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ABSTRACT

This research is concerned with the cost model of the defered state life test plan,

which is one of the lot-bylot acceptance sampling plans by attributes. In most of the

sampling plans, the decision to accept or reject a submitted lot depends only on the

sampling test results of the lot concemed. Other information will not be considered.

Deferred state life test plan is a sampling plan which uses subsequent lots information for

making decisions to accept or reject the current lot. The advantâges of the deferred state life

test plan are in reducing both the sampling test time and the resulting sampling cost. Also,

it provides an indicator of quality degradation.

The objective of this research is to evaluate the total test cost of using the deferred

state life test plan to see whether the use of this life test plan can reduce the total test cost of

the sampling test. In order to calculate the expected total test cost of the deferred st¿te life

test plan, a cost model is developed for the deferred state life plan with replacement, i.e. the

failed items during the life test will be replaced by new ones drawn from the remainder of

the same lot.

A cost comparison is made between a deferred state life test plan and a military

standard sampling plan such that both plans can provide the same producer's and

consumer's protection. Based on some assumed input values, such as the cost of testing

an item, ttre cost of conducting the life test per unit time, etc., the expected total test cost of

conducting the defened state life test plan appeaß to be less than the expected test cost of

conducting the military standard sampling plan. As a result, it is believed that the use of the

defered state life test plan can reduce the total test cost under some situations, such as the

example discussed in this dissertation.
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CHAPTER I
INTRODUCTION

Generally, inspection plays an important role in appraising the quality of incoming

and outgoing items of a company. The results of the inspection may be reported to the

related deparrnents so that corrective actions may be taken whenever it is necessary. A

company may forrn an independent inspection deparrnent or the inspection can be done by

one or more existing departments inside the company. In general, there are three

altematives to sentence a submitted lot:

(1) inspect all items in the lot and return the defective items to the producer;

(2) use acceptance sampling to make the decision of acceptance or rejection of the entire lot;

and

(3) accept the lot without inspection.

Inspecting all items is usually not economical since it is likely to be expensive and

time consuming. Also, the inspection costs may be higher than the cost of accepting

defective items. Unless the cost of passing defective items is very high, l00%o inspection

is not desirable. On the other hand, accepting the lot without inspection is risþ because a

large amount of defective items may be accepted. Unless it is certain that the submitted lots

have high quality or that the cost of accepting defecúve items is very low, inspection is

recommended. So acceptance sampling is the most common alternative to sentence lots and

the most economical way to obtain the information about the quality of a product in a

reasonable time.

Acceptance Sampling

In some situations inspection is possible only after a process has been completed.

-r-



For example, a company receives a shipment of raw materials which will be converted into

finished products. In this situation acceptance sampling is often used under one of the

following conditions:

(1) When it is very expensive to inspect all items, a sampling tost may reduce the inspection

cost.

(2) When the items will be destroyed after inspection such as the life testing of light bulbs,

sampling tests are needed. If all the items are inspected, they will all be destroyed and

no items can be used.

(3) When inspections are done manually, a high percentage of defective items may be

passed by 100Vo inspection due to fatigue or boredom.

(4) V/hen it is impossible to inspect all items due to limited time and inspection resources,

sampling tests should be used.

Lot-byJot acceptance sampling by attributes is one of the common types of

acceptance sampling. In this dissertation, all sampling plans discussed will be lot-by-lot

acceptance sampling by atributes. When using this type of sampling, a predetermined

number of items is taken from each lot and inspected by attributes. Attributes are quality

characteristic which are shown on a " go-not-go " basis and each item in the lot can be

classifred by attributes such as conforming or nonconforming, good or defective, pass or

fail, etc. Based on the information on the inspected sample, a decision of acceptance or

rejection of the entire lot would be made. This decision is referred to as lot sentencing.

For example, if the number of defective items dose not exceed a predetermined number, the

lot is accepted; otherwise, it is rejected. Each lot is sampled and either accepted or rejected.

Accepted lots are placed into the production system of the company and rejected lots are

returned to the supplier or subjected to some other remedial action.

Acceptance sampling is one of the major areas of statistical quality control. With an

-2-



acceptance sampling plan, a random sample is taken from the submitted lot. Quality

evaluation of such a sampling plan requires the use of probability theory and statistical

methods. Several types of probability distributions used in this dissertation are presented

in Appendix A.

Some Properties of Acceptance Sampling

(1) All items in a lot should come from the same source; otherwise, the effectiveness of the

sampling plan will be affected (BesterFreld, 1986).

(2) Large lot size is preferable. V/hen the lot size increases, the sample size does not

increase as rapidly as the lot size in most sampling plans. As a result, inspection cost is

reduced (Besterheld, 1986).

(3) Random sampling must be used to avoid biases when selecting items from the entire

lot. Under random sampling, all items in the lot should have the same chance to be

chosen in the sample (Montogomery, 1985).

(4) The purpose of acceptance sampling is lot sentencing, not quality esrimarion, i.e. it is

not used to control or improve the quality of products (Montogomery, 1985).

Advantages and Disadvantages of Sampling

The advantages of sampling tests when compared with 700Vo inspection are the

following:

(1) The inspection cost is lower in sampling since fewer items are inspected.

(2) The costs of training inspectors and keeping records are lower in sampling since fewer

inspectors and fewer records are needed.

(3) When the items are desfoyed after inspection, cost will be reduced by using sampling.

(4) Since fewer items are handled by using sampling, the damage cost of handling will

-3-



decrease.

(5) The aggregate inspection elror may be reduced by using sampling since fewer items are

inspected.

The disadvantages of sampling tests when compared with 1ffi7o inspection are the

following:

(1) Since not all the items are inspecæd, there are risks of rejecting good lots and of

accepting defective lots.

(2) The cost of planning is higher in sampling testing than lNVo inspection.

(3) Not all information about the lot for quality evaluation can be obtained by using

sampling.

General Assumptions

l,ot-byJot acceptance sampling by attributes is one of the common types of

acceptance sampling. In this dissertation, all sampling plans discussed will be lot-by-Iot

acceptånce sampling by attributes. When a company receives a shipment of goods, each

item is packed inside a lot. With lot-by-lot acceptance sampling by attributes, a sample of a

predetermined number of items is taken from each lot. Each item in the sample is inspected

by attributes. That is, a quality characteristic of the items in the sample is inspected. After

inspection, each item can be classified either as a good item when it conforms to the

required standard or as a defective item when it does not. Based on the information of this

inspected sample, a decision of acceptance or rejection of the enthe lot will be made.

The operating characteristic (OC) curve is a means to evaluate a sampling plan. The

oc curves are discussed in Appendix B. There are two types of oC curve: type A oc
curye and type B OC curve. If the lot is an isolated tot with finite size, a type A OC curye

-4-



is used- But if the lots are taken from a steady flow of items which are produced by a

single source, a type B OC curve should be used- With lot-by-lot acceprance sampling by

attributes, a type B OC curve may also be used.

A sampled item may also be tested using a life test plan. For example, a sample of

a predetermined number of items is taken from a submitted lot. Each item, for example a

light bulb, is allowed to operate until it fails or a predetermined total test time is reached-

Then the number of failed items is counted. Based on this information, a decision

regarding disposition of the submitted lot could be made. The failure distribution for each

item is assumed to be an exponential distribution and each failing item fails during its useful

life period, i.e. it dose not fail due to wearout effects. The probabiliry that an item will fail

within the total test time can be evaluated. Then rhe probabiliry of acceptance of a

submitted lot can also be evaluated.

Producer's and Consumer's Risk

Since not all items in a submitted lot are inspected when using acceptance sampling,

there exists the risk of rejecting good lots and of accepting defective lots. That is, a lot may

be classified as non-acceptable when, in fact, it meets the quality criterion and a lot may be

accepted when, in fact, it does not meet the quality criterion. If all items are inspected and

there is no elror in the inspection, the ideal OC curve looks like the curve shown in Figure

1.1. The OC curve is an evaluation technique to show the discriminatory power of a

sample plan and is discussed in Appendix B. For example, in the situation of Figure 1.1,

the submitted lot will be accepæd if there areZVo or less defective items in the lot and the lot

will be rejected if there ¿ìre more than2%o defective items in the lot. Therefore. there is no

risk of accepting defective lots and rejecting good lots.

When sampling is used, two types of risks are encountered. The fTrst is the

producer's risk (a), which is the probability of rejecting a good lot. The second is the

-5-



consumer's risk (p), which is the probability of accepting a defective lot. There a.re two

fraction defective values related to these two risks. Denote the probability of accepting a lot

as Pu. The first fraction defective value is denoted by paer- if the fraction defective of a

submitted lot is p¡q¡, the probabitity of acceptance of the lot will h Pu = 1 - G. When we

set the producer's risk to be cr, the corresponding fraction defective is peer and is called

the acceptable quality level (AQL). The AQL shows the poorest level or highest fraction

defective that is acceptable as a process average. The second value is denoted by p¡q¡- if

the fraction defective of a submitted lot is p¡q¡, the probability of acceptance of the lot will

be Pu = B. When we set the consumer's risk to be B, the corresponding fraction defective

is pr.er and is called the limiting quality level (LQL). The LQL shows the poorest level or

highest fraction defective that is acceptable as a lot average.

An example is given in Figure 1.2, the probability of acceptance of a lot with x

fraction defective is 0.95. Although the lot is good, it may be rejected with a probability of

0.05. If we set the producer's risk to be 0.05, the fraction defective at x is the AQL. On

the other hand, if the fraction defective of a submitted lot is y, the lot will be classified as a

defective lot. Although the lot is defective, it may be accepted with a probability of 0.1. If

we set the consumer's risk to be 0.1, the fraction defective at y is the LQL.

Objectives

In most of the sampling plans, the decision to accept or reject a submitted lot

depends only on the sampling test results of the lot concerned. Other information will not

be considered. For example, a sample of n items is taken from a submitted lot of size N

and placed on test. If the number of defective items in the sample is less than the

predetermined maximum allowable number of defective items, the entire lot is accepted;

otherwise, it is rejected. Using this procedure, it is possible that a lot will be rejected

-6-



when, for example, the last ten lots all have been accepted- For this observation, there are

two possibilities. The first is that the results of the sampling test indicate the degradation of

quality in the manufacturing process. The second is that the results of the sampling test are

not representåtive of the entire lot since the sample items are taken randomly and an

inordinaæ number of defective items has been selected. Similarly, a submitted lot may be

accepted when, for example, the last ten lots have been rejected. The results of the

sampling test may indicate an upgrading of quality in the manufacturing process or that the

sample does not represent the entire lot.

On the other hand, some acceptance sampling plans will consider not only the

sampling results of the current lot but also information about other lots for making decision

to accept or reject the current lot. They may use the information on the past lots, future

lots, or both past and future lots. A deferred state atribute acceptance plan is a sampling

plan which uses information about subsequent lots for making the decision to accept or

reject the current lot. The advantages of this sampling plan are in reduction of the total

sampling test time and of the resulting sampling cost. In this dissertation, cost evaluation

of the deferred state sampling plan will be discussed. The results can be used to select a

lot-by-lot affibute acceptarnce sampling plan which will reduce the overall cost of sampling

tests.

-7-
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CHAPTER tr

LITERATURE REVM,W

Lot-by-lot acceptance sampling by affibutes is one of the common types of

acceptance sampling. With such a sampling plan, a sample of a predetermined number of

items is taken from each lot and a quality characteristic of the items in the sample is

inspected. Based on the information from this sample, the lot may be acceptedif it

conforms to the required standard or rejected if it does not do so. There are three basic

types of sampling plans: single sampling, double sampling, and multiple sampling. v/e

will first discuss these sampling plans in detail and then other common types of acceptance

sampling by attributes. In order to understand the characteristics of each plan, some

evaluation techniques for acceptance sampling are presented in Appendix B.

Single Sampling PIan

In the single sampling plan, the predetermined numbers are

N = the lot size,

n = the sample size, and

c = the acceptance number.

When using the single sampling plan by attributes, one sample of size n is taken from the

lot of size N and inspected. If there are c or less defective items in the sample, the lot is

accepted. If there are more than c defective items in the sample, the lot is rejected. In other

words, the acceptance or rejection of the lot depends on the inspection results of a single

sample.

For example, consider a steady flow of items which are produced by a single

source. Lots of size N = 5000 are taken from the flow and samples of size n are inspected.

- 10-



Since the lots are selected from a steady flow, an infinite population is assumed. For this

situation, the probability of accepting the lot should be calculated from the binomial

probability distribution. However, it is much simpler to use the Poisson probability

distribution, which is a good approximation to the binomial probability distribution (for

n ) 20, p < 0.1 and np < 5). Therefore the Poisson probability distribution is used to

calculate the probability of acceprânce of a lot for this sampling plan.

In our example, a sample of size n = 1@ is selected from each lot of size N = 5000

and the acceptance number, c, is equal to two; that is, the lot will be accepted if there are at

most two defective items in the sample. So the probabiliry of acceptance of the lot is equal

to the probability of at most two defective items in the sample, denoted Pa=p2or less.

When plotting the OC curve, different fraction defective p values are assumed and then the

np values are calculated. Finally, the Pu values can be found from the Poisson table by

using the appropriate np and c values. In our example, we assume p is equal to 0.05, then

np=100x0.05=5.0

and

Pa = PZor less = 0.725.

Some Pu values are calculated in Table 2.1. The OC curve for this single sampling

plan is plotted in Figure 2.1. When the OC curve is obtained, we can use the curve to find

the probability of acceptance of a lot in which the fraction defective, p, is known. For

example, if the fraction defective of a submitted lot is 0.035, the probability of acceprance

will be approximately 0.32 from reading Figure 2.1. Some publications which discuss

various versions of the single sampling plan are listed in Table 2.5.
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Double Sampling Ptan

The double sampling plan is more complicated than the single sampling plan

because a second sample may be required. Generally, the sample sizes of double sampling

plan are smaller and the total number of inspections may be reduced. As a result, the total

inspection cost is reduced. The predetermined numbers are

N = lot size,

nl = s¿Lmple size for the first sample,

cl = acceptance number for the first sample,

11 = rejection number for the fust sample,

n2 = sample size for the second sample,

c2 = îcCaptance number for both samples, and

12 = rejection number for both samples.

V/hen using a double sampling plan by attributes, a first sample of size n1 is taken

from the lot of size N and inspected. One of the following three decisions is made after

inspection:

(1) If c1 or fewer defective items arc found in the first sample, accept the lot;

(2)If rl or more defective items are found in the first sample, reject the lot; and.

(3) If more than c1 and fewer than 11 defective items are found in the first sample, a

second sample of size n2 is required.

If a second sample is required, n2 items are taken from the same lot which has N - n1 items

remaining. one of the following nvo decisions is made after inspection:

(l)If c2or fewer defective items are found in both samples, accept the lot; and

(2)If r2or more defective items are found in both samples, reject the lot.

In other words, the decision of acceptance or rejection of the lot is based on the inspection

results from both samples when a second sample is required.
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In the double sampling plan, two curyes are required for the OC curves. The fi¡st

one is for the probability of acceptance of a lot after inspecting the first sample if the second

sample is not required. If a second sample is needed, the second curve is for the

probability of acceptance of that lot after inspecting the second sample. The formation of

the OC curves may be illustrated by the following example. In a lot of size N = 5000, the

first sample of size n1 = 80 is taken and inspected. If there is I defective or none in the

sample, the lot is accepted, i.e. c1 = 1. If there are 3 or more defective items in the sample,

the lot is rejected, i.e. 11 = 3. When there are 2 defective items in the sample, a second

sample of size n2 = 100 is required and taken from the same lot which has N - nl items

remaining. If there are 3 or fewer defective items in both samples, the lot is accepted;

otherwise, it is rejected, i.e. c2= 3 andr2= 4. In determining the first curve, the

probability of acceptance of the lot after inspecting the first sample, (Pa)nl, is equal to the

probability of having 1 or less defective in the flust sample, (P1 or les5)n1, i.e.

1P¿)n1= (Pl or less)n1. (2.1)

Some (P¿)nrvalues are calculated in Table 2.2. When determining the second

curye, the probability of acceptance of the lot after inspecting the second sample,

(Pa)n1+n2, is equal to the sum of the probability of acceptance of the lot on the first

sample, (P¿)n1, and the probability of acceptance of the lot on the second sample, (Pa)n'

i.e. (Pa)n1+n2 = (P¿)nl* (Pu)n2. By using formula (2.1), we get

(P¿)n1+n2 = (P1 or less)nl+ (Pa)nz. (2.2)

But it is obvious that the lot is accepted in the second sample if there are 2 defective items in
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the first sample and 1 defective or none in the second sample, therefore

(Pa)nz = (P2)nr(P1 or less)n2.

