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Abstract

This thesis is concemed with the mode of presentation of the mathematical

aspects of the teaching of high school physics. Eight recent high school and introductory

Ievel college physics textbooks were analyzedinthis study. The topic of Universal

Gravitation was chosen as the ideal context for the analysis of the mathematical

component of physics in these textbooks. The research generated an instrument for the

qualitative analysis of textbooks. The instrument was grounded on a historical inquiry

into the relationship between mathematics and physics, and the history of gravity, mainly

based on Newton's discovery of the universal law of gravitation. The study paid special

attention to the ideas of contemporary learning theories and the requirements of scientifrc

literacy.

It was found that mathematical concepts engaged in the topic of universal

gravitation were presented in various modes. However, graphical modes of presentation,

which are necessary in visualizing functional relationships, were not used by many of the

textbooks. The examined texts demonstrated different ways of establishing connections

between mathematical concepts. For example, few of the analyzedtextbooks used

analogies for the connections between mathematical concepts. Moreover, the textbooks

exhibited varying degrees of balance between the qualitative and the quantitative aspects

of physics as found in example problems on the law of universal gravitation. The

presentation of mathematical concepts through the history and philosophy of science

(HPS) in the unit on universal gravitation in these textbooks mostly utilized a descriptive

mode rather than both a descriptive and instructional approach.



iv

The findings from this study have several implications for educators and

textbook writers. In order to facilitate effective learning, textbooks need to present

physics concepts using a variety of modes. The study suggests that numeri cal d,atashould

be presented and used in a more interactive way. It is crucial for graphs to appear in

textbooks not as simple illustrations of the narration but as dynamically engaging and

interactive vehicles for leaming. Pictorial representations provide further rich

opportunities for improving students' comprehension. Moreover, the introduction of HPS

in physics textbooks can help students understand better the emergence of mathematical

relationships used to represent physics concepts, laws, and theories. Textbooks that

emphasize the use of mathematical models in science and thought experiments further

encourage students' learning. Accordingly, Newton's geometry, a mathematical visual

tool which Newton used to conceptualize gravity, should be incorporated into physics

textbooks.
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Chapter 1 : Introduction

The Research Problem

The mathematical component of physics has been a subject of concern for physics

educators (Stinner, 1992; de Berg, 1995;Lavaly, 1990; Rice-Evans,1992; Jones, 1992;

Monk, 1994; Hewitt,1994). This concern sounded loud, and it seems to be a trend in the

90s. The educators were awaken by the fact established by the research on the

conventional physics instruction (McDermotf,1984; Maloney, 1994; Wandersee,

Mintzes, & Novak, 1994; Huffman, 1997). This research showed that after conventional

(mathematics-based problem-solving) instruction students can not fully explain even the

simplest of physics concepts, even though many could work out related problems. The

results of the Force Concept Inventory (Hestenes et al., 1992) and the Newton's Laws

Test (Heller & Hollabaugh,1992) both indicated that the explicit strategy did not

improve students' conceptual understanding of Newton's laws more than the textbook

strategy. In addition, McDermott (1984), who did studies on high school and college

students' understanding of mechanics indicates that even after instruction, anywhere from

25o/oto 50% of the students still fail to answer conceptual questions correctly. As a

consequence ofsuch situation in physics education, the drop out rate from physics classes

increased, especially physics courses were not popular among girls. Students were

finding the mathematical part of physics difhcult. It was also discovered that the physical

science courses which rely on mathematical formulas and the use of problems that

depend mainly on substitution into equations, followed by algorithmic solutions for the

unknowns, are perceived by students to be dull and boring. This way of teaching and

testing physics has been used since physics textbooks were introduced in the early 19th



century (Stinner, L992). Generally, students find this approach uninteresting, providing

insufficient background to develop a sound understanding ofthe concepts discussed. The

concerns of educators about the algorithmic way of teaching and presenting physics

material in textbooks probably motivated Paul Hewitt, the author of Conceptual Physics,

to write a different physics textbook which considers social perspectives on education. In

the introduction to his Conceptual Physics (2002) he asserts:

The value of teaching physics conceptually is not in minimizing mathematics, but

in maxtmizing the use of students' personal experience in the everyday world and

in their everyday language. Students need not see physics as a hodgepodge of

mechanistic equations, or only as a classroom or laboratory activity, but should

see physics everywhere, as part of everything they experience (çt.11).

From my teaching experience, I find that students believe that competence in physics is

expressed in the knowledge of many formulas. Formulas are"exact" and seem to provide

orientation and "scrutiny" iu physical contexts. Standard examination tasks, which have

often more to do with mathematical rules than with the reflection on physics concepts,

strengthen this view, when students mainly have to memorize formulas (Hestenes, 1995).

Emphasis on symbolism in physics teaching is a real problem. As De Lozano and

Cardenas (2002) note, "in the classroom and in textbooks no attention is given to the

importance of providing special attention to the interpretation of the symbolism" (tl. 591).

The problem described is significant because what determines the way physics is

taught is the way one sees the role mathematics should play in physics education. The

criticism of emphasizing mathematical complexity in the absence of meaning applies also

to the way the concepts are presented in physical sciences textbooks. Therefore, the
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studies of textbooks where the treatment of the mathematical component of physics is

researched can bring some understanding of how physics textbooks could be improved.

Definitely, textbooks are still used as the primary source of information in the science

classroom (Yager, 1984; Jeffery & Roach, 1994; Jones, 2000). According to Pratt (1985),

Dall'Alba et al. (1993), Chiappetta, Sethna, and Fillman (1991), and Stinner (1998), the

textbook is still the principal guide used by teachers to plan a curriculum. For example,

Pratt (1985) asserts:

In that the textbook may be the single most important indicator of the content of

the science curriculum, the manner in which mathematics is treated in the

textbook is crucial to understanding how mathematics is used in sctence courses.

@p.3ea4es)

I would agree with Pratt that the research about what role mathematics plays in

science textbooks (and in physics textbooks since physics is an area ofscience) needs

more attention. The way textbooks present the mathematical component often determines

how teachers view and use mathematics in their teaching, and how students understand

physics when they study from the text (To be able to market their textbooks, textbook

publishers have to satisfy the dernands of curriculurn. Therefore, physics textbooks

reflect how curriculum developers view the role of mathematics in pliysics). Indeed, it is

still the fact that textbooks are the prirnary source of reference both for teachers and

students.

Purpose of the Study

As research in science education shows, the mathematical complexity of physics

has been identified as one of the major factors that prevent students from studying
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physics (Lavaly,1990; Rice-evans ,1992; Jones, 1992; Monk , 1994;Hewitt, 1994).The

presentation of the mathematical aspect of physics in teaching and textbooks is criticized

for lack of connections among concepts, formal representations, and the real world. The

lack of these corurections in physics textbooks inhibits students' understanding of physics

ideas when they learn from texts. My argument is: To ensure understanding when

students learn from a text, it is crucial that physics textbooks maintain a balance

between quantitative and qualitative aspects of physics. To achieve this goal, the

mathematics used in physics textbooks must play an appropriate role in placing and

finding ways of presentation of physics ideas.

Therefore, the purpose of this study is to identify, describe and. analyze the role

mathematics has in high school physics textbooks, to find out if it is used in appropriate

sequence in the presentation of physics concepts, and to examine the modes in which

mathematics is expressed in the texts. Ultimately, the purpose of this analysis is to

understand what role mathematics plays, or is expected to play in the development of

concepts and ideas in physics. As physics educators, we want to ensure that mathematics

is being utilized for more than a computational tool in solving problems. We also want to

make teachers aware that the qualitative and quantitative aspects of physics are clearly

identified, in order to achieve the balance between them.

Research Questions

The research problem outlined at the beginning of this chapter determined my

motivation to conduct this research. My interest in this area of science education has been

sparked by the questions raised by the researchers as well as my own questions that have

lingered in my mind throughout my career as a teacher. Based on the research problem,
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four major questions were formulated that have guided the direction of my research. To

address the issues raised by educators about the mathematioal complexity of physics, I

propose that physics textbooks writers should insure the balance between the qualitative

and the quantitative aspects of physics these textbooks present. My expectation is that the

ans\ryer to the following research question and its sub-questions would validate this

proposition:

Research Question /: What is the rationale for balancing of the qualitative and the

quantitative aspects of physics in physics textbooks?

(a) How do contemporary learning theories and the requirements of

scientific literacy inform us about the appropriate ways of presenting

the qualitative and the quantitative aspects of physics?

(b) V/hat are the pedagogical considerations found in the educational

research literature that support the idea of balancing the qualitative and

the quantitative aspects of physics?

The mathematician-historian Morris Kline (1959) said that historically,

intellectually, and practically, mathematics was primarily nran's creation for the

investigation of nature. On the other hand, the major mathematical concepts, methods,

and theorems have been derived from the study of nature. Mathematics organizes broad

classes of natural phenomena into coherent, deductive patterns. Today mathematics is in

the heart of our best scientif,rc theories: Newtonian mechanics, the electromagnetic theory

of Maxwell, Einsteínian theory of relativity, and quantum theory of Planck and his

successors. Indeed, there is a close relationship between mathematics and physics. Do

they complement and aid in the development of each other? Does physics, as a science of



moving forms of matter, have a mathematical component due to the fundamental

connection between physics and mathematics? These kinds of questions lead to the more

detailed exploration that can be captured by the following research question.

Research Question 2: What is the historical relationship between mathematics and

physics?

Since the main objective of this study is to find how well the balance between the

quantitative and the qualitative aspects of physics is maintained in physics textbooks, it is

necessary to explore what role mathematics plays in physics education and how it is

presented in physics textbooks. The textbook topic of universal gravitation has been

chosen because it is conceptually, as well as mathematically rich. Equations, gtaphs

representing functional relationships between variables, and reasoning based on

mathematical statements are utilized to construct meanings of the phenomenon of gravity.

This topic is also broad enough. Many concepts from other topics are connected to the

topic of universal gravitation since they are used for introduction and interpretations of

the gravitational phenomena. For example, Newton's inverse square law is used for

calculating gravitational force, as it applies locally where g is constant. Kepler's three

laws of planetary motion are introduced for describing planetary motion governed by

gravitational interactions explained by Newton. Uniform circular motion and centripetal

acceleration are introduced to calculate the orbital velocity of planets. Projectile motion is

also related to gravitational phenomena since the motion of projectiles is governed by the

same force as the motion of planets, namely the force of gravity. Equations and their

manipulations, conic sections, estimations, calculations represent an extensive

mathematical component involved in these subtopics. Thus, the topic of universal



gravitation is broad enough to explore the mathematical component of physics in its

multifaceted role.

Research consistently shows (Arons, 1990) that the topic of universal gravitation

is one of the most difficult for students. Students generally exhibit many misconceptions

and are confused about gravity and gravitational effects. According to Arons (1990),

these misconceptions "are rarely spontaneously articulated by the students, that

frequently pass unnoticed by teachers, and that seriously impede understanding of the

material taught" (p. 69). In addition, the mathematical component of the law of gravity is

not as simple, as it seems either. As Wigner (1960) points out,

...the law...ß simple only to the mathematician, not to common sense or to non-

mathematically mindedfreshmen; second, it is a conditional law of very limited

scope. It explains nothing about the earth, which attracts Galileo's roclrs, or

about the circular form of the moon's orbit, or about the planets of the sun. The

explanation of these initial conditions is left to the geologist and the astronomer,

and they have a hard time with thent. (p. 531)

Since the scope of the major question, as suggested by the title of my thesis, will be

within the context of the topic universal gravitation, it is unavoidable that we explore the

history of universal gravitation. The history of gravity will have answers on how, for

example, Newton and Leibniz invented calculus (Fluxions), which helped Newton to

formulate the law of universal gravitation. What background knowledge did Newton have

that helped him in the development of his famous law? With whom, if anybody, did he

communicate in formulating his law of universal gravitation? What new mathematics did

Newton invent for his law? These kinds of questions are impossible to answer if we do
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not look at the historical development of the concept. All these questions raised lead to

the more detailed exploration that can be captured by the following research question and

its sub-questions.

Researclt Question 3: What role did mathematics play in the history of gravity?

(a) What is the history of gravity?

(b) What are the stages of Newton's thinking when he describes universal

gravitation?

High school and introductory level college physics textbooks are going to be used

in the intended research to explore the role of mathematics in presentation of material on

universal gravitation. The presentation of the mathematical component of the physics

found in the textbooks can inform us how mathematics is expected to be treated in

physics education, and how the balance between the qualitative and the conceptual

aspects of physics is insured in these textbooks.

According to contemporary learning theories, there are two mechanisms involved

in learning, namely assimilation and accommodation of ideas. Learning, as the result of

the process of equilibration between these mechanisms, is the main goal teachers should

try to achieve. In this study, I would like to find out to what extent high school physics

textbooks present the ideas of leaming theories. The pedagogical sequence of introducing

and developing concepts in science is crucial in the understanding of the mathematical

component of physics if we want to achieve equilibration between assimilation and

accommodation. Science textbooks are still the major source of information both for

students and teachers, and very often the way physics textbooks present the role of



mathematics in the presentation of a topic is how teachers and students are going to

perceive it. Therefore, the next research question is:

Research Question 4: }Jow is the rationale for the balancing of the qualitative and

quantitative aspects of physics, found from Question 1, reflected in the contemporary

high school and introductory level college physics textbooks in the presentation of topic

of universal gravitation?

(a) What findings from research Questions 1 and 2 canbe used to

develop an instrument for the analysis of the mathematical

component of physics presented in high school and

introductory level college physics textbooks in the topic of

universal gravitation?

(b) What are the modes of the mathematical presentation of

concepts found in high school and introductory level college

physics textbooks in the topic of universal gravitation?

(c) What is the pedagogical sequence of presentation of the

mathematical component found in high school and introductory

level college physics textbooks in the topic of universal

gravitation?

(d) How are the ideas of contemporary leaming theories and the

requirements of scientific literacy reflected in the presentation

of the mathematical component of physics in physics

textbooks?
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Significance of the Study

To examine the role of mathematics in physics textbooks, an historical inquiry

into the qualitative and the quantitative aspects of physics will be undertaken. This will

provide teachers, especially inexperienced teachers, with valuable information about the

problem of the balancing of these two aspects. This inquiry will help obtain examples of

using mathematics as a conceptual tool in physics. The use of mathematics as a

conceptual tool in physics textbooks would promote richer treatment of mathematical

equations flooding our textbooks. This would enable learners to understand what these

equations mean and to go further than using mathematics mainly for performing

calculations to give the "right" answer.

The qualitative content analysis used for the intended research of physics

textbooks will concentrate on the conceptually and mathematically rich topic of universal

gravitation. On the completion of this research, I expect to develop pedagogical

suggestions on how to improve significantly the presentation of this topic in physics

textbooks and how mathematics can be used to show conceptual richness of the topic

Universal Gravitation.

In summary, the significance of this study will be to show that textbooks can

inform teachers, administrators, curriculum developers, and textbook writers on the

deficiencies and strengths found in the treatment of the mathematical component of

physics in the selected high school and introductory level college physics textbooks.

Teachers should be aware of how mathematics is used in physics textbooks in order to be

able to select textbooks and to plan supplementary material to fill the gaps if

mathematical treatment of concepts and relationships between them is not presented in
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the fullest capacity to insure the balance between the quantitative and the qualitative

aspects of physics. This study will not attempt to make recommendations about adopting

specific texts because there could be other criteria than the treatment of the mathematical

component of physics considered for the selection of a textbook. However, I will provide

information to teachers, curriculum developers, and administrators that can assist them in

textbook selection.

Límitations of the Study

Using textbooks as an instrument to study the mathematical component of physics

has limitations. Education is a multifaceted process that involves many factors. The

textbook treatment of the mathematical component of physics is only one factor that can

inform us whether the approach and contexts within definitions and concepts are likely to

promote a sound understanding of these concepts. Textbooks cannot take on the role of

the teacher since leaming and conceptual understanding happen in the ecology of a

classroom. This study will address only the role of mathematics in physics education as

reflected in physics textbooks. From the analysis of physics textbooks, in my study I will

not be able to presume that this study will reflect how mathematics is actually used in a

physics classroom by students and teachers. Although many teachers use the textbook as

their primary source of information, it cannot be assumed that textbooks reflect what is

actually taught in the classroom. The full treatment of the mathematical component of

physics in a classroom, then, is a question for future studies.

This dissertation will examine only English physics textbooks in North America.

However, the textbooks used in England, those in France, and Germany could offer a

significantly different treatment of the mathematical component of physics. It is well
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known, for example, that German textbooks use calculus in their presentation of physics

concepts. Is this approach detrimental to the qualitative understanding of physics

concepts? Does it promote high-level algorithm memorization at the expense of

qualitative understanding? German physics educators seem to think so.

Summary

Algorithmic way of teaching and testing physics has been used since physics

textbooks were introduced in the early 19th century (Stinner, lgg}). Students'dependence

on algorithmic techniques in problem solving seldom generates conceptual

understanding. This significant problem is described in this chapter. The way physics is

taught determines the perceived way role of mathematics in physics education. On the

contrary, the criticism of emphasizing mathematical complexity in the absence of

meaning also applies to the way concepts are presented in physical sciences textbooks.

The presentation of the mathematical component in textbooks often determines how

teachers view and use mathematics in their teaching and how students understand physics

when they study from the text. Therefore, the study the treatment of the mathematical

component of physics textbooks can bring sotne understanding of how physics textbooks

could be improved. The purpose of this study is to identify, describe and analyze the role

mathematics plays in high school physics textbooks, to find out if it is used in an

appropriate sequence in the presentation of physics concepts, and to examine the modes

in which mathematics is expressed in tlie texts. Ultimately, the purpose of this analysis is

to understand what role mathematics plays, or is expected to play in the development of

concepts and ideas in physics.
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Organization of the Study

This study critically analyzesphysics high school and introductory level college

textbooks in order to understand the role that mathematics plays or is expected to play in

the development of concepts and ideas in physics. The study begins by identifying

prevalence of the research problem in the educational community, formulating the

purpose of the study, outlining research questions and their corresponding sub-questions,

and presenting the anticipated significance and limitations of the study (Chapter 1).

The literature review that follows (Chapter 2) focuses on textbook research in

science education in order to identify gaps in physics textbook research regarding the

presentation of the mathematical component of physics. The literature review also

includes discussion and criticism of some earlier mathematics-based physics textbooks to

make a case for improvement of the presentation of the mathematical component in

physics textbooks and initiate search for criteria applied to textbook analysis.

The search for criteria of the analysis of the mathematical component of physics

textbooks as well as the design of the study which is guided by the researcher's

theoretical assumptions and, consequently, theoretical and methodological framework

chosen for this study are described in Chapter 3. This chapter concludes with the

description of layers of content analysis of physics textbooks chosen for the study.

The following three chapters inform the construction of the instrument for the

analysis of the mathematical component in physics textbooks. Chapter 4 enlightens the

reader about the close historical connection between mathematics and physics, discusses

examples of the predictive power of mathematics, and specifies the quantitative and the

qualitative aspects of physics and mathematics. This chapter concludes with summartzing
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what educators have learned about the relationship between mathematics and physics

from the history and philosophy of science. This summary contributes to the construction

of the instrument for textbook analysis.

Chapter 5 presents a historical inquiry into the role of mathematics in the history

of gravity. The factors that influenced Newton's reasoning in the development of his law

of universal gravitation are critically presented. The described stages of Newton's

thinking used in the development of his law of gravity inform a significant part of

instrument construction for textbook analysis.

Chapter 6 focuses on the designing of an analytical instrument for textbook research. A

conceptual framework for the analysis of textbooks is presented, and themes for the

analysis of the mathematical component in physics textbooks are identified. An outline of

the instrument for textbook analysis concludes this chapter.

This instrument was further used for textbook research. Chapter 7 reports findings of a

qualitative content analysis of physics, the main purpose of which was to evaluate the

degree of maintaining balance between the qualitative and the quantitative aspects of

physics in the topic universal gravitation in order to establish the role of mathematics in

physics textbooks. This chapter concludes with a discussion of the role mathematics

plays in high school and introductory level college physics textbooks in the unit on

universal gravitation.

The final chapter of this dissertation (Chapter 8) begins with an outline of the

knowledge contribution to research in science education. An emphasis is placed

specifically on the construction of a comprehensive instrument for the analysis of the

mathematical component of physics in textbooks' unit on universal gravitation and on
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using history and philosophy of science (IfS) as a theoretical and methodological tool in

instrument construction. Recommendations for textbook change, teaching and learning,

and curriculum development are providèd. A discussion of recommendations for

textbook selection and implications for future studies concludes this study.

The next chapter will present a review of the literature on textbook research in

science education. Gaps in physics textbook research will be identified to plan the

forthcoming research on the mathematical component found in physics textbooks. To

make a case for improvement of the presentation of the mathematical component in

physics textbooks and initiate search for criteria applied to textbook analysis the literature

review will include a discussion and criticism of some earlier based physics textbooks.
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Chapter 2: Liter ature Review

Overview

The first part of the literature review (Textbook Research in Science Education)

focuses on the interest of the educational community in science textbook research.

Physics Teacher (1982,1999) describes areas oftextbook research in science education,

outlining criteria for physics textbook evaluation, and examples of physics high-school

textbook evaluations. Consequently, the gap in physics textbook research is identified,

pinpointing limited or lack of analysis of the mathematical component of physics in

textbooks as the main concern. However, it is evident that the research of the

mathematical component of physics textbooks is evolving and gaining momentum.

Chapter 2 continues with The First Mathematics-Based Physics Textbooks which

discusses and cnticizes the first mathematics-based textbooks that present the

mathematical component of physics, the role of mathematics in these textbooks, and the

pedagogical approaches of using mathematics in the presentation of physics material. The

discussion develops particularly around the first widely used textbook on elementary

physics in the English-speaking world written by William Whewell. The literature review

shows the change over time in Whewell's position on the pedagogy of teaching and

learning mechanics. The first elementary physics textbooks reflected 'Whewell's 
ideas,

while some later textbooks differed and veered away from them. Finally, the common

limitation of all these texts, the lack of use of mathematics as a rich conceptual tool

which goes beyond its computational application, is emphasized.
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Textbook Researclt in Science Education

Textbook research is a current trend in science education research (de Berg, 1989,

1992,1995; de Berg & Treagust,1993; Jeffery & Roach, 1994; Good & Wandersee,

i991; Swartz et a1.,1999; Vaquero & Santos, 2001; Mamiala, 2002; Rodriguez & Niaz,

2002;Leite,2002; Pocovi & Finley, 2003).In addition, research on the mathematical

component in physics textbooks is gaining momentum (de Berg, 1989,1992, 1995; de

Berg & Treagust, 1993; Swartz et a1.,1999). Several areas of textbook research could be

identified in the current science educational research. Jeffery and Roach (L994) identified

the following aspects of science textbooks evaluation: readability, style, cognitive levels,

use ofanalogies, elaborations, organization, gender bias, and professional productivity of

the authors. Physics textbooks have also been evaluated based on similar criteria. In

7982,Lehrman reported the evaluation of high-school physics texts in The Physics

Teacher. Evaluation of the texts was made on the basis of seven criteria: content, level of

difficulty, readability, appearance, science, social problems, and assignments. The last

review of high-school physics texts was undertaken in 1999 and reported by Swartz eI al.

(1999) in The Physics Teacher. The review consisted of three parts. In the first part, the

texts were evaluated in terms of rigor of treatment and accuracy of presentation, the

mathematics and reading level, content distribution, peripherals and special features. The

second part of that report listed some of the conceptual and factual mistakes found in

textbooks. The third part concerned the use of texts in high schools. The reviewers ask

questions about textbooks such as: Do students use them? How are they used? How often

are they read or referred to? Should teachers insist that students read them? Are textbooks
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obsolete? The authors predict that the next review can be expected in20l6, but they are

wondering if textbooks as we know them will exist then.

Though the study of textbooks is a current trend in educational research,

according to Pratt (1985), analyzingmathematical content of science texts is rare. Pratt

made this conclusion more than two decades ago. However, the research of the

mathematical component of physics textbooks, as follows from this chapter is still rare.

Pratt notes, "the question of the type and quantity of mathematics used in secondary

science courses has not been given enough attention" (ir. 405). In most of these studies,

including the one done by Pratt (1985), the mathematical component of science is mainly

analyzed in terms of quantity, kind and the level of difficulty. The role and purpose for

which mathematics is used, or how mathematics is used to construct meaning are not

analyzed. There are some studies of chemistry textbooks conducted by de Berg (1989,

1gg2,1995), and de Berg and Treagust (1993) in which exploring the role of mathematics

for constructing meanings is actually the focus of the analysis. However, there are only a

few studies of physics textbooks with a similar purpose (Dall'Alba et aL.,1993;

Bevilacqua 1983). This situation is surprising because according to Pratt's (1985)

mathematical category fi'equency analysis, "physics was the most mathematically rich

science subject, both in terms of the diversity and frequency of mathematics categories"

@. ajl.

If we evaluate a few physics textbooks, we will find that the mathematical

component has received limited attention - the factors of evaluation mainly are what kind

of mathematics, how much mathematics, and, very rarely, the presentation of

mathematics. For example, the following questions about the mathematical component of
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physics in textbooks have been raised, as quoted from the physics texts review conducted

in1982 (Lehrmanet. a1., 1982):

Does the presentatíon promote understanding of relationshíps as opposed to

simple memorization? @. 513)

Is the mathematics limited to that which the average I ltt'-grade student has

mastered? (p. 5 i3)

Are mathematical statements adequately interpreted in Englísh? (p. 514)

Are there enough end-of chapter problems of simple plug-in type? (p.5Ia)

Are there problems requiring students to combine two or more concepts to obtain

a solution? (p. 514)

As a result of the evaluation of physics textbooks, the authors came to the conclusion that

in some textbooks there were insufficient simple, "plug-in problems" for poorer students,

while some texts were suitable for superior students only because of the strong demand

made on student's ability to follow rigorous, extended algebraic arguments. Some authors

felt that only a few books developed concepts, particularly mathematical ones, slowly and

carefully, and would reach the poorer students, but may be too simple for those at the top

of the class. For those students who are at the top of the class, open-ended questions

would be beneficial. However, some authors seems to be concerned with the use of open-

ended questions, especially vaguely worded ones, suggesting instead the use of more

"plug-in problems", as is obvious from the following quote:

Plenty of thought-provoking questions in the text and the ends of the chapters, but

many of them are so vaguely worded, and so wide open, thatfew students will
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lcnow how to attack them. There are...not enough simple, plug-in problems

anywhere. (p.517)

Some evaluators were concemed that the algebraic mode was the predominant way to

represent relationships between concepts. The comments were: "...High vocabulary and

too much reliance on the students' ability to compreltend relationships that are expressed

solely in mathematical terms " (p. 518).

It is encouraging to see that in the Survey of High - School Physics Texts

conducted by Swartz et al. (1999) the analysis of the mathematical component is given a

broader scope. In this review the authors looked not only at the type and difficulty level

of math but also at how the mathematics was presented, and what mathematical tools can

be helpful in learning. Some concerns sound familiar; others are relatively new. The

following quotes demonstrate the increased attention to the analysis of the mathematics

component in physics textbooks:

There are no derivations; occasionally equations support assertions, but are not

incorporated into several-step logical processes; fairly rarely sludents are asked

to use such equations to solve one-step problems; veryfew in-chapter sample

problems exist. (ç:. 284)

Afew suggestions are included about how to use a graphing calculator, but this

kind of activity is not built into the course in a serious way. (p. 285)

ll'e believe that more nunterical work, in theform of making and interpreting

graphs, for example, could have been included without creating insurmountable

barriers; the course would be stronger tf this had been done. (p. 285)
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It is interesting to see that some of the reviewers give preference to the qualitative

representations of concepts to the quantitative ones, at least at the beginning stage, as

follows from this comment: "The formal level of mathematics would be accessible to

virtually any student in high school. Very few traditional equations are used. Projectile

motion is presented without any quantitative calculations at all" (f,.287).

On the other hand, some textbook evaluators are concerned that "the lack of mathematics

and equations might make this a difficult textbook for a beginning teacher to use"

@.287).

Another concem focuses on the "meaning of numbers" and justification of

functional relationships between concepts. For example:

...Problems are solved to three significantfigur.es (always), but no attention is

then paid to the signtficance of the number obtained...The text is filled with the

standardformulas of introductory physics, but practically none of them are

derived. They are asserted without any attempt to justifu the details or to examine

the functíonal dependencies. (p. 289)

The First Matltentatics-Based Physics Textbook

The first widely used textbooks in elementary physics in the English-speaking

world were written by William Whewell. Though Whewell complimented the continental

mathematicians for their analytical skills "in compressing the whole science into a few

short formulae" (Stinner,1992, p. 1), he was deeply concerned about the seductive

powers of the finished product of mathematics in teaching physics. As Becher noticed,

"for Whewell, mathematics was and remained only a means to an end and not an end in

itself'(As cited in Fisch, 1991,p.2). On the other hand, Becher fails to notice that
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"Whewell spoke loud and clear of the decisive superiority of algebraic analysis over

geometry for the mathematization of the physics of his day" (As cited in Fisch, 1991, p.

49). Whewell criticised the educational approach to teaching and leaming physics in

Britain where students learned mechanics from Newton's Principia using a geometrical

method called the synthetic-geometric approach, and avoiding the analytical method

developed by Euler and Lagrange. In 1832, Whewell wrote: "The analytical mode of

treating Dynamics is the only method which can now answer the requisites of natural

philosophy" (As cited in Fisch, 1991,p.49).

It is clear that Whewell's position about the pedagogy of teaching and learning

mechanics, at least at the beginning of his career as an educator, was quite extreme. Let

us assume for a moment that the geometric-synthetic approach could be viewed as

analogous to the qualitative approach to teaching and leaming physics (The approach to

teaching physics where scientifically appropriate meanings are constructed; the focus is

on qualitative predictions and explanations, class discussions and debates; in teaching

physics the emphasis is placed on concepts and relationships between them, and not on

formulas). On the other hand, the analytical approach advocated by V/hewell, can then be

viewed as a quantitative approach (The approach to teaching physics where concepts and

the relationships between them are given in terms of mathematical statements and in the

form of formulas and equations; the emphasis is placed on memori zatjonof formulas and

definitions, calculations in order to come up with right answer, and not necessarily on the

underlying mechanism of the procedures of derivations involved. Students leam formulas

and definitions, do "type" problems involving manipulation of syrnbols and solve

mathematical equations for the unknown variable). What I want to show is that there
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should be a balance between the synthetic-geometric and the algebraic approaches. It is

interesting that Whewell later realised that students simply memorised mathematical

equations without a sound understanding of the concepts involved. Therefore, he argued

later, that there was a need to go back to the geometric-synthetic approach to balance

mathematical and conceptual aspects of physical science.

Though the first book in physics by Whewell was extremely mathematical, he

later changed his view on the pedagogy of teaching physics concepts. As Fisch noticed,

"this early shift of interest from viewing mechanics merely as a sounding-board for

mathematical methods, to viewing (and most importantly), to teaching it as the model

physical science, marks an important tuming point in whewell's careef' (1991, p. 45).

Fisch goes on to say that Whewell came to lay the emphasis "in the more elementary

textbooks on intuitive geometrical problem-solving technique reminiscent of Newton's

Principia" (Fisch, 1991, p. 49).He advocated extensive discussion of the origin of, and

evidential basis for, mathematical formulations as a pedagogical principl e.In History of

the Inductive Sciences (1858), Whewell made a comparison between the physics of

Lagrange and that of Gauss:

Lagrange, near the end ofhis life, expressed his sorrow that the ntethods of

approximation employed in Physical Astronomy rested on arbitrary processes and

not on any insight into the results of mechanical actíon. From the recent biography of

Gauss, the greatest physical malhematician of modern times, we learn that he

congratulated himself on having escaped this error. He remarked that many of the

most celebrated mathematicians...had trusted too much the syrnbolic calculations of

their problems, and would not have been able to give an account of the meaning of
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eãch successive step in their ínvestigation. He said that he himself on the other hand,

could assert that at each step he took, he ølways had the aim and purpose of his

operations beþre his eyes without ever turning asidefrom the way. The same, he

remarked, might be said of Newton. (As cited in Fisch, I99I,p.43)

Whewell embraced the analytical approach of Lagrange and rejected the synthetic

approach of Newton. In spite of that, in his textbooks Whewell failed to present

mathematical formulations as potentially rich conceptual tools that could lead to

understanding of other phenomena.

An attempt to use mathematics as a conceptual tool was made in the textbook

Eletnents of Natural Philosophy by E. M. Avery, published in 1878. Unfortunately this

approach is not generally used in modem physics textbooks. For example, when

discussing free fall using Galileo's experiment with an inclined plane, the author of the

textbook provides a table of results from which students can discover patterns, which

later help them to understand kinematics equations. The table looks like this (p. 62):

Table 2-1. Table of Results

Number of

Seconds

Spaces Fallen During

Each Second

Velocities at the End

ofEach Second

Total Number of

Spaces Fallen

1 1 2

2 J 4 4

J 5 6 9

4 7 8 t6

etc. etc. etc. etc.

t 2t-1 2t t
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(This table must be generated from mathematics in the first place. Today we

would generate the numbers presented in the table from a stroboscope picture or the

inclined plane experiments where the students can do measurements.)

After the pattems have been discovered, formulae for kinematics of falling bodies

are given on the next page:

1. v: gt or Yz gx2t

2. s : Yz g (2t-l) (Note that this equation presented in this textbook appears to be

dimensionally inconsistent - it should be As/At : Y, g (zt-l).)

3. s:Y, ú2

Then Laws of Falling Bodies are formulated verbally:

1. The velocity of a freely falling body at the end of any second of its descent is equal to

32.16ft. (9.8 m) multiplied by the number of the seconds.

2. The distance traversed by a freely falling body during any second of its descent is

equal to 16.08 ft. (a.9 m) multiplied by one less than twice the number of seconds.

3. The distance traversed by a freely falling body durin g anynumber of seconds is equal

to 16.08 ft. (4.9 m) multiplied by the square of the number of seconds.

This approach (when students starl studying rnotion from experiment, then analyze

results, trying to discover patterns, express pattems in mathematical language, and

verbalize the rules) leads to better understanding of mathematical equations and the

concepts involved.

Unfortunately, not many textbooks in physics were modelled after Avery,

and many of 'Whewell's pedagogical devices to explicate concepts prior to the

presentation of the finished product were dropped. ln these books (see, e.g., Natural
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Philosophy, by John Sangster, published in Canada in 1864; New Practical Physics, by

Henry Black and Harvey Nathaniel Davis, published in l92I), the authors first stated the

principles, definitions, and laws and then, sequencing the problems, asked students to

work them out as an exercise. In these texts, example problems are worked out to

illustrate the applications of formulas only. For example, in New Practical Physics

textbook, after giving equations (I) t : at, Ii) s : I/2at2, and (III) v2 :Zas, the authors

instruct the student: "It will save time to memorise (italics in the original) equations (I),

(II), and (III). Notice that there is an equation for each pair of quantities v and t, s and t,

and v and s. Always use the equation that gives what is wanted directly from the data" þ.

168). This approach discourages students from using mathematics as a conceptual tool,

and makes students believe that substitution of data into formula is what physics is all

about. Morris Kline noticed that unfortunately, the relationship of mathematics to the

study of nature is not presented in our dry and technique-soaked textbooks (Mathematics

and the Physical lï/orld, 1959). As Stinner (1992) noticed: "It seems that'post-

Whewellian'texts are prototypes for today's physics texts, and they may have set the tone

for the format of science texts in general" (p. 1).

However, the relationship of mathematics to the study of physics could be

presented differently. The authors of PSSC Physics Haber-Schaim et al (1976), fourth

edition, avery mathematical physics textbook, see one of the main roles of mathematics

in physics education as developing the student's aesthetic sense by learning to appreciate

the abstract beauty of a concise mathematical formulation of a natural law.

The textbook Nffield Physics, written by Boulind et al. (1978) is better in the

sense of conveying meaning by exploring many good qualitative questions and
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experimental activities but this book has almost no mathematical component. Moreover,

the approach presented in this textbook is the inductivist way of doing physics where

knowledge claims are made directly from observation.

Finally, the contemporary physics textbook Conceptual Physics by Paul Hewitt

(2002) conveys the meaning of mathematical formulations used in the textbook.

However, using mathematics as the language of science is very limited. This treatment of

the mathematical component of physics is appropriate for beginners but not sufficient for

more mature physics students.

ln another contemporary physics (college) textbook Physics matters: an

introduction to conceptual physics by James Trefil and Robert Hazen (2004), the

mathematical component is represented in more facets than in the books mentioned

above. Though formulae and mathematical derivations play asubsidiary role in treatment

of physics concepts, whenever an equation is introduced, it is presented in three steps:

first as a verbal statement, then as a word equation, and finally in its traditional symbolic

form. In addition, sometimes, graphical representation supports other mathematical forms

of expression. In this way, the authors think, students can focus on the meaning rather

than on the abstraction of the mathematics. Another valuable feature of this book is that

using of simple mathematical calculations in making estimates and determining orders of

magnitudes is given proper attention. The limitation of this book, however, is that

derivations of fonnulas showing processes of reasoning are in the large absent.

The uses of mathematics in physics, such as giving definitions, obtaining

numerical relations, and formulations of theories, are strongly emphasized in physics

textbooks. For example, in the preface to the textbook Physics, a text for senior high
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school by R.W. McKay and D. G Ivey (these are the same people who produced the

famous physics education movie for PSSC course "Frames of Reference") published in

1955, the authors assert: "The physicist tries to understand the operation of the physical

universe, and wherever possible express his knowledge in mathematical form - because

in mathematical form he can state ideas precisely" (pp. 1-2). Unfortunately, the very

important role of mathematics as a rich conceptual tool that can lead to formulations of

theories is rarely emphasized in school science textbooks. ln most physics textbooks

mathematics is viewed mostly as a computational tool. The laws of physics expressed

mathematically in science can be considered as rich conceptual tools beyond their use as

solving problems according to computational algorithms.

Summary

Textbook research is a current trend in science education research. However,

analyzing mathematical content of science texts is rare. In most of these studies, the

mathematical component of science is mainly analyzed in terms of quantity, kind and

level of difficulty. The role and purpose for which mathematics is used or how

mathematics is used to construct meaning are not analyzed. The analysis of these aspects

of presentation of the mathematical component is essential because different textbooks

have employed various methods of presenting the mathematical component of physics.

The first widely used textbooks in elementary physics in the English-speaking

world were written by'William Whewell. He embraced the analytical approach of

Lagrange and rejected the synthetic approach of Newton. In spite of this, Whewell failed

to present mathematical formulations in his textbooks as potentially rich conceptual tools

that could lead to understanding of other phenomena.
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An attempt to use mathematics as a conceptual tool was made in the textbook

Elements of Natural Philosophy by E. M. Avery, published in 1878. This approach

engages students in studying motion from experiment, analyzing results, trlng to

discover patterns, expressing pattems in mathematical language, and verbalizing the

rules. Such an approach leads to better understanding of mathematical equations and the

concepts involved.

Unfortunately, few textbooks in physics were modeled after Avery, and

many of Whewell's pedagogical devices to explicate concepts prior to the presentation of

the finished product were dropped. In these books (see, e.g., Naturat Philosophy, by John

Sangster, published in Canada in 1864; New Practical physics, by Henry Black and

Harvey Nathaniel Davis, published in l92l), the authors first stated the principles,

definitions, and laws and then sequencing the problems, asked students to work them out

as an exercise. In these texts, example problems are worked out to illustrate the

applications of formulas only.

In other types of physics textbooks, the relationship of mathematics to the study

of physics is presented differently. The authors of PS,SC Physics Haber-Schaim et al

(1976), fourth edition, see one of the main roles of mathematics in physics education as

developing the student's aesthetic sense by leaming to appreciate the abstract beauty of a

concise mathematical formulation of a natural law.

In contrast, other types of physics textbooks had almost no mathematical

component. The textbook Nffield Physics, written by Boulind et al. (1978) is effective in

conveying meaning by exploring many good qualitative questions and experimental

activities but this book had almost no mathematical component. Moreover, the approach
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presented in this textbook is the inductivist way of doing physics where knowledge

claims are made directly from observation.

Finally, the contemporary physics textbook Conceptual Physics by Paul Hewitt

(2002) conveys the meaning of mathematical formulations used in the textbook.

However, using mathematics as the language of science is very limited. In another

contemporary physics (college) textbook Phystcs matters: an introduction to conceptual

physics by James Trefîl and Robert Hazen (2004), the mathematical component is

represented in more facets than in the books mentioned above. Though formulae and

mathematical derivations play a subsidiary role in treatment of physics concepts,

whenever an equation is introduced, it is presented in three steps: first as a verbal

statement, then as a word equation, and finally in its traditional symbolic form, In

addition, sometimes graphical representation supports other mathematical forms of

expression. Using these methods authors postulate that students can focus on the meaning

rather than on the abstraction of the mathematics. Another valuable feature of this book is

that using simple mathematical calculations in making estimates and detemrining orders

of magnitudes is given proper attention. The limitation of this book, however, is that

derivations of formulas showing plocesses of reasonin g are at large absent.

Unfortunately, the very important role of mathematics as a rich conceptual tool

that can lead to formulations of theories is rarely emphasized in school science textbooks.

In most physics textbooks mathematics is viewed mostly as a computational tool. The

laws of physics expressed mathematically in science can be considered as rich conceptual

tools beyond their use as solving problems according to computational algorithms.
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The next chapter (Chapter 3) includes a description of the researcher's theoretical

assumptions that have guided the design of this study, the theoretical and methodological

frameworks, and research procedures. The discussion develops around elements such as

levels of knowledge representation, studies of experts' and novices'problem solving

strategies, application of leaming theories in physics education, and procedures for

collecting, organizing, analyzing, and synthesizing data in order to construct an

instrument for content analysis of physics textbooks.
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Chapter 3: Analytical and Methodological Framework

Overvíew

Chapter 3 commences with a description of the researcher's theoretical

assumptions that have guided the design of this study. A presentation of the theoretical

frameworks of this study, learning theory and requirements of scientific literacy, are also

included. The elements of contemporary learning theories are highlighted. The discussion

develops around elements such as levels of knowledge representation, where different

types of knowledge are presented, studies of experts' and novices' problem solving

strategies, where differences between experts and novices are specified for consideration

of potential approaches to be used in presenting physics material in textbooks, and

application of learning theories in physics education, where particular examples are

described and the importance of considering leaming theory in presentation of physics is

emphasized.

Additionally, a discussion develops around the requirements of scientific literacy,

included as one of the theoretical frameworks utilized in this study. The discussion begins

with presenting defrnitions found in the science education literature followed by the

justification of applying requirements of scientif,ic literacy to the analysis of the role of

mathematics in physics education. Consequently, the proposition of incorporating history

and philosophy of science into the research methodology utilized in this study is

introduced and justified.

Chapter 3 presents the central argument in this study: it is crucial that physics

textbooks maintain a balance between the qualitative and the quantitative aspects of

physics in order to ensure understanding when students learn from textbooks. The
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explanation of the rationale for balancing the qualitative and quantitative aspects of

physics in physics textbooks (Research Question 1) justifies my central argument.

ln order to make judgments about the balancing of qualitative and quantitative

aspects of physics in physics textbooks, Chapter 3 describes the conceptual framework

and the process of its development, where an explanation of which aspects of the role of

mathematics in physics will be explored and analysis is provided. In this section the

conceptual framework is organized into a table which will later be filled in by the

information obtained from further research conducted in developing an instrument for the

analysis of physics textbooks in this study.

The chapter concludes with a description of the methodological framework and

research procedures. In this section, methods of research for this study a¡e identified and

justified. These methods include historical inquiry and qualitative content analysis. The

methodology of qualitative content analysis is introduced with a presentation of examples

of its application. The appropriateness of methodologies, used by de Berg (1989) and

Chiappetta, Sethna, and Fillman (1991), partial application for this study's examples are

identified and justified. Finally, procedures for collecting, organizing, analyzing, and

synthesizing data are described and presented in an illustration depicting the steps of

inductive analysis leading to the construction of an instrument for content analysis of

physics textbooks.

Profi,le of the Researcher

To examine how physics textbooks represent the role of mathematics in

expressing ideas of physics and to understand how the authors of these books insure the

balance befween the qualitative and the quantitative aspects of physics in the presentation
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of the material to be conceptualized, a researcher has to identify her theoretical

assumptions that guide the design of this qualitative study. As Creswell (1998) notes,

Qualitative researchers approach their studies with a certain paradigm or

worldview, a basic set of beliefs or assumptions that guide their inquiries. These

assumptions are related to the na.ture of reality (the ontology issue), the

relationship of the researclter to that being researched (the epistemological

issue), the role ofvalues in a study (the axiological issue), and the process of

research (the methodological issue). @.74)

Before stafing'a description of the analytical and theoretical frameworks for this study,

following Creswell's advice, I will now present my personal stand on the issue of the

study - presentation of the mathematical component in physics textbooks to insure the

balance between the qualitative and the quantitative aspects of physics.

As a person who has a passion for physics and mathematics learning since I was

introduced to these subjects during my school years, I was always fascinated by the

logical aspect of mathematics and the ability of mathematical language to describe the

world around us in such a precise and an elegant way. The idea of exploration of how the

mathematical component of physics is treated in physics education came during my

teaching experience. As a physics teacher, I couldn't help realizing that the mathematical

component of physics causes difficulties for students with insufficient background in

mathematics. On the other hand, the students who exhibited proficiency in manipulating

mathematical equations, also had diff,rculties, but these were of a different nature - they

would often mindlessly use mathematical equations, very often not clearly knowing

which one to apply in a particular problem situation. It was evident to me that the
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students did not have conceptual understanding of the ideas involved, did not understand

the assumptions and limitations to be considered for the physical laws studied. From my

experience and the reading of physics education literature Irealizedthat mastering the

mathematics involved would not make any change in terms of students' understanding of

what they leam in physics. With this came the realizationthat in the presentation of ideas

in physics I must use two approaches, namely, a quantitative and a qualitative. In

classroom teaching it meant that for successful learning I had to find the balance in

presenting the qualitative and the quantitative aspects of physics. Finally, the pedagogical

ideas on how to do this came from experience, as well as from reading educational

literature and taking courses in my graduate program in science education at the

University of Manitoba.

