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Abstract

Persistent object systems attempt to hide the traditional distinction be¡ween short-
term and long-term storage from application programmers. There are many advantages
when a programmer can operate at a level of abstraction in which such distinction does
not exist' A persistent object system depends upon an object store, in part, to provide
persistence.

To achieve good performance, an object store must keep related objects physicnlly
close to each other in secondary storage. In an object system, class fragmentation, which
is performed according to a query model of class accesses, may be used as the clustering
æchnique to group related data together. class fragmentation based clustering will reduce
the amount of irrelevant data accessed at a local siæ and the amount of data transferred
unnecessarily between distributed siæs.

Most existing object stores are built on conventional operating systems or
architectures which are inappropriate bases for persistent object systems. The object store
presented in this thesis is built directly on top of the Mach microkernel in a 64-bit
addressing space- The object store implementation re-uses part of the Berkeley unix Fast
File Sysæm (FFS) code. This strategy decreases the imprementation complexity and takes
advantage of the Fps in optimizing disk allocation. supported by these advanced
architectures, the object store will provide better performance than conventional stores.
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Chapter 1

Introduction

Persistent object-oriented programming, combined with distribution technology, is

increasingly being recognized as valuable for supporting large, extensible, flexible, and

long-lived software. [n recent years, considerable research has been devoted to the

investigation of the concept of persisænce [Atk83, , Mor90, Khog3, Atkg4, Bilg4, ozsg|]

and its application to the integration of danbases and programming languages, both in

object-oriented systems [Mai86, And87, Deu90, Bar9z, Bet9z, Bro92, Ngu92, yau92,

Bil93, Cas93, Han93, Mil93, Sin93, Str93, Che94l and distribuæd systems lBer92,Tri92,

Yau92, Cas93, Mil93, Sou93, Che94l.

A persistent object system provides an environment where objects are allowed to

persist for an arbitrary length of time, possibly longer than the life time of the creating

program' and where they can be accessed and manipulated in a uniform manner. There are

considerable advantages when programmers can operate at a level of abstraction in which



there is no distinction between short-term and long-term daa storage. In such systems,
since programmers do not have to implement the explicit loading and saving of data,
program development is easier' Additionally, there is no need for the explicit conversion of
data from one (in-memory) format to another (on_disk) format.

A persistent object system depends on an obiect store te provide storage for
objects' The development of an advanced object store is the subject of this thesis.

1.1 MotivatÍon

An object store is used to add the features of persistence and enhanced sharing to
language defined objects. It provides persistent storage (on disk or other form of non_

volatile secondary memory) together with facilities for manipulating and organizing the
stored objects' Existing implementations of object stores typically suffer from two
inadequacies; implement¿tion over expensive operating system bases and lack of support
for exploiting object semantics. The proposed object store addresses both these issues.

Support for the efficient storage of, and access to, objects in a persistent object
system is crucial to good performance in the resulting system. conventionar ohject-
oriented programming systems which use traditional f,rle sysfems do not provide adequate

support for storing and sharing the objects used in application programs. There has been

much work undertaken on both centralized and, to a lesser extent, distribuæd persistent

object stores [car90, Deu90, Kim9,a, Eli90, Brog9, Ber92, Bro92, cas93, Mil93,
Mun93, Sou93, OIig4,Sub94, yan94l.



Most existing object stores are constructed on top of conventional operating

systems such as Unix. Such conventional architectures provide a less than ideal base for

persistent object systems because of their monolithic structure and heavy weight support

for network communication. The recent move towards microkernel architectures has had

the positive effect of improving the situation. The Mach [Tev89, Bar90, Tan92, Boy93]

operating system, for example, is explicitly targeted at distributed and multiprocessor

environments- Furthermore, its microkernel structure provides only the minimal required

system support and does so at the smallest possible cost. Built above Mach, a distributed

persisænt object system can be expected to achieve better performance. For this reason,

the proposed object store will be constructed on top of the bare Mach microkernel.

To obtain better performance, the object store must also keep related objects

physically as close as possible to each other in secondary storage thus exploiting a form of

locality of reference. To accomplish this, some form of object clustering is required

whereby related objects are placed together in a single "cluster". One way to define the

membership in such clusters is through the use of fragmentation[Kar9 4, Eze94a, Eze94b,

Eze95l. Based on a query model of class accesses, fragmentation breaks a class (the set of

all objects instantiated from a given object type) into a collection of fragments with only a

subset of the original class's components. Each fragment defines a "cluster,, and the parts

of a fragment are co-located on disk. Similarly, fragments which are strongly related to

one another may also be stored close to one another. In this way, both the time required to

access objects in atty given query and, because of the way fragmentation is done, also the

amount of irrelevant data accessed in each query, are minimized.



Each storage unit in the proposed object store will contain a distinct class

fragment, rather than an individual object. Supporting fragments allows the object store to

have better overall efficiency in both centralized, and particularly, distributed

environments.

1.2 Overview of the Proposed Object Store

The implemenæd object store will serve as the initial persistence mechanism for a

large ongoing research project investigating persisænt and distributed objects supported

via the use of distribuæd shared virtual memory. The project's goal is to support a

persistent, distributed object system in a single shared 64-bit distributed virtual addre.ss

space. The concept of using a single shared address space is based on the work of Chase

et al' [Cha92' Cha94] at the University of Washington. In addition to rhe initial ¿esign and

implementation of the object store, extensions to support distribuúon are considered,

although not implemented. The implement¿tion environment for the proposed object store

is the bare Mach microkernel.

File systems are one of the most commonly used data management systems. To

decrease the implementation complexity and take advantage of the extensive work done

previously in optimizing disk access time within file systems, the proposed object store

will be built re-using as much existing code as possible.

One of the most widely used file systems, the Berkeley Unix Fast File Sysæm

(FFS) [Lef89], rvill be adopted as the framework for storage management in the objecr

store. Berkeley Unix which contains the modified 4.3 BSD implementation of the FFS can



be emulated above the Mach microkemel. This technique not only provides Unix

compatibility on Mach, but also enhanced performance which exceeds the performance of

the original 4.3 BSD implementation [Tev89]. Elements of the FFS will be used to

implement the proposed object store to take advantage of these benefits and to avoid re-

inventing the wheel.

A class can be fragmented vertically, horizontally, or in a hybrid way l9ze95l.

Such fragmentation generates logical fragments which, it is assumed, will normally be

referenced in their entirety by applications. Since for the same class, horizontal fragments

and vertical fragments overlap, these logical fragments need to be further decomposed into

physical fragments. Using physical fragments as storage units, there is little data

redundancy in the store. Parts of the FFS are suitable for storing physical fragments.

The inode and block structures of the FFS can be applied to the storage of physical

fragments- Each physical fragment will be assigned one inode number and stored as one or

more associated data blocks. Thus, the implementation will re-use much of the low-Ievel

code from the FFS. Object specific higher level code will then be added to tailor the FFS

to class fragment storage. Access to physical fragments using the FFS code in the

implementation of the object store will avoid the traditional costs associated with making

Unix system calls since Mach is specifically designed to effìciently support non-kemel

services such as file sysæms.

Two levels of data access will be provided to the object store user. The first is

logical fragment access which is for class-based queries which will take advantage of the



co-location of logical fragments and their contents when it is advantageous, to do so. The

second form of access corresponds to individual object access as would be likely to occur

in inæractive design environments. Accordingly, the object store implementation will

provide n¡¡o APIs (Application Programming Interfaces), one for each form of access.

Between the storage mechanism (inodes) and the ApIs, index structures are built

within specific files to map logical fragments and objects to the necessary sets of physicat

fragments (or parts thereof). The index structures wilt be implemented using B*-trees.

L.3 Model Assumptions

The design and implementation of the proposecl object store is affected by certain

assumptions about the underlying objects ancl classes. These include a set of objecr

oriented concepts and a set of class fragmentation concepts.

1.3.1 Object Modet

In constructing the object model, the definitions of core object modeling concepts

given by Kim [Kim90a] are followed. These a¡e informally defined below:

Definition l'l obiects and obiect klentifiers. Any real-worlcl entity modeled in the

system is an objec¡r and has an associated system-wide unique identifrer,its ,,orD,,.

6

I This applies to class based queries.



Definition l'2 Attríbutes and Methotls. An object has one or more nttributes,which store

its current state, and one or moîe methods whichoperate on the values of the attributes to

accomplish state transitions.

Definition l'3 Encttpsulation and Message Passing. Messages are sent to an object to

indirectly manipulate the values of the ctttributes by invoking the methods encapsulated in

the object' There is no way to access an object except through the public method inferface

specified for it.

Definition l'4 class. All objects which sharc the same attribure types and set of methods

are grouped into a ckts,ç- An object belongs to only one class as an instance of it. Each

class is uniquely identified by a system-wide unique identifier, its ,,cID,,.

Definition l'5 class Hierarchy and Inheritance- Theclasses in a system form a hierarchy

such that, for a class C and a set of lower-level '3ub" classes {si } based on c, a class in

the set {si } is said to be a specialization of the class c, and conversely the class c is said

to be the generalization of the classes in the set {^si}. The classes in {.çr} are subcla.çses of

the class C; and the class c is a supercla,rs of the classes in {st}. Any class in {.st} inherits

all the attributes and methods of the class c and may add additional attributes ancl

methods or redefine existing ones. All attributes and methods defined for a class C arc
inheriæd into all its subclasses transitively. An instance of a class S is also logically an

insta¡rce of all superclasses of 
^S.

1.3.2 Fragment Model

In constructing the fragment model, based on the definitions of class fragmentation



concepts given by Ezeife and Barker [Eze95f, three tighter defrnitions are provided below.

Given aclass c= ( K,A, M, /) where K is the class identifier (i.e. cID), A theset of

attributes, Mthe setof methods, andlisthesetof objectsinstantiatedusingA andM,

three types of fragmentation are defined on a class. A' denotes a subset of A. M'denotes a

subset of M. ^I'denotes a subset of .L

Definition 1.6 Horizontal Frctgmentation- A horizontal fragmen t, F¡ = ( K, A, M, I, ) of

a class contains its class identifier, and all attributes and methods of the class but only

some of its instance objects ( I' 
= 

1 ) with the restriction that for any two horizontal

fragments F¡¡¡¡ and F¡¡.¡¡ of rhe class, Fn¡ 
^ Flr(.i) = Ø, wherc i*j .

Definition l-7 vertical Fragmentation. Each vertical fragment Fv = (K, A,, M,, I ) of a

class contains its class identifier, and all of its inst¿nce objects for only some of its

methods (M' çM) and some of its attributes (A' ÇA) with the restriction that for any

two vertical fragments Fv¡¡¡ and Fv¡¡¡ of rhe class, Fv¡¡¡ n p0) 
= Ø, where i+i -

Definition 1.8 Hybrid Fragmentation. Each hybrid fragment Frh = (K, A,, M,, I, ) of a

class contains its class identifîer, and some of its instance objects ( f cI ) for only some

of its methods ( M' c M ), and some of its attributes ( A' c. A) with the restriction that fbr

any two hybrid fragmenrs F'n(Ð and Fv¡¡.¡¡of the crass, Fv¿¡ i) ^ 
Fvh0) _ Ø, where i+j .

1.4 Thesis Organization

The organization of the rest of this thesis is as follows_ Background material as



well as related work is discussed in chapter 2. chapter 3 presents an evaluation of the

problems dealt with in the object store. Chapter 4 describes the object store design, while

chapter 5 addresses the implementâtion issues for the object store. chapter 6 discusses

considerations for extending the centralized object store into a distribuæd system. Finally,

chapter 7 presents conclusions, and suggests directions for futurc work.



Chapter 2

Background and Related Work

In this chapter, the background material used to support the persistent object

system, including file systems and the Mach operating system, will be discussed. Recent

research work on object stores will also be reviewed.

2.1 File Systems

To achieve persistence of the state of objects in programming

environments, operating system files are commonly used to store and

values. when using files, the responsibility for providing persistence rests

programmer who must code explicit file operations.

languages aLnd

retrieve object

with the object

10



Files are collections of logically related information stored on a mass storage

device such as a disk- The file system is the organizational framework for the collection of

all such files. The following review of conventional file systems is based on [Tan9z,

Pet82, Lef89, Man9l, Gla93l.

z.|.LGeneral Concepts

Logical File Concepts

For users' the file system is the most visible part of an operating system. A f,ile

system is usually a collection of files and directories (repositories for collections of files)

together with some operations on them. A f,rle may be considered to be an abstract data

type (ADT) defined and implemented by the operating system. From the user,s viewpoint,

some aspects normally attributed to files include:

' Fíle nam.ing. when a file is created, it is assigned a unique name. The file and

its name still exist even after the process which created it ærminates (i.e.

persistence)- In this way the file can be accessed by other processes through its

name_

File structure- There are normally three kinds of file structures: byte sequence,

record sequence, and index. A byte sequence hle is an unstructured sequence

of bytes. A record hle is a sequence of records (specific, typed collections of

bytes) with certain lengths and internal structures. An indexed file has a logical
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tree structure which provides direct access to records, each of which contains a

key field in a fixed position.

File type. Many operating systems support different types of files. This permits

efficient and varied access to files for different purposes. For example, unix

[Rit74, Ker8l] supports regular fires, which contain data, rJírectories which

are used for maintaining the structure of the file system, character special files

which are ao related files, and brock speciar fires which are used to model

disks.

' File access. Primarily there are two kinds of file access: sequential and random

access.

FiIe axributes- In addition to file name and contents, a f,rle often has other

attributes, such as current file size, access rights for the file, and so on.

File operations- The file system provides certain specific operations to allow

users to create, modify, delete, and access files.

Directories, as special system fîles, are used to keep track of and group other hles.

Their primary function is to Iocate the starting point of files. Most operating sysrems

support hierarchical directory systems. When the file system is organized as a directory

tree, a pathname is needed to specify a certain f,rle and each directory contains <pathname,

disk location> pairs. Users can use system calls such as create, delete, opendir, rename,

link, and so on to operate on directories.
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Hardware Aspects of a File System

A frle system provides long-term storage with files usually being stored

disksr. Figure 2.1 is a diagram of a typical disk architecture:

on hard

rearVwrite hea<J

Figure 2.1 Disk Architecture

A disk is normally divided into concentric rings called tracks, and then further

divided into areas called sectors. Each intersection of sectors and tracks is called a block,

which is the basic unit of disk storage. A readTwrite head moves in and out on an arïn.

Information is accessed by the head when the disk rotates underneath it. The ¿/¿rÈ

controller drives the read/write head in response to instructions from the operating

system's disk device driver. Most disk drives actually contain several platters as shown in

Figure 2'2. with this kind of disk, the collection of tracks in the same concentric ring is

called a cylinder.

' Files can also be stored on other media such as tape and floppy disks, etc.
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one head per surface

Figure 2.2 
^ 

Multi-Platter Disk

fmplementation Issues

The major problem in implementing a file system is to map the logical f,rle system

structure onto the physical storage devices (disks). The physical record (block) size of

devices is normally the size of a sector, but can be the size of a track, a cylinder, or the

size of a page in a paging system. Block size is the unit of data transfer between memory

and disk- Since the physical block size of the device and the logical record size may not be

the same, most f,lle systems block logical records into physical records. File systems must

also keep track of free disk blocks. There are two common methods for a file system to
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keep track of the free space in disk blocks. One is to hold the free disk blocks on a linked

list The other is to use a bit map. In the bit map method, 'n' bits are used for a n-block

disk. Free blocks are represented by '1's in the map, while allocated blocks are

represented by '0's.

Another important issue in implementing file storage is how to allocate the f,rles to

the free areas on disk. The simplest allocation scheme is to assign files to contiguous free

blocks. This scheme is easy to implement and provides fast access. However, contiguous

allocation has certain disadvantages. Specifically, the disk is increasingly fragmented due

to deleting files and there is a strict requirement that hle size must be known in advance.

To avoid these disadvantages, many systems use non-contiguous allocation schemes, such

as linked list allocation and indexes. To allow dynamic file growth and random access,

Unix file systems use the i-node (index-node) method [Lef89]. Anorher typical f,rle

allocation structure is the B-tree. Such a system provides mulú-level index structure with

log search time and data stored at all tree levels. Since this scheme provides efficient

manipulation algorithms and efficient utilization of space, it is widely used for representing

files. os/370 MVS suppoß this scheme among orhers tcalg2l.

