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Abstract
This thesis investigates how a solvency regulatory capital requirement, like that

in Solvency q, affects the risk load of a supplementary health insurance product.

Motivated by a credit risk model, we introduce a static structural model in which

the latent variable represents an individual’s severity of a certain illness. In this

model, we include the effects on an individual’s health from common shock, sys-

tematic risk and idiosyncratic risk. We derive the asymptotic distribution of the

aggregate supplementary health claims, based on which the minimum risk load

can be calculated in order to meet the solvency regulatory capital requirement.

The main contributions of this thesis are first proposing an appropriate model for

the aggregate supplementary health claims, and then finding the lower bound of

the risk load from the solvency perspective.
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Chapter 1

Introduction

Health insurance is an essential element for a country. In some countries, the

government provides a basic universal health insurance system to cover the cost of

medical treatments. These basic health insurance systems are different in different

countries. For example, the Canadian government provides an overall and univer-

sal basic health insurance system to cover almost all medical treatment fees. How-

ever, this kind of overall basic universal insurance system is not common. Some

countries including China provide basic health insurance just covering a part of

medical treatment fees. The costs to restore health can be considerable even though

the basic insurance covers a part of the treatment fee and some people can’t afford

these expensive treatment fees. Thus, individuals may wish to buy supplementary

insurances from insurance market to cover these very expensive medical treatment

costs. For insurance companies, they need to consider various risk factors which

will influence the pricing or risk management of their health supplementary insur-

ances. In traditional models, based on the Law of Large Number (LLN), insurance

1



2 Chapter 1: Introduction

pooling effect shows that the risk of supplementary insurances will decrease with

the increase of policyholder size. A very important assumption for this pooling

effect is that policyholders are independent with each other. However, the popula-

tion health is exposed to common risks which affect population health simultane-

ously. Thus, the assumption of independence can’t be satisfied. In our thesis, we

focus on the effects of common risk factors in health insurance claims for a large

population. Specifically, we will introduce an aggregate health claims model that

takes common risk factors into consideration and, based on the model, figure out a

method to calculate the lower bound of the risk load of the supplementary health

insurance from the solvency perspective.

In our thesis, risk factors are classified into common risk factors and idiosyn-

cratic risk factors. The common risk factors include systematic risks and common

shocks (Figure 1.1). There are a couple of differences between systematic risks and

common shocks. First of all, systematic risks are the potential risk factors which

will influence public health in a country as a whole. However, the common shocks

just influence the people in a certain area. Next, the effects of common shocks will

disappear gradually but the systematic risks will influence human health for a long

time.

1.1 Systemic Risk

Systematic risk is the overall, ongoing and long-term risk that is inherent to

the whole population. Persistent air pollution is a representative example of sys-

tematic risk factors and is significantly associated with human health. A lot of
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Figure 1.1: Risk Factors

evidence suggests that air pollution is the main attribution for some diseases in-

cluding chronic obstructive, pulmonary disease, pneumonia and asthma. It will

cause a long-term and overall health crisis which includes respiratory and cardio-

vascular diseases and even premature death. Lim et al. (2012) show that ambient

fine particulate matter (PM2.5), ambient ozone pollution and household air pol-

lution cause lower respiratory infections, trachea, bronchus, ischaemic heart dis-
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ease, cerebrovascular disease and chronic obstructive pulmonary disease. In 2010,

PM2.5 and ozone caused over 3.2 million respiratory and cardiovascular diseases

and 150000 premature deaths respectively. There are approximately 4 million pre-

mature deaths related to household air pollution (Anenberg et al, 2016). Greco

et al. (2016) used the mortality risk reduction caused by the reduction of PM2.5

concentration to show the health crisis brought from PM2.5. They found that the

expected reduction of premature deaths with a 100-metric-ton reduction of PM2.5

is 48 deaths. The health crisis caused by PM2.5 has brought trillions of dollars

of loss (North, 2016). Persistent air pollution as a very important element in sys-

tematic risks has obvious effects on population health and has been a major and

worldwide concern.

Some other examples of systematic risk are long-term underwater contamina-

tion and long-term unimproved water and sanitation. Underwater contamination

is a source of some diseases such as cholera and is a potential and common pub-

lic health threat because people use underwater to drink or bath. The concentra-

tions of trace metals in underwater will bring population with chronic health risks.

