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ABSTRACT

Light-matter interactions lie at the heart of condensed matter physics, providing
physical insight into material behaviour while enabling the design of new devices.
Perhaps this is most evident in the push to develop quantum information and spin-
tronic technologies. On the side of quantum information, engineered light-matter
interactions offer a means to drastically enhance coherence rates, while at the same
time new insights into spin-photon manipulation would benefit the development of
spintronic technologies. In this context the recent discovery of hybridization between
ferromagnets and cavity photons has ushered in a new era of light-matter explo-
ration at the crossroads of quantum information and spintronics. The key player in
this rapidly developing field of cavity spintronics is a new type of quasiparticle, the
cavity-magnon-polariton. In this dissertation we explore the fundamental behaviour
of the cavity-magnon-polariton and exploit its unique properties to develop new spin-
tronic applications. To understand the physical origins of spin-photon hybridization
we develop a comprehensive theoretical framework, relating the basic characteristics
of hybridization to a universal model of coupled oscillators, revealing the physical ori-
gin of the coupling through electrodynamic phase correlation, and describing detailed
properties through a quantum approach. Based on this foundation we have performed
in depth experimental investigations of the coupled spin-photon system. We discover
that the coupling will influence spin current generated through the spin pumping
mechanism, demonstrating a firm link between spin-photon coupling and spintronics.
We also develop several in-situ coupling control mechanisms, which offer both phys-
ical insight and a means to develop cavity spintronic technologies. As one example,
we have combined our local spin current detection technique and coupling control
mechanism to realize non-local spin current manipulation over distances of several
centimetres. Therefore by revealing the electrodynamic nature of strong spin-photon
coupling, developing new control mechanisms, and demonstrating the influence on
spin current, this dissertation sets the foundation of cavity spintronics, opening the
door to the implementation of strong spin-photon coupling for new spintronic and

quantum information technologies.
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INTRODUCTION

Emergence, the appearance of macroscopic properties which qualitatively differ from
a system’s microscopic behaviour, is one of the most intriguing concepts in physics.
From hydrodynamics [1, 2], to spacetime [3-5], to superconductivity [6] to novel quan-
tum materials [7], the concept of emergence underlies a wealth of physical phenom-
ena,’ even producing entirely new degrees of freedom through collective excitations.
Most interestingly, emergent behaviour usually cannot be anticipated from the prop-
erties of the underlying constituents. For this reason, despite our knowledge of the
fundamental laws governing many-body solid-state systems, condensed matter re-
search still contains many unexplored paths to discovery [13, 14]. This dissertation
follows one such path. We present here the theoretical and experimental foundations
of a new field of condensed matter research, cavity spintronics, which emerges when
low loss magnetic materials are combined with high quality microwave fields.

The foundation underlying cavity spintronics is a new type of quasiparticle, the
cavity-magnon-polariton (CMP), which displays an intriguing dual spin-photon na-
ture. This hybrid character highlights the CMP’s position at the crossroads of cavity-
quantum electrodynamics and magnetism [15]. Of course the venerable subject of
magnetism stands on its own right as one of the pillars of condensed matter physics,
inspiring millennia of scientific discovery and technological innovation [16]. Within
this long history, one of the important modern discoveries was the observation that

ferromagnetic materials could absorb microwave frequency radiation [17, 18]. This

I Actually the concept of emergence extends well beyond physics and even science, underlying the
key characteristics of many complex systems. For example, cellular functions in molecular biology
[8, 9], self organization in economics [10], scaling of large networks [11] and language development
[12] are all emergent phenomena.



INTRODUCTION

phenomena results from the emergence of collective spin dynamics,? which results in
resonant motion of the magnetization [21, 22]. Ferromagnetic resonance has proven
to be a powerful technique to investigate a material’s magnetic properties and is
now routinely used to probe, e.g., demagnetization effects, magnetic anisotropies and
damping mechanisms [23]. As magnetic resonance techniques matured, including the
development of electron paramagnetic resonance and nuclear magnetic resonance, it
was realized that the loss of radiative energy due to inductive processes, known as
radiation damping, could play a significant role for magnetization dynamics [24] (such
effects have more recently become the topic of intense discussion [25-27]). Radiation
damping can be viewed as one effect of the magnetization back action onto the driving
microwave field. Heuristically, losing energy through the emission of radiation only
requires coupling back to the environment, thereby influencing the damping at first
order. However if the photons which drive magnetic resonance are trapped for a suf-
ficiently long time, the radiated photon will in turn drive magnetization precession.
It is in this context that cavity spintronics (termed spin cavitronics by some authors)
has emerged; when the influence of the magnetization induction is appreciable, its
effect on the local microwave field must be accounted for, resulting in a back and
forth flow of energy between spin and photonic degrees of freedom which produces
a hybridized quasiparticle, the cavity-magnon-polariton. Cavity spintronics is there-
fore the study and application of strongly coupled spin-photon physics in condensed
matter systems.

From a theoretical perspective understanding the CMP requires the simultaneous
solution of Maxwell’s equations, which describe electrodynamics, and the Landau-
Lifshitz-Gilbert (LLG) equation, which describes magnetization dynamics.® On the
other hand, from an experimental perspective, realizing strong spin-photon coupling
requires a high quality microwave cavity, to confine the photons for extended periods
of time, and a large sample-to-cavity filling factor, to increase the number of spins
in the microwave cavity. The latter can be realized using high spin density, low
loss ferromagnetic materials, such as yttrium-iron-garnet (YIG) commonly found in

spintronic devices. The former has been realized for several decades in the field of

2From the onset of ferromagnetism at oxide interfaces [19] to the formation of magnetic polaritons
[20], examples of emergence abound in magnetism.

3In contrast to the basic approach to magnetization dynamics, where one assumes that a fixed,
applied field drives the magnetization, back action is ignored, and the LLG equation alone is solved.

4YIG is actually a ferrimagnetic material. However in this dissertation, and for the purpose of
strong coupling physics, the distinction is not important and we will typically use ferromagnetic for
generality.
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cavity quantum electrodynamics, where the quantum nature of light is brought to the
forefront [28].

The possibility of realizing hybridized spin-photon excitations in ferromagnetic
systems was first discussed theoretically by Soykal and Flatté in 2010 [29, 30], but
only realized experimentally in 2013 [31]. In this first experiment, Huebl et al. em-
ployed a YIG sphere coupled to a planar superconducting resonator at ultra low tem-
peratures, using microwave transmission to measure the key coupling signature, an
anticrossing in the eigenspectrum. Although the absorption of electromagnetic fields
by ferromagnets in cavities had been studied for many decades before this observation,
the increased filling factor, due to large, high quality samples and confined microwave
fields, as well as the shift of focus from fixed to swept frequency experiments, enabled
this new discovery. While initial experiments were performed at low temperatures,
it was quickly realized that the experimental conditions for CMP formation could be
relaxed, allowing observations at room temperature [32], in 3D microwave cavities
[33, 34] and using split ring resonators [35-39]. Although YIG, due to its ultra low
damping and high spin density, continues to be the prototypical magnetic material for
CMP experiments, strong coupling has also been observed in gadollinium-iron-garnet
(GdIG) [40], lithium ferrite [41] and the chiral magnetic insulator CuyOSeOs [42].
Furthermore, while initially motivated by the potential for hybrid quantum infor-
mation systems [43-46] with the enhanced coupling of exchange-locked ferromagnets
[47], the electrical detection of strong spin-photon coupling has further pushed the
CMP into the realm of spintronics [48-50]. This variety of cavity spintronic mea-
surement techniques which have been established since 2013 have led to a wealth of
CMP exploration. For example, the ultrastrong coupling regime has been reached
[51-53], spin wave strong coupling has been observed [49, 54-56], multimode cavity
[57] and spin [50, 58-60] systems have been realized, exceptional points of the CMP
eigenspectrum have been found [61, 62], coherent perfect absorption has been realized
[62] and the effect of Kerr nonlinearities has been studied [63, 64]. Furthermore, a
transition from microwave to optical frequencies has recently resulted in the explo-
ration of cavity optomagnonics [65-70]. On the more applied side, voltage control of
the CMP using on-chip devices [71], the observation of electromagnetically induced
transparency [38, 72], novel quantum information architectures employing magnon
dark modes [59], and the realization of microwave to optical frequency conversion
[73] all point to a bright future for CMP based devices.

While all of the results mentioned above were based on classical spin-photon prop-
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erties, recently the quantum frontier has also been encountered with the generation
of a qubit-CMP interaction [33, 74], the observation of triplet and quintuplet states
in active resonators [75] and low power experiments with single photon excitations
[76]. All of these discoveries have occurred within the last five years, corresponding
to the time period in which this dissertation research was undertaken. The funda-
mental question we have sought to answer is: How do we physically understand a
strongly coupled spin-photon system? This entails not only the development of theo-
retical models, but also, for example, understanding the key features of, and methods
needed to create, the CMP, as well as how to control and manipulate it. The main
contributions we have provided to the continuing saga of cavity spintronics, and
which are presented in this dissertation, are the elucidation of theoretical models and
connections between differing models, the discovery that the CMP will influence spin
current, and therefore holds potential for spintronic applications, the development of
several methods to control the CMP and the discovery of antiresonance phenomena
and the important role of damping on the CMP eigenspectrum. These foundational

studies will be presented in the following seven chapters:

Chapter 2 introduces the basic concepts in spintronics and polaritonics which serve
as a starting point for the research we will present. Particular emphasis is placed
on the generation and detection of spin currents through spin pumping and the
inverse spin Hall effect, respectively, as well as a broad conceptual description

of polaritons.

Chapter 3 lays the theoretical foundation of the cavity-magnon-polariton. We first
show how the key signatures of the CMP arise from a very general model of cou-
pled oscillators. To gain insight into the physical mechanism of the spin-photon
coupling, we next present a classical electrodynamic model which couples the
electrodynamics of Maxwell’s equations with the magnetization dynamics of the
Landau-Lifshitz-Gilbert equation, revealing electrodynamic phase correlation as
the source of spin-photon coupling. Finally we discuss a quantum treatment of
the CMP, using both the Jaynes-Cummings Model and the input-output de-
scription of quantum optics, as well as a scattering formalism. All theoretical
approaches are then compared, highlighting their similarities and complemen-
tary nature. The CMP dispersion following from the electrodynamic model was
published in Phys. Rev. Lett. 114, 227201 (2015) while a broader theoreti-

cal discussion including the harmonic description, an in-depth analysis of the
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electrodynamic model and our scattering approach was published in Sci. China
Phys. Mech. Astron. 59, 117511 (2016). The author of this dissertation con-
tributed to the results presented in this chapter by: Developing and interpreting
all aspects of the harmonic model presented in Sec. 3.2; Testing and validating
the matrix formulation of the electrodynamic phase correlation model presented
in Sec. 3.3 and extending this approach, using microwave circuit theory, to cal-
culate the transmission spectra; Providing the detailed implementation of the
input-output formalism to describe the spin-photon system in Sec. 3.4; De-
veloping the model simplifications and comparisons described in Secs. 3.2 and
3.5.

Chapter 4 focusses on the key experimental signatures of the CMP. We first intro-
duce the relevant CMP components, namely the spin and photonic subsystems,
and describe both microwave transmission and electrical detection measure-
ment techniques. We then discuss the dispersion anticrossing and line width
evolution, which form the basic fingerprints of the CMP, before addressing an-
tiresonance behaviour, which may be used to characterize the spin subsystem.
Finally, we discuss how the CMP antiresonance may also be used to analyze
the phase properties of magnon-dark modes. Successful CMP measurements us-
ing electrical detection techniques, indicating the influence of the CMP on spin
pumping, were first presented in Phys. Rev. Lett. 114, 227201 (2015), while
the antiresonance features and phase analysis were published in Phys. Rev. B
94, 054403 (2016). The author of this dissertation contributed to the results
presented in this chapter by: Designing and characterizing the microwave cavity
described in Sec. 4.3 and performing the theoretical calculation of the cavity
modes; Performing and analyzing all microwave transmission measurements us-
ing the UMSI setup presented in Sec. 4.5.1; Performing the dispersion and line
width analysis and modelling of the fundamental modes presented in Sec. 4.5.2;
Performing all electrical detection and microwave reflection measurements using
the WMI setup, including sample preparation, and analyzing/interpreting the
n =7 and n = 9 spin wave modes that are presented in Sec. 4.5.3; Performing
the microwave transmission measurements, fitting, theoretical analysis and in-
terpretation of the antiresonance behaviour presented in Sec. 4.5.4; Extending

the matrix approach to describe the three mode case of Sec. 4.5.5.

Chapter 5 turns to the question of CMP control. By tuning the cavity damping
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we control the CMP cooperativity in order to realize a strong to weak coupling
transition, which is observed not only for ferromagnetic resonance, but also for
several higher order spin wave modes. These results were published in Phys.
Rev. B 94, 054433 (2016). A strong to weak transition may also be observed
by directly tuning the coupling strength itself. Using a compensating garnet,
gadolinium iron garnet (GdIG), we demonstrate in situ temperature control of
the CMP, confirming the /N, coupling strength dependence on the number
of active spins, N,. These results were presented in Appl. Phys. Lett. 110,
132401 (2017). Unfortunately using low temperatures to control the coupling
strength is a cumbersome proccess and a more robust procedure would bene-
fit device applications of the CMP. A simpler approach is to manipulate the
coupling strength by systematically controlling the rf-static magnetic field ori-
entation. Such a procedure was published in [EEE Trans. Magn. 52, 1000107
(2016) and is described here. Finally, by combining our techniques for angu-
lar coupling strength control and local electrical detection, we conclude this
chapter by demonstrating non-local spin current manipulation using the CMP
as a bridge between two well separated spintronic devices. This technique was
published in Phys. Rev. Lett. 118, 217201 (2017). The author of this disserta-
tion contributed to the results presented in this chapter by: Characterizing the
cavity quality control of the UMS1 and WMI setups, including all microwave
transmission /reflection measurements, analysis and interpretation presented in
Sec. 5.2; Preparing the GdIG samples and performing the microwave trans-
mission measurements from liquid nitrogen to room temperature presented in
Sec. 5.3; Collaborating with Lihui Bai on the angular dependence model used in
Sec. 5.4 and measuring the systematic angular dependence of the cooperativity;
Developing the detuning formalism for non local control in collaboration with

Lihui Bai, as presented in Sec. 5.5.

Chapter 6 highlights an interesting feature of the non-Hermitian Hamiltonian which
governs the CMP dynamics. In general the damping associated with spin and
cavity dynamics defines an exceptional point in the CMP eigenspectrum. This
exceptional point marks a degeneracy where CMP eigenvalues and eigenvec-
tors coalesce and is intimately connected to the topological structure of the
eigenspectrum. By exploiting this topological structure we demonstrate the

presence of a dispersion crossing in the traditional strong coupling regime, as
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well as a mode switching phenomena while encircling the exceptional point,
which was published in Phys. Rev. B 95, 214411 (2017). The author of this
dissertation contributed to the results presented in this chapter by: Designing
the experimental setup, performing and analyzing all experiments, performing

all theoretical modelling and interpreting the results.

Chapter 7 concludes the dissertation with a summary of the research contributions

presented in the preceding chapters.
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BASIC CONCEPTS IN SPINTRONICS AND
POLARITONICS

2.1 INTRODUCTION

The hybridization of eigenmodes due to strong light-matter interactions appears
across a wide range of condensed matter systems, from phonons in dielectric crys-
tals [77], to excitons in semiconductor microcavities [78], to plasmons in dielectric
arrays [20]. Such excitations are both intriguing physically, for example they rep-
resent another striking example of emergence in condensed matter physics and can
drastically modify the energetics of a material [79], and play an important role in
technological development with, for example, exciton-polaritons being used for low
power electrical switching [80] and plasmon-polaritons allowing optical microscopy
well beyond the diffraction limit [81]. Within this context the addition of a new
member to the polariton family offers great potential for new physical insights and
technological development. Furthermore the discovery of such hybridization within a
spin system coupled to a high quality microwave cavity draws connections between
the physics of polaritons, spintronics, cavity quantum electrodynamics and quantum
information technologies [15].

In the investigations presented in this dissertation the polariton arises due to the
strong interaction between the magnetization dynamics of a ferrimagnetic system and
the electrodynamics of a microwave cavity. Even without such a strong interaction,
advances in understanding the magnetization dynamics of micro and nanostructure
materials have led to major advancements in the field of spintronics over the past
two decades [82]. New fields such as spin orbitronics [82-84], spin caloritronics [85],

magnonics [86] and now cavity spintronics, have emerged through the maturation
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BASIC CONCEPTS IN SPINTRONICS AND POLARITONICS

of spintronics, advancing memory storage [87], magnetic sensing [88] and spin based
logic [89, 90]. Central to the development of spintronics has been the reliable genera-
tion and manipulation of spin current [91]. Since magnetization precession is known
to produce a non-equilibrium spin distribution, it seems plausible to generate spin
currents by constructing device interfaces where such a spin accumulation is allowed
to diffuse from one material into another, thereby injecting spin current. Indeed this
heuristic picture describes the commonly used technique of spin pumping. In our
work one of the central results is the demonstration that the spin current generated
through such a spin pumping mechanism is influenced by the presence of spin-photon
hybridization. For this reason, before embarking on a journey into the world of cavity
spintronics, it is necessary to recall some of the key elements of both spintronics and
polaritonics. In particular it is important to understand the basic behaviour of fer-
romagnetic resonance, which arises when an external field torque drives a material’s
magnetization, the mechanism of spin pumping, which generates spin current through
a diffusive process, and the mechanism behind the electrical detection of spin cur-
rents. Reviewing this important background, and further elucidating the behaviour

of polaritons, is the purpose of this chapter.
2.2 AN OVERVIEW OF SPINTRONICS

After millennia of mysticism, discovery and applications, the development of quantum
mechanics in the early 20" century finally provided the theoretical basis to under-
stand magnetism at its most fundamental level. This understanding is rooted in the
behaviour of electronic spins, experimentally discovered by Goudsmit and Uhlenbeck
in 1925 [92-94]." Mathematically the quantized spin of electrons is analogous to clas-
sical angular momentum, and will therefore undergo precession when acted on by a
magnetic torque. This precessional motion can be easily ascertained by applying the
Ehrenfest theorem to the spin operator S,

zh@ = ([S, H]) (2.1)

dt

where H = —|.|S - B is the Zeeman interaction between S and the magnetic field

B. Here 7. = gup/h is the electron gyromagnetic ratio, with Landé g-factor g, Bohr

LOf course by 1925 Stern and Gerlach had already discovered the spin through their experiments
on silver atoms [95-97].
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magneton pup and reduced Planck constant A. Using the canonical commutation
relations for the spin operator, [S;, S;| = ihe; xSk, where €, is the Levi-Civita symbol,

we can therefore write,
d(S)
dt

Using the relationship between the expectation value of (S), the sample volume V', and

= —|el ((S) x B). (2.2)

the magnetization M, M = ~, (S) /V, the equation of motion for the magnetization

becomes,

dM
dt
where B = poH and v = pov.. Eq. (2.3) is the Landau-Lifshitz (LL) equation [98]

without damping and describes the precessional motion of the magnetization (net spin

=—-—YM x H (2.3)

alignment) driven by the magnetic field H.? It is clear from Eq. (2.3) that the applied
field acts as a torque on the magnetization, driving precession. This precession will
undergo a ferromagnetic resonance (FMR) at a frequency w,, dependent on the field
and material properties as addressed in Sec. 3.3.

In magnetically ordered materials spin-spin interactions between individual mag-
netic moments produce collective behaviour which can be described by the magneti-
zation of Eq. (2.3). Excitations will occur when one of the moments undergoes an
energetically unfavourable reorientation (a spin flip), which then propagates through-
out the magnetic lattice. This process results in spin waves, as illustrated in Fig. 2.1,

where the magnetic moments of neighbouring lattice sites precess out of phase. The

M

Figure 2.1: Illustration of a spin wave. Magnetic moments at neighbouring lattice
sites precess out of phase, leading to the transport of angular momentum across the
magnetic lattice.

2Damping plays an important role in magnetization dynamics and can be treated phenomeno-
logically as discussed in Sec. 3.3 [21, 99, 100].
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quantized version of spin waves can be treated as a bosonic quasiparticle, known
as a magnon [101]. Magnons are therefore another example of collective and emer-
gent behaviour in condensed matter systems and play a central role in spintronics,
notably they transport angular momentum across the magnetic lattice; behaviour
which underlies the concept of spin current — the flow of electronic spins with, or
more interestingly, without, the flow of electronic charge.® It is the generation and
manipulation of such spin currents that lies at the very heart of spintronics.*

Spin transport based electronics — spintronics — took off in the 1980’s after the
discovery of giant magnetoresistance [108, 109], which provided a striking example
of magnetization controlled charge transport, and with a magnetoresistance ratio
of ~ 100%, revolutionized the magnetic recording industry. In the 30 years that
have followed this discovery, spintronics has found an important role in data storage
[103, 104], magnetic sensing [110], studies of magnetization dynamics [23] and provides
the leading candidate for a universal memory [87, 111]. These advances are due in
large part to improved fabrication techniques,” although the idea of spin dependent
transport in materials can be traced back to Mott’s 1936 development of a two-current
model [112; 113] which was used to describe resistivity effects observed by Lord Kelvin
as early as 1856 [114].

Although much has been learned about spin transport in recent decades, Mott’s
two-current model still provides an excellent physical picture of spin current be-
haviour. In Mott’s description spin transport is assumed to result from the flow of
two independent spin channels, I+ and I}, comprised of up and down spins respec-

tively. The spin current, I, may then be written as

h
I,=——{-1)), 2.4
(-1 2.4
whereas the charge current would be I, = I++1;. This model allows one to understand
the different types of spin current shown in Fig. 2.2. When I+ = I, meaning the
currents flows in the same direction and have equal magnitude, the spin currents from
each channel will cancel and Iy = 0. However I, # 0. This type of “spin current” is

illustrated in Fig. 2.2 (a), and is nothing other than a conventional charge current.

3We note that in this dissertation we essentially use spin wave and magnon interchangeably,
although a spin wave is a classical concept while the magnon has quantum connotations.

4For an in-depth study of spintronics, the reader is referred to the following reviews, Refs.
[82, 102-105], and books, Refs. [91, 106, 107].

5Unlike charge current, spin current need not be conserved and decays on length scales of microns,
making spintronics a nanoscale endeavour which generally requires advanced fabrication.
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Figure 2.2: The four types of spin current. In all panels I, and I. are the spin and
charge current respectively. (a) A pure charge current flows when electronic spins
are completely incoherent. In this case no net spin angular momentum is transported
(I, = 0). (b) A spin-polarized charge current results when there is an imbalance
between up and down spin currents, resulting in both charge and spin angular mo-
mentum flow. (¢) A pure spin current carries pure spin angular momentum without
any accompanying charge flow. In magnetic metals this may result from conduction-
electron diffusion creating a balanced flow of up and down spin currents in opposite
directions. (d) Without conduction-electrons a pure spin current, carried by spin
waves, may still exist. This enables spin current propagation in magnetic insulators.

On the other hand, if I and I, flow in opposite directions, Iy # 0. There are then two
possibilities. As illustrated in Fig. 2.2 (b), when |I+| # |I;| a spin-polarized charge
current will exist where both I, # 0 and I, # 0. However, when |I+| = |I;| the opposite
flow of charge currents will cancel, leaving a pure spin current as shown in Fig. 2.2
(c). The aforementioned spin currents all require a flow of conduction electrons, and
therefore exist in metals or semiconductors. However, as shown in Fig. 2.2 (d), spin
waves present an intriguing alternative possibility for pure spin currents — the flow
of spin angular momentum without charge transport. An immediate consequence
is the possibility of spin current flow in ferromagnetic insulators [115], which allows
the separation of electric and magnetic degrees of freedom and eliminates extraneous
electrical effects, such as spin rectification, which may be undesirable in spintronic
applications [23]. Such spin wave based spin currents also offer other advantages,
such as drastically enhanced spin wave propagation lengths due to the removal of
conduction electron decay mechanisms. As a result ferromagnetic insulators have

become a key piece of modern magnonics [86, 107].

2.2.1 Insulating Magnetic Materials

One of the most widely used insulating ferrimagnets in spintronics is yttrium-iron-
garnet (YIG), Y3Fes019 [86, 116-118]. YIG was first synthesized in the mid 1950’s
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[119, 120] and has become widely adopted due, in part, to: (i) its high Curie temper-
ature, T. = 560 K, making it ideal for room temperature experiments; (ii) its large
band gap of 2.85 eV [121, 122], making it an excellent insulator; and (iii) its extremely
low Gilbert damping, o ~ 1074, resulting in the narrowest known ferromagnetic res-
onance line width and magnon lifetimes of a few hundred nanoseconds [86]. YIG
belongs to the family of garnet ferrites which contain three cation sites, a dodec-
ahedrally coordinated c—site, octahedrally coordinated a—site and a tetrahedrally
coordinated d—site. This general garnet structure, {cs}[as](d3)O12, is illustrated in
Fig. 2.3. The magnetism of YIG results from the antiferromagnetically coupled a

and d magnetic sublattices, which are occupied by Fe?* cations.

The majority of experiments presented in this dissertation were performed on
either single-crystal YIG spheres or thin film YIG/platinum (Pt) heterostructures
grown on gadolinium-gallium-garnet (GGG) substrates [123, 124]. However one se-
ries of low-temperature experiments was performed using a GdIG thin film sample.
The crystal structure of GdIG is similar to that of YIG, however Gd3* cations occupy
the c-sites. As a result, all three sublattices contribute to the GAIG magnetism. As
in YIG, the Fe-sublattices are antiferromagnetically coupled to each other, while the
Gd-sublattice is antiferromagnetically coupled to the octahedral Fe-sublattice and fer-

romagnetically coupled to the tetrahedral Fe-sublattice [116]. Due to this additional

Figure 2.3: (a) The garnet structure, {c3}[az](d3)O12, illustrated for one octant of the
unit cell. (b) The three cation sites: dodecahedral ¢, octahedral a and tetrahedral d.
For YIG and GdIG, the c-sites are occupied by Y?* or Gd** respectively, while d and
a cites are occupied by Fe?". Figure modified from Ref. [116].
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Figure 2.4: (a) Magnetization curves for GAIG and YIG, illustrating the strong
temperature dependent magnetization, and compensation point, of GdIG. (b) A
schematic illustration of the sublattice magnetizations above and below the com-
pensation temperature, Teomp. Figure modified from Ref. [116].

magnetic sublattice, the GAIG magnetization displays interesting temperature depen-
dent properties. While the Fe-sublattices display only weak temperature dependence
below room temperature (which is why the YIG magnetization is nearly temperature
independent, with oM (300 K) = 175.8 mT and poM; (0 K) = 246.2 mT [125]) the
Gd-sublattice is strongly temperature dependent due to a weaker sublattice exchange
interaction. This behaviour is illustrated in Fig. 2.4 (b).% As a result the GAIG mag-
netization can be tuned from pgMs; = 12.2 mT at 300 K to puoMs = 769.1 mT at 0 K
[127]. In fact, at a certain compensation temperature, Tiomp, the different sublattice
contributions will cancel and 1o M (Teomp) = 0. This behaviour is shown in Fig. 2.4
(a) where Teomp ~ 270 K. As discussed in Sec. 5.3, this temperature dependence can

be used to control the spin-photon coupling strength in cavity spintronics.
2.3 CREATING SPIN CURRENTS: SPIN PUMPING

As already mentioned, the kernel of spintronics is the generation and manipulation
of spin currents. One of the widely used methods for spin current generation is the
transport of non-equilibrium magnetization pumped by FMR, known as spin pumping

[128-136]. A key achievement of this dissertation was the experimental demonstration

6Although the magnitude of the Fe-sublattice magnetizations is approximately constant, the
orientation changes above and below Tcomp [126].
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Figure 2.5: Spin pumping in a hybrid spintronic device. Due to magnetization preces-
sion a non-equilibrium spin distribution accumulates in a ferromagnetic spin source.
The spins then diffuse into an adjacent spin sink.
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that strong-spin photon coupling will affect the detected spin pumping signal [48-50].
This means that spin current is actually manipulated by strong-coupling, and, as
we will show in Sec. 5.5, enables the non-local manipulation of spin current over
macroscopic distances. Spin pumping occurs in hybrid spintronic devices where a
material undergoing FMR acts as a spin source, generating a spin accumulation at
the interface with another material acting as a spin sink, which allows for the diffusive
absorption of this spin current. A variety of magnetic materials may serve as the spin
source, such as ferromagnetic metals, ferromagnetic semiconductors or ferromagnetic
insulators (FMI) [136], and even paramagnetic metals [137]. The only requirement
of the spin sink is to allow spin diffusion, permitting a variety of materials to fill this
role as well (although in practice it is typically a normal metal with large spin orbit
coupling to enable detection of the spin current through the inverse spin Hall effect).
In the work we will present here, all spin pumping experiments were performed on
YIG/Pt bilayers where FMR in YIG pumps a spin current into Pt.

Fig. 2.5 provides a schematic illustration of spin pumping. The magnetization
of the magnetic material, M(t) = My + m (¢), precesses at a cone angle 6. from the
equilibrium magnetization M,. This misalignment determines the non-equilibrium
magnetization generated by the magnetization dynamics, m(t).” This non-equilibrium
magnetization is partially dissipated due to damping inside of the FMI. However at
the FMI/NM interface the remaining non-equilibrium magnetization diffuses into the
NM as a flow of spin current, which contributes to additional dissipation of m(t).

The dc component of the spin current is typically detected via its conversion

7Although, as we discussed in Sec. 2.2.1, YIG is a two sublattice ferrimagnet, FMR in YIG can
be treated by considering a single Mot = |Mg — M,|. A similar approach can be taken for GAIG
llSiIlg Mtotal = ‘Md — Ma — Mcl
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back into a charge current and subsequent generation of a dc voltage. This is the
approach we will take in this work. It is therefore necessary to understand a few
details about the theory of spin pumping [130, 131], in order to determine the form of
the spin current. According to the basic theory of spin pumping, the spin current at
the FM/NM interface depends on the reflectivity and transmission of NM electrons,
which can be characterized by a spin mixing conductance, G™.* The spin current
that is injected into the normal metal then relaxes over a characteristic length scale
Asp, the spin diffusion length, and the spin current density decays away from the
interface as [130, 131]

L) = (oM G s ) = (Tt el )

Here f(y) describes the spin current amplitude a distance y away from the interface
(see Fig. 2.5), G, is the real part of, G™ and ¢, is the thickness of the spin sink. The
dc spin current is determined by the time average of Eq. (2.5) over one period. If we
define coordinates such that M(t) = Mg + m(t) = (m,e ™t m,e~“t M) then, we

find -
<M X %> = <Re (M) x w> = wlm (mim,)z (2.6)

where (...) denotes time averaging over one period. The direction Z, along the static
magnetization, defines the spin polarization of the spin current and not the direction
of diffusion which is always normal to the interface (since the current diffuses away
from the interface). Alternatively, if we assume small cone angles, so that sin (6,) ~
m/My and circular precession, so that |m,| = |m,| = m”, then we can write M =
(m cos (wt) ,msin (wt) , My) and therefore

M
M x dd_t = wsin? (6,) Z. (2.7)

Thus the dc spin current due to spin pumping can be written as,

N 477;\402“’(” () I () 2 = — G f (g)sin? (0)Z. (25)

I,
) AT

8Though this theory was only developed in 2002 [130, 138], with experimental observations
to follow in 2006 [132-134], the fact that magnetization precession and non-equilibrium diffusion
could create a spin current was first revealed in transmission-electron-spin resonance experiments
performed in the late 1970’s [128, 129].

9This assumption is appropriate for a sphere.
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Experimentally the magnetization m(¢) is controlled by an rf magnetic field h(t) and
will depend on a static external bias field H. As we will discuss in detail in Sec. 3.3,
m (h, H) is determined by solving the Landau-Lifshitz equation presented in Sec. 2.2
(or more commonly the Landau-Lifshitz-Gilbert equation, which includes the effect
of damping), leading to Im (m*m,) o< (AH)*/ [(H - H,)? + (AH)Q}, where H, and
AH are the resonance field and line width respectively. Therefore the spin pumping
current follows a Lorentz line shape. As we will discuss in Sec. 4.5.2; since both the
magnetization dynamics and the magnetization dispersion (H,) are modified by spin-
photon coupling, the spin current is also affected by the coupling. We have exploited

this discovery to develop new spin current control methods.

