
A Normalized Particle Swarm Optimization
Algorithm to Price Complex Chooser Option and

Accelerating its Performance with GPU

by

Bhanu Pratap Sharma

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

September 2011

c© Copyright by Bhanu Pratap Sharma, 2011

Thesis advisor Author

Dr. Ruppa Thulasiram

Dr. Parimala Thulasiraman Bhanu Pratap Sharma

A Normalized Particle Swarm Optimization Algorithm to

Price Complex Chooser Option and Accelerating its

Performance with GPU

Abstract

An option is a financial instrument which derives its value from an underlying

asset. There are a wide range of options traded today. Some are simple and plain,

like the European options, while others are very difficult to evaluate. Both buyers and

sellers continue to look for efficient algorithms and faster technology to price options

for profit. In this thesis, I will first map the PSO parameters to the parameters in

the option pricing problem. Then, I extend this to study pricing of complex chooser

option. Further, I design a parallel algorithm that avails of the inherent concurrency

in PSO while searching for a optimum solution. For implementation of my algorithm I

used graphics processor unit (GPU). Analyzing the characteristics of PSO and option

pricing, I propose a strategy to normalize some of the PSO parameters that helps in

better understanding the sensitivity of various parameters on option pricing results.

ii

Acknowledgments

Firstly, I want to thank my advisors, Dr. Ruppa Thulasiram and Dr. Parimala

Thulasiraman, for their able guidance during my research and study at University

of Manitoba. My very sincere thanks to them for their support, encouragement and

great effort they put into training me during the course of this thesis.

I would like to thank my father “Mr Ashok Sharma” and my brother “Keshav

Sharma” for their emotional and moral support all through my life. Everything that

I have achieved so far can be attributed to their love and sense of security they

provided to me.

My deepest gratitude to “Mr. Malkiat Kamboz” and his family for supporting

me in Winnipeg in every possible way. I would also like to thank “Ashish Phutela”

, “Aman Brar” , “Bhavdeep Pabla” and “Jose Juan Mijares Chan” for sharing some

memorable moments here in Canada.

Finally I would like to thank all the graduate students at the Department of

Computer Science for making it a very friendly place to work. I want to thank them

for all their help and support.

iii

This thesis is dedicated to loving memory of my late mother , “Dr.

Aruna Sharma”. I remember her for all her kindness and wisdom.

iv

Contents

Abstract . ii
Acknowledgments . iii
Dedication . iv
Table of Contents . vi
List of Tables . vii
List of Figures . viii

1 Introduction and Background 1
1.1 Financial Option . 2
1.2 Background Literature . 3
1.3 GPU and CUDA Programming Model 6

2 Conventional option pricing techniques (Related Work) 8
2.1 Black-Scholes-Merton model . 8
2.2 Binomial and trinomial lattice . 9
2.3 Heuristic techniques for option pricing 12

3 Complex Chooser Option 15
3.1 Options for the undecided . 15
3.2 Evaluation using Black-Scholes-Merton formula 16

4 Particle Swarm Optimization 21
4.1 Initialization . 22
4.2 Position Update . 23
4.3 Evaluation . 24
4.4 Limitations of PSO . 24

5 Normalized Particle Swarm Optimization (NPSO) 26
5.1 Sensitivity analysis of the normalized PSO algorithm 29
5.2 Comparison of NPSO with Black-Scholes-Merton model 32
5.3 GPU implementation of NPSO for option pricing 33

v

vi Contents

6 Experimental results 36
6.1 Static Volatility . 36
6.2 Dynamic Volatility . 38
6.3 Portfolio Management . 40
6.4 Comparison with Hari’s Parasin [2010] work 42
6.5 Comparison of GPU execution time with MPI/OpenMP execution time 42
6.6 Comparison with other Black-Scholes-Merton approximations 43

7 Conclusion 44

Bibliography 52

List of Tables

5.1 Varying Volatility, ω = 0.5, T = 1, K = 40 31
5.2 Varying Expiration Time, ω = 0.75, σ = 60%, K = 40 31
5.3 Varying Strike Price, ω = 0.25, σ = 50%, T = 1.5 32
5.4 Option values for European call . 33
5.5 Option values for European put . 33

6.1 American Call,Put, Complex Chooser 37
6.2 Option prices for European Call/Put, American Call/Put, Complex

Chooser . 39
6.3 Portfolio Optimization . 41

vii

List of Figures

1.1 GPU Architecture . 7

2.1 Binomial Price Tree . 10
2.2 Trinomial Price Tree . 11

4.1 Flock of birds . 21
4.2 School of fish . 22

6.1 American Call Option: σ vs. Execution time 37
6.2 American Put Option: σ vs. Execution time 37
6.3 Complex Chooser Option: σ vs. Execution time 38
6.4 European Call Option: Expiration Time vs. Execution Time 39
6.5 European Put Option: Expiration Time vs. Execution Time 39
6.6 American Call Option: Expiration Time vs. Execution Time 40
6.7 American Put Option: Expiration Time vs. Execution Time 40
6.8 Complex Chooser Option: Expiration Time vs. Execution Time . . . 40
6.9 Portfolio Option: Expiration Time vs. Execution Time 41

viii

Chapter 1

Introduction and Background

In recent years, the GPU architecture has been dominating the general purpose

computing market. The current GPU GeForce GTX 550Ti architecture by Nvidia,

with its 192 CUDA cores, is 28% faster than previous recently released architecture

GeForce GTX 450. The number of cores together with the processing power of the

architecture is increasing dramatically. With the introduction of new programming

languages such as OpenCL by Kronos Group for GPUs and other accelerators, the

accelerators can be efficiently used to solve large real world problems beside graphic

applications.

In finance problems such as option pricing, value at risk and portfolio optimization

demand efficient algorithms and high performance computing capabilities. Investors

desire rapid solutions to beat the competition and any delay in information processing

can be translated into huge losses. Therefore, financial applications can benefit from

the tremendous parallelism available on GPU. In this thesis, I design an efficient

bio-inspired option pricing algorithm to solve the problem in particular the complex

1

2 Chapter 1: Introduction and Background

chooser option and parallelize the algorithm on the GPU architecture.

1.1 Financial Option

A financial option is a contract (with an expiration date) between two parties. The

holder of the option contract gets a right to exercise this option at his/her will during

the contract period. The other party, known as the writer of the option is obligated to

the decisions of the holder. There are two types of options: call or put option. A call

(put) option is a contract that gives the right to its holder to buy (sell) a pre-specified

underlying asset at a pre-determined contract price (the strike price). Depending on

when the contract is exercised, there are two well-known styles of options also called

as vanilla options: European and American. In European style, an option can be

exercised only on the date of expiration whereas in an American style, an option

can be exercised on any date before the expiry date. The complex chooser option is

another style of option categorized as exotic options. In this research, I consider the

complex chooser option for various reasons. This option has not been studied due to

its complex nature. Also, this product combines various other options in its fold and

hence it’s a step away from building a financial portfolio. Also, it is quite challenging

to price this option.

A complex chooser option Rubinstein [1991] gives the holder the right to choose

an option type and style among various styles, during the pre-determined time period

of the option contract (generally within the first 25% of the contract). An example

in using the complex chooser option is in optimizing a portfolio. A portfolio is a

collection of options and other financial instruments owned by a single investor or an

Chapter 1: Introduction and Background 3

organization. Pricing the portfolio involves evaluating all the options and suggesting

the investor an appropriate exercise time to optimize the profitability of the portfolio.

Due to the flexibility of this option, a complex chooser option has attracted many

investors in the recent years. However, as the investor has an opportunity to “choose”

between a call and a put, the complex chooser option is generally more expensive than

simple options and is computationally more challenging because double decisions need

to be made with complex chooser option.

1.2 Background Literature

One classical mathematical model for option pricing was developed by Black and

Scholes Black and Scholes [1973] and Merton Merton [1973]. This model assumes

constant volatility for the underlying asset during the contract period of the option.

It produces an exact solution in closed-form for an European option. The Black-

Scholes-Merton model can be extended to get an approximate closed-form solution

for a complex chooser option. However, this approximate solution becomes totally

unreliable under volatile and dynamic market conditions. Therefore, advanced algo-

rithms and computing platforms are always in demand for pricing options. For my

thesis I use the current technology of GPUs to price complex chooser option.

