
Symmetry in Port-Labelled
Anonymous Networks

by

Yongzhen Ren

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

for the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

July 2021

Copyright © 2021 Yongzhen Ren

Thesis Advisor

Dr. Avery Miller

Author

Yongzhen Ren

Symmetry in Port-Labelled Anonymous Networks

Abstract

Our work investigates symmetry in a port-labelled anonymous network, a

relatively weak but yet useful model of computation in distributed computing.

In such a network, nodes have no identifiers, and for each node v, its inci-

dent links are labelled bijectively with the integers { 1, 2, . . . , deg(v) } called

‘ports’. Each node has access to its ‘view’, a mathematical object completely

representing the information that the node can learn from communicating

with its neighbours. The question that arises is to understand how many

nodes have their identities uniquely determined by such a view and what

parameters for the number of nodes sharing a similar view are possible.

This thesis provides a detailed survey in this area and addresses a number

of new questions (detailed in Chapter 3). Applications and related problems

of port-labelled anonymous networks are explained in Chapter 4. The new

results are presented in Chapters 5, 6, and 7. Some open problems are given

in Chapter 8 and Appendix B.

Keywords: Algorithm, Degree Tree, Distributed Computing, Graph Theory,

Multiplicity, Symmetricity, View

ii

Contents

Title Page i

Abstract ii

Contents iii

List of Figures vii

List of Tables x

List of Algorithms xii

Acknowledgements xiii

Dedication xv

1 Introduction 1

iii

2 Terminology and Preliminaries 6

2.1 Port-Labelled Anonymous Networks 7

2.1.1 Views . 10

2.2 From Multiplicity to Symmetricity 13

2.2.1 Preliminary Results About Symmetricity 14

2.3 Data Types . 18

2.4 Number-Theoretic Definitions 21

3 Problem Statements 22

4 Related Work 26

4.1 Anonymous Networks . 27

4.1.1 Views . 28

4.1.2 Distributed Computing Problems 29

4.1.3 Computable Functions and Memory Use 30

4.1.4 Advice . 32

4.1.5 Mobile Agents . 33

4.1.6 Families of Topology 35

4.2 Mathematical Techniques . 37

4.2.1 Graph Automorphism 37

4.2.2 Edge Labellings with a Sense of Direction 39

4.2.3 Incidence Colouring . 40

5 Producing Symmetry 43

iv

5.1 Labelling an Anonymous Network 44

5.2 {1, 2}-Factorable Graphs Under a Fully Symmetric Labelling . 46

5.3 The Multiplicity Gap for the Petersen Graph 54

5.4 Port-Labelling Complete Graphs 56

5.4.1 Factorizations of Complete Graphs 56

5.4.2 An Algorithm for Producing a Desired Multiplicity . . 57

5.5 Rooted Product . 69

6 Computing Symmetry 74

6.1 Computing Views . 75

6.2 Computing Multiplicities . 79

6.3 Degree Trees: Motivation and Notation 83

6.4 Some Results About Degree Trees 86

6.5 Computing and Comparing Degree Trees 93

6.6 An Upper Bound on Symmetricity 99

6.7 Symmetricity of Trees . 103

7 Producing Asymmetry 111

7.1 Asymmetric Partial Labellings 113

7.2 Three Cases of Step 3 . 118

7.2.1 Case 1 . 118

7.2.2 Case 2 . 118

7.2.3 Case 3 . 120

7.3 The Final Algorithm . 120

v

8 Future Work 122

Appendix A The Graph Construction 126

Appendix B Two Unsolved Cases 128

B.1 Biregular Graphs . 128

B.1.1 Designs . 132

B.1.2 Hypergraphs . 133

B.2 Non-{1, 2}-Factorable Regular Graphs 135

Bibliography 136

vi

List of Figures

2.1 A labelling on P5 . 10

2.2 〈G, f〉 and Tf(v1) . 12

2.3 A vertex-labelled graph, along with one of its subgraphs and

its only induced subgraph from { v1, v2, v3, v5 } 15

4.1 The Frucht graph . 38

4.2 All four edge labellings with a SoD 40

4.3 The configurations of three neighbouring incidences 41

4.4 A legal 5-incidence colouring and a port-labelling on the Pe-

tersen graph . 42

5.1 Creating an anonymous network 44

5.2 An example of a cubic graph that is not {1, 2}-factorable . . . 47

5.3 A visualization of lines 10 to 13 of Algorithm 5.3 52

5.4 A labelling on the Petersen graph whose multiplicity is 5 . . . 54

vii

5.5 The vertex-labelled complete graph K12 65

5.6 The partial labellings on three cliques of size four (Step 1) . . 66

5.7 The total labelling on a 1-factorization of G0,1 (Step 2) 66

5.8 The total labelling on a 1-factorization of G0,2 (Step 2) 67

5.9 The total labelling on a 1-factorization of G1,2 (Step 2) 67

5.10 Port-switching the vertices in VG0 (Step 3) 68

5.11 An illustration of G�R . 70

5.12 The rooted product of a port-labelled graph C4 and a port-

labelled rooted graph P3 . 73

6.1 The data changing in ν and ν ′ when a directed edge (ν, ν ′) in

a view is converted . 76

6.2 Two graphs G1 (left) and G2 (right) under a fully symmetric

labelling . 84

6.3 The view Tf(v1) and its corresponding degree tree DG(v1) . . . 85

6.4 The degree tree up to level 2 for a vertex from a regular graph 88

6.5 The difference between a 2-degree graph and a biregular graph 89

6.6 D(u) and D(v) at level 1 (Proposition 6.3) 91

6.7 A non-biregular graph with κ = 2 91

6.8 A graph G whose symmetricity is 1 100

6.9 Two 6-vertex graphs G1 and G2 102

6.10 Case 2, subcase (ii) of Lemma 6.3 104

6.11 The path between two vertices vr and v′r 106

viii

6.12 Two isomorphic subtrees with a bridge connecting two roots . 110

7.1 The port change of vunique after line 8 118

B.1 A failed attempt to create a graphic biregular graph 130

B.2 An example of Conjecture B.3 for a (2, 6)-biregular graph with

16 vertices . 132

B.3 A 3-uniform non-regular hypergraph with seven vertices and

four hyperedges . 134

ix

List of Tables

5.1 The adjacency matrix of the vertex-labelled graph G in Figure

2.2 . 45

5.2 The labelling matrix (representing the labelling f) in Figure 2.2 46

5.3 Four divisions of all regular graphs 49

6.1 The 2-dimensional array ATf 77

6.2 MD:V associating D with V . 97

x

List of Algorithms

5.1 Check if a regular graph is {1, 2}-factorable 49

5.2 Do a partial labelling on a 1-factor of a graph 50

5.3 Do a partial labelling on a 2-factor of a graph 51

5.4 Do a fully symmetric labelling on a {1, 2}-factorable graph . . 53

5.5 Return two neighbours of a vertex in a graph with the minimum

and maximum ports . 57

5.6 Switch the minimum and maximum ports of each vertex from

a vertex subset . 58

5.7 Port-label a complete graph totally whose multiplicity is d . . 62

5.8 Port-label a graph arbitrarily and totally 71

5.9 Return the rooted product of two port-labelled graphs 72

6.1 Generate the view of a vertex in a graph under a labelling . . 76

6.2 Fill ATf . 77

xi

6.3 Check if two views are similar 78

6.4 Return all integer factors of n 80

6.5 Compute the multiplicity of a graph under a labelling 81

6.6 Generate the degree tree of a vertex in a graph 93

6.7 Fill AD . 94

6.8 Assign its canonical name for a degree tree 95

6.9 Check if two degree trees are similar 96

6.10 Generate the degree tree collection D 96

6.11 Generate the degree tree vertex partition V 97

6.12 Generate D, V and MD:V altogether 98

6.13 Compute µ(G) . 101

7.1 Select V̂D from V . 114

7.2 Return NG(v,D) for a vertex v and a degree tree D 115

7.3 Do a partial labelling on the vertices from V̂D 116

7.4 Do an asymmetric partial labelling on a graph 117

7.5 Check if a graph with κ = 2 is biregular 119

7.6 Do an asymmetric partial labelling on any graph 120

xii

Acknowledgements

First and foremost, I would like to express my gratitude to my advisor

Dr. Avery Miller for his incredible patience and extensive expertise in both

distributed computing and graph theory. Although we did not meet face-to-

face for more than one year due to the COVID-19 pandemic, he still devoted

enormous time to assist me in finishing the thesis. I also took his course on

lower bounds and impossibility results back in 2019, and it turned out to be

rather quite profound — with his dry sense of humour and a right blend of

high teaching proficiency and Internet memes, it was much easier for me to

survive the journey.

I really appreciated the detailed thesis feedback from Dr. Karen Gunderson;

with her considerable effort, I formulated the solid mathematical arguments

in the thesis. As the other member of my thesis committee, Dr. Shahin

Kamali offered a set of valuable suggestion on improving the thesis; he shared

immense knowledge both on cutting-edge research of online algorithms and

xiii

oral presentation skills with me in his amazing lectures.

Dr. Parimala Thulasiraman, as the current Associate Head (Graduate)

for Department of Computer Science in the U of M, helped me overcome the

biggest crisis since I joined the U of M community. I discovered a new world

of parallel computing and high-performance computing due to her intensive

lectures, which expanded my horizons a lot.

Without consistent love from my parents, I would not have enough courage

to pursue the master degree in the first place. Whenever I felt upset about

my academic life, they video-called me immediately from mainland China,

delivered the warmest support to me and melted down the darkness inside me.

My cousin Qianyi “Lucy” Liu and her husband Xu Zhang were always here

for me when I was in need. Also, my kind-hearted landlady Hong “Sunshine”

Xia, a cheerful new grandma, invited me over for dinner occasionally.

Last summer, I spent plenty of quality time with Lei “Tina” Wang. May

she become a successful aerosol scientist and a happy wife one day, as she

wished all the time.

Finally, two albums Human and Outsider by Three Days Grace (3DG),

an Ontarian rock band, saved my boring life literally. Dr. Jordan B. Peterson,

a world-renowned clinical psychologist and an unbelievably popular YouTube

personality, rekindled my life and taught me how to act as a responsible man

in the modern Western society.

xiv

The thesis is dedicated to my beloved parents.

xv

This page is intentionally left blank.

1
Introduction

To define is to lose. The essence
of all things is the Nameless.
The Nameless is unknowable,
mightier even than Brahma.

Lord of Light
Roger Zelazny

For networks widely occurring in the real world, we design our connection

systems so that each node (a computer, a server, a mobile device, an unmanned

aerial vehicle, etc.) has an identity (ID) to distinguish itself from others in

the same network, represented by a 6-byte hardware-manufacturer-generated

MAC (Media Access Control) address burned into its Ethernet card or an

IPv4/IPv6 (Internet Protocol version 4/6) address assigned administratively

[49, pp. 23–24]. Along with such a digital label, these networks have a great

amount of outgoing/incoming ports as communication endpoints. Two core

communication protocols, implemented as the transport layer and comprising

1

2 Chapter 1: Introduction

the Internet protocol suite, both choose to use 16-bit unsigned integers

(thus ranging from 0 to 65535) as ports, respectively the connection-oriented

Transmission Control Protocol (TCP) and the connectionless User Datagram

Protocol (UDP) [83, pp. 453–454]. In terms of distributed computing research,

a network, often treated as a mathematical object called graph, is eponymous

if all nodes in it possess unique identifiers [74, p. 380]. In contrast, our work

concerns port-labelled anonymous networks, in which nodes have the same

identifiers or have no identifiers at all, but the ports at each node do have

identifiers [90, p. 70].

The importance of our research on properties of port-labelled anonymous

networks, especially their symmetry, analyzed by graph-theoretic methods,

consists of both practical and theoretical aspects.

In practice, the model simplifies network designs by avoiding complicated

MAC/IP addresses and leaving relatively short-length distinct ports only, in

order to improve network operational efficiency and rule out possible protocol

redundancy. Also, considering all other settings being equal, a port-labelled

anonymous network where every node runs its algorithms in the same way is

likely to be easier to troubleshoot than an eponymous one where all nodes

execute entirely different sequences of steps, depending on their identities.

Potentially saving resources (such as memory usage and process time) is

another focal point, embedded in nearly all areas of computer networks.

Occasionally, it is not economically feasible to equip every node with a

unique identifier, such as installing resource-limited temperature sensors for

Chapter 1: Introduction 3

an ever-moving bird flock [6, pp. 235–236]. In other contexts, the nodes

may want to refrain from revealing their identities out of privacy concerns

to enhance security in a sensitive environment. For instance, to opt out

of notorious ongoing global data surveillance programs run by government

intelligence agencies including, but not limited to, PRISM, Tempora and

XKeyscore1, the public may gradually switch to anonymity-based alternatives

of currently available Internet, such as The Onion Routing (Tor), the Invisible

Internet Project (I2P) [29], and various forms of anonymous P2P filesharing

systems [27].

However, we cannot simply remove identifiers from our networks, since the

underlying algorithms rely on them. This motivates us to try to understand

what is algorithmically possible or impossible in port-labelled anonymous

networks, i.e., the theoretical aspects. While plenty of researchers in the area

concentrated on feasibility results with regard to distributed problems running

on such a network, there is still much to understand about characterizing its

symmetry beyond two fundamental works from Yamashita and Kameda [90,91].

Network symmetry, often measured by ‘symmetricity’ (see Definition 2.17),

is a crucial factor when it comes to figuring out possibility/impossibility in

port-labelled anonymous networks (see Subsection 2.2.1). When running an

algorithm within a fixed amount of time, each node can only obtain a certain

amount of information about other nearby nodes in the network, represented

by ‘views’ (see Definition 2.11). If two nodes have the exact same information,

1See the website PRISM Break for more information.

https://prism-break.org/en/

4 Chapter 1: Introduction

they will perform the exact same actions — they are all algorithmically

indistinguishable in terms of deterministic distributed computing [8, p. 3].

If a node in such a network fails to distinguish itself from other nodes, the

algorithm performed by these anonymous nodes then is not able to accomplish

computationally important tasks, such as leader election (see Theorem 2.3),

edge election (see Theorem 2.4), vertex colouring, finding an independent set,

clustering etc.

Previous works have had to cope with this in some way: when designing

algorithms, the researchers are restricting their attention to networks where

the task is actually possible to solve (e.g., networks that are sufficiently

asymmetric); when proving impossibility results or lower bounds, their proofs

are building specific networks (or classes of networks) that have a certain

amount of network symmetry. Accordingly, as researchers consider certain

problems which they want to solve, they have to understand in which sce-

narios their problem is solvable or not solvable, and this all comes down to

symmetry. Unfortunately, many existing tools to study symmetry in graphs

are insufficient (see Section 4.2). Additionally, connecting the theoretical with

more practical considerations, engineering work has already begun on design-

ing debugging/monitoring platforms for anonymous distributed computing

systems like ViSiDiA [1].

The goal of this thesis is to study various problems arising from symmetry

in port-labelled anonymous networks. There are two types of results that

we are interested in, specified later in Chapter 3 based on the foundational

Chapter 1: Introduction 5

definitions from Chapter 2:

1. For a desired amount of symmetry, can we construct a port-labelled

anonymous network demonstrating it?

2. Given an (either totally or partially) port-labelled anonymous network,

can we characterize its symmetry?

2
Terminology and Preliminaries

Wisdom was not at the top of
the graduate school mountain,
but there in the sandpile at
Sunday school.

All I Really Need To Know I
Learned In Kindergarten

Robert Fulghum

In our work, we adopt and modify the naming conventions used by Ya-

mashita and Kameda [90], who inherited implicitly the similar notation [5].

We first present the port-labelled anonymous variant of the classical syn-

chronous message-passing model and define ‘multiplicity’ and ‘symmetricity’

in such a model, using ‘views’. Then we introduce several primitive/abstract

data types occurred later in the algorithms, ending the whole chapter with

several number-theoretic definitions.

The symbol � is placed to indicate the end of a proof. Text in boldface

indicates a new term definition or a reserved keyword in algorithms, while text

6

Chapter 2: Terminology and Preliminaries 7

in italics indicates a notion that needs to be emphasized. Unless otherwise

stated, all numbers below are natural numbers; all mathematical indices start

from 1 and all algorithmic ones start from 0. The subscripts may be dropped

when no ambiguity can arise.

2.1 Port-Labelled Anonymous Networks

In a synchronous message-passing model in distributed computing, a proces-

sor is an entity with unbounded computational power, i.e. it can compute any

function in negligible time. In each synchronous communication round, each

exchanges arbitrary-length binary strings bidirectionally with others to which

it is connected by a communication link, which is a fault-free bidirectional

wire connecting a pair of processors. A network is a combination of a set of

processors executing the same deterministic algorithm and their links.

Definition 2.1. A (finite) undirected graph G = (V,E) is an ordered pair,

where V is a set of n vertices and E is a set of edges (v, v′) between two

different vertices v and v′, with |E| = m. A graph containing no loops or

multiple edges is called simple. A graph is connected when there exists a

path1 between every pair of vertices in such a graph. A directed graph is

a graph where each edge is replaced by an edge with a direction from one

vertex to another.
1A path is a sequence of distinct vertices, with every consecutive pair in the sequence

forming an edge.

8 Chapter 2: Terminology and Preliminaries

All the graphs hereinafter have at least two vertices (n ≥ 2 and m ≥ 1),

and they are simple and connected. A network is modelled by a graph.

In what follows, the terms networks and graphs are used interchangeably.

Naturally, so do processors and vertices, and links and edges. In a typical

distributed computing configuration, each processor owns a unique identifier

(normally an integer or an alphabet letter), in order to compute values or

make algorithmic decisions. By contrast, processors in a network are all

anonymous provided that they do not possess such identifiers, or they all

have the same label; correspondingly a network with anonymous processors

is called a purely anonymous network. A purely anonymous network, i.e.

a graph without extra labels attached to vertices or edges, belongs to SB

class [65, p. 31] and is located at the bottom of the computability hierarchy of

weak models in distributed computing; this type of network cannot carry out

basic tasks. Instead, we focus on port-labelled anonymous networks, which is

a variant belonging to VVc class [65, p. 37] instead.

Definition 2.2. A neighbour of a vertex v in a graph G is a vertex adjacent

to v; the (open) neighbourhood of v is the set of all its neighbours excluding

v itself, denoted as NG(v).

Definition 2.3. The degree of a vertex v in a graph G is the size of NG(v),

denoted by deg(v); ∆G represents the maximum degree among all vertex

degrees in G.

Definition 2.4. A port label (or just port) of a vertex v is an integer

Chapter 2: Terminology and Preliminaries 9

attaching to one of the edges that v is incident on.

In our work, ports for a vertex v range from 1 to deg(v) by default.

Definition 2.5. A local labelling function fv on a vertex v of a graph G

is a bijection ψ : NG(v) → { 1, 2, . . . , deg(v) }, mapping v’s neighbourhood

to the set of its ports. If p is the port at vi’s end on the edge (vi, vj), then

fvi(vj) = p.

The definition of local labelling function allows two ports at the two

endpoints of an edge to be assigned independently.

Definition 2.6. A (port-)labelling on a graph G = (V,E) is a set of local

labelling functions for the vertices in G, denoted as f. That is to say, for a

graph G = (V,E), f = { fv | v ∈ V }.

A labelling function at a specific vertex v is total if all of v’s incident

edges have been mapped; a labelling f is total if every vertex in a graph has

an associated total labelling function. In contrast, a partial labelling f on a

graph is one that is not total. In our work, any labelling function must be

total; a labelling is assumed to be total, unless otherwise stated, since partial

labellings will be used as steps towards the construction of the total labelling

in our algorithms.

Example 2.1. In Figure 2.1, there is a path graph P5
2 under a labelling. The

elements of local labelling function fv3 are marked red: the vertex v3 connects
2A path graph Pn is a connected graph with two vertices of degree 1 and the other

n− 2 ones of degree 2, different from a path in a graph (see page 7).

10 Chapter 2: Terminology and Preliminaries

its two neighbours v2 and v4 via ports 2 and 1 respectively, i.e. fv3(v2) = 2

and fv3(v4) = 1.

v1

v2 v3 v4

v51 2 1 2 1 1 2 1

Figure 2.1: A labelling on P5

A port-labelled anonymous network 〈G, f〉 is a graph G under a la-

belling f. In such an anonymous network, a vertex may gather all available

information and transmits it through port p, including the port itself; corre-

spondingly, while receiving a message through port p′, a vertex is aware of p′.

It is simply referred to as anonymous networks or port-labelled graphs

in the rest of our work. As demonstrated in Figure 2.1, vertices in a graph

are occasionally labelled for descriptive purposes only, and such a graph is

called vertex-labelled — an algorithm being executed by the vertices does

not have access to such labels.

2.1.1 Views

We proceed to define the terms needed to understand views in such an

anonymous network.

Definition 2.7. A rooted graph is a graph G = (V,E) where one vertex

v ∈ V has been designated as the root.

Chapter 2: Terminology and Preliminaries 11

Definition 2.8. A (free) tree is a graph where any two vertices are connected

by exactly one path.

Every finite tree has n vertices and n− 1 edges.

Definition 2.9. The distance between two vertices v and v′ in a graph is

the number of edges in a shortest path connecting them, denoted as d(v, v′);

the level of a vertex v in a rooted tree whose root is vr is defined as d(vr, v).

Definition 2.10. An arborescence is a directed rooted tree where all its

edges point away from the root, i.e. where there exists a unique directed path

from the root to each vertex.

Every arborescence is a directed acyclic graph (DAG) but not vice versa.

The in-degree (resp., out-degree) of each vertex in a directed graph is the

number of directed edges pointing towards (resp., leaving from) it.

Definition 2.11. The view Tf(v) of a vertex v in a graph G under a labelling

f is a labelled arborescence with infinite levels, defined recursively as follows:

the root of Tf(v) is v itself; for each neighbour of v in G, Tf(v) contains a

vertex vi and a directed edge from v to vi with ports fv(vi) and fvi(v) at its

source and destination respectively; the vertex vi is the root of Tf(vi).

It should be stressed that view Tf(v) itself is directed, while the underlying

graph is undirected.

Example 2.2. On the left of Figure 2.2, the graph without red vertex labels

is a graph G under a labelling f. These additional labels just help us construct

12 Chapter 2: Terminology and Preliminaries

the view, but do not appear in the view itself. The view of a vertex v1 in G

is displayed on the right: the black-coloured vertex is the root of Tf(v1) and

the dashed boxes indicate the views from all v1’s neighbours appended to the

nodes at level 1 of v1’s view.

v1

v2

v3 v4

v5

1
1

4
1

3
1

2
1

2

2
...

1

1

2

1

3

1

4

1

1

1

2

2

1

2

1

3

1

4

2

2

Tf(v2) Tf(v5)Tf(v4) Tf(v3)

Figure 2.2: 〈G, f〉 and Tf(v1)

Definition 2.12 (Graph Isomorphism). Let G = (V,E) and G′ = (V ′, E ′) be

two graphs. G and G′ are isomorphic, if there exists a bijection ψ : V → V ′

such that (vi, vj) ∈ E iff (ψ(vi), ψ(vj)) ∈ E ′. Two directed graphs are

isomorphic if their underlying undirected graphs are isomorphic and are

oriented the same.

Definition 2.13 (View Similarity/Dissimilarity). Two views Tf and T ′f are

said to be similar if there exists a directed graph isomorphism between them,

preserving the roots and all edge labels — we then write Tf ≡ T ′f ; otherwise,

Tf and T ′f are dissimilar, written as Tf 6≡ T ′f .

