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Abstract
Mzcrotubules are hollow cylindrical protein structures found in all eukaryotic cells, and
essential in several cellular processes, including cell motility, cell division, vesicle traffick-
ing and maintenance of cell shape. The building block of microtubtles, tubulin, is one
of the proven targets for anticancer drugs. A microtubule exhibits a remarkable prop-
erty, termed dynam,i.c i,nstabi,Ii.ty, in which it is able to switch stochastically between two
distinct states. In one state, the microtubule grows while in the other, it shrinks. The
balance between the growing and shrinking states is crucial for the normal functioning of
the cell. One of the interesting questions that cell biologists have pondered over the years
is: what is the biological function of dynamic instability? While some great strides have
been made in answering this question, the details of the precise nature of the mechanism
of dynamic instability in relation to their roles are not well understood. In this thesis
some biologically pìausible mathematical modeìs for microtubule dynamics 'in ui,tro are
developed. Two of the models are developed with the exclusion of dynamic insiability
while the others are with its inclusion. Aiso considered are two different modes of nu-
cleation of microtubules: saturating and non-saturating mode. The models are analyzed
and numerical simulations conducted, with an aim of mathematically assessing the role of
dynamic instability in the integral microtubule dynamics i,n ui,tro. Results indicate that
dynamic instability induces the formation of microtubules from the tubuÌin subunits, and
that dynamic instability depends on the GTP-tubulin concentration.
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Notations and abbreviations

Notation meaning

Z+ the set {0,7,2,. ..} of nonnegative integers

R+ the set (0, *) of positive real numbers

R+ the set [0, -) of non-negative real numbers

IR" the n-dimensional Euclidean space

A.i then-dimensionalnonnegativeorthant {(rt,...,1:,) €lR': rr )0,... ,rn}0}
tt(.) the trace of a matrix

I I the determinant of a matrix

ll ll Euclidean norm

I The identity matrix

6r the transpose of A

M"(R) The set of real n x n matrices over lR

M*"(R) The set of real rn x n matrices over lR

Abbreviation meaning

GDP guanosine diphosphate

GTP guanosine triphosphate

E site Exchangeable nucleotide binding site of tubulin

MT microtubule

ODE ordinary differential equation

RHS right-hand side

LHS left-hand side
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Chapter 1-

Biological background

Tlte strange fact about MTsl ¿s that they form when and where the cells need

them - i,mplgi.ng some compler regulati,on of spati,al locali,zati,on - and that i,n

many 'instances they may construct, always at the same speed, ertraordi,nari,Iy

cornpler assernbl'ies... ([22] pp. a30).

chapter contains a basic introduction to cell biology. The content is focused on

constrained to motivating the object of this

This

and

contribution of nucleation and dynamic instability

thesis, namely, an evaluation of the

to the overall microtubule dynamics.

1.1 The cell

The smallest structural unit of living things which, given the right conditions, can function

independently is the cell. There are two major types of cells: prokargotes and eukaryotes.

Eukaryotic cells are structurally and biochemically more complex than prokaryotic cells.

Prokaryotic celis contain non-membranous organelles and lack a cell nucleus. In contrast,

eukaryotic cells have a nucLeus as well as many membrane-bound organelies such as mi-

tochondria, Iysosomes, endoplasmic reticulum, Golgi apparatus and vacuoles (see Figure

1.1). Here, we focus on eukaryotes.

The nucleus contains deoxyribonucleic acid (DNA), the repository of genetic instructions

for growth, development and replication. DNA is a poiymer made up of four repeat-

ing subunits called nucleotides (4, C, G, and T)2 with specific chemical and structural

lMT: Microtubule
2The letters A, C, G, and T represent the nucleic acid bases adenine, cytosine, guanine, and thymine,

respectively.



properties, organized into linear structures called chromosomes within the cell nucleus.

Eukaryotic celìs reproduce by a complex process of celi division. In somatic (body) cells,

chromosomes go through a process called m'itos'is, during which, a cell divides into two

genetically identical daughter cells, each identical to the parent celi.

Golgi apparatus

Vacuole

Ribosomes

Smooth

endoplasmic

reticulum
(no ribosomes)

CellCytoplasm

membrane

Rough

endoplasmic

reticulum

Nuclear

Centrosome
membrane

Golgi
vesicles

Mitochondrion Microfilaments
and intermediate

filaments
Lysosome

Microtubules
retory vesicles

Figure 1.1: Illustration of a eukaryotic cell.

L.2 The cytoskeleton

In addition to the nucleus, nearly all eukaryotic cells have a cytoskeleton, a netv/ork

of protein filaments and tubular structures that extends throughout the cytoplasm (the

region of the cell that is between the nucleus and the cell membrane). The cytoskeleton

is a highly dynamic structure that undergoes constant restructuring and modification in

response to environmental stimulations, thus providing a structural framework for the

cell. In addition to playing this structural role, the cytoskeleton plays many roles in

nuclear and cell division, transport, signaling, determination of cell shape and polarity.

It is comprised of three principal types of protein filaments: mi,crotubules, act'in filaments



(also called microfilarnenús), and i,ntermedi,ate fi,larnents. Each type of filament is formed

from a different protein subunit: act'in for actin filaments, tubuli.n for microtubules, and

a family of related fibrous proteins, such as vimentin or cytokeratin, for intermediate

filaments [2]. In this work, we will focus on the microtubules, with a view to understand

the significance of the key components in the i,n ui,tro assembly-disassembly dynamics of

a microtubule. In particular, the significance of a unique microtubule behaviour, known

as dynami,c i,nstøbi,li,ty, in the overall microtubule dynamics will be examined.

1.3 The microtubules

Microtubules are hollow cylinders with an outer diameter of about 25nm (nanometers3),

inner diameter of about 15 nm, and a varying overall length, ranging from 200 nrn to

25 ¡.rm 122, 72]. They are composed primarily of the protein tubuli,n. Each tubulin is

found as a heterodimer, consisting of two similar, but not identical monomers, called a-

and p-tubulin each of molecular weight of about 55 kilodaltons4 (kDa) 122, 62,72,731.

Each aB-tttbulin heterodimer is about 4nm in diameter and 8nm long [2]. The a- and

p-tubulin in a heterodimer are tightly bound together by noncovalent bonding, so that

the heterodimer, under normal conditions, rarely dissociates into individual a- and p-

tubulin monomers [5i]. Each heterodimer contains two guanine nucleotide-binding sites:

an erchangeable stte (E-site) at the p-tubulin end, occupied by either energy-rich guano-

sine 5/-triphosphate (GTP) or guanine 5'-diphosphate (GDP), and a nonerchangeable site

(N-site) between the a- and p- monomers, occupied by GTP [72]. The heterodimer with

GTP bound to the p-tubulin subunit is referred to as a GTP-tubuli,n heterodimer. If

GDP binds to the p-tubulin subunit, the resulting heterodimer is refered to as a GDP-

tubuli,n heterodimer. From now on, we shall simply use the term "d'imer" as a short for

heterodimer. The GTP at the N-site is tightly bound, and cannot be removed without
325 nm :2.5 x 10-5 mm
4A "Dalton" (Da) is a measure of molecular weight or mass. 1 Dalton corresponds to one-twelfth the

mass of a Carbon-12 atom; lDaæ 1.66 x I0-2ag



denaturing the dimer, while the GTP at the E-site is freely exchangeable with unbound

GrP [43].

Microtubules are formed by the self assembly of the GTP-tubulin dimers [18, 21, 58,72]

in the presence of additional GTP and magnesium ions (Mg2+) and at 37"C 143). The

dimers bind in a head-to-tail fashion (a/aþ) forming linear units known as protofila-

ments (Figure 1.2). In general, each microtubule is composed of thirteen protofilaments,

which interact laterally (i.e., side-by-side) to form the hollow tubule - the microtubule

[I8, 2I, 72, 73] (Figure 1.2).

ß-tubulin

I

ð.

Figure 1.2: Microtubule structure. Each tubulin is found as a heterod'imer, consisting
of two similar, but not identical monomers, called a- and É-tubulin monomer. The
heterodimers bind in a head-to-tail fashion forming the protofi,laments. In general, each
microtubule is composed of thirteen protofilaments, which interact laterally (i.e., side-by-
side) to form the hollow tubule - the m'icrotubule.

The head-to-tail orientation of dimers in the microtubule lattice results in an intrinsic

structural polarity between the two ends of the microtubule: one end exposes only a-

tubulin subunits, and the other only p-tubulin subunits. The end which starts with

B-tubulin is called the plus end, while the end that starts with a-tubulin is called the

m'inus end of the microtubule [18, 36, 47]. The rate at which poìymerization takes place

at the two ends is different, with the plus end growing much faster than the minus end [2,

18, 58, 81]. In most eukaryotic cells, the microtubule minus ends are embedded within the

microtubule-organizing centre (MTOC) where initiations of new filaments occurs) whilst

____-__---_-->

u,-tubulin

-_-

slnitiation of new filaments is usually referred to as nucleati,on.



the plus ends grow into the cytoplasm [2, 81]. During polymerization (assembly) of dimers

to the ends of microtubuì.es, ihe GTP at the E-site is hydrolyzed to GDP and the resulting

GDP is unable to exchange. The result is that the body of the microtubule is made

up of GDP-tubulin subunits that energetically favour depolymerization (disassembly)

167, 72]. When the microtubule disassembles (depolymerizes), the dimers are released

and the GDP at the E-site is now able to exchange to GTP. In contrast, the GTP bound

at the N-site is non-exchangeable and is not hydrolyzed to GDP during the addition

of dimers to the ends of microtubules [t8]. This unique GTP binding and hydrolysis

properties at the F- and N-sites strongiy influence the dynamic behaviour of microtubules.

Microtubules undergo two interesting kinds of dynamics: dynamzc instabi,lity [58] and

treadrni,lli.ng [53]. The former is a process in which individual microtubule ends switch

abruptly and stochastically between periods of growth and shortening, while the latter

is the net assembÌy at one microtubule end and the net disassembly at the opposite

end with no net change in microtubule length. teadmilling and dynamic instability

are compatible behaviours, and a specific microtubule population can show primarily

treadmilling behaviour, dynamic instability behaviour, or some mixture of both þa]. We

now discuss each of these in greater detail in turn.

1.3.1 Dynamic instability

When observed 'in u'iuo, microtubules display a remarkable phenomenon. They rapidly

grow toward the cell periphery at a constant rate for some period and then suddeniv

shrink rapidly back towards the centrosome [2, 22]. The microtubuìes may shrink partially

and then recommence growing, or they may disappear completeiy, to be replaced by a

different microtubule [2]. Thus in a population of microtubules, at any point in time,

a subset of microtubules are rapidly growing while others are quickly shrinking [14].

Both states are known to coexist under identical conditions of tubulin availability. The

random alternation between the two states is known as dgnam'ic instabilitA 158). The

transition from growth to shrinkage is termed a'catastrophe',while the reverse reaction



- the transition from shrinking to growing - is referred to as a 'rescu,e' [82]. Dynamic

insiability has also been observed i,n ui,tro [34, 58, 82]. To characterize dynamic instability,

typically four parameters have been used in previous analyses: rate of polymerization,

rate of depolymerization, frequency of catastrophe, and frequency of rescue [19, 26].

Dynamic instability is an energy-requiring phenomenon and is believed to be a function

of GTP hydrolysis [58]. The most widely accepted model to explain dynamic instability

is the "GTP cap" model [18,48, 58]. During microtubule assembly, according to this

model, the a-tubulin part of the dimer binds to the B-tubulin at the microtubuie plus

end. This binding triggers hydrolysis of B-tubulin-bound GTP (GTP-tubulin) to GDP

(GDP-tubulin) [24]. A GDP-tubulin at the tip of a microtubule will fall off, while a GDP-

tubulin in the middle of a microtubule will not. If non-hydrolyzable GTP is incorporated

in the E-site of B-tubulin, the affected subunits will remain in the GTP-bound form

after they polymerize into microtubules. The normai hydrolysis of GTP to GDP by the

polymerized tubulin subunits renders the microtubule inherently unstable because the

GDP-bound form makes the protofilaments curve siightly [61]. Since tubulin adds onto

the end of the microtubule only in the GTP-bound state, there is generally a "cap" of

GTP-tubulin at the tip of the microtubule, protecting it from disassembly. The stochastic

shrinking and growing of microtubules is thus ascribable to random loss and regain of

this cap. When hydrolysis takes place at the tip of the microtubule, the microtubule

begins a rapid depolymerization and retraction. GTP-bound tubulin can begin adding

to the tip of the microtubule again, providing a new cap and protecting the microtubule

from shrinking. A catastrophe occurs when the GTP cap is lost allowing GDP-tubutin

to dissociate. A rescue, on the other hand, is proposed to occur when a shrinking end is

recapped with GTP-tubulin [18].

L.3.2 TYeadmilling

This is the net gain of tubulin subunits at the plus end of a microtubule and an equivalent

net ioss from the minus end, producing a net flux of subunits through the microtubule.



Thus, the net polymerization at the plus end balances the net depolymerization at the

minus end [53, 58]. Two modeis have been proposed in an attempt to understand the

mechanism of treadmilling - the Wegner model and the differential dynamic instability

model [28,82]. The former model [84], initially proposed for actin filament assembly,

assumes that there is no GTP cap at the microtubule ends, that only GDP-tubulin sub-

units would dissociate from the microtubule, and that there is only one single continuous

phase of assembly of GTP-tubulin and disassembly of GDP-tubulin taking place at a

given microtubule end. Upon polymerization of tubulin subunit at the microtubule end,

GTP hydrolysis allows the critical tubulin concentrations for growth at opposite ends

to be different. If the dimer pool concentration is at an intermediate value between the

critical concentrations of the two ends, the end with the lower criticaÌ concentration wilÌ

persistently grow while the end with the higher critical concentration will persistently

shorten [53]. However, this theory has been contested from several points of view (see,

for example, [82]). The differential dynamic instability modei for treadmilling posits that

for microtubule ends capable of dynamic instability, differences in the contributions of the

assembly and disassembiy phases between the two ends offer an alternative way to bias

one end into net growth while the other end is biased into net shrinkage at steady-state

assembly. Tleadmilling will occur if the growth phase is dominant at one end while the

shortening phase is dominant at the other end [28].

1.3.3 Mechanisms of microtubule assembLy i,n a,itro

In u'itro, microtubuie assembly proceeds in two phases, a nucleat'ion phase followed by an

elongati,on (growth) phase [18, B0]. During the nucleation phase, new microtubule ends

are spontaneously generated from the dimers [41, 80]. Once the preformed microtubule

nuclei (or seeds) are large enough to be stable, assembly of dimers onto the ends produces

elongation [80]. The formation of the initial nuclei is energetically less favourable than the

subsequent addition of dimers to the growing microtubule and, consequently, nucleation

becomes negligible once elongation commences [S2]. The elongation phase continues until



the dimer pool is reduced to the concentration in equilibrium with microtubules (critical

concentration) [52, 80].

L.3.4 F\rnctions of microtubules

While evidence concerning the cellular functions of microtubuies is largeiy circumstantial

172), ít is generally accepted that microtubules fulfill important functions in addition to

the maintenance of the physical architecture of the ceil [36, 44,63,73].

During ceìl division (mitosis), microtubules rearrange themselves into an array of fibres,

called the mi,toti,c spi,ndle 122, 731. It is this spindìe that eventually pulls each set of

chromosomes to opposite ends of the cell, ensuring accurate distribution of the genetic

material to each daughter cell. Microtubules are also directly involved with the movement

of chromosomes during cell division [22,63].

Microtubules are the main components of the complex and highly organized axonemal

structures found in cilia and flagella - hairlike structures projecting from the cell surface

122,73,771. In vertebrates, the respiratory tract is lined with ciiia that keep potentially

harmfui microorganisms from entering the lungs. The sperm tail (flagellum), on the

other hand, propels the sperm cell in a vigorous forward motion through the seminal

fluid, enabling the sperm penetrate the female egg in order to fertilize it [73].

Microtubules play an important roÌe in intracellular trafficking of vesicles and organization

of organelles by providing the tracks along which motor proteins, such as kinesin and

dynein superfamily proteins, convey their cargoes [2, 36].

Microtubules are aìso involved in the transmission of nerve impulses (signal transduction)

[5,36,63], and protein and hormone secretion 172,73).

1.3.5 Diseases related to microtubule malfunction

Although each cell in the body maintains itself and carries out its specific function, it is

part of a iarge colony of collaborating cells that constitute the whole organism. A cell



communicates with its surrounding cells by releasing chemical messages) through a process

calìed si,gnal transduct'ion The defining characteristics of malignant tumours (commonly

referred to as "cancer") are abnormal, excessive and inappropriate celluÌar proliferation,

invasiveness and abiìity to form secondary tumours. A hyperplastic (cancerous) cell will

stimulate neighbouring cells to grow by secreting growth factors. As they proliferate,

hyperplastic celÌs disrupt the normal function of surrounding tissues, Ieading to eventual

organ failure and death. As noted in Section 1.3.4, the process of chromosome segregation

during cell division is mediated by the mitotic spindle, which is composed primarily of

microtubules. This role of microtubules has been exploited by cancer chemotherapists to

develop drugs that are not only effective for cancer treatment, but have minimal effects

on non-cancerous cells (a review can be found in, for example, [a ]). The drugs are so

designed as to disrupt microtubule assembly - prevent polymerization and/or promote

depolymerization. For example, the drug pacli.tarel (taxol), used in the treatment of

cancer [44], blocks dynamic instability by stabilizing GDP-tubulin in the microtubule.

Thus, even when hydrolysis of GTP reaches the tip of the microtubule, there is no

depolymerization and the microtubule does not shrink back. Another drug Colchici,ne

has the opposite effect: it blocks the polymerization of tubulin into microtubules.

Elsewhere, microtubules are actively involved in the growth and maintenance of the

axon [5]. Here, microtubule assembly plays an important role: when growing axons

are treated with microtubule depolymerizing drugs, the axons stop growing and retract

(reviewed in [5]); while compounds that promote neurite growth also promote microtubule

assembly. Therefore, understanding how microtubules assemble can lend valuable insight

into important medical problems such as the treatment of cancer and neurodegenerative

diseases.



L.4 Motivatron

Since the discovery of microtubule dynamic instability in 1984 [58], cell biologists have

been actively studying the role of this unique behaviour in biological functions of mi-

crotubules. Dynamic instability, for example, is known to provide the mechanism for

the recycling of microtubules in the mitotic spindle [24]. While several hypotheses at-

tempting to ascribe roles to dynamic instability have been advanced (for a review see,

for example, [24)), details of the precise nature of the mechanism of dynamic instability

in relation to these roles remain sketchy. A comprehensive model for the mechanism of

dynamic instability would require a detailed study of all the key processes in microtubule

assembly and disassembly dynamics. This work aims at providing some insight into the

impact of dynamic instabiiity on the assembly-disassembly dynamics of microtubules ¿n

ui,tro. We hope to mathematicaìly evaluate the contribution of nucleation and dynamic

instability in the assembly-disassembly dynamics of microtubules. We'll take a compara-

tive approach and explore the dynamics of microtubules with the inclusion and exclusion

of dynamic instability.

1.5 Thesis outline

The remainder of this thesis consists of five more chapters, organized as follows. Chapter

two provides some mathematical background on dynamical systems analysis. A review

of sensitivity analysis in modelling is also considered. Chapter three contains a review of

some previous microtubule dynamics models. Chapter four and Chapter five describe the

core of our own research work. In Chapter four, we describe the proposed microtubule

dynamics models while in Chapter five, we analyze these models and give a discussion of

this analysis. Finally, Chapter six provides conclusions and suggestions for future work.

10



Chapter 2

Mathematical preliminaries

This chapter reviews a few mathematical prelimÍnaries usually required in the analysis of

the behaviour of a generic dynamicai system. Different notions of stability of equilibrium

solutions of a dynamical system and related theorems are described.

2.L Introduction to dynamical systems

Dynamical systems theory provides the mathematical tools for analyzing and describing

systems that change over time. Informally, a dynamical system is a rule that determines

how a system evolves over time. The rule determines what the state ø¿ is at a later time

ú given an initial condition or "state" ø¡.

Definition 2.L.t. l7) A dgnømical system i,s a trzple {T,X,ôt}, conszsti,ng of an

ordered time set T, a state (or phase) space X , and an euolut'ion operator ôr t X ------+ I
that transforrns an i,ni,ti,al state rs e X at ti.me ts €. T to another state r¿ € X at ti,me

t €T.

The time set 7 may be continuous or discrete. The state space X may be continuous

or discrete or a hybrid of the two, and it may be finite or infinite-dimensional depending

on the number of variables required to fully describe the state of the system. Q, may be

given explicitly or defined implicitly, it may be deterministic or stochastic, and it satisfies

11



the foilowing propertiesl [0S]'

(i) Óo is the identity operator; that is, óo(r):x, Y x e X;

(ii) /,*,(ø) :ór(ó"@)), Yre- X, t,s€T.

Remark. If @ satisfies (z) and (u¿), it is said to have the semigroup property.