2.4 DETECTING SPIN CURRENTS: THE INVERSE SPIN HALL EFFECT

Once spin currents have been generated through spin pumping they must be mea-
sured. Though detection of spin currents is challenging, several approaches have been
developed, such as characterization of enhanced damping [139-144] and x-ray pump
probe methods [145]. However the most widely used technique is spin to charge con-
version via spin Hall effects [146]. This method requires strong spin orbit scattering
in the spin sink and therefore can prove both disadvantageous, as only select mate-
rials can be used, and advantageous, by enabling the identification of ideal spin to
charge converters for device applications. As is often the case, the physics underlying
the spin Hall effects was studied decades before modern nanotechnologies have made
them practically useful [147, 148].

Fig. 2.6 schematically illustrates the spin Hall effect and inverse spin Hall effect,

Figure 2.6: Schematic illustrations of (a) the spin Hall effect and (b) inverse spin
Hall effect. I. and I denote the charge current and the spatial direction of the spin
current respectively. The spin polarization direction of the spin current is in the
up-spin direction.
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which results from spin dependent scattering due to spin orbit interactions, including
skew-scattering, side jump scattering and intrinsic interactions [146]. These mecha-
nisms create an effective spin dependent magnetic field, producing a spin dependent
Lorentz force which acts on charge carriers, resulting in opposite deflection of spin up
and spin down particles [149, 150]. As shown in Fig. 2.6 (a), in the spin Hall effect
a charge current is converted to a spin current, and the resulting spin accumulation
at the sample boundaries can be detected e.g. via Kerr rotation microscopy [151] or
polarized electroluminescence [152]. The inverse spin Hall effect of Fig. 2.6 (b) is the

inverse process, where a spin current is converted into a charge current according to

B 26931{

I
h

I, x 5. (2.9)

Here Oy is the spin Hall angle which characterizes the efficiency of spin to charge cur-
rent conversion and is dependent on the strength of a material’s spin-orbit interaction,
while 5 is the spin current polarization.

In spin pumping experiments the inverse spin Hall effect can be exploited to
convert the spin current generated through spin pumping into a charge current which
can be electrically measured [134]. Fig. 2.7 shows the combined spin pumping-inverse
spin Hall effect mechanism. A microwave field h, typically provided by a coplanar
waveguide [153], drives magnetization precession producing a spin current via the
spin pumping mechanism which is then converted into a charge current in the spin
sink via the inverse spin Hall effect and is detected as a voltage across the bilayer,

typically in the longitudinal direction (z in Fig. 2.7). The spin pumping/inverse spin

h
- =
IS' Ol A

Y oyw s \

Figure 2.7: Spin current generation and detection in a bilayer device. A microwave
field h drives magnetization precession, M(¢) about the static field direction, H. This
precession pumps a spin current I into the sink layer, where it is converted into a
charge current via the inverse spin Hall effect and detected as a voltage. This voltage
is proportional to h? and therefore has a Lorentz lineshape.
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Hall effect voltage can be determined by integrating the time averaged charge current

density,

6(93 PP PN
Vo=t [0 @aa= | [y aal G190 210
where ¢ is the measurement direction (either along the length or width of the sample;
g = Z or z in the coordinates of Fig. 2.7), dA = dydz and R is the resistance of the
spin sink. Using the result for the spin current in Eq. (2.8) to determine the charge

current we have,

Osp . ts : N~
Vep = % <ew> G tanh ( ) Im <w) (¥ x3) -1, (2.11)

E tsw 2)\SD g

where o is the conductivity of the spin sink. Since the voltage depends on m}m, we
expect the line shape to be completely Lorentzian [23].!1° Also as a consequence of
the magnetization dependence, once strong spin-photon coupling has been taken into
account, which modifies the magnetization dispersion relation, we would expect that
the Vsp would be modified. In this context it is useful to define the magnetization

spectral function

mim
Sy, = =4, 2.12
in which case we can write
Vep = Vowlm (S,,) (¥ X 5) - q (2.13)

where Vy = @ (ﬁ) tf; tanh (2/\tsn) is simply the geometry and sample dependent
voltage amplitude. In accordance with our previous discussion of the spin pumping
current, Im (S,,) o< (AH)?/ [(H - H,)” + (AH)Q}. Eq. (2.13) therefore suggests that
modifications of the spectral function due to strong spin-photon coupling will affect

the voltage spectra. In Sec. 4.5.2 we will see that this is in fact the case.
2.5 LIGHT-MATTER HYBRIDIZATION: POLARITONS

Thus far we have considered the effect of an rf magnetic field on the magnetization

of a ferromagnetic material and discussed selected aspects of spintronics and mag-

0The form of Eq. (2.11) is true for both in-plane or out-of-plane H. However once the dynamic
magnetization has been determined, geometric details, such as magnetization orientation may con-
tribute to the spin pumping voltage [23].
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netism which are relevant to this dissertation. Throughout this discussion we have
neglected the fact that the magnetization dynamics may also influence the rf mag-
netic field. In reality such a back and forth interaction between material dynamics
and electrodynamics is common across a wide range of physical systems, underlying
the general concept of the polariton; a solid-state excitation resulting from the strong
coupling between electrodynamics and material dynamics. The general idea of the
polariton is illustrated in Fig. 2.8 and can be understood as follows: In all materials
the electrodynamic response is governed by Maxwell’s equations [154], which deter-
mines the w = ck/,/ep dispersion of light, where w, ¢ and & are the frequency, speed
and wavevector of light respectively. Macroscopically materials are distinguished
from one another based on their response functions, €, p, and o, the permittivity,
permeability and conductivity respectively, which characterize a material’s lattice,
spin and charge dynamics. When the material dynamics result in a dipole carry-
ing excitation, e.g. phonons, magnons, excitons or plasmons, the response functions

are modified, directly influencing the electrodynamic properties of a material. In

Wi

Electrodynamics Material
Dynamics

VAR

Lattice Charge Spin

I N /)
Maxwell’s e (k,w)
oy T

_ p(k,w)
Equations

Polaritons

Figure 2.8: A polariton results from the coupling between electrodynamics and ma-
terial dynamics in a condensed matter system. The electrodynamics of a material is
described by Maxwell’s equations and will depend on the material properties, such as
the permittivity and permeability. Due to material dynamics — either lattice, charge
or spin dynamics — the permittivity and permeability may become frequency and
wave vector dependent. When this occurs and the material is subject to an electro-
magnetic field near the material’s resonance, a polariton quasiparticle is produced,
taking on both photon-like and material-like properties.
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this case the response functions become frequency dependent, modifying the intrinsic

light dispersion, w = ck/+/€ (w, k) pu (w, k). If € (w, k) or pu (w, k) have resonances the
deviation from a traditional dispersion may be significant. The result of this coupling
between the material dynamics and electrodynamics creates a polariton, a quasiparti-
cle which is a mixture of both light and material dynamics. Although the theoretical
details of the polariton may be complex, their general treatment is a simple two step
process: (1) determine the material response function in the presence of the excita-
tions; and (2) solve Maxwell’s equations using this response function. As there are
many dipole carrying material excitations there are also many types of polaritons, e.g.
phonon-polaritons [20, 79], exciton-polaritons [20, 155], magnon-polaritons [20, 79],

plasmon-polaritons [20, 156, 157] and cavity-exciton-polaritons [158-160)].

In many physical systems the wave vector can be controlled, and therefore the
w — k dispersion can be measured directly. For example, the well known case of the
phonon-polariton [161-163] is shown in Fig. 2.9. In this case Raman scattering was
used to observe the polariton dispersion in gallium phosphide [164]. In the absence
of a strong light-matter interaction one would observe a flat frequency dispersion for
the LO and TO phonon dispersions, wy, and wr respectively, indicated by the black
horizontal dashed lines, and a linear light dispersion, indicated by the diagonal dashed
line. In the case of phonon-polaritons the LO phonon does not hybridize with light,
and therefore the flat LO dispersion is still observed. However the TO phonon is
significantly modified due to coupling with light and a band gap appears between wy,
and wy. This modification of the dispersion and introduction of an anticrossing is the
traditional signature of a polariton, which we expect to observe if we indeed discover

a new form of strong light-matter interaction.

Although here we have focused on the phonon polariton to provide a basis for
physical intuition regarding polaritons, a wealth of literature also exists on the physics
of magnetic polaritons [20, 165-167], which are actually more closely related to the
cavity-magnon-polariton studied in this dissertation. Magnetic polaritons arise due
to the resonant excitation of magnetic materials, governed by the properties of the
magnetic permeability. The formation of such hybridized modes may be due to both
surface [168, 169] or bulk [170, 171] magnetic excitations and exist in a range of
magnetic materials from ferromagnets to antiferromagnets [20, 167]. Like the phonon-
polariton, work on magnetic polaritons has focused on the hybridized w—k dispersion,
and results analogous to Fig. 2.9 (b) can be found in the context of magnon-polaritons

as well [171]. However in our experiments light is confined in a cavity and therefore
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3.2 6.4 12.8
k (10° m™)

Figure 2.9: The canonical example of the phonon-polariton, which serves as an in-
troduction to the cavity-magnon-polariton. (a) Schematic illustration of the phonon-
polariton resulting from coupling between light and resonant lattice vibrations. (b)
The phonon-polariton dispersion measured in gallium phosphide. Data from Ref.
[164] is shown as symbols with the expected dispersions as solid black curves. The
dispersion shows an anticrossing between the uncoupled light and TO phonon disper-
sions, shown as diagonal and horizontal dashed lines, respectively.

boundary conditions fix the wavevector.!! This means that k can no longer be used to
tune the resonance condition.'? However in order to observe the polariton behaviour
it is not necessary to tune the light dispersion, but rather to approach the case of
uncoupled resonance crossing. In our case, where we study a spin-photon system, this
can therefore be accomplished by tuning the resonance of the spin system, which is
easily controllable through an external bias magnetic field. Therefore, as we will see
in the rest of this dissertation, our focus will be on measuring the w — H dispersion

of the cavity-magnon-polariton under different experimental conditions.

"The use of confined fields to create the CMP increases its relevance to device design and
application compared to traditional magnetic polaritons, which is a strong motivator for cavity
spintronics.

12 Although recently it was demonstrated that a height tuneable cavity could be used to measure
the w — k dispersion of the cavity-magnon-polariton [57].
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MODELLING SPIN-PHOTON HYBRIDIZATION

3.1 INTRODUCTION

Condensed matter physics is a science that requires an active interplay between the-
ory and experiment. This is a necessity born out of a difficult challenge — in a
system comprised of ~ 10% interacting particles, how can one hope to understand
the complex and nuanced behaviour key to physical insight and technological devel-
opment? The answer is to not consider the minutia of a given system in its entirety,
but rather to reveal the key physical elements which drive the relevant emergent be-
haviour.! From the tunnelling of supercurrents which underly the Josephson effect
[175] to the phase transition of the Ising model [176], examples of the insights gained
in this manner abound in condensed matter systems.

In order to develop physical intuition no model is more universally applied than
that of the harmonic oscillator. RLC circuits, phonons [77] and even quantum fields
[177] are all characterized by sets of oscillators. As the nature of the cavity-magnon-
polariton is the coupling of two resonant systems (spin and photon) one would there-
fore expect that a model of coupled harmonic oscillators would describe the most
fundamental properties of the hybridization. Indeed we show in Sec. 3.2 that such
an approach works, calculating the transmission spectra for the spin-photon system
using an input-output type of formalism. Importantly this approach reproduces the
key signatures of coupling, including mode anticrossing and line width evolution, and

provides physical intuition for the coupled spin-photon behaviour. However in order

L As is often the case, this approach is not unique to condensed matter, but is also fundamental
to all fields of physics. Even in the reductionist realm of high energy physics, effective field theories
play an important role [172], and also provide perhaps the most successful description of quantum
gravity [173, 174].
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to understand the physical nature of spin-photon hybridization we delve deeper in
Sec. 3.3. Since polaritons result from the coupling of electrodynamics and material
dynamics, in the case of a spin-photon system this means coupling together the mag-
netization dynamics of the Landau-Lifshitz-Gilbert equation and the electrodynamics
of Maxwell’s equations. By developing a model based on these two bedrocks of physics
the true origin of spin-photon coupling is revealed — electrodynamic phase correla-
tion due to the interplay of Ampere’s and Faraday’s laws. This insight is extremely
beneficial from the perspective of spintronic development. Since the spin-photon cou-
pling can be understood through the magnetization dynamics, spintronic techniques
which rely on the magnetization, such as spin pumping, will be impacted. This sets
the stage for the development of cavity spintronics, where spin-photon hybridization
is incorporated into the design of new spintronic technologies.

In this chapter we develop these models in detail, and go even further, using a
quantum approach to reveal new coupling control techniques in Sec. 3.4. These
models allow us to view the cavity-magnon-polariton from different perspectives, re-
vealing the key properties of mode hybridization, and provide a basis for interpreting

our experimental results.

3.2 GENERAL BEHAVIOUR: HARMONIC OSCILLATORS

Harmonic oscillators serve as an instructive toy model of many physical systems, and
will serve as our starting pointing in understanding the basic characteristics of the
CMP [34]. Consider a system of two equal mass (m) oscillators, O; and Oy, coupled
together via a spring x as shown in Fig. 3.1 (a). O;, shown in blue, represents
the cavity and is connected to an input plunger, Oy,, via a spring with resonance
frequency w.. The plunger is driven in constant motion at frequency w/27 so that
Tin(t) = e ™t Physically this plunger represents the constant microwave input
to the cavity, providing a driving force, f(t) = w?zi(t), to O1. O, shown in red,
represents the FMR and is attached to a fixed wall with a spring of resonant frequency
w,. Damping is introduced via a viscous force with coefficient g for O, which models
the intrinsic conductive losses of the cavity, and a for O, modelling losses due to
magnetization damping. We do not consider a damping associated with the input.
To extract the complex CMP dispersion it is sufficient to set x;, = 0 and solve
the corresponding eigenvalue problem. This means that the dispersion and line width

are determined solely by the properties of the O, O system, the coupling x and
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3.2 GENERAL BEHAVIOUR: HARMONIC OSCILLATORS

the uncoupled resonances and damping, w.,w,, 5 and «, and is independent of how
the system is driven [34]. The energy absorption of the coupled oscillators can also
be calculated in a standard way using a dissipative function for the system [178].
However, calculating the full transmission spectra will depend on the coupling of
energy into and out of the system and therefore we must also consider an “output
port”. To do so we connect an energy absorber, Oy, to O7 using a spring ko as shown
in Fig. 3.1 (a). The transmission through the system is then |Sy;|? = Foyu/Ew where

E.. and Ej, are the kinetic energies of the output and input oscillators respectively.
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Figure 3.1: CMP transmission spectra in the harmonic coupling model. (a) Schematic
illustration of two coupled oscillators. O;, representing the cavity, experiences a
sinusoidal driving force, and has its motion “detected” by coupling to O,y through a
stiff spring. The FMR is represented by the red O,, while the purple region indicates
the coupling between the cavity and spin systems. (b) The full w — H dispersion
calculated according to Eq. (3.6) using experimental parameters from Sec. 4.5. (c)
Fixed field and (d) frequency cuts made above, at and below the crossing point
w, = w, calculated according to Eq. (3.6). A modified version of this figure was
originally published in Ref. [34].
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For high quality cavities, the output coupling ko < 1, and in particular ko < K.
There is also no damping associated with the output. Therefore the equations of

motion for O, Oy and O, are, respectively,

B+ Wiz 4 28wt — KAwiny = fe ™t (3.1)
Fg + W2xg + 201w dy — H2w2$1 0, (3.2)
Fous — k2 wiry = 0. (3.3)

Here we have defined the damping coefficients o and  as well as the couplings x and
kouwt to be dimensionless by normalizing to w.. Additionally since k. < 1 the action
of Ouyt on O does not need to be included in Eq. (3.1) and there is no resonance
in Eq. (3.3). Taking (z1, T2, Tour) = (A1, A, Aouw) €™, Egs. (3.1) and (3.2) can be
written in the matrix form QA = f where A = (A;, As), f= (—f,0) and

Q- w? — w? + 2ifw.w K2w? | (3.4)
K2w? w? — w? + 2iaww
while Eq. (3.3) becomes
kc%utwc
Aout - — A (35)
w?

Solving for A;, A = Q7 !f, the transmission is determined to be

Eowt  MouA2 W |w? — w2 + 2iaww,|?
S H)|? = =20 = —outout _ )y %e . —. 3.6
1So1 (w, H) | E. Mina2, K | det () |2 30

Here we have used xy, = w?f. 7 = (Mow/mm)ks,, acts as an impedance matching
parameter, depending not only on the output coupling k.. but also the matching of

the input/output ports determined by Mgy /min. The determinant is given by
det (Q) = (w* — w? 4 2ifw.w) (W — w2 + 2iaww) — K'w; (3.7)

and defines the spectral function of the coupled system.

The role of the output absorber is apparent from Egs. (3.6) and (3.7), it is needed
to model the output port and calculate the transmission, since the amplitude of So; in
Eq. (3.6) is proportional to k. However the output plays no role in the dispersion
which is determined by the roots of the determinant in Eq. (3.7). These facts also

illustrate the simplicity of generalizing the model to multiple cavity/multiple spin
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wave modes since the dispersion and line width will be determined solely from the
coupling between any cavity and spin wave modes while the form of the output energy
needed to determine the microwave transmission will remain the same as Eq. (3.5)
[34].

Due to the general nature of the harmonic model, there are several detailed fea-
tures which are not accounted for in this description. For example, we have not
considered the wave vector dependence of either the spin or photon subsystem. This
is justified since the microwave photon wavelength is much larger than the relevant
magnon wavelength and the sample size, and therefore the driving field will be ap-
proximately uniform over the sample. Furthermore, since the hybridization occurs
with a cavity photon, the wave vector is fixed and therefore the most relevant feature
to consider is the field dependence of the FMR, which we can account for by allowing
w, to vary. Actually, even in situations where the photon wave vector is controlled
through tuning the cavity height, the relevant physical influence is to tune w. and
therefore the length scales between the photon and magnon wavelengths do not in-
fluence the observed behaviour [57]. We have also not accounted for any polarization
effects of the photons. In our experimental configuration this is most relevant in
determining the orientation between the local microwave magnetic field and the satu-
ration magnetization, determined by the external bias field. As we will discuss in Sec.
5.4 this orientation does play an important role in the coupling, and can be included
by introducing an orientation dependence to the coupling strength [50, 179]. However
even with such detailed behaviour missing, at this point we do have a working model
of the CMP which, via Eq. (3.6), allows us to calculate the microwave transmission,
and using Eq. (3.7), allows us to determine the complex CMP dispersion, including
both the dispersion and damping behaviour of the hybridized modes. In comparing
the model behaviour to experiment we will see that this general model captures all
key features of the CMP. |Sy; (w, H) |? is calculated and plotted in Fig. 3.1 (b) using
the experimentally realistic parameters (see Sec. 4.5) a = 0.8 x 1074, 3 =3 x 1074
and w./2m = 10.556 GHz. We also use a coupling strength of |x| = 0.077 and
calculate w, according to the Kittel formula for a magnetized sphere [21, 180, 181],
w, = v (H + Hy) with gyromagnetic ratio v = 27 x 28 poGHz/T and shape anisotropy
poH 4 = —37.7 mT.? The value of the impedance matching, n = 2.3 x 1071, was fit

2The value of the coupling strength can be treated as a fitting parameter or determined experi-
mentally from the Rabi gap as we will discuss in detail further on [34]. We only include the explicit
value here for completeness as the important point is the plot in Fig. 3.1 (a).
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to experimental results. The diagonal dashed line shows the uncoupled FMR dis-
persion following the Kittel formula and the horizontal dashed line is the uncoupled
cavity mode. The most striking feature of the transmission spectra is an anticrossing
in the dispersion, which reflects the coupled nature of the system. At the crossing
point, w. = w,, the hybridized modes have the greatest deviation from their un-
coupled counterparts. Also at the crossing point the hybridized modes have their
minimum frequency separation, wg,p, Which is an increasing function of the coupling
strength. Another intriguing feature of the hybridization is the line width broaden-
ing /narrowing that can be observed as H is tuned. These characteristics of the CMP
will be investigated experimentally in Sec. 4.5.

Eq. (3.6) can also be used to calculate the line cuts at fixed field and frequency,
shown in Figs. 3.1 (c) and (d) respectively. As may be anticipated for a resonance
process, we see that the fixed H cuts are symmetric in w, appearing as Lorentz-like
peaks. On the other hand, while for fixed w = w,, [So; (H) |* has a symmetric dip,
above and below w, the fixed field line shape has an asymmetry and the polarity of
the line shape changes as we pass through w.. Interestingly all of these features can
already be captured by the general harmonic oscillator model and can be made even

more transparent by implementing experimentally justified approximations.

3.2.1 Simplification of Transmission Spectra

To compare the harmonic model to other CMP descriptions and to experimental data
it is important to simplify Eq. (3.6). Since the effect of hybridization is greatest near

w, = w. we can make a classical rotating wave approximation to find [34],

w? lw — &r|?
S.q]2 = p=< L ) 3.8
S [ RN R g e &

Here we have dropped higher order terms in aw and fw and defined @, = w, — 1fw.
and w, = w, — taw.. Using this notation the eigenvalues at fixed H, determined by

the poles of S, take the simple form

- 1. N N R
Or =3 [wr + . + \/(wr — wc)2 + rAw?| . (3.9)

2

c,r

3In this approximation we write w? — w
approximation in detail in Sec. 3.4.1.

~ (W — we,r) 2we. We will discuss the rotating wave
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The real and imaginary contributions of the eigenvalues are plotted in Fig. 3.2 (a) and
(b) respectively.” Panel (a) shows a clear anticrossing, which we already observed in
the full dispersion mapping, with horizontal and vertical dashed lines indicating the
uncoupled cavity and FMR dispersions respectively. The strength of the spin-photon

interaction determines the size of the eigenmode separation observed in Fig. 3.2 (a),
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Figure 3.2: (a) wy and (b) Awy calculated according to Eq. (3.9) showing the anti-
crossing and line width evolution signatures of the spin-photon coupling respectively.
The horizontal and diagonal dashed lines in (a) show the uncoupled cavity and FMR
dispersions respectively, while the horizontal dashed lines in (b) indicate the damp-
ing limits due to a and 5. (¢) He and (d) AH, calculated according to Eq. (3.12).
The vertical and diagonal dashed lines in (c) indicate the uncoupled cavity and FMR
dispersions respectively. Spin-photon coupling induces an antisymmetric deviation in
the frequency swept dispersion at the crossing point and a Lorentz type enhancement
of the frequency swept line width.

4 Analytic expressions for the real and imaginary components can be determined from Eq. (3.9)
using de Moivre’s theorem as described in Appendix A Sec. A.1.
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and therefore it is useful to define the Rabi gap,”

Weap = (Wi — W) Jwe=wr (3.10)

which can be calculated using Eq. (3.9) as

Weap = \/ﬁ4w§ —w2(B—a) (3.11)

Typically § — a < % and therefore wg,, = K?w.. Thus we see that in the strongly
coupled regime the size of the Rabi gap depends directly on the coupling strength,
which can be used to quickly determine the coupling strength experimentally. How-
ever, Eq. (3.11) also indicates that we may have wg,, = 0 even when x # 0. This
special condition actually indicates the presence of an exceptional point in the eigen-
mode spectrum due to the non-Hermiticity of our spin-photon system [61], which we
will explore further in Ch. 6.

Fig. 3.2 (b) shows Awy, illustrating another feature of coupling, line width evo-
lution. From Eq. (3.9) we immediately see that Aw, + Aw_ = w, (a + ), indicating
that although coupling enables energy exchange between the spin and photon sub-
systems it does not introduce additional dissipation channels, and therefore if x* > 0
then Awy is bounded above and below by « and £.

For fixed w we can similarly find a pole in the transmission spectra from Eq. (3.8),

kiw? (w — we) , Bwir?
3 +1 | aw,. + )
4 [(w—we)” + w2 4 [(w—we)” + w2

We =W —

(3.12)

This is the field swept analogue of Eq. (3.9) however in this case there is only one
solution. The real and imaginary components of @, are plotted in Fig. 3.2 (c¢) and (d)
respectively, where we have introduced the notation w, = Re (&), Aw, = Im (@.),
we = YHe, Aw, = yAH, and w, = «vH,. The effects of coupling are evident in
the field dispersion plotted in Fig. 3.2 (c¢) from the asymmetric deviation from the
dashed line, which indicates the uncoupled FMR behaviour. Again the deviation due
to hybridization is greatest near the crossing point of the uncoupled modes and has a
dispersive line shape, with a polarity determined by the sign of the coupling strength
k*. On the other hand the line width, shown in Fig. 3.2 (d), has a Lorentz peak at

5The generalized Rabi gap is defined as w; — w_ without the constraint w, = w.. Therefore we
see that the Rabi gap is the minimum value of the generalized Rabi gap.
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w = w,. This resonant enhancement of the FMR line width is in addition to the usual
linear w dependence and the influence of inhomogeneous broadening and therefore

plays an important role in the characterization of FMR, as we will discuss in Sec. 5.2.

Finally, the transmission spectra itself can be simplified which proves beneficial
for experimental analysis. For fixed field measurements we expand Sg; near w = w4
to find [34] (see Appendix A Sec. A.2),

|Sgl|3: x L + (wi - wr)fl D (313)
where )
(Awy) Awg (W — wy)
(w—wy)” + (Awy) (Ww—wi)” + (Awy)

are the usual Lorentz and dispersive line shapes. Therefore the fixed field transmis-
sion spectra of the coupled system generally consists of both Lorentz and dispersive
contributions, which differs from the Lorentz nature of a single mode. However gen-
erally the term in front of D will suppress the dispersive character unless one of the
modes approaches the FMR frequency, where it will be more greatly distorted by the
FMR antiresonance, as we will explore in Sec. 4.5.4. Therefore in most cases when
analyzing experimental data it is appropriate to fit each peak in the frequency swept
CMP transmission spectra independently as a Lorentzian in order to determine the

frequency and line width.

On the other hand for the field swept case we can expand the transmission spectra
near @, to find [34] (see Appendix A Sec. A.2)

(que +wp — we)2

So1/?
Sl (wy — we)2 + Aw?

(3.15)

where ¢ (w) = (we — w) /Aw,. The asymmetric transmission of Eq. (3.15) is actually
a Fano line shape, which typically arises in scattering problems due to the interfer-
ence between background and resonance processes [182, 183], with the Fano factor ¢
controlling the degree of asymmetry. In our case ¢ (w > w.) < 0,¢ (w = w,.) > 0 and
¢ (w < we) > 0, which explains the change in asymmetry of the field swept line shape
observed in Fig. 3.1. The Fano line shape is very similar to the sum of dispersive and
Lorentz line shapes. Therefore, from a practical perspective, the resonance frequen-
cies and line widths of the hybridized modes can also be accurately determined by

fitting the transmission spectra to a function that has the form |Se; (H) |*> o< L + D,
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where L and D are Lorentz and dispersive line shapes with resonance frequency w,

and line width Aw,. This provides a simple way to analyze experimental results.

3.2.2 CMP Eigenvectors and Energy Distribution

From the dispersion we have found that the CMP is a hybridization of magnon and
photon states. This fundamental property is also reflected in an important way
through the CMP eigenvectors. Denoting the CMP states as X1 we find (see Ap-

pendix A Sec. A.3)
X4 _ n- n+ 1 (3.16)
X_ —N- N+ xy )

where 7y = VQ + A/v2Q with frequency detuning A = @, — @. and generalized
Rabi frequency Q2 = \/ (@ — @e)? 4 K'w?. Eq. (3.16) describes a Hopfield like trans-

formation [160] between the polariton modes (X.) and the photon and spin states

(21,2), which determines the spin and photon fractions of each CMP branch, as shown
in Fig. 3.3. At low fields the upper CMP branch is dominated by the cavity pho-
tons, which is why the dispersion approaches that of the uncoupled cavity, whereas
at high fields the spin fraction dominates and the dispersion becomes FMR-like. This
situation is reversed for the lower CMP branch. Since the microwave transmission

is sensitive to the photon-like nature of the hybridized modes, the mode composi-

1.0 1
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Figure 3.3: The Hopfield-like coefficients 1, o determine the composition of the polari-
ton branches. The evolution of 7; o with jioH corresponds to the upper CMP branch
transitioning from photon-like to spin-like as the field is increased, with the opposite
behaviour for the lower branch.
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tion explains why we observe the strongest signal for the upper (lower) branch when
H < H, (H > H,). Meanwhile at the crossing point both upper and lower branches
have equal spin and photon contributions, and therefore both branches have equal

transmission amplitudes at this point.

At the crossing point, where the fractional composition is equal, and in the absence

X, = ( sign (1) ) . (3.17)

of damping, we find that

1

Therefore the coherent nature of the hybridized modes is determined by the sign of
the coupling strength. We can physically interpret this behaviour by considering the

Hamiltonian of our coupled oscillator system [184]
2H /m = 32 + i3 + w?2? + w?x3 + KW e 1y, (3.18)

Here the first two terms are the kinetic energies of O; and O, respectively, the third
and fourth terms are the potential energies of each oscillator and the final term
is the interaction energy. Therefore the coupling strength determines the sign of
the interaction potential and as a result determines the coherent properties of the
hybridization. In the case of the CMP, x? > 0 and therefore the higher energy mode
X, = (1,1) has in-phase motion while the lower energy mode X_ = (—1,1) has

out-of-phase motion.

The generality of the oscillator model allows us to compare the situation of the
CMP to the well known case of molecular bonding, where two atoms combine to
form bonding and anti-bonding orbitals [184]. In that case the bonding potential is
attractive, meaning that the analogous x? would be negative. Therefore the bonding
orbitals have lower energy than either of the two separate atoms and correspond to
in-phase oscillations, while the anti-bonding orbitals have out-of-phase motion and a
higher energy. Of course for the CMP the spring which we use to model the spin-
photon interaction creates a repulsive potential, leading to the opposite behaviour.
We note that since we experimentally determine the gap, which is proportional to
x4, the sign of k2 is experimentally ambiguous. However the fact that x? > 0 can be
further justified by comparison to the quantum model as described in Sec. 3.4 and
in detail in Ref. [184].

The in-phase and out-of-phase oscillations are a special example of the more gen-

eral phase relationship between magnon and photon states which create the CMP.
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By examining the full eigenmodes we can more generally write

+v02 — A? .
Xi X le + Ty = €Z¢i$1 + o (319)

where

gios _ TV AT 1 K. (3.20)

(Q+A) 204 — W,
defines the phase ¢.. This relationship reveals an important physical insight into
the CMP, which is actually a general property of polaritons: the CMP results from a
strict phase correlation between magnon and photon states. Essentially this reflects
the fact that at any given configuration of our system, defined by the magnetic bias
field, the hybridized state will have a strictly defined composition of photon and spin
states.

Although we have gained significant insight based solely on the general principles
of harmonic coupling an important question remains. What is the physical origin of
the phase correlation? To answer this question we have developed a more physical
model which directly incorporates the coupling between magnetization dynamics and

electrodynamics underlying spin-photon hybridization.