Chapter 2: Terminology and Preliminaries 13

It is worth noting that two vertices v and v′ from different graphs can

have Tf(v) ≡ Tf(v′).

The view up to level ` for a vertex v in a graph G under a labelling f is

Tf(v) truncated to the first ` levels, denoted by T `f (v). For convenience, the

notation Tf(v) will refer to T n−1
f (v) from now on, since Norris [78] already

proved that Tf(v) ≡ Tf(v′) iff T n−1
f (v) ≡ T n−1

f (v′).

Definition 2.14. The set of all dissimilar views from a graph G under a

labelling f is denoted as Tf = { Tf(v) | v ∈ V }.

Definition 2.15. The set of all vertices with a view that is similar to Tf is

denoted as VTf = { v | Tf(v) ≡ Tf }.

2.2 From Multiplicity to Symmetricity

As a foundation of defining multiplicity, we start from Proposition 2.1 [90,

p. 72].

Proposition 2.1. For any graph G = (V,E) under any labelling f, the size

of VTf is the same for all Tf ∈ Tf.

In other words, for any graph with n vertices and any labelling f on it,

it is guaranteed that there exist fixed x, y ≥ 1 with xy = n such that there

are x dissimilar views in total and each dissimilar view is shared by exactly y

vertices, which gives rise to the subsequent definition.

14 Chapter 2: Terminology and Preliminaries

Definition 2.16. The multiplicity sf is the number of vertices sharing

similar views of a graph under a labelling f, defined as

sf = n

|Tf|
.

By definition, for any Tf ∈ Tf, we have |VTf | = sf. Using multiplicities, we

can now define the symmetricity of a graph.

Definition 2.17. The symmetricity σ(G) of a graph G is the largest mul-

tiplicity which can be achieved among all possible labellings on G, i.e.,

σ(G) = max { sf | f is a labelling on G } .

The symmetricity σ(G) is a property solely determined by the topological

structure of G itself, which indicates the maximum number of vertices in G

sharing similar views in the worst-case labelling.

Observation 2.1. For a path graph Pn,

σ(Pn) =

2, n is even

1, n is odd.

2.2.1 Preliminary Results About Symmetricity

Several additional graph-theoretic definitions are required first, before some

intriguing results are shown.

Definition 2.18. A graph G′ = (V ′, E ′) is a subgraph of another graph

G = (V,E) iff V ′ ⊆ V and E ′ ⊆ E. A subgraph G′′ = (V ′′, E ′′) is said to be

Chapter 2: Terminology and Preliminaries 15

vertex-induced, often simply called induced from G, if V ′′ ⊆ V , E ′′ ⊆ E

and E ′′ consists of all the edges in E both of whose endpoints are in V ′′.

Example 2.3. Figure 2.3 shows the difference between a subgraph and an in-

duced subgraph of the same graph with the same vertex subset { v1, v2, v3, v5 }.

The leftmost graph comprises five vertices and the graph in the middle is one

of its subgraphs with three edges. The subgraph induced by these vertices is

drawn to the right, and includes all six edges with both endpoints in that set.

v1 v2

v3v4

v5

v1 v2

v3

v5

v1 v2

v3

v5

Figure 2.3: A vertex-labelled graph, along with one of its subgraphs and its only
induced subgraph from { v1, v2, v3, v5 }

Definition 2.19. A graph is regular if each vertex in the graph has the

same degree; a regular graph with all vertices of degree k is k-regular. A

3-regular graph is also called cubic.

Definition 2.20. A factor of a graph G is a subgraph with the same vertex

set as G, also known as a spanning subgraph. A graph G is the sum of

factors if G is their edge-disjoint union, and the set of factors involved in

this sum is known as a factorization. A k-factor of a graph is a spanning

k-regular subgraph and a k-factorization is a partition of all edges in a

16 Chapter 2: Terminology and Preliminaries

graph into disjoint k-factors. A graph G is k-factorable if it admits a k-

factorization. An {x, y}-factorization is a partition of all edges into disjoint

factors where each factor is either an x-factor or a y-factor. A graph G is

{x, y}-factorable if it admits an {x, y}-factorization.

Notably, a 2-factor is a collection of disjoint cycles3.

Definition 2.21. A graph G = (U ∪ V,E) is bipartite, if for two disjoint

vertex sets U and V , every edge from E connects a vertex in U to one in V .

Now we have the next definition and the corresponding theorem [90, p. 78],

which relate an anonymous network’s symmetricity to the factorizations of

the underlying graph.

Definition 2.22. A graph G = (V,E) with n vertices satisfies the factor-

ization condition with an integer g, if there exists a disjoint partition for

vertex set V such that V = ⋃g
i=1 Vi with |Vi| = n/g, meeting both of the

following conditions:

1. For i ∈ { 1, 2, . . . , g }, the subgraph of G induced by Vi is {1, 2}-

factorable;

2. For i, j ∈ { 1, 2, . . . , g } (i 6= j), each bipartite graph (Vi ∪ Vj, E ∩

{ (vi, vj) | vi ∈ Vi, vj ∈ Vj }) is regular.

Theorem 2.1. For any graph G = (V,E),

σ(G) = n/min { g | G satisfies the factorization condition with g } .
3A cycle graph Cn is a 2-regular connected graph with n vertices.

Chapter 2: Terminology and Preliminaries 17

Let g = 1 in the theorem above, and we have Corollary 2.1.

Corollary 2.1. A graph G with n vertices is {1, 2}-factorable iff σ(G) = n.

Here are two results with regard to symmetricity [91, p. 90 and p. 92].

Lemma 2.1. No regular graph G with n vertices has σ(G) = n/2.

Theorem 2.2. For a graph G = (V,E) with |V | = n vertices and |E| = m

edges,

1. Determining if σ(G) = n or n/2 is solvable in O(m
√
n) time;

2. For any g ≥ 3, determining if σ(G) = n/g is NP-complete;

3. Determining if σ(G) = 1 is co-NP-complete.

Before showing two more theorems [90, pp. 74–75] on task solvability, we

need to introduce two classical distributed computing problems briefly. The

leader election (usually abbreviated to LE) is to elect a vertex v as the

leader after finite rounds, where v knows that it has been elected and other

n− 1 vertices are aware that they have not. Meanwhile, the edge election

is to select an edge e = (v, v′) in the sense that two vertices v and v′ know

the ports at each end of e and the rest of the vertices know that they are not

incident to e.

Theorem 2.3. LE is guaranteed to be solvable on a graph G iff σ(G) = 1.

Proof sketch. Each vertex can build its own view within n − 1 rounds [78],

and finds out others’ views using extra n−1 communication rounds. Then we

18 Chapter 2: Terminology and Preliminaries

determine the smallest dissimilar view (with respect to lexicographic order)

in such a graph. The view of vertex v up to level 2n − 2 is exactly the

information that v can acquire in 2n− 2 rounds of a deterministic algorithm.

In one direction, if there is a vertex with a dissimilar view after 2n− 2 rounds,

it can be elected as a leader using such an algorithm. In the other direction,

if no vertex has a dissimilar view after 2n− 2 rounds, then every vertex has

a “twin” that will output the same value — a leader cannot be elected in

2n− 2 rounds. �

Theorem 2.4. The edge election is guaranteed to be solvable on a graph G

iff one of the following conditions are held:

1. σ(G) = 1 or

2. σ(G) = 2 and there exists an edge (u, v) such that Tf(u) ≡ Tf(v) for

any labelling f with sf = 2.

2.3 Data Types

The primitive data types used in our algorithms include integers, Boolean

values (ones with two possible values True and False) and strings. Particularly,

a string is a fixed sequence of symbols from a fixed alphabet. For two strings

s and s′, the non-commutative operation s+ s′ is to return a string consisting

of the concatenation of s and s′; the comparison operation s = s′, when used

in conditional statements, returns a Boolean value based on whether s and s′

Chapter 2: Terminology and Preliminaries 19

are identical character-by-character.

The abstract data types4 listed below are central to build the algorithms

in Chapters 5, 6 and 7. The letter ê represents a generalized element in the

following part and N stands for the number of elements stored in each ADT.

Definition 2.23. A set is an ADT storing unique values without any par-

ticular order. For a set S, the operation ê ∈ S checks if S contains ê or not

and returns a Boolean value. The operation S ← S ∪ { ê } adds ê into S if ê

is not already in S. The size of S is returned by |S|.

We implement sets by applying the union-find data structure, since it can

achieve O(N) space complexity and O(α(N)) searching performance in the

worst case, where α(N) is the exceedingly slow-growing inverse Ackermann

function and hence treated as essentially constant [30, p. 585].

Definition 2.24. An array is an ADT containing a number of elements, each

accessed by specifying a non-empty sequence of indices. The dimension is the

number of indices needed to specify an element. For an array A, A[x, y, . . .]

accesses the element by sequence (x, y, . . .) and A[x, y, . . .]← ê writes ê into

A as the element that can be subsequently accessed using sequence (x, y, . . .).

For two arrays A and A′, the operation A← A′ updates the elements of A

with A′: for each at (x, y, . . .) in A, it is replaced with the one at the same

indices in A′, if there exists such one.
4An abstract data type (ADT) is a mathematical model for data types whose behaviours

(semantics) are defined by a set of values and a set of corresponding operations without
expatiating on the concrete representation of the data.

20 Chapter 2: Terminology and Preliminaries

All arrays are static, which means that the size of an array must be

declared in advance. Arrays here are implemented as standard arrays, with

O(1) storing/accessing time and linear O(N) space, even in the worst case.

Definition 2.25. A dictionary is an ADT consisting of key-value pairs

such that each key appears without repetition. For any key-value pair (êk, êv)

in MX:Y with key set X and value set Y , the operation MX:Y [êk] accesses the

value êv. The operation MX:Y [êk]← ê′v replaces the pair (êk, êv) with (êk, ê′v).

Dictionaries are powered by hash tables due to their outstanding average

performance: the lookup, insertion and deletion time is O(1) for average

cases and O(N) for the worst case, while its storage requirement is only

Θ(N) [30, pp. 253–285].

Definition 2.26. A list is a variable-length ADT representing a finite

sequence of values. A new element ê is appended to a list, right after the

last pre-existed ones. The other basic operations on a list include accessing

and deletion of a specific element.

A list here is implemented as a doubly linked list, so the running time

of appending is O(1), and Θ(N) time is required for deletion in the worst

case [30, p. 238].

Definition 2.27. A tree5 is a recursive hierarchical data structure composed

of a collection of nodes. There is exactly one designated root, and all other
5See Definition 2.8 for the graph-theoretic definition with the same name.

Chapter 2: Terminology and Preliminaries 21

nodes are non-root nodes. Each node ν has one variable that store its value,

which can be empty sometimes; meanwhile, ν has a children list Aν , which

contains references to all nodes that have ν as their parent. A node with an

empty children list is a leaf.

For simplicity, we may use its root to represent the whole tree, especially

in a return statement of the functions from our algorithms.

2.4 Number-Theoretic Definitions

We use x | y to represent that x is a divisor of y or y is a multiple of x; if x is

not a divisor of y, then x - y.

Definition 2.28. An integer n is prime if its only divisors are 1 and n.

Definition 2.29. The greatest common divisor (gcd) of a sequence

of two or more non-negative integers, which are not all 0, is the largest

positive integer that is a divisor of all elements in the sequence, denoted as

gcd(x, y, . . .).

3
Problem Statements

The power to question is the
basis of all human progress.

Indira Gandhi

In this chapter, we define five general problems by considering four pa-

rameters: a graph G, a labelling f, the number of vertices n and a divisor d of

n (1 ≤ d ≤ n and d | n), which is a potential candidate for the multiplicity sf.

When n is fixed, all possible values for d are ensured; n can also be derived

implicitly from f; n is dependent on the underlying graph G and so is f.

These five problems, generated via rearranging four parameters above,

can be classified into two types, as mentioned in Chapter 1:

1. Given some parameters, can we come up with examples of graphs and

labellings that have a certain amount of symmetry? (Problems 1, 2 and

3 below)

2. Given a graph (with a labelling), can we determine how much symmetry

22

Chapter 3: Problem Statements 23

it has? (Problems 4 and 5 below)

Both types are relevant to our understanding of when problems are solvable

or unsolvable in port-labelled anonymous networks.

Given n, provide a graph G with n vertices such that for all d | n, there

exists a labelling f on G where sf = d.

Problem 1

We show that there exists such a labelling on a graph whose multiplicity

is d, by later presenting a labelling scheme (Algorithm 5.7) on a complete

graph (see Definition 5.3) with a technique called ‘port-switching’ (defined

after Algorithm 5.5) in Section 5.4.

Given any d | n, provide a graph G with n vertices and a labelling f on

G such that sf = d.

Problem 2

If Problem 1 has a solution, then the same graph would solve Problem 2.

Given n, list all d | n such that there exists a graph with n vertices under

a labelling f, such that sf = d.

Problem 3

A solution to Problem 1 provides a solution to Problem 3: a complete graph

under a certain labelling can be used as the answer. Also in Section 5.5, we

provide an alternative way of generating other qualified graphs systematically.

24 Chapter 3: Problem Statements

Given a graph under a labelling f, compute sf.

Problem 4

An algorithm for calculating multiplicity is presented in Section 6.1.

Given a graph G, list all possible multiplicities sf and a corresponding

labelling f on G, for each sf.

Problem 5

Problem 5 can be split into three independent subproblems.

Given a graph, determine lower/upper bounds on its multiplicities.

Subproblem 1 of Problem 5

Firstly, the range of sf has to be decided. From Section 2.2, we already

knew that the maximum of all possible multiplicities for a graph G is defined

as the symmetricity σ(G), sf is always an integer for any labelling f, and 0 <

sf ≤ σ(G) holds for any graph G. With regard to the minimum multiplicity,

we demonstrate in Chapter 7 that for most classes of graphs G with more than

two vertices, there always exists a labelling f such that sf = 1 by applying

port-switching again. Due to its NP-completeness, shown in Theorem 2.2, it

is quite unwieldy to computing the symmetricity of a graph. Hence, a tight

enough upper bound for σ(G) (for its multiplicities as well) is sometimes

more appropriate in practice. In Section 6.6, we offer such a bound for by

Chapter 3: Problem Statements 25

introducing a new concept called ‘degree trees’ (see Definition 6.1), which are

basically unlabelled views.

Given a graph G with n vertices, determine if every d | n can be a valid

multiplicity sf for some labelling f on G.

Subproblem 2 of Problem 5

Given a graph G with n vertices, all divisors of n are potential values for

multiplicities sf. There are two mutually exclusive possible answers to this

problem:

1. At least one divisor less than σ(G) cannot be a valid multiplicity for

any labelling f;

2. All divisors of n less than σ(G) can be a valid multiplicity for some

labelling f.

Although Subproblem 2 of Problem 5 is not fully solved, in Section 5.3, we

show that the Petersen graph falls into the first case. Meanwhile, in Section

5.4, we show that the complete graph falls into the second one.

Given a graph, list all possible multiplicities and at least one of their

corresponding labellings.

Subproblem 3 of Problem 5

We have not answered Subproblem 3 of Problem 5 in this thesis, and we

leave that for future work.

4
Related Work

If you copy from one book, that’s
plagiarism; if you copy from
many books, that’s research.

Wallace Notestein

In this chapter, we summarize relevant research results from the literature,

and we present them in two major categories. The first category is distributed

computing in anonymous networks, including solvability/computability of

various classical problems, and for specific classes of graphs. The second one

includes results about a classical form of graph symmetry (‘automorphism’)

and two other types of edge labellings, which turn out to be quite different

from the port-labelling that we study in this thesis.

26

Chapter 4: Related Work 27

4.1 Anonymous Networks

The formal study of anonymous networks was started by Angluin [5], who set

out to study which network functions (such as constructing a spanning tree)

could be carried out by nodes without identities. More than a decade later,

Yamashita and Kameda [90] came up with a formal model and framework

for studying anonymous networks, and gave a full characterization of types

of networks where LE and map construction are solvable in a deterministic

fashion.

We restrict attention to deterministic algorithms rather than probabilistic

ones. It has been shown by Emek et al. [50] that randomized Las Vegas

algorithms (probabilistic but always correct) have the same computational

power as deterministic algorithms, as long as the deterministic algorithm is

executed after the nodes of the network have been labelled with a distance-2

colouring. Also, we assume that all anonymous networks henceforth are static

and fault-free, where links remain consistent during the whole execution time.

All the anonymous networks mentioned in the chapter are connected, while

disconnected ones are usually investigated for concurrent systems [68]. We

do not cover results about node-labelled networks, e.g., networks where each

node possesses a unique identifier, as well as networks where node labels are

not necessarily unique [24,38,48,74,88].

In the literature on anonymous distributed computing, three pillars of

models of computation are the message-passing model (bidirectional commu-

28 Chapter 4: Related Work

nication), the shared-memory model (using atomic read/write registers) and

the local computation model1. Other models that have been studied include

quantum networks [70] and anonymous radio networks [77]. We only consider

the message-passing model without bandwidth restriction.

4.1.1 Views

Klasing et al. [69] proved that, for some port-labellings, it is possible for each

node to distinguish its own view from other nodes by only considering its

truncated view up to level O(min(D, log n)), where is D the diameter of a

graph. However, looking at the truncated view up to level Ω(D log (n/D)) is

always sufficient [39,66].

Fraigniaud and Pelc [57] proved that if two nodes have similar views to

depth n̂− 1, then their whole views must be similar, where n̂ is the number

of nodes with dissimilar views (equivalently, n̂ is in essence |Tf| or the size of

its corresponding quotient graph [90]).

Within at most 2n rounds, Tani [84] proposed that a compressed view

(called folded view or f-view for shorthand) can be constructed with poly-

nomial O(∆mn3 log ∆) bit-complexity (the total number of bits transmitted);

there is also an algorithm for counting non-isomorphic f-views in an anony-

mous network in O(∆n5 log n) time complexity, working for any network

1Local computation in the context of anonymous networks is a general term indicating
that nodes initialized with the same state interact locally with graph rewriting/relabelling
rules on individual edges or star-shaped subgraphs, until no rules can be applied on any
node [12].

Chapter 4: Related Work 29

topology.

Although the view acts as the central concept among many of the papers

related to anonymous networks, there are still some exceptions that do not

apply views directly [26,34].

4.1.2 Distributed Computing Problems

Distributed computing problems were first considerably studied for networks

with distinct labels, and then later studied for their anonymous counterparts.

As we explained in Subsection 2.2.1, LE, the process of designating a sin-

gle node as the leader, may be one of the most fundamental problems in

distributed computing. With unlabelled nodes, LE is impossible to solve in

symmetric networks [5]. Attiya et al. [10] verified further that no deterministic

algorithm can break symmetry to solve LE in purely anonymous networks

within bounded time without error, even if it is given the number of nodes

as advice2. So it is necessary to create LE algorithms without depending on

node identities but exploit asymmetries of the network itself based on the

port-labelling or its topological structure. After LE is solved, it is possible to

assign short unique identifiers to the nodes of an anonymous network using a

distributed algorithm [58]. Fusco and Pelc [61] showed that the number of

rounds needed to declare LE infeasible is equal to Θ(D+ λ), irrespective of

which kinds of LE (strong or weak), where the level of symmetry λ is the

smallest level where some node has a dissimilar view when LE is possible,
2Its formal definition can be found in Subsection 4.1.4.

30 Chapter 4: Related Work

also called the election index [42].

Other distributed computing problems were examined including sorting

multisets [51], the k-grouping and pairing problem (a generalized version of

traditional LE) [23], vertex/set cover [7], and the enumeration problem (in

asynchronous anonymous networks) [14].

4.1.3 Computable Functions and Memory Use

In light of restricted computational power of an anonymous network, two

key problems aroused the interest of researchers: what kinds of functions are

guaranteed to be computable on such a network , and what is their complexity?

In terms of computing a function h, each node vi in an anonymous network

receives an input value Ii as an initial configuration; later all nodes halt and

reach a single final state, which is h(I1, I2, . . . , In).

The Boolean functions (the ones with {0, 1}-valued inputs and outputs)

such as AND and SUM, and -specific functions like orientation (where all nodes

agree on what is left/right consistently) are computable in a synchronous

anonymous n-node cycle with a total of O(n log n) messages in the worst case;

O(n2) messages are required under an asynchronous model [10]. The results

remain valid even if nodes know the precise structure of the network but do

not know their own locations within it. Later on, Attiya and Snir [9] proved

that an asynchronous deterministic algorithm can compute any computable

function with O(n log n) messages on average. The bit-complexity of com-

puting Boolean functions on arbitrary anonymous networks is polynomial

Chapter 4: Related Work 31

O(n3D∆2 log n) for computable Boolean functions; further, all symmetric

functions (the ones with commutative property) can be computed based on un-

der different activation models (synchronous, asynchronous and interleaved)

with bit-complexity O(n2D∆2 log2 n) [72, p. 230]. As a significant mile-

stone, Yamashita and Kameda [89] gave a characterization of asynchronous

anonymous networks in which any arbitrary function is computable on an

asynchronous anonymous network when each node is assumed to know the

topology. Halpern and Petride [63] generalized the works of Attiya and Snir [9]

and Yamashita and Kameda [89], and then borrowed a framework called

the knowledge-based (kb) program, to solve global function computation on

(edge-weighted) anonymous networks whenever possible.

In terms of memory use, Ando et al. [4] investigated space complexity of

LE in anonymous networks, and proved that Ω(∆ + log c) bits are necessary,

where c is the maximum size (in bits) of a message; O(n log c) bits are sufficient

to solve LE on arbitrary anonymous n-node networks. While most of the

literature about LE was concerned with time and message complexity, Fusco

and Pelc [60] instead showed that the minimum memory size at nodes in

an arbitrary anonymous network, whose nodes are identical automata, is

logarithmic, which is optimal for two versions of LE. Datta et al. [37] proposed

a self-stabilizing algorithm in a message-passing model for the weak LE in an

anonymous network with O(1) bits of memory per edge.

32 Chapter 4: Related Work

4.1.4 Advice

Advice in distributed computing is a binary string a priori shared by all

nodes in a network as global information and the length of the string is

the size of the advice; and the term informative labelling schemes is used

instead when different nodes get different information [62, p. 6]. In most

cases, there is a negative correlation between the size of the advice and the

running time of the algorithm (called tradeoff), i.e., the more information

given, the less allocated time needed. Following a characterization of four

types of initial information about the attributes of an anonymous network [90],

Sakamoto [81] built up a computational hierarchy for even more types of

initial conditions given to all nodes and a transformation algorithm from

one to another. Glacet et al. [62] figured out the tradeoff between time

and information of LE when it comes to anonymous trees. More recently,

Dieudonné and Pelc [42] aimed at establishing tradeoffs between the allocated

time and the amount of information given as advice for an anonymous network

where LE is actually possible to solve.

When it comes to the classic consensus problem, Fusco and Pelc [59] worked

on its communication complexity instead: without knowing the topology

structure, an optimal consensus algorithm on anonymous networks may use

O(n2) messages; once the topology is known by all nodes (provided as advice),

it drops to O(n3/2 log2 n).

Chapter 4: Related Work 33

4.1.5 Mobile Agents

A mobile entity/agent/robot/walker/automaton is an autonomous

movable object in a network. When there are multiple agents in a network,

they are often considered to be identical (i.e., mutually indistinguishable).

