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ABSTRACT

This research is concerned with the cost model of the deferred state life test plan,
which is one of the lot-by-lot acceptance sampling plans by attributes. In most of the
sampling plans, the decision to accept or reject a submitted lot depends only on the
sampling test results of the lot concerned. Other information will not be considered.
Deferred state life test plan is a sampling plan which uses subsequent lots information for
making decisions to accept or reject the current lot. The advantages of the deferred state life
test plan are in reducing both the sampling test time and the resulting sampling cost. Also,
it provides an indicator of quality degradation.

The objective of this research is to evaluate the total test cost of using the deferred
state life test plan to see whether the use of this life test plan can reduce the total test cost of
the sampling test. In order to calculate the expected total test cost of the deferred state life
test plan, a cost model is developed for the deferred state life plan with replacement, i.e. the
failed items during the life test will be replaced by new ones drawn from the remainder of
the same lot.

A cost comparison is made between a deferred state life test plan and a military
standard sampling plan such that both plans can provide the same producer's and
consumer's protection. Based on some assumed input values, such as the cost of testing
an item, the cost of conducting the life test per unit time, etc., the expected total test cost of
conducting the deferred state life test plan appears to be less than the expected test cost of
conducting the military standard sampling plan. As aresult, it is believed that the use of the
deferred state life test plan can reduce the total test cost under some situations, such as the

example discussed in this dissertation.
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CHAPTER I
INTRODUCTION

Generally, inspection plays an important role in appraising the quality of incoming
and outgoing items of a company. The results of the inspection may be reported to the
related departments so that corrective actions may be taken whenever it is necessary. A
company may form an independent inspection department or the inspection can be done by
one or more existing departments inside the company. In general, there are three
alternatives to sentence a submitted lot:

(1) inspect all items in the lot and return the defective items to the producer;

(2) use acceptance sampling to make the decision of acceptance or rejection of the entire lot;
and

(3) accept the lot without inspection.

Inspecting all items is usually not economical since it is likely to be expensive and
time consuming. Also, the inspection costs may be higher than the cost of accepting
defective items. Unless the cost of passing defective items is very high, 100% inspection
is not desirable. On the other hand, accepting the lot without inspection is risky because a
large amount of defective items may be accepted. Unless it is certain that the submitted lots
have high quality or that the cost of accepting defective items is very low, inspection is
recommended. So acceptance sampling is the most common alternative to sentence lots and
the most economical way to obtain the information about the quality of a productin a

reasonable time.

Acceptance Sampling

In some situations inspection is possible only after a process has been completed.
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For example, a company receives a shipment of raw materials which will be converted into
finished products. In this situation acceptance sampling is often used under one of the
following conditions:

(1) When it is very expensive to inspect all items, a sampling test may reduce the inspection
COst.

(2) When the items will be destroyed after inspection such as the life testing of light bulbs,
sampling tests are needed. If all the items are inspected, they will all be destroyed and
no items can be used.

(3) When inspections are done manually, a high percentage of defective items may be
passed by 100% inspection due to fatigue or boredom.

(4) When it is impossible to inspect all items due to limited time and inspection resources,
sampling tests should be used.

Lot-by-lot acceptance sampling by attributes is one of the common types of
acceptance sampling. In this dissertation, all sampling plans discussed will be lot-by-lot
acceptance sampling by attributes. When using this type of sampling, a predetermined
number of items is taken from each lot and inspected by attributes. Attributes are quality
characteristic which are shown on a " go-not-go " basis and each item in the lot can be
classified by attributes such as conforming or nonconforming, good or defective, pass or
fail, etc. Based on the information on the inspected sample, a decision of acceptance or
rejection of the entire lot would be made. This decision is referred to as lot sentencing.
For example, if the number of defective items dose not exceed a predetermined number, the
lot is accepted; otherwise, it is rejected. Each lot is sampled and either accepted or rejected.
Accepted lots are placed into the production system of the company and rejected lots are
returned to the supplier or subjected to some other remedial action.

Acceptance sampling is one of the major areas of statistical quality control. With an
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acceptance sampling plan, a random sample is taken from the submitted lot. Quality
evaluation of such a sampling plan requires the use of probability theory and statistical
methods. Several types of probability distributions used in this dissertation are presented

in Appendix A.

Some Properties of Acceptance Sampling

(1) All items in a lot should come from the same source; otherwise, the effectiveness of the
sampling plan will be affected (Besterfield, 1986).

(2) Large lot size is preferable. When the lot size increases, the sample size does not
increase as rapidly as the lot size in most sampling plans. As a result, inspection cost is
reduced (Besterfield, 1986).

(3) Random sampling must be used to avoid biases when selecting items from the entire
lot. Under random sampling, all items in the lot should have the same chance to be
chosen in the sample (Montogomery, 1985).

(4) The purpose of acceptance sampling is lot sentencing, not quality estimation, i.e. it is

not used to control or improve the quality of products (Montogomery, 1985).

Advantages and Disadvantages of Sampling
The advantages of sampling tests when compared with 100% inspection are the
following:
(1) The inspection cost is lower in sampling since fewer items are inspected.
(2) The costs of training inspectors and keeping records are lower in sampling since fewer
inspectors and fewer records are needed.
(3) When the items are destroyed after inspection, cost will be reduced by using sampling.

(4) Since fewer items are handled by using sampling, the damage cost of handling will
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decrease.
(5) The aggregate inspection error may be reduced by using sampling since fewer items are

inspected.

The disadvantages of sampling tests when compared with 100% inspection are the
following:
(1) Since not all the items are inspected, there are risks of rejecting good lots and of
accepting defective lots.
(2) The cost of planning is higher in sampling testing than 100% inspection.
(3) Not all information about the lot for quality evaluation can be obtained by using

sampling.

General Assumptions

Lot-by-lot acceptance sampling by attributes is one of the common types of
acceptance sampling. In this dissertation, all sampling plans discussed will be lot-by-lot
acceptance sampling by attributes. When a company receives a shipment of goods, each
item is packed inside a lot. With lot-by-lot acceptance sampling by attributes, a sample of a
predetermined number of items is taken from each lot. Each item in the sample is inspected
by attributes. That is, a quality characteristic of the items in the sample is inspected. After
inspection, each item can be classified either as a good item when it conforms to the
required standard or as a defective item when it does not. Based on the information of this
inspected sample, a decision of acceptance or rejection of the entire lot will be made.

The operating characteristic (OC) curve is a means to evaluate a sampling plan. The
OC curves are discussed in Appendix B. There are two types of OC curve: type A OC

curve and type B OC curve. If the lot is an isolated lot with finite size, a type A OC curve
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is used. Butif the lots are taken from a steady flow of items which are produced bya
single source, a type B OC curve should be used. With lot-by-lot acceptance sampling by
attributes, a type B OC curve may also be used.

A sampled item may also be tested using a life test plan. For example, a sample of
a predetermined number of items is taken from a submitted lot. Each item, for example a
light bulb, is allowed to operate until it fails or a predetermined total test time is reached.
Then the number of failed items is counted. Based on this information, a decision
regarding disposition of the submitted lot could be made. The failure distribution for each
item is assumed to be an exponential distribution and each failing item fails during its useful
life period, i.e. it dose not fail due to wearout effects. The probability that an item will fail
within the total test time can be evaluated. Then the probability of acceptance of a

submitted lot can also be evaluated.

Producer's and Consumer's Risk

Since not all items in a submitted lot are inspected when using acceptance sampling,
there exists the risk of rejecting good lots and of accepting defective lots. That is, a lot may
be classified as non-acceptable when, in fact, it meets the quality criterion and a lot may be
accepted when, in fact, it does not meet the quality criterion. If all items are inspected and
there is no error in the inspection, the ideal OC curve looks like the curve shown in Figure
1.1. The OC curve is an evaluation technique to show the discriminatory power of a
sample plan and is discussed in Appendix B. For example, in the situation of Figure 1.1,
the submitted lot will be accepted if there are 2% or less defective items in the lot and the lot
will be rejected if there are more than 2% defective items in the lot. Therefore, there is no
risk of accepting defective lots and rejecting good lots.

When sampling is used, two types of risks are encountered. The first is the

producer's risk (o), which is the probability of rejecting a good lot. The second is the
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consumer's risk (B), which is the probability of accepting a defective lot. There are two
fraction defective values related to these two risks. Denote the probability of accepting a lot
as P,. The first fraction defective value is denoted by p gy - if the fraction defective of a
submitted lot is psqy, the probability of acceptance of the lot will be P, =1 - o. When we
set the producer's risk to be o, the corresponding fraction defective is poqy, and is called
the acceptable quality level (AQL). The AQL shows the poorest level or highest fraction
defective that is acceptable as a process average. The second value is denoted by PLQL- if
the fraction defective of a submitted lot is py g, the probability of acceptance of the lot will
be P, = 3. When we set the consumer's risk to be B, the corresponding fraction defective
is prqr and is called the limiting quality level (LQL). The LQL shows the poorest level or
highest fraction defective that is acceptable as a lot average.

An example is given in Figure 1.2, the probability of acceptance of a lot with x
fraction defective is 0.95. Although the lot is good, it may be rejected with a probability of
0.05. If we set the producer's risk to be 0.05, the fraction defective at x is the AQL. On
the other hand, if the fraction defective of a submitted lot is y, the lot will be classified as a
defective lot. Although the lot is defective, it may be accepted with a probability of 0.1. If

we set the consumer's risk to be 0.1, the fraction defective at y is the LQL.

Objectives

In most of the sampling plans, the decision to accept or reject a submitted lot
depends only on the sampling test results of the lot concerned. Other information will not
be considered. For example, a sample of n items is taken from a submitted lot of size N
and placed on test. If the number of defective items in the sample is less than the
predetermined maximum allowable number of defective items, the entire lot is accepted;

otherwise, it is rejected. Using this procedure, it is possible that a lot will be rejected
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when, for example, the last ten lots all have been accepted. For this observation, there are
two possibilities. The first is that the results of the sampling test indicate the degradation of
quality in the manufacturing process. The second is that the results of the sampling test are
not representative of the entire lot since the sample items are taken randomly and an
inordinate number of defective items has been selected. Similarly, a submitted lot may be
accepted when, for example, the last ten lots have been rejected. The results of the
sampling test may indicate an upgrading of quality in the manufacturing process or that the
sample does not represent the entire lot.

On the other hand, some acceptance sampling plans will consider not only the
sampling results of the current lot but also information about other lots for making decision
to accept or reject the current lot. They may use the information on the past lots, future
lots, or both past and future lots. A deferred state attribute acceptance plan is a sampling
plan which uses information about subsequent lots for making the decision to accept or
reject the current lot. The advantages of this sampling plan are in reduction of the total
sampling test time and of the resulting sampling cost. In this dissertation, cost evaluation
of the deferred state sampling plan will be discussed. The results can be used to select a
lot-by-lot attribute acceptance sampling plan which will reduce the overall cost of sampling

tests.



Probability of acceptance, Pa

1.0

0.8

0.6

04

0.2

Figure 1.1. Anideal OC curve.

0.02

Fraction defective, p
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CHAPTER I
LITERATURE REVIEW

Lot-by-lot acceptance sampling by attributes is one of the common types of
acceptance sampling. With such a sampling plan, a sample of a predetermined number of
items is taken from each lot and a quality characteristic of the items in the sample is
inspected. Based on the information from this sample, the lot may be accepted if it
conforms to the required standard or rejected if it does not do so. There are three basic
types of sampling plans: single sampling, double sampling, and multiple sampling. We
will first discuss these sampling plans in detail and then other common types of acceptance
sampling by attributes. In order to understand the characteristics of each plan, some

evaluation techniques for acceptance sampling are presented in Appendix B.

Single Sampling Plan
In the single sampling plan, the predetermined numbers are
N = the lot size,
n = the sample size, and
¢ = the acceptance number.
When using the single sampling plan by attributes, one sample of size n is taken from the
lot of size N and inspected. If there are ¢ or less defective items in the sample, the lot is
accepted. If there are more than c defective items in the sample, the lot is rejected. In other
words, the acceptance or rejection of the lot depends on the inspection results of a single
sample.
For example, consider a steady flow of items which are produced by a single

source. Lots of size N = 5000 are taken from the flow and samples of size n are inspected.
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Since the lots are selected from a steady flow, an infinite population is assumed. For this
situation, the probability of accepting the lot should be calculated from the binomial
probability distribution. However, it is much simpler to use the Poisson probability
distribution, which is a good approximation to the binomial probability distribution (for
n 2 20, p <0.1 and np < 5). Therefore the Poisson probability distribution is used to
calculate the probability of acceptance of a lot for this sampling plan.

In our example, a sample of size n = 100 is selected from each lot of size N = 5000
and the acceptance number, ¢, is equal to two; that is, the lot will be accepted if there are at
most two defective items in the sample. So the probability of acceptance of the lot is equal
to the probability of at most two defective items in the sample, denoted Pa=P3 or less-
When plotting the OC curve, different fraction defective p values are assumed and then the
np values are calculated. Finally, the P, values can be found from the Poisson table by

using the appropriate np and ¢ values. In our example, we assume p is equal to 0.03, then

np = 100x0.05 = 5.0
and

Py =Py or less = 0-125.

Some P, values are calculated in Table 2.1. The OC curve for this single sampling
plan is plotted in Figure 2.1. When the OC curve is obtained, we can use the curve to find
the probability of acceptance of a lot in which the fraction defective, p, is known. For
example, if the fraction defective of a submitted lot is 0.035, the probability of acceptance
will be approximately 0.32 from reading Figure 2.1. Some publications which discuss

various versions of the single sampling plan are listed in Table 2.5.
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Double Sampling Plan

The double sampling plan is more complicated than the single sampling plan
because a second sample may be required. Generally, the sample sizes of double sampling
plan are smaller and the total number of inspections may be reduced. As a result, the total
inspection cost is reduced. The predetermined numbers are

N =lotsize,

n1 = sample size for the first sample,

€1 = acceptance number for the first sample,
r{ =rejection number for the first sample,

ny = sample size for the second sample,

¢y = acceptance number for both samples, and
ry =rejection number for both samples.

When using a double sampling plan by attributes, a first sample of size ny is taken
from the lot of size N and inspected. One of the following three decisions is made after
inspection:

(O If cq or fewer defective items are found in the first sample, accept the lot;

(2) If ry or more defective items are found in the first sample, reject the lot; and

(3) If more than ¢1 and fewer than ry defective items are found in the first sample, a

second sample of size ny is required.
If a second sample is required, ny items are taken from the same lot which has N - np items
remaining. One of the following two decisions is made after inspection:

(1) If ¢y or fewer defective items are found in both samples, accept the lot; and

(2) If rp or more defective items are found in both samples, reject the lot.

In other words, the decision of acceptance or rejection of the lot is based on the inspection

results from both samples when a second sample is required.
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In the double sampling plan, two curves are required for the OC curves. The first
one is for the probability of acceptance of a lot after inspecting the first sample if the second
sample is not required. If a second sample is needed, the second curve is for the
probability of acceptance of that lot after inspecting the second sample. The formation of
the OC curves may be illustrated by the following example. In a lot of size N = 5000, the
first sample of size ny = 80 is taken and inspected. If there is 1 defective or none in the
sample, the lot is accepted, i.e. ¢q = 1. If there are 3 or more defective items in the sample,
the lot is rejected, i.e. r{ = 3. When there are 2 defective items in the sample, a second
sample of size ny = 100 is required and taken from the same lot which has N - np items
remaining. If there are 3 or fewer defective items in both samples, the lot is accepted;
otherwise, it is rejected, i.e. ¢y =3 andry =4. In determining the first curve, the
probability of acceptance of the lot after inspecting the first sample, (Pa)nl, is equal to the

probability of having 1 or less defective in the first sample, (P o less)nl’ ie.