In the discrete-time case, a dynamical system can be expressed as

t(t+1):l@(t)),

where ø(t) is the state of the system at time ú, and / is called the rnap of the system. For

a given initial condition, the iterates of the mapping / wiÌl yield a state-space trajectory.

On the other hand, the evolution of a continuous dynamical system (also referred to as a

fl,ow) can mathematicaily be described by a number of different formalisms. One of the

simplest of such formalisms is a set of first-order nonlinear ordinary differential equations

(oDEs)
*!tl 

-- f (r(t),t).dt

The vecto¡ field / assigns an instantaneous direction and magnitude of change at each

point in the state space. Starting from some initial state ø¡, the sequence of states

generated by the action of the dynamics is called a soluti,on trajectory or orbi,t. A solution

trajectory has the property that its tangent at each point is given by the vector field at

that point. The set of all possible solution trajectories graphically illustrates the action

of the evolution operator ó, l7l.

Often, the long-term behaviour of dynamical systems is of special interest. Over time, the

state of many dynamical systems eventually ends up in a small subset of the state space

called a li'mi,t set l7l. A limit set is i,nuariant with respect to the dynamics of the system

it represents, in the sense that if the system's state reaches a limit set, the dynamics will

act to keep it there indefinitely [7]. Two simple types of limits sets are equi,li,brium po'ints

and limit cycles. An equilibrium point is a point in the system's phase space where the
iFor simplicity, @(.,f) is being denoted bV ór(.)
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system's state does not change with time. On the other hand, a limit cycle is a closed

trajectory such that once in cycle, the trajectory will repeat infinitely. An equilibrium

point, and more generally, a limit set, can be stable or unstable. For a stabie equilibrium

point, the system trajectories can be kept arbitrarily close to the equilibrium point by

starting sufficiently close to it. A limit set is said to be unstable if it is not stable. Formal

definitions of these and other terms in dynamical systems will appear in the next section.

2.2 Some qualitative properties of dynamical systems

In the real world, most dynamical systems are nonlinear. Such a system can sometimes

be represented by a set of first-order nonlinear ODEs in the form

!t(t) : S(A(t),t), g € .S C R', ¿ € IR+, (2.1)

where I : IR+ x 5 ------- IR' is a vector field, and ú(t) : ff. tnes" equations describe the

time evolution of the variables and the system they represent.

Definition 2.2.L. A functi,on g : IR" ----- IR- i,s sai,d to be cont'í.rLuous at a point,

y €E CR i,f for euery e>0, there erists a ô(u) > 0 suchth,at

lly-zll<6 =+ lls(s) -s(z)ll <€.

If g i,s cont'inuous at euery poi,nt i,n i,ts domai.n then g is sai,d to be cont'inuous.

Remarks. A function g defrned on a domain 5 is said to be CÈ continuous (or k

times continuously differentiable, or of class Cft), k €Z+, (and we write g € CÈ(S)) itr

all the partial derivatives of g of order less than or equal to ,k exist and are continuous

functions on .S. In particular, g € Cl(S) in gr iff g is continuous and ali the first partial

derivatives
ôgo(a,t)

T, i,i:r,"',n
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exist and are continuous on .S. In this case (that is g € Ct(S)), we say that g is contin-

uously differentiabìe in gr on S. Conventionall¡ we say that g is C0 if g is continuous.

Definition 2.2.2. A functi,on g : R" -----* IR* i.s sazd to be piecetai,se conti.rùuous on a

fi,ni,te i.nterual E cR i,f

(a) g i,s cont'inuous on 3 ercept for a fini,te number of poi,nts of di,sconti,nui,ty, and,

(b) g has fini,te ri.ght-hand and left-hand li,rni,ts at each point of di,sconti,nuity.

A functi,on is piecewi,se cont'inuous on an i,nfi,ni,te i,nterual i.f i,t i,s p'ieceuise cont,inuous on

euery fi,ni.te subi.nterual.

Definition 2.2.3. [31] Let, t ç ß! x IR ðe an open set and cons'ider the dynami,cal

system (2.1). Denote the t'ime'interaal for whi.ch (2.1) i,s defined øs II Ç ß' A functi,on

y :\ ------+ R i,s said to be a solution of (2.I) onn i,f y 'is a cont'inuously di.fferenti,able

functi,on defined, onn, (y(t),t) e t, t €n and y(t) satisfi,es (2.1) V ú € I. We refer to

g as a uector field on t. Suppose (go,úo) € t i,s gi,uen. An ini.tial ualue problem

(IVP) for Eq. (2.I) consi,sts of findi,ng an 'interual n contai,ni,ng t¡ and a soluti,on y of

(2.7) sati,sfyi,ng y(ts) : Ao. We wri,te tlti,s problem symboli,cally as

it(t) : e(s(t),t), a(to) : ao, ú € II. (2.2)

If there exists an interval II containing ú6 and a y satisfying (2.2), we refer to this as a

solution of (2.1) passing through (Uo,to) [31]. In other words, an IVP consists in finding

the trajectory rp, passing through a given initial state (gro,ú6). The graph of rp, is the

curve .l- lying in the region t C lR'+l , where each point of the curve has the coordinate

(gr,t) and where the tangent to l- at each point is represented by g(tpr,ú).

When considering the IVP (2.2), two questions are of fundamental interest:

(i) Does a solution to the problem always exist?

(ii) If a solution exists, is it unique?
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The first question is addressed in Cauchy-Peano's existence theorem, stated next.

Theorem 2.2.4 (Catchy-Peano existence theorem [31)). Let t çR x ]R be an open set

and cons'ider the dynami,cal system (2.I). If the functi,on g: t -"--Fi 'is cont'inuous'in

€, thenfor any (Uo,to) €t, system (2.1) has a solut'iong inß? sati,sfyi,ng g(to):Uo.

Corollary 2.2.5. [31] ff U i,s a compact set of t, U C V, an open set i,n t wi,th the

closure V of V i.n t, then there 'is an a > 0 such that, for anE i,niti,al aalue (go,ts) e l,l,

there i,s a solut'ion to the IVP (2.2), whi,ch extsts at least on the'interualfto- o, to-l a).

For the second question, on the uniqueness of solutions of (2.2), an additional hy-

pothesis must be imposed on Theorem 2.2.4; namely, local Lipschitz hypothesis. The

following definition characterizes the notion of Lipschitzness of a function.

Definition 2.2.6. Let t C IR" x IR be an open set. A functi.on g: € ------ R i,s sai,d to

be IocaIIy Li.pschitz i.n g(t) (or wi,th respect to y(t)) i,f for euery compact set fl Ç t,
tÌtere erists a posi,ti,ue constant L: La such that for all ú € IR, and any yr(t),y2(t) €ß!
sati,sfyi,ns (yr(t),t),(yr(t),t) e A, we haae

lle(s,(¿), t) - e(y"(t),¿)ll < LallaJt) -ar(t)ll. (2.3)

If the Li,pschi,tz condi,ti,on (2.3) holds for allyt(t), Az(t) € IR", ¿ € F"¡, theng i.s sardto

be globally Lipschi.tz (wi,th respect to g(t)).

Remark. The constant Le in (2.3) is called a Lipschitz constant for g.

The following Lemma implies that a continuously differentiable function is locally Lips-

chitz.

Lemma 2.2.7, [33] Let t C [ìn+1 be open. If thefuncti,ong:t ------+R i,sCr 'iny, then

g i,s locally Li,pschi,tz i,n y.
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Theorem 2.2.8 (Picard-Lindetöf theorem [31, 33]). Let t Ç IR'+1 be an open set and

cons'ider the dynami,cal system (2.1). If the functi,on g: t 
- 

Rn 'is cont'inuous 'in t and

Iocallg Li.pschi.tz wi,th respect to y(t) 'inP.n, then for anA (Uo,ts) e t, system (2.I) has a

un'ique solut'ion p in R sati,sfyi,ng g(to) : Ao.

Dynamical systems are classified as autonomous and non-autonomous) based on the

independence or dependence of the system on the time variabie.

Definition 2.2.9 (Autonomous system). The nonli,near system (2.I) i,s sai,d to be au-

tonornous if g does not depend erpli,ci,tly ont'imet; 'i.e., i,f the system's state equat'ions

can be written as

ù : e(s).

Otheruise, the system i,s called non-autonon'ùous.

Remark. When (2.1) is autonomous, the domain of g in (2.1) is of dimension n,

otherwise it is of dimension (n + 1).

Definition 2.2.LO (Equilibrium point). Consi,der the dynami,cal system (2.7). A point

U* € E i,s sai.d to be an equi,Ii.briurn point of (2.t) if

g(a*,t):o, v¿>o'

An equilibrium point g* has the property that for any t ) ts > 0, if the state of the

system starts at y*, it will remain at y* f.or all future time.

We now present the basic notions of stability of equilibria of dynamical systems. Roughiy

speaking, an equilibrium point y* is Lyapunov stable if any trajectory that starts suf-

ficiently close to gt* stays arbitrarily close to gr* for ali future time. Lyapunov stability

does not, however, imply asymptotic stability. An equilibrium point gr* is asymptotically

stable if it is Lyapunov stable and, in addition, any trajectory starting close to y* ul-

timately converges to gt* as time progresses. Both Lyapunov stability and asymptotic

stability of an equilibrium point are local, in the sense that they are expressed in terms
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of a neighbourhood of a given initial condition. A stronger notion of stability - global

asymptotic stability- exists. An equilibrium point y* is globally asymptotically stable if

aÌl trajectories regardless of starting point (initial condition) will converge to y* as time

approaches infinity. Formal definitions of these notions of stability are now given.

Definition 2.2.L1(Stability of non-autonomous systems [30, 46]). Consi,der the nonli,n-

ear dynarn'ical system (2.1) whereg : 5 x IR+ * ß! i,s locallg Li,pschi,tz zny and p'iecew'ise

cont'inuous i,n t. Let g, be the soluti,on of (2.I) at tzrne t corresponding to the i,ni,ti,al condi,-

tiongro-y6. Letg*€5 beanequilibriurnpoi,ntof (2.I);i.e.,g(U*,ú) :0, Vú)ú6>0.

Then, y* i,s sai,d to be

- stable i,n the sense of Lyapunou (or Lyapunoa stable, or locallg stable) if for

any g'iuenúo ) 0 and e > 0, there erists a 6 > 0 (dependi,ng on e and ts) such that

llp^-s-(úo)ll <ô + llp'-v.(t)ll<e, Vú>ú0>0'

- unstable i,f i,t i,s not Lyapunou stable.

' asgmptoticallg stable i,f i.t i,s stable i,n the sense of Lyapunou, and for eachto ) 0

there eti,sts a posi,ti,ue constant ór : ôr(úo) such that

llç," - g.(¿0)ll < ð' + ,J1i llr, - s.(ú)ll : 0.

. globallg asgrnptoti,cally stable i,f i,t i,s stable i,n the sense of Lyapunou, and

,f1i lÞ' - v. (t)ll : o, v p,o e 5, úo ) o.

Now let g.(t) be the equilibrium solution of (2.1) with y.(0) : !6 and consider a

perturbation of the initial condition of (2.1) so that g(0) : Ao I 6Uo. If we now replace

U(t) bV a neïv variable n(t) : U(t) -A- (t), and noting that both g- (ú) and y(t) are solutions
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of (2.1), then ø(ú) satisfies the following non-autonomous differential equation:

ic : g(y.(t) -t r,t) - g(U"(t),t) : f (r,t)

with initial condition ø(O) :69r(0) : ø6. Since /(0,ú) : O for every ¿ € lR, the new

dynamical system,

¡: f (r,t) (2.4)

has an equilibrium point at the origin of the state space. Therefore, instead of studying

the deviation of g(ú) from gr.(t) for system (2.1), we may simply study the pertubation

dynamics of Q.\ with respect to the equilibrium point 0.

Consequently, we summarize the above definitions of stability using the origin as the

equilibrium point for a time-invariant dynamical system.

Definition 2.2.L2 (Stability of autonomous systems [30, 46]). Conszder the autonomous

dynami.cal system

à;(t):f(r), reD CR', ú€lR+ (2.5)

where f : D ----- R! i,s locally Li,pschi,tz 'in a and p'ieceuise cont'inuous i,n t. Let þ(t) be

the soluti.on of system (2.5) at ti,met corresponding to the i,ni,ti,al condi,ti,on d(0) : ø0.

Assumethatx*:0zs anequi,li,bri,umpoi,ntof (2.5); i,.e.,f(O):O. Then,ï*:O,is

. Lgapunou stablei,f, for eache >0, there erists a 6:ô(e) >0 suchthat

lld(O)ll <ô + lld(¿)ll <€, vú>0.

. unstable i,f i,t i,s not Lyapunou stable.

. asgrnptoticallg stablei.f i,ti,s Lyapunou stable, andthere erists a 6r > 0 suchthat

lld(o) ll < ô, + È* lld(¿)ll : 0.

. globallg asymptoti,cally stable i,f i,t i,s Lyapunou stable and

,t¡g lld(t)ll : o, v ó(o) eD.
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Definition 2.2.L3. Let $, be the solut'ion of sgstem (2.5) at tzme t correspond'ing to the

initi,al cond'it'ion Óto: fs. Tllen

. the foruard (or positiae) orbit of (through) x i,s the set

O*(r):{ór(r):ú>0};

the baclcuard (or negatiue) orbit of (through) x i,s th,e set

O"(n):{ór(r):ú<0};

the orbi,t of (through) r i.s the un'ion of forward and backward orb'its:

O(x): O*(*)uO-(x).

Remark. In defining a backward orbit in Definition 2.2.13, we are assuming that

system (2.5) is defined for ú € lR so that trajectories can evolve backwards in time.

Definition 2.2.L4. [65] ,4 poi,ntp eD çR ts called ana-Iirnit point of the solut'ion

Q, of the dgnami,cal system (2.5) itr there i,s a sequence {ú"}Ê0, wi,thtn --+ oo ¿s n---+ æ,

such that ór^ - p as n ---+ oo. Si,mi,larly, i.f there 'is a sequence {t.}i:,, wr,tÌt tn ---+ -oo
asn---+ æ, suchtnat )\órn:q,and apo,intq€D C R', thenq i,s called ana-Iimit,

pointof thesoluti,onQrof (2.5). Thesetof alla-li,mi,tpoi,ntsof atrajectoryQri,scalled

the a-Iimit set of Sr. The set of all a-li,mit points of a trajectory þ, i,s called the a-Iirni,t

set of Qr. The set of all li,mi.t poi,nts of S, i.s called the limit set of Qr.

Theorem 2.2.L5. [65] The a- and u-li,mi,t sets of a trajectory S, of (2.5) are closed

subsets of D and i,f Q, i,s conta'ined 'in a cornpact subset of R, then the a- and u-Iimit

sets of Q, are non-en'Lpty, compact, connected subsets of D.

Definition 2.2.L6. A setS CD CR i,s said,to be

- forward inuariant wi,th respect to the dynami,cal system (2.5) i,f for an! rs € E,

there i,s a ts such that Qr@s) = ó(t;tolro) e E, V t ) ts,
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- baclctnard 'inuariant wi,th respect to the dgnarn'ical system (2.5) if for an! frs € S,

there ts a ts such that $r(xs) e E, Y t 1 ts,

- inaariant i,f i,t i,s both forward and backward 'inuariant.

Remark. Simply put, a set .S is an invariant set for system (2.5) if every trajectory

/, starting from a point in 5 will remain in E for all times (that is, øo € '5 + $r(r¡) e

5, V¿€lR).

2.3 Stabitity analysis

Stability analysis of equilibrium solutions is a fundamental and important problem in

establishing the qualitative behaviour of dynamical systems. In this section, a review of

commonly used techniques in stability analysis is considered.

2.3.L Lyapunov's first (indirect) method

In the Lyapunov's first method, the strategy is to make a Taylor series expansion of (2.5)

in the neighbourhood of an equilibrium solution x" of (2.5), and approximate the vector

field by the linear part of this expansion. Consider the nonlinear dynamical system (2.5)

where û e D C R', and /(ø) is continuously differentiable. Let ø* be an equilibrium

soiution of (2.5); that is,.f(".) :0. The Jacobian matrixof system (2.5) is given by

J(ø) : ff(r), with the (ø,7)rh enrry

ãi,(r\ ôfr@) ;;_1J¿¡(x): -ñ; = Ë, 
i,i:I,...1r1.

Consider a small perturbatiorr, z:t -r*, around c*. Then,

dÆ

dt
dz

dt
: f (*).
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The Taylor series expansion of /(ø) around c* is given by

1 @) :"f(ø-) + f' @.)(r- ø.) + o (lr - ¿l2)

: f'(r.)(r - r.) + O (lr - n.lz) (since /(c.) : O)

x J*2, where J* :

That is, for a small perturbation z, only the first term in the above expansion is

significant, since the higher order terms involve powers of the small perturbation from

the equilibrium solution ø*. The time evolution of our new variabie, z will then be

governed by the linearized system

2: J*z (2.6)

The new system (2.6) is referred to as the li,nearizati,on (or li,near approrimati,on) of. the

nonlinear dynamical system (2.5) at the equilibrium point ø*. Note that since J* is a

constant matrix, (2.6) is an autonomous linear differential equation2 whose solution is

given by

z(t):exP(J*Ú)2o, ¿>0,

where z6 is the iniiial condition of (2.6) at t :0. The stable and centre manifold theorems

establish the relationship between the nonlinear system (2.5) and its linearization (2.6).

Theorem 2.3.1 (Stable Manifold Theorem [65)). Let I e Ct(D) where D 'is an open

subset of B! contai,ni,ng the origin, and letS, be the fl,ow of the nonli,near system (2.5).

Suppose thatx*:0 is an equi,li,bri,um solut'ion for (2.5), and, thatA: ff1ø)l nos næ' '1.*:o
2The solution, c(f), of a continuous-time autonomous linear dvnamical system

a:An, o(0) :no, ø€lR', Ae M,(lR), ú€lR+

flørlor' ' l,-*'

is given by

whereeA¿:I+t;i1#AÈ

a(t):"Atro, ¿>0,
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e'igenualues wi,th negati,ue real part and n - k ei,genualues wi.th pos'iti,ue real part. Then

' there erists ø lt-di,rnensi,onal di.fferenti,able mani.fold S tangent to the stable subspace

E" of the li,near system

ù: A-r (2.7)

atO suchthatfor allt)0, ór(S)cS andfor allø6 e .9, ,liädr("o) 
:O; and

. there erists an n - k di,mensi.onal di,fferenti,able mani,fold U tangent to the unstable

subspace E" of Q.7) at O such that for all t 1 0, ór(U) c U and for aII r¡ €. U ,

,IT-d,("0) 
: o.

Remark. By the stable (resp. unstable) subspace, we mean the span of the gener-

alized eigenvectors corresponding to the eigenvalues with negative (resp. positive) real

parts.

Theorem 2.3.2 (Centre Manifold Theorem [65]). Let f e C'(D) whereD'is an open

subset of R! contai,ni,ng the origi.n and r ) 7. Suppose that x* : O 'is an equi'li'brium

soluti,on of (2.5), and, that f : #@)l no, k ei,genualues wi.th negat'iue real part, j
oa \ / lr*:o

e'igenualues wi,th posi,ti,ue real par"t, andm: n-k- j ei,genualues uitlt, zero realpart.

Then there erists an rn-d'imensional centre mani,fold W'(O) of class C' tangent to the

centre subspacesÛ of (2.7) ato, whi,chi,s i,nuariant und,er the fiowþ, of (2.5).

Remark. By Theorem 2.3.2, weknow that the linearized system (2.6) is tangent to

the nonlinear system (2.5) and, hence, the local behaviour of (2.5) will be approximated

by the behaviour of its linearization; that is, by system (2.6), at ø.:0 [65].

The classical Hartman-Grobman's theorem asserts that on a topologicai level, the linear

approximation (2.6) captures all the local dynamics of (2.5), providing that the equi-

librium solution x. of. (2.5) is hyperboli,c (see Definition 2.3.3). In other words, near

a hyperbolic equilibrium solution, the nonlinear system (2.5) has the same qualitative

3By the centre subspace, we meân the span of the generalized eigenvectors corresponding to the
eigenvalues with zero real parts.
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structure as the iinear system (2.6). Before stating the theorem, some definitions are in

order.

Definition 2.3.3. Letr* eD çR be an equi,Ii,briurn point of the nonli,near dynam'ical

system (2.5); f is sai,d to be hgperbolic i.f all the e'igenualues of the Jacob'ian matri,r

H{r)1,-,. has nonzero real parts.

Definition2.3.4.Afuncti,onh:U------+Vi,sahorneom,orphi,srni,fhi,sabi.jecti,on

(that is, one-to-one and onto), and both h and h-r are continuous.

Definition 2.3.5. [65) Let

it(t) : lr@), f, e Crçor7, D1 CR"

it(t) : fr(x), f2 e. CL(D2), Dz Cß1 (2.s)

be two autonomous dgnami,cal sgstems, where Dy and, D2 are open nei,ghbourhoods of

the ori,gi,n. The two systems are sa'id to be topologi,cally equiaalent or to haue the

same quali,tat'iue structure'in a nei,ghbourhood of the ori,gi,n, i,f there'is a homeomorphi,srn

h : Dt , Dz whi,ch maps trajectori,es $, of (2.8) onto trajectori,es rþ, of (2.9) and

preserues the ori,entati,on. If the horneomorphi,sm h preserues the pararneteri,zatton by

time (that'is, hoór(r):rþr(h(n)), V x,t), thenthe systems (2.8) ønd, (2.9) are sai,d to

be topologi,cøIly conjugate i,n a nei,ghbourhood, of the ori,gi,n.