Substituting formula (2.3) into formula (2.2),wehave

(2.3)

(Pa)nl+n2 = (Pl or less)n1+ (P2)nrP1 or less)n2. (2.4)

Some values of (P¿)n1+nZ*" calculated in Table 2.2. Ttre OC curves for this

double sampling plan are plotted in Figure 2.2. Whenthe OC curves are obtained, we can

use the curves to find the probability of acceptance of a submitted lot in which the fraction

defective is known. For example, if the fraction defective of a submitted lot is 0.035, we

read from Figure 2.2 that the probability of acceptance of the lot after inspecting the first

sample is 0.23, and the probability of acceptance of the lot after inspecting the second

sample is 0.26. Some publications which discuss various versions of the double sampling

plan are listed in Table 2.5.

Multiple Sampling Plan

Multþle sampling plans are extensions of the double sampling plan. Instead of

requiring two samples in a double sampling plan, a multiple sampling plan may require

three or more samples with smaller sample sizes. The technique is similar to that used in

the double sampling plan. The following illustration is a multipte sampling plan which

requires at most three samples. The predetermined numbers for this plan are

N = lot size,

n1 = sample size for the first sample,
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cl = acceptance numhr for the first sample,

11 = rejection number for the first sample,

n2 = Sâmple size for the second sample,

cZ = acceptance number for both first and second samples,

12 - rejection number for both first and second samples,

n3 = sample size for the third sample,

c3 = acceptance number for all three samples, and

13 = rejection number for all three samples.

When using multiple sampling plan by attributes, a first sample of size n1 is taken

from the lot of size N and inspected. One of the following three decisions is made after

inspection:

(1) If c1 or fewer defective items are found in the ftst sample, accept the lot;

(2) If 11 or more defective items are found in the first sarnple, reject the lot; and

(3) If more than c1 and fewer than 11 defective items are found in ttre fîrst sample, a

second sample of size n2 is required.

If a second sample is required n2 items are taken from the same lot which has N - nl items

remaining. one of the following three decisions is made after inspection:

(l) H c2or fewer defective items are found in both frst and second samples, accept

the lot;

(2) If r2or more defective items are found in both fîrst and second samples, reject

the lot; and

(3) If more than c2 and fewer thanr2defective items are found in both first and

second samples, a third sample of size n3 is required.

If a third sample is required, n3 items are taken from the same lot which has N - nL - n2

items remaining. One of ttre following two decisions is made after inspection:
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(1) If ca or fewer defective items are found in all three samples, accept the lot; and

Q)If ry or more defective items are found in all three samples, reject the lot.

In other words, the decision of acceptance or rejection of the lot is based on the inspection

results from all three samples when three samples are required-

As a matter of fact, it is possible to make the probability of acceptance of a specific

lot under a single sampling plan equal to the probability of acceptance of that lot under an

appropriate double or multiple sampling plan. In other words, the selection of a sampling

plan does not depend on it effectiveness since all three types of sampling plans can result in

the same effectiveness when appropriate predetermined numbers are selected. The

effectiveness is the ability to reduce both the producer's and consumer's risk. So, when

selecting the type of a sampling plan, one should consider other factors such as cost of

sampling, psychological effect and so on.

Generally, for the same degree of effectiveness, the total number of inspections in a

single sampling plan is more than that in a double sampling plan since the decision can

sometimes be made in the first sample when using a double sampling plan; therefore, no

second sample is needed and the total number of inspections is reduced. Similarly, in a

multiple sampling plan, the total number of inspections is usually less than that in a double

sampling plan since the decision can be made in the fust few samples. As the total number

of inspections decreases, the inspection cost decreases. So, on the average, a multiple

sampling plan has a lower inspection cost than the double or single sampling plans. On the

other hand, a multiple sampling plan is more complicated than the others so that other costs

such as training people and recording results are higher. Since the sampling cost is the sum

of all these costs, we should consider the overall sampling cost when selecting the type of a

sampling plan.

The other factor is the psychological effect, a feeling of having a second chance in
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the double sampling plan instead of having only one chance in single sampling plan, which

we should also consider when selecting the type of a sampling plan. In a single sampling

plan, only one sample is taken from a lot and the decision to accept or reject the lot is based

on only one sample inspection result. But in a double sampling plan, if the results of the

first sample are marginal betrveen the acceptance and rejection decisions, a second chance is

given by allowing a second sample. In a multiple sampling plan, multiple chances are

given thus improving the psychological effect over that of a double sampling plan.

The formation of OC curves for a multiple sampling plan is an extension of the

formation of OC curves for a double sampling plan. Instead of requiring two curves in a

double sampling plan, multiple sampling plans require three or more curves to construct

OC curves. For example, if there is a multiple sampling plan which involves m samples,

m ) 3, the probability of acceptance of the lot after the kù sample has been inspected is

(Pa)nl+n2r ... *n¡ = (Pa)nl + (Pa)n2 + ... + (P¿)n¡; (2.s)

here (P¿)n1+n2+... +n¡ = probability of acceptance of a lot after ttre kù sample is

inspected, i.e. after n1+ n2+ ... +n¡ items have been

inspected,

= probability of acceptance of a lot on th" jü sample of

size n¡

(Pa)n¡
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and q (i < j) is the number of defective items found in iü sample. By substituting all

values of k in formula (2.5), m curves are obtained. We can use these curves to find. the

probability of acceptance of a specific lot by using a technique similar to the one we use in a

double sampling plan. Some publications which discuss various versions of the multiple

sampling plan are listed in Table 2.5.

Sequential Sampting Plan

Sequential sampling plan are acceptance sampling plans by attributes for destructive

or costly inspection. They were developed by Wald (L947). In this sampling plan, only

one item at a time is taken from the lot and inspected. After inspection, we compare the

cumulative number of defective items to the acceptance number and rejection number. For

this sampling plan, the acceptance number and rejection number are not constant. They are

given by the following formulas (Wald, L973):
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here m = number of items inspected,

am = acceptance number when m items are inspected,

rm = rejection number when m items are inspected,

6¿ = producer's risk,

B = consumer's risk,

pO = fraction defective at the acceptable quality level, AQL, and

pt = fraction defective at the limiting qualiry level, LQL.

If the cumulative number of defective items is less than the acceptance number,

accept the lot. If the number of cumulative defective items is greater than the rejection

number, reject ttre lot. Otherwise, continue the inspection until a decision of accepting or

rejecting the lot is made. Figure 2.3 illustrates this sampling plan. IVhen using a graphical

method, we plot the cumulated defective items curye after each inspection. If the cumulated

defective items curve is within the "continue sampling" region, one continues the inspection

by taking another item until the cuwe goes outside this region. The lot is accepted if the

cumulated defective items curve intersects with the acceptance number line; and the lot is

rejected if the cumulated defective items curye intersects the rejection number line.

Theoretically, the sequential sampling plan can continue until all ttre items in the lot are
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inspected but, in practice, this sampling plan is truncated when the number of inspected.

items is equal to three times the sample size of the corresponding single sampling plan.

Generally, this sampling plan reduces the number of items inspecæd, so the inspection cost

will decrease for destructive or costly inspection. Detailed information can be found in

V/ald (1973); some other publications which discuss various versions of the sequential

sampling plan are listed in Table 2.5.

MilÍtary Standard 105 (MIL-STD-105)

In 1949, the Statistical Research Group of Columbia University proposed an

acceptance sampling plan for lot-by-lot inspection by attributes called JAN-STD-105

(1949). Afterrevisions, MIL-srD-1054 (1950), MIL-srD-1058 (1958), MIL-srD-

105C (1961), and MIL-STD-IOSD (1963) were published. In 1989, the latest version was

published and called MIL-STD-IO5E (1989). Some publications discussing various

versions of the military standard are listed in Table 2.5. Generally, this standard is used

when the lots ale taken from a steady flow of items which are produced by a source, but,

after some adjusÍnents it can also be used for isolated lots. It is the most common type of

lot-by-lot accept¿mce sampling plan for attribute inspection and it is extensively used in

industry for acceptance sampling. This standard is applicable to inspection of incoming

materials, products in process, end products, and so on. The aim of this standard is to

maintain a satisfactory level of average outgoing quality.

Three types of sampling plans are included in this standard- They are the single,

double, and multiple sampling plans. For each type of sampling plan, it provides three

types of inspection: normal, tightened, and reduced. Normal inspection is used to inspect

the lots in the beginning of inspection. After a certain number of inspections, if the quality

is not satisfactory, the tightened inspection is used. On the other hand, if the quality is
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good, the reduced inspection is used- The use of the different types of inspection may be

switched from one to another following the criteria stated in the standard- Also, the

procedures for using this sampling plan are given in the standard-

An example of OC curves for normal, tightened and reduced inspection is given in

Figure 2.4. Il a lot is submitted for inspection, the probability of acceptance of the lot

under reduced inspection is the highesq and the probability of acceptance of the lot under

tighæned inspection is the lowest among the three types of inspection. In other words, the

risk of accepting a defective lot will be the highest when using reduced inspection.

Besides, reduced inspection has the smallest sample size and the tightened inspection has

the largest sample size so that the inspection cost will be reduced when using reduced

inspection.

Truncated Life Test Plan

Epstein (1954) discussed some life test plans which he called truncated life tests.

Before these sampling plans start, the sample size, n, the rejection number, r, and the

truncated test time, T, beyond which the test will not be run, are determined. Then n items

are selected from a submitted lot and simultaneously subjected to life test. If we let x,

denoted a random variable of the time at which the rü failure occurs and T the

predetermined truncated test time, the sampling test will be terminated at min(ç, T). If the

test is terminated at time T, i.e. T less than x' the submitted lot is accepæd; otherwise, it is

rejected. Although truncated life test plans can be used for any life distribution, Epstein

considered the case that the life distribution of ttre tested items has the exponential form.

Furthermore, the failed items during the test may or may not be replaced. In the

replacement case, less time is required to obtain a given number of failures but more items

are needed in the test. In the non-replacement case, more time is required to obtain a given
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number of failure but less items are needed- First, consider the non-replacement case. The

probability distribution of exactly d failures for truncated time T is given by the binomial

distribution:

d = 0, I,2, ..., r - 1; (2.8)

here n=samplesize,

d = number of failures,

p = probability of an item fails during the interval (0, T) and it is equal to 1 - e-ÀT,

e=1-p,and

À = failure rate.

The probabitity of acceptance of the submitted lot is

tu = ãdìt'dq'-d'

r-1
tu= ïr+odon-d . es)- d:0ct (n-d)!^

Epstein showed that the expected waiting time to obtain the rú failure for the non-

replacement life test plan is

E(t) = 1Ë t
ì,"?.n-d+1'

O=l
(2.10)

Now consider the replacement case. The probability distribution of exactly d

failures for truncated time T is

nn



d = 0, 7,2, ..., f - 1. (2.r1)

The probability of acceptance of the submitted lot is

p^ = ç (nlr)d"-nr'r
'í*d! (2.r2)

Epstein also showed that the expected waiting time to obtain the rù failure for the

replacement life test plan is

(2.r3)

Some publications which discuss various versions of the truncated life test plan are listed in

Table 2.5.

Chain Sampling Inspection

Dodge (1955a) developed the Chain Sampling Inspection Plan to reduce inspection

costs for destructive or costly inspection. When a destructive or costly inspection is

encountered, the sample size should be small in order to reduce the inspection cost. If the

sample size is small, the acceptance number is usually small and sometimes it is zero. As a

matter of fact, the sampling plans have the poor shape of the OC curves when acceptance

number is zero because the OC curves will be convex throughout (Montogomery, 1985).

Also, the probability of acceptance will decrease rapidly as the fraction defective increases.

A better shape for these OC curves can be obtained by using the chain inspection plan.

r
Àn

E(t¡ =
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This plan uses the results of several previous inspections, so it is assumed that the lots

should have the same quality and that they come from a steady flow of items which are

produced by a single source. Now consider an example in which a sample of size n is

taken from a submitted lot of size N. The lot is accepted if there is no defective iæm in the

sample; and the lot is rejected if there are two or more defective items in the sample. riVhen

there is only one defective item in the sample, the lot is accepted only if all i preceding lots

of same size were accepæd; otherwise, reject the lot. The values of i and n depend on how

effective an oC curye is required. The formula for OC curves for this plan is

Pa=P0+P1(P6)i (2.r4)

with P" = probability of acceptance of the lot, and

P¿ = probability of having d defective items in the sample.

Some publications discussing various versions of the chain sampling inspection are listed

in Table 2.5.

Skip-Lot-Sampling Plan

Dodge (1955b) also deveþed the Skip-Lot-Sampling Plan to minimize inspection

costs by reducing inspection after the submitted lots have good quality history. When lots

are taken from a steady flow of items of the same quality, this plan may be used- The

procedure is as follows:

(1) Each lot is inspected by a specific sampling plan.

(2) When i consecutive lots are accepted, stop inspecting every lot. Then only a sample of

a fixed number, f, of subsequent lots are selected randomly and inspected using the

same sampling plan.

(3) Whenever a lot is rejected, go ro procedure (1).
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The values of i and f are related to what AOQL value is required and a table for this

sampling plan can be found in Dodge (1955b). Some publications which discuss various

versions of the skip-lot-sampling plan are listed in Table 2.5.

Ðodge-Romig Tables

Dodge and Romig (1959) developed a set of sampling inspection tables in order ro

minimise the average total number of inspections. There are two types of sampling

inspection tables. The first type is based on Lot Tolerance Percent Defective (LTPD), i.e.

limiting quality level (I-QL), and the second type is based on average outgoing quatity limit

(AOQL). For each type of the tables, single and double sampling plans are available. The

tables based on LTPD are used when the submitted lots are homogeneous or when the

objective of sampling is to assure an average outgoing quality level. The tables based on

AOQL are used when the submitted lots are nonhomogeneous or when the objective of

sampling is to assure quality no worse than a given target. Whenever the value of LTPD or

AOQL is decided and the fraction defective of incoming lots of size N is known, the sample

size n may be read directly from the tables of a single or double sampling plan. Some

publications discussing various versions of the Dodge-Romig tables are lisred in Table 2.5.

Dependent Stage Attribute Acceptance Sampling PIan

In the late 1960's, Mogg (1969) developed a rype of sampling plan, called

dependent stage attribute acceptance sampling plan, which uses information from prior lots

to decide whether to accept or reject the current lot. The advantages of this sampling plan

are that it reduces the sample size. The notation used in the dependent stage sampling plan

are defined as follows:

n = sample size,
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r - the maximum number of allowable defective items from the current sample

for unconditional acceptance of the lot,

b = the maximum number of additional defective iæms for which the decision of

acceptance or rejection of the crurent lot will depend on the acceptance or

rejection of prior lots,

Pa;k = the probability of accepting lot number k, and

P*,n = the probability that there are exactly x defective items in a sample size of n

items.

Mogg designated the dependent srage sampling plan by DSSP-r,b with the

operating procedure outlined by the following steps;

Step 1 - At the outset, select a random sample of n items from the first lot submitted and

accept the lot if the sample contains r or less defective items.

Step 2 - For each lot number, record the disposition as to whether it was accepted or

rejected.

StW 3 - Repeat steps 1 and2 on subsequent lots for the first b lots.

Step 4 - For lot b+l, select a random sample of n items and accept the lot if the sample

contains r or less defective items. For more than r defective items, the decision to

accept or reject the current lot will depend on the historical data, and the following

courses of action will dictate the decision;

r+1 defective items - Accept the current lot if lot number I was accepted.

r+2 defective items - Accept the curent lot if lot number 2 was accepted.

r+b defective items - Accept the current lot if lot number b was accepted.

r+i defective items - Reject the current lot, (i > b).

Step 5 - Repeat step 4 for each subsequent lot. That is, check the disposition of lot m-b if
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r+1 defective items are observed in the rnú lot. Check the disposition of lot m-

b+I if r+2defective items are observed in the -th lot and so on. Reject the lot if
more than r+b defective items are observed, or if the lot checked on the review

was rejected- Otherwise, accept the lot.

The properties of dependent stage sampling plans could be described by OC curves.

The OC curye for such a sampling plan was developed by evaluating the proportion of lots

that will be accepted for a product from a process. Mogg considered some elemenmry

dependent stage sampling plans first and then developed the expression for the general OC

curve by induction. He showed that the general expression for the OC curve for the

dependent stage sampling plan, DSSP-r,b, is

I

IPt'n
Pa;k=l*1,

Ir_ In¡," 
I

\ j=t+l )

with Pi,n = (fort(r-p)n-t,

r)0,b>1 (2.1s)

Pa;k = the probability of acceptance of the submitted lot number k,

n = the sample size, and

p = the fraction defective of the submitted lots.

An example of Pu.¡ values forDSSP-O,1 sampling plan with 15 sample items is

shown in Table 2.3. The OC curve for this sampling plan is plotted in Figure 2.5. If this

OC curve is used, the probability of acceptance of a submitted lot can be determined when

the fraction defective is known.
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Mogg also compared some selected dependent st¿ge sampling plans with a variety

of single sampling plans and double sampling plans from Freeman (1948). One of the

comparisons is among the DSSP-O,I sampling plan with 15 sample items, the single

sampling plan with n=20, c = 1, and the double sampling plan with n1 = 13, c1 = 0, 11 =

3, nZ= 2, andrz= 3. The OC curves of all the above sampling plans are almost identical.