In cases where an exact solution cannot be found, numerical techniques have

been developed such as binomial lattice Cox et al. [1979], the finite-differencing tech-

nique Tavella and Randall [2000], Monte Carlo Boyle [1977] simulation, fast Fourier

Transform approach Carr and Madan [1999] and others for general option pricing.

In option pricing, accuracy is one of the important issues any technique has to satisfy.

4 Chapter 1: Introduction and Background

The accuracy of numerical methods can be improved through increased computation

time for a given instance of a solution as shown by Heston and Zhou [2000].It is not

an exhaustive optimal solution for the problem. To this effect Barua et al. [2005];

Rahmayil et al. [2004]; Thulasiram et al. [2001]; Thulasiram and Thulasiraman [2003];

Jauvion and Nguyen [2008]; Podlozhnyuk [2008]; Solomon et al. [2010] have devel-

oped parallel algorithms on high performance computers and have gained improved

performance.

The strive for accuracy and better models for option pricing in a volatile market

has led researchers to study heuristic approaches involving evolutionary Chidambaran

et al. [1999]; Yin et al. [2007]; Keber and Schuster [2002] and swarm intelligence

Brabazon and O’Neil [2006]; Kumar et al. [2008b]; Jha et al. [2009]; Prasain et al.

[2010a,b] techniques. These techniques start with an initial search space and can

work simultaneously to find a solution. During the course of the execution, through

co-operation of individual or using genetic operators, they are able to limit the search

space in which the solution is found.

In this thesis, I use particle swarm optimization (PSO) algorithm for solving the

option pricing problem. Due to the robustness and simplicity of PSO, the technique

has been been used in various applications Meneses et al. [2009]; Jin and Samii [2005];

Schutte et al. [2004]. The general PSO algorithm, as described by Kennedy and

Eberhart Kennedy and Eberhart [1995], works by introducing a number of particles

into the solution space (a continuous space where each point represents one possible

solution) and moving these particles throughout the search space, searching for an

optimal solution. In Jha et al. [2009]; Prasain et al. [2010a], an initial attempt to

Chapter 1: Introduction and Background 5

map the PSO algorithm for pricing European call option was made with certain

assumptions that are not practicable for real market scenarios. For my research, I

take a different approach than earlier studies Prasain et al. [2010a,b]. I design a

normalized PSO algorithm (Chapter 5) and show that it is more suitable for real

market conditions.

Due to tremendous amount of parallelism available in the PSO algorithm, efforts

have been made in developing and designing parallel PSO algorithms Schutte et al.

[2004]; Chang et al. [2005]; Venter and Sobieszczanski-Sobieski [2006]; Prasain et al.

[2010b]; Solomon et al. [2011]. In recent years, several works Li et al. [2007]; Jauvion

and Nguyen [2008]; Mussi et al. [2010]; Solomon et al. [2011] have capitalized on the

performance benefits of using a GPU and have studied the parallelization of the PSO

algorithm on these accelerators. However, the GPU architecture is constrained in

regards to the types of algorithms that work well. The structured, predictable nature

of very regular, synchronous data-parallel algorithms work well with the SIMD-esque

GPU architecture.

The PSO algorithm is an iterative, synchronous algorithm. It may require several

iterations to reach the optimal solution. While there is synchronization and commu-

nication between iterations, the particles can work independently within iteration.

This feature of the PSO algorithm, makes it suitable for parallelization on the GPU

architecture.

The contribution of my research is as follows: (i) Design a normalized parallel

PSO algorithm for pricing complex chooser option; (ii) compare the algorithm to the

existing approximate Black-Scholes model for complex chooser option; (iii)Design a

6 Chapter 1: Introduction and Background

parallel the algorithm for multi-core architecture, implement it on a GPU architecture

and study its performance.

1.3 GPU and CUDA Programming Model

This section briefly describes the GPU architecture and the CUDA programming

model used in this research.

The GPU core contains an array of Streaming Multiprocessors or SMs. Each SM

is composed of several Scalar Processors or SPs. The SPs are the base unit that

executes a thread in the SM. Each SM executes threads following a model similar to

SIMD which NVIDIA NVIDIA [2008] refers to as SIMT, or Single Instruction Multiple

Threads. For example, the latest architecture of GPU, the GT300 (or Fermi) consists

of three billion transistors with 16 SMs each containing 32 cores. The hardware

performs tasks such as thread creation, resource management and thread scheduling.

The GPU consists on an off-chip memory, shared memory, registers and texture

or constant memory. Among them, the global memory is the slowest to access which

adds significant overhead in overall performance if used frequently. All SMs have ac-

cess to this memory. Techniques such as global coalescing can be used to help reduce

the performance degradation of the slow memory access. That is, if threads follow

certain access patterns1, the number of global memory reads and writes can be signif-

icantly reduced, resulting in the negation of much of the performance issues related

to memory latency. The shared memory is resident on each SM, and is accessible

to threads exclusively executed on the SMs. NVIDIA NVIDIA [2008] claims shared

1These patterns are described by NVIDIA NVIDIA [2008] in the CUDA Programming Manual

Chapter 1: Introduction and Background 7

memory is as fast as accessing a register if no bank conflicts exist2. Therefore, the

importance of using shared memory as a developer-controlled cache is not to be un-

derestimated. Constant/texture memory acts as caches and is faster than the global

memory but slower than the shared memory.

Figure 1.1: GPU Architecture

2Shared memory is split in to 16 32-bit wide banks, multiple requests for data from the same
bank arriving at the same time are serialized.

8 Chapter 1: Introduction and Background

The CUDA threading model exposes a hierarchy of thread groupings. At the

highest level there exists the thread grid, which encapsulates all threads executing

the application. Groupings of threads within the grid form thread blocks. Threads

within blocks are assigned a thread ID unique only among threads in the same block.

As a further organization, threads within each block are ordered into 32-thread

warps. Each thread within a warp is given the same instruction to execute as all the

other threads within that warp. When branching occurs, threads in a warp which have

diverged are marked as inactive and do not execute any useful work until instructions

from their path of the branch are issued to the warp. This is, in effect, the SIMT

model of execution. Different warps within a thread block can be executing different

instructions from one another, but threads within a warp must execute the same

instruction or no instruction at all.

Chapter 2

Conventional option pricing

techniques (Related Work)

In this chapter I will discuss some basic option pricing techniques that are in use

in the finance community.

2.1 Black-Scholes-Merton model

In early 1970s the economists Fischer Black and Myron Scholes revolutionized the

option trading by providing a closed form solution for European call and put options.

Black-Scholes model is based on the solution of partial differential equations, mostly

used for heat flow problems. The mathematician, Robert C. Merton provided the

initial mathematical model for option pricing. For this work Robert C. Merton and

Myron Scholes received the Nobel Memorial Prize in Economics in 1997.

Although the initial Black-Scholes-Merton model was developed for European call

9

10 Chapter 2: Conventional option pricing techniques (Related Work)

and put options only, many mathematicians have extended this to various other

options. Approximate solutions for various options like complex chooser, arithmetic

mean , time switch options etc. are based on the Black-Scholes-Merton model.

The classical Black-Scholes-Merton formula for a call option is given by Hull [2007];

Black and Scholes [1973].

C(S, t) = N(d1)× S −N(d2)×K × e−r(T−t) (2.1)

where,

d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√

(T − t)
, and (2.2)

d2 = d1 − σ
√

(T − t) (2.3)

The Black-Scholes formula for put option is

P (S, t) = N(−d2)×K × e−r(T−t) −N(−d1)× S (2.4)

In these equations, S is the underlying asset price, K is the strike price in the

contract, r is the interest rate, σ is volatility and t is the expiration time. N(d)

represents the normal distribution function on d.

2.2 Binomial and trinomial lattice

The Black-Scholes-Merton model makes assumptions like constant market volatil-

ity and the model completely fails for practical options since volatility is not constant

Chapter 2: Conventional option pricing techniques (Related Work) 11

in the finance market; and special cases like market crashes. In 1979 Cox-Ross-

Rubenstein (CRR) Cox et al. [1979] proposed a discrete time approach for option

pricing.

