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Abstract

Persistent object systems attempt to hide the traditional distinction between short-
term and long-term storage from application programmers. There are many advantages
when a programmer can operate at a level of abstraction in which such distinction does
not exist. A persistent object system depends upon an object store, in part, to provide
persistence.

To achieve good performance, an object store must keep related objects physically
close to each other in secondary storage. In an object system, class fragmentation, which
is performed according to a query model of class accesses, may be used as the clustering
technique to group related data together. Class fragmentation based clustering will reduce
the amount of irrelevant data accessed at a local site and the amount of data transferred
unnecessarily between distributed sites.

Most existing object stores are built on conventional operating systems or
architectures which are inappropriate bases for persistent object systems. The object store
presented in this thesis is built directly on top of the Mach microkernel in a 64-bit
addressing space. The object store implementation re-uses part of the Berkeley Unix Fast
File System (FFS) code. This strategy decreases the implementation complexity and takes
advantage of the FFS in optimizing disk allocation. Supported by these advanced

architectures, the object store will provide better performance than conventional stores,
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Chapter 1

Introduction

Persistent object-oriented programming, combined with distribution technology, is
increasingly being recognized as valuable for supporting large, extensible, flexible, and
long-lived software. In recent years, considerable research has been devoted to the
investigation of the concept of persistence [Atk83, , Mor90, Kho93, Atk94, Bil94, 0zs94]
and its application to the integration of databases and programming languages, both in
object-oriented systems [Mai86, And87, Deu90, Bar92, Ber92, Bro92, Ngu92, Vau92,
Bil93, Cas93, Han93, Mil93, Sin93, Str93, Che94] and distributed systems [Ber92, Tri92,
Vau92, Cas93, Mil93, Sou93, Che94].

A persistent object system provides an environment where objects are allowed to
persist for an arbitrary length of time, possibly longer than the life time of the creating
program, and where they can be accessed and manipulated in a uniform manner. There are

considerable advantages when programmers can operate at a level of abstraction in which



there is no distinction between short-term and long-term data storage. In such systems,
since programmers do not have to implement the explicit loading and saving of data,
program development is easier. Additionally, there is no need for the explicit conversion of
data from one (in-memory) format to another (on-disk) format.

A persistent object system depends on an object store to provide storage for

objects. The development of an advanced object store is the subject of this thesis.

1.1 Motivation

An object store is used to add the features of persistence and enhanced sharing to
language defined objects. It provides persistent storage (on disk or other form of non-
volatile secondary memory) together with facilities for manipulating and organizing the
stored objects. Existing implementations of object stores typically suffer from two
inadequacies; implementation over expensive operating system bases and lack of support
for exploiting object semantics. The proposed object store addresses both these issues.

Support for the efficient storage of, and access to, objects in a persistent object
system is crucial to good performance in the resulting system. Conventional object-
oriented programming systems which use traditional file systems do not provide adequate
support for storing and sharing the objects used in application programs. There has been
much work undertaken on both centralized and, to a lesser extent, distributed persistent
object stores [Car90, Deu90, Kim90a, Eli90, Bro89, Ber92, Bro92, Cas93, Mil93,

Mun93, Sou93, 0li9%4, Sub9%4, Yan94].



Most existing object stores are constructed on top of conventional operating
systems such as Unix. Such conventional architectures provide a less than ideal base for
persistent object systems because of their monolithic structure and heavy weight support
for network communication. The recent move towards microkernel architectures has had
the positive effect of improving the situation. The Mach [Tev89, Bar90, Tan92, Boy93]
operating system, for example, is explicitly targeted at distributed and multiprocessor
environments. Furthermore, its microkernel structure provides only the minimal required
system support and does so at the smallest possible cost. Built above Mach, a distributed
persistent object system can be expected to achieve better performance. For this reason,
the proposed object store will be constructed on top of the bare Mach microkernel.

To obtain better performance, the object store must also keep related objects
physically as close as possible to each other in secondary storage thus exploiting a form of
locality of reference. To accomplish this, some form of object clustering is required
whereby related objects are placed together in a single “cluster”. One way to define the
membership in such clusters is through the use of fragmentation[Kar94, Eze94a, Eze94b,
Eze95]. Based on a query model of class accesses, fragmentation breaks a class (the set of
all objects instantiated from a given object type) into a collection of fragments with only a
subset of the original class’s components. Each fragment defines a “cluster” and the parts
of a fragment are co-located on disk. Similarly, fragments which are strongly related to
one another may also be stored close to one another. In this way, both the time required to
access objects in any given query and, because of the way fragmentation is done, also the

amount of irrelevant data accessed in each query, are minimized.



Each storage unit in the proposed object store will contain a distinct class
fragment, rather than an individual object. Supporting fragments allows the object store to
have better overall efficiency in both centralized, and particularly, distributed

environments.

1.2 Overview of the Proposed Object Store

The implemented object store will serve as the initial persistence mechanism for a
large ongoing research project investigating persistent and distributed objects supported
via the use of distributed shared virtual memory. The project’s goal is to support a
persistent, distributed object system in a single shared 64-bit distributed virtual address
space. The concept of using a single shared address space is based on the work of Chase
et al. [Cha92, Cha94] at the University of Washington. In addition to the initial design and
implementation of the object store, extensions to support distribution are considered,
although not implemented. The implementation environment for the proposed object store
is the bare Mach microkernel.

File systems are one of the most commonly used data management systems. To
decrease the implementation complexity and take advantage of the extensive work done
previously in optimizing disk access time within file systems, the proposed object store
will be built re-using as much existing code as possible.

One of the most widely used file systems, the Berkeley Unix Fast File System
(FFS) [Lef89], will be adopted as the framework for storage management in the object

store. Berkeley Unix which contains the modified 4.3 BSD implementation of the FFS can



be emulated above the Mach microkernel. This technique not only provides Unix
compatibility on Mach, but also enhanced performance which exceeds the performance of
the original 4.3 BSD implementation [Tev89]. Elements of the FFS will be used to
implement the proposed object store to take advantage of these benefits and to avoid re-
inventing the wheel.

A class can be fragmented vertically, horizontally, or in a hybrid way [Eze95].
Such fragmentation generates logical fragments which, it is assumed, will normally be
referenced in their entirety by applications. Since for the same class, horizontal fragments
and vertical fragments overlap, these logical fragments need to be further decomposed into
physical fragments. Using physical fragments as storage units, there is little data
redundancy in the store. Parts of the FES are suitable for storing physical fragments.

The inode and block structures of the FFS can be applied to the storage of physical
fragments. Each physical fragment will be assigned one inode number and stored as one or
more associated data blocks. Thus, the implementation will re-use much of the low-level
code from the FFS. Object specific higher level code will then be added to tailor the FFS
to class fragment storage. Access to physical fragments using the FFS code in the
implementation of the object store will avoid the traditional costs associated with making
Unix system calls since Mach is specifically designed to efficiently support non-kernel
services such as file systems.

Two levels of data access will be provided to the object store user. The first is

logical fragment access which is for class-based queries which will take advantage of the



co-location of logical fragments and their contents when it is advantageous' to do so. The
second form of access corresponds to individual object access as would be likely to occur
in interactive design environments. Accordingly, the object store implementation will
provide two APIs (Applicatioﬁ Programming Interfaces), one for each form of access.
Between the storage mechanism (inodes) and the APIs, index structures are built
within specific files to map logical fragments and objects to the necessary sets of physical

fragments (or parts thereof). The index structures will be implemented using B*-trees.

1.3 Model Assumptions

The design and implementation of the proposed object store is affected by certain
assumptions about the underlying objects and classes. These include a set of object-

oriented concepts and a set of class fragmentation concepts.

1.3.1 Object Model

In constructing the object model, the definitions of core object modeling concepts

given by Kim [Kim90a] are followed. These are informally defined below:

Definition 1.1 Objects and Object Identifiers. Any real-world entity modeled in the

system is an object and has an associated system-wide unique identifier, its “OID”.

' This applies to class based queries.



Definition 1.2 Attributes and Methods. An object has one or more artributes, which store
its current state, and one or more methods which operate on the values of the attributes to
accomplish state transitions.

Definition 1.3 Encapsulation and Message Passing. Messages are sent to an object to
indirectly manipulate the values of the artributes by invoking the methods encapsulated in
the object. There is no way to access an object except through the public method interface
specified for it.

Definition 1.4 Class. All objects which share the same attribute types and set of methods
are grouped into a class. An object belongs to only one class as an instance of it. Each
class is uniquely identified by a system-wide unique identifier, its “CID”’.

Definition 1.5 Class Hierarchy and Inheritance. The classes in a system form a hierarchy
such that, for a class C and a set of lower-level “sub” classes {Si} based on C, a class in
the set {Si} is said to be a specialization of the class C, and conversely the class C is said
to be the generalization of the classes in the set {Si}. The classes in {Si} are subclasses of
the class C; and the class Cis a superclass of the classes in {Si}. Any class in {Si} inherits
all the attributes and methods of the class C and may add additional attributes and
methods or redefine existing ones. All attributes and methods defined for a class C are
inherited into all its subclasses transitively. An instance of a class S is also logically an

instance of all superclasses of .

1.3.2 Fragment Model

In constructing the fragment model, based on the definitions of class fragmentation



concepts given by Ezeife and Barker [Eze95], three tighter definitions are provided below.
Given a class C = (K, A, M, I') where K is the class identifier (i.e. CID), A the set of
attributes, M the set of methods, and 7 is the set of objects instantiated using A and M,
three types of fragmentation are defined on a class. A’ denotes a subset of A. M’ denotes a

subset of M. I’ denotes a subset of I.

Definition 1.6 Horizontal Fragmentation. A horizontal fragment, Fp, = (K,A, M, I') of

a class contains its class identifier, and all attributes and methods of the class but only
some of its instance objects ( I < I') with the restriction that for any two horizontal

fragments Fp,(;) and Fpyj) of the class, Fp(i) N Fpjy = D, where i#j .

Definition 1.7 Vertical Fragmentation. Each vertical fragment F¥ = (K, A, M, I ) of a
class contains its class identifier, and all of its instance objects for only some of its

methods ( M’ < M ) and some of its attributes (A’ € A) with the restriction that for any
two vertical fragments FV(l- ) and FV(j ) of the class, FV(,- e FV(]- ) = &, where i#j .
Definition 1.8 Hybrid Fragmentation. Each hybrid fragment FVy = (K, A, M, I’ ) of a

class contains its class identifier, and some of its instance objects (I < I') for only some

of its methods ( M" < M), and some of its attributes (A’ ¢ A) with the restriction that for

any two hybrid fragments FVp(i) and FVpj) of the class, FVpii) 0 FVhj) = D, where i#j .

1.4 Thesis Organization

The organization of the rest of this thesis is as follows. Background material as



well as related work is discussed in Chapter 2. Chapter 3 presents an evaluation of the
problems dealt with in the object store. Chapter 4 describes the object store design, while
Chapter 5 addresses the implementation issues for the object store. Chapter 6 discusses
considerations for extending the centralized object store into a distributed system. Finally,

Chapter 7 presents conclusions, and suggests directions for future work.



Chapter 2

Background and Related Work

In this chapter, the background material used to support the persistent object
system, including file systems and the Mach operating system, will be discussed. Recent

research work on object stores will also be reviewed.

2.1 File Systems

To achieve persistence of the state of objects in programming languages and
environments, operating system files are commonly used to store and retrieve object
values. When using files, the responsibility for providing persistence rests with the object

programmer who must code explicit file operations.

10



Files are collections of logically related information stored on a mass storage
device such as a disk. The file system is the organizational framework for the collection of
all such files. The following review of conventional file systems is based on [Tan92,

Pet82, Lef89, Man91, Gla93].

2.1.1 General Concepts

Logical File Concepts

For users, the file system is the most visible part of an operating system. A file
system is usually a collection of files and directories (repositories for collections of files)
together with some operations on them. A file may be considered to be an abstract data
type (ADT) defined and implemented by the operating system. From the user's viewpoint,

some aspects normally attributed to files include:

* File naming. When a file is created, it is assigned a unique name. The file and
its name still exist even after the process which created it terminates (i.e.
persistence). In this way the file can be accessed by other processes through its
name.

e File structure. There are normally three kinds of file structures: byte sequence,
record sequence, and index. A byte sequence file is an unstructured sequence
of bytes. A record file is a sequence of records (specific, typed collections of

bytes) with certain lengths and internal structures. An indexed file has a logical

11



tree structure which provides direct access to records, each of which contains a
key field in a fixed position.

 File type. Many operating systems support different types of files. This permits
efficient and varied access to files for different purposes. For example, Unix
[Rit74, Ker81] supports regular files, which contain data, directories which
are used for maintaining the structure of the file system, character special files
which are I/O related files, and block special files which are used to model
disks.

* File access. Primarily there are two kinds of file access: sequential and random
access.

s File attributes. In addition to file name and contents, a file often has other
attributes, such as current file size, access rights for the file, and so on.

* File operations. The file system provides certain specific operations to allow

users to create, modify, delete, and access files.

Directories, as special system files, are used to keep track of and group other files.
Their primary function is to locate the starting point of files. Most operating systems
support hierarchical directory systems. When the file system is organized as a directory
tree, a pathname is needed to specify a certain file and each directory contains <pathname,
disk location> pairs. Users can use system calls such as create, delete, opendir, rename,

link, and so on to operate on directories.

12



Hardware Aspects of a File System
A file system provides long-term storage with files usually being stored on hard

disks'. Figure 2.1 is a diagram of a typical disk architecture:

sector track

platter

block

> Y \ -] arm

read/write head

Figure 2.1 Disk Architecture

A disk is normally divided into concentric rings called tracks, and then further
divided into areas called sectors. Each intersection of sectors and tracks is called a block,
which is the basic unit of disk storage. A read/write head moves in and out on an arm.
Information is accessed by the head when the disk rotates underneath it. The disk
controller drives the read/write head in response to instructions from the operating
system's disk device driver. Most disk drives actually contain several platters as shown in
Figure 2.2. With this kind of disk, the collection of tracks in the same concentric ring is

called a cylinder.

! Files can also be stored on other media such as tape and floppy disks, etc.



one head per surface

Figure 2.2 A Multi-Platter Disk

Implementation Issues

The major problem in implementing a file system is to map the logical file system
structure onto the physical storage devices (disks). The physical record (block) size of
devices is normally the size of a sector, but can be the size of a track, a cylinder, or the
size of a page in a paging system. Block size is the unit of data transfer between memory
and disk. Since the physical block size of the device and the logical record size may not be
the same, most file systems block logical records into physical records. File systems must

also keep track of free disk blocks. There are two common methods for a file system to

14



keep track of the free space in disk blocks. One is to hold the free disk blocks on a linked
list. The other is to use a bit map. In the bit map method, ‘n’ bits are used for a n-block
disk. Free blocks are represented by ‘1’s in the map, while allocated blocks are
represented by ‘0’s.

Another important issue in implementing file storage is how to allocate the files to
the free areas on disk. The simplest allocation scheme is to assign files to contiguous free
blocks. This scheme is easy to implement and provides fast access. However, contiguous
allocation has certain disadvantages. Specifically, the disk is increasingly fragmented due
to deleting files and there is a strict requirement that file size must be known in advance.
To avoid these disadvantages, many systems use non-contiguous allocation schemes, such
as linked list allocation and indexes. To allow dynamic file growth and random access,
Unix file systems use the i-node (index-node) method [Lef89]. Another typical file
allocation structure is the B-tree. Such a system provides multi-level index structure with
log search time and data stored at all tree levels. Since this scheme provides efficient
manipulation algorithms and efficient utilization of space, it is widely used for representing
files. OS/370 MVS supports this scheme among others [Cal82].