3.3 THE ORIGIN OF HYBRIDIZATION: ELECTRODYNAMIC PHASE CORRELATION

To understand the origin of the phase correlation we must carefully examine the
material dynamics of our system. Thanks to the great insight of Landau and Lifshitz
98] we know that a magnetic field Hy acts on a spin system, characterized by the
magnetization M, as an external torque which drives precession and can be described

as,

dM Q@ dM
—=yMxH;——(Mx —]. 21
a TN ( *d ) (3:21)

Eq. (3.21) is the famous Landau-Lifshitz-Gilbert equation, which is just the Landau-
Lifshitz equation we derived in Sec. 2.2 with a phenomenological damping term
proportional to the so-called Gilbert damping parameter . The later term accounts
for losses which will align the magnetization with a bias field direction. To solve
the LLG equation we split M into a static contribution M, along the z direction and
dynamic components m(t) in the z-y plane, M = My+m(t) = Myz+m(t). Similarly
we write Hy = H + h(t) = Hz + h(¢). Assuming a harmonic time dependence,
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m(t) = me " and h(t) = he ™! and accounting for sample geometry through
the demagnetization fields which send, h, — h, — Nym,,h, — h, — N,m, and
H — H — N,M,, the linear response is governed by

m = yh (3.22)

where the response function y is given by

= A Win [mey.+ wp — Taw] Wy, | (3.23)
—lWWy, Win [wim Ny + wo — iaw]

with A = w? — w? —iaw (Wi (N + Ny) + 2wp), Wy = YMo, wo = v (Hy — N, Mp) and
w? = v*[Ho + (N, — N,) My| [Ho + (N, — N,) My|. Physically w, is the FMR reso-
nance frequency and wy is the resonance frequency in the limit of zero demagnetization
fields. For small damping, so that terms of order o may be neglected, the eigenvec-
tors of the response function are the elliptically polarized modes m* = Dm, + im,
and h* = m, + iDm, with ellipticity D,

D= \/‘*’mNI o — law (3.24)
W Ny + wo — taw

The magnetization dynamics in terms of the elliptically polarized modes is exception-
ally simple,
mt=_—_“m _ p+ (3.25)
W — Wy + 10w
Here we have also made the approximation w, ~ wy + %wm (N, + N,), which holds
well for small demagnetizing fields or in a narrow field range. The latter is always

true for our examination of the CMP.

Eq. (3.25) is generally true for any magnetization dynamics described by the LLG
equation. Typically the microwave fields are taken to be plane waves and the mag-
netization dynamics then studied. However to consider the CMP we must examine
the case when the microwave fields are confined to a high quality microwave cavity,
which requires a solution of Maxwell’s equations. The important considerations are:
(i) our field modes have a resonance and damping and (ii) since they are long lived
states inside of the cavity, the back action of the magnetization dynamics they ex-
cite must be accounted for. To model this behaviour, we take inspiration from the

seminal work of Bloembergen and Pound on the behaviour of radiation damping in
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nuclear magnetic resonance [24] and consider an artificial RLC circuit with current
Jt(t) = Dj.(t) + ij,(t) [34, 48]. The dynamics of j*(¢) is governed by the RLC

equation,

1 djt(t
Rj*(t) + = / i+ 1Y e (3.26)
C dt
where R, L and C' are the resistance, inductance and capacitance of the model circuit,
respectively. Most importantly this circuit contains a voltage V7' (t) = z‘KCLdmdt(t)

produced by the precessing magnetization according to Faraday’s law. Here K. is a
coupling parameter which characterizes the back action of the magnetization dynam-
ics onto the cavity field. The inclusion of V' is the key step in modelling the CMP
iwt

(34, 48]. Assuming harmonic time dependence, j7(t) = jTe ™! and m* = mTe !

the circuit equation becomes
(w? — w2 4 2iBiwe) §T = —iw* Kom™ (3.27)

where we have defined w, = \/% and S = g\/g . Since the field that drives the
FMR is generated by the current due to Ampére’s law, j, and j, will produce fields
h, and h, according to the phase relation h, = K,,j, and h, = —K,,j,. Therefore
we have ht = —K,,j7, where K, is a coupling constant which characterizes the
microwave current induced field, and the coupled equations of motion for the CMP

system may be written as,

2 —w? 2 intWc ) 2Kc i+
w wcl—l— 1 BintwWew iw | J _o (3.28)
— W Ko, W — wy + tow m*

The determinant of the matrix in Eq. (3.28) determines the CMP dispersion. We can
see that in the classical rotating wave approximation, and to lowest order in coupling
strength and damping near the crossing point, this dispersion is identical to the
coupled oscillator system. Therefore all of the behaviour we have already discussed
is automatically captured by this electrodynamic model. Importantly however, this
more physical approach reveals to us the origin of the phase correlation in the CMP.
Due to Ampere’s law, which locks the phase of the rf current with that of the rf
magnetic field, the phase difference between the rf current carried by the cavity mode
and the rf magnetization excited in the YIG is fixed to form the hybridized modes of
the CMP.

In order to determine the full transmission spectra, as opposed to the dispersion
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Zy, L R C Ly
Input Output
\Vas
1 1y \-/ JIDN 1

Figure 3.4: Circuit model of the cavity-magnon-polariton. The RLC circuit in blue
models the microwave cavity, with a voltage source, shown in red, representing the
effect of the magnetization precession. Input and output fields are inductively coupled
into the microwave cavity.

alone, we can apply microwave circuit theory to our RLC circuit. Our artificial circuit
used to model the cavity is shown in Fig. 3.4 and is inductively coupled to input and
output ports of impedance and number of turns in the inductor Zy;,n; and Zyo, no
respectively. The total impedance of the circuit and voltage source is Z = Z. + Z,,
where, from Eq. (3.25) and the definition of V',

iwm K K Lw

vVt = : : (3.29)
W — Wy + 10w
the inductance due to the voltage source is,
WK K L
Ly = e (3.30)
W — Wy + 10w
From Eq. (3.27) the inductance due the RLC circuit is
Zp= —i— (w —ws + QZBintwcw) ) (3.31)
w

Having defined the impedance of our system, we can use a standard approach to
define the transfer matrix which determines the relationship between the voltages in

the input and output circuits [185],

A B m A
T = = momn ) (3.32)
C D 0 =

Therefore the transmission can be calculated as [34]

2 (201202)1/2

S, —
T AZyw+ B+ CZ0y Zog + D20

(3.33)
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and therefore

2iwewBrSa1 (w — wy + iow)

So1 = :
T (W — w2 FiBrwwe) (W — w4 iow) — Wl K2

(3.34)

Here we have defined the input and output couplings, 2w.35* = Zyn?/L, which
characterize how microwaves are coupled into and out of our RLC circuit, the loaded
damping 1 = Bt + 87 + 5 and K? = K.K,,. The transmission amplitude in the
zero coupling limit, Sy; = /BB /AL = So (w = w,, K? = 0), physically defines

the power input into the microwave cavity. The microwave reflection, S1; can also be

10.65

3_ /AjLoH (mT)
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|
= Ak k
— 414
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Figure 3.5: (a) Schematic illustration of the electrodynamic phase correlation which
produces the CMP. The current in an RLC circuit produces a microwave field which
drives magnetization precession. The precessing magnetization induces a voltage via
Faraday’s law, coupling back to the magnetic field. (b) The full transmission spectra
calculated using Eq. (3.34) and experimentally relevant parameters. (c) Frequency
and (d) field line cuts of the transmission spectra. A modified version of this figure
was originally published in Ref. [34].
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found directly from the transfer matrix. We note that in our system, since we can

assume n; = ng and Zy; = Zy, we find the simple relationship S;; = —1 4+ So;.

The full transmission spectra calculated using Eq. (3.34) is plotted in Fig. 3.5
(b) using the experimentally relevant parameters w./2m = 10.556 GHz, @ = 0.8 X
1074 By = 2.9 x 1074, 85 = 35t = 3.8 x 1079 and |K| = 6.4 x 1073, The FMR
dispersion is determined by the gyromagnetic ratio v = 27 x 28 poGHz/T, anisotropy
poH4 = —37.7 mT and saturation magnetization pgMy = 178 mT. We again ob-
serve the key signatures of an anticrossing and line width evolution, while both the
frequency and field cuts, shown in panels (c) and (d) respectively, show the same
characteristics we have discussed in the oscillator model. In fact if we make the ro-
tating wave approximation and neglect higher order contributions so that aw ~ aw,,

So1 becomes

iwPLSa (W — w, + iaw,)
So1 =

(3.35)

(W — we + 1Bimwe) (W — wy + faw,) — %’"Kz’

which has the same form as the oscillator simplification of Eq. (3.8). Therefore all
of the properties, such as line shape, Rabi gap and mode composition, that were

discussed in Sec. 3.2.1 apply for the phase correlation model as well.

More rigorous electrodynamic approaches also confirm the key results of the circuit
model we have described here. For example, Maksymov et al. [186] used numerical
solutions of the LLG and Maxwell equations, obtained using a finite-difference time-
domain method, to demonstrate the same strongly coupled transmission features in
a dielectric-magnetic multilayer, where high dielectric constant layers act as an effec-
tive cavity. Though this approach did not reveal new information about the coupling
itself, it did demonstrate a new platform in which to explore magnon-photon hy-
bridization and confirmed the behaviour seen in our circuit model. Furthermore, Cao
et al. [187] and Yao et al. [188] used a scattering approach in a simplified 1D config-
uration to examine the effects of coupling, with the influence of spin waves explicitly
accounted for in Ref. [187]. Finally, the behaviour of the dispersion was rigorously
examined by Krupka et al. [189] and Pacewicz et al. [190]. In the former work
the authors revisited the role of perturbation theory for sample characterization in
traditional cavity based FMR measurements by numerically computing the cavity
quality factor in regimes where magnon-photon coupling may play a dominant role.
Indeed they find that proper characterization of the FMR line width should carefully
account, for the influence of coupling, as we discuss and analyze in Sec. 5.2 based

on our circuit model. Similarly, in Ref. [190] the authors accounted for the intrinsic
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permeability of the ferromagnetic material and numerically solved the transcenden-
tal equation for the electromagnetic field, finding similar coupling behaviour as our
model. Compared to these rigorous electrodynamic approaches, a key contribution
of the circuit method is that by capturing the physical origin of phase correlation in
an analytical way without introducing complicating geometric or sample dependent
details, the coupling mechanism becomes more transparent. This also allows us to
understand the physical origin of the two coupled oscillators in the harmonic oscilla-
tor model. One oscillator represents the precessing magnetization of the spin system
and the other represents the microwave current of the cavity (or equivalently the
microwave field in the cavity). Therefore we can now define the spectral functions
of the coupled system in a physically meaningful way. In the limit that K. — 0,
the microwave cavity mode will be described by a single Lorentz peak at the cavity
frequency w.. This behaviour can be described by the spectral function
1

Se = 3.36
w? — w? 4 2iBinwew ( )

in which case the transmission spectra of Eq. (3.34) can be written as
So1 = 2iBrw.wSa1 [Re (Se) + ilm (S,)] (3.37)

and therefore

101 = Sa1 = /28w [Tm (S,) |- (3.38)

The full spectral function for the cavity, when coupled to the spin system, is defined

analogously,

w — wy +1aw

coup __
S =

: 3.39
(W2 — w2 + 2ifrww,.) (W — w, + iow) — wlw, K? (3:39)
The transmission of the coupled system can then be described by Egs. (3.37) and
(3.38) by replacing S, — S¢"P. Similarly, we can define a spectral function of the mag-
netic system, which would determine the spin pumping voltage through Eq. (2.13),

as .
— W K,

coup __
Sy =

. 3.40
(W? — W2 + 2ifrww.) (w — w, + iaw) — wiw,, K? (340)

The spin pumping voltage would then be Vsp o< |m|? = |S,,|? [191]. Taking the plane

wave limit, w. — 0, and removing the magnetization back action by setting K. — 0,
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we therefore recover the result of Eq. (2.13) that Vap o< (AH)?/ [(H - H,)? + (AH)2] .
In the coupled case this expression will be modified due to the modification of the
spectral function.

Although the classical electrodynamic and oscillator models produce the same
spectra and dispersion, by taking a different approach to describe the CMP we have
gained physical insight into the coupling mechanism. Therefore it is fruitful to explore
one final model with the following question in mind: Given the nature of magnons

and photons, how is our system described quantum mechanically?
3.4 MICROSCOPIC BEHAVIOUR: A QUANTUM TREATMENT

3.4.1 The Jaynes-Cummings Model

To explore the quantum nature of the CMP we should turn our attention to the
well known behaviour of quantum optics and cavity quantum electrodynamics. The
canonical Hamiltonian of quantum optics is the Jaynes-Cummings model, originally
proposed to describe spontaneous emission [47, 192].° Consider an ensemble of N,
spins coupled to a single mode of a resonant cavity, w.. Assuming Ny > 1, the
Holstein-Primakoff transformation [194, 195] applies and we can treat the excitations
of the spin system (magnons) as bosonic. Furthermore, we will restrict ourselves to
the lowest spin excitation at w, (the FMR mode). The simplest Hamiltonian which
describes such a spin-photon interaction should contain a kinetic term for each degree

of freedom, plus all possible quadratic interactions, and may therefore be written as,
Hjc = hweala + hw,b'b + hg (a+ a') (b+0T) . (3.41)

Here a' (a) and b (b) are the creation (annihilation) operators for the photon and
magnon, respectively, and g is the coupling strength. In the interaction picture, the
time evolution of a and b is governed by the non-interacting Hamiltonian, Hy, =
hweata + hw,bib,

?

h

?

h

a=——[a,Hy], b=——1[bHy, (3.42)

and therefore
a(t) = e ™aq(0), b(t) = e ™r'b(0). (3.43)

6Technically here we describe the Tavis-Cummings model, which is the N,-spin generalization
of the single spin Jaynes-Cummings model [193]. However for our purposes the collection of spins
act as a single macrospin and the distinction in terminology is unimportant.
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tand abl ~

As a result, the spin-photon interactions take the form ab ~ e~#wetwr)
e~ we=wr) plus Hermitian conjugates. If w. ~ w,, e “@eten)t ig rapidly oscillating and

has a small time averaged effect. We therefore neglect these terms leaving,
Hjc = hwea'a + hw,b'b + hg (abT + aTb) ) (3.44)

Neglecting the rapidly oscillating interactions is known as the rotating wave approx-
imation, and results in an analytically solvable Hamiltonian. This approximation
amounts to keeping the component of the interaction whose time evolution (closely)
co-rotates with the interaction picture eigenstates, dropping the counterrotating term.
To physically understand this approximation we can imagine a classical precessing
dipole which represents transitions in a two-level system. A linearly oscillating driv-
ing field can be decomposed into two counterrotating fields. One of these fields will
co-rotate with the dipole moment, applying a constant torque over many periods.
However the torque due to the counterrotating field component will reverse (with
respect to the dipole precession) every period, and therefore will have little average
effect [196].

We can now use the Hamiltonian of Eq. (3.44) to determine the microwave trans-
mission properties of the CMP. However before doing so it is instructive to reexamine
the origin of this Hamiltonian. While the Jaynes-Cummings model is well motivated
physically, it turns out we can also derive Eq. (3.44) by taking an approach closer
to our electrodynamic model and consider the second quantization of a Heisenberg

ferromagnet coupled to light via the Zeeman interaction [34].

3.4.2 Heisenberg Ferromagnet Coupled to Cavity Photons

At our energy scales, YIG can be treated in terms of an effective spin-s Heisenberg
ferromagnet on a cubic lattice. The effective Hamiltonian contains both exchange

and dipole-dipole interactions [197],
1 « (63 z
Ho= =33 37 | ™ + D] S08) = gunB. Y ;. (3.45)
h,j B J

Here S; and S; are the spin operators at the ith and ;' lattice sites respectively, Jij
is the exchange coupling with J;; = J for nearest neighbours (J;; ~ 0 otherwise) and

Df}ﬁ is the dipole tensor. We sum over all lattice sites ¢ and j and over all components
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of the spin, o and 3. The last term describes coupling of the YIG to a static external
field, B,. To simplify Eq. (3.45) we can use linear spin-wave theory for the lowest
magnon band and express the spin operators in terms of the bosonic operators b using

the Holstein-Primakoff [194, 195] transformation for a large number of spins, N,
Si=s—0blb;,  Sf=v2sbl,  Vasb, (3.46)

where Sf = 57+ iS;-/ are the ladder operators. Fourier transforming the bosonic

operators

1 .
bj=—= Y bpe™ (3.47)
H; becomes (see Appendix B.1)

H,=hY_ wiblbi + Eq (3.48)
k

where w; is the frequency of the k™ magnon mode and Ej is the ground state energy
due to the exchange interaction and Zeeman energy of the spins and external magnetic
field.

In addition to H, the full Hamiltonian of our system includes a photon contribu-

tion, Hpp, which is simply that of a harmonic oscillator,

1
Hy =h» w, (a;aq + 5) : (3.49)
q

where ¢ is a mode index, and the coupling between the microwave field and the spins,
Hint
Hiy = gup »_b;-S;. (3.50)
J

Here b = (b,, b,) is the circularly polarized microwave field which has the quantized
form [198]

1 hiw iq-r —iqr\ o . iq-r —iq-r\
bzz;\/%(ﬂq/ [(age’®™ + ale ™) X + i (age™ — ale™™9™) y] (3.51)

where ¢ is the speed of light, V' is the cavity volume, ¢ is the vacuum permittivity

and we have assumed that we can locally expand the field in a plane wave basis. In
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terms of the spin ladder operators,

o guB hwq + iq-r; t @— ,—iqr;
Hiy = szq: Ve (@S e +ajsyeam). (3.52)

Therefore, making the Hostein-Primakoff transformation, Fourier transforming the

magnon operators and using the identity Zj e'aKT — N.§ (q — k), we have

Hin = hy/Noae ) (akb,i + a,Lbk) (3.53)

k

where
. — guB Shwq
¢ hc V 2¢0V

is the coupling constant. Combining these Hamiltonians we find [34]

(3.54)

1
Hyo =1 wiblbet Eo+hY w, (agaq + 5) +iv/Noa. Y <akb,t + a,tbk) . (3.55)
k q k

Eq. (3.55) describes a system of coupled harmonic oscillator modes. Further sim-
plification can be achieved by considering our experimental conditions of a single
cavity mode, w,, coupling to the FMR mode, w}_,, = w,, and neglecting the ground
state energies of the magnon and photon which will not influence the experimentally

relevant field dispersions. In this case Eq. (3.55) becomes [34]
H = hw,b'b + hwea'a + hy/ Ny (ab’ + a'b) . (3.56)

which is the same as the Jaynes-Cummings model of Eq. (3.44). Therefore we can
obtain a quantum model consistent with the Jaynes-Cummings approach by simply

quantizing our electrodynamic approach.

Before examining the transmission spectra, we can easily obtain the eigenspec-
trum of the coupled system by diagonalizing the Hamiltonian through a Bogoliubov

transformation
a = —sin ¢c; + cos Pca, b = cos ¢cy + sin ¢cy (3.57)

where ¢ 9 are new bosonic operators describing the eigenmodes of the system (the
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cavity-magnon-polaritons) and the angle ¢ is given by

2v/ N,a,

tan (2¢) = 3.58
an (29) = = (358)
In terms of the polariton operators the Hamiltonian then becomes
H = hw_cle; 4+ hwche (3.59)
with the eigenspectrum given by
1 2
We =5 |We + w, \/(wT —w,)” +4N,a2| . (3.60)

While Eq. (3.60) will of course display the same anticrossing behaviour we have
observed in our other models, by taking this microscopic approach we can now see
that the coupling strength depends directly on the number of spins [34]. Again by
viewing the CMP from another “angle” we have gained additional insight into its

behaviour.

3.4.3 Input-Output Formalism

In order to use the Jaynes-Cummings model of Eq. (3.44) to describe the microwave
transmission through our system, we must couple the cavity photons to the external
photon bath which exists in the microwave feedlines. To do so we will follow the
input-output formalism of quantum optics outlined in Refs. [198, 199]. We consider

a Hamiltonian of the form

int

H = Hgy + Hyamn + H2A™, (3.61)

where Hgys consists of the cavity photons and its contents (e.g. magnons in the
Jaynes-Cummings model) and HP3" is the interaction between the bath photons and
the cavity photons. As shown in Fig. 3.6, for a two-sided cavity we have two sets of
bath photons, labelled by ¢ and d. Treating the bath photons as harmonic oscillators

we have

Hyath = Hpyg, + H‘tc)lath = Z ﬁwchch + Z hwqd:gdq' (3.62)
q q
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Figure 3.6: In the input-output formalism the bath photons at ports 1 and 2 are cou-
pled to the cavity photons, enabling calculation of the cavity transmission properties.

In the rotating wave approximation the bath-cavity interaction is,

HP — _jp), Z aley — cha) — ihAg Y (ald, — d}a) (3.63)

q

where \.4 are the bath-cavity coupling rates for ports 1 and 2 respectively, which
we assume are mode independent. Note the difference from the interaction in the
Jaynes-Cummings Hamiltonian of Sec. 3.4.1. This may be surprising since in both
cases we are coupling together harmonic oscillators. However as we will see below the
baths act as an additional source of dissipation for the cavity photons, which means
that the overall coupling strength should be imaginary. Anticipating this we choose
Ac.a to be real, add an explicit imaginary factor and, to ensure that H;,; is Hermitian,
introduce an additional negative sign between terms. Using the entire Hamiltonian

we can find the cavity equation of motion as
0= h [a, Hygs] — e Zcq —)\dZd (3.64)

The last terms in Eq. (3.64) can be evaluated by solving the bath equations of motion

in terms of suitably defined incoming and outgoing wave packets of the baths,
A Y g (t) = —V/2heein () + Kea (t), (3.65)
q
Ae Y g (t) = V2heCout (£) — Kea(t), (3.66)
q

where k. is the external coupling rate of c-bath photons into the cavity. Similar
equations exist for d,. Eqgs. (3.65) and (3.66) have a simple physical purpose: they
link the bath modes to the coupling of a wave packet into (¢i,) or out of (¢oy) the

cavity system. This can most easily by understood by noticing that Eqgs. (3.65) and
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(3.66) imply

Cin (1) + Cous (1) = V2kca (t),
din (t) + dout (t> = 2’ida (t) ) (367>

which simply states that a wave packet of the bath incident on a given port will either
be reflected at that port (becoming an outgoing wave) or couple into the cavity. Eqs.
(3.65) and (3.66) are rigorously derived in Appendix B.2. With the sums over bath

photons determined the cavity equation of motion becomes

i = — = [a, Hyys] + v/ 2hoCin + /Zhigdin — (e + Ka) a (t). (3.68)

We now take Hyys = Hjc and include the intrinsic damping of the cavity photon and

magnon systems by replacing w. — w. — 1k, and w, — w, — iky. Therefore
la, Hyys| = h (we — ikq) a + ghb (3.69)
and the cavity equation of motion becomes

4 = —iw.a — Kra — 1gb + 2k .Cin + V 2k qdiy, (3.70)

where the loaded damping k;, = K.+ K4+ K4 includes losses due to both bath couplings
as well as the intrinsic losses of the cavity.”
Since magnons do not couple directly to the baths, no additional input and output

magnons are necessary when considering the magnon equation of motion,

l

b > b, Hyys] = —i (w, — ikp) b — iga, (3.71)

which can be solved in terms of a as

ga
W — w, + Ky

b= (3.72)

"This equation of motion does not include quantum jumps which would appear in a Master
equation treatment of an open quantum system [200]. For the CMP this behaviour is suppressed by
the large number of spins and photons in the semiclassical limit.
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Figure 3.7: Transmission spectra in the input-output formalism. (a) A bath photon
at port 1 (c,) is scattered off of the spin-photon system into a final bath photon
(dout). The input-output fields relevant for transmission are shown. (b) The full
w — H dispersion calculated according to Eq. (3.76) using experimentally realistic
parameters. (c) Fixed field and (d) frequency cuts made above, at and below the
crossing point w, = w, calculated according to Eq. (3.76).

Taking the Fourier transform of the cavity photon equation of motion we find

a=—iA"" (V2k.cin + V2kadin) (3.73)

where,
2

. g
A:w—wc—l—mL—m. (3.74)
We now define the transmission parameters in a physically intuitive way where So; is
determined by measuring the output photons at port 2 when we have input photons
at port 1 but no input to port 2 and S;; is determined by measuring the output

photons at port 1 when we have input photons at port 1 but no input to port 2.
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Mathematically this means that,

S - dout S o Cout
21 — ) 11 —
Cin g, =0 Cin |d;,=0
Cout dout
Slg = d y 822 = d (375)
in cin=0 in cin=0

Therefore using Eqs. (3.67) and (3.74) we find

2 /KK
So1 = S12 = — a (3.76)

i(w—w) — KL+

i . i
Su=— |1+ i S (3.77)
; g
L ¢ (w - (.Uc) — KL+ t(w—wr)—FKp J
- 2 -
Spp = — |1+ fd — . (3.78)
y g9
L ¢ (w - WC) — KL+ (w—wr)—kyp |

The transmission spectra calculated according to Eq. (3.76) is plotted in Fig. 3.7
(b) using the same experimentally relevant parameters as the oscillator and phase
correlation calculations with k. = kg = 3.6 x 107 GHz, Kk, = 2.9 x 1072 GHz and
lg] = 3.1 x 1072 GHz. The anticrossing, line width evolution and both the (c) field
and (d) frequency cuts agree well with the classical models. Of course this is expected
based on the form of Eq. (3.76) since it has the same form as Eqs. (3.8) and (3.35).
The fact that all three models agree again confirms that the key coupling features of

the CMP arise due to linear harmonic coupling.

3.4.4 Green’s Function Formalism

In keeping with the theme of viewing the CMP from a variety of perspectives, we can
also take an alternative to the input-output derivation of Sg; and instead treat the
scattering problem using a Green’s function formalism with the simplified Heisenberg
spin-cavity Hamiltonian of Eq. (3.56) [34]. The quantum mechanical scattering
matrix between an initial state |¢) and final state |f) at times ¢;, - —oo and t; — oo

is the limit of the time evolution operator U (tr,;),

: : i [
S = t}1_>1ré0 U(ty,t;) = t}1_1)13>o T exp <_ﬁ /t Hip (7) dT) ) (3.79)
t;——00 t;——00 *
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where T is the time ordering operator and Hiy (7) is the interacting part of the
Hamiltonian in the interaction picture. The matrix elements can then be expressed

in terms of the transmission matrix (T-matrix), 7, as
(FIS|i) = 84 + 2mid (Ef — E;) (f|Ti) . (3.80)

Although Eq. (3.80) defines the on-shell T-matrix following from the definition of

Eq. (3.79), it can also be understood intuitively through conservation of energy.

Experimentally, the initial and final states of our system will be photons in the
feedlines which couple into the cavity. Therefore we must again consider a photon
bath which couples to the cavity photons. Integrating out these bath photons we find
that

T (W) o< MG (w), (3.81)

where G is the retarded Green’s function of the cavity photons and A is the coupling
of the cavity photons to the external photon bath, which we assume is the same for
both the input and output baths and is independent of the mode (i.e. we make a
Markov approximation). The derivation of Eq. (3.81) is presented in Appendix B.4.
Now, as was implicitly done when examining the input-ouput formalism, we assume
that the density of states of the bath photons, p (w), varies slowly around the cavity
mode and therefore from Eq. (3.79) we can identify the transmission amplitude, ¢ (w),
as

t(w) =2mip(w)T (w). (3.82)

Therefore, neglecting the asymmetric contribution from the real part of the Green’s
function, we find [34]
So1 (W) [* oc —A’Im [Gg (w)] . (3.83)

For the non-interacting system the retarded photon Green’s function is (see Appendix

B.3),
h 1 1

:2wc W—w,+il. wtw,—il.|"

G (w) (3.84)

Here we have introduced the cavity damping parameter I'. = [w.. The magnon
Green’s function is analogous to Eq. (3.84) but with all photon parameters replaced

by magnon parameters. From this bare Green’s function, the full photon Green’s
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function can be easily determined diagrammatically (Appendix B.5),

N,o? ! N o2 -1
—(w—w il - — % ) o N )
GR(CU) (CL) WC+Z c w—wr—f—lrr) (w—i_wc_’_l c W‘f‘wr_’_lrr)

(3.85)
Using the Green’s function of Eq. (3.85) with our previous result of Eq. (3.83) the

transmission spectra is given by [34]

r + Nsa?lT,.
2 2 ¢ (w—wr)?4T2
[Sa1|* oc A 5 5
W — . — Nsa2(w—wy) +(r. + Nsa2l,
¢ (wfwr)iﬂ? ¢ (wfwr)§+f‘%
2
T, + —Se2gr_
(o) T . (3.86)

2 2
B NsoZ (w+wy) Nsa2T,
(cu + we (w+wT)2+F%> + (FC + (w+wr)2+I‘E)

The full transmission spectra of Eq. (3.86) is shown in Fig. 3.8, calculated
using the same parameters as mentioned previously with N,o? = 900 MHz and a
proportionality constant of 2 x 1075, Again we see an anticrossing and line width
evolution indicative of strong coupling as well as frequency and field cuts in agreement
with those previously investigated. If we assume we investigate the CMP near the the
crossing point (i.e. near the resonant features for positive frequencies) then we can
neglect the second term in Eq. (3.86), which is not resonant near w = w, and only
contributes an overall background signal. Furthermore since I', = aw, is typically
~ 1 MHz, much less than the frequency range examined experimentally, the second

term in the numerator can be neglected, leaving

iSo1 T (w — w, +4L,.)

S, =
T (W= we + L. (w— wy 4 i) — Nya?

(3.87)

where Sy is again the transmission amplitude at w = w, in the absence of coupling.
This simplified transmission again has the same form as all other models, which is not
surprising since we expect all forms of transmission to agree in this harmonic limit.
However, once again by taking a new approach we have gained additional insight into
the CMP system. Notably, through the quantum approach we have learned that the
coupling strength will grow as v/N, and have also developed a formalism which can

be easily extended to include higher order quantum effects of the CMP.
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Figure 3.8: Transmission spectra in the Green’s function formalism. (a) An initial
bath photon is scattered off of the spin-photon system into a final bath photon state.
(b) The full w— H dispersion calculated according to Eq. (3.86) using experimentally
realistic parameters. (c) Fixed field and (d) frequency cuts made above, at and below
the crossing point w, = w, calculated according to Eq. (3.86). A modified version of
this figure was originally published in Ref. [34].

3.5 CONCLUSION AND COMPARISON OF MODELS

In this chapter we have presented several ways to model strongly coupled spin-photon
systems. These approaches are generally split into two categories: we can either solve
the problem classically, which means solving the coupled LLG and Maxwell’s equa-
tions, or we can use a quantum approach, which means defining a Hamiltonian and
determining the eigenfrequencies and transmission properties. Here we have devel-
oped two approaches to solve the problem classically and two approaches to solve the
quantum problem. It is worth noting that other classical approaches have also been

used, differing mainly in their application to specific geometries or experimental con-
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figurations, such as a transfer matrix approach [188], classical scattering approaches
[187, 201] as well as full analytical [202] or numerical [186] solutions of Maxwell’s
equations. Regardless of the approach our work has shown that CMP hybridization
results from the key physics of phase correlation [48], and, using the rotating wave
approximation near the crossing point w, = w,, all models reduce to a set of coupled

equations which have the form,

w—w. g h\ [ weho
R

Here ©. = w. — ifw. and @, = w, — iaw, are the two complex resonance frequencies,
hg is a driving microwave field at frequency w and ¢ is the coupling rate. The top and
bottom equations in Eq. (3.88) describe the behaviour of the cavity (h) and magne-
tization (m) respectively. The dispersion of the hybridized modes is then determined

by the pole of the matrix determinant from Eq. (3.88) by solving
(w— Q) (w—&) —g*=0, (3.89)
and the microwave transmission is determined to be

S0 o b — weho (W — @)

. 3.90
(oG @)~ g (3:90)
We note that, in accordance with Eq. (3.77), the simplified microwave reflection
spectra is determined by

Sll = —1 + Sgl. (391)

Since all models reproduce the same general behaviour, such as mode anticrossing,
line width evolution, a Lorentz line shape for frequency swept spectra and a Fano
line shape for field swept spectra,® it is worth discussing what we gain from each
approach. The real advantage to describing spin-photon hybridization using different
methods is that each approach views the spin-photon system from a different angle,
revealing new insights which, when put together, offer a more a complete picture of
spin-photon coupling. The insights offered by these different models are both physical
and technical in nature. Physically, the harmonic oscillator model provides a very

general basis for understanding CMP physics. Since the basic features of spin-photon

80f course this general behaviour must be reproduced by all models in the harmonic limit.
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hybridization can be described by coupled oscillators, the main physics is universal
and can be observed in many other systems, for example in cavity optomechanics and
atomic systems. This also means that features observed in other systems, or more
interestingly, features not observed due to experimental limitations, may be realized
through spin-photon coupling.

While the generality of the harmonic oscillator model is a strength, it is also a
weakness in that it does not reveal the origin of the phase correlation which produces
the CMP. Attempting to answer this question has led us to develop the dynamic phase
correlation model of spin-photon coupling, which clearly reveals the electrodynamic
origin of CMP phase correlation. This approach also unveils the nature of the two
oscillators, one represents the cavity mode while the other describes the magnetization
dynamics. Furthermore by establishing this relationship a connection to spin pumping
is also revealed, as we know that the voltage is proportional to the spectral function
of the magnetization.