Some studies show that Cr6+ exposure via oral route will lead to cancer. At the

same time, some other trace metals including Cd62+, Ni2+ and Pb2+ expose to un-

derwater resulting in higher carcinogenic risks. The high concentrations of these

trace metals in underwater have brought significant health risks to people (Etchie

et al.,2012). Moreover, unimproved water and sanitation problems still exist. They

result in approximately 0.3 million deaths globally in 2010 (Lim et al.,2012). Be-

sides long-term underwater contamination and persistent air pollution, chemicals



Chapter 1: Introduction 5

used in industrial applications also have brought serious effects on the popula-

tion health. For example, Perfluorooctanoic acid (PFOA) is used in industrial and

commercial applications as waterproof clothing and paper coatings used in food

packaging for decades. However, this chemical has a significant association with

kidney and testicular cancer (Barry et al., 2013; Benbrahim-Tallaa et al., 2014). In

addition, poverty, undernutrition, unsafe sex and iron deficiency are systematic

risks for some developing countries (WHO, 2002).

1.2 Common Shock

Common shock symbolizes certain external events that cause serious but short-

term population health crisis. The outbreak of epidemic diseases is a representa-

tive example of common shock. Some epidemic diseases including cholera, di-

arrhea, dengue fever, malaria and so on are still very popular now. The stud-

ies about modern epidemiology originated John Snow’s investigation of the 1854

cholera epidemic in London. The death due to cholera in London increased from 8

January 1842 to 28 December 1901 (Tien et al.,2011). Nowadays, cholera still is a se-

rious and tricky disease for the areas without clean water. Some areas outbreaking

cholera epidemics recently include Angola in 2006, Zimbabwe in 2008-2009 and

Haiti in 2010.

Natural disasters are important examples of common shocks because various

natural disasters may cause short-term air pollution, epidemic diseases or short-

term groundwater contamination. A representative natural disaster is wildfire

such as 2019 Amazon rainforest wildfires and 2019 Alberta wildfires. The cli-
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mate changes have obviously increased the probability of wildfire (Albertson et

al., 2010). Liu et al. (2015) reviewed the studies about the adverse health effects

brought by wildfires for the people in a certain area. They summarize that the risks

of respiratory morbidity and cardiovascular diseases are significantly associated

with the smoke from wildfires. There is a 1.2 to 10 times increase in PM10 due to

wildfire smoke. In addition, the wildfires also increase the exposure to a lot of haz-

ardous gases including CO, SO2, O3 and NOx. Another example is volcanic erup-

tion. Some hazardous materials such as volcanic gases left by volcano eruption

even have harmful effects on vegetation and infrastructure. The United States Geo-

logical Survey (USGS) (available at: https://volcanoes.usgs.gov/vhp/gas.html)

mentions that 1991’s volcano eruption of Mt. Pinatubo injected more than 250

megatons of gas into the upper atmosphere on a single day. If the magma can’t

reach the surface, the volcanic gases will get into the atmosphere from the soil

resulting in negative effects on crops. At the same time, some other harmful

gases including carbon dioxide, sulfur dioxide, hydrogen sulfide and hydrogen

halides will release to the atmosphere resulting in short-term air pollution which

is hazardous to humans, animals and agriculture (USGS, 2019). The natural disas-

ters also result in short-term low underwater quality. It causes water-borne risk

to health by some water-borne infectious diseases including diarrhea, typhoid,

cholera, dysentery and infectious hepatitis (Hlavinek et al., 2008). In addition to

wildfire and volcanic eruption, ocean tsunami also is a source of a health crisis. The

Indian Ocean Tsunami in 2004 resulted in a wide range of flood in Africa which

causes bacterial infection. Thus, some epidemic diseases such as cholera, diarrhea

https://volcanoes.usgs.gov/vhp/gas.html
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and malaria spread in Africa.

1.3 Threshold

In our thesis, in order to judge if an individual is diagnosed with a certain

illness, we assume that there exists a positive and fixed threshold and the individ-

ual is diagnosed with the illness when this individual’s severity of the illness is

higher than the fixed threshold. We use a latent variable to represent an individ-

ual’s severity of the illness. The latent variable follows a static structural model

containing common shock, systematic risk and idiosyncratic risk.

This threshold model is motivated by some models in the literature of credit

risk. Bassamboo et al. (2008) propose a static structural model for a large portfolio

of obligors. They assume an obligor defaults when the threshold is reached. They

derive the estimation of sharp asymptotics of loss from portfolio defaults. One

of the key assumptions in their paper is that the threshold for individual obligor

increases to infinity as portfolio size increases.