It is a fact that the leaming of physics takes place outside the classroom. As was

shown in Chapter 1, another source from which students can learn is a textbook itself. It

seems to be logical to assume then that students could understand mathematical concepts

of ideas presented in physics textbooks provided the presentation of the mathematical

component insured the balance between the qualitative and quantitative aspects of

physics. Another reason for my interest in physics textbooks research was the opportunity

I had in 2003 when I was selected by Manitoba Education, Citizenship and Youth to be

on a team for evaluating recent learning resources for Manitoba schools in physics

education, primarily in high school physics textbooks. Our task was to determine the

correlation between the textbooks submitted for evaluation and the Manitoba curriculum

learning outcomes in order to recommend the best identified resources for physics

teachers. One of the learning outcomes of the Manitoba Curriculum in Physics requires
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students to be able to use mathematics in its several modes of presentation in order to

express ideas in physics. During the examination of physics textbooks chosen for the

analysis I noticed that they differed by the presentation of the mathematical component of

physics in terms of levels of difficulty, volume, and modes of expression. However,

performing the task of establishing the correlation between curriculum learning outcomes

and presentation of material in the analyzed.physics textbooks did not provide complete

information about the ability of textbooks to present the mathematical component in a

way that would be meaningful to students. ln other words, I was interested to find out if

the presentation of concepts and ideas in physics textbooks insured the balance between

the qualitative and the quantitative aspects of physics, which in turn, would promote

conceptual understanding. I became convinced that to respond to this problem, research

on textbooks had to be undertaken. I also realized that in order to explore what meaning

mathematics conveyed in physics textbooks it was not informative to know how much,

how often, and what kind of mathematics was presented in textbooks. I suspected that a

qualitative analysis of physics textbooks would provide a deeper understanding of the

meaning of mathematics in physics textbooks, and how the balance between the

qualitative and the quantitative aspects of physics was maintained in these texts. Thus, I

selected for my research, examination of mathematical component in physics textbooks

as the focus of my study.

After describing the personal position on the question of what to study, a

researcher, according to Creswell (1998), should proceed with orienting the theoretical

framework so as to inform a reader what will be studied and how it will be studied. ln

this part of the study, according to Creswell (1998), "topics include the conceptual
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framework including theory to be used as well as concepts and processes related to the

research design" (p. 176). I will follow this advice and continue with describing the

theoretical frameworks for my study.

7h e o r eti c a I F r am ew orl<s

The objective of this study is to understand how physics textbooks represent the

role and place of mathematics to maintain the balance between the quantitative and the

qualitative aspects of physics that lead to an understanding of the ideas presented in

physics textbooks. Clearly, to help students understand the basic concepts of physics,

textbooks would benefit if they used the findings of learning theories. I would like to find

out how physics textbooks reflect the ideas and recommendations made by learning

theories in the presentation of the mathematical components of physics to promote

conceptual understanding. To insure this understanding, one assumes it is crucial that

physics textbooks maintain the balance between the quantitative and the qualitative

aspects ofphysics.

Learning Theories

The task of learning theories is to explain how learning happens and what

measures have to be taken to ensure successful learning. The central concept in learning

theories, as will be shown in this section, is the concept of learning styles. The term

"leaming styles" has been defined as "cognitive, affective, and physiological traits that

serve as relatively stable indicators of how learners perceive, interact with, and respond

to the leaming environment" (Keefe, 1982,p.44). Claxton and Murrell (1987) presented

an overview oftheory and research in the field oflearning styles and discussed

significant implications for educational practice. They also stressed the importance of
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interactions between learning style, developmental stage, disciplinary perspectives, and

epistemology. The learning theories presented in this section might offer physics

teachers, textbook writers, curriculum developers, and other educational players a better

understanding of teaching and leaming processes, as well as insights which would enable

them to enhance the balanced presentation of the mathematical component in physics.

While there are many learning theories where the construct of learning styles includes

cognitive, affective, and physiological dimensions, cognitive styles seem to be able to

explain new understandings relevant to the process of utilizing knowledge of

mathematics in presenting concepts of physics for the purpose of balancing the

qualitative and the quantitative aspects of physics.

Contemporary models of learning draw upon research that use Piaget's ideas

about levels of reasoning engaged in different stages of epistemological development,

earlier cognitive themes models, such as schema structures from the cognitive sciences,

and memory structures from the discipline of artificial intelligence.

In Piaget's view, an understanding about the physical world is acquired during

specific encounters with objects. This understanding changes during development as

thinking progresses tluough various stages from birth to maturity. Piaget is considered to

be a structuralist who tried to identify parts and determine how they are organized into a

whole. He proposed that a small set of mental operations underlie a wide variety of

thinking episodes. Being concerned with relationships between parts and the whole and

between an earlier and a later state, Piaget (1969) and his followers claim that the

thinking of younger and older children has similar elements, but these elements are

combined in different ways to form the organized whole of thought. Though Piaget's
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work made substantial impact on the development of cognitive science, many of Piaget's

ideas, according to Chandler and Chapman (1991), were modified as a result of

subsequent observation and interpretation.

Going beyond Piaget's work, as recognized by contemporary cognitive theories of

learning, the mind organizes repeated similar experiences into what psychologists call

schemata (complex networks of concepts, rules, and strategies). Schemataaredescribed

as the fundamental elements upon which all information processing depends (Rumelhart,

1981). Schemata are also employed in the process of interpreting sensory data, in

retrieving information from memory, in organizing actions, in determining goals, in

allocating resources and generally in guiding the flow of processing in the system.

Rumelhart (1981), clearly, assigns schemata a role of providingadatastructure for

representing generic concepts stored in memory. Thus, schemata represent knowledge

about objects, situations, events, sequences ofevents, actions, and sequences ofactions.

According to another view (Marshall, 1989), a schema is a basic storage device

where knowledge gets highly organized. Numerous schemata facilitate our understanding

ofeveryday events and are based on previous experience. These schemata are developed

by repeatedly doing the same set of actions in a given setting. They have no fixed size

and may embed and often overlap. In terms oî organization, a schema has a network

structure with nodes and links. As Waterworth et al. (2000) describe, information that has

something in common is linked in some way, similar to the way acomputer's memory is

organized, and exists in memory as independent units. These units are connected through

links in a hierarchical network. The degree of connectivity among the schema's

components determines its strength and accessibility. A schema is a flexible structure,
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accessible through many channels. These channels comprise different types of knowledge

stored in memory. This knowledge about organization of schemata is very important for

teachers and textbooks writers. I believe, if we want students to develop conceptual

understanding, we have to know how students' minds are organized.

Since schemas are flexible structures, teachers have to develop strategies to help

students make strong connections between its elements for better learning. One of these

strategies originates from Lev Vygotsky's sociocultural theory and his concept of the

zone of proximal development. "Thezone of proximal development is the distance

between what children can do by themselves and the next learning that they can be

helped to achieve with competent assistance" (Raymond, 2000, p.176). This competent

assistance teaching strategy is called by Vygotsky scaffolding instruction. He defined

scaffolding instruction as the "role of teachers and others in supporting the learner's

development and providing support structures to get to that next stage or level" (Rarnond.

2000,p.176). According to Olson and Platt (2000), the activities provided in scaffolding

instruction should be beyond the level of what the learner can do alone, so that the

scaffolds facilitate a student's ability to build on prior knowledge and intemalize new

information. These scaffolds, however, are temporary. As the leamer's abilities increase,

the scaffolding provided by an instructor is progressively withdrawn, so that finally, the

learner is able to complete the task or master the concepts independently (Chang, Chen,

and Sung,2002,p.7).

The scaffolding instruction strategy found application in learning from textbooks

in a form of concept mapping. Chang, Chen, and Sung (2002) found that concept

mapping (scaffolding) "... may serve as a useful graphic strategy for improving text
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learning" @.2I). An important aspect of scaffolding instruction is an appropriate

sequence of supports provided to the learner. Therefore, textbooks, I believe, should

present the material in such a sequence that it is the most helpful to students to become

selÊregulated learners.

The degree of connectivity among the schema's components is central to the

process of transfer of learning. Transfer of leaming is defined as the ability to extend

what has been leamed in one context to new contexts (Bymes, 1996). This ability enables

students to transfer, for example, learning from one physics problem to another, as well

as to place a problem in a broader context. Research has indicated that transfer across

contexts happens easier when a subject is taught in multiple contexts rather than in a

single context (Bjork and Richardson - Klavhen, 1989). ln addition, research has shown

that when a subject is taught in multiple contexts, and includes examples that demonstrate

many applications of what is being taught, people are more likely to abstract the relevant

features of concepts and develop a flexible representation of knowledge (Gick and

Holyoak, i983).

According to Gick and Holyoak (1983), one way to help develop flexibility is to

ask learners to solve a specific case and then provide them with an additional, similar

case. Relating to similar problern situations, as these researchers believe, would help

learners to abstract general principles and lead to more flexible transfer. Through

observing similarities and differences across different situations students get many

opporfunities for knowledge representations. Contrasting different concepts can help

students notice new features that previously escaped their attention and learn what

features are relevant or irrelevant to a particular concept. The use of well chosen
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contrasting cases can help students learn the conditions under which new knowledge is

applicable.

The Cognition and Technology Group at Vanderb llt (1gg7) suggests a second

way to improve flexibility - to let students learn in a specific context and then engage

them in "what - if'problem solving designed to increase the flexibility of their

understanding. Bransford et al. (1998) recommend a third way to enhance transfer to

novel problems - to generalize the case so that learners are asked to come up with a

solution that applies not just to a single problem, but to a whole class of related problems,

namely to create mathematical models that charactenze a variety of problems.

Contemporary models of leaming take into account advances in the

developments of psychological theory of acquiring knowledge. The essence of this theory

is recognizing the relationship between cognitive leaming styles and psychological type

theory (Myers and Briggs ,I975). Psychological type theory provides a construct that

explains individual favoured natural behaviours and abilities. According to psychological

type theory, an attitude associated with awareness and reliance on objects and

individuals, external world, represents Extraversion (E). On the other hand, an attitude

demonstrating interests centered on an irurer world of formulated ideas and concepts in

which the individual tends to set his or her own standards with a thoughtful objectivity,

reflects Introversion (I). In the view of Myers -Briggs theory, Sensing (S) and lntuition

(N) are modes of perceiving the extemal world, whereas Thinking (T) and Feeling (F) are

ways ofjudging facts and concepts to be perceived. As a mode of Perception (P), Sensing

(S) is gathering information directly through observation by way of the five senses. On

the other hand, Intuition (N) is associated with Perceiving things indirectly, through
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hunches, and is accompanied by insight, or imagination. As a mode of Judging (J),

Thinking (T) portrays a logical, rational, analytic, orderly, and impersonal, objective

approach in contrast to Feeling (F), which also is seeking a rational ordering but is

dependent more on drawing conclusions based on personal values and subjective

observations. It was established (Myers and McCaulley, 1985) that individuals who

prefer the Judgment (J) mode act on facts and concepts in a planned, organized way,

whereas those who are inclined to the Perception (P) mode tend to be more curious,

flexible, and open to a breadth of experience. Sensing (S) and Intuition Qrl) serve as

functions to implement the Perception (P) orientation, whereas Thinking (T) and Feeling

(F) serve as functions to implement the Judgment (J) attitude.

Awareness of psychological type theory is very important for educators. By

understanding psychological type preferences of students, tve may be able to gain

insights into the reasons of choice of their ways of learning in order to identify the

cognitive leaming styles that are appropriate for particular students in order to help them

understand concepts, laws, and theories of physics. For example, S-students focus on

things that are practical and observable. I addition, their mind works in a linear fashion.

Therefore, the traditional way of presentation of the material - from theory to examples

/experimentation would not work for them. It was established that S-students learn best

when information is presented in a step-by-step, hands-on manner (Jenson et aI., 1998).

The example - theory approach would be more effective for these students. On the

contrary, intuitive thinkers (N-students) exhibit imagination, acceptance of complexity of

abstract concepts and theories, and a tendency to focus on the "big picture". The intuitive

thinkers favour a more abstract presentation allowing personal integration of the
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information into the overall theory (Jenson et a\.,1998). Therefore, N-students would

benefit from theory - example approach.

We have to realize that this difference in the fundamental approach used by

different students poses a difficulty both for the textbook writers and the teachers. I t is a

challenge to accommodate the learning needs and preferences of both types of students.

Presentation of the mathematical component in physics in both textbooks and teaching is

also a challenge given the understanding of mathematics is a cognitive activity dependent

on student learning styles. Textbook writers and teachers should be aware of this

difficulty. In connection to my research, to choose the effective ways of the

representation of the mathematical concepts in physics, educators should have sufficient

theoretical knowledge about different levels of knowledge representation.

Levels of Knowledge Repres entation.

According to 'Waterworth et al. (2000), three main types of knowledge are stored

in memory as analogical, propositional, and distributed representations. They give the

following description of these types of knowledge:

Analogical repres entations are picture-like images, whereas prop ositional

representations are abstract language-like statements thal make

presuppositions...Distributed representations are a network where the lorcwledge is in

the connections between nodes. Analogical representations and propositional

representations are regarded as syntbolic representations while distributed

representations are considered to be sub-symbolic representations. (p.9)

In Marshall's (1989) view and in the view of most researchers, schema

theory contains three types of knowledge:
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Declarative - knowledge that is composed of concepts and facts

within a domain, and is static.

Procedural - knowledge that is composed of rules, that consists of

skills and techniques, and that determines when a piece of

declarative knowledge is applicable and under which

circumstances.

o Schematic - knowledge that combines procedural and declarative

knowledge

Knowledge types described in the presented learning theories can be represented

in different modes. For example, science education researchers identified three different

representational levels in chemistry education: macroscopic, symbolic, and

submicroscopic (often referred to as microscopic). According to Johnstone (1982),

Herron (1996), Hinton and Nakhleh (1999), Nicoll (2003), and Russell et al (1997),the

macroscopic level is in the world of the observable phenomena which can be perceived

by the senses and can include references to students' everyday experiences. In the

macroscopic world, water is a clear liquid and table salt is a white solid. The symbolic

level is viewed as the representation of a phenomenon using a variety of media including

models, pictures, algebra, and computational forms. The symbolic world is basically the

world of formulas and equations. ln the symbolic world, water is HzO and table salt is

NaCl. Finally, the submicroscopic level is reality which cannot be observed. Therefore

students must develop a mental model of the behaviour, for example, molecules, such as

using the particulate theory of matter to describe the movement of chemical particles

such as electrons, molecules, and atoms. According to chemistry education researchers,
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skilled chemists switch easily between these three worlds but new students lack both the

basic knowledge and the skills to work with different representations, and therefore fail to

make these connections easily (Russell et al, 1997, Seel and Winn, 1997;Kozma,2000).

Herron and Greenbow (1986) found that many students fail to make strong connections

between the symbolic signs (chemical formulas) and the physical reality that these signs

are representing. Students treat chemical formulas as mathematicalpuzzles without

understanding the chemistry that is underlying these symbols (Kozma,2000: Marais and

Jordan, 2000). Similarly, when we teach physics, we have the same problem.

Studies of Experts' and Novices' Problem-Solving Strategies

Studies on the success of experts, as compared to novices, in physics can provide

valuable information about the factors determining success in learning of physics.

lnsights into experts' plans of action and reasoning employed could help educators

understand how experienced problem solvers manage to balance the qualitative and the

quantitative approaches when they solve problems in physics.

These studies show that an essential difference between experts and novices involves

the structure of domain-specific knowledge. Experts in physics, for exarnple, appear to

organize subject-matter knowledge (equations, definitions, and procedures) hierarchically

under fundamental concepts such as Newton's second law or the conservation of energy.

The knowledge structure of novices in physics tends to be amorphous and based on

surface features rather than underlying conceptual frameworks (Larkin et al., 1980; Reif

and Heller, 1982). These researchers also found that the difference did not seem to arise

from lack of familiarity with the required knowledge. Experts categonze problems

according to the fundamental principles and laws required to understand the problem as
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opposed to novices whose approach to problem solving is based on the superficial

features, with little or no activation of fundamental principles. They also tend to use what

may be called a "working backward approach" that involves the use of a specific formula

or algorithmic procedures with little understanding (Chi et al., 1981; Gabel, Sherwood,

and Enochs,1984; Shoenfeld, 1985). Dhillon (1998) observed that novices used sy,rnbols

more than experts. Novices had difficulties relating quantities that did not have an

obvious relationship, and used symbols to infer similarities and connections befween

quantities. Experts, in contrast to novices, used the conceptual meaning of the quantities

to relate them. This is in agreement with findings by Chi et al. (1981) that novices

categonzeproblems using surface features (for example, rotation, inclined planes,

springs) as opposed to expefts who categorize using broad physical principles (for

example, Newton's laws, conservation of momentum, conservation of energy). Experts

use a series of problem representations: the verbal statement of the problem, an

illustration of the physical situation described in the problem, conceptual representation

(for example, free body diagram), and a set of equations. The final representation,

(mathernatical equations) is always used by both novices and experts. However, the

novice, as opposed to the expert, typically proceeds directly from the problem statement

to a mathematical solution using "plug" and "chug" process (Van Heuvelen, 1991). In

general, Larkin and Reif (1979) note two main differences between expert and novice

problem solver. First, instead of trying to jump directly from a physical situation to

quantitative equations, experts seem to interpose an additional step - a qualitative

analysis or redescription of the problem, as well as a broad contextualization of the



48

situation described in the problem. Second, experts remember principles in "chunks" or

"groups" whereas novices retrieve principles one at a time.

These research findings suggest, according to Dhillon (1998), that knowledge needs

to be represented:

o In a descriptive form to help visualize the problem.

o As basic relations, to enable means-end-analysis to be employed.

o In a diagrammatic form, for visual thinkers, to enable transformation of

information and to help obtain a total picture.

o With explanations on the applicability of the knowledge.

o Separately, in fundamental blocks, to enable problem decomposition'

. Enabling to make a choice of variable values, allowing the envisioning as

well as giving information and producing solution assessment.

. With reference to other similar examples in order to enable the use of

analogy.

o With structure, insuring logical sequence.

In my opinion, if these strategies were proven to work successfully in problem

solving (which could be an indicator of whether good leaming takes place), then they

should also work for the presentation of the material in physics textbooks. It is a fact that

students still leam mostly from textbooks. If physics textbooks used strategies, proven to

be successful for leaming and problem solving, then the balance between the qualitative

and the quantitative aspects of physics would be maintained. Consequently, mathematical

terms and concepts would be meaningful to students.
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Applícation of Learning Theories in Physics Education

As was established earlier in this chapter, there is general agreement among

developmental psychologists that the evolution of thinking goes through several cyclic

stages. Some of the theories of learning trace the stages of student development from

early psychomotor reactions to logical thinking (e.g., Biggs & Collis, 1982; Case, 1985;

Fischer, 1980; Stinner, 1998). These theories are reminiscent of Piaget's theory of

epistemological development. For example, Osbome (1984) describes mini-theories

children use to offer descriptions and provide explanations of ideas about dynamics. He

describes three clusters namely "gut dynamics", "lay dynamics" and "physicists'

dlmamics", which remind us of the stages of epistemological development outlined by

Piaget. Osborne (1984) calls "gut dynamics" the dynamics learned through trial and error

in the home and based on "direct experience rather than language" (p. 505). He goes on to

say that "gut dynamics is about the tangible world and influences motor skills and

perception" (p. 505). He then argues that "lay dynamics is the dynamics which is

reflected "in the form and content of the language the child grows up to speak and the

accounts and images of experiences conveyed by those with whom the child comes in

contact, the media, and the authors of the books he or she reads" (p. 506). Finally, he

calls "physicists'dynamics" the dynamics learned at school, essentially Newtonian

dynamics. He notes that

while gut dynamics builds on experience and lay dynamics builds on everyday

language, physicists' dynamics has a linguistic and mathematical superstructure

of its own .. .A variable amount of active and self directed experimentation is
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possible but the experiences often tend to show the limitations of the idealized

theories rather than provídíng supporting evidencefor their usefulness. (p. 506)

Osborne (1984) raises the concern that these three clusters of learning dynamics do not

get integrated. He notes: " Gut dynamics enables one to play ice hockey, lay dynamics

enables one to talk about Star Vïars, while physicists' dynamtcs enables one to do physics

assignments " (p. 506). Osborne (1984) concludes, that'for many students their gut and

lay dynamics are not developed through their physics courses in useful ways, nor are

they related to what they are taught in the physics classes" (p. 506).

Given the discussion of Myers -Briggs' psychological type theory earlier in this

chapter, we can make a connection between this theory and Osborne's observation of

children leaming behaviour. Children, being in the mode of Perception (P), tend to be

spontaneous, curious, flexible, and open to the variety of experiences. They behave very

similar to an artist who usually learns about the external world through perception of the

world. Perception (P), in tum, comprises an artist's extemal world. In contrast, a physicist

internalizes the external world through the constructed worlds and usually operates in an

Intuition (N) world, so that the "real" world for a physicist is a mental work. The

Perception world for a physicist gets formulated through the constructed worlds and

becomes an internal world through Thinking (T) and Judgment (J) in order to act on facts

and concepts in a planned, orderly, and organized way.

The insights of the learning theories discussed earlier in this chapter enable us to

identify essential elements of the pedagogical sequence necessary to introduce and

develop concepts in physics. As Ebenezer and Connor (1999) stress, "it is imperative that

students learn to explore their conceptions; identify their assumptions; use critical,
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logical, and creative thinking; and consider alternative explanations as they continue to

study science" (p. 41). For example, osborne (1984) suggests, as a starting point, the

exploration of the child's present ideas. He also argues that the teaching of dyramics must

begin at an early age to develop children's gut and lay dynamics in ways that are flexible,

unlimited and give appropriate explanations in the real world or are suitable for the

subsequent learning of physicists'dynamics. He suggests providing experiences and

discussions that would originate "seeds for alternative conceptions upon which the later

teaching of physicists' dynamics can be firmly based', (p. 507).

Monk (1994) particularly stresses the importance ofpractical experience with

physical objects in learning physics. He assefs that there is no substitute for direct

practical experience if we wish to securely ground knowledge for our students. In other

words, "the students must get their hands dirty". Hands-on activities provide students

with a good opportunity to construct meanings. Monk warns us that the free play phase of

the leaming cycle should not be rushed. Students need plenty of time to experience the

objects around them before they can shape the way they think about them.

Rowell (1989) addresses the need for the applicability of the epistemology of

Piaget to science teaching, stressing the value of two mechanisms for leaming introduced

by Piaget, namely assimilation and accotnmodation. Piaget defines assimilation as the

process by which students leam new ideas that match or extend on their existing

conceptual knowledge. Accommodation is defined as the process where students learn

new ideas that do not fit into their existing conceptual knowledge either because the ideas

are new or because the idea conflicts with their present knowledge.
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Stinner (1998) discussed Piaget's principle of equilibration (or self-regulation) and

noted that the process of equilibration

comes into play when we are at a loss to explain a phenomenon or an aspect of a

phenomenon using our existing conceptual apparatus. This inability to explain

produces a mental discomfort (cognítive disequilibrium) that demands a response.

The response consists of conceptual readjustments in a multi-step process

involvingfeedback loops (p. 42)

Stinner (1998) gives three stages of the equilibration process explaining a progressive

sequence of levels as following:

In the fi.rst stage tltere is a conservative response to the mismatch, a general

resistance to change. In the second stage there ts progressive theory change

(accommodation), retaining muclt of the original theory but integrating the

disturbance as a new variation. Finally, in the last stage, the reorganization

begun in the second stage ís completed: the new theory now accommodates the

disturbance. The ntental discontfort disappears and the new theory is

'symmetrical', that is the initial disturbance is now anticipated and not elimtnated.

These stages shade into each other and are never clearly delineated. (p. 42)

According to Redish (lgg4),students find it much easier to assimilate new ideas

because it is easier for the students to learn concepts that fit their view of how things

work. Accommodation is much harder because students must change or rethink their

existing views. Students often perceive and interpret what they learn in a v/ay that makes

sense in terms of their existing beließ. The tendency to assimilate rather than

accommodate is probably one of the reasons that students'conceptual knowledge can be
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contradictory. According to Posner et al. (T982), in order to change students' existing

conceptual understanding, the replacement must have the following characteristics:

o The replacement must be understandable.

The replacement must be plausible.

There must be strong conflict with predictions based on the subject's existing

conceptual understanding.

o The replacement concept must be seen as useful.

In this view of a mechanism for conceptual change, I intend to see if mathematics used in

physics textbooks helps generate the characteristics described above. Does mathematics

used in physics textbooks mostly promote memorization? How is mathematics useful in

describing the real world? Can it be used to show that one can overcome conflicting ideas

by using more plausible and fruitful mathematical treatment of these ideas?

Educational research literature shows that sequencing science content from

simple to complex ideas (Hamrick & Harty,l987; Ausubel, 1968;Novak, 1980;

Shavelson, 1972) results in significant gains in science achievement and positive attitudes

toward science. There appears to be general agreement among science educators that the

teaching of scientific concepts should proceed from the qualitative to the quantitative

mode, i.e. simple to complex (Arons, 1984; de Berg, 1993; Hewitt, 1994; Monk,1994;

Mazvr,1996; Stinner,1994).In the qualitative mode students make verbal statements

such as proportionality staternents, or conclusions about the results of the lab, for

example. When students explain their reasoning, draw a picture of something, describe an

observation, or discuss a demonstration or laboratory activity, they are often forced to use

concepts in their explanations or descriptions. This pedagogical approach promotes self-



54

awareness. Students cannot change their views significantly unless they are aware of

them. Even incorrect predictions can serve the purpose - to demonshate, for example, that

their model has limited applicability, and thus prepare them for further learning.

The next step in the pedagogical sequence, according to Monk (lggD)would be

using mathematical language to describe ideas, concepts and relationships betrveen them.

This stage involves the use of the grammar and language of the signing system developed

in the qualitative mode of representation of knowledge to create a new and more

powerful knowledge-making capability. In this stage, as Monk (1994) describes, when

sfudents transfer from the qualitative mode to the quantitative one, number and scale, and

the operations that go with these, can be used to express knowledge that could not be

otherwise known.

There is also support for the notion of sequencing quantitative ideas from verbal

statements to the algebraic mathematical statements (Arons, 1984;de Berg, 1993; Monk,

7994;Mazur,1996; Stimer, 1992). The use of the fonnal language of algebra allows

students to make precise predictions, Physics teachers know that students have difficulty

with the abstract algebra of physics that is used to model physical systems. Monk (1994)

explains why it is so. He says that the ability to use formal operations occurs at the end of

a long chain of epistemological justification that takes the leamer across realms of reality

that are ontologically distinct. It is not a good idea, for example, to introduce Newton's

second law of motion with the formula F : ma, or start leaming about gravity with the

formula F : Gm1m2/r2.These formulas will not make much sense to students at this time.

The students have to go through the stages of epistemological development as outlined by

Piaget to understand these laws and concepts involved. Monk (1994) particularly stresses
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the importance of maintaining a proper epistemological sequence in learning physics

concepts. He wams us that if we short circuit this sequence, in a rush to get the students

to use algebra, the whole educational enterprise is threatened. He outlines the path for the

pedagogical sequence as following:

Students may progress to talking about, writing about and reading about their

experiences wtth the phenomenon. They may then move on to thinking about

variables and measuring variables. Only lastly should they be helped into dealing

with algebraic representations and the prediction of new phenomenological

possibilities through the manipulations of the symbols of algebra. (p. 210)

De Berg (1989) suggested that factors such as sequence in terms of physics content

sequence, qualitative to quantitative, and the use of ideas of quantification in a verbal to

algebraic sequence can be used for a textbook analysis. In this study, the factor of

sequence of presentation will be used as one of the themes for the analysis of physics

textbooks' topics on universal gravitation.

Another factor for content analysis can be the use of multiple representations

generated by educators from contemporary learning theories. As Leonard, Gerace, &

Dufresne (1999) suggest, these representations could be linguistic, abstract, verbal,

symbolic, experiential, pictorial, physical, or graphical. They go on to say that deep

understanding of concepts requires many representations. Hestenes (1992) believes that a

single representation is usually insufficient to express the full content and structure of a

scientific model. One of the reasons that students experience difficulty in understanding

physics concepts is their belief that one representation, mainly algebraic, is sufficient.

Consequently, students often don't see interrelationship of these representations, which
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means that their abstract physics ideas are not well connected to their real world

experiences. Using different representations for the same concepts and having students

hanslate between representations (for example from the algebraic to verbal

representations) help students connect ideas and to relate them to personal experience.

Graphs are especially helpful because they are abstract, like equations, but can be

understood qualitatively, like diagrams and pictures. Though mathematics is generally

perceived in the symbolic mode, there could be mathematical representations in verbal,

pictorial, graphical modes in addition to the commonly known symbolic format. kr this

view, it would be useful to perform analysis of physics textbooks' contexts to see in what

modes mathematics is presented there and how these representations aid conceptual

understanding of the topic universal gravitation.

In the process of using multiple representations of concepts and ideas, another

factor which is helpful in making connections between different modes of representations

is making analogies in the exploration of extended contexts. Moreover, according to

Gentner et al. (1997), "analogy is an important mechanism of change of knowledge" (p.

4). Using researchers' studies of transfer of learning, Gentner et al. (1997 ) concluded that

"analogies to prior knowledge can foster insight into new material" (p. 4) and, in the

process of learning new material, promote conceptual change. They show that great

scientists used analogies very often. For example, Kepler was one of them. Johannes

Kepler drew an analogy between planetary motion and clockwork. He is also known for

his attempt to relate the speeds of the planets to the musical intervals. Kepler then tried to

fit the five regular solids into their orbits. Though these likenesses did not work, they can
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be seen as the stepping stones of a creative mind (Harrison and Treagust, 1994).

V/olfgang Pauli (1955) gave the following description of Kepler's analogies:

As living bodies ltave hair, so does the earth ltave grass and trees, the cicadas

being its dandruff; as ltving creatures secrete urine in a bladder, so do the

mountains make springs; sulphur and volcanic products correspond to excrement,

metals and rainwater to blood and sweat; the sea water is the earth's

nourishment. (p.Il6)

As for mathematical analogies (which are the interest of the present study),

according to Gentner et al. (1997), Kepler believed both that analogy was heuristic, not

deductive, and that to be worthwhile analogies ought to preserve interrelationships and

structure:

I too play with symbols...but I play in such a way that I do not forget that I am

playing. For nothing is proved by symbols...unless by sure reasons it can be

demonstrated that they are not mere syrubolic but are descripttons of the ways in

which the two things are connected and of the causes of this connection (As cited

in Gentner ef. al.,1997, p. 30)

Gentner et al. (1997) establish that "the open and inclusive character of Kepler's

general writing practice offers...encouragement for the belief that the extended analogies

used in his text were actually used in his thought processes" (p.27). They go on to say

that "the sheer fecundity of his analogizing suggests that analogy was a natural mode of

thought for him" (p.28)

Advocating the use of analogies in instruction, Leonard, Gerace, & Dufresne

(1999) warn against superficial use of them. They notice that when simple cases of
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concepts are introduced, students tend to focus on surface features, and as a result, often

generalize incorrectly. For example, when students learn, in an explorative activity about

friction, that the force of friction can be found as a product of weight and the coefficient

of static or sliding friction (whichever case applies), which is true in the case of

horizontal surfaces, they tend to generuTize this idea erroneously and extend it to

situations with inclined planes. Investigating a broad set of problem situations helps

students to ref,rne and to abstract concepts. In this way inappropriate or oversimplified

generalizations can be avoided.

When students explore arange of contexts, they are likely to use relevant features

and ignore irrelevant ones. Comparing and contrasting of concepts where students

explicitly look for distinctions and commonalities between situations also help students in

the intenelationship of knowledge. Mathematical language could be used in establishing

some of these analogies because mathematics is used to represent relationships between

variables. These variables can be different in different contexts but they still could be

united in certain mathematical relationships (direct proportion, inverse proportion, power

relationship). In addition, the symbolic form of some mathematical relationship is very

similar (for exarnple, inverse square law for gravitational force and electrical force). In

these terms it would be beneficial to explore the role of mathematics in physics textbooks

to see if mathematics in physics textbooks is used as an analogical tool, and if it is, in

what capacity.

The main reason that mathematical aspects of physics deserve attention in physics

textbooks is the fact that many fundamental theories, laws, principles, and concepts are

expressed in mathematical language. These theories, laws, principles, and concepts have
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a history of development, and represent our knowledge of physics. Knowledge of science

and its historical development are part of educating toward scientific literacy.

Scientific Literacy

There are many definitions of scientific literacy. According to Matthews (1994),

these definitions vary from a narrow definition where scientific literacy is the ability to

recognize formulae and give correct definitions, to a more expansive or liberal definition

that includes understanding of concepts and some degree of understanding about the

nature of science and its historical and social dimensions. He goes on to say: "There is no

one correct definition of science literacy" (p. 31) and suggests the following qualities a

scientifically literate person would have:

I) Understandfundamental concepts, laws, principles andfacts in the basic

sciences.

2) Appreciate the variety of scientific methodologies, attitudes, and dispositions,

and appropriately utilize them.

3) Connect scientific theory to everyday life and recognize chemical, physical

and biological processes in the world around thetn.

4) Recognize the manifold ways that science and its related technology interact

with economics, culture and politics of society.

4) Understand parts of the history of science, and the ways in which it has

shaped, and in turn ltas been shaped by, cultural, ntoral and religious forces.

(pp. 32-33)

One of the influential curriculum documents that advocate the achievement of

scientific literacy is Science for All Americans (1989). This document was published as a
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result of an extensive national study sponsored by American Association for the

Advancement of Science (AAAS). The report Sciencefor All Americans (1989) outlines

the following characteristics of a scientifically literate person:

The scientifically literate person is one who is aware that science, mathematics,

and technology are interdependent ltuman enterprises with strengths and

limitations; understands key concepts and principles of science; is familiar with

tlte natural world and recognízes both its diversity and unity; and uses scientific

løtowledge and scientific ways of thinkingfor tndividual and social purposes.

(p 4)

The document above calls for attention to the connections among science,

mathematics, the history and philosophy of science. It makes sense then to analyze the

role of mathematics in physics education through the lens of scientific literacy. Through

examples of history and the philosophy of science one can show how mathematics was

used to develop understanding of physical reality, how it helped scientists either to

change or to support their conceptions about the physical world. Since the f,rrst two

questions of the study need inquiry into the history of science, and unavoidably the

inquiry processes of scientific investigations, this study will be conducted in the frame of

conventionally agreed upon requirements of scientific literacy. Because examples from

history of science reflect the nature and the methods of science, and very often their

mathematical representation, I have chosen to find out to what extent textbooks use

history of science. As one of the factors for textbook analysis in this study, I will try to

find out if the history of the universal law of gravitation is presented.
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In summary, current learning theory and the requirements of scientif,rc literacy

will be the theoretical frameworks for the textbook analysis part of this study.

My central argument in this study is: ln order to insure understanding when

students leam from textbooks, it is crucial that physics textbooks maintain a balance

befween the qualitative and the quantitative aspects of physics. My intent to look for the

support of this argument was the first step in my research and it was captured by my first

research question

llhat Ìs the rationalefor the balance of qualitative and quantitative aspects of

physics in physics textbooks?

My expectation is that the fîndings for the outlined sub-questions listed below -

(a) How do contemporary learning theories and the requirements of scientific

literacy inform us about the appropriate ways of presenting the qualitative and

the quantitative aspects of physics?

and

þ) Wthat pedagogical considerations arefound in educational research literature

that support the idea of balancing the qualitative and the quantítative aspects of

plrysics?

- would provide support for the importance of balancing the quantitative and the

qualitative aspects of physics in physics textbooks. To obtain these answers, an

examination of the contemporary learning theories and the requirements of scientific

literacy were carried out earlier in this chapter, so that now I am ready to report the

findings.
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Answer to Research Question 1. Rationale for Balancing the Qualitative and the

Quantitative Aspects of Physics in Physics Textbool<s

The following are the reasons why I have argued that physics textbooks should

present mathematical concepts in physics in such away that the qualitative and the

quantitative aspects of physics are balanced:

According to epistemological theories of leaming described earlier in this chapter,

the evolution of students' thinking goes through several cyclic stages. This frnding of

leaming theories means that if the material is presented in the finished form (as a

mathematical equation), the epistemological chain of the development of students'

thinking would be broken. Consequently, it would be unlikely that the students

understand the meaning of concepts involved. Therefore, I would argue that the

qualitative expressions (the meaning of which is gained from experience, and then

developed verbally) of mathematical concepts in physics cannot be ignored and have to

be balanced with the quantitative expressions (symbolic equations, formulas) if the goal

is to achieve understanding ofphysics ideas and concepts.

Cognitive theories of learning inform us that the mind organizes repeated similar

experiences in schemata that have a flexible structure, with many channels. These

channels comprise different kinds of knowledge (analogical, propositional, and

distributional, and are stored in long term memory (Waterworth, 2000). Analogical

representations are described as picture-like images, whereas propositional

representations are defined as abstract-like statements that make presuppositions. Finally,

distributed representation is understood as a network where knowledge is in the

connections between nodes of a schema. This information about organization of mind for



63

representation of different kinds of ùowledge begs the legitimate question: How do

these types of knowledge get invoked in students' mind if the presentation of material in

physics utilizes only one of the approaches - qualitative or quantitative? The reasonable

answer, in my view, would be to present physics concepts to students in a balanced way

when different kinds of knowledge in the operative system of the brain can be connected

for students to be able to leam.

According to science educators, these knowledge types can be represented in

different levels (macroscopic, sl.rnbolic, and microscopic) and in different modes (verbal,

numerical, pictorial, graphical, as well as symbolic). Science educators have found that

many students fail to make strong connections between the symbolic signs used and

physical reality. One of the reasons may be that concepts in science often have a limited

representation. The understanding of physics ideas and concepts, in my opinion, is more

likely to happen if the mathematical concepts in physics are presented in a balanced way

where the qualitative and the quantitative aspects of physics complement each other.

The science educators' goal is to make students understand concepts of science.

These concepts represent mental abstractions that consist of "regularities" and

"structures". For example, the synbolic statements such as F: ma, W: ffig, represent

regularities. on the other hand, gravitational fields, electromagnetic fields, the

microscopic world of atoms, represent structures. Structure, according to Hestenes

(1992), is one of the most significant general properties of entities in the concrete world,

However, structure is an abstraction that does not exist apart from some object. A

structure gives any system a certain integrity or wholeness. Hestenes (1992) believes that

mathematics supplies conceptual tools and materials for creating models of great clanly,
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coherence and flexibility. He goes on to say that modeling makes mathematics

meaningful. He acknowledges that mathematical symbols have been created to express

concepts of order and structure, and mathematics has been often described as "the science

of pattems". Thus, concepts in science have to be diversely connected. In order to

connect them, I believe, science educators should strive to present regularities and

structures in a balanced way where the qualitative and the quantitative aspects of these

mental abstractions are properly balanced. In this process of balancing, students would

develop better conceptual models.

Studies of experts' and novices' problem solving strategies demonstrated that the

reason why experts do better in problem solving than novices is that they can balance

properly the qualitative and the quantitative representations of physics concepts by

using a series of representations, such as verbal statements, illustrations of physical

situations, conceptual representations (models like free-body diagrams), and a set of

equations. The sequence experts use in their approach to problem solving also helps

them to balance the qualitative and the quantitative aspects of physics - they go from

qualitative analysis of the situation (redescription of the problem) to diagramming,

and then to thinking about the main principles involved, and finally, to symbolic

quantitative equations. Thus, the other reason for the rationale for balancing of the

qualitative and the quantitative aspects of physics is to be able to use a proper

pedagogical sequence in solving problems and understanding physics ideas during

other physics activities.

Educators agree that the leaming cycle (exploration, development and application

of concepts) should not be rushed if we want students to construct meanings for the
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concepts they leam. Therefore, the balancing of the qualitative and quantitative aspects of

physics in the process of meaningful learning seems to be an effective strategy (given the

right sequence ofpresentation ofconcepts) to achieve a better understanding.

ln the widely used view of a conceptual change model (like Posner's model),

balancing the qualitative and the quantitative aspects of physics is also justif,red, since

students would see the replacement of their earlier ideas as plausible and useful when

they finally understand the finished product (symbolic equations of physics laws, for

example). In this case, when the balancing act is achieved, mathematics will be utilized

by students for the purpose of understanding, and not just memorization.

In the view of the requirements of scientific literacy presented earlier in this

chapter, a scientifically literate person understands fundamental concepts, lalvs,

principles and facts in the basic sciences, as well as appreciates the variety of scientific

methodologies and appropriately utilizes them. Mathematics in all its modes of

representation can be considered as a tool to describe physics ideas, and not necessarily

to understand physics. Since the goal of the scientihcally literate person is to understand,

not only to describe concepts, laws, principles, etc. (which are often expressed in the

mathematical language), then it is natural to conclude that mathematical representation of

concepts alone does not show evidence for conceptual understanding. A balanced way

(qualitative and quantitative) of expressing knowledge of physics, in my view, would be

a better indicator that a student understands physics ideas and concepts, as well as

appreciates the variety of scientific methodologies, and appropriately utilizes them.

The document advocating the achievement of scientific literacy, Sciencefor All

Americans (1989), calls for attention to the connection among science, mathematics, the
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history and philosophy of science. This document argues that examples from the history

and philosophy of science can show how mathematics was used to describe and then

develop understanding of physical reality, and how mathematics helped scientists either

to change or support their conceptions about the physical world. From the history of

science examples, students can see how scientists themselves struggled to balance their

mathematical findings with their qualitative conceptions of the phenomena they studied.

For the students, it is some comfort to rcalize that great scientists also struggled to strike

the balance with their experiences or intuitive thinking and mathematical equations

obtained at the end of the discoveryjoumey.

One of the objectives of the document Scienceþr All Americans is for students to

have understanding of the nature and the methods of science. Mathematical

representation has its place in the description of laws, principles and methods of science.

Students have to learn to distinguish between laws, theories, observations, inferences, and

speculations. The appropriate scientific language would not be possible for students to

develop if they use only mathematical representations, confusing symbolic statements

with qualitative inferences.

Conceptual Framework

In this part of the research I am going to explain in what aspects the role of

mathematics in physics will be explored and analyzed in order to make judgments about

the balancing of the qualitative and the quantitative aspects of physics in physics

textbooks. According to Wang (1998), there is no single perfect approach to framework

construction. "Construction of a conceptual framework is closely tied to the nature of the

study, and grounded with the purposes of the data needs" (p. 45). The nature of this study
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is explorative. The role of mathematics in physics textbooks will be explored to establish

how the presentation of material in physics textbooks insures the balance between the

qualitative and the quantitative aspects of physics and what in tum facilitates

understanding of ideas and concepts of physics presented in physics textbooks. V/ang

(1998) notes that in the past science textbooks studies conducted from 1989 to 1996,

basically two approaches were used to establish conceptual frameworks. The first

approach was that a framework would be generated based on theoretical support prior to

content analysis. The second approach was that the conceptual framework was explored,

constructed, and refined during process of content analysis. Since there seems to be no

published study about the role of mathematics in balancing of the qualitative and the

quantitative aspects of physics, where a conceptual framework has been already

developed, a conceptual framework for this study will be drawn from the rationale for

balancing of the qualitative and the quantitative aspects of physics that is informed by

learning theories and the applications of their findings by science educators, as well as

the requirements of scientific literacy. In addition, this informed theoretical framework

will be refined after additional themes have been generated from the historical inquiry

about the relationship of mathernatics in physics and the history of gravity that will be

reported in Chapters 4 and 5.

The following conceptual framework was developed in the light of learning theories,

science education researchers' findings, and the requirements of scientific literacy. It

appears to have three domains: epistemological, cognitive, and contextual (history and

philosophy of science, HPS). Every domain has its sub-domains. These sub-domains will

be used to categonze the mathematical component found in physics textbooks. This
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conceptual framework will guide the design of physics textbooks analysis, and is

summarized as in the following table:

Table 3-1

The Role of Mathematics ín Balancing of the Qualitative and the Quantitative Aspects of

Physics Conceptual Framework

1. Epistemological Concepts in physics textbooks should be presented in different
Domain modes:

o Numerical
o Verbal
o Graphical
o Pictorial
o Symbolic
and in appropriate pedagogical sequence

. Simple -+Complexr Qualitative +Quantitative
o Verbal ---+Algebraic

to enrich the presentation of physics knowledge (fundamental
concepts, laws, principles and facts); facilitate conceptual
understanding; appreciate the variety of scientific methodologies
and appropriately utilize them; develop connections befween
sSrmbols and physical reality.

2. cognitive Textbooks could help develop connections of physics
Domain concepts to facilitate conceptual understanding, effective problem

solving andrealization of the unity of different variables in
different contexts in certain mathematical relationships (direct
proportion, inverse proportion, power relationship) when the
presentation of material involves:

o Moving between modes of representation
o Stating purpose of using a particular mode
. Comparing and contrasting concepts by using analogies
. Constructing conceptual models
. Critical thinking

3. Contextual
(HPS)
Domain

Textbooks should provide real historical examples of using
mathematics by scientists by presenting concepts in physics
in historical context to get exposure to the nature and
methods of science in order to

o Understand conceptual models of scientists. These models
would serve as examples for creating students, own
conceptual models
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o See plausibility and limitations of different historical
models and students' own models to facilitate the process
ofconceptual change

. Appreciate the variety of scientific methodologies

Metho dolo gical Framew ork and Res earch Procedures

Qualitative researcher Creswell (1998) suggests that in the section of

methodology, topics should include "the methods and procedures in preparing to conduct

the study, in collectin ,'Ouru,and in organizing, analyzing,and synthesizing the data"

G,. t76).

