .

F2
0P= 1 ;

T0uo n=o

2
.ro (n0o) l 

-

Accordingly P could be

ffOon cosa)'¡¡.o, n0 - cos n(n+cl))
Injt) (Ko') I 

2

ú
il

)
(Ogn coso) - I

n=1r3r5 InÍt) (rpo] l2
fcos no J,.'(nO^) ]2wu

(3.1s)
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of eq. (3.11) may be written as

cosg E o adþ+

-2 2 1
cosa)' F . cos'o J-(ô )0 00

4(tt ó

where the integration

and (3.16) yields the

The denominator

cl+ór 'O
ll rrl 

-coso
rcI,-ô, 0 Ì/tT

f 
n*0*00 

1

.Jn.o-oo F

a
'fi

cosQ

(3.16)

Combining (3. i5)

cos (tt+g) adq t'

is carried out similar to [3.14).

slot conductance for two slots as

This gives the value of the combined conductance of two slots with the

interaction betlveen them taken into consideration. For the susceptance,

one may employ equation (D=20) of Appendix [D] lrhere the value of

Br2 is given by

$^=-
s¿

(r)er
Nl 2 cos?a

Now,

obtained by

K^
^,t= -cùe (;!) - ln

^o

the value of

application of

)nlr 
.-.1-=-- (Ä-r +

x- -l
-tm

)(2/þ )/cos-a
0

ô as defined by equation
nì

eq. (3.10) . Thus

t
jR^,,)

ðL

(3.1 8)

(2.7) is readily

(3. 1e)

Xt, is the root of lfzl =

I - r\-s,z r-¡Ô-{r*cr)rz

where
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*1, =

xu2

*,t"2-;
r R^-

n-ùL

^"2 --ç

G"2
Þ-^'c? ) ')ea R'^ + B'^S¿ B¿

(3.20)

with

X.=
s¿

G12

'))
BZz * GZz

Using (2.7) anð (2.9), the propagation constant in the slotted section

of the waveguide is completely determined. Tables ,3.5 and 5.6 belorv

give computed values for ô and y for dífferent slot locations and

slot widths. In the next Section these results are presentecl and are

discus sed.

3.3.2. Numerical Results for the Propagation Constant of a Double

Slotted $laveguide Section

The value of ô is evaluated using equation (3.i9) for several 1oc-

ations of the'two-slot:set and for different slot widths. Some of these

results are given in Tables .3.5 - .3.6.. The results shown in these

tables follor,¡ the general trend noticed before in Sec. (3.2.I). The

attenuation constant drops considerably as the slot location rnoves far

from tlte location 0 = 0. Considering for instance the case of % = 2o

and a/ÀO=0.5 (Table 3.5), the attenuation constant drops from 0.0480

Np/Àoto0.oo¡gz wp/Àowithin 60". This is about an 8% reduction of the

attenuation constant. It is also apparent that as the slot rvidth in-

creases, the attenuation constant increases indicating a higher power

radiation into thc free space. It may also be of interest to investigate

the relation between the results of a single and of double s1ots.One such

case is the case of a single slot located at an angle o and a two-

slot-set one at 0 = cr and tl're otlìer at 0 = 180" + o. The related
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TABLE 3.5.

Location cx
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is tabulated in Table

Computed values of ô

slot set 1B0o apart.

3,7 for the

and y for

TEit rnode.

of 40

located two

a/ÀO= 9.5

slot width

arb itrary
o

^-)Y0

yÀo

0.0

30

45

60

75

0.0

30

45

60

75

EO

EO

E-1

E-1

E-1

E-i

E-1

E-2

Ë,)L-L

E-3

E-1

E-t

E-1

F-)

E-3

0. i8595

0.14135

0.9459

0 .47 43

o .t27 4

-0.2842

-0.1393

-0.7230

-0.2576

-0.2492

t{ea I

0.480r2

0.2266

0. 1i 31

0.3876

0.3644

Imag.

-0.48006 E1

-0.4874 El

-0.4948 El

-0.5021 Et

-0.s072 El

TABLE 3.6. Cornputed values of ô

slot set I80o apart.

Location o
Real

y for arbitrary located tlo-

mode, 0^ = 5o, a/ÀO= 0.5
0

and

TEt t

Tnag. Real

0.8220

0.3891

0.1919

0 .6472

0.6020

E-i

E-1

E-1

tr,)

E-3

Imag.

-0.47r39 El

-0.48079 El

-0.4905 El

-0.5000 El

-0.5067 El

: .:jj

Ò

Rcal Imag.

0.23679 E tJ -0.46ó2 E-1

0.18153Ë0 -0.23L28-r

0.7218 E0 -0.1199 Il-1

0.61197 E-i -0.4252 E-2

0.1(146 E-1 -0.4105 E-3
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TABLE 3.7. Comparison between the results of a single and double slot

Set Ó =4o
0

cx u/ \O
Attenuation

Case constant
o.z Np/Àn

Ratio (cr, /a. )

0.5
single slot

double slot

0.0244

0 .0480
r.967

0.00

0. 3s
single slot

double slot

0 .0826

0. t92
1 7.)

0.5
single slot

double slot

0 .002s6

0 .00387
1.51

600

0.s
single slot

double slot

0 .00794

0.01233
I .55

It is evident that ilvo identical slotsrsymmetrically locatedrdo

not radiate twice as much pol4ler as a single slot located at the same

location. The ratio of the radiated power for a two-slot-set is dependent

on several factors, such as the frequency of operation and the slot

location. In addition,Table'3.8 shows that the radiation power also

depends on the slot width.
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TABLE 3.8. Com¡raris.on betleen singl e and double slots a/ÀO=0 .5 o = 0.0

Slot width case
Attenuation

- ' constant'
o, Np/Ào

Ratio (a- /o- )L2 L1

40
single slot

double slot

0.0244

0. 0480
L.967

100 2.0r4

One, however, can see certain trends in the avaitable results.

The interaction between the slots enhances the radiation when the slots

are located around o - 0, or when a/ÀO approaches its cut-off value,

for wider slots, the interaction causes a higher radiation power tiran

for that of narrol Slots, and a single slot of width 2þ a radiates less

power than tlo slots each of width ó0. For example, referring to Table

3.8 , trvo slots of width 4o give an attenuation constant of .048 trlp/À0,

while a single sLot of width l0o yields 0.0408Np/À0. That is two slots

would disturb the system more than one slot even if its width is more

than their combined rvidths. These are general trends, which could be

used initially for design purposes. However, every single case should

be investigated individually. In a later Section the field variation on

the slot surfacc duc to their mutual interaction wilt bc studied, rvhere

other features rvill be investigated.

Now, having studied the propagation constant of a single as

well as of doublc symmctrical slots, one nay carry on to tire next Section

single slot

double slot

0. 0408

0.0822
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where a nodal expansion of the field with unknown coefficients on both

sections of the waveguide is assumed. ltlhen these coefficients are

detcrmined, one may solve for the field on the slot surface(s).

3.4. Forrnulation of the Scattering Problem

In Sections (3.2) and (3.3) the wavenumbers of the different

propagating modes supported by the slotted structure has been obtained.

Using these wavenurnbers, the fieid in the slotted section of the tvave-

guide can be expanded into surnnation of infinite modes with an rurknown sets

of coefficients in a way similar to the nnodes in the normal closed r{ave-

guide. I-lowever, these modes differ from the familiar closed waveguide

modes in that they are not completely orthogonal to each other in the

sense defined in reference tSZl. They are, holever, orthogonal in the

azimuthal direction. The field in each section of the waveguide is

expanded in its respective modes, each with a set of unknown coefficients.

It/hen the field components are matched on the plane separating the closed

and the slotted waveguide, one may get two infinite sets of equations for

two infinite sets of unknown coefficients. Further, each one of these

equations contains infinite summations on.hoth'sidss. Employing the

orthogonality relations anìong the modes, one may considerably reduce

their complexity. It is sholn that tile problem is reduced to two

infinite independent matrix equations in two sets of unknown coefficients.

lVhen these equations are truncated after an appropriate number of term.s,

the unknolvn coefficients on both sides of the waveguide mal'be obtained.

In a later Section tirese coefficients will be used to conpletely deter-

mine the slot field.
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3.4.1. Iti"l,llgJr."runtution int

Fig.3.5

,/\
ct

\

Axially slotted waveguide with arbitrary slot location

Let

inant TEtl

,ri

the incident

mode rvith a

X.
= f ,r(#

3.5 be the dom-

(3.21)

field in region I of Fig.

lvave function in tile form

p) cosQ exp(j0tir)

where T is the intensity of the incident field, a is the rvaveguide

raclius and a tine variation 
"- 

jt,ltt is assumed. Let tire wave function

of tl-re reflected field in the same region (region I) be represented by

where p

and

=l

and

Spq

pq

I I B J- (X p/a) cos
p=0 q=l Pcl fr Pq

are integers and

are unknorm constants to be

t
is the qtlì root of J^(Z) =

P

deternined

0.

p0 exp(-jepqt) (s.22)

(3.23)

function

a2 +fx /ù2=K2pq '.pq' 0

Let the transmitted field in region II be represented by the wave
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r0 exp(-V"rZ) (3.24)

,{ì' - *'o (3.2s)

a2p
ðpôz

0=T T TA
T=o s=o t=

Jr(Kpp) cos
rS

rs are constants to be deternined
TS

K rs are known for each mode and for each slot location accord-
ot,

ing to the analysis of Sections (3.2) or (3.3).

The field components gn both regions can be derived from the relation [30]

where and are integers and

=Qa

where F stands for any of

1",1 
(3.24)

It is convenient to

for region I, and ":: and
nm

J-+Ie. a. + eôôo'nm ' 'nm

hi
nnì

wh ere

and

y = o¿ - iß- = -fr(---?-= -j'rs z ''z 0r, u

-1H =-p Joup

F-"0

)
-1 I à-FLl = 

--
Q tou p òQdz

z
=l' 19^+x')FloU - 

^-¿ 0

t .ð2 ,,2
N

I AF
p¡õ

ðF
ãp

the TE wave functions of eqns.

introduce the node functions ¡

. IIli'- for region Il,defined for
nm

'r(r)u
dz

(3.26)

(3.21,) , (3 .22)

rIe- and hnm nm

region I as:

a
I-e-
nm

oö

(3.27)

clirections respectively

a.,,.1 .

':þ:,-l -> .I ->
= h. a. + lì aôôo0'nnì ' nn

-+and a arc unit vectors in
p

6urt¡v
OF MANITOBA

(lsçaç1É!

and
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-i0 z +ie 7

r{heïe the upper and lower signs hold for " 
- n* and e 

- nm- îes-

pectively.

In region II

II Ii -} II -}e = e, a, + e anmoooo'nm 'nm

,II ,II -> ,II ->
h = h. a. + h anmo000'nm 'nm

Y

"l = ilfl J'rx o/a\ cos. nô0 a n' nm '' -'
'nm

"l = *;-(x-- p/a) sin nSo o nt nm'nm

- iH
, J+ - '"rìm Ilì, = + eQn* Jou on*

_ iA
, J+ '"nm IIl = *'- e--o - irrlu -ò
'nm 'nm

IIe[- = Ko Jr,(Ko p) cos nQ
'nm 'nm 'nm

":t = å Jr,(Ko p) sin ns
'nm 'nm

.II Ynr II
lì,o luju o'nm 'nm

.iI Yrt* IIlì = 
- 

e.or,,n jr¡u Qnn'

(3.28)

(3.2s)

(3. 30)

with

With these mode representations and with the aid of (3.2I) , (3.22) , (5"24)

and (3.26), the field components in regions I and II can be written as
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Region I

uå = t "är, "*n(i'rrz) * r oln ï=, 
uno 

"äoo,-j'pq')

tå = t "år, exp(j0ir') + r 
o],, ,,1, 

uon 
"åno "*o(-joouz)

nä = t nåir".o(j0riz) + r 
oln ,È, 

ton 
"ånn "*o¡-¡0ooz)

nå = t nir,".r(j0rrz) * r 
nlo ol, 

too nåoo exp(-jrpor)

(3.31)

Region II

ell=r r r A 
"1I"o 

r=o s=l rs ,r, u*o(-Ytrz)

EII=T r r A "lt exp(-yrrz)0 t= 0 s=l rs Ç",

(3.32)
ltTr=r r t A i,ll"ô ,:o ,1r 

,,.", "o* exp(-Yrsz J

nlt=t I x A-^hlt 
"*o(-y-^z)0 

,^= 0 s=1 rs 0., 'rs-

These equations give the field everywhere in regions I_and II,ín terms of
the modes e and h Certain mathematical relations among thesenm nm

modes hold. rrese relations wilt be needed later to reduce thc com-

plexity of tlle analysis in order to set the unl<nown coefficients in a

form that can be nunlericalty solved. The next Section js dcvotccl to

the tabk of developing these rclations.
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3.4.2. Ifode Orthogonal ity

In this subsection, some of the basic nathenatical relationships

among the modes given by (3.28) and (3.30) will be established. These

relationships wiIl constitute the main frame of the scattering formu-

lations to be followed in the next Section. Consider the integral

rel ation

-l¿ I -I .I+- ->r,1' = | (e- x h-^) . a- ds (s.3s)nm J 'nm- pq' -z
pqs

where S is the cross sectional area of the wavesuide. ä is a unit
z

vector in the z-direction. Substituting (3.27) in (3.33) gives

f^ fzn. r .r r .r= .J J ("0_- nô-^ - ei h* )o dpd0

p= o 
J 
ô=o 

unm *Pq Qn* Pq '

which upon substitution of the mode functions (3.28) gives

Mr = lu l" ..- þ .rjtxn*o/u) cos nQ I # þ ,;(xnoo/a)cos pQ

;T J P=eJ6=s

M* =i r"1 à *"I ål*r'I* -+ I+ +
'"':T - J, t"on* oo - ogn* 'g' " ,nõoo uo * nôoo) ' a, ds

pq

* t 
ie

p Jn(x,.,*o/a)sin nþ ; .-E å ,o(*ooo/a)sin p0)p dpdo

-i0 t i0 'where again the upper and the lower signs irold for " 
'-nnì and "'-*

respectiúely. Now using the orthogonality relationship

r2r r2tr
I cosnþ cospQdS= | sinnQsinpQdô=6 nlpJo I - r¡ 

Jc

=T[ n=pl0

=2'tt n=p=0

(s.s4)
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4(t

IIU=
nm

pq

;Nl=
nm

q

-2n
F

n

X
nm

a

i0'' n(l
jr^tU

¡2¡ 2lri
J p=o u

I

Jn
nq
a

2!- .l rxy n'
je-nq
jt¡u

Jn (xr.,*o/a ) Jn ( Xn,,o/a)

tt
J [x p/a)nnm ( x,., 

ool 
a) p) d p

rvhich by change of va riab I e y = p/a becomes

;-N'l =+
nm

q

2n
c

n
rl,'
Jg

¡1 tr
n q J o 

Jn (x,r*t) J,-, (xn or) v dv

n*r) Jr., (xn*t) ðy

It is shown in Appendix[E]that the integral in (3.35) exists

m = Q and is equal to [Eq. (C-9)].

(3.3s)

(3.36)

and

(3.s7)

only for

x2
nln
2- (r

Accordingly

+M=
nm

å, rltx,,,)
nm

-+ads
z

| .t
| ("r,*
,S

-2r+-
c

n

. r;-xlì lpq'

j0- ]ln
J(¡u

X2
nln
) (1 - 1

X-
nm

) Jl(xnm)

which establishes the orthogonality relation between the modes

.In.

Another relation which should prove important in later analyses

is the integral:

N = | ruI *hIIlnrn J"'nm pcl'
p(l u

Follorving similar steps as before and using the mode functions
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(3.30) a¡d

let again y =

etric functions

obtains

x
i- # .licx,*o/a)cos nþ

H ,J,"

(3.28) ,one

_ f" ['n- 
J o=oJ6=o

5g K J^ (K- p) cosir¡u opo o' Ppq

J,r(x,rrp/a) sin n0 (- h) Ë 
ro(*o-^o) sin pQ)pdod0
' 'pq

g/a and using the orthogonality relation of the trigonom-

(3.34), an equation similar to (3.35) can be obtained as

p0
nm
pq

n+-
p

-Àr - 2r
- t\¿nmq e'n

Jn (xr,*r) J,",(KPnoa r)
dy

nm
pq

v

(K
rl

ono") .J,

the inte

r Jrr(xn*y) Jn(Kp a)dy] (3.38)
nq

in (3.38) exists and isIt is shown in Appendix [E ]that

equal to (eq. E-6)

x3_cx^ a)nm- o'nq

Accordingly

I

JTX )JIKn- nm' n-

Nnmq = i rer *hII).' i='n* Po-

.Y
= - 2n -'"q x2 rr a)Ê ]ou nm- o 'n 'nq

which establishes the second important

consider the integral:

J(x )J(K a)nt nm' n' P*^

-

X- - fK^ al-nn - irne

relation of this Section.

gral

->ads
z

(5.3e)

Final 1y,

t,.' :

o;
ìnm
pq

From (3.28)

| _-.

= | (hI* * "II) 
.

J s IUn fl'

we have

-+ads
a

.)

- (K^ a)'
U'nq

(3.40)
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- Ilh=+
nm

i0-nm

- 

lô

l(l)u

I-+l->- a,-c; a)oooo'nm ' 'nm
(3.4 r )

(s.42)

and from (3.30)

II
e

P -cl

Using (3.42)

.II -) .- nó un)
'pq

(3.40) one obtains

= 
jr¡u 

,,.,I 
I

YO'pq 'pq

and (3.41)

i0
nm

=+
J(l)u

.ie t-'nml
=+-l Ypq Js

-i0 t-"nml
Ypq Js

ão

1n

+

%n'
pq

.t]û]lt I I -+

'r* l, t"o "*

. I .IT("o ,ró
' nm 'pcl

(.r * hIIl .'nm pq-

the integral

ds=N
nmQ

one finds

I I-xe ).pq

I -+- -.II- e. a )xlhQp'p

I .II --+e. h ìa .
O o'z'nm ' p(l

-' T T-) -+
a. -hi'al'a dsa0p'z

(3.43)

->ads

-'ads

But by virtue of (3.37) ,

| ,"I ,. hi:r) .
J; 'nm

Substituting back in (3.

;îl0 -0 = |'hm *nmq 
)

pq

->ads

->
a

z

43)

th 
I;

tnm

i0nn ,,
= +-NY nmq'nq

^ i0 ^¿It - nm ,,¿= +- Ä-e lou nmn-

I

J(x )J(K_ a)n' nm' n'.o'nq

-

X- - fK al-nmto 'nq

(K a)
'nq

(3.44)

Relations (3.36), (3.39) and (3.44) are the basic formulas rvhich rvi1l

be used for the formulation of the scattering problem as discussed in the
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following Section.

3.4.3. Ir{ode Matching

With the aid of the field representation in the slotted rvaveguide

of Fig. 3.2 and the orthogonal relations among the mode functions, the

field components on both sides can be determined by matching its tangential

components at the interface betleen the slotted and the sotid sections

of the waveguide (i.e. at tlìe plane z - 0). The techniquc used hcre is

similar to that used in reference [49], and is based on the integral

relation [52].

which is valid for any trvo non-degenerate modes in a waveguide of un-

iform cross-section provided that "rn and hn are normalized. This

relation has been established before for the TEtt mode in Sec. (3.4.2).

Consider the two identities:

l*lle xh)
J tm n' z mn

i= ,ut * r'i,,l . å. a, = | (¡II * nl-l I . à, d, (r.4s)
z=o ' ), nm I z=()

. å- a, = i (HrI * ul*)
z=o ' J, nm'

and

. ä- d, (3.46)
z=oz'

which arc bascd on the fact that at the plane z = 0, the tangential

electric field Ea and the tangential magnetic field II, are continuous,

i.e.