Option pricing using this method involves a tree data structure as shown in fig-

ure 2.1. S is the stock price, T is time to maturity, σ is the market volatility and

∆t is time between two time steps. u represents the factor by which the stock price

increases and d represents the the factor by which the stock price decreases.

The value of u and d can be calculated from volatility (σ), as explained by Cox-

Ross-Rubenstein (CRR) Cox et al. [1979] using the following equations.

u = eσ
√

∆t

d = e−σ
√

∆t =
1

u

It can be noticed in the above figure that at each time step, the stock price can

either go up or down. This represents the real market scenario more correctly.

A natural extension of the binomial lattice is the trinomial lattice. At each node

the stock price can go up, down or remain constant. The difference can be seen in

the figure 2.2

Because trinomial lattice considers an extra case, i.e. when the stock price remains

constant, this method is closer to real market scenario than the binomial lattice.

Binomial and trinomial lattice are frequently used for option pricing, mostly be-

cause they are very easy to implement and parallelize. However, they have some

limitations, first, both are very rigid; that is, the stock prices can go up or down

by a fixed amount and they can not be implemented with dynamic volatility. Both

12 Chapter 2: Conventional option pricing techniques (Related Work)

Figure 2.1: Binomial Price Tree

Figure 2.2: Trinomial Price Tree

these limitations divert binomial and trinomial lattice from real market scenario. To

overcome these limitations, heuristics have been used in the finance community for

option pricing, some of which are explained in the next section

Chapter 2: Conventional option pricing techniques (Related Work) 13

2.3 Heuristic techniques for option pricing

Heuristic techniques have been used on various aspects of financial applications Hutchin-

son et al. [1994]; Chen et al. [2006]. For option pricing, heuristic has been used in

finding approximate solutions or formulas for calculating implied volatilities. Implied

volatility is the volatility of an asset that is calculated using the value of the option.

There are no closed form solutions for calculating implied volatilities. Therefore, an-

alytical approximations Bharadia et al. [1995, 1996]; Chance [1996]; Keber [1999] and

recently heuristics have been considered Keber and Schuster [2003]. The focus of my

research is not in deriving formulas for implied volatility, but rests is designing an

efficient algorithm for pricing the options. Therefore, this section describes heuristics

used in the literature to price options with varying volatilities.

An important advantage of heuristics or metaheuristics approaches over other

numerical techniques used in pricing options are techniques ability to incorporate a

known approximate solution initially. An algorithm would evolve over many iterations

starting from this initial solution. This initial approximate solution could be the so-

lution obtained from Black-Scholes-Merton model. In Chidambaran et al. [1999], the

authors propose a genetic programming (GP) approach to price options. The authors

incorporate an approximate solution of the Black-Scholes-Merton model initially into

the gene pool for evolving future generations. The authors claim that GP produces

better approximations than Black-Scholes-Merton model when the underlying assets

follow a jump diffusion process.

In GP technique, the mutation and crossover probability rates are generally fixed.

In Yin et al. [2007], the authors dynamically alter these rates in each GP run. The

14 Chapter 2: Conventional option pricing techniques (Related Work)

authors include the dynamic volatility in their algorithm to match the real market

scenario. They claim that this adaptive algorithm captures the market in real time

and produces better approximations.

Kumar et al. Kumar et al. [2008b], developed an ant colony optimization (ACO) Dorigo

et al. [1996] based algorithm to price options. Their dynamic iterative algorithm in-

herently captures the market volatility during the life of the option. Initially, all ants

start searching the solution space from an initial node. The objective of the ants is

to find the best node (time or profit) to exercise an option. Ants move towards the

global best node by choosing a path to the next node that has high concentration of

the pheromone. After a few iterations, more ants are injected at the best node to

explore the solution space further. Kumar et al. Kumar et al. [2008a] showed that the

algorithm performs better than binomial-lattice algorithm. The algorithm, however,

does not optimize on exercise.

Jha et al. Jha et al. [2009] used Particle Swarm Optimization (PSO) for pricing

European options. It was a rudimentary attempt of using PSO for option pricing and

the authors used very small number of particles. There are two limitations in their

approach. First, the authors assume constant market volatility. Second, they do not

compute the best possible exercise time. This restriction would eliminate evaluation

of American options. Also, Jha et al. Jha et al. [2009] perform all their experiments

in MATLAB using PSO as a black box which is very difficult to manipulate with real

market data.

Prasain et al. Prasain et al. [2010a] and Prasain Prasain et al. [2010b] efficiently

map the PSO algorithm to the option pricing problem. They also incorporate dynamic

Chapter 2: Conventional option pricing techniques (Related Work) 15

market volatility into the PSO algorithm and estimate the best exercise time. This

algorithm accurately represents the real market conditions and it can be used to

evaluate American options as well. However, their algorithm stagnates at a solution

which may not necessarily be optimal. This, I believe is due to the constants and

random numbers generated by the PSO algorithm.

For my research, I propose a normalization scheme for some of these PSO param-

eters to better suit my application, the complex chooser option. Note that to the

best of my knowledge there is no work published that uses PSO for pricing complex

chooser option. In the next chapter I will explain the complex chooser option in

details.

Chapter 3

Complex Chooser Option

In this section I explain the complex chooser option in detail. First, I explain the

inception and meaning of the complex chooser option followed by the mathematical

model used to evaluate the complex chooser option.

3.1 Options for the undecided

The complex chooser option also known as the “option for the undecided” was

introduced by Rubinstein in 1991 Rubinstein [1991]. This option gives the holder the

opportunity to choose between the two types of options call or put. In other words,

the holder purchases the option now, but after a pre-determined period of time he/she

decides if the option would be a call or a put. The risk involved in option trading is

reduced to a small extent by letting the holder decide between call or put through

the chooser option. Therefore, the investors who cannot decide about the type and

style of options at the time of contract can be lured to chooser option.

16

Chapter 3: Complex Chooser Option 17

Chooser options traded in the past were quite simple; they would just comprise

of two types: a call and a put. For European investors the chooser options would

comprise of European call and European put, while for the American investors those

would be American call and American put. Also, regardless of which style (Euro-

pean/American) is choosen, the basic parameters (stock price, strike price, expiration

time) do not change for chooser option. Rubinstein Rubinstein [1991] later introduced

the complex chooser option, which comprises of options with different stock prices,

strike prices and expiration times. The complex chooser option can therefore be

considered as a portfolio of many options.

Pay-off for a call or a put option is given by fc = Max(S−K, 0), fp = Max(K −

S, 0), respectively where S and K are the underlying asset price and strike price of

the contract respectively. fc and fp are the payoff from a call or a put option.

In simple terms, the pay-off of a chooser option can be written as

fchooser = Max[fc, fp; t] (3.1)

where t is the pre-determined time before which the investor has to decide between

a call or a put option for the chooser option he/she holds.

3.2 Evaluation using Black-Scholes-Merton formula

Black-Scholes-Merton formula can be used to evaluate the complex chooser option.

The classical Black-Scholes-Merton formula for a call option is given by Hull [2007];

Black and Scholes [1973].

18 Chapter 3: Complex Chooser Option

C(S, t) = N(d1)× S −N(d2)×K × e−r(T−t) (3.2)

where,

d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√

(T − t)
, and (3.3)

d2 = d1 − σ
√

(T − t) (3.4)

The Black-Scholes-Merton formula for put option is

P (S, t) = N(−d2)×K × e−r(T−t) −N(−d1)× S (3.5)

In these equations, S is the underlying asset price, K is the strike price in the

contract, r is the interest rate, σ is volatility and T is the expiration time. N(d)

represents the normal distribution function on d. For simplicity the Black-Scholes-

Merton formula for call option can be written as a function:

c = Black-Scholes (“c”, S, K, t, σ, r) where “c” represents call option.

Similarly, the put option can be represented as

p = Black-Scholes (“p”, S, K, t, σ, r) where “p” represents put option.