Historical Inquiry

Given the nature of the research questions two and three, Historical Inquiry was

chosen as the method of research. To explore the historical relationship between

mathematics and physics (research question two), I will explore views on the role

mathematics played in physics in a historical perspective. Only a few historians (French,

1980; Jenkins,1979; Gingras, 200I; Garber, 1998) have made comments on the topic of

Question Two. One reason must be that not many historians were scientists or

mathematicians themselves who could see the importance of the given topic. The other

reason might be that even some historians of science or mathematics (for example, Kline,

1959) viewed physics simply as mathematics that is applied to physics problems.

Examining views of scientists, science education researchers, and philosophers should

shed light on this question. Moreover, some answers can probably be found in the history

of the development of mathematics and science and how these are related. Views of the

philosophers of science (T. S. Kuhn, K. Popper), the historians of science working on the

history of the development of mathematics and science (M. Kline, M. Fisch, B.
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Cohen,and M. Hodges), as well as science educators (K. C. de Berg, M. Monk, Tzanakis,

1999, and,R. S. Jones) wilt be explored to get some insight. The historical connection of

mathematics and physics will be reported in Chapter 4.

To explore the role that mathematics played in the history of gravity the inquiry

into the history of gravity and examination of the stages of Newton's thinking when he

describes universal gravitation will be carried out. I will look at available historical

accounts (J. D. Bernal, H. Brougham and E. J. Routh, M, Clagett, B. Cohen, A. R. Hall, J.

Herival, O. Pedersen, and W. M. Stevens) about Newton's background knowledge that

helped him in the development of the law of universal gravitation, and about other

people's contributions (if there are any) in formulating his famous law. I will examine the

mathematics Newton invented for the formulation of the law of universal gravitation

outlined in Newton's Principia. The findings will be reported later in Chapter 5. The

findings of the historical inquiry for questions two -

Itrlhat is the historical relationship between mathematics and physics?

and three -

llhat role did mathematics ptlay in )he history of gravity?

will also be used to determine additional themes (sub-domains) for the analytic rubric of

the instrument for textbook analysis.

To determine how the rationale for balancing the qualitative and the

quantitative aspects of physics, found from Question I and reported earlier in this

chapter, is reflected in the contemporary high school and introductory level college

physics textbooks in the presentation of the topic Universal Gravitation (Research

Question 4) the method of Qualitative Content Analysis will be applied. To perform this
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analysis, an instrument has to be developed, and then applied to physics textbooks for the

analysis. The findings from research questions one and two will inform the analytic

rubric of this instrument for the analysis of the mathematical component of physics

presented in high school and introductory level college physics textbooks in the topic

universal gravitation (sub-questi on (a) - What findings from research questions one and

two can be used to develop the instrumentfor the analysis of the mathematical

component of physics presented in high school and introductory level college physics

textboolrs in the topic universal gravitation?)

Qualitative Content Analys is

The methodology of the qualitative content analysis to be discussed will be used for

the research of textual material to understand what role mathematics plays in physics

textbooks.

I will examine five recent high school physics textbooks recommended by the

Manitoba Department of Education, Citizenship and Youth, and also used in other

provinces of Canada. (Zitzewitz et al., Glencoe Physics: Principles and Problems, 2002;

Hewitt, P., Conceptual Physics; The High School Physics Program,2002;Nowikow, I.,

Physics: Concepts and Connections,2002; Edwards, L., Physics,2003; and Giancoli, D.,

Physics: Principles with Applications,2005).In addition, I will examine three college

physics textbooks to see if there is a difference in treatment of the mathematical

component of physics (Jones, E. R. and Childers, R. L., Conternporary College Physics,

1993; serway, R. A. and Faughn, J. s, college Physics, 1999; Trefil, J. s. and Hazen, R.

M., Physics matters: an introduction to conceptual physics,2004). Calculus-based

college physics textbooks will not be included in the examination due to extensive use of
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calculus in the presentation of material. It would be clearly invalid to compare the

mathematical component in high school physics textbooks and that of the calculus -

based college physics textbooks, even of the introductory level.

Table 3-2

S amp I e Textb o o k Ov ertt i ew

Title of Book Author(s) Year Publisher
Glencoe Physics:
Principles and

Problems

Conceptual
Physics: the High
School Physics
Program

Physícs: Concepts
And Connections

Physics

Physics: Principles
With Applications

Contemporary
College Physícs

College Physics

Zitzewitz &.

Davids

Hewitt

Nowicow &
Heimbecker

Edwards

Giancoli

Jones &
Childers

Serway &
Faughn

Trefil &
Hazen

2002

2002

2002

2003

2005,
6th ed.

1993,
2"d ed.

1999,
5th ed.

2004

Glencoe/
McGraw-Hill

Prentice-Hall

Irwin
Publishing Ltd

McGraw-Hill
Ryerson

Pearson/
Prentice Hall

Addison-
Wesley

Harcourt
Brace &
Company

John Wiley &
Sons, lnc.

Physics Matters:
an Introduction to
Conceptual
Physics

The selected textbooks will be used to answer the remaining three sub-questions

of Research Question 4:
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þ) - Wrhat'are the modes of the mathematical presentation of conceptsfound in

high school and introductory level college physics textbool<s tn the topic on universal

gravitation?,

(c) - llrhøt is the pedagogical sequence of presentation of the mathematical

componentfound in high school and introductory level college physics textbooks in the

topic on universal gravitation?,

and

(d) - How are the ideas of contemporary learning theories and the requtrements

of scientific literacy reflected in the presentation of the mathematical component of

physics in physics textbool<s?

The method of the qualitative content analysis will be used for the examination of

the chosen textbooks. A qualitative analysis of written materials can provide valuable

insights to science educators (Wandersee, Mintzes, & Amaudin, 1989). According to

Krippendorf (1980) and Wandersee et al. (1989), content analysis is the evaluation of a

body of communicated material (textbooks) to determine meaning, in the case of this

research, the meaning of the mathematical treatment of physics concepts, They describe

an accepted technique of content analysis in which the researcher applies a classification

sclreme to the material analyzed with respect to the content of interest (in this study - the

balancing of the quantitative and the qualitative aspects of physics in physics textbooks,

and consequently, the role of mathematics in physics education). The content analysis in

this study will involve a search for mathematical terms and concepts to extract significant

statements. The meanings formulated from significant statements will then be evaluated
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to understand what themes they fit in the developed analytic rubric of the instrument for

the analysis of the mathematical component of physics textbooks

For the instrument construction, themes referring to scientific literacy will be

taken from the methodology of content analysis of science textbooks suggested by

Chiappetta, Sethna, and Fillman (1991). The authors of this methodology quantitatively

analyzed alarge variety of science textbooks, and, subsequently, came out with a training

manual. In this manual four major themes (categories) of scienti{rc literacy (the

lcnowledge of science, the investigative nature of science, science as a way of thinking,

and interaction of science, technology, and society) and their descriptors were outlined

for the content analysis, which had a high rate of recognition. Only certain categories will

be selected and modified for this study according to the research questions of this study.

Since the purpose of the study is to explore how physics textbooks reflect the role of

mathematics in physics in the process of balancing of the quantitative and the qualitative

aspects of physics, I am interested in the question of how mathematics is used for

constructing meanings, and not in calculating frequencies as the quantitative content

analysis methodology requires. Only themes helpful for the qualitative content analysis

and those related to the role of mathematics in physics education will be used in this

study. Other themes will be taken from the methodology offered by de Berg (1989) in his

textbook study of the emergence of quantification in the pressure-volume relationship for

gases.

In his study, de Berg described three approaches to learning, namely static,

dynamic, and emergent press approaches. The static approach to learning, according to de

Berg (1989), is "the approach in which mathematical formulae appear and are used
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apparently without any explanation at all. They appear as the "magician's wand" of

science in order to get the right answers" (p. 117). The textbooks that use such an

approach state mathematical relationships "without recourse to background information,

experimental details, how and why the relationship is derived or the usefulness of the

relationship" (de Berg, 1992).If a textbook uses mainly a static approach to introduce

mathematical formulations, it would be reasonable to conclude that mathematics is used

in such textbooks mostly for the memorization of formuras onry.

The dynamic approach to introducing mathematical formulations and graphs, as

de Berg (i989) defines it, is the approach which "places them in context with an

explanatory base for their emergence and use" þ. 117). The emergence profile of

mathematical concepts in this case, according to de Berg (1992), "contains background

information, explicit experimental details, information as to how and why the

mathematical relationship is determined, and a comment on the accuracy of the

relationship". In this case, the replacement of existing students' concepts will be

understandable and make sense. The dynamic approach is likely to help students use a

mathematical component presented in the textbooks in changing their conceptual

understanding. There are degrees of explanation in a dynamic approach, and sometimes

some meaningful discussion sur¡ounds the emergence of a quantified form; in other

cases, there may be justified necessity for the emergence of a quantified form.

For the latter cases, de Berg chose to use the term emergent pre.rs as an indicator

of an expressed need for the emergence of the quantification. The author notes: "The term

'emergent press' refers to intrinsic or extrinsic forces that lead to the expression of a

quantified form" (pp. 117-11S). If there were such intrinsic or extrinsic forces leading to
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quantification of ideas, then the replacement of concepts (in the case of quantification,

expressing concepts and relationship between them in mathematical language) can be

seen to be useful by students. These new conceptions could be attributed partialty to the

strong cognitive conflict (Posner's conceptual change model) developed in the process of

quantifying ideas and concepts. Thus, the other factors related to learning theory, static-

dynamic description for an emergence prof.le of a quantified form and an associated

emergent press will also be used in the textbook analysis for this study.

De Berg's methodology is also useful for answering research question 4 (c) of this

study (about the pedagogical sequence of presentation of the mathematical component of

physics) since his methodology helps to examine the sequence and purpose for

introducing mathematical concepts in physics textbooks to make a judgement about the

pedagogical appropriateness of the mathematical component presentation sequence.

A similar conceptual model for learning science was offered by Stinner (1992),

namely the LEP conceptual development model. Stinner says: "In planning successful

science teaching we would need to pay attention to all three planes of activity: the logical,

the evidential, and the psychological" (p. 6). This conceptual model is much broader than

de Berg's model because the LEP model is applicable to all participants in leaming and

teaching science, students, teachers, and the interpretation of textbooks. Since the subject

of this study is analysis of physics textbooks for the treatment of the mathematical

component, a more specific methodology, oriented rnainly to the textbook analysis

developed by de Berg would be more suitable.
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Procedures for collectíng, organizing, Analyzing, and synthesizing Data

. After identifying theoretical and methodological frameworks that guide the design

of this study it is appropriate to discuss how data will be collected, organized, analyzed.,

and then synthesized to help make conclusions on the questions of the study.

One of the ways to represent data in a qualitative research is a hierarchical tree

diagram (Creswell, 1998). According to Creswell (1998), " a hierarchical tree diagram...

shows different levels of abstraction, with the boxes in the top of the tree representing the

most abstract information and those at the bottom representing the least abstract themes,'

(p. 145). The generated visual picture would help to conduct the analysis, identify

categories, and show how information from the text is grouped. This visual picture also

displays the interconnectedness of the categories shown.

The following illustration on the next page shows inductive analysis that begins

with sources of information about the role of mathematics in physics. This analysis will

later (after examination of identified sources) be broadened to several specific themes to

develop the instrument for content analysis of physics textbooks and on to the most

general themes represented by the two aspects of the mathematical component of physics

- quantitative and qualitative.

In the process of content analysis of the physics textbooks identified,

mathematical terms and concepts will be classified, tabulated and evaluated to ascertain

meaning for interpreting the mathematical component presented in physics textbooks.

The presence or absence of some concepts would also provide valuable information for

making inferences. Therefore, a presence matrix will be constructed for data analysis.

Pedagogical sequence of presentation of the mathematical component makes a difference



78

for understanding of physics concepts, as has been shown earlier in this chapter, in the

section Learning Theories. Hence, sequence maps will be constructed to help identify the

appropriate pedagogical sequence of presenting the mathematical aspect of physics in

textbooks.

The instrument to be developed for the content analysis of physics textbooks will

help to establish the meaning of mathematics used in physics textbooks. This would in

tum be a determining factor in establishing the extent of balancing between the

quantitative and the qualitative approaches. I want to find.out if the presentation of the

mathematical component in physics textbooks insures the balance between the qualitative

and the quantitative aspects of physics, and consequently provides conditions for

meaningful leaming.
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Figure 3-1. Layers of Analysis
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mmary

My personal stand on the issue of the study - presentation of the mathematical

component in physics textbooks to insure the balance between the qualitative and the

quantitative aspects of physics - is that in the presentation of ideas in physics, a

quantitative and a qualitative approaches must be used for successful leaming.

Current learning theory and the requirements of scientific literacy will be the

theoretical frameworks for the textbook analysis part of this study.

The following are the reasons why I have argued that physics textbooks should

present mathematical concepts in physics in such a way that the qualitative and the

quantitative aspects of physics are balanced:

According to epistemological theories of leaming, the evolution of students'

thinking goes through several cyclic stages. Therefore, if the material is presented in the

finished form (as a mathematical equation), the epistemological chain of the development

of students' thinking is broken. Consequently, it would be unlikely that the students

understand the meaning of the concepts involved.

Cognitive theories of learning inform us that the mind organizes repeated similar

experiences in schemata that have a flexible structure, with many channels. These

channels comprise different kinds of knowledge. To invoke these types of knowledge in

students' mind, the presentation of material in physics should utilize both of the

approaches - qualitative and quantitative - so that different kinds of knowledge in the

operative system of the brain could be connected for students to enable learning.

According to science educators, these knowledge types can be represented in

different levels (macroscopic, syrnbolic, and microscopic) and in different modes (verbal,
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numerical, pictorial, graphical, as well as syrnbolic). Science educators have found that

many students fail to make strong connections between the symbolic signs used and

physical reality. One of the reasons may be that concepts in science often have a limited

representation.

The science educators'goal is to make students understand concepts of science.

These concepts represent mental abstractions that consist of "regularities" and

"structures." Mathematical symbols have been created to express concepts of order and

structure, and mathematics has been often described as "the science of patterns." Thus,

concepts in science have to be diversely connected. In order to connect them, I believe,

science educators should strive to present regularities and structures in a balanced way

where the qualitative and the quantitative aspects of these mental abstractions are

properly balanced. In this process of balancing, students would develop better conceptual

models.

Studies of experts' and novices' problem solving strategies demonstrated that the

use of a proper pedagogical sequence in problem solving (going from qualitative

analysis of the situation to diagramming, and then to thinking about the main

principles involved, and finally, to symbolic quantitative equations) helps them to

balance the qualitative and the quantitative aspects of physics.

Educators agree that the learning cycle (exploration, development and application

of concepts) should not be rushed if we want students to construct meanings for the

concepts they learn. Therefore, the balancing of the qualitative and quantitative

aspects of physics in the process of meaningful learning seems to be an effective
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strategy (given the right sequence of presentation of concepts) to achieve better

understanding.

In the widely used view of a conceptual change model (like Posner's model),

balancing the qualitative and the quantitative aspects of physics is also justified, since

students would see the replacement of their earlier ideas as plausible and useful when

they finally understand the finished product (symbolic equations of physics laws, for

example). kr this case, when the balancing act is achieved, mathematics will be utilized

by students for the purpose of understanding, and not just memorization.

According to the requirements of scientific literacy, a scientifically literate person

understands fundamental concepts, laws, principles and facts in the basic sciences, as

well as appreciates the variety of scientific methodologies and appropriately utilizes

them. Mathematics in all its modes of representation can be considered as a tool to

describe physics ideas, and not necessarily to understand physics. Since the goal ofa

scientifically literate person is to understand, not only to describe concepts, laws,

principles, etc. (which are often expressed in the mathematical language), then it is

natural to conclude that mathematical representation of concepts alone does not show

evidence for conceptual understanding. A balanced way (qualitative and quantitative) of

expressing knowledge of physics, in my view, would be a better indicator that a student

understands physics ideas and concepts, as well as appreciates the variety of scientific

methodo lo gies and appropriately utilizes them.

The document advocating the achievement of scientific literacy, Sciencefor All

Americans (1989), calls for attention to the connection among science, mathematics, and

the history and philosophy of science. From history of science examples, students can see
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how scientists themselves struggled to balance their mathematical findings with their

qualitative conceptions of the phenomena they studied. Students are provided with some

comfort when they realize that great scientists also struggled to strike the balance with

their experiences or intuitive thinking and mathematical equations obtained at the end of

the discovery joumey.

One of the objectives of the document Sciencefor All Americans is for students to

have understanding of the nature and the methods of science. Mathematical

representation has its place in the description of laws, principles and methods of science.

Sfudents have to leam to distinguish between laws, theories, observations, inferences, and

speculations. The use of appropriate scientific language would not be possible for

students to develop if they use only mathematical representations, confusing symbolic

statements with qualitative inferences.

The conceptual framework for this study was developed in the light of leaming

theories, science education researchers' findings, and the requirements of scientific

literacy. It appears to have three domains: epistemological, cognitive, and contextual.

Every domain has its sub-domains. These sub-domains will be used to categorize the

mathematical component found in physics textbooks. This conceptual framework will

guide the design of physics textbooks analysis. In addition, this informed conceptual

framework will be refined after additional themes have been generated from the historical

inquiry on the relationship of mathematics in physics and the history of gravity that will

be reported in Chapters 4 and 5.

Historical Inquirywas chosen as the method of research. To explore the historical

relationship between mathematics and physics, I will explore views on the role
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mathematics played in physics from a historical perspective. The historical connection of

mathematics and physics will be reported in Chapter 4.

To explore the role that mathematics played in the history of gravity the inquiry

into the history of gravity and examination of the stages of Newton's thinking when he

describes universal gravitation will be carried out.

The methodology of the qualitative content analysis will be used for the research

of textual material to understand what role mathematics plays in physics textbooks.

I will examine five recent high school physics textbooks recommended by the

Manitoba Department of Education, Citizenship and Youth, and also used in other

provinces of Canada.

For instrument construction, themes referring to scientific literacy will be taken

from the methodology of content analysis of science textbooks suggested by Chiappetta,

Sethna, and Fillman (1991). Only certain categories will be selected and modified for this

study according to the research questions of this study. Only themes helpful for the

qualitative content analysis and those related to the role of mathematics in physics

education will be used in this study. Other themes will be taken from the methodology

offered by de Berg (1989) in his textbook study on the emergence of quantification in the

pressure-volume relationship of gases.

The research procedures in this study will coÍtmence with an inductive analysis

that begins with sources of information about the role of mathematics in physics. This

analysis will later (after examination of identified sources) be broadened to several

specific themes to develop the instrument for content analysis of physics textbooks.
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In the process of content analysis of the physics textbooks, mathematical terms

and concepts will be classified, tabulated and evaluated to ascertain meaning for

interpreting the mathematical component presented in physics textbooks. The presence or

absence of some concepts will also provide valuable information for making inferences.

Therefore, a presence matrix will be constructed for data analysis. Sequence maps will be

constructed to help identify the appropriate pedagogical sequence of presenting the

mathematical aspect of physics in textbooks.

The instrument to be developed for the content analysis of physics textbooks will

help to establish the meaning of mathematics in physics textbooks. This would in turn be

a determining factor in establishing the extent of balance between the quantitative and the

qualitative approaches.

The next chapter (Chapter 4) addresses the question about the historical

relationship between mathematics and physics. The close corurection between

mathematics and physics and the predictive power of mathematics will be described and

supported by examples from the history and philosophy of science. The quantitative and

the qualitative aspects of physics and mathematics will be discussed, and the value of

each will be shown. Finally, it will be revealed what educators have leamed about the

relationship between mathematics and physics from history and philosophy of science

examples.
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Chapter 4: Relationship between Mathematics and physics

Overview

Chapter 4 addresses Research Question 2 -Whatis the historical relationship

between mathematics and physics? Four sections comprise this chapter. The first section

of this historical inqury starts with a description of the close connection between

mathematics and physics going as far back as the 3'd century, the time of Euclid and

Archimedes. Historical examples from medieval physics show that the connection

between mathematics and physics sets the conditions for later development of theoretical

physics. The Mean Speed Theorem, Bradwardine's Function, and Buridan's theory of

impetus, concspts representing exercises of thought, are examples from the second

quarter of the fourteenth century of the existence of a critical connection between

mathematics and physics. The discussion continues about the significance of

Menaechmus' discovery of conic sections \n375-325 B.C.E, including application of his

discovery 1800 years later to the real world when Kepler used conic sections in his laws

of planetary motion. Later, Newton used the properties of conic sections and Kepler's

laws of planetary motion to discover the law of universal gravitation. The relationship

between mathematics and physics was emphasized when Galileo established his

conception of scientific method wherein mathematics played a crucial role. The historical

inquiry in this chapter reveals how with the invention of calculus by Leibniz and Newton

in the seventeenth century, mathematics became the new language of physics, and

consequently physics was transformed from a qualitative to a quantitative subject. The

first section of Chapter 4 concludes with a discussion about the separation of natural

sciences into two parts at the end of the eighteenth century: mechanics (quantitative) and
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experimental science, or physics (qualitative). The birth of theoretical physics in the

middle of the nineteenth century is also highlighted.

The second section of this chapter concentrates on the predictive power of

mathematics. Using history of science examples, it is shown how mathematical reasoning

enables scientists to predict patterns of motion. Particularly, Galileo's example of

studying the motion of a ball on an inclined plane is used to show how nature could be

described using the language of mathematics. Philosophers of science held mathematical

predictions in high regard, giving these predictions explanatory power. Examples of the

predictive power of mathematics, such as calculating trajectories of projectiles and orbits

of celestial objects, and examples of the mathematical predictability of physical events

happening even on the atomic scale, conclude the second section of this chapter.

The third section of this chapter deals with the quantitative and the qualitative

aspects of physics and mathematics. The discussion stresses that both quantitative and

qualitative aspects are valuable. The history of science emphasizes this by demonstrating

how scientists expressed their ideas in different \ilays. Scientists' ideas cannot be

undervalued, even if they are not expressed mathematically, because the conceptual

richness of their ideas remains profound.

The last section of this chapter focuses on what educators leamed about the

relationship between mathematics and physics from the history and philosophy of science

examples. The extent of educators' leaming determines to what degree they see

mathematics playing a role in physics. The views of educators are presented in this

section. The subsequent conclusion formulated is that the history of mathematics has to

be treated in connection with the history of physics. The Historic Genetic Approach
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introduced by Tzanakis (1999) is presented and a suggestion to extend his

recommendation for instruction to textbooks' application of his approach is explored.

The History of the Development of Mathematics and Physics

My exploration of the role of mathematics in physics education will be based on

the assumption that there is a fundamental connection between physics and mathematics.

The first logical step in this exploration would be to establish the relationship between

mathematics and physics which is reflected in the history of the development of these two

disciplines.

The mathematician, Morris Kline (1959) said that historically, intellectually and

practically, mathematics was primarily man's finest creation for the investigation of

nature. He claims that the major mathematical concepts, methods and theorems have been

derived from the study of nature. He stressed that mathematics is valuable largely

because of its contributions to the understanding and mastery of the physical world. This

close relationship between mathematics and physics goes as far back as the 3'd century

B.C.E., the time of Euclid and A¡chimedes. In the earliest Greek writings, for example, in

describing certain aspects of nature like music, Pythagoreans used whole number ratios.

Euclid created geometry that became later the foundation for western mathematics. He

used that geometry when writing a book about optics. Archimedes did work on statics

and hydrostatics using Euclidean ratios. One of the earliest efforts to use algebraic

functions to describe motion was attempted by A¡istotle in his pursuit of an explanation

of projectile motion. He believed that a body is maintained in motion by the action of a

continuous external force (This idea was later developed into so called Impetus Theory of

motion). This continuous fotce, as Aristotle thought, was necessary to overcome a
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resistance offered to the motion. Given this view, in the absence of a proximate force, the

body would come to rest immediately (Stinner, 1994). Aristotle wondered what force

keeps the projectile in motion after it loses contact with the projector and came up, as

Stinner (1994) notes with the only explanation that "the medium somehow provided the

necessary force to push the projectile", the air displaced in front of the projectile

somehow rushes around it and pushes from behind, thus propelling the projectile along.

This explanation is very interesting. Stinner (1994) comments on Aristotle's explanation

as following:

The paradoxícal state of affairs is connected with Aristotle believing that the

medium not only sustains the motion but also resists it. Motion in avoid was

impossible because there was no medium to sustain the motion, and in the

absence of resistance the object would eventually move at an infinite speed,

clearly an unacceptable solution. (p.79)

The essence of the functional relationship Aristotle came up with could be

expressed (Stinner, 1994) as the following: "...velocity is directly proportional to the

force and inversely proportional to the resistance of the medium, or v - F/R" (p.78),

where V is the object's velocity, F is force acing on the object, and R is resistance of the

medium.

Another medieval physicist -Thomas Bradwardine- attempted to show how the

dependent variable velocity V was related to the two independent variables force F and

resistance R. He believed that the velocity would vary arithmetically when the

proportions of force to resistance are varied geometrically. The function he came up with

was incorrect. However, Bradwardine had expressed the Aristotelian iaw of motion
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(impetus + resistance accounts for acceleration and deceleration of motion on earth)

quantitatively as a function (Bradwardine's Function).

During the Middle Ages Aristotle's ideas of force and motion were first

challenged by John Philoponus (sixth century AD). He proposed the much more plausible

but still erroneous idea that a projectile moves because of a kinetic force which is

impressed on it by the mover (some property of a body, imparted when set in motion) and

which exhausts itself during the motion. The functional form of Philoponus's idea differs

from Aristotle's one (v -F/R) as following: v -F - R (Stinner,1994). philoponus

reassessed the role of the medium in the motion of a projectile - he believed that the

medium was not responsible for continuation of a projectile's motion. In fact, the

medium was an impediment to it. On this basis, Philoponus concluded, against Aristotle,

that there was nothing to prevent one from believing that motion could take place through

a void (Stinner, 1994).

ln the thirteenth and fourteenth centuries, Jean Buridan and Nichole Oresme from

France worked out a theory to explain projectile motion. tn the 14th century, Jean Buridan

named the motion-maintaining property impetus and developed impetus theory further.

He rejected the view that impetus dissipated spontaneously, arguing that a body would be

influenced by the forces of air resistance and gravity which might be opposing its

impetus. Buridan saw the necessity of some type of motive force within the projectile. He

regarded it as a permanent quality, however, and quantified it simplistically in terms of

the primary matter of the projectile and the velocity imparted to it. Although he offered

no formal discussion of its mathematical properties, Buridan thought that the impetus of a

body increased with the speed at which it was set in motion, and with its quantity of
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matter. In this respect, Buridan's concept of impetus was similar to Newton's quantiry of

motion (momentum). The following example of Buridan's writing demonstrates how

close he came to Newton's concept of force:

...after leaving the arm of the thrower, the projectile would be moved by impetus

given to it by the thrower and would continue to be moved as long as the impetus

remained stronger than the resistance, and would be of infinite duration were it

not diminished and corrupted by a contraryforce resistíng it or by something

inc I inin g it t o a c o nt r ary m o ti o n. (http : / / encyclopedia. I ab orlawtalk. com/Inertia)

The example of using mathematics (functional relationships) in describing

impetus theory is significant in the history of science not only to demonstrate the

relationship between mathematics and physics but to show that what was new about the

fourteenth-century development was the technical significance given to the concepts in

context that is engaged later, in the discussion of gravitational motion. Buridan used his

impetus concept to explain the acceleration of falling bodies. He believed that continued

acceleration results because the gravity of the body impresses more and more impetus

(Dictionary of the History of Ideas, retrieved on April 16,2005).

Another example of the relationship between mathematics and physics from the

history of science is how Nicole Oresme attacked the problem of accelerated motion by

graphic constructions.

With Bradwardine and Oresme, the treatment of kinematics problems was posed

as imaginary possibilities for theoretical analysis, essentially logical exercises, and

without empirical application. Between 1328 and 1350 the work of Thomas Bradwardine,

William Heytesbury, Richard Swineshead and John Dumbleton, at Merton College,
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Oxford, laid the groundwork for further study of space and motion, by clarifying and

formalizing key concepts, such as that of instantaneous velocity (Babb, 2003). The

Merton School of philosophers at Oxford (13û-14ú centuries) and Nicole Oresme created

the Mean Speed Theorem (Merton Rule) to analyze velocity of a point in time: An object

starting from rest and accelerating uniformly over a specified time traverses a distance

equal to the distance a second object travels by moving for the same time at a constant

speed equal to one-half the maximum speed attained by the first object. According to

Clagett (1968), this rule for calculating mean speed was first proposed by Williams

Heytesbury in 1335. Commenting on the significance of the Mean Speed Theorem,

Clagett (1968) said that the invention of the mean speed theorem was one of the true

glories of fourteenth century science. According to Clagett (1968), Oresme explained

velocity with longítude and latitude by means of a graph using a geometric approach

introduced between 1348 and 1362.ln his analysis of motion, Oresme was interested in

the forms of qualities, such as velocity. He graphed the extension in time (longitude) of a

quality along a horizontal line and the intensity of a quality - velocity (latitude) along a

vertical line. Then the graph corresponding to uniform velocity (uniform form of quality)

would correspond to a horizontal line, and the graph of motion with constant acceleration

(uniformly deformed form of quality) would correspond to a line rising (or falling) at an

angle. ln each case, distance traveled would be the area under these curves. For constant

velocity, distance traveled is equal to the area under the graph which is the area of a

rectangle - velocity x time, and for constant acceleration, distance traveled equals the

area of a triangle =Vzmaximum velocity x time. Since the rectangle and the triangle have

equal area, therefore, the mean speed rule is proven (Babb, 2003).Later, Galileo provided
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a little bit different explanation but he used the same graphs.

The described earlier three achievements of medieval physics in the second

quarter of the fourteenth century (Mean Speed Theorem, Bradwardine's Function, and

Buridan's theory of impetus) were logical exercises which did not require empirical

application. The connection of physics and mathematics, in these cases, was an exercise

of thought. In other cases, mathematics was used by scientists for the investigation of

nature when conducting experiments. According to Kline (1959), mathematics enables

the various sciences to draw the implications from their observational and experimental

findings because mathematics organizes broad classes of natural phenomena into

coherent patterns.

Today mathematics is at the heart of our best scientific theories, including

Newtonian mechanics, the electromagnetic theory of Maxwell, Einstein's theory of

relativity, and the quantum theory of Planck and his successors. ln some of these

examples, physics ideas often guided the development of mathematics. For example,

Newton had to invent his calculus in order to develop the law of universal gravitation. On

the other hand, there were situations in the history of the development of physics and

mathematics when discoveries in mathematics found their scientific values hundreds and

thousands of years later. One of the examples of this is when a Greek man named

Menaechmus discovered the curves of ellipses, parabolas, and hyperbolas (known as

conic sections) in375-325 B.C.E. (The great geometer Appollonius studied them later

and wrote eight books regarding his study on conic sections.) During the discovery of

these conic sections, Menaechmus was attempting to solve three famous mathematics
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problems of trisecting the angle, duplicating the cube, and squaring the circle. At the time

ofhis discovery of conic sections, they had no practical uses.

It was not until about 1800 years after conic sections were discovered that people

began to see that the curves of conic sections could be applied to the real world. For

example, in space, as established by Kepler, a planet orbits around the sun in the curved

path of an ellipse. Also, comets travel in the paths of hyperbolas or ellipses, and the path

of a projectile can form a parabola. Due to these natural phenomena, conic sections

became the main topic in Kepler's laws on planetary motion. Many years after conic

sections were discovered, Newton was able to use the properties of conic sections and

Kepler's laws of planetary motion to discover the law of universal gravitation. Newton

showed that planets orbit the sun because the sun exerts a force of gravitational attraction

on them. He was able to show that all Kepler's laws hold true because of his law of

universal gravitation. Furthermore, the properties of conic sections helped Newton

conclude that the gravitational force between two objects is proportional to the masses of

these objects and inversely proportional to the square of the distance between them. The

consequences of Newton's use of conic sections go even further: using Kepler's laws and

Newton's gravitational law, we can approximate the current positions of the nine known

planets at a given time. Also, since we know that asteroids and comets travel in the paths

of conic sections, we can use the laws of gravity, laws of motion, and the properties of

conic sections to track down current locations of various asteroids and comets in space.

As history of science examples show, the relationship between mathematics and

physics became especially strong after Galileo established his concept of scientific

method wherein mathematics plays a crucial role. After Galileo, many great
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mathematicians made contributions to physics: Descartes, Fermat, I-eibniz, the Bernoulli

brothers in the 17ü century, Euler, D'Alembert and Lagrange in the 18ú century, Laplace,

Cauchy, Gauss and Riemann in the 19ú century, Poincare and von Neumann in the 20ú

century. Newton himself made outstanding contributions to both mathematics and

physics. It was Newton's ideas about the "rate of change, or fluxion, of continuously

varying quantities, or fluents, such as lengths, areas, volumes, distances and

temperatures" (Boyer, 199r, p.393) that allowed him to formulate some of the

mathematical laws that underlie nature. Newton was not the only person to come up with

the ideas of the calculus. Leibniz also did so independently at about the same time, but it

was Newton who used it in physics. He changed the structure of physics forever.

Mathematics became the new language of physics, a form of discourse where physics

was transformed from a qualitative to a quantitative subject. This use of mathematics

gave physics a new sense of "truth". The use of mathematics as evidence in science, and

particularly, physics was largely established on the grounds of the assumption that if the

mathematics is correct, the physics must be correct. If a book contains a passage of

mathematics that is correct, it is hard to argue against it. No amount of literary prose and

argument can outweigh such a powerful discourse. The Scottish historian and philosopher

David Hume expressed the power of quantitative thinking and the criteria for a good

physics textbook in 1748. kr his best-known work entitled An Enquiry Concerning

Human Understanding, Hume asserts:

If we take in our hand any volume - of divinity or school metaphysics for instance

- Iet us aslç Does it contain any abstract reasoning concerning
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quantity or number? No. Does it contain any experimental reasoning concerníng

matter of fact and existence? No. Commit it then to the flames, for it can contain

nothing but sophistry and illusion. (Section xii part 3)

And more than 100 years later Lord Kelvin(I827-L907) said:

I often say that when you can measure what you are speaking about, and express

it in numbers, you know something about it, but when you cannot express it in

numbers, your knowledge is of a meager and unsatisfactory kind; it may be the

beginning of knowledge, but you have scarcely, in your thoughts, advanced to the

stage of Science, whatever the mntter m^ay be. (As cited in L. V/irth , 1g40,p.169)

With Newton's work transforming physics from a qualitative to a quantitative

subject, a new period in the development of physics and mathematics cortmenced, the

period of separation of physics from other sciences. After the Newtonian revolution of

the 17ft century, natural sciences divided into two parts: mechanics which became more

mathematical (quantitative) under the influence of mathematicians such as Lagrange, and

experimental science which investigated nature in a mostly qualitative way. Towards the

end of the 18ú century, especially French scientists like Laplace and Poisson used

mathematics more widely in physics. By the end of the 19ù century, physics had become

well established as a separate discipline, in which physicists performed qualitative

experiments and explained results with the help of theories framed in the language of

mathematics. This development around the middle of the 19ü century lead to the

emergence of theoretical physics as a separate branch of physics. Consequently, physics

split into an experimental and a theoretical part. Speculating about the reasons why this

split occurred, historian Elizabeth Garber (1999) in her book The Language of Physics:
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the calculus and the development of theoretícal physics in Europe 1750-1914, contests

that much 19ú century work, which up to now has been considered theoretical physics, is

in fact mathematics. she explains that for a long period, physicists were split

personalities. on the one hand, they did experimental work, using mathematics,

especially calculus, to quantify their results. On the other hand, they took mathematics,

for instance differential equations, as the starting point for new investigations that in tum

gave rise to new, purely mathematical results that were given little or no physical

interpretation. Garber terms the latter part "mathematical physics", the physics which

usually is published in mathematical journals. In Garber's view, this trend persisted until

well into the 19ft century, when British and German physicists created theoretical physics

"by adopting the attitude that mathematics was just a tool to be used within physics

...often to the dismay of mathematicians who watched with horror how physicists

ignored proper mathematics to reach their goal " (Kox, 1999 , p . 3 9). One of the striking

examples of such use of mathematics was Paul Dirac's introduction of his delta-function,

which was widely and successfully used in physics. An illuminating source of

information about history of the Dirac delta function is the book by J. Líitzen The

Prehistory of the Theory of Distríbutions (1982).

A characteristic example of the split between mathematics and physics, described

by Garber in her book, is the difference of opinion between Albert Einstein and the

mathematician David Hilbert on the general theory of relativity. In about 1910, Hilbert

had started to work in physics, commenting that "physics was too difficult to leave to the

physicists". Among other things, he took up Einstein's early work on general relativity.

Hilbert eventually published a theory that was similar to Einstein's final version of
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general relativity and appeared almost at the same time as Einstein's work. However,

whereas Einstein's theory was firmly based on physical principles, Hilbert's was much

more an exercise in pure mathematics, based on some dubious assumptions. Although

Einstein admired Hilbert's mathematical proficiency, he charucterized Hilbert's physics as

"infantile".

The consequences of the mathematization of physics have a significant impact on

science to the present time. Science with a mathematical basis is often considered

"better", having the power to predict events with certainty. Theoretical physics gained an

elevated status. This may have led to important qualitative works being overlooked, or

looked down upon. One of the historical examples of the experimental work being looked

down upon is the original attitude to Hubble's finding about the light from most of the

galaxies in the sky being ¡ed-shifted. His finding meant that the distant stars must be

receding from us as the space between us expands (Doppler shift). According to

Arianrhod (2005), "no one had seriously imagined that the universe is expanding before it

tumed up as an unintended consequence of Einstein's equations for the geometry of four-

dimensional spacetime" (p. 186). Mathematics definitely had an elevated status compared

to any qualitative work. Arianrhod (2005) goes on to say:

With Hubble's monumental discovery, Einstein regretted his lack of mathemøtical

Faith, saying it was the biggest blunder of his life. But the discovery helped

Validate the general theory of relativity, revealing it as another example of the

Way mathematics can take physicists beyond thought itself (p.186).

As for physics education, according to my experience in the classroom, the

mathematization of physics lead to the situation when students need much
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encouragement to include any words at all when they learn physics. They often prefer to

ans\ryer questions with pages of mathematics thinking that it is easier to understand this

way.

One can level the criticism that the mathematical side of physics has gone too far

when ideas cannot be easily grasped conceptually or described using language at all (such

as the quantum world), but we have to admit that with a new quantitative and

incomprehensible nature physics also became powerful. Physics was no longer just about

observation, description and possible explanations. It could now use mathematics to

explain and predict the natural world (at the limits of observation of the time). Although

discoveries like the theory of relativity have shown that Newton's laws hold only in some

situations, they are still widely and successfully used in solving many problems in

physics. One of the reasons for this success clearly lies in the predictive power of

mathematics.

The Predictive Power of Mathematics - Philosophical Reflections

According to Weisheipl (1967) and Kline (1959), there has been a tendency to

describe nature in mathematical terms since ancient times. According to these historians,

the conviction that nature is mathematical and that every natural process is subject to

mathematical law began to take hold in the twelfth century when Europeans first obtained

this view from the A¡abs, who in turn were quoting the Greeks. The Greeks who most

effectively promoted the mathematical investigation of nature were Pythagorous and

Plato. For Plato, for example, mathematics constituted a metaphorical bridge that

connected the tenestrial to the celestial realm. Plato believed that through mathematics

we could understand the world as only an imperfect image of an eternal realm. He did not
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conceive of mathematics as anything more than a metaphorical or analogical tool to aid

understanding and facilitate enlightenment. Roger Bacon, for example, believed that the

book of nature is written in the language of geometry. It was a common belief in the

thirteenth century that the geometrical laws of optics were the true laws of nature.

Leonardo da Vinci did not have a good understanding of mathematics. Nevertheless, he

believed in a connection between mathematics and science. He wrote: "No human inquiry

can be called true science, unless it proceeds through mathematical demonstrations".

Weisheipl (1961) concludes that the mathematization of motion was accomplished as

early as the 14ù century at Oxford by Franciscan Thomas Bradwardine and others, and

later by Galileo, Descartes and Newton. Weisheipl goes on to stress Bradwardine's

significance in establishing the importance of mathematics in understanding and uniting

earthly and celestial motions: "It was he who introduced mathematics into scholastic

philosophy, initiated the two new sciences of kinematics and dynamics, and made the

initial move toward uniting celestial and terrestrial motions under a single mathematics.

In a burst of enthusiasm reminiscent of Robert Grosseteste, Roger Bacon and Galileo,

Bradwardine declared:

It is (mathematics) which reveals every genuine truth, for it knows every hidden

secret, and bears the key to every subtlety of letters; whoever, then, has the

ffiontery to study physics while neglecting mathematics, should knowfrom the

start that he will never make his entry through the portals of wisdom." (p. 94)

It is evident that this view on the role of mathematics in the studying of physics was

shared by Galileo who emphasized that the book of nature was written in the language of
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mathematics. Drake (1957) in Discoveries and Opinions of Galileo translated the

following statement from Galileo's The Assayer of L623:

Philosophy is written in this grand booh the universe, which stands contínually

open to our gaze. But the book cannot be understood unless onefirst learns to

comprehend the language and read the letters in which it is composed. tt is

written in the language of mnthematícs, and its characters are triangles, circles,

and other geometric figltres, without which it is humanly impossible to understand

a single word of it; without these, one wanders about in a dark labyrinth. (pp.

237-238)

Thus, Galileo studied and described motion in precise mathematical terms. He discovered

and stated the law of falling bodies by first hypothesizing that the speed is proportional ro

the elapsed time, then showing that the distance must be proportional to the square of the

elapsed time. But this was only a hypothesis, and proving it right or wrong tumed out to

be a difficult task. It was quite difficult to try to measure directly either the velocity or

time for a freely falling body. Today we can make measurements easily with high-speed

photography, but Galileo had to work with a ruler and a water clock. Confronted with

these limitations, he decided to slow down his experiment. He was convinced that the

laws of falling bodies would also apply to a ball rolling slowly down an inclined plane.

So he set up a gently sloping plank at 7o inclination, about 15 feet long, with a narrow

groove cut along the center of it. A polished bronze ball rolled down the groove slowly

enough to permit making accurate measurements of time and distance. Galileo's

experiments confirmed that the distance traversed by the ball depended upon the square

of the elapsed time. Since this relationship was true for any inclination of the plane, he
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concluded that it would also be true for the limiting angle when the plane was vertical.

The ball would merely fall alongside the plane, but its distance at any instant would be

proportional to the square of the time of fall. He also proved mathematicalty that if the

distance were proportional to the square of the time, then the velocity at any instant

would be proportional to the elapsed time. This way of studying motion is a mathematical

description that was based on a conceptualization of a hypothesis and the working out of

its measurable consequences.

This example illustrates how mathematical reasoning enables scientists to predict

pattems of motion. Some might argue that these laws of falling bodies could be

discovered if Galileo performed experiments described above before he came up with his

hypothesis. For an argument, I refer to Hanson (1958), who distinguished between'seeing

that' and 'seeing as.' Hanson emphasized that 'seeing as,' the gestalt sense of seeing, had

been important in the history of science. Kuhn (L962) later developed

Hanson's ideas in his famous workThe Structure of Scientific Revolutions. He believed

that the theories that scientists accept significantly affect what scientists observe. Kuhn

subscribes to Hanson's idea of the theory-ladenness of observation, according to which

what scientists observe depends on the background theory. If one accepts this view, it is

unlikely that Galileo could design the experiment described above without having an idea

of how the results would look. In this particular case, mathematics, due to its deductive

nature, was a necessary tool to derive a functional relationship between distance and time

of fall. Granted, Galileo, when referring to mathematics, used Euclidean ratios. However,

later physicists used algebraic expressions to make predictions.
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Mathematics plays an important role in theory choice because of its predictive

power. One of the epistemic values for theory choice according to the scientific

community is the ability of a theory to give rise to testable predictions. Evaluating the

writings of the philosopher Karl Popper, in particular about the falsifiability criterion of a

good theory, Snyder (1998) asserts, "only predictions can count as evidence, because

only predictions are 'potential falsifiers' of a theory" (p. 463). Another philosopher

McMallin (1998) states, "the goals of predictive accuracy... serve to define the activity of

science itself, in part at least" (p. 130). Thomas Kuhn lumped together prediction and

explanation, though many philosophers do not agree with him on this matter. However,

Kuhn also seemed to think that the most important criterion for theory choice was the

ability of the theory to make predictions. He states:

"Ultimately it proves the most nearly decisive of all criteria, partly because it is less

equivocal than others but especially because predictive and explanatory powers... are

characteristics that scientists are particularly unwilling to give up." (As cited in Curd and

Cover, i998, p. 104.)

Kuh¡r (1998) believed that copernicus was taken seriously because

He converted heliocentric astrononry from a global conceptual scheme to

mathematicaL machinery for predicting planetary position. Such predictions were

what astronomers valued; ín their absence, Copernicus would scarcely have been

heard, something wlzich had happened to the idea of a moving earth beþre.

(As cited in Curd and Cover, 1998, p. 112)

It is worth noticing, however, that Ptolemy, like many medieval astronomers, did the

same with tables of data in terms of mathematical predictions.
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According to Jones (1992), beginning with Copernicus' sun-centered model of the

solar system, mathematical laws have been treated as actual descriptions of nature (pp.