(Pa)n;= (P1 or less)ny- 2.1)

Some (Pa)nlvalues are calculated in Table 2.2. When determining the second
curve, the probability of acceptance of the lot after inspecting the second sample,

(Pa)n1 +ny’ is equal to the sum of the probability of acceptance of the lot on the first

sample, (Pa)nl, and the probability of acceptance of the lot on the second sample, (Pa)nz’

ie. (Pa)n1+n2 = (Pa)n1+ (Pa)nz' By using formula (2.1), we get

Pani+ny = P1 or less)ny + (P alny: (2.2)

But it is obvious that the lot is accepted in the second sample if there are 2 defective items in
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the first sample and 1 defective or none in the second sample, therefore
(Palny = Pn (Pt or less)ny: (2.3)

Substituting formula (2.3) into formula (2.2), we have

Pan;+ny = ®1 or lesg)ny + P 2n;P1 or less)ny: (2.4)

Some values of (Pa)nl +19 are calculated in Table 2.2. The OC curves for this

double sampling plan are plotted in Figure 2.2. When the OC curves are obtained, we can
use the curves to find the probability of acceptance of a submitted lot in which the fraction
defective is known. For example, if the fraction defective of a submitted lot is 0.035, we
read from Figure 2.2 that the probability of acceptance of the lot after inspecting the first
sample is 0.23, and the probability of acceptance of the lot after inspecting the second
sample is 0.26. Some publications which discuss various versions of the double sampling

plan are listed in Table 2.5.

Multiple Sampling Plan
Multiple sampling plans are extensions of the double sampling plan. Instead of
requiring two samples in a double sampling plan, a multiple sampling plan may require
three or more samples with smaller sample sizes. The technique is similar to that used in
the double sampling plan. The following illustration is a multiple sampling plan which
requires at most three samples. The predetermined numbers for this plan are
N =lotsize,

nj = sample size for the first sample,
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¢1 = acceptance number for the first sample,

rq =rejection number for the first sample,

ny = sample size for the second sample,

¢ = acceptance number for both first and second samples,
ry =rejection number for both first and second samples,
n3 = sample size for the third sample,

c3 = acceptance number for all three samples, and

r3 =rejection number for all three samples.

When using multiple sampling plan by attributes, a first sample of size ny is taken
from the lot of size N and inspected. One of the following three decisions is made after
inspection:

(O If ¢q or fewer defective items are found in the first sample, accept the lot;

(2) If r{ or more defective items are found in the first sample, reject the lot; and

(3) If more than ¢1 and fewer than ry defective items are found in the first sample, a

second sample of size ny is required.
If a second sample is required, n items are taken from the same lot which has N - ny items
remaining. One of the following three decisions is made after inspection:

(1) If ¢ or fewer defective items are found in both first and second samples, accept

the lot;

(2) If rp or more defective items are found in both first and second samples, reject

the lot; and

(3) If more than ¢y and fewer than 1y defective items are found in both first and

second samples, a third sample of size n3 is required.
If a third sample is required, ny items are taken from the same lot which has N - ny-ny

items remaining. One of the following two decisions is made after inspection:
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(1) If c3 or fewer defective items are found in all three samples, accept the lot; and

(2) If r3 or more defective items are found in all three samples, reject the lot.

In other words, the decision of acceptance or rejection of the lot is based on the inspection
results from all three samples when three samples are required.

As a matter of fact, it is possible to make the probability of acceptance of a specific
lot under a single sampling plan equal to the probability of acceptance of that lot under an
appropriate double or multiple sampling plan. In other words, the selection of a sampling
plan does not depend on it effectiveness since all three types of sampling plans can result in
the same effectiveness when appropriate predetermined numbers are selected. The
effectiveness is the ability to reduce both the producer's and consumer's risk. So, when
selecting the type of a sampling plan, one should consider other factors such as cost of
sampling, psychological effect and so on.

Generally, for the same degree of effectiveness, the total number of inspections in a
single sampling plan is more than that in a double sampling plan since the decision can
sometimes be made in the first sample when using a double sampling plan; therefore, no
second sample is needed and the total number of inspections is reduced. Similarly, in a
multiple sampling plan, the total number of inspections is usually less than that in a double
sampling plan since the decision can be made in the first few samples. As the total number
of inspections decreases, the inspection cost decreases. So, on the average, a multiple
sampling plan has a lower inspection cost than the double or single sampling plans. On the
other hand, a multiple sampling plan is more complicated than the others so that other costs
such as training people and recording results are higher. Since the sampling cost is the sum
of all these costs, we should consider the overall sampling cost when selecting the type of a
sampling plan.

The other factor is the psychological effect, a feeling of having a second chance in
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the double sampling plan instead of having only one chance in single sampling plan, which
we should also consider when selecting the type of a sampling plan. In a single sampling
plan, only one sample is taken from a lot and the decision to accept or reject the lot is based
on only one sample inspection result. But in a double sampling plan, if the results of the
first sample are marginal between the acceptance and rejection decisions, a second chance is
given by allowing a second sample. In a multiple sampling plan, multiple chances are
given thus improving the psychological effect over that of a double sampling plan.

The formation of OC curves for a multiple sampling plan is an extension of the
formation of OC curves for a double sampling plan. Instead of requiring two curves in a
double sampling plan, multiple sampling plans require three or more curves to construct
OC curves. For example, if there is a multiple sampling plan which involves m samples,

m 2 3, the probability of acceptance of the lot after the kth sample has been inspected is
(Py)n {+00+ ... +ny = (Pa)n1 +(Pyp 5 + ..+ (Pa)nk; (2.5)

here (Pa)r11 gt .y = probability of acceptance of a lot after the kth sample is
inspected, i.e. after ny +ngp+.. 40y items have been
inspected,
(Pa)nj = probability of acceptance of a lot on the jth sample of

size 1y
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i=1
and d; (i < j) is the number of defective items found in ith sample. By substituting all
values of k in formula (2.5), m curves are obtained. We can use these curves to find the
probability of acceptance of a specific lot by using a technique similar to the one we use in a

double sampling plan. Some publications which discuss various versions of the multiple

sampling plan are listed in Table 2.5.

Sequential Sampling Plan

Sequential sampling plan are acceptance sampling plans by attributes for destructive
or costly inspection. They were developed by Wald (1947). In this sampling plan, only
one item at a time is taken from the lot and inspected. After inspection, we compare the
cumulative number of defective items to the acceptance number and rejection number. For
this sampling plan, the acceptance number and rejection number are not constant. They are

given by the following formulas (Wald, 1973):
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here m = number of items inspected,

1

a;, = acceptance number when m items are inspected,

Iy = rejection number when m items are inspected,

o = producer's risk,
= consumer's risk,
pog = fraction defective at the acceptable quality level, AQL, and

p; = fraction defective at the limiting quality level, LQL.

If the cumulative number of defective items is less than the acceptance number,
accept the lot. If the number of cumulative defective items is greater than the rejection
number, reject the lot. Otherwise, continue the inspection until a decision of accepting or
rejecting the lot is made. Figure 2.3 illustrates this sampling plan. When using a graphical
method, we plot the cumulated defective items curve after each inspection. If the cumulated
defective items curve is within the "continue sampling" region, one continues the inspection
by taking another item until the curve goes outside this region. The lot is accepted if the
cumulated defective items curve intersects with the acceptance number line; and the lot is
rejected if the cumulated defective items curve intersects the rejection number line.

Theoretically, the sequential sampling plan can continue until all the items in the lot are

-19-



inspected but, in practice, this sampling plan is truncated when the number of inspected
items is equal to three times the sample size of the corresponding single sampling plan.
Generally, this sampling plan reduces the number of items inspected, so the inspection cost
will decrease for destructive or costly inspection. Detailed information can be found in
Wald (1973); some other publications which discuss various versions of the sequential

sampling plan are listed in Table 2.5.

Military Standard 105 (MIL-STD-105)

In 1949, the Statistical Research Group of Columbia University proposed an
acceptance sampling plan for lot-by-lot inspection by attributes called JAN-STD-105
(1949). After revisions, MIL-STD-105A (1950), MIL-STD-105B (1958), MIL-STD-
105C (1961), and MIL-STD-105D (1963) were published. In 1989, the latest version was
published and called MIL-STD-105E (1989). Some publications discussing various
versions of the military standard are listed in Table 2.5. Generally, this standard is used
when the lots are taken from a steady flow of items which are produced by a source, but,
after some adjustments it can also be used for isolated lots. It is the most common type of
lot-by-lot acceptance sampling plan for attribute inspection and it is extensively used in
industry for acceptance sampling. This standard is applicable to inspection of incoming
materials, products in process, end products, and so on. The aim of this standard is to
maintain a satisfactory level of average outgoing quality.

Three types of sampling plans are included in this standard. They are the single,
double, and multiple sampling plans. For each type of sampling plan, it provides three
types of inspection: normal, tightened, and reduced. Normal inspection is used to inspect
the lots in the beginning of inspection. After a certain number of inspections, if the quality

is not satisfactory, the tightened inspection is used. On the other hand, if the quality is
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good, the reduced inspection is used. The use of the different types of inspection may be
switched from one to another following the criteria stated in the standard. Also, the
procedures for using this sampling plan are given in the standard.

An example of OC curves for normal, tightened and reduced inspection is given in
Figure 2.4. If a lot is submitted for inspection, the probability of acceptance of the lot
under reduced inspection is the highest; and the probability of acceptance of the lot under
tightened inspection is the lowest among the three types of inspection. In other words, the
risk of accepting a defective lot will be the highest when using reduced inspection.
Besides, reduced inspection has the smallest sample size and the tightened inspection has
the largest sample size so that the inspection cost will be reduced when using reduced

inspection.

Truncated Life Test Plan

Epstein (1954) discussed some life test plans which he called truncated life tests.
Before these sampling plans start, the sample size, n, the rejection number, r, and the
truncated test time, T, beyond which the test will not be run, are determined. Then n items
are selected from a submitted lot and simultaneously subjected to life test. If we let Xp
denoted a random variable of the time at which the rth failure occurs and T the
predetermined truncated test time, the sampling test will be terminated at min(x, T). If the
test is terminated at time T, i.e. T less than X , the submitted lot is accepted; otherwise, it is
rejected. Although truncated life test plans can be used for any life distribution, Epstein
considered the case that the life distribution of the tested items has the exponential form.
Furthermore, the failed items during the test may or may not be replaced. In the
replacement case, less time is required to obtain a given number of failures but more items

are needed in the test. In the non-replacement case, more time is required to obtain a given
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number of failure but less items are needed. First, consider the non-replacement case. The
probability distribution of exactly d failures for truncated time T is given by the binomial

distribution:

n! d n—d
pi=— % , d=0,1,2,...1-1; 2.8
A= Gy’ 1 (2.8)

here  n = sample size,
d = number of failures,
p = probability of an item fails during the interval (0, T) and it is equal to 1 - e'KT,
g=1-p,and
A = failure rate.

The probability of acceptance of the submitted lot is

-1
n! d n-d
Pp= ¥ — _pdgn—d. 2.9)
a
i—od! m—a)!
Epstein showed that the expected waiting time to obtain the rth failure for the non-

replacement life test plan is

1 < 1
E() =— i 2.10
® kcg‘ln—d+1 ( )

Now consider the replacement case. The probability distribution of exactly d

failures for truncated time T is
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(nAT)d AT

, d=0,1,2,...,r- 1. (2.11)
d!

Py=

The probability of acceptance of the submitted lot is

-1 (n?\,T)d o DAT
P,=> —a (2.12)
d=0 -

Epstein also showed that the expected waiting time to obtain the rth failure for the

replacement life test plan is
E(t) = —. (2.13)
An

Some publications which discuss various versions of the truncated life test plan are listed in

Table 2.5.

Chain Sampling Inspection

Dodge (1955a) developed the Chain Sampling Inspection Plan to reduce inspection
costs for destructive or costly inspection. When a destructive or costly inspection is
encountered, the sample size should be small in order to reduce the inspection cost. If the
sample size is small, the acceptance number is usually small and sometimes it is zero. As a
matter of fact, the sampling plans have the poor shape of the OC curves when acceptance
number is zero because the OC curves will be convex throughout (Montogomery, 1985).
Also, the probability of acceptance will decrease rapidly as the fraction defective increases.

A better shape for these OC curves can be obtained by using the chain inspection plan.
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This plan uses the results of several previous inspections, so it is assumed that the lots
should have the same quality and that they come from a steady flow of items which are
produced by a single source. Now consider an example in which a sample of size n is
taken from a submitted lot of size N. The lot is accepted if there is no defective item in the
sample; and the lot is rejected if there are two or more defective items in the sample. When
there is only one defective item in the sample, the lot is accepted only if all i preceding lots
of same size were accepted; otherwise, reject the lot. The values of i and n depend on how

effective an OC curve is required. The formula for OC curves for this plan is
P, =P( + P{(Pp)! (2.14)

with P, = probability of acceptance of the lot, and
P4 = probability of having d defective items in the sample.
Some publications discussing various versions of the chain sampling inspection are listed

in Table 2.5.

Skip-Lot-Sampling Plan
Dodge (1955b) also developed the Skip-Lot-Sampling Plan to minimize inspection
costs by reducing inspection after the submitted lots have good quality history. When lots
are taken from a steady flow of items of the same quality, this plan may be used. The
procedure is as follows:
(1) Each lot is inspected by a specific sampling plan.
(2) When i consecutive lots are accepted, stop inspecting every lot. Then only a sample of
a fixed number, f, of subsequent lots are selected randomly and inspected using the
same sampling plan.

(3) Whenever a lot is rejected, go to procedure (1).

-4 -



The values of i and f are related to what AOQL value is required and a table for this
sampling plan can be found in Dodge (1955b). Some publications which discuss various

versions of the skip-lot-sampling plan are listed in Table 2.5.

Dodge-Romig Tables

Dodge and Romig (1959) developed a set of sampling inspection tables in order to
minimise the average total number of inspections. There are two types of sampling
inspection tables. The first type is based on Lot Tolerance Percent Defective (LTPD), i.e.
limiting quality level (LQL), and the second type is based on average outgoing quality limit
(AOQL). For each type of the tables, single and double sampling plans are available. The
tables based on LTPD are used when the submitted lots are homogeneous or when the
objective of sampling is to assure an average outgoing quality level. The tables based on
AOQL are used when the submitted lots are nonhomogeneous or when the objective of
sampling is to assure quality no worse than a given target. Whenever the value of LTPD or
AOQL is decided and the fraction defective of incoming lots of size N is known, the sample
size n may be read directly from the tables of a single or double sampling plan. Some

publications discussing various versions of the Dodge-Romig tables are listed in Table 2.5.

Dependent Stage Attribute Acceptance Sampling Plan

In the late 1960's, Mogg (1969) developed a type of sampling plan, called
dependent stage attribute acceptance sampling plan, which uses information from prior lots
to decide whether to accept or reject the current lot. The advantages of this sampling plan
are that it reduces the sample size. The notation used in the dependent stage sampling plan
are defined as follows:

n  =sample size,
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T = the maximum number of allowable defective items from the current sample
for unconditional acceptance of the lot,

b  =the maximum number of additional defective items for which the decision of
acceptance or rejection of the current lot will depend on the acceptance or
rejection of prior lots,

Pa;k = the probability of accepting lot number k, and

Py n = the probability that there are exactly x defective items in a sample size of n

items.

Mogg designated the dependent stage sampling plan by DSSP-1,b with the

operating procedure outlined by the following steps;

Step 1 - At the outset, select a random sample of n items from the first lot submitted and
accept the lot if the sample contains r or less defective items.

Step 2 - For each lot number, record the disposition as to whether it was accepted or

rejected.

Step 3 - Repeat steps 1 and 2 on subsequent lots for the first b lots.

Step 4 - For lot b+1, select a random sample of n items and accept the lot if the sample
contains r or less defective items. For more than r defective items, the decision to
accept or reject the current lot will depend on the historical data, and the following
courses of action will dictate the decision;
r+1 defective items - Accept the current lot if lot number 1 was accepted.

r+2 defective items - Accept the current lot if lot number 2 was accepted.

r+b defective items - Accept the current lot if lot number b was accepted.
r+ defective items - Reject the current lot, (i > b).

Step 5 - Repeat step 4 for each subsequent lot. That is, check the disposition of lot m-b if
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r+1 defective items are observed in the mt! lot. Check the disposition of lot m-

b+1 if r+2 defective items are observed in the mt lot and so on. Reject the lot if

more than r+b defective items are observed, or if the lot checked on the review

was rejected. Otherwise, accept the lot.

The properties of dependent stage sampling plans could be described by OC curves.