We will also use the termsN(d1) andN(−d1) for call and put options, respectively,

in calculations later in this section. Therefore for simplicity, we represent them as

the functions:

dc = Delta (“c”, S, K, t, σ, r) where “c” represents call option and,

dp = Delta (“p”, S, K, t, σ, r) where “p” represents put option

The option price (w)of a complex chooser option as given by Rubinstein Rubin-

stein [1991] is given by

Chapter 3: Complex Chooser Option 19

w = Se(b−r)TcM(d1, y1; ρ1)−Kce
−rTcM(d2, y1−σ

√
Tc; ρ1)−Se(b−r)TcM(d1,−y2; ρ2)+Kpe

−rTpM(−d2,−y2+σ
√
Tp; ρ2)

(3.6)

where Tc and Tp are the time to maturity on the call and put respectively. b

is the interest rate adjustment for dividend paying stock. M ′s are the Cumulative

Bivariate Normal Distribution function. In my experiments I consider non-dividend

paying stock and hence the value of b is 0.

d1 =
ln(S/I) + (b+ σ2/2)t

σ
√

(t)
(3.7)

d2 = d1 − σ
√

(t) (3.8)

y1 =
ln(S/Kc) + (b+ σ2/2)Tc

σ
√

(Tc)
(3.9)

y2 =
ln(S/Kp) + (b+ σ2/2)Tp

σ
√

(Tp)
(3.10)

ρ1 =
√
t/Tc (3.11)

ρ2 =
√
t/Tp (3.12)

I in the above equations is called the critical value chooser. The Black-Scholes-

Merton formula for call and put options given earlier are used to find this critical

value chooser. Algorithm 1 evaluates critical chooser value. Kc and Kp represent the

20 Chapter 3: Complex Chooser Option

strike prices and Tc and Tp represent the expiration times for call and put options,

respectively. This is basically Newton-Raphson method, which is generally used to

approximate roots of the real valued functions.

Algorithm 1 Function CriticalValueChooser(S, Kc, Kp, T, Tc,Tp, r, σ)

1: Sv = S

2: ci = BlackScholes (“c”, S, Kc, Tc − T ,σ, r)

3: pi = BlackScholes (“p”, S, Kp, Tp − T ,σ, r)

4: dc = Delta (“c”, S, Kc, Tc − T ,σ, r)

5: dp = Delta (“p”, S, Kp, Tp − T ,σ, r)

6: yi = ci - pi

7: di = dc - dp

8: ε = 0.000001

9: while (yi > ε) do

10: Sv = Sv - yi/di

11: ci = BlackScholes (“c”, S, Kc, Tc − T ,σ, r)

12: pi = BlackScholes (“p”, S, Kp, Tp − T ,σ, r)

13: dc = Delta (“c”, S, Kc, Tc − T ,σ, r)

14: dp = Delta (“p”, S, Kp, Tp − T ,σ, r)

15: yi = ci - pi

16: di = dc - dp

17: end while

CriticalValueChooser(I) = Sv

With the critical value calculated, d1 and d2 in Equations 3.7 and 3.8 can be com-

Chapter 3: Complex Chooser Option 21

puted,which in turn can be used to compute w, the approximate value of a complex

chooser option from Equation 3.6.

In this chapter I explained the complex chooser option and its mathematical

derivation. Another important component of my thesis is the particle swarm op-

timization, which I will explain in the next chapter.

Chapter 4

Particle Swarm Optimization

Particle swarm optimization is a population-based technique conceptualized from

the observation of flock of birds(figure 4.1) or school of fish(figure 4.2) migrating or

looking for food. Initially, each bird will look in its own neighbourhood for a potential

food source.

Figure 4.1: Flock of birds

At the end of the first iteration, the birds decide on a location that might lead to

a food source. Each bird will then compare its result with other birds of the flock and

will make a decision to either fly to another location or stay in its current location.

22

Chapter 4: Particle Swarm Optimization 23

As more and more iterations are performed, the probability that the flock of birds

will come closer to the food source is higher. This is the basic concept of PSO.

Figure 4.2: School of fish

The example mentioned above is homologous to the option pricing problem. There

could be various possible solutions for a given option. Our aim is to find a solution

that best satisfies the holder of the option. Therefore, a good mapping has to be

developed between PSO and option pricing. Hari Parasin Parasin [2010] has done

an initial work in this direction. Discussion on this is provided in the related work

(section 2) motivating the current work.

There are four steps in a PSO algorithm Kennedy and Eberhart [1995]: initializa-

tion, position update, evaluation, and termination.

4.1 Initialization

Initialize N particles randomly in a solution space. Equation 4.1 describes initial

position, and Equation 4.2 gives the initial velocity.

−→
X i

0 =
−−−→
Xmin + r1 × (

−−−→
Xmax −

−−−→
Xmin) (4.1)

24 Chapter 4: Particle Swarm Optimization

−→
V i

0 =
−→
Xi (4.2)

For a particle i,
−→
X i

0 is the initial position,
−−−→
Xmin is the minimum allowable position

in the sample space,
−−−→
Xmax is the maximum allowable position in the sample space, r1

is an uniform random number within the range of [0,1], and
−→
V i

0 is the initial velocity.

4.2 Position Update

During the execution of the algorithm, each particle i monitors four values: its

current position (
−→
Xi), the best position it reached in previous cycles (

−→
Pi), its fly-

ing velocity (
−→
Vi), and the swarm best position (

−→
P g). These four values are repre-

sented in vectors as:
−→
Xi = (xi1, xi2, xi3, . . . , xiD);

−→
Pi = (pi1, pi2, pi3, . . . , piD);

−→
Vi =

(vi1, vi2, vi3, . . . , viD);
−→
P g = (pg1, vg2, vg3, . . . , vgD) , and are used to calculate the next

velocity Kennedy and Eberhart [1995]:

−−→
V i
t+1 = ω ×

−→
V i
t + c1 × r1 × (

−→
P i
t −
−→
X i
t) + c2 × r2 × (

−→
P g
t −
−→
X i
t) (4.3)

In Equation 4.3, r1 and r2 are two uniform random numbers within the range of

[0, 1], c1 is self or local confident factor, and c2 is swarm or global confident factor.

The inertia weight ω balances the trade off between global and local search during

optimization process. It decreases the velocity value at each time step to increase

PSO exploitation. It is usually set in the range between [0,1].

The particle’s next position is calculated using the equation 4.4 Shi and Eberhart

[1998].

−−→
X i
t+1 =

−→
X i
t +
−−→
V i
t+1 (4.4)

Chapter 4: Particle Swarm Optimization 25

4.3 Evaluation

The evaluation step depends on the application under consideration and its fitness

function. Local and global updates are done if particles find better fitness values. The

algorithm terminates after certain number of iterations predefined by the user for the

respective application.

4.4 Limitations of PSO

As mentioned earlier, Particle swarm optimization is a population-based technique

conceptualized from the observation of flock of birds or school of fish. The mathe-

matical model derived from these observations are very generic and cannot be used

directly for a given application. The mapping of PSO equations to a given application

is the real challenge. Once this mapping is successfully achieved it might hold valid

for the set of parameters currently considered in the application. That is, if a new

parameter is added to the application or existing one is removed, the PSO model may

not work well.

Another major drawback of PSO is that the number of particles to be used is not

well defined. The optimal number of particles to be used has to be found through a

trial and error method with using various experiments.

In this chapter I explained the conventional PSO algorithm. However, for my

thesis I changed this conventional PSO algorithm and designed a normalized PSO

algorithm (NPSO) which I will explain in the next chapter.

Chapter 5

Normalized Particle Swarm

Optimization (NPSO)

In this chapter I will explain the improvements made to the PSO algorithm 4.4

Shi and Eberhart [1998] proposed by Prasain et al. [2010b] for the option pricing

problem. First, I will briefly explain the mapping of the basic PSO algorithm to the

option pricing problem that Prasain et al. [2010b] considered. The position vector

(
−→
X i
t) and the velocity vector (

−→
V i
t) in PSO refer to change in stock price, and the new

stock price at time t respectively.
−→
Pi and

−→
P g refer to the particle’s local best option

value and the global best option value achieved by the swarm.