It means that all these plans would provide same consumer and producer protection. The

average sample number (ASN) of DSSP-0,1 is 15 units and the ASN of the single

sampling plan is 21 units. Thus, the ASN of DSSP-O,1 is six units less than the ASN of

the single sampling plan. For the double sampling plan, the ASN is a variable from 14

units to 28 units. In other words, the ASN of DSSP-O,1 is as much as 13 units less than

the ASN of the double sampling plan. These comparisons showed rhe advanrage of

dependent stage sampling plans in saving the average sample number.

Moggpointed out the limitations of the dependent srage samplingplan as follows:

(1) Production is steady so that results on current and preceding lots a¡e indicative of a

continuing process.

(2) Ints are submitæd substantially in the order of their production.

(3) A fixed sample size, n, from each lot is assumed.

(4) Inspection by attributes is assumed with quality measured by fraction defective p for a

binomial distribution.

He also mentioned that sometimes the dependent stage sampling plan may not be desirable

since the OC curve changes from lot to lot in the early stages of this plan and does not settle

down to a fixed cuwe until approximately ten lots have been inspected. The reason is that

the plan acts as single sampling plan until b+l lots are inspected and historical results are

considered from that point.
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Deferred State Attribute Acceptance Sampling FIan

In the early 1970's, Baker (L971) developed a type of sampling plan which is called

the deferred state attribute acceptance sampling plan. This sampling plan uses subsequent

lots' information for making a decision to accept or reject the current lot. The operating

procedure of this type of sampling plan is similar to the dependent stage sampling plan

except that the conditional decisions depend on the disposition of future lots instead of past

lots. Thus, the formations of OC curves of dependent stage sampling plans and deferred

state sampling plans are similar. The defened state sampling plan provides an indicator for

quality degradation. If a large number of defective items are observed in a sample, the

probability that the process quality degraded beyond an acceptable level is high. The

indicator concept is based on the assumption that the number of defective items from a

sample may ruly represent the process quality. The notation used in deferred staæ

sampling plans is as follows:

n = sample size,

r = the maximum number of allowable defective items from the curent sample

for unconditional acceptance of the lot,

= the maximum number of additional defective items for which the decision of

accept¿urce or rejection of the current lot will depend on the acceptance or

rejection of subsequent lots,

Pa;k = the probability of accepting lot number k, and

P*,n = the probability that there are exactly x defective items in a sample size of n

items.

Baker designated the deferred state sampling plan by DS(r,b) sampling plan with

the operating procedure outlined by the following steps;

Step 1 - For lot number k, select a random sample of n items from the submitted lot and
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deærmine the number of defective iæms.

Step 2 - Accept the lot if the sample contains r or fewer defective items. For more than r

defective items, the decision to accept or reject the current lot is dictate.d by the

following courses of action;

r+1 defective items - Defer the decision until the disposition of lot number

k+b is obtained. If lot number k+b is accepted, then

accept lot k, otherwise reject lot number k.

- Defer the decision until the disposiúon of lot number

k+b-l is obtained. If lot number k+b-l is accepred,

then accept lot k, otherwise reject lot number k.

- Defer the decision until the disposition of lot number

k+l is obtained. If lot number k+l is accepted, rhen

accept lot k, otherwise reject lot number k.

r+2 defective items

r+i defective items (i > b) - Reject lot numberk.

Step 3 - Increment k by 1 and return to step 1.

The properties of deferred state sampling plan could be described by the OC curves.

The OC curye for such a sampling plan was deveþed by evaluating the proportion of lots

that will be accepted for a product from a process. Baker considered some elemenury

deferred state sampling plans fust and then developed the expression for the general OC

curye by induction. He showed that the general expression for the OC curve for deferred

state sampling plan, DS(r,b), is

r+b defective items
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IPt,n
Pa;k = r)0,b> 1, (2.r6)

[,-å,..,,"

with Pi.n pt(t - p)n-t, and p = the fracrion defective of the submitted lots.I'' i! (n-i)!' \ r /

An example of Pu.¡ values for a DS(0,1) sampting plan with n = 15 is shown inTabIe2.4.

The OC curve for this sampling plan is plotted in Figure 2.6. From this OC curve, rhe

probabiliry of acceptance of a submitted lot can be determined when the fraction defective is

known.

Baker compared the DS(0,1) sampling plan with n = 15 to the single sampling plan

with n = 20 and c = 1, and the double sampling plan with n1 = 13, cl = 0, 11 = 3, n2= 26,

cZ=2 andr2= 3. The OC curves of all three plans are almost identical, but the ASN

curyes showed a difference of approximately 5 to 13 units between ttre DS(0,1) sampling

plan and the double sampling plan, and a difference of 5 units be¡¡¡een the DS(Q,1)

sampling plan and the single sampling plan. This made the advantage of the deferred stage

attribute acceptance sampling in reducing the average number of samples evident.

Baker also discussed the limitations of the deferred state sampling plan. One of the

limit¿tions is that a waiting line may be formed when the lots are in a deferred state, so the

carrying cost of deferred lots should be considered before a deferred state sampling plan is

selected instead of any other sampling plan. In developing the distribution of waiting

times, Baker used the following notation:

P*,n = the probability that there are exactly x defective items in a sample of n

ltems,

W = the parameter which denotes the number of lots that a lot must wait
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before disposition,

P(W = i) = the probability that a lot waits for i lots before disposition, and

E(W) = the expected wait which is the expected value of W.

Baker developed the distribution of waiting times for the DS(0,1) sampling plan.

He showed that the probability that a deferred lot waits for i lots before disposition is

P(W = i) = Pl,ni (1 - P1,n)

and the expected wait, EflM), is

E(W) =>i P(W = i).
i=0

Substitutin g (2.17) in (2. 18) gives

E(W) = 
Pl,n

1- Pr,n

(2.r7)

(2.18)

(2.re)

The general equation for the expected waiting time can be obtained by induction.

The deferred state sampling plan has a problem similar to that of the dependent

stage sampling plan. In the early stages of a dependent stage sampling plan, several lots

have to be sampled under a single sampling plan before the dependent stage concept can be

used. The OC curve of the dependent stage samplingplan changes from lot to lot in the

early stages of the plan and does not settle down until approximately ten lots have been

inspected. V/ith a deferred state sampling plan, the problem is how ro make the disposition

decision of the final lots when the lots are waiting for disposition of future lots which will
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not be produced One solution is to use a single sampling plan for the last b lots. That is,

if the number of defective items from the sample is less than r, accept the entire lor;

otherwise, reject the lot. So no submitted lot will wait for future lots which will not be

produced- Thus, the OC curve of the deferred state sampling plan changes from lot to lot

in the final stages of the plan; it is not a fxed curve in approximately the last ten lots.

After the deferred state sampling plan was developed, Dean (1971) used this

concept in truncated life test plans. The difference ben¡¡een the truncated life test plans and

the quality control sampling plans is that time is considered as a par¿Lmeter in truncated life

test plans. Dean developed the deferred state life test plans with the same notation as in

defened state sampling plans, except that

T = the total accumulated test time,

t = the failure rate of items tested,

0 = I = the mean-time-between-failures (MTBÐ of iæms tesred" andt
Px = Px,À,T = the probability that there are x failed iæms during time T, given the

failure rate is À and that the life distribution of the tested items is exponential.

Dean designated the deferred state life test plan by DS(r,b) life tesr plan with an

operating procedure outlined by the following steps;

Step 1 - For lot number k, select a random sample of n items from the lot and test the

sample for a total accumulated test time T. Then determine the number of failed

items. The failed items during the rest may or may nor be replaced.

Step 2 - Accept the submitted lot if r or less failed items are observed. If more than r failed

items are observed the decision to accept or reject the current lot is dictated by the

following courses of action;

- Defer the decision until the disposition of lot number k+b

is obtained. If lot number k+b is accepted, accept lot

r+1 failed items

a4
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number k, otherwise reject lot number k.

r+2 failed items - Defer the decision until the disposition of lot number

k+b- 1 is obtained. If lot number k+b- 1 is accepted,

accept lot number k, otherwise reject lot number k.

r+b failed items - Defer the decision until the disposition of lot number k+1

is obtained. If lot number k+l is accepted, accept lot

number k, otherwise reject lot number k.

r+i failed items (i > b) - Reject lot number k.

Step 3 - Increment k by I and return to step 1.

The properties of deferred state life test plans could also be described by evaluating

the proportion of lots that will be accepted for a product from a process. Dean considered

the probabilities of accepting the submitted lot number k, p¿;ft, for DS(O,1) and DS(2,4)

life test plans fîrst and then developed the general expression for the Pa;k by induction. He

showed that the general expression of the P4¡ for the deferred state life test plan, DS(r,b)

life test plan, is

r

IP*
Pa;k= f#--l'

It-It*.I\x=l)

r)0,b> 1. (2.20)

Dean also assumed the failure distributions to be exponential. Thus, the probability

of a certain number of failed items can be described by Poisson distribution. When the

total accumulated test time is T and the failure rate is À, the probability of exactly x failed

items is
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x = 0, 1,2, ..., and À, T > 0. (2.2r)

By substitunng (2.2I) into (2.20), the general expression of the P",¡ for deferred state life

test plans in terms of r, b, 1" and T bcomes

Pa;k =

$ (r.r)*"-Àr

l=o x!
r)0,b>1,andl",T>0. (2.22)

['-å'^Tï;;*)'

Since l" is equal,o f , mi, can be written as

Px=P*,À,T=1lIH,
K!

Pa;k = r)0,b> 1,and0,T>0. (2.23)

For any DS(r,b) life test plan, the Pu.¡ values can be found by substituting specifrc values

of 0 and T into (2.23).

Dean also considered the general expression for the expected wait, E(W), in the

deferred state life test plan. The notation used in this analysis is the same as in the deferred

state sampling plan. To derive a general expression for the expected wait in the DS(r,b) life
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test plan, we note that the probability of unconditional disposition of the current lot, i.e. the

probability that the expected wait of the cunent lot is zero, is

fæ
P(W=0)= ) P*+

x=0 x=r+b+l
(2.24)

(2.26)

(2.27)

_T

rfl."T
rvith P-= \e/

^x!

The first term in formula (2.24) is the sum of the probabilities of observing at mosr r failed

items and the second term is the sum of the probabilities of observing at least r+b+l failed

items. Furthermore, the probability that the curent lot waits for one additional lot before

disposition is equal to the probability of having exactly r+b failed items in the current lot

multiplied with the probability of unconditional disposition of the nexr lot, i.e.

P(W = 1) = Pr+b P(W = 0). (2.2s)

The probabilities that the current lot waits for two or three additional lots before disposition

are, respectively,

P(W = 2) = Pr+b P(W = 1) + Pr*6_1 P(W = 0)

and

P(W = 3) =Pr+b P(W = 2) + Pr*6_1 P(W = 1) + Pr*6_2p(W = 0).

Continuing the derivation in this manner, we can write the general expression for the

probability ttrat the current lot waits for b+j lots as
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P(V/ = b+j) = Pra6 P(W = b+j-1) + Pr+b-1 P(W = b+j-2) + ...

+ P=+ZP(V/ = j+1) + Pral P(W = j) j = 0, 1,2, ..., (2.28)

and the expected wait, E(W), for DS(r,b) life test plan as

E(W) = 1P(\il/= 1) + 2P(W =2)+... +kP(W=k) +... . (2.29)

The detailed explanations and examples can be found in Dean (1971).
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Table 2.1. Probabilities of acceptance for the single sampling plan:

N=5000,n=100,andc=2.

Panp

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1.000

0.920

0.677

0.423

0.238

0.125

0.062

0.029

0

I
2
-J
4

5

6

7

Table 2.2. Probabilities of acceptance for the double sampling plan:

N:5000, n1 = 80, cl = 1, Í1 = 3, n2 = 100, c2=3, andr2= !,.

nlp nzp

= 80p = 100p

(pa)nt

= (Pl or less)n1

(pa)nz

= (P2)nr(Pl or less)n2

(Pa)n1+n2

= (Pu)nr+ (P¿)n2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

1.000

0.808

0.525

0.309

0.r71

0.091

0.047

0.024

1.000

0.914

0.630

0.361

0.190

0.097

0.049

0.025

0

1

2

3

4

5

6

7

(0.000) (1.000) :0.000
(0.144) (0.736) = 0.106

(0.258) (0.406) = 0.105

(0.261) (0.199) = 0.052

(0.209) (0.091) = 0.019

(0.147) (0.041) = 0.006

(0.095) (0.017) = 0.002

(0.065) (0.007) = 0.001
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^table 2.3. Probabilities of acceptance for the DSSP-O,1 sampling plan with 15 sample

items.

Pu;k

0.00

0.02

0.04

0.06

0.08

0.10

0.t2
0.14

0.16

0.18

o.20

1.0000

o.9543

0.8198

0.6360

0.4571

0.3135

0.2102

0.1396

0.0925

0.0618

0.0405

Table 2.4. Probabilities of acceptance for the DS(0,1) sampling plan with 15 sample items.

Pu;k

0.00

0.02

0.04

0.06

0.08

0.10

0.r2
0.1,4

0.16

0.18

0.20

1.0000

0.9543

0.8198

0.6360

0.457r
0.3135

0.2102

0.1396

0.0925

0.0618

0.0405
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Table 2.5. A list of publications of lot-by-lot acceptance sampling plans by attributes.

Single Sampling Plan Peach and Littauer (1946)
Grubbs (1949)
Cameron (1952\
Golub (1953)
U.S. Army Chemical Corps. Eng. Agency (1953)
V/ise (1955)
Horsnell (1957)
Hamaker (1958)
Guthrie and Johns (1959)
Prairie, Zimmer, and Brookhouse (1962)
Hald (1965)
Hald (1967a)
Hatd (1967b)
Dodge (1969a)
Ayoub, Lambert, and Walvekar (1970)
Wortham and Mogg (1970a)
Guenther (l97la)
Minton (1972)
Collins, Case, and Bennett (1973)
Bennett, Case, and Schmidt (1974)
Hard(1977)
Schilling, Sheesley, and Nelson (1978)
Stephens (1978)
Beaing (1981)
Guenther (1984)
Case and Chen (1985)
Jaraiedi and Herrin (1985)
Baker (1988)
Ohta and Ichihashi (1988)
Ohta and Kanagawa (1988)
Brooks (1989)
Nachlas and Kim (1989)
Soundararajan and Arumainayagam (1989)
Govindaraju (1990)
Soundararajan and Vijayaraghavan (1990)
Nelson(1991)

U.S. Army Chemical Corps. Eng. Agency (1953)
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Multiple Sampling Plan

Sequential Sampling Plan

Hamaker and Van Strik (1955)
Horsnell (1957)
Guenther (197lb)
Chow, Dickinson, and Hughes (1972)
}]atd(1977)
Baker and Brobst (1978)
Schilling, Sheesley, and Nelson (1978)
Beaing and Case (1981)
Chen (1981)
Olorunniwo and Salas (1982)
Guenther (1983)
Case and Chen (1985)
Maghsoodloo and Bush (1985)
Srivenkauramana and Harishchandra ( 1985)
Govindaraju (1990)

Bartky (1943)
U.S. Army Chemical Corps. Eng. Agency (1953)
Hatd (1975)
Schilling, Sheesley, and Nelson (1978)
Bryant and Schmee (1979)
Flowers and Cole (1985)
Baker (1987)
Maghsoodloo (1987)

wald (1945)
Anscombe (1946)
Barnard (1946)
Wald (1947)
Hamaker (1953)
Epstein and Sobel (1955)
Hoel (1955)
Kiefer and Weiss (1957)
Anderson (1960)
Jackson (1960)
Johnson (1962)
Eagle Qge)
Chemoff and Ray (1965)
Tallis and Vagholkar (1965)
Aroian and Robison (1966)
Aroian (1968)
Schafer and Takenaga (1972)
wald (1973)
A¡oian (1976)
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Military Standa¡d 105

Garrison and Hichey (1984)
Kremers (1987)
Tantaratana (1988)

JAN-STD-l05 (1949)
MrL-STD-10sA (1950)
MrL-STD-1058 (1958)
MrL-STD-10sC (1961)
Keefe (1963)
MrL-STD-10sD (1963)
Pabst (1963a)
Pabst (1963b)
Cocca Qge)
Stephens and Larson (1967)
Dodge (1969b)
Kaplan and MacDonald (1969)
Koyama (1969)
Ohmae and Suga (1969)
Yokoh (1969)
Koyama, Ohmae, Suga, and Yamamoto (1970)
Brown and Rutemilter (1973)
Hill (1973)
Brown and Rutemiller (1975)
Hahn and Schilling (1975)
Sheesley (1977)
Schilling and Sheesley (1978a)
Schilling and Sheesley (1978b)
Liebesman (1979)
Duncan et al (1980)
Schilling and Johnson (1980)
Brush, Cautin, and Iæwin (1981)
Liebesman (1981a)
Liebesman (198lb)
Liebesman (1982)
Schilling (1982)
Buswell and Hoadley (1983)
Cocca (1983)
Schitling (1983)
Enell (1984)
Keats and Case (1984)
Liebesman and Hawley (1934)
Bee, Teck, and Keng (1935)
Randhawa (1985)
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Truncated Life Test Plan

Chain S ampling Inspection

Skip-Lot-S ampling Plan

Nelson, Wall, and Caporal (1986)
Baker (1987)
Chakraborry and Bapaye (1989)
Glenn (1989)
MrL-STD-1058 (1989)
Flott (1990)

Epstein (1954)
Bur (1957)
Woodal and Kurkjian (1962)
Aroian (1963)
Aroian (19&)
Craig (1968)
Guenther (1971)
Angus, Schafer, Van Den Berg, and Rutemiller (1985)
Mason (1986)

Dodge (1955a)
Frishman (1960)
Dodge and Stephens (1964)
Sæphens and Dodge (1965)
Dodge and Stephens (1966)
Stephens and Dodge (1967)
Soundararajan (1978a)
Soundararajan (1978b)
Soundararajan and Govindaraju ( 1983)
Soundararajan and Doraiswamy ( I 98a)
Soundararajan and Arumainayagam ( 1 989)
Raju (1990)
Soundararajan and Vijayaraghavan (1990)

Dodge (1955b)
Perry (1970)
Perry Q973a)
Perry,(1973b)
Hsu (1980)
Carr (1982)
Liebesman and Saperstein (1983)
Flowers and Cole (1985)
Jaraiedi and Bem (1989)
Kowalewski and Tye (1990)
Perry (1990)
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Probability of acceptance, Pa 0.5

0.4

0.3

0.2

0.1

0

Figure 2.1. The oc curve for the single sampling plan: N = 5000, n = 100, andc=2.
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Fraction defective, p
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0.9

0.8

0.7

0.6

Probability of acceptance, Pa 0.5

0.4

0.3

0.2

0.1

0

Figure2.2.TheOCcurveforthedoublesamplingplan:N=5000,nl=80,cl=1,11=3,n2=100,c2=3andr}=4.
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t After first sample Ü After second sample
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Figure 2.3. An example of a sequential sampling plan.
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Figure 2.4. An example of oc curve for normal, tighæned, and reduced inspection.