The OC curve for such a sampling plan was developed by evaluating the proportion of lots
that will be accepted for a product from a process. Mogg considered some elementary
dependent stage sampling plans first and then developed the expression for the general OC
curve by induction. He showed that the general expression for the OC curve for the

dependent stage sampling plan, DSSP-1,b, is

r
ZP i,n
i=0

Pyy = =, r=20,b>1 (2.15)
1- ij,n
j=r+l
n! _
with P; = ——pl(1—p)"7,
b0 = fa—p? 0P

P, = the probability of acceptance of the submitted lot number k,
n = the sample size, and
p = the fraction defective of the submitted lots.
An example of P,.i values for DSSP-0,1 sampling plan with 15 sample items is
shown in Table 2.3. The OC curve for this sampling plan is plotted in Figure 2.5. If this
OC curve is used, the probability of acceptance of a submitted lot can be determined when

the fraction defective is known.
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Mogg also compared some selected dependent stage sampling plans with a variety
of single sampling plans and double sampling plans from Freeman ( 1948). One of the
comparisons is among the DSSP-0,1 sampling plan with 15 sample items, the single
sampling plan with n = 20, ¢ = 1, and the double sampling plan with ny=13,¢1=0,11 =
3,ny =2, and ry =3. The OC curves of all the above sampling plans are almost identical.
It means that all these plans would provide same consumer and producer protection. The
average sample number (ASN) of DSSP-0,1 is 15 units and the ASN of the single
sampling plan is 21 units. Thus, the ASN of DSSP-0,1 is six units less than the ASN of
the single sampling plan. For the double sampling plan, the ASN is a variable from 14
units to 28 units. In other words, the ASN of DSSP-0,1 is as much as 13 units less than
the ASN of the double sampling plan. These comparisons showed the advantage of
dependent stage sampling plans in saving the average sample number.

Mogg pointed out the limitations of the dependent stage sampling plan as follows:
(1) Production is steady so that results on current and preceding lots are indicative of a

continuing process.
(2) Lots are submitted substantially in the order of their production.
(3) A fixed sample size, n, from each lot is assumed.
(4) Inspection by attributes is assumed with quality measured by fraction defective p for a
binomial distribution.
He also mentioned that sometimes the dependent stage sampling plan may not be desirable
since the OC curve changes from lot to lot in the early stages of this plan and does not settle
down to a fixed curve until approximately ten lots have been inspected. The reason is that
the plan acts as single sampling plan until b+1 lots are inspected and historical results are

considered from that point.
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Deferred State Attribute Acceptance Sampling Plan

In the early 1970's, Baker (1971) developed a type of sampling plan which is called
the deferred state attribute acceptance sampling plan. This sampling plan uses subsequent
lots' information for making a decision to accept or reject the current lot. The operating
procedure of this type of sampling plan is similar to the dependent stage sampling plan
except that the conditional decisions depend on the disposition of future lots instead of past
lots. Thus, the formations of OC curves of dependent stage sampling plans and deferred
state sampling plans are similar. The deferred state sampling plan provides an indicator for
quality degradation. If a large number of defective items are observed in a sample, the
probability that the process quality degraded beyond an acceptable level is high. The
indicator concept is based on the assumption that the number of defective items from a
sample may truly represent the process quality. The notation used in deferred state
sampling plans is as follows:

n = sample size,

T = the maximum number of allowable defective items from the current sample

for unconditional acceptance of the lot,

b = the maximum number of additional defective items for which the decision of
acceptance or rejection of the current lot will depend on the acceptance or
rejection of subsequent lots,

Pa;k = the probability of accepting lot number k, and

Px,n = the probability that there are exactly x defective items in a sample size of n
items.

Baker designated the deferred state sampling plan by DS(r,b) sampling plan with

the operating procedure outlined by the following steps;

Step 1 - For lot number k, select a random sample of n items from the submitted lot and
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determine the number of defective items.

Step 2 - Accept the lot if the sample contains r or fewer defective items. For more than r

defective items, the decision to accept or reject the current lot is dictated by the

following courses of action;

r+1 defective items - Defer the decision until the disposition of lot number
k+b is obtained. If lot number k+b is accepted, then
accept lot k, otherwise reject lot number k.

r+2 defective items - Defer the decision until the disposition of lot number
k+b-1 is obtained. If lot number k+b-1 is accepted,

then accept lot k, otherwise reject lot number k.

r+b defective items - Defer the decision until the disposition of lot number
k+1 is obtained. If lot number k+1 is accepted, then
accept lot k, otherwise reject lot number k.

r+i defective items (i > b) - Reject lot number k.

Step 3 - Increment k by 1 and return to step 1.

The properties of deferred state sampling plan could be described by the OC curves.

The OC curve for such a sampling plan was developed by evaluating the proportion of lots

that will be accepted for a product from a process. Baker considered some elementary

deferred state sampling plans first and then developed the expression for the general OC

curve by induction. He showed that the general expression for the OC curve for deferred

state sampling plan, DS(r,b), is
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r
EPi,n
i=0

r20,b21, (2.16)

P,y =
ak b
1- zPr+j,n

=1

with Pi,n = mpl(l - p)n_l, and p = the fraction defective of the submitted lots.

An example of Pa;k values for a DS(0,1) sampling plan with n = 15 is shown in Table 2.4.
The OC curve for this sampling plan is plotted in Figure 2.6. From this OC curve, the
probability of acceptance of a submitted lot can be determined when the fraction defective is
known.

Baker compared the DS(0,1) sampling plan with n = 15 to the single sampling plan
with n = 20 and ¢ = 1, and the double sampling plan with ny =13, c1=0,r; =3, ny =26,
¢y =2and ry = 3. The OC curves of all three plans are almost identical, but the ASN
curves showed a difference of approximately 5 to 13 units between the DS(0,1) sampling
plan and the double sampling plan, and a difference of 5 units between the DS(0,1)
sampling plan and the single sampling plan. This made the advantage of the deferred stage
atiribute acceptance sampling in reducing the average number of samples evident.

Baker also discussed the limitations of the deferred state sampling plan. One of the
limitations is that a waiting line may be formed when the lots are in a deferred state, so the
carrying cost of deferred lots should be considered before a deferred state sampling plan is
selected instead of any other sampling plan. In developing the distribution of waiting

times, Baker used the following notation:

Px,n = the probability that there are exactly x defective items in a sample of n
items,
W = the parameter which denotes the number of lots that a lot must wait
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before disposition,
P(W = 1) = the probability that a lot waits for i lots before disposition, and
E(W)  =the expected wait which is the expected value of W.
Baker developed the distribution of waiting times for the DS(0,1) sampling plan.

He showed that the probability that a deferred lot waits for i lots before disposition is
P(W=1i)=Py ,1(1-P ) (2.17)

and the expected wait, E(W), is

E(W)=iiP(W=i). (2.18)
i=0

Substituting (2.17) in (2.18) gives

E(W) = 1—Pl-£‘—. (2.19)

The general equation for the expected waiting time can be obtained by induction.

The deferred state sampling plan has a problem similar to that of the dependent
stage sampling plan. In the early stages of a dependent stage sampling plan, several lots
have to be sampled under a single sampling plan before the dependent stage concept can be
used. The OC curve of the dependent stage sampling plan changes from Iot to lot in the
early stages of the plan and does not settle down until approximately ten lots have been
inspected. With a deferred state sampling plan, the problem is how to make the disposition

decision of the final lots when the lots are waiting for disposition of future lots which will
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not be produced. One solution is to use a single sampling plan for the last b lots. That is,
if the number of defective items from the sample is less than r, accept the entire lot;
otherwise, reject the lot. So no submitted lot will wait for future lots which will not be
produced. Thus, the OC curve of the deferred state sampling plan changes from lot to lot
in the final stages of the plan; it is not a fixed curve in approximately the last ten lots.

After the deferred state sampling plan was developed, Dean (1971) used this
concept in truncated life test plans. The difference between the truncated life test plans and
the quality control sampling plans is that time is considered as a parameter in truncated life
test plans. Dean developed the deferred state life test plans with the same notation as in
deferred state sampling plans, except that

T = the total accumulated test time,

A = the failure rate of items tested,

= i = the mean-time-between-failures (MTBF) of items tested, and

<>
>

Py = Py 3 T = the probability that there are x failed items during time T, given the
failure rate is A and that the life distribution of the tested items is exponential.
Dean designated the deferred state life test plan by DS(r,b) life test plan with an
operating procedure outlined by the following steps;

Step 1 - For lot number k, select a random sample of n items from the lot and test the
sample for a total accumulated test time T. Then determine the number of failed
items. The failed items during the test may or may not be replaced.

Step 2 - Accept the submitted lot if r or less failed items are observed. If more than r failed
items are observed, the decision to accept or reject the current lot is dictated by the
following courses of action;
r+1 failed items - Defer the decision until the disposition of lot number k+b

is obtained. If lot number k+b is accepted, accept lot
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number k, otherwise reject lot number k.
r+2 failed items - Defer the decision until the disposition of lot number
k+b-1 is obtained. If lot number k+b-1 is accepted,

accept lot number k, otherwise reject lot number k.

r+b failed items - Defer the decision until the disposition of lot number k+1
is obtained. If lot number k+1 is accepted, accept lot
number k, otherwise reject lot number k.
r+i failed items (i > b) - Reject lot number k.
Step 3 - Increment k by 1 and return to step 1.

The properties of deferred state life test plans could also be described by evaluating
the proportion of lots that will be accepted for a product from a process. Dean considered
the probabilities of accepting the submitted lot number k, Pa;ka for DS(0,1) and DS(2,4)
life test plans first and then developed the general expression for the Pa.k by induction. He
showed that the general expression of the Pa;k for the deferred state life test plan, DS(r,b)

life test plan, is

r
2P
Py = _~X_T:)O_~_’
[1 - ZPHXJ
x=1

Dean also assumed the failure distributions to be exponential. Thus, the probability

r20,b=1. (2.20)

of a certain number of failed items can be described by Poisson distribution. When the
total accumulated test time is T and the failure rate is A, the probability of exactly x failed

items is
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(KT)X C_XT

, , x=0,1,2,..,and A, T> 0. (2.21)
x!

Py = Px,?»,T =

By substituting (2.21) into (2.20), the general expression of the P,k for deferred state life

test plans in terms of r, b, A and T becomes

r20,b>1,and A, T>0. (2.22)

Pag = 7~  120,b>1,2nd6, T>0. (2.23)

For any DS(r,b) life test plan, the P,k values can be found by substituting specific values

of 0 and T into (2.23).

Dean also considered the general expression for the expected wait, E(W), in the
deferred state life test plan. The notation used in this analysis is the same as in the deferred

state sampling plan. To derive a general expression for the expected wait in the DS(r,b) life
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test plan, we note that the probability of unconditional disposition of the current lot, i.e. the

probability that the expected wait of the current lot is zero, is

T oo
P(W =0) = z P, + Z Py, (2.24)
x=0 x=r+b+1
TY* -T
6)°°
with Py = X

The first term in formula (2.24) is the sum of the probabilities of observing at most r failed
items and the second term is the sum of the probabilities of observing at least r+b+1 failed
items. Furthermore, the probability that the current lot waits for one additional lot before
disposition is equal to the probability of having exactly r+b failed items in the current lot

multiplied with the probability of unconditional disposition of the next lot, i.e.

P(W =1) =P, P(W =0). (2.25)

The probabilities that the current lot waits for two or three additional lots before disposition

are, respectively,

P(W=2)=P.,, (W =1)+P.4 | P(W=0) (2.26)
and

P(W=3)=P , PW=2)+P, | PW=1)+ Prip.p POW =0). (2.27)

Continuing the derivation in this manner, we can write the general expression for the

probability that the current lot waits for b+j lots as
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P(W = b+j) = Py, P(W = b+j-1) + Py 1 POW =b+-2) + ...
+Py PW=j+1) + P PW=})  j=0,1,2,.., (2.28)

and the expected wait, E(W), for DS(r,b) life test plan as

EW)=1PW=1D+2PW=2)+...+kP(W=k)+.... (2.29)

The detailed explanations and examples can be found in Dean (1971).
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Table 2.1. Probabilities of acceptance for the single sampling plan:

N =5000, n = 100, and ¢ = 2.

~N N bW N = O

Table 2.2.

Probabilities of acceptance for the double sampling plan:

N=5000,n1=80,cl=1,r1=3,n2=100,c2=3,andr2=4.

p nip  mpp ® a)nl ¥ a)nz (P a)n1+n2
=80p =100p =Py less)nl =(P 2)n1(P 1or less)nz =P a)nl"' 3 a)nz

0.00 0.0 0 1.000 (0.000) (1.000) = 0.000 1.000
0.01 0.8 1 0.808 (0.144) (0.736) = 0.106 0.914
0.02 1.6 2 0.525 (0.258) (0.406) = 0.105 0.630
0.03 24 3 0.309 (0.261) (0.199) = 0.052 0.361
0.04 3.2 4 0.171 (0.209) (0.091) =0.019 0.190
0.05 4.0 5 0.091 (0.147) (0.041) = 0.006 0.097
0.06 4.8 6 0.047 (0.095) (0.017) = 0.002 0.049
0.07 5.6 7 0.024 (0.065) (0.007) = 0.001 0.025
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Table 2.3.  Probabilities of acceptance for the DSSP-0,1 sampling plan with 15 sample

items.

p Pak
0.00 1.0000
0.02 0.9543
0.04 0.8198
0.06 0.6360
0.08 0.4571
0.10 0.3135
0.12 0.2102
0.14 0.1396
0.16 0.0925
0.18 0.0618
0.20 0.0405

P Pak
0.00 1.0000
0.02 0.9543
0.04 0.8198
0.06 0.6360
0.08 0.4571
0.10 0.3135
0.12 0.2102
0.14 0.1396
0.16 0.0925
0.18 0.0618
0.20 0.0405
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Table 2.5. A list of publications of lot-by-lot acceptance sampling plans by attributes.

Single Sampling Plan Peach and Littauer (1946)
Grubbs (1949)
Cameron (1952)
Golub (1953)
U.S. Army Chemical Corps. Eng. Agency (1953)
Wise (1955)
Horsnell (1957)
Hamaker (1958)
Guthrie and Johns (1959)
Prairie, Zimmer, and Brookhouse (1962)
Hald (1965)
Hald (1967a)
Hald (1967b)
Dodge (1969a)
Ayoub, Lambert, and Walvekar (1970)
Wortham and Mogg (1970a)
Guenther (1971a)
Minton (1972)
Collins, Case, and Bennett (1973)
Bennett, Case, and Schmidt (1974)
Hald (1977)
Schilling, Sheesley, and Nelson (1978)
Stephens (1978)
Beaing (1981)
Guenther (1984)
Case and Chen (1985)
Jaraiedi and Herrin (1985)
Baker (1988)
Ohta and Ichihashi (1988)
Ohta and Kanagawa (1988)
Brooks (1989)
Nachlas and Kim (1989)
Soundararajan and Arumainayagam (1989)
Govindaraju (1990)
Soundararajan and Vijayaraghavan (1990)
Nelson(1991)

Double Sampling Plan U.S. Army Chemical Corps. Eng. Agency (1953)
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Multiple Sampling Plan

Sequential Sampling Plan

Hamaker and Van Strik (1955)
Horsnell (1957)

Guenther (1971b)

Chow, Dickinson, and Hughes (1972)
Hald (1977)

Baker and Brobst (1978)

Schilling, Sheesley, and Nelson (1978)
Beaing and Case (1981)

Chen (1981)

Olorunniwo and Salas (1982)
Guenther (1983)

Case and Chen (1985)

Maghsoodloo and Bush (1985)
Srivenkataramana and Harishchandra (1985)
Govindaraju (1990)

Bartky (1943)

U.S. Army Chemical Corps. Eng. Agency (1953)
Hald (1975)

Schilling, Sheesley, and Nelson (1978)

Bryant and Schmee (1979)

Flowers and Cole (1985)

Baker (1987)

Maghsoodloo (1987)

Wald (1945)

Anscombe (1946)

Barnard (1946)

Wald (1947)

Hamaker (1953)

Epstein and Sobel (1955)
Hoel (1955)

Kiefer and Weiss (1957)
Anderson (1960)

Jackson (1960)

Johnson (1962)

Eagle (1964)

Chemoff and Ray (1965)
Tallis and Vagholkar (1965)
Aroian and Robison (1966)
Aroian (1968)

Schafer and Takenaga (1972)
Wald (1973)

Aroian (1976)
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Military Standard 105

Garrison and Hichey (1984)
Kremers (1987)
Tantaratana (1988)

JAN-STD-105 (1949)
MIL-STD-105A (1950)
MIL-STD-105B (1958)
MIL-STD-105C (1961)

Keefe (1963)

MIL-STD-105D (1963)

Pabst (1963a)

Pabst (1963b)