In Equation 4.3, there are two random numbers (r1 and r2) and two constant

parameters(c1 and c2). Random numbers influence the movement of the particles. In

the literature, random number generators are used to compute r1 and r2. In my work,

I use a random number generator to select r1 in the range [0,1]. However, I set r2 = σ

and justify this follows : In the velocity equation 4.3, r2 is linked to the the global best

26

Chapter 5: Normalized Particle Swarm Optimization (NPSO) 27

value, gbest. That is, I use a fraction of the value computed by gbest−xi(t−1). For the

option pricing problem the particles are moving towards the common goal of finding a

solution for one single investor. This implies, all particles should globally experience

the same market fluctuations. If each particle selects a different random number,

each particle will have a different experience which is incorrect from a pratical point

of view. Therefore, I associate r2 with volatility, the parameter that influences the

market fluctuation.

The constants, c1 and c2 weigh the contribution of the cognitive and social compo-

nents, respectively Shi and Eberhart [1998]. In the literature, various values have been

used for c1 and c2, without providing any explanations for their selection. In Prasain

et al. [2010b], the authors conclude that for option pricing, the PSO algorithm has

difficulty is finding the optimal solution in certain scenarios. Through experiments, I

realize that the above constraints in c1 and c2 constants may have some effect on the

results.

To this respect, in this work, I consider a normalization procedure to these con-

stants. In finding the local best, each particle communicates with the nearest neigh-

bour. Note that the local best value of a particle changes at each time. This change

should be reflected in the velocity equation, which determines the change in stock

prices at each time step. The particles share their local information to all particles

in the swarm and compute the global best. This global best value allows particles

to move closer to the optimal solution. I hypothesize that using these two parame-

ters in the normalization will allow a particle to move closer to the optimal solution.

Therefore, I normalize c1 as the ratio of particle i’s local best and the swarm’s global

28 Chapter 5: Normalized Particle Swarm Optimization (NPSO)

best. Recall that c2 provides the swarm’s confident factor. All the particles are col-

laborating towards a single goal of identifying a node that provides the best option

value. In other words, the particles are working for one investor. Therefore, a single

particle can safely rely on the collective confidence factor (c2) of the swarm. Hence,

I set, c2 = 1 and c2 = 1 > c1. The normalized equation used in this research for the

velocity and position formulas at time (t+ 1) for a particle i are given below:

V i
t+1 = ω ∗ V i

t +
lbest
gbest

∗ r1(lbest −X i
t) + σ ∗ (gbest −X i

t) (5.1)

X i
t+1 = X i

t + V i
t+1 (5.2)

In PSO, ω, balances the exploration-exploitation of the particles movements. This

is usually set in the interval [0,1]. In Shi and Eberhart [1998], ω = 0.5 + rand/2,

where rand is a random number. This parameter uses the velocity of the particle’s

previous iteration and decreases it by some fraction to increase exploitation. Prasain

et al. Prasain et al. [2010b] set ω = σ+ k where kis some constant. In option pricing,

volatility (σ) is an important parameter that captures the dynamics of the market.

I found through various experiments that when the market is highly volatile, the

assumptions made by Prasain et al. Prasain et al. [2010b] about ω is inefficient. I

argue this as follows.

The aim of ω is to restrict the high fluctuations in the movement of particles. On

the other hand, σ reflects the real market fluctuation which is highly volatile. That

is, it represents the fluctuations in the market, and maybe variable. Therefore, σ

should not be mapped to a restrictive parameter, ω. This would produce incorrect

results in the real market scenario. Also, in Prasain et al. [2010b], the authors map

Chapter 5: Normalized Particle Swarm Optimization (NPSO) 29

ω to volatility with a very high number, (0.5 + rand/2). In general, volatility is not

that high in real market scenarios. Therefore, in my work, ω is randomly generated

within the range [0,1] and I do not map ω to volatility.

In the PSO, algorithm, the velocity is usually set to a some maximum value (
−−→
Vmax)

to avoid a search explosion state. For option pricing, this refers to the maximum

change in stock prices. Also, the position vectors are bounded by
−−−→
Xmax and

−−−→
Xmin

to limit the search space. In my thesis, I avoid using
−−→
Vmax, while the use of

−−−→
Xmin

and
−−−→
Xmax are limited to the initialization step. After the initialization, boundary

conditions are not used to encourage particles to explore the sample space as much as

possible. This is another major improvement in using PSO for option pricing where

very strict boundary conditions were used by Prasain et al. Prasain et al. [2010b] .

The normalized PSO algorithm (NPSO) for each particle is explained in Algorithm

2. The algorithm stops when the particles reach the expiration time or exceed the

number of iterations.

5.1 Sensitivity analysis of the normalized PSO al-

gorithm

In this section I do sensitivity analysis of my proposed NPSO model that works

as a test for proof-of-concept. In the following section I compare my NPSO algorithm

with the traditional Black-Scholes-Merton model. This works as a validation of my

proposed NPSO model.

In general, it is inferred from the market analysis that with a long dated option

30 Chapter 5: Normalized Particle Swarm Optimization (NPSO)

Algorithm 2 Algorithm:Normalized PSO

Randomly disperse particles into solution space

1: for (I = 0 6= NumberofIterations) do

2: for (all particles in swarm) do

3: if Time < Expiration time then

4: Compute fitness of current location

5: Update lbest if necessary

6: Update gbest if necessary

7: Calculate c1 = lbest
gbest

8: Update velocity using Equation 5.1

9: Update position using Equation 4.4

10: Update Time

11: else

12: Terminate

13: end if

14: end for

15: end for

(lengthy expiration time) or with a highly volatile underlying asset, the value of the

option is generally expected to be high. I did a one-at-a-time sampling Saltelli et al.

[2008] on three financial parameters, i.e. volatility (σ), strike price (K) and expiration

time (T). In finance, such analysis is generally characterized by Greek terms Θ (for

expiration time) and υ (vega, for volatility).

The computed option values of my analysis are listed in table 5.1. In Table 5.1, I

Chapter 5: Normalized Particle Swarm Optimization (NPSO) 31

vary the volatility by keeping dampening factor (ω), expiration time (T) and strike

price (K) constant. T is measured in years, K is set to $45.

In Table 5.2, I increase the expiration time (T) by keeping ω, σ and K constant.

I see that my normalized PSO model produces an increase in option values as should

be the case in both cases.

In Table 5.3, I vary the K, by keeping ω, σ and T constant. I use a call option

for this experiment. I see that increasing strike price decreases the option values as

expected.

This sensitivity analysis confirms that my normalized PSO algorithm works with-

out any loss of generality.

Table 5.1: Varying Volatility, ω = 0.5, T = 1, K = 40

Simulation # σ (%) Option Value

1 20 2.94
2 40 3.20
3 60 3.40
4 80 3.70
5 90 3.90

Table 5.2: Varying Expiration Time, ω = 0.75, σ = 60%, K = 40

Simulation # T Option Value

1 1 7.10
2 1.5 7.8
3 2 7.02
4 2.5 8.20
5 3 9.00

32 Chapter 5: Normalized Particle Swarm Optimization (NPSO)

Table 5.3: Varying Strike Price, ω = 0.25, σ = 50%, T = 1.5

Simulation # K Option Value

1 30 10.40
2 20 19.00
3 10 27.00
4 5 31.00

5.2 Comparison of NPSO with Black-Scholes-Merton

model

In this section I compare the results of my normalized PSO algorithm (NPSO)

with the approximate Black-Scholes-Merton model for European call and put op-

tions. I price European call and put option with varying number of particles (N) and

volatilities (σ).

As the volatility increases, the expected change in the underlying asset price in-

creases. This implies that there is a larger solution space to search. Therefore, I

hypothesized that I had to increase the number of particles to accommodate this

search. As can be seen in Table 5.4 and Table 5.5 increasing volatility together with

increase in number of particles, produces option values close to approximate Black-

Scholes-Merton model. That is, I observe that N ∝ σ , or N = C ∗ σ, where C is a

constant of proportionality where 0.7 < c < 2. I get an error of less than two percent

in almost all the cases, a significant improvement over the results obtained by Prasain

et al. Prasain et al. [2010b].

