
Multiversion Concurrency Control in Objectbased Systems

by

Ahmad Reza Hadaegh

A thesis
presented to the University of Manitoba

in partial fulfilment of the
requirements for the degree of

Doctor of philosophy
in

Computer Science

Winnipeg, Manitoba, Canada, 1997

@Ahmad Reza Hadaegh 1997

National iibrary Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques
395 Wellington Street 395, nie Wellington
OirawaON K1AûN4 -ON K 1 A W
canada Canada

The author has granted a non-
exclusive licence ailowing the
National Library of Canada to
reproduce, loan, distriiute or seli
copies of this thesis in microfom,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

COPYRIGRT PERMISSION PAGE

A Thesis/Pmcticam submitteü to the Faculty of Graduate Stadiu of The University

of M4nitoba in partiai fdfillment of the reqpinments of the üegree

of

Permission bas been granted to the Library of The University of Manitoba to lend or seIl
copies of thu thesis/pmcticum, to the National Libra y of Canada to microfiîm thW the&

and to lend or se11 copies of the film, and to Dissertations Ahtracts Internationd to publbh
an abstract of t h t thesWpracticum.

The author reserves other publication tights, and neither tbW theMpmcticum nor
extensive extracb f'm it may be pnnted or otherwise reproduced without the author'r

written permission,

1 hereby declare t hat 1 am the sole aut hor of this thesis.

1 authorize the University of Manitoba to lend this thesis to other institutions or indi-
viduals for the purpose of scholarly research.

1 further authorize the University of Manitoba to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or individuals for
the purpose of scholarly research.

The University of Manitoba requires the signatures of al1 persons using or photocopying
this thesis. Please sign below, and give address and date.

Abstract

Curent approaches to enhancing concurrency in database systems have focused on devel-
oping new transaction models that typicdy demand changes to either the atomicity, con-
sistency, or isolation properties of the transactions themselves. hdeed much of this work
has been insightful but most of these attempts suffer from being either computationaily in-
feasihle or requiring the transaction designer be sufficiently knowledgeable to determine, a
priori, how the appiication semantics must interface with the transaction model (see [Wei881
or [Wei911 for examples). Our approach exploits an object-oriented world and is different
than others because the transaction designer is not expected to have intimate application
knowledge; this load is placed on the transaction system which must determine, by static
anaiysis, how to maintain database consistency.

We adopt an extrernely aggressive approach whereby each transaction is given its own
copy (version) of all of the objects it needs to execute so it can proceed without interruption
from other processes running on the same system. This dissertation describes an overall
architectural model to facilitate multiversion objects that are expiicitly designed to enhance
concurrency. The reader should be aware that version management has been used in the
object Literature in several ways, most commonly dealing with design issues, but our goal
here is related to concurrency control and reliabiity so care must be taken to ensure the
reader is not misled by this overloading of terminology. Within the context of concurrency
the key aspects addressed by this thesis are: 1) A new correctness criterion is described
that emits more histories than confiict serializability and is computationally tractable; 2)
An architectural model is developed to support multiversioning that provides the weil-
known ACID transaction properties; 3) An optimistic concurrency control algorithm that
functions on this architecture is described and demonstrated to be correct with respect to
the new correctness criterion; 4) The dgorithm is enhanced to examine the history of past
versions with the goal of inserting a comrnitting transaction at a time earlier in the sequence
when it would have been valid if other, later transactions, had not completed before this one
attempted to commit; and 5) Based on static andysis information, algorithms are developed
to modify the compiler to generate reconciliation procedures automaticaily from the initial
transaction specification.

Acknowledgement s

Finaily the painful days of studying for my PhD are over. I ieel great and 1 am ready to
concentrate on my next destination. Before I close this chapter of my life 1 owe acknow1-
edgements to some people.

First, 1 wodd like to thank my advisor Dr. Ken Barker, whose determination, motiva-
tion, ingenuity, and management helped me getting through my PhD. 1 will never forget
his encouragement and support.

1 would also Like to thank the members of my PhD cornmittee, Dr. Randal Peters, Dr.
Mark Evans, Dr. Robert McLeod, and my externd examiner Dr. Vadim Doubrovski for
their insight and their comments. 1 am especidy grateful to Dr. Peters for the time he
spent in discussion with me and giving interesting comments on my research.

Thanks are also due to the members of the Advanced Database Research Laboratory,
especidy Dr. Peter Graham, who read drafts of articles related to my t hesis and motivated
my thoughts a t early stage.

1 would iike t o express my sincere gratitude to my wife, my parents and my wife's parents
for their encouragement and love that gave me strength to do this dissertation.

FinalIy 1 would like to dedicate th% masterpiece to my wife Sahar and my son Miad
who have waited patiently in this cold land for the day when the snow melts and my vehicle
can progress down the road of Phd. 1 also would like t o dedicate this thesis to my parents
Reza Hadaegh and Parvin Farahnak through whose prayers and tears Almighty Ailah (my
beneficent and merciful God) turned our dream into a reality.

Contents

1 Introduction 1

. 1.1 Motivation 4

. 1.2 Taxonomy 6

. 1.3 Outline 9

2 Related Work 10

. 2.1 Classical Data Models 10

. 2.1.1 Flat Transaction 11

. 2.1.2 Histories and Serializability 12

. 2.1.3 Reliability 15

. 2.1.4 Concurrency Control 17

. 2.2 Nested Transactions 20

. 2.2.1 Concurrency Control 21

. 2.3 Object-Oriented Data Models 23

. 2.3.1 Theconcept 24

. 2.3.2 Prototypes 25

. 2.3.3 Transaction models 26

. 2.3.4 Concurrency Control 28

. 2.4 Muitiversion Data Models 33

. 2.4.1 Histories and Serializability 34

. 2.4.2 Concurrency Control 35

. 2.4.3 Multiversioning in Object bases 37

. 2.4.4 Concurrency cont rol in Multiversion Ob ject bases 38

vii

. 2.5 Performance Cornparison 40

. 2.6 Summary 41

3 The Computational Mode1 43

. 3.1 Fundamental Concepts and Definitions 43

. 3.2 Versionable Objects 46

. 3.3 Transaction Mode1 48

. 3.3.1 User Transactions 49

. 3.3.2 Version Transactions 19

. 3.4 Serializability .50

. 3.4.1 Value Serializability 51

. 3.4.2 lValue Serializability 59

. 3.5 Data Dependency 66

. 3.5.1 Definitions Related to Concurrency Control 67

. 3.5.2 Static Information 69

. 3.5.3 The depends Function 76

. 3.6 Summary of Assumptions 80

4 The Architectural Model 83

. 4.1 The Architecture 83

. 4.1.1 The Architectural Mode1 85

. 4.2 The Implementation 91

. 4.3 CorrectnessoftheAlgorithm 107

. 4 .3.1 Version- Level Concurrency Cont rol 107

. 4.3.2 User-Level Concurrency Cont rol 109

5 Simple Reconciliation 110

. 5.1 Decision Manager 112

. 5.1.1 Intra-ob ject Serializability 11'2

. 5.1.2 Inter-Ob ject Serializability 115

. 5.2 Commit Manager 118

. 5.3 Retrieving Historicd Information 121

6 Cornplex Reconciliation 124

. 6.1 Detecting Stale Data 126

. 6.2 Generat ing Reconciliation Routines 130

. 6.2.1 Simple Methods 130

. 6.2.2 Complex Methods 134

7 Conclusions and Future Work 139

. 7.1 Algorithm Enhancements 141

7.2 Future Work . 133

List of Figures

1.1 Historical Multiversion Ob ject base Design Tnxonomy 7

2.1 Relationship between histories . 17

2.2 Zapp and Barker's architecture . 30

2.3 ZappandBarker'sexpandedarchitecture 31

Anabstractviewofactiveandcommittedversionsofanobject 37

serialization graphs for conflict and value-conflict serializabilities 56

Relationship between value. view. and conflict serializabilities 57

Reads-from edges of a serialization graph for a MV history 63

Control flow graph of a program segment 71

A connected and a disconnected dependence graph 75

. The depends function 77

dependency of the statements in a method 79

Logical structure of comrnitted versions in an object farnily 84

The Main Components of the Architecture 85

The Transaction Processor . 86

The Version Processor . 87

The Validation Processor . 88

Insertion of an active version in the chain 89

The Architecture . 92

. The User Transaction Manager 94

. The Method Scheduler 95

. 4.10 The Version Transaction Manager 97

. 4.11 The Execution Manager 99

. 4.12 The Decision Manager 101

3.13 Revision may be required before promotion af active version 102

. 4.14 The Commit Manager 104

. 4.15 Revision of an updated active version 10.5

. 4.16 Intra-UT Concurrency Control 108

. 5.1 Reconciliation is required 111

. 5.2 Finding a position in the chain 113

5.3 Possible cases when reconciliation may or may not succeed 114

5.4 The Decision Manager doing simple reconciliation 116

5.5 Example of a possible inter-object serialization Problem 117

. 5.6 The Commit Manager doing simple reconciliation 119

5.7 Propagation of the values to higher level committed versions 120

5.8 Retrieving a data item at a particular time 123

. 6.1 Situation when Reconciliation is required 125

. 6.2 An invaiid version may effect other valid versions 128

6.3 Determining the Infected Active Versions Referenced by a User Transaction 129

6.4 The Three Address Code for mi and Associated Data Structure 132

. 6.5 The Related Statements 133

6.6 Procedure Bits tring for Simple Met hods . 134

6.7 FindrelatedCode Procedure for Simple Met hods 135

6.8 The Reconcihtion Procedure for Method na[. 135

6.9 . 136

. 6.10 Procedure Bitstring for Complex Methods 137

. 6.11 Procedure FindRelatedCode for Complex Methods 138

. 7.1 Re-execution of statements in a loop 142

Chapter 1

Introduction

Multiversioning for the purpose of enhancing concurrency and reliability is not a completely

unexplored topic (see [BGH87, Nak92, Mor93, WYC93]), but the approach has been less

than successful primarily because of the application domains where it has been proposed.

For example, using a complicated multiversioning scheme to manage a "short-lived7' busi-

ness transaction like an account balance update is not justifiable because of the amount of

overhead and relatively simple data structures involved. These application domains demand

that very little time be spent in runtime overhead t o support multiversioning and there is

little to be gained frorn spending time before hand preparing for a partial rollback when

complete re-execution could occur much more rapidly. However, current transactions and

the systems they execute on are becoming increasingly complex and t heir execution times

have increased substantiaiiy. "Long-lived" transactions such as those found in design sys-

tems, multidatabase systems, or cooperative information systems will benefit greatly from

the ability to roilback to a consistent state and then proceed forward without the need to

completely re-execute. This dissertation assumes that the environment of interest is of the

more compiicated variety. We now digress briefiy to provide a frarnework for the rest of the

dissertation. The balance of the introduction reviews severd issues related to the rnyriad

themes raised in this dissertation.

Chapter 1. ln trod uction 2

Traditional mdtiversion databases environments have used data versioning for historical

purposes as weil as for issues related to transaction management. Data versioning reduces

the overhead involved in recovery and impacts concurrency especidy in environments where

contention between read-only and update transactions is problematic. This dissertation

addresses the problem of concurrency control in a multiversion objectbase environment.

An o'bjectbase provides a persistent repository for data stored as objects. Objects contain

structure and behavior. The structure is the set of attributes encapsulated by the objects.

An object 's behavior is defined by procedures calied methods. A method's operations can

read or write an attribute, or invoke another method, possibly on another object. The

fundament al difference between traditionai data models and t hose supported by ob ject-

oriented systems is the encapsdation property of the objects.

Users' requests submitted to a system are c d e d user transactions. A user transaction

includes a set of messages sent to the objects to execute the routines in the objects. Ob-

ject base systems are provided with transaction management facilities to control the effects

of the user transactions on the object base.

One aspect of transaction management is concumncy control. A concurrency control

algorithm d o w s transactions to interleave and shares the resources among the transactions;

t hereby, utilizing the resources and enhancing the system performance. A concurrency

control aigorithm must guarantee that each transaction appears to execute atomically and

in iso!ation from ot her concurrent transactions. It must also ensure that each transaction

Ieaves the database in a consistent vaiid state.

Traditional transaction models consist of a sequence of read and write operations on

passive data. In an object-oriented system a transaction consists of a sequence of method

invocations which perform operations on object at tributes on the transaction's behalf. We

distinguish two types of transactions: user tmnsactions and version transactions. A user

transaction is a sequence of met hod invocations on ob jects. Met hod executions are managed

as version transactions. A version transaction is the execution of read/write operations on a

version of an object as wefl as any nested method invocations. Since the nested invocations

Chapter 1. Introduction 3

are themselves managed as transactions, our mode1 exploits nested transactions [Mos85].

Concurrent execution of a set of transactions must be controlled so that the final result

of the execution is equivalent t o the result of some serial execution of the transactions (Le.

"serializable" [BGH87, GR941). An ob ject base system is provided wit h a scheduler t hat or-

ders the operations of the concurrent transactions based on a correct n e s ~ criterion. Conflict

serializabili ty and view serializabili ty are two correctness criteria often selected for t rans-

action models. View serializability allows more schedules than conflict serializability but

has been shown to be an NP-complete problem [Pap86]. Some correctness criteria devel-

oped for advanced database systems relax the restrictive properties of confiict serializabili ty.

Examples include quasi serializability [DE89], serializability for polytransactions [S RK9 11,

and reverse serializability [KM94]. This dissertation introduces a new correctness criterion

cailed value-serializability. Value serializability is more efficient to implement than some

traditional correctness criteria and permits a greater range of schedules than those used by

computationaily efficient aigorithms like two phase locking.

Correctness criteria are enforced by concurrency control algorithms that ensure serial-

ization of concurrently executing transactions. Concurrency control algorithms are divided

into two broad categories: pessimistic and optimistic. Pessimistic protocols block the trans-

actions by deferring the execution of some conficting operations. Optimis tic algorit hms do

not block the transactions but validate their correctness a t commit time. Pessimistic proto-

cols tend to perform better when transactions u s u d y access some common data; whereas,

op timistic protocols are more desirable when contention between the transactions is rela-

tively low . Focusing on the cent ralized ob ject base systems, t his dissertation int roduces the

object versioning technique and develops related optimistic concurrency control aigorithm.

The concurrency control is perforrned bmed on static information captured a t pre-run time.

Our mode1 introduces two types of concurrency control: inter-UT and intra-UT concur-

rency. Inter-UT concurrency is done optimisticdy and refers to the concurrent execution of

multiple user transactions. Intra- UT concurrency is performed pessimisticdy and refers to

concurrent execution of multiple subtransactions originated from the same user transaction.

Chapter 1. Introduction

Another aspect of transaction management is recovery. To make an object base reliable,

transaction management should ensure that a recovery mechanism is provided. An object-

base rnay fail in severd ways, including: transaction failure, system failure, media failure,

etc. Since failures rnay leave the objectbase in an invalid state, recovery mechanism are

needed to ensure that no intermediate results of failed transactions remain in the ob ject-

base and that al l "lost" effects of successfd transactions are propagated to the persistent

ob ject base. Alt hough recovery is closely related to concurrency control, t his dissertation

does not address it in detail.

Data versioning in database systems impacts concurrency and recovery. Ln a multi-

version system, transactions create new data versions as they access data. This reduces

contention between transactions accessing the "same" data and thereby increases concur-

rency. Further, since transactions only affect their own versions, recovery from a failure

s hould be easier t han in a single-version environment.

Multiversioning has been also applied to the advanced database environment [CK86,

Nak92, GB94b, HB96]. Objects rnay have several versions. A version is usually created

from the object or another existing version of the object, goes through a series of changes,

and eventudy rnay become a fixed stable version. if the number of versions exceeds a

certain Limit, some versions are purged or archived in secondary storage.

1.1 Motivation

Ln classicd databases, data are centralized and have simple structure. Since transactions

are short-lived, locking techniques usudy do not defer the execution of related transactions

for a long period. Further aborting and restarting unsuccessfd transactions rnay not be

problematic in optimistic concurrency control protocols because of the relatively s m d cost

of the re-execution. Therefore, conventional concurrency control is suitable and successful.

In advanced database environments, users interact with complex and possibly dis-

tributed data. Transactions are relatively long and rnay be executed in paraliel [SR2921 so

Chapter 1 . Introduction 5

mechanisms are required t o provide inter-transaction synchronization. Locking a page or

an object may unnecessarily delay the execution of some operations which in turn severely

degrades the systern performance. Optimistic protocols are even less desirable for such envi-

ronment because by aborting a transaction, not only the resource and the tirne allocated for

the transaction is wasted, successful termination of the transaction will not be guaranteed

if the transaction is restarted. Thus a transaction may be unduly delayed before it can be

executed successfuily.

This dissertation develops an optimistic concurrency control to overcome the above

Limitation. When a transactions cannot be serialized at commit time, it is reconciled instead

of being aborted. Reconciliation can be simple which may involve changing the commit

order of the transactions or complex in whkh partial re-execution of the transactions is

required to make the result of the transactions consistent with respect to the current state
- .-. - --

of the objects in the objectbase.

Object versioning techniques [Nak92, GB94b], nested transaction models [Mos85], and

static analysis information [Gra94] have significant roles in the reconciliation algorithm.

Since nested transactions are rnodularized, reconciliation is performed only against the

subt ransactions which have referenced s t d e data. Therefore, nesting reduces the problem

space. Multiversioning provides a mechanism to maintain the previous state of the objects

in the objectbase. if a transaction cannot be committed relative to current state of the

objects, it might be cornmittable relative to an older state. Pre-run time static analysis

information used to increase concurrency may also be used to reconcile the unsuccessful

transactions at commit time. Reconciliation may involve partial re-execution if the data i t

used was incorrect.

This dissertation makes the following contributions:

1. Provides a taxonomy for reasoning about transactions in a multiversion objectbase.

2. Defines a computational mode1 for multiversion objectbases and identifies the difficul-
ties encountered in providing concurrency control.

3. Proposes a two level abstraction for the system: a user level and a systern Ievel.

Chapter 1 . Introduction 6

a An optimistic concurrency algorithm is provided to seriajize user requests at the
user level.

A pessimistic protocol serializes execution of system transactions a t the system
level.

4. Defines a correctness criterion for serializability.

5. Proposes a concurrency control algorithm and describes its implementation.

6. Proposes reconciliation algorit hms to ensure t hat transactions commit if no failure
occurs.

1.2 Taxonomy

The taxonomy shown in Figure 1.1 characterizes possible database environments in terms of

(1) historical, (2) complexity, and (3) multiversioning support. The data complexity dimen-

sion refers to the structural complexity of the data in a system. The historical dimension

refers to systems where sorne of the previous data values are preserved as the state of data

changes overt ime, and the multiversioning dimension indicates whet her the data and/or the

schema are versioned in a system.

The complexity dimension divides systems into t hree categories: simple data, abstract

data types, and object-oriented. The point at the origin refers to conventional systems such

as relational schemes where data is collected in sets of tables each containing a collection

of formatted homogeneous data. The data is cornposed of primitive types such as integers

or strings and are accessed "directly" by the users.

Abstract data types (ADT) are supported by some programming languages. An abstract

data type contains a set of data and a set of operations on the data. It refers t o a way of

packaging structure and their operations into a useful collection. Operations are the only

means of accessing and manipulating the data. This is also c d e d encupsulation. ADT's

have simple interfaces. They are implemented in arbitrary ways representation such as

arrays and pointers, but their representation is transparent to the users so they can be used

by understanding their abstract interface's properties [Sta94].

Chapter 1. Introduction

K
Multiversioning

Complexi

Figure 1.1: Historical Multiversion Ob ject base Design Taxonomy

Chapter 1. Introduction 8

The next level is ob jectbase systems. In objectbase systems, entities are modeled as ob-

jects. Like an abstract data type, an object oncapsulates a set of data and their operations.

The data defines the structure of an ob ject and operations controliing the ob ject 's behavior.

It is generally assumed that the behavioral aspect moves ob jects from one consistent state to

another. In addition, objectbase systems provide inhen'tance and aggregation. Inheritance

allows some objects to obtain some or all of the characteristics of ot her ob jects. Aggregated

ob jects, sometimes called complex objects, have hierarical structure. Complex ob ject s in-

clude ot her objects which in turn may include other objects, so they can be viewed as being

nested. Complex objects may either physicaüy contain other objects in their structure or

they may reference other objects by storhg t heir ob ject ids.

The second dimension is version management. This dimension includes three types of

systems: single-version data, multi-version data, and schema versioning. Ln a single-version

data environment, versioning does not occur. Therefore, every time a data item is rnodified,

the new information replaces the old. However, in a multi-version data environment versions

of data items can be preserved. New versions are created whenever data items are modified.

When data items are updated, the database may enter a ternporarily inconsistent state that

is transparent t o the users. Versions of data items may eventually become immutable and

they can only be changed by deriving new versions [SGH87, MPL92, Nak921. The last point

in this dimension refers to systems which support schema versioning. Kim and Chau [KC88]

discuss the schema versioning in an object-oriented prototype calied Orion [KGBWSO].

They explain the implication of schema versioning in a multi-user environment. Support

for schema versioning is not the subject of this dissertation.

The historical dimension is divided into two parts: non- historicai and historicd systems.

Non-historical systems do not keep the previous values of data as data changes overtime.

The only records of past data that is reachable is through backup copies of the data and

transaction logs. Historical systems keep several snapshots of data. Snapshots of the data

are immutable. They indicate the evolution of data as data is modified. Snapshots are

usually produced after some modification to data [RH90]. S torage management becomes a

Chapter 1. Introduction 9

problem as the number of snapshots grows in the system. Therefore, some of the snapshots

are archived in a separate secondary storage and only brought to the system on demand.

In this dissertation, we address historical multiversion objectbase systems in which ver-

sioning is limited to objects. Investigation of other points on the taxonomy is left as future

research.

The outline of this dissertation is as foilows. The related material in Chapter 2 discusses con-

currency control in nested transactions, object-oriented data models, and multiversion data

models that wili motivate this dissertation. Chapter 3 ciefines a computational mode1 and

its key concepts. It d s o lays out the relevant concepts of data dependency and compile time

s t atic andysis used for enhancement of transaction management. Chapter 4 iilust rates an

architecture for our model, describes its components, and details its implementation. Sim-

ple reconciliation is described in Chapter 5. The conditions under which transactions rnay

be reconciled are presented too. Chapter 6 describes complex reconciliation and provides

the steps required to generate the reconciliation procedures. F indy, Chapter 7 makes some

conchding remarks and suggests directions for future work.

Chapter 2

Relat ed Work

In t his chapter, the fundamental terminoiogy used in conventional databases is reviewed.

We investigate previous work directly related to this research. The structure of this chapter

is as follows: Section 2.1 provides a surnmary of classical transactions and transaction

management including concepts of concurrency control and recovery. Section 2.2 introduces

nested transactions while Section 2.3 presents the characteristics of object oriented models.

Transaction management and concurrency control in ob ject based systems are aiso studied

in Section 2.3. Section 2.4 describes techniques applicable to multiversion database systems.

Finally, Section 2.5 makes some summary comments.

Before providing a detailed formalism, an intuitive overview is provided to guide the subse-

quent more detailed discussion. Users interact with the database by sending their requests

in the form of a tmnsaction. Transactions are sets of read and write operations. The opera-

tions are executed against the data in the database. Executing transactions in progress are

c d e d active tmnsactions. An active transaction either aborts or cornmits. If a transaction

commits, its execution has been successful and the result of the execution persist in the

Chapter 2. Related Work I l

database. A transaction aborts as the result of software or hardware problems leaving the

dat abase unchanged by the transaction's execution.

A traditional transaction is considered correct if it supports the properties of atomic-

ity, consistency, isolation, and durability. These are known as A.C.I. D properties [Gras 11.

Atomicity ensures that a transaction eit her completes successfully or it has no effect on the

database. Consistency requires that a successfully committed transactions must move the

database from one consistent state to another. Isolation guarantees that a transaction does

not read the intermediate results of ot her transactions. Findy, durability guarantees up-

dates of a committed transaction remain in the database in the face of system or transaction

failu re .

The remainder of this section defines jiat tmnsactions, history, and sera'alizability in

classical databases. In addition, we review the concurrency control protocols widely used

in t hese environments.

2.1.1 Flat Transaction

Flat transactions are the "application programs" used to access the data in traditionai

database systems. Before defining flat transaction, we need some nomenclature. We denote

operation p of transaction i as rip, a set of aJl operations of transaction i as OSi7 and the

termination operation as Ni E {commit, abort). Operation ri, € { r (x) , w(x)) , where r (x)

and w(x) denote read and write operations, respectively; and x refers to an arbitrary data

item in the database.

Definition 1 (Flat Transaction): A flat transaction Ti is a partial order Ti=(Ci7 4,)
wherel :

2. for every rip, riq E OS;, operating on some data item x in the database, if either one
is a w (x) , T ; ~ 4; riq or riq 4; rip, and

'A standard notation for a binary relation 4; is a set of pairs (p , q) such that p ci q

Chapter 2. Related Work

3. VriP E OS;, Tip <i Ni.

Point 1 enumerates the operations in Ti. Point 2 states that confiicting operations occurring

within a transaction are ordered by 4;. Point 3 prevents any operations of a transaction

from occurring after the transaction terminates.

2.1.2 Histories and Serializability

A history (schedde) records the execution order of a set of transactions. It contains the

order of the operations of the transactions executed against the data in the database. The

execution order of two operations in a history is significant if they conflict. Two operations

confict if they are executed on the same data item and one of them is a write operation.

Given 7 = {T1,T2, ..., T,), a history for ? is defined as follows:

Definition 2 (History): A history H is a partial order H = (x, 4 ~) , where:

1. C = U j C where xj is the domain of transaction T, E 7,

2. Uj 4 j where < j is the ordering relation for transaction Tj at the D BMS, and

3. for any two conflicting operations p, q E H , either p <H q or q +H p.

Point 1 guarantees that the operations in H are precisely the operations submitted by T I ,

T2, ..., T,. Point 2 refers to aU operation orderings specified within the transactions. Point

3 ensures that the congcting operations of aii transactions are ordered. The definition of

history and transaction enables the discussion of serializability and reliability in a database

management s ystem.

Correct ness Criteria

A common correctness criterion used for classical transactions is Confiict sen'aliza bilit y.

Confiict serializability guarantees that confiicting operations in a set of transactions are

executed so that transaction executions produce the same result as if they are executed

seriaily. Serial execution of a set of transactions in a history is defined as follows:

Chapter 2. Related Work L 3

Definition 3 (Serial): A history H is serial (SR), iff (3 p E Ti, 3q E Tj , where p 4 q)

(VT € T;,Vs E Tj, r 4 s) . m

This definition indicates that for every two transactions Ti and T j , either ad operations of

Ti appear before aU operations of Ti or vice versa.

Executing transactions serially unnecessarily orders the non-confficting operations as

well. However, transactions can interleave freely so only conficting operations are ordered.

Before we define this concept of correctness, we must define when two histories are equiva-

lent.

Definition 4 (Confict Equivalent): Two histories are conflict equivalent if t hey are defined

over the same set of transactions and identicd operations of nonaborted transactions are

ordered in the same way.

Definition 5 (Conflict Sen'alizabfe): A history H is confict seriaiizable iff it is conflict

equivalent t o a serial history.

Serializability of a history is checked by constructing a serialkation graph. For history H

over transact . ~ n s 7 = {Ti, Tz, ..., T,), we define a seriaiization graph for II by:

Definition 6 (Serialization Graph): The seriaiizable graph (SG) for H, denoted SG(H),

is a directed graph S G (H) = (ï , A) . The nodes (r) are the transactions in 7 that are

comrnitted in H and the edges (A) are all Ti + Tj (i # j) such that some operations of Ti

precede and confiict with some operations of Tj in H.