Cocca (1964)

Stephens and Larson (1967)
Dodge (1969b)

Kaplan and MacDonald (1969)
Koyama (1969)

Ohmae and Suga (1969)
Yokoh (1969)

Koyama, Ohmae, Suga, and Yamamoto (1970)
Brown and Rutemiller (1973)
Hill (1973)

Brown and Rutemiller (1975)
Hahn and Schilling (1975)
Sheesley (1977)

Schilling and Sheesley (1978a)
Schilling and Sheesley (1978b)
Liebesman (1979)

Duncan et al (1980)

Schilling and Johnson (1980)
Brush, Cautin, and Lewin (1981)
Liebesman (1981a)

Liebesman (1981b)

Liebesman (1982)

Schilling (1982)

Buswell and Hoadley (1983)
Cocca (1983)

Schilling (1983)

Enell (1984)

Keats and Case (1984)
Liebesman and Hawley (1984)
Bee, Teck, and Keng (1985)
Randhawa (1985)
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Truncated Life Test Plan

Chain Sampling Inspection

Skip-Lot-Sampling Plan

Nelson, Wall, and Caporal (1986)
Baker (1987)

Chakraborty and Bapaye (1989)
Glenn (1989)

MIL-STD-105E (1989)

Flott (1990)

Epstein (1954)

Burr (1957)

Woodal and Kurkjian (1962)

Aroian (1963)

Aroian (1964)

Craig (1968)

Guenther (1971)

Angus, Schafer, Van Den Berg, and Rutemiller (1985)
Mason (1986)

Dodge (1955a)

Frishman (1960)

Dodge and Stephens (1964)

Stephens and Dodge (1965)

Dodge and Stephens (1966)

Stephens and Dodge (1967)
Soundararajan (1978a)

Soundararajan (1978b)

Soundararajan and Govindaraju (1983)
Soundararajan and Doraiswamy (1984)
Soundararajan and Arumainayagam (1989)
Raju (1990)

Soundararajan and Vijayaraghavan (1990)

Dodge (1955b)

Perry (1970)

Perry (1973a)

Perry (1973b)

Hsu (1980)

Carr (1982)

Liebesman and Saperstein (1983)
Flowers and Cole (1985)
Jaraiedi and Bem (1989)
Kowalewski and Tye (1990)
Perry (1990)
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Dodge-Romig Tables

Dependent Stage Sampling Plan

Deferred State Sampling Plan

Dodge and Romig (1959)
Keats and Case (1984)
Flott (1990)

Mogg (1969)
Wortham and Mogg (1970b)

Baker (1971)

Dean (1971)

Wortham and Baker (1971)
Wortham and Baker (1976)
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Figure 2.1. The OC curve for the single sampling plan: N = 5000, n = 100, and ¢ = 2.
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Figure 2.2. The OC curve for the double sampling plan : N =5000,n1=80,c¢1=1,r1=3,n2=100,c2 =3 and 12 = 4.
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Figure 2.3. An example of a sequential sampling plan.
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Figure 2.4. An example of OC curve for normal, tightened, and reduced inspection.
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Figure 2.5. The OC curve for the DSSP-0,1 sampling plan with 15 sample items.
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Figure 2.6. The OC curve for the DS(0,1) sampling plan with 15 sample items.
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CHAPTER IIT
DETERMINATION OF TOTAL TEST TIME AND SAMPLE SIZE FOR
DEFERRED STATE LIFE TEST PLAN

Before a deferred state life test plan is selected to test the submitted lots, the user
must consider many factors, for example, the time until due date, the available human
resources, the production facilities, the inventory facilities, etc. Also, the overall testing
cost is one of the major factors, causing concern to the user. It includes the total cost of
testing time per sample and the total cost of testing each sample. So before a test plan is
conducted, the user must determine not only the appropriate test plan but also the total test
time and the sample size. The total test time and the sample size for deferred state life test

plan were considered by Dean (1971) and we will discuss them here also.

Total Test Time
As shown in formula (2.23), the general expression of the probability of accepting
a submitted lot number k, Py.k, for deferred state life test plans can be expressed in terms

of r, b, 8 and T. For any DS(r,b) plan, the values of r and b are known, so that the Pak
can be written as a function of —ré—‘ Thus, each DS(r,b) plan can be represented by one OC
curve with Py on the y-axis and —’g— on the x-axis. The OC curve can easily be obtained
by substituting specific values of —rg— into formula (2.23).

An example of P,. values for DS(4,3) in terms of % is shown in Table 3.1. The
OC curve for this DS(4,3) plan is plotted in Figure 3.1. Once the OC curve is obtained, we
can use it to find the probability of acceptance of a submitted lot in which the value of %: is

known. The values of producer's risk () and the consumer's risk (B) can also be
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determined when the discrimination ratio , & > 1, is given. The discrimination ratio can be
calculated from 65, the mean-time-between-failure corresponding to the acceptable
quality level and eLQL’ the mean-time-between-failure corresponding to the limiting

quality level, by the formula

0aqQL = 36LQL- (3.1)

On the other hand, if specific values for o, B and & are given, the user is
responsible for finding a life test plan which satisfies the given requirements. One method
to do this is to check the set of OC curves of DS(r,b) plans until an appropriate OC curve is
found. For example, suppose a deferred state life test plan is needed satisfying the required
conditions: o = 0.1, B = 0.1, and & =2. Then a set of OC curves of DS(r,b) plans is

checked. When the DS(4,3) plan is considered, it is found that the probability of
T
acceptance (Pa;k) is 0.9 (1 - a) when the value of ry is 4.2, and the probability of

acceptance (Pa;k) is 0.1 (B) when the value of —g is 8.6. It is obvious that

T

=42 (3.2)
9aQL
and
T = 8.6. (3.3)
OLQL
That is,
T=426,qL (3.4)
and
T=8.60.qL, (3.5)
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respectively. Dividing formula (3.4) by formula (3.5), we have

0
AQL _,

, 3.6)
BLoL

and from (3.1), we get 8 =2. Thus, the DS(4,3) plan will be chosen because it satisfies
the required conditions.

After a specific life test plan is selected, the total test time can be calculated by (3.4)
or (3.5). For example, if the value of 6 5, is 1000 hours for the test items, formula (3.4)
shows that the total test time should be 4200 hours (T = 4.2x 1000 = 4200).

Dean compared the above DS(4,3) plan with the plans in MIL-STD-781B (1967).
In MIL-STD-781B, the Test Plan XVIII has exactly the same characteristics as those in
DS(4,3), i.e. a =0.1, B =0.1, and § = 2. But the total test time of the Test Plan XVIII is
9.4 8 QL. while the total test time of the DS(4,3) plan is only 4.26 AQL. The advantage
of the deferred state life test plan can be seen, not only through the above comparison, but
also through other additional comparisons. As a result, the total cost of testing time per

sample can be reduced.

Sample Size

As it was mentioned before, the failed items during a life test may or may not be
replaced by a new item drawn from the remainder of the same lot. For the replacement
case, the sample size has no restriction since the test can always be terminated at the
predetermined total test time T. For the non-replacement case, there exists a possibility that
all sample items fail before the total test time is reached, so that the user should determine
an appropriate sample size such that the probability of reaching the total test time T is high.

Assuming that all n items of a sample are simultaneously placed on a life test, let t
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be the time at which the ith item fails. Since the t;'s are independently and exponentially

distributed random variables, the sum of all ti's,

Y=t +ty+ ..+, (3.7)

will be a random variable with a gamma distribution (Appendix A). If the mean-time-
between-failure is 0, this gamma distribution will have the parameters n and 6. By using
formula (A.12), the probability that the sum of all t;'s is greater than the total test time can

be written as

™ —
b _ n—-l(a) e ®
(y2D= 3 r—. (3.8)
i=0 "

If it is required that the probability of reaching the total test time T must be greater than

0.90, the sample size can be calculated by

TV &5
3]
OB LD ) (3.9)

The sample size will be that value of n which satisfies formula (3.9); and it must be at least

r+b+1 in order to provide the reject decision in all DS(r,b). For example, if we consider
the DS(4,3) plan discussed in the last section, the value of % will be 4.2 with T = 4200

and © = 1000. The appropriate sample size can then be determined from (3.9), which

becomes
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n-1 i.—4.2
(4'2)"6 > 0.90. (3.10)
1!

i=0
The above inequality can be solved by an algorithm or a table of Poisson distributions
(cumulative probability).

Table 3.2 shows the probability of reaching the total test time of 4200 hours in
terms of the sample size n. From Table 3.2, it is obvious that the sample size must be at
least eight items to ensure that the probability of reaching the total test time of 4200 hours is
greater than 0.90. Dean (1971) also compared the sample sizes between the above DS(4,3)
plan and the Test Plan X VIII of MIL-STD-781B (1967). He found that the sample size for
Test Plan X VIII is 14 items under the same requirements, thus showing the advantage of
the deferred state life test plan in saving on sample size can be shown. As a result, the total

cost of testing each sample item can be reduced.
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Table 3.1. Probabilities of acceptance a submitted lot for DS(4,3) in terms of %

% P ak
1 0.9999
2 0.9988
3 0.9856
4 0.9248
5 0.7676
6 0.5268
7 0.3012
8 0.1541
9 0.0751
10 0.0362
11 0.0173
12 0.0083

-56-



Table 3.2. Probabilities of reaching 4200 hours for the DS(4,3) plan with sample size n.

Sample size, n Probability of reaching 4200 hours
1 0.0150
2 0.0780
3 0.2102
4 0.3954
5 0.5898
6 0.7531
7 0.8675
8 0.9361
9 0.9721
10 0.9889
11 0.9959
12 0.9989
13 0.9996
14 0.9999
15 1.0000
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Figure 3.1. The OC curve for the DS(4,3) sampling plan.
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CHAPTER IV
THE EXPECTED COST OF THE DEFERRED STATE LIFE TEST PLAN
WITH REPLACEMENT

A detailed discussion of the deferred state life test plan was presented in the last two
chapters. When a deferred state life test plan is required to test the submitted lots, the user
must know how to select an appropriate life test plan when the required conditions are
given. Also, the appropriate sample size and total test time must be determined. Another
consideration is the total cost of conducting a life test. Dean (1971) proposed a cost model
for deferred state life test plans and then evaluated the expected cost for these life test plans.
He found that the expected cost of using a deferred state life test plan would be less than the
expected cost of using any other life test plans in some situations, but all deferred state test
plans can provide the same producer and consumer protection. In order to make the
comparisons, a similar cost model will be used in this dissertation, but a different
evaluation technique will be presented to see whether the deferred state life test plans may
reduce the overall test cost. As mentioned before, the failed items during a life test may or
may not be replaced by a new item drawn from the remainder of the same lot. In this
chapter we will discuss the replacement case only. The cost model for the deferred state

life test plan with replacement is defined as

K = ICN TR(r,b) W)

n

+Cg+Cyn+Cyy, (4.1)

with the notation

K =the total cost of conducting the life test,
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I =the carrying cost index which is defined as proportional to the
average inventory observed during the same year and its range is in
the neighbourhood of 0.2 or 0.3 for a specified time interval (This
carrying cost includes opportunity costs, space rental cost, labour
cost, etc.),

C =theitem cost,

N = the total number of items in the lot,

Trr,p)(W) = the total accumulated waiting time of the current lot in inventory
before disposition when using DS(r,b) plans with replacement,

n = the sample size,

CS = the set-up cost,

Cl = the cost of testing each items,

Cy =the cost of testing each items per unit time, and

y =the total accumulated test time of a sample.

The first term in formula (4.1) is the total carrying cost of a submitted lot before

disposition. When the total accumulated waiting time, TR(r,b)(w ), is divided by the sample

size, n, it becomes the calendar waiting time that the lot is hold in inventory. When we

multiply the item cost, C, with the total number of items in the lot, N, it becomes the total

cost of the submitted lot. Finally, the product of the carrying cost index, I, the total cost of

the submitted lot, C N, and the calendar waiting time that the lot is hold in inventory,

TR(r,6)(W)
n

, will give the total carrying cost of a submitted lot before disposition. The

second term in formula (4.1) is the set-up cost, C,. This is a fixed cost, no matter how

many items are in the sample or how long the test conducts. The third term is the total cost

of testing the sample of n items and the last term is the total cost of testing time per sample.

In the replacement case, a sample of n items is placed on a deferred state life test for
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the total test time T and each failed item during the test will be replaced by a new item
drawn from the remainder of the same lot. In order to develop a general expression of
expected cost for DS(r,b) plans with replacement, the DS(0,1) plan will be considered first.
Let t{ and t, be the failure times of the first and the second items. Since t1 and t, are
independently and exponentially distributed random variables, their density functions

would be, in terms of the failure time t and the mean-time-between-failure © s

—t
f(t) = %e 9 O<t<T. 4.2)

Then the sum of t; and t,, i.e. the total accumulated test time of a sample, will be a random

variable with a gamma distribution (Appendix A). This sum,
y=14 +1, 4.3)
will have a gamma distribution which is truncated at T, and its density function is

-y

ye 0
o2

gly) = 0<y<T. (4.4)

The above formula can easily be obtained by substituting 2 for m, y for t, and -é- for A into

formula (A.9). From formula (A.12), we see that the cumulative function of yis

i =Y
(6
o)

G@y) =1- -
i!

1
i=0
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=1-¢e9 -

(4.5)

Moreover, the expected total accumulated test time of a sample for DS(0,1) plan with

replacement, ER(O,l)(y)’ would be written as
Epo.n®) = [ ve(y) dy 0<y<T
= [ \ve) dy + [“yey) dy 4.6)
0 T ) :
but, since y is truncated at T, formula (4.6) becomes
T )
Bron® = [yyew dy +T["e(y) dy

T
= J,ye) dy + T [1-G(D)]. @.7)
By using formulas (4.4) and (4.5), formula (4.7) becomes

— ~T
2.0 — 0
Ty“e Te

y T -T
- 266

—ezfoye dy+Te Y +
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=T

Tze 0

1 (T = =
=e—2~j0 y2(~-0)de © +Te 0 +

-T

=1 T = = 120

- 2.0 0 gv2 0 ©
f e ——

5 y _[0 eVdy“ |[+Te 9 +

-T ~y —T

5 -—e -y -T
~-T%e T . 4 a T
= 2 0 0
5 J;)yde +Te ¥ +

ZCe

o |
=— 60| — 0 0
2lye _[Oe dy |+ Te

0

=T ]
=-2Te & +2(-0)e 0| +Te®
0

T -T -T
=—2Te O —20¢ © +20+Te © , Or

St
Eroy) =26{1-e® |-Te 0,
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Furthermore, let ETR(O,I)(W =1) be the expected total accumulated waiting time of
the current lot in inventory when this lot waits for i additional lots before disposition for the
DS(0,1) plan with replacement. Let PR(O,I)(W = 1) be the probability that the current lot
has to wait for i additional lots before disposition for the DS(0,1) plan with replacement.
First, consider the expected total accumulated waiting time of the current lot in inventory
when a disposition decision can be made on the current sampling test, i.e. the current lot

does not have to wait for additional lots before making disposition decision, then

ETR(O,D(W =0) = ER((),l)(Y)- 4.9)
T -T
)<
Writing P; = 6 ™ , we have
il
PR(O,I)(W =0)=Py+Py (4.10)

for the probability that the current lot does not have to wait for additional lots before
disposition. Second, consider the expected total accumulated waiting time of the current lot

which has to wait for one additional lot before disposition, i.e.

ETp,np(W = 1) =T +Eg (g 1)(¥) (4.11)
and we obtain
Priop(W =1) =Py [Pg +Py]. (4.12)
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for the probability that the current lot has to wait for one additional lot before disposition.
Similarly, the expected total accumulated waiting time of the current lot which waits for i

additional lots before disposition can be written as
ETg( (W =0 =1T +Eg(g1y(¥y) (4.13)

with the associated probability that the current lot has to wait for i additional lots before

disposition
Prio.y(W =1) = P11 [P + Py]. (4.14)

The expected total accumulated waiting time of the current lot before disposition for the

DS(0,1) plan with replacement, ETR(O 1)(W), is

ETR(OJ)(W) = ZETR(O,I)(W =1) PR(()J)(W =1). 4.15)

1=

Substituting formula's (4.9) to (4.14) into (4.15), we get

+[i T+ Bge, 1] [P (Py + Py)] + .