Since a mobile-agents algorithm and a traditional message-passing algorithm

are proved to be computationally equivalent [11, 25] and Das et al. [35] built

the computational equivalence between them by letting a mobile-agents algo-

rithm simulate the (fault-tolerant) execution of a message-passing algorithm,

it can be possibly extended on anonymous networks to the topology recogni-

tion, the naming problem, the spanning tree construction, etc. Even LE for

anonymous asynchronous agents is possible [41].

Map drawing/construction, also called topology recognition (deterministi-

cally finding an isomorphic copy of it including port-labelling), by a mobile

agent is infeasible unless the anonymous network is a tree, therefore extra

advice is of necessity and its minimum size is Θ(msf) [40]; this result also holds

even under the assumption that a stationary token is fixed at the starting

node of the agent. In a model where each node contains a limited-size bulletin

board, it is possible for p identical anonymous agents to construct a labelled

map when gcd(n, p) = 1 and the value of n or p is provided as advice [33].

The problem of searching and exploring an unknown environment is a

principal problem with applications ranging from robot navigation to searching

the Internet. In such a problem, a mobile agent has to visit all nodes and

traverse all edges. Exploration of anonymous networks is possible in trees, but

34 Chapter 4: Related Work

otherwise is only possible if the agents are allowed to mark the nodes in some

way [33]. In order to perform anonymous graph exploration, we have to allow

non-terminating algorithms [44] or use a variant of the problem to ask it to go

back to a marked starting position [22]. Reingold [80] proved that deterministic

exploration of arbitrary anonymous networks can be performed in log-space

with the help of universal traversal (exploration) sequences, while an agent

is equipped with O(log n) bits of memory. If there are no marks/tokens left,

then a mobile agent cannot achieve exploration and stop at the last node. A

finite automaton using three states can perform a periodic graph exploration

on a port-labelled network within 4n− 2 rounds, independently of its starting

position and initial state [67]. For an oblivious one (using only one state),

the period is expanded up to 10n if right-hand-on-the-wall walk is involved

and starting the exploration by the edge with port 1 is required [47].

The mobile-agents rendezvous problem (two anonymous mobile agents

navigate synchronously in an anonymous network and have to meet at a node,

using a deterministic algorithm) has been studied as a symmetry breaking

task. The information gathered by a mobile agent traversing an anonymous

graph, which does not have the ability to write to its environment, is simply

a subtree of the view from its starting node. Hence, for example, rendezvous

of deterministic agents is only possible if they start from positions with

different views. For anonymous networks, rendezvous is deterministically

achievable by two identical mobile agents when they are allowed to leave a

token to mark the nodes they stand on currently, even when some tokens

Chapter 4: Related Work 35

may disappear unexpectedly and without knowing the topology [36]. The

deterministic rendezvous problem is known to be not easier than graph

exploration [32]: two identical anonymous mobile agents must be equipped

with Θ(log n) memory bits regardless of the delay between the starting times

of the agents, in order to solve deterministic rendezvous on arbitrary feasible

n-node networks. Another way of breaking symmetry, available even when

agents are anonymous, is by exploiting either non-symmetries of the network

itself, or the differences of the initial positions of the agents. It is known

that agents can always meet if their initial positions are non-symmetric, and

that if they are symmetric and agents start simultaneously then rendezvous

is impossible. Even with arbitrary start-up times, and in the case where

the agents have unique identifiers, rendezvous is solvable on any anonymous

n-node tree with O(n+ log ς) steps for both agents, where ς is the smaller of

the two identifiers [79], and Pelc also showed the optimal cost on cycles.

4.1.6 Families of Topology

Many papers started studying distributed computing problems by first consid-

ering fixed-sized anonymous cycles. Diks et al. [45] proved that the anonymous

wireless and hardware cycles have the same computational power for Boolean

functions. Flocchini et al. [52] solved the sorting and LE in anonymous

asynchronous cycles.

Distance-regular graphs contains complete bipartite graphs, hypercubes

etc. If anonymous networks are distance-regular, the bit-complexity of com-

36 Chapter 4: Related Work

puting Boolean functions on them is then improved to O(nD∆ log n) [72,

pp. 232–234]; for an unoriented hypercube network, there is an algorithm with

bit-complexity O(n3 log4 n) that computes Boolean functions [72, pp. 223–226].

There exists a broadcast algorithm, that works in anonymous hypercubes

which use only O(n) messages of size O(log n) [43].

There is no deterministic distributed verification algorithm on anonymous

tori [82]. The bit-complexity of computing Boolean functions is O(n
√
n) on

an anonymous
√
n-by-

√
n-torus [13]; with each node knowing the topology

and the size of the torus as advice, there is a broadcast algorithm using

2n + O(
√
n) messages and a lower bound of 1.04n − O(

√
n) messages was

given [46]. There also exists an LE algorithm using Θ(n) messages on both

anonymous tori and chordal rings [73].

Every function on a %-dimensional n-node grid/mesh with boundary

connections can be computed with bit-complexity O(n1+1/%) [13]. Kranakis

and Krizanc [71] presented a group-theoretic characterization of computable

Boolean functions on an anonymous Cayley network (many network topologies,

including hypercubes, cycles, tori, stars, pancakes, bubble-sort networks etc.,

can be obtained by different choices of groups and generating sets in Cayley

graphs) and a complexity bound for its bit-complexity as well, along with an

efficient algorithm.

Chapter 4: Related Work 37

4.2 Mathematical Techniques

In this section, we outline three previously-known tools for describing network

symmetry, and we differentiate them from the concept of ‘port-labellings’

used in the remainder of this thesis.

4.2.1 Graph Automorphism

In graph theory, symmetry is often studied using graph automorphisms. The

set of automorphisms characterizes the symmetry of a graph, seems related

to the set of dissimilar views, as we defined previously.

Definition 4.1. An automorphism of a graph G = (V,E) is a graph

isomorphism with G itself, that is, a bijective mapping ψ : V → V such that

the edge (u, v) ∈ E for u, v ∈ V iff the edge (ψ(u), ψ(v)) ∈ E. The set of G’s

all distinct automorphisms is denoted as Aut(G).

It appears that there are relationships between the symmetricity of a

graph and its automorphism: for example, for any graph G with σ(G) = 2,

there exists a fixed-point-free automorphism on G. They are however quite

independent, since graph automorphism only considers vertex-labelled graphs

with no port labels. The following two propositions were proved by Yamashita

and Kameda [90, p. 86], and these propositions show that graph symmetry

according to symmetricity σ(G) can be rather different from |Aut(G)|.

Proposition 4.1. For any star graph Sn3 with at least three vertices in total,
3A star graph Sn is a tree of n vertices with one vertex having degree n− 1 and the

38 Chapter 4: Related Work

σ(Sn) = 1. Meanwhile, |Aut(Sn)| = n! for n ≥ 2.

Definition 4.2. A bridge is a single edge whose deletion disconnects a

connected graph, and increases the number of its connected components4.

Equivalently, an edge is a bridge iff it is not contained in any cycle. A graph

is bridgeless if it contains no bridges.

Proposition 4.2. For any cubic bridgeless graph G with n vertices, we

have σ(G) = n; however, there exists a cubic bridgeless graph G′ having

|Aut(G′)| = 1.

Example 4.1. The Frucht graph G in Figure 4.1, cubic and bridgeless, has

|Aut(G)| = 1 but σ(G) = 12, which instantiates Proposition 4.2.

Figure 4.1: The Frucht graph5

others having degree 1.
4A connected component is a maximal connected subgraph.
5The drawing was originally plotted by Dr. David Eppstein in the Wikipedia entry

Frucht graph and modified to fit the thesis style.

https://en.wikipedia.org/wiki/Frucht_graph

Chapter 4: Related Work 39

4.2.2 Edge Labellings with a Sense of Direction

Informally speaking, a sense of direction (SoD) means that each vertex v

can determine whether or not two different walks6 starting at v (given by

sequences of port labels) end at the same vertex. The formal definition of

SoD and the classification of four different classes of that were first posed

by Flocchini et al. [53] and the group-theoretic alternative definition was

provided by Tel [85, p. 54]. It is a helpful global property since a network with

SoD is strictly more powerful than a network where each vertex is given the

entire topology as advice [56]. An edge labelling of an underlying graph based

on a SoD bears a resemblance to our port-labelling. Such an edge labelling is

minimal if it only uses in total ∆ different ports for all vertices [54, p. 30].

Example 4.2. The first three labellings in Figure 4.2 all possess a SoD.

The leftmost edge labelling is a legal but not minimal edge labelling with a

SoD. It uses eight different ports, ranging from 1 to 8, while ∆ = 2. The

second and third one are both minimal edge labellings, although the third

one is also a total port-labelling with multiplicity 1 as well. The major

difference between them is that for an edge labelling, its labelling function

can be an injective mapping instead of a bijective one, a port on a vertex v

larger than deg(v) is allowed. Compared to that, ours are much stricter and

offers less flexibility in terms of distinguishing vertices from one another in

an anonymous network. In the context of ‘backward SoD’, computationally
6A walk in a graph is a finite alternating sequence of edges where the endpoint of one

edge is the starting point of the next edge.

40 Chapter 4: Related Work

equivalent to SoD [55], in such an edge labelling, some vertices can have

duplicated ports, as demonstrated in the rightmost one.

1 2

3

4

56

7

8

3 1

3

1

32

3

2 1

2

3 1

2

1

22

1

2 1

3

2 2

2

1

11

1

2

Figure 4.2: All four edge labellings with a SoD

4.2.3 Incidence Colouring

In graph theory, incidence colouring was introduced by Brualdi and Massey

[18], which seems to have connections with what we study in the thesis but is

based on different motivations.

Definition 4.3. An incidence of a graph G = (V,E) is defined as a pair

〈v, e〉 where v ∈ V is an endpoint of e ∈ E. Two incidences 〈v1, e1〉 and

〈v2, e2〉 are said to be neighbouring if one of the following holds:

1. v1 = v2 and e1 6= e2;

2. e1 = e2 and v1 6= v2;

3. e1 = (v1, v2), e2 = (v1, v3) and v2 6= v3.

Example 4.3. Figure 4.3 contains configurations of neighbouring incidences

associated with the three cases of Definition 4.3, in order from left to right in

order. A star beside an edge closest to a vertex represents an incidence.

Chapter 4: Related Work 41

v1

?
e1

?
e2 v1 v2

? ?e1

v1

v2 v3
?
e1

?
e2

Figure 4.3: The configurations of three neighbouring incidences

Definition 4.4. Let ι(G) be the set of all incidences of a graph G. An

i-incidence colouring of G is a function mapping ι(G) to { 1, 2, . . . , i } such

that each neighbouring incidence is mapped to a distinct value.

Example 4.4. Figure 4.4 validates a legal 5-incidence colouring (left) and

a port-labelling (right) of the Petersen graph. Noticeably, the labels whose

ends are vertex v (filled in black) do not necessarily start from 1 and labels

larger than deg(v) are allowed in such a colouring. According to Definition

4.3, any edge here cannot have the same label on its two ends. The vertex

v′ (filled in black) in the right-hand graph is incident to 3 edges with the

same ports on their both ends, which is different from its counterpart in the

left-hand graph.

42 Chapter 4: Related Work

v

1

4

3

5

1 4

5

1

4

2
3

4

2
1

2

4

3

1

3
21

5
3

1

45

3

4
5

2

v′

2

1

3

2

3 2

1

1

3

3
1

2

2
1

1

2

3

2

2
21

3
1

1

33

2

3
1

3

Figure 4.4: A legal 5-incidence colouring and a port-labelling on the Petersen
graph

5
Producing Symmetry

Tyger Tyger burning bright,
In the forests of the night:
What immortal hand or eye,
Dare frame thy fearful
symmetry?

The Tyger
William Blake

The goal of this chapter is to devise a method to port-label graphs to

produce a desired multiplicity. In Section 5.2, we demonstrate how to port-

label any {1, 2}-factorable n-vertex graph so that the resulting multiplicity

is n. Next, in Section 5.3, we provide an example of a regular graph with

symmetricity n such that multiplicity d is not attainable for some d | n. In

Section 5.4, we solve Problem 1 by showing, for any d | n, how to port-label

the complete graph with n vertices such that the resulting multiplicity is d.

Note that this immediately provides a solution to Problems 2 and 3. Finally,

43

44 Chapter 5: Producing Symmetry

in Section 5.5, we provide a method based on rooted graph products for

generating additional examples that solve Problems 2 and 3.

5.1 Labelling an Anonymous Network

In this section, we discuss the process of taking an arbitrary graph G and

assigning a labelling. One approach is to label ports from a local perspective.

Each vertex v assigns port labels to each incident edge with a distinct integer

from { 1, 2, . . . , deg(v) } and without any knowledge about the graph other

than its own degree, which generates an arbitrary labelling. Another approach,

which we will take in this thesis, is to label ports from a global perspective.

To avoid ambiguity when describing the labelling of a graph, we first assign a

unique identifier in the range
{
v1, v2, . . . , v|V |

}
to each vertex. This allows

us to fully represent the labelling using a matrix (we elaborate on this below).

After the port labels have been assigned, the graph is made an anonymous

network by simply removing the vertex labels, or, by blocking each vertex’s

access to its own vertex label. Figure 5.1 demonstrates the above process.

Label vertices−−−−−−−→

v1 v2

v3v4

Label ports &−−−−−−−−→
Remove labels

3 2

1

2

12

1

1 2

3

Figure 5.1: Creating an anonymous network

Chapter 5: Producing Symmetry 45

Definition 5.1. The adjacency matrix of a graph is a square (0, 1)-matrix

with rows and columns labelled by vertices, where 1 is in row vi and column

vj when pairs of vi and vj are adjacent, and 0 when there is no edge between

vi and vj.

Extending the adjacency matrix idea, we define the labelling matrix of a

labelling on a graph.

Definition 5.2. The labelling matrix of a labelling on a graph is a square

matrix with rows and columns labelled by vertices, where an outgoing port p

on the edge from vi to vj (i.e. p = fvi(vj)) is in row vi and column vj, and 0

if no edge exists.

Example 5.1. In Table 5.1, we provide the adjacency matrix of the vertex-

labelled graph G in Figure 2.2 on page 12 (reproduced here as a margin note),

which is symmetric. In Table 5.2, we give the corresponding labelling matrix,

which we note is asymmetric.

v1

v2

v3 v4

v5

1
1

4
1

3
1

2
1

2

2

Vertex vi

Vertex vj v1 v2 v3 v4 v5

v1 0 1 1 1 1
v2 1 0 1 0 0
v3 1 1 0 0 0
v4 1 0 0 0 0
v5 1 0 0 0 0

Table 5.1: The adjacency matrix of the vertex-labelled graph G in Figure 2.2

The labelling matrix on its own is sufficient to completely describe an

anonymous network, which makes them useful in our algorithm implementa-

46 Chapter 5: Producing Symmetry

Vertex vi

Vertex vj v1 v2 v3 v4 v5

v1 0 1 4 3 2
v2 1 0 2 0 0
v3 1 2 0 0 0
v4 1 0 0 0 0
v5 1 0 0 0 0

Table 5.2: The labelling matrix (representing the labelling f) in Figure 2.2

tions. Both the adjacency matrix and the labelling matrix of a vertex-labelled

graph with n vertices are treated as n-by-n arrays in all the algorithms of

our work. Although a labelling is a set containing local labelling functions by

Definition 2.6, we implement it using a labelling matrix. The notation fvi(vj)

in the code is equivalent to accessing the entry in row vi and column vj of a

labelling matrix.

5.2 {1, 2}-Factorable Graphs Under a Fully

Symmetric Labelling

If a total labelling on a graph G with n vertices has multiplicity n, then we

say that it is fully symmetric. In this section, our goal is to provide an

algorithm that will label the ports of any {1, 2}-factorable graph such that

its multiplicity is n, or in a fully symmetric way. According to Corollary 2.1,

a fully symmetric labelling can be achieved only on a {1, 2}-factorable graph,

so the remainder of this section focuses only on such graphs.

In the early stages of our work, we conjectured that all regular graphs

Chapter 5: Producing Symmetry 47

could be port-labelled in a fully symmetric way, but it turns out that this

is not the case. This motivated us to investigate the relationship between

regular graphs and {1, 2}-factorable graphs. A {1, 2}-factorable graph must

be regular (since it is the sum of 1-regular and 2-regular spanning subgraphs),

but a regular graph is not necessarily {1, 2}-factorable: the example in Figure

5.2 is the smallest cubic graph without 1-factors or 2-factors [16, p. 417; 87],

thus being not {1, 2}-factorable.

Figure 5.2: An example of a cubic graph that is not {1, 2}-factorable

For a regular graph of even degree, it is {1, 2}-factorable owing to Theorem

5.1 below.

Theorem 5.1 (Petersen’s 2-Factor Theorem (1891)). A graph is 2-factorable

iff it is regular of even degree.

When considering a regular graph with odd degree, whether or not it is

{1, 2}-factorable solely depends on the existence of one 1-factor.

48 Chapter 5: Producing Symmetry

Corollary 5.1. For a k-regular graph G of odd degree, G has i edge-disjoint

2-factors iff G has a 1-factor, where k = 2i+ 1 and i ≥ 1.

Proof. The proof consists of two parts.

The “if” part. We remove such a 1-factor from G to obtain a new graph

G′, decreasing each vertex’s degree by one. Now G′ is regular of even degree,

thus being 2-factorable according to Theorem 5.1.

The “only if” part. We remove i edge-disjoint 2-factors from G, making

all the vertices become degree 1 — the leftover part must be a 1-factor.

�

Table 5.3 defines a partition of all k-regular graphs into four divisions,

based on the existence of 1-factors and the parity of their degree. All the

graphs from division I, II and III comprise {1, 2}-factorable graphs and Figure

5.2 on page 47 is an example of division IV. Besides, a regular graph with

an odd n (and an even k) belongs to the set of graphs in division II since

1-factors can only exist in a graph with an even n by definition; a complete

graph Kn with an odd n is clearly one of them. The graphs from division I

and II altogether are equivalent to 2-factorable ones in light of Theorem 5.1.

On the other hand, the 1-factorable graph is a proper subset of division I

and III. For instance, a complete graph Kn with an even n (and an odd k)

falls into division III and is 1-factorable; in contrast, the Petersen graph is

in division III but not 1-factorable. A cycle graph Cn with an even n (and

Chapter 5: Producing Symmetry 49

an even k) is 1-factorable from division I. There also exist non-1-factorable

k-regular n-vertex graphs with at least one 1-factor (see the construction in

Appendix A).

Degree
1-Factor With Without

Even I II
Odd III IV

Table 5.3: Four divisions of all regular graphs

The function If12Factorable from Algorithm 5.1 is used to check

whether a regular graph is {1, 2}-factorable or not (applied later in Algorithm

7.4 from Section 7.1): if each vertex has the same degree and the degree

of an arbitrary one is even, then it is 2-factorable (by Theorem 5.1); if

its degree is odd, we then examine whether the graph G contains at least

one 1-factor (according to Corollary 5.1). For the existence of 1-factors,

we apply the function IfContain1Factor (in line 6), which is a modified

matching algorithm implemented by Micali and Vazirani with time complexity

O(m
√
n) [76] (their algorithm was also applied in the proof of Theorem 2.2).

Algorithm 5.1 Check if a regular graph is {1, 2}-factorable

Require: G is a regular graph
1: function If12Factorable(G)
2: d← the degree of an arbitrary vertex in VG
3: if d mod 2 = 0 then
4: return True
5: else
6: if IfContain1Factor(G) then

50 Chapter 5: Producing Symmetry

7: return True
8: else
9: return False

10: end if
11: end if
12: end function

To conclude this section, we provide a systematic approach in Algorithm

5.4 to generate a fully symmetric labelling on any {1, 2}-factorable graph

with two helper functions from Algorithms 5.2 and 5.3.

The function PortLabel1Factor in Algorithm 5.2 assigns the two ports

of each edge in a 1-factor GF of a graph G to integer p that was provided as

a parameter. In most cases, GF is disconnected, but it is still passed as one

adjacency matrix. Line 6 writes p into the entry in row vi and column v of f.

Algorithm 5.2 Do a partial labelling on a 1-factor of a graph

Require: GF is a 1-factor of a graph G and 1 ≤ p ≤ ∆G

1: function PortLabel1Factor(GF , p)
2: n← |VGF |
3: f← an empty 2-dimensional n-by-n array
4: for all vi ∈ VGF do
5: v ← the only neighbour of vi I deg(vi) = 1
6: fvi(v)← p

7: end for
8: return f

9: end function

The second helper function is the function PortLabel2Factor in

Algorithm 5.3. After it is invoked with parameters GF and p, all the edges

Chapter 5: Producing Symmetry 51

of a 2-factor GF are port-labelled with p and p+ 1 at two ends respectively.

Again, a 2-factor of a graph may contain several disconnected cycles. The

variable traversed in line 2 is initialized to be empty (represented by the

symbol ∅) and keeps tracking the vertices whose ports were assigned already.

The code in lines 10 to 13 updates the values in f and is exemplified in Figure

5.3, where the arrows indicate the labelling orientation in the next iteration

and vertex vi (in black) is both the starting point and later the ending point.

In line 14, the new variable vs is the candidate for the next round of the

labelling. After a new edge is port-labelled, we update vs with the waiting-

for-port-labelling neighbour in line 21. When the break statement in line 22

is encountered, the for loop is terminated immediately and the control of the

program is passed to the first statement after the loop, which is line 24.

Algorithm 5.3 Do a partial labelling on a 2-factor of a graph

Require: GF is a 2-factor of a graph G and 1 ≤ p ≤ ∆G

1: function PortLabel2Factor(GF , p)
2: traversed ← ∅
3: n← |VGF |
4: f← an empty 2-dimensional n-by-n array
5: for all vi ∈ VGF do
6: if vi /∈ traversed then I A new cycle subgraph

appears
7: traversed ← traversed ∪ { vi }
8: v′ ← one neighbour of vi
9: v′′ ← the other neighbour of vi I deg(vi) = 2
10: fvi(v′)← p

11: fv′(vi)← p+ 1
12: fv′′(vi)← p

52 Chapter 5: Producing Symmetry

13: fvi(v′′)← p+ 1
14: vs ← v′

15: while vs /∈ traversed do
16: traversed ← traversed ∪ { vs }
17: for all vj ∈ NGF (vs) do
18: if vj /∈ traversed then
19: fvs(vj)← p

20: fvj(vs)← p+ 1
21: vs ← vj

22: break
23: end if
24: end for
25: end while
26: end if
27: end for
28: return f

29: end function

vi

v′ v′′

.

p

p+ 1 p+ 1
p

Figure 5.3: A visualization of lines 10 to 13 of Algorithm 5.3

With two building blocks above, we then set up an algorithm for doing

a fully symmetric labelling on a {1, 2}-factorable graph. The parameter p

in Algorithm 5.4 line 1 is the smallest port to use in the labelling. When

constructing a fully symmetric labelling for a {1, 2}-factorable graph G, we

would call the FullySymmetricLabel function with parameter p = 1. The

Chapter 5: Producing Symmetry 53

function FactorizeGraph (by Meijer et al. [75]) in line 5 takes the graph

G as an argument and decomposes it into a list of 1-factors and 2-factors

deterministically.