EI = EIItt

I= ¡ni x ej*)

and
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HI = TIIItt

Consider first equation (3.45), the L.H.S. could be written as:

and

lut*r,Iîl .; ds= r [r"].*hIl+ f, r B "IJs mnlz=o z J-l'1 nm p=oq=i PqPq
* hI*) .*a ,l',nm- z

But from (3.36) we have

I t ,j;l .à,a,=rn# *,, þ.rfrx,,rJ, "tt * ^'r,m|,=o oz u' " jt¡u , n'
;

=Àl"11

lut *hIf
J, nc nm

nm

-M;
run

lhus

_o 
. à, at = r I{f, * T Br,* nri* G.4T)

f equation (3.45) gives:

I + f ll .I+l ->I ^ ds=T I I A le xh I oá ¿s'z=0 , ,=O ,=i rs J-rs -- "nm|z=' *z --

lrut*
J

S

Similarly the R.

I rut 
t

JS

I+h)
nm-

a

FI. S. o

* hlll
nm'

--T I A Q*. ns ïsns=l
( 3. 4B)

where in the last fornula, use has been made of equation (3.44). com-

bining (3.47) and (3.48), equation (3.45) could finally be written as:

;;æNti. +B rq- =- r A_ d_ (3.49)11 nm nm ,=t ns tnsm



whcre O; and "+-nsm M*, are given by (3.44) and (i.36) respecrivety.

In a similar way an expansion,,of the L.H.S. of equation (3.46)

gives

= T Ml- - T B I\l-11 nm nm

+-where -N{tt is replaced by Mtt

The R.l{.S. of equation (3.46) gives

51

.T TA N

s ns nms

Therefore, collecting terms and substituting back in (3.46) gives

-M-- + B IVI = X A NIl nm nm ns nms
S

-+l
- ^ 

. á- ds = | (Thll + T r r s t",I-) * uI . Ì dsz=u t J, 1I p=0 q=t Pq Pq' nn 'z

]-VES

++_. A dS = - T I\,f-_ - T B M

^z11nmnmZ=v

Again using (3.36) g

i,rt . "j,,, I

S

.à ds=r r r A I ntl*"Il .; ds
z=0 ' ,=0 s=1 tt J, rS nmlz=g z

(3.39) yields

lHtI * uII nrn
s

which by virtue of

lrnt*"t)Inm,S

(3. s0)

where again IU__ is given by (3.36) and N is given by (3.39)." nm nms

Equations (3.49) and (3.50) are solved together for the unknowns

B, rs and A _rs. It is to be understood that allowing both û, D andnm ns

s to take discrete values 1, 2,3,... up to infinity, an infinite

number of matrix equations is generated. Each matrix containing an

infinite number of terms. However, it is shown in the following Section
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that to <leterrnine the tangential electric field on the slot, it is suffic-

ie¡rt to consider only the case n = 1 together with a few ternìs i¡ s¿sþ mat-

rix. For the n I 1 cases the excitation terms are zero, but the res-

pective coefficients are not required for the slot field due to the

ortlìogonality enforced on the slot field. Although it is not our interest

to find the fielcl insicle the ltraveguicle, it could, however, be determined

once the slot field is known using the reciprocity theorem in a procedure

similar to that usecl by Silveri¡Sl.

3.4.4. Solution of the Unknown Coefficients

Cons ider

more instructive

the case n =

to write them

air r/ttt

arrr/*r,

*rr r/n'ì,

^rrr/*r,

^, *, 
/ti*

airl/n i,

n- /t1--r22 72

:

written as

*r., ,/tll.

*rrr/*i,

.

Nt 
*z/Iar *

ai*r/ti t

ai*r/*t,

It is

(3 .s 1)

t

in

of equation (3.49) and (3.50)

a matrix form as:

ort

utz

ott

Ãtz

Btx air*/noi*

In a similar way equation (3.50) may be

Qr zxllrr r aio*/n'i*
_l

ot*

oti

otz

:

Arx

Btt

Btz

Btr

*t t*/n'r,

Nr r*/Mi,

.

*, **/noi* ir.:r ,:.','1:ì:

(3 .s2)
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and (5.52) are obtained by truncating equa-

an appropriate nunber of terms K. Sub-

cancels the unknown coefficients Brn

Th.ese ¡natrix

tions (5.49)

tracting

(n = 1 ,2,K)

equations (3.5f)

and (3.50) afrer

(3.s2) fron (3.51)

and gives

Qirr * Nrrr

tit

ait, * Nr21

*t,

Qirr * Nrx!

Àt
^''1 K

aizr * Nriz Qtrt * Nrrr

tit

Qiz,z n Ntzz

M-"t2

2K 
* NlKz

tit

Qirz * Nrzrc

Mtz

a;

Mrr

Qrrrc * NIKK

Mtr

(3.s3)

The solution of this equation gives the unknown transnission coefficients (Alt,
Ol2, .. Ar*) in the slotted sections of the waveguide. Substituting them

back in (3.52) or (3.5r) the scattering coefficienrs Brl , Br2 ... tt* in

the solid section can readily be obtained. Here, one may stress the fact

that physically Btt actually represents the reflection coefficient of
the electric field at the interface between the slotted and the solid
section, while Aft repïesents the transmission coefficient at this
p1ane.

A computer program is prepared to calculate both the çoefficients
Ar' and Br' as given by (J.SJ) and either of (3.51) or (S.52). Tables

3-9. - 3.I2 givc sonc of thc conr¡rutecl results for a single slot while

Tables 3.13 - 3.15 give corresoonding values r-or double symmetric-

ally located slots.
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TABLE 3.9

0.9944

-0.7875

0 .3705

-0 .227 8

0.1604

-0.7293

0.9443

-0.7637

Scattering Coeff.
Rea 1

Refl ect.
Rea I

Coeff. in Region
Imag.

The Transmission and Reflection

þ0= 20 o¿ = 0.0o K* = 8

Coefficients for

a/ÀO=9.5

TEt t l.lode

II1n Region
Inag.

E 0.0

E-02

E-02

E-02

E-02

E-02

E-03

E-03

-0.3637

-0.6589

0.1938

-0.9547

0.5819

-0.4084

0.289s

-0.2220

E-03

E-02

E-02

E-03

E-03

E-03

E-03

E-03

0.1378

0.9705

-0.41 r 6

0.2448

-0.1675

-0.124r

0.9676

0.7820

E -01

E-02

E-02

E-02

E-02

E-02

E-03

E-03

0 .257 4

-0.3452

0 .5086

-0 .899 3

-0.1778

0.5063

-0.5981

0.6047

E-02

E-02

E-0 3

E-04

E-04

E-04

E-04

E -04

1

aL

3

4

5

6

1

8

I
a¿

3

4

5

6

7

8

K is the number of terms
truncating

in the summation (3.49) or (3.50) before

TABLE 3.10. Transmission

þo=2o ct

and Reflection

=4So K=8

for TEtt Mode

Re¡¡ion
Ima g.

Coefficients

a/ÀO--0.5

Scatter:ing Coefficients in Region
Real Inag.

II Reflect. Coeff.
Rea I

1n

0.9962

-0.4211
0 . r918

-0.1184

-0.1098
0. 21 Bl

-0 .441 8

-0.3048

E 0.0

E-02

E-02

E-02

E-03

E-05

E-06

E-06

E-03

E-02

E-03

E-0 3

E-04

E-06

E-06

E-07

-0.1440

-0.2872

0.7642

-0 .3541

-0. 39 71

0 . 6619

-0.1150

-0 .7096

0.6902 E-02

0.4582 E-02

-0.2000 E-02

0.1201 E-02

-0.8263 E-03

0.6140 E-03

-0.4790 E-03

0.3882 E-03

0.5198

-0.2240
0.4755

-0,1767

0.8137

-0.4r 58

0.2226

-0.1195

E-03

E-02

E-03

E -03

E -04

E-04

E-04

E-04
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TABLE 3.11. Transmi.ssion

Ôo=5o 0

and Reflection

= 0.0o K =

Coeffici ents

8 a/À0=0.5

for Ttti Mode

Scattering Coefficient in Region Ii

0.9938

-0.9782
0.4676

-0.2893
0.2038

-0.1617
0.7203

-0.9758

0 .99 38

-0.9784
0 .467 B

-0 .2895

0.0240

-0.762I

E 0.0

E-02

E-02

E-02

E-02

E-02

E-02

E-03

-0.2308

-0 .901 I
0.2758

-0 . rs92

-0. 8632

-0.6152

0.4397

-0 .3401

E-03

E-02

E-02

E-02

E-03

E-03

E-03

E-03

TABLE 3.I2. Transmission

óo = 5t' cx

Coefficients for TUtt Mode

6 a/),0=0"5

and Reflection

=0.0o K-

1

2

J

4

5

6

7

I

1

2

3

4

5

6

Scattering Coefficient in Region II

E 0.0

E-02

E-02

E-02

E-02

E-02

-0.2330

-0.9019

0.2759

-0"1393

0. 8644

-0.6773

E-03

E-02

E-02

E-02

E-03

E-03

Reflection Coefficient in Region I

0. r769 E-0r 0.4317 E-02

0.1 280 E-0t -0.3755 E-02

-0.s360 E-02 0.3648 E-03

0.3t73 D-02 0.5574 E-04

-0.2766 E-02 -0.1400 E-03

0.1602 E-02 0.1518 E-03

-0 .7247 E-02 -0.1445 E-03

0.1007 E-02 0 .1324 E-03

Reflection Coefficients in Region I

0.1769 E-01 0.4314 E-02

0. 1 280 E-01 -0 .3755 E -02

-0.5354 E-02 0.3652 E-03

0.3172 E-02 0.5544 E-04

-0.2166 E-02 -0.1398 E-03

0.1602 E-02 0.1sI6 E-03



0. 80

0.70

0. 60

0.50

0.40

0.30

0.20

0.10

Qs

ô'0

_o=5

^o

a = 0.0o

Fig. 3.6 Reflection coefficient
versus the ratic a/\^ of different
slot widths fi:single Btott"d wave-
guide. t

t\

t\

t\

I

I

I

I

I

I

I

0.30 0.35 a/\o



s7

TABLE 3.73. 'lransmission and Reflection

Apart öO=ro o=0.0o

Coefficients :Trvo Slots 180o

K=6 a/À=0.5,0

Reflect.
Coefficient

Rcal Ima

I

2

3

4

5

6

0.0042

-0.1676

0.7873

-0.4841

0. 3388

-0.263I

-o "2028
0. 1 339

-0.3979

0. 1966

-0. I r96

0.8270

0.2916

0.2045

-0. 8633

0.5132

-0.3513

0.2603

-0.5432 E-2

0.7086 E-2

-0.1038 E-2

0.1843 E-3

0.3ss8 E-4

-0.7027 E-3

EO

E-1

E-2

E-2

E-2

E-2

E-2

E-1

E-2

E-2

E-2

E-3

E-l

E-t

E-2
tr,)

E-2
E1

TABLE 3.74. Transmiss ion

Apart 0 =
0

and Reflection

20 cr = 459

Coefficients :Two Slots 180o

K=6 a/),=0,5
0

I
2

3

4

5

6

0.9944

-0.8561

0.3920

-0.2389

0.167s

-0.1342

0.7229

0 .5875

-0.1592

0.740r

-0.43rs
0.2947

EO
t-- .)

E-2

E-2

E-2
D,)

E-3

E-2

E-2

E-3

E-3

E-3

Real

0.1415

0 .9461

-0 .4 104

0.2461

-0.1691

0.1 256

Refl ection
Coefficient

Ima

E-1

E-2

E-2

E-2

E-2
t?

-0.72s4 E-2

0.4423 E-2

-0.910s E-3

0.3271 E-3

-0.1438 E-3

0.6880 E-4

Transmi ss ion
Coefficient

Rr:lrl Inat:.

Transmi ssion
Cofficient

Rca I Imag.
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TABLE 3.15 Transmission

Ô^= 50 c'

and Reflection

= 0.0o K = 6

Coefficients:Two Slots 180o Apart

a/Ào =0 ' 5

Re fl ect ion
Coefficient

I
2

3

4

5

6

Real

0. 3804

0.2740

-0.1139

0.6742

-0.4605

0.3407

fma

-0.941 7 E-2

0.7609 E-2

-0.6910 E-3

-0.I47I E-3

0.3092 E-3

-0.3276 E-3

E-1

E-1

E-1

E-2

E-2

E-2

It is of interest to point out the fact that basically the first

few terms in each group (Atr, 
"nd 

Btn) are sufficient to determine the

field, and that the rest of the coefficients are increasingly negligible

as seen frorn Tables 3.9 - 3.15 This result is physically clear since

higher modes are actually non-propagating and have litt1e effect on the

fie 1d.

It is also apparent from Tables 3.9 and 3.10 for Èhe síng1e slor

or Tables 3.13 and 3.I4 for double slot that the reflection coefficient

decreases as the slot moves away from the position of maximu¡n surface

current. This confirms the fact that the slot effect on the internal

field decreases as it moves towards smaller surface current regions[36].This

has its inportant application in nicrowave measurernents since it allows

probe penetration into the waveguide interior with a least perturbation

of the field configuration tSe;. The reflection coefficient is-also a

function of the operating frequency as is evident from Fig. 3.6 and

Transmission
Coefficient

Real Ima

0.9958 E0 -0.3107 E-2

-0.2724 E-l 0.1856 E-1

0.101 2 E-I -0 .s77r E-2

-0.6254 E-2 0.2922 E-2

-0.5415 E-2 0.6313 E-2

0.5934 E-4 -0.3257 E-4
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3.7 It increases rapidly as one approaches the cut-off frequency, and

decays smoothly to a very sma1l yalue for higher frequencies. It is also

instructive to note that the presence of two slots would disturb the

system (especially near the cut-off frequency) far more than rvhat one

slot would do, even if the nidth of the single slot is equal to the widths

of the two slots conbined together. Referring to Fig. 3.6 for one slot

together with Fig. 3.7; for two slots¡ onê , s¿¡ see that the power reflec-

tion coefficient, Pr, (which is the magnitude squa.red of the fieid

reflection coefficient) due to double slots,each of width 4' (Fig. s.7),

is always higher than the corresponding power reflection coefficient of

a single slot of rvidth 10' (Fig. 3.6). For exampte at a/\r=g.34 the

first curve shows a P,. of'about.0.055, while the second curve shows a

value of 0.014. This is about 4 times greater. it is seen, however,that

at an a/\^=9.4 or more, which is generally the practical case, the
U

reflection coefficient in both single and double slot cases becomes

negligibly smal1. This seems -' to be the best operating frequency.

Horvever, as noticed before in Table 3.7 , the radiated power (as indicated

by the value of the attenuation constant) drops sharply as the ratio

a/^^ increases. Thís suggests an optimum operating point in order to
0

achieve an acceptable Pr with reasonable power radiation in free

space

'lhe accuracy of the numerical procedure seens acceptabte. Tables

3.ti and 3.12 give results for the same slot case (00 = S' and

o = 0.0) with different nurnbers of terns considered before truncating

equation (5.53). It is clear from these tables that the result is very

stable and almost independent of the number of terms considered. The

relative error (absolute error divided by the value of the coefficient)
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of balancing each individual equation of the set(3.43)was calculate,J (not

shown in the tables) and was found to vary between I0-5 and 10-6 in a

single precision calculation. Different cases weïe examined to check

the accuracy of the procedure, and the resu.Lts in all cases were satis-

factory and within the limit of l0-5 or less. This a1lows one to carry

on to the next step to evaluate the slot field as will be discussed in

the following Section.

3.5 . Electric Field on the Slot

As it ltas been discussed earlier, the fundamental objective of

this Orapter is to evaluate the electric field on the surface of the slot

due to an incident TE' dominant mode. Based on the scattering coefficients

determined in the previous Section and with the assumption of a narrow

slot, it is possible to work out a closed form formula for the tangential

field on the slot. The analysis is quite general and applied to both

single and double slotted waveguide sections

For a narrow and long slot, the onry tangential field that may

exist on the slot is the þ polarized field tô [Z+1. Fron equation

(3.32) and using (3.30) the electric field in the azimr¡thal direction

of the slotted region is given by

E*(0,0,2) = J
øæ
I TA

nmn=U m=l
*o ,'{Ko p) cos nrþ exp(-yn z)'nm nm

(3. s4)

This expression is valid for both single and double slotted sections as

long as the appropriate coefficients Ar* and Ko are used.
'nm

It has been shourn by several authors l,2il, [Sz], [sA1 , [.50],

hotvcver, that a reasonable representation for the S variation of the



b¿

field on a narrow slot rnay be assurned in the form

E' (a'Ö) =I

l{hen the

into (3.55), the

Eo

-0,0 <0

E*(a,ô, z)

/, _ ra irJ,

z variation and the slot

slot field may be assumed

Eo (a, z) coSo
ot- 00.Ô.o*00

<ô
0

location 0

AS

(3. ss)

are incorporated

( 3. s6)

(3.s7)

/ry,
where the factor cosoú is introduced here merely to adjust for the approp-

riate direction of the field as the slot location ct varies between

0.0o and 360"" Combining (3.54) and (3.56) gives

E oG,z) cosct æco
_T\.ç
-ILL

n=0 nl=l
TìM O'nm

tn[*on*") cos nþ exp(-Yrr*z)

wh ere

and

tr-(þ-{g,

o - þo t o ' o * Ôo for single slot

cr-ô <ó<cr+ó'0 '0

TT + G - 0O . S < n + o' + ôO witho+nreplacingcr

in the exp::essi.on (3.57)

for double

syrnmetric slots

Multiplying both sides by cosQ and

æ

f(4,ô^) = T tu n=0

integrating over the slot (s1ots) gives

@

t
m=l

A
run

t",0

I
KJ0n-nm

(Ko a)
'nm

exp ( -yn* z)EO(a, z)

cos n$ cosþ d$ ( 3. s8)



Where the integration of

wal1 since E. is zero
0

f(o,ôO) = coso,

63

the R.Ì1.S. is extended

at the netallic wa1ls,

oyer the whole waveguide

and

= cosc!

cos nþ cosþ dþ =

and (3.62) ,

Jo(00) E6

@

TTA -nmm=l

r'lT+CL+ò

dö-f -''s cosÔd0 .Ìrn+a-ôor(ryr2

for two symmetric slots

for single slot

(3.60)

(3.61)

slnce

(3 .62)

fo*oo
Ij cr-ô'0

{ f*00
J a-o,0

cosò
-dQ

[:æ)2
v0

cos Q-w
The integration of

Sec. (3.2) and was

Th ere fore

t(ct,0O) =

The

the function f(o,00)

shown to be equal to

(3. se)

has been dealt with before in

(equation (3.s) and (3.7)):

%f"-¿a_

J,f oo)

equal

'r'r n=l

o nli

0
U

0
0

f(

= cosd ôn'0 (00)

for single slot

for two symrnetric slots

to zero except for fl = 1,

s'oo)

FW
is equal to

2cos-o 0o ri Jg(00)

,)

- 2 cos'c¿ ó n,0

of equation (3.58) isR.H.S.

r'
Jo

Using [3.61)

N coso 0O

equation (3.58) takes the forn

(a,z) coscr

I

*o Ji (*o. a) exp(-yrrz)
'nm Im

(3.63)
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where

Us ing

closed

N = 1 for single slot

= ) for double slot

the value of Er(a,z) as given 6y

form formula for the slot field is

(3.63) in equation (3.56), a

finally obtained as

64

E*(a,0,2)=ffi' r A- r .rl rr
m=l ,r 91,n r ' orn,") 

exp(-Yt*z)

(s.64)

The coefficient-s All, 412, ... Or* are known according to the discussion

of 'Sec. (3.4). The values of Ko- and Yl, are also known [Sec. (3.2)
'lm

and (3.3)]. Thus equation (3.64) completely determines the slot field

for either single or double symmetrically located s1ots.

In the follortring Section equation (3.64) is utilized to study

the slot fie1d. For different slot parameteïs solne result-s aïe presented,

examined and discussed.

3.6. Numerical Results for the Slot Fields

In this Section some numerical results of the slot field as a

fu¡rction of the distance along the guide as well . as slot parameters,

such as the slot width ZþO and location o¿ , are presented. The values of

the slot field EO presented in this Section are such that the coefficient

T of tlie incident htave function (3.21) equals unity. The results

cover both the single and the double slot cases in accordance with

equation (3.64).