102-103). In a sense, therefore, the emphasis on quantitative descriptions in physics

results from the great predictive power of mathematics. As Monk (L994) noted, "the

condensed models of the interactions of variables are powerful in the nature of the

accurate predictions they can make" (p. 210). For example, Newton related Galileo's

equation of free fall to the motion of the moon around the earth. He was the first who

understood that the force that causes a rock to fall is the same force that keeps the planets

in their orbits. Newton noticed that the parabolic motion of the thrown rock on the earth

could change to the elliptical motion of the planets (circular in case of the motion of the

moon around the earth). The assumption for this kind of statement would be that for

short-ranged projectiles we could neglect earth's curvature, i. e. consider it flat. In this

case gravitational field strength vector g is the same since there is no change of direction

to the center of the earth. If we do consider the earth's curvature, the path of a projectile

will change from a parabola to an ellipse provided the projectile is launched with

sufficient velocity that the ground does not get in the way. In this case, the projectile will

be orbiting earth in an elliptical trajectory.

A standard example in university textbooks (e.g. see R. P. Olenick et al. The

Mechanical Universe) shows mathematically that Galileo's parabolic trajectory is

approximately a small segment of an ellipse with the earth's center at the more distant

focus. The following steps can represent a summary of this proof:

The total energy and angular momentum determine the type of orbit.

The total energy E of an object of mass m projected from the surface of the earth at the
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velocity v, is the sum of kinetic energy and the gravitational potential energy of the

system:

^Mm
R

p- 1,
i*'"0

where M is the mass of the earth (o 6 x 1024kg¡ and R is its radius (= 6 x 106 m).

The angular momentum of the object about the center of the earth is

L= mvoRsin0,

where d is the angle of launching the projectile from the vertical.

The eccentricity e of the orbit of a projectile was derived to be

where D = GMm. Substituting for E and

projectile can be written as

L and factoring terms, the eccentricity of a

Typical initial velocities of most projectiles are in the range of hundreds of meters

per second at the most, so the term ,o2/2 is about I}a m2¡s2. On the other hand, the term

GM/R =7 x !07 m2lsz. This means that the termvo2/2can be ignored compared to the

terms GM/Rin the numerator of the expression for the eccentricity, so

., , 2L'nI-1-..-----=--

2vlsinz t(,t /-o* /o)
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This last equation indicates that the eccentricity is less than one, which means that

the orbit is part of an ellipse with the earth at the distant focus. In addition, since the

velocity is comparatively small, the eccentricity is very nearly 1; that is, the elliptical

orbit is extremely elongated. Using the authors' example yo = 100 m/s and 0 = 45", one

can find that

l-ex7x10-5,

so the eccentricity of the orbit differs from that of a parabola by seven parts in 100,000.

Newton established mathematically, using his calculus, that the inverse square

law of gravitation must yield a trajectory that is one of the conic sections (parabola,

ellipse, or hyperbola). He concluded that the type of trajectory depends on the total

energy E.If E = 0, the trajectory is a parabola (mathematically, it means that eccentricity

e=l).rfE<0,thetrajectoryisanellipse(0<e<1); andifE>0,thetrajectoryisa

hyperbola (e > L). Thus, Newton showed that if the velocity were high enough, a planet

would always be accelerating toward the sun without ever leaving its orbit. This is

because an object's motion is the result both of its previous direction of travel and of its

speed. Today, with the increasing exploration of space, it is observationally confirmed

that with the correct velocity, an object can have an elliptical path; with more velocity,

the object can escape the sun's gravity, and the object's path will look like a hyperbola.

Only this kind of mathematical analysis could enable Newton inhis Principia (1687) to
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connect the three laws of Kepler with his three laws of motion and his law of gravity.

Hamming (1980) asserts:

Newton used the results of both Kepler and Galileo to deduce the famous

Newtonian laws of motion, which together with the law of gravitation are

perhaps the most famous examples of the unreasonable effectíveness of

mathematics in science. They not only predicted where the known planets

would be but successfuIly predicted the positions of unlcnown planets, the

motion of distant stars, tides, and so forth. (p. 3)

For example, Newton's method of calculating orbits helped predict the next appearance of

Halley's comet. Before Newton, astronomers thought comets paid only a single visit to

Earth. Newton showed that comets could travel along closed, elliptical orbits. These

orbits have a pronounced elongation (highly eccentric orbits). This is why the comets fly

away to great distances from the Sun. Accordingly - they have a long period of

revolution. Edmund Halley, applying Newton's method of finding orbits, calculated the

moment of retum of a famous comet, whose appearance could be traced in the ancient

chronicles. The prediction was a striking success: the comet returned periodically every

76 years. Newton's laws have been shown tremendously accurate. Newton's Principia,

due to its stunning predictive success for over two centuries, continues delivering

accurate predictions. Newtonian mechanics is still a good theory because of its ability to

predict a big range of physical phenomena. The application of mathematics here has

proved to be an indispensable tool for this purpose.

A famous example of predictive power of mathematics in astronomy is the story

of the discovery of Neptune (1846). ln his book And There was Light, Thiel (i957)
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describes the problem of the deviation of the planet Uranus from its calculated orbit. The

French astronomer Leverrier suspected that a strong perturbing factor must be present, a

body possessing considerable mass, possibly another planet. Leverrier undertook to

calculate the mass and position of the hypothetical planet from the deviation of Uranus.

The computations proved to be a subtle and toilsome business, and when he had finished

Leverrier himself had no great confidence in his results. According to Thiel (1957),

Leverrier wrote to Professor Johann Gottfried Galle in Berlin, where there was an

excellent telescope, suggesting that the he look for the computed planet where Leverrier

predicted it would be. The new planet Neptune was then soon identified. Thiel

summarizes:

In this way Neptune was discovered, not by chance, Iike uranus, but by the

visionary powers of pure intellect, by computatíonfrom the universal law of

gravitation. This was the very summit of prediction; it was prophecy translated

into reality, a dream come true in the fullest sense. (p. Z9l)

Of course, somebody can argue that Neptune could have been discovered by observation

alone since telescopes were widely available at that time. According to Thiel (1957), a

Cambridge student, John Couch Adams, carried out the same computations and came to

the same conclusions a year before. His professor though, who had assigned him the task,

did not think it was worthwhile to use the excellent telescope at Cambridge Observatory

to look for the planet. Adams'results were known at Greenwich but the astronomers'best

instruments there were not good enough to detect Neptune. As it turned out, if Neptune

had not been predicted by mathematical computations, it might have never been detected

(However, other planets have been predicted which were not actually there).
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Hamming (1980) provides another example where mathematics was necessary

and indispensable. His first experience in the use of mathematics to predict things in the

real world was in connection with the design of atomic bombs during the Second World

War. He was amazed how the numbers they so patiently computed on the primitive relay

computers agreed so well with what happened on the first test shot carried out at

Almagordo. Hamming stresses that there were, and could be, no small-scale experiments

to check the computations directly. His later experience with guided missiles showed that

the use of mathematics as an indispensable tool was not an isolated phenomenon.

One may argue that there are situations where mathematical predictions are not

confirmed by experiment. One of these examples could be what philosophers of science

call the missing value problem for functional laws. For example, Hooke's law says that

the force exerted by a spring is directly proportional to the amount the spring is stretched

(F = kx). If we stretch the spring several times its normal length, we will not get the

magnitude of the force which is predicted by Hooke's law. But the reason for this is not a

"faulty" law. Everyone understands that if we try to stretch the spring several times its

original length, it is going to break. There are changes in the conditions, which are not

accounted for by Hooke's law. It is also assumed that the law holds in the limits of

proportionality only. Therefore, the law is fine if we know its limitations. Another

example is the ideal gas law (PV = nRT) - the pressure times volume of n moles of gas is

proportional to the absolute temperature of the gas. It is not hard to understand that only

limited number of values of pressure and absolute temperature will be realized since no

gas can be practically heated to all possible temperatures. As long as we understand these

limitations, there is no problem with missing values. These functional laws, therefore,
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have great predictive power when used properly. There are, however, problems that are in

practice so complicated that they defy formal mathematical analysis (for example,

turbulent motion of fluids). Nevertheless, it is believed that this is just a practical

limitation, not a fundamental one.

The other argument against predictability of physical events by mathematics

could be when one considers events on the atomic scale. One could question the ability of

mathematics to make exact predictions of individual events in quantum phenomena. We

have to realíze that if we have a large population of atomic systems, statistical laws

apply, and the behavior of large populations of identical atomic systems is still accurately

predictable. It was discovered that the final outcome might be so sensitive to the initial

conditions that the long-term situation was in effect unpredictable, that totally different

outcomes might be possible. Still, as French (1998) noticed, "statistical predictions of

quantum physics are more exquisitely precise than anything in human affairs" (p. 12).

There are many other examples of using mathematics as a predictive mechanism

in science. Examples from the history of science show that mathematics was necessary

and indispensable in making predictions, often leading to discoveries. Newtonian

mechanics and Maxwell's equations for electrodynamics are still valuable in predicting

interesting events, even if the observed phenomena were not completely understood.

Quantitative and Qualitative Aspects of Physics and Mathematics

As previously was mentioned, in the early sixteenth century, Galileo emphasized

that the book of nature is written in mathematical language. Mechanics had long been the

study of the natural laws of moving bodies, but Galileo insisted that the basic concepts

must be mathematical. This in tum required that only quantitative, objective
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characteristics of things - what Galileo referred to as "primary qualities" -could be

considered in the science of mechanics. The number of objects, their size and shape, and

their position and state of motion in space could all be quantified and become part of a

natural law. "Secondary qualities" such as redness, sweetness, noisiness, and foul odor

Galileo claimed depend upon the senses and reside only in consciousness (Galileo,

D is c ov e ríe s and O pinions, 19 57).

At about the same time, Descartes reinforced Galileo's ideas by connecting the

knowledge of nature with the knowledge of mathematics. Descartes believed that physics

was the science of moving forms of space, just as geometry was the science of resting

forms of space. He, too, insisted that an objective understanding of nature is possible only

by way of expressing primary qualities in mathematical language, namely size, shape,

and quantity. To the Renaissance scientist as to Greeks, mathematics was the key to

nature's behaviour. Descartes also formulated the first modern statement of the law of

inertia: the natural motion of an isolated body is uniform, along a straight line at constant

speed. Departures from uniform inertial motion were attributed to the pushes or pulls

exerted by other bodies. Descartes did not succeed in developing a full mathematical

science of mechanics, but his ideas were to become the starting point for Newton. His

mechanics dealing with bodies accelerated by forces was essentially a grand

mathematical design to rationalize all motion that departs from the law of inertia. Newton

successfully fulfilled the promise of Galileo and Descartes by constructing a geometric-

mathematical theory of planetary and terrestrial motion.
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Many historians (M. Kline, M. Hodges, T. Kuhn, K. Popper) give credit to

Galileo for leaving very compelling argument, for us to look at our world quite

differently than we had in the past. As Miles Hodges (2000) asserts,

...the implications of Galileo's thoughts is not that stars do star things, and trees

do tree things, and rocl<s do rock things, and peasants do peasant things, and

kíngs do king things - but that all things operate in a similar manner ín

accordance to univ ers al princíples

Other historians interpret the view that underlying all life are beautiful mathematical

principles, awaiting human discovery, as a simplistic view of the role of mathematics in

study of nature. One of them is Karl Popper. He wrote inThe Open Uníverse: from the

Postscripts to the Logic of Scientific Discovery:

...the success... of simple statements, or of mathematical statements... ought not

to tempt us to draw the inference that the world is intrinsícally simple, or

mathematícal... AII these inferences have infact been drawn by some philosopher

or other; but upon reflection, there is little to recommend them. The world, as we

know it is highly complex; and although it may po.sre.rs structural aspects whtch

are simple in some sense or other, the simplicity of some of our theories - which is

of our making - does not entail the intrinsic simplicity of the world (Popper,

1982).

According to Jones (1992), "the sciences generally, and physics in particular, pride

themselves on their quantitative character. The presumption is that quantitative

descriptions of things are somehow more meaningful and objective than qualitative ones"

(pp. 19a -195). Since Galileo physicists have been using algebraic models to make
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predictions, and in doing so, physicists used mathematics as a formal description of the

actual mechanism behind all natural phenomena. Jones (1992) points out a limiting side

of the situation when mathematical laws are treated as actual descriptions of natureby

saying that "this grand mathematical machine, like the simple mechanical devices it

imitated, was mindless and inanimate, acting without meaning or purpose" (pp. 102 -

103).

According to Kline (1959), Galileo, Newton and their successors were criticized

(Berkeley, Mach, Popper) for their proposed plan of obtaining quantitative descriptions

of scientific phenomena independent of any physical explanations. For example, Galileo's

decision to seek the mathematical formulas describing nature's behavior left some critics

unimpressed. They saw no real value in these bare mathematical formulas because they

explain nothing. They simply describe the motion of the free fall in precise mathematical

language. Yet, as Kline (1959) notices, such formulas have proved to be the most

valuable knowledge human beings have acquired about nature. He goes on to say that the

amazing practical as well as theoretical accomplishments of modem science have been

achieved mainly through a quantitative, descriptive knowledge.

The other reason for criticism likely comes from the fact that those successive

generations of philosophers and historians of science (from Ernst Mach to Karl Popper

and Im¡e Lakatos) had engaged in a massive research program, the main aim of which

was to impose "rational" reconstructions on the history of science. Their goal was to

account for the development of science in purely logical terms. According to Naughton

(1982), they presented the history of science as a uniform progression from "error" to

more and more refined approximation to the "truth" as embodied in modern scientific
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concepts and theories. One of the consequences of this view was its tendency to

undervalue the complexity and sophistication of the thinking of the great scientists of the

past.

Kuhn took quite a different approach to the history of science on this matter. The

ideas of his thinking are expresses in his book The Structure of Scientific Revolutions

(re62):

Firstly, when studying the work of past scientists, we should assume that their

general mode of cognition was similar to ours. They were no less resourceful, intelligent,

reasonable, let alone logical than we are. We should approach their writings with the

assumption that they are internally consistent and coherent. Their concepts should be

taken seriously, and at the face value accorded them by their authors and their

contemporaries.

Secondly, we should assume that the conceptual usage of a scientist is that of the

culture in which he worked. We should not reinterpret Carnot's concept of "heat", for

example, in the light of the modern concept of entropy.

Thirdly, when seeking explanations of why a particular scientist advocated o¡

believed in certain concepts, we should check that any explanation that is offered is

consistent with the specific historical context in which he worked. ln the case of Carnot,

for example, we should relate his concept of heat to the usage conventionally employed

in the texts to which we know he had access.

Clearly, through the application of these principles to the history of science,

instead of focusing exclusively on the rationality and perception of the isolated individual

researcher and his experiments, Kuhn diverted attention to the complex interaction that
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took place between a research community, with its received culture, and its intellectual

environment. The question is, however, do science textbooks reflect Kuhn's suggestion

about the complexity and brilliance of the thinking of the great scientists in the past? For

example, is the theory of tides described in the textbooks as only Newton's

accomplishment of his theory of gravity? Do the students learn from these books that

scientists like Bede, Grosseteste, Descartes and Galileo, each in their time, contributed

valuable ideas to the now established theory of tides? Some of these scientists' ideas are

not expressed in mathematical terms but for their time their ideas were conceptually

advanced and they set the foundation for further development of the theory of tides, let

along tremendous practical applications of their ideas. For example, Bede's theory (AD

725) was not expressed mathematically but continues to be used by harbour pilots in all

ports of the world today. Robert Grosseteste first recognizedl.hatthe rise and fall of

waters or tidal fluxuations must occur on opposite sides of the earth, simultaneously.

Descartes gave a very sophisticated rational for all known tidal phenomena, though it was

not mathematical. Galileo used tides to prove that the Copernican schema of planetary

circles being centred upon the Sun was correct (however, the proof fails). Finally,

Newton explained tides in terms of his new concept of gravity (Cartwright, 1999; Dales,

1973). My argument is that we can not undervalue the work of his predecessors (by not

mentioning and discussing contributions of earlier scientists) when we present

information to our students if we want them to appreciate science and understand

processes ofscience. Ifour textbooks present science in a linear fashion as a progression

ftom "error" to the "truth", declaring something as right or wrong, then the students will

not understand how scientific theories came about. Consequently, it would be naive to
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expect desirable student attitudes towards science, like the appreciation of science, and

the educational objective to foster scientific literacy will not be achieved.

The examples from history of science show that scientists expressed their ideas in

different ways. Following Kuhn's suggestion about making assumptions that their

writings are internally consistent and coherent, and should be taken seriously, I would

argue, that the fact that some scientists did not express their ideas in mathematical terms,

does not signify that their ideas were less valuable than those which could be expressed

in symbols as a functional relationship. The conceptual richness of past scientists' ideas

not only helped the development and improvement of theories but also resulted in new

ways of expressing knowledge (mathematical as well) by their successors later. Very

often scientists conceptualize things by communicating their ideas verbally first. For

example, Ohm did not state the law relating electric current, voltage and resistance in the

form of a mathematical statement 1 = V/R, as it is generally presented in the textbooks.

He only gave a verbal statement from his experiment (1825) about the relationship

between the resistance and the length of the wire. Another example of verbalization of

ideas is Boyle's law. In textbooks Boyle's law is generally presented as a mathematical

equation P1V1 = P2V2. Boyle did not formulate his law in mathematical language. He

gave a verbal statement saying that the pressure is inversely proportional to volume. As a

matter of fact, the mathematical equation mentioned above appeared about 200 years

after Boyle's discovery (K. de Berg, 1995). An historian of science de Berg (1990)

discussed the historical profile of the pressure-volume law in detail in his work The

Historical Development of the Pressure-Volume Lawfor Gases (1990). He took a

Kuhnian approach to the history of science looking at interaction between a research
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community and its intellectual environment. In fact, up to the time of Descartes (1596 -
1650), and some time after, quantitative relationships were written predominantly in

words or in word abbreviations. Flegg (1933) notes that while our modern algebraic

notation for quantitative relationships came with Descartes in the seventeenth century, it

was not immediately popular with his mathematical contemporaries. By the eighteenth

century, howevet, the new notation had become the norm for mathematicians throughout

'Western Europe. Flegg (1983), in reflecting on the reasons for the late adoption of

abstract symbols in mathematics, makes the following comment:

Mathematics ideas were explained in words; mathematical arguments were

written in words. To adopt abbreviations of words is therefore a natural step; the

change to abstract symbolism demands an intellectual leap of extraordinary

magnitude. (p.22a)

This leap of extraordinary magnitude is witnessed in the forms in which the pressure-

volume law has been expressed historically. Algebraic forms of the pressure-volume law

for gases appeared as early as in the work of Bernoulli (1738), t ord Kelvin (1849), and

Waterston (1892) where new mathematical expressions were generated to provide new

information.

ln order to conceptualize things, sometimes mathematics can help. Newton, for

example, noticed that there was a mathematical pattern in the path of the thrown rock on

the earth and the path of the moon. It is very difficult to separate mathematical and

conceptual aspects of physics. Sometimes the separation is not clear, sometimes it is

clear, sometimes the conceptual and mathematical aspects blend, complementing and

enriching each other. It seems then that in physics there is no sharp boundary between the
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two approaches (qualitative and quantitative), nor do we ever use one entirely to the

exclusion of the other.

What did Educators Learn about the Relationship between Mathematics and Physics

from the History and Philosophy of Science?

What educators learn about the relationship between mathematics and physics

from the history and philosophy of science determines how they see the use of

mathematics in physics. For example, Norman Campbell (1963) identified three uses for

mathematics in physics:

1. The establishment of systems of derived measurement to give definitions. Density

as derived from mass and volume via the equation, d = m/v, is quoted as an

example.

Calculations in the form of combining numerical relations to produce new

numerical relations. For example, from Galileo experiments, combining the

relations d./d2 = v12/v22 and, d1/d2 = tt2/tz2 gives v/v2 = tt/tzas a new relation.

Formulation of theories. This formulation may be based on analogies with known

laws such as development of the kinetic-molecular theory of gases based on the

laws of Newton. On the other hand, the formulations could be also based on a

mathematician's sense of form and symmetry. This was the case in Maxwell's

treatment of differential equations representing electromagnetic properties of

matter'.

One of the valuable lessons educators learn from the history and

philosophy of science is the fact that mathematical formulations used in physics

have a rich historical context behind them. Stinner (1995) is convinced that the

2.

J.
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relationship between mathematics and physics has foundation in the historical

context of the development of mathematical formulations. He strongly believes

that educators should delay the presentation of the finished product of the

mathematical formulations, for instance, of Newton's laws, such as F = ma.

Before presenting these formulas, Stinner (1995) recommends that the teacher

consider the question "What are the diverse connections that led Newton to his

second law?" He reminds us that "historically, there were three empirical

connections: the motion of the pendulum, the results of collisions between

hardwood balls attached to two pendula, and the motion of the conical pendulum"

þ.28Q. Stinner attributes to mathematics the role of conceptual tool for "these

seemingly disparate phenomena" that were "finally united conceptually by

essentially one equation" (p.284).

Since the Law of universal gravitation has been chosen as the context for

the study of the role of mathematics in physics, it is unavoidable to explore the

history of the mathematical formulations leading to Newton's law of gravity.

Exploring the history of gravity and learning about the stages of Newton's

thinking in the discovery of universal gravitation would help understand the

conceptual richness of mathematical formulations involved in understanding of

Newton's law of universal gravitation.

According to a physics educator, Tzanakis (1999), we have learned from

the history and philosophy of science that mathematics and physics have always

been closely interwoven throughout their historical development, in the sense of a

"two-ways process":
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o Mathematics methods øre used in Physics. That is, Mathematics ís not only

the "language" of physics (i.e. the toolfor expressing, handling and

developing logically physical concepts and theories), but also, it often

determínes, to a large extent, the content and meaníng of physical concepts

and theories themselves.

o Physical concepts, arguments and modes of thinking are used in Mathematics.

That is, Physics is not only a domain of application of Mathematics,

providing it with problems "ready-to-be-solved" mathematically by already

exístíng mathematical tools. It also provides ideas, methods and concepts that

are crucialfor the creation and development of new mathematical concepts,

methods, theories, or even whole mathematical domains. (p. 103)

Tzanakis wams us that "any treatment of the history of mathematics independent of the

history of physics is necessarily incomplete". He asserts: "By accepting the importance of

the historical dimension in education, the relation between Mathematics and Physics

should not be ignored in teaching these disciplines" (p.103).

Practically, Tzanakis (1999) suggests the pedagogical approach that is called "A

Historical-Genetic Approach" and can be used in introducing a historical dimension in

teaching. He explains that "such an approach emphasizes less the way of using theories,

methods and concepts, and more the reasons for which these theories, methods and

concepts provide answers to specific problems and questions, without however

disregarding the "technical role of mathematical knowledge" (p. 106).

Tzanakis suggests the following general scheme:
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The teacher has a basíc knowledge of the historical evolution of the subject, so that

he/she ís able to identifu the crucinl steps of this historical evolutíon and appreciate

their significance. These steps consist of key ideas, questions and problems, which

opened new research perspectives and enhanced the development of the subject.

(some of) these crucial steps, are reconstructed, by explicitly, or implicitly,

integrating historícal elements, so that these crucial steps become didactically

appropriate.

Many detøíls of these reconstructions are incorporated into exercises, problems,

small research projects and more generally, didactical actívitíes that give the

opportunity to the learner to acquire technical skills and a better sense of the

concepts and methods used. For instance, one may use sequences of historically

motivated problems of an increasing level of dfficulty, such that each one

presupposes (some) of its predecessors. Their form may vary from símple exercises of

ú more or less "technicel" character, to open questions which presumably should be

tackled as parts of a particular study project to be performed by groups of students.

(p. i07)

Tzanakis (1999) realizes that presentation of the

using history could be difficult and too advanced

that

mathematical component in physics

for the learners. We have to understand

the historical evolution of a scíentific domain...is almost never straightforward

and cumulative. On the contrary, it is rather complicated, tnvolving periods of

stagnation and confusion, in which prejudices and misconceptions exist and it is

greatly irtfluenced by the more general cultural milieu, in which the evolution

2.

3.
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takes place. Moreover, the conceptualframework and the mnthematical

terminology and notation vary from one period to another. FinaIIy, the didactical,

social and cultural conditions of the students today are very dffirent from the

corresponding conditíons in which mathematicíans, who created and developed

the subiect under consideration, were living. Hence, strictly respecting the

historical order makes understandíng of the subject more dfficult. (p. L07)

To overcome this difficulty, Tzanakis (1999) suggests creating an historically motivated

thinking framework for the student, "in which various aspects of the mathematical

subject...can be illustrated". He gives the following guidelines for such a framework:

In this respect, the crucíal steps ofthe historícal evolution ofthe subject are

dídactically important because whether or not a step in the historical evolution is

crucial, it is judged ø posteríorí. In other words, such a step is crucíal exactly

because it opened new research paths, it clarified the meaning of new knowledge,

it sttggested the most convenient and clearformulation of this knowledge and in

general it enhanced the development of the subject. Thereþre, such a step in the

historical evolutton is ín principle didactically relevant. (p. 107)

Since students learn from textbooks and teachers use textbooks as a primary source for

information and instruction, it is clear that Tzanakis' point of view could be extended

beyond recommendations for instruction. Textbooks could also be improved in

presentation of mathematical component of physics if they used the similar Historic-

Genetic Approach suggested by Tzanakis. After all, his suggestions are drawn upon

lessons from the history and philosophy of science about the development of the close

interrelation between mathematics and physics.
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Summary

The close relationship between mathematics and physics was first recorded as far

back as the 3'd century B.C,E., the time of Euclid and Archimedes. As the history of

science examples show, the relationship between mathematics and physics became

especially strong after Galileo established his conception of scientific method wherein

mathematics played a crucial role. Later, Newton changed the structure of physics

forever. Mathematics became the new language of physics, a form of discourse where

physics was transformed from a qualitative to a quantitative subject.

The consequences of the mathematization of physics have a significant impact on

science even today. Theoretical physics has gained an elevated status. As for physics

education, the mathematization of physics lead to the situation where students need much

encouagement to include any words at all when they learn physics. They often prefer to

answer questions with pages of mathematics thinking which is easier to understand.

With a new quantitative and incomprehensible nature, physics also became more

powerful. Physics was no longer just about observation, description and possible

explanations. It could now use mathematics to explain and predict the natural world.

The conviction that nature is mathematical and that every natural process is subject to

mathematical law began to take hold in the twelfth century when Europeans first obtained

this view from the Arabs, who in turn were quoting the Greeks. Later physicists used

algebraic expressions to make predictions. In addition, mathematics plays an important

role in theory choice due to its predictive power (one of the epistemic values for theory

choice, according to the scientific community, is the ability of a theory to give rise to

testable predictions). Examples from the history of science show that mathematics was
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necessary and indispensable in making predictions, often leading to discoveries.

Newtonian mechanics and Maxwell's equations for electrodynamics are still valuable in

predicting interesting events, even if the observed phenomena were not completely

understood.

In the early sixteenth century, Galileo emphasized that the book of nature is

written in mathematical language. The number of objects, their size and shape, and their

position and state of motion in space could all be quantified. Galileo refer¡ed to these

quantitative, objective characteristics of things as "primary qualities". "secondary

qualities" such as redness, sweetness, noisiness, and foul odor Galileo claimed depend

upon the senses and reside only in consciousness (Galileo, Discoveries and Opínions,

1957).

At about the same time, Descartes reinforced Galileo's ideas by connecting the

knowledge of nature with the knowledge of mathematics. Descartes believed that physics

was the science of moving forms of space, just as geometry was the science of resting

forms of space. He, too, insisted that an objective understanding of nature is possible only

by way of expressing primary qualities in mathematical language, namely size, shape,

and quantity.

Examples from the history of science show that scientists expressed their ideas in

different ways. I would argue that the fact that some scientists did not express their ideas

in mathematical terms, does not signify that their ideas were less valuable than those

which could be expressed in symbols as a functional relationship. The conceptual

richness of past scientists' ideas not only helped the development and improvement of

theories but also resulted in new ways of expressing knowledge (mathematical as well)
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by their successors. It is very difficult to separate mathematical and conceptual aspects of

physics. Sometimes the separation is not clear, sometimes it is clear, and sometimes the

conceptual and mathematical aspects blend, complementing and enriching each other. It

can be inferred that in physics there is no sharp boundary between the two approaches

(qualitative and quantitative), nor do we ever use one entirely to the exclusion of the

other.

What educators learn about the relationship between mathematics and physics

from the history and philosophy of science determines how they see the use of

mathematics in physics. For example, Norman Campbell (1963) identified three uses for

mathematics in physics:

1. The establishment of systems of derived measurement to give definitions. Density

as derived from mass and volume via the equation, d = m/v, is quoted as an

example.

Calculations in the form of combining numerical relations to produce new

numerical relations. For example, from Galileo experiments, combining the

relations d,/d2 = v12/v22 and, d1/d2 = tt2/tz2 gives v/v2 = tt/tzas a new relation.

Formulation of theories. This formulation may be based on analogies with known

laws such as development of the kinetic-molecular theory of gases based on the

laws of Newton. On the other hand, the formulations could also be based on a

mathematician's sense of form and symmetry. This was the case in Maxwell's

treatment of differential equations representing electromagnetic properties of

matter.

2.

3.
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One of the valuable lessons educators leam from the history and

philosophy of science is the fact that mathematical formulations used in physics

have a rich historical context behind them.

According to a physics educator, Tzanakis (1999), we have learned from

the history and philosophy of science that mathematics and physics have always

been closely interwoven throughout their historical development, in the sense of a

"two-ways ptocess":

o Mathematics methods are used in Physics. That ís, Mathemntícs is not only

the "language" of physics (i.e. the tool for expressíng, handlíng and

developing logically physical concepts and theories), but also, it often

determines, to a large extent, the content and meaníng of physical concepts

and theories themselves.

o Physical concepts, arguments and modes of thinking are used in Mathematics.

That ís, Physics is not only a domain of applícation of Mathematics,

providing ít with problems "ready-to-be-solved" mathematically by already

exístíng mathematical tools. It also provides ideas, methods and concepts that

are crucialfor the creation and development of new mathematícal concepts,

methods, theories, or even whole mathematical domains. (p. 103)

Tzanakis walrrs us that "any treatment of the history of mathematics independent

of the history of physics is necessarily incomplete". Practically, Tzanakis (1999) suggests

a pedagogical approach that is called "A Historical-Genetic Approach" and can be used in

introducing a historical dimension to teaching.
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Chapter 5 addresses the question about the role of mathematics in the history of

gravity. The history of gravity with a description of the early Greeks' ideas about gravity

followed by medieval scientist's positions and then by Copernicus, Galileo and Kepler's

ideas about gravity will be highlighted. In addition, the stages of Newton's thinking in his

introduction to universal gravitation will be described and analyzed.
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Chapter 5: History of Gravity: From Early Greeks to Newton

Overview

Chapter 5 addresses Research Question 3 with its two sub-questions -'What role does

mathematics play in the history of gravity?

(a) What is the history of gravity?

(b) What are the stages of Newton's thinking when he describes universal

gravitation?

The history of gravity part of the chapter begins with a description of the early

Greek ideas about gravity and follows with medieval scientists' positions including

Buridan's and Oresme's ideas about gravity. Copernicus, Galileo and Kepler's ideas

about gravity conclude the section addressing the history of gravity in sub-question (a).

The next part of this chapter reflects a historical inquiry into which other

scientists had an influence on Newton's development of his theory of universal

gravitation. A brief description of the history of the development of calculus follows to

show its significance in the development of Newton's law of gravity. A thorough analysis

of the stages of Newton's development of his law of gravity (sub-question (b)) is

conducted. A primary historical source, Newton's Princípia and a secondary source,

Cohen's accounts, are used to describe and analyze the steps of Newton's reasoning in

his discovery. The significance of Newton's theory of gravitation is explained next. The

chapter concludes with a discussion of the importance of geometry in the presentation of

gravity. Examples from science education literature are provided.



t29

Early Greek ldeas about Gravity

The earliest ideas about gravity were probably based on every day experience of

observing objects falling if they were not supported, feeling the difficulty of climbing a

hill compared to walking on a horizontal surface, and the return of an object after being

thrown up. Some objects felt heavy, others were light. Ancient Greeks @lato,

Aristarchos, and, in particular, Aristotle) were the first who began unifying these

observations into one idea, the idea of gravity.

Aristotle (384-322 B.C.E.) and other early philosophers thought that all matter

was made of four elements: earth, water, air, and fire. They considered earth and water

the heaviest. Therefore, an element earth, as the heaviest, was placed in the center of the

universe, and all objects would fall towards the earth in straight lines with the exception

of planets and stars which were presumed moving in circles around the earth. Air and

fire, on the other hand, were considered the lightest, and moved by nature away from the

center. The cause of unnatural motion of a heavy object in a direction other than down,

according to Aristotle's ideas, was an external force. Altematively, as the historian of

science Wesley Stevens (1998) further describes Aristotle's view, if a light object did not

move upward, it was being kept out of its natural place. Aristotle also believed that the

earth had a spherical shape because of gravity. As Wesley Stevens (1998) explains,

Aristotle reasoned that

If every heavy thing moved down, each would strike and move other things that

also moved downwards. If they werefree to move naturally, all would continue Ío

move naturally, all would continue toward the satne center until there was no

more spacefor motion, and each would provide resistance to the motion of
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others. This would result in a huge bulk that looked like a ball, because any other

shape would allow spaceþrfurther motion of things to get closer to the center.

Thus, the earth ís a sphere because of gravity. (p. 398)

Stevens (1998) goes on to say that this notion of gravity was quite satisfactory for

many purposes until the fourteenth century when a new question of gravity arose in a

different context.

Medieval Scientists' Ideas about Gravity

The medieval scientists Jean Buridan (1295-1358 C.E.) and later Nicole Oresme

(1325-1382 C.E.) were considering gravitas from a new point of view. They proposed

that there were the element terca (earbh) and the element aqua (water) since the then

known continents Asia, Africa, and Europe lay in one-quarter of the orb surrounded by

water. Oresme and Buridan could speak of the element terra as forming a globe with its

own center, and of the element aqua as forming the globe with its own center. These

centers were not always in the same place (Pedersen, 1993; Stevens, 1998). A scholar

like Buridan and Oresme could be wondering, as Stevens (1998) explains, could it be that

the element terra and the element aqua each form a separate natural sphere because of

gravity? Going further, Buridan and several scholars after him proposed to describe two

spheres of earth and water interacting. As stevens (r998) clarifies,

They argued that tlte center of the water must move when there is a great flood

or a storm at sea changing the shape of the gathered waters; and the center of the

element earth must move when large bodies of land shift, as a result of an

avalanche or earthquake or volcanic eruption. (çt.399)
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The interesting question one might ask then is about the location of the center of the

Kosmos toward which each heavy object moves because of gravity.

As Stevens (1998) notes, the ancient concept of gravity was "severely tested

against other cosmological ideas during the fourteenth to sixteenth centuries." Copernicus

Iater rejected the ideas of Oresme and Buridan about terra and aqua spheres, as Stevens

explains. Stevens speculates that " it was probably the tension of ideas about spheres of

terra and aqua that Nicolaus Copernicus (1473-1543) had in mind when he said in the

preface to De revolutionibus (1543) that his new astronomy would once more harmonize

the elements" þ. 399).

Copernicus' Ideas about Gravity

I¡ his famous book De Revolutionibus Orbium Caelestium (1543), Copernicus

claimed that he was only making a mathematical assumption about a heliocentric system,

arguing that all celestial spheres revolve about the sun with the sun being a central

location in the universe. According to Clagett (1959), it is likely that Oresme influenced

Copernicus' idea of heliocentrism. Oresme opposed the theory of a station ary earth200

years before Copemicus did. He suggested that if gravity, the tendency of earth to move

toward the center, were regarded as the attraction of earth to earth, then the earth could

revolve around the sun and things would still fall in a straight line. As Clagett (1959)

notes, Oresme also reformulated the definitions of "up" and "do!vn." He stated that heavy

things go down, toward the center of the earth. However, according to oresme's

reformulations, "up" and "down" no longer refer only to the center and circumference of

our world. He argued that all things do not have to orient themselves to our world's

center. There could exist a plurality of centers. This assumption denies the idea that all
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things in the same universe must have a relation to one another. According to this view,

two worlds sufficiently removed need not have a relation to one another, but only

relations between their own respective parts.

The ancient idea about gravity dealt with heavy things moved by nature. Stevens

(1998) gives an example from the history of science of another aspect of gravity when

heavy things moved in some cases by attraction rather than by nature or by force, for

example, attraction of metals to each other. The work of William Gilbert (1540-1603) on

magnetism, he reminds, stimulated many people to experiment with heavy objects.

Stevens (1998) concludes that the significance of Gilbert's work was that

It also encouraged Johannes Kepler (1571-1630) to speak about the attraction of

the Sun toward the planet Mars, as greater when near and less whenfar away

(Astronomia nova, 1609; Harmonices mundi, I6lg). This made no sense to

Galileo (1564-1642), who had no tastefor spiritualforces, and infact Kepler's

"third law" could only describe those motions in geometry but not accountfor

such an attractiveforce. But it was theformula that Isaak Newton (f 642-1727)

used to justify his new theory of gravity, though not to prove it. (çt. 399)

Galileo's Views on Gravity

Another significant figure in the development of ideas about gravitation was

Galileo (1564-1643). Galileo's work represents a new approach to the study of nature,

namely the study of nature by experimentation. This approach was encouraged during the

time of the Renaissance. Instead of trying to answer the question "why do objects fall",

Galileo explored "how do the objects fall?" According to Hall (1967), Galileo in his work
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Discourses disposed of the causes of the acceleration of freely falling bodies as fantasies

unworthy of examination :

"At present it is the purpose of our Author merely to investigate and to demonstrate

some of the properties of accelerated motion (whatever the cause of this acceleration may

be" (as cited in Hall, p. i76). Hall (L967) clarifies, though, that "this does not mean that

in replacing the questionwhy by the question how Gallleo has excluded the study of

phenomena in terms of cause and effect" (p.I76). He goes on to say that Galileo's attitude

on this matter was that "the explanation of phenomena at one level is the description of

phenomena at a more fundamental level" @.I77). Hall explains:

For Galileo there was no anomaly in recognizing that certain constituents of the

physical world had to be accepted ds axiomatic; descriptive analysis can only

advance gradually from the coarse to the refined, from the lower to the upper

levels, each with its appropriate generalizations. @.177)

Hall points out that there could be "constructs which are not reducible to the ultimate

physical realities, as was the case for instance with Newtonian mechanics where the law

of gravitation had to be taken as descriptively correct, though gravity was not explicable

in terms of matter and motion" (p.I77).

Galileo, exploring only the problem of how objects fall, studied the rates at which

objects fall. Canying out experiments, he showed that a body which is not acted upon by

any force will continue in constant motion (Contrary to Aristotle's idea of impetus).

Galileo was especially interested in investigating speed as a function of time. He came up

with the following conclusions that are reflected in his well known work Two New

Sciences:



134

1. Objects of different weight fall at the same speed

2. As objects fall, their speed increases with time

3. The distance an object falls is proportional to the square of the elapsed time.

The last conclusion was arrived at by the mathematical consequence of Conclusion 2.

Galileo checked his conclusions through his experiments with motion of bronze balls

along an inclined plane.

Galileo showed not only experimentally that Aristotle's theory of falling objects

was incorrect. He also performed a clever thought experimeni. Galileo described his

thought experiment in Dialogue Concerning the Two Chief Systems of the World (1,632).

The argument goes as follows. Suppose we have two rocks, the first being lighter than

the second. If we release the rocks from a height above the surface of the earth, the

second rock, being heavier than the first one, falls faster. If they are joined together,

argues Galileo, then the combined object should fall at a speed somewhere between that

of the light rock and that of the heavy one since the light rock by falling more slowly

will retard the speed of the heavier. But if we think of the two rocks tied together as a

single object, then it falls more rapidly than the heavy rock. Aristotle poses the question:

How do the rocks know if they are one object or two? Clearly, Galileo's stunning

thought experiment shows that Aristotle's theory is inconsistent.

Galileo is famous for other innovative ways of thinking. For example, when many

people watch a pendulum swinging, they see the bob of the pendulum going back and

forth. Galileo, however, saw that the bob went up and down. He perceived the motion of

the bob as composed of vertical and horizontal components with gravity being the force

in the vertical direction. Galileo established that, although the time taken for the bob to
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rise and fall depended on the length of the pendulum, it did not depend on the weight of

the bob (Stinner andMetz,2002). Galileo showed again that if we ignored air resistance,

the time taken for an object to fall from a given height would not depend on its weight.

Described earlier in Chapter 4 Galileo's experiments with roiling balls down inclined

planes also allowed him to examine the downward components of the speed of fall.

It is known from the history of the development of ideas about gravity that

Galileo was the first to derive the parabolic path of a projectile (Herivel, 1965). His

derivation was based on the combination of two independent motions, the one uniform

and horizontal, the other vertical and uniformly accelerated by gravity.

Summarizing, Galileo's contribution to the understanding of gravity is that he changed

the approach to studying gravity by emphasizingthe "how" of gravity. First, he

conducted careful experiments to understand the "how" of gravity. Secondly, he gave not

only a qualitative account of motion under gravity but also a mathematical quantitative

description. Galileo's influence on Newton can be found clearly in the Principia (1687),

at the beginning of the Scholium to the laws of motion. There Newton states:

...Galileo discovered that the descent of bodies varied as the square of the time

(in duplicata ratione temporis) and that the motion of projectiles was in the curve

of a parabola; experience agreeing with botlt, unless so far as these motions are a

Iittle retarded by the resistance of the atr. (p. 2L)

Herivel (1965) expresses liis opinion about Galileo's influence on Newton this way:

Certainly the whole cast of Newton's thought, his humility beþre Nature, his drive

towards exact quantitative results, his delight in experiment, was altogether

Galilean, and if he recognized any master in science apart from Archimedes it
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could only have been Galileo. fp.41)

Kepler's ldeas about Gravity

As Thomas Kuhn (1957) demonstrated, the Copernican Revolution, as we know

it, was hardly to be found in Copernicus'own writings, and what has to come to be called

the Copernican revolution was, in fact mainly the work of Kepler and Galileo. Newton

owed much for preparing the foundation for the development of the idea about universal

gravitation to many scientists.

An astronomer Joharuies Kepler (1571-1630) who discovered the laws of

planetary motion at the beginning of the seventeenth century was a significant figure in

the development of ideas about gravitation. Kepler was the first man who realized that

planets should move in ellipses and not circles. Kepler's three laws of planetary motion

postulate:

the planets travel in elliptical orbits, one focus of each ellipse being occupied

by the sun

the radius vector connecting sun and planet sweeps over equal areas in equal

times

o the squares of the periods of revolution of any two planets are in the same

ratio as the cubes of their mean distances from the sun

Kepler's laws were the first accurate mathematical treatment of the universe. They were a

tuming point in the history of thought. According to an historian of science, Rupert Hall

(1967), "it was Kepler who, in the Cosmographic Mystery, followed the example of

Tycho Brahe in denouncing the traditional belief in material spheres which had been left

unchallenged by Copernicus" (p. 127). A joumalist, Arthur Koestler (1967), who
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recognized the contribution of Kepler's laws to our understanding of planetary motion,

said so well:

They were the first "laws of nature" in the modern sense: precise, verifiable

statements, expressed in mathematical terms, about universal relations governing

particular phenomena. They put an end to the Aristotelian dogma of uniþrm

motion in perfect circles, which had bedeviled cosmology for two millennia, and

substitutedfor the Ptolemaic universe - afictitious clockwork of wheels turning

on wheels.... (p. 329)

Hall (1967) points out that Kepler's ideas on gravity, on action of forces at

distance, certainly "are important factors in the prehistory of the theory of universal

gravitation". Though Kepler limited his use of the concept of attraction to heavy bodies

cognate with the earth, as Hall points out, "he has stated, for the f,rrst time, that the

attraction is mutual" (p. 261). He goes on to say thatby expressing the motion due to

gravitational attraction as d1/d2 : trr2hrr1, where m1lm2 is the ratio of the masses of the

two bodies, and dlld2are the respective distances of these bodies from the earth, Kepler

began associating the theory of attraction with a definite dynamical form:

Kepler then went on to demonstrate, from the ebbing andflowing of the tides,

that this attractiveforce in the moon does actually extend to the earth, pulling the

waters of the seas towards itself; muclt more likely was it that the far greater

attractive force of tlte earth would reach to the tnoon, and greater beyond it, so

that no kind of earthy matter could escape from it. (p. 26I)

Hall (1967) concludes: clearly, "the genesis of the theory of universal gravitation is found

in Kepler. He points out that "Newton's hasty calculations of 7666, his later theory of
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moon, and his theory of tides, are all embryonically sketched in the Astronomia Nova"

G,.262). Hall, however, specifies what Kepler did not accomplish in his theory of

gravitational interactions. He goes on to say:

But the attraction was still specific, applícable only to heavy, earthy matter;

Kepler himself did not go so far ds to suppose that the sun and planets were also

mutually attracting masses, or that the dynamic balance he indicated as retaining

the earth and moon in their orbits with respect to each other ølso preserved the

stability of the planetary orbits with respect to the sun. Hefailed, as Copernicus,

Gilbert and Galileo failed, to see the full power of gravitational attraction as a

cosmological concept. @. 262)

There is no doubt that Newton used Kepler's ideas about planetary motion in the

development of the theory of universal gravitation. An explicit evidence to that is

Propositions I-XI of Book I of Princtpiø which deal with all three of Kepler's laws of

planetary motion - the law of areas (Propositions I-Iil), the harmonic law (Corollary 6 to

Proposition IV), and the law of elliptical orbits (Proposition XI). As Hall (1967) reminds

us, "Kepler's idea that the satellite revolving round a central body is maintained in its path

by two forces, one of which is an attraction towards the central body, although applied

only to the earth-moon system, holds the key to all that followed and to The Principia

itself'(p.262).