In a system supporting directories, the format of the directory entries must be

considered. A directory entry gives the information needed to find the disk blocks of the

corresponding file. Different systems have different directory entry formats. For example,

in MS-DOS [Tan92] directory entries are 32 bytes long and contain rhe f,rle name,

attributes, and the number (i.e. address) of the first data block on disk. In the original Unix
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file system, the directory entry format was 16 bytes long with the first 2 bytes for the i-

node number and the remaining14 bytes for the filename.

The key to increasing the perforrnance of a file system is to reduce disk access time

because access to disk is much slower than access to memory. one common technique is

to use a block cache (also known as a buffer cache) in memory. Recently used blocks are

kept in the cache- Typically, 857o of disk transfers can be avoided because the requested

block is already in the cache in memory tlef89l. To manage cache replacement,

algorithms such as FIFO and LRU are ofren applied.

Another strategy to decrease access time is to put blocks that are likely to be

accessed in sequence close to each other on disk (for example, in the same cylinder). In

this way the amount of disk arm motion (i.e. seek time) can be reduced. This is important

because seek time is the dominant component in disk access time.

File protection, file security, f,rle backup and recovery are also needed and are the

concern of the file system code but will not be discussed in this thesis.

2.1.2 The Berkeley Unix Fast Filesystem

Berkeley Unix is one of the most popular versions of the Unix operating system.

The fast filesystem in 4.3BSD (FFS) has nor only rhe features of traditional Unix file

systems, but also many improvements. The FFS is focused on as an example of Unix file
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systems because it is a component in the implementation of the

is a brief introduction of the FFS.

General Features

object store. The following

The Unix file sysrem supports three kinds of files:

Regular files (byæ stream), contain either ASCII or binary data. They generally

correspond to data or code.

' Directory files, are regular files with special format and inærpretation that are

used to group together collections of other files_

. special files, are used to provide linkages to vo hardware.

The Unix file sysûem is hierarchical. Relaæd hles are grouped under directories,

and the directories are organized into a hierarchical structure by nesting directories in

other directories. Pathnames are used by users to access a certain file. Figure 2.3 shows an

example of a nested dircctory structure.

Since the Unix file system is for a multiuser environment, f,rle access restrictions

are needed. A frle may be accessed in one of three modes: read, write, or execute. There

are also three collections of users who may accesses a file: u, the owner of the hle; g,

members of the same Sroup as the file; and o, other users of the system. The owner/user of

the file can change the access modes permitæd for each of u, g, and o to control access to

that file.
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In Unix, file sizes may change dynamically. Users can increase the file size up to

the limit induced by the amount of available storage2. This is one of the important features

of the Unix file system.

Figure 2.3 Unix Directory Structure

File Structures on Disk

4-3BSD divides each disk into one or more partitions or logical disks. Each such

logical disk cont¿ins a single filesystem and in turn is divicled into one or more areas called

cylinder groups- Each of these cylinder groups occupies one or more consecutive cylinders

2 File size may also be further consffained by cerlain implementation details.
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of the disk so that disk accesses within the cylinder group require minimal disk head

movement.

A cylinder group consists of an information header, and some data blocks which

take up most of the cylinder group. The information header includes a boot block, a

superblock, a cylinder block and an array of inodes (Figure 2.4). The boot block contains

a boot strap program. The superblock which is identical for each cylinder group, consists

of static parameters of the hle system such as the size of the f,rle system and the block size

for the data. The cylinder block consists of dynamic parameters of the cylinder group such

Logical disk layout

Figure 2.4 Usage of Disk Blocks

as bit maps for free blocks and for free inodes. The array of inodes stores information

about each hle on the disk. The Unix file system associates each file with an i-node which

t9



keeps track of which disk blocks belong to the file. Each inode conrains the

information [tæf89]:

following

Logical-to physical block mapping;

The file's owner and group-access identifiers;

The time the file was last read and written, and the time the inode was last

updated;

The size of the file in byres;

The number of references to the file;

The number of physical blocks used by the file; and

The addresses of the fìle's disk blocks.

Figure 2.5 shows the structure of an inode. Each inode has 13 pointers to its file's data

blocks on the disk. The first 10 pointers directly contain addresses of data blocks. The

next contains the disk address of a single indirect block. Beyond that, a pointer points to

indirect block, which in turn contains two indirect blocks. The last pointer is a triple

indirect pointer. Since the f,rle offset in the hle structure is kept in a 32-bit word, if

the block size is set to 4096 bytes, there will be no need for the triple inclirect block. This

is because a 232-byte file (the current maximum file size on Unix) will only use double

indirection (see Figure 2.6 ).All the i-nodes of currently opened files are put in an in-

memory kernel data structure, the i-node table to enhance performance. The i-node table

is effectively an i-node cache.
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Figure 2.5 Structure of an Inode

Figure 2.6 lnode Data Block Capacity

Access Type Bytes Accessible

direct blocks 49,152

single indirect blocks 4,294,304

double indirect blocks 4,294,967,296

total 4,299,210,752>232
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In Unix file systems, directories implement a mapping between pathnames and

inode numbers- When a user refers to a file, the filesysûem searches for the file using the

pathname supplied' Once it finds the final directory, specified in the pathname, it notes the

inode number and then access that particular inode entry.Figure 2.7,based on [Gla93],

shows an example of translating the pathname "top/dir2/fi1e27" into inode number -5_

inode no.=2 Inode Block number Permissions
number

inode no.=5

4

500 dr-xr-xr-x
501 dr-xr-xr-x
502 dr-xr-xr-x t
503,505 -rwxr-xr-x +

1

502

,,

iirt
<Iit2

2
5

L

n
4
2

il"zt

The first block of fite21

The second block of file2l50s

Figure 2.7 A Sample of Directory Layout

Searching step:
I: lst step
II: 2nd step
III: 3rd step
IV:4th step

503

504

22



BSD Improvements over the Traditional Unix Filesystem

The Berkeley fast hle system improves on the traditional Unix f,rle system in three

aspects as follows:

' The directory entry format has been exænded. The limit to file name size is

now 255 characters3.

Disks are divided into cylinder groups. The motivation for this change is to

create groups of i-nodes that are close to their related data areas on the disk.

Thus the i-node and the data blocks of a file are kept close to avoid long seeks.

A two block-size strategy is introduced. For small files, using smaller size

blocks reduces wasted disk space. For a larger file, using a small number of

larger size blocks is more efficient than using many small blocks. Both block

sizes are accommodated in 4.3 BSD.

2.2 Distributed File Systems

Since the earliest days of distributed computing, efforts have been made to allow

physically distributed computers to share their data and storage resources within the same

file system. This is the goal of a distribured file sysrem (DFS). Contemporary DFSs can

3 Each component in a pathname is a file name.

23



include up to a few thousand nodes (i.e. computers) on a network. Most of them,

however, focus on client-server, LAN-based systems consisting of significantly fewer

nodes.

2.2.1General Concepts

In distributed file systems there are certain fundamental issues including naming

and transparency, semantics of file sharing, cache related gtobal access methods, fault

tolerance and scalability [Tan92, Mul93, Lev90]. These are now briefly discussed.

Naming and Transparency

Naming is the mapping between file names and physical blocks where the file is

stored. There are three common approaches to file and directory naming in a distributed

system:

(1) Machine + path naming, such as lmnchinelpath or mnchine: path (8.g.

"carbon.cs.umanitoba.ca:/usr").

Mounting remote file systems onto the local file hierarchy.

A single, global name space that is the same on all machines.

The first approach is clearly not location independent, since the mnchin¿ name specifies

the location. The second one is not location independent either, since it is possible to

mount a given file at different places on different machines. It is not difficult to

(2)

(3)
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implement the first two approaches. However, the third approach which produces a

single uniform name space is a more difficult problem.

Global naming is a desirable property in a distributed system. If a user on one

computer gives a name for a file, that name should have the same meaning to users on

the other computers in the distributed system. This provides a measure of ,,transparency,,.

Two goals in name mapping are:

Location Transparency. The name of a file does not reveal any hint as to its

physical storage location.

Location Independency. The name of a file need not be changed when the

file's physical storage location changes.

Location independency provides support

independence is a stronger property than

independence permits the same file name

different times.

for file migration (or file mobility). Locarion

location transparency. Naming with location

to be mapped to different storage locations at

Semantics of Sharing

It is necessary to define

simultaneously shared by users

identity four possible policies:

the expected semantics (or

from different sites. [,evy

behaviour) when a file is

and Silberscharz [Lev90]

(1) Unix Semantics

¡ Every Read of a file sees the effects of
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that file in the DFS. In particular, Writes to an open file by a process are

visible immediately by other process which have this file open ar the same

time regardless of their location.

' It is possible for processes to share the file pointer to the current location

in the file- Thus, the advancing of the file pointer by one process affects

all sharing processes.

(2) Session Semantics

' Writes to an open file are visible immediately to local processes executing

on the same machine, but are invisible to remote clients who have the

same file open simultaneously.

' Once a file is closed, the changes made to it are visible only in later

starting "sessions". Open instances of the file do not reflect these changes.

(3) Immutable Shared File Semantics

o once a file is declared as shared by its creator, it can no longer be

modified;

' Attempts at modification result in the creation of new files. The Amoeba

file system uses this scheme [Tan92].

(4) Transaction-Like Semantics

o The effects of file accesses, on a file and its output, are equivalent to the

effect and output of executing the same accesses in some serial order

lNee82l.
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Remote Access

In a client-server system with all hles stored on the server's disks, when a client

requests remote access to a file, the hle must first be transferred from the server's disk to

the server's memory, and then from the server's memory to the client's memory via the

network- If the server handles all remote access requests, unnecessffy network uaffic is

induced. Caches can be used to improve performance by keeping the most recently used

files in the client's memory. Thus when repeated access to the same data occurs, the

communication overhead is reduced.

A caching scheme in a DFS must address the following design issues([Nelgg]):

' The granul.etrity of cachetl tlata. The granularity of the cached data can vary

from small portions of a file to an entire frle. If more data are cached than

needed for a single access, many accesses can be served by the cached data,

but unnecessary data may be transferred and stored.

The location o.f the client's cache. File data can be cached in memory or on a

local disk. Memory caches reduce access time, while disk caches increase the

reliability and capacity of client machines.

How to propo.gate modifícations of cached copies. One policy is to write data

through to the server's disk as soon as it is written to any cached copy.

Another policy is to wriæ the modifîcations to the cache and then write back to

the server later. The advantage of the first policy is its reliability. The

advantage of the second is that write accesses can be done more efficiently and
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multiple writes to the server are not required even if the updated data is

overwritten before write back.

' How to determine if a client's cached drttct is consistent. Session semantics,

distributed implementation of Unix semantics, immutable shared file semantics

and transactions-like semantics, help to determine cache consistency by

providing constrains on when data needs to be consistent. The implementation

of these semantics via consistency protocols may be expensive and non-trivial.

Fault Tolerance and Scalability

Two important benefits achievable in a distributed system are fault tolerance and

scalability. A well designed DFS can tolerate faults, such as communication faults,

machine failures, storage device crashes, and decay of storage media. It can also provide

reliability (by replicating data) and availability (by offering access to the data through more

than one computer). A well designed DFS can also expand to larger and larger sysrems.

Such growth should have minimal expense, performance degradation, and administrative

complexity. This is what is meanr by scalability.

2.2.2 DFS Examples

The hle system is a key component of any distributed system. With the

development of distributed computing æchnology, more and more distributed file systems
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have been developed. The following is a brief discussion of four DFSs exhibiting key

characteristics of such systems pev90, Mul93l.

The Sun's Network File System

Sun's Network File System (NFS) [Lyo85] has been widely used in industry and

academia since it was introduced in 1985. Although originally based on Unix, NFS has

now been ported to a wide range of non-Unix operating systems, including VMS and pC-

DOS.

The goal of NFS is to allow transparent sharing among the independent file

systems in a heterogeneous environment of different machines, operating systems, and

network architectures. NFS does not have a global name hierarchy. Each machine has its

own view of the name structure created by mounting remote file systems onto the local file

hierarchy. Sharing files is on a client-server basis. NFS clients cache pages of remote files

and directories in their memory.Il a page is modified, it is marked as dirty and scheduled

to be flushed to the server by the kernel.

NFS sites usually use a "lock manager" program to track hle and record locks for

consistency support when sharing f,rles over a netwofk. The NFS file-sharing protocol

itself is designed to be stateless. That is, the servers do not hold any information about

their clients. Thus the RPC requests from a client contain all the information neected to

satisfy the corresponding request. Due to the statelessness, if a server crashes and then
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recovers, there is no information to lose; and if the client fails, the server need not take any

action.

The Sprite File System

Spriæ is a distributed operating system developed at rhe University of California at

Berkeley [Nel88, Ous88]. The goals of Sprite include efficient use of large main

memories, support for multiprocessor workstations, efficient network communication and

diskless operation.

The Sprite file system, including all the files and devices, appears as a single, gtobal

Unix frle hierarchy' It provides distribution transparent access to hles from every

workstation. Unix semantics are used for sharing files.

Spriæ ¿lssumes a large memory which makes it possible to use caching heavily both

at servers and client machines. Sprite dynamically partitions the physical memory between

the virtual memory system and the file cache and uses ordinary files as backing store for

the data and stacks of running processes. This simplif,res process migration since the

backing f,rles storing in the process' virtual memory are visible to all the orher

workstations. File system performance in Sprite is good. Normally it is faster for a client

to read from a server's cache than from a local disk. This trend will likely continue as the

speed of networks is increasing faster than the speed of disks.

In Sprite, each server can respond to location queries by using remote linla which

are pointers to files at other seryers. Each client has a local prefix table which provides a
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facility for mapping certain subtrees of the frle systemo to servers. Each prefix table entry

contains a prefîx (the topmost directory name of a file system subtree) a server (the

network address of the server), and a designator (an index into the server's table of open

files). Every lookup operation for an absolute pathname starts with the client searching its

prefix table. The client strips the longest matching prefix from the file name and sends the

remainder of the name to server specified in the prefix table along with the file sysæm

designator- The server uses this designator to locate the file system's root directory, and

then uses the usual Unix pathname translation for the remainder of the file name. If a client

tries to open a file and gets no response from the server, it invalidaæs the prefix t¿ble

entry and issues a broadcast query to replace it. If the server has become available again or

has been replaced, it responds to the broadcast and the prefix table entry is re-established.

The Andrew File System

The Andrew file system (AFS) [How88] is a distributed hle sysrem designed to be

heterogeneous and scalable, which runs efficiently in a wide area environment on many

variants of Unix.

Andrew's name space is partitioned into a local name space and a shared name

space. The local name space contains the root file system of a workstation and is stored on

local disks- Servers are collectively responsible for the storage and management of the

shared name space. Clients can access the shared name space by querying a volume

location database in a known server.

o The file systems cliscussed here are a tree structured.

3l



The semantics of AFS are close to session semantics. When a file is opened, it is

fetched from a server and put in its entirety on the local disk. All reads and writes operate

on the cached copy. When the frle is closed, it is uploaded back to the server. Thus,

updaúes are visible across the network only after the file has been closed. But on a single

machine, any wriæ operation is visible immediaæly afæritcompletes.

AFS is designed to work over wide-area networks with potentially many clients.

Minimizing system wide knowledge and changes is important for making such a sysûem

scalable. AFS caches whole files to local disks to reduce server load. A mechanism, called

callback' was invented to reduce the number of cache validation requests received by

servers- Callback assumes that all the cached entries are valid unless notified otherwise.

Andrew's descendent, the Coda file system [Sat90], provides high data availabitity while

retaining the scalability of Andrew. It has stronger fault tolerance.

Locus

Differing from many existing distribuæd systems which have a client-server

architecture, Locus [Wal83] was aimed at building a truly distributed, peer ro peer

operating system. The core of Locus is its distributed file system.