Theorem 2 .l. 1 A history H is serializable iff SG(H) is acyclic.

Proof: See Bernstein et al. [BGH87] page 33.

Another possible correctness criterion is view serializability. While a conflict serializable

history must be confiict equivalent to a serid history, a view serializable history must be

view equivdent to a serial history. Before we define view equivalent, we need to explicitly

define "reads fromn and "final write" relations.

Chapter 2. Related Work

Definition 7 (Reads-From): A transaction Ti reads x from Tj in a history A, if:

1- w j (x) 4~ r i (x) ,

2. r i (z) 4~ aj ,

3. V W ~ (Z) , if w ~ (x) 4~ wk(x) 4~ T ; (x) , then ak 4~ r i (x) - rn

Point 1 states that the write operation on x in Tj must precede the read operations in Ti-

Point 2 ensures that Ti reads r from Tj , only if T, is either still active or aiready committed.

Point 3 guarantees that no other non-aborted transactions have updated x between the cime

that Tj updated x and Ti read X.

Definition 8 (Final Write): The final write of data item x in a history H is the operation

w ; (x) E H, such that a; 4 H and for any w~(x) E H (j # i) either w j (x) 4~ w i (x) or

aj E H.

Definition 9 (View Equivalent): Two histories Hi and Hz are view equivdent if:

1. they are defined over the same set of transactions and have the same operations,

2. for any nonaborted T; and Tj in Hi and H2 and for any x , if T; reads x from Tj in
Hi then T; reads x from Tj in Hz, and

3. for each x , if wi(x) is the final write of x in Hl then it is also the final write of x in
B2 m

Note that in the above definition, equivalence of two histories is not based on ordering of

the confiicting operations but histories are checked for the same reads-from and final write

relations. This leads to the definition of view serializability.

Definition 10 (View Serialitable): A history is view seriaiizable if it is view equivdent to

some serial history.

Most systems use confiict serializabiiity. Recently researchers have attempted to create

new correctness criteria to overcome the Limitation of confiict serializability but that do

not suffer from being NP-complete, like view serializability fDE89, SRK91, KM941. These

initiatives are discussed in the next chapter.

Chap ter 2. Relat ed Work

2.1.3 Reliability

Reliability refers to the resiliency of a system to various types of f d u r e and the system's

ability to recover from the failures. Database failures can occur from software or hardware

fauits. The three most common types of failures are tmnsaction iailure, system faiiure, and

media failure.

Lf a transaction f d s to complete its task, it will abort. Abortion occurs for a number of

reasons. For example, if a user inputs improper values for the data, the transaction cannot

proceed with its execution. It is also possible to abort a transaction involved in a deadlock

cycle to aUow other transactions to obtain resources and continue their executions.

A system failure occurs if one or more components of the system fail. For example,

a power failure, main memory fault, or a software fault in the operating system. System

failures typically resuits in the loss of information in main memory.

Finaiiy, media failure refers to the failure of a secondary storage device. For example.

a disk head may crash or the controuer fails to operate properly. In some systems, the

disk information is copied to another secondary storage periodically to help protect against

media faiiures [OS91].

Recovery

Recovery refers t o the mechanism used by a database system to bring the database into a

consistent state after a failure occurs. Therefore, when a failure occurs, the recovery system

must ensure that the effects of all committed transactions remain and no effect of aborted

or active transactions persist in the database.

The most common recovery mechanisms use logging. A log is stored in non-volatile

memory where the effects of transactions on the data are recorded. When a failure occurs,

the log is used t o undo the effects of active and aborted transactions and redo committed

transactions. Different forms of logging have been used in traditional databases [BGH87]

and are being developed for the newer systems [RM89, Mos87, Wie94j.

Chapter 2. Refated Work 16

A non-serial history may not always be recoverable. For example, it is possible that

transaction T2 reads data written by transaction Tl before Tl commits. If T2 commits and

later Ti aborts, abortion of Tl triggers abortion of T1. Unfortunately, T2 cannot be aborted

because its commit operation may have made its effects user visible [BGH87]. Therefore,

to create a recoverable history some operations need to be ordered. Using the "reads from"

relation (Definition 2.1.7), a recoverable history is defined.

Definition 11 (Recovemble): A history H is recoverable (R C) if when Ti reads from Tj

(i # j) in H and C; E H , C j +H ci. rn

This assures that a transaction commits after all transactions (other than itself) from which

it read have already committed.

It is also possible to set more restriction on the order of the operations to avoid cascading

aborts.

Definition 12 (Avoid Cascading Abort): A history H avoids cascading abort (ACA) if

whenever Ti reads x from Tj (i # j), cj <H T;(x).

This ensures t hat transactions read only values writ ten by commit ted transactions or itself.

Definition 13 (Strict): A history II is strict (S T) if whenever wj(x) 4~ o i (z) , (i # j),

either aj +H o; (x) or Cj +H o ~ (x) where (o ; (x) E (Ti(x), w ; (x))) . rn

Strictness means that no data item rnay be read or overwritten until the transactions that

previously wrote it terminates. The foUowing iheorem is a useful characterization of these

recovery types.

Theorem 2.1.2 ST C ACA C RC

Proof: See Bernstein et al. [BGH87] page 35.

Chapter 2. Related Work

Figure 2.1: Relationship bet ween histories

The relationship between histories is shown in Figure 2.1. A history can be a combination

of one of more of the above types. For example, as shown in Figure 2.1, Hl is the set

of all serial histories. K2, Hq, A6, and Hg refer to serializable histories which are strict,

avoid cascading abort , recoverable and non-recoverable, respect ively. Similarly, H 3 , H5.

Al, fi are collection of non-serializable histories which are strict, avoid cascading abort,

recoverable and non-recoverable, respect ively. It can be shown t hat each set represented by

Hl ...& is non-empty.

2.1.4 Concurrency Control

YClassical" concurrency control met hods are divided into two broad categories: pessimis t ic

and optimistic. A pessimistic algorit hm orders transactions by delaying the processing

of confiicting operations. Operation ordering can occur staticdy (before execution) or

Chapter 2. Related Work 18

dynamicdy (during execution). Optimistic algorithms do not delay the operations as t hey

arrive but aborts them if serializability is violated. Obviously, t hey may be re-executed.

Pessimist ic Approach

Most systems [EGLT76, BG81, CFLN82, ZB93al use a pessimistic algorithrn c d e d two

phase locking to support concurrency control. Transactions obtain read and write locks so

t hat multiple transactions may read a common data item but only a single transaction can

hold a write lock. A transaction can acquire locks until it releases one, that is the end of

phase one, from which point it is prohibited from acquiring any other locks. Most systems

implement a version of two-phase locking called strict two phase locking where a l l locks are

held to the end of the transaction to avoid cascading aborts.

An alternative approach is timestamping that was initially proposed by Reed [Reeïg].

A unique ordered timestamp is associated with each transaction before the transaction is

executed. Every time an operation of transaction Ti accesses data item x, x obtains the

timestamp of T;. Confiicting access to x can only be in increasing order of timestamp.

Therefore, if Ti has already read x, another transaction Ti can write x if timestamp of Tj

is greater than the timestamp of Ti. Furthermore, if Ti has written x, Tj can access x if its

timestamp is larger than the timestamp of Ti. Disallowing an operation of a transaction,

leads to abortion of that transaction.

Opt irnist ic Approach

Other systems use an optimistic concurrency algorithm. Early work by Kung and

Robinson [KR811 proposed the serial validation algorithm. This algorithm records read

and write operations of each transaction Ti in two separate sets cded the read$et(Ti) and

writeset(Ti), respectively. Transactions are executed wit h no restriction until commit t ime;

however, they must be validated before the find commit or abort decision is made. Let Ti

be a transaction committed during the life time of Ti. Ti is committerl if f3r ail Tj, the

intersection of readset(Ti) with writeset(Tj) is empty. This indicates that Ti is allowed to

commit if and only if no other transaction has updated any data item read during the time

Ti is active. Otherwise, Ti is aborted and re-executed.

Chap ter 2. Related Work 19

Anot her optimistic concurrency approach constructs a serialization graph for the his-

tory of the transactions after it completes [Bad79]. Every time a transaction commits, a

serialization graph is constructed. If the graph contains a cycle, the transaction is aborted

and its operations are roiled back. Otherwise, the effects of the transactions are recorded

in the database.

Mixed Method

Different concurrency control methods c m be combined to enhance concurrency in some

cases. For example, Carey [Car871 combined Kung and Robinson optimistic serial validation

algorithm [KR811 with timestamp ordering [Ree78] to produce a timestamp based serial

validation algorithm. Carey argues that with large numbers of transactions committed

during the life time of Ti, Kung and Robinson's algorithm is too costly. Carey assigns each

transaction Ti a start up timestarnp S-TS(Ti) and a commit timestamp C-TS(T,). Furt her.

each data item x is timestamped T S (x) with the value of the commit timestamp of the most

recent write of x. Ti can commit iff for every x in the readset of Ti, S-TS(Ti) > T S (x) . The

main advantage of this algorithm over the simple optimistic method presented by Kung and

Robinson is that stale data read by a transaction may be detected before the transaction

is entirely executed. This provides lower execution cost and better resource utilization.

In brief, some concurrency control algorit hms perform bet ter in one environment t han

anot her. Optimistic algorithms are appropriate for the environment where the likelibood

of the conflicting transactions is low. However, pessimistic protocols are suitable where

the rate of confict is relatively high. Cornparison of the performance of pessimistic versus

optimistic protocols is done and discussed in the Lterature [Car83a, ACL87, CM861. We

will review them later in this chapter.

Classicd transaction models are most appropriate for business and administrative en-

vironments where transactions are simple, short-lived, and non-hierarical. Applications of

new environments such as Computer Aided Design systems (CAD) or some cooperative

environments demand more advanced trarLjaction models. In the next sections, we study

some advanced transaction and data models which motivate our research.

Chapter 2. Related Work

2.2 Nested Transactions

Nested transactions are an extension of flat transactions that include subtransactions in

addition to primitive read and write operations. The idea of nesting transactions was

extensively investigated after the work of Reed [Re781 and Moss [Mos85]. This section

reviews nested transactions and discusses their advantages over classical models.

A nested transaction is a tree where nodes are subtransactions and edges are calls to

subtransactions. The root node is cailed a top-level tmnsaction. The leaves are the primitive

reads and writes on data. Except for the leaves, other nodes are c d e d parents and can have

unlimited children. The top-level transaction does not have a parent. Transactions w hich

c d ot her transactions either directly or indirectly are c d e d ancestors. Transactions which

are cded either directly or indirectly by other transactions are caued the descendants.

Since a transactions may c d itself recursively, we speak of proper descendant and proper

ancestors to exclude the transaction itself. A transaction hierarchy inciudes the transaction

descendants. The top-level transaction and its proper descendants form a transaction family.

One advant age of nested transactions over classical transactions is t hat nested t ransac-

tions provide a means of controlling concurrency within transactions. In a classical model,

a long running fi at transaction may have to be broken into several shorter transactions to

produce better and faster performance [PKH88]. Breaking a transaction in this way creates

overhead. In a nested transaction model, a long running nested transaction dynamicaliy

creates a set of subtransactions and distribute the task among them. Subtransactions work

independently and can be executed simultaneously.

Another advantage is t hat nested transactions provide bet ter control over transaction

failure. The effects of a failure is limited to a portion of a transaction. In classical transac-

tions when there is a failure, the entire transaction is aborted. Therefore, the system time

and resoürces used for the transaction is wasted. This problem is more significant when the

transaction is long and it is close to its commit point. In nested transactions when a sub-

transaction faiis, we may only need to recover that subtransaction. Since subtransactions

Chap ter 2. Related Work

act independently, failure of one component does not necessarily effect other components.

Nested transactions fall into two broad categories: closed nested transactions and open

nested tmnsactions. In closed nested transactions [Mos85], the partial result of subtransac-

tions are not visible to other transaction families. If a child commits, al l of its scheduling

information is passed to its parent. Conversely, if it aborts, resources such as locks are

released back to the system. A parent can commit if and only if aU of its children have

committed. Abortion of a parent causes abortion of its children.

In open nested transactions [WS91], once a subtransaction commits, its result are

recorded in the database and become visible to other transaction families. Since other

transaction families may read and update the partial result s of ot her transaction families,

problems such as cascading aborts and loss-of-update may occur [BOH+91]. Compared to

the closed nested model, open nesting allow more concurrency because subtransactions do

not need to wait for the result of other subtransactions when they commit.

An alternat ive model

Fekete et al. [FLMWSO] introduced two ways of viewing nested transactions: procedural

abstraction and data abstraction. The material presented above refer to procedural ab-

straction. Data abstraction, known as multilevel transactions, is another variant of nested

transactions as defined by Weikum [Wei911 and Berri et al. [BBG89]. A multilevel trans-

action model has a layered system structure. Each layer (level) provides a weil-defined

interface of objects and operations. The implementation of one Ievel is done based on the

objects and operations of the level below it . The bot tom level includes primitive operations

which cannot be further decomposed. In contrast to procedural abstraction transaction

models, in a multilevel transaction tree, the dept h is fixed and ali leaf nodes are at the same

level.

Chap ter 2. Rela ted Work

2.2.1 Concurrency Control

The proposed concurrency control techniques for nested transactions known as upward lock

inheritance was provided by Moss [Mos85]. We review the basic rules and discuss extensions

suggest ed by ot hers.

Operations acquire three types of lock: a read, a write, or a none lock. Based on re-

strictiveness, the lock modes are ordered as none < read < write. Transactions may either

hold or retain the locks. If a transaction holds a lock, it cm access the locked object. If a

transaction retains a lock, it cannot access the object but it blocks other transactions €rom

set ting confiicting locks anyw here in t heir transaction's hierarchy ; however , the descendants

of the retainer potentidy can use the lock. When a transaction becomes a retainer of a

lock, it remains as the retainer of the lock until the transaction terminates. The basic

locking rules for nested transaction Ti presented by Moss [Mos85] are:

Transaction Ti can hold a write lock on x, if no other transaction holds a conflicting
lock on z. Only ancestors of Ti may retain a conficting lock on x.

0 Transaction Ti can hold a read lock on x, if no other transaction holds a write lock
on x. Only ancestors of Ti may retain a conficting lock on x.

r When Transaction Ti commits, it passes aU of its hold/retain locks to its parent. The
parent retains the locks it receives from its children.

O When Transaction Ti aborts, aU of its locks are discarded. This does not effect any of
the proper ancestors of Ti holding or retaining the same locks.

When a parent inherits a lock on x from its child, it d o w s other transactions in its hierarchy

to view and update the current state. The parent, however, prevents transactions in other

hierarchies from updating x as long as it keeps the lock.

In the nested transaction mode1 presented by Moss [Mos85], non-leaf nodes do not

contain primitive operations. More recent work has relaxed or eliminated t his restriction.

Recent nested transaction models [HH9 1,Zap93] now allow subtransactions to include prim-

it ive operations and calls to ot her subtransactions. Harder and Rothermel [HR87] argue

Chapter 2. Related Work 23

that upward inheritance is not always applicable in this recent work. For example, a parent

transaction may read x and issues a child to update x. Upward inheritance fails in this case

because the parent must wait for its child to terminate successfuliy before it can commit

and the child must wait for its parent to release its lock. To solve this problem, Harder and

Rot hermel [HRS7] suggest another locking aigori t hm cailed downward inheritance.

In downward inheritance, transaction Ti holding a lock, can pass the lock to any of its

descendants in che same hierarchy. After passing the lock, Ti retains the lock in the same

mode. This rule can also create a problem in some cases. For example, a transaction may

read a few objects and create some subtransactions to execute other operations on these

objects. Children obtain the locks from the parent and may execute simultaneously. Con-

current executions of the subtransactions increase concurrency; however, since the parent

and its children share the same information, one may overwrite the information read by

anot her.

Harder and Rothermel [HR93] subsequently suggest a solution. They add two more

rules to the basic Iocking rules of Moss [Mos85]. Using the same locking modes as described

above (none < read < write) , a transaction Ti holding a lock in mode M can

downgrade its lock to mode Mt (M t < M), if it retains the lock in mode k.1 and holds
the lock in mode M'.

upgrades its lock to mode M' (M < M t) if no other transaction holds the lock in a
conflicting mode with Mt and ali of the transactions that retain the lock in conflicting
mode with ibf' are ancestors of Ti.

This algorithm is less restrictive than the simple downward inheritance and it enhances

overall concurrency for nested transactions because it allows more desirable decomposition

of transactions into a set of cooperating subtransactions.

Chapter 2. Related Work

2.3 Object-Oriented Data Models

Conventionai data models are simple but suffer from several Limitations [BMSl, HPC93.

ABD+89]. They are not suitable in environments where data is complex, schemas changes

frequently, and transactions take much more than a few seconds to execute. Object-oriented

data models may overcome t hese limitations. They satisfy the requirements of conventional

data models such as data-sharing, consistency, integrity, and concurrency control while

introducing many useful features. This section explains the concept of object data models

and discusses some of the features of object data models which are not efficiently supported

in conventional data models. Transaction management and concurrency control in ob ject

based systems are also addressed in tkis section.

2.3.1 The Concept

Object data models mode1 al1 entities as objects. Each object is uniquely identified. An

object contains a set of attributes which form its structure. Attributes are either simple:

such as integers and strings; or complex values, which may be objects. The values of the

attributes determine the state of the objects. Objects also include a set of procedures called

,methods. A method of an object contains a set of operations on that object. The execution

of a method is the only mean to change the state of the objects.

Some features which separate object data models and conventionai data models are

encapsulation, inheritance, and aggregation. These characteristics create a flexible environ-

ment in terms of object manipulation, and impact on concurrency control and recovery.

Encapsulat ion

Encapsulation ensures that only local object methods access an object's attributes. This

is similar to the concept of abstract data types.

Inheritance

Objects shaxing the same structure and behavior are grouped into a class. A class can

Chap ter 2. Related Work 25

be a specification/gene~liz~ftion (subset/superset) of one or more other classes. Class B ic

a subclass of class A if B inherits the properties of A. A class with its direct and indirect

subclasses form a class hierarchy. This hierarchy is actually a lattice if multiple inheritance

is supported. Different forms of inheritance appear in the Literature [ABD+89]. Detailed

discussion is beyond the scope of this t hesis.

Aggregat ion

Aggregate objects known as cornplex objects contain other objects which in turn may

inchde other objects. Therefore, complex objects have a tree structure too. A complex

object is treated as a unit of retrieval and integrity enforcement.

A type of complex object called a composite object is implemented in Orion [KGBWSO].

A composite object relationship is Jertried between objects to form a part-of relationship.

Part-of relationship indicates that an object is a part of another object. Two important

features of composite objects are: first, if the root object is deleted, all cornponent objects

(except the ones shared with other objects) are dso deleted; second, a constraint such as a

lock on the root ob ject propagates to ail other components.

Ot her C haractecistics

a Objects may maintain several versions of an object. Versions of an object play an
important role in transaction management and schema evolution.

Objects must be persistent. Persistency ensures that objects survive the execution of
a process and they can be reused in another process.

4 Ob ject data mode1 may support schema change. Possible modifications include changes
to the definition of a class and changes to the inheritance hierarchy.

2.3.2 Prototypes

Since the foundation of Simula in 1958 and Smdtalk [Go1841 in 1980, many object oriented

prototypes have been developed [WLHgO, KGB WSO, B 889, RH901. These prototypes tar-

geted many advanced application models such as Computer Aided Design (C A D / C A M) ,

Chapter 2. Related Work

artificial intelligence, and office information systems. The prototypes are const ructed by ei-

ther (1) building on the top of traditional systems or (2) building a "newn facility for storing

persistent objects. ln the first category, a new layer of transaction management is added

above underlying system to provide ob ject-oriented facilities (eg. Postgres [W LHSO] and

Exodus [Car89]). Converseiy, systems in the second category (eg. Orion [KGBWSO] and

O2 [BDK92]) require new transaction management tailored to objects. Since this research

belongs in the second category, we limit the review to these systems.

2.3.3 Transaction models

Issues of transaction management such as serializabilit y, concurrency cont rol, recovery, and

reliability are the key factors motivating this dissertation. Some recent material related to

transaction mangement in objectbases include [RKS93, Zap93, Wie94, Gra94, 0~~941 . The

following paragraphs review work in this area. Note that since this section reviews ot her

researchers work the terrninology used here may be different than that described earlier.

If this occurs, we wiil define the term as the other researchers have and use it with their

meaning in this section. After this section, we will return to Our terminology as defined

earlier .

Rakow et al. [RGNSOJ proposed an object mode1 using open nested transactions. The

ob jectbase contains a set of homogeneous objects and a set of transactions on t hese ob jects

cailed object-on'ented tmnsactions. Operations accessing objects are calied actions. Actions

are grouped into sets. The set for action A contains ail of the actions called either directly

or indirectly by A. An object-oriented transaction forms a tree where the nodes represent

the actions and edges their invocation. The leaves are cailed primitive actions which are

simple operations on ob jects.

Ln Rakow et al.'s dgorithm, serialkation is defined for transaction accessing individual

ob ject and for the entire transaction system. In the former case, an object schedule is defined

at each object. An object schedule should be conflict equivalent to a serial schedule at that

Chapter 2. Related Work 27

object to ensure correctness [RGNSO]. This is done by checking two types of dependency

at each object: tmnsaction dependency and action dependency. Two transactions on an

object have a dependency if some actions in their hierarchies conflict. Two actions have a

dependency if an ordering is enforced between some of t heir primitive operations, or t hey are

transactions on other objects in which they are transaction dependent. Two object scheddes

are equivalent if t hey have the same transaction dependency relation. Furt hermore, to

ensure seriaiizability for the entire transaction system, another dependency relation called

added dependency is introduced. An added dependency is given to two actions A and B, if

A and B are actions of two different objects which include some actions in object C, and

C creates a transaction dependency between A and B.

Hadzilacos and Hadzilacos [HH91] introduced another object model using closed nested

transactions. In this model, an object consists of a collection of attributes and a set of

procedures called methods. Methods are the sequences of local and message steps. A local

step of an object results from the execution of primitive read and write operations on the

object . Message steps invoke met hods possibly in other objects. Transactions subrnitted

by the user only include message steps. Objects execute the messages by invoking the

appropriate methods.

Hadzilacos and Hadzilacos define two types of synchronization: Intra-object and inter-

object synchronization. h t ra-ob ject synchronization serializes operation wit hin an ob ject .

Inter-object synchronization ensures consistency of the independent synchronization deci-

sion made at each object. This implies that if Tl and T2 are two transactions accessing

object of and Ti is ordered before T2, Tl must be ordered before T2 in d of the objects

accessed by f i and T2. Intra-ob ject and inter-ob ject seridizabili ty toget her must guarantee

the serializability of o v e r d computations in ail objects.

A history H consists of a set of method executions on ob jects where local and message

steps of the methods are partially ordered according to intra and inter object synchroniza-

tion rules. Methods cannot be invoked recursively in H. If method Ml is ordered before

method M2 in H , all the methods cailed by Ml are ordered before the methods called by

Chapter 2. Related Work

Serialization of a given history is checked by constructing a direct access gmph where

nodes are the message steps and edges are c d s to the message steps. An edge is added

between two nodes NI and IV2 if either

descendants of NI and N2 confLict or

if L is the least common ancestor of NI and N2 and ancestors of NI and N2 conflict
within L's hierarchy.

If the graph is acyciic, H is serializable.

2.3.4 Concurrency Control

A concurrency control algorithm based on Hadzilacos and Hadzilacos [HH91] mode1 is pre-

sented by Agrawal and El Abbadi [AA92]. This algorithm is the extension of locking

protocol presented in [Mos85] for closed nested transaction models. Agrawd and El Abbadi

define two types of relations between operations: shared relation and oràered relation. If

two operations conflict, each possess an ordered relation with respect to the other. When

an operation T acquires a lock on an object, the lock has an ordered relation with respect

to ail operations wit h which an ordered relation and a shared relation with respect to locks

of ail operations with which T has a shared relation.

The algorithm is as follows. A lock is associated with each operation r. Shared and

ordered lock relations with other locks is set based on the above description. A transaction

maintains ail its locks until it either commits or aborts. A transaction must wait for the

termination of a l i its children before it commits. Locks held by a transaction are discarded

if a transaction aborts. A transaction holding a lock passes the lock to its parent when it

terminates successfuily. Findy, Ti must wait for Tj to commit, if some lock held by Ti have

ordered relation with some lock held by Tj and a parent of Ti is a proper ancestor of T,.

This is called the Odered Commitment Rule.

Chapter 2. Related Work 29

Anot her dgorit hm proposed by Resende and El Abbadi [RA921 is based on the serializa-

tion graph. They dso use Hadzilacos and Hadzilacos' model. Their algorithm constructs a

set of graphs; one for each method execution M. It is called Stored Children's Seriaiization

Graph of M (S C S G (M)) . SCSG(M) is defined as a set of nodes r (M) which represent

the terminated chiidren of M, and a set of edges X(M) which refer t o relative execution

ordering of children of M. Initially, SCSG(M) is enipty. A child c of M is added to the

graph when c terminates. If another child c' of M already exists in the graph, an edge

cf 4 c is added if either of the following two conditions hold:

Given that L is the least common ancestors of c and cf, and some ancestors of c in L
are ordered before some ancestors of cf in L.

Given that cf is a sibling of c, then there is local step in c' or in a descendant of c'
which precedes and conflicts with another locd step in c or in a descendant of c.

Aiter c and its related edges are added to the graph, the graph is tested for cycles. If no

cycle exists, the process continues; otherwise, the top level transaction associated wit h M

is aborted. This algorithm is optimistic in the sense that an operation does not wait for

others to finish execution. A transaction is aborted and may be restarted if the result of its

execution does not meet the serializability criterion.

Zapp and Barker [ZB93c, ZB93a, ZB93bI define object serializability and a serialization

graph technique to capture serializability in Hadzilacos and Hadzilacos' model. An archi-

tecture describing interactions between the components of the transaction facilities and a

concurrency control algorit hm are presented.

Zapp and Barker [ZB93c] define two types of transactions: user and object transactions,

by adapting concepts from the nested transaction model. Each transaction forms a tree

whose root (the top-level transaction) is the user-transaction and whose descendants are

called object transactions. Two types of histories are required. One for ob ject transactions

and another for user transactions. An ob ject history defines the ordering relation of ob ject

transactions that have executed a t an object. A user history defines an ordering relation of

user transactions which contain the orderings of the user transaction operations. To ensure

Chapter 2. Related Work

user
Transactions !

Execution Monitor d
I I

Object
Transactions / C/A

Object Procesor -
r / w i o)) / objects

Figure 2.2: Zapp and Barker 's architecture

serializability and thereby assess correctness, the user history and the ob ject history are

combined into a global history callecl the global object history.

Zapp and Barker's architecture is composed of two major components: an Execution

Monitcr and an Object Processor (see Figure 2.2). The purpose of the Execution Monitor

is to provide an interface to users and to schedule the method invocations on behalf of user

transactions. To schedde a method, the Execution Monitor submits the method to the

Object Processor as an object transaction. The Object Processor schedules and executes

each individual met hod's operations. In processing met hod executions, the Ob ject Processor

retrieves and updates object attributes by accessing the persistent object store. The result

from the execution of a method is returned to the Execution Monitor. When a transaction

commits or aborts, the Ob ject Processor guarantees the ACID properties.

The expanded architecture of Figure 2.2 is shown in Figure 2.3. The Execution Monitor

contains two components: the Transaction Manger and the Method Scheduler. The Trans-

action Manager receives user transactions and submits methods to the Method Scheduler.