= [Po+P2l [Breo1y¥) (1 + P + .. + Pyl )+
TPy (1+2P1 +3P 2+ . +iPil 4 )
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E
R(O,H(Y) N TP J 4.16)

= [Py+P
[Po 2][ 1B (1-B)

Since Pg, Py, and P, are mutually exclusive and exhaustive, the sum of Py and P, will be

equal to 1 - P and (4.16) becomes

TP
ET W)=E . 4.17
R©O,)W) =Eg 1)) + = (4.17)

As aresult, the expected total sampling test cost for the DS (0,1) plan with replacement,

EKR(O,I)’ is

ICN
EKR(O,]) = ——n ETR(O,I)(W) + CS + Cl n+ C2 ER(O,I)(Y)

ICN TP

1-P
We will now develop a general expression for the expected total test cost of the
DS(r,b) plan with replacement. Let t; be the failure time of the ith jtem. Since the t;'s are
independently and exponentially distributed, and 1 < i < r+b+1, their density distributions
would be given by formula (4.2). Also, the sum of all t;'s will be a random variable with a
gamma distribution. Let y be the sum of all t;'s, i.e. the total accumulated test time of a

sample:

y=t1+t2+t3+...+tr+b+1. 4.19)
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It follows that y has a gamma distribution truncated at T, with density function

0<y<T. (4.20)

The above formula can easily be obtained by substituting r+b+1, y and é form, tand A

respectively in formula (A.9). And using formula (A.12), we find the cumulative

distribution function

1 -2
r+b(6) e®
G(y)=1- Y~ (4.21)
i=0

Moreover, the expected total accumulated test time of a sample for DS(r,b) plans with

replacement, ER(r,b)(Y)’ can be written as
Erep® = -[0 y&(y) dy 0<y<T
= nyg(y) dy + f “ye(y) dy. 4.22)
0 T :
Since y is truncated at T, formula (4.22) becomes
T oo
Ereny® = [pye®) dy +T[ a(y) dy

= j:yg(y) dy + T[1-G(T)]. (4.23)
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By using (4.20) and (4.21), (4.23) becomes

. =T
— i —
T yr+b~1—1 e_éz r+b(%) e ®
! i=

Furthermore, let ETR(r,b)(W = i) be the expected total accumulated waiting time of
the current lot in inventory when this lot waits for i additional lots before disposition for
DS(r,b) plans with replacement. Let PR(r,b)(W =1) be the probability that the current lot
has to wait for i additional lots before disposition for DS(r,b) plans with replacement.
First, consider the expected total accumulated waiting time of the current lot in inventory if
a disposition decision can be made on the current sampling test, i.e. if the current lot does

not have to wait for additional lots before making the decision, then

ETR(pyW = 0) = Egr p)(¥) (4.25)

and the probability that the current lot does not have to wait for additional lots before

disposition is

T oo
PrenyW=0)= Y P+ P (4.26)

i=0 i=r+b+1

Second, consider the expected total accumulated waiting time of the current lot which has to

wait for one additional lot before disposition:
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ETRpy(W = 1) =T+ Egr1,)(¥) 4.27)

with the probability that the current lot has to wait for one additional lot before disposition

PripyW =1) =Ppip, Prp 1) (W =0). (4.28)

Third, the approximate expected total accumulated waiting time of the current lot which has

to wait for two additional lots before disposition can be written as

ETRapyW =2)=2T +Eg p(¥) (4.29)

with the probability that the current lot has to wait for two additional lots before disposition

PRapyW =2) =Prip Preepy(W = 1) + Prypy 1 Priepy(W =0). (4.30)

Similarly, the approximate expected waiting time of the current lot which waits for i

additional lots before disposition can be written as

ETgepyW =1) =i T + Eg(y 1)) 1<i<b, (4.31)

with the probability that the current lot has to wait for i additional lots before disposition

Praety(W =1) =Prip Pre (W =i-1) + Pryyy 1 Prep)(W =i-2) + ...
+Prip-(-1) Prap)(W = 0). (4.32)
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Proceeding in the same fashion we can approximate the expected waiting time of the current

lot which waits for b+j additional lots before disposition as

ETR(r,b)(vv =b+j) =(b+j) T + ER(r,b)(Y) j=0,1,2,..., (4.33)

with the probability that the current lot has to wait for b+j additional lots before disposition

PR(r,b)(W = b+j) = Pr+b PR(I',b>(W = b+j"1) + Pr+b_1 PR(r,b)(W = b+]-2) + ...

+Pri1 PrepyW =1). (4.34)

The expected total accumulated waiting time of the current lot before disposition for

DS(r,b) plans with replacement, ETR(r,b)(W)’ is

ETgepy W) = D ETgipW =1) Prepy(W =1). (4.35)
i=0

Substituting (4.25) to (4.34) in formula (4.35), we get

ETR(r,b)(W) = Z[l T+ ER(r,b) (Y)] P R(r,b)(W =1)
i=0

= Z[ER(r,b)(y)PR(r,b)(W =1)+i T Pr(r,p)(W = i)]
i=0

= ERr(r,0)(¥) ZPR(r,b) W=i)+T ) i Prer,by(W =1)
i=0 1=O
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ETr )W) = Br ) + T Egr 1y (W). (4.36)

Note that ER(r,b)(W) is the expected wait for the number of additional lots which must be
sampled, on the average, before disposition of the current lot, as discussed in Chapter II.
As aresult, the general expression of the expected total sampling test cost for DS(r,b) plans

with replacement, EKRp)s is

ICN
EKR(r,b) = —_n ETR(r,b)(W) + CS + Cl n+ C2 ER(I',b)(y)

ICN
-—= [Ergepy 0+ T ER(eiy(W)] + Cg + Cp 1 + C Eggepy(9). 4.37)

In this chapter, the expected total test cost of conducting the deferred state life test
plan with replacement was discussed. When a deferred state life test plan is selected to test
the submitted lot, not only the appropriate test time can be determined, but also the expected
total test cost of performing the deferred state life test with replacement can be calculated.
After the expected total test cost is obtained, it may be compared with the expected total test
costs of using other type of test plans in order to see whether the use of the deferred state

life test plans will reduce the overall test cost.
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CHAPTER YV
COST COMPARISONS

We have shown that using a deferred state life test plan could reduce the total
accumulated test time, but that a waiting line may be formed when there are any lotsin a
deferred state. So the carrying cost of deferred lots should be considered before a deferred
state life test plan is selected to replace any other type of life test plans. In other words, the
total cost of testing time per sample are reduced, but the increased total carrying cost for
deferred lots may nullity this. In order to demonstrate that the deferred state life test plan
can reduce the overall life testing cost, the expected total test cost for the DS(4,3) plan with
replacement will be calculated for an example. Some assumed values are as follows: I =
0.2, C=50,N =100, CS = 1000, Cl =50, and C, = 10. The successive values of the
mean-time-between-failures (MTBF) are 1000, 750, 500, 250, and 100; and the sample
sizes are 20, 40, 60, 80, and 100.

The cost model and the evaluation method for the deferred state life test plan with
replacement was introduced in the last chapter. By substituting the above values in formula
(4.37), the expected total sampling test cost for the DS (4,3) plan with replacement can be
found. A computer program to do this, written in FORTRAN , 1s given in Appendix C.
This program will read in the required data and calculate the expected total sampling test
cost for the required DS(r,b) plan with replacement by using formula (4.37). The results

obtained with the above assumed values can be found in Appendix C.

Expected Cost of the Test Plan XVIII With Replacement
As mentioned before, the DS(4,3) plan and the Test Plan XVIII of MIL-STD-781B

have almost identical OC curves, i.e. they can provide the same producer and consumer
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protection. For the Test Plan XVIII of MIL-STD-781B, a sample of n items is selected
from a submitted lot of size N. All n items will be placed on life test simultaneously until
the predetermined total accumulated test time T is reached or the x+1th failure is found.
The total accumulated test time T was discussed in Chapter IIT and equals 9.4 65qp,. The
x value is the maximum number of allowable failures, 13 in this case. The expected total
test cost of Test Plan XVIII with replacement will now be calculated to compare it with the
expected total test cost of the DS(4,3) plan with replacement.

The same cost model, given in formula (4.1), will be used for the Test Plan XVIII.
The general expression for expected total test cost of Test Plan XVIII with replacement will
now be developed. Lett; be the failure time of the ith item. Since the t;'s are independently
and exponential distributed where 1 <1 < x+1, their density function, in terms of the

failure time t and mean-time-between-failure 0, is

—t
f(t)=%ee 0<t<T. 3.1

The sum of all t;'s will be a random variable with a gamma distribution. Let y be the sum

of all t;'s, i.e. the total accumulated test time of a sample,
y=t1+ttr i3+ ..+, 5.2)

Then y has a gamma distribution truncated at T with density function

y*e ®
g(Y);-GXT 0Ly<T (5.3)

x!
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and cumulative distribution function

X
i!
i=0 b

Gly) =1~

(See formula's A.9 and A.12).

5.4)

The expected total accumulated test time of a sample for Test Plan X VIII with replacement,

ER(XVIII)(Y)’ can be written as

Erexvmy(y) = [ y&() dy
= ITyg(y) dy + fwyg(y) dy
0 T ’
which, since y is truncated at T, becomes
T oo
Erexvn®) = Jyye(y) dy + T [ e(y) dy
T
= J,yew dy +T11-G(Dy,

which, by substitution of (5.3) and (5.4), becomes
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-y TY &
yx+19 X | x|

T €
Eracvm®) = oy T 2 (5.7)

Since there are no deferred lots in the Test Plan X VIIL, the disposition decision for
the current lot can be made after the current sampling test is done. As a result, the general
expression of the expected total sampling test cost for the Test Plan XVIII with

replacement, EKg xvym), is

ICN

Cost Comparisons

In order to compare the Test Plan XVIII with the DS(4,3) plan, the previously
assumed values for the DS(4,3) plan will also be used in this Test Plan X VIII with
replacement. By substituting the assumed values into (5.8), the expected total sampling
test cost for the Test Plan X VIII with replacement can be found. A computer program,
written in FORTRAN, is given in Appendix D. It will read in the required data and
calculate the expected total sampling test cost for the Test Plan X VIII with replacement by
using formula (5.8). The results obtained can be found in Appendix D.

For the purpose of comparison, the results from Appendix C and Appendix D are
shown in Table 5.1. The expected total test cost is expressed as a function of MTBF and
the sample size. Itis observed that when the MTBF is kept constant, the expected total test

cost will decrease as the sample size increases. When the sample size increases, the total
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cost of testing each sample will increase. But the calendar waiting time for the lot will
decrease when the sample size increases, so that the total carrying cost per lot will decrease.
With the assumed values, the increased cost is less than the decreased cost and the expected
total test cost will decrease. On the other hand, when the sample size is kept constant, the
expected total test cost will decrease as the MTBF decreases. Since the total accumulated
test time decreases if the MTBF decreases, the total cost of testing time per sample and the
total carrying cost per lot will decrease. As a result, the expected total cost will decrease.
When both MTBF and sample size are fixed, the cost of the DS(4,3) plan and of the
Test Plan X VIII in the replacement case can be compared. It is obvious that the expected
total test cost of the DS(4,3) plan is less than the expected total test cost of the Test Plan
XVII for each pair of MTBF and sample size. It means that the expected total test cost will
be reduced when we use the DS(4,3) plan instead of Test Plan XVIII for all values of
MTBF and sample sizes. The percentage saving in costs are shown in Table 5.1. It can be
seen that the maximum savings, 27.12%, are obtained when the MTBF is 1000 hours and
the sample size is 100 items; the minimum savings, 9.50%, are obtained when the MTBF
is 100 hours and the sample size is 20 items, with the previously assumed input values.
Dean (1971) also used the above assumed values to calculate the expected total test
costs of both the DS(4,3) plan and the Test Plan XVIII of MIL-STD-781B in the
replacement case with his evaluation method. The results are shown in Table 5.2. Again
the expected total test cost is expressed as a function of MTBF and the sample size. Also,
when the MTBF is kept constant, the expected total test cost will decrease as the sample
size increases; and when the sample size is kept constant, the expected total test cost will
decrease as the sample size increases. The reasons are the same as before (Table 5.1). Itis
found again that the expected total test cost of the DS(4,3) plan is less than the expected

total test cost of the Test Plan XVIII, for each pair of MTBFs and sample size. This means
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that using the DS(4,3) plan instead of the Test Plan XVIII will reduce the expected total test
cost for all values of MTBF and sample size. In order to compare Dean's results with
those presented in this dissertation, the last column in Table 5.2 was added, to show the
percentages saved when using the DS(4,3) plan instead of using the Test Plan XVIII in the
replacement case. It can be seen that the maximum saved is 30.90%, and occurs when the
MTBF is 1000 hours and the sample size is 20 items; and the minimum saved is 21.82%,
occurring when the MTBF is 100 hours and the sample size is 100 items again with the
previously assumed input values.

In this chapter cost comparisons between the DS(4,3) plan and the Test Plan X VIII
of MIL-STD-781B were presented, not only to illustrate the evaluation method introduced
in this dissertation but also to discuss the results obtained by Dean. In both examples our
results show that the use of the deferred state life test plan can reduce the overall sampling
test cost. In some cases the savings are very substantial.

It is important to realise that the deferred state life test plans are not designed to
replace all other types of life test plans. The development of the deferred state life test plans
provides the user with one more choice when selecting a life test plan to test the submitted
lots. The expected total test cost is one of the major factors that concern most of the users.
In some situations, the deferred state life test plans can reduce the expected total test cost

such as in the example discussed in this chapter.

-77 -



Table 5.1.  Cost comparison between Test Plan XVIII with replacement of MIL-STD-
781B and the DS(4,3) plan with replacement.

Expected total test cost (in dollar) Amount saved with

MTBF Sample size DS(4,3) plan
(in hour) (in unit) DS(4,3) plan Test Plan XVIII (in percentage )
1000 20 504140 558918 9.80%

40 274844 327869 16.17%

60 199079 251519 20.85%

80 161697 213844 24.39%

100 139667 191639 27.12%

750 20 378605 419689 9.79%
40 206883 246652 16.12%

60 150309 189640 20.74%

80 122523 161634 24.20%

100 106250 145230 26.84%

500 20 253070 280460 9.77%
40 138922 165435 16.03%

60 101540 127760 20.52%

80 83348 109423 23.83%

100 72834 98820 26.30%

250 20 127535 141230 9.70%
40 70961 84218 15.74%

60 52770 65880 19.90%

80 44174 57211 22.79%

100 39417 52410 24.79%

100 20 52214 57692 9.50%
40 30184 35487 14.94%

60 23508 28752 18.24%

80 20670 25885 20.15%

100 19367 24564 21.16%

-78 -



Table 5.2.  Cost comparison between Test Plan X VIII with replacement of MIL-STD-

781B and the DS(4,3) plan with replacement when using Dean's results.

Expected total test cost (in dollar) Amount saved with

MTBF Sample size DS(4,3) plan
(in hour) (in unit) DS(4,3) plan Test Plan XVIII (in percentage )
1000 20 374865 542489 30.90%

40 235760 336796 30.00%

60 179641 253487 29.13%

80 153165 213920 28.40%

100 139766 193720 27.85%

750 20 281661 407379 30.86%
40 177557 253334 29.91%

60 135731 191115 28.98%

80 116136 161702 28.18%

100 106312 146777 27.57%

500 20 188458 272269 30.78%
40 119355 169873 29.74%

60 91820 128743 28.68%

80 79108 109485 27.75%

100 72858 99835 27.02%

250 20 95253 137159 30.55%
40 61152 86412 29.23%

60 47910 66372 27.82%

80 42079 57268 26.52%

100 39404 52892 25.50%

100 20 39332 56094 29.88%
40 26231 36335 27.81%

60 21564 28949 25.51%

80 19862 25937 23.42%

100 19332 24727 21.82%
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CHAPTER VI
THE MINIMUM EXPECTED TEST COST OF THE DEFERRED STATE
LIFE TEST PLAN WITH REPLACEMENT

The selection of an appropriate deferred state life test plan and the determination of
the total test time of the selected deferred state life test plan were discussed in Chapter III.
In this chapter, the determination of the optimal sample size for a deferred state life test plan
will be presented, so that the minimum expected total test cost can be found.