* Tightened inspection G Normal inspection 4- Reduced inspection
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Figure 2.5. The oc curve for the DSSP-O,I sampling pran wittr 15 sample items.
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Figure 2.6. The OC curve for the DS(0,1) sampling plan with 15 sample iæms.
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CHAPTER Itr

DETERMINATION OF TOTAL TEST TIME AND SAMPLE SIZE FOR

DEFERRED STATE LIFE TEST PLAN

Before a deferred state life test plan is selected to test the submitted lots, the user

must consider many factors, for example, the time until due date, the available human

resources, the production facilities, the inventory facilities, etc. Also, the overall testing

cost is one of the major factors, causing concem to the user. It includes the total cost of

testing time per sample and the total cost of testing each sample. So before a test plan is

conducted, the user must determine not only the appropriate test plan but also the total test

time and the sample size. The total test time and the sample size for deferred state life test

plan were considered by Dean (1971) and we will discuss them here also.

Total Test Time

As shown in formula (2.23), the general expression of the probability of accepting

a submitted lot number k, Pa;k, for defened state life test plans can be expressed in terms

of r, b, 0 and T. For any DS(r,b) plan, the values of r and b are known, so that the Pu.¡

can be written as a function of l. Thus, each DS(r,b) plan can be represented by one OC
0

curve with Pu.¡ on the y-axis unO I on the x-axis. The OC curve can easily be obtained-e
by substituting specific values of I into formula (2.23).

e

An example of Pu.¡ values for DS(4,3) in terms of I i, shown in Table 3.1. The
0

OC curve for this DS(4,3) plan is plotted in Figure 3.1. Once the OC curve is obtained, we

can use

known.

it to find. the probability of acceptance of a submitted lot in which the value of I i,
e

The values of producer's risk (s) and the consumer's risk (Ê) can also be
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determined when the discrimination ratio, ô > 1, is given. The discrimination ratio can be

calculated from 06q¡, the mean-time-between-failure corresponding to the acceptable

quality level and OLet, the mean-time-benveen-failure corresponding to the limiting

quality level, by the formula

Oeer- = õ0r-eL. (3.1)

On the other hand, if specific values for ü,, B and ô are given, the user is

responsible for finding a life test plan which satisfies the given requirements. One method

to do this is to check the set of OC curves of DS(r,b) plans until an appropriate OC curve is

found. For example, suppose a deferred state life test plan is needed satisfying the required

conditions: G =0.1, F =0.1, and õ =2. Thenasetof occurvesof DS(r,b)plansis

checked. V/hen the DS(4,3) plan is considered, it is found that the probability of

acceptance (Pa;k) is 0.9 (1 - a) when the value or I i, 4.2, and.the probability of
0

acceptance (Pu;t) is 0.1 (B) when the value of I i, 8.6. It is obvious that
e

T 
=4.2oeel

and

=I- = 8.6. (3.3)orel
That is,

T = 4.2 0eer (3.4)

and

(3.2)

T = 8.6 0rer,

-52-
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respectively. Dividing formula (3.a) by formula (3.5), we have

oReL 
= r

orer-
(3.6)

and from (3.1), we get ô = 2. Thus, the DS(4,3) plan will be chosen because it satisfies

the required conditions.

After a specific life test plan is selecæd the total test time can be calculated by (3.a)

or (3.5). For example, if the value of Oaq¡ is 1000 hours for the test items, formula (3.4)

shows that the total test time should be 42ffi hours (T = 4.2x 1000 = 4200).

Dean compared the above DS(4,3) plan with the plans in MIL-STD-7818 (1967).

In MIL-STD-7818, the Test Plan XVIII has exactly the same characteristics as those in

DS(4,3), i.e. cr = 0.1, Þ = 0.1, and ô = 2. But the total tesr rime of the Test Plan XVtrI is

9.4 04q¡, while the total test time of the DS(4,3) plan is only 4.204eL. The advantage

of the deferred state life test plan can be seen, not only through the above comparison, but

also through other additional comparisons. As a result, the total cost of testing time per

sample can be reduced.

Sample Size

As it was mentioned before, the failed items during a life test may or may not be

replaced by a new item drawn from the remainder of the same lot. For the replacement

case, the sample size has no restriction since the test can always be terminated at the

predetermined total test time T. For the non-replacement case, there exists a possibility that

all sample items fail before the total test time is reached, so ttrat the user should determine

an appropriate sample size such that the probability of reaching the total test time T is high.

Assuming that all n items of a sample are simultaneously placed on a life test, let q
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be the time at which the itlt item fails. Since the q's are independently and exponentially

distributed random variables, the sum of all q's,

y = tl + t2+... + tn, (3.7)

will be arandom variable with a g¿Lmma distribution (Appendix A). If the mean-time-

between-failure is 0, this gamma distribution will have the parameters n and 0. By using

formula (4.12), the probability that the sum of all q's is greater than the total test time can

be written as

P(y>T)= (3.8)

If it is required that the probability of reaching the totat test time T must be greater than

0.90, the sample size can be calculated by

> 0.90. (3.e)

The sample size will be that value of n which satisfies formula (3.9); and it must be at least

r+b+l in onder to provide the reject decision in all DS(r,b). For example, if we consider

the DS(4,3) plan discussed in ttre last section, the value of I will be 4.2with T = 4200
e

and 0 = 1000. The appropriate sample size can then be determined from (3.9), which

becomes

.-T
/m\l 

-n-rfiì"0
F \U/
Lt if
i=0

(r
i'\q
i=0

1i
t

)
-I

_T

0e

I
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î't-2r{1 > o.eo.Hil
i=0

(3.10)

The above inequality can be solved by an algorithm or a table of Poisson distributions

(cumulative probability).

Table 3.2 shows the probability of reaching the total æst time of 4200 hours in

tenns of the sample size n. From Table 3.2,itis obvious ttrat the sample size must be at

least eight items to ensure that the probability of reaching the total test time of 42ffi hours is

grcater than 0.90. Dean (1971) also compared the sample sizes between the above DS(4,3)

plan and the Test Plan XVItr of MIL-STD-7818 (1967). He found that the sample size for

Test Plan XVItr is 14 items under the same requirements, thus showing the advantage of

the deferred state life test plan in saving on sample size can be shown. As a result, the total

cost of testing each sample item can be reduced.
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Table 3.1. Probabilities of acceptance a submined lot for DS(4,3) in rerms of T.
H

T
e

Pu;k

1

2

aJ

4

5

6

7

8

9

10

11

12

0.9999

0.9988

0.9856

0.9248

0.7676

0.5268

0.3012

0.1541

0.0751

0.0362

0.0173

0.0083
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Table 3.2. Probabilities of reaching 4200 hours for the DS(4,3) plan with sample size n.

Sample size, n Probability of reaching 4200 hou¡s

I

2

a
J

4

5

6

7

8

9

10

11

T2

t3

T4

15

0.0150

0.0780

0.2102

0.3954

0.5898

0.7531

0.8675

0.9361

0.9721,

0.9889

0.9959

0.9989

0.9996

0.9999

1.0000
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Figure 3.1. The OC curve for the DS(4,3) sampling plan.
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CHAPTER TV

THE EXPECTED COST OF THE DEFERRED STATE LIFE TEST PLAN

WITH REPLACEMENT

A detailed discussion of the deferred state life test plan was presented in the last two

chapters. When a deferred state life æst plan is required to test the submitted lots, the user

must know how to select an appropriate life test plan when the required conditions are

given. Also, the appropriate sample size and total test time must be determined. Another

consideration is the total cost of conducting a life test. Dean (Ig7l)proposed a cost model

for deferred state life test plans and then evaluated the expected cost for these life test plans.

He found that the expected cost of using a deferred state life test plan would be less than the

expected cost of using any other life test plans in some situations, but all defened state test

plans can provide the same producer and consumer protection. In order to make the

comparisons, a similar cost model witl be used in this dissertation, but a different

evaluation technique will be presented to see whether the deferred. state life test plans may

reduce the overall test cost. As mentioned before, the failed items during a life tesr may or

may not be replaced by a new item drawn from the remainder of the same lot. In this

chapter we will discuss the replacement case only. The cost model for the deferred state

life test plan with replacement is defined as

K= 
ICNTh(t,¡)(w) +a ¿-(n -s J1n+C2y,

with the notation

(4.1)

K = the total cost of conducting the life tesr,
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I = the carrying cost index which is defined as proportional to the

average inventory observed during the same year and its range is in

the neighbourhood of 0.2 or 0.3 for a specified time interval (This

carrying cost includes opporrunity costs, space rental cost, labour

cost, etc.),

C = the item cost,

N = the total number of items in the lot,

Tn1.,u¡(W) = the total accumulated waiting time of the curent lot in inventory

before disposition when using DS(r,b) plans with replacemenr,

n = the sample size,

Cs = the set-up cost,

Cl = the cost of testing each items,

CZ = the cost of testing each items per unit time, and

y = the total accumulated test time of a sample.

The first term in formula (a.1) is the total carrying cost of a submitted lot before

disposition. When the total accumulated waiting d-., TR(r,b¡(W), is divided by the sample

size, n, it becomes the calendar waiting time that the lot is hold in inventory. When we

multiply the item cost, C, with the total number of items in the lot, N, it becomes the total

cost of the submitted lot. Finally, the product of the carrying cost index, I, the total cost of

the submitted lot, C N, and the calendar waiting time that the lot is hold in inventory,
ïhr..ul(w) ...
-=-' will give the total carrying cost of a submitted lot before disposition. The

second term in formula (4.1) is the set-up cost, Cs. This is a fixed cost, no matter how

many items a¡e in the sample or how long the test conducts. The third term is the total cost

of testing the sample of n items and the last term is the total cost of testing time per sample.

In the replacement case, a sample of n items is placed on a deferred state life test for
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the total test time T and each failed item during the test will be replaced by a new item

drawn from the remainder of the same lot. In order to deveþ a general expression of

expected cost for DS(r,b) plans with replacement, the DS(O,1) plan will be considered first.

Iæt t1 and t2 be the failure times of the f,irst and the second items. Since t1 and t2are

independently and exponentially distributed random variables, their density functions

would be, in terms of the failure time t and the mean-time-benveen-failure 0.

Then the sum of t1 and t2, i.e. the total accumulated test time of a sample, will be a random

variable with a gamma distribution (Appendix A). This sum,

! = t1* t2,

-t
f(t) = 

1 eT
e

-v
veo

8(Y) = =-v-
go

0<t<T. (4.2)

(4.3)

0Sy<T. (4.4)

will have a gamma distribution which is truncated at T, and its densiw function is

The above formula can easily be obtained by substitu tngZfor m, y for t, an¿ 1 ror î,'0
formula (4.9). From formula (A.12),we see that the cumularive function of y is

into

G(v) = l-
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-v
= 1-e o

-v
ye0

Moreover, the expected total accumulated æst time of a sample for DS(O,1) ptan with

replacement, ER1o,t¡(y), would be written as

+ Jis(v) ov.

-rl
-lreo 

Iel
I
II

-T
12"T+-

e

+ rJiervi ov= lþs(r) av

= lþs(v) ar

-y l-

= Ër'r*i or.rl"# *VL

_Y _T
lm-

= 
ã|lo' Y2" o dY + rs o

En1o,t¡(Y) = lfrvs(vl oY

= lþs(r) ar

but, since y is truncated at T, formula (4.6) becomes

Enlo,r¡(v)

+r[1 -c(Ð].

By using formulas (4.4) and (4.5), formula (4.7) becomes

Enlo,t¡(v)

0<yST

(4.5)

(4.6)

(4.7)
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_T

+Te o

_T

T'¿e o+-
0

-v
=#Ë"(-e)¿e'

_T

T'¿e o+_
e

= +f,'"*|]-fi"î*,].**

=+f""+-fi,*î*].,"+

=-{,"*|]-fi,î.,].,"+

-r -vlr -r
o +2(-0,"T1 +teT

lo

_T

T"e o+_
e

_T -T

+r"T*T2e e

e

= -2Te

-T _T _T

=-ZTe e -Zg, e +20+TeT, or

[ -rl -rt-
Enlo,r¡(y) =201t-e o 

l-r. e

L]
(4.8)
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Furthermore, let ET*,0,1)(V/ = i) be the expected total accumulated waiting time of

the current lot in inventory when this lot waits for i additional lots before disposition for the

DS(0,1) plan with replacement. Let Pn1o,t¡(W = i) be the probability that the current lot

has to wait for i additional lots before disposition for the DS(0,1) plan with replacemenr.

First, consider the expected total accumulated waiting time of the current lot in inventory

when a disposition decision can be made on the curent sampling test, i.e. the current lot

does not have to wait for additionat lots before making disposition decision, then

ETnlo,t¡(W = o) = Enlo,r¡(v). (4.e)

Pn1o,r¡(W-0)=P6+P2 (4.10)

for the probability that the current lot does not have to wait for additional lots before

disposition. Second, consider the expected total accumulated waiting time of the cuïent lot

which has to wait for one additional lot before disposition, i.e.

ETnlo,r¡(w - 1) = T * En1o,r¡(y) (4.11)

and we obtain

Pnlo,r¡(W - 1) = P1 [Pp +P2).
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for the probability ttrat the current lot has to wait for one additional lot before d^isposition.

Similarly, the expected total accumulaæd waiting time of the curent lot which waits for i

additional lots before disposition can be written as

ETnlo,r¡(W - i) = i T * En1o,r¡(V)

with the associaæd probability that the crurent lot has to wait for i additional lots before

disposition

Pn1o,r¡(W - i) = e1i [Pg +P2).

(4.13)

(4.r4)

The expected total accumulated waiting time of the current lot before disposition for the

DS (0, 1 ) plan with replacemenr, ETn1o, r¡(V/), is

æ

ETnio,r¡(W) = )Et*(o,r)(W = i) Pp1s,1¡(W = i). (4.15)
i=0

Substituting formula's (4.9) to (4.I4) into (4.15), we ger

ETnlo,r¡(W) = En1o,r¡(Y) IPO + P2J + [T + ER(o,r¡(v)l tP1 (P0 + P2)l + ...

+ [i T + Enlo,r¡(y)] tpti (po + p2)l + ...

= [P0+P2] [Ep16,1¡(r) (1 + P1 + ... + Ptt * ... ) +

T P1 (1 + 2P1+ 3 P12 + ... + i fri-t + ... )l
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(4.16)

Since P0,Pl, and P2 are mutually exclusive and exhaustive, the sum of Pg andp2will be

equal to 1 - P1 and (4.16) becomes

=rP'+P2rfHt.&]

ETnqo,t¡0V) = En(o,r)(Y) . 
å.