Inspired by Bassamboo et al. (2008), Tang et al. (2019) use the same threshold

model to study the default behavior of a large portfolio of obligors. They find

that the occurrence of large losses can be attributed to either the common shock

variable or the systematic risk factor, whichever has a heavier tail.

Unlike Bassamboo et al. (2008) and Tang et al. (2019), Liu (2018) uses a fixed

threshold to define default. The default probability of an individual obligor does

not change as the portfolio size increases. Furthermore, Liu (2018) does not allow

portfolio defaults to be affected by common shock.



8 Chapter 1: Introduction

Our threshold model shares with Liu (2018) the idea that the threshold is fixed

for individuals. Thus, the probability of an individual to be diagnosed with the ill-

ness does not change as the population increases. However, we consider common

shock effects that influence the health of a population simultaneously.

.



Chapter 2

Models

2.1 Severity Model

We consider a certain population with n individuals that are exposed to the

risk of a certain illness. We build a model to capture an individual’s severity of

this illness. Precisely, we use latent variable vj to represent individual j’s severity

of the illness and individual j’s severity is affected by idiosyncratic risk, common

shock and systematic risk:

vj = S
(
X + Yj

)
, j = 1, 2, . . . , n. (2.1.1)

In this model, X is a positive random variable representing the systematic risks

which are inherent to the whole population, S ≥ 1 captures the common shock

effects on the population, and Yj is a positive random variable symbolizing id-

iosyncratic risks.

9
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An underlying assumption in this model is that everyone in this population

is affected by the same common shock S and systematic risk X. Note that when

S = 1 there is no common shock effect. While when S > 1, the common shock

effect applies on everyone in the population.

Throughout this thesis, we have the following independence assumption:

Assumption 2.1.1 The idiosyncratic risks, {Yj : j = 1, . . . , n}, are i.i.d. Furthermore,

(S, X) is independent with the idiosyncratic risks {Yj : j = 1, . . . , n}.

Under this assumption, similar to the portfolio default model built by Tang et al.

(2019) and Bassamboo et al. (2008), the severity model is a conditional independent

model given (S, X).

Given individual j’s severity of the illness vj, we assume that a positive and

fixed threshold τ exists and, when individual j’s severity of the illness vj is higher

than the threshold τ, individual j is diagnosed with the illness. The threshold τ

can be estimated based on specific medical indexes for specific diseases or physi-

cians’ diagnosis. For example, the medical index for hypertension is 144–159/90–

99mmHg which means that, when the blood pressure of an individual is higher

than this medical index, she is diagnosed with hypertension.

2.2 Utility

For simplicity, we assume that only one treatment is available for this illness

and its cost is δ. Although patients can get benefits from this medical treatment,

using treatment without restriction may be a waste for the whole society. If the
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medical treatment is used without restrictions, individual j will use the treatment

as long as she is diagnosed with the illness, i.e. vj > τ. We use utility function U(v)

to represent the utility gain of using the treatment when the patient’s severity is v.

Here U(·) is a positive, continuous and strictly increasing function. Furthermore,

the utility function U(·) should be a concave function (Schosser et al., 2016). Al-

though an individual’s utility gain may be greater than the treatment’s cost, the

social average utility gain obtained from the treatment may be lower than its cost.

Assumption 2.2.1 The treatment is not socially cost-effective if used without restriction:

TVaRU(v)(U(τ)) < δ.

The TVaR of a r.v. is the average percentile above a threshold. Under the con-

dition that individual j is diagnosed with the illness (vj > τ), TVaRU(v)(U(τ))

symbolizes the conditional expectation of utility gain derived from the treatment

for the whole society. When this conditional average utility gain is lower than the

costs of the medical treatment, using treatment without restriction destroys social

surplus in the sense that the cost exceeds the average utility gain. The treatment is

not socially cost-effective.

There is an underlying assumption that, although a physician is able to de-

termine whether or not an individual has the illness, they can not recognize the

severity of the individual. In other words, insurers or planners just know whether

an individual has the illness. But they can not verify the patient’s severity.