Consider the DS(4,3) plan discussed in the last chapter. The expected total test
costs of DS(4,3) plan in terms of the mean-time-between-failures and the sample size were
listed in Table 5.1. Itis observed that the expected total test cost will decrease as the
sample size increases when the mean-time-between-failure is fixed. Obviously, as the
sample size increases, the total cost of testing each sample will increase. On the other
hand, as the sample size increases, the calendar waiting time of the lot will decrease so that
the total carrying cost per lot will decrease. Based on the previously assumed input values,
the increase in cost is less than the decrease in cost so that the expected total test cost will
decrease as the sample size increases. It is interesting to know, for given mean-time-
between-failures, whether the expected total test cost will always be decreasing or whether
it will decrease to a certain minimum point and then increase again. Table 6.1 shows the
expected total test costs of the DS(4,3) plan with replacement with the previously assumed
values except the lot size of 2000 and sample sizes from 100 to 2000, with increments of
100.

Figure 6.1 shows the expected total test cost curves of the mean-time-between-
failures of 1000, 750, 500, 250 and 100 hours with various sample sizes. All the curves
are concave down with only one minimum point for each curve, and we see that, for the

above values of mean-time-between-failure the optimal expected total test costs are
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$ 234515.20, $ 198442.40, $ 157573.10, $ 107446.20 and $ 65860.94 for sample sizes
of 1900, 1700, 1400, 1000 and 600 respectively.

This leads us to three observations regarding the above example. The first
observation is that, for increasing values of mean-time-between-failure, the expected total
test cost decreases to a certain minimum and then increases again as the sample size
increases. When the sample size increases, the total cost of testing each sample will
increase and the total carrying cost per lot will decrease at the same time. When the sample
size increases, the increase in cost is less than the decrease in cost before the minimum
expected total test cost is reached, so that the expected total test cost is decreasing. When
the sample size increases, the increase in cost is greater than the decrease in cost after the
minimum expected total test cost is reached, so that the expected total test cost is increasing.

The second observation is that the minimum expected total test cost will decrease
when the mean-time-between-failure decreases. It is obvious that the total accumulated test
time of the life test will decrease when the mean-time-between-failure decreases since the
total accumulated test time is 4.2 times the mean-time-between-failure of the test items. As
the total accumulated test time of the life test decreases, the total cost of testing time per
sample and the total carrying cost per lot will decrease. Consequently, the expected total
test cost will decrease when the mean-time-between-failure of the test items decreases.

The third observation is that the minimum expected total test costs for different
values of the mean-time-between-failure do not occur in the same sample size. Although
the total cost of testing each sample will increase as sample size increases, the increasing
rates are different for different values of the mean-time-between-failure. Similarly, the
decreasing rates of the total cost of testing each sample are also different for different values
of the mean-time-between-failure. As a result, the minimum expected total test costs occur

for different values of sample size for different values of the mean-time-between-failure.
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Finally, the exact value of the optimal sample size for minimising the expected total
test cost for the DS(4,3) plan with replacement can be easily obtained. For example,
consider the test items with mean-time-between-failure of 1000 hours. From Table 6.1, we
see that the minimum expected total test cost is $ 234515.20 for sample size 1900. Since
the increments of the sample size in Table 6.1 are 100, the exact minimum expected total
test cost might not occur in the sample size of 1900. Hence we constructed Table 6.2
showing the expected total test cost of the DS(4,3) plan with replacement for sample sizes
between 1900 and 1930 with increments of one; we find that the exact minimum expected
total test cost is $ 234505.10, for sample sizes 1919, 1920 and 1921. In addition, Figure
6.2 shows the expected total test cost of the DS(4,3) plan in detail, for sample sizes from
1911 to 1928 with increments of one; clearly the minimal expected total test cost will be

obtained for sample sizes of 1919, 1920 and 1921.
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Table 6.1. The expected total test costs of the DS(4,3) plan with replacement for various

mean-time-between-failure values.

MTBF Sample size Expected total test cost
(in hour) (in unit) (in dollar)
1000 100 1889911.00
200 973730.50
300 671669.80
400 523139.60
500 436021.30
600 379609.10
700 340743.40
800 312844.00
900 292255.70
1000 276785.00
1100 265036.20
1200 256078.90
1300 249269.00
1400 244146.10
1500 240372.90
1600 237696.40
1700 235923.00
1800 234902.20
1900 234515.20
2000 234666.80
750 100 1418935.00
200 733048.80
300 507753.00
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500

400
500

700

800

900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
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397605.20
333516.50
292457.30
264557.80
244883.30
230692.00
220339.00
212777.40
207309.40
203451.90
200859.80
199279.80
198522.50
198442.40
198926.80
199886.50
201250.30

947956.90
492365.60
343835.10
272070.00
231010.80
205304.70
188371.80
176922.10
169127.90
163892.50
160518.10
158539.50
157634.50
157573.10
158186.50
159348.20



250

100

1700
1800
1900
2000

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

100
200
300
400
500
600
700
800
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160961.50
162951.10
165257.60
167833.50

476978.40
251682.80
179917.50
146535.00
128505.30
118152.30
112185.80
108961.00
107563.90
107446.20
108259.00
109769.70
111817.20
114286.50
117093.20
120174.10
123480.70
126975.50
130628.80
134416.70

194391.20
107273.00
81567.00
71213.94
67002.13
65860.94
66474.31
68184.38



900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

70625.56
73578.50
76903.63
80507.88
84326.88
88314.56
92437.25
96669.63
100992.20
105390.10
109851.50
114366.60

- 86-



Table 6.2.  The expected total test costs of the DS(4,3) plan with replacement when the

mean-time-between-failure of the test items is 1000 hours.

Sample size (in unit) Expected total test cost (in dollar)
1900 234515.20
1901 234514.10
1902 234513.20
1903 234512.30
1904 234511.50
1905 234510.60
1906 234510.00
1907 234509.30
1908 234508.60
1909 234508.00
1910 234507.50
1911 234507.00
1912 234506.60
1913 234506.20
1914 234505.90
1915 234505.60
1916 234505.50
1917 234505.30
1918 234505.20
1919 234505.10
1920 234505.10
1921 234505.10
1922 234505.30
1923 234505.40
1924 234505.60
1925 234505.90
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1926
1927
1928
1929
1930

234506.20
234506.50
234507.00
234507.40
234508.00
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Figure 6.1. The expected total test costs of the DS(4,3) plan with replacement for various mean-time-between-failure values,
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CHAPTER VII
SUMMARY AND CONCLUSIONS

In this dissertation, a review of the current lot-by-lot acceptance sampling plans by
attributes was presented in Chapter II. In most current sampling plans, the decision to
accept or reject a submitted lot depends only on the sampling test results of the current lot.
Information from other lots will not be considered when making this decision. Usually, a
submitted lot will be accepted if and only if the number of defective items in the test sample
is less than the predetermined maximum allowable defective number; otherwise, the
submitted lot will be rejected, without any further considerations. Baker (1971) developed
the deferred state attribute acceptance sampling plan in the field of quality control. Those
sampling plans use subsequent lots information for the decision to accept or reject the
current lot; they are identified as DS(r,b) plans. Instead of making a simple acceptance or
rejection decision, one of the following three decisions is made;

1) Accept the entire lot if there are r or fewer defective items in the test sample,
2) Defer the decision if there are r+1 to r+b defective items in the test sample, and
3) Reject the entire lot if there are more than r+b defective items in the test sample.

Dean (1971) used the concept of deferred state attribute acceptance sampling plans
in truncated life test plans to develop the deferred state life test plans. The selection of the
deferred state life test plans was discussed in Chapter III, as well as calculation of the total
accumulated test time T after an appropriate DS(r,b) is chosen. When usin g a deferred state
life test plan, a sample of n items is selected and placed on life test. The life test will be
terminated until the predetermined total accumulated test time T is reached or the r+b+1th
failed item is found. One of the following three decisions is made after the life test:

1) Accept the entire lot if there are r or fewer failed items in the test sample during the total
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accumulated test time T,

2) Defer the disposition decision of the current lot if there are r+1 to r+b failed items in the
test sample during the total accumulated test time T, and

3) Reject the entire lot if there are more than r+b failed items in the test sample during the
total accumulated test time T.

The failed items during a life test can be replaced by new ones drawn from the
remainder of the same lot. Dean developed a cost model for the deferred state life test plan
with replacement and he also evaluated the expected total test cost for the DS (4,3) plan with
replacement. Then he compared the results with the expected total test cost of the Test Plan
XVIII of MIL-STD-781B in the replacement case since these two plans have almost
identical operating characteristic curves, i.e. they provide the same producer and consumer
protection.

This dissertation focussed on the deferred state life test plans. Our major concern
was with the expected total test cost of the deferred state life test plan with replacement, in
order to see whether the use of the deferred state life test plan can reduce the overall total
test cost. For this comparison, the expected total test costs of the DS(4,3) plan with
replacement and the Test Plan X VIII with replacement of MIL-STD-781B were discussed
in detail. For the DS(4,3) plan, the total accumulated test time will be 4.2 times 0 , the
mean-time-between-failure of each test item, as compared to a total accumulated test time of
9.40 for the Test Plan XVIII of MIL-STD-78 1B, so that the total accumulated test time
would be reduced by using the DS(4,3) plan instead of the Test Plan XVIII of MIL-STD-
781B; consequently, the total cost of testing time per sample could be reduced. But one of
the limitations of the deferred state life test plans is that a waiting line may be formed by
lots placed in a deferred state. Therefore the waiting time of the submitted lots before

disposition will increase when the DS(4,3) plan is substituted for the Test Plan XVIII of
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MIL-STD-781B. As aresult, the carrying cost of the submitted lots will increase with the
DS(4,3) plan.

In order to evaluate the expected total cost of the DS(4,3) plan, we introduced in
Chapter IV a cost model for the DS(r,b) plan with replacement, based on the assumption
that failed items during the life test will be replaced by new ones drawn from the remainder
of the same lot. The expected total test cost for the DS(r,b) plan with replacement was then
obtained by substituting the required data into the formulas in Chapter IV. In addition, in
Chapter V a cost model was developed for the Test Plan XVIII with replacement of MIL-
STD-781B, on the same replacement assumption, so that the cost comparisons could be
made. The expected total test cost for the Test Plan XVIII with replacement of MIL-STD-
781B was then obtained by substituting the required date into the formulas in Chapter V.

Two computer programs written in FORTRAN language are presented in
Appendices C and D. The first one, used to calculate the expected total cost of the DS(r,b)
plans with replacement by means of the formulas developed in this dissertation, can be
found in Appendix C. The other computer program, used to calculate the expected total test
cost of the Test Plan X VIII with replacement of MIL-STD-781B by means of the formulas
also developed in this dissertation, can be found in Appendix D. On the basis of assumed
input values the expected total test costs of the DS(4,3) plan and the Test Plan X VIII of
MIL-STD-781B were obtained and the results appear in Appendices C and D. With these
results the cost comparisons were made and discussed in Chapter V.

With these assumed input values, the expected total test cost of the DS(4,3) plan
appeared to be less than the expected total test cost of the Test Plan XVIII of the MIL-STD-
781B for each pair of mean-time-between-failure and the sample size, thus indicating that
the expected total test cost will be reduced when the DS(4,3) plan is used instead of the

Test Plan X VIII of MIL-STD-781B for all values of mean-time-between-failures and
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associated sample sizes. The maximum amount saved was around 27% in this example.
Furthermore, the results of the cost comparisons in this dissertation are similar to those in
Dean (1971) when the same assumed input values are used for the evaluations. In
addition, the minimum expected total test cost of the deferred state life test plan with
replacement was discussed in Chapter VI.

Finally, it is important to realize that the development of the deferred state life test
plan is to provide one more choice in the selection of a life test plan rather than to replace all
other types of life test plans. It is believed that the deferred state life test plan can reduce
the overall test cost under some situations, such as in the example discussed in this

dissertation.
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CHAPTER VIII
RECOMMENDATIONS FOR FUTURE RESEARCH

In this dissertation, the deferred state sampling plans discussed are the fundamental
models of the deferred state sampling plan, also called fixed deferred state sampling plans.
Some other deferred state sampling plans could be formed after making some major or
minor modifications in the fixed deferred state sampling plan. In this dissertation, a cost
model was developed for the fixed deferred state attribute acceptance sampling plans with
replacement. With this cost model, one can evaluate the expected total test cost before a
deferred state sampling plan is used. Cost comparisons were also made between the fixed
deferred state sampling plan, DS(4,3), and the Test Plan XVIII of MIL-STD-781B in the
replacement case, since both plans can provide the same producer and consumer protection.
The results of the cost comparisons showed that the fixed deferred state sampling plan can
reduce the overall test cost. Further research could concern the development of cost models
for modified deferred state sampling plans in order to see whether the overall test cost can
be reduced with these modified sampling plans instead of other types of sampling plans
which can provide the same producer and consumer protection. Some modified deferred
state sampling plans will be suggested in this chapter.

Multiple deferred state sampling plans are an extension of the fixed deferred state
sampling plans developed by Baker (1971). The feature of these multiple deferred state
sampling plans is that the conditional decisions depend on the disposition of a multiple
group of future lots. Early detection of quality degradation is emphasized. Baker
categorized these multiple deferred state sampling plans by MDS(r,b,m), here r denotes the
maximum number of allowable defective items for unconditional acceptance, b denotes the

maximum number of additional defective items for conditional acceptance, and m denotes
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the number of future lots in which conditional acceptance is based. The operating

procedure for the multiple deferred state sampling plans is outlined by the following steps;
Step 1 - For lot number k, select a random sample of n items from the submitted lot and
determine the number of defective items.
Step 2 - Accept the lot if there are r or less defective items in the sample. For more thant
defective items, the decision to accept or reject the current lot is dictated by the
following courses of action;
r+1 to r+b defective items - Defer the decision until the disposition of the next m
lots are obtained. If the next m lots are all accepted
then accept the current lot number k. If any of the
next m lots are rejected then reject the current lot
number k.

rH defective items (i > b) - Reject lot number k.

Step 3 - Increment k by 1 and return to step 1.

Plan evaluation, plan comparisons, and plan limitations of the multiple deferred state

sampling plans could be found in Baker (1971).

Baker also developed the dependent-deferred state sampling plans. The feature of
these sampling plans is that the decision to accept or reject a submitted lot will use the
information of both past lots and future lots. Baker designated the dependent-deferred state
sampling plans be DD(r,b,m), here r denotes the maximum number of allowable defective
items for unconditional acceptance, b denotes the number of additional defective items for
dependent decision, and m denotes the next number of allowable defective items for a
deferred decision. The operating procedure for the dependent-deferred state sampling plans
is outlined in the following steps;

Step 1 - For lot number k, (k > b), select a random sample of n items from the submitted
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Step 2 -

Step 3 -

lot and determine the number of defective items.

Accept the lot if there are r or less defective items in the sample. For more than r

defective items, the decision to accept or reject the current lot is dictated by the

following courses of actions;

r+1 defective items - Observe the disposition of the bth historical lot
which has already been accepted or rejected
ignoring those lots in a deferred state, and accept
lot number k if the bth historical lot was accepted.

Otherwise, reject lot number k.

r+b defective items - Observe the disposition of the most recent lot that
has already been accepted or rejected, and accept
lot number k if this most recent lot was accepted.
Otherwise, reject lot number k.

r+b+1 defective items - Defer the decision until the disposition of lot
number k+m is obtained. If lot number k+m is
accepted, then accept lot number k. Otherwise,

reject lot number k.

r+b+m defective items - Defer the decision until the disposition of lot
number k+1 is obtained. If lot number k+1 is
accepted, then accept lot number k. Otherwise,
reject lot number k.

r+b+i defective items (i > m) - Reject lot number k.

Increment k by 1 and return to step 1.
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Plan evaluation, plan comparisons, and plan limitations of the dependent-deferred state
sampling plans can be found in Baker (1971).
Dean (1971) developed another deferred state life test plan which was called
group/system deferred state life test plan. The basic assumption for these deferred state life
test plans is that a single failure of a system's component parts may not result in failure of
the system itself so that the consumer may accept a system which experiences one or more
failures. Dean designated the group/system deferred state life test plan by GDS(r,b,m).
Here r denotes the maximum number of failures in order for the system to be
unconditionally accepted, b denotes the maximum number of additional groups each
comprised of m failures which will qualify the system for deferred sentencing, and m
denotes the number of system failures comprising one group. The operating procedure for
the group/system deferred state life test plan is outlined in the following steps;
Step 1 - Place the submitted system number k to the life test and determine the number of
failed parts.
Step 2 - Accept the system if there are r or less failures in the system. For more than r
failures, the decision to accept or reject the current system is dictated by the
following courses of action;
r+1 to r+m failures - Defer decision to accept or reject the current
system until the disposition of system number k+b
has been determined. If system k+b is accepted,
accept system number k. If system number k+b is
rejected, reject system number k.

r+m+1 to r+2m failures - Defer decision to accept or reject the current
system until the disposition of system number

k+b-1 has been determined. If system k+b-1 is
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accepted, accept system number k. If system
number k+b-1 is rejected, reject system number k.
r+(b-1)m+1 to r+bm failures - Defer decision to accept or reject the current
system until the disposition of system number k+1
has been determined. If system k+1 is accepted,
accept system number k. If system number k+1 is
rejected, reject system number k.
r+i failures (i > bm) - Reject the system number k.
Step 3 - Increment k by 1 and return to step 1.
Detailed information for the group/system deferred state life test plan can be found in Dean
(1971).