In a system supporting directories, the format of the directory entries must be
considered. A directory entry gives the information needed to find the disk blocks of the
corresponding file. Different systems have different directory entry formats. For example,
in MS-DOS [Tan92] directory entries are 32 bytes long and contain the file name,

attributes, and the number (i.e. address) of the first data block on disk. In the original Unix
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file system, the directory entry format was 16 bytes long with the first 2 bytes for the i-
node number and the remaining 14 bytes for the filename.

The key to increasing the performance of a file system is to reduce disk access time
because access to disk is much slower than access to memory. One common technique is
to use a block cache (also known as a buffer cache) in memory. Recently used blocks are
kept in the cache. Typically, 85% of disk transfers can be avoided because the requested
block is already in the cache in memory [Lef89]. To manage cache replacement,
algorithms such as FIFO and LRU are often applied.

Another strategy to decrease access time is to put blocks that are likely to be
accessed in sequence close to each other on disk (for example, in the same cylinder). In
this way the amount of disk arm motion (i.e. seek time) can be reduced. This is important
because seek time is the dominant component in disk access time.

File protection, file security, file backup and recovery are also needed and are the

concern of the file system code but will not be discussed in this thesis.

2.1.2 The Berkeley Unix Fast Filesystem

Berkeley Unix is one of the most popular versions of the Unix operating system.
The fast filesystem in 4.3BSD (FFS) has not only the features of traditional Unix file

systems, but also many improvements. The FFS is focused on as an example of Unix file
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systems because it is a component in the implementation of the object store. The following

is a brief introduction of the FES.

General Features

The Unix file system supports three kinds of files:

» Regular files (byte stream), contain either ASCII or binary data. They generally
correspond to data or code.

e Directory files, are regular files with special format and interpretation that are
used to group together collections of other files.

* Special files, are used to provide linkages to I/O hardware.

The Unix file system is hierarchical. Related files are grouped under directories,
and the directories are organized into a hierarchical structure by nesting directories in
other directories. Pathnames are used by users to access a certain file. Figure 2.3 shows an
example of a nested directory structure.

Since the Unix file system is for a multiuser environment, file access restrictions
are needed. A file may be accessed in one of three modes: read, write, or execute. There
are also three collections of users who may accesses a file: u, the owner of the file; g
members of the same group as the file; and o, other users of the system. The owner/user of
the file can change the access modes permitted for each of u, g, and o to control access to

that file.
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In Unix, file sizes may change dynamically. Users can increase the file size up to
the limit induced by the amount of available storage”. This is one of the important features

of the Unix file system.
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Figure 2.3 Unix Directory Structure

File Structures on Disk
4.3BSD divides each disk into one or more partitions or logical disks. Each such
logical disk contains a single filesystem and in turn is divided into one or more areas called

cylinder groups. Each of these cylinder groups occupies one or more consecutive cylinders

? File size may also be further constrained by certain implementation details.
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of the disk so that disk accesses within the cylinder group require minimal disk head
movement.

A cylinder group consists of an information header, and some data blocks which
take up most of the cylinder group. The information header includes a boot block, a
superblock, a cylinder block and an array of inodes (Figure 2.4). The boot block contains
a boot strap program. The superblock which is identical for each cylinder group, consists
of static parameters of the file system such as the size of the file system and the block size

for the data. The cylinder block consists of dynamic parameters of the cylinder group such

Logical disk layout

boot block
super block

Physical disk layout

cylinder block

v inodes

v user data

Figure 2.4 Usage of Disk Blocks

as bit maps for free blocks and for free inodes. The array of inodes stores information

about each file on the disk. The Unix file system associates each file with an i-node which
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keeps track of which disk blocks belong to the file. Each inode contains the following

information [Lef89]:

» Logical-to physical block mapping;

e The file's owner and group-access identifiers:

» The time the file was last read and written, and the time the inode was last
updated;

» The size of the file in bytes;

e The number of references to the file;

 The number of physical blocks used by the file; and

o The addresses of the file’s disk blocks.

Figure 2.5 shows the structure of an inode. Each inode has 13 pointers to its file's data
blocks on the disk. The first 10 pointers directly contain addresses of data blocks. The
next contains the disk address of a single indirect block. Beyond that, a pointer points to
indirect block, which in turn contains two indirect blocks. The last pointer is a triple
indirect pointer. Since the file offset in the file structure is kept in a 32-bit word, if
the block size is set to 4096 bytes, there will be no need for the triple indirect block. This
is because a 232-byte file (the current maximum file size on Unix) will only use double
indirection (see Figure 2.6 ). All the i-nodes of currently opened files are put in an in-
memory kernel data structure, the i-node table to enhance performance. The i-node table

is effectively an i-node cache.
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Figure 2.5 Structure of an Inode

Access Type Bytes Accessible

direct blocks 49,152
single indirect blocks 4,294,304
double indirect blocks 4,294,967,296
total 4,299,210,752>2%

Figure 2.6 Inode Data Block Capacity




In Unix file systems, directories implement a mapping between pathnames and
inode numbers. When a user refers to a file, the filesystem searches for the file using the
pathname supplied. Once it finds the final directory, specified in the pathname, it notes the
inode number and then access that particular inode entry. Figure 2.7, based on [Gla93],

shows an example of translating the pathname “top/dir2/file21" into inode number 5.

@ inode no.=2 Inode Block number Permissions
number
1
@ @ inode no.=4 2| 500 dr-xr-xr-x
31 501 dr-xr-xr-x
— 4| 502 dr-xr-xr-x ¢
I 5/ 503, 505 “TWXI-XI-X 4
filell] | filel2 |[file21| inode no.=5
II
» 500 2
. 2
111 dirl 3
Searching step: dir2 4
I: 1st step 501
II: 2nd step
III: 31d step 1V
IV: 4th step — 502 4
. 2
file21 5
503
The first block of file21
504
505 The second block of file21

Figure 2.7 A Sample of Directory Layout
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BSD Improvements over the Traditional Unix Filesystem
The Berkeley fast file system improves on the traditional Unix file system in three

aspects as follows:

» The directory entry format has been extended. The limit to file name size is
now 255 characters.

» Disks are divided into cylinder groups. The motivation for this change is to
create groups of i-nodes that are close to their related data areas on the disk.
Thus the i-node and the data blocks of a file are kept close to avoid long seeks.

* A two block-size strategy is introduced. For small files, using smaller size
blocks reduces wasted disk space. For a larger file, using a small number of
larger size blocks is more efficient than using many small blocks. Both block

sizes are accommodated in 4.3 BSD.

2.2 Distributed File Systems

Since the earliest days of distributed computing, efforts have been made to allow
physically distributed computers to share their data and storage resources within the same

file system. This is the goal of a distributed file system (DFS). Contemporary DFSs can

? Each component in a pathname is a file name.
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include up to a few thousand nodes (i.e. computers) on a network. Most of them,
however, focus on client-server, LAN-based systems consisting of significantly fewer

nodes.

2.2.1 General Concepts

In distributed file systems there are certain fundamental issues including naming
and transparency, semantics of file sharing, cache related global access methods, fault

tolerance and scalability [Tan92, Mul93, Lev90). These are now briefly discussed.

Naming and Transparency
Naming is the mapping between file names and physical blocks where the file is
stored. There are three common approaches to file and directory naming in a distributed

system:

(1) Machine + path naming, such as /machinelpath or machine: path (E.g.
“carbon.cs.umanitoba.ca:/usr”).
(2) Mounting remote file systems onto the local file hierarchy.

(3) A single, global name space that is the same on all machines.

The first approach is clearly not location independent, since the machine name specifies
the location. The second one is not location independent either, since it is possible to

mount a given file at different places on different machines. It is not difficult to
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implement the first two approaches. However, the third approach which produces a
single uniform name space is a more difficult problem.

Global naming is a desirable property in a distributed system. If a user on one
computer gives a name for a file, that name should have the same meaning to users on
the other computers in the distributed system. This provides a measure of "transparency".

Two goals in name mapping are:

e Location Transparency. The name of a file does not reveal any hint as to its
physical storage location.
* Location Independency. The name of a file need not be changed when the

file's physical storage location changes.

Location independency provides support for file migration (or file mobility). Location
independence is a stronger property than location transparency. Naming with location
independence permits the same file name to be mapped to different storage locations at

different times.

Semantics of Sharing

It is necessary to define the expected semantics (or behaviour) when a file is
simultaneously shared by users from different sites. Levy and Silberschatz [Levo0]
identity four possible policies:

(1) Unix Semantics

* EveryRead of a file sees the effects of all previous Writes performed on
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that file in the DFS. In particular, Writes to an open file by a process are
visible immediately by other process which have this file open at the same
time regardless of their location.

It is possible for processes to share the file pointer to the current location
in the file. Thus, the advancing of the file pointer by one process affects

all sharing processes.

(2) Session Semantics

Writes to an open file are visible immediately to local processes executing
on the same machine, but are invisible to remote clients who have the
same file open simultaneously.

Once a file is closed, the changes made to it are visible only in later

starting “sessions”. Open instances of the file do not reflect these changes.

(3) Immutable Shared File Semantics

Once a file is declared as shared by its creator, it can no longer be
modified;
Attempts at modification result in the creation of new files. The Amoeba

file system uses this scheme [Tan92].

(4) Transaction-Like Semantics

e The effects of file accesses, on a file and its output, are equivalent to the

effect and output of executing the same accesses in some serial order

[Nee82].
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Remote Access

In a client-server system with all files stored on the server's disks, when a client
requests remote access to a file, the file must first be transferred from the server's disk to
the server’s memory, and then from the server's memory to the client’s memory via the
network. If the server handles all remote access requests, unnecessary network traffic is
induced. Caches can be used to improve performance by keeping the most recently used
files in the client's memory. Thus when repeated access to the same data occurs, the
communication overhead is reduced.

A caching scheme in a DFS must address the following design issues([Nel88]):

o The granularity of cached data. The granularity of the cached data can vary
from small portions of a file to an entire file. If more data are cached than
needed for a single access, many accesses can be served by the cached data,
but unnecessary data may be transferred and stored.

» The location of the client's cache. File data can be cached in memory or on a
local disk. Memory caches reduce access time, while disk caches increase the
reliability and capacity of client machines.

 How 1o propagate modifications of cached copies. One policy is to write data
through to the server's disk as soon as it is written to any cached copy.
Another policy is to write the modifications to the cache and then write back to
the server later. The advantage of the first policy is its reliability. The

advantage of the second is that write accesses can be done more efficiently and
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multiple writes to the server are not required even if the updated data is
overwritten before write back.

* How to determine if a client's cached data is consistent. Session semantics,
distributed implementation of Unix semantics, immutable shared file semantics
and transactions-like semantics, help to determine cache consistency by
providing constrains on when data needs to be consistent. The implementation

of these semantics via consistency protocols may be expensive and non-trivial.

Fault Tolerance and Scalability

Two important benefits achievable in a distributed system are fault tolerance and
scalability. A well designed DFS can tolerate faults, such as communication faults,
machine failures, storage device crashes, and decay of storage media. It can also provide
reliability (by replicating data) and availability (by offering access to the data through more
than one computer). A well designed DFS can also expand to larger and larger systems.
Such growth should have minimal expense, performance degradation, and administrative

complexity. This is what is meant by scalability.

2.2.2 DFS Examples

The file system is a key component of any distributed system. With the

development of distributed computing technology, more and more distributed file systems
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have been developed. The following is a brief discussion of four DFSs exhibiting key

characteristics of such systems [Lev90, Mul93].

The Sun’s Network File System

Sun’s Network File System (NFS) [Lyo85] has been widely used in industry and
academia since it was introduced in 1985. Although originally based on Unix, NFS has
now been ported to a wide range of non-Unix operating systems, including VMS and PC-
DOS.

The goal of NFS is to allow transparent sharing among the independent file
systems in a heterogeneous environment of different machines, operating systems, and
network architectures. NFS does not have a global name hierarchy. Each machine has its
own view of the name structure created by mounting remote file systems onto the local file
hierarchy. Sharing files is on a client-server basis. NFS clients cache pages of remote files
and directories in their memory. If a page is modified, it is marked as dirty and scheduled
to be flushed to the server by the kernel.

NFS sites usually use a "lock manager" program to track file and record locks for
consistency support when sharing files over a network. The NES file-sharing protocol
itself is designed to be stateless. That is, the servers do not hold any information about
their clients. Thus the RPC requests from a client contain all the information needed to

satisfy the corresponding request. Due to the statelessness, if a server crashes and then
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recovers, there is no information to lose; and if the client fails, the server need not take any

action.

The Sprite File System

Sprite is a distributed operating system developed at the University of California at
Berkeley [Nel88, Ous88]. The goals of Sprite include efficient use of large main
memories, support for multiprocessor workstations, efficient network communication and
diskless operation.

The Sprite file system, including all the files and devices, appears as a single, global
Unix file hierarchy. It provides distribution transparent access to files from every
workstation. Unix semantics are used for sharing files.

Sprite assumes a large memory which makes it possible to use caching heavily both
at servers and client machines. Sprite dynamically partitions the physical memory between
the virtual memory system and the file cache and uses ordinary files as backing store for
the data and stacks of running processes. This simplifies process migration since the
backing files storing in the process’ virtual memory are visible to all the other
workstations. File system performance in Sprite is good. Normally it is faster for a client
to read from a server's cache than from a local disk. This trend will likely continue as the
speed of networks is increasing faster than the speed of disks.

In Sprite, each server can respond to location queries by using remote links which

are pointers to files at other servers. Each client has a local prefix table which provides a
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facility for mapping certain subtrees of the file system* to servers. Each prefix table entry
contains a prefix (the topmost directory name of a file system subtree) a server (the
network address of the server), and a designator (an index into the server’s table of open
files). Every lookup operation for an absolute pathname starts with the client searching its
prefix table. The client strips the longest matching prefix from the file name and sends the
remainder of the name to server specified in the prefix table along with the file system
designator. The server uses this designator to locate the file system’s root directory, and
then uses the usual Unix pathname translation for the remainder of the file name. If a client
tries to open a file and gets no response from the server, it invalidates the prefix table
entry and issues a broadcast query to replace it. If the server has become available again or

has been replaced, it responds to the broadcast and the prefix table entry is re-established.

The Andrew File System

The Andrew file system (AFS) [How88] is a distributed file system designed to be
heterogeneous and scalable, which runs efficiently in a wide area environment on many
variants of Unix.

Andrew's name space is partitioned into a local name space and a shared name
space. The local name space contains the root file system of a workstation and is stored on
local disks. Servers are collectively responsible for the storage and management of the
shared name space. Clients can access the shared name space by querying a volume

location database in a known server.

* The file systems discussed here are a tree structured.

31



The semantics of AFS are close to session semantics. When a file is opened, it is
fetched from a server and put in its entirety on the local disk. All reads and writes operate
on the cached copy. When the file is closed, it is uploaded back to the server. Thus,
updates are visible across the network only after the file has been closed. But on a single
machine, any write operation is visible immediately after it completes.

AFS is designed to work over wide-area networks with potentially many clients.
Minimizing system wide knowledge and changes is important for making such a system
scalable. AFS caches whole files to local disks to reduce server load. A mechanism, called
callback, was invented to reduce the number of cache validation requests received by
servers. Callback assumes that all the cached entries are valid unless notified otherwise.
Andrew's descendent, the Coda file system [Sat90], provides high data availability while

retaining the scalability of Andrew. It has stronger fault tolerance.

Locus

Differing from many existing distributed systems which have a client-server
architecture, Locus [Wal83] was aimed at building a truly distributed, peer to peer
operating system. The core of Locus is its distributed file system.