Chapter 5: Normalized Particle Swarm Optimization (NPSO) 33

Table 5.4: Option values for European call

σ N NPSO CBSM Error %

10 20 3.84 3.86 0.51
20 30 4.76 4.61 3.4
30 30 5.586 5.58 0.10
40 40 6.63 6.61 0.43
50 50 7.79 7.66 1.7
60 60 8.58 8.71 1.4
70 60 9.56 9.76 1.9
80 70 10.76 10.79 0.23
90 70 11.69 11.81 0.98

Table 5.5: Option values for European put

σ N NPSO CBSM Error %

10 20 2.35 2.24 4.8
20 30 3.56 3.38 5.3
30 30 4.47 4.56 1.8
40 40 5.58 5.75 2.8
50 50 6.88 6.9 0.6
60 60 8.19 8.1 1.1
70 60 9.10 9.26 1.6
80 70 10.32 10.4 0.75
90 70 11.36 11.52 1.39

5.3 GPU implementation of NPSO for option pric-

ing

In this section, I will explain the GPU implementation of NPSO for American,

European, and Complex chooser options then, I extend this study to optimize a

portfolio.

The initialization phase is done on the CPU. This includes uniformly distributing

the particles in the solution space, calculating the initial positions and velocities

34 Chapter 5: Normalized Particle Swarm Optimization (NPSO)

(Equation 4.1, Equation 4.2) for all the particles and finding the initial local and

global best values. The initial local best values are set as the stock prices (initial

positions). The initial global value is the maximum of the initial local best values.

Using these values, c1 is calculated as lbest
gbest

as explained in the previous chapter. After

the initialization phase, the control is passed to the GPU where the particles process

several iterations until the expiration time (user-defined) is met.

Bastos-Filho et al. Bastos-Filho et al. [2009] indicate that the quality of random

numbers used does not affect the accuracy of the PSO algorithm. We implemented

linear congruential generator Durst [1989], which is used in both the CPU and GPU

for generating random numbers for r1, r2 and ω.

One thread block is used to evaluate one option. For simple options such as

American and European, I use one thread block. I use one thread for each PSO

particle. Therefore, the number of threads created and used in each block is equal

to the number of PSO particles used in a particular simulation. For complex chooser

and portfolio options, multiple thread blocks are used. In the case of complex chooser

option, two thread blocks independently price a call and a put option. The option

yielding a better profit will be selected as the option for the chooser option contract

and further priced. Similarly, for the portfolio, one thread block is used for each

option. A portfolio option may include several options. Therefore, I use several

thread blocks for each option. We select the best option, locking time (chooser date)

and exercise time for the investor.

Each thread is assigned a time stamp representing a physical time between the

start and end of the contract period. The threads update the velocity and position

Chapter 5: Normalized Particle Swarm Optimization (NPSO) 35

using Equation 5.1. Each thread calculates its local best value and compares with

the local best values in the previous iteration and replaces it, if necessary. The global

best value is the local minimum of all the local best values. This is done using a

parallel reduction. If the minimum value obtained is better than the current global

best position, the thread replaces the global best position. Each particles stores the

local best values and global bvalue in the shared memory of the GPU. Constants K,

S, T are stored in registers.

In this chapter I explained the NPSO algorithm and the GPU implementation.

In next chapter I will explain the experimental results.

Chapter 6

Experimental results

In the chapter 5, I validated my model by comparing the results from my nor-

malized PSO algorithm with that from Black-Scholes-Merton model. In this chapter,

I perform several experiments with static volatilty, dynamic volatility for different

options and extend this for portfolio optimization. I discuss the option pricing results

and compare the execution times of the GPU implementation with that of sequential

implementation for different styles of options. As discussed in chapter 5, the number

of particles used in these experiments is proportional to volatility unless otherwise

mentioned.

6.1 Static Volatility

In these experiments, the volatility is a constant set statically at the beginning

of the experiment. Table 6.1 shows the increase in option values as we increase

the volatility, for American Call (AMCall), American Put (AMPut) and Complex

36

Chapter 6: Experimental results 37

Chooser (CC) options. Higher volatility implies the better exercise opportunity and

hence the increase in the option value.

Table 6.1: American Call,Put, Complex Chooser

σ AMCall AMPut CC

10 3.8 3.82 4.34
20 5.3 5.02 5.83
30 6.3 5.7 6.64
40 7.7 6.7 7.7
50 8.7 7.33 9.52
60 9.5 8.91 11.38
70 10.4 9.6 12.08
80 11.13 9.95 12.98
90 11.9 10.89 13.3

Figure 6.1 and Figure 6.2 represent the execution time results of American call and

put options, respectively. As I increase the volatility, I see that the execution time also

increases due to the increase in number of computations. However, I get a speedup of

40. This was because I used the shared memory and the global reduction operations

done in the shared memory are always faster than the reduction operation performed

in the global memory. As each particle is assigned to one thread, all threads can work

in parallel. When the particles need to find the global best, a reduction operation is

performed in the shared memory. In sequential version of the algorithm, calculations

for one particle are done at a time. As a result of this drawback the parallel algorithm

works around 40 times faster when compared the sequential algorithm.

Figure 6.3 shows the execution time of the complex chooser option. As can be seen,

the GPU implementation outperforms the sequential implementation. Compared to

Figure 6.1 and Figure 6.2 there is a slight increase in execution time when I increase

volatility to 90%. This is to be expected since in the complex chooser option, there

38 Chapter 6: Experimental results

Figure 6.1: American Call Option: σ vs. Execution time

Figure 6.2: American Put Option: σ vs. Execution time

are more function to be evaluated as explained below. First, for each option, there is a

separate thread block that computes the normalized particle optimization algorithm,

which is done in parallel. Second, the values of various options are compared among

themselves to select the best results to be provided to the investor. Hence, the speedup

obtained is slightly less at around 36.

Chapter 6: Experimental results 39

Figure 6.3: Complex Chooser Option: σ vs. Execution time

6.2 Dynamic Volatility

To capture the real market scenario to a greater extent, I varied the volatility dy-

namically at runtime. Since the volatility generally lies between 10% to 90%, I set the

number of particles to reflect the average volatility (around 50%). Therefore, I used

45 particles, although changing the number of particles from 35-50 had insignificant

effect on the pricing results. For volatility of 50% I used around 40-50 particles.

I evaluated five different options (European Call (EUCall), European Put (EU-

Put), American Call (AMCall), American Put (AMPut) and Complex Chooser (CC)

options) with four different expiration time (3, 6, 9 and 12 months). As expiration

time (T) increases, option prices should also increase. This is shown in Table 6.2.

Table 6.2: Option prices for European Call/Put, American Call/Put, Complex
Chooser

T EUCall EUPut AMCall AMPut CC

0.25 7.4 7.7 6.9 6.9 8.2
0.5 9.4 8.7 8.7 8.1 9.3
0.75 11.7 10.7 11.4 9.2 11
1.0 12.2 13.1 12.7 9.6 13.8

40 Chapter 6: Experimental results

It can be seen that for all the options, as the T increases the option value in-

creases. With increase in expiration time the solution space expands and there is

more opportunity for the options to yield better value. Figures 6.4 and Figure 6.5

show the execution times of European call and put options under dynamic volatility.

Figure 6.6 and Figure 6.7 show the execution times results of American call and put

options under dynamic volatility. The GPU outperforms the sequential implementa-

tion significantly. The average speedup for exercising the option within one year is 40

for European call and put. For American call and put options the average speedup

is about 45 and 42, respectively.

Figure 6.4: European Call Option: Expiration Time vs. Execution Time

Figure 6.8 shows the results of execution time for complex chooser option with

dynamic volatility. The sequential execution time is approximately 97ms while the

GPU execution time is about 3.4ms. therefore the average speedup attained is 29.

It can be seen from above results that GPUs outperform CPUs in all the cases. One

of the main reason for this is that GPUs work very well on data parallel problems.

To exploit this feature of GPU I designed my algorithm in such a way that GPU

Chapter 6: Experimental results 41

Figure 6.5: European Put Option: Expiration Time vs. Execution Time

Figure 6.6: American Call Option: Expiration Time vs. Execution Time

resources could be utilized as much as possible. Secondly, I used shared memory of

GPUs for reduction operation instead of global memory, which is much faster than

the global memory.