As a result, the expected total sampling test cost for the DS(O,1) plan with replacement,

EKR(O,t), it

EKn(0,1) = T"t*10,r¡0il) + C, + C1 n + Cz En1o,r¡(v)

= i[".(0,1)(v).r*,-] + c, + c1 n + cz En1o,r¡(v). (4.18)

(4.r7)

V/e will now develop a general expression for the expected total test cost of the

DS(r'b) plan with replacement. Iæt tl be the failure time of the ift item. Since the q's are

independently and exponentially distributed, and I < i < r+b+l, their density distributions

would be given by formula (4.2). Also, the sum of all q's will be a random variable with a

gamma distribution. Iæt y be the sum of all q's, i.e. the total accumulated test time of a

sample:

y = t1 +t2+ t3 +...+ h+b+1.
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It follows that y has a gamma distribution truncated at T, with density function

The above formula can easily be obtained by substituting r+b+l, y and ] ro1. m, t and À
U

respectively in formula (4.9). And using formula (A.12), we find the cumulative

distribution function

-v
nr+b"Tg(y) = Osy<T. (4.20)

(4.2r)

(4.22)

Moreover, the expected total accumulated test time of a sample for DS(r,b) plans with

replacement,Enlr,u¡(y), can be written as

En(.,u)(v) = Jps(vi or 0<yST

= fis(vl ay * Jie(y) dy.

Since y is truncated at T, formula (4.22) becomes

Eni.,6¡(v) = fisrvi av + rJi(y) dy

= fvsfvl dy + r tl - c(r)1.
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By using (4.20) and(4.2I), (4.23) becomes

R( (4.24)

Furthermore, let ETRlr,b¡OM = i) be the expected total accumulated waiting time of

the cu¡rent lot in inventory when this lot waits for i additional lots before disposition for

DS(r,b) plans with replacement. I.et Pn1.,u¡(W = i) be the probability that the current lot

has to wait for i arrdi¡is¡u1 lots before disposition for DS(r,b) plans with replacement.

First, consider the expected total accumulated waiting time of the current lot in inventory if
a disposition decision can be made on the current sampling test, i.e. if the current lot does

not have to wait for additional lots before making the decision, then

ETn6,u¡(W - 0) = En6,u¡(v) (4.2s)

and the probability that the current lot does not have to wait for additional lots before

disposition is

fæ
Pn1r,u¡(W-0)= IPt* Int

i=0 i=r+b+l
(4.26)

Second, consider the expected total accumulated waiting time of the curent lot which has to

wait for one additional lot before disposition:
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ETnlr,u¡(V/ - 1) = T * En1r,u¡(y) (4.27)

with the probability that the curront lot has to wait for one additional lot before disposition

Pn6,u¡(W - 1) = Pr+b Pn1r,b¡$/ = 0). (4.28)

Third, the approximate expected total accumulated waiting time of the curent lot which has

to wait for two additional lots before disposition can be written as

ETn6,u¡(W -2)=2T + En1r,u¡(V) (4.2e)

with the probability that the current lot has to wait for two additional lots before disposition

PR1.,6¡(W - 2) = Pr+b Pn1r,b)GV = 1) + Pr*5-1 P¡6,6¡0M = 0). (4.30)

Similarly, the approximate expected waiting time of the curent lot which waits for i

additional lots before disposition can be written as

ET*('¡)(W - i) = i T + E*,.or(y) 1<i<b, (4.31)

with the probability that the current lot has to wait for i additional lots before disposition

Pn1.,u¡(W - i) = Pr+b PRlr,b)(W = i-1) + Pr+b-l P*frÐ(W =í-2) + ...

+ Pr+b-(i-l¡ PP6,6¡(W = 0)'
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Proceeding in the same fashion we can approximate the expected waiting time of the c1¡rent

lot which waits for b+j additional lots before disposition as

ET*(.¡)(W=b+j) =(b+j)T*Enqr,u¡(y) j =0, 1,2,..., (4.33)

with the probability that the crurent lot has to wair for b+j additional lots before disposition

Pn1r,u¡OM = b+j) = Pr+b Pn6,u¡(W = b+j-l) + Pr+b-l PRir,u¡(W = b+j-2) + ...

+ Pr+l Pn1r,u¡(w = j). (4.34)

The expected total accumulated waiting time of the current lot before disposition for

DS(r,b) plans with replacemenr, ETn1.¡¡(W), is

ETplrl,¡(lil) = Ë"r*O,r0M = i) Pp6,6¡$/ = i). (4.35)
i=0

Substituting (a.25) to (4.34) in formula (4.35), we get

ETn1r,6¡(w¡ = Ë[t r + En(.,b)(y)] Pnt ,¡i(w = i)
i=0

= I[E*rr,u¡(Y)ft1r,b)(w = i) + i T tn(r,¡)(w = i)]
i=0

= ER1r,b¡(v) Ihfr,b)(w = i)+T > i h(r,u)OV = i)
i:0 i=0
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ETn6,u¡(W) = EnG¡)(y) + t Enlr,u¡(W). (4.36)

Note that En(r,u)(W) is the expecæd wait for the number of adrtitional lots which must be

sampled" on the average, before disposition of the curïent lot, as discussed in Chapter tr.

As a result, the general expression of the expected total sampling test cost for DS(r,b) plans

with replacement, EKplr¡¡, is

EKRG,b) = Tut*(r,u¡(W) + C, + C1 n + C2 Enlr,u¡(v)

= T[En1,,ul(y)+TEn1r,u¡(wl] * c, + c1 n + c2 En1.,u ¡$). Ø.37)

In this chapter, the expected total test cost of conducting the deferred state life test

plan with replacement was discussed. When a deferred state life test plan is selected to test

the submitted lot, not only the appropriate test time can be determined but also the expected

total test cost of performing the deferred state life test with replacement can be calculated.

After the expected total test cost is obtained it may be compared with the expected total test

costs of using other type of test plans in order to see whether the use of the deferred state

life test plans will reduce the overall test cosr.
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CIIAPTER V

COST COMPARISONS

We have shown that using a defened state life test plan could reduce the total

accumulated test time, but that a waiting line may be formed when there are any lots in a

deferred state. So the carrying cost of deferred lots should be considered before a deferred

state life test plan is selected to replace any other type of life test plans. In other words, the

total cost of testing time per sample are reduced, but the increased total carrying cost for

deferred lots may nullity this. In order to demonsüate that the deferred state life test plan

can reduce the overall life testing cost, the expected toral tesr cost for the DS(4,3) plan with

replacement will be calculated for an example. Some assumed values are as follows: I =
0.2, C = 50, N = 100, Cs = 1000, Cl = 50, and C2= 10. The successive values of the

mean-time-between-failures (MTBF) are 1000,750,500,250, and 100; and the sample

sizes are 20,40,60, 80, and 100.

The cost model and the evaluation method for the deferred state life test plan with

replacement was introduced in the last chapter. By substituting the above values in formula

(4.37), the expected total sampling test cost for the DS(4,3) plan with replacement can be

found. A computerprogram to do this, written in FORTRAN, is given in Appendix C.

This program will read in the required data and calculate the expected total sampling test

cost for the required DS(r,b) plan with replacement by using formula (4.37).The results

obtained with the above assumed values can be found in Appendix c.

Expected cost of the Test plan XVrII with Replacement

As mentioned before, the DS(4,3) plan and the Test plan XVItr of MIL-STD-7g1B

have almost identical oC curves, i.e. they can provide the same producer and consumer
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protection. For the Test Plan XVItr of MIL-STD-781B, a sample of n items is selected

from a submitted lot of size N. All n items will be placed on life test simultaneously until

the predetermined total accumulated test time T is reached or the x+1ft failure is found.

The total accumulated test time T was discussed in Chapter Itr and equals 9.4 06q¡. The

x value is the maximum number of allowable failures, 13 in this case. The expected total

test cost of Test Plan XVItr wittr replacement will now be calculated to compare it with the

expected total test cost of the DS(4,3) plan with replacement.

The same cost model, given in formula (4.1), will be used for the Test Plan XVtrI.

The general expression for expected total test cost of Test Plan XVm with replacement will

now be developed. Let ti be the failure time of the ith item. Since the q's are independently

and exponential distributed where 1 < i < x+l, their density function, in terms of the

failure time t and mean-time-between-failure 0. is

The sum of all q's will be a random variable with a gamma distribution. Let y be the sum

of all q's, i.e. the total accumulated test time of a sample,

-t
flt) = 

1eã
0

-v
Yxe o

s(Y) = iFÇ

0<t<T. (s.1)

(s.2)y = tl + t2+ t3 + ... + tx+l.

Then y has a gamma distribution truncated at T with density function
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and cumulative distribution function

. l¿l'"7
G(v)=r-i\0/,H if

i=0

(See formula's 4.9 and 4.12).

The expected total accumulated test time of a sample for Test Plan XVItr with replacement,

En(xvm)(y), can be written as

Ençxvm¡(v) = lps(v) ov o<y<T

(s.4)

(5.s)

(s.6)

rT ¡.æ
= Jovs(r) dy * Jrye(y) dy,

which, since y is truncated at T, becomes

Enlxvn¡(vl = lþsfv) dy + rJiefvl av

rT
= Jsve(v) dy + r [1 - G(r)],

which, by substitution of (5.3) and (5.4), becomes
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Ençxvm¡(v,=r#*.JtNl
Lni]

(s.7)

Since there are no deferred lots in the Test Plan XVItr, the disposition decision for

the current lot can be made after the curent sampling test is done. As a result, the general

expression of the expcted total sampling test cost for the Test Plan XVItr with

replacement, EKR(XVIÐ, is

EKn(xvtÐ = l"**vng(v) + C, + C1 n + Cz Ençxvug(v) (s.8)

Cost Comparisons

In order to compare the Test Plan XVItr with the DS(4,3) plan, the previously

assumed values for the DS(4,3) plan will also be used in this Test Plan XVtrI with

replacement. By substituting the assumed values into (5.8), the expected total sampling

test cost for the Test Plan XVItr with replacement can be found. A computer progr¿Ìm,

written in FORTRAN, is given in Appendix D. It will read in the required data and

calculate the expected total sampling test cost for the Test Plan XVItr with replacement by

using formula (5.8). The resulrs obtained can be found in Appendix D.

For the pu{pose of comparison, the results from Appendix C and Appendix D are

shown in Table 5.1. The expected total test cost is expressed as a function of MTBF and

the sample size. It is observed that when the MTBF is kept constant, the expected total test

cost will decrease as the sample size increases. When the sample size increases, the total
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cost of testing each sample will increase. But the calendar waiting time for the lot will

decrease when the sample size increases, so that ttre toøl carrying cost per lot will decrease.

With the assumed values, the increased cost is less than the decreased cost and the expected

total test cost will decrease. On the other hand, when the sample size is kept constant, the

expected total test cost will decrease as the MTBF decreases. Since the total accumulated

test time decreases if the MTBF decreases, the total cost of testing time per sample and the

total carrying cost per lot will decrease. As a result, the expected total cost will decrease.

'When both MTBF and sample size a¡e fixed, the cost of the DS(4,3) plan and of the

Test Plan XVIII in the replacement case can be compared. It is obvious that the expected

total test cost of the DS(4,3) plan is less than the expected total test cost of the Test plan

XVIII for each pair of MTBF and sample size. It means ttrat the expected toral test cost will

be reduced when we use the DS(4,3) plan instead of Test Plan XVItr for all values of

MTBF and sample sizes. The percentage saving in costs are shown in Table 5.1. It can be

seen that the maximum savings, 27.127o, are obtained when the MTBF is 1000 hours and

the sample size is 100 items; the minimum savings, 9.50To,are obtained when the MTBF

is 100 hours and the sample size is 20 items, with the previously assumed input values.

Dean (1971) also used the above assumed values to calculate the expected total test

costs of both the DS(4,3) plan and the Test plan XVItr of MIL-STD-7g1B in the

replacement case with his evaluation method. The results are shown in Table 5.2. Again

the expected total test cost is expressed as a function of MTBF and the sample size. Also,

when the MTBF is kept constant, the expected total test cost will decrease as the sample

size increases; and when the sample size is kept constant, the expected total test cost will

decrease as the sample size increases. The reasons are the sa.me as before (Tabte 5.1). It is

found again that the expected total test cost of the DS(4,3) plan is less than the expected

total test cost of the Test Plan XVm, for each pair of MTBFs and sample size. This means
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that using the DS(4,3) plan insæad of the Test Plan XVm will reduce the expecæd total test

cost for all values of MTBF and sample size. In order to compare Dean's results with

those presented in this dissertation, the last column in Table 5.2 was added, to show the

percentages saved when using the DS(4,3) plan instead of using the Test Plan XVItr in the

replacement case. It can be seen that the maximum saved is30.%)7o, and occurs when the

MTBF is 1000 hours and the sample size is 20 items; and the minimum saved is 2l.8ZVo,

occurring when the MTBF is 100 hours and the sample size is 100 items again with the

previously assumed input values.

In this chapter cost comparisons between the DS(4,3) plan and the Test plan XVItr

of MIL-STD-78lB were presented, not only to illustrate the evaluation method introduced

in this dissertation but also to discuss the results obtained by Dean. In both examples our

results show that the use of the deferred state life test plan can reduce the overall sampling

test cost. In some cases the savings are very substantial.

It is important to realise that the deferred state life test plans are not designed to

replace all other types of life test plans. The development of the deferred state life test plans

provides the user with one more choice when selecting a life test plan to test the submitted

lots. The expected total test cost is one of the major factors that concern most of the users.

In some situations, the deferred søte life test plans can reduce the expected total test cost

such as in the example discussed in this chapter.
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Table 5.1. Cost comparison between Test Plan XVtrI with replacement of MIL-STD-

7818 and the DS(4,3) plan with replacemenr.

MTBF
(in hour)

750

s00

250

100

Sample size
(in unit)

Expected total test cosr (in dollar)

DS(4,3) plan Test Plan XVItr

Amount saved with
DS(4,3) plan

( in percentage )

20
40

60
80

100

20
40
60
80

100

20
40
60
80

100

1000

20
40

60
80

100

20
40
60
80

100

504140
2748M
199079
t61697
139667

378605
206883
150309

122523

r062s0

253070
138922
101540

83348

72834

t27535
7096r
52770
44174
394r7

5221,4

30184
23508

20670
19367

558918

327869
251519
2138M
t9r639

4r9689
246652
189640

t61,634

145230

280460
165435
127760
109423

98820

14t230
84218
6s880
5721.r

524t0

57692

35487
28752
25885
24564

9.80Vo

16.17Vo

20.85Vo

24.39Vo

27.IZVo

9.79Vo

16.l2%o

2O.747o

24.20Vo

26.84Vo

9.77Vo

l6.03Vo
20.52Vo

23.837o

26.30Vo

9.70Vo

15.74Vo

L9.90Vo

22.79Vo

24.79Vo

9.50Vo

74.94Vo

18.247o

20.l5Vo
2l.167o
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Table 5.2. Cost comparison benveen Test Plan XVtrI with replacemenr of MIL-STD-

7818 and the DS(4,3) plan with replacement when using Dean's results.

MTBF
(in hour)

750

500

250

Sample size
(in unit)

Expected total test cosr (in dollar)

DS(4,3) plan Test Plan XVItr

Amount saved with
DS(4,3) plan

( in percentage )

20
40
60
80

100

1000 374865
235760
1796/'l
153165

139766

28r66r
177557

13573r
116136
t06312

188458

1 19355

91820
79r08
72858

95253
6rr52
479r0
42079
39404

39332
26231
21564
19862
19332

542489
336796
253487
213920
193720

407379
253334
191115

161702
146777

272269
169873
128743

109485

99835

737159

86412
66372
57268
52892

56094

36335
28949

2s937
24727

30.90Vo

30.00Vo

29.l3%o

28.407o

27.857o

30.867o

29.91.Vo

28.98Vo

28.18Vo

27.57Vo

30.787o

29.74Vo

28.687o

27.757o

27.02Vo

30.55Vo

29.237o

27.82Vo

26.52Vo

25.50Vo

29.88Vo

27.8l%o

25.51Vo

23.42Vo

21.82Vo

20
40
60
80

100

20
40

60
80

100

20
40
60
80

100

20
40

60
80

100

100
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CHAPTER VI
THE MINIMUM EXPECTED TEST COST OF THE DEF'ERRED STATE

LME TEST PLAN \ryITH REPLACEMENT

The selection of an appropriate deferred state life test plan and the determination of

the tot¿l test time of the selected deferred state life test plan were discussed in Chapter ltr.

In this chapter, the determination of the optimal sample size for a deferred state life test plan

will be presented" so that the minimum expected total test cost can be found.