12 Chapter 2: Models

2.3 Health Insurance

We assume that people are risk-averse and the cost of the treatment is high

enough so that people may need to buy insurance to cover the treatment cost. Fur-

thermore, they do not have budget constraints. Our thesis considers a combined

health insurance system where the government provides free universal basic in-

surance covering δ − γ in the total cost of the treatment and private insurance

companies offer voluntary supplementary insurance. The γ is determined by the

government and people need to buy supplementary insurances from insurance

market. Moreover, the supplementary insurance is bought in addition to basic

insurance to cover further treatment costs. This kind of health insurance system

combining governmental basic insurance and commercial insurance exists in many

countries such as China, Japan, Belgium, etc.

Because we assume that the treatment is not socially cost-effective, the moral

hazard exists. In our thesis, motivated by Boone (2018), the definition of moral

hazard due to health insurance is that, if the treatment is used without restriction,

the unnecessary treatment uses will destroy social surplus in the sense that the av-

erage utility gain is lower than the cost. Thus, in order to reduce the moral hazard

and increase the cost-effectiveness of the treatment, we introduce a copayment c.

In other words, an individual also needs to pay a copayment c when she uses the

treatment. In this case, the individual will not use the treatment if the utility gain

of using the treatment is lower than the copayment c. Point A in Figure 2.1 is the

minimal utility gain obtained from using treatment without restriction. Because

of the copayment, an individual will use the treatment only when the utility gain
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Figure 2.1: Utility Function

of using treatment is higher than c. In this case, the minimal utility gain point

changes from A to B in Figure 2.1 resulting in a decrease of moral hazard. At the

same time, the cost-effectiveness of the treatment also is improved. However, this

method can not totally prevent cost-ineffectiveness for the whole society. It is be-

cause, even though the minimal utility gain increases, the average utility gain of

using the treatment may still be lower than the cost of treatment δ (point C in Fig-

ure 2.1). Therefore, in order to eliminate the social ineffective use of the treatment,

we assume:

Assumption 2.3.1 There exists some c in (U(τ), δ) such that

TVaRU(v)(c) = δ.
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Thus, the social average utility gain is equal to the cost of using the treatment by

introducing copayment c. The moral hazard is prevented.

Now, when a patient uses the treatment, the basic universal insurance covers

δ − γ, the supplementary insurance covers γ − c and the patient herself pays a

copayment c. After introducing the copayment c, the probability that an individual

uses the treatment becomes Pr
(
vj > U−1(c)

)
rather than Pr(vj > τ). Therefore,

denoting by η the risk load, the premium of the supplementary health insurance is

p(η) = (1 + η)(γ− c)Pr
(

vj > U−1(c)
)

. (2.3.1)

.



Chapter 3

Regulatory Capital and Risk Load

3.1 Asymptotic Distribution of Aggregate Claims

Based on the models and assumptions in Chapter 2, we denote the whole pop-

ulation’s aggregate claim payment for the supplementary health insurance as

Tn = (γ− c)
n

∑
j=1

1(U(vj)>c). (3.1.1)

We first derive the asymptotic distribution of Tn when n → ∞. Motivated by

Tang et al. (2019), we have the following result:

Proposition 3.1.1 Consider Tn defined above. Assume that (S, X) is jointly continuously

distributed and that supp(FY), the support set of FY, is a non-empty interval when Y is

not degenerate. Then, for any fixed b ∈ (0, γ− c),

lim
n→∞

Pr(Tn/n > b) =
∫∫

r(s,x)>b
Pr (S ∈ ds, X ∈ dx) , (3.1.2)

15
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where

r(s, x) = (γ− c)FY

(
U−1(c)

s
− x
)

.

Note that for a non-decreasing function f : R → R, its support set, supp( f ),

consists of points x ∈ R such that f (x) is not constant in its neighbourhood. Thus,

the assumption about the support set of FY can ensure FY is a strictly increasing

function when Y is not degenerate.

Proof of Proposition 3.1.1. Due to the independence between (S, X) and {Yj : j =

1, · · · , n} it holds that

Pr
(

Tn

n
> b

)
=
∫∫

[1,∞)×R+

Pr
(

Tn

n
> b

∣∣∣∣ S = s, X = x
)

Pr(S ∈ ds, X ∈ dx). (3.1.3)

Based on the LLN, given S = s and X = x, it holds almost surely as n→ ∞ that

Tn

n
=

γ− c
n

n

∑
j=1

1(U(vj)>c) −→ (γ− c)Pr
(

vj > U−1(c)
)

= (γ− c)FY

(
U−1(c)

s
− x
)

:= r(s, x).