6.3 Portfolio Management

I extend my experiments to optimize a portfolio under dynamic market condi-

tions. The portfolio value is the total estimated cost of the holdings of the investor.

42 Chapter 6: Experimental results

Figure 6.7: American Put Option: Expiration Time vs. Execution Time

Figure 6.8: Complex Chooser Option: Expiration Time vs. Execution Time

Minimizing this cost is a continual optimization problem, which is computationally

intense. I consider European Call and Put, American Call and Put options in my

portfolio. I vary the chooser time (t∗) for various expiration times (T), 3, 6, 9 and

12 months. Among the different option styles (European call and put, American call

and put) the option that optimizes the portfolio is selected. The results of this se-

lection is shown in Table 6.3. The chooser time or locking time is the time when the

investor makes the selection of an option. For example, at chooser or locking time the

investor will select one of European call, European put, American call and American

Chapter 6: Experimental results 43

put. After this time the investor cannot change the type of option. Note that, if the

investor selects European option at locking or chooser time, he can only exercise this

option at the end of the expiration time. For American option, the investor has the

option to exercise anytime before expiration time. This is reflected in the exercise

time (ET) in Table 6.3. As can be seen from this table, selection of American option

gives opportunity to exercise early. The implication of this ability to exercise early

means that the liability of holding a stock is greatly reduced. As a rule of thumb

its beneficial to have some money now than having the same amount of money in

some future date. In other words, with American options in portfolio, the risk of

huge loss is mediated to some extends. That is, the complex chooser option is not

only beneficial in terms of investment decision on options but also could be used to

optimize a portfolio as well.

Table 6.3: Portfolio Optimization

T Option Chooser Exercise Portfolio
Type Time Time Value

3 EUCall 0.55 3 17.1
6 EUPut 1.2 6 23.1
9 AMCall 2.1 7.4 23.64
12 AMCall 1.9 6.8 24.1
15 AMCall 3.5 9.7 23.9
18 EUCall 4.3 18 25
21 EUCall 4.4 21 26.9
24 EUCall 5.1 24 28.5

Figure 6.9 shows the execution timing results of the portfolio option. We get

a speedup of 40 for exercising the option in 2 years (24 months). The sequential

execution time at 24 months is 1.4s and GPU execution time reduces significantly to

35ms.

44 Chapter 6: Experimental results

Figure 6.9: Portfolio Option: Expiration Time vs. Execution Time

6.4 Comparison with Hari’s Parasin [2010] work

I don’t compare my results with Hari’s Parasin [2010] work because of the following

reasons.

I found out that there were some errors in mapping PSO for option pricing. ω in

the PSO model represents the dampening factor, which is used to keep the movement

of particles restricted and prevent them from going out of the solution space. Hari

mapped this to σ which is the market volatility and which represents the rate at

which the stock price might change. So this was a mapping error which could result

in incorrect option values.

Hari did not change the number of PSO particles as the solution space increased.

I have explained earlier that we have to increase the number of particles as the the

solution space increase for an optimal solution.

Due to these limitations Hari got a significant percent error as compared to Black-

Scholes-Merton model, therefore I didn’t compare my results with Hari’s work.

Chapter 6: Experimental results 45

6.5 Comparison of GPU execution time with MPI/OpenMP

execution time

Since around 2008 NVIDIA’s CUDA platform has been used for wide applications

like image processing, statistics and option pricing etc. GPUs are very good for data

parallel problems and they have been proved to be much better than MPI/OpenMP

platforms by a large number of researches from different fields of applications. Due

to this overwhelming growing importance of GPUs, the researches are shifting from

MPI/OpenMP platforms to GPU. Knowing this fact very well through my literature

survey, I did not spend efforts comparing my results with MPI/OpenMP.

6.6 Comparison with other Black-Scholes-Merton

approximations

There are some mathematical models built on the Black-Scholes-Merton model.

Understanding of these approximation models requires a lot of mathematical back-

ground, which I do not have at this time. So I did not use these models to verify my

results.

In this chapter, I explained all the experiments performed. In general it can be seen

that in static volatility, the option price increases with increase in market volatility.

In dynamic volatility it can be seen that as the expiration time increases the option

value increases. These two results support the fundamental principles of the option

pricing. Secondly, we can see that with the use of GPUs significant speedups can

46 Chapter 6: Experimental results

be attained, which is always good for the investors in the highly competitive and

dynamic markets.

Chapter 7

Conclusion

For my research I have designed a new normalized particle swarm optimization

(NPSO) parallel algorithm to price an exotic financial option and accelerated its per-

formance on GPU. As a proof-of-concept, I have done a series of sensitivity analysis

to show that my algorithm generates pricing results that describe the trend of ex-

pected behavior without loss of any generality. I have validated my algorithm by

comparing the results from my experiments to closed-form solutions due to Black-

Scholes-Merton model for simple options. I have then parallelized my algorithm to

implement on a GPU and studied its performance for pricing complex chooser option.

I got a speedup of up to 40 in my experiments. This has been possible since in my

model I have eliminated many parameters that adds to the overhead costs. Also, my

NPSO algorithm allows incorporating volatility of the underlying asset dynamically,

and hence this study captures real time market conditions. Moreover, the particles in

my NPSO algorithm terminate computation after hitting the expiration time in three

or four consecutive iterations. That is, I do not have to specify a boundary condition

47

48 Chapter 7: Conclusion

for particle movement. In addition, I show that my NPSO model for complex chooser

option can be used for optimizing simple financial portfolio as well.

With the experience from the current study, I believe that my NPSO algorithm

can be used to price any exotic financial option. My immediate future work is to ex-

tend this study for some few common exotic options such as swing options, lookback

options etc. A portfolio generally comprises of many financial instruments such as

stocks, bonds and options etc. Continually adjusting the portfolio for risk manage-

ment is a real time task faced by many money managers in practice. My experience

with PSO and accelerating PSO algorithm on GPU for simple portfolio has given me

the impetus to take up risk management problem in the near future.

As an immediate extension of this work, I will use other approximate Black-

Scholes-Merton equations to verify my results. I will also use my NSPO algorithm

for other exotic options. Secondly, for the future work I will compare my results with

the real market data.

Bibliography

S. Barua, R. K.Thulasiram, and P. Thulasiraman. High performance computing for

a financial application using fast Fourier transform. In The 11th International

European Parallel Computing Conference, (EuroPar 2005), volume 3648, pages

1246–1253, Lisbon, Portugal, 2005.

C. J. A. Bastos-Filho, J. D. Andrade, M. R. S. Pita, and A. D. Ramos. Impact of the

quality of random numbers generators on the performance of particle swarm opti-

mization. In Proceedings of the 2009 IEEE International Conference on Systems,

Man, and Cybernetics, San Antonio, Texas, October 2009.

M. A. J. Bharadia, N. Christofides, and G. R. Salkin. Computing the Black Scholes

implied volatility: Generalization of a simple formula. Advances in Futures and

Options Research, 8:15–29, 1995.

M. A. J. Bharadia, N. Christofides, and G. R. Salkin. A quadratic method for the

calculation of implied volatility using the Garman-Kohlhagen model. Financial

Analysts Journal, 52:61–64, 1996.

F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of

Political Economy, 81(3):637–654, January 1973.

49

50 Bibliography

P. Boyle. Options: A Monte Carlo approach. Journal of Financial Economics, 4:

223–238, 1977.

A. Brabazon and M. O’Neil. Biologically Inspired Algorithms for Financial Modelling

(Natural Computing Series). Springer-Verlag, 2006.

P. Carr and D. B. Madan. Option valuation using the fast Fourier transform. The

Journal of Computational Finance, 2(4):61–73, 1999.

D. M. Chance. A generalized simple formula to compute the implied volatility. The

Financial Review, 3:859–867, 1996.

J. Chang, S. Chu, J. Roddick, and J. Pan. A parallel particle swarm optimization

algorithm with communication strategies. Journal of Information Science and En-

gineering, 21:809–818, 2005.

Y. Chen, B. Yang, and J. Dong. Time-series prediction using a local linear wavelet

neural network. Neurocomputing, 69:449–465, 2006.