Algorithm 5.4 Do a fully symmetric labelling on a {1, 2}-factorable graph

Require: G is a vertex-labelled {1, 2}-factorable graph
1: function FullySymmetricLabel(G, p)
2: n← |VG|
3: f← an empty n-by-n array
4: factorization ← an empty list
5: factorization ← FactorizeGraph(G)
6: for all GFi ∈ factorization do
7: v ← an arbitrary vertex in VGFi
8: if deg(v) = 1 then I GFi is a 1-factor
9: f← PortLabel1Factor(GFi , p)
10: p← p+ 1
11: else I GFi is a 2-factor
12: f← PortLabel2Factor(GFi , p)
13: p← p+ 2
14: end if
15: end for
16: return f
17: end function

54 Chapter 5: Producing Symmetry

5.3 The Multiplicity Gap for the Petersen

Graph

Here we use the Petersen graph to show that Problem 1 is not trivial, since

there exists at least one n-vertex graph such that for some d | n, d cannot be

its valid multiplicity.

The Petersen graph is a {1, 2}-factorable cubic graph with 10 vertices,

and naturally a fully symmetric labelling f can be done on it by the function

FullySymmetricLabel from Algorithm 5.4, making sf = 10. The multi-

plicity of a labelling on it can also be 5, as illustrated in Figure 5.4 (vertices

with the same colour have similar views). However, as the next result shows,

there is no labelling for the Petersen graph that results in multiplicity 2.

1

2

1

2

1 2

1

2

1

2
3

1

3
1

3

1

3

1

3
12

3
2

3

23

2

3
2

3

Figure 5.4: A labelling on the Petersen graph whose multiplicity is 5

Proposition 5.1. For any labelling f on the Petersen graph, sf 6= 2.

Chapter 5: Producing Symmetry 55

Proof by contradiction. Suppose that there are five dissimilar views in total

(sf = 2), and each view is held by two vertices. The Petersen graph has

diameter 2, so the two vertices with the similar views are within distance 2

from each other.

Case 1. There exists a view Tf such that two vertices with view Tf are

exactly distance 2 away from each other. Let v1 and v2 be the vertices with

view Tf, and let u1 be a vertex with v1 and v2 as neighbours. Let T ′f be the

view of u1 and Tf 6≡ T ′f . Then the other vertex u2 with view T ′f also must

have two neighbours with view Tf. This gives a 4-cycle (v1, u1, v2, u2, v1).

However, the Petersen graph does not contain a 4-cycle, on the grounds that

the Petersen graph has girth1 5 [16, p. 44].

Case 2. For each view, the two vertices with similar views are adjacent

to each other. Consider the vertices v1 and v2 with view Tf adjacent to each

other. Since each vertex has degree 3, the vertex v1 has another neighbour u1

that does not have view Tf. We assume that u1 has view T ′f . The other vertex

u2 with view T ′f is adjacent to u1, by assumption. Since u1 has a neighbour

with view Tf, u2 must also have a neighbour with view Tf.

Subcase (i): v1 is adjacent to u2. This gives a 3-cycle (v1, u1, u2, v1).

Subcase (ii): v2 is adjacent to u2. This gives a 4-cycle (v1, u1, u2, v2, v1).

Both of these subcases are impossible because the Petersen graph has girth 5.

A contradiction occurs in all cases, which proves the desired result.

�

1The girth of a graph is the length of a shortest cycle.

56 Chapter 5: Producing Symmetry

5.4 Port-Labelling Complete Graphs

In this section, we provide an algorithm to show that for an n-vertex complete

graph and any d | n, all possible divisors d can become its multiplicity, and

hence solve Problem 1.

Definition 5.3. A complete graph Kn is a graph with n vertices where

every pair of vertices is connected by an edge. A complete bipartite graph

Ka,b is a bipartite graph (U ∪ V,E) with |U | = a and |V | = b such that for

every two vertices u ∈ U and v ∈ V , (u, v) ∈ E.

If a = b, the complete bipartite graph Ka,b is regular.

5.4.1 Factorizations of Complete Graphs

Our approach will make use of the following theorems about factorizations of

complete graphs from Harary [64, pp. 84–90]. The first two was attributed to

Walecki and published by Lucas according to Alspach [3].

Theorem 5.2. Every complete graph Kn with an even n is 1-factorable and

the sum of a 1-factor and n/2− 1 spanning cycles Cn.

Theorem 5.3. Every complete graph Kn with an odd n is the sum of (n−1)/2

spanning cycles Cn.

The core idea of Algorithm 5.7 in Subsection 5.4.2 heavily relies on

Theorem 5.4.

Chapter 5: Producing Symmetry 57

Theorem 5.4 (Kőnig’s Theorem (1931)). Each regular bipartite graph is

1-factorable.

In summary, every complete graph Kn with an even n is 1-factorable (by

Theorem 5.2) and every complete graph Kn with an odd n is 2-factorable (by

Theorem 5.3), which indicates that the complete graph Kn admits a {1, 2}-

factorization. Together with Corollary 2.1, it implies that its symmetricity is

always n, i.e. σ(Kn) = n. Similarly, by Theorem 5.4 and Corollary 2.1, every

regular bipartite graph has symmetricity n.

5.4.2 An Algorithm for Producing a Desired Multiplic-

ity

Based on factorization facts in the last subsection, we provide a class of

graphs to solve Problem 1 by coming up with Algorithm 5.7, before two

helper functions from Algorithms 5.5 and 5.6 are explained.

Algorithm 5.5 contains a function of returning two neighbours of a vertex

v in a graph G under a labelling f with the minimum and maximum ports,

which requires deg(v) ≥ 2. It examines all the arbitrarily ordered ports on v’s

end one by one until the neighbours on the edges whose v’s end is port-labelled

with the minimum and maximum ones are found.

Algorithm 5.5 Return two neighbours of a vertex in a graph with the
minimum and maximum ports
Require: v ∈ VG and deg(v) ≥ 2
1: function ReturnTwoNeighbours(〈G, f〉 , v)

58 Chapter 5: Producing Symmetry

2: counter ← 0
3: for all vi ∈ NG(v) do
4: if fv(vi) = 1 then
5: vmin ← vi

6: counter ← counter + 1
7: if counter = 2 then
8: return vmin, vmax

9: end if
10: else if fv(vi) = deg(v) then
11: vmax ← vi

12: counter ← counter + 1
13: if counter = 2 then
14: return vmin, vmax

15: end if
16: end if
17: end for
18: end function

In Algorithm 5.6, the function SwitchPorts first finds the minimum

and maximum possible outgoing ports (namely 1 and deg(v)) for each vertex

v ∈ V ′ and their corresponding neighbours, respectively vmin and vmax. We

call the function ReturnTwoNeighbours in Algorithm 5.6 line 3 from

Algorithm 5.5. Then it makes the port of vi on the edge (vi, vmin) become

deg(v) and that of vi on the edge (vi, vmax) become 1. In lines 4 and 5, the

previously-stored values in f are substituted with the newly-assigned ones. In

what follows, this operation will be referred to as port-switching.

Algorithm 5.6 Switch the minimum and maximum ports of each vertex
from a vertex subset

Chapter 5: Producing Symmetry 59

Require: V ′ ⊆ VG

1: function SwitchPorts(〈G, f〉 , V ′)
2: for all vi ∈ V ′ do
3: vmin, vmax ← ReturnTwoNeighbours(〈G, f〉 , vi)
4: fvi(vmin)← deg(vi)
5: fvi(vmax)← 1
6: end for
7: return f
8: end function

There is one more definition and its corollary as prerequisite knowledge

before the introduction of Algorithm 5.7.

Definition 5.4. A clique of a graph is its complete induced subgraph. More

precisely, for a graph G = (V,E) and a specific subset of vertices V ′ ⊆ V ,

a clique is a subgraph G′ = (V ′, E ′) such that E ′ = { (vi, vj) | vi, vj ∈ V ′ },

where vi 6= vj and E ′ ⊆ E.

The following lemma can be treated as a special case of the factorization

condition clarified in Definition 2.22 as well.

Lemma 5.1. Consider any n ≥ 3, any d > 1 such that d | n, and let g = n/d.

The complete graph Kn can be decomposed into g d-vertex cliques and
(
g
2

)
complete bipartite induced subgraphs.

Proof. We partition the vertex set { v1, v2, . . . , vn } into g disjoint subsets

of size d and each one becomes the vertex set of an edge-disjoint clique Gi

60 Chapter 5: Producing Symmetry

(1 ≤ i ≤ g):
VG1 = { v1, v2, . . . , vd } ,

VG2 = { vd+1, vd+2, . . . , v2d } ,

. . .

VGi =
{
v(i−1)d+1, v(i−1)d+2, . . . , vid

}
,

. . .

VGg =
{
v(g−1)d+1, v(g−1)d+2, . . . , vgd

}
.

Next, each complete bipartite induced subgraph Gi,j is formed by the vertex

sets of two different cliques and all the possible edges between these two, i.e.,

Gi,j = (VGi ∪ VGj ,
{

(vi, vj)
∣∣∣ vi ∈ VGi , vj ∈ VGj }), for i, j ∈ { 1, 2, . . . , g } and

i 6= j. Finally, consider any two vertices in { v1, v2, . . . , vn }. If they are in the

same Gi, then there is an edge between them in Gi. Otherwise, they belong

to two different Gi and Gj, in which case there is an edge between them in

Gi,j. This proves that the union of all Gi and Gi,j forms Kn. �

At last, we claim that a complete graph under a specially-designed total

labelling is always an answer for Problem 1 by presenting the following

algorithm. The function PortLabelKn in Algorithm 5.7 below involves

three steps. According to Lemma 5.1, we can always decompose a complete

graph Kn into g d-vertex cliques Gi and
(
g
2

)
complete bipartite induced

subgraphs Gi,k, for g = n/d. The first step is to do a fully symmetric labelling

on these cliques one by one. As the second step, all Gi,k are port-labelled,

and the result is a labelling of Kn with multiplicity n. In the final step, we

Chapter 5: Producing Symmetry 61

select the vertex set of the clique G0, and port-switch each vertex in VG0 such

that only these d vertices have similar view T ′f , and none of the other n− d

vertices have a view similar to T ′f . Based on Proposition 2.1, the multiplicity

for the new total labelling must be d.

We now provide a more detailed explanation of how each step is imple-

mented in Algorithm 5.7. For Step 1, the variable Kn in line 2 is represented

as an n-by-n array. In line 4, MN0:V maps the clique indices to V, where

N0 is the set of natural numbers including 0 and V is the power set2 of

VKn ; we store g vertex subsets in MN0:V to build g cliques G0, G1, . . . , Gg−1.

The integers ranging from 0 to g − 1 (not from 1 to g) in line 6 are used

to represent g indices of cliques, simply because it is much easier to apply

the modulo operation appeared later in line 16 of Step 2. From line 11

onward, MN0:V[i] = VGi . Line 12 labels all the ports within each clique using

a fully-symmetric labelling using ports 1, 2, . . . , d− 1.

Step 2 is to port-label all the leftover edges. For each i in line 14, a complete

bipartite induced subgraph Gi,k is formed by two vertex subsets VGi itself and

VGk , where the variable k in line 16 is acted as a “wrap-around” to return the

values from g− 1 indices in order, namely i+ 1, i+ 2, . . . , g− 1, 0, 1, . . . , i− 1

ofMN0:V. For line 19, we assume that the function FactorizeGraph returns

a list of d 1-factors by factorizing Gi,k, which is possible due to Theorem

5.4. The variable unused in line 20 is the smallest unused port during the

process. Since the ports up to d− 1 are unavailable after line 12, unused is

2A power set of a set is the set of all its subsets including ∅ and the original set itself.

62 Chapter 5: Producing Symmetry

initialized to d. Unlike the function PortLabel1Factor from Algorithm

5.2, lines 22 to 25 only label the ports whose ends are the vertices from VGi

within each iteration on the variable i in line 14.

The reason why we cannot just get rid of the first two steps by directly

calling the function FullySymmetricLabel from Algorithm 5.4 on a com-

plete graph Kn is that it is nearly impossible to then pick d vertices out

of n ones and do port-switching on them without affecting others’ views

correspondingly, since FullySymmetricLabel is not designed to do so and

views are interdependent in most cases.

In Step 3, each vertex vi ∈ VG0 is port-switched — the maximum and

minimum ports are exchanged such that each vertex’s view is dissimilar from

the ones outside VG0 up to level 1 of their view, i.e., T 1
f (vi) 6≡ T 1

f (vj) for

vj ∈
⋃g−1
j=1 VGj .

Algorithm 5.7 Port-label a complete graph totally whose multiplicity is d

Require: n ≥ 3, d | n and 1 < d < n

1: function PortLabelKn(n, d)
2: Kn ← a vertex-labelled complete graph with n vertices
3: f← an empty 2-dimensional n-by-n array
4: MN0:V ← an empty dictionary
5: g ← n/d

I Step 1: port-label
cliques one by one

6: for i← 0 to g − 1 do
7: MN0:V[i]← ∅
8: for j ← 1 to d do

Chapter 5: Producing Symmetry 63

9: MN0:V[i]←MN0:V[i] ∪ { vid+j } I The final value of
MN0:V[i] will be
{ vid+1, . . . , vid+d }

10: end for
11: Gi ← a clique of Kn with vertex set MN0:V[i]
12: f← FullySymmetricLabel(Gi, 1)
13: end for

I Step 2: port-label
complete bipartite
induced subgraphs

14: for i← 0 to g − 1 do
15: for j ← 1 to g − 1 do
16: k ← (i+ j) mod g
17: Gi,k ← a complete bipartite induced subgraph of Kn with parts

VGi and VGk
18: factorization ← an empty list
19: factorization ← FactorizeGraph(Gi,k)
20: unused ← d

21: for all GFx ∈ factorization do
22: for all vy ∈ VGFx ∩ VGi do
23: v ← the only neighbour of vy
24: fvy(v)← unused
25: end for
26: unused ← unused + 1
27: end for
28: end for
29: end for

I Step 3: port-switch all
vertices in G0 and
return the result

30: f← SwitchPorts(〈Kn, f〉 , VG0)

64 Chapter 5: Producing Symmetry

31: return f
32: end function

Algorithm 5.7 is unable to handle two special cases: d = n and d = 1. We

can produce these multiplicities using the following approaches. If d = n, we

just need to invoke the function FullySymmetricLabel from Algorithm

5.4 solely with parameters Kn and port 1, which returns a port-labelled graph

under a fully symmetric labelling where all the vertices sharing similar views.

If d = 1, for a complete graph under a fully symmetric labelling (created

also by FullySymmetricLabel), we port-switch any vertex v in such a

graph by calling SwitchPorts on { v }, giving rise to v with the unique

view among others; then its multiplicity drops from n to 1 instantly.

The example below visualizes the total labelling (Steps 1 and 2) and the

subsequent port-switching (Step 3) described above.

Example 5.2. For n = 12, d = 4 and g = n/d = 3, there must exist four

vertices sharing similar views after the function PortLabelKn is executed.

We let v1, v2, v3, v4 be such vertices. G0 is a clique of the complete graph

K12 with vertex set { v1, v2, v3, v4 }; similarly, G1 is a clique with vertex set

{ v5, v6, v7, v8 } and G2 is a clique with vertex set { v9, v10, v11, v12 }. These

three cliques are marked red in Figure 5.5. For Step 1, we port-label all

the edges from G0, G1 and G2 individually, using up ports 1 to d − 1 = 3,

and the finished work is displayed in Figure 5.6. When i = 0 in Step 2, the

ports (from d = 4 to n− 1 = 11) whose ends are the vertices from VG0 are

Chapter 5: Producing Symmetry 65

orange in Figures 5.7 (G0,1) and 5.8 (G0,2). When i = 1, the ones whose ends

are the vertices from VG1 are blue in Figures 5.7 (G0,1) and 5.9 (G1,2); when

i = g−1 = 2, the ones whose ends are the vertices from VG2 are teal in Figures

5.8 (G0,2) and 5.9 (G1,2). After all the vertices from VG0 are port-switched as

the last step, the updated labelling affects 8 ports (all in magenta) involving 6

edges in Figure 5.10 and the rest of labelling remains unchanged since Step 2.

At v1, v2, v3, v4, outgoing port 1 is now associated with an edge whose other

port is 7, whereas at all other vertices, outgoing port 1 is still associated

with an edge whose other port is 2; at v9, v10, v11, v12, outgoing port 7 is now

associated with an edge whose other port is 1, whereas at all other vertices,

outgoing port 7 is still associated with an edge whose other port is 11.

v1
v2

v3

v4

v5

v6
v7

v8

v9

v10

v11

v12

Figure 5.5: The vertex-labelled complete graph K12

66 Chapter 5: Producing Symmetry

v1 v2

v3v4

1 2

1

2

12

1

2 3

3

3

3

v5 v6

v7v8

1 2

1

2

12

1

2 3

3

3

3

v9 v10

v11v12

1 2

1

2

12

1

2 3

3

3

3

Figure 5.6: The partial labellings on three cliques of size four (Step 1)

v1
v2

v3

v4

v5

v6
v7

v8

v1 v2 v3 v4

v5 v6 v7 v8

4

8

4

8

4

8

4

8

v1 v2 v3 v4

v5 v6 v7 v8

5

9

5

9

5

9

5

9

v1 v2 v3 v4

v5 v6 v7 v8

6

10

6

10

6

10

6

10

v1 v2 v3 v4

v5 v6 v7 v8

7

11

7

11

7

11

7

11

Figure 5.7: The total labelling on a 1-factorization of G0,1 (Step 2)

Chapter 5: Producing Symmetry 67

v1
v2

v3

v4

v9

v10

v11

v12
v1 v2 v3 v4

v9 v10 v11 v12

8

4

8

4

8

4

8

4

v1 v2 v3 v4

v9 v10 v11 v12

9

5

9

5

9

5

9

5

v1 v2 v3 v4

v9 v10 v11 v12

10

6

10

6

10

6

10

6

v1 v2 v3 v4

v9 v10 v11 v12

11

7

11

7

11

7

11

7

Figure 5.8: The total labelling on a 1-factorization of G0,2 (Step 2)

v5

v6
v7

v8

v9

v10

v11

v12v5 v6 v7 v8

v9 v10 v11 v12

4

8

4

8

4

8

4

8

v5 v6 v7 v8

v9 v10 v11 v12

5

9

5

9

5

9

5

9

v5 v6 v7 v8

v9 v10 v11 v12

6

10

6

10

6

10

6

10

v5 v6 v7 v8

v9 v10 v11 v12

7

11

7

11

7

11

7

11

Figure 5.9: The total labelling on a 1-factorization of G1,2 (Step 2)

68 Chapter 5: Producing Symmetry

v1 v2

v3v4

11 11

2

3

1111

3

2 3

2

3

2

v1 v2 v3 v4

v9 v10 v11 v12

11

7

11

7

11

7

11

7

Figure 5.10: Port-switching the vertices in VG0 (Step 3)

Chapter 5: Producing Symmetry 69

5.5 Rooted Product

Problem 2 becomes trivial instantly when Problem 1 is solved — we can always

come up with a complete graph Kn under a labelling f whose multiplicity is

d by applying the function FullySymmetricLabel (Algorithm 5.7). For

Problem 3, given n ≥ 3, all its divisors can be the multiplicity of a labelling

on a complete graph Kn according to Problem 1 as well, which implies that

Problem 3 can be solved in the affirmative.

We hope to generate more labellings on other classes of graphs with n

vertices and sf = d, for 1 ≤ d ≤ n and d | n. For d = 1, any labelling

on a graph with a vertex of a unique degree such as a star graph Sn or a

wheel graph Wn
3 will suffice, since their symmetricity must be 1 (under any

labelling, the universal vertex4 with the unique degree in such graphs has a

dissimilar view from others). For d = n, all {1, 2}-factorable graphs under

a fully symmetric labelling have the desired property. Next, for values of d

strictly between 1 and n, we provide a systematic way of generating examples.

We will make use of the rooted product, which can be informally described as:

take any graph G = (V,E) and any rooted graph R, create |VG| copies of R,

and replace each vi ∈ VG with the root of the i-th copy of R. This operation

is formally defined in Definition 5.5 and illustrated in Example 5.3.

Definition 5.5. Given a graph G = (VG, EG) with VG = { v1, v2, . . . , vn1 }

3A wheel graph Wn is a graph with n vertices containing a cycle graph Cn−1 and a
vertex adjacent to every vertex from Cn−1.

4A universal vertex of a graph is a vertex adjacent to all other vertices in the graph.

70 Chapter 5: Producing Symmetry

and a rooted graph R = (VR, ER) with VR = { u1, u2, . . . , un2 }, whose root is

u1, the rooted product of G and R is defined as G�R := (V ′, E ′), where

V ′ = { wi,j | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 }

and
E ′ = { (wi,1, wk,1) | (vi, vk) ∈ EG }∪

n1⋃
i=1
{ (wi,j, wi,k) | (uj, uk) ∈ ER } .

Example 5.3. In Figure 5.11, there is a graph G with five vertices and a

rooted graph R with four vertices, whose root is filled in black. The result of

G�R is a newly-generated graph with 20 vertices (rightmost).

=

Figure 5.11: An illustration of G�R5

Below is the helper function for Algorithm 5.9, which port-labels a graph

in an arbitrary and total fashion by traversing each vertex.
5This diagram is based on Dr. David Eppstein’s image at the Wikipedia entry rooted

product of graphs.

https://en.wikipedia.org/wiki/Rooted_product_of_graphs
https://en.wikipedia.org/wiki/Rooted_product_of_graphs

Chapter 5: Producing Symmetry 71

Algorithm 5.8 Port-label a graph arbitrarily and totally

1: function ArbitraryLabel(G)
2: n← |VG|
3: f← an empty 2-dimensional n-by-n array
4: for all vi ∈ VG do
5: p← 1
6: for all vj ∈ NG(vi) do
7: fvi(vj)← p

8: p← p+ 1
9: end for
10: end for
11: return f
12: end function

Based on Corollary 2.1 and the rooted product operation, the algorithm

for returning a totally port-labelled graph with n vertices whose multiplicity

is d is proposed below, taking two integers n and d as inputs. The idea behind

our algorithm is to compute the rooted product of a {1, 2}-factorable graph G

with d vertices under a fully symmetric labelling and a totally (and arbitrarily)

port-labelled rooted graph R with g = n/d vertices. The resulting graph will

have n vertices under a labelling of multiplicity d. The root of R can be any

vertex with maximum degree ∆R, which will ensure that d vertices (created by

duplicating the root for d times) in the graph have degree ∆G+ ∆R (and none

of the other vertices will have this degree). These d vertices now are connected

by the edges originated from G, which is {1, 2}-factorable, therefore they will

have similar views. The function FullySymmetricLabel in Algorithm

72 Chapter 5: Producing Symmetry

5.9 line 7 is taken from Algorithm 5.4. In line 8, a graph with g vertices

is port-labelled arbitrarily by the function ArbitraryLabel taken from

Algorithm 5.8. The input graphs G and R come with port labelling functions

fG and fR in line 9; here we define the labelling f for the rooted product as

the following: for each i ∈ { 1, 2, . . . , n1 } and each edge (vi, vk) ∈ EG, we

set fwi,1(wk,1) = fG,vi(vk), and, for each j ∈ { 1, 2, . . . , n2 } and each edge

(uj, uk) ∈ ER, we set fwi,j(wi,k) = fR,uj(uk).