Chapter 3: Regulatory Capital and Risk Load 17

For arbitrarily fixed small ε > 0, we have

Pr
(

Tn

n
> b

∣∣∣∣ S = s, X = x
)

= Pr
(

Tn

n
> b

∣∣∣∣ S = s, X = x
)
(1r(s,x)≥b−ε + 1r(s,x)<b−ε)

≤ 1r(s,x)≥b−ε + Pr
(

Tn

n
> r(s, x) + ε

∣∣∣∣ S = s, X = x
)

→ 1r(s,x)≥b−ε.

Similarly,

Pr
(

Tn

n
> b

∣∣∣∣ S = s, X = x
)

≥ Pr
(

Tn

n
> b

∣∣∣∣ S = s, X = x
)

1r(s,x)>b+ε

≥ Pr
(

Tn

n
> r(s, x)− ε

∣∣∣∣ S = s, X = x
)

1r(s,x)>b+ε

→ 1r(s,x)>b+ε.

Thus, for arbitrarily small δ > 0, there exists some large positive integers n0 such

that, for all n ≥ n0,

1r(s,x)>b+ε − δ ≤ Pr
(

Tn

n
> b

∣∣∣∣ S = s, X = x
)
≤ 1r(s,x)≥b−ε + δ.

Now applying Fatou’s lemma to (3.1.3), we have

lim inf
n→∞

Pr
(

Tn

n
> b

)
≥
∫∫

[1,∞)×R+

1r(s,x)>b+ε Pr (S ∈ ds, X ∈ dx)− δ

=
∫∫

r(s,x)>b+ε
Pr (S ∈ ds, X ∈ dx)− δ (3.1.4)
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and

lim sup
n→∞

Pr
(

Tn

n
> b

)
≤
∫∫

[1,∞)×R+

1r(s,x)≥b−ε Pr(S ∈ s, X ∈ x) + δ

=
∫∫

r(s,x)≥b−ε
Pr (S ∈ ds, X ∈ dx) + δ. (3.1.5)

Combining (3.1.4) and (3.1.5) and letting δ decreases to 0, we obtain

∫∫
r(s,x)>b+ε

Pr (S ∈ ds, X ∈ dx) ≤ lim inf
n→∞

Pr
(

Tn

n
> b

)
≤ lim sup

n→∞
Pr
(

Tn

n
> b

)
≤
∫∫

r(s,x)≥b−ε
Pr (S ∈ ds, X ∈ dx) . (3.1.6)

By the arbitrariness of ε, from (3.1.6) we immediately have

∫∫
r(s,x)>b

Pr (S ∈ ds, X ∈ dx) ≤ lim inf
n→∞

Pr
(

Tn

n
> b

)
≤ lim sup

n→∞
Pr
(

Tn

n
> b

)
≤
∫∫

r(s,x)≥b
Pr (S ∈ ds, X ∈ dx) . (3.1.7)

When Y is not degenerate, it is obvious that FY is non-decreasing in both s ∈ [1, ∞)

and x ∈ R+. By assuming that supp(FY) is a non-empty interval, we know that FY

is a strictly increasing function. Thus, r(s, x) also is a strictly increasing function.

This guarantees that r(s, x) = b does not allow a rectangle for (s, x). Thus, we have

that Pr(r(s, x) = b) = 0 for every b ∈ (0, γ− c). When FY is degenerate, variable Y

has a single possible value, Pr(r(s, x) = b) = 0 automatically holds. Thus, (3.1.7)
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reduces to (3.1.2). This completes the proof.

3.2 Regulatory Capital Requirement

Generally speaking, the government formulates some regulations to protect

policyholders from the price competition between insurance companies and also

to provide appropriate incentives for good risk management. It is mainly because

some insurance companies may lower insurance prices to attract more customers.

It will result in a decrease in the reserve prepared to pay future claims and increase

the risk that an insurance company can not afford claims. These regulations may

be directly or indirectly related to the aggregate claim payment of an insurance

policy Tn. In our thesis, we consider a regulation in Europe called Solvency q

and assume that the reserve of a business line only derives from the premium rev-

enues from this business line. An important capital requirement in Solvency q is

solvency capital requirement (SCR). The SCR is a Value at Risk at the 99.5% confi-

dence level of ”basic own funds”. The ”basic own funds” refers to broadly assets

minus best estimate of liability and risk margin. See Solvency II – Health Insurance

(available at https://www.actuaries.org.uk/system/files/field/document).