Locus' file naming is fully location transparent. Each file group (sub-tree of the file

hierarchy) has a primary copy, the logical group, on a designated site and will have at

least one physical file group (possibly subsets of the primary copy) on disrribuæd site. The

pair consisting of a logical group identifier and a file inode number are used as a file
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identif,rer. Since each replica of a hle has the same inode number in all physical f,rle groups,

a file identifier points to a file in general rather than a particular replica. Thus this name

structure hides both location and replication details from users.

Unix semantics are used in Locus for synchronizing accesses to files. When a frle is

modified, the primary copy will be updated. Change messages will then be sent to all other

sites where the replicas of the file reside.

Locus supports fault tolerance. When a network failure occurs, the network will be

disconnecæd into a collection of sub-networks. As long as one copy of a file exists on a

sub-network, it will be up to date with the most recent committed version, and read

requests will still be served. Other copies will be updated by Locus' automatic facilities

after recovery where possible.

2.3 Mach

Mach [Tev89, Bar90, Tan92, Boy93] is an advanced, microkernel-based operating

system which is targeted for distributed and multiprocessor environments. As a working

environment for developing application programs, Mach can be viewed as being split into

two components [Bar90]:

r { small' extensible system kernel which provides process scheduling, virtual

memory control, device access, and interprocess communications.
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¡ several, possibly paralel, operating system support envi¡onments which

provide:

(1) Distributed file access and remote execution.

(2) Emulation for established operating system envi¡onments such as unix.

2.3.1 Basic Kernel Functionality

The kernel funcrions of Mach can be divided inro five categories [Bar90]:

. Basic message primitives and support facilities;

. Port and port set management facilities;

. Task and thread creation and management facilities;

. Virtual memory management functions;

. Operations on memory objects.

The fundamental abstractions which the Mach kernel supports are the following:

Task

; A task is an execution envi¡onment and is the basic unit of resource allocation. A
ask includes a paged virn¡al address space (potentiany sparse) and protected

access to system resources (such as processors, port capabilities, and virtual.

memory)

;

: Thread

A thread is the basic unit of execution. It consists of all processor state (e_g.
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hardware registers) necessary for independent execution. A thread executes in the

virtual memory and port rights context of a single task. The conventional notion of

a process is, in Mach, represented by a t¿sk with a single thread of control.

Port

A port is a uni-directional communication channel -- implemented as a message

queue managed and protected by the kernel. A port is also the basic object

reference mechanism in Mach. Ports are used to refer to objects; operations on

objects are requested by sending messages to the ports which represent them.

Port set

A port set is a group of ports, implemented

queues of the constituent ports. A thread may

sent to any of several ports.

Message

A message is a typed collection of data objects used

threads. Messages may be of any size and may contain

and capabilities for ports.

Memory objects

as a queue combining the message

use a port set to receive a message

in communication between

inline data, pointers to data,

A memory object is a secondary storage object that is mapped into a task,s virtual

memory. Memory objects are commonly f,rles managed by a f,rle server, but as far

5 The Mach object should be distinguished from an object in the persistent object store. The former is anabstraction of Mach, which can be a thread, a task, a port, or memory pages (or files). The latter is a unit of datain the objeÆt base.
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as the Mach kernel is concerned, a memory object may be implemented by any

object (i.e. port) that can handle requests to read and write data.

2.3.2 Memory managers

Mach provides unique memory management services for users to control virtual

memory paging operations (e.g. "page in" and "page out"). These services provided,

outside the kernel, are called memory managers, or external pagers, or just pagers. When

a task requires data residing in a region of virtual memory not currently in the physical

memory, a page fault will occur. At this point, the pager maps the required memory object

from a disk to the task's address space. When a page's contents have been modified since

its last page in, the pager is also responsible for writing the dirty page back to the disk6.

To map a memory object to a task's address space, a pager uses ports to pass the

message to the task. Three kinds of ports are needed [Tan92]:

object port, is created by the pager and will later be used by the kernel to

inform the pager about the page faults and other events relating to the memory

object.

control porr, is created by the kernel so the pager can respond to the events.

Name port, is used as a name to identify the memory object.

u This user level control over virtual memory operations is fun<lamental to the effective implementation of
Dist¡ibuted Sha¡e¡l Virtual Memory.
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To perform the memory object mapping, a strict protocol must be used for

communication between the kernel and the pager. This is implemented by specific system

calls' For example, the system calT memnry-object-clata-request returns to the kernel a

specific page in response to a page fault; and the system call memory_object_¿ata_write

takes a page from memory and writes it out to disk.

External memory management allows Mach to be the base for implementing a

page-based distributed shared memory system. Users of different machines at different

sites can then view a single, linear, virtual address space. The shared memory manager,

implemented as an extemal pager, controls which pages of memory can be accessed by

which machines at specific times. The control of the shared memory manager also must

enforce the consistency and security of the shared memory.

2.4 Persistent Object Systems

In this section a brief review of research work undertaken in persistent object

systems in recent years is given. This presentation is rlivided into two parts; the first

discussing object-oriented databases and the second discussing other persistent object

systems focusing on those using virtual memory techniques for implementation.

2.4.1 Object-Oriented Databases

Object oriented databases are one form of persisænt object system. objects are
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stored as data and manipulated by objecroriented languages. The objectbase deals with

object identity, storage management' concurrency control and transaction processing

[Mil93]' Many object oriented database systems exist as either commercial products or

research protorypes. These include oRIoN [Kimg0a], Gemstone [Bregg], VBASE

lAnd87l, statice [weigg], IRIS twit90r, o2[Deu90], starburst[Haa90], cactis[Husg9],

oDE [Agr89], objectStore [Kho93], EX'DUS [car90], Mneme [Eli90], posrGRES

[Row87], and ENCORE/ObServer [Kim9Ob].

oRIoN [Kim90a, Kim90c] is a distribuæd object-orienred darabase with a simple

client-server architecture. It consists of several major subsystems. The storage subsystem

allocates and deallocates pages on disk, moves pages to and from disk, finds and places

objects in buffers, and manages indexes on the attributes of a class. Most of the parts of
the storage subsystem reside in the server. other subsysûems reside in the clients to
evaluate queries and to access objects in the local object buffer pool. oRIoN associates

each object with a globally unique identifier, uID. It consists of a pair, <class identifier,

instance identifie> (in the distribuæd version of oRIoN a site identifier is also included).

The storage format for object instances contains several parts:

" UID as described.

Object length: records the total lengrh of the object.

Attribute count: records the number of attributes stored in the disk format.
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Attribute vector: consists of the identifiers of all attributes for which the object

has explicitly specified values.

Value-offset vector: consists of the offsets of the values of the attributes.

A class contains two types of information. One is the specification of the attributes ancl

methods shared by all instances of the class. The other is the specification of the attributes

and methods which appty to the class itself.

In a fashion similar to cylinder groups in the BSD4.3 file system, an ORION disk is

divided into segment groups. Each segment consists of a few blocks or pages. To improve

system performance, instances of the same class are clustered in the same segment or

group of segments, and instances that belong to a user specified collection of classes are

similarly stored together. The ORION storage manager is responsible for allocating,

deallocating, and tracking the objects in their on-disk format. The storage manager

employs an object directory to record the physical addresses of objects. ORION uses

exændible hashing to maintain this object directory for quickly mapping the object

identifiers to their on-disk addresses. A B*-tree is used to maintain the class hierarchy to

speed up the associated searches for objects.

In the 02 system [Deu90], persistence is implemented by associating with each

object a reference count which records the number of other objects pointing at it. As long

as the count is greater than 0, the object and all its components are persistent. When an
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object's reference count drops to 0, this means it is unreachable from other objects. Thus,

this object no longer need be stored, and the system then automatically deletes it.

The 02 storage subsystem is built on top of WiSS (the Wisconsin Storage System)

[Hur93]. wiSS allows data pages to contain records of different rypes. It also allows a

new record to be inserted in a specified location. lvift these two features, all records

belonging to the same complex object can be clustered on the disk. 02 implements object

identifiers as persistent identifîers. This is done by storing an object in a WiSS record so

that the object identifier is the record identifier, RID.

02 supports tuple, list and set structured complex objects. A tuple is represented

as a record stored on a page on disk, lists are represented as ordered trees, and a set

structured object is itself an object containing the object identifiers of its members. B-tree

indexes are used to represent large sets. Small sets are kept ordered.

EXODUS [Car90, Eri93] is an extensible database system. Its architecrure

includes storage and transaction management, and the persistent programming language E

(an extension of c++). The storage component of the EXODUS project is rhe EXODUS

storage manager (SM), which provides facilities for reliably storing objects. SM has a

client-server architecture. The client interface, supported by a client library, allows

programs (applications) to create, destroy, modify database files containing objects and to

iterate through the contents of these files. Files are implemented using B*-tree indexes

with the object page ID of the buffer pool as a key. Related objects can be placed in a

common file and scanned in sequence. File operations that require accessing or changing
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the B*-tree occur on the servet. Each object is referred to by an object identifier (OID).

The oID of a small object directly points to the object on rhe disk. The oID of a complex

object points to the root of the relevant B+-tree.

An Exodus client connects to a server by using TCP sockets and RpC. Though a

client can only connect to one server at a time, the SM server simultaneously supports

multiple clients which may be on the same machine as the server or on different ones. The

SM server supports transactions with full concurrency control and recoveryT.

The Mneme project [Eli90], which is similar ro rhe EXODUS project, is aimed at

combining a persistent programming language with database features. The Mneme

persisænt object store is a fundamenral component of the project. The architecture of the

Mneme store consists of:

A client code module, which includes the application program, user suppried

policy routines, and optionally, a language run_time system.

The Mneme code module, which incrudes a Mneme client library and default

policy routines.

The Mneme server module, which includes remote server interface, local server

interface, and local operating system interface.

The connection between (1) and (2) is via the client interface, whereas the connection

between (2) and (3) is via rhe client-server inrerface.

t 
Cross-server transactions are not supported.
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The format of a Mneme object includes four components. First, the object

identifier, oID which is a logical descriptor. It is not directly linked to a precise physical

location. Second, an object may contain some OIDs to describe its aggregation

relationships to other objects. These OIDs can be easily enumerated for supporting

garbage collection. Third, each object has a few associated attribute bits used for

indicating such properties as whether the object is read-only. Last, each object has a

current size.

Mneme uses object handles to access objects. A handle includes the object's OID, a

pointer to the data part of the object, and the size of the object. A handle provides eff,rcient

access to the internals of a memory resident object. Creating a handle requires the object

to be located. If the object is not resident, it must be fetched from external storage. This

process is called an object fault. Mneme files are the modularity units for grouping and

naming objects. Within a f,tle, a further structure, a logical collection of objects called a

pool, is used- A file may contain different pools. A pool determines the policy under which

the objects in it are managed.

Mneme transactions provide the concurrency control and synchronization

important in a system allowing concurrent work. The client interface provides various

operations, such as ob.iect handle and pointer operations, pool and strategy operations, file

operations and other miscellaneous operations. The server interface is based on physical

segments which group multiple objects into a single chunk for transfer and storaoe
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2.4.2 Persistent Virtual Memory and Object Stores

Most persistent object systems have been developed on top of conventional

architectures and operating systems. To achieve acceptable performance, advanced

operating system support for building persisænt object srores is also being studied.

Operating systems with distributed object-oriented features include Choices [Mad91],

Clouds [Das92], Cool [Hab90], Soul [Sha9l], Monads [Ros92] and Guide [Bal91]. Some

of these support persistent object spaces [Das92, Bal91].

In systems supporting persisúent object spaces, the object concept is implemented

at the operating system level and the operating system presents users with a single level

view of storage- For example, the operating system Choices which is written in an object-

oriented language, supports distributed parallel applications on a network of

multiprocessors [Cam91]. The kernel is implemented as a dynamic collection of objects

that have been instantiated from system defined classes. Choices has a paged virtual

memory organized around memory objects. Each memory object can have its own

separate backing store, page placement and page replacement algorithms. It can be shared,

both within a shared memory multiprocessor and between networked computers using a

distributed virtual memory protocol. Choices supports an object-oriented file sysúem

model in which f,rles may be mapped into virtual memory. The kernel and an object file

system together provide a persistent object store.
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In the recent years, many systems have been generated which support large virtual

memory based on advanced archiæctures. Rosenberg et al. [Ros92] discuss mechanisms

for supporting large virnral memories. The authors believe that a persistent object store

can be implemenæd via an extended virrual memory with address space large enough to

address all objects. The address space in such a system is very sparsely populated and the

paper considers the problem of mapping large sparsely populated virtual addresses to a

small, densely populated memory from both the hardware and software viewpoints. A

prototype implementation is made on the experimental MONADS-PC computer sysrem.

Much research has also been done conceming the construction of a persistent

object store on top of the Mach microkernel. Chevalier et al. [Che92] describe the design

and implementation of a fault tolerant storage system (Goofy) for distributed object

oriented applications. Goofy supplies object storage using Guide which runs on rop of the

Mach 3.0 micro-kernel.

Vaughan and Smith [Vau92] describe the Casper sysrem which uses memory

mapping and shadow paging to provide a distribuæd resilient persistent store. Casper

exploits a number of the facilities provided by Mach.

Castro et al. [Cas93] describe the architecture and implementation of MIKE, a

version of the IK [Rob91] distribuæd persistent object-oriented programming platform

built on top of the Mach microkernel. MIKE supports the abstraction of a persistent single

level object store. Objects are transparently loaded on demand when first invoked and
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saved to disk when the application terminates. Compared with the Unix versions of IK,

MIKE achieves good performance through the use of Mach abstractions.

Millard, et al. [}i/.r193] present the design and implemenrarion of SPOMS (Shared

Persisænt Object Management System) which is a memory-mapped srore builr on top of

the Mach operating system. The authors believe that making use of operating system

support for memory mapping makes the storage and manipulation of persistent objects

simpler. This æchnique also provides sharing at a much finer granularity than what is

provided by conventional database systems.

SPOMS is a run-time system that provides a store for persistent objects. Objects

are created via calls to SPOMS. When objects are used, SPOMS maps them into the

address spaces of the requesting processes. The Mach approach to virnral memoly

management permits local, single-copy sharing of code and data, object faulting and

transparent, on-demand object access. The Mach external pager interface allows user-level

programs called extemal pagers to manage objects that can be mapped into the virtual

memory of a task. Once the object is mapped, page faults on this object are sent by the

kernel to the port which identifies this object, and are then received by the external pager.

If threads in two tasks map the same memory object, the kernel will send page fault

requests for each page only once in order to maintain the consistency of the pages. Thus, a

Mach-based implementation of distributed shared memory is used to provide a distributed

implementation of the object store. To provide distribution, the extemal pagers provide
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multiple-reader, single-wriær coherency benveen memory-objects on a network of

computers.
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Chapter 3

Problem Assessment

Persistent object-oriented programming systems are relatively new and it is still not

clear which of the many models best suits the persistence paradigm. This chapter will

discuss the general issues concerning persistent object stores and examine the

requirements of an object store supporting class fragmentation.

3.L Persistence

Persistence, as an attribute, can be defined as the length of time which data exists

and is usable. It is concerned with supporting the uniform treatment of data independent of

its lifetime [Atk83, Mun93]. For the purpose of this disserration, the following definition

applies:
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Deflinition 3.1 A Persistent Object System is a programming environment that provides

objectsr which may outlive their creating processes.

3.L.l Degrees of Persistence

The data created and manipulated by object-oriented programming may have

different degrees of persistence and can be categorized as follows [Mor90]:

Data persistent within expression evaluation.

. Data persistent as local variables in a procedure activation.

. Data persistent as global variables and heap items whose extent is different

from their scope.

Data persistent between executions of a program.

, . Data persistent between various versions of a program.

' o Data persistent over the program that created it (data that outlive the

program).

, fne persistence referred to in the first three categories, referrcd to as short term data, can

usually be supported by any programming language. The persistence referred to in the

other three categories, referred to as long term data, needs a file system or a database to

, support it. Programming in traditional programming languages, the programmer must

: explicitly include code to move long term data benveen memory and a file system or a
:

datâbase, whereas persistent programming languages can transparently provide persistence

t Ob¡ecß and their use are described well by Booch [Boo9l].
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for both short term and long term data. Thus, the programmer is freed from the need to

manage data storage. This leads to simpler, less error-prone programs.