Algorithm 5.9 Return the rooted product of two port-labelled graphs

Require: n ≥ 3, d | n and 1 < d < n

1: function ReturnRootedProduct(n, d)
2: g ← n/d

3: G← an arbitrary vertex-labelled {1, 2}-factorable graph with d ver-
tices

4: R← an arbitrary vertex-labelled rooted graph with g vertices whose
root is the vertex with maximum degree ∆R

5: fG ← an empty 2-dimensional n-by-n array
6: fR ← an empty 2-dimensional n-by-n array
7: fG ← FullySymmetricLabel(G,∆R + 1)
8: fR ← ArbitraryLabel(R)
9: return 〈G, fG〉 � 〈R, fR〉

10: end function

Example 5.4. To generate a totally port-labelled graph with 12 vertices

whose multiplicity is 4, in Figure 5.12, we first do a fully symmetric labelling

on an arbitrarily chosen {1, 2}-factorable graph with four vertices (in this

example, we choose C4); then an arbitrary graph with three vertices is port-

Chapter 5: Producing Symmetry 73

labelled arbitrarily (here we choose P3) and the vertex with the maximum

degree is assigned to the root (marked green). The result of the rooted

product 〈C4, fC4〉�〈P3, fP3〉 is 〈G, fG〉, i.e., the rightmost graph in Figure 5.12,

where the same colour means that the vertices share similar views. Clearly

its multiplicity is 4.

3 4

3

4

34

3

4

� 1

1

2

1

=

3 4

3

4

34

3

4

1

1

21

2

1

1 1

2 1

1

1

2

1

11

Figure 5.12: The rooted product of a port-labelled graph C4 and a port-labelled
rooted graph P3

6
Computing Symmetry

Everything you see or hear or
experience in any way at all is
specific to you. You create a
universe by perceiving it, so
everything in the universe you
perceive is specific to you.

Mostly Harmless
Douglas Adams

In this chapter, we aim to calculate symmetry for views and ‘degree trees’

(formally defined in Section 6.3). We first show how to compute a view in

Section 6.1 and solve Problem 4; based on that, in Section 6.2, a general

approach is provided to compute the multiplicity of a totally port-labelled

graph. In Sections 6.3 and 6.4, we then explain why degree trees in anonymous

networks are introduced, and define them along with some mathematical

results. Later on, the algorithms on generating degree trees are demonstrated

in Section 6.5. In Section 6.6, we give an application of degree trees on

74

Chapter 6: Computing Symmetry 75

offering an upper bound on symmetricity. Furthermore, Section 6.7 is rather

independent of the previous sections: we prove a sufficient and necessary

condition on symmetricity of a tree.

6.1 Computing Views

Before building algorithms on views, we discuss how to represent and store

a view. For each directed edge (ν, ν ′) in a view, with pparent as the outgoing

port from ν and with pchild as the incoming port to ν ′, we group them into

an ordered pair (pparent, pchild) and put it as the value stored in ν ′ — we can

think of each node storing an outgoing-incoming pair of ports coming from

its unique “parent” node in the view. The children list of each node ν in a

tree hereinafter is implemented as a 1-dimensional array Aν whose size is

equal to the out-degree of ν (we use deg(ν) to represent): each child node

ν ′ of a parent node ν with outgoing port pparent is stored in Aν accessed by

index pparent, i.e., the entry Aν [pparent]. The process is illustrated in Figure

6.1. From now on, we assume that all the views are encoded in this way.

Next, we describe a naïve recursive algorithm to generate the view of

a fixed vertex in a graph under a total labelling. In Algorithm 6.1 line 1,

the function GenerateView is called by assigning n − 1 to `, where n is

|VG|. In line 2, the variable νr acts as the root of a tree, and its children

list Aνr is implicitly initialized to be an empty 1-dimensional array of size

deg(v) = deg(νr). The neighbourhood of v, i.e., NG(v), is implemented as a

76 Chapter 6: Computing Symmetry

ν
Value

Children List Aν ν ′

1 . . . pparent . . . deg(ν)
ν ′

Value (pparent, pchild)
Children List Aν′

1 . . . deg(ν ′)

Figure 6.1: The data changing in ν and ν ′ when a directed edge (ν, ν ′) in a
view is converted

set in line 3. In line 5, if ` > 1, the recursion continues; if ` = 1, then νı, as

a leaf (with an empty children list), is added into Aν directly.

Algorithm 6.1 Generate the view of a vertex in a graph under a labelling

Require: v ∈ VG and ` ≥ 1
1: function GenerateView(〈G, f〉 , v, `)
2: νr ← a node with no value and an empty children list Aνr
3: for all vi ∈ NG(v) do
4: νı ← a node with no value and an empty children list Aνı
5: if ` > 1 then
6: νı ← GenerateView(〈G, f〉 , vi, `− 1)
7: end if
8: pparent ← fv(vi)
9: pchild ← fvi(v)

10: νı’s value ← (pparent, pchild)
11: Aνr [pparent]← νı

12: end for
13: return νr

14: end function

Chapter 6: Computing Symmetry 77

The issue with the naïve approach is that, in the worst case, its running

time is exponential in the size of the graph. The reason is that there are many

recursive calls that re-compute views unnecessarily. By applying dynamic

programming (Algorithm 6.2), generating all n (not necessarily mutually

dissimilar) views for a graph can be done within O(n2∆G) time, using a

2-dimensional n-by-(n − 1) array ATf . As Table 6.1 illustrates, each entry

ATf [vi, `] contains vi’s view truncated to level `.

Vertex vi

Level ` 1 2 . . . n− 1

v1 T 1
f (v1) T 2

f (v1) . . . T n−1
f (v1)

v2 T 1
f (v2) T 2

f (v2) . . . T n−1
f (v2)

.
vn T 1

f (vn) T 2
f (vn) . . . T n−1

f (vn)

Table 6.1: The 2-dimensional array ATf

Algorithm 6.2 Fill ATf

1: function FillATf(〈G, f〉)
2: n← |VG|
3: ATf ← an empty 2-dimensional n-by-(n− 1) array
4: for `← 1 to n− 1 do
5: for all vi ∈ VG do
6: νı ← a node with no value and an empty children list Aνı
7: for all vj ∈ NG(vi) do
8: ν ← a node with no value and an empty children list Aν
9: pparent ← fvi(vj)
10: pchild ← fvj(vi)
11: if ` > 1 then
12: ν ← ATf [vj, `− 1]

78 Chapter 6: Computing Symmetry

13: end if
14: ν’s value ← (pparent, pchild)
15: Aνı [pparent]← ν

16: end for
17: ATf [vi, `]← νı

18: end for
19: end for
20: return ATf

21: end function

Each element accessed by indices vi and n− 1 in ATf represents T n−1
f (vi).

But, for the purpose of determining if two views are similar, we recall from

Subsection 2.1.1 that it is sufficient to compare the views up to level n− 1.

Hence, three variables ATf [vi, n−1], T n−1
f (vi) and Tf(vi) are synonymous from

now on and can be used interchangeably.

If we want to compare if two views are similar, a modified breadth-first

search (BFS) can be applied, with an added feature that the procedure

terminates early as soon as it detects that the two views are dissimilar. For

line 8 of Algorithm 6.3, we guarantee that queue1 and queue2 will have the

same size all the time. In line 13, two nodes are equal if their own values are

equivalent and the sizes of their children lists are the same.

Algorithm 6.3 Check if two views are similar

1: function IfTwoViewsSimilar(T1, T2)
2: queue1 ← an empty list
3: queue2 ← an empty list
4: ν1 ← a node with no value and an empty children list Aν1

Chapter 6: Computing Symmetry 79

5: ν2 ← a node with no value and an empty children list Aν2

6: Append the root of T1 to queue1

7: Append the root of T2 to queue2

8: while queue1 is not empty ∧ queue2 is not empty do
9: ν1 ← the first element in queue1

10: Delete the first element from queue1

11: ν2 ← the first element in queue2

12: Delete the first element from queue2

13: if ν1 = ν2 then
14: for all νi, νj ∈ Aν1 , Aν2 do
15: Append νi to queue1

16: Append νj to queue2

17: end for
18: else
19: return False
20: end if
21: end while
22: return True
23: end function

6.2 Computing Multiplicities

Now that we have the algorithms for generating and comparing views, we

are ready to describe an algorithm to calculate multiplicity. We will use

the following helper function that returns all integer factors of n. Since the

factors of an odd number are always odd, all even possible numbers are

skipped in terms of an odd n (from line 2 to line 6 of Algorithm 6.4). In line

9, dn1/2e can be replaced by dn/2e with nearly no side effects if the square

80 Chapter 6: Computing Symmetry

root operation is considered slow in the target environment. Lines 11 and

12 indicate that integer factors always come in pairs (i and n/i may be the

same if n is a perfect square) and the size of factors is at least two. In line

16, the function Sort takes a set and returns a list of all the elements of

the set in ascending order.

Algorithm 6.4 Return all integer factors of n

Require: n ≥ 2
1: function ReturnAllIntegerFactors(n)
2: if n mod 2 = 0 then
3: step ← 1
4: else
5: step ← 2
6: end if
7: i← 1
8: factors ← ∅
9: while i ≤ dn1/2e do

10: if n mod i = 0 then
11: factors ← factors ∪ { i }
12: factors ← factors ∪ { n/i }
13: end if
14: i← i+ step
15: end while
16: return Sort(factors)
17: end function

Finally, we introduce the algorithm for calculating the multiplicity sf

of a graph G under a labelling f using the previous results. The function

ComputeMultiplicity in Algorithm 6.5 is deeply dependent on Proposition

Chapter 6: Computing Symmetry 81

2.1: for any multiplicity sf of a graph with n vertices, there are x = n/sf

dissimilar views shared by y = sf vertices each. This fact can drastically

reduce the number of vertices that the function has to visit. The empty

dictionary MT :V is declared in line 4, mapping the set of all dissimilar views

T to the power set of the vertex set. The variable x in line 7 stands for the

number of the dissimilar views already stored in MT :V as keys and y in line 8

is the maximum number of vertices sharing similar views among x ones. The

function IfTwoViewsSimilar from Algorithm 6.3 is used implicitly in line

10 to compare Tf(vi) with pre-stored keys of MT :V. The functions Next and

Previous (in lines 14 and 20 respectively) act as an iterator, returning the

next/previous element from the last probed position of a list if there exists

one. The worst-case running time of the function is bounded by the second

largest factor of n: for an even n, the algorithm traverses at most n/2 + 1

vertices with their views; especially, for a graph with a prime n, it only takes

two vertices to decide its multiplicity.

Algorithm 6.5 Compute the multiplicity of a graph under a labelling

1: function ComputeMultiplicity(〈G, f〉 , ATf)
2: n← |VG|
3: factors ← ReturnAllIntegerFactors(n)
4: MT :V ← an empty dictionary
5: atleast ← the first element of factors
6: atmost ← the last element of factors
7: x← 0
8: y ← 0
9: for all vi ∈ VG do

82 Chapter 6: Computing Symmetry

10: if Tf(vi) /∈MT :V then
11: MT :V[Tf(vi)]← { vi }
12: x← x+ 1
13: if atleast < x then
14: atleast ← Next(factors)
15: end if
16: else
17: MT :V[Tf(vi)]←MT :V[Tf(vi)] ∪ { vi }
18: y ← max(y, |MT :V[Tf(vi)]|)
19: if atmost > n/y then
20: atmost ← Previous(factors)
21: end if
22: end if
23: if atleast = atmost then
24: return atleast
25: end if
26: end for
27: end function

28: sf ← ComputeMultiplicity(〈G, f〉 , ATf)

Example 6.1. Imagine that the function ComputeMultiplicity is invoked

on a fully port-labelled graph with 36 vertices. After 12 out of 36 vertices

are examined, suppose that the algorithm has found four dissimilar views so

far: view T1 is shared by two vertices, T2 by two, T3 by three and T4 by five.

Since 5 is not an integer factor of 36 and 6 is the smallest factor larger than

5, now we are certain that 6 ≤ sf ≤ 36/4 = 9, narrowing the multiplicity

to be either 6 or 9. If the 13th vertex turns out to have a view T5 that was

Chapter 6: Computing Symmetry 83

not encountered before, we then conclude immediately that sf = 6 without

going further — in order to make sf = 9, we can only allow exactly four views

within 36 vertices.

6.3 Degree Trees: Motivation and Notation

In this section, we first illustrate an example to motivate the use of degree

trees, and then proceed to formally define them.

Example 6.2. The left-hand side vertex-labelled graph G1 in Figure 6.2 has

been port-labelled with f1 and the right-hand side graph G2 has been port-

labelled with f2 such that Tf1(vi) ≡ Tf2(ui) for each i ∈ { 1, 2, . . . , 6 }. Under

this special labelling, Tf1(v1) ≡ Tf2(u1) ≡ Tf1(v4) ≡ Tf2(u4). In particular,

even if v1 was given a map of G1 as advice, and if u2 was given a map of G2

as advice, they could not determine where they were located within the given

map. Moreover, based only on their views (i.e., no additional advice given),

v1 in G1 and u2 in G2 are not able to tell if they are actually located in G1

or G2 under these labellings, although G1 and G2 are not even isomorphic.

There are situations where the ports are assigned in a very symmetric

way or even worse, in a fully symmetric way, and accordingly a vertex fails to

learn much from its view besides information that was already available using

just the topology of a graph. This motivates us to consider a simpler version

of views, i.e., with the port information stripped away. We derive Definition

6.1 from Definition 2.11.

84 Chapter 6: Computing Symmetry

v1

v2 v3

v4

v5v6

2

2
1 1

2

2

1

1
22

1

1

3

3

3

3

u1

u2 u3

u4

u5u6

2

2
1 1

2

2

1

1
22

1

1

3

3

3

3

Figure 6.2: Two graphs G1 (left) and G2 (right) under a fully symmetric labelling

Definition 6.1. The degree tree DG(v) of a vertex v in a graph G is an

arborescence with infinite number of levels, defined recursively as follows:

DG(v) contains a unique vertex called root, represented by v itself; for each

neighbour of v in G, DG(v) contains a vertex vi and a directed edge from v

to vi; the vertex vi is the root of DG(vi).

Compared to the view, the degree tree is the arborescence itself and purely

extracted from the topological structure of a graph.

Definition 6.2 (Degree Tree Similarity/Dissimilarity). Two degree trees D

and D′ are said to be similar if there exists a directed graph isomorphism

between them, and we then writeD ≡ D′; otherwise, D andD′ are dissimilar,

written as D 6≡ D′.

It is possible for two vertices v and v′ to have DG(v) ≡ DG′(v′) for G 6= G′.

Example 6.3. In Figure 6.3, the tree on the right-hand side is the degree

tree DG(v1), where v1 is from Figure 2.2 on page 12 (as the margin note). The

Chapter 6: Computing Symmetry 85

root representing v1 is filled in black. It is worth mentioning that DG(v1) is

highly symmetric: for these subtrees, DG(v2) ≡ DG(v3) and DG(v4) ≡ DG(v5),

whereas Tf(v2) 6≡ Tf(v3) and Tf(v4) 6≡ Tf(v5).

v1

v2

v3 v4

v5

1
1

4
1

3
1

2
1

2

2

...

1

1

2

1

3

1

4

1

1

1

2

2

1

2

1

3

1

4

2

2
...

DG(v2) DG(v5) DG(v4) DG(v3)

Figure 6.3: The view Tf(v1) and its corresponding degree tree DG(v1)

The degree tree up to level ` for a vertex v in a graph G is DG(v) truncated

to the first ` levels, denoted by D`
G(v). The truncated degree tree Dn−1

G (v) of a

vertex v is computationally equivalent toDG(v) [78], i.e., Dn−1
G (v1) ≡ Dn−1

G (v2)

iff DG(v1) ≡ DG(v2) — now checking if two (infinite) degree trees are similar

can be done in a finite amount of time.

Definition 6.3. The degree tree collection D = {D(v) | v ∈ V } is the

set of all dissimilar degree trees from a graph G = (V,E).

Definition 6.4. The degree tree class VD = { v | D(v) ≡ D } is the set

of all vertices with a degree tree that is similar to D; correspondingly, the

degree tree vertex partition V = { VD | D ∈ D } denotes the partition of

V into its degree tree classes.

86 Chapter 6: Computing Symmetry

Unlike Proposition 2.1 for views, it is not guaranteed that each degree tree

class has the same size. We let |V| = |D| = κ represent the size of the degree

tree collection, which is also equal to the number of classes in the degree tree

vertex partition.

6.4 Some Results About Degree Trees

Since degree trees are developed directly from views, almost all properties

from views can be inherited by degree trees with minor modifications. We

assume all the vertices mentioned below are located in the same graph G.

Lemma 6.1. If T (v1) ≡ T (v2), then D(v1) ≡ D(v2).

Proof. A degree tree for a vertex is its view (under any labelling) without its

edge labelling and remaining the structure of the original arborescence. �

Lemma 6.2. If D(v1) ≡ D(v2), deg(v1) = deg(v2).

Proof. Since the degree trees of v1 and v2 are isomorphic, the root of D(v1)

has the same number of nodes as that of D(v2), which is equal to deg(v1) and

also deg(v2). �

If two vertices have similar views, they must have similar degree trees,

implying that their degrees are equal.

Proposition 6.1. If there exists a vertex in a graph G with degree tree D

and |VD| = 1, then σ(G) = 1.

Chapter 6: Computing Symmetry 87

Proof. Under any labelling, the vertex with such a degree tree D cannot

have a view that is similar to any other vertices in G since edge labelling

cannot change the topological structure of the arborescence. According to

Proposition 2.1, σ(G) = 1. �

The following theorem says that, if two vertices belong to the same VD, i.e.,

D(v1) ≡ D(v2), then they are each adjacent to the same number of vertices

from any fixed VD′ ; it holds even when D ≡ D′.

Theorem 6.1. If v1, v2 ∈ VD, |NG(v1)∩VD′| = |NG(v2)∩VD′ | for any degree

tree D′.

Proof. Since v1, v2 ∈ VD, D(v1) ≡ D(v2). There exists a degree tree similarity

between D(v1) and D(v2), so there is an isomorphism ψ : D(v1) → D(v2).

This isomorphism must map v1 (the root of D(v1)) to v2 (the root of D(v2)),

since they are the only two nodes with in-degree 0. It also maps the nodes

at level 1 of D(v1) (children of v1) to the nodes at level 1 of D(v2) (children

of v2). However, each child of v1 with degree tree D′ must be mapped to a

child of v2 with degree tree D′ and vice versa, since ψ is an isomorphism that

must preserve the structure of their subtrees. This proves that the number

of children of v1 with degree tree D′ is equal to that of children of v2 with

degree tree D′. �

Proposition 6.2. A graph is regular iff κ = 1.

Proof. The proof consists of two parts.

88 Chapter 6: Computing Symmetry

The “if” part. If κ = 1, which indicates that there is only one similar

degree tree, then the out-degree of the root of each degree tree must be the

same. Hence, each vertex vi in the graph G has degree deg(vi) = ∆G. By

Definition 2.19, G is regular.

The “only if” part. If a graph G = (V,E) is regular, then deg(vi) =

deg(vj) = ∆G, for any vi, vj ∈ V . Each vertex’s degree tree truncated to level

` is an `-level perfect ∆G-ary arborescence1 (such a degree tree up to level 2

is shown in Figure 6.4). Therefore κ = 1.

�

...
. . .

.

∆G

∆G ∆G

Figure 6.4: The degree tree up to level 2 for a vertex from a regular graph

Definition 6.5. A biregular graph is a bipartite graph G = (U ∪ V,E)

where the vertices in each bipartition U or V have the same degree. An

(x, y)-biregular graph is a biregular graph G = (U ∪ V,E) where all the

vertices in U have degree x and the vertices in V have degree y.
1A perfect k-ary arborescence is a (2k+1 − 1)-node arborescence and all its internal

nodes have out-degree k.

Chapter 6: Computing Symmetry 89

Corollary 6.1. An (x, y)-biregular graph G = (U ∪ V,E) satisfies x|U | =

y|V |.

Proof. It can be verified by a simple double counting argument: the number

of endpoints of edges in U is x|U |, that of endpoints of edges in V is y|V |,

and each edge contributes the same amount to both numbers. �

In some of the literature, biregular graphs (aka 2-degree/valency graphs)

are defined as graphs in which there are precisely two different vertex degrees,

i.e., there is no requirement that the graph is bipartite and that the degrees

are the same within each set of the bipartition. Take Figure 6.5 as an example:

the left-hand side graph P5 is bipartite and 2-degree, but not biregular (by our

definition), since the vertices within each bipartition have different degrees;

the graph on the right-hand side satisfies our stronger definition of biregular.

Every complete bipartite graph Ka,b is (a, b)-biregular, and every k-regular

bipartite graph is biregular (or (k, k)-biregular).

Figure 6.5: The difference between a 2-degree graph and a biregular graph

Since we disallow disconnected graphs, the following observation is always

the case.

Observation 6.1. If G = (U ∪ V,E) is biregular with |U | = 2 or |V | = 2, then

G is a complete bipartite graph.

90 Chapter 6: Computing Symmetry

Proposition 6.3. If a graph is (x, y)-biregular for x 6= y, then κ = 2.

Proof by induction. Let G = (U ∪ V,E) be an (x, y)-biregular graph and `

be the particular level of a degree tree.

Base case. When ` = 1, according to Corollary 6.1, any vertex u ∈ U

is adjacent to x vertices from V and is not adjacent to any vertices from

U ; similarly, any vertex v ∈ V is adjacent to y vertices from U and is not

adjacent to any vertices from V . In other words, for u ∈ U and v ∈ V , the

out-degree of each node at level 1 of D(u) is x and that of each node at level

1 of D(v) is y (see Figure 6.6).

Inductive step. We then argue that, if the out-degree of each node at

level ` of D is x, then the out-degree of each node at level ` + 1 of D is y;

likewise, if the out-degree of each node at level ` of D is y, then the out-degree

of each node at level ` + 1 of D is x. Consider any vertex u ∈ U : for all

children (at level `+ 1) of a node at level ` of its degree tree D(u), they all

have a similar degree tree D(v) for v ∈ V by the induction hypothesis. Since

this holds for arbitrary vertex u ∈ U , it proves that all vertices in U have a

similar degree tree up to level `. A similar proof shows that all vertices in V

have a similar degree tree up to level `.

This means that there are at most two dissimilar degree trees. We know

that there are at least two dissimilar degree trees, since u ∈ U and v ∈ V

have different degrees. This proves there are exactly two degree trees and

κ = 2. �

Chapter 6: Computing Symmetry 91

u

. . .x

v

. . . y

Figure 6.6: D(u) and D(v) at level 1 (Proposition 6.3)

Unlike Proposition 6.2, Proposition 6.3 is not biconditional: if κ = 2,

then a graph is not necessarily biregular. For example, the vertices in Figure

6.7 with the same colour share similar degree trees: the two black vertices

with degree 3 cannot belong to the same part in the bipartition as they are

adjacent. Therefore, the graph here is definitely not biregular.

Figure 6.7: A non-biregular graph with κ = 2

Proposition 6.4 tells us that if G is a non-biregular graph with κ = 2, then

there exist at least one vertex whose neighbours have two dissimilar degree

trees. In Figure 6.7, each black vertex is an example of such a vertex.

Proposition 6.4. For a non-biregular graph G = (V,E) with κ = 2, there

exist v ∈ V and D∗ = {D(vi) | vi ∈ NG(v) } such that |D∗| = 2.

Proof. When κ = 2 for a non-biregular graph G = (V,E), it simply means

92 Chapter 6: Computing Symmetry

that vertex set V can be divided into two disjoint degree tree classes VD and

VD′ (D 6≡ D′).

Case 1. If each vertex v ∈ VD is only adjacent to the vertices from VD

and each vertex v′ ∈ VD′ is only adjacent to vertices from VD′ , then G must

be disconnected, which contradicts the assumption that we only consider

connected graphs.