The Method Scheduler is responsible for scheduling user transaction operations and passes

Chapter 2. Related Work

Execution
Monitor

- - - - _ _ _ _ I _ - _ _ - - - - - - - -
1

user
1 Transactions 1 3.
!

,
l

1 C/A

Method Scheduler

Object Manager

Transactions ,

r/w(o) objects

Processor

Figure 2.3: Zapp and Barker's expanded architecture

Chapter 2. Related Work

the scheduled methods to the Object Processor for execution.

The Object Processor also contains two components: the Object Manager and the

Ob ject Scheduler. When the Ob ject Manager receives a method, it converts the method

to an object transaction and sends it t o the Object Scheduler. The purpose of the Ohjict

Manager is to facilitate the communication between the Method Scheduler and the Object

Scheduler. The object transaction received by the Object Scheduler is executed against

objects in the object base.

The operations of an object transaction are read, write, and method invocations. The

read and write operations are executed against an object in the objectbase. The method

invocations must be sent to the Method Scheduler so that they c m be scheduled wit h ot her

met hods of the user transaction level. When an ob ject transaction terminates (successfuily

or unsuccessfdy), the Object Scheduler sends the result of the execution to the Object

Manager and the Object Manager in turn passes the message to the Method Scheduler. An

object transaction pre-commits as the result of a successfui termination. A pre-committed

object transaction must wait until it receives a commit message from a coordinator. If an

object transaction aborts, it must release ail the resources it is holding. The execution

of two object transactions Tl and T2 on an object is controiled as in the strict two phase

loclcing protocol. If T2 requests a lock on an ob ject which conficts with the lock already set

by Tl , T2 is blocked. When Tl pre-commits, T2 can be processed if Tl and T2 are from the

same user transaction. Otherwise, T2 must wait until Tl commits completely and releases

its locks.

Another pessimistic concurrency control algorithm is presented by Graham and Barker (GB95.

GB94al. Concurrency is performed based on the static analysis information captured at

pre-run time. Information includes contml flou information, method invocation infonna-

tion, and attnbute reference information. Control flow information mainly details what

sections of the methods rnight be executed. Method invocation information determine the

calling sequence between objects, and attribute reference information in a method include

the read/write relationships. The detail of the deriving these information are presented

Chap ter 2. Related Work

Graham and Barker discuss intra-object and inter-object concurrency as follows. Sup-

pose a user transaction UTi directly invokes a set of message steps mil, mis, ..., mi,. For

every pair of message steps < mik, m, >, m;k and mij are executed concurrently if they

directly or indirectly access a disjoint set of objects. Otherwise, for every object d which

rnay commonly be accessed (possibly indirectly) by mik and mij in a conflicting manner

(conservative assumption), a message is sent to of to enforce seriaiization order between

rnik and mij.

Each object of contain a local scheduling graph (CSG). Vertices of L S G (O ~) represent

the methods (object transactions) that are either active a t of or may eventualiy execute at

o f . When an ordering message - m, (mit happens before rn,) is sent to of, an edge

is added to the LSG(OJ) to order the execution of mik after mij at of. When a method is

invoked in o i , its execution is blocked if L S G (O ~) indicates that some other methods should

be executed first. When the execution of an ob ject transaction terminates, its corresponding

node and all related edges are removed from LSG(of) ; thereby, some object transactions

may be unblocked and executed.

The Globul Serialization Gmph of Zapp and Barker [ZB93b] is adapted to control inter-

object serialization. When a new user transaction arrives, the set of objects it may refer-

ence is compared with the set of objects that might be referenced by the currently active

transactions. Suppose set A and set B represent the set of ob jects referenced by the new

transaction UTi and a currently active transaction UTj, respectively. If UT; and UT, both

access oj E A fl B in a conficting manner, a message is sent to of to set a serialization

order between UTi and UTj- Graham and Barker have developed a function which re-

turns the serialization order of the new user transaction with respect to the currently active

transactions.

The above algorithm prevents deadlock problems because serialization is done staticdy

prior to the execution of the transactions. However, some sub-transactions may stiîl be

aborted and rolled back. For example, if the new user transaction UTi is scheduled after

Chapter 2. Related Work 34

ail other currently active user transactions, no roll back is necessary. Otherwise, if UTi is

decided to be serialized before a currently active transaction UTj , subtransactions of UTJ

operated at some object of, may be rolled back if UT; references d .

2.4 Multiversion Data Models

Most database systems keep one version of data. In multiversion database systems more

than one version of data can be rreated and stored. Versions associated with data item x

show the evolution of x as x is updated by some transactions.

Using multiple versions of da ta items as a transaction synchronization technique can

enhance concurrency and support recovery. Transactions interested in the old versions of

data can be executed concurrently with other transactions which compete to access the

latest committed versions of data. In addition, muitiversion systems do not u s u d y require

logging because before and after images can be searched via the versions. Multiversion

systems have increased overhead such as purging unnecessary versions and controlling their

number.

This section reviews muitiversion seriaiization theory including notions of serializabil-

ity in a multiversion environment. Concurrency control and how to enhance concurrency

t hrough versioning is also described.

2.4.1 Histories and Serializability

A multiversion history is different from a single-version history in at l e s t two ways. First

a "write" operation on a data item x may produce a new version of x, keeping both ver-

sions. Second, if more than one version of x exists, a "read" operation rnay not dways

be restricted to reading the most recent version of x. This indicates that the definition

of con f l ic t rnay also change in a multiversion system. For example, two write operation

each producing a different version do not necessarily conflict. Similarly, a read operation

Chapter 2. Related Work 33

reading the old versions does not conflict with a write operation unless other restrictions

are involved in the model. Bernstein et al. [BGH87] extend one-version serializability to

multiversion seriaiizability as foIlows:

A write operation of Ti on x produces a new version x;.

A read operation of Ti reads xi. If x; has not been produced, the last committed
version of x is read.

Before a transaction commits, every transaction which produced versions it read must
have commit ted already.

Based on the above conditions, a serial multiversion history c d e d one-copy serial is defined

as follows:

Deflnition 14 (One-Copy Serial): A serial multiversion history K is one-copy serial if for

every Ti and Tj in H :

1. (3 p E Ti, 3q E Tj , such that p 4 q) (VT E Ti? VS E T j , r 4 S) and,

2. for all i, j, and x, if T; r a d s x from T j , then either T; = T j , or Tj is the laçt transaction
preceding Ti that wrote into any version of x. rn

A multiversion serializable history is defined.

Definition 15 (One-Copy serz'alizable): A multiversion history is one-copy serializable if

it is confiict equivalent to some one-copy serial multiversion history.

This serializability definition does not set any Limit on the number of versions that

can be created for each data item. Practical system considerations such as system storage

capacity requires that limits be placed on the number of versions that can be simultaneously

nianaged. Problems related to space limitation caused by maintaining multiple versions have

been discussed in the literature [BHRSO, HP86, PK84, CG85, Mor931 but it is beyond the

scope of t his t hesis.

Chapter 2. Related Work

2.4.2 Concurrency Control

Several concurrency control algorithms have been proposed for centralized and distributed

multiversion databases [SR8 1, BG81, CFLN82, Lau83]. Multiversion timest amp ordering

was introduced by Reed [Ree78]. The multiversion two phase locking protocol was proposed

by Chan et al. (CFLN821. Examples of initial optirnistic concurrency control schemes in

mult iversion environment are present ed in [ReeB, SLR761.

Bernstein and Goodman [BG83] modify traditional timestamp ordering and t wo phase

locking for the multiversion environment. Before discussing t heir work, some nomenclature

is required. We use the notation r i (x j) when Ti reads a version of x written by transaction

j, and wi(x;) denotes a write operation on data item x by transaction i ; thereby creating a

new version xi. Further, acquisition of a read or a write lock on x indicates that no other

transaction can obtain a conAicting lock on any version of x.

Multiversion tirnestamp ordering (M VTO) assigns each transaction Ti and its operations

a unique timestamp, ts(Ti) . A multiversion timestamp scheduler, processes operations in a

firs t-corne, first-served order. When the scheduler executes a read operation of transaction

Ti, the version of x with the largest timestamp less t han or equd to t s (T i) is read. A write

operation of Ti is processed in one of two possible ways. A write operation is rejected if the

scheduler has already processed a r j (x k) such that ts(Tk) < ts(Ti) < t s (T j) . Otherwise, the

scheduler executes wi(x;) . Note that the last committed version of x may not necessarily

be the x with the largest timestamp. For example, it is possible that ts(T;) < t s (Tj) and

the scheduler processes a wj(xj) before a wi(xi) . Findy, the commit of T;, c;, is delayed

until all other transactions, Tj , that wrote versions read by Ti have committed. This delay

ensures recoverabiii ty.

A multiversion two phase Ioching (MV2PL) scheduler uses three lock types; read, write,

and certify. Two locks conflict if either one is a certify lock or write locks. Read and write

loch are acquired during transaction execution as in two phase locking [EGLT76]. In

processing a read operation on a version of x, the ith version of x is read if the scheduler

Chap t er 2. Related Work 31

has processed a wi(xi) aheady. Otherwise, the last comrnitted version of x is read. Read

locks are granted only if no other transaction holds a conflicting certify lock (i.e.: r i (x j) is

executed if no certify lock is holding z j) . When the scheduler receives a write operation on

a version of x, it delays the execution if another transaction has a write or a certify lock

on any version of x. Otherwise, it sets a lock on x and executes züi(xi). A new version of

x, xi, results from this execution. When a transaction wants to commit, its write locks are

changed to certify locks. The effect of certify locks is to delay transaction Ti's commit ment

until all of the active transaction readers of some versions of the data items written by Ti

terminates. Thus the scheduler can only convert a write lock on xi into a certify lock if

there are no read locks on any certified versions of x . A version of x, x i , is certified when

Ti, the transaction that wrote x;, commits. Ti is certified when al1 the versions it read have

been certified.

Read-only Versus Update Transactions

One of the main advantages of multiversion concurrency control (M VCC) protocols over

one-version concurrency algorithms is the reduction of data contention bet ween read only

transactions and update transactions. Read only transactions may see old versions of data

but they can be executed concurrently with other update transactions. Some recent work

have been done by Mohan et al. [MPL92] and Wu et al. [WYC93]. Wu et al. use dynamic

finite versioning to enhance the performance of systems where short update transactions

and long read only queries execute concurrently. Queries read from a small, h e d number

of dynamicaily derived transaction consistent logical snapshot of the database. Snapshots

may include old versions of some data.

Logical snapshot production may require stopping transactions submission and wait un-

til all active transactions commit. An alternative solution is to mark the versions produced

by active transactions and remove the marks when transactions commit. Ln this case, the

snapshot of the database will include the unmarked data. Wu et al. argue that the former

solution is not feasible because it is inefficient to stop and restart the process. They also

claim that in the latter solution, searching for the marked versions incur a high cost because

Chapter 2. Related Work

versions can be scattered around in the database.

Wu et al. suggests the following algorithm. When transaction Ti becomes active, its id

is entered in a list kept for the active transactions. Every time Ti produces a new version

of data item x (xi) it maintains a time-invariant footprint of Ti. When Ti commits, its id is

removed from the list. A snapshot of the database is created by including all the versions

in which their time-invariant footprint are not from the transactions in the list .

2.4.3 Multiversioning in Objectbases

The notion of version control is provided in object-oriented prototypes such as Orion [KGBWSO],

Iris [WLHSO], and Avance [BB89]. The following summerizes some common features of ver-

sions in these protocols:

a Several versions can be derived from an object and other versions can be derived from
these versions. An object with d its direct or indirect versions derived from it form
a version hierarchy.

0 Each version has its o w . ~ unique identifier. Therefore, it can be accessed and modified
direct ly.

Versions are divided into two groups: stable and unstable versions. Stable versions
are considered consolidated and are not usudy updatable. Unstable versions are not
yet consolidated and can undergo modification. Versions derived from a stable version
are unstable versions. Unstable versions can be promoted to stable versions on user
request or automaticdy by the system.

2.4.4 Concurrency control in Multiversion Objectbases

Nakajima [Nak92] presents an optirnistic multiversion concurrency control mechanism. Mul-

tiversioning techniques are applied to the concepts of backward and forward commutativity

introduced by Weihl [Wei88]. According to Weihl, two operations executing on an object

commute if they can be scheduled in any order without affecting the resuit of computation.

Nakajima argues that forward commutativity uses the latest comrnitted version of the ob-

jects to determine a confiict relation while backward commutativity uses the current states

Chapter 2. Related Work 39

of the objects. Forward and backward commutativity relations are combined into a new

relation c d e d the geneml comrnutativity relation. A general commutativity relation exists

between two operations if they either backward commute or forward commute.

Ln Nakajima's model, each object consists of a collection of versions. The versions

are classified into two groups: committed and uncommitted versions. The most recent

committed version of an object of is called the last committed version of of (denoted

L C V (O ~)) , and the most recent uncommitted version of of is called the current version

of oj (denoted C v (d)) . When transaction Tj invokes method mi in object o j a new

uncommitted version of of (denoted N V (O ~)) is created for T,. If the return result from

N of) backward commutes with of) or forward commutes with L C V (~), N V (O ~)

becomes the new current version of of and replaces the old current version. Otherwise,

N V (d) is discarded and T, invokes method mi again.

Another rnultiversion transaction model for object base systems was proposed by Graham

and Barker [GB94b]. An object is characterized based on its initial state, a set of valid States,

its operations, and a set of transaction functions which move the object from one valid state

to another. A transaction is simply a set of read and write operations. Objects are versioned

and t here exist only a single committed version of each ob ject in the object base c d e d the

last commit ted version (denoted LCV). A set of transactions I = (T l , Tz, ..., T,) which

require access to object oj, each obtains a copy of the last cornmitted version of o f , oft.

The version of i is cailed the base version for the transactions in 7. The created copies are

c d e d the active versions. When every transaction in T terminates (commits or aborts),

of' is deleted if a new committed version of o f , ojj, is created by another transaction.

Each transaction acquires its own set of active versions of objects. A transaction modifies

its versions by executing the methods and does not interact with other transactions. If a

transaction aborts, its versions are discarded. If a transaction completes successfuily, before

it commits, ali of its active versions which confiict with their corresponding LCV in the

object base must be reconciled. This ailows correct effects to be reflected in the object base.

When a transaction cornmits, its active versions become the new last committed versions.

Chapter 2. Related Work 40

Graham and Barker proposed an optimistic concurrency control algorithm. The main

feature of this algorithm is that of reconciling the unsucc~ssful transactions instead of abort-

ing them. The reconciliation procedure is as follows. Assuming that two transactions Tl

and T2 execute against two separate copies of object of, dl and d2. The following four

conditions are possible:

1 . Tl and T2 are read only transactions

2. one of Tl or T2 is read only transaction and the other one is not

3. Tl and Tz are update transactions and one has less costly operations relative to an-
other, or

4 . Tl and T2 are update transactions and they have equally costly operations.

In case 1, the state of of remains unchanged because transactions do not confiict. In case

2, the new state of o f is set to the update transaction. In case 3, the less costly transaction

should be re-executed against the new state created by the other transaction. in the last

case, either transaction can be executed before another. Thus, the execution order of Tl

and T2 can be in either order depending on which is cheaper to cornpute. Therefore, the

serialization order is deterrnined by reconciliation.

Two types of reconciliation are introduced: simple reconciliation and cornplex reconcili-

ation. Simple reconciliat ion merges the result of the execution of two versions of' and of of

object of accessed by two transactions Tl and T2, respectively and provides a serialization

order between Ti and T2. Versions of' and of2 can be merged if Tl and T2 do not access

common data, or a t least one transaction does not read the sarne data written by another

transaction.

Complex reconciliation is a t tempted if simple reconciliation cannot be performed. Com-

plex reconciliation of two transactions Ti and T2 may require the less costly transaction be

re-executed against the state created by another transaction. The cost of the re-execution of

a transaction is estimated by static compile tirne analysis [Gra94]. Complex reconciliation

of a transaction is mainly partial re-execution of operations which have read stale data in

Chapter 2. Related Work 41

that transaction. Reconciling an unsuccessful transaction at commit time is often a less

costly procedure than the cornplete roll-back and re-execution of the transactions.

2.5 Performance Cornparison

Carey and Mohan [CM861 investigated the performance of t hree algorit hms. Reed's mult i-

version timestamp [Ree78], the version pool algorithm which is a type of multiversion two

phase locliing used by Computer Cooperation of America (CCA) in their LDM database

system [CFLN82], and multiversion serial validation algorithm of [Car83b] which is based

on the algorithm of Kung and Robinson [KR81]. The algorithms were compared bot h wit h

each other and with their corresponding single versions (basic timestamp ordering, two

phase locking, and serial validation algorithm). The performances overheads were analyzed

based on throughput, average response time, number of disk accessed per head, work wasted

due to restarts, and space required for old versions.

Experiments were performed with various mixes of read only and update transactions.

It was shown that as the number of read only transactions increases relative to update

transactions, the multiversion algorithms perform better than the single version counter-

parts. As the number of update transactions in the rnix increased, the performance of

basic timestamp ordering and serial validation algorithms significantly feu because some

h g - term read-only transactions starved and multiversion and regular two phase locking

algorit hms outperformed ot her algorit hms.

In general, it was shown that multiversion protocols provided improvements in perfor-

mance by aliowing large read-only transactions to access previous versions of data items.

Storage overhead to maintain old versions required satisfying read requests for ongoing

transactions is not large, but the overd size of the version pool becomes significant when

the read only transactions accessed more than 10 percent of the database or the nurnber of

update transactions becomes very large.

Chap t er 2. Rela ted Work

2.6 Summary

In this chapter, we presented an overview of the classicd transaction model to create a

framework for this dissertation. Then nested transactions and the issue of concurrency

control in both closed and open nested environment were reviewed. Next, we explained some

of the characteristics of ob ject-oriented data models which reflect ob ject manipulation, and

concurrency control. Finally, the role of version management in database systems and the

advantages and disadvantages of creating muitiple versions of data were discussed. We also

briefly mentioned some common feat ures of ob ject versionhg in ob ject-oriented prototypes.

The material presented by Graham and Barker [GB94b, GB94a, GB951 and by Zapp

and Barker [ZB93c, ZB93a, ZB93bJ are the closest to our research. We have adapted the

model of Zapp and Barker for a closed nested transaction environments. Zapp and Barker's

aigorithm is a pessimistic approach. Graham and Barker [GB94b] provide a mechanism

to maintain versions of objects in the objectbase; however, their work does not djscuss

reconciliation in detail for nested transaction models. tire extend this work to a model and

architecture for multiversion objectbases which supports nested transactions and provide a

suit able reconciliation algorit hm.

Chapter 3

The Computational Mode1

This chapter begins by formally defining class, methods, objects, and transactions. We

then extend this formaiism to reflect our computational mode1 which incorporates version-

ing. Next a new correctness criterion is introduced to ensure serialization of concurrently

executing transactions. Finaiiy, concepts and definitions related to data dependency and

information which can be captured by static analysis are presented.

3.1 Fundamental Concepts and Definit ions

This section provides the definition of some fundamental concepts used in an ob ject-oriented

environment.

A class is a collection of homogeneous objects; that is, objects of the same structure

and behavior belong to one class. Informdy classes define the types of the objects.

A class C = () ,CA,CM) where i is the unique class identifier, CA is the set of attributes

that the class defines such that f o r a Caj, cak E CA, caj # cab, and CM is the set of

methods that the class defines such that f o r 4 cm,, cmk E CM, cm, # cmk. in this

dissertation, class i is denoted as Ci. The set of at tributes and the set of methods of Ci are

unambiguously referenced by CA' and CM', respectively.

Chapter 3. Computational Mode1 34

CA' = {ca',,ca$, ..., CU&} contains the attributes defined by ci. An attribute ca; E

CA' is of type t where j is the unique attribute identifier in Ci and t is either a class

(composite/complex objects [KGBWSO, BDK921) or a primitive type. A primitive type is

a builtin type whose semantics is wd-defined and understood by the compiler. Typically

primitive types are those implemented by the underlying ontology. For example, a system

set of primitive types might be {int, float, char, string}.

CM' = {cmi, cm;, ..., cm:} is a set of methods in Ci. Each method cm: E CM'

contains:

0 1; = (IPl , I P 2 , ..., IP,),

O 0; = (OPl,OPz, ..., OP,), and . sj = (sj,,sj,, ..., Sj,).

where 1;' and 0: are the set of input and output parameters, respectively and Sj specifies

the executable statments of a class method.

A class groups a set of homogeneous objects that are created at object instantiation

time. Zapp and Barker's [ZB93c] object model defines a set of uniquely identifiable objects

containing structure (attributes) and behavior (met hods). We adapt this definition for our

model.

Definition 16 (Object): An object is an ordered triple, O = (J, A, M), where:

1. f is a unique object identifier,

2. A is the object's structure, defined by attributes such that Va;,aj E A, a; # aj, and

3. M is the object 's behavior, defined by methods such that Vmi, mj E M, m; # mj.

Point (1) assigns unique identifiers to each object. Point (2) specifies the attributes of

an object and (3) specifies the methods of an object. This dissertation identifies object

Chap ter 3. Compu tational Mode1 45

f by d. The set of methods and the attributes of d are unambiguously referenced by

f f M I = (ml ,na2, ..., mi} and ~f = {a{,a{, ..., ai}, respectively. Note that we have used

cm; and m; to denote class method and object method, respectively. In the subsequent

sections, method and ob ject method are used interchangeably if appropriate.

The values of an object's attributes determine the state of the object. The state of

an object can only be rnodified by transactions. A transaction is a sequence of operations

executing on the objects. As mentioned earlier, transactions are either flat or nested. Flat

transactions were defined in Section 2.1.1. A nested transaction may be described by a

tree where the root is the top-level transaction, a sequence of intermediate transactions,

and a set of leaf transactions. The top-level transaction and its descendants, constitute a

transaction farnily. Transaction families appeax atomic t O ot her transaction families.

The nomenclature used for flat transactions is extended to nested transactions. The di-

rect and indirect descendant transactions of a nested transaction, NTi, are NTii , NTi2 ,..., N Ti,.

When some NTik attempts to complete, it enters a pre-commit state where it is ready to

commit subject to the comrnitment of its parent transaction. The operation pc denotes

entry into the pre-commit state by a nested subtransaction. Thus, the operation set of NT,

is 0s; = iJk {rik), where r;k E {read, wrile, pc, NTik).

One feature of nested transactions is that it is possible to execute subtransactions con-

currently. Two subtransactions can be executed concurrently if there is no dependency

relation [GB95] in their internd semantics; therefore, freedom from conflict can be verified.

Zapp and Barker [ZB93c] define a boolean function, depends, which takes two operations

witizin a transaction, at least one being a subtransaction invocation and returns true if there

is a dependency relation that requires the transactions be ordered.

Definition 17 (Nested Tmnsaction): A nested transaction NT; is a partial order NT, =

(O;, 4;) where:

1. Ri = OS; U {Ni},

Chapter 3. Computationaf Mode1 46

Point (2a) orders the confiicting local operations of the nested transaction. Point (2b)

d o w s the concurrent execution of subtransactions but it orders their conflicting operations.

The significance of the depends function in this point is that it provides information to

d o w intra-transaction concurrency. The function depends(r;,, T ; ~) returns true if internal

semantics of operation r;, depends on operation riq. Detailed implementation appears later

in this chapter. Point (3) indicates that a l l operations of a nested transaction must occur

before its pre-commit operation. Point (4) ensures that the termination conditions of all

subt ransactions invoked by the nested transaction are the same as the termination condition

of the nested transaction itself. Point (5) places all the operations of a nested transaction

before its termination operation.

3.2 Versionable Objects

We now extend the mode1 of Zapp and Barker [ZB93c] t o support versionable objects.

Objects are versionable in that several versions may be derived From an object. A version

of an object is formdy defined as foiiows:

Definition 18 (Version): A version of an object v = (f, c, A, M), where:

1. 1 is the unique object identifier of v,

2. c is the unique version identifier of v,

3. A is the object's structure, defined by identifiable attributes such that Va;, aj, E A,
ai # a i , and

Chapter 3. Computational Mode1

Committed Versions

LCV

Active Versions

<,-------

active *,

committed
4-

Figure 3.1: An abstract view of active and committed versions of an object

4. M is the object's behavior, defined by identifiable methods such that Vmi, mj, E M ,
mi # mi. rn

Point (1) identifies the object from which v has been derived. Point (2) distinguishes the

versions of an ob ject from each other. Points (3) and (4) are unchanged from Definition 16.

Ail versions of an object must have the same object identifier and methods but we farther

annot ate the identifier to indicate the version identification.

Versions of an object are either committed or active. Committed versions are sequenced

according to sorne correctness criteria so that the most recent correct version is stored at

the head of the sequence and is caiied the last committed version (LCV). An active version

of an object begins as a copy of the last committed version which can then be manipulated

independent of a l l other such versions. When an active version attempts to commit, the

correct ness specification is used to determine if and where in the commit ted version sequence

the active version can be inserted.

Figure 3.1 shows the active versions and the committed versions of an ob ject of. When

an active version of of is created, its state may be modified extensively for some period.

Chapter 3. Computationai Mode1 48

Eventudy, the modified active version may commit and become a new committed version

if its state is consistent with the states of other committed versions of of. Otherwise. the

active version may be modified again and if it still cannot be committed, it is disposed.

Committed versions are linked into a version-chain. A new committed version is added in

an appropriate position in the version-chah that is identified by the correctness criterion.

Once the new committed version is inserted in the version-chain, changes may need to be

propagated to the last committed version and a l l intervening committed versions. Since the

size of the version-chah is limited; periodically older committed versions are removed from

the version-chain and are archived. The version-chah of an object effectively captures the

evolution of the object (historical information) through time.

We adopt the notational shorthand where vf identifies active version c of object of. An

arbit rary data item in vf is unambiguously denoted xf '. Notations to represent commit ted

versions wüi be introduced appropriately later in this chapter.

3.3 Transaction Model

Users submit transactions that invoke a set of ob ject methods. Transactions submitted by

a user are atomic so the underlying system must ensure that the nested rnethod invocation

produce atomic results too. Users subrnit methods that may subsequently invoke others.

Thus, nested transactions submitted by the users rnay be divided into two groups. The first

group includes top-level transactions explicitly created by the users and the second group

contains transactions occurring as a consequence of the method invocations made by the

top-level transactions. The transactions in the first group are user transactions and those

in the second group are version transactions.

A user transaction cannot directly modify an object's state in the objectbase. This is

accomplished by the methods it invokes. Such methods are eventudy converted to version

transactions. Version transactions are created by the system and operate on active versions

of the relevant objects.

Chap ter 3. Compu tationai Mode1

3.3.1 User Transactions

The nomenclature used for nested transactions is also used for the definition of user and

version transactions. User transaction i is denoted UTi. Operation rik of user transaction

UTi is an invocation of a subtransaction denoted by TL. The subtransaction TA refers

to subtransaction k of UT, operating on active version uf ' . The set of operations for UTi

is OSi = ~ ~ { r ; ~) , where the rik7s are enumerated by finding the transitive closure of the

method invocations made by UT;.

Definition 19 (User Tmnsactzon): A user transaction UTi is a partial order

where:

2. for any ~ W O TiPiTiq E OSii if d e p e n d s (~ i ~ , ~ ~ ~) or de pend^(^;,,^;,) then Tiq +i ri, or
Tip 4i Tiq, respective~y,

3. VTiP E O Si, where Tip = TL t hen Ni, = Ni, and

The points in this definition are directly reflective of those found earlier in Definitions 17

and 18.