Turning to the quantum descriptions allows us to can gain further insight into the
nature of the coupling, for example this approach allows us to easily determine the
microscopic origin of the coupling strength, revealing new avenues for coupling control
through the N, dependence. The quantum formalism can also be extended to explore
quantum effects of hybridization. For example, the Green’s function calculation ex-
plicitly demonstrates that the transmission can be calculated by the spin-photon
system alone, without considering the properties of the bath photons, which allows
straight forward extensions to calculate higher order interactions by accounting for
higher order terms in the Dyson expansion.

Additionally there are a variety of minor advantages to one approach or another.
For example, if we wish to decouple our system we need the ability to independently
control (theoretically) each coupling strength independently. This is because even
without the magnetization back action (K. — 0) the cavity field still drives the mag-
netization. This functionality is provided most naturally by the electrodynamic phase
correlation model. On the other hand, by using the RLC description of the circuit
more complex planar resonators can easily be described [38, 203]. Alternatively, if
we wish to describe the reflection spectra of our system, the input-output formalism
naturally provides the relation S;; = —1 + Sg;, which we can then adopt in other
approaches. Input-output theory can also be easily generalization to other resonator
systems, such as a waveguide. Finally the simplified model of Eq. (3.88) has a very

simple structure, which may easily be extended to multimode systems where several
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cavity or spin wave modes are present. Solutions of the hybridized dispersions are
also simpler in this approach.

Therefore the combined understanding of all theoretical approaches we have de-
veloped provides a more complete picture of spin-photon coupling. Keeping this com-
plete view of the CMP in mind, in the experimental studies that follow we will make

use of the general formalism defined by Eqs. (3.88) and (3.90) whenever possible.
3.6 ACKNOWLEDGEMENTS

The results presented in this chapter were performed in a collaborative environment
and published as such in Refs. [34] and [48]. While the author’s detailed contributions
have already been summarized in Ch. 1, it is also necessary to acknowledge the collab-
orators who contributed to this work. In particular: Christophe Match participated
in discussions of the harmonic coupling model; Lihui Bai participated in discussions
of the harmonic coupling and phase correlation models; Jesko Sirker developed the
quantum treatment of spin-photon coupling using the Heisenberg ferromagnet and
Green’s function formalism; and Can-Ming Hu supervised and provided insight on
all aspects of the presented work and in particular interpreted the electrodynamic
phase correlation model. Outside of these contributions, all work and development

presented in this chapter was performed by the author of this dissertation.

57






4

OBSERVING SPIN-PHOTON HYBRIDIZATION

4.1 INTRODUCTION

Without experimental input it would be virtually impossible to make progress in con-
densed matter research. Again, this fact is due to the complex nature of many-particle
systems and the need to develop a give and take between theory and experiment.
Based on our considerations of strong-spin photon coupling we now anticipate that
the physical origin of hybridization lies in electromagnetic phase correlation which
couples the electrodynamics of a microwave cavity to the magnetization dynamics of
a ferromagnetic material. However we have yet to confirm these expectations. In
conventional systems many insights into magnetization dynamics have been gained
from microwave transmission and electrical detection methods [23] and therefore to
study our hybridized system we will employ these techniques. These methods are
described in Sec 4.4 after first reviewing the individual spin and photon subsystems
in Sec. 4.2 and Sec. 4.3 respectively.

Microwave transmission probes the global absorption properties of a system and
therefore reveals the resonance properties of a system under test. Using an in-house
3D microwave cavity coupled to a YIG sphere we can observe spin-photon hybridiza-
tion at room temperature using microwave transmission, as presented in Sec. 4.5.1.
Experimentally we observe mode anticrossing and line width evolution, in excellent
agreement with the predictions of our model. These observations lead to new in-
sights into the physics of spin-photon coupling, such as the fact that the hybridized
line width is bounded by the uncoupled dissipation rates, physically reflecting the
fact that hybridization does not open any new dissipation channels but simply allows

energy exchange between the spin and photon subsystems. Interestingly we also con-
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firm the large FMR line width enhancement due to coupling. This implies that the
conventional mechanisms of Gilbert damping and inhomogeneous broadening cannot
account for the damping behaviour of the strongly coupled system.

To take our experimental investigations further we employ electrical detection.
These techniques became commonplace within the spintronics community in the mid
2000’s, motivated by the theoretical proposal of spin pumping and input from the
semiconductor spintronics community [23]." Applying this experimental technique
we again observe the tell-tale signatures of hybridization, as we present in Sec. 4.5.1.
This finding means that the spin current is influenced by strong coupling, which
sets the foundation for the development of cavity spintronics, opening the door to
the electrical generation, manipulation and detection of strong coupling in spintronic
devices. Electrical detection also provides an ideal way to search for strong coupling
with spin waves, which we discuss in Sec. 4.5.3. This search is successful and we make
the first detection of an anticrossing between standing spin waves and the microwave
cavity. This observation allows us to verify the expected coupling strength and mode
index dependence. By enabling systematically variable coupling strengths, spin waves
may prove advantageous in the development of cavity spintronic technologies.

Interestingly the signatures of strong coupling are not restricted to anticrossing
and line width properties, but also include the presence of an antiresonance in the
spectra. We explore this phenomena in Sec. 4.5.4. Similar features appear across a
wide range of physical systems, from light scattering in metamaterials [207] to cou-
pled atom-photon systems [208], and have been used to characterize strongly coupled
quantum circuits [208]. In our case we show that the antiresonance can be used to
interpret the phase behaviour of the hybridized modes, with phase jumps at both
resonances and the antiresonance. Such phase information has played an important
role in early applications of cavity spintronics, such as in bridging CMP and qubit
systems [33] or multiple magnetic moments [58], or in the development of novel mem-
ory architectures [59]. In the latter example, magnon dark modes have been used to
demonstrate enhanced storage times and as an application of our phase analysis tech-
nique we quantify the phase behaviour in the magnon dark mode for the first time
in Sec. 4.5.5. The range of experimental results presented in this chapter reveals
the intriguing nature and exciting possibilities of the strongly coupled spin-photon

system.

!The origins of these effects can be traced back much further to the pioneering work of Juretscke
in the 1960’s [204, 205] and Johnson and Silsbee in the 1980’s [206].
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4.2 THE SPIN SYSTEM (MAGNETIC MATERIAL)

In our experiments we used two types of magnetic devices. Generally, when we
only required microwave transmission measurements, spherical, single crystal YIG
samples purchased from Ferrisphere Inc. were used. These highly polished spheres
had a surface roughness of 50 ym and saturation magnetization of pgMy = 178 mT
with a gyromagnetic ratio of v = 28 x 27 1oGHz/T, Gilbert damping of 0.8 x 107> <
a < 1 x 107 and a shape anisotropy of |Ha| ~ 30 mT. Typically 1-mm diameter
spheres were used, in order to maximize the coupling strength. For the experiments
presented here knowledge of the crystal orientation was unimportant, and therefore
no special sample mounting was required.?

For electrical detection experiments thin film bilayer devices were used. Experi-
ments performed at the University of Manitoba used YIG(2.6 ym)/Pt(10 nm) bilayers
(bracketed values denote thickness), with typical lateral dimensions of ~ 10 mm x 7
mm. The YIG samples, provided by the group of John Q. Xiao at the University of
Delaware, were grown by liquid phase epitaxy (LPE) on a (111) oriented gadolinium
iron garnet (GGQG) substrate. Via sputtering at the University of Manitoba, the Pt
was patterned into strips covering the length of the YIG with typical strip widths of
~ 50 pm. The FMR properties were defined by typical parameters of v = 27 x 27.5
woGHz/ T, oMy ~ 170 mT and o ~ 4 x 10*. The YIG (2.8 ym)/Pt(5 nm) bilayer
samples used at the Walther-Meissner-Institute were again grown by liquid phase
epitaxy on (111) oriented GGG substrates with Pt deposited using electron beam
evaporation. The FMR parameters were similar to the Delaware samples. In addi-
tion to the YIG /Pt bilayers, a series of temperature dependent experiments, presented
in Sec. 5.3, was performed using GdIG(2.6 um) grown by liquid phase epitaxy on a
GGG substrate in the group of Eiji Saitoh at Tohoku University.

4.3 THE PHOTON SYSTEM (MICROWAVE CAVITY)

Various cavity systems were used throughout our experiments. At the Walther-
Meissner-Institute experiments were performed in a commercial Bruker Flexline MD5
dielectric ring cavity, while the majority of experiments at the University of Manitoba

were performed using an in-house cylindrical 3D cavity made of oxygen free copper.

2Note however that nonlinear experiments which depend on the sign of the Kerr coefficient do
require consideration of the crystal axis [63, 209].
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A schematic diagram of the cylindrical cavity is shown in Fig. 4.1. The cavity had
a radius of R = 12.5 mm and an adjustable height of 24 mm < h < 44 mm. This
height adjustable feature allowed us great flexibility in accessing different modes and
mode frequency ranges within a single system. In particular we could tune individual
cavity modes over a frequency range of ~ 1 GHz, allowing us to isolate individual
modes for our experiments to ensure that a single cavity mode was responsible for
strong coupling over a wide frequency range. Furthermore the height adjustment ca-
pability enabled tuning the wavevector which supported the investigation of polariton
type gaps observed in the phonon-polariton [211]. The in-plane mode profiles of the
four lowest order modes are shown in Fig. 4.1 (b), where dashed lines indicate the
microwave magnetic fields. Two ports on the cavity allowed us to inject and measure
microwaves, enabling both reflection and transmission measurements. Furthermore,
by adjusting the pin lengths inserted into the ports we could control the cavity qual-
ity. We typically operated in the critically coupled regime, which afforded the best
balance between cavity quality and microwave amplitude [185], with typical critically
coupled quality factors of 1200 < @ < 1800.%

To better understand the behaviour of spin-photon coupling it is crucial to char-
acterize the behaviour of the individual spin and photon subsystems. In the case of

the cavity this means characterizing the resonance modes, which is easily done using

Figure 4.1: (a) Schematic diagram of a cylindrical cavity with radius R and adjustable
height h, which enables resonance frequency tuning. Two ports allowed for microwave
injection and detection. (b) Magnetic field mode profiles in the z-y plain for the four
lowest modes. The amplitude, determined by the mode index p which defines the
sinusoidal behaviour in the z direction, is not accounted for here, see e.g. Refs.
[154, 210] for a discussion of cylindrical cavity modes.

3Q = w./2Aw,, where Aw, is the half-width-half-maximum (HWHM) of the cavity mode and
w, is the mode frequency.
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classical electrodynamics [154]. In the cylindrical cavity the field profile of the trans-
verse magnetic (TM) modes, which have a vanishing field along the z axis, are given
by,

Er(z,y,z) = —;;—;; sin (1%) Vr(z,y), (4.1)
E.(z,y,z) =1 (x,y)cos (]%) ) (4.2)
He(z,y, ) = Z;—‘j cos (72 2 x V() (4.3)

while the transverse electric (TE) mode profiles, which have a vanishing electric field

along z, are,

Er(z,y,2) = % sin (25) 2 V(e y), (4.4)
Hry(z,y,2) = 5—; cos (%) Vri(z,y), (4.5)
H.(%,y,2) =1 (z,y)sin <]%) : (4.6)
Here ;1 and € are the permeability and permittivity of the cavity, respectively,’ v =
pew? — (’%)2 and, owing to the cylindrical symmetry in the x-y plane, ¢ is most

easily expressed in cylindrical coordinates (p, ) using the Bessel functions .J,, as
Y (p, ) = T (Ymnp) €™ With Ypnn = T/ R for TM modes and v, = /. /R for TE
modes, where z,,, is the n'" root of J,,, and !, is the n'" root of J/,. V1 = 20,470,
and m, n and p are mode indices with m = 0,1,2,... and n = 1,2,3,... for both
TE and TM modes while p = 0,1,2,... for TM modes and p = 1,2,3,... for TE
modes. The mode behaviour along the z axis is sinusoidal and determined by the p
index, which therefore sets the overall amplitude. However we will see that for spin-
photon coupling the behaviour of the in-plane profiles are most relevant (provided the
amplitude is not zero) and therefore we have used the transverse part of Eqs. (4.1),
(4.3), (4.4) and (4.5) to plot the in-plane behaviour in Fig. 4.1 (b). There we have
introduced the notation TM,,,,, and TE,,,,, which we will use whenever referring to
specific TE and TM modes. Modes with lower indices of course have less nodes and
therefore simpler field profiles. In particular the TMy;, mode has a simple circular
magnetic field profile, meaning that the orientation between the rf magnetic field and

the bias magnetic field can be easily defined. For this reason we will use the TMg1;

4In our experiments € = ¢, and, aside from the magnetic sample volume, p = jo.
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Figure 4.2: Measured microwave transmission using a cylindrical microwave cavity
made of oxygen free copper with R = 12.5 mm and 24 mm < h < 44 mm. Solid
curves are calculations of the mode dispersions according to Eq. (4.7) for TM modes
(blue) and Eq. (4.8) for TE modes (green).

mode in the majority of our experiments.

Finally the resonance frequencies of the TE and TM modes are given by,

TM: Wy = \/%\/(xgny + (]%Y, (4.7)

TE: Wy = \/%\/(%)2 + (’%)2. (4.8)

The frequency height dispersions for all cavity modes in our cylindrical cavity from
7 GHz < w/2m < 16 GHz are plotted in Fig. 4.2 as green and blue curves for the TE

and TM modes respectively. These calculations can be compared to the experimental

microwave transmission, So;, of the empty cavity, which has been measured by a
vector network analyzer (VNA) and is also plotted in the same figure. It is evident
that our cavity is well characterized by the expected frequency dispersions of Egs.
(4.7) and (4.8). Although our cavity has many modes which we could use in our strong
coupling experiments, we choose to use the TMy;; mode. This mode is chosen due to
the spherical symmetry of its magnetic field, its ideal frequency range which can be

easily accessed by low magnetic fields (~ 400 mT) and the fact that for ~ < 35 mm it
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is well separated, by more than 1 GHz, from other cavity modes, which ensures that

it will be the only mode responsible for strong coupling in a wide frequency range.
4.4 MEASUREMENT TECHNIQUES

4.4.1 Microwave Transmission and Reflection

The microwave frequency response of the CMP was measured via microwave trans-
mission /reflection using the experimental setup shown in Fig. 4.3. The YIG sample
was placed inside our in-house microwave cavity, typically near the cavity edge, with
a microwave field supplied by an Agilent N5230C vector network analyzer (VNA)
and a static magnetic field, which controls the spin resonance, supplied by an ex-
ternal Lakeshore EMT7 electromagnet. To maximize the coupling strength, by most
efficiently driving magnetization precession, the YIG sphere was generally placed at
a location where the local microwave field was perpendicular to the static magnetic
field. Therefore the optimal sample placement was dependent on the field mode used
in a given experiment. This is discussed at length in Sec. 5.4. The two SMA ports of
our cavity enable both transmission (Sg;) and reflection (S11) VNA measurements and
in this setup the entire transmission line can be calibrated. However even with such
a calibration standing waves, which have the largest impact on S;;, may be present

in the transmission line. For this reason we use S9; measurements when possible.

Figure 4.3: Schematic diagram of the UMS1 experimental system for microwave trans-
mission measurements. A VNA injects (and measures) a microwave signal into the
cavity which contains the magnetic sample. An external bias field provided by an
electromagnet controls the spin resonance properties.
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4.4.2 FElectrical Detection

In our electrical detection experiments we measured the dc voltage generated due
to spin pumping and the inverse spin Hall effect, as outlined in Secs. 2.3 and 2.4,
in order to determine if the spin current was influenced by the presence of strong
coupling. One potential complication with such measurements is the small magnitude
of the dc signal, typically on the order of 'V, requiring some form of amplification.”
Fortunately standard techniques for electrical detection of spintronic systems now
enable routine measurements of nV signals. The two approaches used in this work
are shown in Figs. 4.4. Experiments performed at the University of Manitoba used the
experimental setup shown in panel (a). An Anritsu MG3692C microwave generator
was used to inject a microwave signal into the cavity through one of the two ports.
This microwave signal was sinusoidally modulated at a reference frequency of 8.33 kHz
by a Stanford SR 830 lock-in amplifier. This allowed us to use the lock-in technique,

whereby the measured voltage signal was again multiplied by the reference signal

(a)

Lock-In I;

Amplifier

Microwave
Generator Magnet

Figure 4.4: (a) Schematic diagram of the UMV1 electrical detection system used at the
University of Manitoba. A microwave generator injects a signal into the cavity, which
undergoes a low-frequency sinusoidal modulation applied by the lock-in amplifier. The
lock-in amplifier measures the voltage generated through spin-pumping/inverse spin
Hall effect. (b) Schematic diagram of the WMI electrical detection system used at the
Walther-Meissner-Institute, which simultaneously measures the microwave reflection.
A VNA injects a microwave signal into the cavity. The DC voltage generated in the
YIG /Pt bilayer is amplified using a low noise differential voltage amplifier (LNA) and
recorded through the auxiliary port of the VNA.

Resonator

°In early studies of voltage generation by magnetic thin films, (through spin rectification, not
spin pumping) small voltage signals were one of the reasons that exceptionally large microwave
powers, of several kW, were necessary [23, 205, 212].
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and time integrated, allowing extraction of the DC signal. Due to the configuration
of our in-house cavities, we opted to avoid the use of a chip carrier, which would
drastically reduce the quality of the loaded cavity, and instead mechanically fixed the
electrical leads to the Pt layer of our YIG/Pt bilayer samples. Again a Lakeshore
EMT electromagnet was used to apply a static magnetic bias field to tune the spin
resonance. As shown in Figs. 4.4 (a) the voltage was measured along the long
axis of the YIG/Pt bilayer and the static magnetic field was applied in-plane, but
perpendicular to the measurement direction.

Fig. 4.4 (b) shows the experimental setup used at the Walther-Meissner-Institute,
which simultaneously performs electrical detection and microwave reflection measure-
ments. The sample was wire bonded onto a printed circuit board sample carrier and
placed inside a Bruker Flexline MD5 dielectric ring cavity in an Oxford Instruments
CF935 gas flow cryostat. The tuneable unloaded quality factor of this cavity ranged
from 0 < @ < 8000, however due to loading, () ~ 1000 at critical coupling. An Agilent
N5242A VNA injected a microwave signal into the cavity and recorded the reflection
signal. The DC signal was measured along the axis of the cavity, perpendicular to
the static magnetic field provided by a Lakeshore electromagnet. This voltage signal
was amplified using a Stanford 560 low noise differential voltage amplifier (LNA) and
recorded through the auxiliary input of the VNA.

4.5 EXPERIMENTAL CHARACTERISTICS OF SPIN-PHOTON HYBRIDIZATION

4.5.1 Transmission and Voltage Spectra

Having characterized the individual spin and photon subsystems, and equipped with
several experimental techniques to probe the properties of the coupled system, we
performed detailed studies of the spin-photon hybridization. The key characteristics
of the CMP observed through microwave transmission measurements in the UMS1
setup are shown in Fig. 4.5. In this experiment the height of the cylindrical copper
cavity was set to h = 29 mm, which resulted in a TMg;; mode with a loaded resonance
frequency and quality of w,./2m = 10.556 GHz and Q = 1700 (8 = Aw/w. = 3 x 107%)
respectively. This loaded resonance frequency was red shifted by 0.2% from the
unloaded value. The YIG FMR follows the linear dispersion w, = v (H 4+ H,), where,
in our experiment, 7 = 28 x 27 pyGHz/T and the shape anisotropy poHa = —37.7
mT, resulting in a cavity/FMR crossing field of 414.5 mT (the Gilbert damping is
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Figure 4.5: (a) UMSI1 experimental setup. (b) The w — H transmission mapping
of the CMP. Diagonal and horizontal dashed lines indicate the uncoupled FMR and
cavity dispersion respectively. (c) Fixed field and (d) frequency cuts made at, above
and below the crossing point w, = w,. A modified version of this figure was originally
published in Ref. [34].

a = 0.8 x 107%). The coupling of the TMy;; mode to the 1-mm diameter YIG sphere
can be seen in Fig. 4.5 (b). A clear gap emerges in the eigenspectrum at w, = w,,
removing the degeneracy at the crossing point and signalling the presence of strong
spin-photon coupling. To illustrate the significance of this deviation, the uncoupled
dispersions of the cavity and FMR are shown as horizontal and diagonal dashed
lines respectively. The observation of such an anticrossing is the “smoking gun” of
strong spin-photon coupling and shows the dramatic influence of hybridization on
the eigenspectrum. In our experiment the Rabi gap was found to be wga, = 63 MHz,
corresponding to a coupling strength of 31.5 MHz. Using the effective spin density
of iron atoms in YIG, p, = 2.1 x 10**£5 [213], we can use the sample volume to
estimate N, = 5.2 X 10'® spins in our YIG sample [34]. Therefore using Eqs. (3.54)

and (3.55) we calculate from first principles a gap of wgap/2m = 74 MHz which agrees
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extremely well with the experimental observation given the complex nature of our
system and the simplicity of our theoretical model.

The frequency line cuts |Sy; (w) |? at fixed H are examined in Fig. 4.5 (c). These
fixed field line cuts show both CMP branches. The separation between the two
branches at the crossing point pgH, = 414.5 mT defines wyg,,. This spectra nicely
illustrates the influence of hybridization — without coupling the two modes observed
at w, = w, would overlap and their line width would be very different. However
due to the spin-photon interaction we instead find two well separated modes of equal
amplitude and equal line width. Above (below) the crossing point the amplitude of
the upper (lower) branch decreases sharply as the cavity mode moves away from the
FMR frequency and can no longer effectively drive precession [34]. Both branches
have a clear Lorentz line shape, as we predicted in Sec. 3.2.1. This is also consis-
tent with our expectations of a resonant process. Defining the frequency and field
detunings, dw = w — w, and 6H = H — H, the field swept spectra is seen to satisfy
S91 (wy + 0w, H, + 6H) |* = |S9; (w, — 0w, H, — §H) |?, which represents the reflec-
tion symmetry about the uncoupled dispersions which is evident in Fig. 4.5 (b).

In microwave transmission measurements one typically measures the frequency
swept spectra as we have just discussed, while spin pumping measurements usually
measure the field swept spectra. However in our experiment, since we have a full
w — H data set, we can examine the CMP from both perspectives using just the
microwave transmission. The fixed frequency cuts, [Se; (H) |?, are highlighted in Fig.
4.5 (d). As anticipated based on our theoretical considerations, this behaviour is
distinctly different than the frequency swept spectra. At w = w,. we have a broad
symmetric dip, with the transmission line shape becoming asymmetric when w # w..
A striking feature is that this symmetry change occurs immediately away from the
cavity frequency and is opposite above and below w,. In this case we observe a similar
2 =

reflection symmetry about the uncoupled dispersions, [So; (w. + dw, H. + dH)
S91 (we — 0w, H, — §H) |*. However a key difference between this line shape symmetry
and the analogue for fixed fields is that w, is field independent, whereas w, depends
on the field. Interestingly So; (H) reveals a new feature that is not easily seen in
either the full mapping, S9; (w, H), or the frequency spectra, So; (w). Examining the
spectra near pugH = 404 m'T an additional resonance structure is observed. This
feature is actually the observation of strong coupling with a spin wave, rather than

the fundamental FMR mode, and will be discussed in more detail in Sec. 4.5.3.

All of the experimental features of the CMP which are observed in the mapping

69



OBSERVING SPIN-PHOTON HYBRIDIZATION

and spectra of Fig. 4.5, including a gap in the dispersion, the w symmetry of fixed H
cuts, the rapid decrease of the transmission amplitude of the upper (lower) branches
above (below) the crossing point, the symmetric dip in the fixed w spectra at w = w,
the general asymmetry when w # w,., and the polarity change in the fixed w cuts
above and below w,, are in excellent agreement with the theories presented in Ch. 3,
supporting the electrodynamic phase correlation origin of strong-spin photon coupling
[34].

The fact that we observe strong spin-photon coupling through microwave trans-
mission measurements is not too surprising, since these measurements probe the cav-
ity properties which must be modified. Whether or not such effects can be observed
through spin pumping is less clear. Of course within our theoretical formalism spin
pumping should also be influenced since the magnetization determined by the LLG
equation is modified. However from an experimental perspective it is not immedi-
ately obvious that such an effect could be detected and therefore the observation of
hybridization through spin pumping provides powerful confirmation that the physi-
cal picture painted by our electrodynamic model is indeed correct. In Fig. 4.6 we
present typical spin pumping measurements made using our UMV1 setup [48]. In
this case a fixed geometry aluminum cavity was used with a resonance frequency of
we/2m = 10.506 GHz and a loaded quality of Qp = 278 (3, = 1.8 x 1073). The
YIG(2.6 pm)/Pt(10 nm) bilayer had lateral YIG dimensions of 5 mm x 5 mm, with
a Pt layer patterned into a strip of dimension 50 gm x 5 mm. Using the in-plane
field configuration the FMR follows the Kittel equation w, = vy/H (H + M) with
v =27.5 X 21 g GHz/T and poMy = 169 mT in our sample. In the absence of cou-
pling the line width follows the well-known relation AH = AHy+ aw/v [21, 214] and
we find a Gilbert damping of o = 3.6 x 10™* with a line width broadening of pyAH,
= 0.31 mT. The typical voltage mapping presented in Fig. 4.6 (b) indeed shows the
same anticrossing feature that we observed in the transmission spectra, with wgap/27
= 168 MHz. This indicates that the spin current is in fact manipulated by the pres-
ence of strong coupling! If we examine the fixed field behaviour of V' (w) in panel (c)
of Fig. 4.6 and the fixed frequency behaviour of V (H) in panel (d) we see the same
characteristic features that we observed in the microwave transmission and that we
expected based on our theoretical analysis. These experimental observations support
the conclusion that the spin current is manipulated by the presence of strong spin-
photon coupling, again providing support for our model [48]. Since the experimental

signatures observed through microwave transmission and electrical detection mea-
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Figure 4.6: (a) Schematic illustration of the CMP coupling mechanism, which is
measured here in the UMV1 experimental setup. (b) The w-H voltage mapping of
the CMP. Diagonal and horizontal dashed lines indicate the uncoupled FMR and
cavity dispersion respectively. (c¢) Fixed field and (d) frequency cuts made at, above
and below the crossing point w, = wi..

surements appear to be the same, all of our discussion and analysis of the microwave
transmission spectra also applies to the electrical detection spectra. Yet despite the
similarities there are some advantages and disadvantages to each experimental ap-
proach when investigating strong spin-photon coupling. As we can see from Figs. 4.5
and 4.6, the transmission measurements typically have a better signal to noise ratio
and, as we will see in the next section, this reduces the uncertainty in the line width
measurements extracted from microwave transmission. On the other hand, higher
order spin wave modes can more easily be observed using electrical detection, which
is less sensitive to the dominant cavity mode. However perhaps the most important
distinction between the two techniques is that the electrical detection method locally
probes the spin system, whereas the microwave transmission technique measures the

global properties of the entire system [50]. Therefore spin pumping actually provides
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a method to truly probe the coupling influence on a specific spin device. This ca-
pability is necessary for the development of cavity spintronics and was exploited to

demonstrate non-local spin current control, as will be discussed in Sec. 5.5.

4.5.2 Awoided Crossing and Line Width Evolution

Thus far all of the insights we have presented from our experimental data were gained
directly from the raw measurements without detailed data analysis. However by
fitting the transmission spectra to our model we can determine the exact behaviour
of the full complex CMP dispersion. For the fixed field spectra we fit each of the
CMP modes to a Lorentz line shape, in accordance with the simplification derived in
Sec. 3.2.1. The resulting resonance position and line width are plotted in Fig. 4.7
(a) and (c) respectively. Here the open and solid triangles are the upper and lower

polariton branches respectively and the solid curves are calculated according to Eq.

422 ,

T O L
406 414 422 10.500 10.556 10.612
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Figure 4.7: (a) Frequency swept transmission dispersion and (c) line width. (b) Field
swept transmission dispersion and (d) line width. Symbols are experimental results,
with hollow and solid triangles corresponding to the upper and lower CMP branches
respectively. Solid curves are calculations according to Eq. (3.9) and Eq. (3.12) for
the field and frequency swept spectra respectively. A modified version of this figure
was originally published in Ref. [34].
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(3.9). The horizontal and vertical dashed lines in panel (a) indicate the uncoupled
cavity and FMR dispersions respectively. The dispersion again highlights the mode
hybridization, which is strongest near the crossing point w, = w, in agreement with
the mode composition described by Fig. 3.3. However our fitting reveals that the
dispersion is not the only signature of coupling [34, 48]. By extracting the full complex
eigenmodes we also observe line width evolution as a signature of hybridization. This
feature is actually already evident in the transmission mapping of Fig. 4.5 (b) in
a subtle way, but becomes a striking feature of Fig. 4.7 (c¢). Interestingly we find
that the line widths are bounded by o < Awy /w. < (, and are equal at the crossing
point.’ Furthermore, as can be verified by our model, (Aw; + Aw_) /w. = o + B.
This relationship is independent of coupling strength, field or frequency and physically
indicates that, although the spin-photon coupling enables energy exchange between
the two subsystems, coupling does not introduce any additional dissipation channels.
Fig. 4.7 (c) experimentally confirms this relationship.

The frequency swept dispersions and line width are plotted in Fig. 4.7 (b) and
(d) respectively with symbols representing experimental data extracted by fitting to
a Fano line shape and solid black lines calculated according to Eq. (3.12). The
vertical and diagonal dashed lines in panel (b) indicate the uncoupled cavity and
FMR dispersions respectively. As expected based on the theoretical predictions of
Eq. (3.12), the frequency swept dispersion is purely dispersive, while the line width
is purely Lorentzian, with a maximum at w = w.. In this case our experimental
results suggest that the FMR line width will be drastically influenced by the resonant
coupling process. A similar analysis can be performed for the voltage measurements
and is shown in Fig. 4.8. Having already demonstrated that all coupling features can
also be observed through spin pumping we of course expect to see the same dispersion
and line width characteristics. From Fig. 4.8 the effects of decreased signal to noise
in this technique are evident, resulting in more scattered fitting results, especially
for the line width measurements. However we still find good agreement with our
model and observe the key coupling signatures of mode anticrossing and line width
evolution.

Despite the fact that « is not changed by the coupling, AH increases drastically

at the crossing point where resonant coupling is observed [48]. This increase occurs

6Recent unpublished investigations indicate that this bound may be broken, indicating important
extensions of the coupling mechanism. However in standard hybridized systems these bounds are a
strict result of the coupling.
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Figure 4.8: (a) Frequency swept voltage dispersion and (c) line width. (b) Field swept
voltage dispersion and (d) line width. Symbols are experimental results, with hollow
and solid triangles corresponding to the upper and lower CMP branches respectively.
Solid curves are calculations according to Eqgs. (3.9) and (3.12) for the field and
frequency swept spectra respectively.

independently of the damping magnitudes, in contrast to the frequency swept spectra,
where one mode increased and another decreased depending on the relative size of
a and . Normally the FMR line width is described by the relation AH = AH, +
aw /7y [214], where AHj is the inhomogeneous broadening resulting from disorder, for
example due to inhomogeneities in the crystal structure which produce fluctuations
in the anisotropy and magnetization and can result in two magnon scattering which
couples the FMR mode to higher order degenerate spin waves [214]. However our
observation of line width enhancement due to coupling indicates that this relation is
no longer valid in the coupled spin-photon system. We can most easily characterize
this behaviour by rewriting the dispersion of Eq. (3.12) using our definition of the

uncoupled photon spectra function, S, = 1/ (w? — w? + 2ifw,),

w2,
B

AH (w) = AHy + =2 4+ L2 21 (S, (4.9)
8

In writing Eq. (4.9) we have used the dispersion from the general electrodynamic
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phase correlation model, rather than its simplification, so that this expression applies
even away from resonance. This interesting and important result, which deviates
from the traditional FMR line width, will be explored further in Sec. 5.2.