Case 2. If each vertex v ∈ VD is only adjacent to the vertices from V ′D

and each vertex v′ ∈ VD′ is only adjacent to vertices from VD, then G must

be biregular by definition, which contradicts that G is non-biregular.

Since the two above cases are impossible, it follows that there exists a

vertex that is adjacent to at least one vertex from VD and at least one vertex

from VD′ , which gives the desired result. �

Proposition 6.5 shows that for a graph G with κ ≥ 3, there exists at least

one vertex whose neighbours have two or more dissimilar degree trees.

Proposition 6.5. For a graph G = (V,E) with κ ≥ 3, there exist v ∈ V and

D∗ = {D(vi) | vi ∈ NG(v) } such that |D∗| ≥ 2.

Proof by contradiction. Assume that there exists no such a vertex. Then for

each vertex v in G, the degree trees of all of v’s neighbours are similar.

Case 1. All vertices in VD only have neighbours in VD: G must be either

a regular graph or a disconnected one (which is disallowed). According to

Proposition 6.2, all vertices in a regular graph have similar degree trees, i.e.,

κ = 1, which contradicts that κ ≥ 3.

Chapter 6: Computing Symmetry 93

Case 2. All vertices in VD only have neighbours in VD′ (D 6≡ D′): then G

must be biregular. According to Proposition 6.3, G has two dissimilar degree

trees, i.e., κ = 2, which contradicts that κ ≥ 3.

�

6.5 Computing and Comparing Degree Trees

Using a brute-force approach resembling Algorithm 6.1, the following algo-

rithm computes the degree tree for a single given vertex v. Besides, all the

nodes here always contain no value unlike Algorithm 6.1 and only the tree

structure matters.

Algorithm 6.6 Generate the degree tree of a vertex in a graph

Require: v ∈ VG and ` ≥ 1
1: function GenerateDegreeTree(G, v, `)
2: νr ← a node with no value and an empty children list Aνr
3: index ← 1
4: for all vi ∈ NG(v) do
5: νı ← a node with no value and an empty children list Aνı
6: if ` > 1 then
7: νı ← GenerateDegreeTree(G, v, `)
8: end if
9: Aνr [index]← νı

10: index ← index + 1
11: end for
12: return νr

13: end function

94 Chapter 6: Computing Symmetry

As discussed in Section 6.1, the brute-force approach can be very inefficient

(exponential time), and a dynamic programming approach can compute all

the degree trees simultaneously in polynomial time, as given in Algorithm

6.7. The variable index in line 7 is just a placeholder and its value does not

have any special meaning. As was the case with views, the degree tree of a

vertex v can be represented synonymously using any of AD[v, n− 1], Dn−1(v)

and D(v).

Algorithm 6.7 Fill AD
1: function FillAD(G)
2: n← |VG|
3: AD ← an empty 2-dimensional n-by-(n− 1) array
4: for `← 1 to n− 1 do
5: for all vi ∈ VG do
6: νı ← a node with no value and an empty children list Aνı
7: index ← 1
8: for all vj ∈ NG(vi) do
9: ν ← a node with no value and an empty children list Aν

10: if ` > 1 then
11: ν ← AD[vj, `− 1]
12: end if
13: Aνı [index]← ν

14: end for
15: AD[vi, `]← νı

16: end for
17: end for
18: return AD

19: end function

Chapter 6: Computing Symmetry 95

Our next goal is to provide algorithms that compute the degree tree

collection D and the degree tree vertex partition V. To help us do this, we

first need an algorithm that checks if two degree trees are similar. Although

this involves algorithmically solving graph isomorphism (whose complexity

status is unresolved, and no polynomial-time algorithm is known), we are

fortunate that the graphs involved are trees. There exists a linear-time AHU

algorithm (1974) proposed by Aho, Hopcroft, and Ullman [2, pp. 84–85]: they

claimed that two rooted trees are isomorphic iff their roots have identical

canonical names (aka the Knuth parenthetical tuples); furthermore, two trees

are isomorphic iff for all ` levels, the canonical level names of two trees are

identical.

To check that two degrees up to level n − 1 are similar, Algorithm 6.9

below is a modified O(N2) version [21] of the original AHU algorithm, where

N is the number of nodes in a degree tree. Algorithm 6.8 is a helper function

that computes the canonical name of the tree’s root. The statement in line 8

is to yield each element νi from νr’s children list Aνr one by one. The function

RadixSort that appears in line 11 below sorts a list of binary strings

lexicographically (see the least significant digit (LSD) radix sort [30, pp. 197–

200]). Also, the function ToString in line 12 converts a list to a string by

concatenating together the strings stored in the list.

Algorithm 6.8 Assign its canonical name for a degree tree

1: function AssignName(D)
2: νr ← a node with no value and an empty children list Aνr
3: νr ← the root of D

96 Chapter 6: Computing Symmetry

4: if Aνr is empty then I νr is a leaf
5: return “()”
6: else
7: temp ← an empty list
8: for all νi ∈ Aνr do
9: Append AssignName(νi) to temp

10: end for
11: temp ← RadixSort(temp)
12: return “(” + ToString(temp) + “)”
13: end if
14: end function

Algorithm 6.9 Check if two degree trees are similar

1: function IfTwoDegreeTreesSimilar(D1, D2)
2: if AssignName(D1) = AssignName(D2) then
3: return True
4: else
5: return False
6: end if
7: end function

With the help of two functions FillAD in Algorithm 6.7 and IfTwoDe-

greeTreesSimilar in Algorithm 6.9, we are able to build D (Algorithm

6.10) and V (Algorithm 6.11).

Algorithm 6.10 line 4, as a matter of fact, implicitly checks if a degree tree

D(vi) is already in the collection by: iterating through the previously-existed

degree trees, and, checking if each is similar to D(vi) (using Algorithm 6.9).

Algorithm 6.10 Generate the degree tree collection D

Chapter 6: Computing Symmetry 97

1: function GenerateDegreeTreeCollection(G,AD)
2: D ← ∅
3: for all vi ∈ V do
4: if D(vi) /∈ D then
5: D ← D ∪ {D(vi) }
6: end if
7: end for
8: return D
9: end function

With D generated by Algorithm 6.10, we can generate the corresponding V

withMD:V in Algorithm 6.11. MD:V (line 2) is a one-to-one (injective) function

mapping the degree tree collection D to the corresponding degree tree vertex

partition V and implemented as a dictionary in Algorithm 6.11. Table 6.2

illustrates the data structure. The variable V in line 9 is implemented as a

set of sets.

Degree Tree Di (Key) D1 D2 . . . Dκ

Degree Tree Class VDi (Value) VD1 VD2 . . . VDκ

Table 6.2: MD:V associating D with V

Algorithm 6.11 Generate the degree tree vertex partition V

Ensure: |V| = |D| = κ

1: function GenerateDegreeTreeVertexPartition(G,D, AD)
2: MD:V ← an empty dictionary
3: for all Di ∈ D do
4: MD:V [Di]← ∅
5: end for

98 Chapter 6: Computing Symmetry

6: for all vi ∈ VG do
7: MD:V [D(vi)]←MD:V [D(vi)] ∪ { vi }
8: end for
9: V ← {∅ } I V is a set of disjoint

degree tree classes
10: for all Di ∈ D do
11: V ← V ∪ {MD:V [Di] } I MD:V [Di] = VDi
12: end for
13: return V
14: end function

In Algorithm 6.12, we combine the above ideas to generate D, V andMD:V

simultaneously in one pass.

Algorithm 6.12 Generate D, V and MD:V altogether

Ensure: |V| = |D| = κ

1: function GenerateDVM(G,AD)
2: D ← ∅
3: MD:V ← an empty dictionary
4: for all vi ∈ VG do
5: if D(vi) /∈ D then
6: D ← D ∪ {D(vi) }
7: MD:V [D(vi)]← { vi }
8: else
9: MD:V [D(vi)]←MD:V [D(vi)] ∪ { vi }

10: end if
11: end for
12: V ← {∅ }
13: for all Di ∈ D do
14: V ← V ∪ {MD:V [Di] }
15: end for

Chapter 6: Computing Symmetry 99

16: return D,V ,MD:V

17: end function

6.6 An Upper Bound on Symmetricity

This section is an application of using degree trees to obtain an upper bound

on the symmetricity of a graph G. Our upper bound is easier to compute

than determining the symmetricity directly, since our technique does not need

to consider any particular labelling f of the graph G.

Definition 6.6. The number of vertices of a graph G with degree x is denoted

as #x(G).

Below is a proposition from Yamashita and Kameda [90, p. 73] that gives a

relationship between the multiplicity of a labelling and the number of vertices

of any fixed degree d.

Proposition 6.6. For any labelling f on any graph G, sf | #d(G), for

d ∈ { 1, 2, . . . , n− 1 }.

Example 6.4. In Figure 6.8, #1(G) = 0, #2(G) = 0, #3(G) = 2, and

#4(G) = 3, as there are 5 vertices in G. Note that Proposition 6.6 implicitly

implies that sf = 1 for any labelling f, since 1 is the only integer that divides

each #d(G). This also indicates that σ(G) = 1 in this case — no matter

which labelling is used, each vertex will have a dissimilar view.

100 Chapter 6: Computing Symmetry

v1

v2

v3 v4

v5

Figure 6.8: A graph G whose symmetricity is 1

Proposition 6.6 further implies that sf divides the gcd of each #d(G) for

d ∈ { 1, 2, . . . , n− 1 }, and we define

γ(G) = gcd(#1(G),#2(G), . . . ,#n−1(G)).

Therefore, sf | γ(G) for any labelling f; naturally σ(G) | γ(G) since σ(G)

is the largest possible sf by definition. Although γ(G) itself can be used as

an upper bound on the precise value of σ(G), we next introduce a better one

based on degree trees.

Definition 6.7. The number of vertices of a graph G with degree tree D is

denoted as #D(G), which is equal to |VD| for VD ∈ V .

Similarly, we define

µ(G) = gcd(#D1(G),#D2(G), . . . ,#Dκ(G)) = gcd(|VD1 |, |VD2|, . . . , |VDκ|),

where 1 ≤ κ ≤ n.

Below is the algorithm to calculate µ(G).

Chapter 6: Computing Symmetry 101

Algorithm 6.13 Compute µ(G)

Require: V is generated from a graph G
1: function ComputeMuG(V)
2: µ← |VD1|
3: for all VDi ∈ V do
4: µ← gcd(µ, |VDi |)
5: end for
6: return µ

7: end function

Since a degree tree D of a vertex contains more information than merely

a degree of that, µ(G) performs at least as well as γ(G) when it comes to an

upper bound of a graph G’s symmetricity σ(G).

Proposition 6.7. For a graph G under any labelling f, we have sf ≤ σ(G) ≤

µ(G) ≤ γ(G) ≤ n.

Proof. By Definition 2.17, sf ≤ σ(G). Then we argue σ(G) ≤ µ(G). Let #D

be the number of vertices with some degree tree Di ∈ D = {D1, D2, . . . , Dκ },

and we can write #Di = ∑|VTi |, where the summation is taken over all Ti ∈ T

such that Ti is a view under f isomorphic to Di (when all port labels are

ignored). According to Proposition 2.1, each term |VTi | in that sum is equal to

sf, so sf | #Di . By definition, there exists a labelling f that makes sf = σ(G).

Since σ(G) | #Di for any degree tree Di, it follows that σ(G) divides the gcd

of #D1 , . . . ,#Di , . . . ,#Dκ . Therefore, σ(G) | µ(G) and σ(G) ≤ µ(G).

By a similar argument, we show µ(G) ≤ γ(G). Let #x be the number of

vertices with degree x. We have #x = ∑#Di , where the summation is taken

102 Chapter 6: Computing Symmetry

over all Di ∈ D such that the root of Di has degree x. Since each term in the

sum is divisible by µ(G) (by definition of µ(G)), µ(G) | #x. This indicates

that µ(G) divides the gcd of #1, . . . ,#x, . . . ,#n−1, which implies µ(G) | γ(G)

and µ(G) ≤ γ(G). �

Corollary 6.2. If µ(G) = 1, then σ(G) = 1.

The chain of inequalities in Proposition 6.7 demonstrates that µ(G) is

at least as tight an upper bound on σ(G) as γ(G) is. Example 6.5 gives a

situation where the bound is strictly tighter.

Example 6.5. In Figure 6.9, both graphs have six vertices. In the left-

hand side one G1, #2(G1) = 4, #3(G1) = 2 and γ(G1) = gcd(4, 2) = 2;

meanwhile, we have σ(G1) = µ(G1) = 1 ≤ γ(G1). For the right-hand side

one G2, #2(G2) = 2, #3(G2) = 4 and γ(G2) = gcd(4, 2) = 2; we have

σ(G2) = µ(G2) = 1 ≤ γ(G2) as well.

Figure 6.9: Two 6-vertex graphs G1 and G2

Chapter 6: Computing Symmetry 103

6.7 Symmetricity of Trees

This section is dedicated to proving a theorem that describes the symmetricity

of trees, based on Proposition 6.8 [90, p. 76].

Proposition 6.8. If a graph G is a tree, then σ(G) ≤ 2.

Our main result is the following theorem that characterizes exactly when

σ(G) = 1 versus σ(G) = 2.

Theorem 6.2. A tree G has σ(G) = 2 iff G consists of two isomorphic rooted

subtrees whose roots are vr and v′r with a bridge (vr, v′r).

These subtrees mentioned in Theorem 6.2 are induced. For any tree, all

its n− 1 edges are in fact its bridges. We set up a series of lemmas below to

prove the “only if” part of Theorem 6.2.

Lemma 6.3. Given a tree G = (V,E) under a labelling f, for each vertex

v ∈ V and any two of its neighbours vi, vj ∈ NG(v), Tf(vi) 6≡ Tf(vj).

In other words, a vertex in a port-labelled tree cannot have two neighbours

which have similar views.

Proof by contradiction. Given such a tree, its multiplicity can only either be

1 or 2 according to Proposition 6.8.

Case 1. Suppose sf = 1 for some labelling f. By definition, all the vertices

in such a tree have the dissimilar views.

104 Chapter 6: Computing Symmetry

Case 2. Suppose sf = 2 for some labelling f. There exists such a vertex

v connecting two neighbours vi and vj with similar view T , and then there

must exist another vertex v′ (v′ 6= v) connecting two neighbours v′i and v′j

with similar view T .

Subcase (i): If vi 6= v′i or vj 6= v′j. Then we have at least three vertices

with similar view T , which contradicts our assumption.

Subcase (ii): If vi = v′i and vj = v′j, i.e., v and v′ are adjacent to both vi

and vj. Then G must contain a cycle, which contradicts the fact that G is a

tree, as shown in Figure 6.10, where each colour (black or white) represents a

dissimilar view.

�

v′

vj

v

vi

. . .

......

. . .

Figure 6.10: Case 2, subcase (ii) of Lemma 6.3

Lemma 6.4. For a tree under a labelling f with sf = 2, there exists one and

only one bridge (vr, v′r), such that Tf(vr) ≡ Tf(v′r).

Proof by contradiction. Based on Proposition 6.8, the tree’s symmetricity

Chapter 6: Computing Symmetry 105

must be 2 and the number of vertices in such a tree must be even. We have

|Tf| = n/2 and for any Ti ∈ Tf, |VTi | = 2.

Case 1. Suppose that there exist more than one bridge whose two

endpoints have similar views. Let e1 = (vr, v′r) and e2 = (v, v′) be two such

bridges, where vr, v′r ∈ VT1 , v, v′ ∈ VT2 and T1 6≡ T2. Without loss of generality,

let v′r be the endpoint of e1 and let v′ be the endpoint of e2 such that vr and

v lie on the path between v′r and v′. In order to share a similar view with vr,

v′r must have another path containing a vertex whose view is equivalent to T2.

By the choice of v′r, there is a path (v′r, vr, vw, . . . , v, v′) in the graph. Since

vr’s view is similar to v′r’s view, there needs to be a path (vr, vx, . . . , vy, vz)

where vx’s view is T1, and vy and vz have view T2. Then vx must be v′r since

there are only two vertices with view T1; vy and vz must be v and v′ because

they are the only vertices with view T2. This proves that there exists a path

between vr and v where vr’s neighbour is vw and there exists a path between

vr and v where vr’s neighbour is v′r — since vw and v′r cannot be the same

vertex (which would imply three vertices with view T1), it contradicts that

the graph is a tree.

Case 2. Suppose that there exists no such a bridge whose two endpoints

have similar views. Let vr, v′r ∈ VT and T (vr) ≡ T (v′r). By assumption, vr and

v′r are not neighbours to one another. Since G is a tree, there is exactly one

path between vr and v′r, which is (vr, u0, u1, . . . , uk, v
′
r). For each ui, let Ti be

the view of ui, and a sequence of the views mapping the vertices on the path

between vr and v′r is (T (vr), T0, T1, . . . , Tk, T (v′r)), shown in Figure 6.11. Since

106 Chapter 6: Computing Symmetry

the views of vr and v′r are similar, there must be a path between v′r and vr such

that the sequence of the views along this path is (T (v′r), T0, T1, . . . , Tk, T (vr)).

These two paths must be the same; otherwise, there exists a cycle in the tree

and a contradiction appears. Hence,

(T (vr), T0, T1, . . . , Tk, T (v′r)) = (T (v′r), T0, T1, . . . , Tk, T (vr)).

More specifically, Ti ≡ Tk−i for all i.

Subcase (i): If k is odd, then the middle edge (v(k−1)/2, v(k+1)/2) has

two endpoints with similar view T(k−1)/2 ≡ T(k+1)/2, which contradicts our

assumption.

Subcase (ii): If k is even, then the two neighbours of vk/2 have similar

views, which contradicts Lemma 6.3.

�

vr

T (vr)
u0

T0

u1

T1

uk

Tk

v′r

T (v′r). . .

Figure 6.11: The path between two vertices vr and v′r

The next result shows that the only edge (vr, v′r) connecting two vertices

with similar views, has the same port on its two endpoints.

Corollary 6.3. For any tree under a labelling f with sf = 2, and any edge

(vr, v′r) such that Tf(vr) ≡ Tf(v′r), we have that fvr(v′r) = fv′
r
(vr).

Chapter 6: Computing Symmetry 107

Proof by contradiction. Let x = fvr(v′r), y = fv′
r
(vr) and T ≡ Tf(vr) ≡ Tf(v′r).

Assume that x 6= y. In Tf(vr), the root has one child with view T , and the

directed edge are labelled with the ordered pair of ports (x, y). In Tf(v′r),

the root has one child with view T , and the outgoing and incoming ends of

the directed edge are labelled with (y, x). Since vr and v′r are the only two

vertices with view T , this means that there is no other directed edge from

the root of Tf(v′r) to a node with view T (and hence there is no such edge

labelled as (x, y)). This demonstrates that Tf(vr) 6≡ Tf(v′r), which contradicts

Lemma 6.4. �

Corollary 6.4. Consider any tree under a labelling f with sf = 2, and any

edge (vr, v′r) such that Tf(vr) ≡ Tf(v′r). For any v, v′ other than vr, v′r such that

Tf(v) ≡ Tf(v′), a path between v and v′ always go through the edge (vr, v′r).

Proof. From Lemma 6.3, two vertices with similar views cannot be neighbours

of the same vertex. And as we did in Case 2 inside the proof of Lemma 6.4,

we can prove there is an edge in the middle of the path between v and v′

such that both endpoints have similar views. By Lemma 6.4, we conclude

that these two vertices are vr and v′r, which proves that the path between v

and v′ contains the edge (vr, v′r). �

The following lemma is the “only if” direction of Theorem 6.2.

Lemma 6.5. If a tree G has σ(G) = 2, then G consists of two isomorphic

rooted subtrees whose roots are vr and v′r with a bridge (vr, v′r).

108 Chapter 6: Computing Symmetry

Proof by induction. Since σ(G) = 2, we assume that there is a labelling f on

G with sf = 2. By Lemma 6.4, there is exactly one bridge (vr, v′r) such that

Tf(vr) ≡ Tf(v′r). In total n vertices in such a tree are divided into two disjoint

sets: let Vr be the set of the vertices that are closer to vr than v′r, and, let

V ′r be the set of the vertices that are closer to v′r than vr. By doing so, G is

divided into three components: a subtree G1 with vertex set Vr whose root

is vr, a subtree G2 with vertex set V ′r whose root is v′r, and a bridge (vr, v′r)

connecting G1 and G2. Then we redefine the level of each vertex v here to be

min(d(v, vr), d(v, v′r)). There exists an isomorphism ψ : Vr → V ′r such that,

if ψ(vx) = vy, then the sequence of ports from vr to vx is identical to the

sequence of ports from v′r to vy. Let ` be the particular level of a subtree.

Base case. When ` = 0, there is an isomorphism ψ such that ψ(vr) = v′r,

since both of the sequences are empty.

Inductive step. We try to prove that if there exists an isomorphism ψ

from all vertices in Vr at level ` to all vertices in V ′r at level `, then the same

isomorphism ψ maps all vertices in Vr at level `+ 1 to all vertices in V ′r at

level ` + 1. Let vw be a vertex in Vr at level ` + 1 and vx be the parent of

vw (i.e., the only neighbour of vw at level `). Let p = fvx(vw) and there must

exist vy = ψ(vx) in V ′r at level `. Now, port p from vy must lead to a vertex

at level ` + 1 in V ′r due to the induction hypothesis: the exact same port

sequence from vr to vx appears on the path from v′r to vy. Especially, if port

p leads from vy to level ` − 1, then the same port p would lead from vx to

Chapter 6: Computing Symmetry 109

level `− 1. So we let v′w be a vertex at level `+ 1 in V ′r that can be reached

by following port p from vy and define ψ(vw) = v′w.

Next, it remains to show that the edge (vx, vw) is labelled in the same

way as (vy, v′w). First, fvx(vw) = fvy(v′w) = p, because of how we chose

v′w. We then try to prove by contradiction that fvw(vx) = fv′
w
(vy). Assume

fvw(vx) 6= fv′
w
(vy). Let S represent the sequence of ports from vr to vx. By

the induction hypothesis, the same sequence S is the port sequence from v′r to

vy. So the port sequence from vr to vw is S concatenating the ordered pair of

ports (p, i), i.e., S · (p, i), where i = fvw(vx). And the port sequence from v′r

to v′w is S · (p, i′), where i′ = fv′
w
(vy). If i 6= i′, then there is a port sequence

in Tf(vr) that does not exist in Tf(v′r), which contradicts Tf(vr) ≡ Tf(v′r).

In conclusion, two rooted subtrees G1 and G2 of G are isomorphic. �

To finish the proof of Theorem 6.2, we prove its “if” direction, which is

the following lemma.

Lemma 6.6. If a tree G consists of two isomorphic rooted subtrees whose

roots are vr and v′r with a bridge (vr, v′r), then G has σ(G) = 2.

Proof. Let G1 and G2 be two isomorphic rooted subtrees of a tree G. We

use the function ArbitraryLabel from Algorithm 5.8 on G1 to give it an

arbitrary labelling. The same labelling can be applied on G2 in view of their

isomorphism. Then there remains an unlabelled bridge connecting G1 and

G2 whose two ends vr and v′r are the roots of G1 and G2. The ports for two

110 Chapter 6: Computing Symmetry

ends of the bridge (vr, v′r) are deg(vr) = deg(v′r). As a total labelling done

symmetrically, its multiplicity must be 2. �

Example 6.6. In Figure 6.12, the red-coloured bridge divides two isomorphic

components whose roots are vr and v′r and the tree has symmetricity 2.

vr v′r
1 1

3

2

21

3

2

2 1

11 1 1

Figure 6.12: Two isomorphic subtrees with a bridge connecting two roots

7
Producing Asymmetry

No two trees are the same to
Raven. No two branches are the
same to Wren.