Consider the DS(4,3) plan discussed in the last chapter. The expected total test

costs of DS(4,3) plan in terms of the mean-time-between-failures and the sample size were

listed in Table 5.1. It is observed that the expected total test cost will decrease as the

sample size increases when the mean-time-between-failure is fixed. Obviously, as the

sample size increases, the total cost of testing each sample wil increase. On the other

hand" as the sample size increases, the calendar waiting time of the lot will decrease so that

the total carrying cost per lot will decrease. Based on the previously assumed input values,

the increase in cost is less than the decrease in cost so that the expected total æst cost will

decrease as the sample size increases. It is interesting to know, for given mean-time-

between-failures, whether the expected total test cost will always be decreasing or whether

it will decrease to a certain minimum point and then increase again. Table 6.1 shows the

expected total test costs of the DS(4,3) plan with replacement with the previously assumed

values except the lot size of 2000 and sample sizes from 100 to z}ffi,with increments of

100.

Figure 6.1 shows the expected total test cost curves of the mean-time-between-

failures of 1000, 750, 500, 250 and 100 hours with various sample sizes. All the curves

are concave down with only one minimum point for each curve, and we see that, for the

above values of mean-time-between-failure ttre optimal expected total test costs are
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S 234515-20, $ 198442.40,5 I57573.t0,5 107446.20 and $ 65860.94 for sample sizes

of 1900, 1700, 1400, 1000 and 6@ respectively.

This leads us to three observations regarding the above example. The fust

observation is that, for increasing values of mean-time-between-failure, the expecæd total

test cost decreases to a certain minimum and then increases again as the sample size

increases. When the sample size increases, the total cost of testing each sample will

increase and the total carrying cost per lot will decrease at the same time. When the sample

size increases, the increase in cost is less than the decrease in cost before the minimum

expected total test cost is reached" so that the expected total test cost is decreasing. When

the sample size increases, the increase in cost is greater than the decrease in cost after the

minimum expected total test cost is reached so that the expected total test cost is increasing.

The second observation is that the minimum expected total æst cost will decrease

when the mean-time-benveen-failure decreases. It is obvious that the total accumulated test

time of the life test will decrease when the mean-time-between-failure decreases since the

total accumulated test time is 4.2 times the mean-time-between-failure of the test items. As

the total accumulated test time of the life test decreases, the total cost of æsting time per

sample and the total carr¡ring cost per lot will decrease. Consequently, the expected total

test cost will decrease when the mean-time-between-failure of the test items decreases.

The third observation is that the minimum expected total test costs for different

values of the mean-time-between-failure do not occur in the same sample size. Although

the total cost of testing each sample will increase as sample size increases, the increasing

rates are different for different values of the mean-time-between-failure. Similarly, the

decreasing rates of the total cost of testing each sample are also d.ifferent for different values

of the mean-time-between-failure. As a result, the minimum expected total test costs occur

for different values of sample size for different values of the mean-time-benveen-failure.
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Finally, the exact value of the optimal sample size for minimising the expected total

tesr cost for the DS(4,3) plan with replacement can be easily obtained. For example,

consider the test items with mean-time-between-failure of 1000 hours. From Table 6.1, we

see that the minimum expected total test cost is 5234515.20 for sample size 1900. Since

the increments of the sample size in Table 6.1 are 100, the exact minimum expected total

test cost might not occur in the sample size of 1900. Hence we constructed Table 6.2

showing the expected total test cost of the DS(4,3) plan with replacement for sample sizes

between 1900 and 1930 with increments of one; we find that the exact minimum expected

toral resr cost is $ 234505.10, for sample sizes 1919, 1920 and 192I. ln addition, Figure

6.2 shows the expected total test cost of the DS(4,3) plan in detail, for sample sizes from

1911 to 1928 wirh increments of one; clearly the minimal expected total test cost will be

obtained for sample sizes of 1919, L920 and L921.
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Table 6.1. The expected total test costs of the DS(4,3) plan with replacement for various

mean-time-be¡veen-failure values.

MTBF
(in hour)

1000

Sample size

(in unit)

100

200

300

400

500

600

7m
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

100

200

300

1889911.00

973730.50

671669.80

523139.60

43602r.30

379609.r0

340743.40

3r28M.00

292255.70

276785.00

265036.20

256078.90

249269.00

244146.1,0

240372.90

237696.40

235923.00

234902.20

234515.20

234666.80

1418935.00

733048.80

507753.00

Expected total test cost

(in dollar)

750
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100

200

300

400

500

6m
700

800

900

1000

1100

500

400

5m
600

7W

800

900

1000

1100

rzw
1300

1400

1500

1600

1700

1800

1900

2000

1200

1300

1400

1500

1600

397605.20

333516.50

292457.30

264557.80

244883.30

230692.00

220339.00

212777.40

207309.40

20345r.90

200859.80

1.99279.80

t98522.50

198442.40

198926.80

199886.50

201250.30

947956.90

492365.60

343835.10

272070.00

231010.80

205304.70

188371.80

176922.10

169127.90

163892.50

160518.10

158539.50

157634.50

r57573.10

158186.50

159348.20
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250

100

1700

18m

1900

2000

100

2æ

300

400

500

600

700

800

900

1000

1100

12ffi
1300

1400

1500

1600

1700

1800

1900

2000

100

2W

300

400

s00

600

700

800

160961.50

162951.rc

165257.60

167833.50

476978.40

251682.80

179917.50

146535.00

128505.30

118152.30

112185.80

108961.00

r07563.90

r07446.20

108259.00

109769.70

Itt&I7.20
114286.50

717093.20

120174.10

123480.70

126975.50

130628.80

134416.70

r9439r.20

107273.00

81567.00

71213.94

67002.t3

65860.94

66474.3r

68184.38
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900

10m

1100

Lzm
1300

1400

1500

1600

1700

1800

1900

2000

70625.56

73578.50

76903.63

80507.88

84326.88

88314.56

92437.25

96669.63

100992.20

105390.r0

109851.50

rr4366.60
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Table 6.2. The expected total test costs of the DS(4,3) plan with replacement when the

mean-time-between-failure of the test items is 1(M hours.

Sample size (in unit) Expected total æst cost (in dollar)

2345r5.20

234514.r0

23451,3.20

2345t2.30

234511.50

2345r0.60

2345r0.00

234509.30

234508.60

234508.00

234507.50

234507.00

234506.60

234506.20

234505.90

234505.60

234505.50

234505.30

234505.20

234505.r0

234505.r0

234505.r0

234s05.30

234505.40

234505.60

234s05.90

r900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

t9t3
1914

t915

1916

1917

1918

1919

t920

t92r
1922

1923

1924

1925
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1926

1927

1928

1929

1930

234506.20

234506.50

234507.00

234507.40

234508.00
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Figure 6.1. The expected totâl test costs of the DS(4,3) plan with replacement for various mean-time-between-failu¡e values.
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Figure 6'2' The expected úotâl test cosß of the DS(4,3) plal w!t!r replacement when the mean-time-between-failu¡e of the
test items is 1000 hours.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

In this dissertation, a review of the cturent lot-by-lot acceptance sampling plans by

attributes was presented in Chapter II. In most current sampling plans, the decision to

accept or reject a submitted lot depends only on the sampling test results of the curent lot.

Information from other lots will nbt be considered. when making this decision. Usually, a

submitted lot will be accepted if and only if the number of defective items in the test sample

is less than the predetermined maximum allowable defective number; otherwise, the

submitted lot will be rejected, without any further considerations. Baker (lg7|)developed

the deferred state attribute acceptance sampling plan in the field of quality control. Those

sampling plans use subsequent lots information for the decision to accept or reject the

clrrent lot; they are identified as DS(r,b) plans. Instead of making a simple acceprance or

rejection decision, one of the following three decisions is made;

1) Accept the entire lot if there are r or fewer defective items in the test sample,

Z)Defer the decision if there are r+1 to r+b defective items in the test sample, and

3) Reject the entire lot if there are more than ¡+b defective items in the test sample.

Dean (1971) used the concept of deferred state attribure accepr¿urce sampling plans

in truncated life test plans to develop the defened state life test plans. The selection of the

deferred state life test plans was discussed in Chapter III, as well as calculation of the total

accumulated test time T after an appropriate DS(r,b) is chosen. When using a deferred state

Iife test plan, a sample of n items is selected and placed on life test. The life test will be

terminated until the predetermined total accumulated test time T is reached or the r+b+lú
failed item is found. One of the following three decisions is made after the life tesr:

1) Accept the entire lot if there are r or fewer failed items in the test sample during tfre total
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accumulated test time T,

2) Defer the disposition decision of the crurent lot if there arc r+1 to r+b faited items in the

test sample during the total accumulated test time T, and

3) Reject the entire lot if there are more than r+b failed items in the test sample during the

total accumulated test time T.

The failed items during a life test can be replaced by new ones drawn from the

remainder of the same lot. Dean developed a cost model for the deferred state life test plan

with replacement and he also evaluated the expected total test cost for the DS(4,3) plan with

replacement. Then he compared the results with the expected total test cost of the Test plan

XVItr of MIL-STD-7818 in the replacement case since these trvo plans have almost

identical operating characteristic cuwes, i.e. they provide the same producer and consumer

protection.

This dissertation focussed on the defened state life test plans. Our major concern

was with the expected total test cost of the deferred state life test plan with replacement, in

order to see whether the use of the deferred state life test plan can reduce the overall total

test cost. For this comparison, the expected total test costs of the DS(4,3) plan with

replacement and the TestPlan XVItr with replacemenr of MIL-STD-7818 were discussed

in detail. For the DS(4,3) plan, the total accumulated test time witl be 4.2nmes 0, the

mean-time-benveen-failure of each test item, as compared to a total accumulated test time of

9.40 for the TestPlan XVtrI of MIL-STD-7818, so that the toral accumulated test time

would be reduced by using the DS(4,3) plan instead of the Test Plan XVItr of MIL-STD-

7818; consequently, the total cost of testing time per sample could be reduced- But one of

the limitations of the deferred state life test plans is that a waiting line may be formed by

lots placed in a deferred state. Therefore the waiting time of the submitted lots before

disposition will increase when the DS(4,3) plan is substituted for the Test plan XVtrI of
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MIL-STD-7818. As a result, the carrying cost of the submitted lots will increase with the

DS(4,3) plan.

In order to evaluate the expected total cost of the DS(4,3) plan, we introduced in

Chapter fV a cost model for the DS(r,b) plan with replacement, based on the assumption

that failed items during the life test wil be replaced by new ones drawn from the remainder

of the same lot. The expected total test cost for the DS(r,b) plan with replacement was then

obtained by substituting the required data into the formulas in Chapter IV. In addition, in

Chapter V a cost model was developed for the Test Plan XVItr with replacemenr of MIL-

STD-7818, on the same replacement assumption, so that the cost comparisons could be

made. The expected total test cost for the Test Plan XVItr with replacement of MIL-STD-

781B was then obtained by substituting the required date into the formulas in Chapter V.

Two computer programs written in FORTRAN language are presented in

Appendices C and D. The first one, used to calculate the expected total cost of the DS(r,b)

plans with replacement by means of the formulas developed in this dissertation, can be

found in Appendix C. The other computer program, used to calculate the expected total test

cost of the Test Plan XVItr with replacement of MIL-STD-7818 by means of the formulas

also developed in this dissertation, can be found in Appendix D. On the basis of assumed

input values the expected total test costs of the DS(4,3) plan and the Test plan XVItr of

MIL-STD-7818 were obtained and the results appear in Appendices C and D. With these

results the cost comparisons were made and discussed in chapter v.

With these assumed input values, the expected total test cost of the DS(4,3) plan

appeared to be less than the expected total test cost of the Test Plan XVItr of the MIL-STD-

7818 for each pair of mean-time-between-failure and the sample size, rhus indicating that

the expected total test cost will be reduced when the DS(4,3) plan is used instead of the

Test Plan XVItr of MIL-STD-7818 for all values of mean-time-between-failures and
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associated sample sizes. The maximum amount saved was around 27Vo nthis example.

Furthermore, the results of the cost comparisons in this dissertation are similar to those in

Dean (1971) when the same assumed input values are used for the evaluations. In

addition, the minimum expected total test cost of the defened state life test plan with

replacement was discussed in Chapær VI.

Finally, it is important to realize that the development of the deferred state life test

plan is to provide one more choice in the selection of a life test plan rather than to replace all

other types of life æst plans. It is believed that the deferred state life æst plan can reduce

the overall test cost under some situations, such as in the example discussed in this

dissertation.
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CTIAPTER, VIN

RECOMMENDATIONS FOR FUTUR,E R.ESEAR.CH

In this dissertation, the deferred staæ sampling plans discussed are the fundamental

models of the deferred state sampling plan, also called fixed deferred state sampling plans.

Some other deferred state sampling plans could be formed after making some major or

minor modifications in the fixed deferred state sampling plan. In this dissertation, a cosr

model was developed for the f,rxed defened state attribute acceptance sampling plans with

replacement. With this cost model, one can evaluate the expected total test cost before a

deferred state sampling plan is used. Cost comparisons were also made between the frxed

deferred state sampling plan, DS(4,3), and the Test Plan XVItr of MIL-STD-7818 in the

replacement case, since both plans can provide the same producer and consumer protection.

The results of the cost comparisons showed that the fixed deferred state sampling plan can

reduce the overall test cost. Further ¡esearch could concern the development of cost models

for modified deferred state sampling plans in order to see whether the overall test cost can

be reduced with these modified sampling plans instead of other types of sampling plans

which can provide the same producer and consumer protection. Some modified deferred

state sampling plans will be suggested in this chapter.

Multiple deferred state sampling plans are an extension of the fixed deferred state

sampling plans developed by Baker (197l). The feature of these multiple deferred state

sampling plans is that the conditional decisions depend on the disposition of a multiple

group of future lots. Early detection of quality degradation is emphasized- Baker

categorized these multiple deferred staæ sampling plans by MDS(r,b,m), here r denotes the

maximum number of allowable defective items for unconditional acceptance, b denotes the

maximum number of additional defective items for conditional acceptance, and m denotes
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the number of future lots in which conditional acceptance is based. The operating

procedure for the multiple deferred staæ sampling plans is outlined by the following steps;

Step 1 - For lot number k, select a random sample of n items from the submitted lot and

determine the number of defective iæms.

Sæp 2 - Accept the lot if there ¿ìre r or less defective items in the sample. For more than r

defective items, the decision to accept or reject the current lot is dictated by the

following courses of action;

r+1 to r+b defective items - Defer the decision until the disposition of the next m

lots are obtained. If the next m lots are all accepted

then accept the curent lot number k. If any of the

next m lots are rejected then reject the cunent lot

number k.

r+i defective items (i > b) - Reject lot numberk.

Step 3 - Increment k by 1 and return to step 1.

Plan evaluation, plan comparisons, and plan limitations of the multiple deferred state

sampling plans could be found in Baker (1971).

Baker also developed the dependent-deferred staæ sampling plans. The feature of

these sampling plans is that the decision to accept or reject a submitted lot will use the

information of both past lots and future lots. Baker designated the dependent-deferred state

sampling plans be DD(r,b,m), here r denotes the maximum number of allowable defective

items for unconditional acceptance, b denotes the number of additional defective items for

dependent decision, and m denotes the next number of allowable defective items for a

deferred decision. The operating procedure for the dependent-deferred state sampling plans

is outlined in the following sreps;

Step 1 - For lot number k, (k > b), select a random sample of n items from the submitted
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lot and determine the number of defective iæms.

Sæp 2 - Accept the lot if there are r or less defective items in the sample. For more than r

defective items, the decision to ¿rccept or reject the curent lot is dictaæd by the

following courses of actions;

r+1 defective items

r+b defective items

r+b+l defective items

r+b+m defective items

Observe the disposition of the bú historical lot

which has already been accepted or rejected

ignoring those lots in a deferred state, and accept

lot number k if the bth historical lot was accepted.

Otherwise, reject lot number k.

Observe the disposition of the most recent lot that

has already been accepted or rejected, and accept

lot number k if this most recent lot was accepted.

Othenvise, reject lot number k.

Defer the decision until the disposition of lot

number k+m is obtained. If lot number k+m is

accepted, then accept lot number k. Otherwise,

reject lot number k.

- Defer the decision until the disposition of lot

number k+1 is obtained. If lot number k+l is

accepted, then accept lot number k. Otherwise,

reject lot number k.

r+b+i defective items (i > m) - Reject lot numberk.

Step 3 - Increment k by 1 and return to step 1.
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Plan evaluation, plan comparisons, and plan limitations of the dependent-deferred state

sampling plans can be found in Baker (1971).

Dean (1971) developed another deferrei state life test plan which was called

group/system deferred state life test plan. The basic assumption for these defened state life

test plans is that a single failure of a system's component pafis may not result in failure of

the system itself so that the consumer may accept a system which experiences one or more

failures. Dean designated the group/system defered state life test plan by GDS(r,b,m).