Locus’ file naming is fully location transparent. Each file group (sub-tree of the file
hierarchy) has a primary copy, the logical group, on a designated site and will have at
least one physical file group (possibly subsets of the primary copy) on distributed site. The

pair consisting of a logical group identifier and a file inode number are used as a file
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identifier. Since each replica of a file has the same inode number in all physical file groups,
a file identifier points to a file in general rather than a particular replica. Thus this name
structure hides both location and replication details from users.

Unix semantics are used in Locus for synchronizing accesses to files. When a file is
modified, the primary copy will be updated. Change messages will then be sent to all other
sites where the replicas of the file reside.

Locus supports fault tolerance. When a network failure occurs, the network will be
disconnected into a collection of sub-networks. As long as one copy of a file exists on a
sub-network, it will be up to date with the most recent committed version, and read
requests will still be served. Other copies will be updated by Locus’ automatic facilities

after recovery where possible.

2.3 Mach

Mach [Tev89, Bar90, Tan92, Boy93] is an advanced, microkernel-based operating
system which is targeted for distributed and multiprocessor environments. As a working
environment for developing application programs, Mach can be viewed as being split into

two components [Bar90]:

* A small, extensible system kernel which provides process scheduling, virtual

memory control, device access, and interprocess communications.
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* Several, possibly parallel, operating system support environments which
provide:
(1) Distributed file access and remote execution.

(2) Emulation for established operating system environments such as Unix.

2.3.1 Basic Kernel Functionality

The kernel functions of Mach can be divided into five categories [Bar90]:

 Basic message primitives and support facilities;

* Portand port set management facilities;

» Task and thread creation and management facilities;
*  Virtual memory management functions;

*  Operations on memory objects.

The fundamental abstractions which the Mach kernel supports are the following:

Task
A task is an execution environment and is the basic unit of resource allocation. A
task includes a paged virtual address space (potentially sparse) and protected
access to system resources (such as processors, port capabilities, and virtual
memory)

Thread

A thread is the basic unit of execution, It consists of all processor state (e.g
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hardware registers) necessary for independent execution. A thread executes in the
virtual memory and port rights context of a single task. The conventional notion of
a process is, in Mach, represented by a task with a single thread of control.

Port
A port is a uni-directional communication channel -- implemented as a message
queue managed and protected by the kernel. A port is also the basic object
reference mechanism in Mach. Ports are used to refer to objects; operations on
objects are requested by sending messages to the ports which represent them.

Port set
A port set is a group of ports, implemented as a queue combining the message
queues of the constituent ports. A thread may use a port set to receive a message
sent to any of several ports.

Message
A message is a typed collection of data objects used in communication between
threads. Messages may be of any size and may contain inline data, pointers to data,
and capabilities for ports.

Memory object’
A memory object is a secondary storage object that is mapped into a task's virtual

memory. Memory objects are commonly files managed by a file server, but as far

* The Mach object should be distinguished from an object in the persistent object store. The former is an
abstraction of Mach, which can be a thread, a task, a port, or memory pages (or files). The latter is a unit of data
in the object base.

35



as the Mach kernel is concerned, a memory object may be implemented by any

object (i.e. port) that can handle requests to read and write data.

2.3.2 Memory managers

Mach provides unique memory management services for users to control virtual
memory paging operations (e.g. "page in" and "page out"). These services provided,
outside the kernel, are called memory managers, or external pagers, or just pagers. When
a task requires data residing in a region of virtual memory not currently in the physical
memory, a page fault will occur. At this point, the pager maps the required memory object
from a disk to the task's address space. When a page's contents have been modified since
its last page in, the pager is also responsible for writing the dirty page back to the disk®.

To map a memory object to a task's address space, a pager uses ports to pass the

message to the task. Three kinds of ports are needed [Tan92]:

» Object port, is created by the pager and will later be used by the kernel to
inform the pager about the page faults and other events relating to the memory
object.

» Control port, is created by the kernel so the pager can respond to the events.

* Name port, is used as a name to identify the memory object.

® This user level control over virtual memory operations is fundamental to the effective implementation of
Distributed Shared Virtual Memory.
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To perform the memory object mapping, a strict protocol must be used for
communication between the kernel and the pager. This is implemented by specific system
calls. For example, the system call memory_object_data_request returns to the kernel a
specific page in response to a page fault; and the system call memory_object_data_write
takes a page from memory and writes it out to disk.

External memory management allows Mach to be the base for implementing a
page-based distributed shared memory system. Users of different machines at different
sites can then view a single, linear, virtual address space. The shared memory manager,
implemented as an external pager, controls which pages of memory can be accessed by
which machines at specific times. The control of the shared memory manager also must

enforce the consistency and security of the shared memory.

2.4 Persistent Object Systems

In this section a brief review of research work undertaken in persistent object
systems in recent years is given. This presentation is divided into two parts; the first
discussing object-oriented databases and the second discussing other persistent object

systems focusing on those using virtual memory techniques for implementation.

2.4.1 Object-Oriented Databases

Object oriented databases are one form of persistent object system. Objects are
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stored as data and manipulated by object-oriented languages. The objectbase deals with
object identity, storage management, concurrency control and transaction processing
[Mil93]. Many object oriented database systems exist as either commercial products or
research prototypes. These include ORION [Kim90a], GemStone [Bre89], VBASE
[And87], Statice [Wei88], IRIS [Wil90], 02[Deu90], Starburst[Haa90], Cactis[Hus89],
ODE [Agr89], ObjectStore [Kho93], EXODUS [Car90], Mneme [E1li90], POSTGRES
[Row87], and ENCORE/ObServer [Kim90b].

ORION [Kim90a, Kim90c] is a distributed object-oriented database with a simple
client-server architecture. It consists of several major subsystems. The Storage subsystem
allocates and deallocates pages on disk, moves pages to and from disk, finds and places
objects in buffers, and manages indexes on the attributes of a class. Most of the parts of
the storage subsystem reside in the server. Other subsystems reside in the clients to
evaluate queries and to access objects in the local object buffer pool. ORION associates
each object with a globally unique identifier, UID. It consists of a pair, <class identifier,
instance identifier> (in the distributed version of ORION a site identifier is also included).

The storage format for object instances contains several parts:

e UID as described.
* Object length: records the total lehgth of the object.

* Attribute count: records the number of attributes stored in the disk format.
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* Attribute vector: consists of the identifiers of all attributes for which the object
has explicitly specified values.

» Value-offset vector: consists of the offsets of the values of the attributes.

A class contains two types of information. One is the specification of the attributes and
methods shared by all instances of the class. The other is the specification of the attributes
and methods which apply to the class itself.

In a fashion similar to cylinder groups in the BSD4.3 file system, an ORION disk is
divided into segment groups. Each segment consists of a few blocks or pages. To improve
system performance, instances of the same class are clustered in the same segment or
group of segments, and instances that belong to a user specified collection of classes are
similarly stored together. The ORION storage manager is responsible for allocating,
deallocating, and tracking the objects in their on-disk format. The storage manager
employs an object directory to record the physical addresses of objects. ORION uses
extendible hashing to maintain this object directory for quickly mapping the object
identifiers to their on-disk addresses. A B*-tree is used to maintain the class hierarchy to
speed up the associated searches for objects.

In the O2 system [Deu90], persistence is implemented by associating with each
object a reference count which records the number of other objects pointing at it. As long

as the count is greater than 0, the object and all its components are persistent. When an
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object’s reference count drops to 0, this means it is unreachable from other objects. Thus,
this object no longer need be stored, and the system then automatically deletes it.

The O2 storage subsystem is built on top of WiSS (the Wisconsin Storage System)
[Hur93]. WiSS allows data pages to contain records of different types. It also allows a
new record to be inserted in a specified location. With these two features, all records
belonging to the same complex object can be clustered on the disk. O2 implements object
identifiers as persistent identifiers. This is done by storing an object in a WiSS record so
that the object identifier is the record identifier, RID.

O2 supports tuple, list and set structured complex objects. A tuple is represented
as a record stored on a page on disk, lists are represented as ordered trees, and a set
structured object is itself an object containing the object identifiers of its members. B-tree
indexes are used to represent large sets. Small sets are kept ordered.

EXODUS [Car90, Eri93] is an extensible database system. Its architecture
includes storage and transaction management, and the persistent programming language E
(an extension of C++). The storage component of the EXODUS project is the EXODUS
storage manager (SM), which provides facilities for reliably storing objects. SM has a
client-server architecture. The client interface, supported by a client library, allows
programs (applications) to create, destroy, modify database files containing objects and to
iterate through the contents of these files. Files are implemented using B*-tree indexes
with the object page ID of the buffer pool as a key. Related objects can be placed in a

common file and scanned in sequence. File operations that require accessing or changing
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the B*-tree occur on the server. Each object is referred to by an object identifier (OID).
The OID of a small object directly points to the object on the disk. The OID of a complex
object points to the root of the relevant B*-tree.

An Exodus client connects to a server by using TCP sockets and RPC. Though a
client can only connect to one server at a time, the SM server simultaneously supports
multiple clients which may be on the same machine as the server or on different ones. The
SM server supports transactions with full concurrency control and recovery’.

The Mneme project [ELi90], which is similar to the EXODUS project, is aimed at
combining a persistent programming language with database features. The Mneme
persistent object store is a fundamental component of the project. The architecture of the

Mneme store consists of:

» A Client code module, which includes the application program, user supplied
policy routines, and optionally, a language run-time system.

e The Mneme code module, which includes a Mneme client library and default
policy routines.

» The Mneme server module, which includes remote server interface, local server

interface, and local operating system interface.

The connection between (1) and (2) is via the client interface, whereas the connection

between (2) and (3) is via the client-server interface.

7 Cross-server transactions are not supported.
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The format of a Mneme object includes four components. First, the object
identifier, OID which is a logical descriptor. It is not directly linked to a precise physical
location. Second, an object may contain some OIDs to describe its aggregation
relationships to other objects. These OIDs can be easily enumerated for supporting
garbage collection. Third, each object has a few associated attribute bits used for
indicating such properties as whether the object is read-only. Last, each object has a
current size.

Mneme uses object handles to access objects. A handle includes the object's OID, a
pointer to the data part of the object, and the size of the object. A handle provides efficient
access to the internals of a memory resident object. Creating a handle requires the object
to be located. If the object is not resident, it must be fetched from external storage. This
process is called an object fault. Mneme files are the modularity units for grouping and
naming objects. Within a file, a further structure, a logical collection of objects called a
pool, is used. A file may contain different pools. A pool determines the policy under which
the objects in it are managed.

Mneme transactions provide the concurrency control and synchronization
important in a system allowing concurrent work. The client interface provides various
operations, such as object handle and pointer operations, pool and strategy operations, file
operations and other miscellaneous operations. The server interface is based on physical

segments which group multiple objects into a single chunk for transfer and storage.
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2.4.2 Persistent Virtual Memory and Object Stores

Most persistent object systems have been developed on top of conventional
architectures and operating systems. To achieve acceptable performance, advanced
operating system support for building persistent object stores is also being studied.
Operating systems with distributed object-oriented features include Choices [Mad91],
Clouds [Das92], Cool [Hab90], Soul [Sha91], Monads [R0s92] and Guide [Bal91]. Some
of these support persistent object spaces [Das92, Bal91].

In systems supporting persistent object spaces, the object concept is implemented
at the operating system level and the operating system presents users with a single level
view of storage. For example, the operating system Choices which is written in an object-
oriented language, supports distributed parallel applications on a network of
multiprocessors [Cam91]. The kernel is implemented as a dynamic collection of objects
that have been instantiated from system defined classes. Choices has a paged virtual
memory organized around memory objects. Each memory object can have its own
separate backing store, page placement and page replacement algorithms. It can be shared,
both within a shared memory multiprocessor and between networked computers using a
distributed virtual memory protocol. Choices supports an object-oriented file system
model in which files may be mapped into virtual memory. The kernel and an object file

system together provide a persistent object store.
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In the recent years, many systems have been generated which support large virtual
memory based on advanced architectures. Rosenberg et al. [R0s92] discuss mechanisms
for supporting large virtual memories. The authors believe that a persistent object store
can be implemented via an extended virtual memory with address space large enough to
address all objects. The address space in such a system is very sparsely populated and the
paper considers the problem of mapping large sparsely populated virtual addresses to a
small, densely populated memory from both the hardware and software viewpoints. A
prototype implementation is made on the experimental MONADS-PC computer system.

Much research has also been done concerning the construction of a persistent
object store on top of the Mach microkernel. Chevalier et al. [Che92] describe the design
and implementation of a fault tolerant storage system (Goofy) for distributed object
oriented applications. Goofy supplies object storage using Guide which runs on top of the
Mach 3.0 micro-kernel.

Vaughan and Smith [Vau92] describe the Casper system which uses memory
mapping and shadow paging to provide a distributed resilient persistent store. Casper
exploits a number of the facilities provided by Mach.

Castro et al. [Cas93] describe the architecture and implementation of MIKE, a
version of the IK [Rob91] distributed persistent object-oriented programming platform
built on top of the Mach microkernel. MIKE supports the abstraction of a persistent single

level object store. Objects are transparently loaded on demand when first invoked and



saved to disk when the application terminates. Compared with the Unix versions of IK,
MIKE achieves good performance through the use of Mach abstractions.

Millard, ez al. [Mil93] present the design and implementation of SPOMS (Shared
Persistent Object Management System) which is a memory-mapped store built on top of
the Mach operating system. The authors believe that making use of operating system
support for memory mapping makes the storage and manipulation of persistent objects
simpler. This technique also provides sharing at a much finer granularity than what is
provided by conventional database systems.

SPOMS is a run-time system that provides a store for persistent objects. Objects
are created via calls to SPOMS. When objects are used, SPOMS maps them into the
address spaces of the requesting processes. The Mach approach to virtual memory
management permits local, single-copy sharing of code and data, object faulting and
transparent, on-demand object access. The Mach external pager interface allows user-level
programs called external pagers to manage objects that can be mapped into the virtual
memory of a task. Once the object is mapped, page faults on this object are sent by the
kernel to the port which identifies this object, and are then received by the external pager.
If threads in two tasks map the same memory object, the kernel will send page fault
requests for each page only once in order to maintain the consistency of the pages. Thus, a
Mach-based implementation of distributed shared memory is used to provide a distributed

implementation of the object store. To provide distribution, the external pagers provide
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multiple-reader, single-writer coherency between memory-objects on a network of

computers.
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Chapter 3

Problem Assessment

Persistent object-oriented programming systems are relatively new and it is still not
clear which of the many models best suits the persistence paradigm. This chapter will
discuss the general issues concerning persistent object stores and examine the

requirements of an object store supporting class fragmentation.

3.1 Persistence

Persistence, as an attribute, can be defined as the length of time which data exists
and is usable. It is concerned with supporting the uniform treatment of data independent of
its lifetime [Atk83, Mun93]. For the purpose of this dissertation, the following definition

applies:
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Definition 3.1 A Persistent Object System is a programming environment that provides

objects' which may outlive their creating processes.

3.1.1 Degrees of Persistence

The data created and manipulated by object-oriented programming may have

different degrees of persistence and can be categorized as follows [Mor90]:

¢ Data persistent within expression evaluation.

¢ Data persistent as local variables in a procedure activation.

* Data persistent as global variables and heap items whose extent is different
from their scope.

e Data persistent between executions of a program.

® Data persistent between various versions of a program.

e Data persistent over the program that created it (data that outlive the

program).

The persistence referred to in the first three categories, referred to as short term data, can
usually be supported by any programming language. The persistence referred to in the
other three categories, referred to as long term data, needs a file system or a database to
support it. Programming in traditional programming languages, the programmer must
explicitly include code to move long term data between memory and a file system or a

database, whereas persistent programming languages can transparently provide persistence

! Objects and their use are described well by Booch [Boo91].