Theorem 2.3.6 (Hartman-Grobman Theorem 165l). Let I e CL(D) where D i,s an

open subset of ß! containi,ng the origin, and let $, be the fl.ow of the nonli,near system

(2.5). Suppose thøt ø* :0 i,s a hyperboli,c equi,Ii,bri,um solution of (2.5).Then there eri,st

ner,ghbourhoods U, V of the ori.gi.n and a homeomorph'ism h : U ----- V, such that for each

ã e Ll , there i,s an open 'interual i c IR contai.ni,ng the origi,n such that for all a e l,{ and,

¿€i
h o þr(r) - exp (Lt)h(r);

that i,s, h maps trajectories of (2.5) near the origi,n onto trajectori,es of (2.6) near the

ori,gi,n and, preserues the parameterizat'ion.

(2.8)

and

ltt
L¿



Remarks.

(i) Theorem 2.3.6 says nothing about the non-hyperbolic case.

(ii) Ilom Definition 2.3.5, the Hartman-Grobman theorem can be stated thus: "If the

origin is a hyperboiic equilibrium solution of (2.5), then the flow of (2.5) is topo-

logically conjugate to the flow of (2.6) near the origin."

The following theorem gives the conditions under which we can draw conclusions

about the stability of the origin as an equilibrium point for the nonlinear system (2.5) by

investigating its stability as an equiÌibrium solution for the linearized system (2.6).

Theorem 2.3,7. la6) Let t* : 0 be a hyperboli,c equi,li,brium solut'ion for the nonl'inear

dynami,cal system (2.5) where f :D c IR'-----* W i,s continuouslE di,fferenti,able andD i,s

a nei.ghbourhood, of the ori.gi.n. Let A : H(*)|".:o U" the Jacobi,an rnatrir of f eualuated,

at the ori,gi,n.

(l) If all the ei,genualues of A haue negat'iue real parts, then x* : 0 is asymptoti,cally

stable.

(ii) # A. has at least one e'igenualue wi,th a posi,ti,ue real part, then x* : O 'is unstable.

Rernarks.

. Since the solution of the iinearized system (2.6) is of the form z(t) : eÃt20, it foltows

that if all the eigenvalues of A have negative real parts, then all the trajectories wilÌ

decay exponentially to the equilibrium solution, otherwise if there is an eigenvalue

with a positive real part, then the trajectories will grow exponentially in time; hence

Theorem 2.3.7.

. If the Jacobian matrix A in Theorem 2.3.7 has some eigenvalues with a zero real

part with the rest of the eigenvaiues having negative real parts, then linearizatíon

fails to determine stability of the origin.
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2.3.2 Routh-Hurwitz criterion

Consider the nonlinear dynamical system (2.5) where r Ç D C IR' and I t D ---l lR'

is continuously differentiabÌe. Let ø* : 0 be an equilibrium solution of (2.5); that is,

.f (0) : 0.

Let A be the Jacobian matrix of J evaÌuated at the equilibrium solution; that is, A :

Høll . The eigenvalues of A are the solutions of the characteristic equation lA - ÀIl :ve. .lî*_o

0, which expands to

coÀ"+ qÀn-l +...+ c,¡À-lc,:0. (2.10)

By Theorem 2.3.7, the equilibrium solution is asymptoticaliy stable if all eigenvalues of A

have negative real parts. The Routh-Hurwitz criterion gives necessary and sufficient con-

ditions for all the roots of (2.10) to have a negative real part, and thus for the equilibrium

solution to be asymptotically stable [23].

Theorem 2.3.8 (Routh-Hurwitz criterion). Consi,der the characteri,stic equati,on (2.70)

where c¿ € IR, 'i :0,I,2,. . . ,Dj co > 0. A necessary and suffici,ent condi,ti,on for all the

roots of (2.70) to haue negati,ue real parts i,s that the znequali,ti,es

H1 : lcll: c1 ) 0, Hz: )0, Hz: )0,
l;;l

C1 C3 C5

C6 C2 C4

0crc3

H¿:

c1 c3

c6 c2

ocr
0ø

c5 c7

c4 c6

c3 c5

c2 c4

) 0, "'' Hn:

Cy C3 C5

Cg C2 C4

0crcs
0coc2

0

0

0

t,
>0

hold.
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(u)

Remark. From Theorem 2.3.8, it can be shown that:

for a two-dimensional system, a necessary and sufficient condition for the real parts

of the two eigenvalues to be negative is that

(i) lAl > 0, and

(ii) tr(A) < 0

(b) for a three-dimensional system, a necessary and sufficient condition for the real parts

of all the three eigenvalues to be negative is that

(i) lAl < o,

(ii) tr(A) ( 0, and

(iii) lAl -tr(A) .M > 0, where M is the sum of aIl2x 2 principal minors of A.a

2.3.3 Lyapunov's second (direct) method

Linear stability analysis examines the behaviour of a dynamical system in the vicinity

of an equilibrium soiution. The analysis, however, does not give an insight into the

stability of the system away from the equilibrium solution. Lyapunov's second method

can used to establish the gìobal stability of a dynamical system. This method entails

systematic exploitation of special auxiliary functions, termed Lyapunou funct'ions, for

the investigation of stability.

Definition 2.3.9. Letf : O be an equr,li,brium soluti.on for system (2.5), and letD ÇR!

be an open nei,ghbourhood of O. LetV : D ------+ ß" be a cont'inuously d,i,fferenti,able functi.on.

The (totat) deriuat'iue, Vçxçt¡¡, of V(n(t)) along an arbi.trary solut'ion{t) of (2.5) i,s

gi,uen by

vçxçt¡. : yP : yP ry : vv(n(t)) . Í(r)

,, o:lZ)l :;: iill ,.n* rhe 2 x 2 principar minors ., o *"lï)i :;:l,l:::;::1, and

Lol aaz orrl
lon azsl

lo* orrl'
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ThenV 'is a ueak Lyapunoa function for system (2.5) on the setD i,ff

(1) V i.s cont'inuously di,fferentiable on D;

(ii) Y(0) :0 and V(r) > 0, Y n eD\{*-},t

(iii) Y(¿) <0, VxeD.6

Remarks.

. If we have a strict inequality in part (i,i,i) of Definition 2.3.9, then I/ is known as a

strong (or strict) Lyapunov function.

' Notice that at each point on the (ø, ú) space, V(ø) is a function of position. Thus,

the sign of V(x) determines whether I/(ø) is increasing or decreasing along the

solutions of (2.5). Hence the foliowing theorem.

Theorem 2.3.L0 (Lyapunov's stability theorem [33, 65]). Consi,der the dynarni.cal system

(2.5), where D ç R 'is a nonempty open set, and let n* € D be an equi,lzbri,um soluti,on of

(2.5). Suppose that for some nei,ghbourhoodll of t*, there erists a continuous functi,on

V :U ---- ß", whi'ch 'is cont'inuously di.fferenti,able on U\{r.} and sati,sfi,es the condi,ti,ons

V(a.):0 and 7(ø) >0, YaeL'{ \{".}.

(i) If V(t) 10, for all r e D, then x* i,s stable;

(ii) # V(r") :0 and,V(") .0, for all r € Z/ \ {ø-}, then f is asymptoticatly stable.

(iii) #V(") r 0, for all a e Lt\{r.}, thenn* i,s unstable.

The power of Lyapunov's direct method lies in its independence on information about

solutions of a dynamical system. In other words, to establish the stabiiity of a dynamical

system, we do not require any information regarding the solutions of the system. The

5 i.e., Izlc¡ is positive definite in 2
6 i.e., Iz1ø¡ is negative semi-definite in 2
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drawback for this method, however, is that finding a Lyapunov function for a given sys-

tem is, to a great extent, a hard and challenging task, in fact, often impossibìe.

The following theorem can be regarded as an extension of Theorem 2.3.10, and can

be used to prove asymptotic stability of system (2.5) if a Lyapunov function satisfying

condition (z) in Theorem 2.3.10 exists.

Theorem 2.3.L1 (LaSalle's theorem [a6]). Consi,der the nonl'inear autonomous dynam-

i,cal system (2.5) and let

(i) O c D cW be a compactposi,ti,uely'inuariant setwi,threspectto (2.5),

(ii) y :D ----ß"be a cont'inuously d,i,fferenti,ablefuncti.onsuchthatV(r) <0 V x e Q,

(iiÐ E c Q be the set of all poi,nts i.n Q wherevçn¡ : g,

(iv) M C E be the largest 'inuariant set i,n E.

Then euery solut'ion starti,ng 'in Q approaches M as ú ---+ oo.

Corollary 2.3.L2 (Barbashin-Krasovskii's theorem [a6)). Let ø* : 0 be an equi,li,bri.um

soluti,on for (2.5). LetV : D -----+ lR ðe ø cont'inuouslg dzfferenti,able functi,on on a doma'in

D contai,ni,ng the ori,gi,n r* : O, such that

(i) Y(o) :oandv(t)>o, vxIo,

(ii) ü(ø) <0, VreD.

Let S : {xe ot V(r):O} ana suppose that no soluti,on can stay i,d,enti,cally i,n E,

other than the tri,ui,al solut'ion, r(t): O. Then, th,e ori,gzn i,s locally asymptoti,cally stable.

In order to state the next result on the gìobal stability of an equilibrium solution using

Lyapunov's direct method, we need the following definition.

Definition 2.3.L3. 146l A real functi.onV : Rn --r IR i,s sai.d to be radiallg unbounded

if lim Vb\ : æ.
lløll-æ
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Remark. If, in addition to the hypothesis of Corollary 2.3.72, I/(c) is radially un-

bounded, then the origin is globally asymptotically stable.

Theorem 2.3.L4 (Barbashin-Krasovskii's theorem la6]). Let t* : O be an equi,li,brium

solut'ion for (2.5). LetV:lR'- ß"be a cont'inuously di,fferenti,able, radi,allg unbounded

functi.on such th.at

Then, x* : O 'i.s globally asymptotically stable.

2.3.4 Comparison principle

The comparison theorem is a powerful tool for analyzing the stability of solutions of

dynamical systems. As the name suggests, comparison theorem compares the unknown

solutions of one differential equation (or differential inequality) with known behaviour of

another differential equation [10]. A scalar version of the comparison theorem is presented.

Theorem 2.3.15 (Comparison theorem [10, 70]). Let f : IR x IR ------+ IR sati,sfy a Li,ps-

chi,tz condi.ti.on (2.3) for t ) to. If the conti,nuous funct'ion r(t) sati,sfies the di,fferenti,al

'inequali,ty

r(t) < f (r(t),t),

.for t > ts, and, iÍ u(t) 'is a soluti,on of the di,fferenti,al equat'ion

i,(t) -- f (u(t),t)

(i) Y(0) :0 and V(x) > 0,

(iÐ Y(ø) <0, Yxlo.7

s ati,sfyi,ng th e ini,ti,al condi,ti,on

then

Vxlo,

u(ts) : r(t¡),

r(t) < u(t)

for t 2 ts.
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The generalization of Theorem 2.3.15 requires a few more details, which can be found

in, for exampie, [50, 57, 70]. The comparison theorem allows one to replace the difficult

problem of analyzing a given dynamical system i¡r: f ,(rt,ú), say, by the comparatively

simple problem of analyzing another dynamical system ùz: Íz(xz,ú), provided it is

known that

- lr(A,t) < f r(A,ú) (componentwise),

- cr(O) ( ø2(0), and

- f rß quasi-monotone nondecreasing (or more generall¡ quasi-monotone).

When these conditions are satisfied, the conclusion is that the solutions ø1(t) of /, are

bounded by the solutions x2(t) of. f 2 for all ú ) 0 for which both solutions are defined,

thus the qualitative behaviour of the former system is inferred from the iatter (see [57]

pp. 140).

2.4 Special case: planar dynamical systems

In this section, we present a few results that are speciai to the two-dimensional system.

Consider the nonlinear autonomous planar dynamical system

ù : fr(r,a)
a : fr(*,y) (2.11)

r(0) : "0, a(0) : Yo

where (r,U) e,4 C IR2, fi and f2 are reaì.-valued, continuousiy differentiable functions

on A, and .F : (.fr, fù t A -----* IR2 is a continuous vector field. Assume that at each

point (2, A) e A, sufficient conditions for existence and uniqueness of the solutions of

(2,11) are fulfilleds.

ssee Theorems 2.2.4 and 2.2.8
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Definition 2.4.L. A solution (r(t),y(t)) € A CP"' of system (2.7I)

orb'i.t or a periodi,c solut'ion, i,f for a fi,red r > 0,

(r(t),a(t)) : (r(t -t r),y(t + ')), V t.

i.s called a closed,

(2.r2)

The smallest such number r sati,sfging (2.I2) i,s called the period.

The trajeciory of a periodic solution is either a simple closed curve or, in the case of

constant (trivial) solutions, a single point - the equilibrium point.

A iimit cycle of (2.11) is a periodic solution of (2.11) with the additional property that it

is isolated, in the sense that any neighbouring trajectory of the limit cycle is not closed,

they spiral either towards or away from the limit cycle.

Definition 2.4.2. [33] á lirnit cgcle i,s a closed orbi,t I for whi,ch there eri,sts at least

one z Ç f such that ei,ther f i,s the u-Ii.mi,t set of z, or I i,s the a-Ii,mi,t set of z. In the

first case, I i,s called an a-I'imi,t cgcle; i,n the second caset o,n a-Iimit cycle.

We now present the celebrated Poincaré-Bendixson's theorem for planar systems,

which says that every bounded solution must either be an equilibríum solution, a closed

orbit, or the solution must approach one of these in forwards and backwards time.

Theorem 2.4.3 (Poincaré-Bendixson's theorem [33]). A non-empty compact li,mi,t set

of a conti,nuouslg di,fferenti,able planar dynami,cal system, whi,ch conta'ins no equili,brium

po'int,'is a closed orbi,t.

According to Theorem 2.4.3, if a trajectory enters and does not leave a compact region

of phase space, and this region contains no equilibria, then the trajectory must approach

a periodic orbit as ú --+ oo. An alternative form of Theorem 2.4.3 is stated:

Corollary 2.4.4 (Poincaré-Bendixson's theorem [tfl). Let A be a posi,tr,uelg i,nuariant

reg'ion for the uector fi,eld F of (2.7I), where F e Cr. If A is compact, then A conta,ins

ei.ther a closed orbit or an equi,li,bri,um poi,nt.
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Recall that a curve C e IR2 is calied si.mpLe if it does not intersect itself.

Definition 2.4.5. A regi,on A i,s sai.d to be sirnplg connected, i,f for any s'imple closed

curue C lyi,ng enti,rely wi,thi,n A, aII poi,nts i,nsi.de C are poi,nts of A.

The following theorem provides us a technique for excluding periodic orbits in planar

dynamical systems.

Theorem 2.4.6 (Duiac's criterion [65]). Let F e C|(A) where A i,s a si,mply connected

reg'ion i,n W . If there erists a functi,on B(r,a) e Cr(A) such that the di,uergence of BF;

2.

namely V . (BF) : u(E!:) + 44!P, is not i,d,enti.cally zero and d.oes not change si,gn in A,

then there are no closed orbi,ts of (2.I7) contai,ned enti,relg i,n A.

Remarks.

i. In Theorem 2.4.6,by "does not change sign," we mean that the quantity is entirely

negative or entirely positive on.4.

The function B(r,g) in Theorem2.4.6 is called a Dulac functi,on for f' in the region

A. When B(r,A) : 1, Theorem 2.4.6 is called Bendixson's criterion (Theorem

2.4.7), which rules out the possibility of closed orbits.

Theorem 2.4.7 (Bendixson's criterion 165]). Let F e Ct(A) where A i,s a si,mply con-

nected, reg'ion i,n FÙ2. If the d,i,uergence of the uector fi,eld, F, V . .F : * * *, 'is not

i,denti,cally zero and does not change si.gn i.n A, then (2.77) has no nontriu'ial closed orbi,t

lyi,ng enti,rely i,n A.

Recall that from Theorem 2.3.8 we remarked that for a planar dynamical system, a

hyperbolic equilibrium point is asymptotically stable, iff the trace and the determinant of

the Jacobian evaluated at the equilibrium solution are negative and positive, respectively.

Notice that the expression V . .F in Theorem 2.4.7 is nothing new but the trace of the

Jacobian matrix of (2.11). Thus, if V ..F does not change sign on "4, then this suggests

ihat if (r*,A") is the only equilibrium solution of (2.11), then (r",y*) is everywhere
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asymptotically stable or everywhere unstable on ,4, in this case ruling out the possibility

of closed orbit in "4. Hence the Bendixson's criterion.

2.6 Qualitative stability analysis

In this section, we present a method of examining the stability of an equilibrium solution

of a dynamical system when the entries of the linearization (Jacobian) matrix are specified

in terms of sign values; that is, the entries of the Jacobian matrix are elements of the

set {*,-,0}. The idea of qualitative stability has some rather interesting applications

in such areas as ecology [56] and economics [66].

Definition 2.5.L. A matri,r A e M"(lR) i,s sai,d úo åe stable i.f and only i.f each e'igenualue

of A, has a negat'iue real part.

Definition 2.5.2. A sign pattern matri,r,'is a matrirB: (b¿¡) whose entries b¿¡ are

elements of the set {t, -, 0}.

Given a matrix A e M^.(R), the sign pattern matrix of A is the matrix sgn(A) :
(sgn(a¿¡)), where

Example.

8(A) : {B: (bri) e M"(R):sgn(b¿¡):a¿¡, vi,i:r,"' ,n}

l-, ir a¿¡ < o

sgn(a¡¡) : 
1 
0, if. a¿, : g

[+, íf a¿¡ ) o

Ir -1 ol l+ ol
If A:lo 1 -21 . then sgn(A) :lo + -lL;;_;l L:'_l

Definition 2.5.3. Let A: (a¿¡) be annxn s'ign pattern rnatrir. The set of aII matri,ces

B e M,(lR) wi,th the same s'ign pattern as A 'is called the sign pattern class (or

qualitative class) of A, and i,s denoted ba Q@); tÍtat i,s,
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Qualitative (or sign) stability of matrices is motivated by the following question: Are

all the matrices formed by randomly changing the magnitude (but not the sign) of the

nonzero entries o.¿¡ of. a stable matrix A e M"(lR) stable in the sense of deflnition 2.5.fl

Definition 2.5.4. A matrfu A, e M.(R) i,s sai,d to be sign stable (or qualitatively

stable) i,f B i,s stable for eueryB € 8(A).

The following theorem, due to Quirk & Ruppert [66], gives the necessary conditions

for qualitative stability of a real square matrix.

Theorem 2.5.5 (Necessary conditions for qualitative stability [66]). Let 4: (a¿¡) €

M"(R). Then the followi,ng conditi,ons are necesso,ry for quali,tati,ue stabi,li,ty of A.

ML a¿¿ < 0 for all i,.

M2 a¿¿ < 0 for at least one i.

M3 a¿¡z,¡r 10 for all i.I j.

M4 a¿¡a,¡n...aqrari,:0 for anA sequence of 3 ormore di,sti,ncti,ndzcesi,i,..' ,Q,r.

M5 A 'is nons'ingular.

We remark that Theorem 2.5.5 gives necessary but not sufficient conditions for qual-

itative stability. By introducing the so-calied 'colour test', Jeffries [40] formulated the

necessary and sufficient conditions for quaiitative stability of a real square matrix.

Definition 2.5.6. A di,rected graph. (or a digraph) is apai,rD:D(N,A), whereN i,s

a fi,ni,te set of nodes (or uerti,ces) and A Ç N x If ¿s a fini,te set of d,i,rected edges (or

arcs) between the nodes.

An arc a e "4 from node n¿ to node TL¡t rLitn¡ € N, is represented by a tuple (n¿,n¡).

We then caII n¿ the initial node (or head) of ø and n¡ the terminal node (or tail) of

ø. A signed digraph is a digraph in which each directed arc has a plus (+) or minus

(-) sign associated with it.
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Definition 2.5.7. A di,graph D': (N',A') is ø subgraph of a di,graph D: (N,A) i,f

^f/ 
C lV and A' Ç A.

Definition 2.5.8. Í40) A predati,on li,nk, i,n a si,gned di,graph i,s a pai,r of nodes connected

bg one arc w'ith a + si.gn and another arc wi,th a - si,gn.

Definition 2.5.9. 140] A predation community i,s a subgraph consi.sti.ng of all i,nter-

connected predati,on li,nks.

Colour test [40]

A predation community passes the colour test provided each node in the associated

digraph may be coloured black or white with the result that

Cl Each self-regulating node is black;

C2 There is at least one white node;

C3 Each white node is connected by a predation link to at least one other white node;

C4 Each biack node connected by a predation link to one white node, is connected by a

predation link to at least one other white node.