3.1.2 The Advantages of Persistence

The advantages of persistence can be summarized as follows [Mun93]:

Persistence improves programming productivity by offering simpler semantics -

There is no need for the programmer to deal with long term data storage or the

representation transformations that often go with it (e.g. flattening structures

for on disk storage).

Persistence removes ad hoc arrangements for data translation and long term

data storage - Uniformity is provided since policies are enforced by the system

and not left to individual programmers.

o Persistence increases protection over the whole environment - This also

enhances uniformity of storage in the system.

The first two advantages result from eliminating the distinction between long and short

term data. Databases are effectively incorporated into the programming language. It has

been estimated that 30Vo of the code in an application is related to data movement

between main and secondary memory tAtk83l. If the use of long and short term data is

integrated, not only can the size of the application code be reduced, but also the time to

execute the code and store the data can be reduced. Therefore significant cost saving can

be achieved[Bro89, Mor90]. The third advantage occurs because all the prorecrion
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facilities of a programming language can be applied to long term data. Using a single

enforced type system for all data yields enhanced protection throughout the whole system.

3.1.3 PersÍstent Object Identities

The fundamental goal of persistent object-oriented programming is to make

persistence orthogonal to all objects. That is, any type of object should be allowed to be

persisænt. Any class should be able to instantiate an object with persistence as its

property. One of the most important things for implementing a persistent object system is

to implement persistent object identities in the system.

Definition 3.2 Each object in a persisænt object system has a system-wide, unique, and

persistent Object ldentity which identifies it and distinguishes it from all other objects

(object identities may be used as "object references"/"object pointers") .

Different strategies can be applied to implementing object identity [Kho93]. Two

possibilities for uniquely identifying objects are:

o An object's address such as a virtual memory address or secondary storage

address may be used.

o I key identifier in an object table may be used - this can be a memory-resident

object table or a disk-residenr object table (see Figure 3.1).

The flrst scheme is probably the simplest implementation of object identity. The second

scheme requires a system maintained table where each object identifier is an index into the
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table or a key value which is used for lookup in the table. Each entry of the table directly

or indirectly contains the object's address in virtual memory or on disk.

object table secondary memory

Figure 3.1 Object Identifiers as Indexes

Compared to the first scheme, this implementation of object identity has extra

processing overhead, but is more flexible. When an object is moved from one position to

another, either on disk or in virtual memory, its object identifier can stay the same. Only

the object table is updated. The ability to freely move objects without affecting their

identity is very important in garbage collection since garbage collection relies on object

o

o

o
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movement. To collect the storage which is not in use, the usable objects need to be move<l

together. The second scheme is also machine independent and therefore makes it easier to

port the implementation between different systems.

In the implementation of object identity in a DSVM system, persistent virtual

addresses are used as object identifiers. Since the size of a virnral address is the same size

as addresses generated by hardware, the need to swizzle [Kem93, Wilgl] object identifiers

to virtual memory addresses is eliminated.

3.2 Object Storage

Definition 3.3 Persistence of object-oriented programming relies on the existence of a

repository for storing all the objects. Such a repository is referred to as an Object Store.

Figure 3.2 Architecture of a Persistent Object System

object storage
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Figure 3-2 shows the general architecture of a persistent object system built on an

object store. The obiect storage handles the object storage management of the persistent

object system. Based on the obiect stora7e, the virtual memory provides users a single

level view of persistent objects. On the top, the object users is an user interface of the

persistent object system. The ideal properties of a persistent object store include:

o Infinite speed.

o Unbounded capacity.

o Total reliability.

In terms of current technology, none of these properties is realistically achievable. In the

design of an object store the above attributes are goals, but in the implementâtion only

best approximations may be provided.

3.2.1 Object Store Speed

Access speed is a crucial factor in building a successful object store. Three major

strategies can be used to enhance the speed of an object store. They are:

o Constructing the store as close to the hardware as possible to minimize the

inefficiency induced by the operaring sysrem;

o Supporting class fragmentation which provides efficient data manipulation and

access in the store, especially for a distributed system; and
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t Applying optimal data allocation polices which keep the related data physicaly

as close as possible so that disk access times can be minimized.

3.2.2 Object Store Capacity

An ideal object store should support objects of virtually unlimited size and number.

If the capacity of the store is not big enough, newly created objects can not be

accommodated. Restrictions on object size limit orthogonal persistence. An object store

must support reasonably large objects and must attempt to maximize Lhe number of

objects which may be stored in whatever space is available. This may be accomplished

using:

Hardware - The store may employ as many large size disks as possible to

physically increase the srorage capacity. In the DSVM project, 64-bit

processors are used which can address 2un bytes in vir-tual memory. With

enough disk support, the system will provide very large capacity.

Software - The object store should keep collecting free space. This is typically

done through garbage collection in a dynamic system. As well, the object store

must eliminaæ all unnecessary data redundancy, and keep needed

"housekeeping" overhead to a minimum.

3.2.3 Object Store Reliability

Reliability of an object store plays an important role in supporting persistence-
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System failures can cause data destruction. A persistent store should recover from any

failures within the store because losing data, of course, means persistence ends. The

poûential failures that may occur can be categonzedas follows:

Hardware failures - occur from the breakdown of a hardware component, for

instance, a disk head crash or corruption of the recording medium.

Software failures - occur when memory is lost or corrupted.

Hardware failures are usually handled by duplicating the store after any data update. This

can be done by either maintaining more than one active data copy, each of which is

updated in parallel, or by maintaining a continuous log of all changes to the system

[Bro89]- This issue is left as future work. To avoid complexity, ir will initialty be assumed

that the disks are physically reliable so there are no hardware failures. The design and

implementation of the object store (discussed in subsequent chapters), however, 1.ill

consider how to restore the system under the circumstance of software failures.

3.3 Fragmentation

Supporting class fragmentation (see the fragment model presented in Section

l-2-2) distinguishes our object store from other existing object stores. This section

presents the motivations for using this str.ategy.

3.3.1 Object Clustering and Class Fragmentation

Definition 3.4 Obiect Clustering is a way to group objects in secondary storage according

_5-5



to common propertiesz to speed up processing on those objects.

Clusæring is a very important factor in enhancing the performance of database

management systems [BeÚ4]. Because of the aggregatiore (regarding complex objects)

and genernlization (regarding class inheritance) features of the object-oriented data

model, object stores and object databases have special properties which can be exploited

as the basis for clustering.

The main idea behind clustering is to group data iæms which are frequently

accessed together so they are stored as close as possible to one another on secondary

storage and thus can be retrieved quickly. Clusæring techniques are important for both

query-oriented object access and object navigation. Query-oriented object access refers to

accessing a group of related objects. For example, two objects which are related by

inheritance may be accessed together due to polymo¡phism. Object navigation refers to

accessing a single object by navigating through object references. Object clustering

enhances performance only if objects are clustered in terms of the access patterns a user

will make. According to March [Mar83] and Bertino [Ber94], the task of clustering is ro

physically arrange the database so that:

obtaining the next piece of information needed by a user query has a low

probability ofrequiring additional access to secondary storage; and

A minimal amount of irrelevant data is transf'erred when secondary storage is

accessed.

2 The properties may include being subsets of objects with the same attribute types or being certain groups
of objects within the same class.
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For object-oriented data models, the clustering of a class may apply both to the set

of instance variables and the set of methods that belong to the class. Based on the query

frequency and the access locality of user applications, fragmentation breaks a class into a

set of fragments with only a subset of the class' components. As presented in Chapter l,

there are three types of class fragmentation: vertical fragmentation, horizontal

fragmentation and hybrid fragmentation. Fragmentation can be used ¿ls a form of

clusæring for object systems. When a class is instantiated with objects, the class fragments

will yield the object clusters. We may regard these class fragments as a kind of object

clusæring between the objects within a class. Thus, each type of fragmentation defines a

clustering type. Fragmentation provides a clustering scheme by fragmenting a set of

objects into a set of class-fragments so as to minimizn the amount of irrelevant data

accessed by applications.

3.3.2 The Benefits of Fragmentation

An object store greatly benefits from fragmentation in a distributed object

environment. The main advantages of fragmentation are the following [Eze95, Ozu91]:

Using fragments reduces the amount of irrelevant data accessed by applications

because different applications access or update only partial classes which can

be arranged as fragments of the class.

Fragmentation increases the level of concurrency. Decomposition of a class

into fragments, each being treated as a unit, allows some data operations to
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execute concurrently. In addition, if the data operations can be divided into a

set of sub-operations, with each operating on a fragment, then each single

operation can be executed in parallel.

Fragmentation reduces the amount of data transferred between different

network sites because each node only fetches the needed portion of the class,

instead of the whole class.

o Replicating fragments is more efficient than replicating the entire class because

it reduces consistency problems during updates and saves storage.

Fragmentation provides a good basis for reflecting major object-oriented features

such as class inheritance and encapsulation in a logical fashion in the store. Using

fragments as a basis for object clustering in an object store enables the store to support

object-oriented programming more easily and naturally. Furthermore, since complex

objects can be properly fragmented by the fragmentation technique, the data allocation in

the object store becomes easier.

3.4 Implementation Approaches

There are three possible alternatives for implementing persistent object stores. An

object store can be built on:

A novel system designed and built from the ground up.

An existing object database and its object model.
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o An existing file system.

The first approach is the most aggressive one, which develops an entirely new object store

without relying on any existing code except for the needed device drivers. Such an

implementation compleæly meets the requirements of an object store. This ,,idea1,,

implementation offers the best possible performance since all aspects of the system can be

tailored specifically to object storage. However, constructing such an object store is a

major effort. It is not feasible to implement such a system in a short time.

The approach of adopting an existing object database, such as the Exodus storage

manager, and modifying it to support fragments would require less work. There are,

however, three reasons for not taking this approach. First, existing object databases were

not designed with class tiagmentation support in mind and thus it would likely be difficult

to add them without making significant changes to the existing code. Second, such

systems are typically built on top of Unix and thus require the support of Unix for their

operation. The DSVM project runs without Unix and thus cannot provide the needed

support. Finally, using existing object databases incurs the overhead related to their

reliance on an existing monolithic operating system.

The third approach is to adapt a hle system to manage object data. The most

commonly used strategy to store and retrieve data is to use operating system files. Files

are convenient units for storage, and they are reasonable units of backup, reoovery,

garbage collection, and transfer between different stores. The file concept is implemented

by existing file systems, which offer functionality including symbolic and intemal

identification for ease of reference, physical location and physical organization, access
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control, and various administrative operations including file creation, modification,

deletion, backup and so on. Much of this functionality is also required in an object store.

In addition, specific features of the object store can be added to the f,rle system if

necessary. For example, the index structures sometimes used to support object identity can

be constructed. It is practical to develop the object store by utilizing a file system together

with additional index structures as the data management system of the object store.

Employing an existing file system which has been well tested and is reliable will

significantly shorten the implementation time of the object store. Based on the advantages

mentioned above, the file system approach will be applied to the construction of the object

store.
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Chapter 4

The Object Store Design

In this chapter, a design for an object store with integrated support for fragments is

described. Aiming at achieving fast data access and optimal use of storage, this design

focuses on fragment storage format, allocation policies, and data retrieval structures. A

key feature of the design is to use existing system resources and facilities to implement this

store on top of the Mach microkernel, instead of building everything from scratch.

4.1 Goals and Limits of the Design

The overall goal of the design is a working prototype of a fragmenr-based,

persisÛent object store with support for major object-oriented features through the use of

class fragmentation. Abstractly, the store wiII maintain two kinds of data: fragments and

objects. The specific objectives of the store are as follows:
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The store should provide an appropriaæ notion of fragments and objects

including the representation of fragments and objects, and the relationships

among them.

The store should have reasonable performance for storage and retrieval, and

low overhead for data manipulation.

The store should make the best use of available storage by reducing data

redundancy to a minimum so as to maintain a large storage capacity.

The store should offer good reliability and ensure quick recovery from system

failures.

o The store should be naturally exændible to operate in a distributed

environment.

o The store should be a good basis for further research (i.e. it should be flexible

to support future research in integrating persistent object-oriented

programming and database features).

Since this object store is an initial prototype, effort is focused on providing only

the fundamentals and areas such as distribution, multiple user support, and high level

database features are left to future work. The feasibility of an object store supporting

fragments and providing good performance for both object and raw fragment retrieval is

the chief concern. At this stage, multiuser and distributed system support are not needed.

If provided, they would increase overhead and make comparison with existing centralized

object stores difficult. Similarly, including high level database features such as transactions

and a query interface would be inappropriate. Finally, since previous work on class
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fragments assumes statically generated fragments, this object store is created statically.

Making these simplifications keeps the design and implementation conceptually clear. This

store will lay a reliable foundation for further development.

4.2 Physical Fra gmentatÍon

The most commonly needed class fragments (see the data model of the object store

described in Chapter l) by user applications are vertical fragments and horizontal

fragments. These fragments are normally referenced in their entirety by apptications. Such

fragments are referred to as logical fragments to distinguish them from their storage forms

as discussed below. Since, for the same class, vertical fragments and horizontal fragments

are overlapped, storing both kinds of fragments will result in data redundancy and hence

wasted storage. To avoid ttris, logical fragments need to be further decomposed into what

will be referred to as physical fuagments. The definition of a physical fragment is as

follows:

Definition 4.1 Given the sequence of the bytes composing a horizontal fragment F¡, and

the sequence of the bytes composing a vertical fragment Fu of a class C, the intersection

subset of F¡ and Fu

Pfi,u = F¡ rr Fu

is a sequence of bytes referred to as a physicar Fragment of class c.
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Each physical fragment is a subset of a vertical fragment and a horizontal fragment

at the same time. When considering vertical fragments alone, each physical fragment is a

subset of a vertical fragment with the same vertical fragmentation scheme of the attributes

and the methods but which only groups partial object segments that the vertical fragment

refers to. When considering horizontal fragments alone, each physical fragment is a subset

of a horizontal fragment with the same horizontal fragmentation scheme of objects but

which only groups partial attributes and methods that the horizontal fragment possesses.

Therefore, if only vertical (or horizontal) fragments exist in the system, each physical

fragment is the same as each vertical (or horizontal) fragment. The following is an

example which illus trates physic al fragmentation :

Given a class C:

{ attributes: A¡, Az, As, A.a;

methods: Ml, Mz, M3, Ma, M5 )

and objects of C:

Or, Oz, O¡, O¿, Os, Ou.

Suppose the horizontal fragments of C are:

Fhr= { Or, Oz, Os };
Fhr= { o¡, oo };
Fh¡ = { oo};

and the vertical fragments of C are:

Fu,= {O1(vr), Oz (vr), O¡(vr), Oo(vr), Os (vr), Oo(vr)};
Fv, = {Or(vz), Oz (vù, O¡(vz), Oo(vz), Os (vz), Oe(vz)};

where

Vl= Al, A¡, Mz, M¡;
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v:= A:. ,q,., \1 ,. M., \1-

The corresponding physical fra_gments are:

Fhr r-r Fu,= {Or(vr), O: (v,), Os(vr)J = {O,1, 03¡, O.,¡};
Fhr ô Fur= {Or(vz), Oz (vz), Os(v:)}= {O,:, Ou:, O,.:};
Fh, ô Fu,= {O:(v,), Oo (v,)}= {O:r, Oor};

Fhz rì Fur= {O¡(v:), Oo(vz)}= {O¡2, Ooz};

Fh3 rì Fu,= {O+(vr)}= {O+r};
Fh, ô Fur= {O+(vz)}= {Ooz};

where Oi(vj) is simplified as Oij.

A graphical illustration of this example

rectangle indicates a physical fragment.

is shown in Figure 4.1, whe¡e each shaded

Figure :1.1 An E.rample of ph¡,sical Fragmentation
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From the physical fragment definition and the example above, it can be seen that

since vertical fragments and horizontal fragments are orthogonal to each other, every

vertical fragment and horizontal fragment has only a single intersection which is a physical

fragment. None of the physical fragments overlap with any other physical fragments. Each

logical fragment can be uniquely represented by an ordered collecúon of physical

fragments. According to the Definition 1.8, the l:1 mapping can be built between hybrid

fragments and physical fragments. Thus physical fragments may directly support hybrid

fragments. Physical fragments are the suitable basic units of data storage. Using physical

fragments, there will be no data redundancy in the store and therefore storage eff,rciency is

assured.