48



for both short term and long term data. Thus, the programmer is freed from the need to

manage data storage. This leads to simpler, less error-prone programs.

3.1.2 The Advantages of Persistence

The advantages of persistence can be summarized as follows [Mun93]:

* Persistence improves programming productivity by offering simpler semantics -
There is no need for the programmer to deal with long term data storage or the
representation transformations that often go with it (e.g. flattening structures
for on disk storage).

® Persistence removes ad hoc arrangements for data translation and long term
data storage - Uniformity is provided since policies are enforced by the system
and not left to individual programmers.

® Persistence increases protection over the whole environment - This also

enhances uniformity of storage in the system.

The first two advantages result from eliminating the distinction between long and short
term data. Databases are effectively incorporated into the programming language. It has
been estimated that 30% of the code in an application is related to data movement
between main and secondary memory [Atk83]. If the use of long and short term data is
integrated, not only can the size of the application code be reduced, but also the time to
execute the code and store the data can be reduced. Therefore significant cost saving can

be achieved[Bro89, Mor90]. The third advantage occurs because all the protection
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facilities of a programming language can be applied to long term data. Using a single

enforced type system for all data yields enhanced protection throughout the whole system.

3.1.3 Persistent Object Identities

The fundamental goal of persistent object-oriented programming is to make

persistence orthogonal to all objects. That is, any type of object should be allowed to be
persistent. Any class should be able to instantiate an object with persistence as its
property. One of the most important things for implementing a persistent object system is
to implement persistent object identities in the system.
Definition 3.2 Each object in a persistent object system has a system-wide, unique, and
persistent Object Identity which identifies it and distinguishes it from all other objects
(Object identities may be used as “object references”/“object pointers”) .

Different strategies can be applied to implementing object identity [Kho93]. Two

possibilities for uniquely identifying objects are:

® An object’s address such as a virtual memory address or secondary storage
address may be used.
* Akey identifier in an object table may be used - this can be a memory-resident

object table or a disk-resident object table (see Figure 3.1).

The first scheme is probably the simplest implementation of object identity. The second

scheme requires a system maintained table where each object identifier is an index into the
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table or a key value which is used for lookup in the table. Each entry of the table directly

or indirectly contains the object’s address in virtual memory or on disk.

object table secondary memory
course
ol no. 74.71
ﬂtime 9:30am
02 ~
03 AN
student
name 03
address 09
course ol
age 19
name
first Joy
Iast Loly

Figure 3.1 Object Identifiers as Indexes

Compared to the first scheme, this implementation of object identity has extra
processing overhead, but is more flexible. When an object is moved from one position to
another, either on disk or in virtual memory, its object identifier can stay the same. Only
the object table is updated. The ability to freely move objects without affecting their

identity is very important in garbage collection since garbage collection relies on object
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movement. To collect the storage which is not in use, the usable objects need to be moved
together. The second scheme is also machine independent and therefore makes it easier to
port the implementation between different systems.

In the implementation of object identity in a DSVM system, persistent virtual
addresses are used as object identifiers. Since the size of a virtual address is the same size
as addresses generated by hardware, the need to swizzle [Kem93, Wil91] object identifiers

to virtual memory addresses is eliminated.

3.2 Object Storage

Definition 3.3 Persistence of object-oriented programming relies on the existence of a

repository for storing all the objects. Such a repository is referred to as an Object Store.

object users

object storage

Figure 3.2 Architecture of a Persistent Object System
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Figure 3.2 shows the general architecture of a persistent object system built on an
object store. The object storage handles the object storage management of the persistent
object system. Based on the object storage, the virtual memory provides users a single
level view of persistent objects. On the top, the object users is an user interface of the

persistent object system. The ideal properties of a persistent object store include:

¢ Infinite speed.
® Unbounded capacity.

e Total reliability.

In terms of current technology, none of these properties is realistically achievable. In the
design of an object store the above attributes are goals, but in the implementation only

best approximations may be provided.

3.2.1 Object Store Speed

Access speed is a crucial factor in building a successful object store. Three major

strategies can be used to enhance the speed of an object store. They are:

¢ Constructing the store as close to the hardware as possible to minimize the
inefficiency induced by the operating system;
® Supporting class fragmentation which provides efficient data manipulation and

access in the store, especially for a distributed system; and
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* Applying optimal data allocation polices which keep the related data physically

as close as possible so that disk access times can be minimized.

3.2.2 Object Store Capacity

An ideal object store should support objects of virtually unlimited size and number.
If the capacity of the store is not big enough, newly created objects can not be
accommodated. Restrictions on object size limit orthogonal persistence. An object store
must support reasonably large objects and must attempt to maximize the number of
objects which may be stored in whatever space is available. This may be accomplished

using:

® Hardware - The store may employ as many large size disks as possible to
physically increase the storage capacity. In the DSVM project, 64-bit
processors are used which can address 2% bytes in virtual memory. With
enough disk support, the system will provide very large capacity.

* Software - The object store should keep collecting free space. This is typically
done through garbage collection in a dynamic system. As well, the object store
must eliminate all unnecessary data redundancy, and keep needed

“housekeeping” overhead to a minimum.

3.2.3 Object Store Reliability

Reliability of an object store plays an important role in supporting persistence.
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System failures can cause data destruction. A persistent store should recover from any
failures within the store because losing data, of course, means persistence ends. The

potential failures that may occur can be categorized as follows:

e Hardware failures - occur from the breakdown of a hardware component, for
instance, a disk head crash or corruption of the recording medium.

® Software failures - occur when memory is lost or corrupted.

Hardware failures are usually handled by duplicating the store after any data update. This
can be done by either maintaining more than one active data copy, each of which is
updated in parallel, or by maintaining a continuous log of all changes to the system
[Bro89]. This issue is left as future work. To avoid complexity, it will initially be assumed
that the disks are physically reliable so there are no hardware failures. The design and
implementation of the object store (discussed in subsequent chapters), however, will

consider how to restore the system under the circumstance of software failures.

3.3 Fragmentation

Supporting class fragmentation (see the fragment model presented in Section
1.2.2) distinguishes our object store from other existing object stores. This section

presents the motivations for using this strategy.

3.3.1 Object Clustering and Class Fragmentation

Definition 3.4 Object Clustering is a way to group objects in secondary storage according

n
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to common properties” to speed up processing on those objects.

Clustering is a very important factor in enhancing the performance of database
management systems [Ber94]. Because of the aggregation (regarding complex objects)
and generalization (regarding class inheritance) features of the object-oriented data
model, object stores and object databases have special properties which can be exploited
as the basis for clustering.

The main idea behind clustering is to group data items which are frequently
accessed together so they are stored as close as possible to one another on secondary
storage and thus can be retrieved quickly. Clustering techniques are important for both
query-oriented object access and object navigation. Query-oriented object access refers to
accessing a group of related objects. For example, two objects which are related by
inheritance may be accessed together due to polymorphism. Object navigation refers to
accessing a single object by navigating through object references. Object clustering
enhances performance only if objects are clustered in terms of the access patterns a user
will make. According to March [Mar83] and Bertino [Ber94], the task of clustering is to

physically arrange the database so that:

* Obtaining the next piece of information needed by a user query has a low
probability of requiring additional access to secondary storage; and
* A minimal amount of irrelevant data is transferred when secondary storage is

accessed.

* The properties may include being subsets of objects with the same attribute types or being certain groups
of objects within the same class.
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For object-oriented data models, the clustering of a class may apply both to the set
of instance variables and the set of methods that belong to the class. Based on the query
frequency and the access locality of user applications, fragmentation breaks a class into a
set of fragments with only a subset of the class’ components. As presented in Chapter 1,
there are three types of class fragmentation: vertical fragmentation, horizontal
fragmentation and hybrid fragmentation. Fragmentation can be used as a form of
clustering for object systems. When a class is instantiated with objects, the class fragments
will yield the object clusters. We may regard these class fragments as a kind of object
clustering between the objects within a class. Thus, each type of fragmentation defines a
clustering type. Fragmentation provides a clustering scheme by fragmenting a set of
objects into a set of class-fragments so as to minimize the amount of irrelevant data

accessed by applications.

3.3.2 The Benefits of Fragmentation

An object store greatly benefits from fragmentation in a distributed object

environment. The main advantages of fragmentation are the following [Eze95, Ozu91]:

¢ Using fragments reduces the amount of irrelevant data accessed by applications
because different applications access or update only partial classes which can
be arranged as fragments of the class.

* Fragmentation increases the level of concurrency. Decomposition of a class

into fragments, each being treated as a unit, allows some data operations to
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execute concurrently. In addition, if the data operations can be divided into a
set of sub-operations, with each operating on a fragment, then each single
operation can be executed in parallel.

e Fragmentation reduces the amount of data transferred between different
network sites because each node only fetches the needed portion of the class,
instead of the whole class.

* Replicating fragments is more efficient than replicating the entire class because

it reduces consistency problems during updates and saves storage.

Fragmentation provides a good basis for reflecting major object-oriented features
such as class inheritance and encapsulation in a logical fashion in the store. Using
fragments as a basis for object clustering in an object store enables the store to support
object-oriented programming more easily and naturally. Furthermore, since complex
objects can be properly fragmented by the fragmentation technique, the data allocation in

the object store becomes easier.

3.4 Implementation Approaches

There are three possible alternatives for implementing persistent object stores. An

object store can be built on:

* Anovel system designed and built from the ground up.

* An existing object database and its object model.
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¢ An existing file system.

The first approach is the most aggressive one, which develops an entirely new object store
without relying on any existing code except for the needed device drivers. Such an
implementation completely meets the requirements of an object store. This “ideal”
implementation offers the best possible performance since all aspects of the system can be
tailored specifically to object storage. However, constructing such an object store is a
major effort. It is not feasible to implement such a system in a short time.

The approach of adopting an existing object database, such as the Exodus storage
manager, and modifying it to support fragments would require less work. There are,
however, three reasons for not taking this approach. First, existing object databases were
not designed with class fragmentation support in mind and thus it would likely be difficult
to add them without making significant changes to the existing code. Second, such
systems are typically built on top of Unix and thus require the support of Unix for their
operation. The DSVM project runs without Unix and thus cannot provide the needed
support. Finally, using existing object databases incurs the overhead related to their
reliance on an existing monolithic operating system.

The third approach is to adapt a file system to manage object data. The most
commonly used strategy to store and retrieve data is to use operating system files. Files
are convenient units for storage, and they are reasonable units of backup, recovery,
garbage collection, and transfer between different stores. The file concept is implemented
by existing file systems, which offer functionality including symbolic and internal

identification for ease of reference, physical location and physical organization, access
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control, and various administrative operations including file creation, modification,
deletion, backup and so on. Much of this functionality is also required in an object store.
In addition, specific features of the object store can be added to the file system if
necessary. For example, the index structures sometimes used to support object identity can
be constructed. It is practical to develop the object store by utilizing a file system together
with additional index structures as the data management system of the object store.
Employing an existing file system which has been well tested and is reliable will
significantly shorten the implementation time of the object store. Based on the advantages
mentioned above, the file system approach will be applied to the construction of the object

store.

60



Chapter 4

The Object Store Design

In this chapter, a design for an object store with integrated support for fragments is
described. Aiming at achieving fast data access and optimal use of storage, this design
focuses on fragment storage format, allocation policies, and data retrieval structures. A
key feature of the design is to use existing system resources and facilities to implement this

store on top of the Mach microkernel, instead of building everything from scratch.

4.1 Goals and Limits of the Design

The overall goal of the design is a working prototype of a fragment-based,
persistent object store with support for major object-oriented features through the use of
class fragmentation. Abstractly, the store will maintain two kinds of data: fragments and

objects. The specific objectives of the store are as follows:
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e The store should provide an appropriate notion of fragments and objects
including the representation of fragments and objects, and the relationships
among them.

® The store should have reasonable performance for storage and retrieval, and
low overhead for data manipulation.

® The store should make the best use of available storage by reducing data
redundancy to a minimum so as to maintain a large storage capacity.

* The store should offer good reliability and ensure quick recovery from system
failures.

e The store should be naturally extendible to operate in a distributed
environment.

® The store should be a good basis for further research (i.e. it should be flexible
to support future research in integrating persistent object-oriented
programming and database features).

Since this object store is an initial prototype, effort is focused on providing only
the fundamentals and areas such as distribution, multiple user support, and high level
database features are left to future work. The feasibility of an object store supporting
fragments and providing good performance for both object and raw fragment retrieval is
the chief concern. At this stage, multiuser and distributed system support are not needed.
If provided, they would increase overhead and make comparison with existing centralized
object stores difficult. Similarly, including high level database features such as transactions

and a query interface would be inappropriate. Finally, since previous work on class
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fragments assumes statically generated fragments, this object store is created statically.
Making these simplifications keeps the design and implementation conceptually clear. This

store will lay a reliable foundation for further development.

4.2 Physical Fragmentation

The most commonly needed class fragments (see the data model of the object store
described in Chapter 1) by user applications are vertical fragments and horizontal
fragments. These fragments are normally referenced in their entirety by applications. Such
fragments are referred to as logical fragments to distinguish them from their storage forms
as discussed below. Since, for the same class, vertical fragments and horizontal fragments
are overlapped, storing both kinds of fragments will result in data redundancy and hence
wasted storage. To avoid this, logical fragments need to be further decomposed into what
will be referred to as physical fragments. The definition of a physical fragment is as

follows:

Definition 4.1 Given the sequence of the bytes composing a horizontal fragment F}, and
the sequence of the bytes composing a vertical fragment Fy, of a class C, the intersection
subset of F, and F,,

Pfy, =Fy N F,

is a sequence of bytes referred to as a Physical F ragment of class C.
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Each physical fragment is a subset of a vertical fragment and a horizontal fragment
at the same time. When considering vertical fragments alone, each physical fragment is a
subset of a vertical fragment with the same vertical fragmentation scheme of the attributes
and the methods but which only groups partial object segments that the vertical fragment
refers to. When considering horizontal fragments alone, each physical fragment is a subset
of a horizontal fragment with the same horizontal fragmentation scheme of objects but
which only groups partial attributes and methods that the horizontal fragment possesses.
Therefore, if only vertical (or horizontal) fragments exist in the system, each physical
fragment is the same as each vertical (or horizontal) fragment. The following is an

example which illustrates physical fragmentation:

Given a class C:

{ attributes: Aj, A, Az, Ay
methods: M;j, My, M3, My, M5}

and objects of C:
01, Oy, O3, Oy, Os, Os.
Suppose the horizontal fragments of C are:

Fh1= { 017 02’ 05 }’
Fh,={ 0506 };
Fp, = { Os};

and the vertical fragments of C are:

Fv1= {O1(v1), Oz (v1), O3(v1), O4(v1), Os (vy), Os(vi)};
Fy, = {01(v2), Oz (v2), 03(v2), Oua(v2), Os (v2), Os(v2)};

where

vi= Ay, Az, My, Ms;
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Vo= {—\3, AL, \/1 M_;, M-,

The corresponding physical fragments are:

Fh; M Fv[: {O1(v1), Oz (vy), Os(vi)} = {Oyy, Oy, Os1};
Fh, N Fy,= {O1(v2), Oz (v2), Os(v2)}= {02, On, Os):
Fp, NFy, = {0s(v1), Os (vi)}= {031, Og, };
Fh, N Fy,= {O3(v2), O (v2)}= { O3, Og2);
Fp, 0 Fy = {Os(v))}= {04 };

N Fy,={

Fh} ,= {O4(va) }= {Os};

where Oi({/j) is Simpliﬁéd as Oij.