Lost
David Wagoner

Provided that a total labelling has multiplicity 1 or a partial one is

guaranteed to have multiplicity 1, we say that it is asymmetric. In this

chapter, we partially prove that there is always a labelling that allows the

graph to be completely asymmetric, i.e., the resulting multiplicity is 1. This

will help us answer Subproblem 1 of Problem 5.

When the number of vertices for a graph is equal to 2, there is only one

possible labelling on such a graph (i.e. the smallest complete graph K2) and

the port-labelled graph has multiplicity 2. The rest of this chapter considers

the case where n > 2, and we make progress towards solving the following

conjecture proposed by ourselves.

111

112 Chapter 7: Producing Asymmetry

Conjecture 7.1. For any graph G with n > 2, there always exists a labelling

f such that sf = 1.

Informally speaking, we attempt to offer a specially-designed labelling on

any graph such that where all vertices have dissimilar views, or equivalently,

prove that LE is solvable on such a port-labelled graph. The core idea behind

it is to transform a partial labelling f on G whose multiplicity is potentially

larger than 1, into a slightly different partial labelling f′ whose multiplicity is

guaranteed to be 1, by switching two ports on one carefully-selected vertex.

In order to achieve that, each major step of our labelling algorithm (given in

Algorithm 7.6 from Section 7.3) is listed below:

1. For a graph G = (V,E) with |V | = n, we generate degree trees of each

vertex using the function FillAD from Algorithm 6.7.

2. Then we generate degree tree collection D = {D1, D2, . . . , Dκ } and

degree tree vertex partition V = { VD1 , VD2 , . . . , VDκ }, where 1 ≤ κ ≤ n,

using the function GenerateDVM from Algorithm 6.12.

3. There are three mutually exclusive cases:

Case 1. κ ≥ 3.

Case 2. κ = 2.

Subcase (i): G is biregular.

Subcase (ii): G is non-biregular.

Case 3. κ = 1.

Chapter 7: Producing Asymmetry 113

Subcase (i): G is {1, 2}-factorable.

Subcase (ii): G is non-{1, 2}-factorable.

Since the first two steps have already been implemented previously in

Chapter 6, we now separately consider each case of Step 3. The following

approach for an asymmetric partial labelling with port-switching will be used

below when handling several of the cases. The three cases of Step 3 will be

handled separately in Section 7.2.

7.1 Asymmetric Partial Labellings

In this section, we describe an algorithm that will be used in cases where

there is a degree tree class VD such that every vertex v ∈ VD (with degree

tree D) has at least two neighbours with dissimilar degree trees. We choose

such a V̂D, and port-label all the vertices in V̂D identically, except exactly one

of them (called vunique). We then switch its ports on two edges connecting

two neighbours with dissimilar degree trees. This process will result in an

asymmetric labelling because switching the ports will make the view of vunique

dissimilar at level 1 from all other vertices in V̂D, let alone the rest of the

vertices in the same graph. From Proposition 2.1, the multiplicity is 1.

In Algorithm 7.1, the first-encountered degree tree class satisfying the

condition above is returned. Line 3 indicates that port-switching is feasible

when VDi contains at least two vertices. If there exist at least two dissimilar

degree trees among vj’s neighbours (vj ∈ VDi), VDi itself is returned as V̂D

114 Chapter 7: Producing Asymmetry

(in line 8).

Algorithm 7.1 Select V̂D from V
1: function SelectVD(G,AD,V)
2: for all VDi ∈ V do
3: if |VDi | > 1 then
4: v ← an arbitrary vertex in VDi
5: temp ← ∅
6: for all vj ∈ NG(v) do
7: if D(vj) /∈ temp then
8: if temp 6= ∅ then
9: return VDi

10: else
11: temp ← temp ∪ {D(vj) }
12: end if
13: end if
14: end for
15: end if
16: end for
17: end function

Once it is achieved, we can do an asymmetric partial labelling to make

sure that the multiplicity of any total labelling based on such a labelling (in

Algorithm 7.3 mentioned later) is fixed to be 1. We define a new function.

Definition 7.1. The number of v’s neighbours in a graph G = (V,E) be-

longing to a degree tree class VD is denoted as NG(v,D) , or in other words,

the number of its neighbours with degree tree D.

Chapter 7: Producing Asymmetry 115

Corollary 7.1. For a graph G = (V,E) and every v ∈ V , ∑κ
i=1 NG(v,Di) =

deg(v), for κ = |D| and Di ∈ D.

Proof. There are κ dissimilar degree trees in total and each vertex can only

own exactly one degree tree. The notation NG(v,Di) represents the number

of v’s neighbours with a specific degree tree D (which may be zero sometimes)

and the sum of each NG(v,Di) is the number of its neighbours. By definition,

it is equal to deg(v). �

To compute NG(v,D), one option is to create a dictionary for each vertex

v whose key is a degree tree D and value is the number of v’s neighbours with

D for optimal execution time. However, to simplify the code, the function

ReturnNG from Algorithm 7.2 is invoked implicitly every time when the

expression NG(v,D) occurs.

Algorithm 7.2 Return NG(v,D) for a vertex v and a degree tree D

Require: v ∈ VG and D ∈ D
1: function ReturnNG(G,AD, v,D)
2: num ← 0
3: for all vi ∈ NG(v) do
4: if D(vi) = D then
5: num ← num + 1
6: end if
7: end for
8: return num
9: end function

116 Chapter 7: Producing Asymmetry

We have Algorithm 7.3 to do a partial labelling for each vertex v ∈ V̂D,

such that their (incomplete) views up to level 1 are similar (although we are

far from finishing the total labelling); its practicality follows from Theorem 6.1.

In line 7, for each Dj ∈ {D1, D2, . . . , Dκ }, if the number of vi’s neighbours

with a specific degree tree Dj is not zero, then we assign the ports from{ ∑j−1
x=1 NG(vi, Dx) + 1, . . . ,∑j

x=1 NG(vi, Dx)
}
without repetition to the edges

incident to the neighbours with degree tree Dj . VDj is returned by referencing

MD:V [Dj] while vk is a neighbour of vi with degree tree Dj (line 8).

Algorithm 7.3 Do a partial labelling on the vertices from V̂D

1: function PartialLabelVD(G, V̂D,D,MD:V)
2: n← |V̂D|
3: f← an empty 2-dimensional n-by-n array
4: for all vi ∈ V̂D do
5: unused ← 1
6: for all Dj ∈ D do
7: if NG(vi, Dj) > 0 then
8: for all vk ∈ NG(vi) ∩MD:V [Dj] do
9: fvi(vk)← unused
10: unused ← unused + 1
11: end for
12: end if
13: end for
14: end for
15: return f

16: end function

After Algorithm 7.3 has port-labelled the vertices in V̂D, we make a vertex

Chapter 7: Producing Asymmetry 117

arbitrarily (here, vunique ∈ V̂D) “unique” among any other vertices in V̂D by

switching its ports on the edges incident to the neighbours from different

degree tree classes. Immediately, the view of vunique becomes dissimilar

compared to its counterparts in V̂D, even if it is just a partial labelling for the

vertices in V̂D — suppose that a graph has been partially port-labelled, and

that for some degree tree D, no vertex with degree tree D has had its ports

labelled yet. As a consequence, the resulting multiplicity must be 1 regardless

of how the rest of the labelling is defined. This is accomplished using the

following algorithm, which makes use of the functions SelectVD (Algorithm

7.1), PartialLabelVD (Algorithm 7.3), and SwitchPorts (swapping

the smallest port and the largest port, taken from Algorithm 5.6) defined

before. The effect of the code in Algorithm 7.4 line 8 is shown in Figure 7.1

(the same colour represents the vertices with similar degree trees and the

question marks indicate yet unlabelled ports): before the execution of line

8, fvunique(v) = 1 and fvunique(v′) = δ, for D(v) 6≡ D(v′) and δ = deg(vunique);

after port-switching, fvunique(v) = δ and fvunique(v′) = 1.

Algorithm 7.4 Do an asymmetric partial labelling on a graph

1: function AsymmetricPartialLabel(G,AD,D,V ,MD:V)
2: V̂D ← ∅
3: V̂D ← SelectVD(G,AD,V)
4: n← |VG|
5: f← an empty 2-dimensional n-by-n array
6: f← PartialLabelVD(G, V̂D,D,MD:V)
7: vunique ← an arbitrary vertex in V̂D
8: f← SwitchPorts(〈G, f〉 , { vunique })

118 Chapter 7: Producing Asymmetry

9: return f

10: end function

vunique

v

v′. . .

1

?

2

?

3
?

4

?

δ

?

SwitchPorts−−−−−−−→ vunique

v

v′. . .

δ

?

2

?

3
?

4

?

1

?

Figure 7.1: The port change of vunique after line 8

7.2 Three Cases of Step 3

7.2.1 Case 1

According to Proposition 6.5, we can always call the function Asymmetric-

PartialLabel from Algorithm 7.4 on G with κ ≥ 3.

7.2.2 Case 2

When κ = 2 (and V = { VD1 , VD2 }), G can either be biregular (Proposition

6.3) or non-biregular. For G with κ = 2 to be biregular, all the vertices in VD1

connect only the ones in VD2 and vice versa. We have Algorithm 7.5 to check

if such G is biregular or not. As we are assuming that κ = 2 in this case, the

algorithm picks one arbitrary vertex v from two degree tree classes VD1 and

VD2 , and examines if v has any neighbour from the same degree tree class.

Chapter 7: Producing Asymmetry 119

Algorithm 7.5 Check if a graph with κ = 2 is biregular

Require: κ = 2, i.e., V = { VD1 , VD2 }
1: function IfBiregular(G,V)
2: for all VDi ∈ V do
3: v ← an arbitrary vertex in VDi
4: for all vi ∈ NG(v) do
5: if vi ∈ VDi then
6: return False
7: end if
8: end for
9: end for
10: return True
11: end function

Furthermore, if G is (x, y)-biregular (the function IfBiregular on it

returns True) with gcd(|VD1 |, |VD2|) = 1, then gcd(x, y) = 1 (Corollary 6.1)

and its symmetricity is actually 1. Although we can use the function Arbi-

traryLabel from Algorithm 5.8 to give such a graph an arbitrarily total

labelling, here we do a partial labelling on it by applying the function Asym-

metricPartialLabel from Algorithm 7.4 for consistency. The case of

gcd(|VD1 |, |VD2 |) 6= 1 (gcd(x, y) 6= 1) remains unsolved (see Section B.1).

If G is non-biregular (the function IfBiregular on it returns False in-

stead), there exists at least one vertex whose neighbours have two dissimilar

degree trees due to Proposition 6.4 — so applying the function Asymmet-

ricPartialLabel is sufficient to create a graph with multiplicity 1.

120 Chapter 7: Producing Asymmetry

7.2.3 Case 3

When κ = 1, G must be regular, which is guaranteed by Proposition 6.2: it

can be either {1, 2}-factorable or non-{1, 2}-factorable.

If G is {1, 2}-factorable, there always exists at least one labelling f whose

multiplicity is n (Corollary 2.1). For such a subcase, one possible solution

is to invoke the function FullySymmetricLabel from Algorithm 5.4 and

switch two ports of one of its vertices by using the function SwitchPorts

from Algorithm 5.6. Instead, we again use the function AsymmetricPar-

tialLabel.

If G is non-{1, 2}-factorable (regular but without 1-factors; see Corollary

5.1), we do not currently have a solution, so we exclude this case from our

final algorithm. There are some elementary results in Section B.2.

7.3 The Final Algorithm

We combine the above observations to produce Algorithm 7.6, which will

ensure that the multiplicity becomes 1 in the cases we know how to solve. The

function If12Factorable in Algorithm 7.6 line 23 is from Algorithm 5.1.

Except the biregular graphs whose size of two bipartitions are not co-prime

and the non-{1, 2}-factorable regular graphs, Conjecture 7.1 holds.

Algorithm 7.6 Do an asymmetric partial labelling on any graph

1: function AsymmetricPartialLabelAny(G)
2: n← |VG|

Chapter 7: Producing Asymmetry 121

3: AD ← an empty 2-dimensional n-by-(n− 1) array
4: AD ← FillAD(G)
5: D ← ∅
6: V ← {∅ }
7: MD:V ← an empty dictionary
8: D,V ,MD:V ← GenerateDVM(G,AD)
9: κ← |V| I |V| = |D|
10: f← an empty 2-dimensional n-by-n array
11: if κ ≥ 3 then
12: f← AsymmetricPartialLabel(G,AD,D,V ,MD:V)
13: else
14: if κ = 2 then
15: if IfBiregular(G,V) then
16: if gcd(|VD1 |, |VD2|) = 1 then
17: f← AsymmetricPartialLabel(G,AD,D,V ,MD:V)
18: end if
19: else
20: f← AsymmetricPartialLabel(G,AD,D,V ,MD:V)
21: end if
22: else I G is regular
23: if If12Factorable(G) then
24: f← AsymmetricPartialLabel(G,AD,D,V ,MD:V)
25: end if
26: end if
27: end if
28: return f

29: end function

8
Future Work

You can never plan the future by
the past.

Edmund Burke

In this thesis, we considered problems of two types:

1. Can we provide a port-labelled graph to satisfy certain symmetry

requirements? (Problems 1, 2 and 3)

2. For a port-labelled graph, can we quantify its symmetry? (Problems 4

and 5)

In Chapter 5, we solved all three problems of the first type by creating

an algorithm that produces a fully symmetric labelling (Algorithm 5.4), an

algorithm that produces a total labelling on a complete graph with a desired

multiplicity (Algorithm 5.7), and an algorithm that generates more instances

with rooted products (Algorithm 5.12). For the second type, we provided

122

Chapter 8: Future Work 123

an algorithm that computes the multiplicity of a graph (Algorithm 6.5) as

a solution of Problem 4 in Section 6.1. Unfortunately, Problem 5 was only

partially solved. We made partial progress on its Subproblem 1: in terms

of the minimum multiplicity of a graph, in Chapter 7, we came up with an

algorithm that asymmetrically port-labels most families of graphs such that

their multiplicities become 1 (Algorithm 7.6); for the maximum multiplicity

(symmetricity), we provided an upper bound using degree trees in Section

6.6. For its Subproblem 2, we offered two examples falling into two cases in

Sections 5.3 and 5.4 respectively. Additionally, the trees with symmetricity 2

are characterized precisely in Section 6.7. And we failed to make any progress

on its Subproblem 3.

1. Given a graph, determine lower/upper bounds on its multiplicities.

2. Given a graph G, determine if every d between the extrema can be

a valid multiplicity sf for some labelling f on G.

3. Given a graph, list all possible multiplicities and at least one of

their corresponding labellings.

Subproblems 1, 2 and 3 of Problem 5

Along with what we mentioned above, here are two more conjectures

which can potentially be our next step.

Conjecture 8.1. For a graph G and its connected complement G1, µ(G) =
1The complement of a graph G = (V,E) is a graph H with the same vertex set V such

124 Chapter 8: Future Work

µ(G) and σ(G) = σ(G).

Definition 8.1. A graph is planar if it can be drawn in the plane such that

none of its edges intersects each other except their ends.

Definition 8.2. A graph G is vertex-transitive if given any two vertices

v1 and v2, there exists a bijection ψ : G→ G such that ψ(v1) = v2.

A graph is vertex-transitive iff its graph complement is; every vertex-

transitive graph is regular, but not visa versa (e.g., the Frucht graph mentioned

in Figure 4.1 is not).

Conjecture 8.2. If a graph G is either planar or vertex-transitive, µ(G) =

σ(G).

Also, in order to decrease the running time of algorithms, there are three

approaches to reduce considerably the complexity of the graph that we are

operating on (without losing crucial graph invariants): covering graphs [5,

p. 86] (later evolved into graph fibrations [15]), quotient graphs [90, pp. 76–

82] and graph amalgamation (mainly appeared in graph embedding and

factorization research works). Like the f-view [84] mentioned on page 28, we

may apply the same technique to prune the degree tree directly, removing

redundant nodes from it.

Besides, we would like to find a relatively large gap between the various

quantities in the chain of inequalities sf ≤ σ(G) ≤ µ(G) ≤ γ(G) ≤ n from

Proposition 6.7.
that its edges are the pair of nonadjacent vertices in G.

Chapter 8: Future Work 125

Finally, the reconstruction problem (proposed by K. Gunderson, personal

communication, June 18, 2021) is still open to answer: can a vertex-unlabelled

graph under a labelling always be constructed from its views? The answer

is negative when the multiplicity is n. If the multiplicity is instead 1, then

it is highly possible that a graph can be reconstructed from its collection

of views: each vertex can be labelled according to its dissimilar view and

then adjacency can be extracted from the views. If reconstruction is possible,

it might be interesting to know the minimum number of views required to

reconstruct.

A
The Graph Construction

Ever tried. Ever failed. No
matter. Try again. Fail again.
Fail better.

Worstward Ho
Samuel Beckett

We here prove the existence of non-1-factorable k-regular n-vertex graph

with at least one 1-factor by directly constructing such an example (as

demonstrated by K. Gunderson, personal communication, June 18, 2021).

For a k-regular graph with k = 2, the existence of a 1-factor implies the

existence of a 1-factorization. The following proof is based on the fact that

for a sufficient large n and k ≥ 2dn/4e − 1, every k-regular graph with n

vertices has a 1-factorization [31].

Let k ≥ 4 be even and n = 4r + 2, which is sufficiently large; let H be

any k-regular Hamiltonian graph with n/2 = 2r + 1 vertices. We define a

new graph G by taking two copies of H: H1 and H2. Then we fix an edge

126

e = (v, w) on the Hamiltonian cycle of H. We remove the edge e1 = (v1, w1)

and e2 = (v2, w2) (the copies of e in each of the copies of H) from G, and we

add the new edges (v1, v2) and (w1, w2) to G. Now, the graph G is k-regular

and has a perfect matching — if we remove the edge (v1, v2), then every

second edge along the two Hamiltonian cycles forms a perfect matching.

Claim A.1. The graph G has no 1-factorization.

Proof by contradiction. Assume that G does have a 1-factorization. Let M1

and M2 be the perfect matchings containing the edges e1 and e2 respectively.

The two matchings are not equal since the graph H \(v, w) has an odd number

of vertices (and so no perfect matching of the remaining vertices). The graph

G − (M1 ∪M2) is a disconnected graph that has at least two components,

in which every vertex has degree k − 2 ≥ 2. Since each of the components

is contained either in the vertices of H1 or H2 (both have an odd number of

vertices), one of the components is odd and hence the graph has no perfect

matching. �

127

B
Two Unsolved Cases

Trifles make perfection, and
perfection is no trifle.

Lacon
Charles Caleb Colton

The appendix contains our unfinished work for Conjecture 7.1 — for any

graph G with n > 2, there always exists a labelling f such that sf = 1. Its

two unsolved cases are (x, y)-biregular graphs with gcd(x, y) 6= 1, and all

non-{1, 2}-factorable regular graphs.

B.1 Biregular Graphs

When a graph G = (U ∪ V,E) is (x, y)-biregular and gcd(x, y) > 1, there

are two remaining cases to discuss its minimum multiplicity according to De

Morgan’s laws when gcd(|U |, |V |) > 1:

Case 1. |U | | |V | or |V | | |U |;

128

Case 2. |U | - |V | and |V | - |U |.

There are two possible ways to analyze these two cases: either fix |U |

and |V |, or fix x and y. Both of them will cover all possibilities, but here we

prefer the former one on the ground that: when we fix x and y, we actually

have no idea about |U | and |V |, let alone n = |U |+ |V | itself. In a better way

to say, |U | and |V | are unbounded and in some situation, are unreachable.

For example, for a (4, 6)-biregular graph, we know that 4|U | = 6|V | from

Corollary 6.1; |U | = 3 and |V | = 2 apparently fit the equation. However,

when |U | = 3 and |V | = 2, the corresponding complete bipartite graph is

only (2, 3)-biregular. If we fix |U | and |V | instead, all possible x and y are

available, the degree sequences of all generated graphs are graphic.

Example B.1. Given an (x, y)-biregular graph G = (U ∪ V,E) where |U | =

a = 12 and |V | = b = 4, the pairs of (x, y) can be (2, 6), (3, 9) or (4, 12). Now

make (x, y) be (3, 9) for instance and each vertex from U connects three out

of four vertices from V . Here we are showing a failed attempt in Figure B.1

to make a graphic (3, 9)-biregular graph with in total 16 vertices by adding

edges one by one. We let u1, u2, . . . , u9 only connect v1, v2 and v3. Now all u1

to u9 have degree 3 and v1, v2 and v3 have degree 9. Under the situation, u10,

u11 and u12 cannot have degree 3 and v4 cannot have degree 9 since there do

not exist enough vertices to do so. And in fact, the only possible way to make

this (3, 9)-biregular graph valid is to assign three vertices from U to connect

v1, v2 and v3, three ones to connect v2, v3 and v4, three ones to connect v1,

v3 and v4 and the remaining three ones to connect v1, v2 and v4.

129

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v1 v2 v3 v4

Figure B.1: A failed attempt to create a graphic biregular graph

For Case 1 (e.g. n = 9 when |U | = 6 and |V | = 3), we have the following

conjecture.

Conjecture B.1. If G is a biregular graph G = (U ∪ V,E) with n vertices

and either |U | | |V | or |V | | |U |, then µ(G) = σ(G) = min(|U |, |V |).

Theorem B.1. Every subgraph G′ of a bipartite graph G is, itself, bipartite.

Theorem B.2. If G = (U ∪ V,E) is a k-regular bipartite graph, then the

number of vertices in U is equal to that of vertices in V .

According to the theorems above along with Theorem 5.4, we know that

1-factors require even n and given a bipartite graph G with two bipartitions U

and V — if |U | 6= |V |, then there does not exist a 1-factor for G. Since for a

regular bipartite graph, we can always call the function PortLabel1Factor

from Algorithm 5.2 to make it fully symmetric, we can derive Conjecture B.2

from Conjecture B.1.

130

Conjecture B.2. For an (x, bx)-biregular graph G = (U ∪V,E), there exists

a bipartite x-regular subgraph in G.

Here we use a simple-word example to instantiate Conjecture B.2: suppose

that there are ab people (a > 1 and b > 1) and a bins; each person has x

coins to put into x out of a bins (2 ≤ x ≤ a) without repetition such that

after every one finishes, each bin has exactly bx (or y) coins. And Conjecture

B.2 is transferred to that we can always pick a group of a people from ab

ones, such that they, as a whole, put the same number of coins (which is x)

in each a bins. And the beauty of Conjecture B.2 is that if it holds, we are

guaranteed to keep applying it recursively by removing such a subgraph from

the original graph. For example, if we have 18 people and six bins (a = 6

and b = 3), and such a group of six people do exist, then we remove these six

people from 18 ones to leave 12 ones now (b′ = b− 1 = 2 now) and repeat the

process. Therefore, from Conjecture B.2, we imply the following one further.

Conjecture B.3. An (x, bx)-biregular graph G = (U ∪ V,E) is the union of

b edge-disjoint bipartite x-regular subgraphs.

We have two potential directions to solve Conjecture B.3: design theory

and hypergraph theory.