Although Galileo and Kepler set the stage for later developments in gravitational

theory, their contributions were not thought to be connected until Newton. Kepler's

contribution concemed the orbits of the planets round the Sun while Galileo's input
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concerned motion and the acceleration of falling bodies. It was not suspected until

Newton that there rvas a connection between falling objects and planetary motion.

Newton's Background Knowledge

Besides Kepler and Galileo there were other scientists who had influence on

Newton's development of his theory of universal gravitation. One of them was Christian

Huygens (1629-t695), who, according to Brougham and Routh (1912), fourteen years

before the Principia was published, first showed how to calculate centrifugal, or center-

fleeing forces. Huygens and Descartes had analyzed curved motion in terms of such a

centrifugal force. According to Stinner andMetz (2002), Huygens was the first to write

the mathematical statement for "centrifugal" acceleration as a:v2h.

According to Cohen (1981), Descartes had investigated the movement of a ball on

the inner surface of a hollow cylinder and the movement of water in a bucket swung in a

circle. Since the ball and the water seemed to flee the center of the system, Descartes

attributed their motion to the influence of a centrifugal force. We now know that the

centrifugal force is just an illusion that comes about when a moving object is viewed

from a rotating frame of reference. Giovanni Alphonso Borelli (1608 - 1679), several

years earlier than Huygens, had a slightly different idea. As Brougham and Routh (1972)

note:

Borelli, in treating of the motion of Jupiter's satellites, considers the planets as

having a tendency to resign from the sun and the satellites from the planets, but as

being "drdwn towards and held by those central bodies, and so compelled to

follow them in continued revolutions." (pp. 8-9)
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Newton initially used the concept of centrifugal force in the analysis of the circular

motion caused by a central force. According to Stinner (1994), "he managed to derive the

formula for'centrifugal' force in a more economical and elegant way" (p. 81). Newton

used the results of Galileo's kinematics of free fall and applied them to the dynamics of a

revolving object. Stinner (1994) illustrates how it could be done:

Figure 5-1. Derivation of Centripetal Acceleration

^ 
ABC oc Â DCB for small e

DB=vt

Let CD -112 a t2
c

Then CD/DB = DB/2R

Substitution gives a^= v2lR

A similar approach for deriving the formula â c: v 2 / R is used in many high school

physics textbooks today.

Later, Newton realized that the older and misleading notion of a centrifugal force

should be replaced by the concept of a centripetal or center-seeking force, which is equal

in magnitude to the centrifugal force but has opposite direction. Newton rejected the

concept of a centrifugal force because the analysis of the influence of that force seemed

to be independent of the properties of the central body. On the other hand, the concept of

a centripetal force entirely involves a central body, towards which the revolving object is

attracted. Indeed, the fundamental idea in any theory of gravitation is the interaction of

the central, attracting body with the revolving, attracted object.
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When Newton still spoke about motion in terms of centrifugal force, another

scientist, Robert Hooke (1629-1695), joined the discussion about planetary motion.

Historians of science consider this period (starting from 1679, when Hooke suggested a

philosophical correspondence on scientific topic of mutual interest) as a period of the

Newton-Hooke controversy. According to Cohen (1981), Hooke wrote a letter to Newton

inviting him to comment on any of Hooke's hypotheses or opinions, particularly on the

notion of "compounding the celestiall motions of the planetts [out] of a direct motion by

the tangent & an attractive motion towards the central body" (p.167). Cohen goes on to

say that this particular sentence was apparently Newton's introduction to the idea of

decomposing curved motion into an inertial component and a centripetal one in the

Principia.

In his letter, Hooke further suggested that the attraction of the sun draws away the

planets from moving in straight lines, and proposed that the force of attraction varies

inversely with the distance as the square of the separation. It is interesting to learn that

Hooke read to the Royal Society a paper explaining the curvilinear motion of the planets

by attraction as early as 1666. According to Brougham and Routh (1972), there were

other scientists who suspected the inverse square relationship between the force of

attraction and the distance of the separation. Brougham and Routh assert:

Halley, as well as others, had even hit upon the inverse duplicate ratio, by

supposing that the influencefrom the sun was dffised in a circle, or rather a

sphere, and that thereþre the areas proportioned to that tnfluence were as the

squares of the radii, and that consequently the intensities, being inversely as those

areas, were inversely as the squares of the radii or distances. (p. 9)
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It is generally accepted by historians of science that Hooke believed that Newton owed

him for the insight about the relationship between the centripetal force and the distance of

separation. Newton did not think so because Hooke could not make fruitful conclusions

from his idea. It is generally thought that at that point Hooke was stuck. As Cohen (1981)

asserts:

He could not see the dynamical consequences of hß own deep insight and

thereþre could not make the leap from intuitive hunch and guesswork to exact

science. He could go no further because he lacked both the mathematícal genius

of Newton and an appreciation of Kepler's law of areas, whichfigured

prominently in Newton's subsequent approach to celestial dynamics. þp. 167-

t6e)

Clearly, in developing the idea about universal gravitation Newton owes to the insights of

many scientists. V/hat differentiated Newton from other scientists who had caught many

glimpses of the theory of gravity was, according to Cohen (1981), "Newton's fecund way

of thinking about physics, in which mathematics is applied to the extemal world as it is

revealed by experiment and critical observation" (p. 177). This way of thinking Cohen

(i981) called the "Newtonian style". As Cohen describes it, the "Newtonian style consists

in a repeated give-and-take between a mathematical construct and physical reality" þ.

177).We admire Newton's ability to compare the real world progressively with a

simplified mathematical representation of it. One of the tools of Newton's mathematical

apparatus was his calculus invented to develop the law of universal gravitation as it

applies to the motion of planets.
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Newton's Calculus

Newton developed differential calculus, or as he called it, "Theory of Fluxions" in

1666, but the work was not published until 1704 as an appendix to Newton's book Optics.

It is well known that a German mathematician and philosopherLeibnizdiscovered the

system of differential and integral calculus independently from Newton. It is the signs

and symbols of Leibniz which continue to be used today. However, there was a

celebrated dispute between Newton and Leibniz over the invention of the calculus, which

is known as the Newton-Leibniz controversy.

The significance of the calculus can not be overestimated. Bemal (1954) gave the

following evaluation of the importance of the calculus:

The calculus, as developed by Newton, could be used and was used by himfor the

solving of a great variety of mechanical and hydrodynamic problems. It

immediately became the mathematical instrument for all understanding of

variables and motion, and hence of all mechanical engineering, and remained

almost the exclusive one untíl well into tlte present centuty. In a very real sense it

was as much an instrument of the new science as the telescope. (p. a8a)

It is interesting to leam from historians of science (Cohen, Hall, Herivel) that, contrary to

the common but erroneous supposition that Newton used algebraic analysis and his

fluxional calculus to reach his conclusions as they relate to his law of gravity, he

employed calculus but transformed it to geometrical arguments. This common

supposition is likely based, on the fable Newton himself encouraged towards the end of

his life. He claimed: "By the inverse Method of fluxions I found in the year

16771:1679/80] the demonstration of Kepler's Astronomical Proþosition viz. that the
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Planets move in Ellipses..."(As cited in Herivel, 1965,p.34). According to Herivel

(1965), Newton's statement, however, runs counter to all documentary evidence, "for

with only one proposition in the Principiø @ook II, Proposition 35, determining the

optimum shape for bodies moving through a resisting medium) can any fluxional analysis

be connected. In this case he stated his conclusions in the book without proof' (T,.2I3).

In his Principia Newton extensively employed a method of reasoning the essence

of which is the elementary conversion of geometrical elements, such as lines and areas,

into infinitesimal quantities converging towards finite ratios as they vanish in the limit.

Hall (1996) charactenzes the calculus Newton used as "an idiosyncratic geometry in

which infinitesimal increments of lines and areas perform the functions of first and

second order differentials, a geometry intimately integrated with his dynamical

principles" (p.2I3). As contemporary Italian historian Guicciardini (1999) argues, the

reason for Newton giving preference to geometry over the formal methods generated

(even by his own calculus) was his philosophical belief that geometry referred to objects,

and algebra was merely a heuristic device. Therefore, geometry, but not algebra, was able

to provide prooß. Moreover, Newton deeply believed that geometry fitted the context of

his Principia. By that, he probably meant that there was an intimate intellectual

comection between physics and geometry.

Stages of Newton's Thtnking in the Development of his Law of Gravity

Newton's discovery of universal gravitation, according to Cohen (1981), was not

"the isolated flush of genius," but the "culmination of a series of exercises in problem

solving, ...a product not of induction but of logical deductions and transformations of

existing ideas." Cohen is one of the historians of science who extens ively analyzed,
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documents related to Newton's work and thinking. These documents enabled Cohen to

reconstruct the process that led to Newton's discovery of universal gravitation. Cohen's

analysis shows "Newton's fecund way of thinking about physics, in which mathematics is

applied to the extemal world as it is revealed by experiment and critical observation."

Cohen, as mentioned earlier, called this kind of thinking the Newtonian style which

"consists in a repeated give-and-take between a mathematical construct and physical

reality."

According to Cohen, the decisive step on the path ofNewton's discovery of

universal gravity came in late 1679 and early 1680, and not as Newton claimed, in 1666.

In fact, it was initiated by Robert Hooke when he introduced Newton to his new way of

analyzingmotion along a curve, a motion having two components - an inertial component

and a centripetal one. Hooke also suggested that the centripetal attraction is inversely

proportional to the square of the distance.

The inverse-square nature of gravitational force for circular orbits was hinted at

before by Huygens. In 1673 he published a supplement to a book on the pendulum clock

in which he states that for circular motion the centrifugal force is proportionalto v2/R,

where v is the velocity of the orbiting body and,R is the radius of rotation. According to

Cohen, Newton had independently discovered the same relation in the 1666. Since a

centrifugal force and a centripetal force differ mathematically only in the direction, the

same relati onrt/Rholds for a centripetal force. By means of simple algebra, using

Kepler's third law of planetary motion and the relation for centripetal force, one can

readily show (Halley was the first who did it) that the centripetal force varies inversely

with the square of the distance. For circular orbits,
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Figure 5-2.Denvation of Kepler's Third Law for Circular Orbits

In the presented derivation, according to Kepler's third law, n3lt' is a constant

K, where rR is the radius of the planet's circular orbit and Zis the period of the orbit. For a

circular orbit, the centripetal force is proportionalto v2/R, where v is the planet's velocity.

In time T,the planet makes a complete revolution, covering the circumference of a circle

measuring 2rcR,the velocity is then 27rR/T.

The question Hooke posed before Newton, according to Cohen, was a reverse

one: "If a central attractive force causes an object to fall away from its inertial path and

nlove in a curve, what kind of curve results if the attractive force varies inversely as the

square of the distance?"(p. 169) As a result of correspondence with Hooke, Newton came

up with his work De Motu (Concenting Motion),likely finished in 1684, were he showed

that an object that has inertial motion and is subject to an inverse-square centripetal force

moves in elliptical orbit. According to Cohen, the exact progression of Newton's ideas in

the time between his correspondence with Hooke and his completion of De Motu is not
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documented. Nevertheless, Cohen is certain that "it was Hooke's method of analyzing

curved motion that set Newton on the right track." Cohen believes that

the approaclt Newton takes to terrestrial and celestíal dynamics in De Motu,

which hefurther developed...in thefirst book of the Philosophiae Naturalis

Principia Mathematica, represents hts thinking on planetary dynamics inspired

by hß correspondence with Hooke. (p. 169)

Cohen continues to describe the progression of Newton's thinking in the

development of his law on universal gravitation. A series of stages can be identified in

this description as follows:

In the Principia (and also in the discussion at the beginning of De Motu), in the very first

proposition, Newton develops the dynamical significance of Kepler's law of areas by

proving that the curved motion described by the law is a consequence of centripetal force.

This proof has three parts.

As Cohen comments, in the first part of the proof, Newton considers a body

moving along a straight line with a constant velocity.

Figure 5-3. The First Step in Newton's Proof of Relation between Inertial Motion and

Kepler's Law of Areas

AA
0
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The body starts at A6 and after successive equal intervals reaches first A r, then Az and

so on. A point P is chosen above the line of motion at a distance H. The triangles A oPA

r, A rPA 2, A 2PA 3 and so forth all have the same area because they have equal bases and

the same altitude. By this analysis, Newton showed the relation between inertial motion

and Kepler's law of areas.

ln the second part ofthe proof, the body begins as before but at A 2 receives an

impulsive blow toward P. Now the body moves along a straight line not to A 3 but to B 3.

Newton again showed by geometry that the triangles A rPA z and A 2PB 3 have the same

area.

Figure 5-4. The Second Step in Newton's Proof of Relation between Inertial Motion and

Kepler's Law of Areas

In the third part, the body is given a blow toward P at the end of each interval.

Therefore, the body moves in a polygonal path around P. Again, triangles can be formed

that have the same area.
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Figure 5-5. The Third Step in Newton's Proof of Relation between Inertial Motion and

Kepler's Law of Areas
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In the limiting case where the time between blows approaches zero the body is subject to

a continuous force directed toward P and the polygonal path becomes a smooth curve.

Area is still conserved. In this way, Newton proved that a centripetal force generates a

curve according to Kepler's law of areas.

In the second proposition of the Principia Newton proved the converse: Motion in

a curve described by the law of areas implies a centripetal force. As Cohen notes, with

these two propositions Newton demonstrated that the law of areas is a necessary and

sufficient condition for inertial motion in a central-force field.

The next step for Newton in the development of the concept of universal

gravitation was his realization that the planets do not move according to the law of areas

in simple Keplerian elliptical orbits with the sun at a focus. Instead, the focus lies at the

coÍlmon center of mass, because as a consequence of Newton's third law of motion (the

law ofaction and reaction), not only does the sun attract each planet but also each planet

attracts the sun, and the planets attract one another. Newton realized that the planets
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move precisely in elliptical orbits and according to Kepler's laws of areas not in the real

world but in an artificial situation, a one-body system - a single point mass moving with

an initial component of inertial motion in a central-force field. The one-body system

reduces the earth to a point mass and the sun to an immobile center of force. In the

introduction to the 11th section of the Principia G).I64),Newton explains that he has

considered so far a situation where "there is no such thing existent in nature." The

situation is artificial

For attractions are made towards bodíes, and the actions of the bodies attracted

and attracting are always reciprocal and equal, by Law III; so that if there are

two bodies, neither the attracted nor the attracting body is truly at rest, but

both..., being as it were mutually attracted, revolve about a common centre of

gravity. (p. 164)

As Newton continues the discussion in the 11th section of the Principia,he takes

the next step, from an interactive two-body system to an interactive many-body system.

This step is a further consequence of the third law of motion. Since each planet is a center

of an attractive force as well as an attracted body, a planet not only attracts and is

attracted by the sun but also attracts and is attracted by each of the other planets. Newton

asserts:

And if there be more bodies, which either are attracted by one body, which either

are attracted by one body, which is attracted by them again, or which all attract

each other mutually, these bodies will be so moved among themselves, that their

common centre of gravity will either be at rest, or move uniformly forwards in a

right line. (p. 164)
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Once Newton concluded that all bodies must athact each other, he presented the

conclusion and explained why the magnitude of the attractive force is so small in many

situations that it is unobservable. He explained that it *u, porrible to observe these forces

only in the huge bodies of planets, meaning that gravitational force would depend on the

masses of the interacting objects. From his pendulum experiments performed earlier,

Newton inferred that, since different masses have identical constant accelerations towards

the earth's center, a constant force is acting whose magnitude is proportional to the

masses of the bodies concerned (Principia, Section VI, pp. 303-326).

This kind of analysis led Newton to conclude that the planets neither move

exactly in ellipses nor revolve twice in the same orbit, therefore "there are as many orbits

to a planet as it has revolutions." As cited in Cohen (1981), Newton wrote: "To consider

simultaneously all these causes of motion and to define these motions by exact laws

allowing of convenient calculation exceeds, unless I am mistaken, the force of the entire

human intellect" (p. 172).

As it turned out, the case of many-body systems still occupies the minds of mathematical

physicists trying to find solutions for these kinds of problems up to the present day. One

of the revolutionary features of Newtonian celestial dynamics, according to Cohen, is the

distinction that Newton draws between the realm of mathematics, in which Kepler's laws

are truly laws, and the realm of physics, in which they are only approximations.

Newton realized that a set of point masses circling the central point mass aïtract

one another and perturb one another's orbit when he compared the construct with physical

reality. Newton knew that Jupiter and Satum were the most massive planets, and with the

help of John Flamsteed, he found that the orbital motion of Saturn is perturbed when the
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two planets were closest to each other. Cohen notes, "the process of repeatedly

comparing the mathematical construct with reality and then suitably modifying it led

eventually to the treatment of the planets as physical bodies with definite shapes and

sizes" (p. 178).

The important step to such treatment of the planets was Newton's realization that

the earth attracts an object with the same force as if all of the earth's matter were

concentrated in one point, at the center of the planet. With the powerful tool of his

integral calculus, Newton proved the following theorem: a spherical shell with

homogeneously distributed mass attracts a body in the same way as if the entire mass of

the shell were concentrated at its center. To prove this theorem Newton goes back to

mathematical constructs assuming that the earth can be considered to be a set of

concentric spherical shells. He formulates Proposition LXXII in the Principia:

If to the several points of a given sphere there tend equal centrtpetal forces

decreasing as the square ofthe dístancesfrom the points, I say, that a corpuscle

placed wíthin the sphere is attracted by aforce proportional to its distancefrom

the centre. (p. i96)
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Figure 5-6. Proposition LXXIII in the Principía

In his proof Newton suggests placing a corpuscle in the sphere ACBD, described about

the center S. Then he inscribes an interior sphere PEQF having radius SP. He points out

that

It is plain...that the concentric spherical surfaces of which the dffirence AEBF of

the spheres is composed, have no ffict at all upon the body P, their attractions

being destroyed by contrary attractions. There remains, therefore, only the

attraction of the interior sphere PEOF, (p. 196)

After this proposition in his Scholium, Newton specifies his assumptions about orbs

being extremely thin, "that is, the evanecent orbs of which the sphere will at last consist,

when the number of the orbs is increased, and their thickness diminished without end."

The similar assumptions are made about the particles composing lines, surfaces and

solids - they "are to be understood equal particles, whose magnitude is perfectly

inconsiderable" (p. 196).

Then, in the following Proposition LXXIV, Newton generalizes that "a corpuscle

without the sphere is attracted with the force inversely proportional to the square of its

ra\ui
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distance from the centre (p. 197). Finally, based on this proposition, he concludes the

proof of the theorem:

For the attraction of every particle is inversely as the square of its distance from

the centre of the attracting sphere þy Prop. LXXIV), and is thereþre the same as

if that whole attractingforce issuedfrom one single corpuscle pløced in the

centre of this sphere. (p.197)

Newton presents this conclusion in Proposition LXXV as part of his proof of the theorem

conceming the case of two interacting spheres. This theorem says:

If to the several points of a given spltere there tend equal centripetal forces

decreasing as the square ofthe distances from the point, I say, that another

similar spltere will be attracted by it with aforce inversely proportional to the

square of the distance of the centres. (p. 197)

Only after this series of proofs, Newton extends his generalizations for spheres that are

dissimilar in terms of density and attractive force in Proposition LXXVI:

If spheres be however dissimilar (as to density of matter and attractiveforce) in

tlte same ratio onwards from the centre to the circumference; but everywhere

simÌlar, at every given distancefrom the centre, on all sides round about; and the

øtÍractiveforce ofevery poÌnt decreases as the square ofthe distance ofthe body

attracted: I say, that the wholeforce with which one of these spheres attracts the

other will be inversely proportional to the square of tlte distance of the centres.

(p. 1e8)

The proof of this theorem comes as a consequence of the previous Proposition LXXV.

Newton again ernploys his method of integral calculus when he represents two interacting
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spheres as spheres composed of numerous concentric shells having different densities.

Then he lets "the number of the concentric spheres be increase d. in infinitum, so that the

density of the matter together with the attractive force, in the progress from the

circumference to the centre, increase or decrease according to any given law" þ. 199).

By this thinking process Newton leads to the idea of interacting objects having definite

size and shape: "...so the spheres may acquire any form desired; and the force with which

one of these attracts the other will be still, by the former reasoning, in the same inverse

ratio of the square of the distance" (p. 199).

In book th¡ee of the Principia, Newton treats the topic of gravitation essentially

the same way, but the treatment is more mathematical. First, Newton conducts what is

called the moon test (supposedly done in 1666) where he extends the terrestrial gravity to

the moon and demonstrates that the weight force varies inversely with the square of the

distance. Newton found that the moon moves as if it were attracted to the earth with the

force 1/36001h of that with which the earth pulls on objects at its surface. He also knew

that the moon is situated at a distance from the earth that is 60 times earth's radius.

Therefore, the conclusion that the force of attraction at the distance of the moon's orbit is

1/3600th of that on the surface of the earlh is consistent with the deduction that the

terrestrial gravity extends to the moon and decreases with the square of the distance.

Newton then identifies the gravitational force existing on earth with the force of

the sun on the other planets, as well as the force of a planet on its satellites. He now calls

all these forces gravity. Referring to the third law of motion, he transforms the concept of

a solar force on the planets into the concept of a mutual force between the sun and the

planets. In a similar way he transforms the concept of a planetary force on the satellites
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into the concept of a mutual force between a planet and its satellites. Finally, the resulting

hansformation is the notion that all bodies interact gravitationally.

The presented stages of Newton's thinking in the development of his law of

universal gravitation reflect a new type of thinking. His style of thinking laid the

foundation for a new paradigm in exploring science the essence of which is the process of

repeatedly comparing the mathematical construct with reality, and if the mathematical

construct falls short, modifying it. This way of thinking had an outstanding significance

not only for Newton's contemporaries but it is still proves to be indispensable, plausible

and fruitful.

Significance of Newton's Tlteory of Gravitation

The examination of Newton's theory of universal gravitation reveals the high

point of the Scientific Revolution, namely the demonstration that terrestrial physics and

celestial physics are one and the same. According to Hall (1967), in his theory, Newton

gave the proof that the inverse-square law accounts for the elliptical orbit established by

Kepler. He provided the general dynamical theory of Kepler's laws of planetary motion.

Galileo's law of acceleration, where his curious and unexplained observation that the

descent of a free falling object is independent of weight, was accounted for. Newton also

proved Huygens'theorems on centrifugal force. The difference between Newton and

other scientists who tried to solve problems in celestial mechanics was, as Brougham and

Routh (197 2) i dentified, his accomplishments :

...the whole subject was at once thoroughly investigated. It was not merely that

the general prtnciple hitherto anxiously soughtfor, and of which others caught

many glimpses, was now unþlded and established upon appropriatefoundations;
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but almost every consequence and application of it was either traced, or plainly

sketched out. (pp. 9-10)

The list of these applications or consequences is quite impressive. It includes, for

example, Newton's method of determining orbits from observations of position. An

approximate solution of the problem (essential to the dynamical theory of the moon's

orbit) of determining the motions of three mutually gravitating bodies was the beginning

of research area known as the "many-body problem". The broad theory of the tides was at

last established, and the degree of asphericity of the earth caused by its rotation was

determined. In all of these and other problems, Newton showed the connection between

them and his theory of gravitation. Finally, Newton's extraordinary contribution to

physics is that he introduced a new paradigm of thinking about physics termed by Cohen

(1981) as "Newtonian style". This style of repeated give-and-take between a

mathematical construct and physical reality enabled Newton to lay down the principles of

theoretical physics as a mathematical science.

Importance of Geometry in the Presentation of Gravity

The main objective of this study is to explore the role mathematics plays in

physics education and to examine how physics textbooks represent it. The examples from

the history of gravity highlighted in this chapter show that geometry was used throughout

by scientists to get insights. The reason for that could be that geometry assisted in

conceptualizing gravity due to its visual quality to represent physical phenomena, and

because of this, geometry was very often the only tool ancient scientists used to provide

proofs.
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For example, in Aristotle's explanation of the spherical shape of the earth

þrovided in the first section of this chapter) the geometrical concept of the sphere being

the shape of minimum surface area helped Aristotle to conclude that "any other shape

would allow space for further motion of things to get closer to the center" (As cited in

Stevens, 1998, p.398).

Another example of using geometry is Kepler's description of planetary motions

where he applied geometry that Newton used later to test his theory of gravity, namely

Kepler's law of areas. Newton proved that the curved motion described by the law of

areas was a consequence of centripetal force, and conversely, motion in a curve described

by the law of areas implies a centripetal force (as shown in Newton's reasoning stages in

the development of his law of universal gravitation). Newton believed that there was an

intimate connection between physics and geometry. He showed this connection when he

demonstrated that the law of areas was a necessary and sufficient condition for inertial

motion in a central-force field.

The example where Newton used (earlier in his developing ideas of gravity) the

results of Galileo's kinematics of free fall and applied them to the dynamics of a

revolving object to derive the relation â c: v2lR (discussed in Stinner, 1994,p.81) was

used in many physics textbooks today of the 1950's and 1960's.

Another impressive example of the significant role geometry plays in

understanding gravity was Newton's theorem where he stated that a spherical shell with

homogeneously distributed mass attracts a body in the same way as if the entire mass of

the shell were concentrated at the center. Here Newton used a geometrical construct to

represent the earth as a set of concentric spherical shells (this theorem was discussed
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earlier in the present chapter). Geometry, in combination with Newton's infinitesimal

calculus, provided a logical base in this example for deriving the significant theorem. The

derivations in this theorem are not hard to understand for a high school student. The most

valuable consequence of Newton's demonstration is that students, having exposure to

geometrical proofs, could use the method involved in them as a mode of thinking in

solving other physics problems. This is not to say that students should use the

geometrical method developed by Newton to study motion, thus reproducing all of

Newton's steps from the Principia. Clearly, this would not be practical because many of

Newton's geometrical proofs arevery lengthy, and sometimes beyond the scope of

sfudents' knowledge of geometry. In addition, we now know more efficient analytical

ways of dealing with problems on motion. The reality is that students master little

geometry in high school. Therefore, they should be familiar only with basics of Newton's

geometric method in order to use it as a way of thinking when a problem situation

warrants it.

For example, a good exercise for students would be to prove Newton's theorem

tha| a test mass within a hollow sphere will feel no push in any direction because of

cancellation of forces from opposite sides. This theorem is presented in the Principia,

Section XII, Proposition LXX, Theorem XXX. Let us examine Newton's proof in detail.

Figure 5-7. Proposition LXX, Theorem XXX in the Principia
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Let us draw lines AB and CD through a test mass m at point P within this hollow sphere.

Since the triangles ACP and BDP are proportional, the arcs AC and BD are also

proportional. Therefore, if we construct a faceted hollow sphere, the facets with masses

mt and m2orr opposite sides of the sphere will be proportionate. We assume for simplicity

that the thickness of the spherical shell is uniform throughout. If this is the case, then the

volumes, and consequently masses of the facets on the opposite sides of the sphere would

be proportionate to the squares of their distances a and ó to test rnass m at point P, i.e.:

2mt 
-!- t2'm2o

By the inverse square law of gravitational attraction, the gravitational force acting on the

test mass m from the first facet is:

E = G!4,
where G is a gravitational constant.

Similarly, the gravitational force acting on the test mass m ftom the second facet is:

F nffiffil
I^ - V'b'

Since

2lflt a

-=17,mzD
then the ratio of the gravitational forces is:

F, *rb' I

Fz ffird'
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i,e., F¡: F2.

Similar reasoning for any other pairs of facets would let us conclude that all of them

would compensate each other. Thus, the resultant gravitational force from the whole

spherical surface would be zero for any point P inside the sphere.

This example, which can be seen as geometric way of introducing the idea of

integration, shows students a perfectly sound and an elegant way to approach problems of

this kind.

Another example demonstrating the elegance of geometry in combination with

Newtonian dynamical principles is a famous, more sophisticated, "tunnel problem"

(Eisenkraft and Kirkpatric, 2000).

Figure 5-8. Tunnel Problem

In this problem students are instructed to calculate the period of an object that

travels through a hole created along diameter of the Earth. Since on its travel through the
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tunnel, the object experiences a force due to each part of the Earth, some of the Earth will

be pulling inward and some will be pulling outward. A useful observation (proved before

by Newton) is that the force at any position is equivalent to that of all of the enclosed

mass only, as if that mass were located at the Earth's center. The mass in the extemal

shell has no contribution to the force. At an arbitrary point a distance r from the center,

the attractive enclosed mass is then

M = dv: ¿4m3
arJ

where d is density of the Earth, and v is volume of the enclosed mass. If the

density is constant and there is no friction in the tunnel, we can solve for the force

on the object at any point in the tunnel.

Gd4nr3mF_
3rz

When the r is toward the right, the force is toward the left, and the correct form of this

equation is

F = -kr.

This equation is the same as the equation of a mass on a spring. The motion of the mass

in such motion represents simple harmonic motion. The object will oscillate back and

forth through the earth. The period of oscillation lis given by the equation

T =2n

^Mmur=
r

( qîú¿m\
=l-lr=kr.\g )

3m

4nGdm

3n

Gd

Assuming that the density of the earth is 5.5x103 kgl^t,we get a period 84 minutes.
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It is interesting to compare this result with the period of a satellite orbiting the

Earth. Students usually do this problem before considering more sophisticated examples.

The idea of a satellite orbiting the Earth first appears famously in Newton's Principia.

In low Earth orbit gravitational force according to inverse square law is:

'We 
assume that the orbit is circular with radius of that of the Earth R¿. Therefore, the

satellite is orbiting the Earth at the constant speed v : 2 rRs /T under the influence of the

only force ma"according to Newton's second law of motion. This force here is equal to

the force represented by inverse square law ofgravitational attraction.

The orbital period can be expressed then by

,=ry\=ffia,

Ã:r =2"lGA'

Substitution for radius of the Earth Rt : 6.37 x 1 06 m, mass of the Earth

Ms: 5.98 x l02a kg, and gravitational constant G: 6.67 x 10-l' Nm'/kg'yields a period

of 88 minutes. This is very close to the period of an oscillating mass moving through the

tunnel of the Earth in the previous example. This example is significant for students'

conceptual understanding of a periodic motion because the quantitative coincidence of

the periods of a satellite orbiting the Earth and of an object oscillating back and forth

througli the Earth means that these periodic motions have something in common, mainly

they represent simple harmonic motions subjected to the restoring force,F : - kr and

having period of oscillations I : 2n / k. This example serves a good opportunity to
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demonstrate to the students the applicability of the same physical phenomenon to broader

contexts (The ability of broader contextualization is an essential characteristic of experts

in physics problem solving). For instance, students can discuss the similarity of a simple

harmonic motion such as the projection of a steady motion around a circle (circular

motion seen edge - on, or motion around a vertical circle shadowed on the ground by

vertical sunlight) and that of the to-and-fro motion of a pendulum bob (with small

amplitude), or the up-and-down motion of a mass on a spring. ln addition, these examples

demonstrate the use of mathematics as a rich conceptual tool. lndeed, we could not come

to the conclusion of the similarity of motions described in these examples, let alone

extend applications of our conclusion to other contexts, if we did not derive mathematical

equations describing these examples. On the other hand, our derivations were based on

qualitative analysis of the situations represented in these examples. Thus, there is a two-

sided connection between qualitative and quantitative approaches in the presentation of

physics material.

Finally, another example of using geometry to illuminate the understanding of the

third law of motion is Newton's own experiment he describes in his Principia in the

second Scholium, right after the Laws of Motion and their Corollaries. This experiment

plays a vital role in Newton's theory of universal gravitation. It looks like Newton felt

that his third law, the law of equality of action and reaction, was a novel statement

requiring further justification. In this justification Newton invoked the experiments on

elastic impact carried out some years before independently by Christopher Wren, John

Wallis, and Christian Huygens Qrlewton, 1687,p.22).He collided together the

pendulums (about ten feet long) with different masses, to establish that the impacts
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(forces) experienced by them were equal and opposite as measured by how far they

rebounded.

Figure 5-9. Newton's Justification of his Third Law of Motion

Having performed the analysis of a collision between two bodies of unequal mass in the

center of gravity frame of reference, Newton concluded that they had "equal motions" in

this frame, both before and after collision. This could only mean the product of mass and

velocity, or momentum is conserved (momentums are equal and opposite). He realized

and stated that during such a collision the center of mass itself would move at a steady

speed. After the description of this experiment in detail, Newton concluded: "And thus

the third Law, so far as it regards percussions and reflections, is proved by a theory

exactly agreeing with experience" (p. 25).Newton's geometrical justification of the third

law of motion in the Principi¿ illuminates our understanding that by the third law of

motion Newton meant conservation of linear momentum. Unfortunately, Newton's

interpretation of the third law of motion is not presented in physics textbooks. The
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geometrical explanation of the experiment performed by Newton and described in his

Principia would definitely deepen students' understanding of such important principle of

mechanics.

There is no doubt that problems where students model situations using the

Newtonian geometric method in combination with his laws of motion, help conceptual

understanding of many interesting situations in physics. Once the basics of Newtonian

geometric method are understood, students can move on to more advanced problems,

often offered at physics olympiads. The following are examples of such problems

(Eisenkraft and Kirkpatrick, 2000).

Problem A: A spherical hollow is made in a sphere of radius R such that its

surface touches the outside surface of the sphere and passes through the lead sphere's

center. The mass of the sphere before hollowing was M. With what force will the lead

sphere attract a small sphere of mass m,which lies at a distance d from the center of the

lead sphere on the straight line connecting the centers of the spheres and the hollow?

Figure 5-10. Problem A

One way to the solution of this problem could be to imagine that the sphere of

radius R was initially filled in with a sphere having the mass tnt removed.If we now remove
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the filled in part, the gravitational force between the sphere with a hollow and the sphere

of mass ru would be the difference between two gravitational forces:

F: Ft - Fz: Gy+ - 6?'"^o'"¿ffi -- d'z -(o-4\'
[* z)

(qon' lnl 'l
Gpvrm - GPv^tr,y" : o*ol--l- -o "lt) , l:lo-!\' -"'nl d' - a;4 l-t z) I (- z) )

^(l(ì41rR3 l t_ I l:o**lt_ 1 
IvmP t lF-J;¡yl:u*'*l7- B;_ñlI t z)) ( \ t) )

Where F¡ is the gravitational force between the sphere with the mass M and the

sphere with the mass lz, Fz is the gravitational force befween the removed hollow with

the mass fi1 ,uu,o,¿¿àTrd the sphere with the mass m, p is the density of lead, Z¡ is the

volume of the sphere of the radius A, and Vntzis the volume of the sphere of the radius

R/2.

Obviously, the solution to this problem includes geometric concepts and some

algebraic rearrangements of the equations involved. The final result looks quite complex.

It would be useful to ask that students do some sort of error analysis of the final result: If

we assume, for example, that d > R thenthe gravitational force , = l?Y which is the

reasonable answer since the mass of the hollow is less than the mass Mof the sphere

before hollowing. Students would benefit if the textbooks presented this kind of error

analysis in example problems. Unfortunately, the analysis of the answer in textbook
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example problems is very rare. Students would get a good opportunity to combine their

qualitative and quantitative reasoning if textbooks incorporated this step to the process of

the problem solutions.

Problem B: A tunnel is drilled along a chord of the Earth connecting points A and

B. Calculate the period for an apple to travel from A to B. Comment on the feasibility of

such a tunnel for global travel. Does a straight tunnel provide for the fastest journey from

AtoB?

Figure 5-11. Problem B

The case of "tunnel" through the center of the earth problem was presented earlier

in this chapter. The period of oscillations the tunnel turned out to be

It is not hard to show that this equation is equivalent to the equation

r;
T = 2n -/11 , where R is the radius of the earth, and g is acceleration due to

ïg'

gravity (the derivation follows below).
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W'e established earlier that the motion of an object in the earth tunnel is subjected

to the force which varies proportionally with the distance x from the center (F : - h). We

can find the value of the constant of proportionality k if we set x : .R and F - - mg (when

the object is on the surface of the earth):

_kR: _mg.

Therefore, k =!9, and

, --mB -r - 4.
R

High school physics textbooks do not introduce differential equations to derive

the equation of the period Zof oscillations of a harmonic motion. However, the formula

T =2n

is introduced qualitatively in many textbooks.

Applying this formula, we will obtain the following equation for the period of

oscillations of an object in the tunnel through the center of the earth:

Problem B differs from the case of the "tunnel" through the center of the earth.

The difference is that the tunnel does not go through the center of the earth. Let's see if

the result will be different.

The difference now is that the apple in this problem situation is oscillating due to

the component of the gravitational force in horizontal direction of this tururel. The

m

k
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gravitational force makes an angle 0 withthe vertical direction. Therefore, the

component of the gravitational force F'in the direction of the tunnel is:

F': Fsin 0 =*8 *.
R

This equation tums out to be the same equation as the one for the motion of an

object in the tunnel through the center of the earth. Therefore, the period of oscillations of

an apple in the tunnel AB is the same as in the former case which isT = 2x It would

take half of this time to go from point A to point B of the tunnel. Therefore,

T=ttE=qzmin.
Ïg

As a matter of fact, the formula for the period of oscillations of the apple in the

tunnel does not include the distance from A to B. Therefore, it is reasonable to conclude

that it would take about 42 min to travel in any straight tunnel in the earth whether the

tunnel goes through the center of the earth or not.

The demonstrated examples of applications of the Universal Law of Gravitation

show that using elementary geometry is very important in the discussion of gravity.

Geometrical proofs can be thought of as valuable conceptual tool for students. Together

with Newton's laws of motion geometrical method aids in solving interesting problems,

particularly those requiring visualizalion and constructing of models where students

compare mathematical representation with physical reality according to "Newtonian

style" of thinking.
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Summary

Aristotle and other early philosophers of Greece thought that all matter was made

of four elements: earth, water, air, and fire. They considered earth and water the heaviest.

Therefore, the element of earth, as the most heaviest, was placed in the center of the

universe, and all objects would fall towards the earth in straight lines with the exception

of planets and stars which were presumed to be moving in circles around the earth.

The medieval scientists Jean Buridan and later Nicole Oresme considered gravitas

from a new point of view. They proposed that there were the element terra (earth) and

the element aqua (water). Oresme and Buridan seem to speak of the element terra as

forming a globe with its own center, and of the element aqua zsforming the globe with

its own center. These centers were not always in the same place, and it was postulated

that the element terra and the element aqua each formed a separate nafural sphere

because of gravity. Going further, Buridan and several scholars after him proposed to

describe the two spheres of earth and water interacting.

Copernicus made a mathematical assumption about the heliocentric system,

arguing that all celestial spheres revolve around the sun with the sun being in the center

of the universe. It is likely that Oresme influenced Copemicus's idea of heliocentrism.

Oresme opposed the theory of a stationary earth 200 years before Copernicus did. He

suggested that if gravity, the tendency of earth to move toward the center, were regarded

as the attraction of earth to earth, then the earth could revolve around the sun and celestial

spheres would still fall in a straight line.

Another signif,rcant figure in the development of ideas about gravitation was

Galileo. Instead of trying to answer the question "why do objects fall", Galileo explored
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"how do the objects fall." Galileo's contribution to the understanding of gravity is that he

changed the approach to studyin g gravityby emphas izingthe"how" of gravity. First, he

conducted careful experiments to understand the "how" of gravity. Secondly, he gave not

only a qualitative account of motion under gravity but also a mathematical quantitative

description.

The astronomer Johannes Kepler, who discovered the laws of planetary motion at

the beginning of the seventeenth century, was a significant figure in the development of

ideas about gravitation. Kepler was the first man who realized that planets should move

in ellipses and not circles. Kepler's laws were the first accurate mathematical treatment of

the universe.

There is no doubt that Newton used Kepler's ideas about planetary motion in the

development of the theory of universal gravitation. Although Galileo and Kepler set the

stage for later developments in gravitational theory, their contributions were not thought

to be connected until Newton brought them to the forefront. Kepler's contribution

concemed the orbits of the planets around the sun while Galileo's input concerned

motion and the acceleration of falling bodies. It was not suspected until Newton's

theories, that there was a connection between falling objects and planetary motion.

Besides Kepler and Galileo there were other scientists who had an influence on

Newton's development of his theory of universal gravitation. One of them, Christian

Huygens, first showed how to calculate centrifugal, or center-fleeing forces. Huygens and

Descartes had analyzed curved motion in terms of such a centrifugal force. Newton

initially used the concept of centrifugal force in the analysis of the circular motion caused

by a central force. Laler, Newton realized that the older and misleading notion of a
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centrifugal force should be replaced by the concept of a centripetal force, which is equal

in magnitude to the centrifugal force but has opposite direction.

When Newton still spoke about motion in terms of centrifugal force, another

scientist, Robert Hooke, joined the discussion about planetary motion. Hooke suggested

that the attraction of the sun draws away the planets from moving in straight lines, and

proposed that the force of attraction varies inversely with distance as the square of the

separation.

Clearly, in developing the idea about universal gravitation Newton owes to the

insights of many scientists. What differentiated Newton from other scientists who had

caught many glimpses of the theory of gravity was Newton's ability to compare the real

world progressively with a simplified mathematical representation of it. One of the tools

ofNewton's mathematical apparatus was his calculus invented to develop the law of

universal gravitation as it applies to the motion of planets. The significance of Newton's

calculus can not be overestimated. Moreover, contrarily to the common but erroneous

supposition that Newton used algebraic analysis and his fluxional calculus to reach his

conclusions about his law of gravity, Newton employed calculus and transformed it to

geometrical arguments.

Newton's discovery of universal gravitation, according to Cohen (i981), was not

an "isolated flush of genius," but the "culmination of a series of exercises in problem

solving, ...a product not of induction but of logical deductions and transformations of

existing ideas." According to Cohen, the decisive step on the path of Newton's discovery

of universal gravity came in late 1679 and early 1680. In fact, it was initiated by Robert

Hooke when he introduced Newton to his new way of analyzingmotion along a. cuÍve, a



174

motion having two components - an inertial component and a centripetal one. Hooke also

suggested that the centripetal attraction is inversely proportional to the square of the

distance. The inverse-square nature of gravitational force for circular orbits was hinted at

before by Huygens. By means of simple algebra, using Kepler's third law of planetary

motion and the relation for centripetal force, one can readily show (Halley was the first

who did it) that the centripetal force varies inversely with the square of the distance.

The question Hooke posed before Newton, according to Cohen, was a reverse

one: "If a central attractive force causes an object to fall away from its inertial path and

move in a curve, what kind of curve results if the attractive force varies inversely as the

square of the distance?"(p.169) As a result of correspondence with Hooke, Newton came

up with his work De Motu (Concerning Motion),likely finished in 1684, where he

showed that an object that has inertial motion and is subject to an inverse-square

centripetal force moves in elliptical orbit.

The progression of Newton's thinking in the development of his law on universal

gravitation can be described as follows:

ln the very first proposition of the Principia (and also in the discussion at the begiruring

oî De Moru), Newton develops the dynamical significance of Kepler's law of areas by

proving that the curved motion described by the law is a consequence of centripetal force.

In the second proposition of the Principia,Newton proves the converse: Motion in a

curve described by the iaw of areas implies a centripetal force. As Cohen notes, with

these two propositions Newton demonstrates that the law of areas is a necessary and

sufficient condition for inertial motion in a central-force field.
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The next step in the development of the concept of universal gravitation is

Newton's realization that the planets do not move according to the law of areas in simple

Keplerian elliptical orbits with the sun at a focus. Instead, the focus lies at the common

center of mass, because as a consequence of Newton's third law of motion (the law of

action and reaction), not only does the sun atlract each planet but also each planet attracts

the sun, and the planets attract one another. Newton realizes that the planets move

precisely in elliptical orbits and according to Kepler's laws of areas not in the real world

but in an artificial situation, a one-body system - a single point mass moving with an

initial component of inertial motion in a central-force field. The one-body system reduces

the earth to a point mass and the sun to an immobile center of force.

Newton then continues the discussion of the next step in the 11th section of the

Principia focusing on transition from an interactive two-body system to an interactive

many-body system. This step is a further consequence of the third law of motion. Since

each planet is a center of an attractive force as well as an attracted body, a planet not only

attracts and is attracted by the sun but also attracts and is attracted by each of the other

planets.

Once Newton concludes that all bodies must attract each other, he presents the conclusion

and explains why the magnitude of the attractive force is so small in many situations that

it is unobservable. He explains that it is possible to observe these forces only in the huge

bodies of planets, meaning that gravitational force would depend on the masses of the

interacting objects. From his pendulum experiments performed earlier, Newton inferres

that, since different masses have identical constant accelerations towards the earth's
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center, a constant force is acting whose magnitude is proportional to the masses of the

bodies concerned (Principia, Section VI, pp. 303-326).

This kind of analysis led Newton to conclude that the planets neither move

exactly in ellipses nor revolve twice in the same orbit, therefore "there are as many orbits

to a planet as it has revolutions."

One of the revolutionary features of Newtonian celestial dynamics, according to Cohen,

is the distinction that Newton draws between the realm of mathematics, in which Kepler's

laws are truly laws, and the realm of physics, in which they are only approximations.

Newton realizedthat a set of point masses circling the central point mass attract one

another and perturb one another's orbit when he compared the construct with physical

reality. This realization caused Newton's treatment of the planets as physical bodies with

definite shapes and sizes.

The important step to such treatment of the planets is Newton's realization that the

earth attracts an object with the same force as if all of the earth's matter were

concentrated in one point, at the center of the planet. With the powerful tool of his

integral calculus, Newton proves the following theorem: a spherical shell with

homogeneously distributed mass attracts a body in the same way as if the entire mass of

the shell were concentrated at its center. Only after this series of proofs, Newton extends

his generalizations for spheres that are dissimilar in terms of density and attractive force.

Newton again employs his method of integral calculus when he represents two interacting

spheres as spheres composed of numerous concentric shells having different densities.