4.5.3 Strong Coupling of Spin Waves

Thus far we have discussed strong coupling with the FMR mode of our spin system.
However, the data of Fig. 4.6 (d) indicated the presence of a standing spin wave mode
(SSW) [21, 214], which may also strongly couple with the cavity. The spectra pre-
sented in Fig. 4.9 (a) takes a closer look at this spin wave mode, which is highlighted
by a red arrow. The hybridized dispersion of the spin wave mode may be determined
using a straightforward extension of our theoretical formalism by expanding the 2 x
2 matrix of Eq. (3.88) to a 3 x 3 matrix which includes both the FMR magnon, m

with resonance frequency w, ¢, and the standing spin wave magnon, m, with resonance
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Figure 4.9: (a) Voltage spectra measured using the UMV1 setup (same data as Fig.
4.6) with a weak standing spin wave (SSW) mode highlighted by a red arrow. The
frequency in GHz is indicated for each spectra. (b) Blue circles and red triangles are
the experimental FMR and SSW dispersions respectively. The black curve and red
line are the dispersion calculated using Eq. (4.10). A modified version of this figure
was originally published in Ref. [48].
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frequency w,s [48],

w — we + ifw, 9f 9s J
ar W — Wrp + law, 0 my | =0. (4.10)
Js 0 W — Wrs + 1O, My

Here gf is the coupling strength between the cavity mode and the FMR, g, is the
coupling strength between the spin wave and cavity modes, and the off diagonal zeros
indicate that there is no direct coupling between the FMR and the SSW. In Fig. 4.9
(b) the experimental resonance positions of the FMR and the SSW are shown as blue
circles and red triangles respectively. The calculated FMR dispersion, shown as a
black curve, is determined from the determinant of Eq. (4.10) and is the same as
that of Fig. 4.8 (b) for g7 < g7, which is true for the much weaker SSW observed
in this experiment, where we find g, = 0.1g;. Meanwhile the SSW dispersion can
also be calculated from the determinant of Eq. (4.10), taking w,s — w,r = 21 MHz
to account for the exchange coupling which separates the SSW from the FMR. This
curve is plotted in red in Fig. 4.9 and agrees well with our data. Interestingly, in the
presence of spin-photon coupling we find that w,; > w, for w < w, and w, 5 < wys
when w > w,.. This is in contrast to the uncoupled case where, due to the exchange
interaction, the resonant frequency w,s of the SSW is always higher than w, s of the
FMR. This new effect is due to the large deviations of the FMR dispersion induced
by strong coupling, which are clearly observed in Fig. 4.9.

Due to the small amplitude coupling strength of the SSW we have just described,
this data set does not display a clear spin wave anticrossing, which would be the
“smoking gun” of spin wave strong coupling. To search for this signature, a series of
experiments was performed using several YIG /Pt bilayers at the Walther-Meissner-
Institute [49]. Typical reflection spectra using the WMI setup are shown in Fig.
4.10. In this measurement we used a YIG(2.8 um)/Pt(5 nm) bilayer with lateral
dimensions 5 mm x 2 mm where v = 29.3 X 27 uoGHz/T, poMy = 140 mT and
a = 3.4 x 107*. The TEq;; mode of the Bruker cavity had a loaded resonance
frequency of w./2m = 9.651 GHz and a loaded quality of Q; = 706 (87 = 7 x 107).
The mapping of Fig. 4.10 (a) again shows a dominant SSW passing through the
main FMR anticrossing and also illustrates the Sy (w, H) = Sy (w, —H) symmetry of
the microwave reflection spectra. In the WMI experimental setup the transmission

lines can only be calibrated up to the cavity SMA connection, leaving the entire
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Figure 4.10: (a) Microwave reflection mapping showing several strongly coupled spin
wave modes in a YIG/Pt bilayer. (b) [Si; (w)|* at several values of negative and
(c) positive poH. (d) |Syy (—|H|)|* and (e) |S11 (JH|)|? for several values of w. The
multiple spin waves are most clearly seen in the w = w, cut shown in black in panels
(d) and (e). The scale in panels (b) - (e) is the same as panel (a). Data used in this
figure was originally published in Ref. [49].

length of the sample holder uncalibrated. This produces a significant standing wave
background in the raw reflection data which we have corrected using the full complex
S parameter and the inverse mapping technique [215], which is outlined in Appendix
C. This method is known to enable excellent background correction even for entirely
uncalibrated data [49]. Here we present the final, calibrated measurements. Fig. 4.10

(b) and (c¢) show Si; (w) for several positive and negative H fields. These spectra
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Figure 4.11: (a) Voltage mapping showing several strongly coupled spin wave modes
in a YIG /Pt bilayer. (b) |Si; (w)]? at several values of negative and (c) positive poH.
(d) |S11 (—|H|)|* and (e) |Si1 (|H])|? for several values of w. The multiple spin waves
are most clearly seen in the w = w, cut shown in black in panels (d) and (e). The scale
in panels (b) - (e) is the same as panel (a). Note the V (H) = —V (—H) symmetry
which is evident in all panels. Data used in this figure was originally published in
Ref. [49].

further emphasize the symmetry of Sy; (w) under H — —H. This symmetry is also
evident in Fig. 4.10 (d) and (e) which display Sy (H) for various w. Although the
influence of spin waves can be seen in all of the transmission spectra, they are most
clearly identified in the S;; (H) spectra at w = w,, shown as the black curve in Fig.
4.10 (d) and (e).
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The presence of spin waves is even more striking when viewed in the voltage spec-
tra of Fig. 4.11, which does not have the strong cavity mode background observed in
the analogous transmission measurements [49]. This experiment was again performed
using the WMI setup with the same sample as Fig. 4.10. In all panels the expected
spin pumping voltage symmetry V (H) = —V (—H) is evident, and contrasts the field
symmetry of S;;. The multiple spin wave modes can be observed in all panels, but
are most clearly illustrated in the V (H) spectra measured at w = w, in panels (d)
and (e).

Interestingly, in this experiment we were able to make the first observation of a
clear spin wave anticrossing. To highlight this feature Fig. 4.12 shows a “zoomed in”
view of a typical spin wave, using the microwave reflection data for panel (a) and the
voltage spectra for panel (b). The solid white line indicates the main anticrossing (in

the absence of spin wave modes), which is calculated using Eq. (3.89) with a fitted
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Figure 4.12: (a) The reflection and (b) voltage mappings of the n = 7 spin wave mode.
This is the same data as Figs. 4.10 and 4.11 (a). The vertical dashed line indicates
the crossing point for the n = 7 spin wave. (c) Reflection spectra at ugH = 265.62
mT (the n = 7 crossing point) for the n = 7 and (d) poH = 263.62 mT (the n =9
crossing point) for the n = 9 spin wave modes. The red dashed curves indicate the
two mode peaks which are summed together to give the black fitting curve. Data
used in this figure was originally published in Ref. [49].
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coupling strength of g/27 = 31.8 MHz.” The spin wave dispersion can be calculated
using the expanded three mode model of Eq. (4.10), which would produce a single
solution for the entire spectrum and also include the main anticrossing. However this
approach can become cumbersome when many spin wave modes are present, since,
for example, in the case of n-modes we must find the roots of an n** order polynomial
(the roots of the corresponding n x n matrix determinant). Since we assume no direct
spin wave coupling, a simpler approach is to allow the hybridized FMR-cavity mode
to act as a “new cavity mode” which couples to the spin wave, that is, to describe the
spin wave mode coupling we can use the 2 x 2 matrix of Eq. (3.88) by replacing w,
with wy due to the FMR-cavity coupling (the white curve in Fig. 4.12 (a) and (b)).
The result we obtain through this approach, using a spin wave coupling strength of
3 MHz, is shown as the black dashed curve in Fig. 4.12 (a) and (b). The excellent
agreement with the experimentally observed dispersion demonstrates the accuracy of
this alternative approach.

It is also possible to assign a mode label to the observed spin waves. To do
so we first recall that, since we drive the magnetization with a uniform microwave
field, only odd numbered modes will be excited®. In our experiment the n = 3 and
n = 5 modes are too close to the main anticrossing to be analyzed quantitatively,
and therefore the n = 7 mode is the first strongly coupled spin wave mode from
which we can accurately determine the coupling strength. This mode assignment
also leads to resonant frequencies in agreement with values of the exchange stiffness
and gyromagnetic ratios reported in the literature [49, 217, 218]. For example, by
reducing the cavity quality to destroy the hybridization (as shown in Fig. 5.2 (c)
and (f)), we determine an effective magnetization of Mg = 147 kA m™! in agreement
with values reported for YIG [217].

The dispersion of the n = 7 mode is presented in Fig. 4.12 (a). The reflection
spectra at the crossing point of pgH. = 265.62 mT for the n = 7 mode is shown
in Fig. 4.12 (¢). Mode splitting due to hybridization is evident, with a gap of 6
MHz (corresponding to g;/2m = 3 MHz). Here the red dashed curve indicates the

Tt is worth noting that, taking into account the number of spins in the sample, this corresponds
to a single spin coupling rate of go/27 = 0.1 Hz [49], in agreement with experiments on paramagnetic
systems [46].

8This assumes that the magnetization is pinned at both interfaces. Such conditions generally
depend strongly on the device fabrication [216] and are difficult for us determine a priori for our
device. However we find that this assumption leads to consistent spin wave assignment with re-
gard to the expected index dependence of the coupling strength and determination of the exchange
parameters and effective magnetization [49].
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two resonance peaks which are summed to produce the black fitting curve, with
the amplitude asymmetry resulting from the asymmetric standing wave background.
Similarly the analysis of the n = 9 SSW is shown in Fig. 4.12, where the crossing
point is at pugH, = 263.62 mT and the coupling strength is found to be g9/27 = 2
MHz. Having assigned mode labels we can now determine how the coupling strength
changes for different modes. It has been predicted that the coupling strength of the
nth SSW will follow a g, o 1/n behaviour, decreasing with increasing mode index
[187]. From our n = 7 and n = 9 mode analysis we indeed see a decrease with the
appropriate 1/n slope. However if we analyze the coupling strengths quantitatively
using the value of g;/2r = 31.8 MHz extracted from the main peak splitting, we
would predict g7/2m ~ 4.5 MHz and go/2m ~ 3.5 MHz. This discrepancy can be
addressed by accounting for the poorly resolved n = 3 mode which contributes to
the main anticrossing, mimicking an enhanced peak splitting of the hybridized FMR-
cavity mode [49]. By extrapolating the behaviour of the n = 7 and n = 9 modes
we find g3/27m = 7.6 MHz, which can be subtracted from our previous value of 31.8
MHz, yielding g;/2m = 24.2 MHz, in agreement with the extrapolated value. Our
study therefore confirms the expected 1/n decrease of the spin wave coupling strength.
For even higher order modes, which can be observed in, for example, Fig. 4.11, the
coupling strength is to small to produce an anticrossing. However such weakly coupled
modes have been examined through their line width broadening and also confirm the
g < 1/n behaviour [49].

Based on the observations presented in this section we can conclude that higher
order spin waves will also hybridize with the microwave cavity. This hybridization
is well described by our model of spin-photon coupling and also allows us to verify
the 1/n coupling strength scaling with spin wave mode index n. From a technical
standpoint the fact that higher order spin waves with systematically variable coupling
strengths can also be observed, most notably in spin pumping experiments, may be

useful for the development of cavity spintronic devices.

4.5.4 Antiresonance Behaviour

In addition to the dispersion anticrossing, line width evolution and spin wave strong
coupling, another fundamental feature of spin-photon hybridization is the presence
of an antiresonance in the microwave spectra. In contrast to a resonance, which is a

maximum in the microwave transmission, an antiresonance is a position of minimum
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Figure 4.13: (a) Transmission spectra measured at different poH using the UMS1
experimental setup and displayed on a logarithmic scale, highlighting the presence
of an antiresonance between the two CMP modes. Blue circles are experimental
data and the solid black curves are calculated according to Eq. (3.90). (b) The
corresponding transmission phase ¢, which displays a 7 phase jump at each of the
CMP resonances as well as at the antiresonance position. A modified version of this
figure was originally published in Ref. [219].

transmission. In the case of spin-photon coupling an antiresonance will always occur
at a frequency wa.y; in between the two hybridized modes, w_ < wanti < wi. This
feature is highlighted in Fig. 4.14 (a) where experimental transmission spectra Sy (w)
are shown using blue circles for several H fields. This data was collected using the
UMSI setup and is actually the same data that was presented in Fig. 4.5 (a), however
here the antiresonance feature is highlighted by using a logarithmic scale. The cor-
responding transmission phase behaviour, ¢y, is shown in panel (b). In each spectra
we observe three m phase jumps. These occur at the CMP locations, w = w4 and
at the antiresonance, w = w,ui. In both panels the solid black curves are calculated

according to Eq. (3.90).

The presence of an antiresonance can be anticipated from our CMP model. Ex-
amining Eq. (3.90) we find that

1 1

— X —
821 w—wr’

(4.11)

82



4.5 EXPERIMENTAL CHARACTERISTICS OF SPIN-PHOTON HYBRIDIZATION

and therefore S5} will be maximized (Sy; will be minimized) at w = w,. The line
width of the S;;' peak will be ~ aw,. Physically an antiresonance at the uncoupled
FMR frequency also makes sense. At w = w, the magnetic material in the cavity will

have the greatest absorption, minimizing the cavity transmission [219].

The fact that the antiresonance occurs at w, can be exploited in a useful way.
Since we have a strongly coupling system, the mode hybridization means we cannot
generally determine the uncoupled system properties directly from the transmission
spectra, as would be done in traditional cavity based FMR experiments. However, if
we look instead at the antiresonance, we can extract direct information of the spin
subsystem, even though we are still in a strongly coupled regime. This type of analysis
is illustrated in Fig. 4.14. The transmission spectra at the crossing point pugH. =
414.5 mT where w, = w, is shown in Fig. 4.14 (a). Experimental data are shown
as blue circles and the black curve is a calculation according to Eq. (3.90). The
antiresonance location is marked by the vertical dashed line and we see that it lies
directly in-between the two hybridized modes. This is because this spectra has been
measured at the crossing point. By inverting the spectra of panel (a), as shown in Fig.
4.14 (b), we can immediately see the influence of the antiresonance. The experimental
antiresonance positions are plotted as symbols in Fig. 4.14 (c¢) and the solid curve is a
calculation of the FMR dispersion. As anticipated the antiresonance positions follow
the uncoupled FMR dispersion. This means that in a strongly coupled system where,
for example, the gyromagnetic ratio and Gilbert damping are not characterized, we

can still directly access this information by examining the antiresonance.

The antiresonance can also be used to understand the phase behaviour of our
system. It is well known that an oscillating system will display a phase jump upon
passing through a resonance [178]. This can be observed in Fig. 4.14 (d) where we see
two 7 phase jumps at the two CMP resonances. Here blue symbols are experimental
data and the solid black curve is calculated using Eq. (3.90). However in addition to
the resonance phase jumps we observe an additional 7 phase shift which occurs at a
frequency in between w, and w_. This shift exactly corresponds to the antiresonance
location, as denoted by the vertical dashed line. Therefore we can account for all
of the phase shifts which are observed through either resonance or antiresonance

phenomena [219].

Experimentally we can only access the phase information of the microwave trans-

mission, which in our model corresponds to the phase of h, ¢,. However our model
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Figure 4.14: Phase and dispersion analysis based on the antiresonance. (a) Trans-
mission spectra at the crossing point where w, = w,. Blue circles are experimental
data and the black solid curve is calculated according to Eq. (3.90). The vertical
dashed curve indicates the antiresonance position. (b) The inverted transmission
spectra which further highlights the antiresonance. (c¢) A comparison between the
antiresonance locations and the FMR dispersion. Red circles are the experimental
antiresonance positions and the solid black line is the calculated FMR dispersion. (d)
The transmission phase information. The blue circles are the experimentally mea-
sured transmission phase while the red circles are the calculated magnetization phase
using Eq. (4.12). The solid black curve is calculated according to Eq. (3.90) and the
vertical dashed line indicates the antiresonance position. A modified version of this
figure was originally published in Ref. [219].

does allow us to calculate the magnetization phase ¢,,. From Eq. (3.88) we see that

W,

Gm = ¢p, + arccot (w — wT) : (4.12)

Therefore given the transmission phase ¢y, it is also possible to determine the mag-

netization phase behaviour [219]. Such a ¢, calculation is shown in Fig. 4.14 (d)
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as red circles, using the blue ¢; data. Although ¢, undergoes a phase shift at the
antiresonance this phase shift does not influence ¢,, — mathematically it is com-
pensated by the second term in Eq. (4.12) — resulting in two, not three, phase
shifts observed in the ¢,, spectra. We have therefore developed a procedure which
allows us to determine the magnetization phase behaviour, and relate this behaviour
to the antiresonance phenomena. An interesting application of this procedure is to

the characterization of magnon dark modes, which we discuss in the next section.

4.5.5 Phase Analysis of Magnon-Dark Modes

An intriguing application of strongly coupled spin-photon systems was proposed by
Zhang et al. [59]. Using multiple YIG spheres in a microwave cavity they devel-
oped a gradient memory architecture based on magnon dark modes. By applying a
field gradient between the YIG samples, they were able to generate “bright” magnon
modes, which would couple to the cavity, and “dark” magnon modes, which did not
interact with the cavity. As the dark modes do not couple to the cavity, they are
longer lived and can be used to enhance storage times in memory applications. As
was qualitatively revealed in Ref. [59], a key characteristic of the multiple YIG system
is the phase behaviour. However this behaviour was not experimentally investigated
previously. Now using our antiresonance and phase analysis method we are able to
explore exactly such multi-resonant the behaviour [219].

Our two magnon system consisted of two nearly identical 1-mm diameter YIG
spheres. These samples had the same gyromagnetic ratio of v = 28 x 27 pyGHz/T
and a Gilbert damping of o = 1x10~%. However the two samples had slightly different
shape anisotropies, poH4 = 92.5 and 22.5 mT. As a result their dispersions are offset,
as if there was a field gradient applied between them. These spheres were both placed
at the outside edge of our cylindrical copper cavity, 2 mm apart (angular separation of
10°), with the cavity height set to h = 29 mm which set the loaded TMg; resonance
frequency to w./27 = 10.556 GHz with Q = 1700 (8 = Aw/w. = 3 x 107*). The
resulting transmission spectra is shown in Fig. 4.15 (a). In the case of two YIG
spheres, m; and ms, coupled to a single cavity mode, we can easily extend Eq. (3.88)

so that our three mode system is described by the matrix [219],

W — We g1 92 h weho
g1 W — a}rl 0 my - 0 (413)
92 0 W — Wy mo 0
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so that the transmission spectra is given by,

(W— 1) (W — Dp2) we

S o (W= @e) (W= Q1) (W — D) — G2 (W — Dp2) — G (W — D1)”

(4.14)

Here @, = w1 —taw, and @0, = w,o —iaw,. The dispersion of the three mode system
can be determined by calculating the roots of the Sg; denominator. This yields the
black curves in Fig. 4.15 (a), which agree well with the experimental data. We find
a coupling gap of wg,, = 65 MHz for each sphere. At the magnetic field indicated by

—30

w—we)/2m (GHz)

Figure 4.15: Phase analysis of a two YIG system. (a) A microwave transmission map-
ping, |Ss1|%, as a function of microwave frequency and magnetic field for a microwave
cavity coupled to two YIG spheres. At the magnetic field indicated by the vertical
dashed line, we plot the microwave transmission spectra as a function of frequency in
(b), which shows two antiresonance frequencies. (c) The measured microwave trans-
mission phase has two opposite phase jumps due to the two antiresonances. (d) The
phases of the dynamical magnetization for each YIG FMR are calculated. The inset
sketch shows that the two FMRs are out of phase between the two antiresonance

frequencies (w,1 and w;s). A modified version of this figure was originally published
in Ref. [219].
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the vertical dashed line in panel (a), we plot the transmission spectra as a function
of frequency in Fig. 4.15 (b). As expected in this spectra we see three hybridized
modes and two antiresonance locations, corresponding to the FMR positions of the
two YIG spheres. The antiresonance positions are indicated by the red and green
vertical dashed lines. The presence of two antiresonances is also confirmed by two
positive phase jumps which are observed in the microwave transmission phase ¢y, as
clearly shown in Fig. 4.15 (c). Here we also observe the expected three phase delays
due to the three hybridized resonances. In analogy with our phase analysis of the
previous section, the two magnetization phases, ¢,,; and ¢,,2, can be related to the

microwave transmission phase as,

¢Gm1 = ¢ + arccot (%) : (4.15)
$m2 = ¢p, + arccot (—w ;wa2> : (4.16)

Using Egs. (4.15) and (4.16) both magnetization phases were calculated and are
plotted in Fig. 4.15 (d), where the relative phase of the two FMRs is shown by
the insets. Before the first antiresonance frequency, w,;, the magnetizations of both
FMRs are in phase with the microwave magnetic field. In between w,; and w,.o
the magnetizations of the two YIG spheres are out of phase by m with each other,
forming a magnon dark mode (which is visible here since the anisotropy fields are
chosen to be distinct). However, even within this range, while remaining out of
phase with one another, the YIG magnetizations both experience a w-phase shift
due to a hybridized mode near the cavity frequency w.. Finally, after the second
antiresonance frequency w,o, the magnetizations from both FMRs are still in phase
with each other but out of phase by m with the microwave magnetic field. Therefore
a combination of antiresonance and phase analysis enables a phase characterization
of the magnon dark mode system [219]. In particular we have directly revealed the
in-phase/out-of-phase properties which enable the formation of dark modes. Notably
the fact that both systems undergo a simultaneous phase shift while maintaining a
phase difference of 7 in the dark mode region was previously unknown and could be

useful in the implementation of such a memory architecture.

4.6 CONCLUSION
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In this chapter we have examined the basic properties of the coupled spin-photon
system. We found that the tell-tale signatures of coupling, mode anticrossing and line
width evolution, can be observed using both microwave transmission and electrical
detection techniques. The former method globally probes the hybridized states of the
CMP, while the later technique demonstrates that spin current is influenced by the
spin-photon coupling. This final finding is key to the development of cavity spintronic
technologies. The fact that strong coupling, which can be controlled and manipulated,
influences the spin current means than the vast array of existing spintronic systems
should be reexamined within the new framework of strong spin-photon interactions.
We also presented the observation of spin wave strong coupling, which allowed us to
verify the coupling strength dependence on mode index and provided an interesting
stress test of our theoretical model. Finally by revealing the features of the spin-
photon antiresonance we were able to characterize the spin subsystem even during
strong coupling. With the realization that strong coupling can easily be achieved
even in conventional magnetic systems this is an important result, as it allows robust
characterization of the spin system when traditional resonance analysis is no longer
applicable. Furthermore, by utilizing the antiresonance we were able to understand
the phase properties of the CMP and use this method to elucidate the behaviour of
a two YIG system which forms dark magnon modes. With these basic properties of
CMP physics established and the potential for spintronic development revealed, we

now turn to the question of CMP control.
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CONTROLLING SPIN-PHOTON
HYBRIDIZATION

5.1 INTRODUCTION

Having already realized two reliable techniques which probe strong spin-photon cou-
pling, and a powerful set of models which sets the foundation for our understanding,
perhaps the most important question to ask is: How can we control the spin-photon
hybridization and what could we achieve by doing so? This simple question actually
opens the floodgates to a plethora of intriguing inquiries, such as: How does strong
coupling arise? How can we move between the strong and weak regimes? How do
we actually define strong coupling? Is there any residual impact of strong coupling
on conventional FMR behaviour? Of course by exploring these questions the door
to new applications and insights are sure to open. In order to address these issues
the development of techniques that can be used to control and manipulate the spin-
photon coupling in-situ is of particular interest. Such techniques would not only make
the investigation of cavity spintronics more efficient and robust, but would also allow
cavity spintronic techniques to be adapted for device applications.

The key parameter that characterizes the behaviour of spin-photon hybridization
is the cooperativity, defined as the ratio of the coupling strength to the spin and pho-
ton loss rates. The larger the cooperativity, the greater the influence of hybridization.
At low cooperativities the influence of coupling may not be observed in the disper-
sion. Intuitively the fact that the cooperativity controls the coupling behaviour makes
sense, since the coupling strength defines the gap between hybridized modes, and large
dissipation rates would wash out this gap. Therefore to answer the question of how

we can control spin-photon hybridization we should explore cooperativity control. To
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do so we have employed several experimental methods. As we demonstrate in Sec.
5.2, by controlling the cavity loss rate we are able to continuously tune between the
strong and weak regimes. Through this approach we learn that even with a moder-
ate cavity quality factor it is possible to observe the influence of hybridization. This
implies that one must take caution when using conventional cavity FMR techniques
in systems with large sample to cavity filling factors, since the impact of strong cou-
pling may still have a large influence. As an example of this behaviour we analyze the
FMR line width and discover that a large non-resonant influence of the coupling may
exist, highlighting again the need to cautiously disentangle the influence of strong
coupling from our understanding of conventional magnetism characterization tech-
niques. Furthermore, we directly tune the coupling strength, and hence control the
cooperativity, using both the magnetization temperature dependence in a compen-
sating garnet, as outlined in Sec. 5.3 and careful control of the field torque which
drives FMR, discussed in Sec. 5.4. Through our temperature control technique we
verify the g oc v/N; scaling of the coupling strength and by tuning the field torque
we develop an easy to use approach to systematically control the strong to weak
transition. As an important and interesting application of this latter technique we
use electrical detection of a multi spin system to demonstrate non-local spin current
control over macroscopic distances. This result, presented in Sec. 5.5, highlights the
interplay between fundamental physical insight, we reveal the key difference between
microwave transmission and voltage measurement schemes, and experimental devel-
opment, this technique enables a new spin current control mechanism which can be

applied over distances much larger than exchange or dipole-dipole type interactions.

5.2 CONTROL OF CAVITY DAMPING

In our experimental investigations of strong spin-photon coupling we have already
seen the influence of the coupling strength and damping on the behaviour of hy-
bridization. For example, a large coupling strength will mean that wg,y, is large, while
small dissipation rates are required to observe well separated modes. Therefore it is
beneficial to define the cooperativity, C' = gg Jaf, where g, = g/w. = wWgap/2w, is a
dimensionless coupling strength normalized to the cavity resonance frequency. C'is
the key parameter which determines the behaviour of our strongly coupled system.
In a practical experimental setting the cooperativity determines whether or not we

can resolve mode splitting at the crossing point due to hybridization. When the co-
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operativity is large, C' > 1, then wy,, is much larger than the line width of either
mode and we can clearly resolve both peaks. On the other hand, when C' < 1 we
will only see a single peak at the crossing point, even though we may have g, # 0."
Therefore we can tune the cooperativity by controlling either of the damping rates «
and 3, or by tuning the coupling strength g directly. Tuning the damping of the spin
system would be challenging, especially in a controllable way (for example we could
change the magnetic sample, but within the regime where strong coupling can still
be observed this would only change the damping by a factor of ~ 2 —5). However it
is possible to systematically control the cavity damping.

To understand how we can experimentally control the cavity damping, recall that
the loss rate of the loaded cavity has two contributions, 8, = Bint +Bext-- The intrinsic
loss rate, By, is primarily determined by the cavity conductance and can therefore
be increased by polishing or the use of superconducting materials, but is not easily
tuneable. However the total extrinsic loss rate, fBey, is determined by the coupling of
external microwaves from the feedlines into the cavity and is therefore controllable.
The loaded quality factor, @ = 1/2f;,® actually depends on the loaded cavity loss
rate, and can therefore be tuned by controlling [e. Fig. 5.1 (a) illustrates how
we experimentally tune the loss rate in our 3D cavity. In this cavity we can control
the pin length entering the cavity from the SMA connector, which enables quality
factor control between 0 < ) < 1800. Similarly the Bruker cavity, shown in Fig.
5.1 (b), contains a tuneable iris which couples microwaves from the waveguide into
the cavity. By tuning the size of this iris we are able to control the extrinsic cavity
loss rate. The () factor control achieved in the Bruker cavity is shown in Fig. 5.1
(c) and (d). In panel (c) several reflection spectra are shown at different feedline
couplings (iris sizes). The best quality factor of @@ ~ 1400 is shown at the top
(labelled by 1), while the lowest quality factor of @ ~ 50 is shown at the bottom
(labelled by 6). Spectra 3 at () ~ 700 is the critically coupled spectra, which offers

the best balance between quality factor and signal amplitude.* The actual quality

! Actually it is possible that one can have C' > 1 (although very close to 1) and still find wga, = 0.
An alternative interpretation of the condition wga, = 0 will be discussed in Ch. 6.

2In describing our electrodynamic phase correlation model we considered the general case of two
different loss rates at each port, 83" and S5*'. Here we write fext = S50 + 85X for simplicity. The
important point is that we control the total extrinsic loss rate. Whether we do this at port 1 or 2
is irrelevant.

3For simplicity in discussing our experimental results we adopt the notation @ for the loaded
cavity quality, Q = Q.

4The ideal scenario from a quality perspective would be to realize fex; = 0, in which case S,
would be minimized. However if this happened we would no longer be coupling microwaves into
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Figure 5.1: (a) The quality of our cylindrical cavity can be tuned by adjusting the
pin length in the SMA connector. (b) In the Bruker cavity the size of the iris, which
controls the feedline coupling between the waveguide and the cavity, can be adjusted
to control the cavity damping. (c) Reflection spectra at several iris diameters, showing
the broadening of the cavity mode as the quality is reduced. The quality factors of
the numbered curves are shown by red circles in panel (d), demonstrating that in this
cavity we can control 0 < @ < 1400.

factors measured in the Bruker cavity as the feedline coupling is tuned are shown in
Fig. 5.1, with red circles indicating the quality factors extracted from the spectra in
panel (c). In this system we are therefore able to tune between 0 < @ < 1400. The
corresponding cooperativity using a YIG/Pt bilayer with ¢ = 63 MHz, w. = 9.651
GHz and o = 4 x 10~* is indicated on the right scale. Traditional cavity based FMR
experiments would correspond to very low cooperativities (due to the low sample to
cavity volume filling factors), whereas we see that our experiments operate in the
C > 1 regime.

The influence of cavity damping control on the CMP spectra, as measured in the
Bruker cavity of the WMI setup, is shown in Fig. 5.2. The top panels show the

reflection spectra as we increase the coupling of the cavity to the feedline, thereby

the cavity and could not make any measurements! In other words if Sexy = 0 the amplitude of the
microwave transmission would be zero. The ideal balance between signal amplitude and quality
factor occurs when Bint = Bext [185]. This condition is known as critical coupling and is generally
used in our experiments.
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Figure 5.2: By tuning the loss rate in the Bruker cavity we can transition from
strong to weak coupling, which is demonstrated by moving from left to right across
the figure. Such a transition is marked by moving from a large anticrossing at the
critically coupled value of () = 760 to the near destruction of the cavity mode and the
resulting mode crossing at () = 35. Top panels are microwave reflection spectra and
bottom panels are simultaneously measured voltage spectra using the WMI setup. A
modified version of this figure was originally published in Ref. [49].

decreasing ) (increasing [e;). Panel (a) is measured at critical coupling, where
@ = 760, corresponding to spectra 4 in Fig. 5.1 (¢). A clear anticrossing is observed
indicating that we are in the strongly coupled regime. In panel (b) @ = 260, corre-
sponding to spectra 5 in Fig. 5.1 (¢). At this value of the cavity damping we can see
the broadening of the cavity mode, indicated by a decrease in amplitude, and observe
an apparent decrease in wg,,. This decrease is mainly an “optical illusion” due to
the broadening of the hybridized modes, as wg,p is independent of damping while
in the strongly coupled regime. Finally in Fig. 5.2 (c) we have reduced the cavity
quality to @ = 35, corresponding to spectra 6 in Fig. 5.1 (c), and have completely
destroyed the cavity mode, clearly entering the weakly coupled regime where no anti-
crossing is observed. In this case we essentially observe the FMR mode directly, and

our experiment resembles a traditional cavity based FMR measurement. The multi-
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ple diagonal lines which can be observed in Fig. 5.2 (c) correspond to higher order
spin wave modes. The slope of these lines could be used to determine the effective
gyromagnetic ratio and saturation magnetization of these modes [49].

The behaviour observed in Fig. 5.2 (a) - (c) highlights the role of the microwave
cavity as a filter. When the cavity mode is narrow, as in panel (a), the bandwidth of
microwaves which excite the magnetization is narrow. As a result we only see FMR
absorption roughly in the range 9.55 GHz < w/27 < 9.75 GHz. However, as the
quality of the cavity is decreased, the bandwidth of the cavity increases and therefore
the FMR resonance can be observed over a much wider frequency [49]. In the extreme
case of Q = 35, as shown in Fig. 5.2 (c¢), the microwave reflection is essentially flat
over the observed frequency range (as also indicated by spectra 6 in Fig. 5.1 (c))
except at the FMR and spin wave resonances.