A predation community faiìs the colour test if at least one of the conditions Cl - C4

fails.

Theorem 2.5.LO (Necessary and sufficient conditions for qualitative stability [40, 66]).

A rnatrir A: (a¿¡) e M"(R) i,s quali,tati,uely stable i,f and onlg i.f i,t sati,sfies the following

cond'it'ions:

ML a¿¡ < 0 for all i.

IM2' Each predati,on cornmun'ity in th.e digraplt, assoc'iated with A fai,Is tlte colour test.

M3 a¿¡a¡r. < 0 for all i I j.

M4 a¿¡a¡t...aqrari:0 for anA sequence of 3 or more di,sti,nct i,nd'icesi, j,... ,e,r.
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M5 A 'is nons'ingular.

Matrices that are qualitatively stable are necessarily stable in the ordinary sense. In

other words, if in system (2.6), J. is qualitatively stable, then each eigenvalue of J*

has a negative real part and, by Theorem 2.3.8, the equilibrium solution ø* of system

(2.5), is iocally asymptotically stabie. However, if J* is not qualitatively stable, it does

not necessarily mean that J. is unstable. Rather, a detailed knowledge of the actual

magnitudes of the elements of J. (instead of merely their signs) is needed [56].

2.6 Sensitivity analysis

Virtuaìly all physical/biological processes, are governed by a set of rules, such as chemical

reactions, conservation of mass, and mass action law. A mathematical model of such a

process necessarily contain physical parameters that make the model specific to the pro-

cess system of interest. When analyzing a mathematical model, therefore, computation

of model solutions offers limited insight into the ensemble dynamics of the system. It is

hence important to determine systematically the influence of parameter variations on the

model solutions. Sensitivity analysis involves the use of analytical and/or computational

tools to evaluate the changes in the output of a dynamical system in response to specified

changes in the system's input parameters.

Sensitivity analysis can be divided into two categories; local and global sensitivity analysis.

Local sensitivity analysis focuses on the estimates of the model sensitivity to parameter

variation in the neighbourhood of a certain parameter value. Global sensitivity analysis,

on the other hand, is concerned with the whole set of parameters and aims to describe

how the output varies in response to parameter variations within the whole parameter

space.

There are several local sensitivity analysis techniques in the literature that have been

developed to assess parameter importance. We discuss two of the most commonly used

approaches: "brute-force" method and di,fferenti,al sensi'ti'ui'ty analysi's.
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2.6.!'(Brute-forcet' approach (Indirect method)

In this method, input parameters are perturbed, one-at-a-time, and the model equations

are solved anew for each new set of values of the parameters. The sensitivity coefficients

(partial derivatives of the output functions with respect to the parameters) are then

calculated from appropriate finite difference approximations.

Let the process of interest be described by a system of nonlinear first-order ordinary

differential equations of the generic form

it (p, t) : Í (r(p, t), p, t),

î(p,to) : xo(p)

(2.13a)

(2.13b)

where ø € lR' is the vector of variables, p € lR- is the vector of parameters, .;f € lR" is the

right-hand-side of the differential equations, and ø6 € IRn is the vector of initial values of

the variables. The vectors c and / depend on the parameters p.

The first-order sensitivity coefficient of the zth variable, r¿, with respect to the jth pa-

rameter, p¡, is given by

ôr¿(p;,t)
'n¡: -6Í = ofPo

using forward difference scheme, or

r¿(p¡ + Ap¡,t) - r¿(p¡,t)
ap¡ )

- _ )r¡(p¡,t) _ r:_ ri(pj + Ap¡,t) - r¿(p¡ - Api,t)
" dpi ap¡-o 2Ap¡

using centred difference scheme [75] - here, Ap¡ is the perturbation value. The local

sensitivity coefficients, s¿¡(ú), show the effect of a small perturbation of parameter j on

variable e. The brute-force method is widely used since it does not require any extra

modification to be made above that needed to solve Eq. (2.13) [67,75J.
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2.6.2 Differential sensitivity analysis (Direct method)

An alternative to the brute force method is to treat sensitivity coefficients themselves as

dynamic variables and to develop differential equations describing their evolution.

Taking the derivatives on both sides of Eq. (2.13) with respect to p, and interchanging

the order of differentiation, we obtain a system of ordinary differential equations, written

in compact matrix notation as

S:JS*P, S(p,¿o) : So(p).

That is,

aîo(p)
(2.14)

ôp

d lðr1_t_t
dt lap)

0l ôa , ôf ôx(p,ts):----
ôx &p ' Op' ôp

Here,

- S(ú) : (",¡(ú)) : (#) is the n x rn sensitivity matrix,

- J - (#) tr the n x n Jacobian matrix, and

- P - (#) is the n x rn matrix composed of derivatives of each of n-functions on

the right-hand side in Eq. (2.73a) with respect to each of the parameters.

The initial condition for ffi is the zero vector if p¡ is not an initial condition, otherwise

if p¡ is an initial condition for the ith variable, then

ôn

6 :[0...010...0]t

where 1 is in the zth position [67].

Equations (2.13) and (2.14) are coupled through matrices ff and ff; that is, Eq. (2.14)

can only be solved if the variable values, to be calculated by Eq. (2.13a), are avail-

able at times where the above matrices are calcuiated during the numerical soiution of

the sensitivity Eq. (2.14) Í751. Thus, complete sensitivity analysis of system (2.13) re-

quires solving Eqs. (2.13) and (2.I4) simultaneously. This system of ordinary differential
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equations has n(m * 1) equations. The explicit calculation and implementation of the

expression appearing on the right-hand side of (2.74) can be a tedious task.

The existence of derivatives of the solution to (2.13) is given by Gronwall's theorem [29].

Theorem 2.6.1 (Gronwall's Theorem [29]). If the parti,al d,eri,uati.ues ff and. ff erist and,

are cont'inuous'in the nei,ghbourhood of the solution nQt,ro(p),t), then the denuati,ues of

the soluti,on wi,th respect to p erist, are cont'inuous, and sati.sfy the linearinhomogeneous

matrir di,fferenti,al equat'ion (2.I4).

2.6.3 Normalization of sensitivity

The sensitivity coefÊcient s¿¡ : ffi is of limited applicability in its original form due to

its dependence on the physical units of variables and parameters in the model. The pa-

rameters and the variables of model (2.13) may have different physical units. To separate

the sensitivity results from the units of the model, the usual solution is to introduce nor-

malized sensitivity coefficients. These coefficients form the normalized sensitivity matrix

S, whose zTth element is given by

- p¡ Ôr¿ ðlnr¿
-'J 

r¿ 0p¡ ôlnp¡

The normalized sensitivity coefficients s¿¡ are nov/ dimensionless real numbers that rep-

resent the fractional change in variabie r¿ caused by a fractional change of parameter p¡.

5¿¡ could be either positive or negative.

The sensitivity coefficients can be interpreted as the ratio between the change in the

process behaviour and the perturbation in the parameter that causes this change. A low

sensitivity magnitude with respect to a parameter indicates a robust behaviour in which

variations in this parameter have little effect on the output. On the other hand, a large

sensitivity magnitude means that variations in the parameter are increased, causing large

output changes.
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Chapter 3

A neview of previous works on

rnicrotubule dynamics modelling

Several mathematical models addressing different aspects of the microtubule behaviour

have been developed over the years. In this chapter, we review some of the models that

have been proposed in an attempt to capture the dynamic nature of microtubules.

3.1 Introduction

Numerous mathematical models have been developed over the last two decades to describe

the process of microtubule dynamics. We review five categories of models:

(i) those that use the classical chemical kinetics approach,

(ii) those that use the chemical master equation approach,

(iii) those that use the mechanical approach,

(iv) those that use the cellular automata modelling approach, and

(v) those that use the agent-based modelling approach.

In our modelling later on, we wilÌ be adopting the chemical kinetics approach. The master

equation approach is ciosely related to the chemical kinetics approach, save for the fact
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that the former is stochastic while the latter is deterministic. In our review, therefore,

we will detail these two approaches, with a view to providing the necessary background

for our work.

3.2 Chemical kinetics approach

In the chemical kinetics approach, the variables of interest are the concentrations of

individual proteins within an ensemble of microtubules. The reaction rates in the model

a,re governed by the rnass act'ion /au,, which states that for a reaction in a homogeneous

system, the reaction rate is proportional to the concentrations of the individual reactants

involved. Thus, for example, if A and B reactirreversibly at a rate constant k1 to produce

C, then the rate of change of the concentration of C would be

dlcl - kLlAlIB)
dt

where [r] denotes the concentration of r. Thus, in the chemical kinetics approach, the

models consist of a system of coupled first-order ordinary differential equations. This

approach is deterministic, in the sense that given a set of initial conditions, the model

can estimate what happens to the system in the future. Sept eú al. [69], for example, de-

veloped a chemical kinetics modeÌ for microtubule dynamics with a focus on microtubule

oscillations. The model is based on the following reactions:

(i) Nucleation - n" GTP-tubulin dimers, 7 aggregate at a rate constant k, to form

a nucleus (seed) of length n".

n.T -!:, Mn"

(ii) Growth a GTP-tubulin dimer adds to a microtubule of length n at a rate

constant k, to produce a microtubule of length n -17.

MntT j\ Mn+t
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(iii) Decay - a microtubule of length n decays at a rate constant k¿, forming n GDP-

tubulin dimers.

Ar ko, nD

(iv) Conversion GDP-tubulin dimers are converted to GTP-tubulin dimers at a

rate constant k,.

k.IJ ------+ I

These reactions give rise to the following system of ordinary differential equations.

Ct:-k,Ct-ksMctik.C¿

C¿: kaCo - k"C¿

Co: knCt + ksMct - k¿Co

M:lc,Cr-k¿M

(3.1a)

(3.1b)

(3.1c)

(3.1d)

System (3.1) gives the time evolution of GTP-tubulin dimers, C¿, GDP-tubulin dimers

C¿, assembled tubulin, Co, and microtubules, M. In this model, it is assumed that all the

variables depend only on time. It is further assumed that n": 1, and that a microtubule

completely decays. The latter assumption is rather too strong though.

The authors demonstrate that for system (3.1) to exhibit an oscillatory behaviour, an

extra reaction in addition to the above four reactions must be added. This observation

had earlier been made by Marx & Mandelkow [54]. Sept et aI. [69] chose microtubule

decay induced by excess GDP-tubulin dimers to produce oscillations:

M.+DL@+1)D
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Figure 3.1: Solutions for Cr, Ca, Co and M for model (3.1). Simulations \Mere performed
for initial tubulin concentration of c : 40p.M and at temperature 37"C 1691.

After adding this reaction, system (3.1) becomes

g
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z
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Ct: -ksMCt - knCtI k"C¿

C¿: k¿Co - k.Ca+ käC"Cd

Co: ksMC, - lt¿Co + knct - käC"C¿

M:-k¿M+knct-käMCd

Sept [68] extended system (3.2) by incorporating spatial dependence.

Cr: -lcnMC¿ - n"krC'/" * k.C¿+ DrY2C¿,

C¿ : lçaCo - k.C¿ + käC"Cd I DsYz C¿,

Co: ksMCt - k¿Co + k,Ci' - k)CoC¿,

M:-k¿M+k.Ct-kälvIcd,

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.3a)

(3.3b)

(3.3c)

(3.3d)

j

,'

.j
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where D6 is the diffusion coeffi.cient, assumed same for all the tubuÌin dimers. Simula-

tion results of the reaction-diffusion model (3.3) show that microtubule oscillations can

be produced in both space and time. Qualitatively similar results to those in [69] are

produced. Another model using the chemical kinetics approach is [54].

3.3 Master equation approach

In the master equation formalism, the chemical reactions in the microtubule dynamics

are treated as random processes, based on the premise that it is impossibie to say with

complete certainty the state of an ensembie of microtubules at a future time. Stochastic

dynamic models are thus developed to describe the evolution of the probability distribu-

tion P(i,ú), characterizing the system in the ith state at time ú. The probability distri-
bution is essentially the difference between the transition probabilities for the processes

entering a given state and the processes leaving the state:

dP(i,t) 
- ftransition probabilities for tnel 

- [transition probabilities for the'l
dt - 

| Rro""rres leading into state Z .l 
- 

fnro.esses leading out of state zl

x f 0'
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For example, Dogterom & Leibler [19] used the master equation approach to develop a

two-state modei for individual microtubules. Denoting the probabiÌity density for frnding

at time ú a microtubule end in the growing (shrinking) state with a length between I and

I + dI by Ps(I,t) ( P"(1,ú)), they proposed the following model for the time evolution of

the probabiÌity distributions of the microtubuie ends:

ry#: k,u.P"(¿, t) - k",rPs(t,t) - rrt#,
%P : k"ulPn(l, t) - lr,""P"(l',t) + n"9!:p,

(3.aa)

(3.4b)

where

. k"u1 is the catastrophe frequency; that is, the rate at which a microtubule end

switches from a growing to a shrinking state,

' k 
"" 

is the rescue frequency; that is, the rate at which a microtubule end switches

from a shrinking to a growing state,

. lrn is the assembly rate, and

. k" is the disassembly rate.

Dogterom and co-workers [20] extended Eqns. (3.4) further by considering the dynamics

of the population of GDP- and GTP-tubulin dimers:

ry#: k'uP"(l't) - kúPs(t't) - r'W'
Y# : k'u¡Pn(l'¿) - k'""P"( I't) + r"t#!'
ry# : k"c¿(t,t) - knss (#) ,,u,t) + Dvzct(t,t),

ryP: -k.c¿(t,ú) *,k"so (#) r"u,t) + Dv2cd(t,t),

where Cd(I,t) and C¿(1,ú) are the concentrations of GDP- and GTP-tubulin dimers,

respectively, D is the diffusion coeffi.cient, k" is a rate at which GTP-tubuiin dimers are

regenerated from the GDP-tubulin dimers, tr is the radius of the centrosomel, and s6,

0 ( so ( 1, is the total surface density of nucleation sites (that is, the fraction of the

centrosome area capable of microtubule nucleation).

lThe centrosome is the main microtubule organizing centre in the cell.
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Antal et al. [3] aiso use the master equation approach to describe microtubule dy-

namics. Their model includes the following equations:

dP(n,t) , , 1

Ë : -(n-t ko)P(n,t) + knP(n - 1, ú) + (n + I)P(n + 1, ú),

LIP : kslP(t- 1, ¿) - P(I,t)1,

ry#Ð: ksP(I - r,fr- 1,ú) - (n+ ks)p(t,n,t) * (n+r)p(I,ntr,t),
gP : kslp(r - r,t) - p(r,t)l - rp(r,r) * 

"I, 
p(s, ú).

(3 5)

(3.6)

(3.7)

(3.8)

Equation (3.5) gives the probability distribution P(n,ú) for a microtubule with n GTP-

tubulin dimers at time t, taking into account two processes; namel¡ microtubule elonga-

tion at a rate constant kn, and conversion of GTP-tubulin dimers to GDP-tubulin dimers

ataratel. Equation(3.6),ontheotherhandgivesthelengthdistribution P(l,t) forthe

microtubuie. The joint probability distribution, P(l,n,ú), for a microtubule of length I

containing n GTP-tubulin dimers at time ú is given by Eq. (3.7). Finally, Eq. (3.8) gives

the probability distribution, P(r,t), for a microtubule GTP-tubulin cap of length r at

time ú.

In Eq. (3.5), the conversion events from GTP-tubulin dimers to GDP-tubulin dimers

occur with totaÌ rate n. Using the generating function method (see [ ] for details), the
solution to Eq. (3.5) can be shown to be the Poisson distribution

P(n,t) : lkn\ - "-'))" .-kq(I-e-t)
L,

giving the mean number of GTP-tubulin dimers and its variance as

(n) : kn! - "-'), (r') - (n)' : kn(r - e-t).

For the initial condition P(¿,0) : ð¿,0, the solution to (3.6) is again the Poisson distribu-
tion

P(I't) -- 
(kn-!)' 

"-nn"u"1
whose mean and variance are given as

(t): knt, (t' ) - (I)' : knt.



Thus the growth rate of the microtubule and the diffusion coefficient of the microtubule

end are, respectively,lcn and E lS, q.

trÌom Eq. (3.8), the GTP-tubulin cap length distribution is shown l ] to be

P(r, t) : ffifi,(r * i) (k,)',

where I(k) : (/r - 1)!, k e Z+. Flom Eq. (3.9), the average

Iength approaches Æ * ks * oo [4], imptying that even though

(3.e)

GTP-tubulin cap

the average num-

ber of GTP-tubulin dimers equals k' only JÇ of them organize themselves ínto the

microtubule GTP cap [3]. Other microtubule dynamics models adopting the master

equation approach include 1II,72,45]. In [45], microtubule dynamics is considered in

a detailed one-dimensional approximation in a region of section ,S and length tr. The

model considers three popuÌations; namely, GTP-tubulin, GDP-tubulin and the pÌus end

of a microtubuie.

3.4 Mechanical approach

To fulfill their role in various cellular functions, microtubules possess certain mechani-

cal properties. In a bid to understand these properties, a number of mechanical models

have been developed. These models make use of the existing experimental data and the

increasing knowledge on the interactions between the tubulin molecules and the eìastic

properties of microtubule protofilaments. For example, Jánosi and co-workers [38] devel-

oped an 'elastic sheet model' of microtubule wall material. This model reproduced various

microtubule morphologies, yielding estimates on longitudinal and lateral bond strengths

and intrinsic curvatures. The model also addressed the elastic properties of microtubuie

ends, and provided insight into the intrinsic metastabiiity of growing microtubules.

VanBuren et aI. l7B] developed a mechanical model of microtubule assembly dynamics

to estimate tubuiin-tubulin bond energies, mechanical energy stored in the lattice, and

the size of the GTP-tubulin cap at the microtubule tips. Using the model, the authors
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v/ere able to estimate important mechanical parameters such as the flexural rigidity2 of

tubulin subunits and important thermodynamic parameters such as the free energy of the

interactions of tubulin dimers. The authors also confirmed that the longitudinal bonds

between tubulin dimers along protofllaments are much stronger than the lateral bonds

between adjacent protofilaments. Computer simuÌations of the model provided a frame-

work for assessing the influence of mechanicai properties of microtubules and tubulin

dimers on dynamic instabiiity. The microtubule dynamic instability generated by the

model has rates and transition frequencies (catastrophe and rescue) that are similar to

those measured experimentally.

The mechanochemical model by VanBuren et al. [79] incorporated the three-dimensional

nature of tubulin building blocks. The modei incorporated mechanical stress and strain

within the microtubule lattice, relating conformational changes in tubulin dimers to the

standard Gibbs free energy of the noncovalent interactions of tubulin molecules. Com-

puter simulations of the model reproduced the growing and shrinking phases of micro-

tubules. The model also recapitulated the three-dimensional microtubule-end structures

and rates of assembly and disassembly for microtubules grown under standard conditions.

The authors established that sheet-like microtubule ends are more likely to undergo catas-

trophe than blunt ends.

Designed to understand the process of dynamic instability, the model by Molodtsov eú

¿1. uses the structural and biochemical properties of tubulin to predict the shape and

stability of microtubules [59]. This model provides a link between the biophysical char-

acteristics of tubulin and the physiological behaviour of microtubules. Using the model,

the authors confirmed the hypothesis of the 'GTP-cap model' of dynamic instability

[18, 48, 58]; namely, a microtubule with a GTP-tubulin cap is stable.

Other examples of mechanical-based modelling of microtubule dynamics include [37, 60,

76, B3l.

zFlexural rigidity is the resistance of a structure to bending forces.
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3.5 Cellular autornata (CA) modelling approach

A cellular automaton is a discrete dynamicai system - the space, time and states of the

system are discrete. Thus, in cellular automata (CA) modelling approach, the physical

system is idealized as a regular (discrete) lattice [7, 74), whose points (cal]ed cells) can

take a finite set of values. The configuration of the system at a given time step is governed

by a set of rules. A formal definition of a celluiar automaton is given in [6a] as foilows:

Definition 3.5.1. A cellular autornaton i,s a  -tuple (L,Ð,N,f) consi,sti,ng of an n-

d'imens'ional latti,ce of cells i,ndered bg 'integers, L : Zn, a fini.te set Ð of celL states, a

fi.ni,te nei,ghbourhood scheme N C Zn, and a local trans'it'ion functi.on f t Ð* 
--+ 

Ð.

Ermentrout & Edelstein-Keshet [25] divide the CA models into three classes;

(i) deterministic (or Eulerian) automata,

(ii) lattice-gas models, and

(iii) solidification models.

In a deterministic automaton, the spatial domain of the model is divided into a fixed

lattice and each celi has a state associated with it. The state at the next time step is

determined solely from earlier states of the cell and those of the cells in its neighbourhood

[1,25].

In lattice gas models, again the system consists of a discrete spatial grid on which particles

move about and interact in some prescribed manner. Unlike the deterministic automata,

however, the rules governing the evolution of the particles in lattice-gas models are prob-

abilistic.

In solidification models, the rules for the evolution of the particles in the lattice re-

sembie those of the lattice-gas models, except that particles may be irreversibly bound

at grid points, or celis may undergo irreversible configuration changes [25].