The nain features of the field such as the decay of its magnitude

along the z direction and the reduction in its intensity as the slot

location o moves fron tlie position of maximum azimuthal surface current



(0 = 0.0) are clear from Fig. 3.8. and Fig. 3.11 for the -single and

double slots, respectively. The results also show that for any two

slots of different widths, keeping other païaneters equal, the fielcl

intensity on tl-re narrower one is higher in value than .the corresponding

wider s1ot, Fig. 3.8 and Fig. 3.11 However, it is shown later in

Chapter 5 that the integration of the field on the slot surface area

/slot E, ds is higher for the wider slot, indicating higher power rad-

iation. This is in 'agreement with the results for the attenuation con-

stant obtained previously for different slot widths as presented in

Sec. 3.2. for a single slot, and in 5ec. 3.3 for double slots. Thus,

one may control the radiated porver in different sections of space by

choosing adequate combinations of slot number , length , size and

location This will be discussed in more details in Chapter 5. It is

also interesting to note that the field intensity on the slot increases

as we approach the cut-off frequency as is evident from Figs..3.9 , 3.10

and 3.I2. . This result, again, is in agreement with the discussion of

Sec. (3.4.4) and with the results of Table .3:7 Sec. (3.3.2). It shows

that as a/Àg decreases, the attenuation constant increases indicating

higher polver radiation in the space.

Figs. 3.73 and 3.74 compare the fields of a thro-slot set, located

at Q-cr and Ô=T+o, witlithatof a singleslotlocatedat

ô = o. This is equivalent to studying the change of the field of one

slot when another slot is introduced on the rvaveguide surface diagonally

across from the first one. The analysis reveals the important and inter-

esting result that the slot field is more or less localized especially, as

slrorv¡ i¡. (3.14), where the ratio ^/\O is larger (i.e. at higher

frequencies). For example at a/),0=0.5 and cl = 60", the field changes
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b)'about L9d of its v¡'rlue whcn another slot is introduced" ,rhe sa¡ne ïange

of change is also ¡roticed for o¿ = 0o. I'he change incrcases as u/\
decreases but relnaj-ns compaïatively snlal1. At u/b = .SS, i.t is about 3e¿.

This obscrvat'ion has been rcportecl before t)y chang in his tr:eatment of a

circumfercntial slot in a racliatj.ng cylinder ISS]. The result i.s

inportant in tl¡at it alLc¡ws extensrì.on of thi.s work to multi-slottcd
scctions or to per::ioclic structures where the solutio¡r of the fielcl on

o¡rc scctj.on l¡lay be cxtonclcd to other sinrilar acljaccnt str.uctures. This

will have its ap¡rlicatio¡r later i.n Chaprer 5.

In conclusion, this Chcrpter has studjed irncl prcscntctl t¡e nature
of thc field on thc slot surfacc of both sin¡¡le ancl cloubly slottecl wavc-

guitlcs. 'lhi'.s may l)Tove intpoltattt for sevcr¡rl technical ¡rrol.rlems such ns

thc possilllc corr¡lIilr¡l.betwccn atljíìcerìt rvnveguitlcs, or usirrg tlre st::uctrrre

ns a pcliodi.c fc'c<l linc, etc. Â ntorc irìtcrcsting ancl ¡rossibly urorc

prûcticol ¡rroblcm ís tho slottcd coaxial tinc with its varied a¡:plications
Ín lnicrotvavc conuìlutl:icntions. In thc ltcxt Cha¡rte:: an attempt i.s nade to

invc'stigltc this ¡rroblcrn. I'he nr¿rttrcnlatical trcatntc¡Ìt nl¿ìy bc more le¡¿t¡y
¡l¡td tcdiot¡sr yet it follows precisely thc same rnajor lines as tlìose of
ttte prcsent Chapter.

ir.r.'¡:1Ì
: . .:.
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CHAPTER IV

FIELD SOLLNION ON THE APERTURE OF

AN AXIALLY SLOTTED COAXIAL WAVEGUIDE

4.L. Introduction

Slotted coaxial waveguides, apart from the academic interest,

have rather inportant applications in nodern communication. fnterests

in slotted coaxial lines stem from their wide application in microwave

systems such as antenna feeds [35],P1],lZZf, wide band balun transform-

ers [ 7 ] or feeds for multiply-fed long cylindrical antenna tg8] . Re-

cently, interest in problems such as sleeve antennas,coupling between

external and internal fields through a cra.ekecl shield of a coaxial óáble,

prompted several authors to study the field distribution on a circumfer-

ential slot cut in the outer sheath of a coaxial line as presented in

Chapter 2. Yet not much has been done to study the field distribution

on the surface of slots of different shapes and orientation.

In this chapter, the problem of a narrow, infinitely long axial

slot cut in the outer surface of a coaxial line, excited by an incident

TEtt mode is investigated. 'This problern reveals'along with the circu-

nferential case , that in all applications varying the shape

and location of the slot greatry modifies the radiation pattern

of the structure. The treatment here follows the same lines as the work

of Chapter 3 for the case of the hollow waveguide. First, the solution

of the possible modes supported by the structure is obtained. A modal

expansions of the field with unknown coefficients in both the closed

and the slotted sections of the coaxial guide are assumed. The field is

then natched along the interface between two sections where the unknown

i:;":rr,,i



'7CI .'

coefficients are deternined. Fina1ly, enforcing the boundary conditions

on the outer wall of the coaxial line leads to a closed-form formula for

the tangential electric field on the slot much sinilar to the formula ob-

tained previously for the slotted hollow waveguide. The work is extended

to cover coaxial line sections with a set of two identical slots diagon-

ally symmetrical and arbitrarly located around the waveguide surface.

The coupling between slots is still srnall, but is shown to be higher

than the corresponding case of the hollow waveguide.

Now, in view of the analysis of the previous Chapter, and in or-

der to investigate the present problern, one first has to determine the

slot admittance (impedance) as a necessary step to evaluate the propagat-

ing modes of the structure. This is the subject of the following Section.

4.2 Propagating TE Modes in Axially Slotted Coaxial Waveguide

In this Section different propagating'TE rnodes in the slotted

part of the coaxial line are investigated. The problem is solved using

the transverse resonance technique given previously in Sec. (2.3).

Flarringtonrs technique could not be used here for the same reasons

discussed before in Sec . (2.2) and (3.2.I). They are, generally, the

difficulties encountered when the method is applied to study different

slot locations. Moreover, in this particular problem of a coaxial line,the

resulting expression for ô proves to be rather cumbersome and the sol-

ution nay be difficult to generate. The analysis, therefore, is limited

to narrow slots and is valid for any slot location in the same way as

that of the hollow waveguide discussed in Sec. (3,2).

;:;:::.)i:::lj:)i-l

. . .:]:' ;
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4.2.I. Sloi lrnpedance

-l

Fig. 4.1, Axially slotted coaxial waveguide

Consicler the axially slotted coaxial wavegtricle shorsn in Fi.g. ,,,4.Ii,.

Application of equation (2,20) for the trollorv rvaveguide conducta-nce is
possible here, since the sane radial transnrission 1i.ne mocle rc¡rr.csentation

is applicable to both structures. Accordingly, tlie slot conductance

G: for the TEr.t incidenr node is given by [28] ancr Appenclix tDl

o-ôo o*00

| ^rl0-00 o 'ô0

,þo

s

)

J,

d0 EO(b,ô) G"(b;0,ô') EO(b,0')

GC
S

-
U

,frr2
I I hor E,(b,o) do 

IJ LL a
o_ô

'0

(4. i)

rvhere

-+
.il
and Y (b)

il
G (b;0,0') Re{ þ) h;" (o) h;n (o')

rtrnCOl = /* cosng

the impedalrce of a radial rr'aveguicle at g = b

iaíj.oìt
XY

n=0

,.(

z=0.

1S looking
::-1r'li- ::ìl



toward the outside region. It

hollow waveguide, and is given

il
Y (b)

Thus, one can see that all

conductance of the coaxial

waveguide. Therefore, the

to that of equation (3.8)

:.i,:.; u¡::ìl-: r.: I i-:

has the same

by

form as in the case of the

H(1) rr ul'p' (2.22)

'u 
G)'¡rpb)

parameters involved in determining the slot

line are exactly sirnilar to these of the hollow

slot conductance in the present case is similar

for the hollorv waveguide and assumes the form

77

K_p- t'{¡u6

where the waveguide radius a in eqn.(S.B) is replaced in (4.2) by the

outer coaxial line radius b since G, here is evaluated at 0 = b.

Similarly, using the same argument, the susceptance of the slo!
_cB; is given by equation (2.25) as

^1co
^\. 

_ L

s .¿- fioub n=0

BC
s

,cos n o¿ 'lo (''og). 2

r cos 0, J¿ (06)
Injt)'(*oo) l'

_ - loe
M2z cos 0,

(4.2)

(4.3)

where M_ is the nagnetic polarizabiJity of the slot. The analysis
z

leading to the determination of M, involves the radial transmission

line susceptance at p = b looking in the direction of decreasing p

(see Appendix B). For the coaxial 1ine, this susceptance differs from

its counterpart of the ho11ow waveguide due to the presence of the metal

surface at g = a. However, it is shown in Appendix[F]that,in spite of

this fact, the final expression for M, remains unchanged. It is, there-

fore given by

Mr=+
v2
(-+ / mçz¡601 (2.26)
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which upon substitutí.on in (4.3) immediately yields

K2
B: = -LrrÐ (å z rn (2/þ ) / ,or2o (4.4)
" 

'o0 
U

This gives an expression for the slot susceptance, which is the

same as that of the hollow waveguide. The expressions for B: and G:

represent a short circuit condition as the slot location o approaches

90o. This indicates that the slot at this location is not seen by the

wave, and accordingly has no effect on the field inside the coaxial line.

This point has been discussed previously in gec . (5.2) .

The determination of the propagation constant using a perturbation

technique folrows the same line as given in gection (z.s.s), but because

of different modal arnplitudes in the present case, the resulting equation

differs from that of (2.19) as shown in the following gection.

4.2.2. Perturbation solution for the coaxial Guide l{ave Number

The transverse resonance condition as discussed in Section (2.5.5)

is given by

where

and Z, irou) is given by l2sJ,ts4l.

<- hr = _ jt¡ub 
,..ri 

croul vi croul - "r, cro"l vi cxoul 
(4.7)zr(Kpb) 

s trr,*oo, yr(Koa) - Jr(Koa) yl(Kpb)

In the coaxial rvaveguide, the mode constants "I^ of the ttr*

excitation are solutions of the equation llgl

.ri (czr*) vi {zr*) - .ri tzr*) vi tc zrr) = Q (4.8)

?*oo) = Q

ê<-Z*pu) = ïr(Kpb).n!-:x!

(4.s)

(4.6)



where c = b/a.

sections Kpu 
"t"

closed sections,

Now, assuming that

very close to the

one nay set

the node constants

corresponding rnode

of the slotted

constants of the

Ka =p z, +ô- alm Im
(4.e)

(4.9) into (4.s) and

around ,lrn "td retain-

(4.10)

Kp.

v¡here ôr,, is a smal1 complex number. Substituting

expanding the resulting expression in Taylorrs series

ing only the first term,gives

+€òt* =- ZI(""r,n) / Zr(czr^)

where the prime indicates differentiation with respect to

It is shown in Appendix G that

#, r. rrrl

where F(Czrr) is given

- j' f F(czr*)

Yt (Çzrr)J1(z1rn) +

(4. r 1)

1- c(l - zz)cz-
IM

(4.r2)

a].d ot

(4.rs)

by

F (czr,n) =
I(L-t)

z-
Im

Yt (ttn,)Jt ("rrr) - J, (zr*)Yt ("rrr)

Substituting (4.11) and (4.6) inro (4.I0) and with the

(4.8), (4.2) and (4.4),an expression for ôr,n is obtained as

I

where

ô,.*" - (xs (rr*) * j R, (rrr) ¡ /n (czr*)

xjtzr^) = ,, 
ut("tl

c; (rr,n) +Br- (zrr)

G; (zrm)
R{ (z1r) =

and

c:' (rr*)+Br2'(z1r)
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ej t"r*)

t
B, ("r,n)

witl¡

Y=
0

Equation (4

ation modes in the

GC
s

Y.
0

Bc
s

Y
0

- K /olubp'

.13) has bccn used

slotted coax. line

to determine the díffcrcnt propag-

as prescnted in the follorving Section.

4.2.3. Nr¡merj cal Ëxarnples of thc Coaxial lt'avcnumber

Solution for the waveguide ¡nodes for rlifferent slot locations ancl

rvidths are considered for the case c.= 1.5, such that, nainly the TE 'mode
11

is allorved to propagate in the solid region 129), t51]. Some of the

results are given j.n Tables 4.I -':4.4, sin¡ilar to Tables 3.1 - 3.4;,

given previously in 5ection (3.2.I) for the hol1or,r rtaveguide.

The gc:reraI fcatures of the rcsults and their variatiolr witlr

the slot parameters are in conrplete agrcement rr'ith the ph1'sical expect-

ations and are similar to those discussed in Sec. (3.2.1). Consider for'

examl>le the cffcct of slot locations G on the rcsults. For a coaxial

waveguidc clilnensiolr a/ÀO= 0.35, c = 1.5 and slot r+iclth 10o Table .4. 1

shorvs that túe attcnuation constant var'ics f::on 0.0129 \þ/ÀO at cr, = 0.0

to 0.0045S at o = 60". 'l'his is about a g0% clrolt in thc ¡rorr'e:: radiated

rr,ithin a cirange of location of 60". Tirj-s shor+s that the racliation ¡;cttc:r

drops apprcciably as the slot location moves avray froln thc location of

tllc maximt¡n azimuthal surfacc curl:ent. lhe slot rvidth has also ,a lro1.-

¿rble cffect on thb racliation powcr. Âs an cxarrrirlc, coln¡r¡¡ing Tablcs ,l .I

atrd 4.3 revcal s that though thc v;idcr slot radiatc-s hig,hcr por',er thrn

thc narror{cr oÌìc, Iet dotrbling the slot surface arca tvorrld not cloublc
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the radiation por^rer. The tables show that for slot widths 10o and

4 o , the power ratio is always around r.7 regardless of the srot 1oc-

ation. In r.act, it has been shown before in chapter s sec. (s.3.2) anð, ít
is confirmed here in sec. (4.3.2), that to enhance the power radiation

one 'should use a-greater number of narrow slots per section rather than use

few wider slots.

The higher order modes are ne*t investigated. Table..4.h. giveS some

values of ô.- for m = 2,3....,etc. rt is clear from the table thatIM

these modes are non-propagating and they vanish within a sma1l fraction

of a wavelength.

Iocation cr Real ô r*rg. Real YÀo Lnag.

00 0.1538E0 -0.3103E-l 0.4296 E-L -0.5655 E 1

20" 0.137280 -0.23938-I 0.3243 E-I -0.5677 E I

300 0.1175E0 -0.t7448-r 0.2303 E-I -0.5703 E I

450 0.7905 E-I -0.892r E-2 0.1119 E-r -0.5752 E I

600 0.3968 E-l -0.3692 E-2 0.4389 E-2 -0.5800 E 1

/5 0.1064 E-1 -0.9314 E-3 0.1063 E-2 -05.834 E r

TABLE 4.1 Values of ô and y for different slot
location ü for the f,irst rnode(211= 0.8052).

a/ÀO = 9.35 00= 5o
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TABLE 4.2 Values of ô and
for the first mode

TABLE 4.3

y for different
(rII = 0.8052).

slot location o and
a/ÀO=0.35 ó0 = 3o

a andValues of ô and y
for the first mode

þo=2"

for different
(rII = 0.8052).

slot locations
a/ÀO =9. 35

location o, Real ô I*un. Real Ylo Imas.

0" 0.1336E0 -0.23198-1 0.3L27 E-I -0.5682 E I

20" 0.118980 -0.17838-1 0.2359 E-l -0.5701 E I

30" 0.101680 -0.1296E-l 0.1675 E-1 =0.5724 E r

450 0.6819 E-l -0.6609 E-2 0.8172 E-2 -0.5766 E I

600 0.3420 E-I -0.2733 E-2 0.322s E-2 -0.5807 E r

750 0.9170 E-2 -0.6902 E-3 0.7862 E-3 -0.5836 E 1

location a Real 6 rmas. Real YÀo Imag.

00 0. 1209 E 0 -0. 1888 E-l 0.2s05 E-l -0.5699 E r

20" 0.107480 -0.1450E-l 0. 1889 E- 1 -0 . 5716 E 1

300 0.9170 E-l -0.1052 E-l 0.7343 E-r -0.5736 E I

450 0.6147 E-I -0.5359 E-2 0.6566 E-2 -0.5774 E r

600 0.3081 E=l -0.2215 E-2 0.260I E-2 -0.5811 E 1

qeO/5 0.8260 E-2 -0.5596 E-3 0.6366 E-5 -0.5837 E 1



83

TABLE 4.4 Values of ô

0=0
and
Ôo=

Y
50

for different rnodes
a/À6= g' 35

1m Real 
ôt't 

Imas. Real 
YlmÀo 

Imag.

0.8052 0.1538E0 -0.3103E-l 0.4296 E-r -0.5655 E I

6.376 0.2433 E-7 -0.4962 F.-2 0.I7t7 E 2 -0.1509 E-l

12.612 0.6322 E-2 -0.8010 E-3 0.3550E2 -0.23248-2

18. 88 0.t762 E-L -0.8372 E-3 0.s36282 -0.24088-2

25.L56 0.7188 E-4 -0.1139 E-5 0.775982 -0.3268E-5

The technique used in this Section to determine ô is similar

to the technique used by Goldstone and Oliner [25], which has been employ-

ed in Chapter 3 As discussed in Sec. (2.5.4), this technique is valid
only for narrow slots and the accuracy of the results presented here

should be considered within this 1imit. Moreover, in solving for multi-

slotted waveguide sections one should also consider the interaction among

the slots, which usually adds to the complexity of the problem. It is
shown in the following Section that the problern lends itself easily to a

solution for the special case of two identical, diagonally syrnmetrical

slots similar to the solution presented in Sec. (3.S).

4.3. Two Identical Symmetrically Located Slots

In Section (4.2) the propagation constants of different rnodes

supported by a coaxial line with a single axial slot along its surface

has been investigated. The knowledge of these propagation constants

would enable one to proceed to solve for the slot field distribution and

to study the factors that may infruence it. It is crear, however, that

adding extra slots on the guide surface provides a nore flexible parameter
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for controlling the radiation of the structure. The problern as discu-ssed in

Chapter 3 rnay not be quite as sirnple sj-nce the interaction among these

slots has to be appropriately considered. In this Section the problem of

ttvo identical and diagonally symmetric slots on the surface of a coaxial

guide is investigated. The analysis to follow is similar to the work

of Sec. (3.3.1), and therefore, will be given briefly.

4.3.1 Propagation Conslants In A Coâxial Line lVith Trvo Identical

Diagonally Syrrunetric Axj.al Siots

In Sec. (4.2,I) thc impeclance (admittance) of a single axiai slot

in an arbitraly location cx o¡r the surface of a coaxial guide has been

determined. This work can be extendecl to the present case of trvo ident-

ical slots, 1B0o apart, as shown in Fig, 4.2.

Fig. 4.2 Syrunetrically double slotted coaxial guide

Âs discussed before in Sec. (2.3), the structure could bc repres-

ented by a transmission line in p direction terminated at Q = b by

the effcctive impedance (admittance) of t¡vo slots courbined togcther,
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Fig. 4.3

t!, =

n+d+00 
z

I n'r, (a, o) E* ra, o) ado 
I

o'+ô. ,0
,In=P/ lj h"r(a,ô) EO(a,ó)ade+

rr+c_ô 
0

r+cr+ó

r 0 
,,

EO (a , 0) . .J hr,, (a, ó) E* (a(a,0)

o,+ó

l'o '(.J h,,,
o_Qo

c!, . jn!,

0 = 0.0

Fig. 4.3 Transrnission line representation of the syrnrnetrically
double slotted coaxial þuide

The radial transmission line mode representation is exactly the

same for both the'hollorv and the coaxial lr'aveguide 1291. Therefore,,the

equations for both the conductance and the susceptance of holloru waveguides

developed in Appenclix tD] could as well be used fo:: the present case of

the coaxial 1ine. Accordingly, the effective slot concluctance of the

double-slotted coaxial line of Fig. ,.4.2' is given by equation (D.3) as

Irl
L--r--l
(

P=4.'