Fig. 5.2 (f) - (h) show the corresponding behaviour in the spin pumping voltage.
Again we observe the transition from strong to weak coupling as the cavity decay
rate is increased, with the direct FMR and spin wave dispersions visible at low Q. An
interesting feature which is more clearly seen in the voltage spectra is the influence
of the microwave field amplitude. As the cavity quality decreases the amplitude of
the microwave field at any given frequency also decreases. Therefore the amplitude of
the spin pumping voltage, which depends on the fixed frequency microwave power, is
decreased. This effect is greatest for the higher order spin wave modes. We note that
the voltage amplitude corresponding to the fundamental mode does not decrease as
drastically, which results from the fact that the absorbed power of the spin-photon
system is still approximately constant (it is just spread out in frequency, see Fig. 5.1
(c)), and the coupling strength does not change when changing the cavity decay rate
[49]. Thus we can nicely demonstrate the influence of dissipation on the characteristics
of strong coupling in both the microwave transmission and voltage spectra. Such an
understanding is important for device applications where the system properties must
be carefully designed in order to achieve the desired functionality.

The tuneable cavity quality can be used to highlight the importance of charac-
terizing strong coupling before performing cavity FMR experiments. Fig. 5.3 shows
the reflection spectra, |S1;|, at w = w.. In the case of weak coupling (red curve) the
spin-photon hybridization does not distort the dispersion and we can extract the most
accurate FMR and spin wave dispersions and line widths. However when strong cou-
pling is present (blue curve) we observe no mode at the uncoupled FMR position. In

this case the only signature of the original mode is the broad slope which leads to the
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Figure 5.3: Reflection spectra for a strongly coupled system (blue) and a weakly
coupled system (red). In the case of weak coupling the true FMR and spin wave
properties can be characterized. However when the spin-photon system is strongly
coupled, the FMR peak is shifted due to hybridization and we cannot directly access
the spin subsystem using conventional resonance properties. A modified version of
this figure was originally published in Ref. [49].

hybridized mode. The fact that we observe this behaviour for easily realized sample
volumes indicates the importance of considering coupling effects when attempting to
characterize magnetic systems [49]. This behaviour is consistent with our discovery
of the drastic FMR line width enhancement due to resonant coupling [48]. Both of
these observations indicate the importance of considering the influence of strong cou-
pling when characterizing magnetic systems, even in supposedly traditional spintronic
devices. It is worth noting that in these experiments (and all experiments made in
this thesis), non linear effects were negligible. This is due to the low powers used
(maximum of 30 mW delivered by the VNA, which is much greater than the power
at the sample) and the large cavity volumes, resulting in low power densities. The
results reported here were consistent over a range of input powers between 10 uW
and 30 mW. Although the exact field strength at the sample is strongly dependent
on the mode and configuration, we can roughly estimate the power (or field strength)
in the cavity at w, using the relation [Sy; (we) | = |k (we) |/|ho| Where hg is the field
strength supplied to the cavity by the VNA. Under critically coupled conditions, for
a typical experiment we have P = 1igh?/2 ~ 1 mW, which is then further suppressed
by the small filling factor, V;/V., which depends on the sample, V;, and cavity, V.,

volume ratio, and in our experiments was typically on the order of 1 x 107*.% For the

SCST simulations confirm that the actual power delivered to the cavity is typically much less
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Figure 5.4: Transmission spectra So; measured (a) before and (b) after tuning an
adjustable pin inserted in Port 1 of the cavity. The voltage spectra measured at
w/2m = 10 GHz (c) before and (d) after tuning the pin length. A significant change
in the voltage line shape is observed. The smooth solid curves are fits according
to an asymmetric Lorentz line shape as discussed in Sec. 3.2.1. These fits produce
oAH = 0.20 mT and ppAH = 1.03 mT for case I and II respectively. (e) Comparison
of the frequency dependent FMR line width measured before and after tuning the pin
length. The solid curves are fits according to Eq. (5.1), which yield pugAH{ = 0.06

mT and pgAH!T = 0.72 mT. A modified version of this figure was originally published
in Ref. [48].

Bruker cavity, we should mention that even up to 1 W of input power, non-linear
effects were not observed, although at these high powers the influence of higher har-
monic modes generated by the signal generator were apparent. However by increasing

the local power density at the sample non linear effects have been observed in other
configurations [63, 209].

than 1% of the applied microwave power.
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The final effect we have studied using our quality tuneable cavity is the influence
of the damping on the voltage spectra line shape and the non-resonant line width
enhancement. This experiment was performed in the UMV1 experimental setup,
where the cavity quality can be tuned by adjusting the length of the pin which injects
microwaves into the cavity. In this experiment we studied two different pin length
configurations which resulted in a cavity configuration with the three cavity modes
shown by the transmission spectra in Fig. 5.4 (a) and (b). In case I, shown in Fig. 5.4
(a), three cavity modes of (w./2m (GHz), 3,Q) = (10.502, 1.2 x 1073, 420), (12.822,
1.2 x 1073, 420), and (15.362, 3.5 x 1073, 140) were excited. In case II, shown in
Fig. 5.4 (b), three modes of (w./27 (GHz), 3,Q) = (7.969, 7.9 x 1073, 63), (9.990,
8.8 x 1073, 57) and (13.414, 2.38 x 1072, 21) are observed. As shown in Fig. 5.4
(c) and (d), the line shape of the spin pumping spectrum V' (H) measured at w/27
= 10 GHz is significantly tuned by the strongly coupled microwaves. As we have
discussed, without the influence of strong coupling the voltage spectra would have
a Lorentz line shape. However the presence of the cavity and the behaviour of the
cavity modes influences this behaviour in a striking way [48]. The solid curves shown
in Fig. 5.4 (c¢) and (d) are fits using an asymmetric line shape function as discussed
in Sec. 3.2.1.° By systematically fitting the data over a wide frequency range we can
determine the broad band behaviour of AH (w), which includes non-resonant regions
between the cavity modes. The experimental data from such an analysis is plotted
as symbols in Fig. 5.4 (e). Using the obvious generalization of Eq. (4.9) to the case

of multiple cavity modes we can fit AH (w) to our theoretical expectation [48],

wiw,,
Y

AH (w) = AH, + 0‘7(” + S K2 (S.). (5.1)
!
The last term in Eq. (5.1) describes the coupling enhanced FMR line width near
each cavity mode with [ summing over all cavity modes. In our fitting we set K; =
0.016 for all modes (corresponding to g ~ 130 MHz) except for the third mode
at 13.414 GHz with 8 = 2.38 x 1072 for case II, for which we use K3 = 0.032
(corresponding to g ~ 260 MHz). The anomalously large value of K and § for this
mode indicate that in this cavity configuration there are likely two closely spaced

modes which both contribute to the coupling. From our fits we obtain af = 3.6 x
107* and pyAH! = 0.06 mT for case I and o/ = 3.6 x 107 and pyAH' = 0.72

6Such asymmetric voltage line shapes have previously been studied in detail in the context of
spin rectification. See e.g. [220, 221].

99



CONTROLLING SPIN-PHOTON HYBRIDIZATION

mT for case II. As expected, the frequency slope which determines « is constant,
independent of the cavity properties and the spin-photon coupling. A surprising
result is that the inhomogeneous broadening differs in the two cases. Moreover,
both of these results differ from the value of the inhomogeneous broadening that
was characterized before loading the sample into the cavity, pgAHy = 0.31 mT. This
effect may be attributed to a difference in the microwave density of states in the cavity
[48, 222]. From Fig. 5.4 (a) we see that the non-resonant microwave density of states
is small in case I, whereas the broad modes and significantly enhanced transmission
amplitude observed for case II, as shown in Fig. 5.4 (b), indicate an increase in the
microwave density of states. As a result, the measured AH, is increased not only
near each cavity mode, but also in the non-resonant regions between modes, as seen
in Fig. 5.4 (e). We note that this extrinsic damping caused by the coherent spin-
photon coupling is even larger than the intrinsic Gilbert damping of YIG, indicating
the significant effect of FMR broadening due to non-resonant spin-photon coupling.
Analogous effects have recently been studied in spin systems driven by microwave
striplines, where radiation damping plays an important and confounding role in the
line width characterization, see, for example, Refs. [25, 26]. This again highlights the
importance of careful system characterization in order to disentangle the influence
of strong coupling from traditional FMR behaviour. Therefore we hope that the
understanding of the damping dependent behaviour which we have demonstrated
here will not only benefit cavity spintronic development but also traditional FMR

characterization in the new era of strongly coupled spin-photon systems.

5.3 TEMPERATURE CONTROL OF COUPLING STRENGTH

Having explored cooperativity control through a tuneable damping, we now turn to
manipulation of the spin system in order to control the coupling strength directly.
As we saw in Sec. 3.4.2; the coupling strength depends on the filling factor, V;/V. as
g x /Vs/V., where Vy o< Ny is the sample volume (N; is the number of spins) and V,
is the cavity volume. Therefore by increasing the number of spins or decreasing the
cavity volume the coupling strength may be increased. This leads to a brute force
method of coupling strength control which involves using different magnetic samples
or cavities. Zhang et al. used this method to systematically verify the g o \/W
scaling behaviour in Ref. 32 and research groups routinely use different sample sizes

and cavity geometries to fit the needs of their experiment [31, 32, 34, 48, 51]. However
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Figure 5.5: SQUID magnetization curve of GAIG measured at poH = 100 mT, nor-
malized to the effective magnetization at 15 K. The shape anisotropy dominates in
our sample and therefore the net magnetization is equal to the effective magnetiza-
tion. The dashed line indicates the compensation temperature at Tiomp = 270 K. A
modified version of this figure was originally published in Ref. [40].

it would be more appealing to tune the coupling strength in-situ. One way to do so is
to use a compensating garnet, as discussed in Sec. 2.2.1, where the effective number

of spins, as determined by the magnetization, can be controlled through temperature.

To investigate this effect we used a 2.6 pm thick GdIG film grown by liquid phase
epitaxy on a GGG substrate with lateral dimensions of 5 mm x 2 mm. At room
temperature the magnetization of GdIG is dominated by the magnetization of the
iron sublattices, showing only a weak temperature dependence. However below room
temperature the strongly temperature dependent Gd sublattice begins to dominate
the net magnetization, which vanishes at the compensation temperature Ttomp. To
characterize this behaviour the net magnetization of the sample was measured using
standard SQUID magnetometry at a field of 100 mT, as shown in Fig. 5.5 [223].
As the shape anisotropy dominates the magnetic anisotropy of our sample, the net
magnetization we measure is equal to the effective magnetization which appears in
the Kittel dispersion [40]. From this magnetization curve we find a compensation
temperature of Tiomp, = 270 K, which, as anticipated [224], is slightly lower in our
thin film sample than the bulk value of 285 K [116].

Microwave reflection measurements of the GdIG sample were performed using the
WMI setup, where the sample is placed at the magnetic field anti-node of the Bruker
cavity. The cavity was placed inside of a gas flow cryostat which enabled temperature
control of the magnetic sample. As in all of our experiments, the microwave power

to the cavity is low (0 dBm in this case), to avoid non-linear processes. As we have
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Figure 5.6: The magnetic field derivative of the reflection spectra at (a) 25 K and (b)
110 K. At 110 K the system is still weakly coupled, however at 25 K strong coupling
can be observed, indicating the temperature control of the coupling strength. Hori-
zontal and diagonal dashed lines indicate the uncoupled cavity and FMR dispersions
respectively. Inset: Residuals of the fit to Eq. (3.91) using the same scale. Line
cuts: Data (blue, solid line) and fit (green, dashed line) at the crossing point where
w, = Ww., which is indicated by the dashed, vertical line. A modified version of this
figure was originally published in Ref. [40].

previously discussed, reflection measurements are prone to a field independent stand-
ing wave background signal. Therefore we have analyzed the field derivative of the
reflection spectra, 0gSq1; = %, which removes the standing wave background [40].
Typical 0pSy; data at 25 K and 110 K are shown in Fig. 5.6 (a) and (b) respectively.
Since we are examining the field derivative of the spectra the field independent cavity
mode is not observed. Instead we will only observe a signal when the microwave cav-
ity modes have hybridized with the field dependent FMR mode and therefore adopt
a field dependence. At 25 K we observe an anticrossing, indicating strong coupling
which can be observed over a field range of more than 40 mT. On the other hand,
at 110 K the system is weakly coupled and we only observe a field derivative signal
near the crossing point where the greatest hybridization effect is present. In both
Fig. 5.6 (a) and (b) the horizontal and diagonal dashed lines indicate the uncoupled
cavity and FMR mode dispersions respectively while the vertical dashed line shows
the crossing point w, = w,.

The spectra shown in Fig. 5.6 indicate qualitatively that we have tuned from
the weak to strong coupling regime. In order to quantitatively verify that we have
realized a temperature controlled coupling strength, and in particular that we have
not again simply changed the damping properties of either the cavity or spin system,

we must extract the temperature dependence of the coupling strength. In the strongly
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coupled case, observed at 25 K in Fig. 5.6 (a), this can be done by analyzing the
peak splitting at the crossing point w, = w,., while for a weakly coupled system where
there is no peak splitting, which we observe at 110 K in Fig. 5.6 (b), it is possible
to extract the coupling strength from the line width enhancement of the microwave
cavity [225]. However, since we wish to analyze the transition from a strongly to
weakly coupled system, neither of these two simplified approaches is appropriate.
Instead the full expression of Eq. (3.90) must be used to extract the coupling strength
[40]. Therefore, taking the field derivative of Eq. (3.90) we performed full 2D fits,
where all fits of constant H have shared parameters. The residuals of these fits for the
25 K and 110 K data are shown in the insets of Fig. 5.6 and a fit to the cut at w, = w,
(experimental data shown as a blue solid curve) is indicated by a green dashed line.
As indicated by both the residual plot and the line cut, at high temperatures the
fits are nearly indistinguishable from the experimental data. At low temperatures
however there is an increased discrepancy due to the presence of a second resonance
mode that appears in the GdIG sample. The exact origin of this additional resonance
mode is unclear, however it may result form spatial inhomogeneities of the sample
[40]. Regardless, even at low temperatures the fits are still sufficient to determine the

coupling strength and damping parameters, which are plotted in Fig. 5.7.
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Figure 5.7: (a) Comparison of effective magnetization extracted from FMR disper-
sion (red solid circles) and net magnetization measured by SQUID magnetometry
(blue hollow circles). (b) Coupling rate as a function of the net magnetization. Sym-
bols indicate data extracted from fits to Eq. (3.91) and the black solid line is a fit
to g = VMgo. (c) The spin decay rate (Gilbert damping), o (red), cavity decay
rate, 5 (blue), and coupling strength, g (green), as a function of temperature. At
low temperatures the increasing coupling rate and decreasing spin decay rate allow
our system to enter the strongly coupled regime. The data used in this figure was
originally published in Ref. [40].
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In our fitting we use the Kittel dispersion, w, = vm, to describe the
FMR, treating M, (which will be temperature dependent) as a fitting parameter with
v = 28 x 2w py GHz/T fixed. Therefore we can compare the effective magnetization,
My, to the net magnetization measured by our SQUID measurements. These results
are plotted in Fig. 5.7 (a) where blue hollow circles are the SQUID measurements
(the same as in Fig. 5.5) and red solid circles are the fitting results. The excellent
agreement indicates that the dominant anisotropy contribution in our GdIG thin film
is due to shape anisotropy, and we are therefore justified in taking My = M. Any
slight deviations which we observe between M and M, may be attributed to the fact
that v may increase slightly with decreasing temperature [40, 226]. The temperature
dependent coupling strength, g%, determined from our fits, is plotted in Fig. 5.7 (b)
as a function of M. From 5 K < T < 170 K we observe a change in magnetization of
approximately one order of magnitude. The straight black line confirms the expected
scaling ¢ = gov/M, with ¢ = 0 at M = 0. Thus we have succeeded in verifying
the /N, scaling of the coupling strength predicted by our quantum model [34, 40].
Moreover we have demonstrated the ability to tune the coupling strength in-situ using
the temperature dependence in a compensating ferrimagnet. From the slope of the
linear fit we can determine the single spin-photon coupling rate as go = 0.072 Hz,
which agrees reasonably well with the value of 0.043 Hz observed in paramagnetic
systems [46].

Although we have clear evidence supporting the temperature dependence of the
coupling strength, in order to verify that our system indeed transitions from strong to
weak coupling we must also examine the spin and photon loss rates. This information
is presented in Fig. 5.7 (c¢). The cavity and spin damping are plotted as blue and
red circles respectively, with the coupling strength shown in green. As anticipated
the cavity damping is essentially frequency independent, although slight temperature
variations may be observed due to contraction of the cavity at low temperatures,
which requires mechanical adjustment to restore the original resonance frequency.
On the other hand the damping of the spin system increases drastically with temper-
ature, in agreement with previous reports [226]. This increase in the spin damping
is one of the key reasons why strong coupling in GdIG cannot be observed at high
temperatures.” Using these fit results we find that C' > 1 for T' < 90 K. We have thus

confirmed that temperature induced strong to weak transitions are possible, further

"It is also for this reason that strong coupling in other commonly used ferromagnetic materials,
such as permalloy, is difficult to achieve.
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confirming the physical picture developed by our phase correlation model. While any
method which achieves in-situ coupling strength control is physically interesting, the
fact that ultra low temperatures must be used to reach strong coupling in GAIG does
not easily translate into either device applications or simple adaptation for the study
of basic CMP properties. On the other hand, further consideration of our electrody-
namic phase correlation model reveals another possible means to tune the coupling

strength.

5.4 ANGULAR CONTROL OF COUPLING STRENGTH

To develop our phase correlation model in Sec. 3.3 we explicitly incorporated the mag-
netization dynamics driven by a microwave magnetic field using the LLG equation.
The result of the LLG equation is that the magnetization dynamics are determined
by the linear response function x*, so that for the elliptically polarized modes which
are relevant to our system, m* = xyTh™. The detailed nature of the coupling strength,
such as its temperature dependence, relationship to the filling factor and spin density
and its geometric details, are therefore determined by ™. In this sense the coupling
strength generally depends on some set of parameters, p, which allows us to write
g = g(p), and we typically treat the problem phenomenologically by measuring ¢
for our given experimental conditions. However, as we have seen in the case of the
spin density relation, g o< /Ny, it is possible to make certain dependencies explicit.
It is fruitful to combine this reasoning with our understanding of magnetization dy-
namics. When undergoing magnetization precession at low microwave powers, the
magnetization will precess about the external magnetic field direction, which acts as
a bias. Since this precession is due to a magnetic torque of the form M x h, only
the component of the microwave magnetic field which is perpendicular to the total
magnetization M, and hence perpendicular to the static field H, will drive the pre-
cession. Using the angle 6 between the rf microwave field AT and the static bias field
H, defined in the inset of Fig. 5.8 (a), the relevant component of the microwave field
is therefore h™|sin () | and we may write m™ = x"h*|sin (f)|. Thus we can include

this geometric dependence explicitly in the coupling strength so that

9 = gol sin () |, (5.2)
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where g is the coupling strength at § = 90°. We can therefore make the replacement
g — go|sin(0)] in the hybridized dispersion or transmission formulas to explicitly
reveal the geometric dependence of the hybridized modes. Physically Eq. (5.2) tells
us that when the microwave and static magnetic fields are aligned we cannot effec-
tively drive the magnetization dynamics and therefore the coupling in our system is
minimized. On the other hand, when the microwave and static magnetic fields are
perpendicular, we drive magnetization dynamics most efficiently and therefore the
coupling in our system is at a maximum. The angle 6 therefore describes how effec-
tively we are able to drive the magnetization dynamics, or how efficiently we are able
to couple the spin and photon systems. Experimentally it is possible to control # and

therefore we can realize a new method of in-situ coupling strength control.

To verify this behaviour experimentally we used the UMS1 experimental setup.
The cavity we used in this experiment had a diameter of 36 mm, a height of 10
mm and was designed to have a TMy;; mode at w./2m = 6.34 GHz. The unloaded
damping of this mode was 8 = 3x 10™* (Q = 1670). The simple, circular mode profile
of the TMg;; mode, as shown in the inset of Fig. 5.8 (a), is an important feature
which allows us to systematically control #. A YIG(2.6 um)/Pt(10 nm) bilayer on a
GGG substrate was placed on the lid of the cavity, near the outer edge. This sample
had lateral dimensions of 10 mm x 7 mm, and a measured saturation magnetization
of pioMy = 160 mT, a Gilbert damping of o = 3.6 x 10~* and a gyromagnetic ratio of
v = 27.6 X 27 upgGHz/T. The Pt was deposited in strips of lateral dimension 10 mm x
1 mm on top of the YIG. As we have done in previous experiments, the static magnetic
field was applied in the sample plane so that the FMR follows the Kittel equation
wy = v/ H (H + M,y). With the sample loaded the cavity mode was redshifted by 3
% to 6.155 GHz and the damping increased to = 1.8 x 1073 (Q = 280).

The angle 6 defines the orientation between the static magnetic field and the local
microwave field at the sample location. Due to the special profile of the TMg;; mode
we can easily control 6 in our experimental setup by rotating the upper lid of the
cavity, hence rotating the YIG/Pt bilayer inside of the static magnetic field. This
rotation causes a change in the cavity mode frequency and damping of less than 1 %,
much less than the 3 % shift due to damping, and therefore this shift is not considered
in the transmission measurements. Fig. 5.8 shows the change in cooperativity as 6
is tuned between 0 and 360°. The experimental data, determined by extracting the
coupling strength from a fit of the transmission data to Eq. (3.89), is shown in blue

circles with a fit according to Eq. (5.2) shown as a black solid line. As we anticipate,
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Figure 5.8: Control of the coupling strength by tuning the bias field angle. (a)
The inset shows a top view of the cylindrical cavity. The circular profile of the
TMy;; magnetic field A is shown in red with the static field H indicated by a black
arrow. 6 indicates the local angle between h and H at the sample location. The
experimental angular dependent cooperativity is shown as symbols while the black
curve is fitted according to Eq. (5.2). (b) Transmission spectra at # = 0° and (c)
6 = 90°. At § = 0° the coupling strength is minimized, we do not efficiently drive
magnetization precession, and no coupling is observed. At 6§ = 90° the coupling
strength is maximized and a clear anticrossing can be seen. Horizontal and vertical
dashed lines indicate the uncoupled cavity and FMR dispersions respectively while
the solid curves in (d) are a fit according to Eq. (3.89). A modified version of this
figure was originally published in Ref. [50].

at @ = 0° the cooperativity drops nearly to 0, resulting in a weakly coupled system,
while the cooperativity is maximized at 6 = 90°, resulting in strong spin-photon
coupling. This behaviour is confirmed by the transmission measurements shown in
Fig. 5.8 (b) and (c). In panel (b), at § = 0°, the microwaves do not couple strongly to
the spin system and therefore a microwave transmission measurement only detects the
cavity mode. On the other hand in panel (c), at § = 90°, a large anticrossing indicates
the presence of strong spin-photon hybridization. This experimental behaviour agrees
well with the black curve which is calculated according to Eq. (3.89) and demonstrates

our ability to realize both strongly and weakly coupled spin-photon hybridization in
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Figure 5.9: The distribution of coupling strengths observed when @ is tuned. Using
this method we can systematically tune from weak to strong coupling. For fixed «
and [ the dissipation normalized coupling strengths which can be achieved in this
method will always lie along a line of constant slope, as indicated by the black line.
Examples of the coupling strengths we have achieved are shown by circles. A modified
version of this figure was originally published in Ref. [179].

an easily adjustable experimental setup [50, 179].

The data which confirms our ability to systematically tune the coupling strength
(and hence the cooperativity) over several orders of magnitude is shown in Fig. 5.9.
Here we have plotted the two normalized coupling strengths which define the cooper-
ativity, g,/a and g,/8. As we tune the angle from 0° to 90° we move along a diagonal
line in the g, /o — g,/ 5 parameter space, indicated by the solid line. The circles indi-
cate experimental measurements with the colour indicating the angle at which they
were measured. This figure explicitly demonstrates our observation of a continuous
weak to strong transition. Thus by tuning the torque which drives the magnetization
precession we are able to systematically tune the coupling strength. This method
provides a useful experimental tool for the development of cavity spintronics. In the
next section we demonstrate how such coupling strength control can be combined
with our electrical detection technique to realize non-local spin current control over

macroscopic distances.

5.5 NON-LOCAL MANIPULATION OF SPIN CURRENT
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Spin current generation and manipulation is the kernel of spintronics. As we have
discussed in detail, spin pumping is a powerful mechanism for the generation of spin
current, and through our electrical detection experiments we have already demon-
strated that spin-photon hybridization will influence the spin current generated in
this fashion [48, 49]. Throughout spintronics there are also a variety of existing tech-
niques which allow spin current manipulation. For example, Datta and Das [227]
proposed the spin field-effect transistor, in which spin current is manipulated by
a gate voltage via a local spin-orbit interaction in a semiconductor channel [228].
Alternatively, the exchange interaction is also commonly used to manipulate spin
current, for example, spin current may drive magnetization dynamics through spin
transfer torque [129, 229, 230]. However since spin-orbit and exchange interactions
have characteristic length scales of ~ nm, the control offered by these interactions
is inherently short ranged. Actually, since spin current injection is a diffusive pro-
cess,” devices which utilize spin-orbit or exchange interaction for spin current control
are limited by the ~ pum spin diffusion length,” which is determined by the rate
at which the angular momentum carried by the spin current can be dissipated, for
example by transferring to the lattice. While this length scale is an improvement
over the fundamental interaction length, realization of a long distance (> pm) spin
current manipulation would be beneficial for spintronic applications. In the final
section of this chapter we turn our attention to systematic long-range spin current
control, which we realize by combining our local electrical detection technique with
the angular control of spin-photon coupling [50].

As discussed in Sec. 3.3, the spin current is proportional to |m|?. Therefore the
hybridized spin current can be determined by solving for m in Eq. (3.88). In doing

so it is convenient to define the detuning parameters,

W — We

A, = , 5.3
B (5.3)

W — W
A, = L 5.4
oy (5.4)

and the spin-photon cooperativity C; = ¢?/aBw?. Here the subscript 1 is a sample

label, in anticipation of the fact that we will soon consider a system with multiple

8Which is allowed because spin current, unlike charge current, need not be conserved.
9This is another advantage of YIG. Since it has a very small damping, the corresponding spin
diffusion length is large.
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spin devices. In terms of the detunings, the real part of the transmission denominator

in Eq. (3.90), which determines the hybridized dispersion, can be written as [50]
AN, =1+ C. (5.5)

The mazimum spin current amplitude, I, will occur on-shell, that is when the
hybridized quasiparticles satisfy Eq. (5.5), and therefore, evaluating |m|? from Eq.
(3.88) and imposing the constraint of Eq. (5.5), the maximum spin current amplitude

can be written as,

i

GoAT (5.6)

[310(

Eq. (5.6) describes how the spin current amplitude can be locally controlled by
tuning the cooperativity. This of course makes sense — we already know that the
spin current is influenced by hybridization and therefore if we control the coupling
strength we would anticipate that the spin current is locally controlled. With our
ability to systematically control the coupling strength we can therefore systematically
control the spin current of the single spin system.

However, we find a more intriguing effect when we consider two identical spin
systems (which therefore have the same spin resonance properties) coupled to a single
cavity mode.'’ This three mode system is described by the generalized 3 x 3 matrix of
Eq. (4.13), under the assumption that the two magnetic samples couple to the cavity
mode with coupling strengths ¢g; and gs respectively, but do not directly couple to
each other. Therefore, in analogy with the case of a single spin system, we find that

the real part of the dispersion produces the constraint
AN, =1+ C1(0) + Cs, (5.7)

where C and C5 are the cooperativities of the two spin ensembles respectively. We
can also analogously calculate the maximum spin current of each sample, Iy, and [,

finding

¢ (0)

I ¢ ———3,
1 X (AC+AT)2

(5.8)

10The constraint that the spin systems be identical makes the theoretical formalism more trans-
parent, highlighting the key physics involved. However the effect we describe in this section could
be realized even with distinct spin devices.
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Cy

I —_—.
2 X Bt Ar)2

(5.9)
For completeness we note that the pattern we observe for one and two spin systems
extends more generally, so that if we have n identical samples the real part of the

dispersion can be written as,

AN, =1+ C (5.10)

i=1
and the maximum spin current produced in the i* spin ensemble is [50]

Ci

Ly ox ———.
(Ac+A)

(5.11)

An intriguing effect is now observed by carefully examining Eqs. (5.7), (5.8)
and (5.9). Eq. (5.7) describes a constraint on the detunings which depends on the
cooperativities of both samples. Therefore, even though the spin current of each
device only depends directly on the local cooperativity (the numerator of Egs. (5.8)
and (5.9)) it will be influenced by the global properties of the system (the denominator
of Egs. (5.8) and (5.9)). These global properties depend on the constraint of Eq. (5.7)
and therefore if we locally tune one sample we can expect that a second sample, which
is not directly tuned in any way, will also be manipulated! In this way we can attempt

to experimentally realized non-local spin current manipulation.

The experimental setup to test such an idea is shown in Fig. 5.10. Panel (a)
indicates the schematic idea, which is to use the cavity photon as a bridge to carry
information from the first sample, denoted as YIGq, to the second sample, denoted as
YIGs,. Therefore by locally tuning YIG; we will observe an effect at a well separated
YIG,. In the experimental setup shown in Fig. 5.10 (b), a YIG/Pt bilayer (YIG;)
is placed on the lid of a microwave cavity and wired out for electrical detection.
Meanwhile an identical YIG/Pt bilayer (YIG) is placed at the bottom of the cavity
and is also wired out for electrical detection. As indicated in the figure, rotation of
the cavity lid enables tuning of the angle 6 between the local microwave and static
field at the YIG; location. The position of YIG, is fixed so that the microwave and
static magnetic fields are perpendicular and maximum hybridization will be observed
between the cavity and YIG,.

The experimental setup used in this experiment was similar to that described for
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YIG1
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Figure 5.10: Experimental setup used to demonstrate non-local spin current manip-
ulation. (a) The general idea is to use the cavity photon, which is coupled to both
spin systems, as a bridge to carry information from YIG; to YIG,y. Therefore if we
locally tune YIG;, we can observe the influence at YIG,. (b) YIG; is placed on the
lid of the microwave cavity and can be rotated within the static magnetic field, H.
YIG,, at the bottom of the cavity, has a fixed orientation with respect to H.

~3 cm

the angular cooperativity measurements of Sec. 5.4. We used a cylindrical microwave
cavity with a diameter of 36 mm and a height of 10 mm. This cavity had an unloaded
TMp1; mode at w./27 = 6.34 GHz with f = 3 x 107* (Q = 1670). YIG; was
a YIG(2.6 pm)/Pt(10 nm) bilayer on a GGG substrate with lateral dimensions of
10 mm x 7 mm. The saturation magnetization was pogMy = 160 mT, the Gilbert
damping was @ = 3.6 x 107* and the gyromagnetic ratio was v = 27.6 x 27 poGHz/T.
The Pt was deposited in strips of lateral dimension 10 mm x 1 mm on top of the
YIG. Again, the static magnetic field was applied in the sample plane. With just
YIG; loaded on the cavity lid the cavity mode was redshifted by 3 % to 6.155 GHz
and the damping increased to 8 = 1.8 x 107 (Q = 280). An identical YIG /Pt
bilayer, YIGs, was placed on the bottom of the cavity. With both samples loaded the
cavity mode was redshifted by another 3 % to w./2m = 5.960 GHz with a damping
of B =5.2x 1072 (Q = 200). Again, tuning of the angle 6 only changed the cavity

mode frequency by a negligible amount, less than 1 %.