In book three of the Principia, Newton treats the topic of gravitation essentially

the same way, but the treatment is more mathematical. First, Newton conducts what is
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called the moon test where he extends the terrestrial gravity to the moon and

demonstrates that the weight force varies inversely with the square of the distance.

Newton then identifies the gravitational force existing on earth with the force of

the sun on the other planets, as well as the force of a planet on its satellites. He now calls

all these forces gravity. Referring to the third law of motion, he transforms the concept of

a solar force on the planets into the concept of a mufual force between the sun and the

planets. In a similar way he transforms the concept of a planetary force on the satellites

into the concept of a mutual force between a planet and its satellites. Finally, the resulting

transformation is the notion that all bodies interact gravitationally.

Newton's style of thinking in the development of his law of universal gravitation

laid the foundation for a new paradigm in exploring science the essence of which is the

process of repeatedly comparing the mathematical construct with reality, and if the

mathematical construct falls short, modifying it. This way of thinking had an outstanding

significance not only for Newton's contemporaries but it still proves to be indispensable,

plausible and fiuitful.

The main objective of this study is to explore the role mathematics plays in

physics education and to examine how physics textbooks represent it. The examples from

the history of gravity highlighted in this chapter show that geometry was used throughout

by scientists to gain insight. The reason for this could be that geometry assisted in

conceptualizing gravity due to its visual quality to represent physical phenomena, and

because of this, geometry was very often the only tool ancient scientists used to provide

proofs. There is no doubt that problems where students model situations using the



178

Newtonian geometric method in combination with his laws of motion, help conceptual

understanding of many phenomena in physics.

The next chapter will focus on the preparation stages for instrument construction

for the present study. The theoretical and methodological frameworks used in the

development of this instrument for the analysis of the mathematical component in physics

textbooks (previously described in Chapter 3) will be briefly revisited to identify how

themes emerged from the literature review, the inquiry into the historical relationship

between mathematics and physics, and how the history of gravity had to be synthesized

to develop the instrument for textbook analysis.
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chapter 6: Development of an Instrument for the present study

Overview

The discussion within this chapter focuses on the importance of designing an

analytical instrument for textbook research. In addition, the preparation stages for

instrument construction for the present study are overviewed. Subsequently, a conceptual

framework for the analysis of textbooks is presented: Firstly, which conceptual ideas

about analyzing the mathematical component in physics textbooks, derived from the

literature review presented in Chapter 2, and what further questions about the

presentation of mathematics in physics textbooks need to be explored are delineated.

Secondly, further themes for the analysiS of the mathematical component in physics

textbooks are identified based on a historical inquiry on the relationship between

mathematics and physics, conducted in Chapter 4. Finally, the findings from the history

of gravity, presented in Chapter 5, are used to develop themes for the analysis of the

mathematical component of physics in the context of the Law of Universal Gravitation.

Chapter 6 briefly revisits the theoretical and methodological frameworks used in the

development of this instrument for the analysis of the mathematical component in physics

textbooks, previously described in Chapter 3, to identify how methodologies developed

by de Berg (1989) and Chiappetta et al. had to be synthesized, and where necessary,

modified to fit the purpose of this study. An outline of the instrument for textbook

analysis concludes this chapter.

The Task of Designing an Analytical Instrument

Nicholls (2003) argues that "methods for textbook research are fundamentally

underdeveloped and in need of further research, . . . surprisingly little work has been done
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in terms of setting out clear generic guidelines for analyzing texts." (p. 1). He also notes

that designing an analytical instrument is not an easy task but it is a very important stage

in textbook research. Accordingly, the American textbook researcher William Fetsko

(1992) said, "Time spent in designing the analysis instrument will pay great dividends

throughout the process" (p. 133).

The process of instrument development is quite complex. Nicholls (2003) makes the

following suggestions on designing an analytical instrument:

To " des ígn " the " ins trument " res earclters mus t formulate a framew ork or

criteria of categories and questions fine-tuned to the specific aims and objectives

ofa particular textbookproject. The categories and questions are then applied to

all the textbool<s ín the samplefrom which analysis of the results may proceed.

(p.4)

Nicholls (2003) emphasizes that categories and questions arise based on the

epistemological orientation of the researcher. There is an intimate relationship between

methodology and epistemology. Nicholls asks researchers to consider "whether we

construct an analytical instrument based on an idea of what is to be analyzed or on our

experience of what is to be analyzed?" (p. 8). I believe designing an analytical instrument

incorporates both aspects of this question. ln fact, my personal perspective, presented in

Chapter 3, has influenced the formulation of this study's categories and questions for

textbook research. lnstrument development is an integral and complex process, rooted in

the researcher's perspective.
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Preparation Stages for Instrument Construction

lnstrument development involved several stages. My exploration of textbook

portrayal of the role of mathematics in physics education began with the identification of

relevant information from the literature review (Chapter 2). The gaps in research

reflecting the mathematical component in physics textbooks were pointed out and further

steps for research were outlined (Chapter 3), A historical inquiry into the relationship

between mathematics and physics (Chapter 4) and a historical inquiry into the history of

gravity (Chapter 5) were conducted to gain a deeper insight into the role that mathematics

has played in physics in the context of universal gravitation.

Based on the literature review and the historical inquiries, I formulated conceptual

ideas that have guided instrument construction. These conceptual ideas gave rise to a

conceptual framework that was then used to develop an instrument used for the analysis

of physics textbooks in this study.

Conceptual Frameworkfor the Analysis of Textbool<s

The literature review presented in Chapter 2 provides information on how the role

of mathematics has been portrayed in physics textbooks since the first physics books

were produced in the English - speaking world. Already in the 19th century'Whewell saw

that mathematics could play a richer role in physics education than it was usually

assigned, namely analytical treatment of mechanics, which in turn became a "sounding-

board" for mathematical methods. Despite this, Whewell tras failed to present

mathematical formulations as potentially rich conceptual tools that could lead to a better

understanding of the physical phenomena that the equations were describing.

As the literature review shows, there were other educators (Kline,1959; Lehrman
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et al., 1982; Stinner, 1992; Swart z et al.,lggg)who saw the problem Whewell attempted

to address and who were interested in the improvement of physics textbooks, particularly

in the most appropriate presentation of the mathematical component of physics.

Recognition of this problem caused educators to start examining the role of the

mathematical component in physics textbooks. These educators reiterated Whewell's idea

that the mathematical component of physics was not used to its full potential as a

conceptual tool. Educators had several concerns regarding the presentation ofthe

mathematical component of physics in textbooks. First, educators were concemed that

the presentation of the mathematical component of physics rarely promoted

understanding and encouraged only memonzation of formulas. Frequently, equations

were asserted without justifying details or examining their functional dependencies, often

omitting their derivations completely. They found out that the algebraic mode was the

predominant way used to represent relationships between concepts, limiting other modes

of mathematical representation such as graphs, verbal statements of proportionalities, or

numerical order of magnitude analysis to convey the meaning of numbers. The opposite

extreme was also observed. Some textbooks conveyed meaning by exploring many good

qualitative questions and suggesting good experimental activities while incorporating

almost no mathematical components. In addition, the sequencing of mathematical

representations did not agree with sound pedagogical practices that emphasize the

importance of qualitative representations of concepts rather than quantitative ones,

especially at the start of instruction. In summary, to reiterate Morris Kline's (1959)

statement, the intrinsic relationship of mathematics to the study of nature is not presented

in our dry and technique-based textbooks.
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' 
For the purpose of this study I would like to find out if there has been any

significant change in the presentation of the mathematical component of physics in recent

high school physics textbooks and introductory level college physics textbooks.

specifically, I am looking for answers to the following questions:

1. What are the modes of representation of the mathematics in physics textbooks?

2. Are the equations used in the textbooks justified?

3. What is the sequence of mathematical representations in these texts? Is this

sequence in accordance with the ideas of contemporary learning theories

discussed in ChaPter 3?

4. What function does mathematics have in these physics textbooks?

The historical exploration of the relationship between mathematics and physics

described in Chapter 4 represents the views of historians and philosophers of science,

scientists, and science education researchers. From this exploration, I gained insight into

the role that mathematics plays in physics.

This insight helped me come up with themes for the analysis of physics textbooks.

First, my exploration revealed that mathematics organizes broad classes of natural

phenomena into coherent patterns. Mathematics was necessary and indispensable in

making predictions, often leading to new discoveries in a wide range of physical

phenomena. Accordingly, mathematics also plays a vital role in the formulation of

theories by using analogies with known laws or using the mathematician's sense of form

and synmetry. A good example of using symmetry would be Coulomb's idea to apply

Newton's theory of gravity to his theory of electricity. Second, my exploration identified

an important function of mathematics as being the language of physics. Moreovet,
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mathematics transformed physics from a qualitative to a quantitative subject. Third,

science education researchers learned that very often mathematics is used for calculations

in the form of combining numerical relations to produce new numerical relations. It is

also used in physics to give definitions through the establishment of derived

measrrements. Furtherrnore, educators leamed that mathematics can be used beneficially

in physics if we consider the assumptions and limitations of its applicability. An equally

important lesson for educators was that quantitative relationships in physics can be

effectively presented in different modes, including the verbal mode. Finally, educators

realized that historical reconstructions of crucial steps in the emergence of a physical

phenomenon facilitate the acquisition of mathematical skills which are critical to

understand concepts and methods in physics. Therefore, the mathematical component in

physics should be presented using historical reconstructions of ideas in a historical

context where crucial steps of historical evolution can be identified.

Since the main objective of this dissertation is to examine how physics textbooks

demonstrate the role of mathematics in the presentation of the topic of universal

gravitation, the history of gravity was explored in Chapter 5. There were many instances

in the history of the law of universal gravitation where mathematics played an important

role in conceptual understanding of this phenomenon. These instances served as ideas for

my conceptual framework from which themes were identified for the qualitative analysis

of physics textbooks. Several suggestions about textbook usage of mathematics in the

presentation of universal gravitation emerged from an inquiry on the history of gravity. A

discussion on the importance of introducing basic geometry in the presentation of gravity
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at the end of Chapter 5 also contributed to the identification of themes for the analysis of

textbooks.

The conceptual framework for the analysis of the mathematical component of

physics in the context of the topic on universal gravitation is based on the following

propositions: First, mathematics can be used as a conceptual tool in understanding gravity

because with the aid of mathematics, as was noted earlier in this chapter, we can generate

patterns. This proposition is supported by many examples in history. Galileo, for

instance, showed that the descent of bodies varies as the square of the elapsed time (d-t2).

Therefore, it follows conceptually that the curve of projectile motion is a parabola. In

another case, the astronomer Halley suggested that areas experiencing influence of the

sun (supposing that the influence of the sun \ryas diffused in a sphere) were directly

proportional to the squares of the radä (A-r2). He then reasoned that since the intensities

were inversely proportional to these areas (A-I/Ð, then intensity was inversely

proportional to the square of the radius (I-l/r2). This kind of reasoning is purely

conceptual, based on the analysis of proportionalities. Another relevant example of

conceptual reasoning based on the analysis of proportionalities is Newton's derivation of

the inverse square law which he applied to the centripetal force of gravity for circular

orbits (F-l/r2). This particular case would be very beneficial to present in high school

physics textbooks because students have sufficient background in geometry and algebra

to handle derivations and understand where they come from. Newton also showed that if
motion was described by the inverse square law (F-l/r';, then the curve of such motion

could be a parabola, an ellipse, or a hyperbola, Newton applied Kepler's Law of areas to

show that centripetal force generates a curve. Finally, Newton used geometry and
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calculus to arrive at his law of gravity. What is important for this study is to find out if

textbooks mention the idea of the geometry and the calculus Newton used (Newton's

mathematical tools) to describe gravity.

Second, mathematics in physics textbooks can be used to demonstrate what the

historian B. Cohen (1981) described as the "Newtonian Style", where mathematical

modeling is connected and compared with physic al reality in an ongoing dialogue. In this

regard I would like to find out from the analysis of physics textbooks the answers to the

following questions: 1) Do physics textbooks illustrate the use of assumptions in the

presentation of the law of universal gravitation? For example, textbooks could reflect

Newton's assumptions in the development of his law by mentioning the transition of

Newton's ideas from one-body systems to two-body, then to many-body systems, and

consequently to the idea about cornmon center of gravity. Finally, these ideas can be

applied to real examples, discussing and looking at the problems related to universal

gravity. 2)Do physics textbooks describe thought experiments related to the law of

gravity? For example, when developing his law of gravity, Newton performed his thought

experiment on the motion of satellites. 3) Do physics textbooks illustrate the use of

models in the presentation of the material on the law of gravity? For example, textbooks

could include Newton's discussion of how the law of universal gravitation applies to

objects other than point masses, the ones which have shape and size. 4) Do physics

textbooks justify the mathematical relationships presented? Is there any evidence and

proof in textbooks' presentation of the material on gravity? In this respect, I would also

like to see if there is any mathematical analysis of the relation F-m¡m2h2 found in

textbooks, or if textbooks explain why the magnitudes of an attractive force of gravity are
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so small in many coÍtmon situations. For example, if the ordinary objects on the surface

of the earth are not massive, then the product m1m2is small, and the gravitational force F

is small. Textbooks could also give support to the idea of gravity on the surface of the

earth being equal to the same force as if all the earth's mass were concentrated in one

center point. To demonstrate that mathematics could be used as a rich conceptual tool,

textbooks could provide proof of the statement that acceleration due to gravity g is not

dependent upon the size of the mass of the test object, as confirmed by observation when

comparing mathematical results with physical reality. 5) Do physics textbooks show the

enoÍnous applicability of mathematics to solve new problems and make new predictions,

thus demonstrating fecundity of mathematics? For example, textbooks could discuss

Newton's "Moon Test" where he showed that the gravitational force of the moon is

Il36X0of that of the earth, i.e. .F moon : 1/3600 F earth.Textbooks could also show the

role of mathematics in making predictions by showing other than earth gravitational

phenomena and problems, such as gravity on other planets and different celestial objects,

to demonstrate the universality of gravity.

My final proposition is that physics textbooks could show connections between

mathematics and physics in the frame of the requirements of scientif,rc literacy, as

demonstrated by history of science examples. What is important to find out is whether

textbooks show this connection and how textbooks present the theory of universal

gravitation. I anticipate that the qualitative content analysis conducted in the presented

conceptual framework will shed light not only on the role that mathematics plays in

physics textbooks in the unit on universal gravitation but also how the mathematics used

in physics textbooks helps conceptualize this phenomenon.
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Revisiting Theoretical and Methodological Frameworl<s þr the Development of the

Instrument

The analysis of the mathematical component in high school physics textbooks

was informed by learning theory and the idea of scientific literacy. Themes representing

learning theory were based on the methodology developed by de Berg (1989). He

suggested considering the factor ofsequence for textbook analysis. The sequence factor

was looked at in terms of physics content sequence, seen as going from qualitative to

quantitative, and the ideas of quantification seen as going from verbal to algebraic mode.

The other factor was an emergence profile of a quantified form where textbooks'

treatment of ideas of quantification was analyzed in terms of distinct differentiation

befween the static and the dynamic way of presentation.

Themes representing the idea of scientific literacy came from the methodology

developed by Chiappetta et al. (1991). As described earlier in Chapter 3, Chiappetta et al.

(1991) developed the following themes, referring to scientific literacy: the knowledge of

subject, the tnvestigative nature of science, science as a way of thinking, and interaction

of science, technology, and s ociety.

Methodologies developed by de Berg (1989) and Chiappetta et al. (1991) had to

be synthesized and where necessary, modified to fit the research questions of my study.

In addition, the emerging methodology should reflect useful ideas of other educators,

such as Leonard, et at. (1999) about multiple representations (verbal, s1'rnbolic, graphical,

etc.), or Gentner's et al. (1997) idea about the role of analogies in representation of

concepts.
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As a result of the inquiry into the history and philosophy of science (HPS)

described in Chapters 4 and 5 and the exploration of the ideas of learning theories (LT)

and scientific literacy (SL) in Chapter 3, a number of themes emerged for the content

analysis of physics textbooks. These themes (categories) will appear at the end of this

chapter. To develop an instrument for this study, these themes had to be revisited and

narrowed down to workable categories for the analysis of physics textbooks. The initial

categories were then applied to a selected number of textbooks to see if it was possible to

use them for my analysis. Some categories were difficult to apply to the analysis. In this

case, re-examination was necessary. These categories then had to be modified until the

analysis of the textbooks became feasible.

After refining the categories specified for the analysis of the role of mathematics

in the presentation of material in physics textbooks, an instrument for the content analysis

of physics textbooks was developed and the written material that appeared in physics

textbooks in the unit on universal gravitation could finally be properly categorized. The

following table represents categories, applicable to the content analysis of physics

textbooks, that convey formulated meanings. Outlining descriptors of these categories,

analytical tools for data analysis of this textual material, integrated into analytical tools

checklists, and inferences that could be drawn from the results of content analysis for

interpretation possibilities are parts of the developed instrument for this study. For the

convenience to the reader this instrument for the content analysis of physics textbooks is

also presented in Appendix A.
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Summary

Instrument development involved several stages. My exploration of textbook

portrayal of the role of mathematics in physics education began with the identification of

relevant information from the literature review (Chapter 2). The gaps in research

reflecting the mathematical component in physics textbooks were pointed out and further

steps for research were outlined (Chapter 3). A historical inquiry into the relationship

between mathematics and physics (Chapter 4) and a historical inquiry into the history of

gravity (Chapter 5) were conducted to gain deeper insight into the role that mathematics

plays in physics in the context of universal gravitation.

Based on the literature review and the historical inquiries, I formulated conceptual

ideas that have guided instrument construction. These conceptual ideas gave rise to a

conceptual framework that was then used to develop the instrument used for the analysis

of physics textbooks in this study.

The analysis of the mathematical component in high school and college physics

textbooks was informed by learning theory and the idea of scientific literacy. Themes

representing learning theory were based on the methodology developed by de Berg

(1989). Themes representing the idea of scientific literacy came from the methodology

developed by Chiappetta et al, (1991). Methodologies developed by de Berg (1989) and

Chiappetta et al. (1991) had to be synthesized and where necessary, modified to fit the

research questions of rny study. In addition, the emerging methodology should reflect

useful ideas of other educators, such as Leonard's, et al. (1999) about multiple

representations (verbal, symbolic, graphical, etc.), or Gentner's et al. (1997) idea about

the role of analogies in representation of concepts.
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As a result of the inquiry into the history and philosophy of science (IIpS)

(described in Chapters 4 and 5) and the exploration of the ideas of learning theories (LT)

and scientific literacy (SL) (in Chapter 3), a number of themes emerged for the content

analysis of physics textbooks. To develop an instrument for this study, these themes had

to be revisited and narrowed down to workable categories for the analysis of physics

textbooks. The initial categories were then applied to a selected number of textbooks to

see if it was possible to use them for my analysis. Some categories were difficult to apply

to the analysis. In this case, re-examination was necessary. These categories then had to

be modified until the analysis of textbooks became feasible.

After refining the categories specified for the analysis of the role of mathematics

in the presentation of material in physics textbooks, an instrument for the content analysis

of physics textbooks was developed and the written material that appeared in physics

textbooks in the unit on universal gravitation could finally be properly categorized.

Categories applicable to the content analysis of physics textbooks conveyed formulated

meanings. Outlining descriptors of these categories, analytical tools for data analysis of

this textual material, integrated into analytical tools checklists, and inferences that could

be drawn from the results of content analysis for interpretation possibilities are parts of

the developed instrument for this study. The instrument for the content analysis of

physics textbooks is presented in Appendix A.

In the next chapter the qualitative content analysis of physics textbooks will be

carried out and reported. The analysis of the role mathematics in the unit on universal

gravitation in terms of balancing qualitative and quantitative aspects of physics will be

carried out using the developed instrument for textbook analysis. Eight physics textbooks



192

will be analyzed in terms of modes of representation of mathematical concepts, nature of

emergence of a particular mode, purpose for a particular mode, corurections of

mathematical concepts, sequencing the mathematical content, approaches used in

example problems, presentation of mathematical concepts through the history and

philosophy of science, and presentation of mathematical concepts based on the view of

science as a way of thinking.



Table 6-1

Instrument for Textbooks Analysis

Modes of Repres entation
of Mathematical Concepts in
the Law of universal
gravitation

. Numerical

o Verbal
o Graphical
o Pictorial
o Syrnbolic

Mathematical concepts
are presented by

. Numbers (in
tables, charts)

. Words

. Graphs
o Pictures
. Algebraic

symbols

Descriptors

Nature of Emergence of
Mathematical Concepts in
the Law of Universal
Gravitation

Multiple representattons
help develop
o Conceptual

understanding
. Enrich the

presentation of
physics knowledge

. Establishconnections
between symbols and
physical reality

Limited representations
cause lack of
understanding of
mathematical concepts.

lnferences

Mathematic al formulas,
graphs, tables, and verbal
formulations appear and
are used

Constructing a

presence/absence of a
particular mode matrix,
and making judgments

about use ofdifferent
modes according to the
following analytic rubric:
. Limited use -only one

or fwo modes are
present

o Moderate use - th¡ee or
four modes are present

¡ Extensive use - all five
modes are present

Analvtical Tools
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Identifying nature of
emergence of a particuiar
mode (based on
s t ati c/dynan ic descriptors)
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o Static without
explanation, or
discussion

o Dynamic

Mathematics, in the
case of static
emergence, is mostly
used for
memorization of
formulas, tables,
graphs, pictures

. with information
about
background,
experimental
details, how
mathematical
relationship

Verbal formulations
do not complement
each other
Connections between
concepts could not be

established

exoressed in a

Presentation of the
mathematical
relationship in the
dynamic way could
help change students'
conceptions
Connections befween

194

ts could be
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Emergent Press (purpos e)

for a Particular Mode

o particular mode is o established
determined, and
accuracy ofthe

Stating purpose of using
a particular mode

C onne ctions of Mat h em atical
Concepts

. The replacement of
concepts could be
seen by students as

useful and plausible

o Mindless
manipulations of
mathematical
equations occur in a

context where the
expressed need for
such.equations is
mlssmg

o Moving between
modes of
representation

Identifying purpose of
using a particular mode if
there is one stated

Students will likely make
connections between
concepts.
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Constructing maps of
tracking movements
between modes of
representation of concepts
and evaluating variability
of moves according to the
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following analytic rubric:
o Limited -movements are

mostly linear, from one
mode to another in a
single direction

with i-2 back and forth
movements between
limited kinds of modes
o Moderate -
movements are
mostly not linear, from one
mode to another in back
and forth directions, and
mostly between same kinds
of modes
r Extensive-
movements are not linear,
from one mode to another,
in back and forth directions
between, mostly between
different kinds of modes

Constructing a

presence/absence of

. Using analogies

196

Students would likely use
relevant features and
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Sequencing Mathematical
Content:

Simple -) complex
o Qualitative-+quantitative

. Verbal-+algebrarc

ignore irrelevant ones
when comparing and
contrasting concepts
what would help in the
interrelationship of

¡ From describing
qualities (features) of
observations, experiences,
inferences to describing
measurable quantities
involved;

knowledse.

analogies matrix, and in
case of presence, providing
examples of analogies

. From describing
mathematical
relationships in words to
giving symbolic
equations

This way of
presentation is in
agreement with
learning theory;
therefore, meaningful
presentation of the
mathematical
component of physics
is likely to happen.

Using maps of
tracking
movements.
The following
rubric is applied:

' Appropriate -
the
simple---complex
sequence is used

197
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Complex->simple
o Quantit¿fiye---+eualitative

o Algebraic---verbal

B alancing Qualit ative and
Quantitative aspects of Physics in
Presentation of Example Problems
Problem Solving Approach:

o qualitative

From presenting
measurable quantities to
describing features

From describing
mathematical
relationships in symbols
and algebraic equations
to describing
mathematical

o quantitative

This approach is not
recommended by
educational
researchers since
cognitive gaps could
be formed if such
approach is used;
therefore, learning of
mathematical
concepts will be
complicated.relationships in words

The approach, where o

verbal explanations are engaged
(conceptual problems)

The approach, where
calculations, symbolic equations
are engaged

o Not
appropriate - the
complex---+simple
sequence is used

r98

Lack of problems
engaging
qualitative
approach would
impede students'
leaming
Engaging
students in
solving only

Analyzing the
content of
example
problems and the
approach taken to
solve them. The
following analytic
rubric will be
used to
determine the
extent of
balancing:
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quantitative problems
would
sigrufy engagement
of primitive levels of
thinking which are

not suitable for
generating conceptual
models
o Qualitative

reasoning
combined with
quantitative
mechanism to
communicate
thinking
strategies would
help generate
these models and
make
mathematics
meaningful to
students

Limited -
mostly
quantitative
approach is
used with
almost no
qualitative
reasoning
Moderate -
algebraic
equations,
calculations
are backed up
by some
qualitative
explanations
Extensive -
algebraic
equations,
calculations
are backed
up by
detailed
qualitative
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Presentation
of Mathematical Concepts

through HPS:
. Descriptive

o Instructional

Presentation of mathematical
concepts referring to HPS with
no students' assignments related
to the historical context

Presentation of mathematical
concepts referring to HPS with
assignments related to the
historical context and requiring
from students doing exercises,
completing projects,
participating in discussions

If HPS is presented
descriptively only,
students get little
exposure to the
nature and methods
ofscience and
significance of
mathematical
equations in science
could not be
understood.
If HPS is presented in
instructional way,
students will get
exposure to the
nature and methods
of science by
applying presented

explanations

Constructing
presence/absence
matrix (based on
descriptors)
featuring
descriptive/instru
ctional
presentation of
mathematical
concepts through
HPS, and in case
ofpresence,
providing
illustrative
examples
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P res ent ati on of M at h em ati c al
Concepts Viewing Science as a
Wray of Thinkíng

ideas during
construction of
conceptual models of
their own, gaining
experience to
evaluate their
conceptual models in
terms of accuracy,
simplicity,
plausibility,
predictability, and
fruitfulness.

Illushating the use of
as sumptions, models, and
thought experiments in
the presentation of
history of the
development of the
concept ofgravity
Discussing evidence and
proof
Referring to Newtonian
Style
Showing fecundity of

o Mathematics
would be used as a
conceptual tool in
learning about
gravity, and would
facilitate students'
construction of their
own conceptual
models
o Mathematical

formulations
would get

20t

Constructing
presence/absence
matrix (based on
descriptors)
featuring
presentation of
science as a way
of thinking, and
in case of
presence,
providing
illustrative
examples
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mathematics

Referring to Newton's
geometry and calculus
for the description of
gravity

significance and
show their
usefulness,
fruitfulness,
plausibility, and
limitations, thus
facilitating the
process ofconceptual
change
o Higher order

thinking would be
engaged in
understanding
NOS and help
establish
corurection
between
mathematics and
physics

202
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Chapter 7: Textbook Analysis for Quantitative - Qualitative Balance

Overview

This chapter âddresses parts of Research Question 4 þarts a, b, and c) the main

purpose of which was to evaluate the degree of maintaining balance between the

qualitative and the quantitative aspects of physics in the topic on universal gravitation.

For this purpose, qualitative content analysis of textbooks in regard to the modes of

mathematical presentation of concepts, pedagogical sequence of presentation of the

mathematical component found in physics textbooks in the topic on universal gravitation,

and the reflection of ideas of learning theories and requirements of scientific literacy in

the presentation of the mathematical component of physics in physics textbooks was

performed and reported in this chapter.

An analysis of role of mathematics in the unit of universal gravitation in terms of

balancing qualitative and quantitative aspects of physics was performed using the

instrument for textbook analysis developed in Chapter 6 (Table 6-1, or Appendix A).

Eight physics textbooks were analyzedinterms of modes of representation of

mathematical concepts, nature of emergence of a particular mode, purpose for a particular

mode, connections of mathematical concepts, sequencing the mathematical content,

approaches used in example problems, presentation of mathematical concepts through the

history and philosophy of science, and presentation of mathematical concepts based on

the view of science as a way of thinking. The results of this analysis are presented below.

Two sections comprise this chapter. Both of them address parts of the last research

question, specifically the reflection of ideas of contemporary learning theories and the

requirements of scientific literacy in the presentation of the mathematical component of
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physics in physics high school and introductory level college physics textbooks in the

topic of universal gravitation. The first section focuses on the question of how

contemporary learning theories are reflected in the presentation of the mathematical

component of physics in textbooks. The report of the findings that answer this question

starts with presenting what was discovered about the modes of representation of

mathematical concepts in the unit of universai gravitation followed by a discussion of

what was uncovered about the nature of emergence and pu{pose for using a particular

mode of representation. Finally, findings about connections between mathematical

concepts, sequencing the mathematical content, and balancing the qualitative and the

quantitative aspects of physics in textbooks conclude the first section of this chapter.

The second section of Chapter 7 addresses the question of how the requirements of

scientific literacy are reflected in the presentation of the mathematical component of

physics in textbooks. The findings for this question concentrate around two themes:

presentation of mathematical concepts through the history and philosophy of science and

presentation of mathematical concepts in physics through the view of science as a way of

thinking. The chapter concludes with a discussion of the role mathematics plays in high

school and introductory level college physics textbooks in the unit of universal

gravitation.
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Coding Textbooks

In Chapter 3 of the study the selected textbooks were listed in Table 3-2. The high

school textbooks chosen for this research are the recent textbooks which are

recommended by the Department of Education in Manitoba and other provinces of

Canada.It is a factthat teachers can onlypurchase a class set of textbooks which are

recommended. I found that the timing for my analysis of recent physics textbooks was

beneficial because teachers need to know the strengths and deficiencies of the textbooks

they are using to fill the gaps in the presentation of the mathematical component in them.

The other reason why I chose these books is to give teachers information that they could

use when they buy future physics textbooks that are sent to the Department of Education

for review. The introductory level college physics textbooks were recommended by a

physics professor. These books are in use at the present time at the University of

Manitoba. For the convenience of reporting findings from the content analysis of these

textbooks letter codes will be used for the identification of the textbooks. The codes of

these textbooks appear in the last column of the following table:
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Table 7-1

Coded Sample Textbook Overview

Section l: Reflection of the ldeas of Learning Theories

Modes of Representation of Mathenratical Concepts in the Unit on Universal Gravitation

In the textbooks chosen for the qualitative content analysis a search for different

modes of representation (numeric, verbal, graphical, pictorial, and symbolic) of

mathematical terms and concepts involved in presentation of Newton's law of universal
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and Dufresne (1999) and Hestenes (1992), multiple representations help students develop

conceptual understanding of concepts and facilitate developing connections between

symbols and physical reality. The lack of different representations of concepts impedes

students' understanding and, consequently, makes learning difficult. The following table

where different modes of representation of mathematical concepts were identified and

judgment about the degree of variety of them was made according to the rubric described

in the instrument in Chapter 6 represents the results of findings:

TableT-2

Modes of Representation of Mathematical Concepts in the Unit Uníversal Gravitation

Note: { represents the presence of a feature
- represents the absence ofa feature

M represents moderate use of modes (3-4 modes)
E represents extensive use of modes (5 modes)

The data in Table 7-2 show that mathematical concepts in the unit of universal

gravitation in the selected textbooks are presented in various modes. In three books (GP-
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ZD, CP-H, and P-NH) all five modes could be identified. Therefore, it is possible that all

these textbooks could help students understand mathematical concepts involved in the

unit of universal gravitation and establish connections between symbols and physical

reality. However, as the data show, the graphical mode of presentation which is very

instrumental in visualizing functional relationships is not engaged by many of the

selected physics textbooks. ln one of the books (PM-TH), the numerical mode was not

used at all. Engaging numbers in the reasoning process also could be a very helpful tool

to come up with brilliant ideas, as was illustratqd by the history of science examples in

Chapter 5 where Newton demonstrated how he deduced the inverse-square relationship

between the force of gravity and the distance separating the Earth and the Moon. These

limitations (the lack of some modes of representation of mathematical concepts) would

probably influence the capacity in which mathematics could be utilized, as well as the

degree of balancing of the qualitative and the quantitative aspects of physics what is very

important in helping students develop sound understanding of universal gravitation.

Nature of Emergence and Purpose for a Particular Mode of Representation of

Mathentatical Concepts in the Unit Universal Gravitation

The next category for content analysis was the approach taken in the textbooks in

the presentation of the mathematical component in any of the modes of representation

used. Some textbooks used a static approach that is the approach in which mathematical

formulae, graphs, pictures, tables, or verbal statements appear and are used without any

explanation at all. Other textbooks used a dynamic approach in which mathematical

equations, graphs, pictures, tables, and verbal statements were placed in context with an

explanation of how they came to be and the purpose of their use. As Reynolds and Baker
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(1987) note, "allowing the student to interact with the graph or diagram might draw

attention to it, thereby producing better learning" þp. 161-162).

The purpose of using a particular mode of representation of mathematical

concepts in physics textbooks should be obvious to the reader. The significance of clear

purpose was convincingly addressed by de Berg (1989):

...an importantfactor whích determínes if a particular reasoning skill will be

used in solving a problem relates to whether the context establishes a clear needfor that

skill. It would appear, then that the mindless manipulations of mathematical equations ...

could easily occur tn a context where tlte expressed need for such equations was missing.

þ. 131)

I would expand this justification of demonstrating clear purpose beyond establishing

purpose for using some mathematical equation in physics. Demonstrating purpose for

using an equation is not limited to the need of the equation itself. It is not less important

to show the purpose of a particular mode engaged in the presentation of material in

physics textbooks. Why would students use numerical data, verbal explanations, graphs

and pictures in their reasoning process if the need for them is not demonstrated by

physics textbooks to be effective, productive and intelligently stimulating?

Thus, exploration of the nature of emergence and the purpose for using of a

particular mode of presentation of mathematical concepts was the next step in the

qualitative analysis of the chosen physics textbooks. The table representing findings

about the nature of emergence and the purpose of using a particular mode of

representation of mathematical concepts involved in the law of universal gravitation is

presented in the Appendix B of this study ( Nature of Emergence and Purposefor a
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Partícular Mode of Presentation of Mathematical Component ín the Unit Universal

Gravitation)

The data presented in Appendix B show that the physics textbooks chosen had

different approaches in using different modes of representation of the mathematical

component in the physics of universal gravitation. The difference could be traced not

only in the manner of emergence of a particular mode but, as well, the purpose for which

a particular mode is used. There is only one textbook (CP-H) where all modes of

representation of mathematical component appear dynamically where mathematical

formulas, graphs, numbers, pictures, tables, or verbal explanations are placed in context

with an explanation of how they came to be and the purpose of their use. For example,

the numerical mode in this text is used to make conceptual inferences; the verbal mode is

engaged in explanations; the graphical and pictorial modes allow students to interact with

the graph or picture by posing questions about them; the symbolic mode is used for

making conceptual inferences, as well as for demonstrating usefulness of mathematical

equations in obtaining new information and at the same time stressing the esthetic value

of the mathematical rule and demonstrating models of reasoning that make the essence of

Newtonian Style. Other textbooks used both static and dynamic approaches in the

presentation of mathematical components in different modes of representation.

As I expected, most of the textbooks used the dynamic approach when the

mathematical components of physics of universal gravitation were presented verbally.

This was not surprising because the verbal mode is usually used when explaining,

emphasizing ol clarifying something. Only in one textbook (CP-SF) was the verbal mode

employed using the static approach during the stating of the universal law of gravitation
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(without any explanation) and listing features of the law (without explaining their origin).

Another observation was that most authors of the selected textbooks had difficulty in

using the dynamic approach when the mathematical aspect was presented in numerical

mode. In one textbook (PM-TH) mathematics was not presented in numerical mode at all.

Only in two textbooks (CP-H and CCP-JC) was the dynamic approach used when

engaging the numerical mode. The numbers in these texts were used not only for

illustrating something but also for making conceptual inferences, interpreting results and

explaining discrepancies in results which would likely engage students' thinking. In

textbooks P-E and P-G both approaches (dynamic and static) were engaged while

presenting the mathematical component in the numerical mode. In these textbooks,

numbers were sometimes used just for illustrating, for example, planetary data, other

times - as a tool for showing and interpreting relationships, and making conceptual

inferences (for example, in drawing conclusions about the inverse square law

relationship). In other textbooks (GP-ZD, P-NH, and CP-SF) the numerical mode was

utilized in a limited way, using the static approach where numbers were used basically

for illustrating data in tables without engaging higher order thinking processes. More

interaction between numbers and students would be desirable to produce better learning.

It was disappointing to see that the graphical mode of representation of the

mathematical component of physics was used in only three textbooks (GP-ZD, CP-H, and

P-l'iH).None of the examined college physics textbooks utilized graphical mode in the

representation of the mathematical concepts. Textbook (GP-ZD) used the graphical mode

statically, just for illustrating the law of gravity. However, in two other textbooks (CP-H

and P-NH), the dyramic approach was used to present graphs. For example, in text CP-H,
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questions based on the graph were posed asking students to interact with the graph to find

out what would happen to one variable when the other was changed. In text p-NH,

explanations of changes were included in discussing graphs. These strategies would make

graphs meaningful to students and helpful in their understanding of gravity.

As the collected data in Appendix B show, the pictorial mode of presentation of

the mathematical component was found in all textbooks. However, most of the

researched textbooks (GP-ZD, P-G, CCP-JC, CP-SF, and pM-TH) used the static

approach to present pictures as a mode of representation of mathematical component in

physics of gravity. Pictures were primarily used for illustrating, diagramming or giving

images of objects. Only two textbooks utilized pictures on a higher level when such

processes as posing questions, giving explanations and comparing similar diagrams of

different phenomena were engaged for students' interaction with such useful visual tools

as pictures. This strategy could definitely set an example for students' use of pictures in

their reasoning process while solving problems, working on a model, and many other

thinking activities.

I was pleasantly surprised that, in new textbooks, like those chosen for this

tesearch,. the symbolic mode of representation of mathematical component of the physics

of gravity was emerging mostly in a dynamic way. Only in one case, in textbook pM-TH,

was the law of gravity stated in symbols without explanations of steps to arrive at it. My

observations showed that in a lot of cases, mathematical relationships were derived or

their sources explained. The role of mathematics in physics quite clearly emerged. The

researched textbooks showed how valuable and useful mathematics could be for

establishing connections between different laws, providing new information by obtaining
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new relationships as a result of calculations and derivations and making conceptual

inferences by analyzing proportionalities, thus demonstrating fecundity of mathematics.

If students were to see in textbooks processes like derivin g, analyzing, calculating and

interpreting, they would likely try to use them in the tasks offered for them to do.

Connections of Mathematical Concepts and Sequencing the Mathematical Content in the

Presentation of the Løw of Universal Gravitation

As was argued in Chapter 3, in the process of using multiple representations of

mathematical concepts in science, what really matters is the student ability to see the

interrelationship of these representations (Leonard, Gerace, & Dufresne,l999;Russel et

a1.,7997; seel &'winn, T997;Kozma,2000;Herron & Greenbow, 1986; osborne, 19g4;

de Berg, 1989). The more variability in movements between the different modes of

representation of mathematical concepts in physics textbooks, the easier it is for students

to make connections between different ideas represented by these concepts. Various

movements between numerical (N), verbal (V), graphical (G), pictorial (P) and symbolic

(S) modes of representations of the same concepts in physics textbooks can assist

students in translating between representations, and consequently, help students connect

physics ideas and relate thetn to personal experience to attain conceptual understanding.

In order to judge how well the qualitative and the quantitative aspects of a particular

concept are balanced, and consequently how well students can acquire conceptual

understanding of it, it makes sense to focus on a single concept (law of universal

gravitation). Therefore, narrowing down the analysis from the whole unit on universal

gravitation to that of the law of universal gravitation would be a logical next step to

make. To track movements befween different modes of representation of mathematical
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concepts in the law of universal gravitation in eight physics textbooks, maps of

movements were constructed and shown below in Table 7-3.

Another helpful factor in the process of making connections between

mathematical concepts in physics, as identified earlier in Chapter 3, is using analogies in

the presentation of material. In addition to being an important mechanism for conceptual

change (Gentner et a1.,1997; Waterworth et al., 2000), analogies can foster students'

ability to use relevant features of a particular phenomenon and ignore irrelevant ones

when comparing and contrasting concepts which in turn would help in the

interrelationship of knowledge. A presence/ absence of analogies matrix with supporting

examples was constructed to see if analogies were utilized in the eight physics textbooks

chosen for the research and presented in Appendix C of this study

((Jsing Analogies in the Presentation of the Law of (Jniversal Gravitation).

The judgment about connections of mathematical concepts was made based on the

variability of moves between modes of representation (assessed according to the rubric

developed in the instrument of the study in Chapter 6) and presence/absence of analogies

in the presentation of the law of universal gravitation.

The maps of movements between different modes of representation of mathematical

concepts were also used to judge if the sequencing of the mathematical content in the

presentation of the law of universal gravitation was appropriate - from simple to

complex, i.e. from qualitative to quantitative descriptions or from verbal to algebraic

representations of concepts. The following Table 7-3 represents a map of tracking

movements between modes of representation of concepts.
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TableT-3

Movíng Between Modes of Representation of Mathematical Concepts in the Law of

Universal Gravitation

Text Reference
Pages

Movements Variability of
Moves

GP-ZD 181-183 V V _l V__+p-+G

t1srJ1sr simple---+complex
(appropriate)

CP-H t69-t77 V V-+ S V-- G

J 1T 1J
N I N---+P P simple---+complex

(appropriate)

P-NH r58-161 G --r11
V V V-r V

1111
alcl

simple-+complex
(appropriate)

P-E 571-578,
632-633

V
JlJ
S I S __+N___+p

L

simple---+complex
(aopropriate)

P-G tt7 -119

v v-, v-, il vii,fll-ljil
* --l *-l i-l !

simple--+complex
(appropriate)
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CCP-JC 88-90,142 N
1

V
1
I

-1 J
VV
J1sr

simple---+complex
(appropriate)

CP-SF t93-195 V
J îJsls
*-J

simple---+complex
(appropriate)

PM-TH

simple--'complex
(appropriate)

Note: V represents verbal mode
S represents symbolic mode
N represents numerical mode
G represents graphical mode
P represents pictorial mode
L represents limited variability of movements
M represents moderate variability of movements
E represents extensive variability of movements

Table 7-3 shows that in two (CP-H and P-G) of the eight researched textbooks the

variability of movements between different modes of representation of mathematical

concepts in the law of universal gravitation was found to be extensive. In these textbooks

the movements between verbal, numerical; symbolic, graphical, or pictorial modes appear

to be nonlinear, from one mode to another the moves are in back and forth directions, and

mostly between different kinds of modes. It is likely that students would establish

connections between concepts for better learning, and the balancing between
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mathematical and conceptual aspects of physics would likely happen. However, only one

(CP-H) of these books contain analogies as evident from Appendix C. The textbook

(P-G) would benefit in providing students help on éstablishing connections between

concepts if it used analogies in the presentation of material on the law of universal

gravitation.

Four of the researched books (GP-ZD,P-NH, CCP- JC, and CP-SF) exhibited

moderate variability of movements between different modes of representation of concepts

according to the rubric developed in Chapter 6. As the maps of tracking movements

(Table 7-3) show, the movements between modes of representation are not linear.

However, the movements happen mostly between the same kinds of modes, for example,

between verbal and symbolic, in back and forth directions. Three of these books (GP-ZD,

P-NH, and CCP- JC) used analogies (Appendix C) which according to research literature

(Gentner et a1.,1997; Leonard, Gerace, & Dufresne, 1999) were proven to be helpful in

establishing connections between concepts in physics. No analogies were found in

Textbook CP-SF which limits its use for establishing connections between concepts.

In two of the analyzed textbooks (P-E and PM-TH), according to the constructed

maps of movements (Table 7-3), variability of movements between different modes of

representation of rnathematical concepts is limited. As the rnaps show, the movements are

mostly linear, from one mode to another in a single direction with one or two back and

forth movements between limited kinds of modes. The positive finding was that textbook

P-E used analogies in presentation of the material (Appendix C). However, no analogies

were found in textbook PM-TH which makes this textbook even less instrumental in
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establishing connections between concepts and less helpful in balancing of mathematical

and conceptual aspects of physics in the presentation of the law of universal gravitation.

The constructed maps of tracking movements befween modes of representation of

concepts (Table 7-3) show that in all textbooks verbal descriptions preceded algebraic

ones. Numbers, pictures and graphs were also used to support verbal explanations. This

sequence, from qualitative to quantitative, verbal to algebraic is supported by learning

theory as educational research (Arons, 1984; de Berg, 1993; Hewitt, 1994; Monk, 1994;

Mazur,1996; Stinner,1994) reports. This appropriate sequence in the presentation of the

law of universal gravitation will likely make students' learning better when conceptual

understanding would accompany algebraic symbols involved in the presentation of

material. Numbers, symbols, graphs would attain appropriate meaning and serve the tools

for balancing the qualitative and the quantitative aspects of physics.

Balancíng Qualítative and Quantitative Aspects of Physics in Example Problems on the

Law of Universal Gravitation

Chapter 3 described what educators learned from the studies of experts' and

novices' problem-solving strategies (Larkin et al., 1980; Reif & Heller, 1982; Chi et al.,

1981; Gabel, Sherwood, & Enochs, 1984; Shoenfeld, 1985;Dillon, 1998; Van Heuvelen,

1991). One of the findings from these studies was the experts'use of extensive

qualitative reasoning compared to novices' mostly quantitative, often mindless, ways of

approaching problems. Indeed, engaging students in solving only quantitative problems

enacts primitive levels of thinking which are not suitable for generating conceptual

models, and, consequently, impedes students' learning. On the other hand, qualitative

reasoning combined with quantitative mechanisms to communicate thinking strategies
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(mathematics is a language of physics) would help generate these models, and make

mathematical concepts in physics meaningful to students. I would like to reiterate the

statement I made in Chapter 3. If experts' strategies were proven to be successful in

problem solving, then they might work for the presentation of the material in physics

textbooks. Indeed, the choice of problems shown in textbooks' examples does determine

in what thinking activities students would be engaged, given the fact that students and

teachers still use textbooks materials.