A model that subtly uses this approach is Bassetti et aI. [6]. By discretizing space, time
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and the orientation of microtubules, the authors defined a two-dimensional square lattice

to represent the motor3-microtubule interactions. Each cell in the lattice is either empty

or occupied by the centre of mass of a microtubule. Using the model, the authors suc-

cessfully produced inhomogeneous stripe patterns, demonstrating that spatial patterns

are obtained as non-equilibrium solutions of the system dynamics. Their model neglects

dynamic instabiiity in microtubules.

Casati et al. Fíl used the CA modelling approach to investigate the influence of an elec-

tromagnetic field on microtubule assembly dynamics. The authors used a two-dimensional

hexagonal uniform lattice to represent a portion of the cytoplasm through which the elec-

tromagnetic field propagates. Their modelling approach accounts for the changes that

biological material induces on the electromagnetic field. They demonstrated that an elec-

tromagnetic field is capable of generating filamentary structures through the action of the

ponderomotive forcea, despite the mixing effect of cytoplasmic hydrodynamic flows.

Another model that uses the CA approach is Kunwar et aI. la9]. The authors used the

model to describe the intra-cellular traffic of a family of microtubule motor proteins calÌed

dynei,n from the cell periphery towards the nucleus of the cell.

3.6 Agent-based modelling (ABM) .pproach

Agent-based modelling (ABM) is a technique that treats the components of a given system

as agents, each of which has a set of behavioural ruies that determine how the agents'

states evolve in response to their current state and the state of their local environment.

Thus, the agents in an ABM framework are assumed to have the ability to perceive and

interact with each other and their environment. A typical ABM consists of

. a system of agents,

3Motor proteins are responsible for a wide range of intracellula¡ activities, including transportation
of vesicles and organelles along microtubules. There are two types of microtubule motors; kinesin and
dgnein (see, for example, [2] for details).

aA ponderomotive force is the force acting on a charged particle as the particle moves in an electro-
magnetic field.
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. a set of agent relationships, and

. an environment or framework for simulating agent behaviours and interactions.

ABM can be considered a generaiization of CA, where the model system is not required

to be on a lattice and the rules can take any form including adaptive elements and goals-

directed behaviour [74].

To our knowledge, very few models of microtubuie dynamics adopt the ABM approach.

The only model that we are aware of is that developed by Bouchard and co-workers [13].

Using stochastic AB simulations, the authors illustrated how the dynamic instability of

microtubules can be harnessed to aid in building nanostructures.
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Ckrapter 4

Modelling microtubule dynarnics

In this chapter, we deveiop biologically piausible mathematical models of microtubule

dynamics. These modeis attempt to describe microtubule assembly and disassembìy

kinetics i,n ui,tro. In the first two models in section 4.1, we model microtubule dynamics

in the absence of dynamic instability. The other two models in section 4.2, introduce

dynamic instability in the system.

4.L Microtubule dynamics in the absence of dynam-

ical instability

In this section, we model the temporal evolution of concentration i.n u'itro, ftacking the

rates of change of the concentrations stemming from the chemical kinetics of microtubule

assembly and disassembly in the absence of dynamic instability. We consider the following

chemical reactions.

(i) Nucleation - n GTP-tubulin dimers, 7 aggregate at a rate constant k, to form

a nucleus (seed), M1. The nucleus provides the site to which more dimers can add

by the elongation process.

nT k-, M
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(ii) Elongation - a GTP-tubulin dimer adds to the newly formed nucleus or to a

microtubulel(of any length) at a rate constant kn.

M +T j:. u (4.2)

(iii) Shrinkage - a microtubule shrinks at a rate constant k", Iosing GDP-tubulin

dimer, D.

M-!\M+D (4.3)

(iv) Reactivation - the GDP-tubulin dimers liberated during the shrinkage process

are converted to GTP-tubulin dimers at a rate constant k". These GTP-tubulin

dimers are then avaiiable to be incorporated into the microtubule during the elon-

gation process, or to form new seeds during the nucleation process.

n J+r (4.4)

Reaction (a. ) is oversimplified, in the sense that it does not include the reactant (GTP)

and byproduct (GDP). We are making an assumption that there is excess GTP in the

solution. In their model, Katrukha and Guriya [45] have actually taken into account

the concentrations of GTP and GDP in the microtubule dynamics. The concentrations

are, however, treated as parameters and not as variables. A flow diagram for reactions

(4.1-4.4) is shown in Figure 4.1.

We consider three state variables, namely,

(i) C*(t), the concentration of microtubuies,

(ä) Ct(t), the concentration of GTP-tubulin, and

(iii) Cd(¿), the concentration of GDP-tubulin.

rSince we are tracking the rates of change of concentration, no distinction is made between the seed
in reaction (4.1) and the microtubules in reactions (4.2) and (4.3).
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Nucleation Elongation

@*
Recycling Shrinking

Figure 4.1: A flow diagram for the assembly and disassembly of microtubules in the absence of dynamic

instability. Here, M denotes a microtubule, while D and ? denote the GDP- and the GTP-tubulin dimer,

respectiveiy. GTP-tubulin dimers aggregate to form a microtubule nucleus from which a microtubule

elongate by addition of more GTP-tubulin dimers. A microtubule can also undergo shrinkage, Iosing

GDP-tubulin dimers in the process. GTP-tubulin dimers are regenerated when the excess GDP-tubulin

dimers interact with GTP molecules.

Two approaches for the microtubule nucleation kinetics are explored; namely, saturating

and nonsaturating nucieation kinetics.

Model I: Microtubule dynamics with non-saturating nucleation

Assuming the law of mass action, the kinetic equations describing reactions (4.1- 4.4)

âre:

I

I

v
¿'6,t--ì-i:\\._9

#: r."o

o?: : r""^
dt

S : n,cy
CLT,

- k.Ci - lrsC*C¿

- Iç.C¿

+ ksc,nct - k"c^

(4.5a)

(4.5b)

(4.5c)

In system (4.5), the rate of microtubule nucleation is assumed to exponentially depend

on the concentration of GTP-tubulin dimers; that is, we have a nonsaturating nucieation

kinetics (illustrated in Figure 4.2). This has indeed been established experimentally [42],

Elongation
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with the nucleation exponents ranging from 6 to 12 [16] (see aÌso [41] for details).

GTP-tubulin concentration (cr)

Figure 4.2: An illustration of non-saturating nucleation kinetics. As the GTP-tubulin
concentration (C¿) increases, the nucleation rate increases unboundediy.

System (4.5) is considered with nonnegative initial conditions

c-(o) > o, c,(o) > o, cd(o) > o.

The parameters used in system (4.5), and their meaning, are summarized in Table 4.1.

o
E

o

o
a
z

Model

ation

Microtubule dynamics assuming saturating nucle-

In model I, we have assumed that the nucleation rate depends exponentially on the GTP-

tubulin concentration. We now consider an alternative mechanism. Using a form similar

to the Hill's function) we âssume a rate-limiting nucleation mechanism for reaction (4.1).

Figure 4.3 illustrates this mechanism.
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Figure 4.3: An illustration of saturating nucleation kinetics. As the GTP-tubulin con-

centration (C¿) increases, the rate of nucleation initially increases, but eventually reaches

a maximum (k,). When the rate of nucleation is þ, GTP-tubulin concentration equals
1^¡úm.

And assuming the law of mass action for reactions (4.2), (4.3), and (4.4), the kinetic

equations describing reactions (4.I - 4.4) are

dc, knc
T : k,c¿- #.q - ksc*ct

dc* k"ci I Ll:ffi*kgC*Ct-k"C*
*:k"C*-k"Ca,dt

(a.6a)

(4.6b)

(4.6c)

The parameters used in system (4.6), and their meaning, are summarized in Table 4.1

System (4.6) is considered with nonnegative initial conditions

C-(0) > 0; G(0) > 0; Co(0) > 0.

GTP-tubulin concentration (cr)
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(ii)

4.2 Microtubule dynamics in the presence of dynam-

ical instability

In Section 4.1, we have modeled microtubule dynamics in the absence of dynamical

instability. In this section, we now incorporate this process in our models and, thus,

consider microtubules as occurring in two distinct states; namely, growing state, and

shrinking state. The following chemical reactions are considered

(i) Nucleation - n GTP-tubulin dimers, 7 aggregate at a rate constant k, to form

a nucleus (seed), G - we are taking nucleus to be in the growing state.

nT k-, 
G (4.7)

Elongation - a GTP-tubulin dimer adds to the newly formed nucleus or to a

growing microtubule (of any length) at a rate constant kn.

G+T]:.c (4.8)

(iii) Shrinkage - a microtubule in the shrinking state shrinks at a rate constant k",

losing GDP-tubulin dimer, D.

s j5 s+D (4.e)

(iv) Reactivation - the GDP-tubulin dimers liberated during the shrinkage process

are converted to GTP-tubulin dimers at a rate constant k". These GTP-tubulin

dimers are then available to be incorporated into the microtubule during the elon-

gation process, or to form new seeds during the nucleation process.

o J+r (4.10)
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(v) Rescue - amicrotubule

rate constant kr""2

in the shrinking state switches to the growing state at a

Sj--C (4.11)

(vi) Catastrophe - a microtubule in the growing state switches to the shrinking state

at a rate constant k"r¡2

cþ\s

These chemical reactions are represented in Figure 4.4.

(4.r2)

Nucleation Elongation

@"

Recycling Catastrophe

Shrinking

Figure 4.4: A flow diagram for the assembly and disassembly of microtubules in the presence of
dynamic instability. Here, G and ,9 denote, respectively, the growing and shrinking microtubule, while

D and, T denote the GDP- and GTP-tubulin dimer, respectively. GTP-tubulin dimers aggregate to form

microtubule nuclei from which growing microtubules elongate by addition of more GTP-tubulin dimers.

A growing microtubule may switch to a shrinking one through the catastrophe process. A shrinking
microtubule can also switch to a growing microtubule via the rescue process. A shrinking miclotubule
can also undergo shrinkage, losing GDP-tubulin dimers in process. GTP-tubulin dimers are regenerated

when the excess GDP-tubulin dimers interact with GTP molecules.

2kr"" is the rescue frequency; it is the average number of rescues per unit of time of microtubule shrink-
age. On the other hand, k""1 is the catastrophe frequency; namel¡ the average number of catastrophes
per unit of time of microtubule growth [39].
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'We consider four state variables, namely,

(i) C^t), the concentration of GTP-tubulin,

(ä) Ca(t), the concentration of GDP-tubulin,

(iii) C"(ú), the concentration of shrinking microtubules, and

(iv) Cn(t), the concentration of growing microtubules.

Model III: Microtubule dynamics with non-saturating nucle-

ation in the presence of dynamical instability

We assume that the law of mass action governs reactions (4.8 - 4.12) and that we have

a non-saturating nucleation mode (Figure 4.2). With these assumptions, the kinetic

equations describing reactions (4.8 - 4.72) are:

# : k.C¿ - k^Ci - kscsct (a'13a)

# : k"C" - k.C¿ (4.13b)

# : k",tcs- (k,"" + k")c" (a'13c)

# : k.Ci + hscsct+ k,.,C" - k"utCs (4'13d)

This model has nonnegative initial conditions

c,(0) > 0, cd(0) > 0, c"(0) > 0, cr(O) > 0.

The parameters used in system (4.13), and their meaning, are summarized in Table 4.1.
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Model IV: Microtubule dynamics with saturating nucleation in

the presence of dynamic instability

This model differs from model III above in the nucleation reaction mechanism. As in

Model II, we assume that the system has a rate-limiting nucleation rate (Figure a.3).

The model thus becomes

d,Ct lîne"
T:t"c¿-#.@-kscsc¿
ry:k"C"-k.C¿
dt

# : k"utCs- (k" + k'"')C"

*- : .r-?i== + (ksct - Ic" t)cg* k,u,c",dt k*+ci

with the initial conditions

@.1aa)

(4.14b)

@.Iac)

(4.14d)

c,(o) > o, cd(o) > o, c"(o) > o, cn(o) > o.

A summary of the parameters used in model (4.14) and their meaning is given in Tabie

4.7.

Model V: Microtubule dynamics with non-saturating nucleation

in the presence of dynamic instability - dependence of ks¿¿ alrd

k"u, on GTP-tubulin concentration

Following Walker et at. 182), v/e assume dependence of k"u¡ and k,"" on the concentration

of GTP-tubulin using linear functions [39]:

Itcat:b.¿1 - o,ç¿¡C¿,

k * : br""* o,r""C¿,
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where acatt bcatt a,rcs, and b.o. are positive constants. Thus k""¡ decreases with increasing

C¿, whereas k 
", 

increases with increasing C¿ (Figure 4.5).

Figure 4.5: An illustration of the dependence of catastrophe and rescue rates on GTP-tubulin con-

centration.

Substituting these values in system (4.13), we have

dC, _,^.ã : k"c¿- k^ci - kscsc¿

dC¿ Lr- - r"J"-k"C¿
&T

dC, tL
Ë : (b"ut - a"u¡C¡)Cs - (a,o"Cr+ b.". + k")C"

dc-*-e 
-L Ci+kscsct*(a,."C¿+b,"")C" - (ö"u, -a"u¡C¿)Cndt - 'Ùu!

System (a.15) is considered with nonnegative initial conditions

(4.15a)

(4.15b)

(4.15c)

(4.15d)

c,(0) > 0, cr(O) > 0, c"(0) > 0, cr(0) > 0.

A summary of the parameters used in model (4.15) and their meaning is given in Table

4.r.
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Symbol Meaning

Ali models

kn

t^

t^
lug

1"tLc

Model II and IV only

Rate at which GTP-tubulin aggregates to form a nucleus

Rate at which a microtubule grows (eiongates)

Rate at which a microtubule shrinks (disassembÌes)

Rate at which GDP-tubulin is converted to GTP-tubulin

k*

Model III and IV onlv

Maximal rate of nucleation

kcat

k*

Catastrophe frequency

Rescue frequency

Modei V only

Ørcs

b"ut

b.o"

Velocity of the catastrophe rate

Velocity of the rescue rate

Maximaì magnitude of the catastrophe rate

Minimal magnitude of the rescue rate

Table 4.1: Parameters used in the models and their meaning
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Chapter 5

Mathernatical analysis and

simulation results

In this chapter, we analyze the models developed in Chapter 4. We also give the numerical

simulations and sensitivity analysis results of the models. We conclude the chapter with

a discussion, based on these results, of the emerging scenario from these models.

5.1 Mathematical analysis

Mathematical analysis of model I

#:k.C¿-k.Ci*lesC*C¿,

#:k"C,o_ k.C¿,

+:k,Ci+ksC*C¿-k"C*,

c-(o) > o, c,(o) > o, cd(o) > o.

(5.1a)

(5.1b)

(5.1c)
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Summing the three equations in system (5.i), the conservation equation

rl
;lc,(t) + cd(t) + c-(r)l : s
UL

is obtained. This implies that the total concentration of all the variables in system (5.1)

is a positive constant; that is,

Ct(t)+Cd(t)+C*(t):Cs, Vú > 0. (5.2)

It is flrst noted that the origin (0, 0, 0) is an equilibrium solution of (5.1). This is

the trivial equilibrium point, corresponding to the absence of the quantities represented

by the variables of system (5.1). The Jacobian matrix of system (5.1), evaluated at the

origin, is given by r'llo ti. o Ittr -lJ (o,o,o) : | 0 -k,, k" Ittþ o -n"l

This matrix has two negative eigenvalues, -k. and -k", and one zero eigenvalue. Thus

(0, 0, 0) is a non-hyperbolic equilibrium solution. The stable manifoÌd theorem (Theo-

rem 2.3.1) implies that there exists a local two-dimensional stable manifold through the

origin. That is, all trajectories asymptotically approaching the origin as ú --: oo lie on a

two-dimensional invariant manifold. Further, by the centre manifold theorem (Theorem

2.3.2), the topology of the flow near the origin is characterized by a one-dimensional

local centre manifold intersecting the origin. Since the presence of a zero eigenvalue is

a direct consequence of the conservation of mass, we conclude that the origin is locally

asymptotically stable.

Remark 5.1.1. Note that the trivial equilibrium corresponds to the case when Co:0;

that is, when there is no tubulin in the experiment.

We now look for the non-trivial equilibrium solution(s) of (5.1); that is, the case when

Co>0.
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The set

ñ: {(C¡,C¿,C^) e R} : C¿) 0; C¿> 0; C-20; CttCa* C^: Cs},

where IR| denotes the nonnegative orthant of IR3, is positively invariant under the flow

induced by (5.1). It therefore follows that system (5.1) is well posed with bounded

solutions. Using (5.2), we can repiace C- with Co - Ct - C¿ in (5.1) to obtain a two-

dimensional system

d.a,
7 : k.C¿ - k"Ci - ksc^Co - C, - Ca)
Cfi

dA'
Ë:k"(Co-Cr-C¿)-k.C¿

That is

(1.C,

T : k.c¿ - k.ci + knc? - (cs - c¿)krc¿ (b.3a)
dt

d,C,

Ë 
: (Co - Cùk" - (k"+ k.)C¿ (5.3b)

It is convenient to describe system (5.1) in terms of relative proportions; that is,

(-!' _C¿ v _C*Ct: 
ä, C¿ - Co, -* - Co

This gives the evident conditions

c, 11, c¿1I, c*17, cr-fc¿lc^:1,

and system (5.3) can be expressed as

dÕ
; : t'"co - k-ci-rÕî + krcoc? - (1 - Õ¿nncoc,

dCo .ãrr
#:Q-Õùk"-(k"+k)e¿

Dropping the bars, for notational simplicit¡ we have

dC
; : krco * k-ci-Lci + kscoc? - (i - c¿)knc¡c¿ (5'aa)

dC,

i:G-Cùk"-(k"+k")c¿ (5.4b)
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The set

Q : {(Cr,C¿) e lR'?* : Ct ) 0; C¿> 0; Ct * C¿ 3 1}

is positively invariant under the flow of system (5.4); that is, solutions starting in O

remain there forever. Therefore, (5.4) is well posed, with bounded solutions.

Remark 5.L.2. Flom (5.4), the dynamics of C- (in proportions) is deduced from

C*(t)-1-Cr(t)-C¿(ù.

The equivalence of system (5.i) and system (5.4) is thus established by noting that the

solutions of (5.1) can be obtained from the solutions of (5.a) together with (5.2). That

is, by multiplying the solutions of (5.a) by Co and using (5.2), we have the solutions of

(5.1).

Let us now analyze system (5.4).

Equilibriurn of system (5.a)

Theorem 5.1.3. If Co > 0, then on the set A, system (5.4) adrni,ts a un'ique posi.ti,ae

equi,Iibri,um

Bi:(ci-k"(1 -c;)l 
.\ ' k"+k" )'

where CI i,s the un'ique posi,ti,ae root 'in the i,nterual (0, 1) úo the equat'ion

(k" + k.)k.c[-rcn - k"kscoc? + (tfsco + lí")k"ct - k"k" - g

In part'icular,

c; e (0, min(1,91)' \' ''knco'/
Proof. Suppose that C6 > 0. Setting the time derivatives in Eqs. (5.4a) and (5.4b)

equal to zero, we obtain

Ic"C¿-k*Ci-rci +ksCoCT - (1 - C¿)knCsC¿:Q (5.5a)

(7 - còk" - (k" + k")cd :0 (5.5b)
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From Bq. (5.5b), we have
kcd: k"; t "0 

- ct)

Substituting this value of C¿ in Eq. (5.5a) and simplifying, we obtain an n-th degree

polynomial in C¿:

(k" + k.)k.ci-rcn - k"kococ? + (ksco + lr")k.ct - k"k. : g (5.6)

Thus, the positive roots, Cl, of Eq. (5.6) are the C¿-components of the equilibrium

solutions of (5.5).

Let us write the left hand side of Eq. (5.6) as a difference of two polynomials P1(C¡) -
P"(Cù, where

PlQt): (k" + k")k,Ct-rci

and

Pz(ct) : k. lkncoc? - (knco + k")ct + k"f

The polynomial P1 is an increasing function on IR.. such that Pt(O) :0.
On the other hand, P2 is a quadratic polynomial such that

' Pr(O) : k"k. ) 0,

' its roots are 1 and *rro, ¡ort positive,

. it is upwardly concave with a critical value at Cr: W,

. ir is decreasing on (0, 4#) and increasing on (W,oo), una

' it is positive on (0, -i,' (t,r*t)) u'a (rnu* (t,#a) ,-)

It follows that Pr and P2 have a unique intersection for 0 < C¿ < min (t,th). The

second positive intersection, if it exists, has C, > max(t,*.) 
= 

t. Since the state

variables in (5.4) are in proportions, a biologically meaningful equilibrium must satisfy

the condition Ct 11. Consequently, CI is unique and satisfies

o <ci < min (t,h),

This completes the proof of Theorem 5.1.3.