I

I

I

I

Gc^
s¿

o_0 
o

p = R" {i- (K^b)n- p

n.:-* 
o

It has been shown in Sec. (4.2.1) that Y,r(KOb) in the coaxial

lvaveguide takes the same form as the hollorv rr'aveguide case. iVe also lc-

call that thc mode firnctions f,)rr{t,O) are similar for both cases. There-

fore, the conrbined concluctance Gc^ of two slots takes a forn iclenticals¿

to the effective conductance G',2 of the double slottecl ho11ow waveguide

2

,ó)ad0) i
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presented in Sec. (3.3.1) by eqn. (3,I7),rhar is

Fc - I : 2 .cosn., Jo(n0o),2
"s2 - 

'*F ,,=rls,s ffl'r*oÐli 
t cos o 4-lõ[r

similarly, the effective susceptance of two slots is given by

equation (D-20) as

(4.14)

(4. 1s)

Ðc - üler

s2 2 Mrcosza

where M , according to AppendixIF]together with the discussion ofz'
section (4,2.1),takes again the same form for both coaxial and hollow

waveguides. It is, therefore, given by eqn. (2.26) as

T *o'
M, = ä(ç /1n(2/60)

Therefore, 
"2, 

takes the form

K2
t!, = -æ ({) rn(2/þ} ¡ cos2a

Now, the varue of ô1, defined by equation (4.9) is obtained by

direct substitution of (4.I4) and (4.15) in eqn. (4.I3) as

ô1* = tx.(r,.*)+jR; (rrr)l/F(czr^) (4.t6)

where n(czr*) is given by @.I2) and

rBGxr(rr*) = -;z= , ni(zr*) = -Z= ,' ,'
B +G B +G

S S S -S

with
Dc nc

-t - 
osz 

^t 
bs2

"s -oub/K -s -t¡u671-
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Equation (4.16) together with (4.9) determine the different propagating

rnocles in the slotted stïucture. The propagation constant is readily

obtained using equation t2.9). In the following Section some of the results

obtained using these equations are presented and compared wíth the case

of a single slot of Sec , (4.2.2).

4.3.2. Numerical Results for the pro tion Constant of a Double Slotted

The value ô as given by (a.I6) is evaluated for several paramet-

ers such as the operating wavelength, the slot location and the slot width.

Some of the results are presented in Tables 4.5' and 4.6 Upon study_

ing these results, one would notice the same trend as one noticed in

Sections (3.3.2). The radiated power decreases with the decrease of the

slot widtl-r or with the slot approaching locations where the surface cuïr-
ent is very smal1. However, the variation in this case is noticed to be

sharper, when compared to the corresponding double slotted waveguide of

sec. (3.3). consider for example the results given by Table 4.s'. As

o varies from 0.0" to 60o the attenuation constant drops from 0.656

Np/À^ to 0.00345 Np/À^. This is a drop of about gs% compared to 92%'00
in the hollow waveguide case presented in sec. (s,3.2). It may also be

interesting to compaïe cases of single and double slots that may be geom-

etrically related. Table 4.7 compares the results of a double slot

set located at 0 = o and ô = T * o, with those of a single slot loc_

ated at 0 = o. The slots are assumed identical and have a 4o width.
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TABLE 4.5 Computed values of 6 and y for arbitrary
located two-slot set, 180" apart. First
mode excitation ì

ÔO = I a/ÀO = g.35 c = 1.5

TABLE 4.6 0O = 5o a/ÀO = 9.35 c = 1.5

:_t ..t r'

location o

0

Real Imag.

yÀo

Real Imag.

0.0 0.2402F.0 -0.42ss8-1 0.6s67 E-I -0.ss29 E 1

30 0. 1826 E 0 -0 .2400 E-7 -0.3448 E-l -0.5614 E 1

45 0.122980 -0.1088E-i 0.1448 E-l -0.5696 E I

60 0.6181 E-1 -0.2825 E-2 0,3463 F.-2 -0.5774 E I

75 0.1660 E-l -0.2105 E-3 0.2423 E-3 -0.5827 E 7

location a

ô

Real Inag.

yÀo

Real Inag.

0.0 0.304380 -0.69658-1 0.1161980 -0.5429 E I

30 0.2334E0 -0.3966E-l 0.6070E0 -0.5539E1

45 0.1580 E 0 -0.1804 E-l 0.2518 E-l -0.5648 E 1

60 0.7978 E-1 -0.4709 E-2 0.5914 E-2 -0.5752 E I

75 0.2144 E-I -0.3511 E-3 0.4069 E-3 -0.5822 E 1
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TABLE 4.7 Comparison between results of single and
double slotted coaxial guide

0=4o
0

cx al^ case Atten. Const . s,z Ratio (azz) / @rì

0.0"

0.3 Single slot
Double slot

0. 0355

0.0944
2.66

0.2 Single slot
Double slot

0.1029

0.3r7r
3.10

600

0.3 Single slot
Double slot

0.00365

0 .00487
1.33

0.2 Single slot
Double slot

0.00987

0.01346
1.36

Here again, it is clear that two identical slots symmetrically located

do not radiate twice as rnuch as a single set at the same location. The

ratio of the radiated por4rer varies with the slot location, the wavelength

and the slot width as is evident from the following table.

ijlii, r t:
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TABLE 4.8 Comparison between results of a single and
double slotted coaxial guides.
a/ÀO= 0.35 o, = 0.0o

Slot Width Cãse Attenu. Const. o,,

40
Single Slot
Double Slot

0

0

02s0

0656 2.62

100
Single Slot
Double Slot

0.0429

0. r161 2.70

It is also worth mentioning that as before the field disturbance

due to a wide angle slot is less than two naïrow ones. It is evident from

Table 4.8 that two slots of width 4o would have an attenuation constant

of 0.0656 t¡p/ÀO while one slot of width 20" has an attenuation of only

0.0429 t¡p/À0. Flowever, one may notíce that, the variation in this case,

is sliarper than the corresponding case of the hollow waveguide of 5ection

(3.3.2).

The effect of the interaction between the fields of two slots will
be studied further in a later Section when the slot field is obtained.

To this end, and with the knowledge of the eigen-values of the slotted

section, it is possible now to proceed to the next section. There, the

unknown coefficients of the modal expansion of the field on both sides of

the slotted coaxial line with TEtt excitation are obtained. This step

allows the determination of the field solution on the slot surface as

will be discussed in Section (a. ).

4.4 Fornulation of the Scattering problem

The analysis of the previous Section helps determining the prop-

agating TE modes supported by the slotted structuïe. In this Section
i::r!.:lrìir r;
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the.se modes al'e uscd to forn a modal expansion of the field in both closed

and slotted sections of the coaxial line each with a set of unknown coef-

ficients. These coefficients are the¡r obtaineci in a way sinilar to that
forlowed in Sec. (3.3), rvhere the field components are matched at the pJ.ane

separatitrg the tlto lvaveguide sections. In a later Section these coeffic-
ients rvill be used to completely determine the slot field.

4.4-I- Field Representation Insr'-cle 'clie Coaxial IVavegr._lde (TE modes)

The fielcl inside a coaxial guide is usualJy given by a combination of
both the Bessel functions and the Neumann functions. It nay be convenient

before j-ntroducing the mathematical form of this field to define a ser

of functions that will be used extensively in the analysis of this Chapter.

Define the functions Cn(Zrr^O/a) and D,r(Kp p) and their dcrivatives as
nnt

cn?n^o/a)

C'(z o/a)n- nnì' -

D,r (Ko P)
'nm

D,l(Ko P). 'nm

= Y;(rr,r) Jr(zn e/a) - J;(zrrr) YnG,,*o/a)

= # [yJl(znm) J](zn o/a) - J;(z,r^) yi(ä,.,n,0/a)J

= \i (*onn") 
'r,(*on*o) 

- t,l(*onru) tn(*o,r*o)

= *or,* [Y'l(*pn,nn) 
';{*0,-,*o) 

- 
'å(*onn,t) 

Y,l(*nnro) ]

(4.r7)
Norv, let an incident field in region I of Fig. "4.4., be

I

z=0

Fig. 4.4

TEt t rvith a

Axially slotted

wave function in

coaxial guide

the form [29]
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,l,i - rlcr (zrro/a)]cos ô exp(jrrrr) (4.18)

where T is the intensity of the incident field, a is the inner radius

of the coaxial waveguide, 0r, is the propagation constant of the TEtt

mode,and "-jt'lt time variation is assumed. Let the rvave function of the

scattered field in the same region (region I) be represented by

,lrt=JIIBlc
p=0 q=1 pq - ,(zrro/a)J cos p 0 exp(-jOpqt) (4'i9)

where p and q are integers and

UOOtr are unknown constants to be deternined

,pq, is the qth root of the equation

ti ( roo) Ji (c zþq) - ti ('oo) ti (. "no) = Q (4.20)

with e = b/a and b is the outer radius of the waveguide and

g2 -2 )
pq* (zrr/a)' = K;

The scattered field in region II can be represented by the wave-

function

0 = T I I A lD fK^ p)l cos rQ.exp(-yrrz) (4.211
r=0 S=f TS ' tt' 0rS

where r and s are integers and

Y = 0 - ìß = /?---7-'Ts -z 'u z 0", u (4 '22)

K rs are known for each mode and each slot location accordingot=

to Sec. 4.2.

A_-_rs are constants to be determined.rS

t.:..r ' -:
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J 't

For colivcn-ienc-c, thc ictteT K lvj. li bc.usecl , in rvh¿it follols, in ¡rlacc
of K., cxcept il¡ certain specirr l cases to avoi cl <:on fus i on .

"]1S
The ficld coìnDoncnts jn botli regions can be clcrivecl fronr thc

relations (3.2(r) statcd in sec . (3.4) . As i¡l cha¡rtcr s , i t is convcn-
j'ent to i:rtroduce tire nlode functio's 

"nn, ¿rncr rr,r,n ilr both regi.cl' I
and II;defined as¡

Region I:
Jl->J+e = "ó uó * ê- anm 'nm Pn* - 

P

(4.23)

fr__ = fr. å,*À ìnm grr* a Prr* -p

where

Iu0 = C;(zrr^o/a) cos n Q
'iln

(4.24)
Inöo = Ë cn(zn^e/a)sinnþ
'nm

' je -d+ = 4'''m å9rr* JoU gnnl

fr+ = *ju'* ågrun Jou 0r,

and the lorver a'd up|sr signs hor<l for exp(-jurrrr) ancr exp(j0r*r)
varia tions,respectivel y.

Region I I:
II II .} IIe_ = e, a. +--Ci annt q)ru1ì 0 - 

9,.,nì -g

II II -+ IIlt = lt. a. +li- annì Qnn, O "Qnn, *g

].: :

Ì.i:i

r,'her'e

(4.2s)
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Iiè; = ¡'(Ko p) cos n þ'nm 'nm

II
e p = å Dr,(Ko p) sin n s

nm 'nm

(4.26)
II Y,,* IIn, =-- e9r* Jou pnIn

II Ynm IIn = e.onrn jr¡u Qrr*

These mode ïepresenations with the ,aid of (4.rg) , (4.rg), (4.2r)

and (3.26) give the field components in both regions I and rI, which

takes the form

Region I:
III
uo = t "*r,. "*n(j0trz) * t nlo ol, 

tno 
"*no "*o(-jepq')

III
to = t "r' exp(j?n') * t 

olo ol, 
tno 

"ono "*ot-i}pq')

r I , 
(4'27)

H. = T hf e'o - ' "0r, cxp(jorrz) * t 
o]o ol, 

tno nãno "*o(-jeooz)

III
H^'= Thl exp(j0..2) +T I I B h- e"p ' "or, ' lr p=o q=r pq opq xp(-junot)

Region I I:
II II
oo = t 

,lo ,1, 
ot, "*", "*o(-Ytr')

II II
þ=TIIAeexnl-vz\0 t=0 s=l rs 0t, 'rs ' 

G.2S)
II II
H. - T I I A h. exof-yrrz)

- A r=0 S=1 rs 0"= -"r\



.... ......._. '-..-..:: :..:,--:_.--.i_-:_:..__-_- -..:.-..:,_...1:...:.

otr
JJ

II II
no = t 

"=to 
,lt 

o* nor, 
"*o(-Y"rz;

These equations give the fíeld everywhere in regions f and II in terms of
theeandhmodes-nm nm

Certain relations between these modes exist,. These relations

will help in reducing the resulting equations of the unknown sets A and

B to a simple form that can be numerically solved. The next Section deals

exclusively with these relations.

4.4.2. Mode Orthogonality

In this Section mathematical relations among the modes given by

(4.24) and (4.26) wiTI be introduced. These relations are similar to
those discussed before in sec. (2.4.2) and will be used extensively in

the formulation of the scattering problem to fo1low in a later Section.

Consider the ,integral relation

¡41 = f rå *4.t.à dsnm l-nn pq, z -

pqÞ
cross-.sectional area of the waveguide.

(4.2s)

Substituting (4.23)the

ives

=l
J
S

where S is

in (a.29) s

¡41
nrn
pq

which upon

+M-=
nm
pq

J.
non* ono

the mode

I
(eo

nm

b 2tt-
ltl=ll(eJJ

9=a Ô=0

substituting
b2r

I
p-- ão) * ftt-^ äo *
'nm '- 'pq

T-+
ât*e
I

I+-+h: ap)
(J'pq

->.a ds
z

II
-eó hl )pdpd0'nm 'pq

values given by@.2a) gives

.'loo p sin
JûJU PI t (ä ." Qn o/a) cr(zoro/a)

Q=a CI

nQ sinpQ
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t ci(z,.,ro/a) ct(znro/a),cosnô cos p 0) epo,/ ou pdpdO

Using the orthogonality of the trigonometric functions as presented by

(3.34), this equation becomes

(4.30)

where y = Q/a

This integration is evaluated . in AppenCix[H],and is shown to. exist

only for z = z_^ and is equal to zero otherwise. Using the result'nmnq!-
(H - 8 ) of appendix H, equation (4.30) nay be written as

+ + 2t¡ jonq i 2

qnr = ti* = * ä lõif J tï c,'(2,'*)') cn(z,ror)rci(2,.*r) ci(z''ox) r)dr
pq q y=r

++¡II+-)M- = l![- = | fe x h- ).a dsn_!n nm J nm pq' zqs

2

,? # ryr'e - j1 clrcz,,,,') -c(1 +,nzz
nm

cr, (rr,*) Gr, (" t rrr) Ì ( 4 .37)

where

C @z I = J (cz ) Yrfz ) - Y (cz \ Jt(z )n- nm' nm' nt nm' n' nm' nt nm'
(4.32)

Gn (c zrr*) = Jr, ('r,*) Yi (c zrr*) - Yr, (znr) Ji (c zrr*)

Equation (4.31) establishes the orthogonality relation between the
II

modes e and h for the coaxial line.

Another integral which is of inportance in later analyses is the

integral relation
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N =lnmJ
pqs

Substituting

and evaluating the

I
[e

II -+xh ).a dsnm pq- z
(4 .33)

the node values given by @.2a) and (4.26) into (4.33)

trigonometric orthogonality relations, (3.34) gives

N
nm
pq

=J{=
nmq

2tr 'no ,n' i-
% ffitï 'J '

Y=1

r I ITl+-+lfh- xe ).4 ds/ 'nm pq' z

,, 
(zrrrr)' Dn (Ko ay)dY + a

'nm
c' (zr*Y)

-2tr \no
= 

-+
e ioun '?',^ 

'. (Kprrru) 2

c,l
I=1

YdvD;(Ko ay)
'nm

where y = p/a

The result of this integration i.s given by (H- 6 ) of Appendix[H].

Accordingly, one finds

zfrr (Kp,r*a¡I
(e'nmN=

nmq
S

{

ï
->xh l'a dspq' z

flhere Crr(czrr*) is given by e.Sz) and

ci (cz) = J; (c z) Yj (z) - Yi (cz) ,rd (z)

This establishes the second integral relation to be

later in the formulation of the scattering problem.

The third important relationship to be considered is

. cr,(czn*) ti ( . *pr,*u) - crr(zr.,r) Di(rp,.,*a11

(4.34)

(4.3s)

encountered

+O-=lm
pq

where S is

S

the same as that in (4.29).

(4.36)
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(4.37)

Using (4.24) and (4.26) and following the same steps as in Sec.

(3.4.2) in the derivation of [3,43), one can easily show that (4.36) nay

be written as

+O-=ïlm
pq

which upon using

++O--O-='nm lmq
pq

j0
nm+-- Ypq

(4.34) s

I I*
lfh- xJ -nm

II
xhtlnm pq'

rI
Jc"
s

ives

II
+e-pq

-+
ds

2 .__z (K a)nm .. lg.
,2 _rK a\2 

{t cr,(cznm) ci(cKnoa) - crr(znr) c;(Knqa) }
nm. 'nq'

(4. 38)

This concludes the derivation of the three basic integral relations needed

for the formulation of the scattering problem as will be discussed in the

next Sec_tion.

4.4.3. Mode Matching

The next step in this analysis is to natch the tangential comp-

onents of the fietd on both sections of the coaxial line (at the plane

z = 0). To this end, the technique presented in Sec. (3.4.3) is applied

here, employing the different relationships obtained previously in (4.31),

(4.34) and (4.38).

Consider the

).ã ds = * 
junt 

N = t2T ""-' z Yrro nmq e., J ûJu

II I 
'¡E.xhjr) | 

.à, ds

z=0

rII

.J ,u. x i'j*)
S

two identities

I.á ds = |zJ
S

(4.3e)

and

z=0
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-ùq a_ ds (4.40)
z

z=0 z=O

which are based on the fact that the tangential electric field Ea and

magnetic field Ht are continuous at the plane separating the two wave-

guide sections. Analytically this neans

I II
E-Ett

and
I II
Ha=H,

consider first equation (4.39). The R.H.s.,using (4.27),courd be written

AS:

Therefore

-+ I II I
ea ds = lfH xe Iz l't nm'

S

rII
.l t". * "r,*)
5

rI I
¡f,lE xh'
!tnm
s

But from (4.3

I
I

)
S

rI I r I I
I= (Tl...xh1 +T I I B I e xl-t*1.ä dsJ rr nm p=0 q=l Pq J Pq nm' z
sr.s

++
a ds = -lr{-znm

the R.H.S. of (4.40) gives

r II I
ds = f I I A I " xht

r=0 s=l Ts J rs nm

becomes

s+
á ds = -f t A 0'z-nslsm

S=I

Similarlyrusing (4

I II I
lE xhtJtn

S

which upon using (

r II I
le xhlIt'nm
s

z=0

1)

I
EX

nm

¡ I I+
lexn-Jnm

S

->ads

I
¡tt 'pq

-)++.a ds = TM-- +TB M-zlLnmnm

->

L

(4.4r)
z=0

.28) '

l*l'aml z
z=0

4 .36)

I

I

z =l)

z=0

i.t:r-'l r..-!l

l:;::. i, ..'.

(4.42)
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Conhining (4,4I) and (4.42), equation (4.59) coutd finally be

written as

++
M-- + B M-It nn nm

+=^IA0-- ns tnsm
s= -t

(4.43)

Equation (4.43) is similar, in form, to equation (S.49) of Chapter

3 for the hollow waveguide. However, the values of ti,n and itr*
given here by equations (4.31) and (4.s8) are fundamentally different

fron their counterpart of Chapter 3.