3.3.2 Version Transactions

Additional notation is required. The kth step of a version transaction of UTi, executing

on vf is denoted V T ~ . The version transaction V T ~ is created when operation r;k of

UTi invokes a method of of. This nomenclature may be more easily understood by noting

that superscripts represent object identifiers while subscripts identify transactions and their

operations.

Recall from Section 3.1 that NT;kl, NTik2, ... NTikn represent the subtransactions of

nested transaction NTik. This is extended for version transactions so a descendant of V T ~

Chapter 3. Computational Mode1 .5 0

f is denoted VThp that represents subtransaction p of VTik executes on vei. The set of

operations for V T ~ is OSik = u,{rib}, where r jkp E {read, turite, pc, VTfkp). Two version

transactions may execute on a common active version of an object (i.e.: method executions

from the same user transaction shase a single active version of a particular object).

Definition 20 (Version Tmnsaction): A version transaction vT$ is a partial order VT{ =
f J (Oik, -+*), where:

The significance of the Points (1) (3-5) are similar to that for nested transactions. The

only significant difference between nested transactions and version transactions is that the

latter can only access the data items of its active version of an object. Point (2b) orders

the conflicting operations of two çubt ransactions of a version transaction which are invoked

on the same active version.

3.4 Serializability

Traditional databases use conflict or view serializability correctness criteria [BGHW]. This

section begins by introducing a new correctness criterion cded value-serialitability. Value

serializability relaxes the restrictive properties of confikt serializability. Value serializabzty

is then extended to lualue-serialirability which is the correctness criterion developed for

a rnultiversion database environment.

Chapter 3. Computationd Mode1

3.4.1 Value Serializability

Before àiscussing the specification, several notational eiements need to be provided and an

extension to the traditional definition of a "historyn [BGH87] must be stated. First, without

loss of generality, a history fi is always a comrnitted projection of a schedule created by

a scheduler in the system [BGHW]. Further, a read operation by user transaction UTi in

history H is represented as T ; (x , v) and a write operation as w;(x, v) where u is the value

read or written by UTi. A history is now defined as follows:

Definition 21 (History): A complete history over a set of user transactions I=(UTi , UT2, ... UT,}

is a partial order (CH, *H) where:

3. for every two operations rip and Tjq E CH, and two distinct values u and u, if rip =
w ; (x , U) and rjq E (~ ~ (2 , v), q (x , v)) , either Tip 4~ Tjq Tjq 4~ Tip

Point (1) enurnerates the operations of al1 transaction families. (see Definition 20). Point

(2) defines the ordering relation for the operations of a31 transaction families. Point (3)

indicates that two confiicting operations belonging to two transaction families must be

ordered if they read or write overlapping values.

Conflict seriaiizability states that a confiict occurs if two operations access the same

data and a t least one is a write operation. Our definition of confikt is called value-confici.

Before fo rmdy defining this concept we discuss the differences between traditional and

value-conflicts. Value-conflict relaxes the confict definition in two ways. First , conflicting

operations which read/write the same values may not necessarily value-conflict. For exam-

ple, two write operations that write the same value into a data item x can be executed in

any order. Further, any read and write operations which utilize the same data value will not

value-confiict if the read proceeds the write operation in the history. For example, consider

the following:

Chapter 3. Compu tationd Model

In A,,, r3(x, IO) and w4(x, 10) conflict , but they do not value-confiict because t heir ordering

does not effect the value of x. However, a read and a write operation value-conflict if the

read operation reads-from (see definition 7) the write operation. For example, T3 reads

from T2 in HP. Reordering the execution of w2(x, 10) and rs(x, 10) requires T3 reads from

Tl which implies it would incorrectly use the value of 5.

Second, some conflicting operations that read/write distinct values into a data item z

may not vdue-coofiict . For example, consider the foilowing:

a projection of 17. Since A does not contain any write operation of UT2, it makes no

difference if r2(x, 1) reads from wl(x, 1) or from w5(x, 1). This implies that r2(x, 1) may be

executed in any order with respect to w3(x,3) or w4(x, 4) as long as it reads either from

wl(x, 1) or from w5(x, 1). Thus, under these conditions, r2(x, 1) does not value-conflict with

w 3 (x , 3) or with w4(x,4).

Projection A is c d e d a range for r2(x, 1) and is defined as foilows:

Definition 22 (Range): Given three transactions UT, UTp, UT, E H, projection A in H

is a range for operation T~(x , vi) if:

1. w,(z, v,) of UT, and w,(x, v,) of UT, are the first and the 1 s t elements in A, respec-
tively and v; = v, = v,, and

2. A contains no write operation by UTi on any data item. 8

The rational for Point (3) is explained as foiiows. Consider the foilowing history:

Chapter 3. Computationd Mode1

and projection

of Hl. For operation r2(x, 1) in Al, Al satisfies the first condition of Definition 22 but not

the second condition. Suppose the value of y for w2(y, 2) in Hl is calculated based on the

value of x read by UT2 (ex: y = x + 1). Note that in H l , w2(y, 2) uses the value of x read by

rz(x, 1). However, this will not be the case if T ~ (x , 1) reads from w5(x,1) instead. Consider

Since r2(x, 1) reads from w5(x, 1), the value of y in w2(y, 4) is calculated based on the value

of x read by rz(x, 3). Clearly, Hl and Hi do not have the same set of operations so they can

not be equivalent. This implies that in Al, the execution order of r2(x, 1) wit h respect to

w3(x,3) and w4(x, 4) is important because Al contains a write operation of UT-. Therefore,

r2(x,I) value-confiicts with w3(x, 3) and w4(2,4) and Al is not considered as a range for

~2(2 ,1) .

The notion of value-confict can now be formally defined as foilows:

Definition 23 (Value-conpiet): Two operations rip and Tjq in a history H value-conflict

if:

r ip=wi(~ , v), rjq=wj(x, u), and u # U ,

T;,=w;(x,v), rjq=rj(x,u), Tip - rjql, and rjq reads from ri, in H, or

rip=wi(x, v) , T ~ ~ = T ~ (X , u), u # v and rip is not in any range of rjq in H.

This gives rise t o the concept of the equivalence between two histories.

Definit ion 24 (Value-conpict Equiualent): Two history Hl and H2 are value-confiict equiv-

alent if Hl and H2 are defined oves the same set of user transactions, and have the same

operations, and the order of their value-confiicting operations is the same. rn
l p - g means that operation p proceeds the operation q in the history

Chapter 3. Compu tationd Mode1 54

A history is serializable if it is equivalent to some serial history [BGH87]. R e c d that

in a serial history (Definition 3) operations of distinct transactions d o not interleave and

transactions are executed in a total order.

Definition 25 (Value Serializable): A history is value-serializable if it is value-conflict

equivalent t o some se r id history.

The Value Serializability Theorem

Suppose history H is defined over a set of user transactions 7 = {UTi, UT2, ... UT,}.

We determine whet her H is d u e serializable by constructing a graph cailed a Value Serial-

ization Graph denoted VSG(H). T h e VSG(H) = (V, E) where a vertex ui E V represents

a transaction UTi E 7, and an edge in E from vertex vi to vertex vj indicates that a t least

one operation of UTi proceeds and value-conficts wit h an operation of UTj in H .

T heorern 3.4.1 (Value Serializability Theorem): A history A is value-conflict seriaiizable

iff V S G (H) is acyclic.

Proof (sketch):

(if): Suppose H is a historyover I = {UTi, UT2, ... UT,) and V S G (H) is acyclic. With-

out loss of generality, assume UTl, UT2, ..., UT, are committed in H. Thus, UTl, UT2, ..., UT,

represent the nodes of VSG(H). Since VSG(H) is acyclic, it can be topologica.iiy sorted.

Let il, il, ..., in be a permutation of 1,2, ..., n such t ha t UTii, UTi2, ..., UTin is a topoIogica1

sort of VSG(H). Let H , be a serial history over UTil, UTi2, ...? UTin. We prove that H is

value-conflict equivalent t o H,. Let rip and r,, be operations of UTi and UTj, respectively

such that ri, and Tjq value-confikt and rip precedes Tiq in K (ri, - r jq) . By definition

of VSG(H), there is a n edge frorn UTi to UTj in VSG(H). Therefore, in any topological

sort of VSG(H) , (/Ti must appear before UTj. Consequently, in H, aii operations of UTi

appear before any operation of UTj. Thus, any two value-confiicting operations are ordered

in H in the same way as in Hs. Thus, H is value-conflict equivalent t o H,.

(only if): Suppose history H is value-contlict serializable. Let Hs be a seriai history

that is value-confiict equivalent t o H. Consider an edge frorn UTi t o UTj in V S G (H) .

Chapter 3. Computational Mode1 55

Thus, there are two value-conflicting operation rip and rjp of UTi and UT,, respectively,

such that rip -. rjq in H. Because H is value-confikt equivalent to Ii,, rip - rjq in H,.

This indicates that because A, is serial and Tip in UT; proceeds Tjq in UTj, it foilows that

UT; appears before UTj in Il,. Now suppose there is a cycle in VSG(H) and without loss

of generality let that cycle be UTi UT2 -, ... + UTk + UTl. This cycle implies that in

Hs, UTi appears before UT2 which appears ... before UTk which appears before UTt and

so on. Therefore, each transaction occurs before itself which is an absurdity. So no cycle

can exist in VSG(H). Thus, V S G (H) must be an acyciic graph.

A n Example

Consider the following history:

Figure 3.2 shows serialization graph and the value-serialization graph for H. The edges in

the serialization graph refer to the confiicting operations in H and the ones in the value

serialization graph correspond to the value-confLicting operations. Note that the three

boid edges in Figure 3.2A are not included in Figure 3.2B. The edge T2 - T4 reflects the

operations r2(x, 1) and w4(x, 1) in H because ~ ~ (2 ~ 1) conflicts with w 4 2 , l) in H. However,

r2(x,1) and 2042, 1) do not value-conflict because they read and write the same value and

r2(x, 1) happens before ut1 (x, 1) in H in which changing their order does not reflect the

value read by r2(x,1). Thus the edge T2 -, T4 is not added to the value serialization

graph. Sirnilarly, it is not necessary to add the edge Ti -t Tq to the value-serialization

graph because the operations wi(z, 1) and w4(x, 1) write the same value into value x and

do not value-confict . The edge T2 -, T3 which is associated with the operations r2(z, 1)

and w3(x, 3) is also not added to the value-serialkation graph because w3(x, 3) occurs in

the foUowing range of r2(x, 1).

Chapter 3. Computationai Mode1

A: Serialkation Graph B: Value-serialization Graph

Figure 3.2: serialization graphs for confiict and value-confiict serializabiii ties

Figure 3.2A contains a cycie because it considers aU of the confiicting operations;

whereas, Figure 3.2B is acyclic because edges only correspond to the value-conflicting op-

erations. A topological sort of vertices (transactions) in Figure 3.2B produces the foilowing

serial history IjT, which is value-conflict equivalent to H .

Relationship wit h ot her Correctness Criteria

Since the edges of the value serialization graph for history H are determined based on

the value conflicting operations in history H , there is only one way to construct the value

serialization graph for El. Selection of every two operations in a history takes 0(n2) to

decide if they do value-confiict. It also takes 0(n2) to check if a projection of a history is a

range for an operation. Furthermore, once a serialization graph for a history is constructed,

a cycle in the value serialization graph can be detected in polynornid time. Thus the decision

problern that determines if a history is value serializable can be solved in polynornial time.

Chapter 3. Cornputationai Model

View
Serialha ble

Figure 3.3: Relationship between value, view, and conflict serializabilities

The following compares value serializability with view and confüct seriaiizabilities in terms

of scheduling and the cost of implementation.

Figure 3.3 depicts the relationships among these criteria and we argue that each subset

is non-empty. Consider the foilowing histories:

Histories Hl, Hz, H3, and H4 are elements of sets A, B, C, and D , respectively. Clearly Hl is

conflict serializable. H2 is view serializable but it is not conflict serializable because w l (x , 5)

proceeds and conflicts with w2(x, 6) and w2(y, 7) proceeds and conficts with wl(y, 8). H2

is also not value serializable because any two confiicting operations in H2 do value-conflict

too. H3 is value serializable because ~ 3 (2 , 5) and wz(x, 5) do not value-confict so VSG(H3)

does not contain a cycle. However, H3 is neit her view equivalent to Tl , T2, T3 nor Tl, T3, T22.

We do not need to check other combiiations because Ti terminates before Tz and Tj.

Chapter 3. Compu tational Mode1 .5 8

History f i is view serializable to T2, Ti, T3. It is also value seriaiizable to Ti, T2, T3 because

~ ~ (9 ~ 5) and wi(y,5) do not value-conflict and V S G (K 4) is acyclic.

In some environments, concurrency control algorithms that enforce value serializabil-

ity can be less costly and more efficient t o implement than the ones which use conflict

serializability. A common concurrency control algorit hm t hat uses conflict serializabili ty

is two phase locking (2PL). Suppose two phase value locking (2PVL) is the corresponding

concurrency control that enforces value serializability. The following compares 2PL verses

2PVL.

Consider the execution sequence of 2PL. If a lock is required, a request is made t o the

system kernel in privileged mode which requises the suspension of the currently running

process, a lock acquisition, and a control switch back to the first process. This is an

ext remely expensive process t hat involves approximately one hundred (100) machine cycles

(if conflict does not occur) or more (if conflict occurs) [MO~SO].

if the compilers can detect through static analysis, that a "value" is not in conflict, t hen

the process above can be usurped for this particular access. The cost of 2 P V L would be a

comparison operation between the current value and one read, a t the time the transaction

initially began execution. This requires only three (3) machine cycles. If you include the

cost of the initial reads and the storage of these initial values, it only costs a total of ten

(10) cycles. This results in a magnitude savings at execution time.

Unfortunately, two conditions make the scenario problematic. First, if the transactions

do actually value-conflict, the locking mechanism (2PL) must be added t o the checking cost

which leads to a ten percent increase in overhead. Secondly, the compiler must embed the

comparison operations into the methods which requires a substantial rewrite of the compiler

itself and will minimally slow down the compilation process. The former concerri is a n issue

of ongoing research while the latter is irrelevant since it is a pre-runtime issue.

Therefore, environments with low da ta contention or where the domain of values for the

data items is s m d WU benefit the most from 2PVL. On the other hand, if transactions are

Chap ter 3. Compu tational Mode1 5 9

constantly updating a s m d member of data items with a wider range of values (typicaily

by hot-spots) 2 P L will outperform 2PVL.

3.4.2 lVdue Seridizability

This section extends value serializability and develops a suitable correctness criterion cded

lvalue serializability for a mdtiversion environment. Value serializability and lvalue se-

rializability are andogous to confiict serializability and l-copy serializability developed by

Bernstein et al. [BGH87].

Since traditional databases keep a single version of each data item in the database, this

dissertation refers to a traditional history as single version history (SV history). S ida r ly a

serial history (Definition 3) is cailed a single version serial history (SV seriai history). The

specifications and notational elements introduced for SV history in the previous section are

adopted for the definition of multiversion history. The only extension is that a read and

a write operation on a data item x is denoted by IL) and w;(x;, v) , respectively. .4

specific version of x accessed for a read or a write operation are annotated with the identifier

of the user transaction which has produced that version of x.

A multiversion history is formally defined as follows:

Definition 26 (Muftiversion History): A complete multiversion history (MV history) over

a set of user transactions UTi, UT2, ... UT, is a partial order H = (CH, +) where:

3. for every ~ W O operations Tip and Tjq E CH, if rip = w~(x; ,u) and Tjq = r j (z j , v)
rip +H Tjq and u = v, and

Point (1) and (2) reflect the ones in Definition 21. Point (3) indicates t hat a transaction may

not read a version until it has been produced. Point (4) ensures that before a transaction

Chapter 3. Cornputationd Model 60

commits, a l transactions that produced versions it read must have already comrnitted. This

guaran t ees recoverability.

A mdtiversion serial history is defined as:

Definition 27 (MV Serial): A MV history LI is MV serial, ifE

1. (3 p E UTi, 39 E UT,, where p 4 q) * (VT E UTi,Vs E UTj, r 4 s), and

2. a read operation of UT; on data item x can read any previously created version of
x.

Note that in SV serid histories (Definition 3) only one version of a data item x, the last

commit ted version, is available for transactions to access. However, t his restriction is relaxed

in MV serial histories.

Definition 28 (Correspond): A serial MV history H I corresponds to a SV serial history

H2 if:

1. H i and f i occur over the same set of transactions and there is one to one mapping
between operations in Al and Hz, and

Point (1) indicates that for every read/write operation on a version of a data item x in

a MV serial history there is a corresponding read/write operation on data item x in its

corresponding SV serial history. Point (2) ensures that the commit order of the transactions

in MV serid history is the same as the commit order of the transactions in its corresponding

SV serial history.

Some MV serial histories may not behave as their corresponding SV serid histories. For

example consider the following two histories:

Chapter 3. Compu tationd Mode1 61

Hl is a MV serial history and H2 is its corresponding SV serial history. Both Hl and H2

contain the same set of transactions UTI, UT2, UT3, and execute the transactions in the

same order of UTr, UT2, and UT3. Hl and H2 do not behave simiiarly because in Hz, [TT3

reads the version of x produced by UTl and in H2, UT3 reads the version of x produced by

UT2.

Bernstein et al. [BGH87] introduce a subset of MV serial histories c d e d 1-serial histories

that behave the same as their corresponding SV serial histories.

Definition 29 (1-Serial): A MV history H is 1-serial, if it is MV serial and for a l i. j,

if UTi reads xj (the version of x produced by UTj), then either i= j or UTj is the last

transaction preceding UTi that writes into any version of x. rn

Since our definition of MV history takes the values read or written by each operation into

account, the above subset of MV serial histories, 1-serial histories, can be extended to

include a wider range of MV serial histories.

Definition 30 (lvalue Serial): A MV history H is lvalue serial, if it is MV serial and if

UT; reads xk written hy operation wk(xk, u) of UTk, then either:

UTk is the last transaction proceeding UTi that writes into a version of x, or

there exists a UT,. which is the 1st transaction preceding UT; that writes into a
version of x and u=v.

For example, consider the foilowing MV history:

H2 = {ri(xo, 31, wi(xi,4), c1,73(~1,4), ~ 2 (~ 2 . 3) , ~ 2 , r3(~0, 31, ~ 3 (~ 3 , 6) , ~ 3)

UT3 reads xo from UTo rather than 2 2 from UT2. Thus Hz is not 1-serial. However, H2 is

lvalue serial because whether UT3 reads xo from UTo or 2 2 from UT2, it receives the same

value and subsequent operations of UT3 that depend on this read in Ra are not effected.

Chapter 3. Computational Modei 62

Proposition 3.4.1 Two MV histories =e equivalent if they have the same set of operations.

Proof: (see Bernstein et al. [BGH87] page 148).

Now a lvaiue serializable history is defined as foilows:

Definition 31 (lvalue Serializable): A M V history is lualore senàlizable if it is equivalent

to a lvalue serial history.

The 1 value Serializability T heory

The following definition is required to discuss lvalue serialization theory.

Definition 3 2 (Version Order): Given a MV history H and a data item x, a version order,

<, for x in H is a totai order of versions of x in H. A version order for H is the union of

the version orders for ail data items.

Given a MV history H and a version order «, the multiversion value serialization

graph for H and «, M VVSG(H, <) is (V, E) where a vertex in V represents a transaction

UTi E H, and an edge in E from vertex UT; to UTj is either a reads- from edge or a

version order edge. A reads-from edge is added to MVVSG(H, <) from UT; to UTj if UTj

reads a version of a data item x created by UTi. A version order edge is added as foilows.

For every two vaiue conacting operations rk(xj, v) and wi(xi , u) in H , (i.e. u # u and

wi(xi, u) is not in the range of rk(xj, v)) if xi < X j then include an edge from UT; to UTj

(UTi - UTj) ; otherwise, include UTk + UTi. Note that in mdtiversion environments two

write operations do not conflict because each write creates a different version of the data

item.

The foilowing shows the significance of version order edges in MVVSG(H, <). Let

RFVSG(A) (stands for reads-frorn value serialization graph) be a subgraph of MVVSG(H, <

Chapter 3. Cornpu tational Mode1

Figure 3.4: Reads-from edges of a serialization graph for a MV history

) which only includes the reads-from edges. Given that RFVSG(H) is acyciic, a MV se-

rial history IT, obtained from RFVSG(H) by topologicdy sorting may not necessarily be

lvaiue serial. For example, consider the following history:

4 = {WO(XO, 1), r3(xo1 11, ~ I (XO, 1) , ~ 1 (~ 1 , 2)r~2(%2)r W(x2.4). w 3 (~ 3 ~ 5) , ~ 1 ? ~ 2 ~ c3}

RFVSG(H4) is shown in Figure 3.4. A seriai MV history Hs4 obtained from topologicd

sorting is:

a s 4 = {WO(XO, l), CO, ri(50, l) , WI(XI, z), CI, f2(219 21, ~ 2 (~ 2 , 4) , ~ 2 , r 3 (~ 0 , 1), ~ 3 (~ 3 , 5) ~ CJ)

Hs4 is not lvalue serial because UT3 does not read a proper version of x.

The purpose of version order edges is to prevent the above problern. For every two

operations T ~ (x ~ , u) and w;(xi, v) in H , the version order edges can force wi(xi, u) to either

precede wj(xj, w) or to foUow rk(xj, u) in H, if necessary (when wi(xi, v) does not value-

conflict with rk(xj, u) the order is not important). Reads-from edges together with version-

order edges must find a lvalue serial history for H , as long as MVVSG(H, «) is acyciic.

This leads us to the foliowing theorem.

Theorem 3.4.2 (Ivalue serializability Theorem): A MV history H is lvalue seriahable iff

there exists a version order << such that M V V S G (H , a) is acyclic.

Proof:

(if): Let Hs be a MV serial history UTil, UTiz, ..., UTin, where UTir, UTi2, ..., UTin is a

Chapter 3. Computationai Mode1 64

topological sort of MVVSG(H, <). Since Hs has the same operations as H, by Proposi-

tion 3.4.1 Hs is equivalent to H. Now we need to show that H, is lvdue serial. Consider

any reads-from relationship in H,, say UTk reads the version of x, x j , from UTj (r k (x j , u)),

k # j . Let wi(x;, v) (i # j and j # k) be any other write operation on x in K . If wj(xi, U)

value-confücts with T~(x, , u)? and X i < Xj, MVVSG(H, <) includes the version order edge

UTi + UTj which forces UTj to ~OUOW UTi in H,; otherwise, if xj < x i , MVVSG(H. <)

includes the version order edge UTk -t UT;, which forces UT' to precede UT, in H,. There-

fore, no transaction that writes a version of x f d s in between UT, and UTk in II,. Thus

Rs is lvalue seriai.

(only if): Since H is lvalue serializable, there exists a lvalue serial history Es that is

equivalent to H. For a given «, let VOVSG(A, «) (stands for version order vaiue se-

riaiization graph) be a subgraph of MVVSG(H, <) containing only version order edges.

Version order edges depend only on the operations in H and <; they do not depend on the

order of operations in H. Thus, since H and If, have the same operations, VOVSG(I7. <
) = VOVSG(Hs, <) for a.ll version orders «.

Let RFVSG(H,) be a subgraph of MVVSG(H,, «) containing oniy the reads-from

edges. AU edges in RFVSG(Hs) go in one direction (for convenience we c d it "left-

to-right"); that is if there is an edge UTi - UTj in RFVSG(H,), then UTi precedes

UTj in Hs. Define < as follows: X; < x j only if UT; precedes UTj in Hs. Ali edges

in VOVSG(H, , <) are dso left-to-right. Therefore, al l edges in MVVSG(H,, <) =

RFVSG(H,) U VOVSG(Hs, <) are aiso left-to-right. This implies MVVSG(Hs, <) is

acyciic. Since H and H, are equivdent (Proposition 3.4.1), MVVSG(H, «) = MVVSG(H,, <
). Since MVVSG(H,, <) is acyciic, so is MVVSG(H, <).

The following provides an example to show t hat lvalue serializability cont rols serializa-

tion order of the transactions both at each object (intra-object serializability) and in the

entire system (inter-ob ject serializabili ty).

Suppose UTi and UTz are two user transactions concurrently accessing attributes x and

y in OP and HP is the MV history over UTl and UT2 in op. If UTl reads the version of x

Chapter 3. Computational Mode1 65

produced by UT2 and UT2 reads the version of y produced by UTi, MVVSG(Hp, «) wiil

contain a cycle and HP is not lvalue serializable. Now suppose UTl and UT2 d o not contain

any read operation but each write a version of x and y. As long as no other transaction UTk

reads a version of x and/or a version of y produced by eit her UTl or UT2, UT1 and UT2

can be serialized in any order. Otherwise, the version order edges can enforce a serialization

order between UTl and UT2. For example, consider the following MV history for object oP:

The two reads-from edges in MVVSG(H,, <), UTi - UTk and UT2 - UTk, do not

create a cycle. When the version order edges, UTl -, UT2 and UT2 - UTl, are added,

MVVSG(Hp, <) will contain a cycle to indicate that HP is not lvalue seriaüzable. The

edge UT1 + U f i is added because w1(xl,2) due-conflicts with rk(x2,3) and xl « 2 2 .

Similarly, the edge UT2 + UTl is added because w2(y2, 4) value-conflicts wit h rk(yl ,5) and

Y2 « Y i .

Similar argument to the above can be given for inter-object serializability. Suppose

x is an attribute in OP and y is an attributes in 0 9 , and UTl and UT2 access o p and 09

concurrently. Suppose, UTl commits before UT2 a t op and UT2 commits before UTl at oQ.

Now if a new transaction UTk access op and oQ, it may read 1 2 produced by UT2 in oP and

y1 produced by UTi in 09. The MV histories of the transactions at op and 09 are as foilows:

= { ~ 1 (~ 1 > l)i CI> ~ ~ (~ 2 1 2)< ~ 2 9 rk(x2,2)1 ~ k)

HP = { ~ 2 (~ 2 1 2) i ~ 2 , wl(~1,1) , C l , rk(yli 1) ~ ci)

The M V V S G (H p , «) contains two edges. One is a reads-from edge UT2 -. UTk and

the other is the version order edge UTl -, UT2. UT2 -. UTk was added because UTk

reads from UT2 and UTl + UT2 was added because x l « 2 2 and wl (XI ,1) value-conficts

with rk(x2, 2). The MVVSG(Hq, <) also contains two edges. One is a reads-from edge

UTl + UTk and the other is the version order edge UT2 + UTl. UTl + UTk was added

Chapter 3. Computational Mode1 66

because UTk reads from U2 1 and UT2 + UTl was added because y2 < y1 and w2(y2, 2)

value-conflicts with rk(y1, 1). Although neither MVVSG(Hp, «) nor MVVSG(H,, «)

contain cycle, the union of both graphs has a cycle and the system is not inter-object

lvalue serializable. Thus by combining the multiversion value serialization graphs of ail

ob ject histories, inter-ob ject serializabili ty is controlled.

3.5 Data Dependency

This section presents definitions related to data dependency and concunency control. Re-

quired static analysis information used to enhance concurrency is also addressed. Some

concepts may also be used for reconciliation.

Executable statements of a method are divided into two categories: local steps and

message steps [HH91]. The local steps, ~ S (m i) , of a method are those which operate on

object attributes and the local variables of the rneihod. The message steps, ~ S (r n j) , of

a method correspond to method invocations. The set of aU steps in a method is denoted

STEPS(mj) = ~ S (m j) ü L S (~ ;) .