A graphical illustration of this example is shown in Figure 4.1, where each shaded

rectangle indicates a physical fragment.
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Figure 4.1 An Example of Physical Fragmentation



From the physical fragment definition and the example above, it can be seen that
since vertical fragments and horizontal fragments are orthogonal to each other, every
vertical fragment and horizontal fragment has only a single intersection which is a physical
fragment. None of the physical fragments overlap with any other physical fragments. Each
logical fragment can be uniquely represented by an ordered collection of physical
fragments. According to the Definition 1.8, the 1:1 mapping can be built between hybrid
fragments and physical fragments. Thus physical fragments may directly support hybrid
fragments. Physical fragments are the suitable basic units of data storage. Using physical
fragments, there will be no data redundancy in the store and therefore storage efficiency is

assured.

4.3 Storing Physical Fragments

Since physical fragments are the unit of storage, the object store must be designed
to accommodate them. To decrease implementation complexity and to exploit the features
of existing code, an existing storage structure must be selected for physical fragment

storage.

4.3.1 The FFS Approach

A conventional file is a storage unit. The most effective way to build a store for

physical fragments is to construct it out of existing components. As discussed in Chapter
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3, the Unix FFS (Fast File System) will be employed as the basic storage system. The Unix

FFS was chosen for the following reasons:

Unix is a widely used, well documented operating system and the source code
of the FFS is available for this project.

The Unix file system is flexible to use. Files can be managed either at the
operating system level, where access is by inode numbers, or at the user level
where pathnames are used. The inode mechanism supports efficient file access.
When the object store is functioning (under Mach), access to data in the store
will be through inode numbers, instead of pathnames. In this way, the
performance of the store will be greatly enhanced. The pathname based naming
scheme, however, will be employed when creating the object store (under
Unix) to simplify the creation process.

The FFS improves on the traditional Unix file system in several useful ways.
The availability of cylinder groups is directly applicable to object storage for
the purpose of grouping related fragments together and the adjustable disk
layout polices can be utilized to optimally allocate fragments.

The FFS is supported under Mach without the presence of Unix itself. The
Mach code used for reading an existing Unix file system is already available

and can be re-used.

4.3.2 Design Strategies

Given the overall goals of the design, certain specific design issues for the object
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store were arrived at. The strategies of the design and implementation are based on the -

following decisions concerning the object store:

* The object store will associate each logical fragment with a unique fragment
identifier (FID), and associate each object with a unique object identifier
(OID). Fragments and objects will be referenced only through their FIDs and
OIDs.

® Only non-redundant data will be stored in the object store. To do this, logical
fragments need to be further decomposed into physical fragments which will be
the basic data storage units in the store.

o Since objects are blended into the fragments, when objects are referenced, they
need to be extracted from one or more fragments. Thus, the object store will
store the information to implement mapping from any object’s identifier to its
locations in physical fragments in which the object is blended.

® To retrieve fragments and objects, the object store will construct an index
system. The fundamental index structures will be kept persistent so that the
object store will be robust enough to recover from system failures.

® The object store will keep the data of related fragments as physically close
together as possible to decrease data access time and thus improve the
performance of the system. Four kinds of related data will be considered for
co-location. These are the following (in priority order):

(1) Data in the same physical fragments,
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(2) Data of those physical fragments belonging to the same logical
fragments,

(3) Data of those logical fragments related to one another by membership in
a given class, and

(4) Data of those logical fragments belonging to different classes but related

by class inheritance.

4.4 The System Architecture

Figure 4.2 shows the system architecture. The implementation environment is the
bare Mach microkernel. User applications run over the distributed shared virtual memory
and access objects therein. An object store with its storage management is built on top of

the Mach kernel to support object persistence in the virtual memory.

Applications

DSVM Management

Storage Management

I

Mach Microkernel

Figure 4.2 System Architecture
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There are two main functions of the storage management software. The first is to
create data structures for managing the fragments that reside in the object store, and the
second is to handle object and fragment lookups. The internal architecture of the Storage

Manager (SM) is shown in Figure 4.3.

Mach-side access

Fragment Interface Object interface

................................................................

Data Lookup Data Dictionary
Fragment Lookup Fragment Dictionary
Object Lookup Object Dictionary

4

/ Fragment Allocator

Fragment Analyzer

Fragment Preprocessor

Unix-side initialization

Figure 4.3 Storage Management
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Each logical module of the SM is described below:
e Fragment Interface
e Through this interface, a fragment identifier is sent to the SM, and the
corresponding location of the fragment will be returned.

e  Object Interface

e Through this interface, an object identifier is sent to the SM, and the
corresponding location(s) of the object will be returned.

e Data Dictionary

This module constructs index structures for the data in the object store. It
consists of two sub-modules:

o Fragment Dictionary

This module maintains an index structure for retrieving fragments in the
store. It includes two components, a vertical fragment dictionary and a
horizontal fragment dictionary.

¢  Object Dictionary

This module maintains an index structure for retrieving objects in the store.
o Data Lookup
This module is responsible for data lookup in the object store and consists of
two sub-modules:

e Fragment lookup
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This module handles searching for fragments using the Fragment
Dictionary. It includes two components, a vertical fragment searcher and a
horizontal fragment searcher.

* Object lookup
This module handles searching for objects using the Object Dictionary.

e Fragment Preprocessor

This module fetches the pre-fragmented logical fragments and prepares them
for further processing by the SM.

e Fragment Analyzer
This module analyzes the data of logical fragments sent from the Fragment
Preprocessor and decomposes the logical fragments into non-redundant data
units (i.e. physical fragments).

e Fragment Allocator
This module organizes the physical fragments in terms of their relations, and
attempts to allocate them onto disk blocks based on the FFS disk layout and
allocation policies. The Fragment Allocator is also responsible for generating

the index structures of the store for the Data Dictionary.

4.5 Layout and Allocation Policies

The layout and allocation policies of the BSD fast file system [Lef89] provide
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direct support for data storage in an object store. This design tries to perform site-local
fragment allocation in accordance with the requirements of the object store using the FFS
layout and allocation scheme. Fragment allocation is done on Unix at the object store
creation stage. Object/Fragment accesses will be processed via Mach.

There are two major allocatable resources in the FFS. The first is data blocks. The
FES layout policy routines attempt to place data blocks for a file in the same cylinder
group, preferably at rotationally optimal positions in the same cylinder. Because of this, it
is natural to map each basic data unit of the object store, a physical fragment, to an
individual Unix file. This guarantees the best possible block allocation within a given
physical fragment and meets the design requirement of keeping the data belonging to the
same physical fragment physically close together. This is the highest priority relationship
for co-location as described in Section 4.3.2 (related data, type (1)).

The second allocatable resource is inodes. The inode layout policy of the FFS
attempts to place all the inodes of files in a given directory in the same cylinder group.
For this reason, fragments belonging to the same class are placed in one directory at store
creation time so that related data of types (2) and (3) as described in Section 4.3.2 can be
kept close together. Furthermore, since the allocation policy tries to place a directory as
close as possible to its subdirectories, subdirectories are used to store a class’ subclasses.
Thus the fragments which are related due to the inheritance relationship (related data of
type (4)) will be kept close together. Figure 4.4 shows the filesystem hierarchy of the
object store during store creation, where each directory corresponds to a class and each
data file in each directory corresponds to a physical fragment. The inheritance hierarchy

of the object store is captured in the tree hierarchy of the filesystem. Under the root
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directory of the filesystem, each subtree corresponds to an inheritance relationship of the
classes in the store. In Figure 4.4, for example, class(2) which is represented as a
directory, is the ancestor of all the classes in that subtree. “pf(k)”, represented as a file, is
one physical fragment of “class(2)” which represented as a subdirectory, is a subclass of

class(2), etc.

inheritance classes

pf(1)

pf: physical fragment

pf@)| - pE(j)

Figure 4.4 Filesystem Structure

The FFS provides a dynamic environment in which files can grow or shrink at
any time. The object store, however, is currently a static system as the fragments in the
store do not grow or shrink. The FFS allocation policies are still applicable in the object

store for the following two reasons:
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¢ It will make future work easier when the static store is extended to a dynamic
one.
e Even in a dynamic framework, the system parameters can be adjusted to

provide the best environment for a static store.

The existing policies regarding free space, such as allocating 1Mbyte worth of file blocks
in each cylinder group and keeping 10% free blocks in the filesystem are still relevant
[Lef89]. When a new directory needs to be allocated, a cylinder group with a greater than
average number of unused inodes will be chosen. With these strategies, the system
should be able to keep related fragments together in the same cylinder group even after
they are expanded because of modifications. Further details of existing policies and their
application to the storage of fragments and objects are now presented.

The FFS has two levels of disk block allocation routines which are referred to as
the global and local policy routines. As applied in the object store, the global policy
routines will try to select blocks in the same cylinder groups for sufficiently small
fragments. For larger fragments, when further block allocation must be redirected to a
different cylinder group, each newly selected block is chosen from the nearest cylinder
group having more than average free space.

The global policy routines call local allocation routines for specific blocks. The
local allocation routines will always allocate the fragments if the requested block is free.

If not, the local allocator applies the following allocation strategy [Lef89]:

(1) Use the next available block rotationally closest to the requested block on

the same cylinder.
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(2) Use a block within the same cylinder group, if (1) fails.

(3) Quadratically hash the cylinder group number to choose another cylinder
group with a free block, if (2) fails. Quadratic hashing is used because of its
speed in finding unused slots in nearly full hash tables [Lef89, Knu75].

(4)  Apply a search to all cylinder groups for a free block, if (3) fails.

A problem existing in the layout policies of inodes and data blocks is that for
large fragments, free space may easily be filled. This problem may be partially addressed

within the existing FFS by:

« reducing the number of inodes (to make more room for data); or

* increase the size of the blocks (to decrease fragmentation).

These must be done during the filesystem’s creation.

4.6 Data Access

Object and fragment identity are the foundation of data referencing in the store.
An OID/FID is an invariant property which logically and physically distinguishes one
object/fragment from another. Data search structures in the object store include
object/fragment identifiers at both logical (conceptual schema) and internal (physical

schema) levels, in addition to the mapping schemes between the two.

4.6.1 Data Mapping

Logical references to data in the object store are by logical fragment identifiers,
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represented by FIDs, and by object identifiers, represented by OIDs. FIDs and OIDs are
the starting point for accessing data.

Since logical fragments have been further decomposed into physical fragments
which are the basic data units on disk, every vertical fragment or horizontal fragment
corresponds to a set of one or more physical fragments. Therefore, the internal notion of
each logical fragment, the internal fragment identifier, is represented as a set of inode
numbers of the files containing the physical fragments.

The internal notion of objects (the internal object identifier) is more complicated
than that of logical fragments since objects are blended iqto fragments. A physical
fragment may contain only a part of an object and it may contain one or more such parts
of several different objects. Thus in addition to the inode numbers of physical fragments
containing the parts of an object, an internal object identifier needs to map to information
about the offsets and lengths of each object segment in the relevant physical fragments.
Data access ends when the internal object/fragment identifiers are mapped and the
required bytes (or data location(s)) are returned.

Searching for a logical fragment or an object is the process of mapping a FID or

an OID to its internal notation:

FID = {i-numbers of the physical fragments}

OID =  {i-numbers of the physical fragments, the object segment offsets and

the segment lengths in the physical fragments}.

4.6.2 Index Structures

To realize the mapping from FIDs (or OIDs) to the relevant locations, certain
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index structures are required. Such index structures maintain the inter-relationships
among objects and fragments. They serve as FID and OID dictionaries as shown in the
architecture of the SM (Figure 4.3) and provide efficient data search for the object store.
B'-trees, together with certain supporting index tables are used as the data structures for
implementing the FID and OID dictionaries.

B*-trees are a widely used data structure for organizing and maintaining large
indices. They are designed to support the operations: create, insert, delete and lookup.
For many years, the B*-tree has been the data structure of choice for applications requiring
both sequential and direct access. Among the B-tree and its variants, the B*-tree is most
suitable to serve as the index structure for the object store. The advantages of using the
B*-tree are discussed in [Gra93, Joh93]. Since the internal nodes in a B*-tree do not
contain data pointers, more tree pointers can be packed in each node. For the same size of
disk block, a B*-tree supports a larger order tree than a B-tree. This leads to fewer tree
levels, and thus shortens tree search time.

Another popular data structure which is good for disk storage is extendible
hashing. If the database is very large, extendible hashing may be used. If the database is
not that large, a B*-tree may be used. The B*-tree was chosen for several reasons. As long
as the root page of the B*-tree is cached in memory, the performance of the B'-tree is at
least as good as extendible hashing [Kim90b], if not better. B*-trees also permit lookup
with testing for key ranges rather than only exact key matches as with hashing schemes.

Finally, the B*-tree is easily partitioned for use in a distributed environment.
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Many important object oriented databases use the B-tree and its variants to map
the object identifiers to their physical addresses. For example, GemStone and EXODUS
support a B*-tree index on objects. Statice uses a B*-tree, Iris uses a B-tree, and O2 uses
a “B-tree like ordered tree” to access methods. Although ORION uses extendible hashing,
a B*-tree is also used to speed up the associative searches for objects. In future
improvements to this object store, a B*-tree combined with hashing methods might be
applied to achieve the best performance in lookup operations.

The existence of index structures after system crashes is an important feature of
persistence. To assist fast recovery, the important parts of the index structures will be
stored on the stable disk (i.e. “persistently”) so that they can be used to reset the data
retrieval structures after software failures'. Such index structures can be regarded as
another type of persistent object, which might be called persistent index objects. Reusing
these persistent index objects provides an effective approach to object store protection
regarding software failures. In future, a logging approach might be also considered to

support object store recovery from hardware failures.

1 - . . .
Note that this in no way precludes in-memory caching to improve performance.
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Chapter 5

Implementation

The object store is implemented as two major components. The first component is
Object Store Creation (OSC) which occurs under Unix. The second component is Object
Store Access which occurs under Mach. The input data of this implementation is based on
the vertical and horizontal fragment output results of Ezeife and Barker [Eze94a, Eze94b,

Eze95].

3.1 Object Store Creation

The task of Object Store Creation is to determine the logical data structures and
disk data format required for the object store. The process of Object Store Creation is
shown in Figure 5.1. The system first loads the pre-fragmented logical fragments (vertical

and horizontal) into memory where they are further decomposed into physical fragments
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class(1)
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physical fragmentation

physical fragment allocation

class(2)

data on disk

index generation

class(n)

num_f

inode_frag_f

inode_method_f

inode_obj_f

obj_length_f

obj_offset_f

index files on disk

Figure 5.1 Object Store Creation




to generate non-redundant data clusters for storage. These non-redundant physical
fragments, are then allocated to disk using the FFS. Finally the system creates persistent

indexes for the purpose of data retrieval.

5.1.1 Data Structures

The logical data structures for each class used to implement the object store
include the following:
o Data structures supporting vertical fragments
* v _frag { *attr, *method}
Vv_frag represents a vertical fragment. It contains two pointers *astr and
*method. *antr points to a vertically fragmented object vector, which
contains a byte sequence of one or more attributes of the class. *method
points to a method vector for the same vertical fragment of the class’.
* v_frag_class { v_frag_num, v_frag }
v_frag_class represents a vertically fragmented class. It has two fields
v_frag_num and v_frag. The v_frag_num field represents the number of
vertical fragments in the class. The v_frag field represents each vertical
fragment in the class.
¢ Data structure supporting horizontal fragments

* h_frag_class { h_frag_num, *h_obj_order, *h_obj_num }

! The contents of *method is the set of file names of the files containing the methods for each vertical fragment.
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h_frag_class is the format of a horizontally fragmented class. It contains
information about the horizontal fragmentation of a class including
h_frag_num, *h_obj_order and *h_obj num. h_frag_num indicates the
number of horizontal fragments in the class. *h_obj_order is a pointer to a
vector which specifies the order of objects in each horizontal fragment of
the class. *h_obj_num is a pointer to a vector which specifies the number
of objects in each horizontal fragment of the class.
* Data structures supporting physical fragments

e p_frag { *attr, *method}
p_frag represents a physical fragment of a class. It consists of two pointers
attr and *method. *attr points to a physically fragmented object vector.
*method points to a method vector in the same physical fragment of the
class’.