Now, consider equation (4.40), in a similar way the L.H.S. using

(4.27) becomes

ti-,.i--l .ä-u, = i(ril,+r r r B i-),.: .à ds

¿ 
t n* j=o z - 

; P=o q=r 
-Pq "Pq' nm -z --

= -TM]- -TB M-II nm nm

T ttt - T B* M't

where the result of (4.31) was employed, and -tï, is replaced by tir.
The R.H.S. of (4.40),using equation (4.28),gives

.à ds = r x x A li ,.: .ä ds
" "=os=r 

,,¿ rs nn z

which when usíng (4.34) becomes

ll-+
lH. xe I .á ds - -T X A NI t t* j=o z -- ; 

-ns .'nms

Thus, equation (4,40) becomes

r II I

.J 

(n, * u,.,r)

z=0

-M__+B M - X A__N__ (4.44)L 1 nm nm s_-l 
- ns -'nms



Mii * ur* trr =

Qttt * Nrtt

- E- Alr Qrr*
5-r

jiìïi|::).:!,

(4.4s)

The unknown Ars and Brs could be determined by solving (4.43)

and (4.44) in a manner similar to that of Section (3.4.3). Allowing fi,

m and s to take discrete values 1, 2, 3, these two equations

form a set of infinite sirnultaneous equations,

However, as in the case of the hollow waveguide, it is shown that

the n=l node and a few terns in each series are sufficient to determine

the slot field. For the î11 modes, the excitation is zero, By enforcing

the orthogonality relationship on the slot field, it is shown that these

nodes are not required to determine the slot tangential field.

4.4.4. Solution of the Unknown Coefficients

The solution of (4.43) and (4.44) follows exactly the same lines

as that of Sec. (3.4.4). Therefore, it hrill be briefly mentioned here.

Consider the case of D=1, equation (4.43) and (4.44) becomes

riate

which

-Mil * trr tr* = ,x=t 
41, N1r, G'46)

Subtracting (4.46) from (4.45), and truncating after an approp-

number of termsL , gives a matrix equation sinilar to (3.53)

is of the form

0

0

M-
L1

a

.a

n +N-11L .'1Ll

Mir,

Qir.r * Nrrl

M-' '11

:

^- 
¿ l\TY1LL "1LL

^il

'l^"-ltit

(4.47)
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The coefficients All, A1Z .,. ArL are easily obtained fron equation

(4.72) by a simple matrix inversion. Substituting the results back in
either (4.45) or (4.46),the coefficients tlr, UtZ t¡, can readily
be obtained. Again' one should point out that B¡ and o¡ represent

the reflection and the transmission coefficients,respectiveLy.

A computer program is established to calculate these coefficients
using (4.47) and either (4.4s) or (4.46). Tabtes 4.g. -'4,L2 give sone

of the computed results for a singre. slot,whire Tables ,4.ri -r4.15 give.,

corresponding values for the double slotÈed case. rt Ís apparent that the

first few terms are enough to determine the field, and that the rest of
the coefficients are increasingly negligible as seen from above tables.

This result is physically feasible since, as in the case of the hollow

waveguide, higher nodes are non-propagating and they vanish within very

short distance,

Most of the observations noticed before in sec. (s.4.4) ate en-.

countered here again. The reflection coefficients for any mode decay

as the slot moves far from the position of maximum azimuthal field as is
shown in Tables 4.9-4.L0 for the single slot and in 4.1g - 4.14. for the

double slot. This, again, has its important application in microwave

measurements. It allows a probe entry to the waveguide in places where

the slot has minimum effect on the field. Thus one may conduct êxperinental
investigation with the least disturbance to the interior fie1d. The re-
flection coefficient is also shown to be a function of the wavelength.

Figs' 1'5 and 4-6 for single and double slots,respectively,shows that
the value of the pol^Ier reflection coefficient rises fast near the cut-off
frequency, and decays smoothly as the frequency increases, It is clear
also from these curves that the presence of two slots will cause higher



M Transmission Coefficients (TElm)

Real

TABLE 4.9 The Transmission and reflection
coaxial line mode.

þ0 = 2" q= 0'0

I

2

o.tt74 E

3

-0.4127 E-r

4

-0.5188 E-4

5

I

-0.1538 E-4

0.2720 E-7

1n Region

Imag.

II

0.2837 E-I

coefficients for tEr,

a/ì,0=0.36 L = $

-0.2176 E-r

-0.2738 E-4

Reflection Coefficients (TEtt) in Region

Real Inag.

-0. s268 E-5

0.7787 E-8

0.I278 E-l

0.3187 E-1

0.3187 E-2

0.3115 E-2

0.2227 E-4

0.2226 E-2

I

-0.4877 E-2

0. 3309 E-4

0.1987 E-3

0.2016 E-5
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TABLE 4.10 The scattering and reflection
coaxial line mode.

þO= 2o 0 =459

I{ Transmission Coefficients (TEf^) in Region II

Real Imag.

I

2

5

0.1085 E I

4

-0.2127 E-J,

-0.135r E-4

5

-0.3823 E-5

0.4011 E-8

coefficients for tEt,

a/ÀO=9.j5 L = $

0.7917 E-2

-0.9264 E-2

-0.4s99 E-5

Reflection Coefficients (TElm) in Region I

Real Imag.

-0.8739 E-6

0.7195 E-9

0.6207 E-2

0.1515 E-l

- iìtll
,ìi,t.,' l
:....':l

.::.t,

'',:i :, 
.":

0.7s32 E-2

0.1508 E-2

0.1080 E-4

0.57s9 E-3

-0.3615 E-2

-0.I072 E-3

-0.2399 E-4

0.1187 E-6

H
O
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TABLE 4.11 Transmission
coaxial line
ó =50'0

Transmission Coefficients in Region II (TElm)

Real Imag.

1

2

3

0.1223 E 7

4

-0.5237 E-l

5

-0.8750 E-4

-0.2574 E-4

and Reflection
mode.

o = 0.0o

0.4590 E-7

Coeffj-cients for tttr.

a/ÀO=0.S5 L = g

0.4739 E-r

-0. ilts E-1

-0.4867 E-4

Reflection Coefficients in Region I (TElm)

ReaI Imag.

-0.1016 E-4

0.1522 E-7

0.1664 E-1

0.42rr E-7

0.4163 E-2

0.4069 E-2

0.2905 E-4

0.3845 E-2

-0.4073 E-2

0.2690 E-3

0.4800 E-3

0.4206 E-5

lJ
O
(¡t



TABLE 4.12 Transmission
coaxial line
Á =50*o

M Transmiss ion Coefficients

Real

1

2

5

0.1223 E

4

-0.5237 E-7

-0.87s0 E-4

and Reflection
mode.

q = 0.0o

I

-0.2574 E-4

1n Region II (TElm)

Imag.

Coefficients for ttrr_

a/).'0 = .35 L - 4

0.4739 E-I

-0.3113 E-l

-0.4867 E-4

Reflection Coefficients

Real

-0.1016 E-4

0.1664 E-l

O.42LT E-I

0.4763 E-2

0.4069 E-2

1n Region I (TElt)

Imag.

0.3845 E-2

-0.4073 E-2

0.2690 E-3

0.4800 E-3

H
C>
o\
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TABLE 4.13 Transmission and Reflection Coefficients

c = 1.5 Two slotsrl8Oo apa'rt, þ O 
= ,o cr = 0.0o

L = g a/\=O.ss

TABLE 4.14 Transmission and Reflection Coefficients

c = 1.5 Two s1ots,180o apart, 00 = 2o o = 45o

L = $ a/Ào=9.35

n Transmis sion Co efficient

Real Imag.

Reflection Coefficient

Real Inag.

1 0.1357E'r 0.6837E-1 0.2780 E-l 0.6059 E-2

) -0.8697 E-1 -0.4930 E-l 0.6950 E-1 -0.7302 E-2

3 -0.2209 E-3 -0.1281 E-3 0.6877 E-2 0.3641 E-3

4 -0.66s4 E-4 -0.2501 E-4 0.6729 E-2 0.7066 E-3

5 o.r2B4 E-6 0.4412 E-7 0 .4'807 E-4 0 . 6305 E- 5

n Transmission Coefficient

Real Imag.

Reflection Coefficient

Real Imag.

I 0.tI7787 0.1638E-l 0.1303 E-l 0.1302 E-2

2 -0.4308 E-l -0.1900 E-l 0.3176 E-t -0.7239 E-2

3 -0.5637 E-4 -0.1984 E-4 0.3204 E-2 -0.1984 E-3

4 -0.1603 E-4 -0.3709 E-5 0.3152 E-2 -0.2706 E-4

5 0.2798 E-7 0.5728 E-8 0.2258 E-4 0.4055 E-6
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TABLE 4.15 Transmission and Reflection Coefficients

c = 1.5 Tt^¡o slots,l8Oo apart, 0O= ,o cr = 0.0o

L = g a/ÀO= 6.35

n Transmission Coefficient

ReaI Imag.

Reflection Coefficient

Real Imag.

1 0.1461E1 0.1166E0.0 0.3676 E-I 0.1089 E-l

2 -0.111880 -0.73198-1 0.9331 E-l -0.2807 E-2

3 -0.3778 E-3 -0.2355 E-3 0.9133 E-2 0.1142 E-2

4 -0. 1 1 31 E- 3 -0.4985 E-4 0.8908 E-2 0.1576 E-2

5 0.2154 E-6 0.8620 E-7 0.6355 E-4 0.1291 E-4
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cr = (0 . 0o, 1g0o) = 1.5

Óo=

Fig. 4.6 . Reflection coefficient
versus the ratio a/L for differeni
slot widths ôO:symmetTical ly double
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power reflection coefficient than one single slot, even if the surface

area of the single slot is equivalent to the surface area of both slots

together for u/\0=0,I7. Figs. 4.5 and 4.6 show that the Pr

for a single slot of r^ridth 204 is about .04, while the corresponding

value for two slots, each of width 4o, is about 0.2. The change here

is noticed to be sharper than the corresponding case of the hollow wave-

guide of Sec. (3,4.4). One may also point out that while the power re-

flection coefficient decreases as a/À increases, it was shown in Section
0

(4.3.2) that the radiated power in this case decreases. This suggests

an optimum operating frequency to conpromise between the required radiation

power in the space and the minimum Pï in the waveguide, depending on

the practical needs.

Finally, the stability and accuracy of the numerical procedure

again seems quite acceptable. Tables 4.LI and 4.I2 give the values

of the coefficients A and B with two different number of terms con-

sidered. It is obvious from these tables that the results are very stable,

and good to the fifth significant figure. The accuracy of the results

is tested by substituting the values of the coefficients back into each

equation and calculating the error. This error was always in the range

of 10-6 or less in a single precision' calculation. Dif,ferent cases

were tested to check the accuracy, and the results in all cases were with-

in the above 1imit.

This concludes the analysis of this Section, allowing one to carry

on to the next step to evaluate the field on the surface of the slot (s).

4 .5. Electric Field on the Slot Surface

The final

electric field on

stage of this Chapter is to

the slot surface due to the

evaluate the tangential

incident tEt, coaxial
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line mode. To this end, the scattering coefficients obtained in Sec. (4.3)

together with the assumption of a long narrow slot are employed to arrive

at a closed-forn fornula for this field, The approach is similar to

that of Sec. (3.5) for the hollow waveguide case, and applies for both

single and double slotted coaxial guide sections.

It is shov¡n by Harrington that for a long narrow slot the field

remains essentially either TE or TT\4 depending upon the excitationl24l

Thís suggests that there is only a tangential component of the field on the

slot çurface and, ià ttriã casê i-t is rhe $:'polarized EO. Accordingly,

by virtue of equations (4.26) and (4.28), the slot field could be written

explicitly as:

E*(b,0,2) = J I I A D' (K b) cos rg exp(_yrrz)
r=0 S=1 rS t'- 0rS

(4.48)

where D'[K^ b) is given by (4.17).r' Qrs

This expression is valid for both single and double slotted sections as

long as the appropriate coefficients A* and Ko are used. Further,
'1S

the field on a narrow slot could be shown to take the form [2s],lsz-s1l,

[4s] and [s0].
Eg

-00.0<00 (4.4e)

and the z vatiation,may

Ea(b,0) =Y 
,trrþ/öf

which, when introducing the slot location ct

take the form

E* (b, 0, z)
EO (b, z) coso

o-ooto .o*Ô0 (4.50)

i ,-:': :'-

':.:-.:
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hrhere the factor coso is introduced here nerely to adjust for the approp-

riate direction of the field as the slot location o varies beÛ.,'een 0.0"

and 360" around the guide surface. Combining (4.48) and (4.50) gives

E0 (b,0) coscx
(4. s1 )r ;^ ;. A* Di(*orrb) cos rô exp(-yr.z)

T=U S=1

o-ôO<ó<o+00 for a single slotwith

and

I{uttiplying

gives

Eo(b,z)

o-00 < 0

r+cr-00

with 'rT + cr,

'*oo
<0<T+cx

replaces cr

both sides by cos Q and

*Öo for double slots

in (4.s1)

integrating over the slot (s1ots)

f(o,0O) - T T TA DI(K b)
r=0 s=l TS '- 9rs

e R.H.S. is extended over the

the netal wall, and f(o, 
fo)

cos S

= coso¿
cos$ d0

cos Q dQ

(4.s2)

guide

v

c

)f
0

wh

is

gxP (-Yrrz cos rQ

ole wave

given b

where

s ince

d0

the integration on th

the field is zero on
o*óo

f(o,00) = .oro^ 
I_

o_00

ñW
o*ôo

{f
a-ó,0

n+cx+ô0

f
n+c¿- 00

single slot

.2
(H)

cosþ dQ

1 - r-0- (I*a) 
r '

double slot

(4. s3)
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The integration of (4.53) is giyen by (3.61) as

f (o,00) =
2cos cI Q0 1T

^2z cos cI' o0 1r

Jo (00

Jo (0

single slot (4.54)

double slots

r=1
(4. ss)

TfL
of eqn. (4.52) is equal to zero

A1so, since 2r

f
,,

therefore, the int

except for r = 1.

Combining (4.52) ,

cosr$

egration

cos$d$= T

=Q
to the R.H.S.

(4.54) and (4.55) one can show that

Eo (b, z) coso =
T

dffiQlñcús CI ,1, 
otrDi (Kprsh) exP(-Yrrz) (4's6)

where N = I for single slot

- 2 for double slot

Substituting from (4.56) into (4.50), a closed form formula for the slot

field is finally obtained so that

T

w ,1, 
ot, Di(*orro.)

exp (-yrrz¡
E*(b,ó,2)

(4.s7)

The coefficients 41, are known through the analysis of Sections

(4.3) and (4.4) and the values of K^ and y._ are all known accord-or, 'Is
ing to Sections(4.2.2) and (4.3.1). Thus equation (4.57) completely dete-

rmines the slot field. Sone numerical examples for different parameters

are presented in the next Section.

4.6. Numerical Results for the Slot Field

lVith the aíd of equation (4.51) the field on the slot(s) surfacefor

both the single and double slotted coaxial lines are evaluated for several
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slot parameters. These are presented in Figs. 4.7' - 4.IS . In all

these figures the value of the slot field UO is such that the constant

T of the incident wave function (4.18) equals unity.

The field preserves the same general features as noticed in Sec. 
,.,.: ..,,,,

(3.6). The intensity decays as the slot location moves from the position

of maximum azimuthal field as ris apparent from Figs. 4,7. and, 4.10 for

single and double slots, respectively. It is also shown that for two 
.,,: ,;¡.

slots of different width with all other parameteïs kept equal, one finds ''r '.r

the field on the narrower slot higher than that on the wider one. However, i',,',,,.,

f

the field integration I Ot on the slot surface is higher for the wider
{s

slot indicating higher pou/er radiation ..into space. This is ín agreement

\4tith the previous results of Sections (4.2.3) and (4.3.2) for both the single and

the double slotted Sectionsrrespectively.

The operating frequency has a- strong influence on the slot field.

ItiSshowninFigs.4,Band4.9forthesing1es1ot,andinFig.4.11forthe

double slotted section,that as the ratio a/Àg decreases the slot field

increases, indicating higher power radiation. This is again in complete 
::,.: : ::

agreement with the results of Sections (4.2.3) and (4 .3.2), which shows a ' i'
:,: :

higher attenuation constant in the slotted section (i.e. higher power rad- ,,' ..',
:.

iation) as the ratio a/ÀO decreases.

Fina11y, it may be instructive to compare the field of the two-slot

setlocatedat 0=o and ó=o.*n vJiththatof asingleslotlocated 
i...:, 

,,,

at 0 = a. This is equivalent to studying the field on one slot when

another slot is introduced diagonally across from the first one. Figs.

4.L2 and .4.73 shows that there exists a moderate degree of interaction 
i

i.

between slot fields and that this interaction increases with the field 
; ,:,
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intensity. Referring to Fig. (4.I2) we notice that when another slot is

introduced at a/\o=0.2 and o, = 0.0, the field changes by an average

of about 8eo. This change reduces to about 3% for o = 60o. The change

also decreases slightly as a/^^ increases (i.e. as the slot field decreases).
0

These results show that the interaction between slots in coaxial lines is

sometimes appreciable and should not be neglected.

In conclusion, the work of this Chapter covers the determination

of the possible propagating modes and the slot field of a single or doubly

slotted coaxial line for a TEtt coaxial node excitation. The coaxial

waveguide is an important element in microwave communications, and the

results of this chapter may prove to be useful in anaryzing leaky wave

antennas supported by periodically spaced s1ots, or coaxial slotted lines

as multiple feeds for reflectors

Now that the field.on the slot(s) for both hollow and coaxial'wave-

guides has been determinêd, one may proceed to study the radiation dr:e to

these slots. This analysis as well as the possible utilization of the

results are the main study objectives of the following f,hapter.
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CI{APTER V

RADIATION CI]ARACTERISTICS OF

SINGLE AND CASCADED SLOTTED SECTIONS

'l'he main objectil'e of this Chapter is to investi.gate the radia-

tion charactelistics of the axially slottecl waveguide structure.from

the slot tangenliaI field as generated by an incident wa',reguide mode.

There are many published works which deal with solving this ty1:e of

external boundary value or radiation problem [33], [35]. I{owever,

the slot field is alrvays assumed to be known. 'l'his assunptiolì may

lrot be accurate in cases which attenpt to utilize the slotted wave-

guide or coaxial line as a feed system for reflectors or radiating

elements, since the true pattern ,, ,rr11 unkowll. In Chapters 3

and 4, the field on the surface of a lrarrow seni-infinite slot on a

hollorv or coaxial waveguide rvas obtained. Practically, ânY slot on

the waveguide surface has a finite length. The ficld on the surface

of a finite slot may be different frorn the semi-infinite case studied

.in 
the previous çhapters. Therefore, for a more accurate racliation

characteristic, the modified field due to the slot finiteness has to

þg investigatect first. Once this field is obtained, the riacliation

character:istics can be determined easily through the well knoln tech-

niques [33], [35] , [s3].

In this Chapter, the ficlcl on the finite slots is investigated

for both the hollorv and the coaxial waveguide. The ploblem is solved

approximately by inclucling the reflections at ¿he slot encis anC retaining

onl¡'the first order reflection at tlte far end of the slot. This
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approximation is a reasonable one as long as the slot length is suffi-

ci.ently long. I'he reflections contribute to the slot field according

to the magnitude and phase of the reflected waves. The analysis fol-

lows the same steps of Chapters 3 and 4 where different wave functions

with unknown coefficients are assumed on both the slotted and the closed

sections of the waveguide. These coefficients are later obtained by

matching the tangential field components at planes separating the two

waveguide sections. The slot field is then obtained by using the me-

thod of Sec. (3.5)and Sec. (4.5). Once the analysis of the finite

slot field is completed, the radiation characteristics of a single or

doubly slotted waveguide section can be obtained by using well known

relationships. The remaining part of this Chapter is devoted to this

analysis and for investigating the effect of different slot and wave-

guicle parameters on this radiation pattern. The technique adopted

here follows closely that of Tyras [53] for the treatment of an aper-

ture on an infinite circular cylinder. Since, in the radiation problem,

the boundary conditions for both the coaxial line and the waveguide are

identical, the treatment of the problem, as presented here, covers both

cases.

The objective of this Chapter could be divided into trvo different,

but inseparable problems. These are the determination of the finite slot

field and investigation of the radiation patterns of that field' 'The

follorving Section is devoted completely to the study and discussion of the

field on a finite slot. The analysis of the other problem, i.e of the

radiation characteristics, will fol1ow in a later Section.

1.1'
i::, I

i:::'
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5.1 Field on a Finite Slot

In the treatment of the axially slotted guide in both Chapters

3 and 4 , the slot is assumed to be narrow and infinitely 1ong.

From a practical point of view, any slot always has a finite length.