Biological Remark. The ratio ff is termed ïhe criti,cal concentrat'ion of GTP-tubulin

(5.7)

tr
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Figure 5.1: Illustrations of the functions Pl(Cr) and P2(C¿) of Eq. (5.6)

dimers [80, 82] and is usually denoted lsy C.. At GTP-tubulin concentrations above C",

the GTP-tubulin dimers assemble into microtubules, while below the C", microtubules

disassemble. At concentrations near C., some microtubules assemble, while others disas-

semble. Since we are working in proportions, the term fro on the right hand side of (5.7)

agrees perfectly with theoretical and experimental results in literature. For example, Bi-

cout & Rubin [9] point out that below the critical concentration and in the presence of

nucleation sites (nucleus), a stable popuiation of microtubules will be maintained as long

as the GTP-tubulin concentration is maintained.

Stability analysis of Ei

Theorem 5.L.4. The equi,li,brium solut'ion Ei of sgstem (5.a) zs globally asymptoti,cally

stable wi,th respect to the set Q.

Proof. The Jacobian of system (5.4) is

nlc^(CsC¿)'-r + (2q * C a - 7)lcnC6

-k"

,:l-
r 

"nt, 

.. rr rl
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Evaluated at the equilibrium .Ði, the Jacobian becomes

-nk,(c¡c{)'-'+ lr"; - 9ffi)n,c,

-k"

-"J 

..rrrl
The trace of J¿¡,

rr(Jq) : -nk-(coci¡'-t *lr"; - 
(k'f+!))u,"" 

- k" - k"

: -nk.(coc;¡'-r * 
(k" tzn'\tcnco c; - lpg * *" * *.1 ,

tùs -l- À,¿ Laùs -f Àc I

can be written as a difference of two polynomials Ps(Ci) - Pn(Ci), where

PsQÐ:@##Lcr - (Y#**"*'") ,

and

Pn(Ci): nk.(CoCi)-L

Then the sign of tr(J¿;) depends on the relative positions of the graphs of Ps and Pa.

Now P3 is a straight line with a positive slope and negative intercept. It is negative for

Figure 5.2: Illustrations of the functions Pg(G) and Pa(C¿) of the trace of J¿¡
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aII C; < Cì"t', where

nintt (Æ" + A.)2 I k"ksCsut ' : --@JtÐkp,

Pa, on the other hand, is an increasing function with P4(0) : S.

and, therefore,

v ci e [0, cj""] , Ps(ci) < Pn(cÐ,

which implies that

v c; e lo,c;"t'] , rr(J¿¡) < o

Thus,Pa)0, VCi>0

Recalì, from (5.7), that Cl < 1. Hence if C;"t' ) 1, we have that tr(Jq) ( 0. Now

suppose that Cj"t' < 1; then,

k" + k.l ksCs (5.8)

And using (5.7), we deduce that, in this case, min(1, åï") : #' attr, is, cj e (0,#)
There are two possibilities for the relative positions of ¡ft and Ci"t' along the C¿-axis.

(r) oft 1 Clntr - in this case, it follows that (0, ¡þ,o) . lo,Ci*']. Thus for any Ci,

Pr(Ci) - P4(Ci) <0.

(b) ¡þ ) Cj"t' - inthis case,knC6l -k",contradictinginequality (5.8). Wetherefore

rule out this possibility.

It follows that tr(J¿¡) < 0. Flom Bendixson's criterion (Theorem 2.4.7), it follows that

there are no non-constant periodic solutions in the positive quadrant. We have shown

that the solutions to system (5.4) are bounded. Furthermore, we have established, from

Theorem 5.1.3, that Ef is unique. By Poincaré-Bendixson theorem (Theorem 2.4.3),

it follows that all trajectories limit to the equilibrium Bf ; that is, that Ei is globally

asymptotically stabie. This completes the proof of Theorem 5.1.4. rl

Remark 5.1.5. F}om Remark 5.1.2, the following theorem on the uniqueness and sta-

bility of the equilibrium solution of system (5.1) is trivially true.
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Theorem 5.1.6. If Co > 0, then

equi,li,bri,um s o lut'ion

ET* : ("";, l-tl^1
ñi.s -J_ tvc

lî.Co(7 - C;)\
t%+tft )'

k,co(I - ci)

where CI i,s the un'ique positi,ue root'in the znterual

on the set ñ, system (5.7) has a un'ique posi,tiue

to the equat'ion

(k" + k.)k"ct-Lcn - k"kscoc? + (kscl + k")t{.q - k"lc": Q.

Fur-th.ermore, El* zs gtobaUy asyrnptoti,catty stable wi,th respect to the set ñ.

Mathematical analysis of model II

Using rigorous numerical simulations (see in Section 5.2), we established that nucleation

has insignificant effect on the overall microtubule dynamics. For this reason) we analyze

model II for the special case when n: I. Model II then becomes

(0, min(l,er)

#: k"c¿- ffi- ksc*ct (b.ea)

dc¿ : k-c^ - k.c¿ (b.gb)
dt - tÙsvm

dC* lt,C,
I : #ie+ ksc*ct - k"c* (5'ec)

C-(o) ) o; C'(o) lo; Cd(o) > o'

The law of conservation of mass is satisfied in system (5.9); that is, the relation

fif,ftl + c¿(t) + c^(t)l: o
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holds, implving that the total concentration of all the varìables in the system is a constant:

C*(t)+C'(t)+C¿(t): Co > 0, V¿ > 0. (5.10)

Obviously, the origin (0, 0, 0) is the trivial equilibrium solution of (5.9). This equilibrium

corresponds to the case when Co : 0; that is, the case when there is no tubulin in the

experiment.

The Jacobian matrix of system (5.9), evaluated at the origin, is given by

l_ 'r

l-bk- k' 0 
|ll

Jto,o,ol: | 0 -k. k" IlrL* o -k"l

The characteristic equation of the Jacobian is

k*À3 + 
^z]{.k* 

+ k"k^ + k.) + 
^(k*k.k" 

i k.kn I k"kn) : 0,

whose roots are

and

À3:

Since

< (k"k^ + k"k* - kn)' : k"k* + k"k^ - lín,

.\ l^Lùm
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it follows that

\-lrnA2 
" -;-Itm

and Às < -(k" +,k")

Thus, the Jacobian matrix has two negative eigenvalues, À2 and À3, and one zero eigen-

value, implying ihat (0, 0, 0) is a non-hyperbolic equilibrium solution. The zero eigen-

value comes from the conservation of mass. By the stable and centre manifold theo-

rems (Theorems 2.3.1 and 2.3.2, respectively), there exists a local two-dimensional stable

manifold through the origin, and a one-dimensional local centre manifold tangent to the

eigenspace associated to À1. We therefore conclude that the origin is locally asymptoti-

cally stable.

Let us now Look for the non-trivial equiiibrium solution(s) of (5.9); that is, the equilib-

rium solution(s) of (5.9) when C0 > 0.

The set

Q: {(C1,C¿,C*) e IR}: C¿} 0; C¿> 0; C*) 0; CttC¿tC*:go¡

is positively invariant under the flow of (5.9). It thus follows that system (5.9) is wetl

posed with bounded solutions. Using (5.10), we can reduce system (5.9) to a two-

dimensional system of differentiai equations by dropping the equation for C^ to obtain

dC,

dt
dCa

E

ã -C* ã -"* - co, \rt -

(5.11a)

(5.11b)

Let us define the variables C,n, C¿, and C¿ of system (5.9) in terms of proportions:

C¿

c'
ct
Co'

C¿:
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with

Õ^ + Cr+ Co:1

Then, after dropping the tildes for notational simplicity, system (5.11) becomes

dCt ,, ^^ ,\^ Lr'
dt 

: (knC6C¿ + k.)Cd - E;TZA- (1 - Ct)kscoct (5-72a)

dCa

dt 
: (7 - Cùk" - (lc" + k.)C¿ (5.12b)

The set

ñ : {(Cr,C¿) eF',?* : Ct ) 0i C¿ > 0; Ct * C¿ I r)

is positively invariant under the flow of (5.12). Therefore, (5.12) is well posed, with

bounded solutions.

Remark 5.L.7. Flom (5.10), the dynamics of C- (in proportions) is deduced from

c*(t) :1- c{t) - c¿(t).

The equivalence of system (5.9) and system (5.12) is thus established by noting that the

solutions of (5.9) can be obtained from the solutions of (5.12) together with (5.10). That

is, multiplying the solutions of (5.12) by Co and using (5.i0), we have the solutions of

(5.e) .

We now consider the analysis of system (5.I2).

Equilibrium of system (5.12)

Theorem 5.1.8. If Co > 0, then on the set ñ, system (5.12) has a un'ique posi,ti,ue

equi,libri,um / (1_ cJ)Æ"\E;: I Ci\ ' k"+k" )'
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where Ci. i,s the un'ique posi,tzue root'in the znterual (0, f ) fo the cubi,c equat'ion

k.krc2ocf - [k" - (k* - cùkÅk"c|c7 + k*k"lf"

- [(r" + k,)k^ + (knCo * k")k^k" - k"k.Co)Ct: 0.

Proof. Setting the left-hand sides of system (5.12) to zero, we obtain

0 : (kncsc¿ + k.)cd - 
k'c.' ., - (7 - c,)lrococt (5.13a)

k- * CoC, vt

0 : (1 - C')k" - (k" * k.)C¿ (5.13b)

From (5.13b), we have that

n _(r-ct)k"v(l - k"+k.

Substituting this vaÌue in Eq. (5.13a) and simplifying the resulting equation, we obtain

k.kscScl - lk" - (k* - cùknlk.coc? + k*k"k.

- [(,t" + k.)k.+ (knCo*k")lr*k"- lr"k.Co]Ct:0 (5.14)

The LHS of Eq. (5.14) can be written as a difference of two polynomials øs(Cr) -Øn(Cr),

where

as(Cr) -- k"ksCSCl + Ir*lc"lc"

and

an(cr): [k, - (k^ - co)kÅk.coc?

+ {l(k^ - Co)k"+ k,,)k" + (k*kscy + k")k"} Ct
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Now, @3(C¿) is, for all values of C¿, an increasing polynomial function with @3(0) :

k*lç"\í. > 0. On the other hand, the zeros of An(Ct) are 0 and Cj"t', where

CìN,' :

_ (k*kn - k")k.Co + (k" + k.)h, + k*k"k.
(k*kn-k")k.Cs-ksk"Cfi

We consider the following two cases:

Case I: k*> * + Co. In this case,

- The above expression for Cj"t'must be greater than one because the numerator

is greater than the denominator.

- The critical value of Øa; namely

¡tcritz l&* - Co)k" + k.]k" + (k*Ìrsco + k.)k.\'t - '>.tr"cil(k* - co)k, - tr,l '

is positive, and

- Qais concave downwards on (-oo, oo), increasing on (--, Cr""t') and decreas-

ing on (C,""t, *).

In Figure 5.3a, the functions @s(Cr) arrd Qa(C¿) are sketched. Both functions are mono-

tonically increasing in C¿ for aII Ct e (0, Cr*tt').

Since

0:@¿(0) <Øs(0) :k^k"k"

and

k.kscï + k*k,k": @s(1) < øn(1) : k.tcncS + k*k"k.+ (k" + k")kn,

a unique intersection (at C¿: Ci e (0, 1)) of the curves defined by the functions Õs(Ct)

arrd Øa(C¡) exists.
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(a) The case when k- > E + Co (b) The case when k^ < E + Co

Figure 5.3: Illustration of the functions øs(Cr) and Qa(C¿) of Eq. (5.14).

Case II: k* < E + Co. In this case,

both Cj"i' and Cú"'it2 are negative,

Øa is concave upwards at Cf'ít", decreasing on (-oo, Ci"") and increasing on

(cl"t' ,oo), and

@¿ is positive for all C¿ > 0.

ln Figure 5.3b, the functions Øs(Cr) and Øa(C¡) are sketched. Since

. both functions are monotonically increasing in C¿ on (0,1),

' 0 : @¿(0) < @e(0) : k*k"k", and

' k"ksc| + k^lí"k.: Ø¡(1) < øn(1) : k.knC| + k*k"k"+ (k" + k.)kn,

a unique intersection (at C¿: Ci e (0, 1)) of the curves defined by the functions Os(Ct)

and iÞa(C¿) exists.

Combining Case I and II, it follows that the functions Ø3 and Qa have a unique inter-

section point for 0 < Ct < 1. The other intersection points are outside the interval (0,1)

and are thus biologicaily irrelevant. Consequentiy, system (5.12) has a unique positive

equilibrium 
E; : l"î'(1 - 

cJ)k"l
L ' k"+k. I'
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where Cj is the positive root to the cubic equation (5.14) satisfying 0 < Cl < i. This

completes the proof of Theorem 5.1.8. ¡

Stability analysis of E$

Theorem 5.1.9. Proui,di.ng that

k"+k")ltsCs,

the equi,li,bri,um soluti.on Ei of sEstem (5.I2) i,s globally asgmptoti,cally stable w'ith respect

to the set ñ.

Proof. Computing the linearization matrix of system (5.12) around the equilibrium

sorution E; : lci,ç#] we get

I o-0.
l-G;+õãdfr* 

l'u1uffi@ t;ncoc; + k"]

¡øö: 

|- --" -(k" + k") 
-l

Now, the trace of J¿; is given by

tr(J¿,;) : -GþXæ.W- (k" + k.)

_ (k* + CoCî)2l(k" + 2k")kgCoCi - k.ksCo - (k" + k")21- h*k.(k" + k.)
(k*+csc¡)z(k"+k.)

(tt* + CoC;)' {(k" + tt.)lkncocî - k" - tr"] - k.ttnco(t - Ci)) - lr*tt.(tt" + k")

(k*+coci)2(k"+k.)

kscoc; <k"+k",
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the numerator of the above expression will be negative (recall that Cf € (0, 1)). Therefore,

n* -k"*k""r- W

is satisfied (because 0 <Ci < 1). Consequently, tr(J4) < 0 and, from Bendixson's cri-

terion (Theorem 2.4.7), it follows that (5.12) has no nontrivial periodic solutions in IRI

for all Ct Ç (0,1), provided that k"+k" ) knC¡. Since Ei is unique, it foÌlows by Poincaré-

Bendixson theorem (Theorem 2.4.3) thatall trajectories Ìimit to the equilibrium E[; that

is, that Ej is globally asymptotically stable. This completes the proof of Theorem 5.1.9.¡

Theorem 5.1.1-0. If Co > 0, then on the set A, system (5.9) äas a un'ique posi,ti,ue

equi,lib ri,um s o luti. o n

n*-k"lk"v¿ - knCo + tr(J¿;) <0.

Taking k" + k" ) knCs,it follows that ffi > 1 and, hence, the condition

E;.-(",";, W#P,W{FP),

where Ci is the un'ique posi,ti.ue root i,n the i,nterual (0,I) to the cubi,c equati,on

k.kscïcl - [k" - (k* - cùkn]k"c|c? + k*k"k.

- [(k" + k.)k. + (knCo * k")k*lç" - lr"k.Co]Ct : 0.

Furfhermore, proui,di,ng that lc" * lr. ) knCs, E)*

resp.ect to the set Q.

Proof. This follows from remark 5.1.7.

We mention here that on the basis of Theorem

i,s globally asymptoti.cally stable wi,th

tr

5.1.9, we cannot provide a complete
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analysis of the equilibria E$ and E$.. In other words, the theorem is silent on the

stability of the equilibrium E$ in the case when k" * k" 1 knCo holds. In order to

gain further insight on the asymptotic behaviour of the equilibrium solution .Ðj*, we will

conduct numerical simulations on the model for both the case when k" I k" ) ksCs and

the case when k" I k. 1 knCs.

Mathematical analysis of model III

We now analyze Modei III for the speciaÌ case n : 1; that is, we assume that the

nucleation rate, kn, linearly depends on the GTP-tubulin concentration. Then, system

(4.13) becomes

dC,
# : k.C¿- knCt - ksCsC¿
dt

*:k"C"- k.C¿
dt

d.a^:f : k"utCs - (4r."" + k")C"
utt

# : knCt I knCnC, 
,l 

k,o"C" - k"utCs

c,(o) > o, cd(o) > o, c,(o) > o, cr(o) > o.

Summing the four equations in system (5.15), the conservation equation

(5.15a)

(5.15b)

(5.15c)

(5.15d)

Å

dtçfÐ + cd(t) + c"(¿) + cs(t)l: o

is obtained. This implies that the total concentration of all the variables in system (5.15)

is a constant,

C'(t)+Ca(t)+C"(t)+Cs(t): C0 > 0, Vú > 0.

The origin (0, 0, 0, 0) is the trivial equilibrium solution of (5.15). This equilibrium

corresponds to the case when the concentration ofeach variable in system (5.15) is equal

to zero; that is, when C6 : 6.



The Jacobian matrix of system (5.15), evaluated at the point (0, 0, 0, 0), is given by

J¡s,o,o,o) - Jo :

-lcn k. 0 0

0-k"k"0
0 0 -(Æ.". +,(r") kcat

kn 0 k.ns -k"ut

The matrix J6 is singular, implying that 0 is an eigenvalue of J6 associated with the

left (row) eigenvector [1 1 1 1]. F\rrthermore, the digraph, D(Jo), associated with J6

is strongly connected, which implies that Js is irreducible. Consequently, 0 is a simple

eigenvalue of J6 [32]. This zero eigenvalue corresponds to the conservation of mass.

Using Gershgorin theoreml, we know that all the eigenvalues of J¡ have nonpositive real

parts. In particular, defining

k : max {kn, k., kro. + k", k"*} , (5.16)

all Gershgorin discs are contained in the disc centred at -k with radius k.

We now need to show that [1 1 1 1] is (to a scaìar) the only strictly positive2 eigenvector

of J6. We "shift" the matrix J6 by a multiple of the identity matrix I to make all of its

eiements nonnegative. Thus, we consider the matrix Jo+kI, where Ê is given by (5.16).

The new matrix Jo + kl inherits some spectral properties of an irreducible matrix. In

particular, Jo + nl is irreducible, since the irreducibility of Js is not affected by modifying

Theorem (Gershgorin). [35] If A : (o¿¡) is aî n x n matrix, then all the eigenvalues of A are located
in the union of r¿ discs Uþ1D¡(A) where

D¡(A): {" ec:lz-a¡¡15 ¡;¡o,rl}, j:r,2,..' ,n.,i=l)
F\rrthermore, if a union of ,k of these r¿ disks forms a connected region that is disjoint from all the
remaining n - k discs, then there are precisely ic eigenvalues of A in this region.

2A vector r : (xt,... ,rr) is said to be strictly (or strongly) positive, and we write ø )) 0 if z¿ > 0
for all e:I,... ,TL.
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its diagonal entries.

By Perron-Fïobenius theoremS,

the spectrai radius of Jo + kI ir u positive simple eigenvalue of Jo + kI sttictly

exceeding in modulus all other eigenvalues of J6 + kI;

- there exists a positive eigenvector v corresponding to the eigenvalue p(J¡ + kI);

- any other nonnegative eigenvector of Jo + kI It u multiple of v.

Using a left eigenvector, we have

tt(Jo+rI¡ : pQo+rr¡rrt

for v" ) 0 unique to a scalar multiple.

Since

[1 11l](Jo+kr) :[1 111]Jo+k[1 111] :Ê¡trrt1,

it follows that p(J¡ + kI) : k and 'r." : [1 1 1 1] is the eigenvector corresponding to

the spectral radius k of Jo + ,kI. We note that the spectra (the sets of all eigenvalues)

ø(J6) and o(Jo * kf; of Je and Jo + kI, respectively, are translations of Ê, which implies

that [1 1 1 1] is the only strictly positive (lefi) eigenvector of Js, and is associated to the

eigenvalue 0.

Consequently, since o(Js) and o(Jo + kI¡ ut" translations of k, 0 is the dominant eigen-

value of Je and is of multiplicity 1, and all other eigenvalues of Js have negative real

parts.

By the stabie and centre manifold theorems (Theorems 2.3.1 and 2.3.2, respectively), we

3

Theorern (Perron-Fhobenius). [71] If A : (c¿¡) is an n x n nonnegative matrix, then r : p(A) is an
eigenvaiue of A and there is a corresponding eigenvector v ) 0. If, in addition, A is irreducible, then
r > 0 and v)) 0. Moreover, r has algebraic multipìicity one and if u > 0 is an eigenvector of A, then
thereexistss>0suchthatu:sv. If BisamatrixsatisfyingB )A,thenp(B) > p(^).Finally, if
,4' >> 0 then lÀl < r for all other eigenvalues of A.

82



deduce that there exists a local three-dimensional stable manifold through (0, 0, 0, 0)

and a one-dimensional local centre manifold tangent to the eigenspace associated to the

zero eigenvalue. It therefore follows that the origin is locally asymptotically stable.