* p_frag_class { p_frag_num, p_frag }
p_frag_ class represents a physically fragmented class. It has two fields
p_frag_num and p_frag. The p_frag_num field stands for the number of
physical fragments in the class. The p_frag field stands for each physical
fragment in the class.

¢ Data structure used in every class
e obj_num

obj_num indicates the number of objects in the class.

* The content of *method of p_Jrag is the same as that of v_frag, but the disk location is changed.
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v_frag_class, including all corresponding v_frags, and h_frag_class are input
variables. The vertical fragments of all classes are assumed to exist in a file (v_file). As
horizontal fragmentation is done on the data of the same classes, there is no need to keep
the horizontal fragment data (since it occurs within the physical fragments corresponding
to the vertical fragments). Therefore, only the format (refer to Figure 5.2 which will be
discussed later) of horizontal fragmentation, k_frag_class, is required. In this way, storage
is saved and data copying operations are reduced. It is assumed that the h _frag_class
information for all classes is available in a file (h_file) along with obj_num and the total
number of classes. It is further assumed that the code for methods belonging to each
vertical fragment are available in individual temporary files for each class. All these
temporary file names for the methods of all classes are kept in a file (m_file). This
assumption makes the object store implementation simpler, since when the final location of
the method code is determined on disk, the only thing that needs to be done is to change
the file name and delete the temporary files. The time-consuming work of transferring the
bytes of method codes to the destinations is eliminated. These assumptions are reasonable
because the fragmentation is done statically. Things can be easily arranged this way. When
the system finishes physical fragmentation and generates the output variables p_frag_class
(including all p_frag structures) the pre-determined input files (v_file, h _file and m_file)

will be deleted.

5.1.2 The Algorithm

The algorithm for object store creation consists of four steps, FetchFrag, PhyFrag,
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StoreFrag, and StoreIndex. The algorithm is shown below and discussed in detail in

Section 5.1.3. The symbol “-->* used in the following algorithm indicates copying.

Algorithm ObjectStoreCreation

begin
Jor each class do
Step one: // FetchFrag gets the vertical fragments of the current class, v_frag_class, data
concerning the horizontal fragments of the class, h_frag_class, and object numbers of
the class, obj_num. /
v_file --> v_frag_class;
h_file --> h_frag_class;
input obj_num
Step two: // PhyFrag does physical fragmentation. //
Jor eachv_frag € v_frag_class do
Sort the object parts in v_frag into the same order as in the horizontal Sfragments as
specified by h_obj_order;
Divide the sorted vertical fragment v_frag into segments reflecting the horizontal
SJragmeniation using h_obj_num;
Generate physical fragments p_frag;
end;

Step three: // StoreFrag stores the physical fragments and their inode-numbers onto the disk. //
Generate a pathname for the current class and create a directory with that pathname for the
Jragments of the class;

Jor each p_frag € p_frag_classdo  // handle physical Sragments //
Generate a pathname and create a file within the directory;
*attr of p_frag --> the created file
end;
Jor eachv_frag € v_frag_classdo  // handle methods belonging to the physcal fragments //
Generate a pathname within the directory;
Link *method of p_frag with the pathname
end;
Get the inode-numbers of all physical fragments and methods, and store them in file
Phy_inode_f.
Step four: // Storelndex stores the index information for fragments and objects. //
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end;

end.

v_frag_num, h_frag_num and obj_num --> num_f:
for each p_frag € p_frag_classdo  // store the inode numbers of Dhysical fragments //
Pick up the inode-number of *attr in p_frag from phy_inode_f:
The inode-number --> inode_frag_f
end;
Jor eachv_frag € v_frag_classdo // store the inode numbers of methods //
Pick up the inode-number of *method in p_frag from phy_inode_f:
The inode-number --> inode_method_f
end;
Jor each object € p_frag_classdo //store objects’ inode numbers, lengths and offsets//
Search and collect the inode-numbers of the object segments from phy_inode S
The inode-numbers --> inode_object;
The size of the object --> length;
offset + length --> offset;
inode_object, length and offset --> inode_obj_f, obj_length_f and obj_offset_f

end;

The logical fragment identifiers, FIDs, are assigned by the order of logical

fragment input. This scheme is simple for generating FIDs, and it also guarantees that each

FID is unique because it assumes that each logical fragments is input only once. Consider

the following example:
Class No. 1
Vertical fragments: v1, v2, and v3; FID(v1)=1, FID(v2)=2, and
FID(v3)=3.
Horizontal fragments: h1, h2; FID(h1)=1, and FID(h2)=2.
Class No. 2
Vertical fragments: v1, and v2; FID(v1)=4, and FID(v2)=5.

80



Horizontal fragments: h1, and h2; FID(h1)=3, and FID(h2)=4.
The same scheme is used for object identifiers, OIDs. The object’s position in the first
vertical fragment of a class is used as the object’s identifier. This number increases
contiguously for the classes one by one. If, in the future, a more user friendly FID/OID is
desired, say a literal FID/OID, a map may be built between the literal FID/OID and the

corresponding numeric FID/OID.

5.1.3 Algorithm Discussion

The first step of Object Store Creation is to fetch the logical fragments, from files
v_file, h_file and m_file into memory. OSC treats the fragment data as sequences of bytes.
As the data is loaded, OSC sets up the corresponding data structures in memory. These
include v_frag_class, and h_frag_class. By this process the data is placed in a form upon
which OSC can start the physical fragmentation.

The secondlstep is to decompose the logical fragments into physical fragments.
The main task of this step is to generate a new data structure, p_frag_class, based on
v_frag_class and h_frag_class. Since both vertical and horizontal fragmentation act on the

same class, the decomposition into physical fragments needs two steps as follows:

. Rearranging the data in the class.
° Determining the intersection of vertical and horizontal fragments in the
class.
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To do this, OSC first rearranges the order of the objects in each vertical fragment
according to the object identifier in each horizontal fragment in the same class. Then OSC
decomposes each reordered vertical fragment into a number (h _Jfrag_num) of portions.
The number of object segments in each portion is the same as the number of objects in
each horizontal fragment in the same class. Finally, these portions are generated as
physical fragments in p_frag_class. As an example, Figure 5.2 illustrates the process of
generating physical fragments.

The third step is to allocate physical fragments to disk using the FFS. Each class
corresponds to a directory. All the physical fragments belonging to the same class are
stored in the same directory. In a directory, the attributes belonging to the same physical
fragments are assigned to the same file. Each vertically fragmented method of the class is
assigned to an individual file in the directory. Classes are numbered by their order of
appearance in the input sequence. For implementation simplicity, a directory pathname is
constructed simply using the class’ number. A physical fragment file name is the directory
pathname suffixed with the number of the physical fragment in the fragment sequence of
the class. A method file name is the directory pathname suffixed with the number of the
method in the vertically fragmented method sequence of the class. Once all physical
fragments are assigned to disk, OSC records the inode numbers of the physical fragments
and method files in a temporary file, phy_inode_f, which will be used to construct the
index files for data retrieval in the next step, Object Store Access (OSA).

If class inheritance relationships are considered, the object store will have a tree

(hierarchical) structure. In this implementation, however, all classes are treated equally.
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Figure 5.2 The Procedure of Physical Fragmentation
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Thus, under the root directory there is only one level of subdirectories. The
implementation support of class inheritance will be left for future work.

The last step of OSC is to determine and construct the smallest possible index for
the object store’s contents. These indexes must be persistent with the store so that the
system retrieval structure, which is built dynamically, can be recovered quickly after the
system crashes. Once the index files for all classes are created, pathnames are no longer
used. Accessing fragments and objects is done using their inode numbers, instead of their
file names.

The first index file is num_f which contains the number of vertical fragments, the
number of horizontal fragments and the number of objects in each class. In the
implementation of Object Store Access, these numbers will be used to build index tables
and support operations on the tables.

Based on phy_inode_f, OSC determines the inode numbers of physical fragments
and methods, and fills them in the index files inode_frag f and inode_method f
respectively. For objects, however, more indexes are needed because an object is not an
independent storage unit. Since each object may be blended in to multiple physical
fragments, OSC checks which inode numbers the object is stored in and picks them up
from the data set of physical fragment inode numbers. In addition, OSC needs to
determine the lengths and the offsets of the object segments in the physical fragments. File

inode_obj_f contains the inode numbers of the physical fragments containing objects. Files
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obj_length_f and obj_offset_f specify object lengths and object offsets within the physical

fragments respectively’. An object’s identifier is used to index into these tables.

5.2 Object Store Access

The task of Object Store Access (OSA) is to create index tables and data retrieval
structures in the object store and then support object and fragment access using them. For
logical fragments, given a FID, the system will return a set of inode numbers by which the
logical fragment can be accessed®. For objects, given an OID, the system will also return a
set of inode numbers. In addition to each inode number there are two associated numbers.
One indicates the length of the object segment and the other one indicates the offset of the

object segment in the corresponding physical fragment.

5.2.1 Index Structures

The OSA has a three-level index structure (as shown in Figure 5.3). In the first

level, there are six tables, storing information for all classes, as follows:

® num_table: the table of v_frag_num, h_frag_num and obj_num
data,

° inode_frag_table: the table of inode-numbers of physical fragments;

e inode_method_table: the table of inode-numbers of methods:

® The reason to use three files instead of one is to make the concepts clear and consistent between Object
Store Creation section and Object Store Access section. In the latter section, three tables, inode_obj_table,
obj_length_table, and obj_offset_table are needed.

“ As implemented, OSA returns locations of data rather than the data itself. Access is made using the
existing FFS ‘read’, ‘write’, and ‘seek’ operations. Returning the actual data would require only simple
modifications to the code.
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® inode_obj_table: the table of inode-numbers of objects;
e 0bj _length_table: the table of object segment lengths within inodes;

® 0bj_offset_table: the table of object segment offsets within inodes..

The structures implementing the second level index tables (for all classes) are as
follows:

® frag_I2_index { num, inode_frag, inode_method}
Jrag_I2_index stands for a second level index table for logical fragments. Each
entry of frag I2_index contains three fields, num, inode_frag, and
inode_method, associated with each class. For any given class, num points to
its num_table; inode_frag points to its inode_frag_table; and inode_method
points to its inode_method_table.

® 0bj_I2_index { num, inode_attr, inode_method)
obj_I2_index stands for a second level index table for objects. Each entry of
obj_I2_index contains three fields, num, inode_attr, and inode_method,
associated with each class. For a given class, num points to its num_table;
inode_obj points to its inode_obj_table, (along with its obj_length_table and

obj_offset_table) and inode_method points to its inode_method_table.

The third (top) level index structures are B*-trees. In the B*-tree [Smi87, Elm89],
data pointers are stored only at the leaf nodes of the tree. Each data pointer points to an
entry in a second level index table. Key pointers are used to search through the B*-tree

based on FID/OID to locate the lower level indexes’ structures describing the
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corresponding fragment/object. The other type of pointers, tree pointers, connect the tree

nodes to enable lookups.

5.2.2 Index Table Setup

Based on the data in the six original tables, creating index tables for the object

store involves filling in index table entries at all three levels. Figure 5.3 shows the layout of

the three level index structure.

FID OID

1st level

second level fragment

second level object
2nd level index table (f12)

index table (012)

object inode table

3rd level (inode_obj_table)

number table
(num_table)

object length table
(obj_length_table)

fragment inode tablé
(inode_frag_table)

method_inode_table
(inode_method_table) object offset table

(obj_offset_table)

Figure 5.3 Index Tables of the Object Store
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The first step in setting up the index tables is to fetch the persistent data in the
index files written during OSC and store them in the first level index tables. The six index
files, num_f, inode_frag_f, inode_method_f, inode_obj_f, obj_length_f, and obj_offset_f
correspond to the six first level index tables, num_table, inode_frag_table,
inode_method_table, inode_obj_table, inode_length_table, and inode_offset_table. The
algorithm SetupTables will fill the six index tables with the data provided by the six index

files. Again, the symbol “-->* indicates copying in the following algorithms.

Algorithm SetupTables

Jor all classes do

v_frag_num, h_frag_num and obj_num from num_f (on disk) --> num_table (in nemory);

inodes of p_frag_class from inode_frag_f (on disk) --> inode _frag_table(in memory)

inodes of vertical fragment methods from inode_method_f (on disk) --> inode_method_table (in
memory)

inodes of object segments from inode_obj_f (on disk) --> inode_obj_table (in memory)

object segment lengths from obj_length_f (on disk) --> obj_length_table (in memory)

object segment offsets in each physical fragment from obj_offset_ Sflon disk) --> obj_offset_table

(in memory)

end.

The next step is to build the second level index tables on top of the first level. Each
entry in the second level index tables points to a certain position in the first level index
tables. There are three second level index tables, the second level index table of vertical
fragments vfI2, the second level index table of horizontal fragments, hfl2, and the second

level index table of objects, 0l2. The algorithm L2Index.vertical_fragment is used to setup

vfl2.
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Algorithm L2Index.vertical_fragment

const next-data-piece-location =1;

const num-table-uni t= 3;

Jor each class do

Jor each vertical fragment do
index.num_table --> num;
index.inode_frag_table --> inode_frag;
index.inode_frag_table + h_frag_num --> index.inode_frag_table;
index.inode_method_table --> inode_method;
index.inode_method_table + next-data-piece-location --> index.inode_method._table;
end;
index.num_table + num-table-unit --> index.num_table;

end

To setup vfI2 three first level index tables, num_table, inode _frag_table and
inode_method_table, are needed. Figure 5.4 shows the layout of the vertical fragment
index structure. Each data pointer in the B*-tree leaf level is associated with a vertical
fragment, and thus is associated with three entries of vfI2: num, inode _frag and
inode_method. And each of these entries points to one of the first level index tables. The
inode_frag_table contains the inode numbers of physical fragments which are sorted as
vertical fragments’ order for each class. For instance, the physical fragments’ inode
numbers of the first vertical fragment of a class are contiguously arranged in the table,
then they are continued by the inode numbers of physical fragments belonging to the
second vertical fragment. Such procedure continues until the last physical fragment of the
last vertical fragment of the class. Right after that, inode_frag_table will arrange the next
class’ physical fragment inode numbers with the same schemé. The inode number of

methods are also arranged in inode_method_table in terms of the vertical fragment order
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in every class. Each class is associate with three entries of num_table: v _frag_num,
h_frag_num, and obj_num. In Figure 5.4, each solid arrow points to the certain location
of another table for the current entry, while each dashed arrow is used to indicate where a
certain following entry with the same type will point to. For each vertical fragment, num is
set to the index of v_frag_num for thecurrent class in num_table. Thus, all vertical
fragments for a given class have the same value of num. For the vertical fragments in the
next class num will point to the next v_frag_num entry in the table num_table.

In vif2, the inode_frag entry of each vertical fragment only records the index of
the first physical fragment belonging to the vertical fragment. Based on this first index and
the data provided by num, the rest of the physical fragments can be located by offset since
the indexes of the physical fragments making up a vertical fragment are stored
consecutively in inode_frag_table. This scheme avoids the complexity of a second index
table structure, and thus reduces the complexity of searching for data. The same scheme is
also used in AfI2 and 0l2. As shown in Figure 5.4, the inode_frag for the first vertical
fragment of the current class is set to the index of the first physical fragment (pfirsr) 1n that
vertical fragment. Beginning from pg, there are ‘h_frag_num’ physical fragments which
belong to the current vertical fragment. The inode_frag of the next (second) vertical
fragment will point to the first physical fragment of that vertical fragment, Prext first -

The inode_method of the first vertical fragment of the current class is set to the
index of the first method, mg, in inode_method_table. Tn this table, there are

‘v_frag_num’ vertically fragmented methods for the current class. The-inode_method of
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the next vertical fragment will point to the second method, Myecona , Of the class. Following
these rules, vf12 will be setup for all classes.