This fact introduces additional complexity to the problen. At each

end of the slot the wave is partially reflected back, which modifies

the slot field according to the phase and magnitude of the reflected

field. Moreover, if the slot is too short ttnn' modes may be geng-

rated, in addition to the existing TEn* modes. The problen is great-

ly simplified, however, if the slot is long and narrow. In this case,

the mode coupling is unlikely to be appreciable and the field remains

essentially TE in accordance with the excitation 1241. The reflec-

tions at each end of the slot however, remain and regàrdless^of the

slot dinension may not be neglected. This is especially true

near the cut-off frequency, where the reflection coefficient has an ap-

preciable value, as shown in Sec. '( 3 .4 .4) and Sec. ( 4 .4 .4) - It

will be assumed, however, that the slot length is large enough so that

only the first order reflection at the far endneed,beconsidered. That

is, all other reflections can be neglected without significantly affect-

ing the slot field.

In this section, the finite slot field for both hollow and co-

axial guide is studied assuming that the slot is long enough to sup-

press node coupling. The reflection coefficients at the far end of

the slot are calculated by matching the field in the slotted and closed

waveguide sections in a manner similar to the analysis of Chapters 3

and 4. The reflected field is added to the previously calculated field
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to give the total slot field.

wave pattern of the field is

In a later Section

presented and is

Let a dominant

gion II in the slotted

5. 1. I Formulation and Field Solution

TE- - mode be incident from region I toward re-
II

circular waveguide shown in Fig. 5.1 Let the

L- L

z=0.0
Fig. 5.1 Finite axially

lc'
zt =0.0

slotted waveguide

III

mode function of the incident field be given by eqn. (3.21), which takes

the form

,1
a = T.Jr(xrro/a)cos 0 exp(j0ttr)

the incident wave function,

(s.1)

*11 is thewhere T is the amPlitude

first root of "ii(z) - 0

^2 -u2 )
011 =K0- (;rr/a)'

of

and
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Let the reflected mode function Ot

mode functions r|,t (in region II) be

(in region I) and the transmitted

given, respectively, by

ot=

æco

rl.i"=T.) ) A
n=0 m=1

J lK o'l cosnn n- p'' nQ exp(-yr.,*z)

(s.2)

(s.3)

in region I and

Chapter 3 ,

slot field was

TI
n=0 ,n!, 

unrtn(xn^o/a) cos nQ exp(-jonrn")

where and A are constants.

From these wavefunctions, the

II are obtained using eqn. G.26) .

field conponents

In the analysis of

obtained, and theA
nm

werethe coefficients Bn'n and

shown to be

Ko. Ji(Ko. a)exp(-Vr*z)
'-tm -tm1.Ç%T6JI 

'"' "
i- or*

m=1.
Er (a, ô, 2)

/, _ ,* õì",
(s.4)

The field in region II will continue to propagate as a summation

of different modes, each with a different attenuation constant as given

by eqn. (5.3). If the slot length is not too short, all but the first

mode will vanish as the wave approaches the plane Cr - Cr (see Fig.

5.1) . Introducing the coordinate transfornation

where

C-C

L

to

is the slot length.

the plane C' - C'.

This transfers the origin fron the plane

In this case one may write an expression
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for the first

where Tr = J

as an incident

rvave function

in region III

o,i =

mode in region II as

-r., rr'T'J (Kp11u) cos Q

. Arrexp(-Yllsl). This first mode could now

mode from region II toward region III. Let

O't in region II and the transmitted wave

be given, respectivelY, bY

*1, 
u;*',r(xn*o/a) cos nQ exp(jonr"')

(s.s)

be considered

the reflected

function lr t 
t

(s.6)

(s.7)

(s. 8)

(s.s)

(3.44) and (3.39),

need only consider

-l^ -1, 
ori,ntn(Kpp) cos n$ exp(v*r,z')

n=O m=I

I
n=0

where Ar and Br are constants to be determined. Now, using eqn. ø.26)nm nm

the field components in both regions II and III can be obtained . . The

tangential components .of these fields are matched at 7 =0 '

Employing the proper orthogonalities among the mode functions, and fo11ow-

ing the same steps as those of Chapter 3 , one may arrive at the fo1low-

ing two equations:

_Br
nm

+M-=
nm

co-++) A'O- +0-L- "ns-nsm -11n
s=I

æ

ï R' N - NL- "ns^'nns ..lml
s=L

and N -_ are given by eqns. (336),
nms

order to obtain the slot field, one

and

Br
nm

M-
nm

++where M- O-nm- 'nsm

respectively. In
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the case n = 1 of both (5.8) and (5.9). For the modes n I L the

excitation is zero and, as shown previously, the respective coeffi-

cients are not needed to solve for the slot field. Solving equ-

átions (5,8) . ánd (5..9) for the n = 1 case by eliminating the co-

efficientr Bi, and truncating the infinite series after an appro-

priate nunber of terms L gives

: 'i: a:a.'::,. i:::

(attt + Nrrr) (Qrtt

(airr.

Nrrl)

Nrll)

^?"1I

Aiz

:

Air.

(Nrri - Qrrr)

(airt +

(*rz 
r

(* rrr

airr)

ai tr)Nrlr)

(s. 10)

Upon solving eqn. (5.10) by simple matrix inversion, the coeffi-

cients Aii, AiZ, Air, of the reflectecl fielct in region II are

obtained. Substituting these coefficients in either (5.8) or (5.9) for

the n = 1 case, the transmission coefficients in region III, i.e. Bif,

t iZ . can also be obtained. I-laving determined tl're coefficients Air,

one can easily find the slot field by following the sane steps as those

of Section (3.4.4 ). It is simple to show that thjs field takes a form

sinil¿rr to eq. (3 .26) and is given by

e[{a,0, z) ç
00lo (00)N cos o,

*i, 
or'*å 

hJi 
(Kp 

r,n") "*o(Yr'nz'¡

/, _,**i,,
Tr

::;;:.::):'.lvlrerc zt =z- L and Tr - t'.Atrexp(-y' L)

(s.11)
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E, (a, 0, z)l'he total slot field

eha is given by

is obtained by adding (5.4)and(5.11)

E.r(a,!b,z) = ç;eo.jl .", "

-1

-1

exp(-yr"z) * Arrcxp(-yrrt),, 
^1, 

Ai*KplnJi(*orrt)

exp(-yrm( L - z))\

tn,l, o"*o '

a single slot

trvo diagonal ly s¡'rnmetrical s lots .

i 
(*o-, t)

IM

(s.12)

vrhere

. The analysis for the coaxial guì-de j s similar to the

above method ancl uses the res¡rlts of Chanter 4. Carrying out this

analysis , o[,ùe- easily ' amives at two equations similar to eqns' (5'8)

an<l (5.9) but irr t.ris case ¡a-*, Ql-- "nd 
N"r, are given by eqns-

nm ,.nsm n

(4.31) , (4.38) and (4 34) , respectively. Here agirin the n = I node

js sufficient to solve for the slot field, therefore one needs only to

deter¡nine the coeffi.cients Al, and Bin . T'hese coefficients are fourrd

l:y soìvÍng tire two equatiotis in a way similar to the procedure

follorvcd in Chapter 4 . Once thc coefficients nin., arc knoir'n, the slot

fiel<i according to Section(4.5) can bc shown to be

Ai,r Di (ttorro) exP (Y1m z')

for

for

N

N

i
ra= 1'l'r

E; (b , .l,, z)

/, - (o^ t')

"o

ÖgJg (0g)N cos cr

(.s. i 3)



where 
?,,r,.=. z - - L end .Tl

The total slot field

and (5.13), and is given by

E, ( b,ô, z) = 0oJo(0olN cos c¿

t Att elP(Ylll) '

(b,Q,z) is obtaíned by adding eqn. (4.57)

{ I Ar* D.l ß^ b)
nr=l a 'P1rn/r. - (0^ "lv0

exp(-yr*z). * Arrexp(-yrr Ð j, -Ai; oi(for*o)

exp(-ytm( L - '))]

for a single sIot,

for trvo diagonally symmetrical slot-s

( s.114 )

where |rJ = I

2

Equations (5.12) and (5.14) give the field on the surface of a

finite slot of length L due to aìr incident TUtt mode. The resrrlrs,

as presented in the next Section, show a s.tanding v/ave pattern on the

slot rvith a phase velocity that varies primarily rvith the operating fre-
quency. This result,as well as the clifferent factors affecting the fielcl

pattern, is discu-ssed in the following Section.

5.I.2 Ntrmerical lìesults of the Finite S1ot Fields

'l'hc slot electric fielct, givcn by ecln.(s'.1-2),.(5. i4)'is evaluated

for clifferent slot length,, rvidth i and ratio o/XO. Sorne of the results

are given in Figs. 5.2 - 5.11. The graphs clearly reveal that the tvave-

length À, of the slot field, rvhich is double the distance betrveen any

ttvo successive maxirna or rninima, is alrvays greater than the wavelèngth:
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of the operating frequency À0. This shows that the wave is a fast

wave propagating with a phase velocity faster than the velocity of

light. This comes as a direct result of the leaky wave nature of

the field, where there is always a power florv arvay from the structure

[14], [15], [28]. The figures shol thât as a/XO approaches that of

the cut-off frequency, the waves become faster as indicated by the

longer wavelength Às. This inplies that irore power is radiated i.nto

the free space. This phenonienon was noticed before in Section (3.3.2)

and Section (4.3.2) where it was shown that the field interior to

the slotted waveguide is attenuated faster as "/\ 
decreases. This

fast attenuation of the field indicates more power radiation outsi.de

the structure. Further, comparing Figs. 5.5 and 5.6 for the slotted

hollow rvaveguicle or Figs. 5.19 an<l 5.li for tlie slotted coaxial line,we see

that for .:the. double slotted guicle the wave is faster than for the single

slot case. Again one expects this result , since from Sections

(3.3) and ( 4.3) , the attenuation constant in the double slotted

guide is higher than that of the single slotted one. The slot width

does not scen to have much effect on thc velocity of the wavcs, as. is

seen by comparing Figs. 5.2 and 5.5 or Figs. 5;7 and 5.10. I{ore power

radiation in the rr'idcr slot case may be attributed to its largel. sur-

face area, as discussed previously in S.ections (3.2 ) ancl (4,2 )

One also should point out that the slot length has its influence on

the slot field. Figs. 5.2 and 5.3 or Figs. 5.7 alld 5.8 show that

while the wave vclocity is not affected by the slot length, the shapc

of the field changes. It is, how,ever, iltteresting to note that for

the particular slot length 0.5 b (Figs. 5.4 and 5.9) the fielcl varies

slowly along the slot and has no ripples. The forrn of the field in

l'-.r"i.,i :.
i l.i,.,,ttr:. :.i.
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this case resembles an exponentially decaying wave. This form was noticed in

Sections (3.6) and (4.6) when studying the seni-infinite slotted guide. In

This case one expects that the radiation characteristics of such a slot exci-

tation are closely related to that of a semi-infinite slot. Here again the

analyses and the results of this Chapter are restricted to narrow long slots.

In defining a narrow long slot the criterion of Silver [35] introduced before

on page 17 may be used. For a practical waveguide of dimension ^/\O= 
0.35 and

slot width 2o,the criterion leads to a slot length L determined bl logr' (eZ f72>>1.

This determines the linits of validity of the present analyses. The numerical

examples presented in this Chapter are rnerely for the purpose of illustrations.

5.2 Radiation Characteristics of Axial Slots

In this Section the radíation characteristics of the slotted waveguide

in free space are studied. These radiation patterns present valuable and inport-

ant inforrnation, especially when the structure is used as a radiating element to

meet certain specific requirements. Since the slot field is already known, the

radiation problem becomes sinple. Application of the technique presented by Tyras

[53] will serve to fully determine the far radiation field every where in space.

In the following Section the radiation pattern of a single and two symmetrically

located slots, as well as that for several successive slotted sections,is analy-

zed. The variation of the radiation field in both þ and'0 are plotted and

discussed.

5.2.L Radiation Pattern of a Síngle and Double Axial Slots

length,

closed

Consider

as shown

section (

an axially slotted waveguide

in Figs. 3.5 and 4.4 , with a

region I in both figures ).

or coaxial

TE' node

Let the

line of

incident

incident

infinite

from the
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...,.1

field be given by eqn. (3.2I) for the hollorv waveguide and by eqn. (4.18)

for the coaxial line. 'l'he resulting tangential field on the slot for

both cases is given by eqns. (5.12) and (5. 14) , respectively. . 'Ihese

can be written in the form

E.(d,0,2) = 
%%äF

I. Poexp(-vroz) * 
^1, 

Prexp(vroz)
O=I a -r q=l t

,;.æ
oo)

(s. 1s)

cos g

where for the ho11ow waveguide

P =4" Kq rq p-
J.q

'i 
(*0.. 

")Iq

and

nå - orrexp(-yrr,L)Aiq

rvith d = a, while for the

K J ' lK al cxp(-ylqotq t - ptq

coaxial guide

L)

(s. 16)

( s. l7)

P =A-qrq Di (*oroo)

and

oå = o,.rexP(-Yrr L)Aiq oi(*oroo)

with d = b.

Define a function Iì*(m,0) such that

i:: 
';:':i

i .' .l'l
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, z') exp [-i (mÖ ' * Ko cos 0 z')ld|t dzt (5. 18)

nates of the

nates with

F* as given
v
e_mTT and IT'-z z

ized field

(-j)t*1 rr{*,0)

and z' are the local coordi

the general spherical coordi

xis. With the definition of

magnetic Hertzian potentials

due to the aperture S - polar

F*(m,o) = 
JIEo(d,ô'

aperture

where m is an integer, 0t

aperture, and 0 and Q are

the origin on the cylinder a

by (5.18), the electric and

(chosen in the z-direction)

are given by [5 3]

r?=

[m=
L

0.0

exp(j KoÐ

r nÍt' ' (Kod sin o)
exp ( jtnQ)

(s.1s)

I
m=-æzn2Kouruo sin 0

where d stands for the radius of the hollow

radius of the coaxial 1ine. The radiated far

fields are given by [53]

waveguide or the outer

electric and magnetic

E, = trrKOUg sin 0 n| E0 -0
(s.20)

tu=*u.
'0

to=o

where nO is the free space intrinsic impedance.

Now, using the slot field expression as given by (5.15) in eqn.

(5.18) to determine the function F*(m,0) ,one gets
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exp(-jKO cos 0 zt)dzl

PO exp(-yrOzr) + I. P{exp(yroz'))
q=1

lrl
J q=t
0

where

Us ing

equal

1

cos 0,
f (a,00) =

I".to',
o-ôo

d0'

(s.21)

for a single. slot

r , ro*00
c"sst.|

o_00

exp(-jmôr)

;.a{r - rQ ; cl
' 9o'

/L' 
'ï:í

exp(-jmOr) exp(-jmÖr) tO*,
/r _ (0 -lEiÐ)fn.".*o

n*o-Q.0

result of AþþendixIC],the function

fgT 
". 

.t,wo .diagonally

s¡runetrical slots

f(o,Ö-) is shown to be
TJ

the

to

f(a,ôo) = 0oJo (m 0oln

Q6Js (m Öoìn

exp(-jma)/cos o for a"single slót

(s.22)

(exp(-jme) - exp[-jm(a * n)])cos q

for a Couble slot

Substituting (5.22) in (5.21),and carrying out the simple integration

in eqn. (5.21),gives an explicit expression for F*(m,0). Using this
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expression in eqn. (5.19) and with the aid of (5.20) the radiation

fieid can be written as

where

exp(-j Kor) j IE*(r, 0,0) = 

-;- 
n cos o R(0 ,o,m) S(O,y,a) (5.23)

s (',y,a) = { I o,".nt- 
tllþ lll I I ]to]r 

- tl
e=l 9\ - (jKo cos o . ti;)

. exp(-jKO cos 0 L) - exp(-yr^ L)
- 

^L,;qt ¡5'247
q=r (jKo cos o - Ytq

and

R(O ,o,r) = [ e*(-j)t*t t0(n0o) . cos n(O - o)/J0(00) .nÍt) (Kod sin 0)
m

(s.2s)

As shown in Appe¡clix[I],the stunmation over n is from 0 to 6 for a sin-

gle -s1ot. For the double symmetrically located slot, the summation is

over odd integers (i.e. 1, 3, o).

This expression gives the radiation field of a single or double

slot on a waveguide or a coaxial line. The expression contains the nul-

tiplication of two infinite sunmations, one over q and the other over

n. It was shown in Sections (3.6) and (4.6) that the first few terms of

P^ or Pl is suffieient to achiev€ * ,r convergence. The summation overqq
n depends largely on Kn d sin 0 lor d/ÀO) and JO(m00.). Since in

practic.e K a or K.b will always remain within the lirnit 0.15 < d/À0<0.5,'û0
i.e. 0 < K-d sin 0 ( ?T, the limiting values of the Hankel functions for

0

large orders and the Bessel functions for large amplitudes [51] are'
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Ê- f4t^ [ . u(1)'tr^d sin o) < æ
Tm-eT-fimt0

Jo(mó',) = /& cos(mOo - rlù : /&

f'l..i s yields

for large n

J0 (rnOo)
_ T .eT.m 1
--tLJ :

H(r)',ftl't*oo sin o) S, 
'2^' m

which shows that the magnitude of the terms in the infinite summation

decreases rapidly for 2m > er. This means that the first five or six

terns are actually sufficient to obtain satisfactory results.

It is apparent that the radiation field depends on several fac-

tors such as the slot parameters 0O and 'L, the slot location cr and

K^d. It is worthwhile to throughly examine the influence of these para-
0

meters on the radiation pattern . The next Section is nainly devoted to

this task

5.2.2 Numerical Examples of .the Radialiol.Pattern

of a Single Slotted lVaveguide *qection

The radiation due to a finite s1ot, given by eqn. (S.2S), is
'.ì

evaluated for several cases in both S and 0 directions. Figs... s.lz-

.5.14 give the þ variation of the field ror ¿ou¡re and singre slots,

respectively. The pattern of a single slot has a major forward lobe as shown

inFig.5.72'Thisagreesperfect1ywiththeresuItSreportedbywa:.t[gg]
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The radiation pattern of thro synnetrical slots as shown in Figs. 5.13

and 5.14 is worth further study. Inspection of the positions of maxima

and minima of these patterns and their displacement with the varia-

tion of frequency reveal quite an interesting result. Two slots act

similar to two dipo1es,180o out of phase and separated by almost Za/\Utthe

rlistance separating the thro slots.It is known that.the pattern.of tvjo cÍ.ipoles,

180o out of phase and at a distance Z from each other, is given by

cos(KOL/Z cos S - Tt/2) I55]. This pattern goes to zero at 0 = 90o

and 270", and its maxima occur at ôru*= arc cos (XdZt}. For L/Xr=0.8

one finds 0 --- = 51.3o, 138.7", 23I.3" and 308.7o. The corresponding'max

case of two slots is shown in Fig. 5.13 for 2a/),0=0.8. The maxima

occur at about 54", 126", 234" and 306o. This resemblence of slot and

dipole patterns preserves itself as a/),0 decreases. However, as 
^/XO

increases, the slot patts¡¡ shows two extra lobes at 0 = 0.0, 180" as

shown in Fig. 5.14. This may.be due to the greater separation distance of

two interacting s1ots, where their mutual interaction decreases. As a

result, the back lobe of each slot tends to appear. Nevertheless,'

the location of the maxima stiIl coincides with; the corresponding case

of two dipoles

The patterns in a plane passing through the axis z, i.e. the

variation with respect to 0 are presented in Figs. 5.15 - 5.19 for

different slot lengths and u/^O One can see that each pattern has a

number of major lobes in the forward direction. Further inspection of

these figures shows that for every half wavelength along :the slot each of

the incident and reflected waves generate one rnajor lobe. Thus, for a

slot length 3À0, the pattern has 6 major lobes. This is shown in
ir: ì:::: .

i:.. : . ìli

i
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Fig. 5.L7. Sinilar cases are shown in Figs. 5.15 - 5.19, However, as

the slot length increases, the patterns tend to generate a distinct

main lobe with progressively reducing side 1obes, most of which are

20 dBs below the rnain lobe. It is interesting to note that, for a

slot length of one half wavelength, the pattern has a major lobe with

a SdB beam width of about 50o The presence of a single lobe is obtained

when the slot is infinetly long [14]. This shows similarity of radiation

characteristics between the Àg/2 and the infinetly long slot. The silni'larity

was predicted in Section (5.1) when the slot fields were evaluated and

plotted. The slot field in the ),0/2 case was shown to vary along the slot

in a manner sirnilar to that of an infinetly long slot. It is also illumin-

ating to point out that changing frequency steers the najor lobe in space,

but preserves its general features as shown in Fig. 5.18 - 5.19. În the

following Section , further investigation of the radiation pattern is pur-

sued. The radiation due to cascaded slotted sections are presented and

discussed.