N. K. Chidambaran, C. W. J. Lee, and J. R. Trigueros. Option pricing via genetic

programming. In The 6th International Conference on Computational Finance,

pages 583–598. Leonard N. Stern School of Business, January 1999.

J. C. Cox, S. A. Ross, and M. Rubinstein. Options pricing: a simplified approach.

Journal of Financial Economics, 7:229–263, 1979.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system–optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, 26:

29–41, February 1996.

Bibliography 51

M. Durst. Using linear congruential generators for parallel random number generation.

In Proceedings of the 21st conference on winter simulation, New York, NY, 1989.

S. Heston and G. Zhou. On the rate of convergence of discrete-time contingent claims.

Mathematical Finance, 10:53–75, 2000.

J. Hull. Options, Futures and Other Derivates. Prentice Hall, 2007.

J. M. Hutchinson, A. W. Lo, and T. Poggio. A nonparametric approach to pricing

and hedging derivative securities via learning networks. Journal of Finance, 49:

851–889, 1994.

G. Jauvion and T. Nguyen. Parallelized trinomial option pricing model on GPU

with CUDA. http://www.arbitragis-research.com/cuda-in-computational-finance/

coxross-gpu.pdf /at download/file, August 2008.

G. K. Jha, H. Prasain, S. Kumar, R. K. Thulasiram, and P. Thulasiraman. Option

pricing using particle swarm intelligence. In The ACM Canadian Computer Science

and Software Engineering Conference, pages 267–272, May 2009.

N. Jin and Y. Samii. Parallel particle swarm optimization and finite-difference time-

domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna de-

signs. IEEE Transactions on Antenna and Propagation, 53(11):3459–3468, 2005.

C. Keber. Genetically derived approximations for determining the implied volatility.

OR Specktrum, 21:205–238, 1999.

C. Keber and M. G. Schuster. Option valuation with generalized ant programming.

The ACM Genetic and Evolutionary Computation Conference, pages 74–81, 2002.

52 Bibliography

C. Keber and M. G. Schuster. Generalized ant programming in option pricing: de-

termining implied volatilities based on american put options. In IEEE Proceedings

of Computational Intelligence in Financial Engineering, pages 123–130, December

2003.

J. Kennedy and R. C. Eberhart. Particle swarm optimization. In IEEE Interna-

tional Conference on Neural Networks, volume 4, pages 1942–1948, Perth, Aus-

tralia, November 1995.

S. Kumar, R. K. Thulasiram, and P. Thulasiraman. A bioinspired algorithm to

price options. In The ACM C* Conference on Computer Science and Software

Engienering, pages 11–22, Montreal, May 2008a.

S. Kumar, R. K. Thulasiram, and P. Thulasiraman. Ant Colony Optimization for Op-

tion Pricing, volume 2 of Natural Computing in Computational Finance, chapter 4.

Springer-Verlag, 2008b.

J. Li, D. Wang, S. Chi, and X. Hu. An efficient fine-grained parallel particle swarm

optimization method based on GPU-acceleration. International Journal of Inno-

vation Comupting, Information and Control, 3(B(6)):1707–1714, December 2007.

A. Meneses, M. Machado, and R. Schirru. Particle swarm optimization applied to the

nuclear reload problem of a pressurized water reactor. Progress in Nuclear Energy,

51(2):319–326, 2009.

R. Merton. Theory of rational option pricing. Bell Journal of Economics and Man-

agement Science, 4(1):141–183, 1973.

Bibliography 53

L. Mussi, F. Daolio, and S. Cagnoni. Evaluation of parallel particle swarm optimiza-

tion algorithms within the CUDA architecture. Information Sciences, September

2010.

NVIDIA. Cuda 2.0 Programming Guide. NVIDIA, June 2008.

H. Parasin. A parallel particle swarm optimization algorithm for option pricing.

Master’s thesis, University of Manitoba, Winnipeg, MB, June 2010.

V. Podlozhnyuk. Binomial option pricing model, April 2008. URL

http://developer.download.nvidia.com/compute/cuda/sdk/website/

projects/binomialOptions/doc/binomialOptions.pdf.

H. Prasain, R. . K. Thulasiram, and P. Thulasiraman. Mapping PSO and exploita-

tion concurrency for option pricing on a homogeneous multi-core architecture. In

The ACM Genetic and Evolutionary Computation Conference, Portland, OR, July

2010a.

H. Prasain, P. Thulasiraman, R. K. Thulasiram, and G. K. Jha. Performance evalua-

tion of PSO-based algorithm for option pricing on homogeneous multi- core archi-

tecture. In International Association of Science and Technology for Development,

Maui, HI, August 2010b.

S. Rahmayil, I. Shiller, and R. K. Thulasiram. Different estimators of the under-

lying asset’s volatility and option pricing errors: parallel Monte-Carlo simulation.

In Proceedings of the International Conference on Computational Finance and its

Applications, pages 121–131, Bologna, Italy, 2004.

http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/binomialOptions/doc/binomialOptions.pdf
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/binomialOptions/doc/binomialOptions.pdf

54 Bibliography

M. Rubinstein. Option for the undecided. Risk Magazine, 4(43), April 1991.

A. Saltelli, M. Ratto, T.Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,

and S. Tarantola. Global Sensitivity Analysis. John Wiley Sons, 2008.

J. Schutte, J. Reinbolt, B. Fregly, R. Hafka, and A. George. Parallel global optimiza-

tion with particle swarm algorithm. International Journal of Numerical Methods

in Engineering, 61:2296–2315, 2004.

Y. Shi and R. Eberhart. A modified particle swarm optimizer. In Proceedings IEEE

World Congresss on Evolutionary Computation, pages 69–73, Archorage, AK, USA,

May 1998.

S. Solomon, R. K. Thulasiram, and P. Thulasiraman. Option pricing on the GPU. In

The 12th International Conference on High Performance Computing and Commu-

nications, Melbourne, Australia, September 2010.

S. Solomon, P. Thulasiraman, and R. K. Thulasiram. Collaborative multi-swarm

PSO for task matching using graphics processing units. In The ACM Genetic and

Evolutionary Computation Conference, Dublin, Ireland, July 2011.

D. Tavella and C. Randall. Pricing Financial Instruments: The Finite Differencing

Method. Wiley, April 2000.

R. K. Thulasiram and P. Thulasiraman. Performance evaluation of a multithreaded

fast Fourier transform algorithm for derivative pricing. The Journal of Supercom-

puting, 26(1):43–58, August 2003.

Bibliography 55

R. K. Thulasiram, L. Litov, H. Nojumi, C. Downing, and G. Gao. Multithreaded

algorithms for pricing a class of complex options. In IEEE/ACM International

Parallel and Distribued Processing Symposium (IPDPS), San Francisco, CA, 2001.

G. Venter and J. Sobieszczanski-Sobieski. A parallel particle swarm optimization al-

gorithm accelerated by asynchronous evaluations. Journal of Aerospace Computing,

Information, and Communication, 3(3):123–137, March 2006.

Z. Yin, A. Brabazon, and C. O. Sullivan. Adaptive genetic programming for option

pricing. The ACM Genetic and Evolutionary Computation Conference, pages 2588–

2594, 2007.

	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Financial Option
	Background Literature
	GPU and CUDA Programming Model

	Conventional option pricing techniques (Related Work)
	Black-Scholes-Merton model
	Binomial and trinomial lattice
	Heuristic techniques for option pricing

	Complex Chooser Option
	Options for the undecided
	Evaluation using Black-Scholes-Merton formula

	Particle Swarm Optimization
	Initialization
	Position Update
	Evaluation
	Limitations of PSO

	Normalized Particle Swarm Optimization (NPSO)
	Sensitivity analysis of the normalized PSO algorithm
	Comparison of NPSO with Black-Scholes-Merton model
	GPU implementation of NPSO for option pricing

	Experimental results
	Static Volatility
	Dynamic Volatility
	Portfolio Management
	Comparison with Hari's MSC work
	Comparison of GPU execution time with MPI/OpenMP execution time
	Comparison with other Black-Scholes-Merton approximations

	Conclusion
	Bibliography