Although hfl2 shares the same tables as Vf12, num_table, inode_frag_table and
inode_method_table, the entries of hfi2 point to different positions in those tables.
Therefore, it is necessary to setup an independent second level index table for horizontal

fragments. The algorithm L2Index.horizontal_fragment is used to setup hf12°.

Algorithm L2Index.horizontal_fragment

const next-data-piece-location =1;
const num-table-unit= 3;
Jor each class do
Jor each horizontal fragment do
index.num_table -->num;
index.inode_frag_table --> inode _Jrag;
index.inode_frag_table + next-data-piece-location --> index.inode _Jrag_table;
index.inode_method_table --> inode_method:
end;
index.num_table + num-table-unit --> index.num_table;
index.inode_frag_table + (v_frag_num-1 ) *h_frag_num --> index.inode _frag_table;
index.inode_method_table + v_frag_num --> index.inode_method_table;

end.

In hf12, the setting of num entries follows the same rule as that in vfI2. Figure 5.5
shows the layout of the horizontal fragment index structure. The inode _frag field of the
current horizontal fragment points to a physical fragment in inode _frag_table, which is the
first physical fragment belonging to this horizontal fragment. The next physical fragment

belonging to this horizontal fragment can be located by skipping ‘h_frag_num’ physical

Y _frag_num, h_frag_num and obj_num in OSS are the same as they are in OSC.
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fragments. Each horizontal fragment, as mentioned above, also records only the index of
the first physical fragment belonging to this horizontal fragment. For the same reason, the
inode_method of each horizontal fragment just records the index of the first method of the
current class. Thus, the inode_method field of every horizontal fragment points to the
same position in inode_method_table for the same class. Each horizontal fragment owns
all the vertically fragmented methods of the class, from mge to mu, in
inode_method_table. If the position of mg is available, the next following methods will
be continually accessible via offsets.

The algorithm L2Index.object is used to setup a second level index table for
objects.

Algorithm L2Index.object

const num-table-unit= 3;
Jor each class do
Jor each object do
index.num_table --> num;
index.inode_obj_table --> inode_obj;
index.inode_obj_table + v_frag_num --> index.num_table;
index.inode_method_table --> inode_method;
end;
index.num_table + num-table-uni t --> index.num_table;
index.inode_method_table + v_frag_num --> index.inode_method_table;
end,

To construct 0l2, three first level index tables, num_table, inode_obj_table, and
inode_method_table are needed. Figure 5.6 shows the layout of the object index structure.
Since the tables, inode_obj_table, obj length_table and obj_offset_table have the same

indexes, there is no need to record obj_length_table and obj_offset_table in 0l2. Once an

100



OID| key
—

— : current pointer

B*-tree leaf

r'y

tree
pointer

pointer

data
pointer

key
pointer

-» : next pointer

num_table

v_{rag_num

h_frag_num

obj_num

ol2
inode_obj_table length offset
num
inode_obj —-———“_’T_—' Ofirst ] Ofirst | Ofirst
inode_method num
ne
Olast Olast Ofast
Onext fira]™ | Ouexe iy |1 Opews iy
inode_method_table
Mg
: v_frag_num
Mgt l
\ Mpext first

Figure 5.6 Object Index Tables

101



index of inode_obj_tabl is available, using the same index, the required data in
obj_length_table and obj_offset_table can be obtained.

In 02, again, setting num follows the same rules used in vfl2 and hfl2. Therefore,
for the three second level index tables, num is the same. There are two reasons that this
element is not factored out of the three tables and made independent. One is that keeping
num in each table makes the implementation logically clearer and also easier. The other is
that this scheme makes the three kinds of searching independent. Thus any fault occurring
in one table will not affect data searching in the other tables.

Each inode_attr in 012 is set to a certain index of inode_obj_table. Beginning from
this index (0fww), ‘v_frag_num’ contiguous inode-numbers all belong to this object. The
inode_attr of the next object will be set to the first following index, the index of Opext first -
That is, each inode_attr points to the first element of every v _frag_num elements in
inode_obj_table. Setting inode_method in 0l2 applies the same rule as that in hfl2.

Finally, three B*-trees will be built individually on each of the three second level
index tables to implement the top index structure for searching logical fragments (vertical
and horizontal) or objects. The algorithm FillBtree will setup the B*-trees and connect

them to vfI2, hfl2, and 0l2.

Algorithm FillBtree

Create a B*-tree for vertical fragments;
Jor each vertical fragment of all classes do

vertical fragment ID --> key pointer in a B*-tree leaf node;

Jfrag_I2_index of vertical fragments --> data pointer in the same B*-tree leaf node;
end;

Create a B*-tree for horizontal fragments;
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Jor each horizontal fragment of all clusses do
horizontal fragment ID --> key pointer in a B*-tree leaf node;
Jrag_12_index of horizontal fragments --> data pointer in the same B*-tree leaf node;
end;
Create a B*-tree for objects;
Jor each object of all classes do
object ID --> key pointer in a B*-tree leaf node;
obj_I2_index --> data pointer in the same B*-tree leaf node;

end,

Through the process of insertion (abstracted in Algorithm FillBtree), the B*-tree
key pointers are linked with FIDs/OIDs, and the data pointers with the indexes of num in
the three second level index tables (See Figure 5.4, Figure 5.5, and Figure 5.6). Two

examples are provided as follows to illustrate how the index system work.

Example 1.

Take the example of Figure 4.1. There is one class with 6 objects (04, Oy, O3,
04,05, Oe), 3 horizontal fragments (Fy,, Fiz, Fia), 2 vertical fragments (F,,, Fy;), and 6
physical fragments (pi, pz, ps, P4, Ps, pe). Figure 5.7 shows the logical and disk views of
the fragmented class. Its vertical fragment index tables and object index tables are given in

Figure 5.8 and Figure 5.9 respectively.

Example 2.
This example illustrates the situation with two classes (Cy, Cy). Class C; has 3
objects and is only horizontally fragmented into 2 horizontal fragments (Fy;, Fip). Thus C;

can only have 2 physical fragments (py, p12) which are the same as the two horizontal
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Figure 5.7 Example 1: Fragmented Class C. (a) A logical view of C with
its physical fragments. (b) A logical view of C with its objects. (c) A
disk view of allocated physical fragment files and method files
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Figure 5.9 Object Index Tables of Example 1.
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Figure 5.11 Horizontal Fragment Index Tables of Example 2
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Figure 5.12 Object Index Tables of Example 2.
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fragments. Class C, has 2 objects (Os, Oy)and it is only vertically fragmented. C, has 2
vertical fragments (F,,;, F.,), and thus it can only have 2 physical fragments (P21, p22) which
are the same as the two vertical fragments. Figure 5.10 shows the logical and disk view of
the two fragmented classes. Figure 5.11 gives the horizontal fragment index tables and

Figure 5.12 gives the object index tables of the two classes.

5.2.3 Data Search

Once the index structures are created, OSA can start satisfying data searches. The
search process determines the inode numbers (and, in the case of object lookup, lengths
and offsets corresponding to each inode) when given a fragment identifier or an object

identifier.

Algorithm Search

if vertical fragment ID then
Search vertical fragment B*-tree;
Search vertical fragment second level index table;
Search first level index tables inode _frag_table and inode_method_table;
Return a set of inode-numbers for the requested vertical fragment;
end;
if horizontal fragment ID then
Search horizontal fragment B+ tree;
Search horizontal fragment second level index table;
Search first level index tables inode _frag_table and inode_method_table;
Return a set of inode-numbers for the requested horizontal fragment,
end;
if object ID then
Search object B*-tree;

Search object second level index table;
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Search first level index tables inode_inode_table,inode_method_table, obj_length_table and
obj_offset_table;

Return a set of inode-numbers of the object attributes and methods, a set of the object's lengths and
offsets;

end.

Consider the processing required in searching for an object. Given an OID, OSA
uses the OID as a key pointer to search in the B*-tree to find the data pointer. Through
this data pointer, OSA then determines the position of the relevant num in 0l2. The next
element, inode_attr, points to an index indicating the location of the first required inode
number in inode_obj_table. Starting from this element, OSA takes ‘v _frag_num’, inode
numbers from inode_obj _table. Using the same index, the corresponding data in
obj_length_table and obj_offset_table will be obtained. The element following the
inode_attr is inode_method, which points to the location of the first inode number of the
methods belonging to this object. Starting from this inode number, OSA loads
‘v_frag_num’ consecutive method inode numbers. At this point, all the inode numbers of
the object and the relevant data (object lengths and offsets) have been obtained. This
information may then be used to locate the bytes composing the object. Searching a logical
fragment follows the rules shown in Figure 5.4 and Figure 5.5.

In Example 1 (see Figure 5.9), given an object identifier OID=3 (OID3), through
the B*-tree searching, the final key pointer will end up at certain location of the leaf level.
The data pointer associated with this key pointer then points to the 7th entry of 0/2. From
this entry, three contiguous entries provide three pointers, num, inode_obj, and
inode_method, which point to num_table, inode_obj_table, and inode_method_table

respectively. Since the inode_obj pointer points to the Sth entry of inode_obj_table, the
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physical fragment containing the first piece of the attributes of the requested object can be
located. Starting from the 5th entry, contiguous 2 entries will determine the entire
locations (inode number 3146 and 3149) of the physical fragments containing all the
attributes of the requested object. The information 2 (v_frag_num) is provided by
num_table which can be reached through the num pointer in 0l2. Since objects’ attributes
are blended into physical fragments, accessing the object needs the lengths and offsets of
the attributes in the provided physical fragment files with the inode numbers as 3146 and
3149. The length and offset data can be reached in obj_length_table and obj_offset_table
using the same entry numbers in inode_obj_table where 3146 and 3149 reside. Thus, the
attributes of the requested object (OID3) can be found at the physical fragment file (3146)
with length=19 and offset=0, and at the other physical fragment file (3149) with length=5
and offset=0. The inode_method pointer of o0l2 points to the first entry in
inode_method_table which contains the location of the methods. Starting from the first
entry, contiguously 2 entries provide the files with the inode numbers as 9617 and 9618
where the methods of the requested object (OID3) reside. Again, the information 2
(v_frag_num) is from num_table through the num pointer.

In Example 2 (see Figure 5.11), given a horizontal fragment identifier hFID=2
(hFID2), the data pointer at the B*-tree leaf level points to the 4th entry of hfI2. The next
entry provides the inode_frag pointer which points to the 2nd entry of inode _frag_table.
Through the num pointer at the 4th entry of hf12, the information of v _frag_num =1 can
be obtained at the Ist entry of num_table. Since only horizontal fragments exist

(v_frag_num = 1), the physical fragment file (inode number = 8413 ) alone in the 2nd
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entry of inode_frag_table provides the entire attributes of the requested horizontal
fragment. For the same reason, the 1st entry of inode_method_table which is reached
through inode-method pointer, provides the location ( inode number = 2010) of the entire

methods of the requested horizontal fragment.
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Chapter 6

Distribution

To provide a very large data space, a persistent object store must eventually be
distributed so that many sites may share the storage load. Distribution transparency
provides a uniform mechanism for data operation both in local and remote nodes. This
permits the distributed stores to be considered a single large storage system. This fits the
concept of persistence transparency because all the physical properties, including
placement of data, replication of data and the failure of nodes, are hidden from users.

A “bottom-up” approach may be used to extend the presented single-site object
store system into a truly distributed peer-to-peer system, which, unlike a traditional client-
server distributed system, does not have a single, centralized server. Every node on the
network is capable of acting as a server to the other nodes, and the information stored in
one node can be freely accessed by the other nodes. In such a system, information and

resources can be easily shared among different nodes.
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Distributed systems involve many complex and inter-related issues. In this chapter,
only those issues relevant to extending the centralized object store into a distributed one

are discussed.

6.1 Operating System Support

Most existing persistent systems have been developed above conventional
architectures or operating systems which have little support for efficient object-oriented
programming in a distributed environment. The described object store is constructed on
top of Mach, a modern operating system which provides all the underlying mechanisms
needed to support shared, persistent objects[Mil93]. The advanced programming features
of Mach such as kernel threads, IPC, and especially its virtual memory management which
allows local, single-copy sharing of code and data, object faulting and transparent on-
demand object access, make the implementation extensible to a distributed system.

A memory manager under Mach, can serve as a Distributed Shared Memory
(DSM) manager [Tev89, Bar90, Tan92, Boy93] which handles references to the shared
pages of virtual memory. A shared page is either readable or writable. The readable shared
pages may have a number of replicated copies on different machines, while the writable
ones have only one copy. If a thread on a machine references a readable page, the DSM
server will map a copy into the machine’s memory for reading. If a writable page is
referenced, the DSM server will request the page from the kernel on the machine holding
the page and then map it into the referencing thread’s memory. During these procedures, if

the requested page is not in the memory, a page fault will be sent to the kernel. The kernel
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then employs the external memory manager (the pager) to map the page from secondary
storage.

Using the Mach operating system, a distributed shared virtual memory (DSVM)
can be built which extends the concept of a single, large, shared, persistent virtual object
space to tasks scattered across the different nodes in a distributed system [Mat95]. On
each node, there is a physically independent object storage system to support the locally
stored subset of the shared virtual memory. Together, all the object stores on the
distributed nodes support a uniform DSVM system. With the same address space visible
to all tasks on all nodes, this DSVM system can be viewed as a one-world model [Gra93]
upon which user applications execute. A persistent object in an object store on any node is
then regarded as a global persistent object and can be referenced at a pre-defined location
in the DSVM by all nodes. Each object identifier provided by the object storage system

can be uniquely mapped to a virtual memory address since [Gra93, Mat95]:

* virtual addresses within a shared virtual memory are system-wide and
consistent, and
e the shared memory address space is never destroyed and is valid for all tasks

across space and time.

Mach, running on 64-bit processors, can address 25 bytes of virtual memory. This
huge virtual address space, with the support of distributed object stores, provides users an
ideal persistent object-oriented programming environment. Since each object uniquely

corresponds to a virtual memory address, objects can be referenced in terms of their

116



virtual memory addresses thereby avoiding the overhead normally required to swizzle
object references. When a user application from one node needs an object, it simply
accesses the virtual memory address where the object resides in the DSVM. The DSM
server running on Mach will perform the data mapping to the requesting node. If the
requested object is not cached in a corresponding physical memory, a page fault will
occur, and a pager will be called to page in the requested data from a local or a remote
object store. The pager is, of course, also responsible for paging out the modified data to a
local or remote object store.

Logically, each object resides in the virtual memory as a single independent unit
with a unique virtual memory address as its object identifier. Physically, each object is
blended in some fragments which reside in a certain object store. When an object is
accessed through its virtual memory address, the system may choose to fetch the
fragments involving that object into memory. This supports pre-fetching of related data

since the fragments may contain data that the methods of the object need to access.

6.2 Distributed Fragment Allocation

In addition to supporting greater storage capacity, distribution is introduced to
enhance overall system performance. There are two major factors that affect the
performance of the applications in a distributed database system as described below

([Kar94)):

® Latency and bandwidth of disk /O operations on each local site.

117



¢ Latency and bandwidth of data communication between sites.

In a distributed objectbase system, the above two issues can be dealt with as follows:

¢ Fragment the classes, and

* Allocate the resulting fragments on to various nodes appropriately.