To maintain the balance between the qualitative and the quantitative aspects of

physics in problems used in textbooks, it is important that students be encouraged to do

conceptual analysis of the situations described in these problems, whether the problems

require only verbal explanation (conceptual problems), or whether algebraic equations

and numbers have to be used to solve the problem. The types of problems textbooks show

should engage both the qualitative and the quantitative reasoning to help conceptual

understanding. In order to analyze the content of textbooks in terms of their balancing of

the qualitative and the quantitative aspects of physics it is important to look at the

example problems. The analysis of exercises and end of chapter problems would be less

appropriate to do because it is not always obvious what approach in solving them would

be taken by students, and what problems would be assigned by a teacher. On the other

hand, example problems and the approach used to solve them can give a good idea what

types of problems and approaches to the solution are used, and consequently, how well

the conceptual and mathematical aspects of physics are balanced in them. Therefore, only

example problems on the law of universal gravitation were used for the content analysis

of physics textbooks. The table representing illustrative example problems used in eight
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physics textbooks is given in Appendix D of the study. These examples are categonzed

based on the type of reasoning demonstrated in solving them: qualitative, quantitative, or

both qualitative/quantitative. The extent of balancing of the qualitative and the

quantitative aspects of physics in the problems on the law of universal gravitation was

judged according to the analytic rubric developed in Chapter 6 in the instrument for

textbooks analysis (Appendix A).

I was pleasantly surprised that four examined textbooks (CP-H, P-NH, CCP-JC,

and CP-SF) as demonstrated by examples in Appendix D indicated an extensive degree

of balancing of the qualitative and the quantitative aspects of physics in the example

problems on the law of universal gravitation. ln these examples algebraic equations and

calculations were backed up by detailed qualitative discussions and explanations.

Significant space was devoted to discussing limitations and assumptions which had to be

taken into account to develop solutions for these problems.

In three textbooks (P-E, P-G, and PM-TH) the extent of balancing was found

moderate because only some qualitative explanations accompanied symbolic equations

and calculations used in the solutions of the example problems in these textbooks. The

discussions and explanations were very brief and did not cover many related to

conceptual understanding issues.

Only one textbook (GP-ZD) was found to give limited attention to qualitative

reasoning in the presentation of example problems on the law of universal gravitation.

This textbook used mostly the quantitative approach when students are encouraged to

select a useful mathematical equation, realTange it, and solve for the unknown variable.

No qualitative discussions or explanations were involved; no limitations or assumptions
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were considered. It would be hard to expect that this approach would be helpful in

ddveloping students' understanding of concepts involved in the law of universal

gravitation.

Sectíon 2: Reflecting the Characteristics of Scientific Literacy

Presentation of Mathematical Concepts through the History and Philosophy of Science

(HPS)

There is a strong research support (de Berg, 1989, Igg2; Chiappett a et a1.,199I;

Lederman & Niess, 1997; Stinner, 1998;Tzanakis, 1999; Wang, 1998) for the inclusion

of history and philosophy of science (HPS) in teaching science. Through historical

examples textbooks can show in the presentation of the material how mathematics was

used to describe and develop understanding of concepts in science and how mathematics

helped scientists either to change or support their conceptions about the physical world.

From the history of science examples, students can see how scientists themselves

struggled to strike a balance between their experiences or intuitive thinking and

mathematical equations obtained at the end of the discovery journey. In the case of the

subject ofthe present study, textbooks could show how the history ofgravity developed,

what scientists contributed to the development of the theory of universal gravitation and

how mathematics could be used to help understand this theory. Research on introducing

history and philosophy of science in teaching science is in an evolving state but there are

already available suggestions on how to use HPS in the presentation of material in

science textbooks. For example, de Berg (i989) suggests introducing HPS not just in a

descriptive format when concepts are presented with no student assignments related to

the historical context in a certain unit, but more importantly, in an instructional way when
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presentation of scientifrc concepts through the history and philosophy of science is given

in a more engaging way - offering assignments related to the historical context used in

the presentation of the material, requiring that students do complete exercises, complete

projects, and participate in discussions. A similar idea was suggested by Tzanakis (1999)

in his historical-genetic approach to learning (Chapter 4). Unfortunately, as de Berg

(1989) found, from 28 texts he used in his research,"no texts use the history of science in

an instructional sense" (pp. I22-I23). This is unforfunate because presenting history and

philosophy of science only descriptively provides little exposure for students to the nature

and methods of science and, consequently, the significance of mathematical equations in

science could not be understood. If history and philosophy of science were presented in

textbooks in an instructional way, students would have a better chance to understand and

apply scientific ideas and construct their own conceptual models gaining experience to

evaluate their models in terms of accuracy, plausibility, predictability, and fruitfulness. It

was interesting to see if the situation in presenting HPS in physics textbooks had changed

since the tirne de Berg (1989) conducted his research. The presentation of mathematical

concepts through HPS in the unit on universal gravitation is reflected in Appendix E

(Presentation of Mathentatical Concepts through HPÐ of the study.

The examples presented in Appendix E show that the presentation of history and

philosophy of science in the unit on universal gravitation in eight analyzed textbooks has

not changed compared to de Berg's (1989) findings. Most of the examples were found to

be used in a descriptive mode, with no tasks offered to students (CP-H, P-NH, P-G, CCP-

JC and CP-SF). However, in some textbooks (GP-ZD, P-E, and PM-TH) both approaches

- descriptive and instructional were used. Presentation of mathematical concepts through
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history and philosophy of science in an instructional sense required students to conduct

research, to participate in debates, to construct and test arguments. This approach would

likety benefit students in understanding the nature and methods of science, and the

meaning and signif,rcance of mathematical equations in the unit of universal gravitation.

ln the process of researching, discussing and evaluating scientists' conceptual models

students would get,motivation for constructing their own conceptual models. The

students would also leam how to defend their arguments, to evaluate their models, as well

as what steps to take if their models proved to have flaws. In this process of constructing,

evaluating and defending arguments students would always have to perform the

balancing act when symbols, numbers, graphs, pictures and words interact with each

other to yield understanding of powerful ideas in physics.

Presentation of Mathematical Concepts in Physics Viewing Science as a Ih'ay of Thinking

Science educators agree that presenting science as a body of knowledge where

facts, concepts, principles, laws, hypotheses, theories and models are given as

descriptions would not reflect a contemporary, appropriate view of the nature of science

CNOS) shared by scientists, educators, and philosophers of science (Chiappefta et al.,

1991; Hestenes, 1 992; de Berg, 1989 , 1992; Tzanakis, 1999).If science were presented in

physics textbooks mainly as a body of knowledge students would get a false impression

not only of the nature of science but as well, about the role of mathematics in physics.

Mathernatics utilized in physics given such an approach would be perceived by students

as a memorizing mechanism to recall information on tests. Viewing science as a way of

thinking reflects the progressive ideas of scientists, educators and philosophers of science

concerning the nature of science. Given this view, students might well look at
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mathematics in a different way if the mathematics used in physics had the possibility of

being used as a conceptual tool, in case of this study, a conceptual tool in understanding

gravity. This understanding would facilitate students' construction of their own

conceptual models. Mathematical formulations would get significance. Students would

see them as useful, fruitful, plausible, as well as having limitations. This approach to

presenting science as a way of thinking could facilitate the students' process of

conceptual change. ln the process of engaging in higher order thinking (like modeling)

students would be able to understand the NOS and this in turn would help them establish

connections between mathematics and physics. According to the descriptors given in the

instrument for textbooks analysis presented in Chapter 6 (Appendix A), viewing science

as a way of thinking involves illustrating the use of assumptions, models, and thought

experiments and discussing evidence and proof. ln the context of universal gravitation,

viewing science as a way of thinking would involve demonstrating the Newtonian way of

approaching nature (frequently comparing a mathematical construct with physical reality,

Chapter 5), and showing the mathematical tools he used, such as Newton's geometry or

the calculus he invented for the description of gravity. Newton's use of mathematics in

describing nature, as shown in Chapter 5, demonstrated its significance in formulating

theories, in showing the consequences of the formulated theories, and demonstrating the

astonishing fecundity of mathematics. The analysis of textbooks from this point of view

was important to undelstand if the Newtonian Style of thinking about nature was

adequately presented in them. ln addition, it would reveal if students understand the

connection between mathematics and physics and see both aspects of physics -
qualitative and quantitative. Table 7-4 presented below shows presence/absence of
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features illustrating mathematical concepts in the unit on universal gravitation in the view

of science as a way of thinking. The supporting illustrative examples for the case of the

presence of a feature are shown in Appendix F.

TableT-4

Presentation of Mathematical Concepts in the (Jnit on tJniversal Gravitation Viewing

Science as a llay of Thinking

Note: { represents the presence of a feature

- represents the absence ofa feature

To my pleasant surprise, the data collected in Table 7-4 showed that the

mathematical component of physics in the unit of universal gravitation is presented not as

a static collection of formulas and facts but as an important component of understanding

gravity through the dynamic presentation of science as a way of thinking. As evident

from Table 7 -4 and supporting examples in Appendix F, illustrating the use of

Text Illushating
the use of
assumptions

Describing
thought
experiments

Illustrating
the use of
models

Presenting
evidence
and proof

Demonstrating
fecundity of
mathematics

Reference
to Newton's
calculus and
geometrv

GP-ZD

CP-H

P-NH

P-E

P-G

CCP-J

CP-SF

PM-TH

^/

^/

./

./

./

./

./

^/

./

./

./

^/

./

^/

^/

./

^/

{

^i

^/

^i

^/

^/

^/
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assumptions was the feature which was present in all but one (PM-TH) analyzed

textbook. Illustrating assumptions is very important in the sense of students'

understanding that any model has limitations, and whatever they come up with as a result

of creating the model, they have to be mindful when a particular model is applicable and

when it is not.

Unfortunately, thought experiments did not find much reflection in the resea¡ched

textbooks Q.{o discussions of thought experiments were found in any of the examined

college physics textbooks). ln only three textbooks (GP-ZD, CP-H, and P-E) were

thought experiments used in the presentation of material on gravity. It is unfortunate

because the value of thought experiments can not be overestimated. As reported in

science education research (Brown, i986; Helm, 1985a; Helm, 1985b; Kuhn, 1977;

Matthews, 1989; Stinner, 1990; Winchester, 1991) thought experiments played an

important role in the history of science, and, therefore, should not be neglected in

teaching and presenting science.

The textbooks analyzed were not found to contain enough material illustrating the

use of models in science and in the presentation of material on universal gravitation' As

the data in Tables 7-4 andAppendix F show, four textbooks (GP-ZD, CP-H, P-G, and

CCp-J) made some use of models to help students visualize described properties, see

similarities and differences between them. These models could be very instrumental in

developilg conceptual understanding of universal gravitation. Unfortunately, no use of

models was found in the other four textbooks (P-NH, P-E, CP-SF, and PM-TH)' Indeed,

illustrating the use of models is important not only to show how they were used by
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scientists but also to provide examples which could be helpful in the development of the

students' own conceptual models.

It was very encouraging to see (Tables 7-4 and Appendix F) that all analyzed

textbooks presented some evidence for stated facts and, where possible, proof for

arguments, mathematical statements, or ideas. The proofs were often given both in

qualitative and quantitative form, and were grounded in examples from the history of

science. Presenting proofs in the form of arguments, discussions, and mathematical

derivations engages, I believe, higher order thinking skills, such as critical thinking.

Critical thinking enables students to make connections between facts, their own

experiences, and mathematical tools used to develop the chain of reasoning.

Consequently, learning material would make sense to them.

In the development of proofs, many other mathematical relationships can be

derived. This property of mathematics, namely fecundity of mathematics, was

demonstrated by all textbooks reflecting the result of approaching nature using the

Newtonian Style (described in Chapter 5). Students could see that the law of universal

gravitation in corlbination with other laws of mechanics could provide new information

and empower them to calculate quantities they would not be able to obtain otherwise, for

example, calculating the mass of planetary objects, orbital speed, period of a satellite,

size of different planets, etc.

In Chapter 5 of this study I discussed Newton's mathematical tools (calculus and

geometry) used to arrive at his universal law of gravitation. In the textbooks chosen for

content analysis I wanted to see if there was any reference made to Newton's calculus

and geometry. ln all textbooks but one (CP-SF), I found some reference to the
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mathematical tools used by Newton (Table 7-4) in the presentation of material on

universal gravitation. Supporting examples are shown in Appendix F. In Chapter 5 of the

study I also discussed the importance of geometry in the presentation of gravity and gave

examples of using geometry in teaching this unit. However, no applications of Newton's

geometry have been found in the textbooks' example problems, as evident from the

content of examples presented in Appendix D. This is unfortunate given the fact that

geometry assisted in conceptuahzation gravity due to its visual quality to represent

physical phenomena, and it was used by ancient scientists to provide proofs. It was

discussed earlier (Chapter 5) that it is not practical to reproduce all Newton's steps from

the Principia because many of Newton's geometric proofs are very lengthy, and

sometimes, beyond the studentsj knowledge of geometry. However, if students were

exposed to Newton's geometrical proofs (basics of Newton's geometric method) they

could use them as a mode of thinking in solving other physics problems.

Conclusion: How do High School and Introductory Level College Physics Textbook

Present the Role that Matheruatics Plays in the Unit of Universal Gravitation?

The data show, that mathematical concepts in the unit on universal gravitation in

the selected textbooks are presented in various modes. Despite this, the graphical mode of

presentation which is very instrumental in visualizing functional relationships is not

engaged by many of the selected physics textbooks. In one of the books, the numerical

mode was not used at all.

Some textbooks used a static approach; other textbooks used a dynamic approach.

There is only one textbook where all modes of representation of mathematical component

appeff dl,namically. Other textbooks used both static and dynamic approaches in the
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presentation of the mathematical component in different modes of representation. Most of

the textbooks used a dynamic approach when the mathematical component of physics of

universal gravitation was presented verbally. Most authors had difficulty in using a

dynamic approach when the mathematical aspect was presented in numerical mode. Only

in two textbooks was the dlaramic approach used when engaging the numerical mode.

The pictorial mode of presentation of the mathematical component was found in

all textbooks. However, most of the researched textbooks used the static approach to

present pictures as a mode of representation of mathematical component in physics of

gravity. The symbolic mode of representation of mathematical component of the physics

of gravity was emerging mostly in a dynamic way. Only in one case, was the law of

gravity stated in symbols without explanations of steps to arrive at it.

In two of the eight researched textbooks the variability of movements between

different modes of representation of mathematical concepts in the law of universal

gravitation was extensive. ln these textbooks the movement between verbal, numerical,

sl.rnbolic, graphical, or pictorial modes appear to be nonlinear, from one mode to another

the moves are in back and forth directions, and mostly between different kinds of modes.

However, only one of these books contains analogies. Four of the researched books

exhibited moderate variability of movement between different modes of representation of

concepts. The movement between modes of representation are not linear. However, the

movement happens mostly between the same kinds of modes, in back and forth

directions. Three of these books used analogies. In two of the analyzed textbooks

variability of movement between different modes of representation of mathematical

concepts is limited. The movements are mostly linear, from one mode to another in a
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single direction with one or two back and forth movements between limited kinds of

modes. One of these books used analogies in presentation of the material. The

constructed maps of tracking movement between modes of representation of concepts

show that in all textbooks verbal descriptions preceded algebraicones. Numbers, pictures

and graphs were also used to support verbal explanations.

Four examined textbooks indicated an extensive degree of balancing of the

qualitative and the quantitative aspects of physics in the example problems on the law of

universal gravitation. In these examples algebraic equations and calculations were backed

up by detailed qualitative discussions and explanations. Significant space was devoted to

discussing limitations and assumptions which had to be taken into account to develop

solutions for these problems. ln three textbooks the extent of balancing was found

moderate because only some qualitative explanations accompanied symbolic equations

and calculations used in the solutions of the example problems in these textbooks. The

discussions and explanations were very brief and did not cover many related conceptual

understanding issues. One textbook gave limited attention to qualitative reasoning in

presentation of example problems on the law of universal gravitation. This textbook used

mostly the quantitative approach when students are encouraged to select a useful

mathematical equation, rearrange it, and solve for the unknown variable. No qualitative

discussions or explanations were involved; no limitations or assumptions were

considered.

The presentation of HPS in the unit on universal gravitation in most cases v/as

found to be in a descriptive mode, with no tasks offered to students. However, in some

textbooks both approaches - descriptive and instructional were used. Presentation of
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mathematical concepts through HPS in an instructional sense required students to

conduct research, participate in debates, construct and test arguments.

The collected data showed that the mathematical component of physics in the unit

on universal gravitation is presented not as a static collection of formulas and facts but as

an important component of understanding gravity through the dynamic presentation of

science as a way of thinking. Illustrating the use of assumptions was the feature which

was present in all but one analyzedtextbook. Unfortunately, thought experiments did not

find much reflection in the researched textbooks. Only in three textbooks, thought

experiments were used in the presentation of material on gravity. The textbooks analyzed

were not found to contain enough material illustrating the use of models in science and in

the presentation of material on universal gravitation. AII analyzed textbooks presented

some evidence for stated facts and, where possible, proof for arguments, mathematical

statements, or ideas. The proofs were often given both in qualitative and quantitative

form, and were grounded in examples from the history of science.

In the development of prooß, many other mathematical relationships can be

derived. This property of mathematics, namely fecundity of mathematics, was

demonstrated by all textbooks reflecting the result of approaching nature using the

Newtonian Style (described in Chapter 5). In all textbooks but one I found some

reference to the mathematical tools used by Newton in the presentation of material on

universal gravitation. However, no applications of Newton's geometry have been found

in the textbooks' example problems.

The findings from the qualitative content analysis of the unit on universal

gravitation in physics textbooks in this chapter revealed tliat textbooks present the role of



232

mathematics in many dimensions, serving many purposes. To achieve conceptual

understanding in learning physics, mathematics presented in textbooks should be used as

a tool for maintaining the balance between the qualitative and quantitative aspects of

physics. Mathematics, in the process of balancing the qualitative and quantitative aspects

of physics, can be used as a tool for but not limited to the following: establishing

connections between mathematical sl.rnbols and physical; showing the usefulness of

different mathematical representations as being effective, productive, and intellectually

stimulating for conceptual understanding of physics; displaying data; aiding in

explanations, illustrations, derivations; posing questions; making conceptual inferences,

making comparisons between different mathematical relationships; and demonstrating

beauty of mathematical relationships.

The usefulness of mathematics in derivations cannot be overestimated.

Derivations of mathematical formulas and calculations serve the important purpose of

establishing corurections between ideas. As a result, new information can be provided by

obtaining new relationships what would demonstrate the fecundity of mathematics.

Conceptual inferences would also be impossible to make without using ratios of numbers,

establishing and analyzing proportionalities, and performing dimensional analysis. In

showing the usefulness of mathematics, textbooks demonstrate an important role of

mathematics, a calculating tool for problem solving. In problem solving, one cannot

underestimate the role of mathematics in generating conceptual models in the process of

presenting evidence and proof, or in the process of thought experiments. To succeed in

this process, and enable students to leam from textbooks, mathematics has to be used

quantitatively and qualitatively in a balanced way.
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Summary

The findings from the qualitative content analysis of the unit of universal

gravitation in physics textbooks in this chapter revealed that textbooks present the role of

mathematics in many dimensions, serving many purposes. To achieve conceptual

understanding in learning physics, mathematics presented in textbooks should be used as

a tool for maintaining the balance between the qualitative and quantitative aspects of

physics. One of the roles of mathematics in the process of balancing the qualitative and

quantitative aspects of physics is establishing connections between mathematical symbols

and physical reality for the purpose of understanding of the mathematical concepts

involved in the material on Universal Gravitation. For this purpose textbooks present

mathematical concepts in different modes: numerical, verbal, graphical, pictorial, and

symbolic.

The other dimension in the presentation of the role of mathematics by textbooks

in learning physics is showing the usefulness of different mathematical representations as

being effective, productive, and intellectually stimulating for conceptual understanding of

physics. For this purpose many textbooks use the dynamic approach for the presentation

of the mathematical component in any of the modes of representation where equations,

graphs, pictures, tables, and verbal statements are placed in context with an explanation

of how they came to be and the purpose of their use.

As the findings of this study show, the mathematics in physics textbooks could

be used as a valuable tool for but not limited to the following: displaying data; aiding in

explanations, illustrations, derivations; posing questions; making conceptual inferences,

making comparisons between different mathematical relationships; and demonstrating
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beauty of mathematical relationships. The usefulness of mathematics in derivations

cannot be overestimated. Derivations of mathematical formulas and calculations serve the

important purpose of establishing corurections between ideas. As a result, new

information can be provided by obtaining new relationships what would demonstrate the

fecundity of mathematics. For example, the information about the mass of planets, stars

and galaxies, orbital speeds, period ofsatellites, acceleration due to gravity on different

planets, understanding the discrepancy in some results that could not be obtained without

employing mathematical derivations and calculations. Conceptual inferences would also

be impossible to make without using ratios of numbers, establishing and analyzing

proportionalities, and performing dimensional analysis. In showing the usefulness of

mathematics, textbooks demonstrate an important role of mathematics, a calculating tool

for problem solving. In problem solving, one cannot underestimate the role of

mathematics in generating conceptual models in the process of presenting evidence and

proof, or in the process of thought experiments. To succeed in this process and enable

students to leam from textbooks, mathematics has to be used quantitatively and

qualitatively in a balanced way. Once again, all these listed applications of mathematics

in the presentation of material in physics textbooks reflect the major role of mathematics

in physics education as an effective aid for balancing the qualitative and quantitative

aspects of physics.

The final chapter of this dissertation will outline the knowledge contribution to

research in science education. In addition, recommendations for textbook change,

teaching and learning, and curriculum development will be made. A discussion of

recommendations for textbook selection and implications for future studies will conclude
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this study.
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Chapter 8: Implications and Recommendations

Overvtew

Chapter 8 begins with an outline of this study's knowledge contribution to

research in science education. The emphasis is placed specifically on the construction of

a comprehensive instrument for the analysis of the mathematical component of physics in

textbooks' unit on universal gravitation and on using HPS as a theoretical and

methodological tool in instrument construction. Implications for textbook change and

curriculum development are discussed. Recommendations for textbook selection,

teaching, curriculum development are provided. A discussion of the directions for future

studies is also presented.

Knowledge Contribution to Research in Science Education

The main contribution of this study to research in science education is the

construction of the instrument for the qualitative content analysis of the mathematical

component of physics in physics textbooks. In most of the studies on evaluation of

textbooks the developrnent of the instrument for textbooks analysis was based on existing

educational theories, curriculum outcornes, and previous educational research. However,

historical inquiry, as a source for the development of themes for content analysis, was

largely ignored with the exception of some studies by de Berg. It is unfortunate because,

as this study shows, history and philosophy of science can be an invaluable tool as

theoretical and methodological approaches to construction of the instrument for content

analysis of textbooks. The development of the framework that emerged as a result into

inquiry into HPS provided one of the initial stages in the construction of the instrument

for content analysis in this study.
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The instrument constructed was then applied to the analysis of high school and

introductory level physics textbooks to explore the role of mathematics in the

presentation of material in the unit on universal gravitation. The exploration of the

mathematical component in physics textbooks is still a gap in science education research,

as was concluded as a result of conducting the literature review in Chapter 2. tn this way,

this study is innovative because of its explicit attempt to discover the meanings and

purpose of mathematics presented in physics textbooks, the approaches textbooks use to

convey them, the ways textbooks contribute to the process of balancing qualitative and

quantitative aspects of physics. Until now, no comprehensive instrument for the analysis

of the mathematical component of physics in physics textbooks has been developed in

identified studies on textbooks in science education. The detailed examination of the

mathematical component from multiple perspectives in the physics textbooks used for

this study will narrow the gap in the research of mathematical component in science

education. In constntcting my instrument I immensely appreciated the previous

researchers' contributions (discussed in Chapter 3) which gave me a starting point in the

development of the instrument for this study. Thus, the contribution of this study is that it

provides the basis for future construction of instruments for the analysis of the

mathematical component in science education.

The charts found in my dissertation provide useful information for teachers who

would like to have a glimpse at the physics books I evaluated without going through

many pages of bulky books in order to have idea about strengths and deficiencies of a

particular textbook. For example, if tliey look at the constructed maps of movement

between modes of representation of the mathematical component and the sequence of the
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emergence of these modes, they can make an informative decision on adopting of a

particular textbook. In addition, the appendices found in this dissertation could serve as a

valuable resource for possible criteria to judge the quality of physics textbooks, for

examples of analogies in the presentation of the material, to name a few. The section on

the application of geometry in physics problems on gravity (with provided solutions)

could be practical for a teacher, an average student, and an advanced student.

Finally, the findings from this dissertation enabled me to give recommendations

for textbook writers, teachers, and curriculum developers. I also outlined my

recommendations for textbook selection, as well as implications for further studies.

Implications

Implications for Textbook Change

Since textbooks are still used by teachers and students, the findings from this

study have implications for textbook improvement. For effective learning and teaching,

as learning theories suggest, the concepts of physics have to be presented in different

modes. The content analysis of physics textbooks evaluated showed that physics concepts

in the unit on universal gravitation are presented in many of them in multiple modes.

However, not all modes of representation of mathematical concepts in physics were

treated using a dynamic approach when mathematical formulas, graphs, numbers,

pictures, tables or verbal explanations are placed in context with an explanation of how

they came to be and the purpose of their use. For example, the numerical mode, as the

findings of this study showed, was mainly used for illustrating the law of universal

gravitation and exhibiting planetary data. Limited use of the dynamic approach of

presentation of numerical mode in most of the physics textbooks in this study does not
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engage higher order thinking skills, such as interpreting results, making conceptual

inferences, explaining discrepancy in results and other thinking skills which could help

students establish connections in the process of balancing qualitative and quantitative

aspects ofphysics.

Thus, I propose that in physics textbooks (as well as in teaching), numeric data

are presented and used in a more interactive way. Even if numbers in many physics

textbooks are engaged in a static way, teachers can modify the static presentation of

numerical information and turn it into dynamic way of their use.

As this research findings showed, the graphical mode of representation of

concepts in physics was not used to full capacity and in most textbooks evaluated the

graphs are presented in a limited statíc way. In some researched textbooks there were

some questions asked about the presented graphs such as: What would happen to one

variable if another variable changes? What is the value of a certain variable when the

value of another variable is. . .? However, more graphical relationships should be used

in physics textbooks and they should not be glossed over in the presentation of

material. It is crucial for graphs to appear in textbooks not as simple illustrations of

the narration but as dynamically engaging and interactive vehicles for learning.

Similar lirnitations were found in terms of using the pictorial mode of

representation of mathematical concepts in physics textbooks. Some textbooks used

pictures in a dynamic way for posing questions, giving explanations, or comparing

similar diagrams of different phenomena. However, most textbooks used the static

approach the main purpose of which was illustrating, diagramming or giving images of

gravity. Teachers could help fill the gap created by the limited use of the pictorial mode
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of representation of mathematical concepts in physics textbooks by providing rich

opportunities for using pictures in textbooks.

As this research showed, in the textbooks researched, the sl,¡mbolic and verbal

modes of mathematical component of the physics of gravity were presented mostly in a

dynamic way when mathematical relationships were derived or explained from their

origin. It was also established in this research that verbal descriptions preceded algebraic

ones which is in agreement with learning theories. However, very often the derivations in

physics textbooks were not presented necessarily the way they were obtained historically.

The reason for this was probably to reduce the amount of material presented in already

bulky textbooks, as well as for pedagogical reasons. Nevertheless, it would be a useful

exercise for students to understand the significance and the purpose of the mathematical

equations involved if they were asked to research how particular relations historically

came to be, who the scientists contributing to the emergence of particular relationships

were. Thus, introducing HPS in physics textbooks to help understand the emergence

of mathematical relationships used to represent physics concepts, laws and theories

(not just biographical information about scientists and their achievements) should be

seriously considered by textbook writers.

In the process of balancing the qualitative and the quantitative aspects of physics

in physics textbooks for establishing connections befween mathematical concepts used in

physics, what is important is not only tlie variety of modes of representation of these

concepts but also the variability of movements between different modes of representation

of mathematical concepts in physics textbooks. Textbooks should include an extensive

amount of qualitative problems before they move to quantitative problems and mixed
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qualitative-quantitative problems. Using analogies also help in exploring the

interrelationship of knowledge and generation of conceptual models which make

mathematical concepts in physics meaningful to students as established by educational

research (Gentner et al., 1997; Waterworth et al., 2000). Extensive use of qualitative

problems precedes the quantitative problems as example problems and as practice

problems assigned to students will help balance qualitative and quantitative aspects of the

physics students are trying to understand and use in their explanations, problem solving,

and other learning activities. Given the results of findings on variability of movement

between different modes of representation of mathematical concepts, use of analogies,

the degree of balancing qualitative and quantitative example problems in the researched

physics textbooks (Chapter 7), my recommendation for textbook improvement would be

the following: Textbooks should present the material in multiple modes where

movements betrveen modes of representation of concepts happen in a non-linear

way, in back and forth directions and befween different kinds of modes.

The findings on using HPS in the presentation of mathematical concepts in the

evaluated physics textbooks shorved that most textbook use the descriptive mode in the

presentation of the historical component of physics. Including the instructional mode of

presentation of mathematical concepts through HPS (providing assignments related to

the historical context requiring that students do exercises, complete projects, participate

in discussions) in a greater capacity in addition to using the descriptive mode will

expose students to the nature and methods of science and provide a better understanding

of mathematical concepts involved in physics material.
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The analysis of the chosen physics textbooks in terms of presentation of

mathematical concepts in physics through the view of science as a way of thinking

showed that the mathematical component of physics in the unit of universal gravitation is

presented not as a static collection of formulas and facts but as an important component

of understanding about gravity through the dynamic presentation of science as a way of

thinking. However, the analyzed textbooks were found not to illustrate well enough the

use of models in science in the presentation of material on universal gravitation. Thought

experiments did not find much reflection in the researched textbooks as well. Newton's

geometry, an important visual mathematical tool which helped Newton to conceptualize

gravity did not find any application in example problems of the textbooks examined.

Thus, physics textbooks could be significantly improved if they emphasized the use

of mathematical models in science and thought experiments in the presentation of

material. Accordingly, Newton's geometry, a mathematical visual tool which Newton

used to conceptualize gravity, should be incorporated in physics textbooks.

Implications for Curriculum D evelopment

If we assume that one of the textbook's function is to help students meet

curriculum outcomes and help teachers present the material in such a way that students

could acqufue the understanding required for this purpose, then it is reasonable to expect

that the objectives of a cuniculum should not just specify what topics or concepts have to

be covered but also the type of understanding to be developed. As for expectations of the

physics curriculum in terms of dealing with mathematical component of physics, it is

necessary to indicate in the curriculum what role is assigned to mathematics, in the

case of this study, in the unit on universal gravitation.
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I looked, for example, at the Maniioba curriculum document Senior 4 Physics

(405): A Foundationfor Implementation (2005) where the unit of universal gravitation

was presented in the topic "Fields" in the part called Exploration of Space.I could find

quite a broad range of use of mathematics reflected in specific learning outcomes of this

curriculum such as construction of scale models, description of Kepler's laws, Newton's

law of universal gravitation, solving problems, establishing proportions, performing

measurements, estimations and dimensional analysis, constructing graphs, developing

mathematical models involving linear, power, and inverse relationships among variables,

obtaining new relationships using algebraic derivations, using numerical values for

qualitative and quantitative reasoning in describing thought experiments, etc.

Mathematical concepts of physics were engaged in different modes (numeric. s)¡mbolic,

verbal, qraphical, and pictorial) for particular specific outcomes. However, what I did not

find was a statement about the expectation of balancing the qualitative and quantitative

aspects of physics (in any kind of expression) in the presentation of the unit of universal

gravitation, and what role mathematics was assigned to play in this process of balancing.

There is even no indication in any of the curriculum outcomes that students are expected

to have qualitative understanding of the key concepts in the course. For example, in one

of the specific learning outcomes we read: "Outline Newton's Law of Universal

Gravitation and solve problems using Fr = Gm¡m2/r'" (p. i0 - Topic 2.1 Exploration of

Space). In Notes to the Teacher on the same page there is no suggestion that the teacher

should present the relationship for the law of universal gravitation in a dynamic way,

namely going through the important steps of obtaining this law (as presented in Chapter 5

of this study) to show the intriguing, illuminating mathematical processes Newton went



244

through. Reading through the curriculum, I noticed that it is suggested to use history and

philosophy of science in introducing the material on gravity and in presentation of some

aspects of the law of universal gravitation. However, there is no suggestion of using HPS

in presenting the mathematical component of the law. All it says about this mathematical

relationship is: "Newton concluded that any two objects in the universe exert a

gravitational attraction on each other that is proportional to the product of their masses,

and inversely proportional to the square of their separation" (p. 10 Topic 2. 1 Exploration

of Space). In Pencil-and-Paper Tasks suggested on the next page of the curriculum guide

it only says: "students solve problems using Newton's Law of Universal Gravitation" þ.

1 1-Topic 2. 1 Exploration of Space). What kinds of problems (qualitative, quantitative, or

both)? ln what sequence should the different kind of problems (if there are more than

quantitative problems) be solved? It is not clear. According to my observations, the

curriculum guide does not place any emphasis on the significance of the mathematical

component of physics in leaming about gravity, let alone on crucial need to understand

the process of balancing the qualitative and the quantitative aspects of physics.

The other lirnitation of the present Manitoba curriculum is that it does not reflect

the Newtonian Style in approaching nature (described in Chapter 5) where mathematics

plays an essential role in the description of a phenomenon, making conceptual inferences,

and providing ground for a conceptual change. Some aspects of viewing science as a way

of thinking found their reflection in leaming outcomes in the unit of universal gravitation

such as describing some thought experiments, illustrating the use of models,

demonstrating fecundity of mathematics. However, insufficient emphasis was placed on
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illustrating the use of assumptions, presenting evidence and proof, and making reference

to Newton's mathematical tools such as calculus and geometry.

Recommendations

Recommendations for Textb o ok Selection

Given the scope of my study and limited number of textbooks analyzed, I do not intend to

make conclusive recommendations for change in physics textbooks, but I am prepared to

offer some tentative suggestions. I do not intend to make recommendations about

adopting specific texts, My recommendations can not be considered conclusive because I

am looking only at the treatment of the mathematical component of physics in the unit of

universal gravitation. Obviously, there could be other criteria than the treatment of the

mathematical component of physics considered for the selection of a textbook.

Using the results of the analysis of physics textbooks undertaken, I am now ready

to make recommendations for the selection of the physics textbook when the criterion for

selection is the tt'eatment of the mathematical component in the presentation of material

on gravity. Look in a physics textbook for the presence of the following:

o Mathematical concepts of physics are presented in a multimodal way and

students are invited to engage interactively with numerical tables, graphs,

pictures, symbols, and words.

Mathematical concepts of physics are presented using the dynamic approach

The purpose of using a particular mode of representation is clear

Mathematical concepts are connected by ananging the material in a way that

movement between different modes of presentation of mathematical concepts

happens in non-linear ways and between different kinds of modes
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. Analogies are extensively used in the presentation of material to connect,

compare and contrast different concepts

o Mathematical content is sequenced from simple to complex, from qualitative to

quantitative approach, and form verbal to algebraic form

. The problems are sequenced from qualitative to quantitative with an extensive

use of qualitative problems

o Mathematical concepts are presented using rich contexts through HPS. In using

HPS, the instructional approach is extensively applied as opposed to the

descriptive approach in the presentation of mathematical concepts of physics

o Presentation of mathematical concepts of the physics of gravity through IIPS is

enhanced by illustrating the use of assumptions, models, and thought

experiments, by discussing evidence and proof, by referring to Newtonian

approach to nature, and by showing fecundity of mathematics

o Newtonian geometry and calculus are incorporated in the présentation of the

material on gravity and in problem solving

Recommendations for Teaching

The findings of my study showed that the presentation of the mathematical

component in physics textbooks has strengths and limitations. It is an obligation of a

teacher, I believe, to fill the gaps in the textbook presentation of the material by applying

appropriate teaching strategies to help the students develop understanding of

mathematical concepts in physics. Therefore, I came up with the following

recommendations for the teacher:
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Whenever textbooks afiaîge the presentation so mathematical concepts move

from one mode of presentation to another in a linear way, teachers should involve

students in discussion of the textbook material in such away that back and forth

directions in moving from one mode to another are eîgaged, and mostly between

different kinds of modes. Students should be given different kinds of assignments where

they are required to communicate information either to a teacher or their classmates using

not only different modes of representation of mathematical concepts in physics (verbal,

s)¡mbolic, numerical, graphical, pictorial) but also showing their ability to freely move

between these modes. Students also should be encouraged to justify why they chose a

particular mode to learn to see the benefits and limitations of a particular mode for a

particular task.

Teachers should engage students in discussion during the analysis of example

problems in the textbooks. V/ith the help of a teacher, students should frll the gaps of

missing explanations and intermediate steps in problem solving, clarify the assumptions,

and pose more questions. More advanced students would extend a given problem to a

higher level problem, the average students would simplify a given problem to the level

suitable for their understanding so they could rnove easier to the next step of

understanding of the problem.

Teachers should encourage students to provide altemative solutions to example

problems where the qualitative solutions could complement the quantitative solutions, or

the quantitative solutions complement the qualitative solutions presented in textbooks.

Students should be encouraged to discuss the benefits and disadvantages of a given

approach in a particular problem situation to understand how qualitative and quantitative
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approaches to problem solving can complement each other to yield conceptual

understanding of physics concepts. Teachers should encourage students to find analogies

in physics textbooks, as well as create their own analogies with consequent discussion of

their benefits and limitations. Students would benefit from assignments that require from

them to research different approaches to derive a particular relationship, as well as to

participate in the debate on benefits and disadvantages of a particular approach. These

kinds of activities not only enrich the presentation of the mathematical component of

physics in the symbolic mode but also help students develop their modeling skills which

are very essential for problem solving, specifically efficient problem solving.

My recommendation for teachers is to compensate the limitation in the

presentation HPS in the instructional mode by giving students assignments where HPS

would be presented so as to engage the instructional mode, such as requiring students to

conduct research, participate in debates, construct and test arguments, and develop their

own conceptual models which subject to peer evaluation. In this way, mathematical

equations will gain meaning and value for students, foster students' curiosity for the

emergence of many other mathematical equations used to represent physics concepts and

laws. I suggest that teachers give students research assignments to find information about

models scientists used, about thought experiments scientists performed to come up with

their ideas.

My research found that graphs in the researched textbooks are used mainly in a

static fashion. Asking the following questions about the graphs presented in textbooks, I

believe, would likely increase student engagement in thinking about the information a

graph represents:
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o From your knowledge of mathematics can you tell what kind of relationship

this graph represents?

. What assumptions do we have to make to consider the relationship

represented by the graph accurate?

. How would the graph change if we assume...?

o What does the slope of this graph mean (in case of a linear relationship?)

o 'What 
does the slope of a tangent to the curve mean (in case of a non-linear

relationship)?

¡ If we find area under the graph, what meaning would it have? Can you do

research on this question if you cannot tell now?

. How would you modify the scale of this graph to present better information

given in a numerical table you see in the textbook on this topic?

Students, I believe, would benefit if similar kinds of questions were offered and

went along with the numerical tables used in the presentation of the material. I suggest

that students also get a chance to ask questions once they see the table. They could be

asked to think about questions which this table could ansrver and the ones which require

additional numerical information about the objects presented. This approach to using

tables would activate students' thinking on a higher level preparing them for solving

problems; as well it would foster a students'sense of curiosity and interest in learning

physics. To make tables more engaging in leaming, I suggest, teachers ask questions like

the following:

o How do numerical dala for a particular variable (characteristic) compare to each

other?
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o Which of the objects in the table would have the least (greatest) other

characteristic value given numerical values of the present characteristic? How do

you know?

o What additional information do you need in order to calculate other

characteristics, not presented in the table?

o How would you calculate a numerical value of a certain ratio of variables using

data from the table?

o How would you find this ratio by graphingdata? What do you think this ratio

means?

o How would you use this information to calculate some other characteristic

provided you research information about the other characteristic you need to

know?

Students also could be encouraged to ask questions about particular pictures,

evaluate them critically, as well as to make suggestions on how they would draw a

picture describing what they read in the textbook. It could also be a useful learning

exercise to ask students to draw a picture on reading material presented on certain

pages in the textbook. Parlicularly, this exercise could be useful to visual learners.

Even if a picture is just a simple illustration such as diagramming forces of gravity

acting between two objects, the teacher could ask questions which would engage the

students in an interactive exploration of the diagram presented. For example,

o How do you interpret this diagram?

o What other similar phenomena can this diagram describe?

. How would this diagram change if you add another object to the system?
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How would this diagram change if you change one of the characteristics

presented on it?

Can you draw your own images associated with gravity? What verbal

explanations would you attach to these images?

Research scientific magazines for images of gravity. what do these images

tell you about gravity?

o Make your collection of cartoons about gravity after you research web sites on

cartoons about gravity. V/hat do these cartoons demonstrate about gravity?

Recommendations for Curriculum Development

Manitoba curribulum is used as an example to show what recommendations can

be made based on the findings of the study. I do not intend to make recommendations for

other curricular because the exploration of other curricular was not in the scope of my

study, neither was it the focus of my research. Given limitations of the curriculum used in

Manitoba, I suggest the following changes for the Manitoba curriculum in physics for the

unit on universal gravitation:

o The rnathematical component of physics should get special attention in learning

outcomes where clear expectations on the role of mathematics in physics and the

type of understanding to be developed would be specified.

o The curriculum outcomes should specify how the balance between qualitative and

quantitative aspects of physics is expected to be achieved by clearly specifying

experiences, activities, resources teachers could use. The curriculum outcomes

should state that qualitative understanding of key concepts is expected in the

physics course.
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Leaming outcomes of the curriculum should include understanding the purpose of

using a particular equation. It should be recommended to acquire this

understanding through the use of the instructional approach to IIPS which could

provide significance to the mathematical equations in physics.

The curriculum should stress the need for the dynamic emergence of a scientific

law either during the presentation of the material by the teacher or by research by

the student. The mathematics equations only then attain meaning and significance.

Particular attention should be given to the reflection on the Newtonian approach

to nature in curriculum outcomes. There should be a requirement in curriculum

outcomes that teachers present all dimensions of Newtonian style and that

students are expected to understand and improve on using them in their learning.

Recommendations þr Further Study

The instrument developed in this study was designed for the analysis of the

mathematical component of physics in high school and introductory level college physics

textbooks. The chosen context was universal gravitation. I anticipate future researchers

can utilize my instrument, with necessary modif,ications, in exploration of the

mathematical component in any science discipline, for different levels of science

textbooks, and in different science contexts. I also see the possibility for a team of

researchers to construct a more general instrument for the analysis of the mathematical

component of physics where the instrument would contain other categories that would

emerge in the process of negotiation between many educators to reflect their multiple

perspectives.
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The research conducted provides some answers on how the role of mathematics is

represented in physics education as reflected in high school and introductory level college

physics textbooks in the context of the unit of universal gravitation. As any research,

especially, one which is different from most research on textbooks (research of the

mathematical component in physics textbooks) leaves many questions unanswered. I see

the following possible directions for future research summarized in the following

questions:

o How do university level physics textbooks represent the mathematical component

ofphysics?

o How do physics textbooks present the mathematical component of physics in

different contexts, other than in the topic of universal gravitation?

o How does the reported presentation of the mathematical component in physics

textbooks actually match classroom presentations?

o How can a good textbook, where the presentation of the qualitative and the

quantitative aspects of physics are balanced, affect learning outcomes?

o 'What 
is the correlation behveen the curriculum goals in terms of treatment of the

mathematical component of physics and physics textbooks' presentation of

mathematical concepts?

o Wlrat changes have to be made in both textbooks and curriculum guides to insure

balance belween the qualitative and the quantitative aspects of physics?

o What are the irnplications of the findings from this study for teacher education?

o How do the teachers view the role of mathematics in physics and in physics

education?
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o How do the teachers think students leam best about the mathematical component

ofphysics?

o What strategies do the teachers think help insure balancing of the qualitative and

the quantitative aspects of physics in the process of learning physics?

o How do students view the role of mathematics in physics?

o 'what 
are students' experiences with using mathematics in physics?

r What is the students' opinion on the ways of the best learning about the

mathematical component of physics?

In closing, I offer a final suggestion. Writing a science textbook is a large scale

endeavor requiring the effort of a team of educators, curriculum developers, scientists,

and textbook writers. I see the future physics textbook as an interesting, engaging, and

informative resource where units are designed based on the Newtonian Style of

approaching nature. All contributors to the writing exhibit a clear vision on the role that

mathematics plays in this textbook to insure balancing of the qualitative and the

quantitative aspects of physics. This vision is presented and fulfilled by using rich

contexts, activities and methods of presentation of the material.
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Modes of Representation
of Mathematical Concepts in
the Law of Universal
Gravitation

. Numerical

o Verbal
o Graphical
o Pictorial
o Symbolic

Appendix A. Ins trum ent for Textb o ol<s Analys is

Cateeories
Mathematical concepts
are presented by

. Numbers (in
tables, charts)

o Words
o Graphs
o Pictures
o Algebraic

symbols

Descriptors

Nature of Emergence of
Mathematical Concepts in
the Law of Universal
Gravitation

Appendices

Multiple representations
help develop
r Conceptual

understanding
o Enrich the

presentation of
physics knowledge

o Establishconnections
between symbols and
physical reality

Limited representations
cause lack of
understanding of
mathematical concepts.

lnferences

Mathematical formulas,
graphs, tables, and verbal
formulations appear and
are used

Constructing a
presence/absence of a
particular mode matrix,
and making judgments
about use ofdifferent
modes according to the
following analytic rubric:
. Limited use -only one

or two modes are
present

¡ Moderate use - three or
four modes are present

r Extensive use - all five
modes are present

AnalWical Tools

)'7)

Identifying nature of
emergence of a particular
mode (based on
s t at i c/dynam ic descriptors)



Appendix A. (continued)

. Static ¡ without
explanation, or
discussion

c Dynamic

o Mathematics, in the
case of static
emergence, is mostly
used for
memorization of
formulas, tables,
graphs, pictures

o with information
about
background,
experimental
details, how
mathematical
relationship
expressed in a

Verbal formulations
do not complement
each other
Connections between
concepts could not be
established

Presentation of the
mathematical
relationship in the
dynamic way could
help change students'
conceptions
Connections between
concepts could be

273



Appendix A. (continued)

Emergent Press (purpos e)

for a Particular Mode

o particular mode is o established
determined, and
accuracy ofthe
relationship

Stating purpose of using
a particular mode

Connections of Mathematical
Concepts

The replacement of
concepts could be
seen by students as

useful and plausible

Mindless
manipulations of
mathematical
equations occur in a

context where the
expressed need for
such equations is
missing

o Moving between
modes of
representation

Identifying purpose of
using a particular mode if
there is one stated

Students will likely make
connections between
concepts.