4.3 Storing Physical Fragments

Since physical fragments are the unit of storage, the object store must be designed

to accommodate them. To decrease implementation complexity and to exploit the features

of existing code, an existing storage structure must be selected for physical fragment

storage.

4.3.1The FFS Approach

A conventional file is a storage unit. The most effective way to build a store for

physical fragments is to construct it out of existing components. As discussed in Chapter
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3, the Unix FFS (Fast File System) will be employed as the basic storage sysrem. The Unix

FFS was chosen for the following reasons:

o Unix is a widely used, well documented operating system and the source code

of the FFS is available for this project.

The unix file sysæm is flexible to use. Files can be managed either at the

operating system level, where access is by inode numbers, or at the user level

where pathnames are used. The inode mechanism supports efficient hle access.

When the object store is functioning (under Mach), access to data in the store

will be through inode numbers, instead of pathnames. In this way, the

performance of the store will be greatly enhanced. The pathname based narning

scheme, however, will be employed when creating the object store (under

Unix) to simplify the creation plocess.

The FFS improves on the traditional Unix frle system in several useful ways.

The availability of cylinder groups is directly applicable to object srorage for

the purpose of grouping related fragments together and the adjustable disk

layout polices can be utilized to optimally allocate fragments.

The FFS is supported under Mach without the presence of Unix itself. The

Mach code used for reading an existing Unix fite system is already available

and can be re-used.

4.3.2 Design Strategies

Given the overall goals of the design, certain specific design issues for the object
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store were arrived at. The strategies of the design and implementaúon are based on the

following decisions concerning the object store:

o The object store will associate each logical fragment with a unique fragment

identifier (FID), and associate each object with a unique object identifier

(OID). Fragments and objects will be referenced only through their FIDs and

OIDs.

Only non-redundant data will be stored in the object store. To do this, logicerl

fragments need to be further decomposed into physical fragments which will be

the basic data storage units in the store.

Since objects are blended into the fragments, when objects are referenced, they

need to be extracted from one or more fragments. Thus, the object store will

store the information to implement mapping from any object's identifier to its

locations in physical fragments in which the object is blended.

To retrieve fragments and objects, the object store will construct an index

system. The fundamental index structures will be kept persistent so that the

object store will be robust enough to recover from system failures.

The object store will keep the data of related fragments as physically close

together as possible to decrease data access time and thus improve the

performance of the system. Four kinds of related data will be considered for

co-location. These are rhe following (in priority order):

(l) Data in the same physical fragments,
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(2) Data of those physical fragments belonging ro rhe same logical

fragments,

(3) Data of those logical fragments related to one another by membership in

a given class, and

(4) Data of those logical fragments belonging to different classes but relared

by class inheritance.

4.4 The System Architecture

Figure 4.2 shows the system architecture. The implementation environment is the

bare Mach microkernel. User applications run over the distribuæd shared virtual memory

and access objects therein. An object store with its storage management is built on top of

the Mach kernel to support object persistence in the virtual memory.

Applications

DSVM Management

Sto rage Management

J! 
-Mach Microkernel

Figure 4.2 System Architecture
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There are two main functions of the storage management software. The first is to

create data structures for managing the fragments that reside in the object store, and the

second is to handle object and fragment lookups. The internal architecture of the Storage

Manager (SM) is shown in Figure 4.3.

Mach-si<le access

Unix-side initialization

Figure 4.3 Storage Management
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Each logical module of the SM is described below:

o Fragment Interface

o Through this interface, a fragment identifier is sent to the sM, and the

corresponding location of the fragment will be returned.

o Ohject Interface

o Through this interface, an object identifier is sent to the sM, and the

corresponding location(s) of the object will be rcturned.

c Data Dictionarv

This module constructs index structures for the data in the object store. It

consists of two sub-modules:

" Fragment Dictionary

This module maintains an index structure for retrieving fragrnents in the

store. It includes two components, a vertical fragment dictionary and a

horizontal fragment dictionary.

o Object Dicrionary

This module maintains an index strLrcturc tbl retrieving objects in the store.

e Data Lookun

This modtlle is responsible for data lookup in the object store and consists of

two sub-modules:

c Fragment lookup
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This module handles searching for fragments using the 'Fragment

Dictionary. It includes two components, a vertical fragment searcher and a

horizontal fragment searcher.

o Object lookup

This module handles searching for objects using the Object Dictionary.

o FragmentPreDrocessor

This module fetches the pre-fragmented logical fragments and prepares them

for further processing by the SM.

o Fragment Analvzer

This module analyzes the data of logical fragments sent from the Fragment

Preprocessor and decomposes the logical fragments into non-redundant data

units (i.e. physical fragments).

c Fragment Allocator

This module organizes the physical fragments in terrns of their relations, and

attempts to allocate them onto disk blocks based on the FFS disk layout and

allocation policies. The Fragment Allocator is also responsible for generating

the index structures of the store for the Data Dictionary.

4.5 Layout and Allocation Policies

The layout and allocation policies of the BSD fast file system ¡t^ef89l provide
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direct support for data storage in an object store. This design trjes to perform site-local

fragment allocation in accordance with the requirements of the object store using the FFS

layout and allocation scheme. Fragment allocation is done on Unix at the object store

creation stage. object/Fragment accesses will be processed via Mach.

There are two major allocatable resources in the FFS. The first is data blocks. The

FFS layout policy routines attempt to place ctata blocks for a hle in the same cylinder

group, preferably at rotationally optimal positions in the same cylinder. Because of this, it

is natural to map each basic data unit of the object store, a physical fragment, to an

individual Unix f,rle. This guarantees the best possible block allocation within a given

physical fragment and meets the design requircment of keeping the data belonging to the

same physical fragment physically close together. This is the highest priority relationship

for co-location as described in Section 4.3.2 (rerated data, type (1)).

The second allocatable resource is inodes. The inode layout policy of the FFS

attempts to place all the inodes of files in a given directory in the same cylincler group.

For this reason' fragments belonging to the same class are placed in one directory at store

creation time so that related data of types (2) an<l (3) as described in Sectio n 4.3.2 can be

kept close together. Furthermore, since the allocation policy tries to place a directory as

close as possible to its subdirectories, subdirectories are used to store a class' subclasses.

Thus the fragments which are related due to the inheritance relationship (relared data of

type (4)) will be kept close together. Figure 4.4 shows the filesystem hierarchy of the

object store during store creation, where each directory corresponds to a class and each

data file in each directory corresponds to a physical fragment. The inheritance hierarchy

of the object store is captured in the tree hierarchy of the filesystem. Under the root
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directory of the filesystem, each subtree corresponds to an inheritance relationship of the

classes in the store. In Figure 4.4, for example, class(2) which is represented as a

directory, is the ancestor of all the classes in that subtree. "pf(k) ", represented as a file, is

one physical fragment of "class(2)" which represented as a subdirectory, is a subclass of

class(2), etc.

pf: physical fragment

Figure 4.4 Filesystem Structure

The FFS provides a dynamic environment in which fites can grow or shrink at

any time. The object store, however, is currently a static system as the fragments in the

store do not grow or shrink. The FFS allocation policies are still applicable in the object

store for the following two reasons:
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It will make future work easier when the static store is extended to a dynamic

one.

Even in a dynamic framework, the system parameters can be adjusted to

provide the best environment for a static store.

The existing policies regarding free space, such as allocating lMbyte worth of file blocks

in each cylinder group and keepin g l\Vo free blocks in the filesystem are still relevant

tlef89l. When a new directory needs to be allocated, a cylinder group with a greater than

average number of unused inodes will be chosen. With these strategies, the system

should be able to keep related fragments together in the same cylinder group even after

they are expanded because of modifications. Further details of existing policies and their

application to the storage of fragments and objects are now presented.

The FFS has two levels of disk block allocation routines which are referred to as

the global and local policy routines. As applied in the object store, the globat policy

routines will try to select blocks in the same cylinder groups for sufficiently small

fragments. For larger fragments, when further block allocation must be redirected to a

different cylinder group, each newly selected block is chosen from the nearest cylinder

group having more than average free space.

The global policy routines call local allocation routines for specific blocks. The

local allocation routines will always allocate the fragments if the requested block is free.

If not, the local allocator applies the following allocation straregy [Lefg9]:

(l) Use the next available block rotationally closest to the requested block on

the same cylinder.
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(2) Use a block within rhe same cylinder group, if (1) fails.

(3) Quadratically hash the cylinder group number to choose another cylinder

group with a free block, if (2) fails. Quadratic hashing is used because of its

speed in finding unused slots in nearly fuil hash tables [Lefg9, Knu75].

(4) Apply a search to all cylinder groups for a free block, if (3) fails.

A problem existing in the layout policies of inodes and data blocks is that for

large fragments, free space may easily be filled. This problem may be partially addressed

within the existing FFS by:

reducing the number of inodes (to make more room for data); or

increase the size of the blocks (to decrease fragmentation).

These must be done during the filesystem's creation.

4.6 Data Access

Object and fragment identity are the foundation of data referencing in the store.

An OIDÆID is an invariant property which logically and physically distinguishes one

object/fragment from another. Data search structures in the object store include

object/fragment identifiers at both logical (conceptual schema) and internal (physical

schema) levels, in addition to the mapping schemes between the two.

4.6.1Data MappÍng

Logical references to data in the object store are by logical fragment identifiers,
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represented by FIDs, and by object identifiers, represented by OIDs. FIDs and OIDs are

the starting point for accessing data.

Since logical fragments have been further decomposed into physical fragments

which are the basic data units on disk, every vertical fragment or horizontal fragment

corresponds to a set of one or more physical fragments. Therefore, the internal notion of

each logical fragment, the internal fragment identifier, is represented as a set of inode

numbers of the files containing the physical fragments.

The internal notion of objects (the internal object identifier) is more complicated

than that of logical fragments since objects are blended into fragments. A physical

fragment may contain only a part of an object and it may contain one or more such parts

of several different objects. Thus in addition to the inode numbers of physical fragments

containing the parts of an object, an internal object identifier needs to map to information

about the offsets and lengths of each object segment in the relevant physical fragments.

Data access ends when the internal object/fragment identifiers are mapped and the

required bytes (or dara location(s)) are returned.

Searching for a logical fragment or an object is the process of mapping a FID or

an OID to its internal notation:

FID + { i-numbers of the physical tiagments}

OID + {i-numbers of the physical fragments, the object segment offsets and

the segment lengths in the physical fragments ).

4.6.2Index Structures

To realize the mapping from FIDs (or OIDs) to the relevant locations, certain

77



index structures are required. Such index structures maintain the inter-relationships

¿rmong objects and fragments. They serve as FID and OID dictionaries as shown in the

architecture of the SM (Figure 4.3) and provide efficient data search for the object store.

B*-trees, together with certain supporting index tables are used as the data structures for

implementing the FID and OID dictionaries.

B*-trees are a widely used data structure for organizing and maintaining large

indices. They are designed to support the operations: create, insert, rlelete and, lookup.

For many years, the B*-tree has been the data structure of choice for applications requiring

both sequential and direct access. Among the B-tree and its variants, the B*-tree is most

suitable to serve as the index structure for the object store. The advantages of using the

B*-tree are discussed in [Gra93, Joh93]. Since the inærnal nodes in a B*-tree do not

contain data pointers, more tree pointers can be packed in each node. For the same size of

disk block, a B*-tree supports a larger order tree than a B-tree. This leads to fewer tree

levels, and thus shortens tree search time.

Another popular data structure which is good for disk storage is exændible

hashing. If the database is very large, exændible hashing may be used. If the darabase is

not that large, a B*-tree may be used. The B*-tree was chosen for several reasons. As long

as the root page of the B*-tree is cached in memory, the performance of the B*-tree is at

least as good as exændible hashing [Kim9Ob], if not better. B*-trees also permit lookup

with testing for key ranges rather than only exact key matches as with hashing schemes.

Finally, the B*-tree is easily partitioned for use in a distributed environment.
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Many important object oriented databases use the B-tree and its varianß to map

the object identifiers to their physical addresses. For example, Gemstone and EXODUS

support a B*-tree index on objects. Statice uses a B*-tree, Iris uses a B-tree, and 02 uses

a "B-tree like ordered tree" to access methods. Although ORION uses extendible hashing,

a B*-tree is also used to speed up the associative searches for objects. In future

improvements to this object store, a B*-tree combined with hashing methods might be

applied to achieve the best performance in lookup operations.

The existence of index structures after system crashes is an important feature of

persistence. To assist fast recovery, the important parts of the index structures will be

stored on the stable disk (i.e. "persistently") so that they can be used to reset the data

retrieval structures after software failures'. Such index structures can be regarded iu;

another type of persistent object, which might be called persistent index objects. Reusing

these persistent index objects provides an effective approach to object store protection

regarding software failures. In future, a logging approach might be also considered to

support object store recovery from hardware failures.

t 
Note that tltis in no way precludes in-memory caching to improve performance.
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Chapter 5

Implementation

The object store is implemented as two major components. The flrst component is

Object Store Creation (OSC) which occurs under Unix. The second component is Object

Store Access which occurs under Mach. The input data of this implement¿tion is based on

the vertical and horizontal fragment output results of Ezeife and Barker fÛze94a,Eze94b,

Eze95l.

5.1 Object Store Creation

The task of Object Store Creation is to determine the logical data structures and

disk data format required for the object store. The process of Object Store Creation js

shown in Figure 5.1. The system first loads the pre-fragmented logical fragments (vertical

and horizontal) into memory where they are further decomposed into physical fragments
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index files on disk

Figure 5.1 Object Store Creation
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to generate non-redundant data clusters fol storage. These non-redundant physical

fragments, are then allocated to disk using the FFS. Finally the system creates persistent

indexes for the purpose of data retrieval.

5.1.1 Data Structures

The logical data structures for each class used to implement the object store

include the following:

o Data structures supporting vertical fragments

. vJrag { *attr, *method}

vJrctS represents a vertical fiagment. It contains two pointerc *attr and

*method. *anr points to a vertically fragmented object vector, which

contains a byæ sequence of one or more attributes of the class. *method

points to a method vector for the same vertical fragment of the classl.

. vJrag_class { v_frag_num, vJrctg }

vlfrttg-clcts.s represents a vertically fragmented class. It has two fields

v;þag-num and v¿frag. The vJrag_num field represents the number of

vertical fragments in the class. The vJrag f,reld represents each veftical

fragment in the class.

o Data structure supporting horizontal fragments

. hJrag_cktss { h ;frctg_num, *h_obj_order, *h_obj_num 
J

I The contents of *methotlis the set of file names of the hles containing the methods for each vertical fiagment.
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h;frag-class is the format of a horizontally fragmented class. It contains

information about the horizontal fragmentation of a class including

h;frag-num, *h-obj-order and *h-obj-num. h;frag_num tndicates the

number of horizontal fragments in the class. */¿_obj_order is a pointer to a

vector which specifies the order of objects in each horizontal fragment of

the class. *h-obj-num is a poinær to a vector which specifies the number

of objects in each horizontal fragment of the class.

Dat¿ structures supporting physical fragments

. pJrag { *attr, *method}

pias represents a physical fragment of a class. It consists of two pointers

*attr and *m.ethod. *attr points to a physically fragmented object vector.

*method points to a method vector in the same physical fragment of the

class2.

. pJrag_class { p;frag_num,pÍag J

pias- clas.s represents a physically fragmented class. It has two frelds

p;frag-num and pJras. The p-frag-num field stands for the number of

physical fiagments in the class. The pJras field stands for each physical

fragment in the class.

Data structure used in every class

. obj-num

obj_num indicates the number of objects in the class.