In addition, some other modified deferred state sampling plans could be developed.
For instance, the concepts of the multiple deferred state sampling plans and the dependent-
deferred state sampling plans could be combined together to develop a multiple dependent-
deferred state sampling plans. Also, the concepts of the group/system deferred state
sampling plans and the dependent-deferred state sampling plans could be combined
together to develop a group/system dependent-deferred state sampling plans. After a new
deferred state sampling plan is introduced, the cost models could be developed in the
similar way which was discussed in this dissertation.

In conclusion, different deferred state sampling plans can be introduced in order to
satisfy the requirements of different circumstances. Development of cost models could
help the sampling user to select an appropriate sampling test plan which dose not only
provide the adequate producer and consumer protection but also reduces the overall

sampling test cost.
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APPENDIX A
STATISTICAL ASPECTS

The Binomial Probability Distribution
The binomial probability distribution is one of the discrete probability distributions.

It represents successive terms in the binomial expansion of (p + q)™ for an integer n, with

p+tq=1

(p+q)" =p" +npn"1q+n—(né-——l—)pn_zq2 + ... +q". (A1)
Sometimes, we are interested only in one or two terms of the binomial expansion. For
example, if a sample of items is selected from a population of an infinite number of items or
from a steady flow of items produced by a unique source, and each item can be classified
by attributes such as good or defective, pass or fail, etc. with probabilities p and q
respectively, the binomial distribution will be used, provided that the assumption of
independent trials is satisfied, i.e. the probability of occurrence of a defective item in one

trial does not affect the probability of occurrence of a defective item in another trial. With

the notation
P,  =probability of x defective items in the sample,
n = number of trials or sample size,
X = number of defective items in the sample,
p  =fraction defective in the population, and
q  =1-p=fraction good in the population,

the probability that x items in the sample are defective is
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!
= pRgPX, (A2)

P. =
X! (n=x)!

If p is equal to g, the distribution is symmetrical; otherwise, it is asymmetrical. The
symmetry property is not affected by the sample size, n. However, the distribution will
tend to become symmetrical when the sample size gets large enough regardless of the
degree of difference between p and q. The shape of the distribution depends on the sample
size, n, and the fraction defective, p. Changing either n or p will result in a different
distribution. Values of the binomial probability distribution can be obtained from formula
(A.2) or from binomial distribution tables. Since three variables (n, p, and x) are involved
in this distribution, these tables require a large amount of space. The mean and the variance

of this distribution are np and np(1 - p) respectively.

The Poisson Probability Distribution

The Poisson probability distribution is also a discrete probability distribution. This
distribution is used for problems involving the number of occurrences of some event per
unit of time or per sample, and these occurrences are random and independent of each
other. The probability of x occurrences per unit for a Poisson distribution, in terms of the

mean number of occurrences per unit A, is

et

P, = ‘
x!

(A.3)

Poisson probabilities can be easily determined from (A.3) or from Poisson distribution
tables. Since only two variables (x and A.) are involved in the distribution, such tables do

not require a large amount of space.
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Generally, the Poisson distribution is skewed; however, it will become symmetric
when A gets larger. The variance of this distribution equals the mean A. The binomial
distribution distribution tends to the Poisson distribution for large n as the mean value, np,
gets larger while p (or q) becomes smaller; the simpler Poisson probability distribution is a
good approximation to the binomial probability distribution if n 2 20, p < 0.1, and np <5
(Bowker, 1972; Duncan, 1974). Replacing n by A makes it simple to obtain approximate

binomial values from (A.3) or from Poisson distribution tables.

The Hypergeometric Probability Distribution

The hypergeometric probability distribution is also a discrete probability
distribution. It is applicable to a population with a finite number of items from which
random samples are taken without replacement. In terms of

Py = probability of x defective items in the sample,

N =lot size,

n =sample size,

X =number of defective items in the lot, and

x = number of defective items in the sample,

the probability of x occurrences is

Py = Qg:—g (A4)
)

The binomial probability distribution is a good approximation to the more complicated

hypergeometric probability distribution if N is at least ten times n. When p is replaced by
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%, Py can be calculated by (A.2) or from binomial distribution tables. Furthermore, if
n 2 20, p £ 0.1, and np < 5, the even simpler Poisson probability can be used to

approximate the hypergeometric probability distribution by putting A = P——;{— The mean

and the variance of a hypergeometric distribution are nX and ("‘n?'(‘)(l - KJ(N — n)
N N NAN-1

respectively.

The Exponential Distribution

The exponential distribution is a continuous distribution. It is applicable to
problems involving occurrences such as the time to failure of an item or system, if such
occurrences are independent of whatever happened before. The exponential density
function in terms of rate of occurrence A and of elapsed time t before occurrence of event

often has the form

£(t) = he ™M, £20 (A.5)

and cumulative distribution function

F(t) = j(;f(x) dx £20
= J.(;Ke_}‘x dx, or
F(t)= 1-e M, (A.6)

This distribution has the property of "having no memory", i.e. at any time the
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probability that the next occurrence will take place after a time interval h does not depend on
how long ago any previous events may or may not have occurred. This can be shown as

follows:
PT>t)= jt‘” AeMds
- (A7)

Hence, for t > 0 and any positive h,

_P(T>t+h)

P(T=2t+hIT 2>t
( ) P(T>t)

e—x(t+h)

= P(T > h). (A.8)

For example, if the distribution of life of an electric bulb is exponential, the
probability that a light bulb will survive to 100 hours given that it has already survived to
50 hours is the same as the probability that a new bulb will survive to 50 hours. But the
failure rate, i.e. rate of occurrence, is constant only within the useful life period. If the
useful life of this bulb is 1000 hours, the failure rate will remain constant until the operating

time approaches 1000 hours, by which time the failure rate will increase.
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There exists a relationship between the exponential and Poisson distributions. If
the distribution of occurrences of an event is a Poisson distribution, then the distribution of

the time between occurrences is an exponential distribution. The mean of an exponential

distribution is -7{— and the variance of this distribution is 7%2

The Gamma Distribution

The gamma distribution is a continuous distribution with density function is

km tm—l

M t>20,A >0,andm > 0. (A.9)
I'(m)

gl =

Usually, m is called the shape parameter and A is called the scale parameter. With different
values chosen for m and A, the gamma distribution can exhibit many different shapes.
I"(m) is called gamma function and it is given by

T'(m) = j: 0 le Xy (A.10)

when m is an integer, I'(m) = (m - 1)!. For general m, the cumulative gamma distribution

function is
t
G(®) = jo g(x) dx. (A.11)

When m is a positive integer, formula (A.11) can be evaluated by integration by parts and

may be written as
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m-1 i
Goy=1- Y & h t2 0. (A.12)

il
i=0

In formula (A.12), it may be seen that the cumulative gamma distribution can be evaluated
as the sum of m Poisson terms with parameter At.

When 0 < m < 1, the gamma distribution function, G(t), is an increasing failure rate
distribution. If m = 1, G(t) isequalto 1 - e"Lt which is an exponential distribution. When
m > 1, G(t) is an decreasing failure rate distribution. Furthermore, if the parameter m is an
integer, the gamma distribution function is the distribution of the sum of m independently
exponential random variables which have the same failure rate, A. In other words, if
X1,X9, ... ;X are independently and identically distributed exponential distribution with
the same failure rate, A, then x+xy+ ... +X;, is a gamma distribution with parameter m

and A. The mean of a gamma distribution is —%rj— and the variance of this distribution is -}—\n%
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APPENDIX B
SOME EVALUATION TECHNIQUES FOR ACCEPTANCE SAMPLING

OC Curve

The operating characteristic (OC) curve is one of the common evaluation techniques
and the most important characteristic of sampling plans. It shows the discriminatory power
of a sampling plan. The greater the slope of the OC curve, the greater the discriminatory
power (Montgomery, 1985). The OC curve gives the probability of acceptance, P,,ofa
submitted lot as a function of the fraction defective of that lot is known.

As an example, the OC curve for the single sampling plan: N = 5000, n = 100, and
¢ =2, is shown in Figure B.1. The fraction defective, P, is on the x-axis and the
probability of acceptance of a lot, P,, is on the y axis. From Figure B.1, the probability of
acceptance of a specific lot can be read off for a given fraction defective of the lot. For
example, if the fraction defective of a submitted lot is 0.035, the probability of acceptance
of the lot is 0.32.

There are two types of OC curve: the type A OC curve and the type B OC curve. If
the lot is an isolated lot with finite size, a type A OC curve is used. For this situation, the
probability of acceptance of the lot should be calculated from the hypergeometric
probability distribution (Appendix A). On the other hand, if the lots are taken from a
steady flow of items which are produced by a single source, a type B OC curve is used,
and the probability of acceptance of the lots should be calculated from the binomial
probability distribution (Appendix A). In this dissertation, all OC curves discussed will be

type B OC curves.
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Average Outgoing Quality

The average outgoing quality (AOQ) is the basis for an evaluation technique used in
acceptance sampling (Besterfield, 1986). Consider lots taken from a steady flow of items
and inspected according to a specific sampling plan. Some lots are accepted and shipped to
the consumer. But some lots are rejected and returned to the producer. When the producer
receives a rejected lot, all items in the lot are inspected and, after all defective items found
are replaced by good items the lot with 0% defectives will be sent to the consumer. Such
an acceptance sampling plan is called a rectifying inspection plan. In the long run, the
average outgoing lot quality (AOQ), i.e. the average fraction defective, for all lots received
by the consumer, is determined. For large lot sizes and relatively small sample sizes, AOQ
can be approximately determined by multiplying the fraction defective of a submitted lot

with the probability of acceptance of the lot (Burr, 1979; Montgomery, 1985), i.e.

AOQ = pxP,. (B.1)

For example, consider the single sampling plan with N =5000,n=80 andc = 1.
First of all, P, values are calculated. Then the AOQ values follow from formula (B.1).
The AOQ values for some assumed fraction defectives are calculated in Table B.1.

The AOQ curve for this single sampling plan is plotted in Figure B.2. From Figure
B.2, the AOQ value can be read off for a given fraction defective. For example, if the
fraction defective of a submitted lot is 0.035, the average outgoing quality will have a
fraction defective of 0.0081. The maximum value in the AOQ curve is called the average
outgoing quality limit (AOQL). For our example, the AOQL value is approximately 0.011
fraction defective. Therefore, the average outgoing quality values could not be higher than

0.011 for the single sampling plan of our example, regardless of the fraction defective of
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the incoming lots. Similarly, the AOQ formulas for a double sampling plan and a multiple

sampling plan can be approximately determined by

AOQ = pX(Pa)n1+n2 (B.2)
and

AOQ = px(Py 4 .. 4n ®3)

k
respectively. The average outgoing quality of double and multiple sampling plans can be

easily obtained from formulas (B.2) and (B.3).

Average Total Inspection

The average total inspection (ATI) is other an evaluation technique used in
rectifying inspection plans. ATI, which is based on the average number of items inspected
per lot, includes the number of items inspected in a sample as well as the remaining items
inspected in the lot when the lot is rejected. When choosing a sampling plan, it is not
sufficient to consider only the AOQ values. Both AOQ and ATI values are required to
specify an unique sampling plan. For a single sampling plan, ATI can be determined in

terms of lot size N, sample size n and probability of acceptance of the lot P, from
ATI=nP, +N(1-P,). (B.4)

For example, consider single sample plan N = 5000, n = 80, and ¢ = 1. The ATI
values are calculated from (B.4) and are shown in Table B.2. The corresponding ATI
curve is plotted in Figure B.3. For a fraction defective of a submitted lot 0, the ATI is

equal to 80, i.e. the sample size. Since a submitted lot without defectives must be
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accepted, no more inspection is needed after inspecting the sample so the ATI must equal
the sample size. When the fraction defective of a submitted lot is 1, the ATI is equal to
5000, i.e. the lot size. Since the submitted lot must be rejected, 100% inspection is
required, so the ATI must equal the number of items in the lot. For all other p values, the
ATI values will lie between the sample size, 80, and the lot size, 5000.

In calculating the ATI for a double sampling plan, three cases should be considered:
(1) The lot is accepted on the first sample with ny items inspected;
(2) The lot is accepted on the second sample with ny+ ny items inspected; and
(3) The lot is rejected and all items are inspected.

The probability of the first case is (P,), 1; the probability of the second case is
Pn 2; and the probability of the third case is 1 - Pa)q 1y Therefore, the ATI formula

for a double sampling plan is

ATI=ny By +(ng+ng) (Pp)y + N [1— Padng +1ny ] (B.5)
The ATI formula for a multiple sampling plan can be constructed in a similar way:

ATI = nl(Pa)nl +. g+ .+ny) (Pa)nk+ N [1—(Pa)r11 o "'nk]' (B.6)

ATI values for double and multiple sampling plans can be easily obtained from formulas

(B.5) and (B.6).

Average Sample Number
The average sample number (ASN) is the average number of items inspected in an

acceptance sampling plan. For a single sampling plan, the ASN is equal to the sample size,
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n. For a double sampling plan, the ASN is given in terms of
ny = the size of the kth sample, and
P, ;= probability of making a decision either accept or reject the lot on the first
sample
as

ASN=nj +ny (1-Pp) (B.7)

For example, if a double sampling plan has n; =80,¢1 =1, r1 =3,ny =100,¢y =
3, and ry = 4, the probability of making a decision on the first sample is equal to the sum of

the probability of accepting the lot and the probability of rejecting the lot, i.e.

Pnl =(P1 or less)nl +P3 or more)nl' (B.8)

By substituting formula (B.8) into formula (B.7), we obtain

ASN =ng + 1y [1-(Pj or Jess)ny ~ P3 or more)n (B.9)
1 1

for calculating the ASN for this sampling plan.

For a multiple sampling plan, the formula can be derived in a similar way as in
double sampling plan; in terms of

ny = the size of the kth sample, and

Pnk = the probability of making the decision on the kth sample,
it becomes
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ASN = annl +(ng + n2)Pn2 +..+(np+npy+..+ nk)Pnk. (B.10)

Generally, ASN gives useful information for selecting an appropriate sampling plan to
minimize the inspection cost.