Method steps car be related by a partial order to aUow intra-step serializability. Im-

posing execution order on some steps such as within the ones that access separate attribute

sets rnight be unnecessary. However, other method steps must be executed in a. particular

order because the execution of one depends on the execution of the ot hers. Data depen-

dency defines access by defining accessors and rnvtator steps. An accessor step is a local

step which reads an attribute value or a message step which uses an attribute value as an

input parameter. A mutator step is a local step which assigns a value to an attribute or a

message step where the attribute is one of its output parameters [Gra94].

Basic forms of data dependencies that exist between accessor and/or mutator steps of

a method are true dependence, anti dependence, and output dependence. True dependence

between a mutator step Si and an accessor step S2 in a method (S1bS2) occurs if Si and

Sz access the same attribute and S1 precedes S2. Anti dependence between an accessor

Chapter 3. Compu tational Mode1

step Si and a mutator step S2 in a method (S1&s2) occurs if Si and Sz operate on the

same attribute and Si precedes S2. Output dependence between two mutator steps S1 and

Sz in a method (S1h0S2) occurs if SI and S2 modify the same attribute and SI precedes

S2 [W0189].

The foilowing two definitions generalizes the above dependence relations.

Definition 33 (Arbitrary direct dependence:) Arbitrary direct dependence between two

steps Si and Sz in a method (~ ~ 6 ' s ~) occurs if there is a true, anti, or output dependence

between the steps.

Definition 34 (Arbitmry indirect dependence:) Arbitrary indirect dependence is the t ran-

sitive closure of the arbitrary direct dependence relation. Two steps S1 and S2 in a method

are arbitrary indirect dependent (S16*S2) if t here is a chah of arbitrary direct dependencies

between t hem (Le.: Si6*Sz = ~ ~ 6 ' ~ ~ ~ 6 ' ~ ~ ~ 6 ? , ..., 6?Si,6?S2 for some (n > 0)).

Now the partial order relation for the steps of a method is formally defined as:

Definition 35 Steps of a method rnj are related by a partial order STEPS(~:, 4) where

for every two steps SP, Sq E m:, S, 4 Sq if s,~?s,, or S,,6*Sq in STEPS(T~~, 4,).

3.5.1 Definitions Related to Concurrency Control

Steps which are not related by the partial order 4 (Definition 35) can be executed concur-

rently. To perform concurrency control, it is necessary to capture and compare the data

items read/written in the steps. The readset of a step includes the input parameters, the

Iocal variables read from the users, and attributes retrieved from the local object. The

writeset of a step contains the output parameters and the local ob ject attributes wkich are

modified when the step is executed. The readset and the writeset of a step Sjk in method

rn; are denoted by RS(S$) and WS(S&), respectively. The information read/written by a

met hod can be captured effectively by taking the union of the readsets and the writesets of

Chapter 3. Computational Mode1 68

the steps in the method. Construction of readsets and writesets of a method are presented

Iater in this dissertation.

To perform concurrency control, it is also required information be obtained related

to inter-ob ject communication. Ob jects communicate by passing information to each ot her

t hrough the message steps. A message step in a method directly invokes the ob ject met hods

directly specified in the message step. Further, a message step indinxtly invokes the object

methods that are either directly or indirectly invoked by the method it directly invokes. To

capture t his information, the following definitions are needed.

Definition 36 (eztent): The extent of a message step Sjk (ex ten t (S jk)) consists of all

object methods that may be directly or indirectly invoked by its execution [Gra94]. .
Definition 37 (reachableset): The reachableset of a message step S$ (~ e a c h a b l e s e t (S ; ~))

consists of those objects containing one or more methods in the extent of the message

s t ep [G ra941.

The above concepts can be also expressed for the entire method. The extent and the

reachableset of a method are constructed as follows:

Concurrent nested transaction execution can occur in several forms. Three levels of

potential concurrency are identified: course-gmined concurrency, medium-gmined concur-

rency, and fine-grained concurrency [Gra94].

1. Coarse-grained concurrency arises due to the availability of multiple concurrent nested
transactions issued by different users (user transactions [HHSI]).

Chapter 3. Computational Model 69

2. Mediurn-grained concurrency results from the concurrent execution of subtransactions
invoked by a user transaction (concurrent message steps).

3. Fine-grained concurrency occurs between local steps of a method.

Concurrent execution of subtransactions wit hin a single user transaction is intra- tmnsaction

concurrency and corresponds to medium-grained concurrency. Concurrency between nested

transactions issued by different user transactions is inter-tmnsaction concurrency and cor-

responds to coarse-grained concurrency. This dissertation does not address fine-grained

concurrency.

3.5.2 Static Information

Recall that our intention is to use static information to enhance concurrency in a multi-

version objectbase system. The following sections provides the required static information

and their representation. The detailed discussion t hat demonstrates the derivation of static

information is presented in [Gra94] and will not be repeated in this dissertation.

The Required Static Information

The required static information can be divided into three general categories: control fZow

information, method invocation information, and uttribute reference information. The con-

trol flow information details what sections of the code may be executed. It also determines

the order of executable sections and the necessary conditions to execute each section. Con-

trol flow information is required for serialization within a method. Concurrent execution of

some sections in a method is correct if the execution order of these sections is based on the

partial ordering relation defined over the steps of the method (Definition 35). The control

flow information reflects this partial ordering.

Method invocation information illustrates communication among the objects by detail-

ing the calling sequence between the objects. Method invocation information is needed

Chap ter 3. Compu tational Mode1 TO

to capture method's extent and reachable sets. Techniques such as cal1 gmphs [RydTg,

CCHKSO] can be developed to represent communication between the objects.

Attribute reference information details the order in which the data is referenced and

their read/write relationship. This information is needed to capture serializability between

and wit hin a met hod. At tribute reference information detects possible conflict between

two concurrently executing met hods of an ob ject . Furt her, cornparison of the at t ribu tes

referenced by the steps of a method determine data dependency relation between the steps.

The data dependence relation shows what steps of a method are related by the partial order.

Steps which do not depend on each other locally can be executed concurrently.

Representation

This section presents graph techniques developed by Graham [Gra94] to represent control

Bow , met hod invocation, and at tribute reference information. This section discusses how

these information concepts relate to concurrency control and reconciliation.

Control Flow Information

A method contains a collection of executable sections c d e d basic blocks. A basic block

is a sequence of consecutive steps entered at the beginning and exited at the end wit hout

halt or branching except on the last operation. The detaiied algorithm to derive the basic

blocks of a program routine is presented by Aho et al. [ASU86]. In brief, the algorithm

accepts an encoded form of a program routine cailed three address code and determines

the basic block l e a d e ~ s . A leader is the first statement of each basic block and is determined

by :

1. the first statement in the program,

2. any statement that is the target of a conditional or unconditional goto,

3. any statement that immediately follows a goto or conditional goto staternent.

3The three address code is an encoded of the program in which ail of the complex statements have been

decomposed to their simplest form and c a n o t be decomposed further.

Chapter 3. Computational Mode1

i f noc

BB' z%

i sl:
if expr then
sl;
s2;
s3;

else
whiie expr do

s4;
s5;

endwhile;
endif:

A: The program routine 6:The control flow graph

Figure 3.5: Control flow graph of a program segment

For each leader, its basic block consists of the leader and all the statements up to but not

including the next leader or the end of the program.

A basic block may contain one or more branch statements which link the basic block

to other basic blocks. The relation between basic blocks are captured in a control jlow

graph [ASU86].

Definition 38 (Control Flow Gmph): The control flow graph of a met hod m; is a directed

graph C ~ G (r n i) = (V, E) where each vertex v, E V represents a basic block x (BB,)

and an edge from vx to v, indicates that the control directly passes from B B , to BBy in

mf. rn

A control flow graph does not provide any information regarding how many times a basic

block may be visited (reflecting the loop structure). It only shows if and when a basic block

is executed. Figure 3.5 provides an exampie of program, and its correspondhg control fiow

Chapter 3. Computationai Model 72

graph. Note that BB1 is linked to BB2 and BB3, and B B2 is linked to BB5 and so on.

Every basic block except the ones which represent the leaf nodes in the control flow graph

is linked to one or more other basic blocks.

In a particular execution of a method, only a subset of the basic blocks are visited. This

is because, based on the current state of the object, the control (conditional) statements

prevent the execution of some basic blocks. For example in Figure 3.5B, if exprel evaluates

to true during the execution, BB2 is visited; otherwise, the control is passed to BB3.

A sequence of basic blocks visited during an execution of a method forms a controf fiow

path [ASU86].

Definition 30 (Control Flow Path): Control Flow Path CFP, through method rnf is a

sequence of basic blocks < B Bk,, B Bk, , ..., B Bk,-, > where B Bko is the entry node in the

control flow graph for the method mi, BBk,-, is an exit node of the graph, and there exists

an edge from BBkl to BBkl+, (O < 1 < n-1) t o indicate that the control flows directly from

BBkl to BBkl+,

In general, if a method contains n control statements, there are at most 2" control fiow

paths. Prior to the execution of a method, it might not be possible to deterrnine which

path wiU be executed. However, it is possible to enumerate the control 0ow paths of a

method at compile time. Note that as the number of n increases, the number of control

flow paths grows exponentially. But n is bounded by the size of the method and methods

typically have s m d sizes in our environment. Further, n refers to the number of control

flow statements in a method which is always smaller than the size of the method (i.e: not

all of the statements in a method are control flow statements). Thus 2" is manageable so

enumerating the control Aow paths at compile time is not problematic.

The fouowing table shows all possible control flow paths through the program in Fig-

ure 3.5A.

Chapter 3. Computational Mode1

In this example, there are only three distinct paths because when e x p r l is true the result

of e x p ~ 2 is irrelevant.

ezprZ

t rue

faIse

true

fdse

Met hod Invocation Information

Conventionaily, c d graphs were used to illustrate the calling relations between the

procedures of a program. Informdy, a c d graph is a directen graph where the vertices

represent the routine calls in a program and the edges show how these routines invoke each

ot her. The equivalent of c d graph is class cal1 graph [Gra94] for an ob ject base environment.

Class c d graph shows if an object (an instance) of a class should communicate with some

objects of its own class and/or objects of other classes; but, it does not specify with which

objects. To construct the extent and the reachable set of the objects, it is necessary to

identify the set of objects in the objectbase which a n object of communicates. Object cal1

graphs [Gra94] captures t his information.

puth

< BBi, BB2, BBs >

< BBI, 8132, BBs >

< BB1,BB3, BB4, BB5 >

< BBi, BB3, BB5 >

Definition 40 (Object Cal1 Grnph): The object c d graph of an object method mi is a

directed graph o C G (~ ~) = (V, E) where:

1. vrOot E V is the root of the graph which represents m:,

2. u, E V - { v ~ ~ , ~) represents an object method that is either directly or indirectly
invoked by mi, and

3. Given that u, and v, represent two object methods mg and m i , respectively, an edge
e E E from v, to v, indicates that rn: directly invokes m:.

Construction of an object c d graph for a method m> is subject to two conditions. First,

the object associated with m> must have been created. Second, objects referenced directly

Chapter 3. Compu tational Model 7-1

or indirectly by m: must exist. In contrast to cal1 graphs and dass c d graphs, object

c d graphs can be constructed at object instantiation time rather than at compile time.

An object may not be instantiated unless it is referenced. However, once an ob ject is

instantiated, object c d graphs of its methods can be used in subsequent access to that

ob ject .
Attribute Reference and Dependence Information

At tribute reference information together with control flow graphs are used to construct

the dependence graph which reflects the dependence relation. As mentioned eariier, a

met hod is encoded to a sequence of non-decomposable t hree address codes [MU861 w hich

rninimizes the unnecessary dependency between the steps in a method. The dependence

relation between any two steps in a method is determined by comparing their readsets and

writesets. This gives rise to the following definition.

Definition 41 (Dependence Gmph:) The dependence graph of a met hod m; is a directed

graph (possibly disconnected [BM76]) DG(rn:) = (V, E) where each vertex v b E V repre-

sents a step sjk in mi and a direct edge e E E from v, to vt indicates that s;,~?s;,.

A dependence graph chahs the steps in a method according to the dependence relation

which reflects the partial order relation between the steps (Definition 35). A dependence

graph can be either a connected graph or a disconnected graph. A connected graph has only

one root whereas a disconnected graph has two or more disconnected roots. Figure 3.6B

and 3.6D illustrate an example of a connected graph and disconnected dependency graph

of the methods of Figure 3.6A and 3.6C, respectively.

Suppose S T E P S (~ ~) contains the steps in a method that occur according to the partial

order defined between the steps. The writeset of a method mi is constructed by taking the

union of the writesets of the steps in mi. The readset of rn; only contains the data that are

either retrieved from the object base or the local variables entered by the users. The readset

of m! (~ ~ (r n ;)) , and the writeset of mi (~ ~ (m j)) are constructed as foilows:

Chapter 3. Computational Mode1

sl: A =3;
s2 :B=A+1;
s3: C = A + 2 ;
M : D = C + B ;
sS:E=D+C+B

Figure 3.6: A connected and a disconnected dependence graph

For each S$ E S T E P S (~ ~)

R S (~ ;) = ~ S (r n ;) u(Rs(s),) - (WS(nj) n RS(Sj,)))

W S (~ ;) = wS(rnj) U WS(S$)

end

Suppose, y is in the readset of step sjk E S T E P S (~ ~) , then y is also in the readset of

mi if it is not written by some previous steps that occur before Sjk in mi. Therefore,

in construction of the readset of rnf shown above, (~ ~ (r n ;) R S (S ~ ~)) detects the data

in sjk which have been previously modified in mi and (RS(S;,) - (wS(m;) n RS(S;,)))

collects the data which have not been accessed by previous steps in mi. For example. in

Figure 3.6A RS(m$) = {} because every data in S T E P S (~ ~) has been already written

in some previous steps in mk. However, in Figure 3.6C, RS(m:) = {X, Y, Z} because X,

Y, and Z are the only data which are read from the objectbase and not written in some

previous steps.

The definition and the concepts discussed in this section are important factors for en-

hancing transaction management in a multiversion objectbase environment. Recail t hat the

goal is to develop an optimistic concurrency control algorithm and apply the information

capt ured from static analysis to increase concurrency control and produce reconciliation

function for unsuccessful transactions at compile time. Information such as conservative

construction of readset and writeset of methods determine if potential conflict exists be-

Chapter 3. Cornpu tatioaal Mode1 76

tween two transactioris accessing the same object. Extent, reachabieset , and at tribute

reference information form the basis of the implementation of the depends function (Defi-

nitions 19 and 20) which exploits intra-UT and inter-UT serializability. This is explained

furt her in the next section.

Other information such as control flow path and dependence graph can impact the

reconciliation algorithm. Reconciliation may involve re-execution of some operations. If re-

execution is necessary, the dependency graph can be used to reread the stale data in order

to re-execute the operations which are d e c t e d by the staie data. Further, if partial re-

execution of a method affects other methods referenced or being referenced by the met hod,

extent and reachableset can determine what other methods should be reconcilsd.

3.5.3 The depends Function

The detailed implementation of the depends function can now be discussed. Recall that

the depends function accepts two operations within a transaction; at Ieast one being a

method invocation and returns true if there is a dependency in the interna1 semantics of

the operations. The significance of the depends function is that it provides information to

allow intra-transaction concurrency. This implies that operations of a transaction which do

not depend on each other can be freely executed concurrently, leaving the rest serialized.

Fuily describing the implementation of the depends function requires a deep examination

of compiler construction and a thorough treatment of the runtime systems. This is beyond

this dissertation's scope but a brief discussion of the fundamental compile-time techniques

should be suficient to demonstrate feasibility. A more complete description is available in

Graham [Gra94] and others [ASU86, GZB921.

Dependency between two operations can be of three forms: direct dependency, indirect

dependency, and hidden dependency. Direct dependency occurs if the two operations directly

conAict in the local object. indirect dependency occurs if the operations commonly access

conflicting met hods in some other object. Hidden dependency happens if two operations

conflict indirectly in the local object (typicdy the result of recursion).

Chapter 3. Computational Mode1

Algorit hm 3.5.1 (depends Function- the interface section)

Algorithm depends(arg 1, arg2)
begin

if argl=read/write OPl = argl and 0P2=arg2
elseif arg2=read/write OPl = arg2 and O P2=argl
else argl=OPl and 0P2=arg2

!!!! SECTION A (Checking direct dependency between a local step and a message step)
if (O Pl=read) and (O Pl E WS(OP2)) OR

(OPl=write) and (OPt E (WS(OP2) U RS(OP2))) then
return true;

!!!! SECTION B (Checking hidden dependency between a local step and a message step)
elseif (OPl is a read/write on object d) and d E reachableset(OP2) then

for every m{ of d E eztent (OP2) do
if(OPl=read) and O P l E ~ ~ (r n !) OR

(OPl=write) and OP1 E (~ ~ (r n !) u W S (~ {)) then
return true

!!!! SECTION C (Checking direct dependency between two message steps)
elseif

RS(OPI) n W S (O P ~) # O OR
RS(OP2) n WS(OP1) # {) OR
WS(OP1) n WS(OP2) # {)
return true;

!!!! SECTION D (Checking indirect dependency between two message steps)
else if Con f lid-Set (O Pi , O P2) # {) then

return true
!!!! SECTION E (Checking hidden dependency between two message steps)

elseif (OPl is a message step of a method in object d) and d E reachableset(OP2) then (18)
for every rn! of d E eztent(OP2) do (19)

if (RS(OPi) n ~ ~ (r n !)) # {} OR (20)
(WS(OPl) n (RS(~!) u W S (~ {))) # {} then (21

return true (22)
elseif (OP2 is a message step of a method in object d) and or E reachableset(OP1) then (23)

for every mi of d E eztent (O Pl) do (24)
if (RS(OP2)n WS(~{)) # {} OR (2 5)

(WS(OP2) n (R S (~ {) U W S (~ {))) # {} then (26)
return true (27)

!!!! NO DEPENDENCY EXIST
else

return false (28)
end

Figure 3.7: The depends function

Chapter 3. Computationd Mode1 78

The algorithm to implement the depends function is shown in Figure 3.7. The dgo-

rit hm consists of severd sections. The first two sections consider the case when one of the

arguments passed to the depends function is a simple read/write operation and the other

pararneter is a method invocation. The next sections refer t o the dependency between two

met hod invocations. Suppose O Pl represents the read/write operation and O Pz represent s

the method invocation operation in sections A and B. Section A determines if the oper-

ations referenced by OP2 (input and output parameters) l o c d y depend on OPI (direct

dependency). This dependency exist if O Pi and OP2 operate on the same data in a con-

flicting manner. Section B shows a form of hidden dependency between a simple readlwrite

operation and a method invocation. Suppose 09 c d s mi (a method in object ot) which in

turn cdls mi (a method in ob ject of). If O Pi is an operation on object of, some attributes

referenced by mi may conflict with OPl and as the result O Pl and OP2 can be dependent.

Similariy, section C checks if two message steps invoked from the same ob ject met hod

locaily depend on each other (direct dependency). This is done by comparing the data

referenced by the two message steps. Section D checks if two message steps may indirectly

c d some conficting methods in a common object (indirect dependency). The function

Con flict-Set(OPl, OPz) shown in iine 16 detects such a dependency and can be defined as:

Definition 42 (Conflict-Set): The Conflict-set of two message steps msgl and msg2

f f (Con fliet-Set(msgl,msg?)) is a set of pairs < rn/,rn: > where mi, and mj are two

f rnethods of object of such that mi E eztent(rnsgl), m; E eztent(msgS), and rn! and rnj

may access attributes in of in confiicting manner. w

If the conflict-set is empty, no indirect dependency occurs; otherwise, potential indirect

dependency exis t S.

The function Con f lict-set may not always detect some hidden dependencies. For ex-

ample, if O Pt and OP2 are two message steps of method rn! in object of and of is an

elernent of reaehableset(OP2), then there exists a t least a method mf E eztent(OP2) in

which O Pl and the method mi rnay access some conflicting attributes in of. This is mot her

Chapter 3. Computational Mode1 79

Figure 3.8: dependency of the statements in a method

form of hidden dependency which may exist between two message steps invoked from the

same method. The last section in the algorithm (section E) determines if such a hidden

dependencies exist . If none of the above conditions are satisfied, the depends function re-

turns false indicating that no dependency exists between the two operations. Examples of

direct, indirect, and hidden dependencies are illustrated in Figure 3.8A, 3.88, and 3.8C,

respectively.

Figure 3.8 iiiustrates several cases. Direct dependency is the easiest case. Figure 3.8A

shows an example of direct dependency between two statements si and sz in rnethod ml.
Cleariy si and sz access conflicting operations. Comparing the readsets and the writesets

of $1 and s~ determines t hat the execution of si depends on the execution of s2.

Figure 3.8B illustrates indirect dependency between two statements s i and sz in m{.

si and 232 do not conflict locdy but both indirectly invoke some confiicting methods in d .

The Conflict-Set(mf, m!) = {< m!, rn: >} because rnf and mi belong to the extents of

nt; and m:, respectively, and access some confiicting operations in 09.

Chapter 3. Computationd Mode1 80

Figure 3.8C iilustrates an example of hidden dependency. Note that statements sl and

s2 neither directly nor indirectly conflict. But 232 indirectly accesses some other methods

in of which has some confiicting operation with si. This dependency can be detected by

comparing the readset and the writeset of sI with the readset and the writeset of the method

that is indirectly invoked by sz in d. Similarly, s2 may confiict with some methods that

may be called by SI in of indirectly.

If the result of the depends function is false, the two operations can be freely executed

concurrently. Otherwise, if a local dependency exists, one operation is blocked until the

other is completely executed. If the two operations are not localiy dependent, but the

result of the depends function warns about the potential indirect dependency or hidden

dependency, the two operations can be executed concurrently as long as their executions

are serialized based on a defined correctness criterion.

3.6 Summary of Assumptions

In the description of the architecture and the computational mode1 presented in this chapter.

we have made some assumptions. The assumptions are as follows.

1. Although the ideas in this research may d s o be applicable to some other database

systems, discussion is iimited to the ob jecf base environments only.

2. The objects referred to in this research only embody the key requirements of ob jects

wit hout including unnecessary extensions. This limitation simplifies the problem by

the elirnination of unnecessary special cases and makes the work more generally ap-

plicable because it does not need to cater to particular features of sorne objectbase

systerns.

3. We assume that during the execution of a set of transactions, the schema is static.

Schema evolution may change the structure and the behavior of the objects which in

turn may impact transaction management. Therefore, we assume that if a change in

Chap ter 3. Computationd Model 81

the schema must occur, the system stops accepting the users requests and waits for

the active transactions to terminate. Once the schema is changed, recomplied, and

tested, the system accepts the user requests again.

4. This research adopts the convention of including method invocation using a procedure

c d syntax. Therefore, a method invocation (including one within a user transaction)

can accept severai parameter and where appropriate optionally returns explicit results.

(eg: Routine MethodName(argl,arg2, ...)). This is merely the most f d a r notation

available.

5. Creating a version of an instance of a class (object) does not add a new instance to

that class. in other words, versions are just the copies of objects that are used for the

purpose of transaction management. Versions are non- persis tent entities t hat may be

promoted to stable objects.

6. The model assumes that a number of subtransactions are executed on versions of ob-

jects on behalf of the user transactions. It is assumed that the user transaction model

identifies the version transactions as it is done in nested transaction models [M o s ~ ~] .

7. Transaction nesting is closed in our model. When a subtransaction of a user transac-

tion updates the data in the versions of ob jects, the changes are revealed to ot ber sub-

transactions from the same transaction family after the subtransaction pre-commits.

The changes made in some versions by the subtransactions of a transaction family are

revealed to other transaction families when that transaction family commits.

8. Like Rat transactions, it is assumed that ACID properties are enforced on user trans-

actions in our model. The execution of each user transaction is atomic; its results

leaves the object base in a consistent state; its execution is isolated from the execution

of other user transactions; and the changes it makes in the ob jectbase are persistent

after it conunits. Note that our concurrency control algorithm which will be presented

in the next chapter ensures consistency and isolation of transactions. But, we assume

that transactions are durable and the system is reliable.

Chapter 3. Computational Mode1 82

9. Our mode1 mainly utilizes encapsdation in the object mode1 as it relates to con-

currency. O t her interes ting ob ject properties such as inherit ance, aggregat ion, and

polyrnorphism may impact transaction management but exploitation of t hese issues

is beyond the scope of this thesis. Therefore, we treat each object individudy and

do not worry about how each object is instantiated. We assume that objects are

created by some mechanism and our task is to manage these objects efficiently. In

other words, whether an object has inherited properties of other objects (a part-of

hierarchy) or from other classes (an inheritance hierarchy) does not impact on the

correctness or performance of the algorit hms presented in t his t hesis.

Chapter 4

The Architectural Mode1

This chapter introduces an architecture and an optimistic multiversion concurrency control

algorit hm. The aigorit hm describes the components of the architecture in detail. Examples

illustrating complex parts of the aigorithm are provided incrementdy. We argue about the

correctness of the algorithm based on intra-UT and inter-UT serializabilities.

4.1 The Architecture

A versioned object store is comprised of two parts: a non-persistent unstable working store,

and a persistent objectbase. The unstable store contains active versions. Committed versions

are rnaintained in the objectbase. An object, with its committed versions, construct an

object farnily.

1. An active version is

r mutable,

O derived from a cornmitted version, and

O can be promoted to a committed version.

2. A committed version is

O persistent,

Chapter 4. The Architectural Mode1

Figure 4.1: Logical structure of committed versions in an object f a d y

created from the promotion of an active version.

Beside the characteristics captured by Definition 16, an object needs system attributes

t ha t describe its versions. The system attributes of an object are:

OBptr: points to the last committed version of an object.

VerCount: keeps track of the number of committed versions of an object .

A version of an object also requires the foliowing system attributes:

VRptr: points to the next current committed version of the object; otherwise, it points
to nil.

ut: records the valid time [SA861 of the version. The valid time is when the transaction
associated with the version commits and the version may be revealed.

To distinguish different version types of of, we denote vf' and of i to represent an active

version and a committed version of o j , respectively. A particular data item x in version v f i

is unambiguously denoted as x j i . Figure 4.1 shows a logical structure of committed versions

of an object of in the objectbase. Committed versions o f 1 , 0 f 2 , ..., o f n are associated with

Chapter 4. The Architecturai Model

user
Transactions j

Figure 4.2: The Main Components of the Architecture

user transactions UTi, U f i , ..., UT,, respectively and their positions in the version-chain of

of reflect the serialization order of such transactions.

Creating an active version, vf', from a comrnitted version of the object family f , requires

copying a committed version and giving it a unique version identifier i. Prornoting an active

version u f to a committed version requires recording v j i as oj' in the object base.

4.1.1 The Architectural Model

Three major components form the basis of our architecture: the Tmnsaction Processor,

the Version Processor, and the Validation Processor (Figure 4.2) . The Transaction Proces-

sor accepts user transactions and returns results to the user. It processes transactions for

syntactic correctness and performs coordination functions for inter-object rnethod execu-

tions by converting the method invocations to version transactions and scheduling version

transactions (using the depends function) for each user transaction. The Version Processor

receives the version transactions from the Transaction Processor and creates new active

versions of the objects required by the version transactions by copying from the comrnitted

versions of the objects from the objectbase. The active versions associated with the ver-

Chapter 4. The Architectural 1Cfodei

----- pu-* , - - - 1
i US-
1 Transactions (

V

1 Method Scheduier 1 :
I

scheduled i
' version h.ans(

Figure 4.3: The Transaction Processor

sion transactions of a given user transaction are logicdy grouped into a uersion list after

t heir completion and are subrnit ted to the Validation Processor. The Validation Processor

examines the version list and decides whether to abort or commit the user transaction. If

it is possible to commit the user transaction, the Vaiidation Processor promotes the active

versions associated wit h it to commit ted versions.