2 The content of *methotl or pJrag is the same as that of yjl'rr¿g, but the clisk location is changecl.
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v¡frag-cla.ss, including all conesponding v¿frags, and h;frag_ct1ss are input

variables. The vertical fragments of all classes are assumed to exist in a file (v;fîIe). As

horizontal fragmentation is done on the data of the same classes, there is no need to keep

the horizontal fragment data (since it occurs within the physical fragments corresponding

to the vertical fragments). Therefore, only the format (refer to Figure 5.2 which will be

discussed later) of horizontal fragmentation,h;frag-class, is required. In this way, storage

is saved and data copying operations are reduced. It is assumed that the h;frag_clas,s

information for all classes is available in a fìle (h-fiIe) along with obj_num and rhe roral

number of classes. It is further assumed that the code for methods belonging to each

vertical fragment are available in individual temporary f,rles for each class. All these

temporary file names for the methods of atl classes are kept in a file (m;file)- This

assumption makes the object store implementation simpler, since when the final location of

the method code is determined on disk, the only thing that needs to be done is to change

the file name and delete the temporary files. The time-consuming work of transferring the

bytes of method codes to the destinations is eliminated. These assumptions are reasonable

because the fragmentation is done statically. Things can be easily arranged this way. When

the system finishes physical fragmentation and generates the output variables p;frag_cla.ss

(including ùl pJrag structures) the pre-determined input files (v;fi\e, h;file and n.;ftte)

will be deleted.

5.1.2 The Algorithm

The algorithm for object store creation consists of four steps, FetchFrag, phyFrag,
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StoreFrag, and Storelndex. The algorithm is shown below and discussed in detail in

Section 5.1.3. The symbol "-->" used in the following algorithm indicates copying.

Al gorithm ObjectS toreCreation

begín

for each class do

Step one: // FetchFrag gets the vertical fragments of thz current class, v1ftag_c1ass, tluta

concerning the hnrizontalfragments of th.e class, h-.¡frag_class, arul object numbers of
the class, obj_num. //

v¿file --> v;ftag_class;

h;file --> h;ftag_cluss;

input obj_num

Step two: // PhyFrag does physical.ftagmentation. //
for each vJrag e vJrag_class do

Sort the obiect parls in v1ftag into the sunrc order as in the horizontal .ftagnænts as

spe c ifie d by h_o bj _o rde r ;

Divide the sorled vertical Íragnxent vJrag into segnrcnrs reflecting the horizontal

fragmentation u sing h_obj _num;

G e ne r at e phy s ical fragment s p Jr a g ;

end;

Step three: // StoreFrag slores lhe physical.fragnrcnts and their inode-nunthers onto the clisk. //
Generate a pathnanle for the current class antl create a tlirectory with that pathnanu .for the

fragments of the class;

for each p_frag e pJrag_class do // hundle physical fragnrcnts //
Generqte u pathname and create afile within the elirectory;

*attr of pJrag --> the createdfile

end;

for each vJrag e vJrag-cluss do // han^dle nwthotls hetonging to the physcal fi-agnænts //
Generate a pathnanæ within Íhe directory;

Link *næthod of pJrag with tlrc pathnantz

end;

Get the inode-nunthers of all physicat fragnænts antl m.etlntls, arul sÍore them in u .file
phy_inodej.

Stepfour: // Storelndex stores the intlex inforntaÍionforfragnænts anì objects. //
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v;ftag_num" h_frag_num arul obj_num --> nurnJ;

for each p-ftag e p-ftag-clnss do // store the inode numbers of physical fragmznts //
Pick up the inode-number of *attr in p¿ftag from phy_inode_if;

The inode-number --> inode¿ftagJ

end;

for each vJrag e vJrag-class do // store the inode numbers of merhotls //
Pick up the inode-number of *method in p_frag from phy_inodeJ

The ino de - numbe r - - > ino de _me t tn d 1f
end;

for each object e p;frag-class do //store objects' inode numbers, lengths arul offsets//

Search arul collect the inode-numbers of the object segments fronr phy_inodeJ;

The inode-numbers --> inode_obj ect;

The size of the obiect --> length;

offset + length --> offset;

inode_object, length and offset --> inode_objJ, ob.i_tengthJ anrt obj_offsetJ

end;

end;

end.

The logical fragment identifiers, FIDs, are assigned by the order of logical

fragment input. This scheme is simple for generating FIDs, and it also guarantees that each

FID is unique because it assumes that each logical fragments is input only once. Consider

the following example:

Class No. I

Vertical fragments: vl,v2, and v3; FID(v1)=1, FID(v2)=2, and

Horizontal fragments: hl, h2;

Class No. 2

Vertical fragments: vl, and v2;

FID(v3)=1.

FID(hl)=l, and FID(h2)=2.
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Horizontal fragments: hl, and h2; FID(h 1)=3, and FID(h2)=4.

The same scheme is used for object identifiers, OIDs. The object's position in the first

vertical fragment of a class is used as the object's identifîer. This number increases

contiguously for the classes one by one. If, in the future, a more user friendly FID/OID is

desired, say a literal FID/OID, a map may be built be¡ween rhe literal FID/OID and the

corresponding numeric FID/OID.

5.1.3 Algorithm Discussion

The first step of Object Store Creation is to fetch the logical fragments, from files

v;fi\e, h;fiIe and m;fiIe into memory. OSC treats the fragment data as sequences of bytes.

As the data is loaded, OSC sets up the corresponding data structures in memory. These

include v¿frng-class, and h;frag-cktss. By this process the data is placed in a form upon

which OSC can start the physical fragmentation.

The second step is to decompose the logical fragments into physical fragments.

The main task of this step is to generate a new data structwe, p;þag_cla,çs, based on

v-frag-cla,ss and hJrag-clctss. Since both venical and horizontal tiagmentation act on the

same class, the decomposition into physical fragments needs two steps as follows:

Rearranging the data in the class.

Determining the intersection of vertical and horizontal fragments in the

class.
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To do this, OSC first rearranges the order of the objects in each vertical fragment

according to the object identifier in each horizontal fragment in the same class. Then OSC

decomposes each reordered vertical fragment into a number (h;frag_num) of portions.

The number of object segments in each portion is the same as the number of objects in

each horizontal fragment in the same class. Finally, these portions are generated as

physical fragments n pJraS-class. As an example, Figure 5.2 illustrates the process of

generating physical fragments.

The third step is to allocate physical fragments to disk using the FFS. Each class

corresponds to a directory. Atl the physical fragments belonging to the same class are

stored in the same directory. In a directory, the attributes belonging to the same physical

fragments are assigned to the same file. Each vertically fragmented method of the class is

assigned to an individu¿rl frle in the directory. Classes are numbered by their order of

appearance in the input sequence. For implementation simplicity, a directory pathname is

constructed simply using the class' number. A physical fragment f,rle name is the directory

pathname suffixed with the number of the physical fragment in the fragment sequence of

the class. A method file name is the directory pathname suffixed with the number of the

method in the vertically fragmented method sequence of the class. Once all physical

fragments are assigned to disk, OSC recorcls the inode numbers of the physicat fragments

and method f,rles in a temporary file, phy-inodeJ which will be used to construct rhe

index files for data retrieval in the next step, object Store Access (oSA).

If class inheritance relationships are considered, the object store will have a tree

(hierarchical) structure. In this implementation, however, all classes are treated equally.
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In a given cla^ss C:

The objects of C: {Or, Oz, Oa, O¿, Os};

The vertical fragments of c: {v¡, vz, v:}i The horizontal fragments of c: {h¡, h2}.

Horizontal fragmented class C:

objecrs horizontal fragments

o,
Oa

Os

Oz
O^

hr

h2

sort the objects in terms of *h_obj_order: 
{ 1,3,_5,2,4}

tlivide rhe objects in rerms of *h-obj_num: {3, 2} I

J

Physical fragments of C:
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Thus, under the root directory there is only one level of subclirectories. The

implementation support of class inheritance wilt be left for future work.

The last step of OSC is to determine and construct the smallest possible index for

the object store's contents. These indexes must be persisænt with the store so that the

system retrieval structure, which is built dynamically,can be recovered quickly after the

system crashes. Once the index f,rles for all classes are created, pathnames are no longer

used. Accessing fragments and objects is done using their inode numbers, instead of their

file names.

The flrst index file is numJ which contains the number of vertical fragments, the

number of horizontal fragments and the number of objects in each class. In the

implementation of Object Store Access, these numbers will be used to build index tables

and support operations on the tables.

Based on phy-inodeJ, OSC determines the inode numbers of physical fragments

and methods, and fills them in the index frles inode;fragJ and inotle_methodJ

respectively. For objects, however, more indexes are needed because an object is not an

independent storage unit. Since each object may be blended in to multiple physicat

fragments, OSC checks which inode numbers the object is stored in and picks them up

from the data set of physical fragment inode numbers. In addition, OSC needs to

determine the lengths and the offsets of the object segments in the physical fragments. File

inode-objJcontains the inode numbers of the physical fragments containing objects. Files
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obi-lengthJand obj-offsetJ specify object lengths and object offsets within the physical

fragments respectively'. An object's identifier is used to index into these tables.

5.2 Object Store Access

The task of Object Store Access (OSA) is to create index t¿bles and data retrieval

structures in the object store and then support object and fragment access using them. For

logical fragments, given a FID, the sysæm will return a set of inode numbers by which the

logical fragment can be accesseda. For objects, given an OID, the system will also return a

set of inode numbers. In addition to each inode number there are two associated numbers.

One indicates the length of the object segment and the other one indicates the offset of the

object segment in the corresponding physical fragment.

5.2.1Index Structures

The OSA has a threelevel index structure (as shown in Figure 5.3). In the first

level, there are six tables, storing information for all classes, as follows:

o num_table: the table of v;þag_num, h;þag_num and obj _num

data;

the table of inode-numbers of physical fragments;

the table of inode-numbers of methods;

3 The reason to use three files instearl of one is to make the concepts clea¡ and consistent between Object
Store Creation section and Object Store Access section. In the latter section, three tables, inode_obj_table,
o bj _l e n g t h _t ab I e, and o bj _off s e t _t ab I e ar e needed.
o As implementerl, OSA returns locations of data rather than the data itself. Access is made using the
existing FFS 'read', 'write', and 'seek' operations. Returning the actual data woukl require only simple
modifications to the code.

inode_frag_table;

inode_method_table:
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ínode_obj_table:

obj-length_table:

obj_offset_table:

the table of inode-numbels of objects;

the table of object segment lengths within inodes;

the table of object segmenr offsers within inodes..

The structures implementing the second level index tables (for all classes) are as

follows:

frag _12 _inde x { num, ino de ;fr ag, ino de _me tho dl

frag-L2-index stands for a second level index table for logical fragments. Each

entry of frag_L2_index contains three fields, num, inode;frag, and

inodeJnethorl, associated with each class. For any given class, nutn points to

its num-table; inode;þag points to its inode;frag_table; and inorle_meth.orJ

points to its inode_method_table.

o bj 
-12 -inde 

x { num, ino de _attr, ino de _me tho dl

obj-L2-index stands for a second level index table for objects. Each entry of

obj-L2-index contains three fields, num, inodeJtttr, and inorJe_methorJ,

associated with each class. For a given class, nurn points to its num_tabl.e:

inode-obj points to iæ inode_obj_table, (along with its obj_Iength_table and

o bj 
-offs 

e t 
-tab 

I e) and ino d e 
-tne 

tho d p oi n rs to its in o de _me tho d _t ab I e -

The third (top) level index structures are B*-trees. ln the B*-tree [Smi87, Elm89],

data pointers are stored only at the leaf nodes of the tree. Each data pointer points to an

entry in a second level index table. Key pointers are used to search through the B*-tree

based on FID/OID to locate the lower level indexes' structures describing the
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colresponding fragmenlobject. The other type of pointers, tree poinúers, connect the tree

nodes to enable lookups.

5.2.2lndex Table Setup

Based on the data in the six original tables, creating index tables for the object

store involves filling in index table entries at all three levels. Figure 5.3 shows the layout of

the three level index structure.

Figure 5.3 Index Tables of the Object Store

second level fragment
index table (fl2)

second level object
index table (ol2)

object inode table
(inode_obj_table)

number table
(num_rable)

object length table
(obj_length_table)

method_inode_tâble
(inode_method_rable) object offset table

(obj_offset_table)

93



The fust step in setting up the index tables is to fetch the persistent data in the

index files written during OSC and store them in the first level index tables. The six index

fres,num;f, inode;frng;f, inode-methodJ, inode_objJ obj_lengthJ and obj_offietJ

correspond to the six first level index tables, num_table, inode;frag_table,

inode-method-table, inode-obj-table, inode-Iength_table, and inotle_offset_table. The

algorithm SetupTables will fill the six index tables with the data provided by the six index

files. Again, the symbol "-->" indicates copying in the following algorithms.

Algorithm SetupTables

for all classes do

v;frag-num, h-jrag-num arul obj-nunt.front numJ (on disk) --> num_table (in memory);

inodes of p1ftag-class from inodeJragJ þn disk) --> inodeJrag_tuble(in memory)

inodes of vertical fragment metlnds from inode-næthodJ þn tlisk) --> inofle_mzthotl_tubte (in

numnry)

inodes of ob.iect segnænts from inode_ob.iJþn disk) --> inode_ob.i_tabte (in næmory)

object segment lengths frorn ob.i_lengthJþn disk) --> obi_Iengîh_table (in næmory)

obiect segment o.ffsets in each physical fragnænt from ohj_offiet_f (on dßk) --> ohj_offset_table

(inmennry)

end.

The next step is to build the second level index tables on top of the first level. Each

entry in the second level index tables points to a certain position in the first level index

tables. There are three second level index tables, the second level index t¿ble of vertical

fragments ufl2, the second level index table of horizontal fragments, hfl2, and the second

level index table of objects, ol2. The algorithm L2lndex.vertical_fragment is used to setup

ufl2.
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Àl gorithm L2lndex.vertical_fragment

const next-data-pie ce- lo cation = I ;
const num-table-uni l= 3;

for each class do

for each vertical fragtrßnt do

indexnum_Íable --> num;

in^de x ino de _¡frag _table - -> ino de ¿ft ag ;

inie x ino de Jr a g _t ab le + h_1fr a g _num - - > i nd e x. ino de ¿ft ag _t ab I e ;

inde x ino de _method _table - -> ino de _me tho d;

index.inode-method-table + next-data-piece-location --> index.inode_methotl_table;

end:

inde x num _t ab le + nu rn- t ab I e - unit - - > inde x. n um _t ab le ;

end

To setup ufl2 three flrst level index tables, num_table, inotle;frag_table and

inode-method-trtble, are needed. Figure 5.4 shows the layout of the vertical fragment

index structure. Each data pointer in the B*-tree leaf level is associated with a vertical

fragment, and thus is associated with three entries of ufl2: num, inode;frug an<l

inode-method. And each of these entries points to one of the first level index tables. The

inode-¡frag-trtble contains the inode numbers of physical fragments which are sorted as

vertical fragments' order for each class. For instance, the physical fragments' inode

numbers of the first vertical fragment of a class are contiguously arranged in the table,

then they are continued by the inode numberc of physical fragments belonging to the

second vertical fragment. Such procedure continues until the last physical fragment of the

last vertical fragment of the class. Right after that, inorJe¿frag_tabt¿ will ¿urange the next

class' physical fragment inode numbers with the same scheme. The inode number of

methods are also arranged in inode-methotl-tabl¿ in terms of the vertical fragment order
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in every class. Each class is associate with three entries of num_table: v;frag_num.,

h;frag-num, and obj-num.In Figure 5.4, each solid arrow points to the certain location

of another table for the current entry, while each dashed arrow is used to indicate where a

certain following entry with the same type will point to. For each vertical fragment, num ß

set to the index of v¿frag-num for thecurrent class in num-table. Thus, all vertical

fragments for a given class have the same value of num. For the vertical fragments in the

next class num wlll point to the next v;frag_num entry in the table num_table.

In vIP, the inode-fraç entry of each vertical fragment only records the index of

the flrst physical fragment belonging to the vertical fragment. Based on this first index and

the data provided by num., the rest of the physical fragments can be located by offset since

the indexes of the physical fragments making up a vertical fragment are stored

consecutively in inode;frag-table. This scheme avoids the complexity of a second index

table structure, and thus reduces the complexity of searching for data. The same scheme is

also used n hfl2 and oI2. As shown in Figure 5.4, the node;frag for the first vertical

fragment of the current class is set to the index of the first physical fragment (pr"*,) in that

vertical fragment. Beginning from pr,,.*, there are 'h;frag_nuln 'physical fragments which

belong to the current vertical fragment. The mode;frag of the next (second) vertical

fragment will point to the first physical fragment of that vertical fragment, pnextrirsr .