We now turn to the search for the non-trivial equilibrium solution(s) of (5.15) - corre-

sponding to the case C6 > 0.The set

fi: {(Cr,Cd,,C",Cr) € Ri :Ct) 0; C¿> 0; C" > 0; Cn20; Q*C¿*C"-fCn:60¡

is positively invariant under the flow induced by system (5.15). It thus follows that

system (5.15) is well posed with bounded soÌutions. Let us replace C, in (5.15) with

Co - C, - C¿ - C" to obtain a three-dimensional system

That is

# : k.Ca - knC, - (Co - C, - C¿ - C")ks1t

ry:k"C"-k.C¿dt

# : It*r(co - ct - c¿ - c")- (k."" + k")c,

# : k.C¿ - knC, - (Co - Ct)ksCt-r (C¿ + C,)lrsct

*:k"C"-k.C¿dt

# : (co - ct)k"at - kcatcd - (k"ur+ k,* + k")c"

^Ca^C"vd-n1vs-n'
L/0 U0

(5.17a)

(5.17b)

(5.17c)

It is convenient to describe system (5.17) in terms of relative proportions; that is,

C,: ct.
Co'
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With this transformation, system (5.17) becomes (after dropping the bars for notational

simplicity)

dC,
dt : k.C¿ - knC, - (1 - Ct)koclCt i (C" -l C¿)ksCsC¡ (5'18a)

dC¿

dt : k"C, - k.C¿ (5.18b)

dC"

dt:G-C'-C¿)k"u'-(k""+k'o'+k")C" (5'18c)

The set

i) : {(C.,C¿,C") e Rf : Ct> 0; C¿> 0; C" > 0; Ct-t C¿+ C" < 1}

is positively invariant with respect to system (5.18).

Equilibrium of system (5.18)

Theorem 5.1.11. If Co> 0, then onthe set il, system (5.78) ad,mi,ts a un'ique posi,ti,ue

equi,Ii,brzum

¿¡+ / t/ / I{"k.* t. /a+ \ k"k"^ \
¿s : (uï, cä, c:): ("t, =#(t - cî), =#tt - cÐ) ,

wltere n -- k"k"u¡ I (k"ut * k.n. I k")k" and CI i,s the un'ique pos'it'iue root 'in the i,nterual

(0,1) to the equati,on

(k,"" * k")trok.Cyc? - lok,* (k.". + k")ksk"Co + k"k.k"urf C¿ I k"k.k"ar : 0.

Proof. The equilibrium solutions satisfy the following relations:

0: k"C¿- knC, - (1 - Cùkscoq + (C" + C¿)knC6C¿ (5.19a)

0: k"C, - k.C¿ (5'19b)

0 : (1 - Ct)k*t - k"utCa - (k"ut + ,k,". + k")C" (5.19c)



Fbom Eq. (5.19b),

c": *co
Ks

Substituting this value in Eq. (5.19c) and solving for C¿ gives

"o:Ye_c,)

Hence

n _ krþ," : -Ë (7 - Cr) (5.22)

Replacing the vaiues of C¿ and C" in Eq. (5.19a) with (5.20) and (5.22), respectively,

gives

-rck,C¡+ EC? - (E + F)q+ ¡.:0 (5.23)

where

(5.20)

where

ft: k"k"4 * (k"ur + 4,". + Æ")k" (5.2i)

E:(lt,u*k")ksk.Cs, (5.24)

and

F : krk.k"u¡. (5.25)

The positive roots, Ci e (0,1], of Eq. (5.23) are the Ct components of the equiÌibrium

soLutions of (5.i9).

The LHS of Eq. (5.23) can be written as a difference of two polynomials Ps(C¿) - Pz(Cr),

where

Pa(C,): EC? - (E + F)C,+ F

Pr(Cr) : nk,Ct
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P7 is Ìinear and monotonically increasing in C¿ for aII C¿ € (0,1] and P7(0) : [,

implying that P7(C¿) > 0 for all C, e (0,1].

On the other hand, Ps is quadratic in C¿, is concave upwards, and cuts the vertical axis

at F > 0. Furthermore, Ps(C¿)

- cuts the C¿-axis àt C¡:1 and C¿ : # > 0;

- is decreasing on the interval (O,H) and increasing on the interval (W,co), and

- is positive on the intervals (0, minil, $)) ana (max(1, Ë), -).

We consider the following two cases.

Case I: min(1, Ð : Ë.In this case (see Figure 5.4a),

- Pr(Cr) ) 0, V C, e (0, f,) c (0, t),

- Pr(Cr) > 0, V Ct e (0, t),

- Pz(Cr) is monotonicaliy increasing in C¿ on (0,1), and

- Pr(Ct) is monotonically decreasing in Cr on (0, $).

Since

0: Pz(0) < Ps(O) : 4

Kkn: P?(1) > P3(1) : g'

it follows that P7(C¿) and Ps(C¿) have a unique intersection at 0 ( Ci < fi on

(0,1). The other intersection point, if it exists, is biologically irrelevant since the

state variables in system (5.18) are in proportions.

Case II: min(l, #) : f . In this case (see Figure 5.4b),

- Ps(Cr) > 0, V Cú € (0,1),

- Pz(Cr) ) 0, V C¿ e (0,1),



- Pz(C')

- Pa(Cr)

Since

is monotonically increasing in C¿ on (0,1), and

is monotonically decreasing in C¿ on (0,1).

0: P?(0) < Ps((]) :4

and

Klín: Pt(1) > Pe(1) :0'

it foìlows that P7(C¡) and Ps(Cr) have a unique intersection at 0 < Cl < 1. The

other intersection point, if it exists, is biologicaÌly irrelevant.

Combining Case I and II, it follows that P7(C¿) and &(C¿) have a unique intersection at

o < ci ( min (t,#)

To obtain the precise expression of Ci, we write Eq. (5.23) as

P,(q\--------4

(a) The case when min(i, $¡ : f, (b) The case when min(l, S) : 1

Figure 5.4: Illustration of the functions P7(C¡) and Ps(C¿) of Eq. (5.23).

EC?-(ok*+E+F)Crff':0 (5.26)
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and solve (5.26) for C¿ to obtain the roots C{ and Ci (Ci < Ci), where

ci:

that is,

ñ* rck,*E+F-@
"zL

+î+zrckniE+F-("!tJ!-l):F , '+U;<- E iRecallthat¡>0)

and

ci: rck.+E+P+@

2E

. ãu, nlen|E+F-l(nk,+E-F) - Kkn

-v[-, 2E 
:r-r 

E -'

Consequently, system (5.18) has a unique positive equilibrium

Eä:(ci,ry(1 -cJ) ,ry(1 -cJ)) ,

where rc is given by (5.21) and

^* rc,k,*E+F-@
" '¿b

This compietes the proof of Theorem 5.1.11. !

Remark 5.L.L2. With respect to system (5.15), the unique positive equilibrium is given

by

/þEä*:(c,ci,blf 0-c;),Wf e-ci),@*@(1 -cJ)) ,

. (o,m"1f , r¡)
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where Cl is the unique positive root in the interval (0, t) to the equation (5.23). This is

obtained by multiplying each component in the equilibrium solution of (5.18) by C6 and

using the fact that Cn(t) : Co - C"(t) - Ct(t) - C¿(t).

Stability analysis of EI

Theorem 5.1.13. The uni,que posi,ti,ue equi,li.brium Eä of system (5.i8) zs globallg osAnxp-

toti,cally stable i,n the domai.n

Q :{(Cr,C¿,C") e IR} : C, ) 0, Cr, y! 
Q - CÐ ,

lí.^t i, k"k.ut 1 k"ut , .C", , -T -r ll' - 
'--=--" - ,l "-'(I-Ci), Ct-lCa+C"S'j

öcar tur", + k" ' l'"" 2(k"u, i k*, + k")l K

Proof. Consider the Lyapunov function

V(cr,ca,c") : lleç, - cä)' + B(c" - c:)' + c(ct - ciY], $.27)zL I

where the constants A, B and C are to be determined. Then,

' Vt is continuously differentiable on 12,

. v(ci,cä,c:) : o, and

. Vt(Cr,C¿,C,) ) 0, Y (Cr, C¿, C") € O \ {(Cî,Cä,C:)}

Time differentiating (5.27) along the solutions of (5.18) we get

Vt : A(C¿ - Cä)Co + B(C" - CÐC" + C(q - CÐC'

: A(c¿- cä)(k"c" - ¡r.ca) + B(c" - cJ)[k*,(i - ct- c¿- c,) - (k,n. + k")c"]

+ c(q - ci)lk"co - knc, - (r - còkscoT -r (ca + c")kscoctf



- CÐ + Ak"Cä - BIc.utfC, + BIí.úC:

+ (Ak.(Cd - Cä) - Bk."rC:)Cd + (Bk"ur - A4")C¿C" + (C" - C:)Bk.úCt

+ C(Ct - CÐ lk.C, + (I - Ct)kscoCt - k"C¿ - (Co + C")krCoCù\

If we now take l, : I, B : *., and C : 0, then Izr wilt be negative if the following four

inequalities hold simultaneously:

(k",t*k 
""* 

k,)B(C"-C!)+Ak"Cä- BIr.ù > 0 <+ C" > c:+
(**, - 4#)

(5.28)
"'k"ut+kr""+k"

: -il(k"", + k,., + k")B(c"

Ak.(C¿ - Cä) - BIc" tC: > 0 <+ C¿ > Cä + 
BffC: 

,

Bk"t-Ak")0 <+ Ur*,

(5.2e)

(5.30)

(5.3 1)

(5.32)

(5.33)

(5.34)

(5.35)

C"-CJ>0 <+ C">C:

Replacing the values of Cj and C!

C")
t-
lucat

l^tl-tl-
lvcat -1. furos -1- /ls

in inequalities (5.28 - 5.31), we obtain

* [u"-ruffi]Ð]?,' -cÐ

c"r&þ G _ c;)

2k" _ Æ"

L-t^lûcat lvcat

""rffG-c;)
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Now, inequaiity (5.32) can be rewritten as

"",Y(1 -q) *ffiffi,
and, since Cä < I, the region defined by inequality (5.35) is contained in the region

defined by inequality (5.32). Consequently,

V<0 V(C,, C¿,C")e O\{(Cl,Cå,C:)}

By Lyapunov's stability theorem, it follows ihat the equilibrium solution, Eä : lci, Cä, C:1,

is globally asymptotically stable for system (5.18) on the domain ¡2. fnir completes the

proof of Theorem 5.1.13. tr

Remarks. Note that the global stability of the equilibrium solution Ej is proved in a

very restricted region of the phase space, such that for any transients around Cj, for

exampie, thefunctionVr failstobeaLyapunovfunction. FromRemarkS.I.I2, westate

the following theorem.

Theorem 5.L.14. If Co > 0, then on the setî, system (5.75) admi,ts a un'ique posi,tzue

equi,li,brium

EI* : ("^"r. t:k"urC, ,- ^*\ k"k"u¡Cs '. ^*\ (k,", * k"\lc"Co ,- ^-'\- \ - ,' 
" 

(r-o;)' o (t-u;)' o U-ui))'

uhere K: k"k"u¡ * (k"ur + k.", + k")k. and Ci i,s the un'ique posi.ti,ue root 'in the i.nterual

(0, 1] to the equatr,on

(k,"" -.l- k")ksk.Coc? - lott^* (k,", * k")ksk"Cs + k"k"k"utl C¿ * k"k.k"at : 0.

Furthermore, E!* is gtobalty stable on the d,omai,n h.
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Mathematical analysis of model IV

We wiil analyze model IV for the special case when n : 7; that is, we consider the

following system:

dC, ltnC,
*:k"C¿-#-lî,scsct (5.36a)
lJ,L fúm 'f \)t

# : k"C" - k.C¿ (5.36b)

dc" - r. n tr^t. - 
rúcatvo \rurdt - sfk,".)C" (5.36c)

dCn _ knCt -ã 
: 

k_. Cr+ 
(ksq - kut)Cn + k,n"C" (5.36d)

c,(0) > 0, cd(O) > 0, c"(0) > 0, cr(0) > 0.

We note that
.l

dtÇ'(t) + cd(t) + cs(t) + c"(¿)) : o;

that is, the total concentration in the system is a constant

C{t) + Cd(t) + Cs(t) + C"(t) : ço

This constraint guarantees the boundedness of solutions of (5.36).

The origin (0, 0, 0, 0) is the trivial equilibrium solution of (5.36). The trivial equilibrium

occurs when Co : 0; that is, when there is no tubulin in the experiment.

The Jacobian matrix of system (5.36), evaluated at the point (0, 0, 0, 0), is given by

Jqo,o,o,o¡ - Jo :

-þk"oo
0-k"k"0
0 0 -(k ", 

+ ,k") k"u,

^* o k", -k"ut
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The matrix J¡ is singular, implying that 0 is an eigenvalue of J¡ associated with the

left (row) eigenvector [1 1 1 1]. F\rrthermore, the digraph, D(Jo), associated with Js

is strongly connected, which implies that Js is irreducibie. Consequently, 0 is a simple

eigenvalue of J6 [32]. The existence of this zero eigenvalue is due to the conservation of

mass.

Using Gershgorin theorem, we know that all the eigenvalues of Je have nonpositive real

parts. In particular, defining

(5.37)

all Gershgorin discs are contained in the disc centred at -k with radius ñ.

We now need to show that [1 1 1 1] is (to a scalar) the only strictly positive eigenvector

of Js. We "shift" the matrix Jo by a multiple of the identity matrix I to make all of its

elements nonnegative. Thus, we consider the matrix Jo + ãI, where k is given by (5.37).

The new matrix Jo + kI inherits some spectral properties of an irreducible matrix. In

particular, Jo + fl is irreducible, since the irreducibility of J¡ is not affected by modifying

its diagonal entries.

By Perron-Fbobenius theorem,

- the spectral radius of Jo * ñI b a positive simple eigenvaiue of J6 * ñI rtri"tly

exceeding in modulus all other eigenvalues of Jo + kI;

- there exists a positive eigenvector v corresponding to the eigenvalue p(J6 +kI);

- any other nonnegative eigenvector of Jo + ñI i. u multiple of v.

Using a left eigenvector, we have

,r"(Jo + kI) : p(Jo + Él¡ur

for v" ) 0 unique to a scalar multiple.

Since

[1 1i1](Jo+kI) :[1 111]Jo+k[1 111] :/ç[1 111],
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it foliows that p(J¡ + ñI) : k and..r" : [1 1 1 1] is the eigenvector corresponding to

the spectral radius ,k of Jo + kL We note that the spectra (the sets of all eigenvalues)

o(J6) and o(Js + ff¡ of Js and Jo + ñI, respectively, are translations of k, which implies

that [1 1 1 1] is the only strictly positive (left) eigenvector of Js, and is associated to the

eigenvalue 0.

Consequently, since ø(Js) and a(Jo + ñI; ur" translations of k, 0 is the domínant eigen-

value of Js and is of multiplicity 1, and all other eigenvalues of J6 have negative real parts.

By the stable and centre manifold theorems (Theorems 2.3.1 and 2.3.2, respectively), we

deduce that there exists a local three-dimensional stable manifold through (0, 0, 0, 0)

and a one-dimensional local centre manifold tangent to the eigenspace associated to the

zero eigenvalue. Therefore, the origin is locally asymptoticaliy stable.

Let us now consider the non-trivial equilibrium solution(s) of (5.36); that is, the equilib-

rium solution(s) of (5.S0) when C0 > 0.

The set

Qn: {(Cr,C¿,C",Cr) € Ri : Ct) 0; C¿) 0; C" > 0; Cs20; Ct+C¿*C"*Cn : ço¡

is positively invariant under the flow of (5.36). It thus foliows that system (5.36) is

well posed with bounded solutions. We can reduce system (5.36) to a three-dimensional

system by introducing

Cn(t) : Co - C^t) - C¿(t) - C"(t)

to obtain

dCt 1 ^ knC,

I : k"c¿- #;e- (co - ct - c¿- c")tcsct

*:k"C"- k"C¿
dt

# : (co - c, - ca - c")k*r- (k" + k,"")c"

(5.38a)

(5.38b)

(5.38c)

94



Next, define

n_C, n_C¿ ã C"
"t - CO, \'d - CO, "t - C,

so that from Eqns. (5.38a-5.38c), we have

dC, , n k,e,
Ë 

: k.Ca - t^TõA- (i - C' - C¿- C")ksCsC¿

d,C,

;:k"c"-k'ca
d'C" ^ .ã F

ì : Q _ e, _ Õd _ Õ")k"^r_ (k,* + k")Õ"

Thus by dropping the bar for notational simplicity, we have

dq, :k..c,- k"cj 
o-(1- cr-c¿-c")kscsc¿ (b.39a)dt - 'Ùcvd' k* + CoCt

dc"
; : k"c, - k"c¿ (5'39b)

dC,

i:0-Cr-C¿-C")k"ur- (k.". +tr,)C" (b.3gc)

The set

itn:1çC.,C¿,C")e IRf : C¿)0;C¿>0; C">0; CttC¿+C"I1Ì

is positively invariant with respect to system (5.39).

Equilibria of system (5.39)

Theorem 5.1-.15. If Co > 0, then on the set l|a, system (5.39) ad,mi,ts a un'ique posr,ti,ue

equzlzbri,um

E;: (ci,ffo-cÐ, ffo-ci)) ,
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where ß: ksk.* * (k"u, * k,"" * k")k. and Ci i,s the un'ique posi,ti,ae root '¿n the i,nterual

(0, 1) úo the equati.on

(k.., * k")ksk"c1cf - [k"k"u, - (k^- co)(k*. + k")ks] k"coc?

- l(tt* - Co)k"lc.k.ut f (k.". + k")ksk.Colc* I nknlC¡ * k"k"k"utk*: 0

Proof. Setting the time derivatives of system (5.39) equal to zero, we have

o = k'c'
= k"C¿ - E;.¿ã - (1 - Ct - C¿ - C")ksCsC¿ (5.40a)

0: k"C" - k"C¿ (5.40b)

0 : (1 - Ct - C¿ - C")k.u¡ - (k,". + k")C" (b.aOc)

Flom Eq. (5.40b),

c": *co
lL5

Substituting this value in Eq. (5.a0c) and solving for C¿ gives

"o:Ye-ct) 
(b.41)

where rc is given by (5.21).

Therefore,

"":rye-ct) (5.42)

RepÌacing the values of C¿ and C" with (5.a1) and (5.42), respectively, in Eq. (5.a0a)

gives

Y*u - c,) - ##a- 
(k,u. + k")k" 

e - c)kscoct : 0

96



This gives a cubic polynomial in C¿:

EC|CI -ÍFCo- (k^- CùElC7 -lØ*- Co)F + Ek** nk.)Ctt Fk*:Q, (5.43)

where.Ð and F are given by (5.24) and (5.25), respectively. The positive roots, Cf, of

Eq. (5.43) are the C¿ components of the equilibrium solutions of (5.40).

\Me write the lefi hand side of Eq. (5.43) as a difference of two polynomials @t(Cr) -
Øz(Cr), where .

Ar(Cr): ECoCI + Fk*

and

Õr(Cr) : lFCo - (k^ - CùE)C? + [(k^ - Co)F + Ek^ i rck.] C¿

The function Q{C) is monotonicaily increasing in G on the intervai (0,1). We consider

the following cases.

Case I; k^ > TCo. In this case

- @r(Cr) cuts the C¿-axis at the points

Ct:o and Cjn'u:ffiro

- Õz(Ct) is concave downwards, increasing on (0, Cr"'ito) and decreasing on (Cr""to, *),
where

¡rcrit6 * (k- - Co)F + Ek*+rck' - n\Jt 
2l(k* - ço¡B - pç01 - '

- Ør(Cr)is positive for all C, e (0, CJ*').

In Figure 5.5a, the functions Õt(Cr) and Q2(C¿) are sketched. Since

0: Øz(0) < ø'(0) - Fk^



ECy+ Fk*- @t(1) < ø2(7): ECy+ Fk^+ nkn,

a unique intersection (at C¡ : Ci e (0, i)) of the curves defined by the functions

Õt(Ct) and Õ2(C¿) exists.

ÞzGt)

0t(cr)
I

I
I
I

I
t,t:

t.'| ,.'t.:

,,.¡.

+rq .j''

(a) The case when k^ > #Co
1

(b) The case when Cs 1km . E#Co

Figure 5.5: Illustration of the functions @{C¿) and @2(C¿) of Eq. (5.43).

Case II: Cs 1k* a #Co. In this case

- Az(Cr) cuts the C¿-axis at the points

Ct:Q and Cì"'u :
(k^-Cs)F+Ek*+nk,,

(k*-Co)E-FCo

- Ør(Cr) is concave upwards, decreasing on (-oo, Ci"t') and increasing on (Cr"it', 1),

where

ncrit¡ (k*- CùF + Ek*+ rckncI"u':ffito
* Ør(Cr) is positive for all C¿ € (0,1).

Both functions, @1(C¿) and@2(C¡), are monotonically increasing in G on the inter-

val (0,1). Since
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and

ECo+ Fk^: @t(1) < øz(I): ECo+ Flt*+ Kkn,

a unique intersection (at C¿ : Ci e (0,1)) of the curves defined by the functions

Õ{Ct) and Õ2(C¿) exists.

Combining Case I and II, we conclude that @{C¿) and Ø2(C¡) have a unique intersection

' point at C¿: Ci e (0,1). Consequently, system (5.39) has a unique equilibrium

Ei: (ci,ffo - c;), U3o- cJ)) ,

where Cl is the unique positive root to the cubic equation (5.43) on the interval (0,1).