Here r denotes the maximum number of failures in order for the system to be

unconditionally accepted, b denotes the maximum number of additional groups each

comprised of m failures which will qualify the system for deferred sentencing, and m

denotes the number of system failures comprising one group. The operating procedure for

the group/system deferred state life test plan is outlined in the following steps;

Step 1 - Place the submitted system number k to the life test and determine the number of

tailed parts.

Step 2 - Accept the system if there aÍe r or less failures in the system. For more than r

failures, the decision to accept or reject the current system is dictated by the

following courses of action;

r+1 to r+m failures - Defer decision to accept or reject the current

system until the disposition of system number k+b

has been determined. If system k+b is accepted,

accept system number k. If system number k+b is

rejected, reject system number k.

r+m+l tor+2mfailures - Deferdecisiontoacceptorrejectthecurrent

system until the disposition of system number

k+b-l has been determined. If svstem k+b-l is
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accepted, accept system number k. If system

number k+b-l is rejected, reject system number k.

r+(b-1)m+1 to r+bm failures - Defer decision to accept or reject the current

system until the disposition of system number k+l

has been determined. If system k+l is accepted,

accept system number k. If system number k+l is

rejecæd, reject system number k.

r+i failures (i > bm) - Reject the sysæm numberk.

Step 3 - Increment k by 1 and return to step 1.

Detailed information for the goup/system deferred state life test plan can be found in Dean

(r971).

In addition, some other modified deferred state sampling plans could be developed.

For instance, the concepts of the multiple deferred state sampling plans and the dependent-

defened state sampling plans could be combined together to develop a multiple dependent-

deferred state sampling plans. Also, the concepts of the goup/system deferred state

sampling plans and the dependent-deferred state sampling plans could be combined

together to develop a group/system dependent-deferred state sampling plans. After a new

deferred state sampling plan is introduced, the cost models could be developed in the

similar way which was discussed in this dissert¿tion.

In conclusion, different defened staæ sampling plans can be inroduced in order to

satisfy the requirements of different circumstances. Development of cost models could

help the sampling user to select an appropriate sampling test plan which dose not only

provide the adequate producer and consumer protection but also reduces the overall

sampling test cost.
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APPENDIX A

STATISTICAL ASPECTS

The tsinomial Probability Distribution

The binomial probability distribution is one of the discrete probability distributions.

It represents successive terns in the binomial expansion of þ + q)n for an integer n, with

P+q=1

(p + q)t = pn + npn-lq * 9lpn-2o2 + ... + qn. (A.1)
L

Sometimes, we are interested only in one or two terrns of the binomial expansion. For

example, if a sample of items is selected from a population of an infinite number of items or

from a steady flow of items produced by a unique source, and each item can be classified

by attributes such as good or defective, pass or fail, etc. with probabilities p and q

respectively, the binomial distribution will be used, provided that the assumption of

independent trials is satisfied, i.e. the probability of occurrence of a defective item in one

trial does not affect the probability of occurrence of a defective item in another trial. With

the notation

Px = probability of x defective items in the sample,

n = number of trials or sample size,

x = number of defective items in the sample,

p = fraction defective in the population, and

q - 1-p =fraction goodinthepopulation,

the probability that x items in the sample are defective is
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P* = 
n! 

D*qt-*.^ x! (n - x)!'
(4.2)

(4.3)

If p is equal to q, the distribution is symmetrical; otherwise, it is asymmetrical. The

symmeüry property is not affecæd by the sample size, n. However, the distribution will

tend to become symmetrical when the sample size gets large enough regardless of the

degree of difference between p and q. The shape of the distribution depends on the sample

size, n, and the fraction defective, p. Changing either n or p will result in a different

distribution. Values of the binomial probability distribution can be obtained from formula

(4.2) or from binomial distribution tables. Since three variables (n, p, and x) are involved

in this distribution, these tables require a large amount of space. The mean and the variance

of this distribution are np and np(1 - p) respectively.

The Poisson Probability Distribution

The Poisson probability distribution is also a discrete probability distribution. This

distribution is used for problems involving the number of occurrences of some event per

unit of time or per sample, and these occurrences are random and independent of each

other. The probability of x occunences per unit for a Poisson distribution, in terms of the

mean number of occurences per unit 1", is

P- = 
Xxe-I

^x!

Poisson probabilities can be easily determined from (4.3) or from Poisson distribution

tables. Since only two variables (x and À) are involved in the distribution, such tables do

not require a large amount of space.
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Generally, the Poisson distribution is skewed; however, it will become symmetric

when î" gets larger. The variance of this distribution equals the mean 1". The binomial

distribution distribution tends to the Poisson distribution for large n as the mearl value, np,

gets larger while p (or q) becomes smaller; ttre simpler Poisson probability distribution is a

good approximation to the binomial probability distribution if n > 20, p < 0.1, and np < 5

(Bowker, L972; Duncan, 1974). Replacing n by ì" makes it simple to obtain approximate

binomial values from (4.3) or from Poisson distribution tables.

The [Iypergeometric Probability Distribution

The hypergeometric probability distribution is also a discrete probability

distribution. It is applicable to a population with a fînite number of items from which

random samples are taken without replacement. In terms of

P* = probability of x defective items in the sample,

N = lot size,

n = sample size,

X = number of defective items in the lot, and

x = number of defective items in the sample,

the probability of x occurrences is

(4.4)

The binomial probability distribution is a good approximation to the more complicated

hypergeometric probability distribution if N is at least ten times n. When p is replaced by

I'll* - "l
(x /(x - x/

-103-



\¿

3, P* can be calculated by (4.2) or from binomial distribution tables. Furthermore, ifN' ^
n ) 20, p < 0.1, and np ( 5, the even simpler Poisson probability can be used to

approximate the hypergeometric probability d.istribution by putting l, = 5. The mean
N

and the variance of a hypergeometric distribution r* g *d lgllt-ëll++lN \N/\ N/\N_l/
respectively.

The Exponential Distribution

The exponential distribution is a continuous distribution. It is applicable to

problems involving occurrences such as the time to failure of an item or system, if such

occurences are independent of whatever happened before. The exponential density

function in terms of rate of occurrence À and of elapsed time t before occurrence of event

often has the form

f(t) = 1"-It, r > 0 (4.5)

and cumulative distribution function

r>0F(t) = ljrq*¡ o*

= f æ-x* dx, or

F(t) = 1- e-Àt. (4.6)

This disrrbution has the property of "having no memory", i.e" at any ume the

-t04-



probability that the next occturence will take place after a time interval h does not depend on

how long ago any previous events may or may not have occurred. This can be shown as

follows:

PG>t¡=J-À^e-kos

- 
"-Àt.

(4.7)

Hence, for t > 0 and any positive h,

P(T> t+htr>t) - P(T>t+h)
P(r > t)

"-I(t+h)=s

"-Àt

- --îh

= P(T > h). (4.8)

For example, if the distribution of life of an electric bulb is exponential, the

probability that a light bulb will survive to 100 hours given that it has already survived to

50 hours is the same as the probabitity that a new bulb will survive to 50 hours. But the

failure rate, i.e. rate of occurrence, is constant only within the useful life period. If the

useful life of this bulb is 1000 hours, the failure rate will remain constant until the operating

time approaches 1000 hours, by which time the failure rate will increase.
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There exists a relationship between the exponential and Poisson distributions. If

the distribution of occurences of an event is a Poisson distribution, then the distribution of

the time between occurrences is an exponential distribution. The mean of an exponential

11
distribution is i and the variance of this distribution is *.À -L¿

The Gamma Distribution

The gamma distribution is a continuous distribution with density function is

t>0, I>0,andm>0. (A.e)

Usually, m is called the shape parameter and 1, is called the scale paramerer. V/ith different

values chosen for m and ì", the gamma distribution can exhibit many different shapes.

f (m) is called gamma function and it is given by

f (m) = Ii**-1"-*o*, (4.10)

when m is an integer, f (m) = (m - 1)!. For general m, the cumulative gamma distribution

function is

G(t) = ljs(*i o*. (4.11)

When m is a posiúve integer, formula (4.11) can be evaluated by integration by pafts and

may be written as
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G(t) =,-þ'(11)'-.*' t> 0. (4.12)

In formula (A.12), it may be seen that the cumulative gamma distribution can be evaluated

as the sum of m Poisson terms with parameter î,t.

When 0 < m < 1, the gamma distribution function, G(t), is an increasing failure rate

distribution. If m = 1, G(t) is equal to 1 - e-Àt which is an exponential distribution. When

m > 1, G(t) is an decreasing failure rate distribution. Furthermore, if the par¿rmeter m is an

integer, the gamma distribution function is the distribution of the sum of m independently

exponential random variables which have the same failure rate, À. In other words, if
xI,xZ,... ,xm are independently and identically distributed exponential distribution with

the same failure rate, ì,, then x1+x2+... +xm is a gamma distribution with parameter m

and î,. The mean of a gamma distribution is $ and ttre variance of this distribution ir *.lv 7,"'
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APPENDH E

SOME EVALUATION TECTI¡{IQUES FOR. ACCEPTANCE SAMPLING

OC Curve

The operating characteristic (OC) curve is one of the common evaluation techniques

and the most important characteristic of sampling plans. It shows the discriminatory power

of a sampling plan. The greater the slope of the OC cuwe, the greater the discriminatory

power (Montgomery, 1985). The OC curve gives the probability of acceptance, Pu, of a

submitted lot as a function of the fraction defective of that lot is known.

As an example, the OC curye for the single sampling plan: N = 5000, n = 100, and

c = 2, is shown in Figure B.1. The fraction defective, p, is on the x-axis and the

probability of acceptance of a lot, Pu, is on the y axis. From Figure 8.1, the probability of

acceptance of a specific lot can be read off for a given fraction defective of the lol For

example, if the fraction defective of a submitted lot is 0.035, the probability of ¿rcceprance

of the lot is 0.32.

There are two types of OC curye: the type A OC curye and the type B OC curve. If
the lot is an isolated lot with finite size, a type A OC curye is used. For this situation, the

probability of acceptance of the lot should be calculated from the hypergeometric

probability distribution (Appendix A). On the other hand, if the lots are taken from a

steady flow of items which are produced by a single source, a type B OC curye is used,

and the probability of acceptance of the lots should be calculated from the binomial

probability distribution (Appendix A). In this dissertarion, all OC curves discussed will be

type B OC curves.
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Average Outgoing Quality

The average outgoing quality (AOQ is the basis for an evaluation technique used in

acceptance sampling @esterfield, 1986). Consider lots taken from a steady flow of items

and inspected according to a specific sampling plan. Some lots are accepted and shipped to

the consumer. But some lots are rejected and returned to the producer. 'When 
the producer

receives a rejected lot, all items in the lot are inspected and, afær all defective items found

are replaced by good items the lot with ÙVo defecrves will be sent to the consumer. Such

an acceptance sampling plan is called a rectifying inspection plan. In the long run, the

average outgoing lot quality (AOQ), i.e. the average fraction defective, for all lots received

by the consumer, is determined. For large lot sizes and relatively small sample sizes, AOe

can be approximately determined by multiplying the fraction defective of a submitted lot

with the probability of acceptance of the lot (Burr, 1979; Monrgomery, 19g5), i.e.

AOQ = pxPa. (B.1)

For example, consider the single sampling plan with N = 5000, n = 80 and c = 1.

First of all, Pa values are calculated. Then the AOQ values follow from formula (8.1).

The AOQ values for some assumed fraction defectives are calculated in Table 8.1.

The AOQ curve for this single samplingplan is plotted in Figure B.2. From Figure

B.2, the AOQ value can be read off for a given fraction defective. For example, if the

fraction defective of a submitted lot is 0.035, the average outgoing quality will have a

fraction defective of 0.0081. The maximum value in the AOQ curve is called the average

outgoing quality limit (AOQL). For our example, the AOQL value is approximately 0.011

fraction defective. Therefore, the average outgoing quality values could not be higher than

0.011 for the single sampling plan of our example, regardless of the fraction defective of
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the incoming lots. Similarly, the AOQ formulas for a double sampling plan and a multiple

sampling plan can be approximately determined by

and

AOQ = px(P¿)n1a¡,

AQ= px(P¿)nra...+nk

(B.2)

(8.3)

respectively. The average outgoing quality of double and multiple sampling plans can be

easily obtained from formulas (8.2) and (8.3).

Average Total fnspection

The average total inspection (ATI) is other an evaluation technique used in

rectifying inspection plans. ATI, which is based on the average number of items inspected

per lot, includes the number of items inspected in a sample as well as the remaining items

inspected in the lot when the lot is rejected. When choosing a sampling plan, it is not

sufficient to consider only the AOQ values. Both AOQ and ATI values are required to

specify an unique sampling plan. For a single sampling plan, ATI can be determined in

terms of lot size N, sample size n and probability of acceptance of the lot pu from

ATI=nPu+N(1 -Pa). (8.4)

For example, consider single sample plan N = 5000, n = 80, and c = 1. The ATI

values are calculated from (8.4) and are shown in Table 8.2. The corresponding ATI

curve is plotted in Figure 8.3. For a fraction defective of a submitted lot 0, the ATI is

equal to 80, i.e. the sample size. Since a submitted lot without defectives must be
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accepted, no more inspecúon is needed after inspecting ttre sample so the ATI must equal

the sample size. When the fraction defective of a submitted lot is 1, the ATI is equal to

5000, i.e. the lot size. Since the submitted lot must be rejected,INVI inspection is

required, so the ATI must equal the number of iæms in the lot. For all otherp values, the

ATI values will lie between the sample size, 80, and the lot size, 5000.

In calculating the ATI for a double sampling plan, three cases should be considered:

(1) The lot is accepted on the first sample with n1 iæms inspecæ{

(2) The lot is accepted on the second sample with n1+ n2 items inspected; and

(3) The lot is rejected and all items are inspected.

The probability of the first case is (P¿)rrr; the probability of the second case is

(Pu)nr; and the probability of the third case is I - (Pa)n 
L+nZ. 

Therefore, the ATI formula

for a double sampling plan is

ATI = nr(Pa)nr + (n1+n2) (Pa)nz + N 
[r- 

(pa)nr + 
"2 ].

(8.5)

The ATI formula for a multiple sampling plan can be constructed in a similar way:

ATI values for double and multiple sampling plans can be easily obtained from formulas

(8.5) and (8.6).

Average Sample Number

The average sample number (ASN) is the average number of items inspected in an

acceptance sampling plan. For a single sampling plan, the ASN is equal to the sample size,

ATI = nl(pa)nl + ... +(n1+ ... +n¡) (pu)nk* * 
[t - 

(pa)nr * ... * nu ]. (8.6)
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n. For a double sampling plan, the ASN is given in terms of

nk = the size of the kú sample, and

tn, = probability of making a decision either accept or reject the lot on the f,rst

sample

ASN=n1+n2(1-Pnl)

as

For example, if a double sampling plan has n1 = 80, cl = 1, rl = 3, n2= 100, c2=

3, and 12= 4, the probability of making a decision on the fîrst sample is equal to the sum of

the probability of accepting the lot and the probability of rejecting the ror, i.e.

(8.7)

(B.8)

(B.e)

nn, = (Pl or less)nl + (P3 or more)nl.

By substituting formula (8.8) into formula (8.7), we obtain

ASN = n1+ n2þ - rlr or tess)nl - (P3 or more)nr ]

for calculating the ASN for this sampling plan.

For a multþle sampling plan, the formula can be derived in a similar way as in

double sampling plan; in terms of

n¡ = the size of the kth sample, and

tnk = the probability of making the decision on rhe kù sample,

it becomes
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ASN = rlPnl + (n1 + nZ)PnZ+ ... + (r1 + nZ+ ...+ n¡)P¡n. (8.10)

Generally, ASN gives useful information for selecting an appropriate sampling plan to

minimize the inspection cost.

Up to now, we have discussed four curves: OC, AOQ, ATI, and ASN curves. The

OC curve and AOQ curve are protection curves; and ATI curye and ASN curve are cost

curves. In practice, these four curves will be unimportant if the fraction defective increases

to a value in which the probability of acceptance is 0.5 or less. In this situation, sampling

inspection should be discontinued and IffiVo inspection used since there will be too many

rejected lots when using sampling inspection. The producer should take action to improve

product qualify. Not until a satisfactory quality level is reached may sampling inspection

be used again.
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Table B.1. Average outgoing qualiry for the single sampling plan:

N=50@,n=80,andc=1.