Fig. 5.11 shows the global properties of the single and two spin systems, which
are determined by the constraint of Eq. (5.7). Panels (a) - (c) are the same as Fig.
5.8 and are included here again for easy comparison to panels (d) and (e), which show
the transmission properties of the two spin system at (d) = 0° and (e) 6 = 90°.
While a noticeable increase in the dispersion gap is observed between 6§ = 0° and
6 = 90° in panels (d) and (e), this difference is not as striking as the case of a single
YIG sample. This is because when both spin systems are in the cavity, YIG, is not

tuned and always maximally coupled to the cavity mode. wg,, observed in Fig. 5.12
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Figure 5.11: Global properties of the single and two spin system. Panels (a) - (c¢) are
the same as Fig. 5.8 and are shown again here for easy comparison. (a) Angular de-
pendence of the cooperativity measured with a single YIG/Pt bilayer. (b) Microwave
transmission with a single YIG/Pt sample placed on the lid of the cavity measured
at (b) & = 0°, where the minimum coupling is observed, and (c) 6 = 90°, where
the maximum coupling is observed. (d) Microwave transmission with both YIG/Pt
bilayers inside the cavity at # = 0° and (e) # = 90°. In this measurement only the
angle of the YIG sample at the top of the cavity is tuned, while the YIG placed at
the bottom of the cavity is strongly coupled at all angles. A modified version of this
figure was originally published in Ref. [50].

(d) and (e) is therefore a superposition of both YIG samples coupled to the cavity
and never goes to zero, even when the coupling of YIG; is zero. Nevertheless, the

change to the global properties of the three mode system is evident.
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To demonstrate both local and non-local control of the spin current we measured
the voltage generated due to spin pumping in each YIG/Pt bilayer by sweeping the
magnetic field H at a fixed microwave frequency of 6 GHz and microwave output
power of 100 mW. As shown in Fig. 5.12 (a), when 6 is tuned from 0° to 90°, the
voltage measured from YIGq, and hence the spin current generated, is increased as the
field torque on the magnetization increases. In this sense we can directly (or locally)
control the spin current in YIG;. We also note that the expected V (H) = =V (—H)
symmetry is observed. The simultaneous voltage output from YIGs is shown in Fig.
5.12. Here we observe the inverse effect. As 6 is increased the amplitude of the spin
current in YIGsy, which is spatially separated from YIG; and not directly tuned in
any way, decreases. Using a spin Hall angle of 2.3 x1073 [191] and Eq. (2.9), we can
calculate the maximum spin current amplitude at each 6 using the measured voltage
data. These results are shown in Fig. 5.12 (c¢) and (d) using open circles for YIG;
and YIGs respectively. Since the external magnetic field was not rotated during the
measurement the spin currents from both samples maintain the same sign [50]. Both
local and non-local control of the spin current is observed. The solid curve for YIG;
(YIGy) is calculated according to Eq. (5.8) (Eq. (5.9)) using the constraint of Eq.

(5.7), which agrees well with the trends observed experimentally [50].

The non-local spin current control which we observe originates from the influence
of the global hybridization on local electrical detection measurements. To highlight
how this originates based on our theoretical formalism using cavity and FMR detun-
ings, we plot the A, — A, dispersion following from Eq. (5.7) in Fig. 5.13 (a) and (b)
for different values of the cooperativity C (6). The arrows in each figure indicate the
direction of increasing C (6). Panel (a) is plotted with a colour scale that indicates
the amplitude of Iy, calculated from Eq. (5.8), with the colour scale of panel (b)
indicating the amplitude of Iy according to Eq. (5.9). The two hybridized modes
are only excited when the cavity and FMR detunings are either both positive or both
negative, reflecting the fact that both cooperativities are positive. Based on Fig. 5.13
(a) and (b) we can summarize the spin current features of this three mode coupled
system as follows: (i) The hybridized modes of the coupled system rely on the sum
of cooperativities of all magnetic samples with the coupling strength increasing when
more magnetic samples are added; (ii) The spin current pumped by each magnetic
sample depends on both the global properties of the normal mode detunings and the
local cooperativity with the cavity mode; and (iii) The amplitude of Iy (spin current

in the directly tuned sample) increases as C is increased, while I (spin current of
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Figure 5.12: (a) The voltage generated in YIG; is locally tuned by controlling the co-
operativity, while (b) the YIG, voltage signal is simultaneously controlled nonlocally,
with no direct manipulation. Converting the voltage signal into the spin current am-
plitude the angular dependence of (¢) I, and (d) Iy is observed. A modified version
of this figure was originally published in Ref. [50].

the distant sample) has the opposite behaviour, decreasing as C} is increased. In
general, since the spin current in the directly controlled sample is proportional to its
cooperativity, while the spin current in the non local sample is inversely proportional,
the two spin currents will always change in opposite directions. However if, for exam-
ple, three devices were used, it may be possible to locally tune two samples in such a

way that the spin current in a third remains unchanged.

In our experiment we measured the spin current by sweeping the magnetic field
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Figure 5.13: The cavity-FMR detuning dispersion calculated using Eq. (5.7) for (a)
YIG; and (b) YIGs. The colour scale indicates the spin current amplitudes, I;; and
I, which are calculated using Eq. (5.8) and Eq. (5.9) respectively for different
cooperativities C (¢). The change in C (6) is indicated by the red and green arrows
for I, and I respectively. (c¢) Along the arrows, at a fixed cavity frequency detuning
of A, = 7.7, the amplitudes of both spin currents are plotted as a function of C (0).
Symbols indicate experimental data and the solid curves are calculations using Eqgs.
(5.8) and (5.9). The vertical dashed line indicates the fixed cooperativity of YIGs
in our experiment. A modified version of this figure was originally published in Ref.
[50].

at a fixed microwave frequency, corresponding to a fixed cavity mode frequency de-
tuning of A, = 7.7. This position is indicated by the arrows in Fig. 5.13 (a) and
(b). Along these arrows the amplitudes of both spin currents are plotted as a func-
tion of C; in Fig. 5.13 (c¢). The solid curves are I and I, calculated using Egs.
(5.8) and (5.9) respectively. The data plotted in this manner is effectively “third
order” compared to the raw data of Fig. 5.12 (a) and (b). By this we mean that we
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have first calculated the spin currents from the raw voltage measurement, and then
calculated the cooperativity for each field orientation. As a result several sources of
additional uncertainty have been introduced. For example, the spin Hall angle is no-
torious for its large uncertainties [231], and in our case has an uncertainty of ~ 50%
[191]. Additionally, the determination of the coupling strength, which is needed for
the cooperativity calculation, is difficult for angles where the coupling strength, and
hence amplitude, is small. For this reason there are large uncertainties present in Fig.
5.13 (¢), which make a quantitative comparison between theory and experiment using
this method difficult. Nevertheless, the qualitative agreement between our model and
the experimental data indicates that the non-local manipulation of spin current in
YIG,, which we detect locally through spin pumping, is due to the local cooperativ-
ity control of YIG;. This point may perhaps be better emphasized by the angular
control demonstrated in Fig. 5.13 (d). This experiment therefore demonstrates one
way in which cavity spintronics, and strong spin-photon coupling, allows us to reach
beyond the limits of conventional spintronics by utilizing the emergent properties of

the cavity-magnon-polariton.

5.6 CONCLUSION

In this chapter we have presented a variety of control methods which may be used to
manipulate strongly coupled spin-photon systems. By controlling cavity damping we
realized continuous tuning between the strong and weak coupling regimes, illustrat-
ing that at high @) hybridization will significantly modify the FMR dispersion. This
highlights the importance of understanding the strong spin-photon coupling behaviour
even in conventional spintronic and magnetic characterization techniques, such as tra-
ditional cavity based FMR measurements. We also used our tuneable cavity quality to
examine the effect of non-resonant FMR line width enhancement, finding significant
effects due to hybridization which again push us beyond conventional spintronics. In
order to directly tune the coupling strength we used both the temperature dependent
magnetization of a compensating ferrimagnet and field torque control. Both methods
allowed us to again observe the strong to weak transition, while the former technique
verified the expected g oc v/N, scaling of the coupling strength and the latter tech-
nique enabled a local control mechanism which we exploited to demonstrate non local
spin current control. In the next chapter we turn to a more detailed discussion of

the hybridized eigenspectrum, which plays an important role in the exact definition
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of “strong” coupling and can be exploited to observe switching phenomena in the

hybridized modes.
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EXCEPTIONAL POINTS IN THE
SPIN-PHOTON SYSTEM

6.1 INTRODUCTION

We already know that damping plays an important role in spin-photon hybridization,
as evidenced by the damping evolution which provides a striking signature of strong
coupling. Additionally we found that, at least in principle, damping will influence the
size of the Rabi gap (see Eq. (3.11)), although in the strongly coupled regime these
effects are negligible and the gap becomes damping independent. At the same time we
often take the presence of a gap in the dispersion and the fact that the cooperativity
exceeds one to go hand in hand, taking both as simultaneous indications of strong
coupling. However if the gap depends on the damping this should not generally be true
and therefore the condition for the onset of wg,, # 0 must actually be more complex.
This line of thinking leads to two questions: (i) What is the correct definition of
strong coupling? and (ii) How can we observe the damping influence on the Rabi
gap? It turns out that the answer to these two questions is related and leads us to a
much deeper understanding of the spin-photon hybridization.

The key physical idea underlying these questions is that of the exceptional point
(EP), discussed in detail in Sec. 6.2. In general the presence of damping means
that we have an open system which, thus far, we have successfully described using
the complex matrix of Eq. (3.88). In this chapter we will examine the impact of
interpreting this complex matrix as a non-Hermitian Hamiltonian which governs the
dynamics of the CMP. We will see that such a viewpoint naturally leads to a variety
of intriguing phenomena which we will search for in our spin-photon system. For

example, in such systems an EP, where the eigenvalues and eigenvectors coalesce, may
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be present in the eigenspectrum. The location of the EP in the coupling strength and
dissipation parameter space defines the transition between a gapped and ungapped
dispersion meaning that the location of the EP, and not the condition C' > 1, should
define the strong to weak transition. This understanding directly answers the first
question we have asked above, and indirectly answers the second — we can observe
the influence of damping by leaving the strong coupling regime and approaching the
EP. However by gaining this understanding we actually gain additional insight into
the spin-photon hybridization.

Using the concept of the EP we demonstrate in Sec. 6.3 a geometric mode switch-
ing effect whereby we can encircle the EP, returning to the same location in the
g — H parameter space, and find that the eigenmodes have switched. This obser-
vation highlights the role of the EP in spin-photon hybridization and indicates that
our system provides an interesting playground for the exploration of non-Hermitian
physics, which includes such intriguing phenomena as parity-time symmetry breaking
[232-235] and has relevance to, for example, controllable coherence in lasing systems
[236] and the breakdown of adiabatic evolution in waveguides [237, 238]. In this man-
ner by answering a few simple questions using the idea of the EP we actually open
the door to a wide range of interesting physics which we hope can be explored further

to gain additional physical insight and develop novel cavity spintronic technologies.

6.2 THE PHYSICS OF EXCEPTIONAL POINTS

Formally an exceptional point (EP) is a branch point of the eigenspectrum — a point
about which the eigenspectrum is discontinuous — first investigated in a mathemat-
ical context by Kato [239]. Such a branch point defines the topological features of
the eigenspectrum [234] and this very general mathematical definition leads to the
ubiquitous presence of EPs across a variety of physical systems [240-248]. In our case,
by examining the square root that appears in the hybridized dispersion, it is actually
easy to understand mathematically how such a point arises. If we allow the spin and
photon parameters to vary it is possible that the square root argument, which until
now we have assumed is positive, actually becomes negative. Therefore for some set
of parameters this argument must become zero. This special location in the coupling
and dissipation parameter space marks the exceptional point. The physical conse-
quence of this point is therefore also evident. If the root in the hybridized dispersion

is real, there is a gap in the eigenspectrum as we observe in strong coupling, while if
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the root is imaginary there is no gap in the dispersion (which is determined from the
real part of the hybridized mode) and instead the coupling influence will be observed
in the damping evolution. If the root is exactly zero, there will be no gap in either
the dispersion or the line width evolution at the crossing point and the eigenvalues
will coalesce at this point. Therefore physically the EP marks the transition between
strong coupling, where a gap in the dispersion can be observed, and weak coupling,
where no gap can be seen. Interestingly the EP itself need not be reached to observe
a drastic influence on the hybridization [234]. This fact is important for the spin-
photon system, since, as we will see below, the exact location of the EP occurs at one
special location in the coupling strength and dissipation rate parameter space which
requires a detailed balance between g, a and 3. Experimentally reaching this point
exactly would be extremely difficult, however it is possible to move around the EP

location and observe the influence on the spin-photon hybridization.

The fact that the EP relies on the presence of dissipation is intimately connected
to the non-Hermitian nature of our system. Actually most systems with EPs fall into
this category — that is EPs are most commonly observed in open systems with a
real coupling strength where the presence of dissipation is accounted for by an effec-
tive non-Hermitian Hamiltonian [234]. However EPs also have other physical origins
and have been used in a variety of interesting ways. For example, in optomechanical
systems with an effective negative mass and real coupling strength EPs signal the
onset of synchronization [248]. On the other hand EPs resulting from purely dissipa-
tive interactions (purely imaginary coupling) have been used to realize non-reciprocal
energy transfer between hybridized modes [247], and EPs due to complex coupling

strengths have been exploited to realize enhanced sensitivity of microcavities [249].

To examine the EP in our hybridized spin-photon system, we note that by defining

the matrix H,
H-(“’C g) (6.1)
g Wr

the general coupled equations of motion in Eq. (3.88) can be written as,

d|X)
H|X)=— 6.2
x) =28 (6:2)
where (X| = (h,m) and, as we have done previously, we assume a harmonic time

dependence for h and m. Therefore we can immediately see that the effective Hamil-

tonian H which we have defined is non-Hermitian due to the cavity and spin dissi-
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pation rates, which appear in @, and @, respectively, and an EP should exist. The

eigenvalues of H are given by,

1
b= @+ i (G- 0 4 4] (63
and therefore by writing the hybridized modes in the form Wy = wi +iAw, we have,
(0r —@0_)° = (0, — @) + 4¢%. (6.4)

At the crossing point, where w, = w,, the real and imaginary parts of Eq. (6.3) yield

two conditions which must be satisfied by the hybridized eigenmodes,

(Wi —w-) (Awy — Aw_) =0, (6.5)
(wy —w_)? = (Awy — Aw_)* —w? (B — a)® + 44> (6.6)

Eq. (6.6) will be satisfied if:

or
(iii) wy = w_ and Aw, = Aw_.
These conditions correspond to the following physical behaviour:

(i) resonance anticrossing, line width crossing,
(ii) resonance crossing, line width anticrossing,

(iii) resonance crossing, line width crossing.

Which of these conditions is satisfied depends on the coupling strength according
to Eq. (6.6). If g > w.|B — a|/2 then wy > w_ at the crossing point and condi-
tion (i) must be satisfied, which is simply the traditional observation of strong spin-
photon coupling. On the other hand, if ¢ < w.|8 — a|/2, since (w; — w_)Q > 0 and
(Awy — Aw,)Q > 0, we must have w, = w_ and Aw,; # Aw_ at the crossing point.

The transition between condition (i) and (ii) occurs when g = grp = w¢|f — al/2.
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At this point both the resonance frequency and line width will merge, and therefore
the hybridized dispersion will completely coalesce. This special value of the coupling
strength defines the exceptional point, marking the transition between an anticrossing
and a crossing with g # 0. The physical behaviour of the coupled system in different
coupling regimes is summarized in Table 6.1.

The coalescence of eigenvalues at the EP also occurs in a similar manner near
diabolic points which are associated with Berry’s phase [250, 251]. However the EP is
unique in that it not only signals the coalescence of eigenvalues, but also the merging
of the eigenvectors. Using the eigenvectors derived in Eq. (A.10), we see that when

g = we|f — a|/2 and w. = w, the normalized eigenvectors are identical and given by

1 1
A= V2 ( i sign (a — B) > ' 6.7)

This merging of eigenvectors is the defining property of the EP and is an interest-
ing consequence of the non-Hermiticity of our Hamiltonian. While Hermitian systems
may have an eigenvalue degeneracy, their eigenvectors are generally orthogonal,! how-
ever there is no such constraint for a non-Hermitian system.

Since the location of the EP depends on a balance between dissipation and cou-
pling rates, we could hope to observe the influence of an exceptional point by con-
trolling these parameters. This provides an interesting venue to apply the cavity

damping and coupling strength control mechanisms that we have developed and pre-

Table 6.1: Behaviour of the hybridized dispersion at the crossing point, w, = w,, for
different coupling regimes.

Dispersion o . o
et Condition Physical Description

Constraint
Aw, = Aw_ g > w"‘g_O" resonance anticrossing, line width crossing

Wy = w_ g < we‘gﬂ" resonance crossing, line width anticrossing
wy = w_ and = ggp = . . : .

v gc|5_a| g resonance crossing, line width crossing
Awy, = Aw_ e

'If a Hermitian system is non-compact the eigenvectors need not be orthogonal. This can be
realized for infinite dimensional Hilbert spaces, leading to EPs in certain Hermitian systems as well
[248].
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Figure 6.1: The eigenvalue structure of the hybridized spin-photon system. These
schematic plots are calculated according to Eq. (3.89) with the coupling strength
tuned by the angle 6. In both panels the exceptional point (EP) is denoted by a solid
red circle. (a) The eigenvalue dispersion. For large coupling strengths an anticrossing
is observed (blue curve). However for smaller, but non-zero, coupling a dispersion
crossing may be seen (yellow curve). (b) The line width evolution. In the strong
coupling regime a line width crossing is seen (blue curve), whereas when the coupling
is reduced a line width gap is found (yellow curve). A modified version of this figure
was originally published in Ref. [61].

sented in Ch. 5. In particular we can tune the cavity damping by adjusting the
external feedline coupling, and also conveniently control the coupling strength by
tuning the angle between the microwave and bias fields. In the latter case g can
be systematically tuned as g = go|sin (#)| which allows us to carefully adjust our
location near the EP. Fig. 6.1 shows a schematic diagram of the changes observed
in the eigenspectrum when the coupling strength is tuned in such a way, calculated
according to Eq. (6.3). In panel (a) wy is shown. The global structure is that of two
intersecting Riemann sheets, which meet at the EP, indicated by a red circle. At a
large fixed coupling strength (large #) an anticrossing is observed, as indicated by the
blue curve, while at a small fixed coupling strength (small ) a crossing is observed,
shown by the yellow curve. The corresponding line width, Aw4, is shown in Fig.
6.1 (b). Here the eigenspectrum takes the form of two sheets which fold into each
other. In this case the EP marks the position where the sheets separate. As expected
we now observe the opposite behaviour. At large coupling strengths the blue curve
indicates a line width crossing, while at small coupling strengths an anticrossing is
observed, as shown by the yellow curve. By exploiting our coupling strength control

mechanism we can explore this spin-photon hybridization experimentally [61].
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6.3 OBSERVING THE SPIN-PHOTON EXCEPTIONAL POINT

6.3.1 Influence of Exceptional Point on Dispersion

In order to observe the transition from dispersion crossing to anticrossing, we per-
formed microwave transmission measurements of the coupled spin-photon system on
the UMSI experimental setup while controlling the angle 6 [61]. In this experiment
the cylindrical cavity, with diameter of 25 mm, was set to a height of 33 mm. At
this position we observed a TMy;; mode at w./2m = 10.183 GHz. The pin length was
adjusted in order to achieve a loaded cavity damping of 8, = 7.6 x 10~* (Q = 660).
To create a cavity-magnon-polariton we placed a 0.3 mm diameter YIG sphere on
the lid of the cavity, 2 mm from the outer edge. The uncoupled FMR frequency
was found to follow the relation w, = v (H + H,4) with a gyromagnetic ratio of
v = 28 x 21 puyGHz/T, a shape anisotropy of pugH4 = -57 mT and a Gilbert damp-
ing of @ = 1.5 x 107*. Therefore we expect gpp = 3.1 MHz. By measuring wg,, at
0 = 90° we find that gy = 6.0 MHz and therefore we predict the location of the EP at
Ogp = arcsin (ggp/go) = 33°. For 6 > fgp we expect to see a dispersion anticrossing
and line width crossing, while for # < fgp we will instead expect a dispersion crossing
and line width gap, even though our system is coupled. We note that the YIG diam-
eter and pin configuration have been chosen so that the EP is located roughly in the
middle of our accessible coupling strength parameter range. If the damping would be
less, or the YIG sphere would be larger (resulting in a greater coupling strength) the
location of the EP would occur at very small angles, making experimental distinction
difficult.

The results of this experiment are presented in Fig. 6.2. We performed measure-
ments at two angles, # = 90° > Ogp, corresponding to the largest achievable coupling
strength, and 6 = 26° < fgp, at a position nearby but past the EP. The resulting
transmission mappings are shown in Fig. 6.2 (a) and (b) respectively. At § = 90° a
clear anticrossing is observed, while at § = 26° only the cavity mode, with a small
absorption window following the antiresonance, is observable. This behaviour be-
comes clearer by fitting the transmission spectra. The result of Lorentz fits to the
frequency swept data are shown in Fig. 6.2 (c) - (f). In all panels symbols are the
fitting results and solid curves are calculated according to Eq. (6.3). At 6 = 90° we
observe a dispersion anticrossing in panel (c) and a line width crossing in panel (e).

Conversely, at # = 26° an anticrossing is no longer distinguishable. Instead, in panel
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Figure 6.2: The influence of the exceptional point on the hybridized spin-photon
dispersion. The microwave transmission mapping, collected in the UMS1 setup, for
(a) 8 = 90° (¢ = 6 MHz) and (b) 0 = 26° (¢ = 2.6 MHz). At 6 = 90° a clear
anticrossing is observed. However after crossing the EP, at § = 26°, an anticrossing
is no longer distinguishable. Dispersion fitting results for (¢) § = 90° and (d) 6 = 26°
respectively. The line width fits are shown in (e) for § = 90° and (f) for # = 26°. The
former shows the expected crossing while the latter shows a gap. The solid curves
are calculated according to Eq. (3.89). The data shown in this figure was originally
published in Ref. [219].

(d), it appears that the FMR dispersion crosses the cavity dispersion and in panel
(f) we observe a line width anticrossing. Due to these features care must be taken
when fitting the data for 8 < fgp. For most fields only one peak is observable and we
can perform a straightforward fit to a Lorentz function. However near the crossing
point a small peak splitting occurs due to the FMR absorption and presence of an
antiresonance. Therefore in this regime we fit the dominant peak to a combination of
Lorentz and dispersive line shapes. In this way we can accurately follow the dominant

mode systematically from low to high fields. However the low amplitude FMR-like
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mode, which is only excited near the crossing point due to the weak coupling, cannot
be reliably fit, which is why this data is not seen in Fig. 6.2 (d) and (f). We note that
the observed behaviour is described well by our model, including the small deviation
of the hybridized mode near the crossing point at # = 26°, which can be seen in Fig.
6.2 (d).

From our experimental data we can also more closely examine the relationship
between the Rabi gap and the cooperativity. In general when we have an anticross-
ing, so that Aw; = Aw_, the Rabi gap is written as wg,, = \/492 — w2 (B — a)Q,

which follows from Eq. (6.3). When we are far into the strong coupling regime,

where g > «, 8, the effect of damping is negligible and we simply write wg.p ~ 2g.
This equation provides a useful way to determine the coupling strength without any
fitting requirement. However as we approach the EP, this approximation is no longer
valid and the full expression for wg,p,, which includes the effects of damping, must
be used. At the EP, where ¢ = w.|f — «|/2 we can compute the cooperativity,
Cep = ¢*/aBw? ~ 1/4(a/B + B/ —2) [61]. As Cgp is determined solely by the
damping, we see that if «/8 2 6 (or B/a 2 6), Cgp > 1, which means that a dis-
persion crossing could be observed even though the cooperativity may exceed one.
Indeed, applying this estimation to our experiment we find that the resonance cross-
ing observed in Fig. 6.2 (d) occurs at C' = 1.3. This leads to an important point
regarding the definition of strong coupling. Typically the following two statements
are taken to be synonymous when describing strong coupling: (i) The cooperativity
exceeds one; and (ii) There is an anticrossing in the dispersion. However we have
found that it is possible to observe a dispersion crossing even when the cooperativity
exceeds one. This suggests that, if we want to maintain the physical picture that
strong coupling corresponds to an anticrossing, it would be better to use the location
of the EP, rather than the cooperativity, to define the strong to weak transition.
However we note that this distinction is only relevant in a narrow regime near the EP
and in general having a cooperativity greater than one is still a good rule of thumb

for the observation of an anticrossing.

6.3.2 Mode Switching

Understanding the role of the EP not only clarifies the strong to weak transition but
it can also be used to observe a geometric mode switching effect. To understand this

behaviour we examined the global eigenspectrum as illustrated in Fig. 6.3, observing
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Figure 6.3: (a) Path taken to encircle the EP. A square (star) denotes the starting
(ending) positions, while the red and blue curves indicates the path taken by mode
1 (wy) and mode 2 (w_) respectively. When the EP is circled the two paths are
connected. (b) Without encircling the EP each mode behaves independently as shown
by the red (mode 1, w;) and blue (mode 2, w_) curves. (c) Transmission spectra
observed while encircling the EP. From top to bottom the system is tuned along
paths 1 — 5. One mode stays constant at the cavity frequency while the other mode
shifts to high frequencies, disappears, and reappears at low frequencies. Therefore
the modes have switched positions. (d) When the EP is not encircled an anticrossing
occurs during path 3 and therefore the modes maintain their relative orientations.
This key difference along path 3 is highlighted with red shading. (e) The theoretical
spectra calculated according to Eq. (3.89) when the EP is encircled and (d) when
it is not. The blue and red dashed curves in (c) - (f) are a guide for the eyes. A
modified version of this figure was originally published in Ref. [61].
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what happens to the eigenmodes as we move in the § — H plane (effectively in the
g — H plane). In panel (a) we consider a closed §# — H path which starts and ends
at the same location and encloses the EP. The red and blue curves placed on the
Riemann sheet show the dynamic behaviour of each eigenmode as we move along this
path. Starting from the red square, the initially lower eigenmode follows the blue
spiral upwards, transitioning to the upper sheet while the upper eigenmode follows
the red path, transitioning to the lower sheet. Therefore when we return to the same
starting & — H coordinates, the initially lower eigenmode is now located at the upper
sheet and vice versa, so, even though we start and end at the same location, we find
that the eigenvalues have switched!”> This means that in order to continuously tune
each eigenmode to its initial configuration we must take a second path around the
EP. This is in contrast to the behaviour shown in Fig. 6.3 (b), where the path in the
6 — H plane does not enclose the EP. In this case after one continuous loop in the
0 — H plane the lower mode, shown in blue, starts and ends at the blue square while
the upper mode, shown in red, starts and ends at the red star. Therefore in this case
the eigenmodes each move independently on their own Riemann sheet and when we
return to our original  — H location the eigenmodes have returned to their original
locations.

Such a switching effect was realized experimentally using the paths shown in Fig.
6.3 (a) and (b). To circle the EP we began at the crossing point (ugH, 0) = (420.5
mT, 90°) and increased the magnetic field along path 1 to reach (430 mT, 90°). The
coupling strength was then decreased along path 2 until we reached (430 mT, 15°),
well past the EP for which we have calculated fgp = 33°.° We then proceeded to
decrease the magnetic field along path 3 until we reached (415 mT, 15°) and increased
the coupling strength along path 4 until reaching (415 mT, 90°). Finally we increased
the magnetic field along path 5 back to the crossing point at (420.5 mT, 90°).

The transmission spectra which we measured as we followed such a path are shown
in Fig. 6.3 (¢). To follow the mode evolution along these paths we artificially label the
high frequency mode at the initial position (top spectra of Fig. 6.3 (¢)) mode 1 and

the low frequency mode at the initial position mode 2. Of course such a labelling is

2Actually, as the hybridized modes evolve they will not only interchange but also acquire a
geometric phase [251]. However, as we do not directly detect the eigenvector, but rather observe the
switching by following the eigenmode evolution, our experiment is not sensitive to this phenomena,
which has been observed in coupled microwave cavities [234, 252]

3As the coupling strength decreases the amplitude of this mode also decreases drastically, and
therefore in order to track the mode for the entire path we cannot decrease beyond 6 = 15° in our
experiment, although this would not be necessary anyway, as we only require 6 < fgp.
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not meaningful when looking only at a single spectra, since we will always observe two
modes and the frequency of these modes is path independent and determined from
Eq. (6.3). However by carefully tuning the position in the § — H parameter space we
can follow the evolution of the modes relative to their starting position and it is for
this purpose, to follow the mode evolution, that we assign such labels. In the spectra
of Fig. 6.3 (c) we see that as the system is tuned along path 1, mode 1 shifts out
to high frequencies and the amplitude decreases sharply. Meanwhile mode 2 remains
fixed near the cavity resonance frequency. As we follow paths 2, 3 and 4, mode 2
remains near the cavity frequency while the mode 1 amplitude continues to decrease
and is therefore difficult to see.* However, as we increase the field along path 5, back
towards the starting point, we find that mode 1 reappears at low frequencies while
mode 2 remains in the initial position and is therefore now at a higher frequency than
mode 1. Therefore once we have returned to the same location in the § — H plane the
eigenmodes have switched; the eigenmode at low (high) frequencies has continuously
evolved to appear at high (low) frequencies after a complete path around the EP.
In Fig. 6.3 (e) we plot the corresponding calculated transmission spectra using our
general model of Eq. (3.90), treating the impedance matching parameter (amplitude)
n (determined by the cavity-feedline coupling) as a fitting parameter with n = 1x 1075
for all spectra. Our model reproduces the expected switching behaviour very well.
The slight shifts which occur in the experimental data, notably in the transition
between paths 1 and 2 and paths 3 and 4, are due to the mechanical rotation of the
cavity lid, which induces slight variations of the cavity mode and damping. These
variations are less than 3 % and therefore do not influence the key switching behaviour
which we observe.

To verify that this switching behaviour is due to encircling the EP, we performed
a similar experiment where the EP was not enclosed by our path, as shown in Fig.
6.3 (b). The path taken here is nearly the same as the one taken previously, however
path 3 is now at # = 70° so that § > Ogp. The transmission spectra observed along
this modified path are shown in Fig. 6.3 (d), where the spectra from top to bottom
correspond to the path from 1 — 5. In this case mode 1 again shifts to high frequencies
along path 1 with mode 2 fixed at w.. Along path 2 and the first part of path 3, mode
2 again remains at the cavity mode frequency while mode 1 shifts to low frequencies

as the field is decreased. However, when the crossing point is encountered along path

4During the dynamic experiment the low intensity mode can be followed by carefully examining
the spectra on a dB scale and comparing each spectra to its predecessor.
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3, mode 2 begins to shift towards low frequencies while mode 1 remains fixed at
we. Along paths 4 and 5 mode 1 remains at w, at a higher frequency than mode 2.
Therefore in this case, when the EP is not enclosed by our # — H path, mode 2 remains
at a lower frequency than mode 1 for the entire path and no switching is observed.
In this case it is also possible to perform a theoretical calculation according to Eq.
(3.90), with the results shown in Fig. 6.3 (f). Indeed in this case the calculation shows
no mode switching and agrees well with our experimental observation. Therefore even
though we do not directly tune our system to the EP position, we indeed observe a
drastic influence of the EP on the behaviour of the hybridized modes. Thus the EP
has more influence than simply determining whether a Rabi gap can or cannot be
observed [61].

As mentioned previously EPs exist in a wide variety of physical systems and
therefore several interesting applications of similar switching effects have been devel-
oped. For example, state transfer schemes have been realized in waveguide systems
[238], whereby the waveguide transmission will depend on the injection direction, and
switching has been used to facilitate energy transfer in optomechanical devices [247].
An interesting feature unique to the spin-photon system is the ability to easily add
additional modes, thereby enabling an engineered system with multiple EPs. We have
already discussed the case of additional magnon modes in the context of higher order
spin waves and multiple magnetic samples. However it is also possible to couple the
single FMR mode to multiple, closely spaced cavity modes. Such a system would be
described in a manner analogous to the two-spin system by generalizing Eq. (3.88)
61],

W — @We1 0 g1 hy wethot
0 W—We G2 hy | = | we2ho2 | - (6.8)
[ 92 W — Wy m 0

Here g; and gy are the coupling rates of the cavity modes h; and hs to the spin
system m respectively, hg; and hgo are the amplitudes of each cavity mode, which
depend on the coupling between the microwave feedlines and the cavity, and there
is no direct intercavity coupling between h; and hs. The global eigenmode structure
calculated according to Eq. (6.8) is plotted in Fig. 6.4 (a). This structure is a natural
generalization of the two-mode system we have investigated in depth, with three
intersecting Riemann sheets and two EPs now defining the eigenmode behaviour.
The red spiralling curve indicates a possible path which would encircle both EPs.