5.5 Cascaded Radiating Slotted Sections

The radiation pattern of a single slotted section was analysed

in Section (5.2). It is apparent that with a single radiating section '

both the radiated pourer and control of the radiation pattern is linited.

It is therefore advantageous to study the radiation characteristics of

several cascaded radiating slotted sections. The ptoUt"* will be treated

such that each section is a radiating element placed along i"he z axis,whose

radiation pattern is already known. This is equivalent to taking the

i:ra, ...',...': 
j

l.i ::! .: :.

!, , :-:
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integration of eqn.(5.18) over all the slots on the waveguide wall.

5.3.1 Analysis of the Radiation Pattern of Cascacled Slotted Sections

Cons ider

¡node be incident

as

't,='

the waveguide shown

toward section (1)

in Fig. 5.20 . Let

with a r.¡aye functi.on

a doninant TEll

given by eqn. (5.1)

Jr(xrro/a) cos 0 exp(j0rtr)

a1

C-
ó,.i

(s.26)

f , I rr-i->.,-:--1---+
I

I

(. r,.
I

.<_

^l
section 1

'c2
^z

-: 

<-section

Fig. s.20

Let the reflected field at Ct - Ct be represented by the wave function

Qr = T I^ I. nn*Jn(xola) cos nS exp(-j0n*r)
n=0 m=l

(s.27)



and the transmitted field toward thc slotted section be

9t=T

At the plane

the summation

iI
n=0 m=1

AJ
nm n(Koo) cos nô exp(-y,.,*z) (s.28)

tl

of

- ^L, the main remai4ing field is the first mode of

eqn. (5.28) with its wave'f,r¡nction-31ven bv

TI
n=0 nt= 1

't
üir = T AttJt(Kpp) cos S exp(-ynz)

Now, at the plane 
"l - .l the field suffers another reflection as

previousTy analyzed in Section (5.1). According to that analysis,

the reflected and the transmitted wavefunction 0'r and rftt, at the

pla¡e 
"I - "1, respectively, are given by

,LtÎ = t n ovnf-v Iì''11-"r\ '11 ¡rl I tr lrft'eì cnq n¿lr pvnf-r¡ ( I - zìì¿- "nm"n."O-, r "-r. ,nm. e -tr
In= I

Or r"*p (-yf I

(s. 2e)

i(xn*o/a) cos nQ exp(jOn*r')

(s.50)

ï
L

n=0

ütt=T BI J
nm

where zt=z-L

1'1ìe field given by (5.30) will continue to propagate toward

the next section I sectíon (2) in Fig. 5.20]. Ui, is the only transmitted

coefficient that has an appreciable value and the rest of the coefficients

3i are very small ( with values similar to values of Table 3.9 ). Thus

one can assume that the field incident on section (2) of Fig.5.20 is given

by
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.À1 = T ,l Rl êynf-v f ì êynf iê I lì T lv n/rì ¡nc rÀ,(2) . ArrtiI exp(-ylr L) exp(j0t1L') Jr(x,,o/a) cos 0 exp(j0t1r")

(s.31)

where ztl = z - L - Lr

Norv, comparing (5.3f) and (5.26),one can see that as the field

crosses successive sections, each section modifies the field by a fac-

tor \ given by

YL= [ArrBir exp(-yrl L) exp(jrr]t)J,(. (s.52)

rvherea11thecoefficientsandparametersof(5.32)arethoseoftheLth

section, and Lr is the spacing between the Zth rnd the L * lth slot .

The factors VL wil1 then nodify the radiation field given previously

by eqn. (5.23) such that for the Lth section it takes the forn

r[¿)r',0,0) = ry ^+rq(vrvz 
. . . url

R¿(0,o,m)sy'[o,v,a) (5.33)

where R¿(0,o,rn) is given by (5.25) and r, and 0, are given by

'2 2rt-- lri*h- - 2r0 cos 0

-trl sin 0 ) ' ".'0, = sin ,t'.,, '0,

Where h is the spacing betwee¡r the first and the .( *t 
t\ 

sJ.ot,and r ,
0

0O are the observation point

The function s/[o,v,a), holever, is slightly differcnt from the func- 
t,¡,:¡.: 

.i].:,r

tion given by (5.24), The analysis of Section (5.2), which led to
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eqn. (5.24), assumes a single slotted section such that once the field

passes this section it never reflects back. Thus the slot field in

this case consists of two components on1y. These are the transmitted

one at the plane Cf - Cf and the reflected one at "1 - u1 as shown

in eqn. (5. 15) . The presence of another slotted section beyond

the plane ,uL - ^I 
causes â reflection at CZ - CZ back toward

uL - ^L . At ^I - ^I' this reflected field will be decomposed in-

to two components. One component is transmitted to the slotted part of

the first waveguide section and the other is reflected back toward the second

section. The reflected component is negligibly small since it is the

result of two successive reflections between ^I - ^2 and.C, - C,

It's value does not exceed 2eo of the existing field (eqn. 5.31) for

a hollow waveguide of ^/\O .5rand I% for a coaxial guide of a/\O=g.3

Therefore it can be neglected. The second component which is trans-

mitted into the slotted part of section(1)' cannot, however, be ne-

glected. For the Lth section the mode function of this component

.tþi-ft-*tl could be shown to be equal to

þÏ.-rt.rt = [r Arrexp(-y' L) Bi, exp( j0ttL' ) rr,trlexp(j0rrL ))¿*,

I
p=0

This field has to be added

change the slot field such

was given by (5.i6) or (5.

Ar J lK al cospq ,p,

to the field of

that the factor

17), now assumes

Lz)) (s.34)

This will

(5.24), which

i
Q=1

p0 exp(-Y (
pq

eqn. (5.29) .

Pd of eqn.

the form
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oå = [Arrexp(-Y1, L)] [I + (Birexp(,jôrL')) 
a[411"*P(i0rrt'rra*r]

IAiqKotoJi ¡*or.o") exP(-v,osL) l,

and

for the h'ollow (S. SS)

waveguide

(s. 36)

Oi(*or'o) replaces *or' ti,*ol'urfor the coaxiâ1 guide

The radiation field of alt lections 'can finally be written as

L expç-¡ror¿)Er(r,ó,g)=ri, 2 ã.*%(vrvz -vr)

R¿(0 ,0,m) sa(0,y,a)

where L is the total number of slotted sections, V¿, R¿(0, o,m)

and Si are given by (5.32), (5.25) and (5.24), respectively,where P'
q

in (5.2a) is replaced by its value given by (5.35)

The magnetic field is readily obtained from eqn. (5.20) as

Hr(r,0,0) =E*(r,0,0)/L2on (5.37)

This concludes the analysis of the radiation field of L câs-

caded slotted sections. Equation (5.36) is plotted for several oarameters

ancl the resulting pattern examined in each case.
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5.3.2 The Radiation Pattern of CascaCed Slotted Sections

Ëquation (5.36) gives the radiation field of cascacleil slotterl wave-

guide sèctions in'the far field zone. The waveguide diameter and the

dimensions of various slotted sections as rve1l as the mutual location of

slots introduce a large number of parameters into the far field equation.

AL1 these parameters affect the radiation characteristics. ' Detailed

investigation of their effects is too t"ngttry and beyond the scope of this

Chppter:. An attempt is ma<le therefore to present the general features

of the patterns for a particular arrangement of the slotted sections

which simulates an array of in- phase slots , located at a fixed

azinuthal location c = 0. The slot length L and the axial distance Ll

.between sj-:ccessive slots is chosen such that the incident field:, on all

slotted sections is in phase. Because of the reflccted fields the slot

fields are not completely in-phase. However, if the reflected components

are srnaLl ( rvhich deoenCs on a/ÀO),the ilot fields will alrnost have the

sa¡le phase distribution.

'Fig. 5.21 shows the radiation patterns for two different arrays

of four and eight slotted sections. Since the slot fields are in phase,

the general features of these patterns are si¡nilar to those of equi-phase

point sources [55]. Thus, the beam rvidth of the nnain a¡rd side lobes de-

creases as the number of radiating elements increases. This is also

clear from Fig. 5.22 which shorvs the radiation pattern of 10 successive

slotted sections. It is interesting to notc that the slot length

has considerable cffect on the ladiation pattern. Comparing Figs. 5.22

and 5.23, one can see that at the particular slot length L =0.5 Àg,

¡þs lrack lolre is rctluccci ancl thc radi¿rtion j s mainly in tlre forvarcì

i l::::.-:,¡:
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direction. This is possibly due to the fact that if the incident fields

at the terminals of all slots are in phase, and if the values of Lr

and L are close, then for any slot the two reflected components of

the slot field (discussed in Section 5.1) will be out of phase and 
,,,

almost cancel out. This leaves only the incident component responsible

for forward radiation. It is also worth mentioning that the results for
. L = 0.3 Ào (with parameters of Fig. s.23) show that the radiated power 

¡ .:,of each section is about 59o of the power incident on that section. For l''i

the same parameters with L = 0.t ÀO the radiated power rises to about i.,,,r.

8.Zeo of the incident power. It is clear that each successive section

radiates less power than the previous one. In the general ca-se :

the arnount of the radiated power per section can be controlled by chang-

ing the slot paraneters. This opens a great number of possibilities for

design of slotted waveguide antennas with a variety of interesting appli-

cations. The problem is certainly worth study- and is left for future

lnvestigations :

This concludes the analysis of the present Chapter for the radia-

tion characteristics of axially slotted hollow waveguides. The examples

presented here were for the hollow waveguide case. The results of the

coaxial line are similar and are not repeated.

It is advantageous to have a general look at problems discussed

- throughout this thesis and the possible extension of this work to related

problcms. The concluding Chapter is devoted to this purpose.
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CHAPTER VI

CONCLUSION AND DISCUSSION

The leaky wave radiation through an axially slotted waveguide

was studied throughout this thesis. The work was carried out for both

hol1ow and coaxial waveguides, each with ttl1 node'excitation. :',

Several different electromagnetic techniques were employed in order to

solve for the slot tangential fie1d. The integral equation forrnulation for

the slot inpedance in the p direction was constructed. This formulation

was modified to allow for the determination of the slot inpedance in any

arbitrary location around the waveguide. It was further extended to

coveï the conbined impedance of two symmetrical and diagonally located

slots along the guide wal1. Following this, the transverse resonance

technique was apnlied to the waveguide cross-section in the transverse

plane (i.e. p and 0 plane). To apply for this technique, the guide

cross-section was ïepresented by a tadial transmission line in the

p-direction terminated by the slot(s) impedance. When the transverse

resonance equation was solved, the propagating modes in the slotted

section of the waveguide (and coaxial line) were obtained. With the

knowledge of these propagation constants, it was possible to set up a modal

expansion of the field with unknown coefficients in the slotted section

of the waveguide. A simj.lar field expansion in the complete waveguide

section was assuned and the tangential fields were natched across the

plane separating the two guide sections. The resulting equations were

solved numerically to yield the unknown coefficients of the fietd'

In order to introduce the slot edge field condition an electrostatic

field solution was utilized. This static solution together with the
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coefficients of the electromagnetic field expansion as determined before'gave

an approximate solution for the slot field.

The obtained solution shows clearly the leaky wave nature of

the radiated field. For example, in Tables (3.1-3.6) and (4.I-4.6)'

one can see that the propagation in the transverse direction (p direc-

tions) is improper and the field nagnitude is an ever increasing

function of p. This was also apparent in Chapter 5 when the finite

slot field was plotted and was shown to have a phase velocity faster

than the velocity of light. The analyses show that the propagation in

the p-direction is dependent on the geometry of the stTucture and not

on the frequency of operation. The slot width 2þ,"ì, the slot oÏienta-
U

tion with respect to the incident field and the number of slots per

section control the value of ô, and hence KO. Stronger leaky waves

were observed with wider slots and with slots located at Q = 9.9. When

the structure was modified to have two slots along the guide wa1l, it

was shown that larger values of ô $rere obtained and accordingly faster

waves hlere generated along the slot. One should also point out that the

TE1I waves are characterized by the strongest leaky wave radiation,

and that higher modes have less radiation as is evident from the values of

ô given in Tables 3.4 and 4.4

The operating frequency seems to have two effects: it controls

the magnitude and phase of the slot field, and it changes the direction

of the main radiation beam in space. It is shown in sections

(3.6) and (4.6) that as one approaches the cut-off frequency, the ratio

of the slot field to the field value at the waveguide centre (p= 0)

increases. Because of this nagnifying effect, it seems that the slotted

waveguide acts as a step-up transformer with a transformation ratio
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which depends on the ratio ^/\0, This transformation ratio depends also

on the slot widtn Z0O and on the slot location o. As an example, for an

incident TEtt'wave function with unit amplitude in a hol1ow waveguide,the

highest value of the field is at the origin and is equal to E.a = 0.9205 V. ':. 0 .. ...:..:.:

This guide with a slot width ,þO 40 ,located at s = 0.0o will generate an

aveïage slot field of approximately t'u = 2,2 V. at a/À.0 = 0.55. At a/ÀO= 0.5

the average slot field drops to t0" = 2.1, v. as shown in Fig. 3.L3 and 3.I4. ', ,; , :,

There is, however, one point to consider when,varying the ratio a/À0. The 
tt.l

pRC at the interface between the slotted and the complete section rises 'i'''"i',,,"'',

rapidly as a/À. approaches the cut-off frequency, as indicated in Figs . 3.6-
0

3.7 and 4.5-4.6. Thus one must choose a suitable operating point according

to these curves and avoid working too close to the cut-off point i

Itisa1sointerestingtonoticethatthetransmittedfietd

in the slotted section is basically ttl_, ut is evident from the results

of Sections (3.4.4) and (4.4.4) The slotted stlucture with the given

dimensions is not able to support higher rnodes efficiently. This makes the

Q - radiation pattern a rather uniform one as was demonstrated in Chapter 5.

A far nore interesting result was obtained when the field of

a single slotted section was compared to that of a doubly slotted section.

In the hollow waveguide case the field changes by about 2% on aveage, which

shows weak interaction between the slot fields. For the coaxial case the

interaction is stlonger, though still small, and the change may rise to

abott 7% The interaction between slot fields of the same section is there-

fore weak and in most cases can be neglecteci as was discussed in Chapters
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3 and 4. This suggests that the interaction between successive sections

may as well be weak and can be neglected. This result is an important

one in as much as it allows the analysis of this thesis to be extended

to periodic leaky wave structures. An example of periodic structure consis-

ting of a successive series' of slotted sections was anaLyzed in Chapter 5.

The finite slot was also studied considering only the reflec-

tion at the slot far end. The slot field,when plottedrclearly reveals

its fast-hrave nature. It was shown that for the particular case of a

half-wavelength slot the field variation is very much like .that of

a semi-infinite slot as studied in Chapter 3 and 4. This was tested

further by inspecting the radiation pattern of this particular slot

length,, given in Fig. 5.15 and conpaïing it with the infinite slot

as presented ín reference t14].

The analyses was extended to a series of slotted sections

forming an array of finite s1ots. The parameters of such an array carr

be utilized to control,over' a very wide range,the radiation field of

the array. It was shown that when the phase of the slot fields are

adjusted such that they are all equal, the radiation patteln tends to

have the sarne characteristics as those of.a systern of equi-phase point

sources t551. Qne more advantage of this structure was demonstrated in

Section (5.3.2) It was shown that about 60eo power radiation was achieved

for the case and païametels of Fig . 5.22. Extending the structure with

several extra sections or changing the geonetÏy of the slots will lead

to very little power being carried to the far end of the structure' This

reduces any possible mismatch problems, and provides an advantage over other

radiating structures.
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A conment on the accuracy and range of validity of the results

is due The stability of the numerical part of the analysis was tested

by increasing the number of terms and then exanining the magnitude of the

coefficients. There were basically no changeS in ÈheÍr values and the

solution was found to be quitè stable as.presented iir sectión'(3.4.4),

Tables 3.11-3.12 and in Section (4.4 .4) , Tables 4. II-4.L2 The

computational time to obtain these coefficients hras very snalL and never

exceeded 1 second on the rBM 370/157 computer model. The computation

accuracy hras tested by .strbstituting 'back these coefficients into

their respective equations and calculating the balancing erroï for each

equation. The error was in all cases less than 10-5 in a single

precision calculation, which shows an acceptable degree of accuracy.

The analytical part of the work is restricted to narrow and

long slots since both the slot impedance and the static field used to

introduce the edge condition are valid only in the narrow aperture limit.

Further, for wide or very short slots mode coupling may arise and the

analysis presented here may have to be modified to include the TMn*

excitation.

Suggestions For Future Investigations

several interesting and challenging topics have arisen during

the course of this work. The first and most related problern is to

investigate the case of the rirulti-slotted waveguide. This can be done

by studying the equivalent slotst impedance terminating.the transmission

line representation of the slotted guide,then proceeding as ín Sec.(3.3) a'd

Sec. (4.3) This may provide extra control over the radiation pattern

especially in the $- direction. A second interesting problen would be to

ar^alyze the axially slotted guide for TM excitation. In this case t,he slot
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tangential fietd is conprised of thro components,E, and E, ,and if their
relative magnitudes satisfy the McCornick relation[57] one may design a

simple and efficient feed line suitable for spherical reflectors. A third
problem would be to investigate the circumferentially slotted waveguide

having TE excitation. The slot field in this case will also have both" 11

Ex and E field components. Thus, to achieve a prescribed pattern inYZ

space one may use circumferential slots or a combination of circumferential

and axial slots placed in succession.

A further problem is the tapered slotted waveguide, where the

guide diameter is not constant but varies in the axial direction. This

is necessary if it is required to maintain a variable main angle of

radiation [6].

In most of these cases, as long as mode coupling does not exist,

an integral equation formulation for the slot field can be constructed. This

formulation involves a scalar Greents function similaï to the analyses of

Section (2.5). The solution, however, has to be investigated and it depends

on the individual problem.

A problem that may be challenging is to investigate rhe wide axially
slotted waveguide under TE excitation. In this case the mode coupling is

certain to arise. The application of the scalar Greenrs function may not be

valid in this case. One has to resort to the vector Greents function form-

ulation, which makes the analysis highly complicated.

Final1y, one nay study in more depth the radiation problem of

cascaded slotted sections as pïesented in this thesis. The parameters

involved in the radiation equation (5.36) and their possible combinations

are numerous. An optimization problem is 1ike1y to provide a variety

1..::ì.ìÌ..: . l
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of patterns that may be important in feed lines and antenna designs.

i .j
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Thus

Z, is a terminating

systen looking in the

APPENDTX A

TRANSVERSE RESONANCE EQUATION

Consider the system shown in Fig. 4.1

Fig. A.l- Transvrese resonance circuit

V=Z t

If the network is source-free, then

impedance and Zin is the input

direction shown. Applying Ohn's

I

V is also equal to

zt

impedance of the

law one gets

(A.1)

V = - Z.
Ln

I = - Z.
1n

(A.2)

(A.3)

t

which yields

Z +2. =Qt1n

which is the resonance equation of the system.
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APPENDIX B

ELECTRIC FIELD AND MAGNETIC POLARIZABILITY

OF AN AXIAL SLOT IN CYLINDRICAL hIAVEGUIDE

In a cylindrical structure with an axial slot, it could be

shown that the modal currents at the metallic surface and the elec-

tric field on the slot for the tEtt case are related through the

relation [25]

r00 :It(a)hrr(a,0)= 
.| ,lo 

Yn(a)hrn(a,Q)hrrr(a,0')Eo(a,0')ad0'

00 nll
(8. 1)

where

ri(a)

andp =a*,

¿K
l--n Joua

+-Y =-
n

h,,,(a,o) =rlacos ns

e-)<-Ylaì-Y +Yn" n n

Ii(a)=t'r(a) -ri(a)

and lj(a) are the

respectively, and

u(1) rr rln p'
;GI,- 

'.,np

K Jn(Koa)

joua Ji(roa)

(looking in the direction of
increasing p)

modal current of the first mode'at p = ^'

(8.2)

(8.3)
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In order to diagonalize the above kernel fiu), a set of static

admittances is introduced, as follows

')

** 2K:
Yfa)--,'

ns t ' loun

so that

(8.4)

(B.s)

(8. 6)

(8.8)

Using (8.4) in [8.1) and following the work in reference l2S]

one can show that for sma1l Q6 ,

Eo(a) =#,þ0,'* 
^¿rW /,z- ,TQo-Q

The magnetic polarizabrlity of the slot M, could be defined

as [2s]

I j.hr t 
(a, 0) (8. 7)

can be shown to have the form

î"r"1 = - ?;r{") -} o for n >> Koa

K^,,=I(þtr¿qr

ôr0
| 
"o*r.(o)adô=#r,

J

-00

which by using (8.6) in (8.7), i .: ...