T}:,e inorle-tnethod of the first vertical fragment of the current class is set to the

index of the first method, mrr.sr, in ínode-tn.ethod_table. In this table, there are

'v1þag-num' vertically fragmented methods for the current class. The utode-methorJ of
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the next vertical fragment will point to the second method, rnseconrr , of the class. Following

these rules, ufl2 wlll be setup for all classes.

Although hfl2 sharcs the same tables as ufl2, num-table, inode_¡frag_table ,and

tnode-method-tctble, the entries of hfl2 point to different positions in those tables.

Therefore' it is necessary to setup an independent second level index table for horizontal

fragments. The algorithm L2lndex.horizontal_fragment is used to setvp hfl25.

Al gorithm L2lndex.horizontal_fragment

const nexÍ-data-piece-location = I ;
const num-table-unit= 3 ;

for each class do

for each horizontal fragment do

in^de x. num_table - - > num:

index inode ;frag _table --> inode Jrag ;
in"dex'inode;ftag-tabre + next-data-piece-rocation --> iruIex.inodeJrag_table;
index inode _met ho d _table - - > inode _me tho tl ;

end;

inde x nu m _t ab I e + n u m- I ab I e - unit - _ > in de x. rut nt _r ab I e :
inlex.inode;frag-tabre + (vJrag-num-r) * h .ftag_num --> irulexinorteJrag_tabte;
inde x i no de 

-nte 
t ho d 

-t 
ab r e + v Jr a g -nunt - - > irure x. i no d e _me t rn d _t a b r e ;

end.

In hÍ12, the setting of num entries follows the same rule as that in ufl2. Fígure 5.5

shows the layout of the horizontal fragment index structure. T]he inode;frag field of the

current horizontal fragment points to a physical fragment in ínode;þag_table, which is the

first physical fragment belonging to this horizontal fragment. The next physical fragment

belonging to this horizontal fragment can be located by skipping ,h;þag_nurn, 
physical

s v ,ftag-nurry h;frag-num and obj-num in osS are the same as they are in osc.
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fragments. Each horizontal fragment, as mentioned above, also records only the index of

the first physical fragment belonging to this horizontal fragment. For the s¿Lme reason, the

inode-method of each horizontal fragment just records the index of the first method of the

current class. Thus, the tnode-method field of every horizontal fragment points to the

same position in inode-method-table for the same class. Each horizontal fragment owns

all the vertically fragmented methods of the class, from rnr,,*t to nìra,t in

inode-method-table.If the position of m¡o,1 is available, the next following methods will

be conúnually accessible via offsets.

The algorithm L2lndex.object is used to setup a second level index table for

objects.

Algorithm L2lndex.object

const num-table-unit= 3 ;

for each class do

for each object do

in^dexnum_table - -> nunt;

iruJex.inode _o bj _table - -> inode _obj ;

inde x inode _obj _t ab le + v ;frag _num - -> inde x. nunt_table :

indexinode _method_table - -> inode Jnethod;

end;

in^dexnum_tahle + num-table-uni t --> irulex.num_table;

ind e x ino de 
-nt 

et ho d 
-t ab le + v Jr a g _nu nt - - > ind e x. ino d e _rnz t lto tl _t ab I e ;

end.

To construct ol2, three first level index tables, num_table, inode_obj_table, and,

inode-method-table are needed. Figure 5.6 shows the layout of the object index structure.

Since the tables, inode-obi-table, obj-tength_table and obj_offset_table have the same

indexes, there is no need to record obj-length_table and, obj_o.ffset_table in oI2. Once an
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index of inode-obi-tabl is available, using the same index, the required data in

obj_length_table and obj_offset_table can be obtained.

In oI2, again, setting numfollows the same rules used n ufl2 and hfl2. Therefore,

for the three second level index tables, num is the same. There are two reasons that this

element is not factored out of the three tables and made independent. One is that keeping

num in each table makes the implementation logically clearer and also easier. The other is

ttrat this scheme makes the three kinds of searching independent. Thus any fault occurring

in one table will not affect data searching in the other tables.

Each inode-attr in ol2 is set to a ceÍain index of inorJe_obj_table. Beginning from

this index (oro*,), 'vJrag-nurn ' contiguous inode-numbers all belong to this object. The

ínode-attr of the next object will be set to the first following index, the index of o,"*t r,..r .

That is, each inode-attr points to the first element of every v;frog_num elements in

inode-obj-table. Setting inode-methodin oI2 applies the same rule as thatn hft2.

Finally, three B*-trees will be built individualty on each of the three second level

index tables to implement the top index structure for searching logical fragments (vertical

and horizontal) or objects. The algorithm FillBtree will setup the B+-trees and connect

them to ufl2, hfl2, and ol2.

Algorithm FillBtree

Create a B* -lree for vertical fragments;

for each vertical fragnænt o.f all classes do

verticalfragment ID --> key pointer in a B*-tree lea.f node;

frag-L2-indexof verlicalfragtTtgnts --> datupointer inthe sante B*-tree leaf node;

end;

Create a B* -tree .for horizontal fragments;
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for each horizontal fragnrcnÍ of all clusses do

horizontalfragment ID --> Iæy pointer in a B*_tree leaf node;

frag-L2-irulex of horizontalfragmcnts --> data poinîer in tlrc sanrc B*-tree leaf no¿e;
end;

Create a B*-tree for objects;

for each object of all classes do

object ID --> key pointer in a B*-tree leafnorle;

obj_L2_index --> data pointer in the same B* _tree leaf node;

end.

Through the process of insertion (abstracted in Algorithm FillBtree), the B*-tree

key pointers are linked with FIDs/OIDs, and the data pointers with the indexes of num t'
the three second level index tables (see Figure 5.4, Figure 5.5, and Figure 5.6). Two

examples are provided as follows to illustrate how the index system work.

Example 1.

Take the example of Figure 4.1. There is one class with 6 objects (o1, 02, 03,

o¿,os, ou), 3 horizontal fragments (Fnr, Fr,z, Frr), 2 vertical fragments (Fur, Fuz), and 6

physical fragments (pr, pz, p¡, p¿, ps, pe). Figure 5.7 shows the logical and disk views of

the fragmented class- Its vertical fragment index tables and object index tables are given in

Figure 5.8 and Figure 5.9 respectively.

Example 2.

This example illustrates the situation with two classes (Cr, Cz). Class Cr has 3

objects and is onìy horizontally fragmented into 2 horizontal fragments (Fnr, Fr,z). Thus Cr

can only have? physical fragments (pu, prz) which are the same as the two horizontal
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Figure 5.7 Example 1: Fragmented class c. (a) A rogical view of c with
its physical fragments. (b) A logical view of c with its objects. (c) A
disk view of allocated physical fragment files and method files
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fragments. Class Cz has 2 objects (O¡, O¿)and it is only vertically fragmented. Cz has 2

vertical fragments (Fur, Fuz), and thus it can only have 2 physical fragments (pzt, pzùwhich

a¡e the same as the two vertical fragments. Figure 5.10 shows the logical and disk view of

the two fragmented classes. Figure 5.11 gives the horizontal fragment index tables, and

Figure 5- 12 gives the object index tabres of the two classes.

5.2.3 Data Search

Once the index structures are createcl, OSA can start satisfying data searches. The

search process determines the inode numbers (and, in the case of object lookup, lengths

and offsets corresponding to each inode) when given a fragment identifier or an object

identifier.

Algorithm Search

if vertical fragmznt ID then

Search vertical fragment B+ -îree ;
Search vertical fragnænt secorul level irulex table;

s e ar c h fi r s t I e v e r i n d e x t ab r e s ino tre 1ft a g _t ab te arur i no de _nt e tho rJ _t ab r e ;
Rerurn a s et or inode -nurnhe rs for the re que sred verticar fragmznt ;

end;

íf horizontalfragnrcnt ID then

Search horizontal.fragmenî B + tree ;

Search horizontal fragment secontl level irulex Íable;

search first lever index tabres inottelftag-rabte arur inode_tnethotr_tahre;

Return a set of inode-runtbers for the requested horizontarfragmÊnt;
end;

ìf object ID then

Search object B+-tree;

Search object second levet iruJex table;
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Searchfirst level irulex tables inode-inode-tahle,inorle-methotl_table, obj_tength_table an¿

obj_offset_table;

Return a set of inode'numbers of thz obiect attributes an^d methods, a set oÍ the obiect's lengths arul

offsets;

end.

Consider the processing required in searching for an object. Given an OID, OSA

uses the OID as a key pointer to search in the B*-tree to find the data pointer. Through

this data pointer, OSA then determines the position of the relevant num jn oI2- The next

element, inode-attr, points to an index indicating the location of the first required inode

number tn inode-obj-tctble. Starting from this element, OSA takes 'v-frag_num', inode

numbers from inode-obj-table. Using the same index, the corresponding data in

obj-length-table and obj-offiet-table will be obtained. The elemenr following rhe

inode-attr is inode-m.ethod, which points to the location of the first inode number of the

methods belonging to this object. Starting from this inode number, OSA loads

'v;frag-num ' consecutive method inode numbers. At this point, all the inode numbers of

the object and the relevant data (object lengrhs and offsets) have been obtained. This

information may then be used to locate the bytes composing the object. Searching a logical

fragment follows the rules shown in Figure 5.4 and Figure 5.5.

In Example I (see Figure 5.9), given an object idenrifier OID=3 (OID3), through

the B*-tree searching, the hnal key pointer will end up at certain location of the leaf level.

The data pointer associated with this key pointer then points to the 7th entry of oD. From

this entry, three contiguous entries provide three pointers, num, íno¿e_obj, and

inode-method, which point to nurn-table, inode-obj-table, and ínorJe_m.etho(J_table

respecúvely- Since the inode-oåj poinær points to the 5th entry of inode_obj_table, the
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physical fragment containing the flrst piece of the attributes of the requested object can be

located. Starting from the 5th entry, contiguous 2 entries will determine the entire

locations (inode number 3146 and 3149) of the physical fragmenrs conrâining all the

attributes of the requested object. The inform ation 2 (v;frag_num) is provided by

num-table which can be reached through the num pointer n ol2. Since objects' attributes

are blended into physical fragments, accessing the object needs the lengths and offsets of

the attributes in the provided physical fragment hles with the inode numbers as 3146 and

3149. The length and offset data can be reached n obj-tength_t(tble and obj_o.ffset_table

using the same entry numbers tn inode-obj-table where 3146 and 3149 reside. Thus, the

attributes of the requested object (OID3) can be found at rhe physicat fragment frle (3146)

with length=l9 and offset=O, and at the other physicat fragment frle (3149) with length=5

and offset=O. The inode-method poinær of ol2 points to the ñrst entry in

inode-method-table which contains the location of the methods. Starting from the first

entry, contiguously 2 entries provide the files with the inode numbers as 9617 and 961g

where the methods of the requested object (OID3) reside. Again, the inform atíon 2

(v;þag_nun) is from num_table through the numpointer.

In Example 2 (see Figure 5.11), given a horizontal fragment identifier hFID=2

(hFID2), the data pointer at the B*-tree leaf level points ro rhe 4th entry of h.fl2. The nexr

entry provides the inotle;frag poinær which points to the 2nd entry of inotle;frng_table.

Through the num pointer at the 4th entry of hfl2, the information of v;þag_num =1 can

be obtained at the lst entry of nutn-table. Since only horizontal fragments exist

(v;þag-num = 1), the physical fragment hle (inode number = 8413 ) alone in the 2nd
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entry of inode;þag-table provides the entire attributes of the requested horizontal

fragment. For the s¿Lme reason, the lst entry of inode_method_tabl¿ which is reached

through inode-method pointer, provides the location ( inode number = 2010) of the entire

methods of the requested horizontal fragment.
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Chapter 6

Distribution

To provide a very large data space, a persistent object store must eventually be

distributed so that many sites may share the storage load. Distribution transparency

provides a uniform mechanism for data operation both in local and remote nodes. This

permits the distributed stores to be considered a single large storage system. This fits the

concept of persistence transparency because all the physical properties, including

placement of data, replication of data and the failure of nodes, are hidden from users.

A "bottom-up" approach may be used to extend the presented single-site object

store system into a truly distributnd peer-to-peer system, which, unlike a traditional client-

server distributed system, does not have a single, centralized server. Every node on the

network is capable of acting as a server to the other nodes, and the information stored in

one node can be freely accessed by the other nodes. In such a system, information ¿1¡rd

resources can be easily shared among different nodes.
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Distributed systems involve many complex and inter-relaæd issues. In this chapter,

only those issues relevant to extending the centralized object store into a distribuæd one

are discussed.

6.1 Operating System Support

Most existing persisænt systems have been developed above conventional

architectures or operating systems which have little support for efficient ob..iect-oriented

programming in a distribuæd environment. The described object store is constructed on

top of Mach, a modern operating system which provides all the underlying mechanisms

needed to support shared, persisænt objects[Mil93]. The advanced programming features

of Mach such as kemel threads, IPC, and especially its virtual memory management which

allows local, single-copy sharing of code and data, object faulting and transparent on-

demand object access, make the implementation extensible to a distribuúed system.

A memory manager under Mach, can serve as a Distributed Shared Memory

(DSM) manager [Tev89, Bar90, Tan92, Boy93] which handles rcferences to the shared

pages of virtual memory. A shared page is either readable or writable. The readable shared

pages may have a number of replicated copies on different machines, while the writable

ones have only one copy. If a thread on a machine references a readable page, the DSM

server will map a copy into the machine's memory for reading. If a writable page is

referenced, the DSM server will request the page from the kernel on the machine holding

the page and then map it into the referencing thrcad's memory. During these procedures, if

the requested page is not in the memory, a page fault will be sent to the kernel. The kernel
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then employs the external memory manager (the pager) to map the page from secondary

storage.

Using the Mach operating system, a distributed shared virtual memory @SVM)

can be built which extends the concept of a single, large, shared, persistent virtual object

space to tasks scattered across the different nodes in a distribuûed system [Mat95]. On

each node, there is a physically independent object storage system to support the locally

stored subset of the shared virn¡al memory. Together, all the object stores on the

distributed nodes support a uniform DSVM system. With the same address space visible

to all tasks on all nodes, this DSVM system can be viewed as a one-world model [Gra93]

upon which user applications execute. A persisûent object in an object store on any node is

then regarded as a global persistent object and can be referenced at a pre-defined location

in the DSVM by all nodes. Each object identifier provided by the object srorage sysrem

can be uniquely mapped to a virtual memory address since [Gra93, Mat95]:

o virtual addresses within a shared virtual memory are system-wide and

consistent, and

' the shared memory address space is never destroyed and is valid for all tasks

across space and time.

Mach, running on 64-bit processors, can address 26a bytes of virrual memory. This

huge virtual address space, with the support of distributed object stores, provides users an

ideal persisænt object-oriented programming environment. Since each object uniquely

corresponds to a virtual memory address, objects can be referenced in terms of their
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virtual memory addresses thereby avoiding the overhead normally required to swizzle

object references' when a user application from one node needs an object, it simply

accesses the virtr¡al memory address where the object resides in the DSVM. The DSM

server running on Mach will perform the data mapping to the requesting node. If the

requested object is not cached in a corresponding physical memory, a page fault will

occur' and a pager will be called to page in the requested data from a local or a remote

object store' The pager is, of course, also responsible for paging out the modified data to a

local or remote object store.

Logically, each object resides in the virtual memory as a single independent unit

with a unique virtual memory address as its object identifier. physically, each object is

blended in some fragments which reside in a certain object store. when an object is

accessed through its virn:al memory address, the sysæm may choose to fetch the

fragments involving that object into memory. This supports pre-fetching of related data

since the fragments may contain data that the methods of the object need to access.

6.2 Distributed Fragment Allocation

In addition to supporting greater storage capacity, distribution is introduced to

enhance overall system performance. There are two major factors that affect the

performance of the applications in a distributed database system as described below

([Kar94]):

o Latency and bandwidrh of disk vo operations on each locar site.
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o Latency and bandwidth of data communication between sites.