Up to now, we have discussed four curves: OC, AOQ, ATI, and ASN curves. The
OC curve and AOQ curve are protection curves; and ATI curve and ASN curve are cost
curves. In practice, these four curves will be unimportant if the fraction defective increases
to a value in which the probability of acceptance is 0.5 or less. In this situation, sampling
inspection should be discontinued and 100% inspection used since there will be too many
rejected lots when using sampling inspection. The producer should take action to improve
product quality. Not until a satisfactory quality level is reached, may sampling inspection

be used again.
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Table B.1. Average outgoing quality for the single sampling plan:
N=5000,n=80,and c = 1.

p np P, AOQ =pxP,
0.00 0.0 1.000 0.00000
0.01 0.8 0.808 0.00808
0.02 1.6 0.525 0.01050
0.03 24 0.309 0.00927
0.04 32 0.171 0.00684
0.05 4.0 0.091 0.00455
0.06 4.8 0.047 0.00282
0.07 5.6 0.029 0.00203

Table B.2. Average total inspection for the single sampling plan:

N =35000,n =80, and ¢ = 1.

p np P, ATI
80p 80+ (1-P,)(5000-80)
0 0 1 80
0.01 0.8 0.808 1021
0.02 1.6 0.525 2417
0.03 24 0.309 3482
0.04 32 0.171 4158
0.05 4.0 0.091 4549
0.06 4.8 0.047 4765
0.07 5.6 0.029 4880
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Figure B.1. A typical OC curve for the single sampling plan: N = 5000, n = 100, and ¢ = 2.

| ] | ] ] I ] | | ] | | ] }

0

[ | I 1 I I ] 1 | | | ] | |

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 007
Fraction defective, p



-91T1 -

0.012

0.01

0.008

Average o&%cgﬂg quality, (06
0.004

0.002

0

Figure B.2. The AOQ curve for the single sampling plan: N = 5000, n = 80, and ¢ = 1.
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Figure B.3. The ATI curve for the single sampling plan: N = 5000, n = 80, and ¢ = 1.
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APPENDIX C
COMPUTATION OF THE EXPECTED TOTAL TEST COST FOR THE
DEFERRED STATE LIFE TEST PLAN WITH REPLACEMENT

Computer Program

$JOB  WATFIV DAVE,NOEXT
INTEGER R,B,N,ENDATA,LOTSIZ
REAL CS,C1,C2,I,C,T,MTBF,EXP1,EXP2,EKRRB
READ,R,B,I,C,LOTSIZ,CS,C1,C2

C

C where R = the value of r,

C B = the value of b,

C I = the carrying cost index,

C C = the item cost,

C LOTSIZ = the total number of items in the lot,

C CS = the set-up cost,

C C1 = the cost of testing each item, and

C C2 = the cost of testing each items per unit time.
C

C This program will read in the above values and it will also read in the values of

C MTBEF and the sample size later, then calculate the expected total cost of the DS(r,b) plan
C with replacement. The results will be printed out in a table form.
C

PRINT 100,R,B
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PRINT 200,I,C,LOTSIZ
PRINT 300,CS,C1,C2
PRINT 400
PRINT 500
PRINT 600
ENDATA =0
EXCUTE RDDATA
WHILE (ENDATA .EQ.0) DO
CALL EXPYVAR,B,T,MTBF,EXP1)
CALL EXPWAT(R,B,T,MTBF,EXP2)
EKRRB = I*C*LOTSIZ / N*(EXP1+T*EXP2) + CS + C1*N + C2*EXP1
PRINT 700,MTBF,N,EKRRB
EXECUTE RDDATA
END WHILE
PRINT 400
STOP
C
100 FORMAT('1',THE EXPECTED COST OF DS(,I1,",''11,) PLAN WITH
*REPLACEMENT WHEN")
200 FORMAT(0','T = ""F4.2,'),) C = "F5.2,)', LOT SIZE = ']I3,,)
300 FORMAT( '/CS = "F7.2,),) C1 = "F5.2,', AND', C2 = "F5.2,"))

400 FORMAT(0',

500 FORMAT('0', MTBF ',5X,'SAMPLE SIZE',5X,'EXPECTED TOTAL TEST
*COST)

-119 -



600  FORMAT(0',----m-- ) GU—— ) q— -

700 FORMAT('0",F7.2,9X,13,14X,F10.2)
C
C The following remote block RDDATA will read the values of MTBF and the
C sample size until no data is found, then the calculation of the expected total cost will be
C terminated. It also calculates the value of T.
C
REMOTE BLOCK RDDATA
READ,MTBE,N
ATEND DO
ENDATA =1
END AT END
T = 4.2*MTBF
END BLOCK
END
Cc
C The following subprogram will calculate the value of the expected test time of a

C lot for the DS(r,b) plan with replacement, i.e. the numerical value of formula (4.24).

C
SUBROUTINE EXPYVA(R,B,T,MTBF,EXPY)
INTEGER R,B,COUNT,NUMI1
REAL T,MTBF,Y,Y1,Y2,FY1,FY2,SUM,TERM,WIDTH,SUM1,SUM2
* ,LAST,RSUM,LSUM,EXPY
C
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COUNT =0
SUM =0
TERM =1
WHILE ( COUNT .LE. (R+B) ) DO
SUM = SUM + TERM
COUNT = COUNT + 1
TERM = TERM*( T /MTBF )/ COUNT
END WHILE
RSUM = T*EXP( -T / MTBF )*SUM
C
C The following section will use the "Simpson's method" to estimate the numerical
C results of the integration part in formula (4.24).
C
WIDTH =T/ 100
SUM1 =SUM2 =0
Y =WIDTH
LAST =T - 3.0*WIDTH
WHILE (Y .LE. LAST ) DO
Yi=Y
CALL F(R,B,MTBF,Y1,FY1)
SUM2 = SUM2 + FY1
Y1 =Y + WIDTH
CALL F(R,B,MTBF,Y1,FY1)
SUMI1 = SUM1 + FY1
Y=Y +2.0*WIDTH
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END WHILE

Y1=T- WIDTH

CALL F(R,B,MTBE,YLFYI)

SUM2 = 4.0%( SUM2 + FY1)
“““ SUMI = 2.0%+SUM1

Y1=T

CALL F(R,B,MTBE,Y1FY1)

LSUM = (SUM2 + SUM1 +FY1 *WIDTH / 3.0

C
EXPY = LSUM + RSUM
RETURN
END
C
C The following subprogram will evaluate the numerical value of the function inside

C the integration part in formula (4.24).
C
SUBROUTINE F(R,B,MTBF,Y2,FY2)
INTEGER R,B,COUNT
REAL MTBF,Y2,FY2
FY2 = Y2**( R+B+1 *EXP(-Y2 /MTBF ) / ( MTBF**(R+B+1) )
COUNT =1
WHILE ( COUNT .LE. (R+B) ) DO
FY2 =FY2/COUNT
COUNT = COUNT + 1
§ END WHILE
| RETURN
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END
C
C The following subprogram will calculate the value of the expected wait for the
C number of additional lots which must be sampled, on the average, before disposition of

C the current lof. The value will be used for formula (4.37).

C
SUBROUTINE EXPWAT(R,B,T,MTBF,EXPW)
INTEGER R,B,NUM,COUNT,K,U,J,V,W,EH,C
REAL T,MTBF,TOTAL,PROBW(1000),PROBWO0,EXPW LIMIT,VALUE
* ,VALUE1
C
C The following section will calculate the numerical value of P(W = 0) for the

C DS(r,b) plan with replacement.
C
TOTAL =0
COUNT =R +1
WHILE ( COUNT .LE. (R+B) ) DO
CALL PROB(TMTBF,COUNT,VALUE)
TOTAL =TOTAL + VALUE
COUNT = COUNT + 1
END WHILE
PROBWO =1 - TOTAL
C
C The following section will initiate the value of P(W =1i) to zero for the DS(r,b)

C plan with replacement. The range of i is between 1 and 1000 and it is believed that this
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C range is large enough for this calculation purpose.

C
K=1
WHILE (K .LE. 1000 ) DO
PROBW(K) =0
K=K+1
END WHILE
C
C The following section will calculate the numerical value of P(W = 1) for the

C DS(r,b) plan with replacement.

C
NUM=R +B
CALL PROB(T,MTBF,NUM,VALUE)
PROBW(1) = VALUE*PROBWO
C
C The following section will calculate the numerical values of all P(W = i)'s for the

C DS(r,b) plan with replacement when the range of i is between 2 and b.
C
K=2
WHILE (K .LE. B) DO
TOTAL =0
U=0
WHILE (U .LE. (K-2) ) DO
E=R+B-U
CALL PROB(T,MTBF,E,VALUE)
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C
C

TOTAL = TOTAL + VALUE*PROBW(K-1-U)
U=U+1
END WHILE
CALL PROB(T,MTBF,E-1,VALUE)
PROBW(K) = TOTAL + VALUE*PROBWO0
K=K+1
END WHILE

The following section will calculate the numerical values of all P(W =1)'s for the

C DS(r,b) plan with replacement until the value of P(W =1i) is less than 0.0000001.

C

J=1
LIMIT = 1.0
WHILE ( LIMIT .GE. 1.0E-07 ) DO
TOTAL =0
V=0
WHILE (V .LE. (B-1) ) DO
H=R+B-V
CALL PROB(T,MTBF,H,VALUE])
TOTAL = TOTAL + VALUE1*PROBW(B+-1-V)
V=V+1
END WHILE
PROBW(B+]) = TOTAL
LIMIT = PROBW(B+])
J=J+1
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C
C

END WHILE

The following section will calculate the numerical value of the expected wait for

C the DS(r,b) plan with replacement.

C

C
C

W=J-1

EXPW =0

COUNT =1

WHILE ( COUNT .LE. W ) DO
EXPW = EXPW + COUNT*PROBW(COUNT)
COUNT = COUNT + 1

END WHILE

RETURN

END

The following subprogram will calculate the probability of have DATA failed

C items when the total test time is T and the mean-time-between-failure is MTBF.

C

SUBROUTINE PROB(T,MTBF,DATA,ANS)

INTEGER COUNT,D,DATA,ANS1

REAL T,MTBF,ANS

D=DATA

CALL FACT([D,ANS1)

ANS = (((T/MTBF )**DATA )*EXP(-T / MTBF) ) / ANS1
RETURN
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END

The following subprogram will calculate the numerical value of F factorial.

SUBROUTINE FACT(F,ANS2)
INTEGER F,ANS2
ANS2 =1
WHILE (F.GT. 1) DO
ANS2 =ANS2*F
F=F-1
END WHILE
RETURN
END
$ENTRY
4 3 02 500 100 1000.0 50.0 10.0

1000 20
1000 40
1000 60
1000 80
1000 100
750 20
750 40
750 60
750 80
500 100
500 20
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500
500
500
500
250
250
250
250
250
100
100
100
100
100

80
100
20

80
100
20

80
100
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Computer Output
THE EXPECTED COST OF DS(4,3) PLAN WITH REPLACEMENT WHEN

I=0.20, C=50.00. LOT SIZE = 100,
CS =1000.00, C1 = 50.00, AND C2 = 10.00.

MTBF SAMPLE SIZE EXPECTED TOTAL TEST COST
1000.00 20 504139.60
1000.00 40 274844.00
1000.00 60 199078.90
1000.00 80 161696.40
1000.00 100 139666.80

750.00 20 378605.20

750.00 40 206883.30

750.00 60 150309.40

750.00 80 122522.50

750.00 100 106250.30

500.00 20 253070.00

500.00 40 138922.10

500.00 60 101539.50

500.00 80 83348.31

500.00 100 72833.50

250.00 20 127535.00

250.00 40 70961.06
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250.00
250.00
250.00
100.00
100.00
100.00
100.00
100.00

60
80
100
20
40
60
80
100

52769.79
44174.15
39416.76
52213.98
30184.43
23507.91
20669.66
19366.70
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APPENDIX D
COMPUTATION OF THE EXPECTED TOTAL TEST COST FOR THE
TEST PLAN XVIII WITH REPLACEMENT OF MIL-STD-781B

Computer Program

$JOB  WATFIV DAVE,NOEXT
INTEGER X,N,ENDATA,LOTSIZ
REAL CS,C1,C2,I,C,T,MTBF,EXP1,EXVIII
READ,X,I,C,LOTSIZ,CS,C1,C2

C

C where X = the value of x,

C I = the carrying cost index,

C C = the item cost,

C LOTSIZ = the total number of items in the lot,

C CS = the set-up cost,

C C1 = the cost of testing each item, and

C C2 = the cost of testing each items per unit time.

C

C This program will read in the above values and it will also read in the values of

C MTBF and the sample size later, then calculate the expected total cost for using the Test
C Plan XVII with replacement of MIL-STD-781B. The results will be printed
C outin a table form.

PRINT 100

PRINT 200,I,C,LOTSIZ
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C
100

200

300

400

500

600

PRINT 300,CS,C1,C2

PRINT 400

PRINT 500

PRINT 600

ENDATA =0

EXCUTE RDDATA

WHILE (ENDATA .EQ.0)DO
CALL EXPYVA(X,T,MTBF,EXP1)
EXVIII = I*C*LOTSIZ / N¥EXP1 + CS + C1*N + C2*EXP1
PRINT 700,MTBF,N,EXVIII
EXECUTE RDDATA

END WHILE

PRINT 400

STOP

FORMAT('1'," THE EXPECTED COST OF THE TEST PLAN XVIII WITH
*REPLACEMENT OF MIL-STD-781B WHEN")

FORMAT(0',1 = "F4.2,'))) C = F5.2,",) LOT SIZE = ']13,.)

FORMAT( '/CS = "F71.2,'))) C1 = "F52,', AND', C2 = "F5.2,")

FORMAT(0',
Fomennnd)

FORMAT(0', MTBF '5X,'SAMPLE SIZE',5X,'EXPECTED TOTAL TEST
*COST')

FORMAT('0',----nn- ) S — ) G
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700 FORMAT('0',F7.2,9X,13,14X,F10.2)
C
C The following remote block RDDATA will read the values of MTBF and the
C sample size until no data is found, then the calculation of the expected total cost will be
C terminated. It also calculates the value of T.
C

REMOTE BLOCK RDDATA

READ,MTBE,N

ATEND DO

ENDATA =1

END ATEND

T = 9.4*MTBF

END BLOCK

END
C
C The following subprogram will calculate the value of the expected test time of a
C lot for the Test Plan XVIII with replacement of MIL-STD-781B, i.e. the numerical
C value of formula (5.7).

C
SUBROUTINE EXPYVA(X,T,MTBF,EXPY)
INTEGER X,COUNT,NUMI1
REAL T,MTBF,Y,Y1,Y2,FY1,FY2,SUM,TERM,WIDTH,SUM1,SUM2
* ,LAST,RSUM,LSUM,EXPY
C
COUNT =0
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SUM =0
TERM =1
WHILE ( COUNT .LE. X ) DO
SUM = SUM + TERM
COUNT = COUNT +1
TERM = TERM*( T /MTBF ) / COUNT
END WHILE
RSUM = T*EXP( -T / MTBF )*SUM
C
C The following section will use the "Simpson's method" to estimate the numerical
C result of the integration part in formula (5.7).
C
WIDTH =T/ 100
SUM1 =SUM2 =0
Y = WIDTH
LAST =T - 3.0*WIDTH
WHILE (Y .LE. LAST ) DO
Y=Y
CALL FX,MTBF,Y1,FY1)
SUM2 = SUM2 + FY1
Y1l =Y+ WIDTH
CALL F(X,MTBF,Y1,FY1)
SUM1 =SUM1 + FY1
Y=Y +2.0*WIDTH
END WHILE
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Y1=T-WIDTH

CALL FX,MTBF,Y1,FY1)

SUM2 = 4.0*( SUM2 + FY1)

SUM1 = 2.0*SUM1

Y1=T

CALL F(X,MTBF,Y1,FY1)

LSUM = (SUM2 + SUM1 + FY1 )*WIDTH /3.0

C
EXPY =LSUM + RSUM
RETURN
END
C
C The following subprogram will evaluate the numerical value of the function inside

C the integration part in formula (5.7).
C
SUBROUTINE F(X,MTBF,Y2,FY2)
INTEGER X,COUNT
REAL MTBF,Y2,FY2
FY2 = Y2**( X+1 )*EXP(-Y2 / MTBF ) / ( MTBF**(X+1) )
COUNT =1
WHILE ( COUNT .LE. X ) DO
FY2 =FY2/COUNT
COUNT =COUNT + 1
END WHILE
RETURN
END
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$ENTRY

13 0.2 50.0 100 1000.0 50.0 10.0

1000
1000
1000
1000
1000
750
750
750
750
750
500
500
500
500
500
250
250
250
250
250
100
100
100

20
40
60
80
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100
100

80
100
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Computer OQutput

THE EXPECTED COST OF TEST PLAN XVIII WITH REPLACEMENT OF MIL-STD-
781B WHEN

I=0.20, C =50.00, LOT SIZE = 100,
CS = 1000.00, C1 = 50.00, AND C2 = 10.00.

MTBF SAMPLE SIZE EXPECTED TOTAL TEST COST
1000.00 20 558918.30
1000.00 40 327869.00
1000.00 60 251519.20
1000.00 80 213844.30
1000.00 100 191639.40

750.00 20 419689.30

750.00 40 246652.00

750.00 60 189639.60

750.00 80 161633.50

750.00 100 145229.70

500.00 20 280460.00

500.00 40 165435.00

500.00 60 127760.00

500.00 80 109422.50

- 138 -



500.00
250.00
250.00
250.00
250.00
250.00
100.00
100.00
100.00
100.00
1060.00

100
20
40
60
80

100
20
40
60
80

100

98820.06
141230.10
84217.56
65880.06
57211.33
52410.07
57691.96
35486.97
28751.98
25884.49
24563.99
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