This completes the proof of Theorem 5.1.15. tr

Remark 5.1.16. With respect to system (5.36), the unique positive equilibrium is given

by

E;. - ("0"i, k"k"tCo 
e-Cî), 

k'k"tCo(1 
-CJ), 

('k'""+'k")k"Co 
(1 -cJ))

\-"-r, Íí K tí \- -t / 
) 

1

where ft : k"k.u¡ * (k"ur t k 
"" 

* k")k" and Ci is the unique positive root in the interval

(0, i) to the equation

(k,"" * k,)ksk"cïcl - lk"k"u, - (k* - co)(k*. + k")ke] k"csc¡2

- [(k^ - Cs)lí"k.k"ut * (k.". I k")ksk.Csk^ -f rck.]Ct * k"k"k"utk* : 0'

-Ðj* is obtained by muitiplying each component in the equilibrium solution of (5.38) by

Cs and using the fact that Cn(t) : Co - C"(t) - Cr(t) - C¿(Ð.
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Stability analysis of Ej

Theorem 5.L.L7. The uni,que posi,ti,ue equi.Ii,bri,um EI of system (5.39) zs globally o,sAnxp-

toti,cally stable i,n the domai.n

an:{(cr,c¿,c") e IR} : ct } 0, cr r 9!P Q - c;) ,

^ _ kcat l,- k"k"* f k"ut ,.c"'*fu* 
L*"- rG:;-frTTJlî,t -ci), ct*c¿+c"srj

Proof. Consider the Lyapunov function

vz(c,,c¿,c") : fQo- cä)' * Az(c"- c:)' + f;fcr- cÐ', (5.44)

where the constants 41, A2 and A3 are to be determined. Then,

. V2 is continuously differentiable on l2a,

' Vz(Ci,Cä,C:): 0, and

.Vz(Cr,C¿,C"))0, Y (Cr, C¿, C")e Dn\ {(Ci,Cä,C:)}

Time differentiating (5.44) along the solutions of (5.39) we get

vz : h(c¿ * cä)co + 2A2(c" - cÐc" + h(ct - cî)c,

: A{c¿- cä)(k"c" - k.c¿) -t2Az(c,- cÐ[r",,(r - ct- c¿- c,) - (k,u. + k")c,]

+ Ar(ct - c;)lr"c, - ##n- (1 - c, - c¿ - c")k,c'c,)
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- CJ) + Ark"Cä - 2A2k"utfC" t 2Azk"*C*

+ (Ark.(C¿ - Cä) - 2A2i"úC:)C¿ + (2A2k.u¡ -' A1tc")C¿C"+ (C" - C:)2A2tc"^rCt

+ Ar(Ct - Ci)l##A t knCsC¿ - Iç"C¿ - (C, + c¿ + C")kn;o;rlj

If we now take ár : I, Az: #, and ,4.3 : 0, then Vz wiII be negative if the following

four inequalities hold simultaneously:

(k"u1*k,""f k")2Az(C"-C!)+A1k"Cj ) 242k.4 <+ C" ) C:+
(**'-W)

(5.45)
"' k.ut*kr""f k"

: -{ [(k"", + k,", + k")2Az(c"

A1k.(C¿- Cä) -2A2k"úC: > 0 €)

2Azk"t-Ark")0 <+

C"-C:>0 <+ C">C:

Replacing the values of. Cj and C!

C"t
t^
lùcat

k"^tlk,."*k.,

c¿> cä*'!Pc:
nlrvc

n - Ark"
ttz ., õll-L ficat

(5.46)

(5.47)

(5.48)

in inequalities (5.45 - 5.48), we obtain

. f"- a**HrÐ]?,' -cÐ

c¿ s 3k'k"u' (r - ci)
K

k" k"\-
k"ú 2lí.ut

""rY(l-cJ)

(5.4e)

(5.50)

(5.51)

(5.52)
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Now, inequality (5.49) can be rewritten as

",,ry(l -ci) *\frffi,
and, since Cä < t, the region defined by inequality (5.52) is contained in the region

defined by inequality (5.a9). Consequently,

w < o v (cr, c¿, c")€ n4 \ {(ci,cä,c:)}.

By Lyapunov's stability theorem, it follows that ihe equilibrium solution, Ei : (Ci, Cä, C;),

is globally asymptotically stable for system (5.39) on Dn. This completes.the proof of

Theorem 5.1.17. n

Remarks. Note that the giobal stabiÌity of the equilibrium solution Ej is confined to a

very specific region of the phase space. For instance, for any transients around Cj, the

function Vz lails to be a Lyapunov function. Flom Remark 5.1.16, we state the following

theorem.

Theorem 5.1.18. If Co > 0, then on the set Qa, system (5.36) admi,ts a un'ique positiue

equi,li,brzum

Eï* : ( 

"^":. 
tr'"k.*co(l 

- cJ), W* G - cÐ, Y(1 - cJ)),'\K

where n: k"k.u¡* (k"^, + k,* + k")k" and Ci i,s the un'ique positi.ue root,in tlte interual

(0, 1) úo the equati,on

(k,"" * k")k"k.c1cl - [k"k"u, * (k*- c0)(k,"" + k")ks]k.coc?

- l(k^ - Cs)k"lf"k""t * (k,"" + k")ksk.C,k* + rck.]Ct * k"k.k.*k* : 0

Furthermore, Ei i,s globatty stable on the domai,n Qa.
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5.2 Numerical simulations

In this section, we present numerical simulations of the modeis. AÌ1 simuiations and

subsequent analysis were conducted in MATLAB [55].

Symbol Description Value Unit Source

All models

l6el

-1 t8l

*1 
[8]

U

9.3

72.8

10

kn

ks

t-
tu5

lí"

Rate constant for nucleation

Rate constant for elongation

Rate constant for shrinking

Rate constant for recycling

5.127 x l0-o s*l

Llnl,mtn

¡L,mmin

.tmrn '

II & W only

k^

III & IV only

Maximal rate of nucleation U

k.at Catastrophe frequency 0.96 min-' tB]

k.n" Rescue frequency

V onlv

1.86 min-l I8l

Acat

otes

b.u¡

Velocity of the catastrophe rate

Velocity of the rescue rate

0.5

10

min-'

.1mrn '

,lmln '

U

U

UMaximal magnitude of the catastrophe rate 2

b.o. Minimal magnitude of the rescue rate 2
.Ìmrn' U

Table 5.1: Parameter values used in the numerical simulation of the models. The symboì
[/ indicates that the parameter was arbitrarily chosen.

Numerical simulation of model I

Table 5.1 gives the parameters of model (5.1), their description, and the numerical values

that are used for the simulations, while Figure 5.6 shows the time evolution of the variables
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Ct(t), Cd(t), andC^(t) (in proportion) of system (5.1), for various initial conditions. In

Figure 5.6, notice that only about 34% of. the solution polymerizes to form microtubules.

01020304050607080
Time

Figure 5.6: Solution curves for model I in proportions. Parameter values are as given in Tabie 5.1.

Numerical simulation of model II

Using the parameter values in Table 5.1, we carried out numerical simulation of model

(5.9). Figures 5.7 and 5.8 show the solution curves of model (5.9) for various initial

conditions, the former in the case when lt," + lí. < knCo holds, and the iatter in the case

when k" I k. ) ,knCo hoids. Although the case k" I lí. 1 ksCs has not been proved

mathematically, it appears that E$* is globally stable in both cases.

^ 0.6
.9
o
Ê
ã. u.5
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E 04
Ê
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au 0.3
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Figure 5.7: Solution curves for modei II in proportions when the condition of Theorem 5.1.9 does not

hold; that is, when li" * k" < knCo.

Numerical simulation of model III

We carried out numerical simuiation of model (5.15). Table 5.1 gives the parameters of

the model, their description, and the numerical values that are used for the simulations.

Figure 5.9 shows the time evolution of the variables C{t), Cd(t) and C*: C"(t) + Cs(t)

of system (5.15) for various initial conditions. In contrast to Models I and II, Figure 5.9

now suggests that ultimately, 66% of. the solution polymerizes into microtubules.

Numerical simulation of model IV

The solution curves of the variabies Cít), Cd(t) and C* : C"(t) + Cr(t) of system (5.36)

are shown in Figure 5.10. The parameters used in this simulation are given in Table 5.1.

Again notice that in Figure 5.10, the percentage of microtubules formed is about 66%.
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Figure 5.8: Solution curves for model II in proportions when the condition of Theorem 5.1.9 is satisfied;
that is, when k" * k" ) ksCs.
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Figure 5.9: Solution curves for model III in proportions.
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Figure 5.10: Soluiion curves for model IV in proportions.

Numerical simulation of model V

Parameter values are as given in Table 5.1.

Figure 5.11 shows the time evolution of the variables C{t), Cd(t) and C^ : C,(t) +Cs(t)

of system (4.15). Table 5.1 gives the parameters for this simulation. Flom Figure 5.11,

we notice that ultimately, close to 60% of the solution polymerizes into microtubules.

Comparing Figures 5.6 and 5.7 on one hand, and Figures 5.9, 5.10 and 5.11 on the other,

it seems that the introduction of dynamic instability in the system induces an increase

in the level of polymerization of microtubules.

5.3 Sensitivity analysis

To assess the effect of the parameters on the variables, we conducted sensitivity analysis.

This involved solving (and normalizing) the system of first partial derivatives of the

variables with respect to the parameter estimates as described in Section 2.6.2. Thus in
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Figure 5.11: Solution curves for model V in proportions. Parameter values are as given in Table 5.1.

Model I, for example, we solved the following system of ordinary differential equations:

Cr:k"C¿-k.Ci -ksC*C¿,

C¿: k"C* - lc"C¿,

C^: k-Ci + ksc*Ct - k"C*,

d (ôc\ arac ,aÍ
dt \ôp ) - ac ô.p - ôp'

c(o) : lc,o c¿o c*o)r, ufifol : 
f;{rfol) 

: o,

where

C : lC, Co C*]', I : lf, f, fd' : IC¿ Ca C*)',

I u", ôct ôct u",1 f u¡, ôh â.r' I I u¡, õJt ôh aJ,1

u":lE "å -'å -'å"1 ur:lTETl ur:l|nT,Æl
Ap | ãk" ãk, ãE; ar.- | ' AC lãd ãõ; ãc*. | ' Ap ldk" dk, ãË ãÇ 

|

I ac^ ôc^ ac^ ac^ I I a¡. ðrs ôÍs I I an ôfs õfz an I

LõE; W -ãË; -ãF:J Lãd ãd; ãô;) LãË; ãÇ æ; 6E)

108



5.3.1 Tbansient versus long-term sensitivity analysis results

Figure 5.12 shows the solution curves of the normalized sensitivity coefficients of the

variables in model I (i.e., Ct, C¿ and C*) to the parameters (kn, ks, k" and ,k"). The

figure captures two aspects of the sensitivity: the transient and the long-term sensitivity.

In the long-run, the sensitivity coefficients lie within the [-1,1] interval. This was the

general trend across the models.
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.JJ
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I

0.5

0

-0.5

à

0.80.4o-2

-.-.-.-.-. k
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I

-------- k

............... k

0.80.4

Figure 5.12: The curves of normalized sensitivity coefficients of the variables C¡, C¿ arrd
C* in model I with respect to the parameters.

5.3.2 Qualitative sensitivity analysis results

As we would, of course, expect, in Figure 5.12, and in all the other models, the normalized

sensitivity coefficient of the microtubules with respect to the elongation parameter, ffi,
is positive, meaning that an increase in the parameter k, induces an increase in the
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microtubuie. The shrinking parameter, k", has an opposite effect on the microtubule in all

the models - increasing the value of k" causes a decrease in the microtubule concentration.

The qualitative sensitivity analysis resuÌts are summarized in Table 5.2. The table shows

the signs of the normalized sensitivity coefficients for all the models. A * means that

an increase in the parameter will induce an increase in the variable's population, while

a - means that an increase in the parameter will induce a decrease in the variable's

population. In Table 5.2, we notice that in the absence of dynamic instability (models

I and II), shrinkage has a mixed effect on the GDP-tubuiin. The recycìing parameter

(,b") has a positive effect on GTP-tubulin in models I, III and IV, a positive effect on

microtubules in all the models, a mixed effect on the GTP-tubulin in model II, and a

negative effect on GTP-tubulin in model V. Nucleation has a negative effect on GTP-

tubulin in models I, II and IV, has a mixed effect on GTP-tubulin in models III and V,

and has a positive effect on GDP-tubulin in all the modeis. It (nucieation) has a positive

effect on microtubules in model I, II and V, and a mixed effect on microtubuies in models

III and IV. It seems that in model V, the magnitude of the positive effect of nucleation

on GDP-tubulin cancels the negative effect of nucleation on GTP-tubulin, resulting in

a positive effect on microtubules. In general, it appears that the presence of dynamic

instability inhibits the positive effect of nucleation on microtubules. The maximal rate

of nucleatior, (k*) has no effect on all the variables in models II and IV.

The contour plots resulting from the sensitivity anaiysis provided an insight into the

effect of simultaneously varying pairs of parameters on the GTP-tubulin, GDP-tubulin

and microtubule concentrations. When the contour curves are iinear or nearly so, then

this implies that the interaction effect of the two parameters on the variable's population

is insignificant. If, on the other hand, the contour curves have considerable curvature,

then this implies that the interaction term is large and important. A sample of the

contour plots is shown in Figures 5.13 and 5.14. The magnitudes of the sensitivity

coefficients in the sensitivity analysis are shown in Table 5.3. When the parameters ke,

k" and k. pairwise interacted, models III and IV showed low sensitivity to the nucieation
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Figure 5.13: A contour plot for the variability
derived from the sensitivity analysis of len and k.

parameter, k,, while models I and II showed high sensitivity to k, (Table 5.3). This

seemed to suggest that dynamic instability inhibits nucleation in microtubule dynamics.

5.3.3 Quantitative sensitivity analysis results

The quantitative sensitivity analysis results were summa¡ized using box plots. A bor plot

(sometimes referred to as a bor-and-whi,sker plot) is a graphical device that simultaneously

displays several important features of a given data set. At a glance, a box plot reveais

the centre, dispersion and skewness of a data set. It displays the following features:

. the 25th percentile (Q1),

. the 75th percentile (Q3),

. the median,
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+

+
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+
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+
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tu^

+
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+

T

tk"

+

+

+

tu-

q-Kn

+

+

d,p-

+

¿-lr,

TII

+

+

'+

dt."

+

+

+

+

IV

d,p"

+

+

+

d¡"."

+

+

+

V

+

+

+

+

+

TlLkn

+

+

+

+

rfLr.n

+

+

+

I
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derived from the sensitivity analysis of /rn and k" in model I.

. the minimum and maximum values,

. outliers, if any.

The Qi and Q3 are at the lower and upper ends, respectively, of the box. The distance

between Q1 and Q3 is the interquartile range (IQR). A line (whisker) extends from Q1

to the smallest value that is inside a distance of 1.5 x IQÃ. Similarly, a whisker extends

from Q3 to the largest value that is inside a distance of 1.5 x IQR. The median is the

line inside of the box. The data is skewed if the median is not centred in the box. An

outlier is any data point that is more than 7.5 x IQR from either end of the box.

The box pìots in Figure 5.15c, for example, show the sensitivity of the GTP-tubulin in

model III as a function of the parameters.

Fbom the sensitivity analysis, we noted that nucleation rate (k,) and the maximal rate

of nucleation (k^) had negligible effect in the models.

Table 5.4 gives the parameter with the highest model sensitivity among all the parameters

t*,

.f

m.
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in each population for each model. In the absence of dynamic instabilit¡ the eÌongation

and shrinkage parameters account for the highest modei sensitivity, while in the presence

of dynamic instability, the catastrophe parameter is inducing the highest sensitivity in the

variables. An interesting observation is the dispersion of the data. For models without

dynamic instability, the standard deviations are, in general, higher than in the presence

of dynamic instability. Intuitively, we would expect the data from dynamic instability

models to display more dispersion, given the stochastic nature of catastrophe and rescue

frequencies. Dynamic instability could thus be viewed as a smoothing process in the long

run.

I II III IV V
Ut rvg

-0.0251
(o.oooe)

ks

-0.0319
(0.0155)

kcat

0.0772
(o.oo36)

k.ot
0.0190
(0.0041)

bcat

0.0109
(0.0022)

C¿ k"
-0.0214
(o.oo25)

k"
-0.0184
(o.oo12)

k.ot
0.0578
(0.0103)

k.ot

0.0566
(o.ooe5)

b"ot

0.0337
(0.0041)

c* t^

-0.0237
(0.0057)

li"
-0.0283
(0.0034)

t^lvcat

-0.0720
(0.0127)

t^tucat

-0.0755
(0.0135)

b"ot

-0.0446
(0.0062)

Table 5.4: The parameter with the highest model sensitivity. The data shown in each cell
is mean and standard deviation (in parentheses) of the normalized sensitivity coefficient
of the variable with respect to the given parameter.
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When GTP-tubulin concentration-dependence on the dynamic instability parameters

ks¿¡ ând k."" is assumed in model V, we observed some high sensitivity to the recycling

(k") and elongation (kn) parameters (Table 5.3 and Figure 5.18).

FYom Table 5.3, we notice that in model V, any pair of parameters involving the recy-

cling parameter induces relatively high interaction effects on the sensitivity coefficients.

This implies that recycling of GDP-tubulin has a greater effect in microtubule dynamics

when rescue and catastrophe frequencies depend on GTP-tubulin concentration. This

inference is further reinforced by the box plots obtained in Model V (Figure 5.18). By

comparing models I and III in Table 5.3, we notice a substantial number of relativeiy

higher sensitivities in model I. A similar observation is made if we compare models II and

IV, with model II recording some high sensitivities on a number of coefficients. A related

observation is made in Figure 5.19, where the sensitivity of the variables in model I and

II is relatively higher compared to that in models III, IV and V. This seems to suggest

that dynamic instability inhibits sensitivity of the variables to the parameters.

5.4 Discussíon

trYom the analysis of the models, two key points are identified. Firstly, our results suggest

that dynamic instabiiity is an essential and indispensable property of microtubules. Fbom

the solution curves of the models, we notice that the level of polymerization of micro-

tubules is higher in the presence than in the absence of dynamic instability (compare

Figures 5.6, 5.7, 5.9, 5.10 and 5.11). That is, the proportion of solution that polymerizes

to form microtubules is higher when dynamic instability is present. This seems to un-

derscore the importance of dynamic instability in the maintenance of abundant supply

of microtubules in the cells.

Secondly, oúr results support the long heid view [24] and experimental observations

127,82) that dynamic instability depends on the GTP-tubulin concentration. It is believed

that the energ.y source that powers dynamic instability is the hydrolysis of GTP-tubuiin.
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In model V, where the rescue and catastrophe parameters are assumed to depend on

the GTP-tubulin concentration, we notice that the sensitivity coeffi.cient of recycling

parameter, k" is relatively high compared to the other models (Table 5.3). A high value

of k", on the other hand, means an increase in microtubules (see Table 5.2).

In general, the box plots revealed a rather counterintuitive observation; in the absence

of dynamic instability, the data showed more dispersion than in the presence of dynamic

instability. Dynamic instability is an out-of-equilibrium phenomenon. As such, we would

expect the data from modeis with dynamic instability to display more dispersion than

those without it. It appears that in the long-run, dynamic instability is a smoothing

process for the microtubule dynamics.

122



Chapter 6

Conclusions and suggestions for

ftrture work

The overall objective of this thesis was to contribute to our understanding of the role of

dynamic instability in the assembly-disassembiy dynamics of microtubules zn ui.tro. We

have constructed and analyzed a set of mathematical models of the dynamics of micro-

tubule assembly and disassembly, considering several biologically plausible mechanisms.

Numerical simulations have confirmed our analytic results. In line with the long-heid

view, numerical simulations have shown that nucleation has an insignificant effect on the

overall microtubule dynamics. In the models where dynamic instability is present, we

noted that the proportion of solution that polymerizes to form microtubules is higher

than in models where dynamic instability is absent. This suggests that dynamic insta-

bility induces the formation of microtubules from the tubulin subunits. Thus dynamic

instability provides the mechanism for the supply of microtubules in the areas where

they are needed. Numerical simulations have also supported the notion that dynamic

instability depends on GTP-tubulin concentration.

This work has generated some interesting problems for consideration in the future.

Firstly we have assumed that the microtubules nucleate at random. While this may be

true 'in ui,tro, it is a known fact from electron microscopic studies that microtubules form
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at specific regions 'in a'iuo 1721. We thus need to incorporate the spatial component in the

models. By compartmentalizing the celi, for example) \Me can study the dynamics of the

concentrations of GDP-tubulin, GTP-tubulin and microtubules across the cell.

Secondly, we have taken that the newly formed seeds during the nucleation phase are

growing microtubuies. It would be interesting to consider the seeds as also existing in

two states; growing and shrinking state.

Lastly, experiments [27] show that the two ends of the microtubule grow at different

rates. Besides, the minus ends are embedded within the microtubule-organizing centre

(MTOC) where initiation of new microtubules occurs, while the pius ends grow into the

cytoplasm [2,81]. This feature could thus be incorporated by introducing distinct rates

for the minus and plus end.
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