In a distributed objectbase system, the above two issues can be dealt with as follows:

. Fragment the classes, and

o Allocate the resulting fragments on to various nodes appropriately.

The process of fragmentation determines the appropriate units of data for distribution.

This can be done in an object-oriented environment by clustering related data in classes

into groups based on class membership and analysis of data access pattems. Fragmentation

is aimed at reducing the amount of irrelevant data accessed, and thus reducing the number

of necessary disk VO's. Distribution enables the effectiveness of class fragmentation. As

discussed in Chapter 3, using class fragmentation as an object clustering scheme benefits a

distributed system in many ways. This is the major reason for the object store ro support

fragments.

Fragment allocation fKaÐ4, Sen95l is concerned with the placement of the

fragments onto the distributed nodes in such a way that the cost of communication among

different nodes, the cost of accessing fragments, and the cost of updating fragments and

their replicated copies on the other nodes are minimized. The problem of data allocation in

a distributed environment has not been resolved so far. Karlapalem, et al. [Kar94] present

some allocation algorithms which is the first work on fragment allocation in distributed

object-oriented systems. The fragment allocation strategies required in a distributed object

store system should follow the criteria described below:
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Allocation should place the fiagments at the nodes from which they will be

most frequently invoked. For fragments involving complex methods which

invoke other methods, the invocation sequence should be considered in the

allocation process.

Fragments involving restricted accesst and shared accesst may have replicated

copies at each of the nodes where they are frequently referenced.

If the location of the methods is fixed, the fragments that involve those

methods should be allocated at nodes based on the type of processing being

done on the objects the metho<ls access. If a complex object is accessed and

then modified frequently, the fragments involving the component objects of

that complex objects should be placed at the same node.

If a complex object is accessed frequently from a node, the fragments involving

the data belonging to that object may need to be allocated at that node.

If inheritance is used, the fragments belonging to the super classes from which

an instance variable inherits an attribute may need to be allocated at the same

node with the fragment involving that instance variable.

6.3 Global Data Structures

After logical fragments are allocated to all the distributed nodes, building a local

I A set of objecs O has the restricted access property if these objecrs a¡e referenced by a restricte¿ set of
other objects R, via instance va¡iables. Whenever the set of objects R is accessecl, the set of objects O may
also be accessed.2 A set if objects O has the sha¡ed access property if they can be reference<l by any other object as an
instance va¡iable.
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object store on each node may begin. The allocated logical fragments are first decomposed

into physical fragments on a per node basis, and then the physical fragments are allocated

to the local secondary storage. These procedures follow the same rules as those described

in Chapter 4 and 5. However, building the global data structures for the object stores in a

distribuæd system introduces some new considerations.

6.3.1 Global FIDs and OIDs

A persistent object it any object store of the distributed sysæm must be persistent

and consistent in the global environment. Thus, both the formats of an object identifier

and a fragment identifier from the centralized object store must be extended with some

distribution information. With respect to the conceptual object identifiers and the

conceptual fragment identifiers, the new restriction is that the numbers associated with

them should be not only unique to the local node, but also unique to the whole system.

This means the conceptual identifiers for objects and fragments must be created uniformly

and globally. One approach to this problem is to associate each conceptual object

identifier with one and only one virnral memory address in the DSVM [Gra93], as was

discussed earlier. This scheme also provides distribution transparency because such

identifiers hide the physical locations of objects or fragments from users.

With respect to the internal object identifier and internal fragment identifier3, some

new information must be added. A f,reld indicating the location of the node on which the

object or the fragment resides is needed. The mappings required betr¡¡een conceptual

3 Fragment identifiers a¡e still required at the level of object store management.
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identifiers and internal identifiers for both fragments and objects can be described by the

following:

FID :+ {#node, #controller, #disk, inode numbers of the physical fragments };

oID + {#node, #controller, #disk, inode numbers of the physical fragments,

the object segment lengths, and the segment offsets in the files).

6.3.2 A Global Directory of Objects

As discussed in the previous chapters, each object store has an index system (Data

Dictionary, see Chapter 4). Given an OID or a FID, using the index system, the store

should be able to return a set of inode numbers and relevant information for locating an

object or logical fragment. In the distributed system, the index systems of different object

stores on all the nodes are united together to form a global index system, called the Global

Directory of Objects (the GDO) [Mat95]. Given any global OID, or FID, the GDO will

return the corresponding information for locating the requested object or fragment. Since

the system is a peer-to-peer distributed system, any failure of a single node must not affect

data manipulation among the other nodes. With the rccovery functionality of the Data

Dictionary as discussed in previous chapters, a local object store suffering a system failure

should be able to be restored quickly. Constructed with care in such an environment, the

GDO as a whole has cerrain reliability.

The GDO can be managed in difÏerent ways as described by Mathew er

[Mat95]. Perhaps the simplest way is to keep the original index system belonging to

al.

an
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object store on its own node. This scheme can be viewed as a natural partition of the

global GDO across the distributed nodes. The reliability and the consistency of the GDO is

maintained by the reliability and consistency provided by each Data Dictionary on the

nodes. Although direct and easy to implement, this scheme has a serious disadvantage. If

on one node, an object is requested which cannot be found through the local index system,

then, in the worst case, the server of the node will have to inquire with all other local

index systems on the other nodes to locate the object. This scheme can quickly cause

excessive communication overhead.

Another option is to extend each local index system to reflect the whole GDO.

That is, each node has a full, replicated copy of the GDO. This scheme enables data

searching to be carried out locally. It greatly reduces the network traffic resulting from

index services and speeds up the location of objects. However, this scheme may make it

difficult to maintain the consistency of the GDO when insertion, deletion and migration of

GDO entries are involved. Every update of the GDO will cause modifications on all of the

nodes and induce related network traffic. In addition, this scheme increases the storage

overhead needed to maintain index systems, because keeping a futl GDO at every node

consumes a great amount of storage in the system.

A balanced scheme between the above two is a parritioned GDO with limiæd

replication [Mat95]. This scheme extends the local index system to a certain degree. On

each node, the local object store possesses some portions of all index systems including

those originally created in the other object stores. As a result, the distributed object stores

can be organized into a number of groups in terms of their index systems. Each group has
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a totally different portion of the GDO, while inside each group, all the object stores have

the same portion of the GDO which is an extended index system based on their locally

created ones. This scheme keeps the advantages of the above two schemes and avoids the

disadvantages to some extent. It is still relatively easy to implement and, when combined

with efficient allocation strategies (e.g. allocating the related fragments in the same group

where object stores have the same portion of the GDO), the performance of data retrieval

can be greatly enhanced. Although the problem of the GDO consisrency still exists, it can

be limited by the use of a reasonable degree of replicaúon.

As discussed in the previous chapters, the index structures of the object store are

dynamically created when the system restores from a system failure or a shut-down

operation. Therefore, each GDO portion in a distributed system is also created

dynamically. The reasons that the dynamic scheme is used instead of storing the GDO

portion on its local disk and loading it to the memory when the system starts include:

The use of the B*-tree, as the top level index structure of a GDO fits a dlmamic

scheme much better. It is complex to store the B*-tree structure on disk.

The dynamic scheme avoids the work of conventing the GDo disk format to

its memory format which would otherwise increase the GDo creation time.

The dynamic scheme greatly reduces disk vo which is slower than memory

access since the dynamic scheme only needs to load the first level index

structure of the GDO from disk to memory.
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Because each node supports only a portion of the GDo, the B*-tree and the

other two levels of index tables should not be very large. Thus it will not take a

long time to create the GDO on any given node.

The dynamic scheme naturally supports the extension of the static object store

system into a dynamic one in the future.

In summary, after fragments are allocaæd to each network node, the system will

provide transparent access to physically distributed local object stores (LOSs). User

applications are based on a Global Conceptual Persistent System which is defined on a

Distributed Shared Virtual Memory (DSVM). Accessing objects in the DSVM is

conceptually through a single version of the GDO which is physically partitioned to

different groups of local object stores. In the same group, each object store possesses a

copy of the same portion of the GDO which is different from that of the other groups. The

system architecture for the GDo's implementation is shown in Figure 6.1.
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Global Conceptual Persistent S ystem

Distributed Sha¡ed Virtual Memory

LOS: local object store

Figure 6.1 Architecture of a Distributed objectbase system system
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Chapter 7

Conclusions

This Chapter will summarize the main contributions of the research work

presented in the dissertation. Further, it will discuss possible future work in five directions:

. Implementation support for class inheritance.

o Clusteringtechniques.

o I dynamic distributed system.

. User transactions.

o Query systems.

7.1 Summary

The persistent storage of objects provides programmers with data manipulation

capability at the level of programrning languages without the need for explicit storage

management. Object store support is essential in persistent object-oriented programming
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and object-oriented database management systems. In this dissertation, a study of the basic

concepts and requirements related to persistent object stores was undertaken. In

particular, a detailed study of the design and implementation of an object store prototype

was presented.

Supporting class fragmentation in the object store is a special feature which

distinguishes the presented object store from other existing object stores. object

clustering, which determines the data storage format and physical storage units in the

object store, is derived using the class fragmentation approach. Fragmentation promises to

enhance application performance by reducing the amount of irrelevant data accessed and

the amount of data transferred unnecessarily between distribuæd sites. Supporting

fragmentation enables the object store to accommodate the object-oriented features of

encapsulation, inheritance, and aggregation.

File systems are the most commonly used strategy to store and retrieve persistent

data treated as a series of untyped bytes. Since object models have their own data

semantics and data operations, new features should be added to a file system to develop an

object store- The described prototype employs parts of the Berkeley Unix FFS and stores

fragments/objects in a way which tries to keep related data as physically close together as

possible. In addition, fragmenlobject index structures are constructed and function

together with the FFS to provide "naming" services and to manage the object store.

The main features of the presented object store are the following:

o Persistence
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The major function of the object store is to keep objects persistent and accessible.

Persistence is achieved by using the FFS to store fragments and their access

structures. Every object/fragment, together with its objeclfragment identifier is

persistent in the object store. Persistence enhances usage simplicity.

Correctness

Prototype testing shows that, given any objeclfragment identifier, the object store

always returns the corresponding object/fragment correctty. As such objects and

logical fragments are reconstructable from their storage representations. No

attempt at formal verification was made.

Design Sìmpliciry

The strategy of using the FFS reduces the complexity of the design and

implementation of the object store. Object store creation is straightforward and

objeclfragment lookup is easy to use.

Efficiency

Several points contribute to the efficiency of the object store. They are as follows:

o Advanced architecture - Built directly on the advanced Mach microkemel, the

object store will achieve better performance by avoiding unnecessary operating

system overhead.

' 64 bit addressing - Availability of 64-bit addressing eliminares the efÏort of

certain object management functions which usually have to be considered when

constructing an object store.
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Fragmentation approach - The fragmentation approach fBze94a, Eze94b,

Eze95l will result in improved performance in a distributed sysrem.

Fast data lookup - using inode numbers, instead of the pathname-based

naming system, to retrieve objects/fragments will decrease the overhead of file

access. The simplicity of the index structures contributes to the efficiency of

data lookup.

Fast recovery - The strategy of keeping key index structures persistent allows

the object store to recover quickly from software failures.

o Flexíbility

Availability of two data interfaces - The object store provides an interface for

accessing objects and an interface for accessing fragments. This strategy is

designed to meet the requirements of different applications.

An adjustable file system - The FFS parameters may be adjusted based on

empirical analysis and testing to find the best possible values for object storage

for different application requirements.

ExtensibíIity

The object store prototype provides a basis for a distribuæd object base system.

The idea of using the Mach microkernel and fragmentation addresses a number of

distributed system issues. The data structures of the centralized object store

prototype can be extended to suit a distributed object base system. Avoiding

sophisticated high level features enables this prototype to be further developed and
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thus supports either object-oriented databases or persistent object-oriented

programming languages. Finally, this prototype may be extended to support other

forms of object grouping based on locality.

7.2 Futare Work

Based on the successful centralized prototype of the object store, further research

will aim at improving and developing it into a more practical system. Five possible

directions for future work will be discussed in the following sections.

7.2.1 Implementation Support for Class Inheritance

Perhaps the most obvious future work is to extend the implementâtion to support

class inheritance. To do this, in addition to class fragmentation information, the object

store creation code requires the class hierarchy relationships as input. Each class should be

assigned a record which specifîes the class' position in the class hierarchy. The

implementation will allocate the fragments belonging to a class to a subdirectory under its

superclass' directory. In this way, the FFS layout policy will help to keep the objects with

inheritance relationships physically as close as possible on the disk.

For the multiple inheritance case, the class inheritance hierarchy has to fit the

f,rlesysûem tree hierarchyl. For this reason, the fragments of a class which has more than

t Note that there is no apparent FFS optirnization for irle links which might otherwise better support
multiple inheritance.
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one superclass, should be allocated to the subtree of one of the superclasses from which,

compared with the other superclasses, the most information will be referenced.

7.2.2 Clustering Techniques

The clustering æchnique used in the object store is based on class

fragmentation

[Eze95].In spite of its advantages, it is not the only possible straregy for exploiting object

semantics in clustering. Because of its important effect on performance, clustering

techniques have been used by different object base systems [Ber94]. In the future, one

consideration in clusæring may be aggregation relationships [Bin9l, Sch77]. This

approach groups multiple hierarchic segments together and as a result, objects' sub-

components can be stored immediaæly following them. This benefits queries that access

an object and require navigation through its aggregation hierarchy [Ber94]. Another

alternative is to cluster together larger objects as a "fragment" [Bil92, Oli94] if the object

store frequently handles objects which have size greater than the page size. Still another

consideration is to apply code profiling to an existing object store to determine clustering

relations. The system then works out a clustering scheme which provide the minimum

access cost, based on a statistical record of application access requests and access cost

119,201. Finally, a hybrid clustering method may be adopted which takes the good poinrs

from different clustering techniques.
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7.2.3 A Dynamic Distributed System

Currently the object store is created statically. This is because fragmentation

information is generated statically. Although simpler, a static system is not flexibte

enough. For example, it can not handle any newly created objects. Thus once dynamic

fragmentation is understood and practical algorithms have been developed, this object

store should be exænded to be more dynamic.

In the design of the prototype, some strategies appropriate for dynamic systems

such as using the FFS and suitable data addressing approaches, were selected. The FFS is

designed to support a dynamic file sysæm. The FFS allows files to grow and shrink, which

in turn allows objects/fragments to be created, modified, and deleted at any time. Since

OIDs/FIDs are used as the indexes of object/fragment tables, objects/fragments can be

addressed indirectly. This allows an object/fragment to be relocared without changing its

unique logical address (OID/FID) in the objecr srore.

7 .2.4 User Transactions

To tolerate hardware and system fàilures, logging is widely used as a recovery

method especially in a transaction processing system. In future, the object store may be re-

implemented using local log-structured hle system, and may log operation.s currently

performed the FFS [Ros91]. There are two features of the log-structured file system that

will make it desirable for rransacrion processing [Sel93]:

o I large number of dirty pages are written contiguously.
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o The file system is updated in a "no-overwrite" fashion so that no separate log

file is required.

Following seltzer's work [Sel93], a transaction system can be embedded in the log-

structured file sysÛem to support user-level transactions. Furthermore, in a distributed

system a striped network file system such as 7æ,bra [Harg3l can be applied to the log-

structured file systems- Tlne 7æbra architecture promises to provide cost-effective,

scalable, highly-available network file system that can support high throughput f,rle service.

Combining striping and log-structuring may provide high performance, recoverable,

distributed storage for object store implementations.

7.2.5 Query Systems

The object store can be used to support a persistent object-oriented programming

system or an object-oriented database system. In the latter case, a query system is very

important to provide sufficient functionality for users to retrieve the information in the

object store. For a persistent object-oriented programming system, some query facilities

may be embedded in the programming languages [Han93] rhough this is uncommon. For

an object-oriented database system, a query interface using an Sel--like user language

with formal semantics defined by object calculus and objecr algebra [pet94] may be

considered' An object store must provide arbitrarily complex search conditions and

support efficient access to not only a single object, but also to sets of objects belonging to

one or more classes to support any given queries. Class fragments implicitly support
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efficient access to specific sets of objects.

queries is another area of future research.

Incorporating explicit support for declarative
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