:



The integral I(n) is given by

I(n) = cos no It 
cos(xnÔo) 

dx - sin no It 
sin(xn0o) 

n*J ,Tz l. Ç:?_,1 r-x _-1 L-.

(c.1)

Now, Let

¡f cos (xnQg) ¡-I cos (xn$¡) ¡L cos (xn-rôn )I,(n)= | dx=-l - dx* I " ¿x'_J ,æ)rÇ7 lrÇ-
(c.2)

and

fl sin(xn$n) ¡-1 sin(xnQn) ¡I sin(xnþn )r-(n) = |¿ll.:tr---)'f-
-l 'r - x" to "1 - x' o ^ - x

(c. 3)

such that
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APPENDIX C

EVALUATToN OF THE TNTEGRAL (3.6)

I(n) = cos no lr(n) - sin ncl lr(n) (c.4)

In the first term on the right-hand-side of both (C.2) and (C.3)

let

thus

'x .=. -x



r- rn) = ft 
cos(xnÔ') 

o* * ft 
cos(xn0o) 

ðx = 2 lt 
tos(*nó') 

dxI" 
), Ç= ), Ç= ), Ç=

(c. s)

11 sin(xn$r.t) 11 sin(xn$..,)
I^(n) = -l " dx *' ), q- ), q_7
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The integral (C.5) is known [48] and is equal to

COSAXÎ-

-

t_ ¿I-x

Thirs one finds

,]Q 
= rJdno 

u/cos 
nct (c. 7)

/\

ì:
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APPENDTX D

CALCULATION of SLOTS CONDUCTANCE and SUSCEPTANCE

t,

Fig. D.1 Symmetrically double slotted waveguide

Consider the slotted waveguide shown in Fig. (D.1). The struc-

ture could be regarded as a radial transmission line with the slots

acting as terrninating admittance at e = a as shown in Fig. (D.2.)

Y = G + iB
SS

I
I

I

0=a

Fig. D.2 Transmission line repïesentation of the

doubte slotted waveguide

\
0

\

The transverse (to p) fields for the TE

given by (equation 2.11)

case (TE to z) are

E.(0,0) = I^ vn(o) err(0,0)
n=u

(D.1)



Hr(0,0) = I^ in(o)hn(0,0)
n=0
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.h: ;.',.-ir'..i -i-

current modal amplitude

looking in the direction

the mode functions

(D. 2)

(D.3)
Ks Hjz) crul

= þu" 
"lÐl*)

with Ì the admittance of the ,rth
n

of increasing p at the slot (p = a),

en(P,0), hn(p,0) are given by [25]

where Vn(p) and

respectively, and

=Q

In(p) are the voltage and

are related by [25]

mode

and

In=ü
Vn

n

t;-
nrn =y'# cos nQ '

for which the fotlowing orthogonality relation holds

h.
Qn

sin n$

cos n$
e,

Qn

equivalent circuit which ter-

can be calculated from the

-Y ?
K:

tr

t;-l"n
,l ,

li
n
p

SLOT CONDUCTANCE

The conductance portion of the

minates the radial transnission line

relation [25]

¡2¡t

J 
Cr.r*l<ã¡en) odo = 6

0

(D. 4)

(D.s)

c, = l/lvl 2 (D. 6)
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hrhere P is the radial power flow per unit length and Vt is the

mode voltage of the n = 1 radial mode at the slot. The power P

is given by

From (0.2) and (D.3) we have

,o*00 t+cl+ó

P=Re{l 
"xHîäoado. 

I 
oe*Hîã'"ao}

o-ÔO r+a-00

,o*ôo * rr*o*ôo=Re{(.J uotl. I 
"erHilåoaao}

o- ÔO n+o,- 0 0

(D.7)

(D.8)

(D.s)

ur(0,0) = I^ rnrhrn(p,o)
n=u

i-+= )- Ynv.,hrt(P'o)
n=U

Using (D.1) and (1J.5) V' is readily obtained as

l2rr+-fzTt--+

f'' 
r.,lro,o)xã¡e.(p,ô)ado = 

nlo 
u, 

f" 
r.,;co,ö)xä¿en(p,ô)a<Io

00

=! n

the

e, (a, ô) adO

The integration on the left hand side of (D.9) exists only on

surfaces of the slots. Upon simplification, Vn becomes

ro*oo rt***oovn(a,O)= | hrn(^,0)Eó(a,0)ad$+ I hrr,(a,O)
t)

o-00 n+o'+00



185

Subs t itut ing Vrrback

Hz (P'0)

The conductance

G --P /
s

by virtue of (D.6), (D.10) and

.n*o*00

"r(^,0)EO(a,0)adÖ. .J

lr*cr_ö0

uOn"n(",0')a<10'

1ï

T+O¿

I

)
tt*o-00

it is shown in

to the current

by the relation

n*o*öo

(D. r1)

(D.I2) is given by

(D.13)

Appendix IB ]

discont inuity

in (D.8) gives

o+ó

Ì"n,,c",0r [ | 
o

o_00

,n(^,0') "dó']

æ
\.
L

n=0
-J
fi+ct -00

E.h
0

the power using (D.7) and (0.11) becomes

p=Re{l
n=0

E*(a,S)h Ia,0) +\y zn
E*(a,S)h. (a,Q) JadQ9zn

o,+ó
+ ¡ '0
Y,'r [ 

|

)
o_ôo

,o*00
rl

)
a-ó'0

G
s

Lo*00

llh
| "1on

n+cr+ó
f '0
I

J

*o_0g

+ö,0

Er(a,0')hr.,(a,Q') * E*(a, 0' )hzn(a,ô') ladp l ]

(D. 12)

with given by (ll .12).

SLOT SUSCEPTANCE

To calculate the slot susceptance,

that the slot tangential field is related

at the slot,I,and the slot dimension, þ0,
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for the case c¡¿ = 0, For any arbíÍraty location one may assune the

field to vary with a factor of cos ct. This is in agreernent with the

type of excitation,TEll.. It is to be noted that the factor cos o

will adjust both the arnplitude and the relative sign (i.e. direction)

of the field. Accordingly,

Where the expression has been modified to the slot location

o - óO < 0 < o * 00 .The modal voltage of the n = l- mode at the slot hras

given before [eqn. (0.9)], and is equal to

ão x E.(a,0)adÖ

r2trv-=l r,1 xã.E.(a,o)adÖtJrP
0

,0*00 /,T*0*00
= J 

r')r{',o}ãp*Et(a,o)ado+ 
I 

hîr,(a,o).

o-00 n+cr-Ô'

* rg+oo * *
= hrr(a,Ö) I uo x Er(a,ô)adÖ * hr(a ,r+c)

J

a-ó'0

n+o,+ô
f '0 *I a x Er(a,ô)adô

'len*o-00

(D.14)

(D. 1s)



Now, the integration

a+ór '0
_tnl

J

o_00
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E, (a,0) adO

, ltol
2all tn(z/Q 

o)

->
AX

p

-1."-
J(l)e

,þ'
p

cos o¿

I".* 

o

o_00

d (0/00 ),r.2
r_,H0,

Upon substituting u = 0-0
right hand side becomes

dy=
/:--2I-y

Thus

But cos ct

then Y = r/óO the integration on the

I'
Y=- I

o,+ô
f '0 *laxJe

o_00

,f'
)
0

dy

/- 7I-y

-'t 1

2 [sin '] i = '¡T

Er(a,ô)ado = # It
r coS o -K0-2 n I

0r ñ'*o'2 rn(z/þo)

->
AX

p

hr

a+ór '0

I
a-ó'0

hr, (a, ô) , therefore (D.16) could be written as

-M
Et(a,ó)adO = # Itol nr,.(a,cr)h*r(a,cx.)

(D. 16)

(D.17)

with

1

T;OW
1T

2M, = tþ'
p

(D. 18)
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Substituting (D.17) in (D.15) taking into consideration that due to

symmetry |tol =l trr*ol one may write

M

Vl =-Io 1#tn"r(a,o)h"r(a,a) * hrr(a,n+o)h*r(a,n+cl)] (D.19)

so that

r22
i=:t, =#/ (se#.*i93) (D.20)
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APPENDIX E

TNTEGRATTON 0F (3.2s) AND (3.28)

Consider the integral

where o¿ and $ are constants. Using integration by palts applied to

the second term of the right hand side one finds

Ioß=* 
I
0

_ 2l-L^=mlC'IJ I

J

0

).i, (ßy)

v

I J lo¿v

).rn' (ßy)

v

= a Jn,(ß).rfr(o) * ^2 I
0

tL
dy * sß | J;(oy)Jfr(ßr)r dr (E.I)

I
0

dy * o{y .l,n(ßr)"r;tor) } l1

¡1 ¡1
- o | "r*Cßr)y Jfi(crx)cr dy - cr | .l*{or).rfr(crx)dr

J",¡.J
00

rldy-cr l;r(ßr)Jfr(ar)dr
J

0

1 J lcrvm-'

).¡,n ( ßy)

v

l Jlav

^r2-2

I 
y J,(ßr)t #.r,(or) - (1 - 

ïr)t,n(ar)Ìdr
0

where the Bessel equation

"2¡r', 
*, ¡, * (r2 - r2)J - ommm

has been used.

(8.2)
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Collecting terns in (8.2) gives lclß in the form

which by interchanging o and ß modifies to

Equating these two equations, i.e. (8.3) and (E.4), gives

Now consider the integral in (E.5) for

i. cL is a root of Jl(o) = Qm'

Thus, from (E.5) we have

Ioß = o J*(ß)Jfr(cr.) * o2 ft r J*(ßr)J*(ot)dl
J

0

roß = ß Jr(o)Jfr(ß) * g2 ft I J*(or)J*(ßr)dr
J

0

rL

I rJ*(ox)Jr(ßy)dy = [ß J*(e)J;(ß) - o J*(ß)J;(o) ]/(o2 - g2)

J

0

(8. 3)

(8.4)

(8.s)

fl ß J,n(cr)J;(ß)

I r.lr(crx).lr(ßx)ðy= -, -J (o¿ _ þl
0

Substituting this value back in (8.3) gives

_ 2 ^ 
J*(o)Jfr(ß)

t,rß=o o6 _V, (E. 6)
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ii. If both o¿ and ß are roots of .ifr(z) = 0, a I ß, then

the integral in (8.5) is zero, which upon substitution

in (8.3) gives

o2 ß Jr(cr).ri(ß) - 92 o Jr(ß).ri(o)

f^=0
0,tJ

iii. If both o and ß are roots of J'(z) = 0 and cr = ß then

by a simple limiting process of (8.5), or considering di-

rectly the results presented in [51], one has

which upon substituting back in (8.4) or (E.3) gives

ones, one finds

(E. 7)

ft 
rrfrr"r)dy = îr, - $tiøt

0

22
roo = Tt, - þ;f crl (E.B)

ct

iv. For cr and S being any two constants, other than the previous

Iaß
ço2 - B2)

(E. e)
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APPENDIX F

MAGNETIC POLARIZABII,ITY OF AN AXTAL SLOT IN A COAXIAL GUIDE

rn order to show that the magnetic polarizability of the slot 
,,,,,,

in the coaxial line is approximately the same as in the hollow waveguide,

one has to consider first the analysis of Appendix [B]. The same steps and

equations as given there are applied in the case of the coaxial 1ine, 
,.,,

except for equation (8.3) which here takes the form :

where Yli(b) for both the coxaial line and the holrow waveguide is

identical and given by (8.2), and Dn(Kpb) and Di(KOb) are given by

(4.17).

The kernel qþ) of equation (8.1), namely

ä"r¡r =Ì;cr) *f;tuln'-

nay be written here as

, K DIKbI
I;cur = - t# t*o ¡Tùþír

K^ Dn(Kpb) Hjl) Cxoui
(b) = -#-t*o rlGpr tÐ,--r' n'p

e
Yrf

n

(F.1)

(F. 2)

Using the asymptotic values of the Bessel and the Hankel functions

for large orders gives [51]

. r.r -:.:...,,,, .-..
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Jn(Kb)Y'(Ka) - (þ' #,

"ri(ra) Y(Kb) 3 - (qo)" #t

r;(Kb)Y'(Ka) = i,þ' o},

Jå(Kb)Y'(Kb) = icåt" #

,11) c*oul = -:t#r4"1'(ru) -'

n 
( r) ' ¡ru) = .:l3r4rr [*¡ _n_ t for n >> Kbn ' ITn'e',

Substituting the above expansions in eqn . (F.2) gives

-> K K b ,^2n . 1\ K^b
Ì;cur =-5'fi5t* ärï.+r (F.3)

where c = b/a.

and

But since

2nc--' + 1 -
2n-= I n >> I ,

c -1

therefore (D.3) becomes

)
2K-ê^yttfbl = _ , Y

I oun
(F.4)
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Equation (F.4) is identical to equation (8.4). Therefore, the

steps and the results that follow there are applied here, and the

expressions for E* and Mr, given by (8.6) and (B.B), are valid

expressions for the coaxial line case.

i',:.l-::
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APPENDIX G

EVALUATION 0F Z'(Kpb)

From equation (4..7) we have

årrrou) = - jluo 
otBt:fi'l' p p n' p -

with Dn(Kb) and

ff¡r u)u-
-ãK -

p

D;(Kb) given by Q.I7)

:*r
AKp

Now

Kb = z- cpln

j tuUb Ji(cz)aY'j(z) + bJ'f(cz)Yi(z) - tJi(z)Yi(cz) - bJi(z)Y"(cz)
J, (cz) vi ( z) - Ji ( z)Y ,(cz)

(G.1)

where the relationship

.ri(cz)vi(z) - ri(z)Yi3z) = Q

has been used, and the subscript lm has been dropped for typing convinience.

Also, the derivative of the slot impedance has been neglected [25].

Sinplifying the expression (G.1) gives the required derivative
êof the ZfK b) as'p'

Kp

<'
azrK b)'p
--TK -

G, (cz)
(qTã-t 1-_ c(l _ _;_ìj

cz
(G.2)

1_ 
-ì2)
7

. ,rL 
"{(r= -l r

K b = cz P
p
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where Gr(cz) is given by (4.32) and Cr(cz) is given by (4.I7).
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APPENDIX H

EVALUATION 0F THE INTEGRAL (4.30) and (4.33)

Consider the integral

T. = n2 it c rzn y) cn!Ð! * a2 .l' ci(zn r)ci(tr)rdr (H.t)
.l n'nm" î"'y .l

where Cn(zf) and Cfi(zr) are given by (4.17), and zn and C satis-

fies the condiction (4.20). In the following analysis all subscripts

will be dropped for typing convenience. The integration of equation

(H.1) can be written as

An integral similar to any of these four integrals has been carried out in

AppendixIE],but with different limits. The result of these integrals

upon simplification becomes

I = Y'(z)Y'(t) {r,2 i" J(zy)J (ty) I dy + zt [" Jt (zy)J'(ty)ydy]
) -" v 

J11

+ Jt (z)J' ¡t¡ {n2 l," YGÐY(ty) ! ay * ,t f" Y'(zy)Y'(ty)ydy]I v' 
)11

- Y'(z)J'(t){n2 [" J(zy)YCty) * dy * zt l." J'(zy)Y'(ty)ydyil-" v' l11

- J' (z)Y'(t) {n2 f" YQflJ (ty) I dy * zt [" Y'(zy)J'(ty)ydyi
) "' v' 

)11
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- 2 fcL=z- I vc(zy)Crr(tf)dt
)n
I

(H.2)

(H.3)

(H.4)

where the function crr(tr) is given by (+.lz). Apparenrly borh

cn@v) and crr(ty) satisfy the Bessel differential equation, namely

2d2w dW .2 2-, 
Uj*rar+Lz- -n-)W=0

Thus letting

U = Cn(zy) and v=Crr(ry)

one finds

z a2u duyt +. y ål * e2y'- n')u = o

and

z¿2v dv ,22 ?.y- 
-. 

y åÏ * (y2r2 _ nz)v = o
dy"

lrtultiplying these equations, respectively, by v/y and, rJ/y, their
subtraction gives

(r2 - "2) it v cn(zy)cn(tr)dv = [vt cneÐci(tr) - yz ci(zy)cn(tr)J!
l
I

The second term on the right hand side is zero at both limits, which gives
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y cr,(zy)cn(ty)dy = j:Z{c c,r(cz)ci(ct) - c,.,(z)ci(t)}

(H. s)

Accordingly, using (H.5) and (11.2) one finds

2

r = ;-l lc c,,(cz)ci(ct) - c,r(z)c;(r)Ì (H.o)
z -T

Consider now the two cases:

i. t is a root of eqn. (4.20), different from z. In this

case both Ci(ct) and Ci(t) are zero, and the integra-

tion is zero.

ii. t is a root of eqn. (4.20) and equal to z

Letting t = xz, and considering the limit as x + 1, one

finds

I = tim. . z {c C_(cz) --l-=C¡'(xcz)y'(xz) - y'(xcz)J'(xz))x-)r - n. . 
! _ xZ

* cn( U 
, 

=(J' 

(xz)Y' (xz) - Y' (xz)J' (xz) ) Ì

where the second term is always zero and I reduces to

II = -* czC-(cz){cz J"(cz)Y'(z) + zJ'(cz)Y"(z) -czYtt(cz)¿n'

J'(z) - zY'(cz)J"(z)] (H. 7)
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Utilizing the Bessel equation (H.3) in (H.7) and simplifying the

results one finds

,2 -? lr = + {.2(r }-¡ [J(cz)y'(z) - y(cz) J,(z))2 - ,(t - åcz z

[J(cz)Y' (z) - Y(cz) J, (z)] [.](z)Y'(cz) -Y(z)Jr(cz)]] (H.8)

l. .-: ..

j-

t.
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APPENDIX Ï

DERIVATIoN 0F THE Sr.M,tATroN (5.25)

Consider the summation

s = î 'gtÏlo] ,.. Í-j)**t exp[jm(Q - s)] (r.r)
m=_co J0(00) nÍt, ' (Kod sin 0) .---""-

Choosing th" pth and the -pth a"trs one finds

o _ 
to(nÔs) (-j)P*l'p-TTõ4re

p

expljp(ô - a)l . 
tgt,Tt?'

Jo (00 )

(-i ) 
-p* 1

(r.2)

(r.3)

This equation can be simplified by the following characteristic

relations of the Bessel and the Hankel functions [51]

Jo(-pÔo) = Jo(p0s)

and

tiå' (Kod sin o)

t(|)'¡z) = exp(jpn)ufl)'tr)

H(1)'rrl
=P"

Iexp(-jn) ]P

H(1)'rz)
=P"

(-i)zP
(r .4)
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That is, by substituting (I.3) and (I.4) in (I.2), ir reduces to

" _ 'o(roo) (-j)P*l'p-T;ï%rffi
p

2 cos[p(Q - cr)] (r.s)

Thus, the summation S of eqn. (I.1) can be modified to

^ î J(m0o) (_j)r*lt = 

'!o 
e' T-qt ffi 

cos m(Q - *) (I'6)
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