By tuning the EP locations one could imagine other trajectories which would encircle
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either EP, or both, and would therefore allow various combinations of mode switching,
where different combinations of the eigenmodes are interchanged. For the purpose of
simply demonstrating that such a system can be realized we performed an experiment
with the 25 mm diameter cylindrical microwave cavity at a height of 36.5 mm. In
this configuration we observe a TMg;2 mode at w.; /27 = 12.383 GHz (81 = 4.8 X
107*, Q; = 1000) and a TEy;; mode at we = 12.337 GHz (81 = 2.7 x 1074, Q5 =
1900), as indicated in Fig. 6.4 (b). These two modes were coupled to a 1-mm diameter
YIG sphere which had o = 1 x 1074, v = 28 x 27 y9GHz/T and H, = —80 mT. The
dispersion we observe at # = 61° is shown by open circles in Fig. 6.4 (b). We now
observe three hybridized modes. From low to high fields the high frequency mode
evolves from w,.; to the FMR dispersion, the mid frequency mode evolves from w.o
to we and the low frequency mode evolves from the FMR dispersion to we. A fit
according to the dispersion of Eq. (6.8) is plotted as a solid black curve. From this
fit we find a maximum YIG-w. and YIG-w. coupling strength of go; = 30 MHz
and gpo = 16 MHz respectively. The fact that go; ~ 2gg2 reflects the different mode
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Figure 6.4: (a) The dispersion of a three-mode spin-photon system consisting of two
cavity modes and one FMR mode. The grey sheets are calculated as the roots of
the matrix determinant in Eq. (6.8) using our experimental parameters. The red
lines, resembling an Archimedean spiral, indicate a theoretical path which would
encircle both EPs. (b) Experimental dispersion of the three-mode system in the
strong coupling regime where two anticrossings are observed. This dispersion was
measured at # = 61°. The circles are experimental data while the black curve is
calculated using Eq. (6.8). The two horizontal dashed lines indicate the uncoupled
cavity modes while the diagonal dashed line is the uncoupled FMR dispersion. A
modified version of this figure was originally published in Ref. [61].
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profiles and means that L3 < #LE for an appropriately tuned cavity damping. This
suggests that by using different cavity modes it is indeed possible to tune the EP
location. We hope that by providing this proof-of-principle demonstration further
exploration of the EP physics in spin-photon systems and its applications may be

undertaken.
6.4 CONCLUSION

In the final chapter of this dissertation we have explored the concept of the exceptional
point as it relates to the coupled spin-photon system. While the motivation for
this exploration was to clarify the role of dissipation on the size of the Rabi gap
and carefully define strong coupling, we have found that the EP, which helps clarify
these issues, also has a more dramatic influence on the spin-photon hybridization. In
response to our initial motivation we found that to reconcile the idea of strong coupling
with the opening of a dispersion gap we must define strong coupling as the region
g > gep. In particular we found that even when C' > 1 we may find that wg,, = 0.
This condition is intimately tied to the dissipation in the system — in the case that
there is no dissipation a dispersion gap will always exist for g # 0. Realizing that
the hybridization is influenced by an EP, we were able to observe a mode switching
phenomena and demonstrate the proof-of-principle concept of engineered multi EP
spectra in the hybridized spin-photon system. We hope that this realization could be
explored further, both to gain physical insight and to develop new cavity spintronic
technologies. In this context we note that very recently the spin-photon EP has indeed
been utilized to realize coherent perfect absorption, whereby the coupled spin-photon

system absorbs all incident energy [62].
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High spin density ferrimagnets will hybridize with microwave cavity photons to form a
newly discovered quasiparticle, the cavity-magnon-polariton (CMP). This hybridiza-
tion can be understood within the general framework of polaritons observed through-
out condensed matter systems, where material resonances couple to light, mixing
their properties in physically interesting and technologically useful ways. Based on
this realization it is evident that the case of the spin-photon system should be de-
scribed by the combined effort of the Landau-Lifshitz-Gilbert and Maxwell equations.
Avoiding extraneous details, an elegant way to approach this problem, and capture
the key physics relevant to hybridization, is to model the microwave cavity and hence
Maxwell’s equations, as an RLC circuit. This approach captures all experimental res-
onance and dissipation properties and reveals that spin-photon hybridization results
from coherent electrodynamic phase correlation [34, 48].

From another perspective the result of hybridization can be viewed as a new
quasiparticle, in which case we should think in terms of a quantum picture. Indeed
a model of the Heisenberg ferromagnet coupled to second quantized electromagnetic
fields also reproduces all observed spectral features and is in exact agreement with
the classical approach in the harmonic limit [34]. This leads to the observation that,
on a very general level, the key properties of the CMP can be described as a set
of coupled harmonic oscillator [34]. Each of these theoretical perspectives adds to
our physical insight and reproduces the key signatures of spin-photon hybridization:
an anticrossing in the dispersion spectrum and line width evolution of the coupled
modes.

One way to experimentally probe the spin-photon system is through measuring the

microwave transmission of a high spin density material, typically yttrium-iron-garnet
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(YIG), inside of a microwave cavity [34, 40, 48-50, 61, 179, 219]. However in addition
to this technique, electrical detection of the spin current generated in YIG /Pt bilayers
also reveals the signatures of hybridization [48, 49]. The fact that strong coupling
can be detected through spin pumping is a boon for spintronics, indicating that the
spin current is influenced by hybridization and enabling novel methods of spin current

control.

Through these techniques great strides have been taken in understanding spin-
photon coupling. For example, we have learned that spin-wave modes will also hy-
bridize with microwave photons and have a coupling strength which is inversely pro-
portional to the mode index for standing spin waves [48, 49]. Additionally a location of
microwave transmission suppression, an antiresonance, has been observed in the CMP
spectra [219]. Actually, the antiresonance is a universal feature of the hybridization,
occurring at the uncoupled FMR frequency, which allows accurate characterization of
the uncoupled FMR dispersion even in the presence of strong coupling which distorts
the eigenmodes. The antiresonance also helps to interpret the phase behaviour of the
coupled system, where phase jumps of 7 are observed in the transmission spectra at
each eigenmode and also at the antiresonance [219].

For both the technological development of cavity spintronics, and to gain physical
insight, a variety of hybridization control mechanisms have been implemented. Since
the hybridization is controlled by the cooperativity, which is the ratio of coupling
rate to dissipation rates, the coupled spin-photon properties can be manipulated by
either directly tuning the coupling rate or by manipulating the dissipation of either
subsystem. As an example, the cavity dissipation rate may be controlled by tuning the
external loss rates at the microwave ports, thereby manipulating the loaded damping
of the system [48, 49]. In this way it is possible to systematically tune from strong
to weak coupling. Such measurements have revealed the importance of coupling
strength characterization even before the performance of conventional cavity based
FMR measurements, which may actually be influenced by the lingering effects of
hybridization [48, 49]. In a similar vein, damping control has revealed that the FMR
line width may be drastically influenced by coupling even away from resonance. This
important result indicates that conventional Gilbert damping and inhomogeneous
broadening are insufficient to describe the FMR damping characteristics when strong
coupling may exist [48].

Direct control of the coupling strength has also been successfully implemented.

In one approach a compensated ferrimagnet with a strongly temperature dependent
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magnetization allowed the systematic control of the coupling strength by cooling to
liquid helium temperatures [40]. Using this technique the strong to weak transition
was again realized and additionally the dependence of the coupling strength on the
root of the number of spins was observed. A more device friendly way to tune the
coupling strength can be realized by exploiting the coupling mechanism inherent to
the spin-photon system. Since the Zeeman interaction is the source of coupling, the
strength of the hybridization should depend on the orientation between the mag-
netization and the magnetic field. Experimentally this means that by tuning the
orientation of the magnetic bias field relative to the dynamic microwave field the cou-
pling strength can be controlled [50, 179]. An exciting application of this technique
was realized by utilizing electrical detection with two spin devices [50]. Controlling
the bias field orientation of one spin system will of course locally tune the spin current
in that device. However it was revealed that, through hybridization effects, the spin
current in a second well separated sample will also be controlled. Therefore the cavity
spintronic system can be used to perform non-local spin current manipulation.
Based on these results it is clear that cavity spintronics holds great potential for
physical discovery as well as the development of spintronic and quantum information
technologies. Indeed cavity spintronics is on an upswing. As of 2014 (at the beginning
of this dissertation research) there had been 3 papers published in the field (and the
name cavity spintronics did not exist). However in the last four years that number
has grown to approximately 100 publications, many in influential journals such as
Physical Review Letters, Nature and Science. Put into that context this dissertation
adds an important brick in the foundation of cavity spintronics and we anticipate that
the models we have developed and the clear experimental observations we have made
will pave the way for future development. In many ways this is already happening.
For example, electrical detection techniques have been explored by other groups and
the exceptional point physics we have outlined has formed the basis for interesting
new applications [62]. With the rapid expansion of the cavity spintronics community,
promising new developments, such as multiplet states and extremely high quality
planar devices [75] and the intermingling of ideas between cavity quantum electrody-
namics [28], cavity optomechanics [253, 254] and quantum optics [198] it is indeed an

exciting time for the new frontier of cavity spintronics.
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A

ADDITIONAL DETAILS FOR HARMONIC
OSCILLATOR MODEL

In this appendix we present a few additional details regarding the harmonic oscillator

simplification presented in Sec. 3.2.1 and the normal mode calculation of Sec. 3.2.2.

A.1 SIMPLIFICATION OF HARMONIC OSCILLATOR DISPERSION

For the frequency dispersion we can easily find analytic expressions for the real and
imaginary components of the eigenvalues using de Moivre’s theorem. For a complex
number z = re?, /2 = \/r[cos (0/2) + isin (#/2)] and therefore from Eq. (3.9) we
find,

st L i oy —a@—ap+ e )
Wt = 2 c r \/— r c 4 c ) .
1 [ 1 2w, (6 — @) (we — wy)
A - = + = ) A2
] R ST (B—oz)2+iﬁ4w3}1/2] .

where

2
2] = \/ [<wc ) B (B o)+ grhd| 442 (B af we—w) (A

Here we have defined Re (01) = wy and Im (01 ) = Aws.

A.2 SIMPLIFICATION OF HARMONIC OSCILLATOR TRANSMISSION SPECTRA
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So1 can be written in terms of w4 as,

w — Wy

Sgl X (A4)

@—o) (@—a)

Near the eigenmodes we can make an expansion of the form w = wy +€ = wx £ow+e,
where dw = w; — w_ and € is small compared to w. Assuming the two eigenmodes
are well separated, meaning we are sufficiently far from the crossing point or strongly
coupled, dw > €, and dw > Awy. If we also assume that we are not too close to the
FMR mode, so that wy — w, > € we find

(e —w)? 42 (W — wy) (Wy — wy)

|821|i X 5 (A5)
ow? [(w — wa ) + Awi]z
where [So1|%2 = |Sg1 (w ~ w4) [%. Therefore we may write the transmission spectra
near either eigenmode as
912 o L+ (ws —wy) " D (A.6)

as in Eq. 3.13.

For the field swept case we can also simplify our expression for the transmission

spectra by expanding near w.. In this case we can write

w — Wy,

Sgl X (A?)

wr_aje

and provided we are several line widths away from the FMR frequency, w—w, > aw,,

Se1 can be written as
2

(que + Wy — We)

A8
(wr — we)” + Aw? (4.8)

|821‘2 XX

as we found in Eq. (3.15).

A.3 NORMAL MODES OF HARMONIC OSCILLATOR
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Using the classical rotating wave approximation and in the absence of a driving force,

the equations of motion given by Eq. 3.4 become

~ K2we
( YT e T ) ( “ ) —0. (A.9)
—% w — Wy To

The normalized eigenvectors of the CMP are therefore determined to be,

S (i”QjFA> (A.10)

X, —
TR0\ VOEA

where Q = \/ (@ — @.)° + k4w? and A = @, — @, which allows us to immediately

write the transformation between hybridized and spin/photon states in Eq. (3.16).
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ADDITIONAL DETAILS FOR QUANTUM
CALCULATION

In this appendix we present additional background information and derivations as-
sociated with the Heisenberg ferromagnet-cavity photon Hamiltonian and Green’s

function calculation of Sec. 3.4.2 and Sec. 3.4.4.

B.1 HEISENBERG FERROMAGNET FOR LOWEST MAGNON BAND

To simplify the full Heisenberg spin-s Hamiltonian of Eq. 3.45 we begin by taking the
lowest magnon band in the long wavelength limit where we can neglect the dipole-

dipole interactions so that,
Hy=—3 Z [Jz‘jsi -S; — gupB: Z SJZ] ) (B.1)
3 J

where we use the notation J;; = J (r; —r;) and S; = S(r;). Changing to the spin
ladder operators and making the Holstein-Primakoff transformation as described in
Sec. 3.4.2,

H, = —g STy [bjbj +b:b! — bb; — bib, + 2] onpB. Y (bjbj - s) . (B2)

ij J

The sum in Eq. (B.2) is over nearest neighbours, thus if we assume 3 nearest neigh-

bours at positions ¢ and Fourier transform the bosonic operators, b; = N, 12 S e Tiby,
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we find,

1 sJ ) )
H, = —532J3Ns—sguBBst—? ch e Chlby + e bl — 20! by | +gupB. gbLbk.
(B.3)

Here we have also used the identity 6 (k —q) = N, )" e "* 97 Using the com-
mutation relation [bk, bfl] = 0yq and the fact that our lattice has a centre of symmetry
50 that Yo e¢ =37 e7¢,

1
biby — §S2J3Ns — sgupB.N,.  (B.4)

Hs = Z [JS (3_ Zeikic> +gMBBz
k

¢

Therefore by defining,

i (5= ) | 5
¢
and )
Ey= —§S2J3Ns — sqgupB. N, (B.6)
we arrive at Eq. (3.48). Note that for our cubic lattice in the & — 0 limit,
hwlf:—>0 = g:uBBza (B?)

which is just the FMR dispersion. Including higher order terms in k& would yield the

exchange spin wave dispersion.

B.2 DETAILS OF INPUT-OUTPUT FORMALISM

In this section we derive the relationships between input and output fields and the

bath photons. The Heisenberg equations of motion for the two baths are

by = —= [cg, H] = —itycq + et (B.8)

dy, H) = —iw,d, + \a, (B.9)
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which can be solved in terms of the bath states at either ¢; < t or t; > t, corresponding

to initial and final states before and after interaction with the cavity,

t
cq (1) = e‘iw(l(t_ti)cq (t;) + )\c/ dre=="g (1),
t;
. ty :
cq (t) = e_“"q(t_tf)cq (t;) — )\c/ dre=a="g (1) (B.10)
t

with analogous expressions for d,. Using these solutions a sum over cavity modes

becomes,

¢
A Z Cqg= e Z emwalt=tde (1) + N2 Z / dre wamwe)i=7) [emiwelr=t g (7)] |
q q q 7t

t
)\cch =\ Ze—iwq(t—tf)cq (tf) _ )\g Z/ f dTefi(wqfwc)(tf‘r) [efiwc(‘rft)a (7_)}
q q q t

(B.11)

with similar expressions for d,. Fermi’s golden rule can be used to define the external

coupling rate for the cavity mode to the bath as,

2k (we) = 2T\ p = 2\ Z p(wy) (B.12)

q

where p (w,) is the density of states of the photon bath for mode ¢ and p =} (w,)
is the full density of states. For a single mode of the cavity p (w,) = 0 (w. — w,) and

therefore we can write

—00

2/ dvke (we +v) e "7 = 27 \2 Z/ dve 16 (we + v —w,) . (B.13)
q —0oQ

Under a Markov approximation x. is approximately constant near w. and therefore

260 (t —7) = A2 Z e~ Hwa—we)(t=T) (B.14)

q
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where we have used the definition of the delta function § (w) = (2m)

Therefore

t
Ae Y e (t) = A Ze walt=tie ( )+2/ drkd (t — 1) e g (1),

t;

, by ,
Ae Z cq (t) = )\Ce_’wCI(t_tf)cq (tr) — 2/ drked (t — 1) e (1) .
¢

—iwe(T—1)

Assuming that a (1) e goes smoothly to 0 as t — o0,

¢
/ dro (t — 7) e Da (1) = Za(t),
t;

and thus if we define the input and output modes as the wave packets

1 )
] _ —iwg (t—t;) )
Cin (t) = ’_2_7Tp ; € q Cq (tz) 5

ot (1) = ﬂlﬁ_p ; el (1)),
we find
Ae Y g (t) = —V2heein () + Kea (t),
Ae i g (1) = V2KcCout (1) — Kea (1) .
q
Therefore

B.3 PHOTON GREEN’S FUNCTION

The bare photon Hamiltonian is simply a harmonic oscillator

2

1 P 1
H = hw, | af ) =4 2w
<aa+2> 2—1—26

wax”,
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—2 [ e tdt.

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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where

h hew
— T — cAq — al
x—\/2wc(a+a), p=-i = (a—al), (B.22)

and we have set the mass to unity. We wish to find the retarded Green’s function

G% = —if (t) ([x (t), 2 (0)]). (B.23)

—iwet

In the Heisenberg picture, a (t) = a , and therefore the propagator is given by

h : .
Py = (z(t)x(0)) = {aa'e™™" + alae™™") |
We
h _.
Po=gme ™ (B.24)

where we have made use of the fact that we are using the vacuum state. The time

domain Green’s function is therefore,

GO — —0.(t) - sin (wt) (B.25)

We

To Fourier transform to the frequency domain we introduce an infinitesimal parameter

€ which determines the pole structure within our integration contour,

1h
2w,

/ 0 (t) (eiwct _ e—iwct) eth_Etdt,
0

h 1 1
GY = — — . B.26
R 2w, [w—wc+ie w+wc~|—ie] ( )

0 _
R=

Then setting ¢ — 0 and introducing damping by replacing w. — w. — i['. we obtain
the result of Eq. (3.84),

G% (w) = h { ! ! } (B.27)

2w, |w—w, +il, B w4+ w, — il
B.4 DERIVATION OF T-MATRIX FOR THE EXTERNAL PHOTON BATH

In this section we use a standard quantum field theory approach to determine the
T-matrix of the external photon bath, following Ref. [255], and therefore prove Eq.
(3.81) [34]. For further details on the formalism see, e.g. Ref. [177]. To relate the

retarded propagators to the T-matrix we construct a generating functional, which
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includes both the bath and cavity photons, as,
Z 0,7 = / DcDeDaDaedleewaltietine, (B.28)

where ¢, ¢, a,a are time dependent complex variables which replace the bosonic fields
of the bath and cavity photons, ¢,c', and a,a’ respectively. 7,7 are auxiliary fields

used to compute the correlation functions. Here
moe=Y [t e ), (B.29)
B.a

where 5 sums over both the left (L) and right (R) photon baths, and ¢ sums over all
modes in each bath. S is the full action, S = Spatn + Spn + Sine Which includes a left
and right photon bath, the cavity photons, and an interaction term between the bath
and cavity photons. In the standard way we may write the non-interacting actions in

terms of the Green’s functions

Shan = = Y / 0ty (G%) " can (B.30)
B,q
Seav = —/dtaG—la, (B.31)

where G%q is the bare bath photon Green’s function and G~! is the Green’s function

of the cavity photons. The action for the cavity-bath interaction is
St =Y A / dt [Gcs, + acs,) . (B.32)
B.a

In Eq. B.32 we have again implemented a Markov approximation, i.e. we have
assumed that the interaction strength (cavity-bath coupling) is mode independent.

The full Green’s function for the bath photon can then be calculated as

(52
= — A . B.33
5775qf (t) Onprg; (t:) 7,m—0 ( )

GBanBIQi (t - t/)

To compute the Green’s function we complete the square in Eq. (B.28) by shifting
the bath variables,

CBq = Clﬁq + /dt,G%q (t — t,) MBq (t/) . (B34)
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Since this is just a shift of variables the measures stay the same but the action

becomes,

5= Z/dt[’ ) i [ s, ()G (¢ = s, (0
/ at' [NaGS, (t — ) mag (') + G, (¢ — ), (1] | - (B.35)

Therefore, applying the variation of Eq. (B.33) to the generating functional with the
action in Eq. (B.35), we find

Ggp g (t = 1) = 804,90, G, (t — )= / dt'dt" GG, (t—1") G (" —t") G, (" —1).
(B.36)
Comparing Eq. (B.36) to Eq. (3.80) we can identify

T (w) < N°Gh, (B.37)

proving Eq. (3.81).

B.5 DIAGRAMMATIC CALCULATION OF PHOTON RETARDED GREEN’S FUNCTION

Here we show how to calculate the full retarded function by computing the photon
self energy using a diagrammatic approach [34]. The second order process due to
Hiy in Eq. (3.56) is the annihilation of a photon and creation of a magnon, followed
by the annihilation of the magnon and creation of another photon. This process is
shown in Fig. B.1 (a), where dashed lines represent photon propagation, solid lines
represent magnon propagation and vertices represent interactions governed by Hiy.
Accordingly Py and Ry are the propagators for the photon and magnon respectively
which were evaluated in Sec. B.3. The Feynman rules for our theory are straight

forward and we can simply read off
Py, = N,a?P} + Ry. (B.38)

The diagram of Fig. B.1 (a) is the only one allowed by our theory. At higher orders

we simply have multiples of the same diagram, as shown in Fig. B.1 (b). Thus the
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(a) P2 ————— e - ----
P, —e
+
(b) P4 -——o--0—o
+
P6 ce—o--0—o--0—o

Figure B.1: (a) The second order process due to Hj. A photon (dashed line) is
annihilated and a magnon is created followed by the annihilation of the magnon and
creation of another photon. (b) The higher order processes follow a geometric series,
allowing summation to obtain the full photon Green’s function. Figure modified from

Ref. [34].

diagram with 2n vertices is
Py, = Py (Nya2)" (PyRo)" . (B.39)

Summing all diagrams using a geometric series we find the full photon propagator in

the interacting theory,

1

P(w) = /dt (x(t)z(0)) e“* = Z Py (Nsa2)" (PyRo)" = [(PO)_1 — Nya2Ro] .

(B.40)
From Eq. (B.23) we see that
G% (W) = Py (w) + Py (—w) (B.41)
and therefore using Eq. B.26 we find
Py () ! R ! (B.42)
w)y=—"+ = :
0 w—w,+ 1.’ 07 o —w, +il,
Thus, combining Eq. (B.42) with Eq. B.41 we have
N,o? !
P = —we il - ——2 ¢ ) B.43
(w) (w We+ 1 w—wr—zfr> ( )
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and therefore we finally find the photon retarded function in the interacting theory

Ggr(w) =P (w)+ P (—w)

N,a? -1 N,a? -1
GR<W>:(M_%+@TC_$) _(wwe_m_¢) |

w — w, + 1, w~+ w, — I,

(B.44)
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CALIBRATION OF
TRANSMISSION/REFLECTION DATA

The majority of microwave transmission experiments performed in this dissertation
allowed direct calibration of the entire microwave transmission line. In this case a
routine calibration procedure was performed directly using the VNA. However in
certain instances the experimental setup may not facilitate this simple calibration
procedure. For example, if the microwave properties are measured using a microwave
generator and spectrum analyzer rather than a VNA | or if large standing wave modes
exist during reflection measurements, post experiment calibration of the data may be
necessary. In our case such a procedure was necessary for data collected using the
Bruker cavity, where the entire feedline leading from the waveguide to the cavity was
not accessible. In this appendix we describe such an approach based on Ref. [215],
which was applied to the reflection data from the Bruker cavity presented in Sec. 5.2.

A general complex S parameter can be described by the equation [185],

—iBw.S

5= (w—we) +ifw,’

(C.1)

so that |S|? has a Lorentz line shape.! Taking the rotating wave approximation and
the limit K — 0 in Eq. 3.34, which we derived for the phase correlation model, we
find exact agreement with Eq. C.1. Based on Eq. (C.1) plotting Re (S) versus Im (S)
should produce a circle, centred on the real axis, which intersects the real axis at

the origin and the resonance frequency w = w.. However experimental measurements

LOf course Si; and Sy will differ by an offset (as we found using the input-output formalism,
S11 = —1 4 Ss1), but this constant offset still leaves a Lorentz line shape and the calibration we
describe here applies in both cases.
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will not obey this ideal behaviour due to shifts induced by, for example, the detailed
nature of the feedline-cavity coupling, or potential cross talk. These effects could

shift both the origin and phase of the S parameter,
S — (S+ X)e*, (C.2)

where X represents a shift to S in the complex plane and ¢ is a phase shift which
rotates the circle. The influence of X and ¢ is highlighted in Fig. C.1 (a), where a
set of ideal spectra is shown by red squares and a set of realistic raw data is shown

by green circles.

To remove the effects of the shift and rotation we must calibrate the data. To
demonstrate how this is done we work with a set of typical microwave reflection data,
S11.- In addition to experiencing the phase shift ¢, realistic experimental data may
also have a travelling phase shift, due to the length of the feedlines. This results
in a constant linear shift in the microwave phase, as shown clearly by the green
curve in Fig. C.1 (d). In the complex plane such a travelling phase results in a
multivalued function for the microwave transmission/reflection parameter, as shown
by the green symbols in Fig. C.1 (b). To correct for this frequency dependent phase
shift we simply subtract the frequency slope of S1; away from the cavity resonance.
We can then correct for the shift X by performing a least squares fit to a circle, which
determines the centre position X, and subtracting this centre point from the data.
The last step is to rotate the spectra to correct for the shift ¢. Do do this we define
a reference point in the complex S;; plane, p,, which lies half way between the first
and last points on the S;; circle. Denoting the location of the first and last points as

p; and p; respectively, the reference point is therefore

P; — Py
2

Pret = +pf (C3)

As shown in Fig. C.1 (a) p, lies at an angle ¢ from the Re (S11) axis, and therefore
once we know p,.; we can determine ¢ and rotate our data by multiplying by e™*.
Fig. C.1 (b) shows the effect of this calibration procedure on the experimental data.
The green circles indicate the raw data, blue triangles show the data after correcting
for the linear phase shift resulting from the feedlines and the red squares show the
data after applying the rotation and shift correction. The effect of the calibration

is shown on |Sy;| and the phase of Si1, ¢11, in Fig. C.1 (¢) and (d) respectively. In
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Figure C.1: (a) The effect of a translation X and phase shift ¢ is illustrated. The
red squares indicate a set of ideal spectra that is unshifted, while the green circles
show the realistic raw data which would be observed. (b) The effect of microwave
calibration in the complex Si; plane. Green circles are typical raw reflection spectra,
blue triangles show the data after correcting for the travelling phase and the red
squares show the data after rotation and shift correction. (¢) The effect of microwave
calibration on the reflection spectra. The green and blue curves show the raw data
and data after correcting for the travelling phase, respectively. Note that these two
curves are identical as we plot the absolute value of the spectra here. The red curve
is the rotation and shift corrected spectra. (d) The effect of microwave calibration
on the reflection phase. The green curve is the raw data, which shows a large linear
phase shift. The blue curve shows the data after correcting for this travelling phase,
while the red curve shows the phase after rotation and shift correction.

panel (c), the raw data and the data after the linear correction are identical, as we
are plotting the absolute value and so the phase information is not relevant. However
the effect of the travelling phase can easily be seen by the slope of the green curve in
panel (d).
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LIST OF ABBREVIATIONS

In the table below we summarize abbreviations commonly used in this dissertation.

Abbreviation  Full Name

CMP Cavity-magnon-polariton
EP Exceptional point

Fe Iron

FMI Ferromagnetic insulator
FMR Ferromagnetic resonance
GdIG Gadolinium-iron-garnet
LLG Landau-Lifshitz-Gilbert
LNA Low noise amplifier

NM Normal metal

Pt Platinum

SSW Standing spin wave
VNA Vector network analyzer
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YIG Yttrium-iron-garnet
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LIST OF VARIABLES

In the table below we collect the definitions of some variables which are commonly
used in this dissertation. This list is in no way exhaustive, focussing instead on

notations which may become muddled due to other similarly defined variables.

Table E.1: List of commonly used, or easily confused, variables.

Variable Description

w Angular frequency of microwave field.

Angular frequency corresponding to saturation magnetization, M,

w.
" W = Y Mp.
Complex angular ferromagnetic resonance frequency, @, = w, —taw
WOy (Wr = w, —iaw, for w near w,). Controlled by static magnetic field,
O = @ (H).
Real part of the complex angular ferromagnetic resonance fre-
w.
" quency, w, = Re ().
Imaginary part of the complex angular ferromagnetic resonance fre-
Aw, quency, Aw, = Im(@,). This gives the frequency line width of
ferromagnetic resonance.
_ Complex angular cavity frequency, @, = w. — 1fw,. @, is a function
We

of the cavity height but is independent of the static magnetic field.
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W4

Awi

Aw,

Wgap

ﬁint

B ext

Br

160

Angular cavity resonance frequency, w. = Re (@,).

Line width of angular cavity resonance frequency, Aw. = Im (&..)

Complex angular frequency of hybridized spin-photon modes. @,
(w_) is the high (low) frequency branch. Controlled by static mag-
netic field, o = @y (H).

Field dispersion of the hybridized modes, given by the real part of
the hybridized complex angular frequency, wi (H) = Re (@4.).

Frequency line width of the hybridized spin-photon modes,
Awi (H) =Im ((Iji)

Complex hybridized angular “Kittel” frequency. In the limit of zero
spin-photon coupling, @, — ©,. @, is controlled by the angular

microwave frequency w.

Frequency dispersion of the hybridized mode, w, (w) = Re (@,).
Field line width of the hybridized mode, Aw, (w) = Im (@, ).

Rabi gap between the hybridized modes, wgap = (Wi — W_) |w, =, -

Gilbert damping of magnetostatic modes. a = Im (@,) /w.

Intrinsic damping of the microwave cavity. Determined by, for ex-

ample, material conductivity, surface roughness and shape.

Extrinsic damping of the microwave cavity. Determined by coupling

between microwave feedlines (or pins) and cavity.

Loaded cavity damping. 01 = Bint + Pext determines the experimen-

tal line width of the cavity mode.

Quality factor of cavity, Q@ = 1/26.

Cavity damping parameter. Notation used for simplicity when the
input and output ports are not explicitly needed. Experimentally

[ is equivalent to the loaded cavity quality, Gp.



Effective magnetization (saturation magnetization) which appears

in the Kittel equation.

Gyromagnetic ratio.

Net magnetization measured through SQUID magnetometry. In

our experiments M = M,.

Spin Hall angle which characterizes the efficiency of spin pumping.

Cone angle of FMR precession. All of our experiments were per-

formed at low microwave power, resulting in small ..

Angle between microwave and static magnetic fields. Used to con-

trol the coupling strength.
Ferromagnetic resonance field.
Ferromagnetic resonance line width.
External static magnetic field.
Microwave magnetic field.

Microwave transmission parameter.
Microwave reflection parameter.
Spectral function of microwave cavity.

Spectral function for microwave absorption by magnetization.

Dimensionless coupling strength. Defined for harmonic oscillator

model.

Coupling strength which defines the phase correlation between mi-
crowave field and current through Ampere’s law. Used in phase

correlation model. Dimensions of inverse metres.
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9n

|
q

|
Cl, 02

Coupling strength which defines the phase correlation between mag-
netization precession and current (voltage) through Faraday’s law.

Used in phase correlation model. Dimensions of metres.

Dimensionless coupling strength which defines wg,;, in phase corre-

lation model, K = /K, K..
Coupling rate with units of frequency.

Dimensionless coupling rate, g/w.

Cooperativity, which helps characterize strong versus weak cou-

pling, C' = g,/ap.
Cavity photon creation and annihilation operators.
Magnon creation and annihilation operators.

Bath photon creation and annihilation operators for port 1 (or port
c).

Bath photon creation and annihilation operators for port 2 (or port
d).

Creation and annihilation operators for the hybridized modes. Ob-

tained from a and b by a Bogoliubov transformation.
Dissipation rate of ¢ bath photons. Used in input-output formalism.

Dissipation rate of d bath photons. Used in input-output formalism.

Coupling rate of bath photons at port ¢ to cavity photons. Used in

input-output formalism.

Coupling rate of bath photons at port d to cavity photons. Used

in input-output formalism.
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