Figure 4.3 shows the Transaction Processor in greater detail. The Transaction Processor

contains two components: the User Transaction Manager and the Method Scheduler. The

User Transaction Manager coordinates the execution of user transactions by convert ing

the rnethod invocations to version transactions denoted by ~ ~ 4 ' s and passes thern to the

Met hod Scheduler. The notation VT; refers to version transaction p of UT, executing on an

active version of the object farnily f . The Method Scheduler perrnits concurrent execution

of a user transaction's version transactions (enforcing intra-UT concurrency cont rol) so

that version transactions of a single user transaction invoked on the same active version are

ordered before they are sent to the Version Processor. Version transactions of multiple user

transactions are executed concurrently.

Figure 4.4 shows the two components of the Version Processor: the Version Transac-

tion Manager and the Execution Manager. The Version Transaction Manager receives the

scheduled version transactions (vT,iYs) from the Method Scheduler. An active version from

Chapter 4. The Architectural Mode1

Figure 4.4: The Version Processor

the object f a d y f in the objectbase (v f i) is requested and is placed in the unstable store1.

Unless it is specified, the active version vf' originates from the last committed version in

the ob ject family f . Next, the Version Transaction Manager passes V T ~ to the Execution

Manager. The Execution Manager executes the operations of V T ~ updôting v f i in unsta ble

store.

The Version Transaction Manager also builds a version list for each active user trans-

action. The version List of UT; (VRLST(UT;)) records the active versions referenced by

UTi. Every time an active version v f i is created for UTi, the Version Transaction Manager

appends f (the object family identifier of di) to VRLST(UTi) . When every version trans-

action of UT; completes, VRLST(UT;) is passed to the Execution Manager. The Execution

Manager submits V RLST(UT;) to the Validation Processor.

The Validation Processor checks the validity of the updated active versions (Figure 4.5).

It h a two components: the Decision Manager and the Commit Manager. The Decision

Manager checks for the validity of each active version by comparing each updated active

version (vf ') referenced by its object family id in the version list with the last committed

version of ob ject family f in the ob ject base.

'In this thesis, since each user transaction UT, obtains at most one active version from an object family,

the active version id can be the same as the user transaction id.

Chapter 4. The Architecturai Mode1

Figure 4.5: The Validation Processor

For example, assume Figure 4.6A shows the state of the objectbase just before the

creation of di. of j is the most current committed version in object family / when vf

is created. Since vfi originates from ofj, of' is referred to as the base version of di.

It is possible that during the execution of UT; other user transactions, ..., UT,

commit and produce new committed versions ofj+l, ofjC2, ..., oin in the object family f

(see Figure 4.6B).

When D'Ti terminates, the Decision Manager compares each updated active version of'

referenced by its object family id in VRLST(UT;) with the most recent committed version

of object family f , (ofn). ofn is the committed version located a t the top of the version-

chah of object family f. The purpose of the comparison is to determine if updated active

versions would create inconsistency in the objectbase. The state of an updated active version

di is consistent with the states of committed versions in object family / if the values of

the at tributes read by U z in v f i have not been modified in the ob ject base during the life

time of UT;. If the states of ali active versions of UTj are consistent with states of their

corresponding commit ted versions in the object base, VRLST(UTi) is sent to the Commit

Manager; otherwise some active versions of UTi are invakl and UTi should be reconciled.

Reconciliation is the process of correcting the invalid active versions of UTi with respect

to the current state of the ob ject base. First, the Decision Manager determines if it is possible

to change the commit order of UT; with respect to recently committed user transactions.

Chapter 4. The Architectural Modei

--
v t the base fi

Figure 4.6: Insertion of an active version in the chah

Chapter 4. The Architectural Mode1 90

Then, the Decision Manager attempts t o find a position (based on the correctness criterion,

lvalue serializabiüty) for each active version vfi referenced by UTi in the version-chah of

the object family f. This process is c d e d simple reconciliation. Consider Figure 4.6 again.

An active version ofi can be added between any two committed versions ofp and ofp+l.

j < p n, in the version-chah if:

1. the values of the data read by UTi in vfi when vfi was originally created are stiil
unchanged in ofp, and

2. the data read in d p + ' , d ~ + ~ , -.., of by UTp+l, UTp+2, ..., UT,, respectively do not
value-intersect (value-n) with the data written by UTi in di. The value-intersection
of two sets A and B is a set C = {xr,x2, ..., 2,) if for 1 < i 5 n, xi E A, z; E B, and
the value of xi in A is not equal t o the value of xi in B.

The first point indicates that although UTi, the user transaction associated with vfi, has

read its required data items from of] to manipulate vfi, vfi c m aiso be seriaüzed after ofp

if UTi could have read the required data items from ojp instead. The second point indicates

that if some user transactions UTp+2, ..., UTn read a data item x in which x was Iast

modified by one of UTp, ..., UTo, they can still read x from vfi as long as UTi has

not modified the value of x in vf '.
If vf can be added between any two committed versions of oj, vf i is considered a valid

updated active version. Validity of all updated active versions in the VRLST(I/T;) only

ensures intra-object serializability. A rnechanism must be developed to check inter-object

seriaiization of the user transactions. This implies that for any two user transactions UTi

and UT,, that have referenced some committed versions ofi and of', respectively, if of is

serialized before ofj, then effectively for every object family k that is commonly accessed by

both UTi and UTj, vki must be serialized before vkj. Techniques such as Global Serialization

Gmph [ZB93c] can be used to determine inter-object serializability (see Section 2.3.4). The

vertices in the global serialization graph represent the user transactions. An edge in the

graph from UT; to UTj implies that some comrnitted version ofi of UTi has been seriaüzed

after some committed version oj j of UTj in the object family /. A cycle in the graph c m

detect if a set of concurrently running user transactions is inter-object lvaiue serializable.

Chapter 4 . The Architecturai Mode1 91

After checking bot h intra-ob ject and inter-ob ject serializabili ties, the Decision Manager

sends VRLST(UT;) to the Commit Manager.

If bot h intra-ob ject and inter-ob ject seriaiizabilities are guaranteed, the Commit Man-

ager promotes the updated active versions to committed versions and records them in the

objectbase. Otherwise, version transactions of UT; which have accessed the stale data may

partially be re-executed against some of the active versions of UT;. This process is calIed

cornplex reconci1ia tion. Compiex reconciliation affects bot h the invalid active versions and

other active versions which relate directly or indirectly to the invalid versions. in the corn-

plex reconciliation of a user transaction, the Decision Manager uses the information from the

dependency graph and the control flow path graph to re-execute the basic blocks affected

by the stale data. When complex reconciliation is complete, and the results made from

all the updating versions of UT; become consistent with the current state of their commit-

ted versi~ns in their corresponding object f a d e s , VRLST(UT;) is passed to the Commit

Manager. The Commit Manager promotes the updated versions to the comnûited versions,

records the commit ted versions in the ob ject base, and commits the user transaction.

Since the number of committed versions in the object families grows overtime, period-

ically some of committed versions are archived. Issues related to archiving the committed

versions and their storage management are beyond the scope of this thesis. The complete

architecture is shown in Figure 4.7.

in the rest of this chapter, we explain the function of each component of the architecture

and describe the basic optimistic algorithm. Simple and complex reconciiiations are studied

in detail in the subsequent chapters.

4.2 The Implement at ion

The following is the list of the routines and data structures required by the Transaction

Processor .

Chapter 4 . The Architectural Model

1 User 'ho. Manager I

1 Method Scbeàuler I
a 1

scheduled VT! T C/A, methods,

1

archiving
conmitted
versions

VRLST (UTi 1

t$. Decision Manager

I
VRLST IUTi) 1

Commit Manager f - l
Figure 4.7: The Architecture

Chapter 4. The Architecturai Mode1 93

Send(C,MSG): Sends message MSG to component C. Each component contains a mes-
sage queue. The message MSG is located at the back of the message queue of com-
ponent C.

Output(Resu1t): Subrnits the final result (commit o r abort) of the execution of a user
transaction to the user.

CreateVT(M): Converts the method invocation M t o a version transaction. A method
invocation is an operation of a user transaction or a version transaction.

SetOrder(f,VT,VT'): Sets an ordering between two version transactions V T and VT'
which may commonly access some active versions of object family f in a confiicting
rnanner. This ordering ensures that the execution of VT is serialized after VT'.

ReleaseOrder(f,VT,VT9): Removes the order between the two version transactions VT
and VT' which have been previously set by the Setorder() function.

counter(UT): 1s a counter kept for each user transaction UT. The counter is incremented
when a direct/indirect method (version transaction) of UT is invoked and is decre-
rnented when a version transaction of UT terminates.

ConflictObject(VT,VT9): 1s a function that returns a set of objects which may possibly
be referenced in a conflicting manner by some subtransactions of V T and VT'. This
function can be implemented based on the information captured from the depends(VT, VT').
reachablesets(VT), reachableset(VT'), and Con f l ict-set(VT, VT').

A user transaction, UTi is submitted to the Transaction Processor (see Figure 4.8).

The User Transaction Manager decomposes UTi into a set of method invocations (lines

1-2), converts them to version transactions (line 4), and passes version transactions to the

Method Scheduler on behalf of UTi (line 5). This process continues until every opera-

tion of UTi including the termination condition, c;, is sent to the Method Scheduler (line

6). A counter is associated with each user transaction UT; (counter(UT;)) to control the

number of pre-committed version transactions of UTi. C O U ~ ~ ~ T (U T ;) is incremented when a

method (version transaction) of UTi is invoked (line 3) and it is decremented when a version

transaction of UTi pre-commits.

The Method Scheduler ensures the proper ordering defined by the depends function

(Section 3.7) is enforced before submitting the version transactions to the Version Proces-

sor (see Figure 4.9). Multiple version transactions executing on a version of an object

Chap ter 4. The Architectural Mode1

Algorit hm 4.2.1 (User Transaction Manager - the interface section)

Algorit hm User.Trans.Mgr
input: A user tramactions operation set (xi) and its partial order (4 ;) from the user, and

the result of the termination of a user transaction from the Method Scheduler.
output: The operations of a user transaction to the Method Scheduler, or the result of

the execution of a user transaction to the user.
begin

**** INFORMATION RECENED FROM THE USER ****
case input of

UTi:
for every operation ri, E Ci do

f if rip = mj then
counter(UT;) + counter(UT;) + 1
VT + ~ r e a t e ~ ~ (m j)
Send(Method.Scheduler,VT)

elseif = Ci
Send(Met hod.Schedder,c;)

**** INFORMATION RECENED FROM THE METHOD SCHEDULER ****
C/A(UT;):

Output(C/A(UTi))
end {case}

end

Figure 4.8: The User Transaction Manager

Chapter 4. The Architectural Mode1

Algorithm 4.2.2 (Method Scheduler - Ordering the re!ated methods)

Algorit hm Met hod.Scheduler
input: A version transactions of a user transaction, the commit operation of a user

transaction from the User Transaction Manager, and a version transaction
of a user transaction, termination condition (pre-commit) of a version transaction,
or the result of the execution of a user transaction from Version Transaction Manager.

output: The scheduled version transactions or the termination condition of a user transaction
to the Version Transaction Manager, and the result of the execution of a user
transaction to the User Transaction Manager.

var: received(ci): It is a flag to indicate that the Method Scheduler has received ci.

begin
case input of
**** INFORMATION RECEIVED FROM THE USER TRANSACTION MANAGER ****

vq;:
for aii active VT& such that depends(v2$, V q q) do

A 6 c o n f l i c t ~ b j e d s (~ l $, V c q)
Vom E A do (3)

SetOrder(om , vT$, VTiep) (4)
~ e n d (~ e r . ~ r a n s . ~ ~ r , ~ q {) (5)

else
Ci :

received(ci) - true (6)
**** INFORMATION RECEIVED FROM VERSION TRANSACTION MANAGER ****

C/A:
Send(User.Trans.Mgr,C/A(UT,)) (7)

V Tt, :
for ail vqi such that d e p e n d s (~ q , ~ q ; ' ,) do

A + Con/lidObjeds(VTiC,, VT;)
Vom E A do

SetOrder(om , V c q , V q k)
Send(Ver .Transe Mgr, V T ,)

pc(vq;):
counter(UZ) + counter(UZ) - 1
while 3 VTi; such that depends(Vqk, VT;) do

A + Con f lictObjeds(VTi;, VT;)
vom E A do

ReleaseOrder(om , V q k , V?;)
if (counter(UTi) = 0) and (received(ci)) then

Send(Ver.'Ikans.Mgr,ci)
end{case)

end

Figure 4.9: The Method Scheduler

Chapter 4. The Architectural Mode1 96

originating from the same user transaction may need to be ordered- For example. suppose

the execution of VT; depends on the execution of VTG (line 1) and set A represent the set

of ail common objects that may be referenced by some descendants of VT; and VTG (Line

2). The Method Scheduler sets a seriaüzation order between VT; and V T ~ foi the active

versions of the objects in A to block the execution of VT$'s descendants at these active

versions untïi VT& pre-commits (lines 3-4). Then it sends VT; to the Version Transaction

Manager (line 5). When the Met hod Scheduler receives ci (iine 6), it holds ci until aii of

the direct and indirect version transactions of UT; pre-commit .

The following routines are also defined for the description of the Version Processor.

StoreUnstable(v): Stores active version v in the unstable store.

Copy(f): Returns a dupiicate of the most recent committed version in object family f.

BeforeImage(v): 1s a snapshot of a version v, before v is modified. This snapshot is
required during the validation of the version at commit time.

readset(v): 1s a set that couects the attributes in version v retrieved by the transactions.

writeset(v): 1s a set that coilects the attributes in version v updated by the transactions.

Delete(v): Deletes active version v from the unstable store.

0rdering(VT,VT9,f): Returns true if the Method Scheduler has ordered the execution
of version transactions V T after VT' in some active versions of object family f .

The Version Transaction Manager maintains a version List for each user transaction.

A version list records the object id of the active versions that are referenced by a user

transaction. Thus, each element of a version iist refers to an object f a d y identifier _f

in which an active version of of has been derived for a user transaction. The Version

Transaction Manager receives scheduled version transactions (VT&'s) from the Method

Scheduler (see Figure 4.10). For each VT; received, the Version Transaction Manager

checks the version iist of UTi (VRLST(UTi)) to ensure no active version associated with

object family f for UTi already exists in the unstable store @ne 2). If this is the case,

the Version Transaction Manager adds the ob ject family identifier f to the V RLST(UTi)

Chapter 3. The Architecturai Mode1

Algorithm 4.2.3 (Version Transaction Manager - Creating active versions)

Algorit hm Ver.Trans.Mgr
input: Scheduled version transactions of a user transaction, or the commit operation

of a user transaction from the Method Scheduler, and the terrnination
condition(pre-commit) of a version transaction or the result of the execution of
user transaction from the Execution Manager.

output: A version transaction of a user transaction, or the version List of a user
transaction to the Execution Manager, and a version transaction of a user
transaction, the termination condition of a version transaction, or the result
of the execution of a user transaction to the Method Scheduler.

begin
case input of
**** INFORMATION RECENED FROM THE METHOD SCHEDULER ****

Send(Exe.Mgr,VRLST(UT;)) (1)
VT;:

if f not E VRLST(UTi) then (2)
VRLST(UTi) t VRLST(UTi) U {f) (31
vfi + copy(ofn) ! ofn is the last committed version of of (4
~ e f o r e h a ~ e (v f ') = vf' (5)
s toreu'nstable(vf ') (6) . .

~ e n d (~ x e . ~ ~ r , ~ ~ i) (7)
++ INFORMATION RECENED FROM THE EXECUTION MANAGER **

VTG:
Send(hlet hod.Scheduler7VT&) (8)

pc(vT$,):
~ e n d (~ e t h o d . ~ c h e d u l e r , ~ c (~ ~ (p)) (9)

C/A(UTi):
for every vf' E VRLST(UTi) do (10)

Delete(vf ') (I l)
Send;Met hod.Scheduler,C/A(UT;)) (12)

end

Figure 4.10: The Version Transaction Manager

Chapter 4. The Architecturâi Mode1 98

(line 3). Then it obtains a copy, vf', of a committed version of o j (by defauit the most

recent committed version in object f d y f) from the objectbase (line 4) and stores v f i

in the unstable store (line 6). Upon the creation of vf', a snapshot of the state of vfi

called L?e/mefmage(vfi) is taken (line 5). ~e f o ~ e ~ r n a ~ e (v f ~) is required for vaiidating

v f i at commit time. The significance of Be foreimage will be discussed when we explain

Validation Processor later in this section. Next, the Version Transaction Manager sends

V T ~ to the Execution Manager (Line 7).

f When the Execution Manager (see Figure 4.11) receives VT;, it may not execute VTip

immediately. Before the Execution Manager executes VT;, it needs t o check if another

confiicting version transaction V T ~ has already been ordered before V T ~ in the object

farnily f . If this is the case, the Execution Maaager blocks the execution of V T ~ until it is

notified that VG has pre-committed (üne 2).

Eventuaiiy, V T ~ starts executing on uf '. R e c d from Section 3.3 that the operations

of a version transaction are read, write, method invocation, and pre-commit. Also recail

that xf' refers to a data item in d i . When the operation is a "read" on attribute x j i ,

x f i is added to the readset of di, if it has not been accessed before (lines 3-4). Then xfz

is read (line 5). When the operation is a "write" on x f i , the Execution Manager checks

if x j i h a already been updated. If this is not the case, it adds x f i to the writeset of vf i

(lines 6-7). Then it updates zfi (iine 8). If the operation is riq and ri, is the invocation

of rnethod j in object oe (m,'), the Execution Manager increments counter(UTi) (iine 9),

changes the method invocation to version transaction VT; (line IO), and sends VT;', to the

Version Transaction Manager so it can be scheduled with other version transactions of UTi

(line 1 1).

EventuaJy, VT; terminates and processes the pre-commit operation. The pre-commit

operation indicates the end of the execution of vT,~. The Execution Manager notifies the

Version Transaction Manager about the completion of VT; (line 12).

The following additional routines are required to describe the Validation Processor's

Chapter 4. The Architectural Mode1

Algorit hm 4.2 -4 (Ezecution Manager - executing a version transaction)

Algorit hm Exe.Mgr
input: A version transaction of a user transaction, or the version List of the versions accessed

by a user transaction from the Version Transaction Manager, and the result of the
execution of a user transaction from the Decision Manager.

output : The version list of the versions accessed by a user transaction to the Decision Manager.
and the result of the termination of a version transaction of a user transaction, the
subtransaction of a version transaction, or the result of the execution of a user
transaction to the Version Transaction Manager.

begin
case input of
**** INFORMATION RECENED FROM THE VERSION TRANSACTION MANAGER ****

V RLST(UTi):
Send(Decision.Mgr,V RLST(UT;)) (1)

VT;:
begin ! begins the execution of V T ~

while ~ V T ; such that Ordering(vT;, VT;,~) in d wait (2)
r epea t

case operation of
read:

if xfi 4 (readset(vfi) ü writeset(vfi)) then (3)
readset(ufi) + readset(vf ') u { x i i) (4)

read zf i (5
write:

if xf , writeset(vf ') t h e n (6)
writeset(vf ') - writeset(vf i, u {zf '} (7)

update xfi (8)
Tip = COU m;:

counter(UTi) + counter(U7';) + 1 (9)
VTG + CreateVT(m5) (10)
Send(Ver.Trans.Mgr,VT&) (11)

pc:
~end(~er.~rans.~gr,~c(~T;/p)) (12)

endIcase for the operations)
Unt i l operation = pc

end ! ends the execution of V T ! ~
**** INFORMATION RECENED FROM THE DECISION MANAGER ****

C/A(UT;):
Send(Ver.Trans.Mgr,C/A(UTi)) (13)

end{case for input)
e n d

Figure 4.11 : The Execution Manager

Chapter 4 . The Architecturai Mode1 100

AddEdge(G,UT,UT'): Adds an edge in a directed graph G from the vertex that repre-
sents user transaction UT to the vertex that represents user transaction UT'.

Promote(v): Promotes active version u to a committed version.

RemoveVertex(G, UT): Removes the vertex w hich represent s user transaction UT wi t h
al l of its associated edges from graph G.

StoreObjectbase(v): Stores a committed version v at the top of the version-chah asso-
ciated with v in the objectbase.

As shown in the architecture (Figure 4.7), eventually the User Transaction Manager

submits ci to the Method Scheduier. When the Method Scheduler receives ci7 it keeps c;

until all of the version transactions of UTi terminate (counter(UTi) is set back to zero)

(Figure 4.9 fine 18). Then It sends c; to the Version Transaction Manager (Figure 4.9

iine 19). When the Version Transaction Manager receives c;, it sends VRLST(UTi) to the

Execution Manager (Figure 4.10 line 1) and the Execution Manager passes VRLST(UTi)

to the Decision Manager (Figure 4.1 1 line 1).

When a version list is received by the Validation Processor, it may not be vaiidated im-

rnediately if other rekated version lists are being validated. Two version Lists VRLST(UT2)

and VRLST(UT2) are related if there exists an object family f in which UT1 and UT2

have commonly referenced f and the data items accessed in vf l and vf2 by UTl and UT2

respectively, value-conflict .

To order the validation of the related version lists, the Decision Manager constructs a

Validation Gmph (see Figure 4.12). A validation graph for a set of version lists VRLST(UTl) ,

VRLST(UT2), ..., VRLST(UT,) is a graph (V, E) , where V is a set of vertices and E is

a set of edges. A vertex v; E V represents a V RLST(UTi) and an edge v; to vj indicates

that VRLST(UTi) and VRLST(UTj) are related. The validation graph orders the vali-

dation of related version lists. When a user transaction terminates, VRLST(UTi) wit ti ail

of its associated edges are removed from the validation graph (lines 1-3). Thus, eventu-

d y , the Decision Manager processes VRLST(UTi) and must decide whether UTi should

be committed or aborted (line 4).

Chap ter 4. The Architectural Mode1

Algorithm 4.2.5 (Decision Manager - Validating the versions accessed by a user tmnsac-
t ion)

Algorit hm Decision.Mgr
input: The version list of the versions referenced by a user transaction from the Execution

Manager, and successful termination (Commit) of a user transaction from the Commit
Manager.

output: A validated version list of a user transaction to the Commit Manager, and the result
of the execution of a user transaction t o the Execution Manager.

begin
case input of
**** INFORMATION RECEIVED FROM THE EXECUTION MANAGER ****

VRLST(UT;):
for every V RLST(UTj) E validation graph

if VRLST(UTi) and VRLST(UT,) are related then
AddEdge(vaiidation.graph,V RLST(UTi) ,VRLST(UT,))

if VRLST(UTi) is not related to any other version lists then
for every vfi E VRLST(UTi) do

of - the last committed version in object family /
if 3xfi E readset(vfi) such that ~e f orelmage(xf ') # zfp then

Send(Commit .Mgr,Abo~t(UT;)
RemoveVertex(validation.graph, V RLST(UTi))

Send(Commit .Mgr,VRLST(UTi))
****INFORMATION RECENED FROM THE COMMIT MANAGER ****
commit(UT;):

RemoveVertex(validation.graph, VRLST(UTi))
Send(Exe.Mgr,commit(UT;))

end

Figure 4.12: The Decision Manager

Chapter 4. The Architectural Model

Figure 4.13: Revision may be required before promotion af active version

Consider Figure 4.13. Suppose active version v f i originates from of' when UTi references

object family f. R e c d that dj is the base version of v f i . When UT. terminates, the

Decision Manager must check if it is possible to promote v f i to a committed version and

add it to top of the version-chain above o f n . Note that during the Life time of UTi, other

user transactions UTj+l, ..., UT, have committed and created committed versions

of j+l , ~ f j + ~ , ..., of n, respectively. v f i c m be inserted above ofn in the version-chain, if it is

possible to serialize UT; after UTj+i, UTj+2, ..., UT, in the object family f . This condition

holds if UTi (the user transaction associated with UTi) can read the same information from

ofn as it originaily read from o f) .

Thus, to determine if v f can be inserted above the commit ted version of ", the Decision

Manager checks if every data item x f i read in v f i is still unchanged in ofn (see Figure 4.12).

Simple cornparison of each data item zf' read in v f i with its corresponding x f p in ofp is

not possible because during the manipulation of v f i , x f i may have been modified. R e c d

t hat when an active version is created, a snapshot of its original state (Be f oreIrnage of the

Chapter 4. The Architectural Mode1 103

version) is preserved before the version is modified. The BeforeImage contains the original

values of the attributes in the version. Thus, t o ensure that all da ta items read from vfi

are still unchanged in d p , z f p in d p is compared with the value of xf' in the BeforeImage

of vf (line 5- 7).

UT; can be committed if the above condition holds for every active version referenced

by UT,. If this is not the case, UT; is aborted (line 8) and VRLST(UTi) is removed from

the validation graph so that other related version lists can be processed (line 9) . Otherwise.

VRLST(UT;) is sent to the Commit Manager (iine 10).

Although some data items of the updated versions referred to in VRLST(UT;) are never

accessed, they stiil have t o be checked and updated if necessary (see Figure 4.14). Thus,

for each vfi referenced by UT; (line l), the Commit Manager compares data in vfi and ofn,

the last committed version, against each other. If da ta item xfi is not accessed in vf by

any version transaction and its value is different from the value of zfn in ofn (line 2-4), the

Commit Manager rnoves the value of xf" to xf' overwriting the old value (line 5). We cal1

the process of updating attribute values in this way "revision", because some da ta items of

the updated versions must be revised before they can be stored in the object base.

An example is shown in Figure 4.15. Suppose the state of the object family f just before

UTi starts is shown in Figure 4.15A. When UTi becomes active, it obtains a copy of of0.

vfi, and executes mi against vf '. Figure 4.158 shows the state of object family f when

UTi terminates. Note that during the life time of UTi other user transactions, UTl and

UT2, have committed and produced the committed versions of1 and of2, respectively. UTi

have accessed attributes a and 6 whereas UTi and UT2 have modified attributes c azd d,

respectively (assuming that UTi has executed mi and UT2 has executed rn: against their

own versions). Although operations in UT; does not conflict with the ones in U l i and

UT2, promoting vfi to ofi and inserting di at the top of the version-chah causes a "loss

of update" to the values of c and d (Figure 4.15B). Thus vf' is revised first before it is

promoted in which the values of c and d in of2, the last committed version ic ob ject family

/, are moved to the attributes c and d in vf', overwriting the old values (Figure 4.15C).

Chapter 4. The Architecturai Mode1

Algorithm 4.2.6 (Commit Manager - Reuising and storing the versions accessed b y a user
transaction in the objectbase)

Algorit hm Commit .Mgr
input: VRLST(UTi): a version List of of a user transaction from the Decision Manager.
output: the successful termination of a user transaction to the Decision Manager.

begin
****INFORMATION RECENED FROM THE DECISION MANAGER ****
for every (d i) E VRLST(UTi) do

for every data xfi in vfi and corresponding xfn in ofn do
of * + the last commit ted version in ob ject farnily f .
vzfi if xfi # z f n and xfi not E (readset(vfi) u writeset(vfï)) then

2fi , xfn
ofi + Promote(vfi))
Storeob ject base(of ')
vt.ofi + gettime()
of .Vercount + of .VeRcount + 1

Send(Decision.Mgr, Commit(UT;))
end;

Figure 4.14: The Commit Manager

Chapter 4 . The Architectural Mode1

Figure 4.15: Revision of an updated active version

Chapter 4. The Architectural Mode1 106

Thus, for each updated vfi (see Figure 4.14), the Commit Manager revises vfi (Lines

2-5), promotes di to a committed version di (line 6), and piaces ofi a t the top of version-

chah in ob ject family f (Line 7). ofi is Linked to ot her commit ted versions and becomes

the last committed version in object family f. Upon the insertion of di into the version-

chah, the valid time of ofi is recorded and the system attribute Vercount is incremented

(Lines 8-9). Next, the Commit Manager sends a commit message to the Decision Mana.ger

indicating that the effect of UTi is now committed in the objectbase (Line 10). Once the

Decision Manager receives the message, it removes VRLST(UTi) from the validation graph

and passes the message to the Execution Manager (see Figure 4.12 iines 11,12). The final

result of the UTi WU be eventudy passed to the user.