274

Constructing maps of
tracking rnovements
between modes of
representation of concepts
and evaluating variability
of moves according to the



Appendix A. (continued)

following analytic rubric:
o Limited -movements are

mostly linear, from one
mode to another in a
single direction

with 1-2back and forth
movements between
limited kinds of modes
r Moderate -
movements are
mostly not linear, from one
mode to another in back
and forth directions, and
mostly between same kinds
of modes
o Extensive-
movements are not linear,
from one mode to another,
in back and forth directions
between, mostly befween
different kinds of modes

Constructing a

presence/absence of
o Using analogies

215

Students would likely use
relevant features and



Appendix A. (continued)

Sequencing Mathematical
Content:

Simple --- complex
o Qualitatiys---+quantitative

o Verbal--+algebraic

ignore irrelevant
ones when
comparing and
contrasting
concepts what
would help in the
interrelationship
of knowledge.

. From describing
qualities (features) of
observations, exp eriences,
inferences to describing
measurable quantities
involved;

. From describing
mathematical
relationships in words to
giving symbolic
equations

analogies matrix,
and in case of
presence, providing
examples of
analogies

This way of
presentation is in
agreement with
learning theory;
therefore, meaningful
presentation of the
mathematical
component of physics
is likely to happen.

216

Using maps of
tracking
movements.
The following
rubric is applied:

' Appropriate -
the
simple---compiex
sequence is used



Appendix A. (continued)

Complex-+simple
r Quantit¿1lve---+qualitative

o Algebraic---+verbal

B alancing Qualitative and

Quantitative aspects of Physics in
Presentation of Example Problems
Problem Solving Approach:

. qualitative

From presenting
measurable quantities to
describing features

From describing
mathematical
relationships in symbols
and algebraic equations

to describing
mathematical

o quantitative

This approach is not
recommended by
educational
researchers since
cognitive gaps could
be formed if such
approach is used;
therefore, learning of
mathematical
concepts will be
complicated.relationships in words

The approach, where .
verbal explanations are engaged
(conceptual problems)

The approach, where o

calculations, symbolic equations
are engaged

o Not
appropriate - the
complex-+simple
sequence is used

277

Lack of problems
engaging
qualitative
approach would
impede students'
learning
Engaging
students in
solving only

Analyzing the
content of
example
problems and the
approach taken to
solve them. The
following analytic
rubric will be
used to
determine the
extent of
balancing:



Appendix A. (continued)
quantitative problems
would
signify engagement
of primitive levels of
thinking which are

not suitable for
generating conceptual
models
. Qualitative

reasoning
combined with
quantitative
mechanism to
communicate
thinking
strategies would
help generate
these models and
make
mathematics
meaningful to
students

Limited -
mostly
quantitative
approach is
used with
almost no
qualitative
reasoning
Moderate -
algebraic
equations,
calculations
are backed up
by some
qualitative
explanations
Extensive -
algebraic
equations,
calculations
are backed
up by
detailed
qualitative
explanations

278
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Presentation
of Mathematical Concepts
through HPS:

o Descriptive

o lnstructional

Presentation o f mathematical
concepts referring to HPS with
no students' assignments related
to the historical context

Presentation of mathematical
concepts referring to HPS with
assignments related to the
historical context and requiring
from students doing exercises,
completing projects,
participating in discussions

If HPS is presented
descriptively only,
students get little
exposure to the
nature and methods
ofscience and

significance of
mathematical
equations in science
could not be
understood.
If HPS is presented in
instructional way,
students will get
exposure to the
nature and methods
ofscience by
applyrng presented

Constructing
presence/absence
matrix (based on
descriptors)
featuring
descriptive/instru
ctional
presentation of
mathematical
concepts through
HPS, and in case

ofpresence,
providing
illustrative
examples

279
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Pres entation of Mathematical
Concepts Viewing Science as a
Way of Thinking

ideas during
construction of
conceptual models of
their own, gaining
experience to
evaluate their
conceptual models in
terms of accuracy,
simplicity,
plausibility,
predictability, and
fruitfulness.

Illustrating the use of
assumptions, models, and
thought experiments in
the presentation of
history of the
development of the
concept of gravity
Discussing evidence and
proof
Referring to Newtonian
Style
Showing fecundity of

¡ Mathematics
would be used as a
conceptual tool in
learning about
gravity, and would
facilitate students'
construction of their
own conceptual
models
o Mathemalical

formulations
would get

280

Constructing
presence/absence
matrix (based on
descriptors)
featuring
presentation of
science as a way
of thinking, and
in case of
presence,
providing
illustrative
examples



Appendix A. (continued)
mathematics

. Referringto Newton's
geometry and calculus
for the description of
gravity

significance and
show their
usefulness,
fruitfulness,
plausibility, and
limitations, thus
facilitating the
process ofconceptual
change
r Higher order

thinking would be
engaged in
understanding
NOS and help
establish
connection
between
mathematics and
physics

281



Appendix B. Nature of Emergence and Purposefor a Particular Mode of Presentation of Mathematical Component in

the Unit Universal Gravitation

GP-ZD Static/
Displaying
planetary
data, p. 178

Dynamic/
Explaining Newton's
reasoning about necessity
for the force of gravity to
obey inverse square law,
hypothesis about the
same nature of force
acting between planets
and the force causing
objects to fall to the
Earth, and applicability
of Newton's 3'd law to
mutually attracting
objects, p. 181;Using
ratios to explain how to
apply the law, p. 182

Dynamic/
Explaining
proportionality in the
law, stressing that gravity

CP-H

Static/
Illustrating
the change in
the force of
gravity with
distance from
Earth, p. 183

Dynamic/
Conceptual
inferences -
using ratios
of numbers

Static/
Illustrating -
showing
variation of the
gravitational
force when
mass/distance
changes, p. 182

is universal. o. 170. 172

Dynamic/
Usefulness:
Establishing
connections -deriving
Kepler's 3'd law from the
law of universal
gravitation;means of
providing new
information by
obtaining new
relationships -derivin g/
calculating mass of
planets, stars and
galaxies, orbital speeds,
period of satellites,
acceleration on planets,
pp.183-188
Dynamic/
Conceptual inferences -
using for analysis of
proportionality, p. 17 2;
Usefulness: means of

282

Dynamic/
Posing
question about
weight of an

Dynamic/
Posing questions
when modeling
inverse-square
law usins butter



Appendix B. (continued)

representing
distances of a
falling apple
and a falling
moon from
Earth's
center to
conclude that
F, diiutes
with distance
according to
inverse
square law,

P-NH

located at 3d,
4d, and 5d
from the
surface of
the Earth,
p.176

. t69-170
Static/
Illustrating -
showing g at
different
locations on
the Earth and
gandWon

spray example,
p.175;
Posing
question about
observation and

reason using
illusion check
(different size
ofhands)
exanple, p.I77

Pictorial

Dynamic/
Explaining
what factors
affect tl (Fò,
assumptions,
the process of
getting

other planets

providing new information -
calculating G, mass of the Earth, pp.
r13-t74;
Values judgment - stressing the

beauty of the rule which made possible

success in science that followed by
providing model of reasoning
(Newtonian Style), p. 17 9

Dynamic/
Explaining
how weight
changes with
distance
from Earth,
stressing

uation of

Symbolic

283

Dynamic/
Explaining how
I/depends on
gravitational
pull showing
how it changes
on different

Dynantic/ Conceptual inferences -
going from proportionality algebraic
statements
F. - 1/r2 and

Fl - mrmz/r2 to algebraic equation

-fg: (-rm1fn2/Í ,

performing dimensional analysis to
lanets and arrive at the unit of force N (cancelin



Appendix B. (continued)

Numerical
in a table, p.
164

gravitational
law from
proportionality
statement and
universality of
the law, p. 161

that rapid
change in
weight is
related to
the inverse
square
relationship
represented
by the
shape of
the graph,
p.160

hical
diagramming
the situation
when the
object's IZis
0, p. 159;
Explaining
why the
distance
between fwo
gravitating
spheres is
taken between
their centers
(reference to
Newton's
theorem and
his calculus),

Static/
Illustrating
-showingg
at different

factors technique), p. 161 ;
Usefulness:
means of providing new information -
calculating F r, W, deriving/calculating
orbits' size, orbital speed, period, pp.163-
1 64, 2I3-216, 2I9; obtaining ratios such

AS

Fz/F ¡:rt2/rrt , pp. 165-166; Establish
connections - deriving Kepler's 3'd law
from the law of universal gravitation, p.

218 (margins)

Dynamic/
Explaining
the emergence
of the

284

Dynamic/
Explaining
how the
relative

Dynamid
Conceptual
analysis, p.

Establishin

inferences -performing unit
578;

connections -derivin



Appendix B. (continued)

locations on
Earth and
other planets
in a table, p.
132-t33;
Dynamic/
Interpreting -
showing
relationship
between
orbital period
and orbital
radius for
different
planets in a
table, and
asking to make
a graph of the
data, study the
shape of the
graph and
choose the

relationship in
the law of
universal
gravitation
reconstructing
historically
some of the
steps of
Newton's
reasoning, pp.
577-578

strength of Fr at

different
distances from
Earth's center
could be
represented
with the lengths
of arrows, p.
131;

Comparing the
intensity of
physical
phenornena that
obey inverse
square law to
the spreading
out of the
surface of a
sphere, asking
to compare this
property of the

Kepler's 3'" law from the law of
universal gravitation, p. 583;
proving the equivalence of two ways
of calculating g on the Moon showing
that centripetal acceleration of the
Moon in orbit is exactly equal to the
acceleration provided by the force of
gravity obeying inverse square law,
pp.632-633;
Usefulness: means of providing new
information by obtaining ne\ry

relationships - calculating W,

derivin g/calcu lating mass of planets,
orbital speeds, orbits' size, pp. 579,
585.590-592;

Symbolic

285

force of sravit
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Text Numerical
appropriate
mathematical
relationship, p.
573

Statid-
Illustrating
showing g at
various
locations on
Earth, p.l2l,
and planetary
data applied to
Kepler's 3'd

Iaw in tables,
p.125;
Dynamid
Conceptual
inferences -
using values
for a of the

P-G

Verbal Graphical

Dynamic/
Explaining
Newton's
reasoning in
arriving at his
law of gravity,
stating
assumptions,
referring to
Newton's
calculus, p.
118-119

to the
electromagnetic
force, p. 633

Pictorial

Static/
Illustrating:
downward
direction of F,
toward the
Earth's center,
p.lI7;
application of
Newton's 3td

law in the
process of
obtaining the
law of gravity,
p. i18;
information
given for

Svmbolic

286

Dynamic/
Conceptual inferences -going from
proportionality in algebraic algebraic
equation
Fr: Gm1m2l:l,p.I42;
Analyzing statements Fr- l/r2 and F*

- m1m2lr2 to algebraic equation
Fr: Gmlmz/r2; Usefulness:
calculations - Fg on different
planets, pp. 119-i20;
means of providing new information

-derivin g/calculating mass of
planets, stars and galaxies, orbital
speeds, period of satellites,
acceleration on planet s, pp. L2L -123,
916:



Appendix B. (continued)

Text Numerical
Moon toward
the Earth, d of
the Moon from
the Earth, and
g ofobjects on
the surface of
the Earth, r of
the Earth to
conclude about
inverse square
law
relationship of
lr", p. 118;
analysis of the
order of
magnitude of
,F" to explain
small F"
between
objects on the
Earth

Verbal Graohical
example
problems, p.
120;
orbits of
satellites
launched at
different
speeds, and
showing how
gravity affects
the path of a
satellite, p.122

Pictorial
Establishin g connections -deriving
Kepler's 3'd law from the law of
universal gravitation, p. 726

Symbol

287

c



Appendix B. (continued)

Text
CCP-

JC

Numerical
Dynamic/
Conceptual
inferences -
using ratios
of values for a

of the Moon
toward the
Earth to values
ofg ofobjects
on the surface
of the Earth,
and ratios of d
of the Moon
from the Earth
to r of the
Earth to
conclude about
inverse square
law
relationship of
Fr, p. 735;
Explaining
discrepancy

Dynamic/
Emphasizing
that gravity
prompted
Newton to
write the
Principia
Explaining
what factors
affect F", the
process of
Getting
equation of
gravitational
law from
proportionality
statement;

Explaining
Newton's

reasoning in
arriving at his
law of gravity,

stating

Verbal Graphical
Static/
Illustrating:
information
given in
example
problems,
p.135, 743,I44,
148;
image of an

object described
in example
problem, p.
139;
information
about the way
of measuring
distance for
spherical bodies
of uniform
density when
finding F,
between them
(reference to

Pictorial
Dynamic/
Conceptual inferences -
-going from
proportionality in algebraic
statements
F, - 1/r2 and
F* - m1rn2/rt to ptoportionalities, p.

| 42, I 44 (Discussions) ;

Bstablishing connections -deriving
Kepler's 3'd law from the law of
universal gravitation, p. 144;
Usefulness:
means of providing new information

-deriving/calculating density of the
earth, period of moon's orbit and an

artificial earth-orbiting satellite, pp.
r45-146, t48

Symbolic

288
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Text Numericai
in the results

of calculations
of the period

of the period
of the moon's
orbit, p. 146

Static/
Illustrating -
showing in
tables g at
different
altitudes
above the
surface of the
Earth, p. 198,

and planetary
data applied to
Kepler's 3'd

Iaw, p.204

CP-SF

assumptions,
referring to
Newton's

calculus, pp.
calculus, pp.
r42-r43

Static/
Stating the

universal law
of gravitation

and listing
features of
the law, p.

194

Verbal Graphical
Newton's
theorem and
his calculus),
r43

Pictorial

Static/
Illustrating:
the forces of
gravity
between fwo
objects are

attractive and
act in pairs,
p.194;
image of a star
revolving at a
speed v about
the center of
the galaxy
being affected
onlv

Svmbolic

289

Dynamic/
Usefulness:
calculating - Fr(LD, andg on
different planets, pp. 197-198;
means of providing new
information -derivin g/c alculatin g

mass of the Earth, p.I97 and mass

ofthe Sun, p.204, height ofa
geoslmchronous orbit, p.206;
orbital speed of a satellite,
pp.206-207;

Establishing connections -
deriving Kepler's 3'd law from the

law of universal gravitation, p.

203 -2}4;Conceptual inference -
analyzing formula for orbital



Appendix B. (continued)

Text Numerical

PM-TH

Verbal Graphical

Dynamic/
Explaining
Newton's
reasoning
about the

nature of the
force of
gravity

providing
brief history
of gravity,
p.97, and
stressing a

by the mass
inside its orbit,
p.196;
information
given in the
example
problems and
free body
diagrams, p.
r97,206
Static/
Illustrating:
All objects, no
matter how far
they are from
the Earth,
experience
force of gravity
exerted by the
Earth, p.97;
Two masses

separated by a

Pictorial
speed v to conclude about its
independency on the mass of a
satellite, p.207

Svmbolic

290

Static/
Stating the law of gravity without
explanation of steps to arrive at it,
p.98;
Dynamic/
Usefulness : deriving/calculatin g
g atthe surface of the Earth, p.

101-102, radius ofa
geosynchronous orbit, p. ]08;
derivin g orbit equation v" : G M/r,
p.105;
Conceptu al inferences -analyzing



Appendix B. (continued)

Text Numerical
great triumph
of the
Newtonian
picture of the
world, p. 110;
Explaining

proportionality
in the law,
engaging
verbal
reasoning by
asking ttwhat

if'questions,
stressing that

gravity is
universal, p.
98

Verbal Graphical
distance with
gravitational
forces shown
between them,
p. 98

Pictorial

Note: - represents the absence of a feature

formula for orbital speed v to
conclude 1) that for a given
distance r, between satellite and its
central body, there is only one
speed v, at which the satellite can
move and remain in orbit, and?)
about independency ofv on the
mass of a satellite, p. 105

Svmbolic

29r
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Appendix C. Using Analogies ín the Presentation of the Law of Universal Gravitation

Text Presence
/Absence

Illustrative Example

GP-ZD "One way to picture how space is affected by mass is to
compare space to alarge, two-dimensional rubber sheet...The
yellow ball on the sheet represents a massive object. It forms an

indentation. A marble rolling across the sheet simulates the
motion of an object in space. If the marble moves near the
sagging region of the sheet, it will be accelerated. In the same

way, Earth and the sun are attracted to one another because of
the space is distorted by the two bodies" (p. I92).

CP-H "This law applies not only to the spreading butter from a butter
gun, and the weakening gravity with distance, but to all cases

where the effect from a localized source spreads evenly
thloughout the surrounding space. More examples are light,
radiation, and sound" (p. 175).

P-NH "The equation for Coulomb's law is very similar in form to
Newton's universal law of gravitation equation. While the
gravitational force depends on the masses of the objects, the

electrostatic force depends on their charges. The constant of
proportionality for each equation quantifies the difference

between each type of force. In both equations, the force is

inversely proportional to the square of the distance between

two bodies and directly proportional to the product of the

property of the object governed by that law (i. e., charge or
rnass)" (p. 5a0).

the

P-E "The force of gravity exerts its influence over very long
distances and is the same in all directions, suggesting that the

influence extends outward like a spherical surface...How does

this property of the force of gravity compare to electromagnetic
force" ftr. 633X
"...just as Newton was able to develop the mathematics
(calculus) that proved that the mass of any spherical object can

be considered to be concentrated at a point at the centre of the

sphere for all locations outside the sphere, so it might also be

proven that if charge is uniformly distributed over the surface

of a sphere, then the value of the charge can be considered to be

acting at the centre
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Note: { represents the presence of a feature
represents the absence ofa feature

for all locations outside the sphere" (p.637).

P-G

CCP-JC "A simple way to visualize the object's motion is to imagine it
represented by a bead sliding without friction along a wire bent
into the shape of the potential-energy curve. An upward push

sends the bead along the wire from r" to a, where it stops and

slides back down to r, The bead loses speed as it goes from r"
to a and regains speed as it returns. This analogy can be quite
useful, but you must remember that the actual motion of the

object is along a straight line directed radially away from the

earth"

@.22r).

"The idea that amechanical universe obeyed a single set of
laws suggested that all observed behavior could be explained in
mechanical terms. Kepler's word cloch,vork is often used to
describe this viewpoint" (p. 89).

CP-SF
PM-TH
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Appendix D. Problem Solving Approaches in the Example Problems on tlte Law of

Universal Gravitation

Text Illustrative Example Type of Extent of
Balancine

GP-ZD
"A satellite orbits Earth225 km above its surface.

What is its speed in orbit and its period?"þ. 187).

Strategy: "Determine the radius of the satellite's
orbit by adding the height to Earth's radius... Use
the velocity equation... Use the definition of
velocity to find the orbital period... Rearrange and

solve for I'(p. 187).

quantitative L

CP-H
"suppose that an apple at the top of a tree is pulled
by Earth's gravity with a force of 1 N. If the tree

were twice as tall, would the force of gravity on the
apple be only % as strong? Explain your answer"

þ. 176).
Answer: "No, because the twice-as-tall apple tree is

not twice as far from Earth's center. The taller tree

would have to have a height equal to the radius of
Earlh (6370 km) before the weight of the apple

would reduce to % N. Before its weight decreases

by I o/o, an apple or any object must be raised 32

km - nearly four times the height of Mt. Everest,

the tallest mountain in the world. So as a practical
matter we disregard the effects of everyday changes

in elevation" (p.176).

"How does g at the surface of Jupiter cornpare with
g at the surface of Earth? Data: Jupiter's mass is

about 300 times that of Earth, and its radius is about

10 times greater than the radius of Eafih" (p. 184)

Answer: For Eartir, g: GM/R2. The value of g on

Jupiter's surface is G (300M)/(10R)2 :
SOO CUt¡100 R2) : 3 GM/R2, or 3 times Earth's g.

(More precisely, Jupiter's g:2.44 times Earth's g
because its radius is nearly 11 times that of Ear1h"
(p. 18a).

qualitative
and

quantitative

quantitative

E

P-NH
"A 1000-kg satellite is the payload on a planned

shuttle launch. What is its weight 32000 km from
Eaúh's surface?" (p. 165).

Strategy: "It is not always necessary to use the

universal fonlula for gravitation to obtain a weight

qualitative
and

quantitative

E



value of an object significantly above aplanet's
surface...we can solve the problem by finding the

ratio befween the two forces at the two different
locations. The following variables remain the same:

G, llt1arth, tntsare|ìte. The radius r can also be

simplified for the second càsl. Í'2, the distance of
the satellite from Earth, is 32000 km + 6400 km:
38400 km above the centre of Earth. (Remember,

we always use distances from the centre of the

object.) Í2 ãs àratio of r1 is 38400 km/6400 km : 6.

Therefore, r2-- 611. Similarly, we can take a ratio of
the weights, F¡ and Fz.The common factors cancel

out... Fzl Ft: 1136. We can find .Fr easily by using

F : *g.Therefore, the weight of the satellite on

Earth ii tOOO kg x 9.8 mJs2 :9800 N. From our
ratio, Fz: Ftl36:272 N... h general, you can do

problems like this very quickly by using some

fundamental logic. If the object is farther away

from the planet, its weight will decrease. If the

object moves closer, its weight increases. The factor
used to relate the two weights is the square of the

ratio of the distances from the centre of the planet"
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Appendix D. (continued)

P-E

"A 65.0 kg astronaut is walking on the surface of
the Moon, which has a mean radius of 1.74 x 103

km and a mass of 7 .35 x 10 
22kg.'What is the weight

of the astronaut?" (p. 579).

Solution:
"Frame the Problem

. The weight of the astronaut is the
gravitational force on her.

. The relationship Fe: mg...cannot be used

in this problem, since the astronaut is not on

Earlh's surface.
. The law of universal gravitation applies to

this problem.
Identify the Goal...
Variables and Constants...
Strategy Apply the law of universal
gravitation.. .substitute the numerical values and

solve...
The weight of the astronaut is

Validate
Weight on the Moon is known

quantitative
and some
qualitative

approximately 105 N.

to be much less than
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that on Earth. The astronaut's weight on the Moon
is about one sixth of her weight on Earth (65.0 kg x
9.81 m/s2 = 638 N), which is consistent with this

common knowledge" (p. 579).

P-G "What is the force of gravity acting on a 2000-kg

spacecraft when it orbits two Earth radii from the

Earth's center (that is, a distance r¡:6380 km
above the Earth's surface...)? The mass of the Earth

is Mp: 5.98 x 1024 kg'
Approach V/e could plug all numbers into Eq...,
but there is a simpler approach. The spacecraft is

twice as far from the Earth's center as when it is at

the surface of the Earth. Therefore, since the force

ofgravity decreases as the square ofthe distance

(anð, ll22 :'A), the force of gravity on the satellite

will be only one-fourth its weight at the Earth's

surface.
Sotution At the surface of the Earth, F6: mg. At a

distance from the Earth's center o1Zrs, Fc is t/q as

great:"Fo:'A 
mg : '/o (2000 kg)(9.80 nlsz¡:4900 N "

þ. 120).

qualitative
and

quantitative

Note: no
explanation
given why
Ms was not
needed in
the problem

M

CCP-JC

"Consider a mass m fallingnear the earth's surface.

Find its acceleration g in terms of the universal
gravitational constant G, and draw some

conclusions from the form of the answer.

Solution The gravitational force on the body is.F :
GntMrh),...
We have already noted that the gravitational force

on a body at the earth's surface is .F : rzg. Setting

the two expressions for the gravitational force on m

equal to .uìh oth.r, we get mg : GrnMs/rt, o, g :
GM¿/r2. Both G and Mt are constants, and r does

not change significantly for small variations in
height near the surface of the earth. Thus, the right-
hand side of this equation does not change

appreciably with position on the earth's surface. For

this reason \¡/e may replace r with the aver-age

radius of the earth As to get I : GMt/ Rp2.

Discussion The law of gravitation predicts that the

acceleration due to gravity ofan object at the

earth's surface is approximately constant and does

quantitative
and

qualitative

E



not depend on the mass of the object.
Experimentally we know that g does not vary
appreciably from one place to another. This
constancy of g is just what Galileo found. Thus the

law of universal gravitation not only describes the

forces that hold the planets in their orbits, but also

describes the forces on objects close to the earth"

t43-t44
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"A student drops a ball and considers why the ball qualitative

falls to the ground as opposed to the situation in
which the ball stays stationary and the Earth moves

up to meet it. The student comes up with the

following explanation: "The Earth is much more

massive than the ball, so the Earth pulls much

harder on the ball than the ball pulls on the Earth.

Thus, the ball falls while the Earth remalns

stationary." What do you think about this

explanation?
Explanation According to Newton's universal law

of gravity, the force between the ball and the Earth

depends on the product of their masses, so both

forces, that of the ball on the Earth, and that of the

Earth on the ball, are equal in magnitude. This
follows also, of course, from Newton's third law.

The ball has large motion compared to the Earth

because according to Newton's second law, the

force gives a much greater acceleration to the small

mass of the ball" (p. 195).

"Derive an expression that shows how the

acceleration due to gravity varies with distance

from the center of the Earth at an exterior point.

Solution ...assume that the ball is located at some

arbitrary distance r from the Earth's center. The

first equation in Example. . ., with r replacing ^R¿ 
an"d

nx6removedfrom bothsides, becomes g : GMs/ r 2

This indicates that the free-fall acceleration at an

exterior point decreases as the inverse square ofthe
distance from the center of the Earth. Our
assumption... that objects fall with constant

acceleration is obviously incorrect in light of the

present example. For short falls, however, this

change in g is so srnall that neglecting the variation

does not introduce a significant error in the result.

qualitative
and

quantitative



Èeca,rse the weight of an objectís mg, we see that a

change in the value of g produces a change in the

weight of the object. For example, if you weigh

800 N at the surface of the Earth, you will weigh

only 200 N at a height above the Earth equal to the

radius of the Earth. Also, we see that if the distance

of an object from the Earth becomes infinitely
the wei roaches zero..." (p. 198

qualitative

quantitative
with some
qualitative
discussion

'1Suppo.e that the distance between the Earth and

the Sun suddenly doubled. How much would the

mass of the Sun have to increase in order to keep

the force of gravity between the two the same?

The force of gravity depends inversely on the

square of the distance between objects, so doubling

the distance would cause a decrease in the force of
gravity by a factor of four. The force of gravity

depends directly on the mass of each object, so the

mass of the Sun would have to be four times as big
as it is now to compensate for the larger distance"

(p.e8).

"Given that the mass of the Earth is 6 xl02a

kilograms, what is the acceleration due to gravity at

the Earth's surface?
Reasoning and solutio¡2.' To answer this question,

we just have to put the Earth's mass and radius into

the expression for g given previously. .
g = Gx Mø/ Rst ...:9.8 meters/second'

This number is the same constant that Galileo and

others measured. Notice that because we now

understand where g'comes from, we can predict the

appropriate value of gravitational acceleration not

only for the Earth, but also for any object in the

universe, provided we know its mass and radius" (p'

r02).

PM-TH
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Note: L represents limited balancing
M represents medium balancing
E represents extensive balancing
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Appendix E. Presentation of Mathematical Concepts through HPS

Text Descriptive Approach/Illushative
Examples

Instructional Approach./Illustrative
Examoles

GP-ZD
"About 400 years ago, Galileo wrote in
response to a statement that "gravity" is
why stones fall downward,
ll.hat I am asking youfor is not the name

of the thing, but its essence, of which
essence you htow not a bit more than you
lçtow about the essence of whatever
moves stars around...we do not really
understand what principle or whatforce
it is that moves stones downward'
(o.175\.

"Research and describe the
historical development of the
concept of gravitational force. Be
sure to include Kepler's and

Newton's contributions to
gravitational physics"

G,.191).

CP-H
"Using geometry, Newton calculated how
far the circle of the moon's orbit lies
below the straight-line distance the moon
otherwise would travel in one

second...His value turned out to be about

the i.4-mm distance accepted today. But
he was unsure of the distance between
Earth and the moon, and whether or not
the correct distance to use was the

distance between their centers. At this
time he hadn't proved mathematically
that the gravity of the spherical Earth
(and moon) is the same as if all its mass

were concentrated at its center. Because

of this uncertainty, and also because of
criticisms he had experienced in
publishing earlier findings in optics, he

placed his papers in a drawer, where they
remained for nearly 20 years" (p. 170).

P-NH
"Besides his fertile imagination, Newton
possessed a truly exceptional capacity for
mathematics. Starting from Descartes'

analytical geometry, Newton invented
calculus to be able to solve problems in
motion that Galileo had posed...The
publication of Newton' s Mathematical
Principles of Natural Philosophy
(Principia) in 1687 marked the firm
establishment of a physics in which
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careful experimental measurements

provided full support for ímaginative

mathematical theories" (P. I23).

P-E
"Halley first met Newton in 1684.. 'He
asked Newton what type of path a planet

would take if the force attracting it to the

Sun decreased with the square of the

distance from the Sun. Newton quickly

answered, "An elliptical path". When

Halley asked him how he knew, Newton

replied that he had made that calculation

many years ago, but he did not know
where his calculations were. Halley urged

Newton to repeat the calculations and

send them to him" (f,. 577).

"Check out the Internet site above

to read about - and perhaPs even

test - Gaiileo's arguments about

logic refuting Aristotle's teachings

concerning falling objects. Galileo
actually wrote the words! He
presented the arguments using two
fictitious characters. Salviati voiced

the beliefs of Galileo, while
Aristotle's ideas were embodied in
Simplicio. If you enjoY a good

debate, this English translation will
captivate you" (p. 133).

P-G "Galileo's analysis of falling objects

made use of his new and creative

technique of imagining what would
happen in idealized (simplified) cases.

For free fall, he postulated that all objects

would fall with the same constant

acceleratio,n in the absence of air or other

resistance...To support his claim that

falling objects increase in speed as they

fall, Galileo made use of a clever

argument: a heavy stone dropped fi'om a

height o12 m will drive a stake into the

ground much further than will the same

stone dropped fi'om a height of only

0.2 m. Clearly, the stone must be moving

faster in the former case" (p. 1D,-

CCP-JC

"It was experiments like this, rather than

the legendary Tower of Pisa experiment,

that led Galileo to state".. 'I declare that I
wish to examine the essentials of motion

ofa body that leaves from rest and goes

with speed always increasing...uniformly
with the growth of time...I prove that the

spaces passed by such a body to be in the

squared ratio of the time..." (p. 46). 
-CP-SF "He wrote, "I deduced that the forces

which keep the planets in their orbs must

be reciprocally as squares of their
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distances from the centers about which
they revolve; and thereby compared the

force requisite to keep the Moon in her

orb with force of gravity at the surface of
the Earth; and found them answer pretty
nearlv" (oo.193-1

"ln what sense is the Newtonian
universe simpler than PtolemY's?
Suppose observations had shown
that the two did equally well at

explaining the data. Construct an

argument you would make to saY

that Newton's universe should still
be preferred" (p. 116).

"Read a biography of Pierre Simon
Laplace, who was one of historY's
most influential scientists. What
were his major achievements?

What major historical events

occurred during his lifetime? How
did his research influence his
philosophical ideas?" (p. 1 16).

"In 1684, Halley visited Newton at

Cambridge. Newton told him over dinner

that according to his calculations, all
bodies subject to a gravitational force
would move in orbits shaped like ellipses.

Bolstered by this information, Halley
analyzed the historical records of some

24 comets...He found that three recorded

comets - those that had appeared in 1531,

7607, and 1682 - seemed to be following
the same orbit. He realizedthat the

sightings represented not three separate

comets, but one comet that was appearing

over and over again at intervals of about

75 or 76 years...After some work, Halley
predicted that the comet would reappear

in 1758. On Christmas daY 1758, an

amateur astronomer in Germany sighted

the comet coming back toward Earth.

This so-called recovery of what is now

known as Halley's comet marked a greal

triumph for the Newtonian picture of the

world" ln. 110

PM-TH

Note: - represents the absence of a feature
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Appendix F. Illustrative Examples of Presentation of Mathematical Concepts in the Unit

on (Jniversal Gravitation Viewing Science as a lTay of Thinking

Text Feature Illustrative

GP-ZD Illustrating the
use of
assumptions

Describing
thought
experiments

Illustrating the
use of models

'T{ewton's law of universal gravitation leads to

Kepler's third law. In the derivation of this equation, it
is assumed that the orbits of the planets are circles.

Newton found the same result for elliptical orbits" (p.

I 83).

"Newton used a drawing... to illustrate a thought

experiment on the motion of satellites. Imagine a
cannon, perched high atop a mountain, firing a
cannonball horizontally with a given horizontal speed.

The car¡ronball is a projectile, and its motion has both

vertical and horizontal components. Like all projectiles

on Earth, it fallows a parabolic trajectory' During its

first second of flight, the ball falls 4.9 m' If its
horizontal speed were increased, it would travel farther

across the surface of Earth, but it would still fall4.9 m

in the first second of flight. Because the surface of
Earth is curved, it is possible for a cannonball with just

the right horizontal speed to fall 4.9 m at a point where

Earth's surface has curved 4.9 m away from the

horizontal. This means that, after one second, the

cannonball is at the same height above Earth as it was

initially. The curvature of the projectile will continue

to just match the curyature of Earth, so that the

cannonball never gets any closer or farther away from

Earth's curued surface. When this happens, the ball is
said to be in orbit" (p. 185).

"One way to picture how space is affected by mass is

to compare space to a large, two-dimensional rubber

sheet... The yellow ball on the sheet represents a

massive object. It forms an indentation. A marble

rolling across the sheet simulates the motion of an

object in space. If the marble moves near the sagging

region of the sheet, it will be accelerated. In the same

way, Earth and the sun are attracted to one another

because of the \¡/ay space is distorted by the two

bodies" (p.192).
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Illustrating the
use of
assumptions

Describing
thought
experiments

Illustrating the
use of models

Our treatment of tides is quite simplified here. We
have ignored such complications as interfering land
masses, tidal inertia, and friction with the ocean

bottom, all of which result in a wide range of tides in
different parts of the world" (p. 192).

"...imagine a hole drilled completely through Earth,
say from the North Pole to the South Pole. Forget
about impracticalities such as lava and high
temperatures, and consider the kind of motion you

would undergo if you fell into such a hole. If you

started at the Nofth Pole end, you'd fall and gain speed

all the way down to the center, and then overshoot and

loose speed all the way to the South Pole. You'd gain

speed moving toward the center, and lose speed

moving away from the canter. Without air drag, the

trip would take nearly 45 minutes" (pp. 184-185).

"If a ball of taffy is swung on the end of a string, it
deforms, with "tidal bulges" on the inner and outer

sides. Although the actual Earth-moon interaction
differs from this simplified model, the result is similar.

Both the taffy and Earlh are elongated. Earth
elongation is evident in the pair of ocean bulges on

opposite sides of Earth" (p. 188).
"Using Newtonian physics as a model of reason, Locke

"Newton was able to state his law of universal
gravitation in terms that applied to the motion of the
planets about the sun. This agreed with Kepler's third
law of planetary motion and provided confirmation
that Newton's law fit the best observations of the day"
(r. 182). Derivation of Keplers's third law foliows þp.
182-183). "Thus, Newton's law of universal
gravitation leads to Kepler's third law" (p. 183).

Calculating mass of the Earth þp. 183-184), speed of
an object in circular orbit, period for satellite circling
Earth (p. 186).

"Newton's drawing shows that Earth curves away from
a line tangent to its surface at a rate of 4.9. m for every

8 km" (p. 186).

Presenting
evidence and
proof

Demonstrating
fecundity of
mathematics

Reference to
Newton's
mathematical
tools
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""¿ 
ttit ilt"*"tt modeled a system of government that

found adherents in the 13 British colonies across the

Atlantic. These ideas culminated in the Declaration of
Independence and the Constitution of the United States

of America" (p.179).

"Newton's test was to see if the moon's "fall" beneath

its otherwise straight-line path was in correct

proportion to the fali ofan apple or any object at

Èurth'r surface. He reasoned that the mass of the moon

should not affect how it falls, just as mass has no effect

on the acceleration of fleely falling objects on Earth'

How far the moon falls, and how far an apple at

Earth's surface falls, should relate only to their

respective distances from Earth's center' If the

disiance of fall for the moon and the apple are in

correct proportion, then the hypothesis that Earth's

gravityieaòhes to the moon must be taken seriously''

(p. 16e).

"The successes of Newton's ideas ushered in the Age

of Reason or Century of Enlightenment. Newton had

demonstrated that by observation and reason, people

could uncover the workings of the physical universe'

How profound it is that all the moons and planets and

stars ánd galaxies have such a beautifully simple rule

to govern them, namelY,
F : G nx1m2/d'

The formulation of this simple rule is one of the major

reasons for the success in science that followed, for it
provided hope that other phenomena of the world

might also be described by equally simple and

universal laws" (P. 179).

"Using geometry, Newton calculated how far the circle

of the moon's orbit lies below the straight-line distance

the moon otherwise would travel in one second"'" (p'

t70

Presenting
evidence and
proof

Demonstrating
fecundity of
mathematics

Reference to
Newton's
mathematical
tools

P-NH Illustrating the

use of
assumptions

"fh. .o"st""t f in Kepler's equation assumes that the

orbiting mass is infinitesimally small. If the mass of
the orbiting object is a significant fraction of the larger

mass, then the equation Kt' : 13 is invalid because the

objects orbit about the center of mass of the two

objects, known as the barycentre, not about the larger
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Illustrating the
use of
assumptions

Describing
thought
experiments

Presenting
evidence and
proof

"At first glance, it would appear to have little
relationship to Newton's law of universal gravitation,

but a mathematical analysis will yield a relationship.

To keep the mathematics simple, you will consider

only circular orbits. The final result obtained by
considering elliptical orbits is the same, although the

math is more complex" (P. 583).

"Soon after Newton formulated his law of universal

gravitation, he began thought experiments about

artificial satellites. He reasoned that you could put a

cannon at the top of an extremely high mountain and

shoot a cannon ball horizontally... The cannon ball
would certainly fall torvard Earth. If the cannon ball
traveled far enough horizontally while it fell, howevet,

the curvature of Earth would be such that Earth's

surface would "fall away" as fast as the cannon ball
fell" (p. 588).

"...since Kepler published his laws, there has never

been a case in which the data for the movement of a

satellite, either natural or artificial, did not fit an

ellipse" (p. 576).
"The values of acceleration due to gravity that were

calculated in two completely different ways are in full
agreement. The centripetal acceleration of the Moon in

orbit is exactly what you would expect it to be if that

acceleration was provided by the force of gravity and if

mass" (p.2\9).

"Kepler tried various geometric solutions. When he

tried elliptical paths, the predictions agreed remarkably
well with observations" (p. 218)

Derivation of Kepler's third law from Newton's law of
gravity þ.218)

Calculating geosynchronous earth orbit (p' 213),

obtaining equation for the orbital speed, calculating
orbital speed (çry. 21 5-21 6).

'Ì,lewton possessed a truly exceptional capacity for
mathematics. Starting from Descartes' analytical
geometry, Newton invented calculus to be able to solve

lems in motion that Galileo

Presenting
evidence and
proof

Demonstrating
fecundity of
mathematics

Reference to
Newton's
Mathematical
Tools
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Illustrating the
use of
assumptions

Illustrating the
use of models

Presenting
evidence and

proof

Demonstrating
fecundity of
mathematics

"'When extended objects are small compared to the
distance befween them (as for the Earth-Sun system),

little inaccuracy results from considering them as point
particles" (p. 119)
"Kepler's third law applies only to objects orbiting the

same attracting center" (p.126).

"Galileo's analysis of falling objects made use of his

new and creative technique of imagining what would
happen in idealized (simplified) cases. For free fall, he

postulated that all objects would fall with the same

constant acceleratio¡z in the absence of air or other
resistance...To support his claim that falling objects

increase in speed as they fall, Galileo made use of a
clever argument: a heavy stone dropped from a height

of 2 m will drive a stake into the ground much further
than will the same stone dropped from a height of only
0.2 m. Clearly, the stone must be moving faster in the

former case" (p. 31).

"Newton also showed that for any reasonable form for
the gravitational force law, only one that depends on

the inverse square of the distance is fully consistent

with Kepler's laws. He thus used Kepler's laws as

evidence in favor of his law of universal gravitation..."
(p. 12s).

Geophysical applications (p. 121), calculating the

Sun's mass (p. 127), estimating our Galaxy's mass (p.

et6).

the force of gravity obeyed an inverse square law" þ.
633).
"The laws of Newton and Kepler, however, have

provided scientists and astronomers with a solid
foundation on which to explain observations and make

predictions about planetary motion, as well as send

space probes out to observe all of the planets in our
solar system" $. 594).

"From the size and curvature of Earth, Newton knew
that Earth's surface would drop by 4.9 m over a
horizontal distance of 8 km" (p. 588)

Demonstrating
fecundity of
mathematics

Reference to
Newton's
mathematical
tools



307

Appendix F. (continued)

CCP-JC Illustrating the
use of
assumptions

Illustrating the
use of models

Presenting
evidence and
proof

Demonstrating
fecundity of
mathematics

"'We have derived Kepler's third law only for uniform
circular motion of the planet, but the result is true for
elliptical orbits if we use the average distance from the

sun for r" (p.I44).
"The result obtained here is slightly greater than the

observed period 27 .3 days. The discrepancy occurs

because we assumed the moon to orbit around a

stationary earth. ln actuality they both move about a

common point that is near, but not at, the center of the

earth" (p. 146).

"A simple way to visualize the object's motion is to

imagine it represented by a bead sliding without
friction along a wire bent into the shape of the
potential-energy curve. An upward push sends the

bead along the wire from r, to a, where it stops and

slides back down to r" The bead loses speed as it goes

ftom ru to a and regains speed as it returns. This
analogy can be quite useful, but you must remember
that the actual motion of the object is along a straight

line directed radially away from the earth"

G,.22t).

"Example 5.11

Show that Kepler's third law follows from the law of
universal gravitation. fRecall from Chapter 1 that

Kepler's third law states thatfor all planets the ratio
(period)2/(distance from sun)3 is the same.l" (p.144).

Solution follows (p. 144).

"Newton's laws are so correct that they have not been

modified in the more than 300 years since the

Principia was f,trst published. Though they do not

completely describe the interactions between galaxies

or between subatomic particles, these laws cover

almost everything in between, The thrust of an

airplane's jet engine, the paths of baseballs and

comets, how to best hit a tennis ball, and how musical

instruments work all can be understood on the basis of
Newtonian mechanics" (p. 89).

"For an extended object (that is, not a point), we must

consider how to measure the distance r. This is often
best done using integral calculus, which Newton
himself invented" (p. 119

Reference to
Newton's
mathematical
tools lcalculus
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Appendix F. (continued)

Reference to
Newton's
mathematical
tools (calculus)

Calculating density of the earth þp. 145-146), period

of an artificial earth-orbiting satellite (p. 148), radius

of a black hole (p.223).

"Newton's mathematical work ...eventually led to his

discovery of calculus, with which he proved that the

mass of a symmetrical object of uniform density

behaves under the law of universal gravitation exactly
as if it were concentrated at the point of the object's
center of sr,¡mmetrt'' (p.I43).

CP-SF lllustrating the
use of
assumptions

Presenting
evidence and
proof

Demonstrating
fecundity of
mathematics

"...the free-fall acceleration at an exterior point

decreases as the inverse square of the distance from the

center of the Earth. Our assumption of Chapter 2 that

objects fall with constant acceleration is obviously
incorrect in light of the present example. For short

falls, however, this change in g is so small that

neglecting the variation does not introduce a

significant error in the result" (p. 198).

"Newton later demonstrated that these laws are

consequences of a simple force that exists between any

two masses. Newton's universal law of gravity,
together with his laws of motion, provides the basis for

a full mathematical solution to the motions of planets

and satellites. More important, Newton's universal law

of gravity correctly describes the gravitational
attractive force betwe en any two masses" þp. 201-

202).

Calculating orbital velocity (p. 196), mass of the Earth

(p.197), free-fall acceleration at different altitudes (p.

1e8)

PM-TH Presenting
evidence and

proof

Demonstrating
fecundity of
mathematics

Deriving formula g : G x Mc/Rn' and concluding the

following:
"This result is extremely important. For Galileo, g was

a number to be measured, but whose value he could

not predict. For Newton, on the other hand,8'was a

number that could be calculated purely from the size

and mass of the Earth" (p. 101).

Deriving the orbit equation (pp. 10a-105), calculating

geosyncluonous orbits (pp. 1 07- I 08).
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Appendix F. (continued)

"The prodlem of deducing the shape of an orbit under

these circumstances is a difficult one, but one that

could be dealt with using the new mathematics of
calculus, which was invented independently by Isaac

Newton and the German mathematician Gottfried

Lelbniz" (p. 110

Reference to
Newton's
mathematical
tools (calculus)