In our thesis, based on above assumptions, ”basic own funds”, denoted by Wn,

symbolizes the difference between premium revenues and claim amount:

Wn = np(η)− Tn = np(η)− (γ− c)
n

∑
j=1

1(U(vj)>c). (3.2.1)

Consider Wn defined above. If the government sets the minimum SCR per capita,

https://www.actuaries.org.uk/system/files/field/document
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denoted by ξ, then, in order to complete with other insurance companies and meet

the minimum SCR per capita, an insurance company will lower price until the

price satisfies that the minimum SCR per capita is the 99.5 percentile of the ”basic

own funds”. In other words:

Pr(Wn/n < ξ) = 0.995 ⇐⇒ Pr(Tn/n > p(η)− ξ) = 0.995. (3.2.2)

It is because insurance companies want to lower the price of the business line to

improve competitiveness. However, lowering the premium will decrease reserve

resulting in a higher probability that an insurance company does not have enough

money to pay claims under extreme situations. Thus, the government sets the

minimum SCR per capita to restrict the minimum premium of the business line.

Moreover, setting the minimum SCR per capita can help the government to esti-

mate the losses paid by the government when insurance companies can not afford

their claims under extreme situations.

3.3 A Numerical Example

In this section, we give a numerical example in which, given the solvency cap-

ital requirement per capita, the minimum required premium and risk load have

closed-form formulas. The model specifications are listed below:

1. The common shock, S(≥ 1), follows a two-point mixture of 1 and a condi-
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tional inverse exponential distribution with parameter θS. Thus,

FS(s) =

 q, if s = 1,

q + 1−q
1−exp(−θS)

[exp(−θS/s)− exp(−θS)] , if s > 1.

2. The systematic risk factor X follows an exponential distribution with pdf

fX(x) = exp(−x/θX)/θX and a generic idiosyncratic risk factor Y follows

an exponential distribution with pdf fY(y) = exp(−y/θY)/θY.

3. The common shock S and the systematic risk factor X are independent.

4. The utility function U(·), defined on [τ, ∞), is given by a concave function

with

U(v) = U(τ) + b(v− τ)1/a.

where a > 1 and b > 0 are fixed.

Using Proposition 3.1.1, for large n the right-hand side of (3.2.2) can be calcu-

lated asymptotically as the tail probability of Tn/n. So,

Pr(Wn/n < ξ)
.
=
∫∫

r(s,x)>p(η)−ξ
Pr (S ∈ ds, X ∈ dx) . (3.3.1)
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We also have

r(s, x) > p(η)− ξ

⇐⇒ (γ− c)FY

(
U−1(c)

s
− x
)
> p(η)− ξ

⇐⇒ (γ− c) exp
(

x−U−1(c)/s
θY

)
> p(η)− ξ

⇐⇒ x > U−1(c)/s + θY ln
(

p(η)− ξ

γ− c

)
. (3.3.2)

For simplicity, let us denote g(η) = θY ln
(

p(η)−ξ
γ−c

)
. By combining (3.3.1) and (3.3.2)

and using the independence between S and X, we have

Pr(Wn/n < ξ)

.
=
∫ ∞

1
FX

(
U−1(c)

s
+ g(η)

)
Pr(S ∈ ds)

=
∫ ∞

1
exp

(
−
(

U−1(c)
s

+ g(η)
)/

θX

)
Pr(S ∈ ds)

= exp
(
−g(η)

θX

) [∫ ∞

1
exp

(
−U−1(c)

sθX

)
fS(s)ds + q exp

(
−U−1(c)

θX

)]
. (3.3.3)

From (3.3.3), by plugging in the conditional inverse exponential pdf of S, we fur-

ther derive that

[
Pr(Wn/n < ξ) exp

(
g(η)
θX

)
− q exp

(
−U−1(c)

θX

)]
1− exp(−θS)

θS(1− q)

.
=
∫ ∞

1
exp

(
−
(

U−1(c)
θX

+ θS

)/
s
)/

s2 ds

=

(
U−1(c)

θX
+ θS

)−1 [
1− exp

(
−
(

U−1(c)
θX

+ θS

))]
,
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which implies
g(η)
θX

.
= ln

(
l(c, θX, θS, q)

Pr(Wn/n < ξ)

)
and thus

p(η) .
= (γ− c)

(
l(c, θX, θS, q)

Pr(Wn/n < ξ)

)θX/θY

+ ξ, (3.3.4)

where

l(c, θX, θS, q) =
(1− q)θS

1− exp(−θS)
·

1− exp
(
−
(

U−1(c)
θX

+ θS

))
U−1(c)

θX
+ θS

+ q · exp
(
−U−1(c)

θX

)
.