Ot her Communications

Three different types of information flow from the Execution Manager to the Version

Transaction Manager and from the Version Transaction Manager to the Method Scheduler.

First, when the Execution Manager receives Commit/Abort resuit (C'/A) of UTi from the

Decision Manager, it passes C / A to the Version Transaction Manager (Figure 4.1 1 iine 13).

The Version Transaction Manager retrieves the updated active versions associated with UT;

and removes them from the unstable store (Figure 4.10 lines 10-11). Then it passes C / A to

the Method Scheduler (Figure 4.10 line 12).

Second, recall that the Execution Manager may submit some version transactions to

the Version Transaction Manager. The Execu tion Manager can only execute the prirni tive

operations (read, write, pc) against the active versions in the unstable store. Method in-

vocations must be converted to version transactions first. Then the version transactions

must be scheduled before they can be processed by the Execution Manager. Therefore, if

the Execution Manager encounters operation TG that is the method invocation rn; while

processing VT;;, it converts m; to version transaction VT;", (Figure 4.11 line 10) and sends

VT; to the Version Transaction Manager (Figure 4.11 line 11). Since the version trans-

actions must be scheduled with the other active version transactions of UTi, the Version

Transaction Manager passes the version transactions received from the Execution Manager

Chapter 4. The Architectural Mode1

t o the Method Scheduler (Figure 4.10 line 8).

Third when the Execution Manager completes the execution of a version transaction

V T ~ , it sends the pre-commit message of vT$ to the Version Transaction Manager (Fig-

ure 4.11 iine 12). The Version Transaction Manager notifies the Method Scheduler about

the completion of VT;, (Figure 4.10 iine 9). When the Method Scheduler receives the pre-

f commit message of VT;, it removes the order between VT;, and any version transaction

that depends on V T ~ (Figure 4.9 lines 14-17). Since the pre-commit message refers to a

termination of a version transaction of UT;, the Method Scheduler decrements counter(UT;)

(Figure 4.9 Line 13) and checks the counter t o determine if the counter is set back to zero

(Figure 4.9 iine 18). A zero value for the counter indicates that d the methods of UTi have

been processed and cornpleted. If this is the case, the Method Scheduler sends c; to the

Version Transaction Manager (Figure 4.9 line 19).

Finally, the User Transaction Manager receives the result (C / A of UT;) and outputs it

to the user (Figure 4.8 iine 7).

4.3 Correctness of the Algorithm

This section explains serializability of the transactions a t version and the user levels.

4.3.1 Version-Level Concurrency Control

Recall t hat turo version transactions associated wit h two different user transactions never

conflict. However, it is possible that the execution of a version transaction depends on

another if both are associated with the same user transaction. Therefore, some mechanism

niust be provided to order these version transactions.

When the Method Scheduler receives a version transactions VT;, it c d s the depends

function to determine if V T ~ depends on some other active version transactions of UTi. For

example, if VT$ depends on VT;, the Method Scheduler sets an ordering between V T ~

Chapter 4. The Architecturai Model

Figure 4.16: Intra-UT Concurrency Control

and VTG so that the execution of VT;; is serialized after VT;', in every active version of

UTi which rnay possibly be accessed by some descendants of VT; and VT;',.

An example of intra-UT serializability is shown in Figure 4.16. The user transaction UTi

invokes t hree methods that are eventualiy converted to version transactions VT& , VT&, and

VT$. VTA becomes active first and starts executing. Shen the Method Scheduler processes

VT&, and V T ~ . VT& can be executed with VT& since each references a set of separate

objects. However, the set of objects in which VT& and VT; may comrnonly reference is

A = {oh, d}. RecaiI that, for each user transaction, only one active version of each object

can exist in the unstable store, and all version transactions of a user transaction execute on

that active version. in this example, descendants of ~ 2 ' : ~ and VT$ may commonly access

the attributes of active versions in A' = {vhi, v g i } in a confiicting manner.

To control intra-UT serializability, the Method Scheduler must ensure that in every

Chapter 4. The Architectural Mode1 109

active version in A', the execution of the descendants of VT& happens before the descendants

of VT$ if necessary. Thus when V T ~ , , and V T ; ~ access conflicting operations in vhi, VT:,,

is ordered before VT:, in vh'. Similarly if VTg and VTg access confiicting operations, VT;

is ordered before VT; in vai. Thus when the Version Transaction Manager sends V T $ ~ and

VTg to the Execution Manager, they have to wait until VTA pre-commits. When VTP,
pre-cornmits, the Method Scheduler removes the order between V T ~ and V T ~ so that the

descendants of VT;, VT: and VT:, , can start executing.

4.3.2 User-Level Concurrency Control

User transactions are serialized by the Decision Manager using the validation graph that

orders the related version iists. When a version iist is sent to the Validation Processor, two

cases are possible. If the Decision Manager and the Commit Manager are ide, V RLST(U Ti)

is added to the validation graph and then is processed by the ~ecision Manager. Otherwise,

V RLST(UTi) is compared with other version lists in the graph to check if other related ver-

sion iists shouid be validated before V RLSTf UT;). When a user transaction UT; commits

or aborts, V RLST(UTi) and its incoming edges are removed so other version Lists related

to VRLST(UTi) are validated as long as they are not related to other version iists.

Alt hough related version Lists are ordered by the validation graph, non-related version

iists may contain versions associated with the same transaction families. For example,

if VRLST((ITl) = { v f l } and VRLST(UT2) = { v f 2) and the data accessed in vf' and

v12 are not in value-conBiet, VRLST(UTi) and VRLST(UT2) are not related and may

be validated concurrently. However, non-related versions associated wi t h the same ob ject

family should be promoted and recorded in the objectbase one at a time. Thus, before a

version v f i is promoted to ofi and recorded in the objectbase, the entire object family f

is locked for validation; therefore, creating a critical section which prevents other versions

from modifying the version-chain. This procedure serializes the validity of the version lists

which in turn ensures inter-object serializability.

Chapter 5

Simple Meconciliat ion

This chapter introduces simple reconciliation. Simple reconciliation uses previously comrnit-

ted versions to commit a terminated user transaction. This implies, when a user transaction

UTi cannot be committed after some recently commit ted transaction UTj, simple reconcil-

iation is an attempt to commit UTi before UTj as long as the state of objectbase rernains

consistent. This chapter begins by giving an example of the case when normal committing

procedure of a user transaction fails. Then it shows how to modify the components of the

Validation Processor to do simple reconciliation of unsuccessful transactions. Examples are

provided incrementdy to verify complex parts of the algorithm. Finally, as an extension

to the basic algorithm, it will be described how historical information can be retrieved from

the objectbase.

Figure 5.1 shows an example of the case when execution of a user transaction is not

successful and reconciliation is required. Figure 5.1A shows the original state of the object

family f . UTl and UT4 start first and each receives a copy of of0 denoted by vf l and v f 4 ,

respectively. UTt executes m(against v f l and 114 executes mi against vf 4. UTt comrnits

and its associated committed version of l is recorded in the objectbase (Figure 5.18). Then

UT2 starts, ob t ins a copy of 6' (vj2), executes mzf against vf2, and commits. vf2 is

promoted to of2 and is recorded in the objectbase (Figure 5.1C). Next UT3 starts, obtains

Chapter 5. Simple Reconciiiatioa

Figure 5.1: Reconciliation is required

Chapter 5. Simple Reconciiiation 112

a copy of of2 (v f 3) , executes mg ag,nst vf3 and commits. v j3 is promoted to d3 and

is recorded in the objectbase (Figure 5.1D). Now UT4 terminates; however, v f 4 cannot be

committed as the last commit ted version in the chah because the value of c read in uf "is

stale. Although v f 4 cannot be at the top of version chain in the ob ject farnily f , it might

be possible to insert it in the lower levels without making the state of other comrnitted

versions inconsistent. Simple reconciliation is the process that checks and inserts v j4 in an

appropriate position in the version-chain. This is done by the components of the Vaiidat ion

Processor , the Decision Manager and the Commit Manager.

5.1 Decision Manager

In the simple reconciliation of a user transaction (UTi) , for each active version v j i in

VRLST(UTj) , the Decision Manager must find a valid position in the version-chah of ob-

ject family f where v f i may be inserted. This is subject to two coiiditions. FIrst, insertion

of vf in the version-chain of the the object family J must ensure intra-object serializability

a t the object family f. Second, the entire transaction system must remain inter-object

serializable.

Consider Figure 5.2. Suppose active version vf' originates from of' when UT, references

ob ject family f . The following additional data structure is required:

ValidPos : is a one dimensional array of integers. The index of each element corresponds
to an active version v f i . ~ a l i d ~ o s [v f ~] refers to the position in the version-chah of
object family f when v f i can be inserted.

The process of finding ~ a l U ~ o s [v j ~] starts from the top of the chah where dn is located

and proceeds down until either a position is found to insert vf' or no position can be found.

v j i can be inserted between any two committed versions O ~ P and op+' if:

Chapter 5. Simple Recon cifiation

Vt
the base fi

.- version of v

Figure 5.2: Finding a position in the chah

Chapter 5. Simple Reconciliation

Figure 5.3: Possible cases when reconciliation may or may not succeed

1. cornmitted transactions UTo, UTi, ..., UT, can be seriaiized before UTi in object family
f , and

2. committed transactions UTp+l, UTP+2, ..., UT,, can be seriaüzed after UTi in object
family f.

The first condition holds if UTi (the user transaction associated with v f ') can read the

same information from ofp as it originally read from of j (the base version of v f '). The

second condition can be satisfied if for every data item x in the object family f , in which

UTp+l, ... UT, reads x from one of U G , UTl, ... UTp9 the value of x should have not

been modified by UT; in uf i . For example, suppose x is read by (x E readset(ofp+'))

and it was modified last by UT, in o f , (x E wiiteset(ofp)). If vf' does not coatain the same

value for x as ofp does, v f i can be placed between ofp and ofp+' because LITp+' cannot be

seriaiized after UTi in ob ject family f .

Figure 5.3A shows all possible cases that arise when the scheduier attempts to insert

v f below of (op+' 5 ofk < - o in) . Similarly Figure 5.3B checks if i t is possible to place v f i

above ofm (of0 5 ofm 5 d p) . The truth tables in Figure 5.3 show that v f i can be inserted

in the chah between ofp and ofp+l if:

Chap ter 5. Simple Recon ciliation 115

vof (o f "' < - of 5 of n,
if z E readset(ofk) and x E zuriteset(vfi) and x 4 wri tese t (ds) then

UTk reads the same value for x as U x writes into x.
and

v0fm (do < ofm < d p)

if x E writeset(ofm) and x E readset(vfi) and x 4 Ur,,+, writeset(ofS) then
UTi reads the same value for x as UT, writes into x.

Lines 1 through 14 in Figure 5.4 attempts to find a proper position in the version-chah

where v f i can be inserted. The process starts from the top of the version-chain (lines 2-3)

and proceeds down the version-chah (Lines 5-7). To determine if v f i can be inserted above

a committed version ofp, every data item xfi read in v f i must be unchanged in ojp. R e c d

the basic algorithm in the previous chapter (Section 4.2), to ensure that aU of the data

items read from vf' are stili unchanged in ofp, x f p in d p is compared with the value of x j i

in the Beforehage of vf' (Line 4).

If a proper ofp is found, the Decision Manager has to check whether v f i can be placed be-

iow the committed versions #+', OP+*, ... ofn in the version chain (i.e: serializing LJTp+z, C;L

after UTi in ob ject fomily /). This pmcess starts from of^+' and proceeds up to o f n . For

every o f k between ofp+' and ofn in the version-chah, if x is a variable that is read in ofk

and it has been 1 s t modified by one of of O, of ', ... ofp, the value of x read in dQecomes

invaiid if UTi writes a different value into x in v f i (lines 8-12). I f a vaüd position for the

insertion of vf' is found, this position is recorded in a data structure called ValidPos (line

14). Otherwise, if vdid positions cannot be found for some of the active versions of UTi, it

should be aborted (iines 12-13).

5.1.2 Inter-Object Serializability

The above process only ensures intra-UT serializability a t each object farnily referenced by

UTi. The Decision Manager must also check if UTi is inter-object serializable with respect

to ot her committed transactions in the ob ject base. The foilowing example describes a

situation when inter-UT serializability may not be ensured.

Chap ter 5. Simple Reconciliation

Extension of Decision Manager to do Simple Reconciliation
begin
!!!!!!!!! CHECKING INTRA-OBJECT SERLALIZABILITY

for every v f i E VRLST(r/Ti) do (1)
pos - O (2)
ofp + ofn !!! STARTING FROM TOP OF THE CHAIN (3 1
if 3xf E readset(vf ') such that Be f oreImage(xf ') # s f p t hen (4)

pos - pos +l (5)
ofp - next committed version (going down the chah) (6 1
go to fine 4 (7)

if a of^ is found t hen (8)
for every dk that occurs above d p in the chah (9)

if 3xfk E readset(dk) such that xf' E writeset(vfi) and x f k # xf' (10)
vo fS (ofp+l < ofJ < - dk) , if zfS 4 w ~ i t e s e t (o f ~) then (1 1)

Abort UT; (12)
else

Abort UTi (13)
~al idPos[v f '] - pos (14)

!!!!!!!!! CHECKING INTER-OBJECT SERIALIZABILITY
for every vf' E V RLST(UTi) do

for every of tha t occurs ôbove v f i in the chah do
if readset(vfi) value-n writeset(ofk) # {} O R

readset(ofk) value-n writeset(vfi) # (} then
add an edge from UT& to UTi in GSG

for every of that occurs below vf' in the chain do
if readset(vfi) value-n w+iteset(ofm) # {} OR
readset(ofm) value-n writeset(vfi) # {} then

add an edge from UTk to UT; in GSG
if there is a cycle in GSG then

Abort UTi
Send VRLST(UT;) and ValidPos[l to the Commit Manager

end

Figure 5.4: The Decision Manager doing simple reconciliation

Chapter 5. Simple Reconciliation

&

A: object family f

=
B: object family e

Figure 5.5: Example of a possible inter-object serialization Problem

Suppose three user transactions U T l , UT2 and UT3 each accessing both object farnily f

and object family e. UTl starts first, commits, and creates committed versions of' and oel

in the objectbase. Then UT2 and UT3 start, make copies (active versions) of the commit ted

versions created by UTi in object farnilies f and e, and execute concurrently. Figure 5.5

shows the state of the object families f and e after UT2 and UT3 commit. Clearly, since

oj2 occurs before oj3 (UT2 + U T 3) in object f a d y f (Figure 5.5A) and o f 3 occurs before

oj2 (UT3 - UT2) in object family e (Figure 5.5B) inter-object serializabiiity may not be

ensured. The Global Serialization Gmph provided by Zapp and Barker [ZB93c] can be used

to control inter-object serializability.

A Global Serialization Graph for a set of user transactions 7 = {UTl, LIT2, ..., UT,}

denoted (GSG(T)) is a graph (V, E), where V is a set of vertices and E is a set of edges.

Each vertex vi E V represents a user transaction UTi and an edge from vi to vj indicates

that there exist a comrnitted version of an object family f , o f i , associated with UT. which

occurs above the commit ted version ofj assoüated with UTj in the version-chah of object

family f and UTi and UTj have accessed some value-confiicting operations in di and 011,

Chap ter 5. Simple Reconciliation 118

respectively. Thus, if there is an edge going from v; to vj in G S G (I) then there must be

a pointer (system attribute VRptr - see Section 4.1) going directly or indirectly from of t

to of-'. Thus, an edge in the global serialization graph shows the serialization order of two

user transactions.

Recall that the value-n (value-intersection) of twosets A and B is a set C = {xi, xz. ..., x,}

if for 1 < i 5 n, x; E A, x; E B, and the value of x; in A is not equa! to the value of xi in

B. Consider Figure 5.2 again. Let dk be a committed version in the version-chain located

between dp+' and dn . An edge from UTk to UTi is added to the global seriaüzation graph

if the foliowing condition holds.

Sirnilarly, let ofm be a committed version located between of0 and d p . An edge from UT,

to UT, is added to the GSG(T) if the ioiiowing condition holds:

When the edges are added to the GSG(T), the graph is checked for a cycle. As long as no

cycle is detected, inter-ob ject serializability is ensured. When bot h intra-ob ject and inter-

object serializabilities are ensured VRLST(UT;) and ValidPos are passed to the Commit

Manager (see Figure 5.4 lines 15-24).

5.2 Commit Manager

Based on the information in the ValidPos, the Commit Manager promotes the active

versions to committed versions and locates them in the objectbase. Before an active version

vfi is added between o f p and d p + l (see Figure 5.2), in the version-chah, the Commit

Chapter 5. Simple Reconciliation

Extension of the Commit Manager to do Simple Reconciliation
begin

for every vfi E VRLST(UT;) do (1)
level + ~ a l i d ~ o s [v f '1 (2)
O ~ P + the committed version in object family f that is supposed to occur just below u f i (3)
for every data xfi in vfi and corresponding xfp in ofp do (4)

if x f i # xfp and xf ' 4 (readset(vji) U writeset(vji)) t hen
xfi + JP

(5)
(6

for each x j i E writeset(di) do
for each ofk that occurs above of' do (7)

if xfk @ writeset(dk) then (8)
xfk + xfi ! PROPAGATING THE VALUES (9)

else
break; (10)

promote vf' to ofi and store it in ValidPos[vfi]
Commit UT; (11)

end

Figure 5.6: The Commit Manager doing simple reconciliation

Manager must ensure that insertion of vf' in the version-chah leaves other committed

versions of object family f in a consistent state. Note that during the execution of UTi

against vf ', some other user transactions may operate on the data items in their own versions

in which UT, does not access the corresponding data in di. Thus when vfi is inserted above

ofp, the Commit Manager must check if the vaiue of every attribute x j i in di that is not

accessed by UTi is the same as its corresponding attribute xfp in dp. If this is not the

case, the value of x f ~ is propagated to xf' overwriting the old value of xj ' (Figure 5.6 Lines

(1-6)).

An example is shown in Figure 5.7. Suppose UTi has obtained a copy of of0 and

during its Life time other committed versions of1, d2, and 0j3 have been created (5.7A).

Suppose the Decision Manager has found that vfi can be inserted between 01' and oj2

(5.78). Although attribute cf' in vfi has not been accessed by UT;, the value of cf1 has to

overwrite the value of cfi in order to serialize 17% after UTi in the object family f .

Chap t er 5. Simple Reconciliation

readset=O
writesetr [a)

Figure 5.7: Propagation of the values to higher level committed versions

Further consider Figure 5.78. if a user transaction requests a copy of the most recent

information in the object farnily f , a copy of o f 3 is obtained. However, o f 3 in Figure 5.7B

does not include ail of the recent information after vf' joins the ob ject family f . The reason

is t hat the value of d in of3 is 5 which is not the most recent value of d in the ob ject farnily

f. The most recent value of d is 50 which is seen only in of '. This problem can be solved by

propagating the values of the variables in the writeset of v f i to the corresponding variables

of the other committed versions which occur above it (Figure 5.6 lines 7- 10).

Findy, o f i is promoted to the committed version ofi and inserted in the proper position

in the version chain. When al1 active version transactions of user transaction UTi are

promoted to committed versions and recorded in the objectbase, the Commit Manager

stores the promoted active versions referenced by Uq in the objectbase and commits UT,

(Figure 5.6 line 11). Figure 5.7C shows correct states of ali committed versions in version

family f .

Chapter 5. Simple Reconciliation

5.3 Retrieving Historical Informat ion

One advantage of executing transactions in multiversion databases compared to traditional

databases is that, it may be possible to execute read-only transactions concurrently with

update transactions. Further, with the maintenance of historical data, transactions may

request the information on past data values. This section presents the extensions to the

algorithm to show how read-only transactions may retrieve historical data in the objectbase.

Three modifications are required. First a read-only user transaction is required to

specify the time t in which the information should be retrieved. Second, since read-only

transactions, do not modify the state of the objects, the Version Transaction Manager is

not required to create a set of active versions for the associated version transactions. This

reduces the overhead involved with creating the versions. Tbird, since no active version is

created, the Execution Manager, is not require to send the result of the execution to the

Validation Processor but the commit/abort resuit is sent directly to the user rather than

to the Validation Processor.

Recd that the Method Scheduler keeps a counter for a user transaction to keep track

of the number of active version transactions associated with that user transaction. Since

there is no dependency between version transactions of a read-only user transaction UTi,

the Method Scheduler passes the version transactions of UT; to the Version Transaction

Manager once it receives them from the User Transaction Manager. Since version transac-

tions of UTi do not update any data, the Version Transaction Manager simply passes thern

to the Execution Manager without creating any active versions.

The Execution Manager directly executes the version transactions of a read-only user

transaction against the committed versions in the objectbase. For each read operation on

data item item z in version transaction V T ~ , if z is a data item of a committed version in

object family 1, the value of x at time t specified by the user is searched as follows.

1. Sort the committed versions in the version-chah of the object family in ascending
order of their validation time.

Chap ter .S. Simple Reconciiiation 122

2. Find the first committed version dq in the sorted list in which x is in writeset of O ~ Q

and the validation time of dq is less than or egual the reguested time t .

Note that once committed versions are sorted based on their validation time, it is possible

to make a binary search to find the first committed version in which its validation time is

less than or equal to t and from there on, linear search is required up the sorted list to find

the first committed version which has x in its writeset. If the vaiiie of x at time t is not

found among the existing committed versions in the objectbase, the archived committed

versions can be similarly searched.

Figure 5.8B Nustrates the sorted list of the version-chah shown in Figure 5.8A. The

cornmitted versions of1, ..., dl0 have been created from 5:00 o'clock unti1 6:31. Suppose a

user transaction requests the value of b at time 6:15. Using a binary search, it is possible

to find that d6 has been the last committed version at 6:15. Starting from d6 and going

up the sorted üst it is possible to find that UT3 (the user transaction associated with of3)

has been the last user transaction which has modified x before 6:15.

When version transaction VT; of a read-only user transaction terminates, the Execu-

tion Manager sends the pre-commit message of VT; to the Version Transaction Manager

and Version Transaction Manager passes it to the Method Scheduler. Once the Method

Scheduler receives the pre-commit message, it decrements the counter(UTi). If ail of the

version transactions of the read-only user transaction UT; are terminated and the commit

condition ci for UTi has been received by the Method Scheduler, the Method Scheduler

sends a Commit(UTi) message up to the User Transaction Manager. Since temporal trans-

actions do not need to go through the Validation Processor, they may not be aborted unless

a transaction failure or a system failure occurs.

Chap ter 5. Simple Reconciliation

--
vt=6 : 28 ' V R P ~ ~ readset= (c }

wri teset= (d}

- vt=6:27 WPC~V~ readset=icl
wricesec= (dl

Figure 5.8: Retrieving a data item at a particular time

Chapter 6

Complex Reconciliat ion

Complex reconciliation wili re-execute (partiaily or entirely) some version transactions of

an unsuccessfui user transaction. Re-execution is done on the active versions containing the

s t ale data accessed by the version transactions. Complex reconciliation is only at temp ted

when simple reconciliation fails. This chapter begins by giving an example of such a case.

Algorithms are developed to detect the stale data and build appropriate reconciliation

routines which re-execute the code related to the s tde data.

Figure 6.1 shows an example of a case when simple reconciliation of a user transaction

UTi fails and complex reconciliation is required. Figure 6.1A shows the original state of

the object family f. UTi and UTq start first and each receives a copy of of0 denoted

f by v j i and vf4, respectively. UTi executes m, against vfl and UT4 executes mi against

v f 4 . UTl commits and its associated committed version of1 is recorded in the objectbase

(Figure 6.1%). Then UT2 starts, obtains a copy of o f 1 (vf2), executes mi against vf2, and

comrnits. vf is promoted to of and is recorded in the ob jectbase (Figure 6.1C). Next UT3
f starts, obtains a copy of of2 (vf3), executes m3 against vf3 and commits. vf3 is promoted

to of3 and is recorded in the objectbase (Figure 6.1D). Now UT4 terminates; however, v j 4

cannot be committed anywhere in the chain since:

0 inserting vji at the top of the chain is not possible because UTi reads the stale attribute

Chap ter 6. Cornplex Reconciliation

Figure 6.1: Situation when Reconciiiation is required

Chap t er 6. Corn plex Recon d a t i o n

0 inserting vf' between of3 and of2 is not possible because UTi reads the stale attribute
b ,

inserting vf' between of2 and of1 is not possible because UTi reads the stale attribute
a, and

inserting vf' between of1 and of' is not possible because UTi modifies attribute c
which haç been accessed by UT3 in of3.

Since v f 4 cannot be inserted anywhere in the version-chain, UT4 could not commit unless

it is re-executed. One solution is to obtajn a new copy of the last committed version from

the object f d y f and re-execute mi entirely. This is not feasible because althongh UT4

has accessed stale attributes a, b, and c, it has aiso accessed e, 1, g, and h wtiich are not

stale. Complete re-execution of mi against v f i re-reads both the stale and the non-stale

data wasting time and the resources in the system. Another solution is to do complex

reconciliation of UT; in which the stale data accessed by UT4 (a , b, c) are properly detected

and are passed to a reconciliation procedure cailed reconciliM-4- f associated with method

m i . This reconciliation procedure accepts a set of stale data and re-executes only the code

related directly or indirectly to the staie data.

6.1 Detecting StaleData

Recall t hat the Decision Manager identifies an active version vfi as inualid if vf' contains

some staie data. The first step of complex reconciliation is to find the s tde data accessed by

a version transaction executed against an invalid version. This section develops the related

algorit hms .
f Suppose vf' is an active version of object family f referenced by UT. and V T ~ , VT!,, ..., VT,,

are the version transactions which have executed against di. If it is found that ufi is in-

valid, some of these version transactions executed against v f i may need to be partially

re-execu ted.

Chapter 6. Cornplex Reconciliation 127

A simple case is when oniy one version transaction V T ~ has executed against di.

Suppose of ', of ', ..., of are the committed versions of of which were created during the

Life time of UT;.

Recall the definition of value-intersection (value-n) from Section 4.1.1. Let W S T f =

UG1 writeset(ofj) be the set of data items which have been changed in the object family f

during the life time of UTi. If RS(VT{) and W S (V T ~) are the readset and the writeset of

V T ~ on vfi during the execution, the stale data read by V T ~ denoted by staledata(VTL)

is:

Once the stale data are found, they are passed t o some appropriate reconciliation procedures

and V T ~ is partially re-executed against vfi which are explained later in this chapter.

After partial re-execution of V T ~ , v f becomes a valid version and ean be promoted to a

committed version.