Pa AOQ = pXPa

0.0m0
0.00808

0.01050

0.w927

0.00684

0.00455

0.00282

0.00203

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

1.000

0.808

0.525

0.309

0.171

0.091

0.047

0.029

Table 8.2. Average total inspection for the single sampling plan:

N=5000,n=80,andc=1.

np

8op

Pa ATI

80+(1-Pu)(5000-80)

80

r02r

2417

3482

4158

4549

4765

4880

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0

0.8

r.6

2.4

3.2

4.0

4.8

5.6

I

0.808

0.525

0.309

0.r71

0.091

0.047

0.029
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Figure 8.1. A typical oc curve for the single sampling plan: N = 5000, n = 100, andc =2.
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Figure 8.2. The AoQ curve for the single sampling plan: N = 5000, n = 80, and c = l.
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Figure B.3. The ATI curve for the single sampling plan: N = 5000, n = 80, and c = 1.
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APPENDIX C

COMPIJTATION OF TIIE EXPECTED TOTAI, TEST COST FOR. THE

DEFERRED STATE I.IT'E TEST PLAN WITH R.EPLACEMENT

Computer Program

$JOB WATFTV DAVE,NOEXT

INTEGER R,B,N,ENDATA,LOTSIZ

REAL CS,C 1,C2,I,C,T,MTBF,EXP 1,EXP2,EKRRB

READ,R, B,I, C,LOTS IZ,CS,CL,C2

C

C where R = the value of r,

C B = the value of b,

C I - the carrying cost index,

C C = the item cost,

C LOTSIZ = the roral number of items in the lot.

C CS = the set-up cost,

C Cl = the cost of testing each item, and

C CZ = the cost of testing each items per unit time.

C

C This program will read in the above values and it will also read in the values of

C MTBF and the sample size later, then calculate the expected total cost of the DS(r,b) plan

C with replacement. The results will be printed out in a table form.

C

PRINT IOO,R,B
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PRINT 2OO,I,C,LOTSIZ

PRINT 3OO,CS,C1,C2

PRINT 4OO

PRINT 5OO

PRINT 600

ENDATA = 0

EXCUTE RDDATA

wHrLE(ENDATA.EQ.0)DO

CALL EXPYVA(R,B,T,MTBF,EXP 1)

CALL EXPWAT(R,B,T,MTBF,EXP2)

EKRRB = I*C*LOTSIZ /N*(EXP1+T*EXP2) + CS + Cl*N + C2*EXpl

PRINT TOO,MTBF,N,EKRRB

EXECUTE RDDATA

END WHILE

PRINT 4OO

STOP

C

100 FORMAT('1"'TT{E EXPECTED COST OF DS("I1,""'I1,') PLAN WITH

*REPLACEMENT WHEN')

200 FORMAT('0','f = ',F4.2,',',' Ç =',F5.2,',',' LOT SIZE = ',I3,',')

300 FORMAT(' ','CS =',F7.2,',',' C1 - ',F5.2,', AND',' C2 =',F5.2,',')

400 FORMAT('0"'---------

*-------')

500 FORMAT('O"' MTBF 
"5X,'SAMPLE 

SIZE"5X,'EXPECTED TOTAL TEST

*cosr)
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600 FORMAT('0"'---------"5X,'------ 
"5X,'-------*-------')

700 FORMAT(',0"F7.2,9X,I3,14X,F10.2)

C

C The following remote block RDDATA will read the values of MTBF and rhe

C sample size until no data is found, then the calculation of the expected total cost will be

C terminated It also calculaæs the value of T.

C

REMOTE BI,OCK RDDATA

READ,MTBF,N

ATEND DO

ENDATA = 1

END ATEND

T = 4.2*MTBF

END BLOCK

END

C

C The following subprogram will calculate the value of the expected test time of a

C lot for the DS(r,b) plan with replacement, i.e. the numerical value of formula (4.24).

C

SUBROUTINE EXPYVA(R,B,T,MTBF,EXPY)

INTEGER R,B,COUNT,NUMI

REAL T,MTBF,Y,Y 1,Y2,FY I,FY2,SUM,TERM,WIDTH,SUM 1,SUM2

* ,LAST,RSUM,LSUM,EXPY

C
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COUNT = 0

SUM=0

TERM = 1

WHILE ( COUNT.LE. @+B) ) DO

SUM=SUM+-IERM

COUNT=COUNT+1

TERM = TERM*( T / MTBF ) / COUiVT

END WHILE

RSUM = T*EXP( -T / MTBF )*SUM

C

C The following section will use the "Simpson's method" to estimate the numerical

C results of the integration part in formula (4.24).

C

WIDTH=T/100

SUM1=SUM2=0

Y = WIDTH

LAST=T-3.O*WIDTH

wHrLE ( Y.LE. LAST ) DO

Yl=Y

CALL F(R,B,MTBF,Y1,FY1)

SUM2=SUM2+FY1

Yl =Y+WIDTH

CALL F(R,B,MTBF,Y1,FY1)

SUM1=SIIMI +FYl

Y=Y+2.O*WIDTH
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END WHILE

Yl =T-WIDTH

CALL F(R,B,MTBF,Y1,FY1)

SUM2 = 4.0*( SUM2 + FY1 )

SUM1 = 2.0*SUM1

Yl =T

CALL F(R,B,MTBF,Y1,FY1)

LSUM = ( SUM2 + SUMI + FYI )*WIDTH / 3.0

C

EXPY=LSUM+RSUM

RETURN

END

C

C The following subprogram will evaluate the numerical value of the function inside

C the integration paft in formula (4.24).

C

SUBROUTINE F(R,B,MTBF,Y2,FY 2)

INTEGER R,B,COUNT

REAL MTBF,Y2,FY2

FyZ =\Z**(R+B+| )*EXp( _y2 /MTBF ) / ( tt"¡.**(R+B+t) )

COUNT = 1

WHILE ( COUNT.LE. (R+B) ) DO

FY2 =FYZ / COUNT

COUNT=COUNT+1

END WHILE

RETURN
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END

C

C The following subprogram will calculate the value of the expected wait for the

C number of additional lots which must be sampled, on the average, before disposition of

C the current lot. The value will be used for formula (4.37).

C

SUBROUTINE EXPWAT(R,B,T,MTBF,EXPW)

INTEGER R,B,NUM,COUNT,K,IJ,J,V,W,E,H,C

REAL T,MTBF,TOTAL,PROBW( I 000),PROBV/0,EXPW,LIMTT,VALUE

* ,VALUEI

C

C The following section will calculate the numerical value of P(W = 0) for the

C DS(r,b) plan with replacement.

C

TOTAL = 0

COUNT=R+1

WHILE ( COUNT.LE. (R+B) ) DO

CALL PROB(T,MTBF,COUNT,VALUE)

TOTAL=TOTAL+VALUE

COUNT=COUNT+1

END WHILE

PROBW0=1-TOTAL

C

C The following section will initiate the value of P(W = i) to zero for the DS(r,b)

C plan with replacement. The range of i is between I and 1000 and it is believed that this
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C range is large enough for this calculation purpose.

C

K= 1

wHrLE ( K.LE. lm ) DO

PROBW(K) = 0

K=K+1

END \ryHILE

C

C The following section will calculate the numerical value of PflM = 1) for the

C DS(r,b) plan with replacement.

C

NUM=R+B

CALL PROB (T,MTBF,NUM,VALUE)

PROBW( 1) = VALUB*PROBW0

C

C The following section will calculate the numerical values of all P(W = i)'s for the

C DS(r,b) plan with replacement when the range of i is between 2 and b.

C

K=2

wHrLE(K.LE.B)DO

TOTAL = 0

U=0

wHrLE(U.LE.(K-2))DO

E=R+B-U

CALL PROB (f ,MTBF,E,VALUE)
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TOTAL = TOTAL + VALUE*PROBW(K- 1-U)

U=U+1

END TVHILE

CALL PROB (T,MTBF,E- I,VALUE)

PROBV/(K) = TOTAL + VALUE*PROBWS

K=K+1

END WHILE

C

C The following section will calculate the numerical values of all P(W = i)'s for the

C DS(r,b) plan with replacement until the value of P(W = i) is less than 0.0000001.

C

J= I

LIMIT = 1.0

wHrLE ( LrMrT.cE. 1.08-07 ) DO

TOTAL = 0

V=0

wHrLE(v.LE.(B-1))DO

H=R+B-V

CALL PROB(T,MTBF,H,VALUE 1 )

TOTAL = TOTAL + VALUE 1 *PROBV/(B+J- I _V)

V=V+1

END WHILE

PROBW(B+Ð = TOTAL

LIMIT = PROBW(B+J)

J=J+1
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END WHILE

C

C The following section will calculate the numerical value of the expected wait for

C the DS(r,b) plan with replacement.

C

V/=J-1

EXPW = 0

COUNT = 1

wHrLE(COUNT.LE.W)DO

EXPW = EXPW + COUNT*PROBW(COUNT)

COUNT=COUNT+1

END U/HILE

RETURN

END

C

C The following subprogram will calculate the probability of have DATA failed

C items when the total test time is T and the mean-time-between-failure is MTBF.

C

SUBROUTINE PROB (T,MTBF,DATA,ANS)

INTEGER COUNT,D,DATA,ANS 1

REAL T,MTBF,ANS

D =DATA

CALL FACT(D,ANSI)

ANS = ( ( ( T/ MTBF )**DATA )*EXp( _T/ MTBF) ) / ANS1

RETURN

-L26-



END

C

C

C

The following subprogram will calculate the numerical value of F factorial.

SUBROUTINE FACT(F,ANS2)

INTEGER F,ANS2

ANS2 = 1

wHrLE(F.cT. 1)DO

ANS2 =ANS2*F

F=F- 1

END WHILE

RETURN

END

$ENTRY

4 3 0.2 50.0 100 1000.0 50.0 10.0

1000 20

1000 N
1000 60

1000 80

1000 100

7s0 20

750 40

7s0 60

7s0 80

500 100

500 2A
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500 N

500 60

500 80

s00 100

250 20

250 40

2s0 60

2s0 80

250 100

100 20

100 4a

100 60

100 80

100 100
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Computer Output

THE EXPECTED COST OF DS(4,3) PLAN WTIFI REPLACEMENT WHEN

I = 0.20, C = 50.00. LOT SIæ = 100,
CS = 1000.00, Cl = 50.00, AND C2 = 10.00.

MTBF SAMPLE SI7,F EXPECTED TOTAL TEST COST

1000.00

1000.00

1000.00

1000.00

1000.00

750.00

750.00

750.00

750.00

750.00

500.00

500.00

s00.00

500.00

500.00

250.00

250.00

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

504139.60

274844.00

199078.90

r61696.40

139666.80

378605.20

206883.30

150309.40

122522.50

106250.30

253070.00

138922.r0

101539.50

83348.31

72833.50

r27535.00

7096r.06
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250.00

250.00

250.00

100.00

100.00

100.00

100.00

100.00

60

80

100

20

40

60

80

100

52769.79

Mt74.15

394t6.76

52213.98

30184.43

23507.91

20669.66

19366.70
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APPENDTX D

COMPIJTATION OF TIIE EXPECTED TOTAI, TEST COST FOR THE

TEST PLAN XVtrI WMH REPLACEMENT OF MIL.STD.78lB

Computer Frogram

$JOB WATFTV DAVE,NOEXT

INTEGER X,N,ENDATA,LOTSIZ

REAL CS,Cl,C2,I,C,T,MTBF,EXP1,EXVII

READ,X,I,C,LOTSIZ,CS,C 1, C2

C

C where X = the value of x,

C J = the carrying cost index,

C C = the item cost,

C LOTSIZ = the total number of items in the lot.

C CS = the set-up cost,

C Cl = the cost of testing each item, and

C CZ = the cost of testing each items per unit time.

C

C This program will read in the above values and it will also read in the values of

C MTBF and the sample size later, then calculate the expected total cost for using the Test

C Plan XVm with replacement of MIL-STD-7818. The results will be printed

C out in a table form.

PRINT 1OO

PRINT 2OO,I,C,LOTSIZ
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PRINT 3OO,CS,Cl,C2

PRINT 4OO

PRINT 5OO

PRINT 600

ENDATA = 0

EXCUTE RDDATA

wHrLE(ENDATA.EQ.0)DO

CALL EXPYVA(X,T,MTBF,EXP 1 )

EXVIII = I*Ct<LOTSIZ / N*EXPI + CS + Cl*N + C2*EXP1

PRINT TOO,MTBF,N,EXVII

EXECUTE RDDATA

END \4/HILE

PRINT 4OO

STOP

C

lOO FORMAT('1"'T}IE EXPECTED COST OF TI{E TEST PLAN XVIII WITH

*REPLACEMENT OF MIL-STD_78 1 B WHEN')

200 FORMAT('0','I = ',F4.2,',',' C - ',F5.2,',',' LOT SIZE = ',I3,',')

300 FORMAT(' ','CS =',F7.2,',',' Cl = ',F5.2,', AND',' C2 =,,F5.2,',,)

400 FORMAT('O','---------

*-------')

5OO FORMAT('O" MTBF 
"sX,'SAMPLE 

SIZ.tr-"5X,'EXPECTED TOTAL TEST

*COST')

600 FORMAT('0"'---------"5X,'----_ _"5X,'______

*-------')
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700 FORMAT('0"F7.2,9X,I3,14X,F10.2)

C

C The following remote block RDDATA will read the values of MTBF and the

C sample size until no data is found, then the calculation of the expected total cost will be

C terminated. It also calculates the value of T.

C

REMOTE BICICKRDDATA

READ,MTBF,N

ATEND DO

ENDATA __ 1

END ATEND

T = 9.4*MTBF

END BLOCK

END

C

C The following subprogram will calculate the value of the expected test time of a

C lot for the Test Plan XVItr with replacement of MIL-STD-7818, i.e. the numerical

C value of formula (5.7).

C

SUB ROUTINE EXPYVA(X,T,MTBF,EXPY)

INTEGER X,COUNT,NUMI

REAL T,MTBF,Y,Y 1,Y2,FY I,FY2,SUM,TERM,\ryIDTT{,SUM 1,SUM2

* ,LAST,RSUM,LSUM,EXPY

C

COUNT = 0
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SUM=0

TERM = I

wHrLE(COUNT.LE.X)DO

SUM=SUM+TERM

COUNT=COUNT+1

TERM = TERM*( T / MTBF ) / COUNT

END TVHILE

RSUM = T*EXP( -T / MTBF )*SUM

C

C The following section will use the "Simpson's method" to estimate the numerical

C result of the integration parr in formula (5.7).

C

WIDTH=T/100

SUM1=SUM2=0

Y = WIDTH

LAST=T-3.O*WIDTH

wHrLE ( Y.LE. LAST ) DO

Yl =Y

CALL F(X,MTBF,Y1,FY1)

SUM2=SUM2+FY1

Yl =Y+WIDTH

CALL F(X,MTBF,Y1,FY1)

SUM1=SUMI+FYl

Y=Y+2.O*WIDTH

END WHILE
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Yl =T-WIDTT{

CALL F(X,MTBF,Y1,FY1)

SUM2 = 4.0*( SUM2 + FYl )

SUM1 = 2.0*SUM1

Yl =T

CALL F(X,MTBF,Y1,FY1)

LSUM = ( SUM2 + SUM1 + FYl )*\ryIDTH/ 3.0

C

EXPY=LSUM+RSUM

RETURN

END

C

C The following subprogram will evaluate the numerical value of the function inside

C the integration part in formula (5.7).

C

suBRouTINE F(X,MTBF,Y2,FY2)

INTEGER X,COUNT

REAL MTBF,Y2,FY2

FY2 = Y2**( X+l )*EXp( _yZ IMTBF ) / ( MTBF**(X+l) )

COUNT = 1

wHrLE(COUNT.LE.X)DO

F{2 =Fyz / COUNT

COUNT=COUNT+1

END WHILE

RETURN

END
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$ENTRY

13 0.2 50.0

1000 20

1000 40

1000 60

1000 80

1000 100

750 20

750 4A

750 60

750 80

750 100

500 20

500 4a

500 60

s00 80

500 100

250 20

250 40

250 60

250 80

250 100

100 20

100 4a

100 60

100 1000.0 s0.0 10.0
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100

100

80

100
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Computer Output

TT{E EXPECTED COST OF TEST PLAN XVItr WTIT{ REPLACEMENT OF MIL-STD-

7818 WHEN

I = 0.20, C = 50.00, LOT SIæ = 100,

CS = 10ü).00, Cl = 50.00, AND C2 = 10.00.

MTBF SAMPLE SIZtr Ð(PECTED TOTAL TEST COST

1000.00

1000.00

1000.00

1000.00

1000.00

750.00

750.00

750.00

750.00

750.00

500.00

500.00

500.00

500.00

20

40

60

80

100

20

40

60

80

100

20

40

60

80

558918.30

327869.00

25t519.20

213844.30

191639.40

479689.30

246652.00

189639.60

16r633.50

745229.70

280460.00

165435.00

127760.00

ro9422.50
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500.00

250.00

250.00

250.00

250.00

250.00

100.00

100.00

100.00

100.00

100.00

100

20

40

60

80

100

20

40

60

80

100

98820.06

I4r23AJ0

84217.56

65880.06

5721,r.33

52410.07

5769r.96

35486.97

28751.98

25884.49

24563.99
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