So, if the SCR per capita ξ is defined as the 99.5 percentile of the basic own funds

per capita Wn/n, as required in Solvency II, then (3.3.4) provides a closed-form

formula to approximate the minimum required premium for a large population.

We can further derive a closed-form formula for the risk load. Actually, by

combining (2.3.1) and (3.3.4) we immediately have the following formula for η

η
.
=

[(
l(c, θX, θS, q)

Pr(Wn/n < ξ)

)θX/θY

+
ξ

γ− c

]/
Pr
(

v > U−1(c)
)
− 1.

In the following we derive an explicit formula for the survival function of v.

Since X and Y are independent, X + Y follows the gamma distribution with

parameters α = 2 and θ = θX when θX = θY. If θX 6= θY it is straightforward to
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find the moment generating function of X + Y as

MX+Y(t)

= (1− tθX)
−1 · (1− tθY)

−1

=
θX

θX − θY
(1− tθX)

−1 +
θY

θY − θX
(1− tθY)

−1

:= ω(1− tθX)
−1 + (1−ω)(1− tθY)

−1.

So X + Y follows a two-point mixture distribution of two exponential distribu-

tions with parameters θX and θY. The corresponding weights are ω and 1− ω. In

summary, if we denote by G(·) the cdf of X + Y, then

G(t) =

 (1 + t/θX) exp (−t/θX) , if θX = θY,

ω exp (−t/θX) + (1−ω) exp (−t/θY) , otherwise.

Thus, when θX = θY,

Pr (v > t)

= qG (t) +
∫ ∞

1
G (t/s) fS(s)ds

= qG (t) +
(1− q)θS

1− exp(−θS)

(
t

θX
+ θS

)−2

×
{

θS +
2t
θX
−

exp
(
−
(

t
θX

+ θS

)) [
θS +

2t
θX

+
t

θX

(
θS +

t
θX

)]}
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and, when θX 6= θY,

Pr (v > t)

= qG (t) +
(1− q)θS

1− exp(−θS)
×
{

ω

(
t

θX
+ θS

)−1 [
1− exp

(
−
(

t
θX

+ θS

))]
+

(1−ω)

(
t

θY
+ θS

)−1 [
1− exp

(
−
(

t
θY

+ θS

))]}
.

Based on the above derivations, we input the following values to demonstrate

one numerical example. Note that all monetary amounts are in thousand dollars.

• The total cost of the treatment δ = 100.

• The copayment c = 27, which accounts for 27% of the total cost.

• γ = (c + δ)/2 = 63.5. The universal basic insurance and the supplementary

health insurance each covers 36.5% of the total cost.

• The severity model specifications: θX = θY = θS = 5 and q = 0.4.

• Threshold τ = 112.3.

• The utility function specifications: a = 1.65, b = 1.6 and U(τ) = 5.

• The SCR per capita ξ = 3.

We perform the calculations using R software (with R code in Appendix A) and

obtain the following results.

1. The probability that an individual is diagnosed the illness is 20%. But only

67% of individuals diagnosed the illness would choose to use the treatment.
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2. TVaRU(v)(U(τ)) = 72.5 and TVaRU(v)(c) = 100. So both Assumptions 2.2.1

and 2.3.1 are satisfied.

3. The premium of the insurance is 5.6 thousand dollars per year and the mini-

mum risk load required by ξ is 15%.



Chapter 4

Concluding Remarks

4.1 Summary

Based on an insurance system consisting of government health insurance and

private health insurance, I study the minimum risk load of a health insurance prod-

uct under a certain regulatory capital requirement in Solvency q and design a co-

payment to make sure the social cost-effectiveness of the treatment covered by the

insurance product. The probability that a policyholder is diagnosed with the ill-

ness is estimated through a threshold model. In other words, the probability that

a policyholder is diagnosed with the illness is the chance that the policyholder’s

severity of the illness is higher than a fixed threshold. Moreover, the severity model

includes three risk factors, common shock, systematic risk and idiosyncratic risk.