The process of fragmentation determines the appropriate units of data for distribution.
This can be done in an object-oriented environment by clustering related data in classes
into groups based on class membership and analysis of data access patterns. Fragmentation
is aimed at reducing the amount of irrelevant data accessed, and thus reducing the number
of necessary disk I/O’s. Distribution enables the effectiveness of class fragmentation. As
discussed in Chapter 3, using class fragmentation as an object clustering scheme benefits a
distributed system in many ways. This is the major reason for the object store to support
fragments.

Fragment allocation [Kar94, Sen95] is concerned with the placement of the
fragments onto the distributed nodes in such a way that the cost of communication among
different nodes, the cost of accessing fragments, and the cost of updating fragments and
their replicated copies on the other nodes are minimized. The problem of data allocation in
a distributed environment has not been resolved so far. Karlapalem, et al. [Kar94] present
some allocation algorithms which is the first work on fragment allocation in distributed
object-oriented systems. The fragment allocation strategies required in a distributed object

store system should follow the criteria described below:
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Allocation should place the fragments at the nodes from which they will be
most frequently invoked. For fragments involving complex methods which
invoke other methods, the invocation sequence should be considered in the
allocation process.

Fragments involving restricted access' and shared access® may have replicated
copies at each of the nodes where they are frequently referenced.

If the location of the methods is fixed, the fragments that involve those
methods should be allocated at nodes based on the type of processing being
done on the objects the methods access. If a complex object is accessed and
then modified frequently, the fragments involving the component objects of
that complex objects should be placed at the same node.

If a complex object is accessed frequently from a node, the fragments involving
the data belonging to that object may need to be allocated at that node.

If inheritance is used, the fragments belonging to the super classes from which
an instance variable inherits an attribute may need to be allocated at the same

node with the fragment involving that instance variable.

6.3 Global Data Structures

After logical fragments are allocated to all the distributed nodes, building a local

' A setof objects O has the restricted access property if these objects are referenced by a restricted set of
other objects R, via instance variables. Whenever the set of objects R is accessed, the set of objects O may
also be accessed.
2 A setif objects O has the shared access property if they can be referenced by any other object as an
instance variable.
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object store on each node may begin. The allocated logical fragments are first decomposed
into physical fragments on a per node basis, and then the physical fragments are allocated
to the local secondary storage. These procedures follow the same rules as those described
in Chapter 4 and 5. However, building the global data structures for the object stores in a

distributed system introduces some new considerations.

6.3.1 Global FIDs and OIDs

A persistent object in any object store of the distributed system must be persistent
and consistent in the global environment. Thus, both the formats of an object identifier
and a fragment identifier from the centralized object store must be extended with some
distribution information. With respect to the conceptual object identifiers and the
conceptual fragment identifiers, the new restriction is that the numbers associated with
them should be not only unique to the local node, but also unique to the whole system.
This means the conceptual identifiers for objects and fragments must be created uniformly
and globally. One approach to this problem is to associate each conceptual object
identifier with one and only one virtual memory address in the DSVM [Gra93], as was
discussed earlier. This scheme also provides distribution transparency because such
identifiers hide the physical locations of objects or fragments from users.

With respect to the internal object identifier and internal fragment identifier’, some
new information must be added. A field indicating the location of the node on which the

object or the fragment resides is needed. The mappings required between conceptual

2 Fragment identifiers are still required at the level of object store management.
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identifiers and internal identifiers for both fragments and objects can be described by the

following:

FID = {#node, #controller, #disk, inode numbers of the physical fragments };
OID = {#node, #controller, #disk, inode numbers of the physical fragments,

the object segment lengths, and the segment offsets in the files}.

6.3.2 A Global Directory of Objects

As discussed in the previous chapters, each object store has an index system (Data
Dictionary, see Chapter 4). Given an OID or a FID, using the index system, the store
should be able to return a set of inode numbers and relevant information for locating an
object or logical fragment. In the distributed system, the index systems of different object
stores on all the nodes are united together to form a global index system, called the Global
Directory of Objects (the GDO) [Mat95]. Given any global OID, or FID, the GDO will
return the corresponding information for locating the requested object or fragment. Since
the system is a peer-to-peer distributed system, any failure of a single node must not affect
data manipulation among the other nodes. With the recovery functionality of the Data
Dictionary as discussed in previous chapters, a local object store suffering a system failure
shoﬁld be able to be restored quickly. Constructed with care in such an environment, the
GDO as a whole has certain reliability.

The GDO can be managed in different ways as described by Mathew et al.

[Mat95]. Perhaps the simplest way is to keep the original index system belonging to an
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object store on its own node. This scheme can be viewed as a natural partition of the
global GDO across the distributed nodes. The reliability and the consistency of the GDO is
maintained by the reliability and consistency provided by each Data Dictionary on the
nodes. Although direct and easy to implement, this scheme has a serious disadvantage. If
on one node, an object is requested which cannot be found through the local index system,
then, in the worst case, the server of the node will have to inquire with all other local
index systems on the other nodes to locate the object. This scheme can quickly cause
excessive communication overhead.

Another option is to extend each local index system to reflect the whole GDO.
That is, each node has a full, replicated copy of the GDO. This scheme enables data
searching to be carried out locally. It greatly reduces the network traffic resulting from
index services and speeds up the location of objects. However, this scheme may make it
difficult to maintain the consistency of the GDO when insertion, deletion and migration of
GDO entries are involved. Every update of the GDO will cause modifications on all of the
nodes and induce related network traffic. In addition, this scheme increases the storage
overhead needed to maintain index systems, because keeping a full GDO at every node
consumes a great amount of storage in the system.

A balanced scheme between the above two is a partitioned GDO with limited
replication [Mat95]. This scheme extends the local index system to a certain degree. On
each node, the local object store possesses some portions of all index systems including
those originally created in the other object stores. As a result, the distributed object stores

can be organized into a number of groups in terms of their index systems. Each group has
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a totally different portion of the GDO, while inside each group, all the object stores have
the same portion of the GDO which is an extended index system based on their locally
created ones. This scheme keeps the advantages of the above two schemes and avoids the
disadvantages to some extent. It is still relatively easy to implement and, when combined
with efficient allocation strategies (e.g. allocating the related fragments in the same group
where object stores have the same portion of the GDO), the performance of data retrieval
can be greatly enhanced. Although the problem of the GDO consistency still exists, it can
be limited by the use of a reasonable degree of replication.

As discussed in the previous chapters, the index structures of the object store are
dynamically created when the system restores from a system failure or a shut-down
operation. Therefore, each GDO portion in a distributed system is also created
dynamically. The reasons that the dynamic scheme is used instead of storing the GDO

portion on its local disk and loading it to the memory when the system starts include:

o The use of the B*-tree, as the top level index structure of a GDO fits a dynamic
scheme much better. It is complex to store the B*-tree structure on disk.

® The dynamic scheme avoids the work of conventing the GDO disk format to
its memory format which would otherwise increase the GDO creation time.

e The dynamic scheme greatly reduces disk I/O which is slower than memory
access since the dynamic scheme only needs to load the first level index

structure of the GDO from disk to memory.
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® Because each node supports only a portion of the GDO, the B*-tree and the
other two levels of index tables should not be very large. Thus it will not take a
long time to create the GDO on any given node.

¢ The dynamic scheme naturally supports the extension of the static object store

system into a dynamic one in the future.

In summary, after fragments are allocated to each network node, the system will
provide transparent access to physically distributed local object stores (LOSs). User
applications are based on a Global Conceptual Persistent System which is defined on a
Distributed Shared Virtual Memory (DSVM). Accessing objects in the DSVM is
conceptually through a single version of the GDO which is physically partitioned to
different groups of local object stores. In the same group, each object store possesses a
copy of the same portion of the GDO which is different from that of the other groups. The

system architecture for the GDO’s implementation is shown in Figure 6.1.
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Figure 6.1 Architecture of a Distributed Objectbase System system
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Chapter 7

Conclusions

This Chapter will summarize the main contributions of the research work

presented in the dissertation. Further, it will discuss possible future work in five directions:

Implementation support for class inheritance.
Clustering techniques.

A dynamic distributed system.

User transactions.

Query systems.

7.1 Summary

The persistent storage of objects provides programmers with data manipulation

capability at the level of programming languages without the need for explicit storage

management. Object store support is essential in persistent object-oriented programming
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and object-oriented database management systems. In this dissertation, a study of the basic
concepts and requirements related to persistent object stores was undertaken. In
particular, a detailed study of the design and implementation of an object store prototype
was presented.

Supporting class fragmentation in the object store is a special feature which
distinguishes the presented object store from other existing object stores. Object
clustering, which determines the data storage format and physical storage units in the
object store, is derived using the class fragmentation approach. Fragmentation promises to
enhance application performance by reducing the amount of irrelevant data accessed and
the amount of data transferred unnecessarily between distributed sites. Supporting
fragmentation enables the object store to accommodate the object-oriented features of
encapsulation, inheritance, and aggregation.

File systems are the most commonly used strategy to store and retrieve persistent
data treated as a series of untyped bytes. Since object models have their own data
semantics and data operations, new features should be added to a file system to develop an
object store. The described prototype employs parts of the Berkeley Unix FFS and stores
fragments/objects in a way which tries to keep related data as physically close together as
possible. In addition, fragment/object index structures are constructed and function
together with the FFS to provide “naming” services and to manage the object store.

The main features of the presented object store are the following:

e Persistence
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The major function of the object store is to keep objects persistent and accessible.
Persistence is achieved by using the FFS to store fragments and their access
structures. Every object/fragment, together with its object/fragment identifier is
persistent in the object store. Persistence enhances usage simplicity.

Correcmess

Prototype testing shows that, given any object/fragment identifier, the object store
always returns the corresponding object/fragment correctly. As such objects and
logical fragments are reconstructable from their storage representations. No
attempt at formal verification was made.

Design Simplicity

The strategy of using the FFS reduces the complexity of the design and
implementation of the object store. Object store creation is straightforward and
object/fragment lookup is easy to use.

Efficiency

Several points contribute to the efficiency of the object store. They are as follows:

e Advanced architecture - Built directly on the advanced Mach microkemel, the
object store will achieve better performance by avoiding unnecessary operating
system overhead.

® 64 bit addressing - Availability of 64-bit addressing eliminates the effort of
certain object management functions which usually have to be considered when

constructing an object store.
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* Fragmentation approach - The fragmentation approach [Eze94a, Eze94b,

Eze95] will result in improved performance in a distributed system.

Fast data lookup - Using inode numbers, instead of the pathname-based
naming system, to retrieve objects/fragments will decrease the overhead of file
access. The simplicity of the index structures contributes to the efficiency of
data lookup.

Fast recovery - The strategy of keeping key index structures persistent allows

the object store to recover quickly from software failures.

Flexibility

* Auvailability of two data interfaces - The object store provides an interface for

accessing objects and an interface for accessing fragments. This strategy is
designed to meet the requirements of different applications.

An adjustable file system - The FFS parameters may be adjusted based on
empirical analysis and testing to find the best possible values for object storage

for different application requirements.

Extensibility

The object store prototype provides a basis for a distributed object base system.
The idea of using the Mach microkernel and fragmentation addresses a number of
distributed system issues. The data structures of the centralized object store
prototype can be extended to suit a distributed object base system. Avoiding

sophisticated high level features enables this prototype to be further developed and
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thus supports either object-oriented databases or persistent object-oriented
programming languages. Finally, this prototype may be extended to support other

forms of object grouping based on locality.

7.2 Future Work

Based on the successful centralized prototype of the object store, further research
will aim at improving and developing it into a more practical system. Five possible

directions for future work will be discussed in the following sections.

7.2.1 Implementation Support for Class Inheritance

Perhaps the most obvious future work is to extend the implementation to support
class inheritance. To do this, in addition to class fragmentation information, the object
store creation code requires the class hierarchy relationships as input. Each class should be
assigned a record which specifies the class’ position in the class hierarchy. The
implementation will allocate the fragments belonging to a class to a subdirectory under its
superclass’ directory. In this way, the FFS layout policy will help to keep the objects with
inheritance relationships physically as close as possible on the disk.

For the multiple inheritance case, the class inheritance hierarchy has to fit the

filesystem tree hierarchy'. For this reason, the fragments of a class which has more than

! Note that there is no apparent FES optimization for file links which might otherwise better support
multiple inheritance.
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one superclass, should be allocated to the subtree of one of the superclasses from which,

compared with the other superclasses, the most information will be referenced.

7.2.2 Clustering Techniques

The clustering technique used in the object store is based on class
fragmentation
[Eze95]. In spite of its advantages, it is not the only possible strategy for exploiting object
semantics in clustering. Because of its important effect on performance, clustering
techniques have been used by different object base systems [Ber94]. In the future, one
consideration in clustering may be aggregation relationships [Bin91, Sch77]. This
approach groups multiple hierarchic segments together and as a result, objects’ sub-
components can be stored immediately following them. This benefits queries that access
an object and require navigation through its aggregation hierarchy [Ber94]. Another
alternative is to cluster together larger objects as a “fragment” [Bil92, 0li94] if the object
store frequently handles objects which have size greater than the page size. Still another
consideration is to apply code profiling to an existing object store to determine clustering
relations. The system then works out a clustering scheme which provide the minimum
access cost, based on a statistical record of application access requests and access cost
[19,20]. Finally, a hybrid clustering method may be adopted which takes the good points

from different clustering techniques.
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7.2.3 A Dynamic Distributed System

Currently the object store is created statically. This is because fragmentation
information is generated statically. Although simpler, a static system is not flexible
enough. For example, it can not handle any newly created objects. Thus once dynamic
fragmentation is understood and practical algorithms have been developed, this object
store should be extended to be more dynamic.

In the design of the prototype, some strategies appropriate for dynamic systems
such as using the FFS and suitable data addressing approaches, were selected. The FFS is
designed to support a dynamic file system. The FFS allows files to grow and shrink, which
in turn allows objects/fragments to be created, modified, and deleted at any time. Since
OIDs/FIDs are used as the indexes of object/fragment tables, objects/fragments can be
addressed indirectly. This allows an object/fragment to be relocated without changing its

unique logical address (OID/FID) in the object store.

7.2.4 User Transactions

To tolerate hardware and system failures, logging is widely used as a recovery
method especially in a transaction processing system. In future, the object store may be re-
implemented using local log-structured file system, and may log operations currently
performed the FFS [Ros91]. There are two features of the log-structured file system that

will make it desirable for transaction processing [Sel93]:

® Alarge number of dirty pages are written contiguously.
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® The file system is updated in a “no-overwrite” fashion so that no separate log

file is required.

Following Seltzer’s work [Sel93], a transaction system can be embedded in the log-
structured file system to support user-level transactions. Furthermore, in a distributed
system a striped network file system such as Zebra [Har93] can be applied to the log-
structured file systems. The Zebra architecture promises to provide cost-effective,
scalable, highly-available network file System that can support high throu ghput file service.
Combining striping and log-structuring may provide high performance, recoverable,

distributed storage for object store implementations.

7.2.5 Query Systems

The object store can be used to support a persistent object-oriented programming
system or an object-oriented database system. In the latter case, a query system is very
important to provide sufficient functionality for users to retrieve the information in the
object store. For a persistent object-oriented programming system, some query facilities
may be embedded in the programming languages [Han93] though this is uncommon. For
an object-oriented database system, a query interface using an SQL-like user language
with formal semantics defined by object calculus and object algebra [Pet94] may be
considered. An object store must provide arbitrarily complex search conditions and
support efficient access to not only a single object, but also to sets of objects belonging to

one or more classes to support any given queries. Class fragments implicitly support
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efficient access to specific sets of objects. Incorporating explicit support for declarative

queries is another area of future research.
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