131

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v1 v2 v3 v4

Figure B.2: An example of Conjecture B.3 for a (2, 6)-biregular graph with 16
vertices

B.1.1 Designs

Let t, k, v and λ be integers with 0 < t ≤ k < v and λ > 0. And a t-(v, k, λ)

design, or t-design, an ordered pair (X,B), where X is a finite set of v

points and B is a family of k-subsets of X (called blocks of the design), such

that each t-subsets of X appears in preciously λ blocks [19, p. 257].

If we treat blocks B as the vertex set U of a bipartite graph (U ∪ V,E),

X as the vertex set V (correspondingly v as the size of V), k as the degree

of vertices in U , λ as the degree of vertices in V , and more importantly

make t = 1, then we convert our graph decomposition problem (Conjecture

B.3) into a combinatorial-design-theoretic one: any 1-(a, x, bx) design can

be partitioned into b 1-(a, x, x) sub-designs, which are all symmetric (the

number of points equals the number of blocks) and not necessarily simple

(no repeated blocks allowed). The 1-(a, x, bx) design here is also non-trivial

(2 ≤ k < v), regular (every point appears in the same number of blocks) and

132

uniform (every block contains the same number of points, k).

Obviously, a biregular graph is regarded as a design whose points and

blocks are its vertices and edges. It is a 1-(n, 2, k) design if it has n vertices

and its valency is k [20, p. 57]. A parallel class or resolution class in a

design is a set of blocks that partition the point set. Let α be a positive

integer. An α-parallel class or α-resolution class in a design is a set of

blocks containing every point of the design exactly α times [28, p. 130].

In other words, we try to prove that all non-simple 1-(a, x, bx) designs are

x-resolvable.

Next are some potentially useful results [28, p. 25].

Proposition B.1. If a (v, k, λ)-design has a proper (ω, k, λ)-subdesign, then

ω ≤ v−1
k−1 .

Proposition B.2. There exists a 1-(v, k, λ) design iff vλ ≡ 0 (mod k).

B.1.2 Hypergraphs

A hypergraph can be viewed as a generalization of a graph [86, pp. 135–

136; 17, pp. 1–3], which we focused on previously. A hypergraph is an

ordered pair H = (V,E) where V is a set of n vertices and E is a set of

m non-empty subsets of V called hyperedges. Noticeably, E may contain

the same set more than once, and the multiplicity of e ∈ E is denoted by

mH(e). If H allows repeated hyperedges, H is multiple. A hypergraph

is k-uniform if all its hyperedges have size k and it is d-regular if all its

133

vertices have degree d. Any hypergraph H ′ = (V ′,E′) such that V ′ ⊆ V and

E′ ⊆ E is called a subhypergraph of H. And for a hypergraph H = (V,E),

any subhypergraph H ′ ⊆ H such that H ′ = (V,E′) is called a partial

subhypergraph (or spanning subhypergraph). A hypergraph H is called an

intersecting family if all of its edges pairwise intersect.

Let V = { v1, v2, . . . , vn } and E = { e1, e2, . . . , em }. The n-by-m inci-

dence matrix of a hypergraph H = (V,E) is a (0, 1)-matrix A = (ai,j)

where

ai,j =

1, if vi ∈ ej

0, otherwise.

And easily we can see that the incidence matrix of H is just the biadjacency

matrix of the original graph.

v1

v2 v3

v4

v5
v6 v7

e1

e2

e3

e4

Figure B.3: A 3-uniform non-regular hypergraph with seven vertices and four
hyperedges

Hence, Conjecture B.3 becomes the following form in the context of

hypergraph theory: all multiple x-uniform bx-regular hypergraphs with abx

134

hyperedges contain at least one x-uniform x-regular partial subhypergraph

with a hyperedges.

B.2 Non-{1, 2}-Factorable Regular Graphs

We have to explain more on non-{1, 2}-factorable regular graphs. The follow-

ing theorem is a characterization of graphs with 1-factors.

Theorem B.3 (Tutte’s Theorem (1947)). A graph G = (V,E) has a 1-factor

iff for each subset U ⊆ V , the induced subgraph with the vertex set V −U has

at most |U | connected components with an odd number of vertices.

Corollary B.1. A k-regular graph is non-{1, 2}-factorable iff k is odd (and

the number of vertices is even) and it contains no 1-factors.

Conjecture B.4. If G is a k-regular graph with n vertices without 1-factors,

where k is odd and n is even, then σ(G) = 1.

From Lemma 2.1, for such a graph G, σ(G) 6= n/2. Therefore, σ(G) < n/2.

Here is another related theorem [87].

Theorem B.4. If G is a k-regular graph with n vertices without 1-factors

and no odd components, where k is odd, then n ≥ 3k + 7.

135

Bibliography

[1] C. Aguerre, T. Morsellino, and M. Mosbah. Fully-distributed debugging

and visualization of distributed systems in anonymous networks. In

P. Richard, M. Kraus, R. S. Laramee, and J. Braz, editors, GRAPP &

IVAPP 2012: Proceedings of the International Conference on Computer

Graphics Theory and Applications and International Conference on In-

formation Visualization Theory and Applications, Rome, Italy, 24-26

February, 2012, pages 764–767. SciTePress, 2012. 4

[2] A. V. Aho and J. E. Hopcroft. The design and analysis of computer

algorithms. Pearson Education India, 1974. 95

[3] B. Alspach. The wonderful walecki construction. Bull. Inst. Combin.

Appl, 52(52):7–20, 2008. 56

[4] E. Ando, H. Ono, K. Sadakane, and M. Yamashita. The space complexity

of leader election in anonymous networks. International Journal of

136

Foundations of Computer Science, 21(03):427–440, 2010. 31

[5] D. Angluin. Local and global properties in networks of processors.

In Proceedings of the twelfth annual ACM symposium on Theory of

computing, pages 82–93. Acm, 1980. 6, 27, 29, 124

[6] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Com-

putation in networks of passively mobile finite-state sensors. Distributed

computing, 18(4):235–253, 2006. 3

[7] M. Åstrand and J. Suomela. Fast distributed approximation algorithms

for vertex cover and set cover in anonymous networks. In Proceedings of

the twenty-second annual ACM symposium on Parallelism in algorithms

and architectures, pages 294–302, 2010. 30

[8] H. Attiya and F. Ellen. Impossibility results for distributed computing.

Synthesis Lectures on Distributed Computing Theory, 5(1):1–162, 2014. 4

[9] H. Attiya and M. Snir. Better computing on the anonymous ring. Journal

of Algorithms, 12(2):204–238, 1991. 30, 31

[10] H. Attiya, M. Snir, and M. K. Warmuth. Computing on an anonymous

ring. Journal of the ACM (JACM), 35(4):845–875, 1988. 29, 30

[11] L. Barrière, P. Flocchin, P. Fraigniaud, and N. Santor. Can we elect if we

cannot compare? In Proceedings of the fifteenth annual ACM symposium

on Parallel algorithms and architectures, pages 324–332, 2003. 33

137

[12] M. Bauderon, Y. Métivier, M. Mosbah, and A. Sellami. Graph relabelling

systems: a tool for encoding, proving, studying and visualizing distributed

algorithms. Electronic Notes in Theoretical Computer Science, 51:93–107,

2002. 28

[13] P. W. Beame and H. L. Bodlaender. Distributed computing on transitive

networks: the torus. In Annual Symposium on Theoretical Aspects of

Computer Science, pages 294–303. Springer, 1989. 36

[14] P. Blanchard and R. Guerraoui. On the smallest grain of salt to get a

unique identity. In International Colloquium on Structural Information

and Communication Complexity, pages 106–121. Springer, 2017. 30

[15] P. Boldi and S. Vigna. Fibrations of graphs. Discrete Mathematics,

243(1-3):21–66, 2002. 124

[16] J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244. Springer-

Verlag London, 2008. 47, 55

[17] A. Bretto. Hypergraph theory. Springer, 2013. 133

[18] R. A. Brualdi and J. J. Q. Massey. Incidence and strong edge colorings

of graphs. Discrete Mathematics, 122(1-3):51–58, 1993. 40

[19] P. J. Cameron. Combinatorics: topics, techniques, algorithms. Cambridge

University Press, 1994. 132

138

[20] P. J. Cameron, J. H. Van Lint, and P. J. Cameron. Designs, graphs,

codes and their links, volume 3. Cambridge University Press, 1991. 133

[21] D. M. Campbell and D. Radford. Tree isomorphism algorithms: Speed

vs. clarity. Mathematics Magazine, 64(4):252–261, 1991. 95

[22] J. Chalopin, S. Das, and A. Kosowski. Constructing a map of an anony-

mous graph: Applications of universal sequences. In International Con-

ference On Principles Of Distributed Systems, pages 119–134. Springer,

2010. 34

[23] J. Chalopin, S. Das, and N. Santoro. Groupings and pairings in anony-

mous networks. In International Symposium on Distributed Computing,

pages 105–119. Springer, 2006. 30

[24] J. Chalopin, E. Godard, and Y. Métivier. Election in partially anony-

mous networks with arbitrary knowledge in message passing systems.

Distributed Computing, 25(4):297–311, 2012. 27

[25] J. Chalopin, E. Godard, Y. Métivier, and R. Ossamy. Mobile agent algo-

rithms versus message passing algorithms. In International Conference

On Principles Of Distributed Systems, pages 187–201. Springer, 2006. 33

[26] J. Chalopin and Y. Métivier. An efficient message passing election

algorithm based on mazurkiewicz’s algorithm. Fundamenta Informaticae,

80(1-3):221–246, 2007. 29

139

[27] T. Chothia and K. Chatzikokolakis. A survey of anonymous peer-to-peer

file-sharing. In International Conference on Embedded and Ubiquitous

Computing, pages 744–755. Springer, 2005. 3

[28] C. J. Colbourn and J. H. Dinitz. Handbook of combinatorial designs.

CRC press, 2006. 133

[29] B. Conrad and F. Shirazi. A survey on tor and i2p. In Ninth International

Conference on Internet Monitoring and Protection (ICIMP2014), pages

22–28, 2014. 3

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to algorithms. MIT press, 2009. 19, 20, 95

[31] B. Csaba, D. Kühn, A. Lo, D. Osthus, and A. Treglown. Proof of

the 1-factorization and Hamilton decomposition conjectures, volume 244.

American Mathematical Society, 2016. 126

[32] J. Czyzowicz, A. Kosowski, and A. Pelc. How to meet when you for-

get: log-space rendezvous in arbitrary graphs. Distributed Computing,

25(2):165–178, 2012. 35

[33] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map con-

struction of unknown graphs by multiple agents. Theoretical Computer

Science, 385(1-3):34–48, 2007. 33, 34

140

[34] S. Das, P. Flocchini, A. Nayak, and N. Santoro. Effective elections for

anonymous mobile agents. In International Symposium on Algorithms

and Computation, pages 732–743. Springer, 2006. 29

[35] S. Das, P. Flocchini, N. Santoro, and M. Yamashita. Fault-tolerant simu-

lation of message-passing algorithms by mobile agents. In International

Colloquium on Structural Information and Communication Complexity,

pages 289–303. Springer, 2007. 33

[36] S. Das, M. Mihalák, R. Šrámek, E. Vicari, and P. Widmayer. Rendezvous

of mobile agents when tokens fail anytime. In International Conference

On Principles Of Distributed Systems, pages 463–480. Springer, 2008. 35

[37] A. K. Datta, S. Devismes, L. L. Larmore, and V. Villain. Self-stabilizing

weak leader election in anonymous trees using constant memory per edge.

Parallel Processing Letters, 27(02):1750002, 2017. 31

[38] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, A.-M. Kermarrec,

E. Ruppert, and H. Tran-The. Byzantine agreement with homonyms. In

Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on

Principles of distributed computing, pages 21–30, 2011. 27

[39] D. Dereniowski, A. Kosowski, and D. Pająk. Distinguishing views in

symmetric networks: A tight lower bound. Theoretical Computer Science,

582:27–34, 2015. 28

141

[40] D. Dereniowski and A. Pelc. Drawing maps with advice. Journal of

Parallel and Distributed Computing, 72(2):132–143, 2012. 33

[41] D. Dereniowski and A. Pelc. Leader election for anonymous asynchronous

agents in arbitrary networks. Distributed Computing, 27(1):21–38, 2014.

33

[42] Y. Dieudonné and A. Pelc. Impact of knowledge on election time in

anonymous networks. Algorithmica, 81(1):238–288, 2019. 30, 32

[43] K. Diks, S. Dobrev, E. Kranakis, A. Pelc, and P. Ružička. Broadcasting

in unlabeled hypercubes with a linear number of messages. Information

Processing Letters, 66(4):181–186, 1998. 36

[44] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with

little memory. Journal of Algorithms, 51(1):38–63, 2004. 34

[45] K. Diks, E. Kranakis, A. Malinowski, and A. Pelc. Anonymous wireless

rings. Theoretical Computer Science, 145(1-2):95–109, 1995. 35

[46] K. Diks, E. Kranakis, and A. Pelc. Broadcasting in unlabeled tori.

Parallel Processing Letters, 8(02):177–188, 1998. 36

[47] S. Dobrev, J. Jansson, K. Sadakane, and W.-K. Sung. Finding short

right-hand-on-the-wall walks in graphs. In International Colloquium on

Structural Information and Communication Complexity, pages 127–139.

Springer, 2005. 34

142

[48] S. Dobrev and A. Pelc. Leader election in rings with nonunique labels.

Fundamenta Informaticae, 59(4):333–347, 2004. 27

[49] P. L. Dordal. An introduction to computer networks, 2021. 1

[50] Y. Emek, C. Pfister, J. Seidel, and R. Wattenhofer. Anonymous net-

works: randomization = 2-hop coloring. In Proceedings of the 2014 ACM

symposium on Principles of distributed computing, pages 96–105, 2014.

27

[51] P. Flocchini, E. Kranakis, D. Krizanc, F. L. Luccio, and N. Santoro.

Sorting multisets in anonymous rings. In Proceedings 14th International

Parallel and Distributed Processing Symposium. IPDPS 2000, pages

275–280. Ieee, 2000. 30

[52] P. Flocchini, E. Kranakis, D. Krizanc, F. L. Luccio, and N. Santoro.

Sorting and election in anonymous asynchronous rings. Journal of

Parallel and Distributed Computing, 64(2):254–265, 2004. 35

[53] P. Flocchini, B. Mans, and N. Santoro. Sense of direction: Definitions,

properties, and classes. Networks: An International Journal, 32(3):165–

180, 1998. 39

[54] P. Flocchini, B. Mans, and N. Santoro. Sense of direction in distributed

computing. Theoretical Computer Science, 291(1):29–53, 2003. 39

143

[55] P. Flocchini, A. Roncato, and N. Santoro. Backward consistency and

sense of direction in advanced distributed systems. SIAM Journal on

Computing, 32(2):281–306, 2003. 40

[56] P. Flocchini, A. Roncato, and N. Santoro. Computing on anonymous

networks with sense of direction. Theoretical Computer Science, 301(1-

3):355–379, 2003. 39

[57] P. Fraigniaud and A. Pelc. Decidability classes for mobile agents com-

puting. In Latin American Symposium on Theoretical Informatics, pages

362–374. Springer, 2012. 28

[58] P. Fraigniaud, A. Pelc, D. Peleg, and S. Pérennes. Assigning labels in

an unknown anonymous network with a leader. Distributed Computing,

14(3):163–183, 2001. 29

[59] E. G. Fusco and A. Pelc. Communication complexity of consensus in

anonymous message passing systems. In International Conference On

Principles Of Distributed Systems, pages 191–206. Springer, 2011. 32

[60] E. G. Fusco and A. Pelc. How much memory is needed for leader election.

Distributed Computing, 24(2):65, 2011. 31

[61] E. G. Fusco and A. Pelc. Knowledge, level of symmetry, and time of

leader election. Distributed Computing, 28(4):221–232, 2015. 29

144

[62] C. Glacet, A. Miller, and A. Pelc. Time vs. information tradeoffs for

leader election in anonymous trees. ACM Transactions on Algorithms

(TALG), 13(3):1–41, 2017. 32

[63] J. Y. Halpern and S. Petride. A knowledge-based analysis of global

function computation. Distributed Computing, 23(3):197–224, 2010. 31

[64] F. Harary. Graph Theory (on Demand Printing of 02787). Taylor &

Francis, 2018. 56

[65] L. Hella, M. Järvisalo, A. Kuusisto, J. Laurinharju, T. Lempiäinen,

K. Luosto, J. Suomela, and J. Virtema. Weak models of distributed

computing, with connections to modal logic. Distributed Computing,

28(1):31–53, 2015. 8

[66] J. M. Hendrickx. Views in a graph: to which depth must equality

be checked? IEEE Transactions on Parallel and Distributed Systems,

25(7):1907–1912, 2013. 28

[67] D. Ilcinkas. Setting port numbers for fast graph exploration. Theoretical

Computer Science, 401(1-3):236–242, 2008. 34

[68] R. E. Johnson and F. B. Schneider. Symmetry and similarity in dis-

tributed systems. In Proceedings of the fourth annual ACM symposium

on Principles of distributed computing, pages 13–22, 1985. 27

[69] R. Klasing, A. Kosowski, and D. Pajak. Setting ports in an anonymous

network: How to reduce the level of symmetry? In International

145

Colloquium on Structural Information and Communication Complexity,

pages 35–48. Springer, 2016. 28

[70] H. Kobayashi, K. Matsumoto, and S. Tani. Simpler exact leader election

via quantum reduction. Chicago Journal of Theoretical Computer Science,

10:2014, 2014. 28

[71] E. Kranakis and D. Krizanc. Distributed computing on cayley networks.

In 1992 Proceedings of the Fourth IEEE Symposium on Parallel and

Distributed Processing, pages 222–229. Ieee, 1992. 36

[72] E. Kranakis, D. Krizanc, and J. Vandenberg. Computing boolean func-

tions on anonymous networks. Information and Computation, 114(2):214–

236, 1994. 31, 36

[73] B. Mans. Optimal distributed algorithms in unlabeled tori and chordal

rings. Journal of Parallel and Distributed Computing, 46(1):80–90, 1997.

36

[74] M. Mavronicolas, L. Michael, and P. G. Spirakis. Computing on a

partially eponymous ring. In International Conference On Principles Of

Distributed Systems, pages 380–394. Springer, 2006. 2, 27

[75] H. Meijer, Y. Núñez-Rodríguez, and D. Rappaport. An algorithm for

computing simple k-factors. Information processing letters, 109(12):620–

625, 2009. 53

146

[76] S. Micali and V. V. Vazirani. An O(
√
|v| · |E|) algorithm for finding

maximum matching in general graphs. In 21st Annual Symposium on

Foundations of Computer Science (sfcs 1980), pages 17–27. Ieee, 1980.

49

[77] A. Miller, A. Pelc, and R. N. Yadav. Deterministic leader election in

anonymous radio networks. In Proceedings of the 32nd ACM Symposium

on Parallelism in Algorithms and Architectures, pages 407–417, 2020. 28

[78] N. Norris. Universal covers of edge-labeled digraphs: Isomorphism to

depth n-1 implies isomorphism to all depths. Discrete Applied Mathe-

matics, 56(1):61–74, 1995. 13, 17, 85

[79] A. Pelc. Deterministic rendezvous algorithms. In Distributed Computing

by Mobile Entities, pages 423–454. Springer, 2019. 35

[80] O. Reingold. Undirected connectivity in log-space. Journal of the ACM

(JACM), 55(4):1–24, 2008. 34

[81] N. Sakamoto. Comparison of initial conditions for distributed algorithms

on anonymous networks. In Proceedings of the eighteenth annual ACM

symposium on Principles of distributed computing, pages 173–179, 1999.

32

[82] V. R. Syrotiuk, C. J. Colbourn, and J. Pachl. Wang tilings and distributed

verification on anonymous torus networks. Theory of Computing Systems,

30(2):145–163, 1997. 36

147

[83] A. S. Tanenbaum and D. J. Wetherall. Computer networks. Prentice

Hall, 5th edition, 2011. 2

[84] S. Tani. Compression of view on anonymous networks–folded view–.

IEEE Transactions on Parallel and Distributed Systems, 23(2):255–262,

2011. 28, 124

[85] G. Tel. Sense of direction in processor networks. In International

Conference on Current Trends in Theory and Practice of Computer

Science, pages 50–82. Springer, 1995. 39

[86] V. I. Voloshin. Introduction to graph and hypergraph theory. Nova Science

Publishers, 2009. 133

[87] W. Wallis. The smallest regular graphs without one-factors. Ars Combin,

11:295–300, 1981. 47, 135

[88] M. Yamashita and T. Kameda. Electing a leader when processor identity

numbers are not distinct. In International Workshop on Distributed

Algorithms, pages 303–314. Springer, 1989. 27

[89] M. Yamashita and T. Kameda. Computing functions on asynchronous

anonymous networks. Mathematical Systems Theory, 29(4):331–356,

1996. 31

[90] M. Yamashita and T. Kameda. Computing on anonymous networks:

part i—characterizing the solvable cases. IEEE Transactions on parallel

148

and distributed systems, 7(1):69–89, 1996. 2, 3, 6, 13, 16, 17, 27, 28, 32,

37, 99, 103, 124

[91] M. Yamashita and T. Kameda. Computing on anonymous networks: part

ii—decision and membership problems. IEEE Transactions on parallel

and distributed systems, 7(1):90–96, 1996. 3, 17

149

	Title Page
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Dedication
	1 Introduction
	2 Terminology and Preliminaries
	2.1 Port-Labelled Anonymous Networks
	2.1.1 Views

	2.2 From Multiplicity to Symmetricity
	2.2.1 Preliminary Results About Symmetricity

	2.3 Data Types
	2.4 Number-Theoretic Definitions

	3 Problem Statements
	4 Related Work
	4.1 Anonymous Networks
	4.1.1 Views
	4.1.2 Distributed Computing Problems
	4.1.3 Computable Functions and Memory Use
	4.1.4 Advice
	4.1.5 Mobile Agents
	4.1.6 Families of Topology

	4.2 Mathematical Techniques
	4.2.1 Graph Automorphism
	4.2.2 Edge Labellings with a Sense of Direction
	4.2.3 Incidence Colouring

	5 Producing Symmetry
	5.1 Labelling an Anonymous Network
	5.2 {1, 2}-Factorable Graphs Under a Fully Symmetric Labelling
	5.3 The Multiplicity Gap for the Petersen Graph
	5.4 Port-Labelling Complete Graphs
	5.4.1 Factorizations of Complete Graphs
	5.4.2 An Algorithm for Producing a Desired Multiplicity

	5.5 Rooted Product

	6 Computing Symmetry
	6.1 Computing Views
	6.2 Computing Multiplicities
	6.3 Degree Trees: Motivation and Notation
	6.4 Some Results About Degree Trees
	6.5 Computing and Comparing Degree Trees
	6.6 An Upper Bound on Symmetricity
	6.7 Symmetricity of Trees

	7 Producing Asymmetry
	7.1 Asymmetric Partial Labellings
	7.2 Three Cases of Step 3
	7.2.1 Case 1
	7.2.2 Case 2
	7.2.3 Case 3

	7.3 The Final Algorithm

	8 Future Work
	Appendix A The Graph Construction
	Appendix B Two Unsolved Cases
	B.1 Biregular Graphs
	B.1.1 Designs
	B.1.2 Hypergraphs

	B.2 Non-{1, 2}-Factorable Regular Graphs

	Bibliography