Based on this risk model, the pure premium is estimated when the number of

policyholders is large. Then, we calculate the premium of the health insurance

product. Furthermore, motivated by the fact that the government has a motiva-

27
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tion to control the minimum risk load for health insurance, I derive a method to

calculate exact minimum premium and minimum risk load of the health insurance

products.

4.2 Future Research

Several extensions of our work are worthy of pursuit in the future. First of

all, although the copayment is able to make the medical treatment is socially cost-

effective, it can’t make sure the utility gain that every single medical treatment

brings to every policyholder is equal to or higher than the cost of every treatment.

Future research can focus on finding methods to eliminate moral hazard further.

Secondly, it is valuable to find out the optimal payment the government should

pay for every treatment. My thesis focuses on how to design and price the sup-

plementary insurance. Future research can pay more attention to the payment of

basic universal insurance.



Appendix A

R code for the numerical example

#################################################

# Define functions #

#################################################

#### Find tau ####

G_bar <- function(t) {

if(th_X==th_Y) return((1+t/th_X)*exp(-t/th_X)) else {

omg <- th_X/(th_X-th_Y)

return(omg*exp(-t/th_X)+(1-omg)*exp(-t/th_Y))

}

}

v_surv <- function(t) {

term1 <- q*G_bar(t)

if(th_X==th_Y){

term2 <- exp(-t/th_X-th_S)

term2 <- term2*(th_S+2*t/th_X+t/th_X*(th_S+t/th_X))

term2 <- th_S+2*t/th_X-term2

term2 <- term2*(1-q)*th_S/(1-exp(-th_S))/(th_S+t/th_X)^2

return(term1+term2)

} else{

omg <- th_X/(th_X-th_Y)

term2 <- omg/(t/th_X+th_S)*(1-exp(-t/th_X-th_S))

term2 <- term2+(1-omg)/(t/th_Y+th_S)*(1-exp(-t/th_Y-th_S))

term2 <- term2*(1-q)*th_S/(1-exp(-th_S))

return(term1+term2)

}

29
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}

threshold<- function(p) {

f1 <- function(t) (v_surv(t)-p)^2

return(optim(1,f1,method="L-BFGS-B",lower=0,upper=Inf)$par)

}

#### Find copayment ####

tvar_uti <- function(t) {

f2 <- function(s) v_surv(U_inv(s))

result <- integrate(f2,t,Inf)$value

return(result/f2(t)+t)

}

copay <- function(dlta) {

if(tvar_uti(U_tau)<dlta){

f3 <- function(t) tvar_uti(t)-dlta

return(uniroot(f3,c(U_tau,dlta),tol=0.0001)$root)

} else{

return(U_tau)

}

}

#### premium as a function of SCR per capita ####

l <- function(co) {

term1 <- (1-q)*th_S/(1-exp(-th_S))*(1-exp(-U_inv(co)/th_X-

th_S))/(U_inv(co)/th_X+th_S)

term2 <- q*exp(-U_inv(co)/th_X)

return(term1+term2)

}

prem_req <- function(xi,perc) {

(ins-cpay)*(l(cpay)/perc)^(th_X/th_Y)+xi

}

#### risk load as a function of SCR per capita ####

riskload_req <- function(xi,perc) {

result <- prem_req(xi,perc)/(ins-cpay)/v_surv(U_inv(cpay))-1

return(result)

}

#######################################
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#### numerical input #####################

th_X <- 5 ## X follows exponential

th_Y <- 5 ## Y follows exponential

th_S <- 5 ## S follows inverse exponential tail

q <- 0.4 ## Pr(S=1)

prob_dis <- 0.2 ## the prob of being diagnosed the illness

## the severity threshold of being diagnosed the illness

tau <- threshold(prob_dis)

####### the utility curve depends on tau ###############

ttcost <- 100 ## in thousands

a <- 1.65 ## utility shape parameter a>1

b <- 1.6 ## utility scale parameter b>0

U_tau <- 5 ## utility at tau, less than ttcost

U <- function(t) U_tau+(t-tau)^(1/a)*b

U_inv <- function(u) ((u-U_tau)/b)^a+tau

#########################################

#### testing ############################

cpay<-copay(ttcost)

v_surv(U_inv(cpay));cpay;tvar_uti(cpay)

SCR <- 3

percent <- 0.995

ins <- (cpay+ttcost)/2 ## gamma should be between copay and delta

prem_req(SCR,percent)

riskload_req(SCR,percent)
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