Now suppose the active version v f i ha5 been accessed by two version transactions V T ~

and VTL. I f VT; and V T ~ do not access value-conflicting operations, the s tde date for

each of thern is found as explained above. If V T ~ and VT!, value-conflict and V T ~ is

processed first, the serialization order will be V T ~ + VTL or vice-versa. Otherwise, the

serialization order wili be VT!, - V T ~ . The following considers the case when serialization

order is V T ~ - VTL.
First, V T ~ is reconciled. The stale data for V T ~ are found as:

s t a l e d a t a (v ~ i) = R S (V T ~) value-n WSTf

I f s taledata(vTi) $ 4, V T ~ is par t idy re-executed. Next, V T ~ is reconciled and the s tde

data accessed by V T ~ are found as:

Chap ter 6. Cornplex Recondiation

Figure 6.2: An invalid version rnay effect other valid versions

Note that W S T / U W S (V T ~) determines the changes which have been made by recently

committed transactions (W S T ~) plus the ones made after the reconciüation of V T ~ (WS(VT;)).

in general, to find the stale data for the kih version transaction (v T ~) where k-1 ot her

value-confiicting version transactions have already been reconciled and partially re-executed

on vfc is caiculated as:

s t a l e d a t a (~ ~ i) = R S (V T ~) va l ue-n

(W S T ~ u W S (V T ~) u WS(VT;) U ... u W S (V T ~ - ~))

What to Reconcile?
A version transaction V T ~ which has accessed some stale data may pass its results to

other versions transactions. For example, consider Figure 6.2 where the circles are ver-

sion transactions, edges are the invocations, and rectangles represent the active versions.

Suppose the Decision Manager has found vpi invalid. Thus VT$, has accessed some stale

data and its resdts may not be correct. Note that VT$* may pass its results to VTZ6 in

Chap ter 6. Complex Reconciliation

Procedure Infected-Versions(CTX)
begin

for every vT,: invoked directly by UT do
if (di is valid) and (vT-!~ indirectly access an invalid version) then

infected 6 infected u { d i)
for every two version transactions vZ$ and V T directly invoked by U z do

J if depends(vT$, VT&) or depends(VTiC,, VC,) then
if di f (infected U invalid) then

infected t infected u{vei)
else if vei E (infected U invalid) then

infected - infected ~ { v j ')

for every version transactions VT-!~ directly invoked by UT, do
if di E (invalid U infected) then

Let rn; be the rnethod associated with v?$
for every mi E extent(m:) do

infected + infected ~ { v " ')
end

Figure 6.3: Determining the infected Active Versions Referenced by a User Transaction

umi and return other results to VT&. Then VT& may use this information, produce other

results? and pass them t o VT;,. Thus beside the version transactions which have executed

against some invalid versions, the results of every other version transaction which has been

infected by the results of such versions has to be checked during the reconciliation process.

f If a version transaction VTip executes on an invalid version di and passes some incorrect

results t o anot her version transaction V q q executing on ve', vei becomes an infected ver-

sion. Complex reconciliation is done for version transactions which have accessed either a n

infected or an invalid version.

The algorit hm shown in Figure 6.3 finds the infected versions accessed by the version

transactions of UTi. Note that information such as the depends function and extent are

used t o determine how an active version may be infected by an invalid version o r another

infected version.

Chap ter 6. Corn plex Reconcilia tion

6.2 Generat ing Reconciliat ion Routines

Partial re-execution is the second step of complex reconciliation. This section develops

reconciliation algorithms which only re-execute code related to stale data.

If a statement (s i) in a met hod should be re-executed, statements related to si should also

be found and re-executed. The data dependency relation [Wo189] between the staternents

in a method is determined by considering the Three Address Code for the method. Three

address code is an encoded form of a program in which al1 of the complex statements

have been decomposed to their sirnplest form and cannot be decomposed further [ASU86].

Section 6.2.1 explairis reconciliation for simple methods where routines include simple read

and write statements. Then the approach is extended in Section 6.2.2 for complez methods

which may include loops and ot her conditional st atements.

6.2.1 Simple Methods

Suppose is a method of object of - 3m[denotes the corresponding three address code
f for and si refers to staternent i in 37-4. RS(si) and W S (s i) denote the readset and the

writeset of si, respectively. If si and sj are two statements in 3m{, then si < sj indicates

f that si precedes sj in 3mc Sirniiarly, si > sj means S; follows sj in 3~x4;.

The following data structures are associated with method mi:

TACMkfCl: is a one dimensional array of records. TACMk f (Three Address Code for
f f mi) represents 3 m k Each record contains four fields: op, argl, arg2, and r e s d t

where op is the operation and the other fields contain the operands.

FinalWriteMkfIl: is a one dimensional array of integers. The index of each element
corresponds to a variable z E I Z S (~ !) . If FinalWriteYk f[z] = si, si is the last
statement of 3rnL that modifies z. (Le: si makes the final write operation on x).

ReadsRornMkfa: is a two dimensional array of integers. Each row corresponds to
a variable z E ~ ~ (r n i) and each colurnn corresponds to a statement of 3mL. if
ReadsFromMk f [x, si] = s j , si reads x from Sj (Le: sj is the last statement t hat
modifies x prior to the execution of si) .

Chapter 6. Complex Reconciliation 131

bitstringMkfI1: is a one dimensional array of bits. A bitstring is associated with each
variable z E R S (~ {) (bitstringMk f[z]). The length of each bitstring is egual to the
size of the array TACMkJ. A 1 in the ith position of the bitstringMk f [z] indicates
that the s; should be re-executed if x is stale.

Figure 6.4 shows Three address code for m i , and the arrays T A C M 6 f , FinalWriteMk f ,

and ReadsFromMk f . TACMkJ is created by the compiler. The values in arrays ReadsFromr~k f

and FinalWriteMk f can be calculated by scanning through TACMk f. The following dis-

cusses how to find the values of each element of bitstringMk f.

Suppose user transaction UT; h a terrninated and it is found that vf' , an active version

of UT, that is accessed by a set of version transactions V T ~ , VTL, ..., V T ~ , is invaiid. The

foUowing explains how to do partial re-execution of V T ~ (1 < j < n).

Suppose one of the rnethods m i (1 < k 5 5) shown in Figure 6.5 is associated wit h 1 7 ~ 4 .

If s i : r=pfq is a staternent in mi that is either directly or indirectly related to the stale data

read by V T , , s; shouid be re-executed. Consider an operand p E RS(s i) . There are four

possible cases when the re-execution of s; may cause the re-execution of other statements:
f Case 1: p is neither rnodified in sl..si-1 nor in s;+1..sn (ex: ml is Figure 6.5).

f Case 2: p is unmodified in sl..si-1 but is modified in si+l..sn (ex: m2 is Figure 6.5).
f Case 3: p is modified in si ..si-1 but is unmodified in s;+l ..s, (ex: m , is Figure 6 .5) .

f Case 4: p is rnodified both in sl ..si-l and in si+l ..sn (ex: m, is Figure 6.5).

In Cases 1 and 2, since p is not modified prior to si, a new value for p is re-read from the

objectbase and re-execution of s; rnay onIy cause re-execution of the statements which relate

directly or indirectly to the other two operands r and q. Ln Case 3, let s f (s l < si 5 si-1)

be the last statement that modifies p before si. Since p is not modified iii si+l A,, sf is the

statement that makes the final write on p during the execution. The value of p created by

s is available in vf and is re-read when si is re-executed. In Case 4, the correct value of

p may neither be available in the object base nor in di. This is because p is modified both

before and after the execution of s;. Let s f be the last statement that modifies p prior to

si, and st be the statement that issues the final write on p during the execution. In order

to re-execute s;, s j must also be re-executed to calculate the vaiue of p that shouid be read

Chap ter 6. Cornplex Reconciliation

cresult, argl, op, arg2> --

Figure 6.4: The Three Address Code for mi and Associated Data Structure

Chap t er 6. Corn plex Reconciiïa tion

Case 1 Case 2 Case 3
--

Case 4

- --

Case 5

Figure 6.5: The Relatcd Stâtemerts

by s i . However, re-execution of sf overwrites the value of p that is in the di. Thus s,

must also be re-executed so that the correct final d u e of p can be recorded in u f i when

re-execution terminates'.

Now consider the foUowing two cases for the result operand T E WS(s i) . In a.ii of the

Cases (1-5) shown in Figure 6.5, when si is re-executed, every other statement in s;+l ..s,

that reads the value of r produced by si must be re-executed. Further, in Case 3, since st

overwrites the value of r that is written earlier by s; (st > si), the statement that executes

the final write on r must also be re-executed.

The Algorit hm

Suppose z E ~ ~ (r n b) and set X contains the statements in 377-4 which read the value of 2

from the objectbase. If i t is found that x is stale, every statement si E X in addition to those

statements in 3,: that directly or indirectly relate to each si should be re-executed. PFO-
-

'Operation q E RSfs ,) is handled analogously.

Chap ter 6. Complex Recoo ciiiation

Procedure ~ i t s t r i n ~ (~ ~ (m L))
begin
for every + E ~ ~ (r n i) do (1)

X + set of statements in 3mL that read z (2)
for every s; E X do (3)

FindRelatedCode(s;, ReadsFromMk f O, FinalWrite MC f O, bitstring Mk f [x]) (4)
end

Figure 6.6: Procedure Bit String for Simple Met hods

cedures Bitstring and FindRelatedCode shown in Figure 6.6 and Figure 6.7 respectively,

find the statements which directly or indirectly relate to each variable + E ~ ~ (m j !) .

First, for each variable z E ~ ~ (r n k) , procedure Bitstring finds the staternents which

are related directly to x (Figure 6.6 Lines 1-2), and then calls procedure FindRelatedCode

to search for the statements which are indirectly related to x (lines 3-4). FindRelatedCode

is a recursive procedure that accepts a statement si and marks statements which are related

directly or indirectly to si (refer to Figure 6.7). It contains three parts. First statements

wkich si reads from are recursively found and marked (iines 1-4). Then si is marked (line

5). Finally, given that r E WS(si), statements which read T from s; are recursively selected

and marked for re-execution (lines 6-9). Ln addition, the last statement that modifies r

(Final W riteM k f [r]) is also marked for re-execution (lines 10- 12).

Procedure Reconcil-M-k- f (see Figure 6.8) accepts a set of stale data and re-executes

the code related to the stale data. The bitstrings of ad stale data are merged into one

bitstring caiied string to find out what code should be re-executed (lines 1-3). A 1 in the

i th position of string indicates that si in 3m: should be re-executed (lines 4-6).

6.2.2 Complex Methods

In methods which include conditional statements, finding the values of the bitstrings is

complicated by two problems. First, it may not be possible to determine all of the values

Chap ter 6. Corn plex Reconcilia tion

Procedure FindRelatedCode(si, ReadsFromMk f 1, Final WriteMk f 1, var bitstringMkf[x])
begin
for every y E RS(si) do (1)

sj - ReadsFromMk f [y, si] (2)
if (sj is not marked) and (Final WriteMk f [y] > si) then (3)

FindReIatedCode(sj, ReadsFromMkfU, Final WriteMk f 0, bitstringMk J[x]) (4)
set bit si in bitstringMk f [XI to 1 (- 5)
Let r be such that r E WS(s;) then (6)
for every sj in whkh si = ReadsFromMk f [T, s j] do (7)

if sj is not mârked then (8)
FindRelatedCode(sj, ReadsFromMkjO, FinalWriteMk f 1, bitstringMk f [xj) (9)

st + FinalWrite Mkf[r] (10)
if st is not marked t hen (1 1)

FindRelatedCode(sc, ReadsFromMk f O, FinalWriteMkj1, bitstring Mk f [X I) (12)
end

Figure 6.7: FindrelatedCode Procedure for Simple Met hods

Procedure ReconcilM-k-f(Sta1eData)
begin
string t empty (1)
for every x E StaleData do (2)

string - string OR bitstringMk f[x] ! bit union of two string (3)
for i = 1 to sizeof(TACMk f) do (4)

if ith bit of string = 1 then (5)
execute s; !!!! ACTUALL RE-EXECUTION T-4KES PLACE IN HERE (6)

end

Figure 6.8: The Reconciliation Procedure for Method m!

Chapter 6. Corn plex Reconciliation

Figure 6.9:

of the ReadsFromMk f and FinalWriteMkf arrays a t compile time for a method mi.

For example in Figure 6.9A, the last write operation on p is either s4 or s~ depending on

whether a > b. Also it is not possible to know if s7 reads c from ss or s5 until the code is

executed. To solve this problem, statements related to a variable (such as c in the example)

can be conservatively selected for re-execution in both if and else blocks.

The second problem is that, although some statements are not affected directly or indi-

rectly by the s tde data, they may stiü have to be re-executed. For example, in Figure 6.9B,

when k is stale, only SI, ss, sq, and s5, should be re-executed. However, the final value of

t in S* depends on the number of times the loop is executed. Lf the nurnber of iterations

in the loop changes during the re-execution, it changes the value of t calculated during the

execution. Our approach is to consider all of the statements in a conditional block for re-

execution, whenever a particular statement in that conditional block must be re-executed.

This is excessively conservative and can be improved on but we leave this goal as a subject

for future research.

Recall from Chapter 3 that a sequence of basic blocks visited during an execution of a

method forms a control flow path. Consider a rnethod of object of (m i) which contains

conditional statements. For each control flow path CFPkj of mj!, we define 3CFPrl to be

the corresponding t hree address code for CFPkj. TACC F P k j , ReadsFromC F P k j, and

Final Wri teCFPkj are similarly associated with C FPkj. The following additional data

Chapter 6. Complex Recon ciliation

Procedure ~ i t s t r i n ~ (~ ~ (m {))
begin
for every z E R S (~ {) do
X - set of statements in 3mi that read x Frorn the objectbase
for every si E X do

for each C F P k j do
if si is in the C F P k j then

FindRelatedCode(si, ReadsFromCFPkjfl ,FinalWriteCFPkjn, bitstringMk f [X I)

!!!! FINDING TEE STATEMENTS IN THE CONDITIONAL BLOCK
while condqueue M k f is not empty do

sr + pop an element form condqueueMk f
sb - CondBlk M k f [sk] .liegin
se - CondBlkMkJ[sk] .end
for si = sb to se do

for each C F Pk do
if Si is in the CF Pkj t hen

~indF?,elated~ode(s~, ReadsFromCFPk ju, Final Wr i t eCF Pk jo, bitstringMk f [X I) (15)
end

Figure 6.10: Procedure Bit String for Complex Met hods

structures are associated with m!:

CondBlkMkfa: is a one dimensional array of records. Each record contains two fields:
f begin and end. The index of each element corresponds to a statement s; in 3mk.

I f CondBlkMk f [si].begin = sb and CondBlkMk f [si].end = se , si is within a con-
ditional block where sb and s, are the starting and the ending staternents of that
conditional block. If si is within a nested conditional block, sb and se represent the
begin and the end of the outermost block. If sb and se are zero, s; is not in a condi-
tionai block.

condqueueMkfi is a queue of staternents in 3mi. Every time a statement s; is marked
for re-execution, it is pushed into condqueueMk f if it is within a conditional block.
When si is popped from the condqueueMkf, the begin and the end of its associated
conditional block, sb and se, are searched a d aii of the statements within sb and se
are selected for re-execution.

The Bit String procedure requires a major modification. In Figure 6.6, statements

related to each s E R S (~ {) are searched within nz{ ody. This is because mi consists

of only a single basic block. This is extended in Figure 6.10 (lines 1-6) where related

Chap ter 6. Corn plex Reconcilia tion 138

Procedure FindRelatedCode(si, ReadsFromCF Pkjfl, Final WriteCF Pkj[l, var bitstringMk f [X I)
begin
for every y E RS ;) do (s (1)

sj +- ReadsFromCFPk j[y, si] (2)
i f (s j is not marked) and (FinalWri teCFPkj[y > s i) then (3)

FindRelatedCode(sj , ReadsFromCF PAjU, FinalWriteCFPkjD, bitstringMk f [z]) (4)
if si is not marked then (5)

set bit si in bitstringMt f [X I to 1 (6)
if (CondBlkMk f [si]-starl != O) then !!! si IS IN THE CONDITIONAL BLOCK (7)

push si into condqueueMkf (8)
Let k be such that k E WS(si) (9)
for every s, in which si = ReadsFromCFPk j[k , s j] d o (10)

if sj is not marked then (11)
FindRelatedCode(si, ReadsFromCFPkj[l, FinalWriteCFPk jO, bitstringMk f [X I) (12)

st + FinalWriteCFPkj[k] (13)
if st is not rnarked then (14)

FindRelatedCode(st , ReadsFromCFPk ju , Final WriteC FPk jO, bit st ring M k f [z]) (15)
end

Figure 6.1 1: Procedure FindRelatedCode for Corn plex Met hods

statements to each z E R S (~ !) are searched for along al1 possible control flow paths in

mi. In addition, if any statement si that is directly or indirectly related to x, is within a

conditional block, al l statements in that conditional block are considered to be related to x.

The FindRelatedCode procedure has been slightly rnodified to find related statements such

as si and put them in condqueueMk f (Figure 6.11 Lines 5-8). The Bitstring procedure

pops such s tatements from condqueueMk f , searches for the beginning and the end of t h e

conditional block associated with si, and processes d statements within that conditional

block for re-execution (Figure 6.10 lines 8- 15).

Chapter 7

Conclusions and Future Work

The purpose of this research is enhance concurrency in a multiversion environment. Multi-

versioning in an objectbase systems can also increase concurrency and enhance reliabiiity.

The taxonomy presented in Chapter 1 determines the environments where t his research is

applicable. The three dimensions of the taxonomy are historical, multiversioning, and data

complexity. The historical dimension distinguishes the system where no historical record of

the data is preserved versus the system where several snapshots of the data are produced

as the data changes overtime. The multiversioning dimension shows the difference between

the systems where several transient and working versions of data and/or schema can be

created against the systems where only a single copy of each data and/or schema exist. The

data complexity dimension compares the complexity of data between the object-oriented

and conventional data models in terms of the structure and behavior of data.

C hap ter 2 reviewed fundamental terminologies such as transaction, his tory, serializabil-

ity, recovery, and reliability. The research environment is an ob ject base. Object data models

are characterized by t heir support for encapsulation, aggregation, and inherit ance. The spe-

cific issue of concurrency control in objectbase systems is the key factor in motivating this

research.

Chapter 3 presented the model. Two types of transactions were defined: user trans-

Chapter 7. Future Work

actions and version transactions. User transactions cannot directly access the ob ject base.

Method invocations are converted to version transactions by the system. A version trans-

action is analogous to the nested transaction model. Versions of objects are created as

transactions become active in the system. Versions are maintained in secondary s torages.

Ail of the data manipulations of transactions are done against the versions. Eventuaiiy,

versions may be disposed and purged from the system; or, they become persistent.

The architecture presented in Chapter 4. It contained three components: the Trans-

action Processor, the Version Processor, and the Validation Processor. The Transaction

Processor accept s user transactions from the user, produces a set of versions transactions

and passes the version transactions to the Version Processor. The Version Processor cre-

ates versions of the objects required by the version transactions, and executes the versions

transactions against these versions. When all of the version transactions of a user trans-

action terminate, the Version Processor notifies the Validation Processor. The Validation

Processor checks for the validity of the user transaction. A user transaction is valid if iî

has not read any stale data during its life time. If this is the case, the user transactions is

commit ted; ot herwise, the user transaction is reconciled.

Reconciliation was covered in Chapters 5 and 6. Two types of reconciliation were

introduced: simple reconciliation and complex reconciliation. Simple reconciliation is done

based on the information captured during the run time and it is an attempt to achieve a

serializable schedule by changing the commit order of the currently committed transaction.

This change of the commit order is subject to the condition that both intra-object and

inter-ob ject serializabilities are guaranteed.

Complex reconciliation is done based on static analysis information. The idea is to find

the operations of an unsuccessful user transaction which have been influenced by the stale

data and re-execute them. Based on the data dependency analysis, reconciliation procedures

are generated for the ob ject met hods; t hereby, enhancing concurrency in rnultiversion ob ject

systems. Reconciliation procedures accept a set of "incorrect" data items and ensure t heir

consistency. We showed how a compiler can generate the reconciliation procedures based

Chapter 7. Future Work 14 1

on static analysis information. Ln brief, this dissertation made the following contributions:

1. Provided a taxonomy for reasoning about transactions in a multiversion ob ject base.

2. Defined a computational mode1 for multiversion object bases.

3. Defined a new correctness criterion cailed value-serializabiiity and argued about its
feasibility.

4. Detailed the implementation of the depends function which has a major role in intra-
UT serialization.

5. Proposed a concurrency control algorithm and described its implementation.

6. Proposed two types of reconciliation algorithms, simple reconciliation and complex
reconciliation, to ensure t hat transactions commit in the absence of failure.

7. Argued about the correctness and suitability of the algorithms to the problem.

Algorit hm Enhancements

Both the basic algorithm presented in Chapter 4 and the reconciliation algorithms are

subject to improvements. For example, throughout this thesis, stale data are assumed to be

detected by the Validation Processor after the transaction terminates. The problem is that

a user transaction which reads the stale data at the eariy stage of its execution continues

executing against the incorrect information to the end. Therefore, system time and resources

used for the transaction are wasted. The algorithm can be modified to be a mixture of both

pessimistic and optimistic approaches. Then it may be possible to detect the stale data

before the transaction terminates completely to improve the overd performance.

As another example, r ecd that a active version of user transaction UT; can be promoted

if it is ensured that UTi can be comrnitted. Further, UTi can be comrnitted if the Decision

Manager ensures that all of the active versions referenced by UT, are valid. Thus, when

an active version di is vaüdated, it must wait for the validation of other versions before

it is promoted. During this period, many new transactions may obtain copies of the last

committed version from object f d y f which do not indude the changes from di.

Chap ter 7. Future Work

Figure 7.1: Re-execution of statements in a loop

One solution is that once a new v f j for transaction UT, is created, its content is merged

wit h the corresponding active versions of objects for f which have been validated but they

are waiting t o be promoted. The problem with th& approach is that if a failure occurs

cascade aborts rnay be required. However, if we assume that failures do not occur frequently,

the advantages of this approach rnay overweight its disadvantages.

Reconciliation algorithms rnay also be improved. In simple reconciliation, we have shown

that a new committed version is inserted somewhere in the version-chain of its corresponding

object family. Insertion does not change the order of the other commit ted versions in the

chah with respect to each other. R e c d that simple reconciliation cannot be performed if

an active version can be inserted anywhere in the version-chain of its corresponding object

family. However, it rnay be possible to insert the active version in the chah, if some of the

commit ted versions in the chah are re-ordered; t hereby, enhaiicing coccürrency.

Complex reconciiiation assumed that if a code in a conditional block should be re-

executed, every code in the block shodd also be re-executed. This is unnecessariîy restric-

tive. Consider Figure 7.1. Suppose variable b is stale and every code related directly and

indirectly to b must be re-executed. In Figure 7.1A, the number of iterations of the while

loop depends on the value of b. Therefore, if the number of loop iterations changes during

the re-execution, it rnay effect the result of the operation of other statements which rnay not

Chap ter 7. Fu t ure Work 143

even be related to 6. On the other hand, Figure 7.1B shows that the number of iterations

in the loop is determined by the value of c. Note that c is not related to the stale data b.

Then as long as c is not stale, the number of iterations during the re-execution remains as

it had during execution. If re-execution does not change the number of iterations in the

loop, it is not necessary t o re-execute statements s*, SJ, and ss, when b is detected to be

the oniy stale data. The complex reconciliation algorithm should be improved to reduce

the unnecessary overhead involved in the re-execution of such a conditional blocks.

Future Work

Implementation

Although we provided the pseudo code for most of the routines in t his thesis, the actual

implementation remains a topic of the future research. Before the system preseated in this

thesis is implemented optimizing compiler where information from static andysis and issues

related to data dependency c m be obtained, should be buiit.

Recovery

Beside concurrency control, another important aspect of transaction management is

reliability and recovery. Usually, when we attempt to enhance the concurrency control

algorithm, reliability is neglected because it is considered orthogonal. However, recovery

algorithm should be provided t o guarantee reliable transaction executions.

In traditional database system, the scope of the recovery is the entire database. When

a failure occurs, new transactions rannot be submitted to the system unless the database

is back to a consistent state. This system perrnits both transaction nesting and version

tools be used to limit the scope of the recovery. Therefore, in case a failure occurs, new

transactions can execute while recovering ot her user and/or version transactions.

Since we have two levels of abstractions, user and system level, the computational mode1

may be improved to provide definitions for recoverable, avoid cascading aborts, and strict

Chapter 7. Future Work 144

user transactions as w d as definitions for recoverable, avoid cascading aborts, and strict

version transactions.

One obvious recovery solution is that it is possible t o purge the active versions in the

unstable store and restart the transactions. This might not always be a feasible solution

when the transactions are already terminated and are being validated by the Validation

Processor. Therefore, some form of recovery scheme rnay be required. For example:

logs to coordinate the execution of user transactions,

logs to coordinate the execution of version transactions of a particular user transaction,
and

logs to coordinate the execution of version transactions accessing a specific active
version.

The recovery algorithms provided for advanced transaction models may provide solutions

to the reliability and recovery issues [Mos87, RM89, Wie941.

Ot her Areas

Some work in this thesis can be extended and combined with other areas of research.

For example, as it is done in temporal databases, we have added validation time [SAM] to

the committed versions. Thus queries can be issued on past data to provide the user with

historicai information.

Further, in the taxonomy presented in Chapter 1, it is possible to develop a system

where multiple versions of schema can be supported. Throughout this thesis the schema

remains unchanged during the run tirne. This problem may be solved by having more than

one version of schema. The active transactions continue their execution against the old

schema, and the new transactions can be executed against the new schema. The trans-

action management should be improved t o coordinate the serialization order between the

transactions which are running under different versions of the schema.

Finaliy, our computational mode1 and the architecture can be improved to be used for

dist ributed environments. In some distributed systems, data is replicated in different sites.

Chapter 7. Future Work 14.5

Eventudy, because of a problem such as a node or a link failure, the data at some sites

may become stale. Thus some type of reconciliation rnay be required to make the states of

these sites consistent with the states of other sites in the database.

Bibliography

[AA92]

[ABD+89]

[ACL87]

[ASUS61

[Bad791

[BB89]

[BBGSS]

[B D Kg21

[BG8 11

[BG83]

[BG H871

[B H R80]

[BM76]

[BM91]

D. Agrawal and A. El Abbadi. A Non-Restrictive Concurrency Control for Object-
Oriented Databases. In Proceedings of 3rd Internaiional Conference on Extending Data-
base Technology, Vienna, Austria, pages 469482, 1992.

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The
Object-oriented Database System Manifesto. In Proceeding of First International Con-
ference Deductive and Object-Oriented Databases, pages 40-57. Elsevier Science Pub-
lisher, B.V. Amesterdam, 1989.

R. Agrawal, M. Carey, and M. Livny. Concurrency Controi Performance Modeling:
Alternatives and Implications. ACM Transactions on Database Systems, 12(4):609-654,
December 1987.

A. Aho, R. Sethi, and J. Ullman. Compilers Principles, Techniques, and Tools. Addison-
Wesley Publishing Company, 1986.

D. Badal. Correctness of Concurrency Control and Implementations in Distributed
Databases. In IEEE Proceeding of COMPSAC Conference, pages 588-593. I E E E .
November 1979.

F. Bancilhon and P. Buneman. Version Control in an Object-Oriented Architecture. In
W. Kim and F. Lochovsk editors, Objeci-Orzented Concepts, Databases, and Applica-
tions, pages 451-458. ~d&on-wesley, Reading, Mars., 1939.

C. Beeri, P. Bernstein, and N. Goodman. A Mode1 for Concurrency in Nested Transac-
tions Systems. Journal of Associaiion for Computing Machinary, 36(2):230-269, 1989.

F. Bancilhon, C. Delobel, and P. Kanellakis. Building an object-oriented Database Sys-
tems, the s t o q of 02- Morgan Kaufmann Publishers, San Mateo, California, 1992.

P.A. Bernstein and N. Goodman. Concurrency Control in Distributed Database Sys-
tems. ACM Computing Surveys, 13(2):185-221, June 198 1.

P.A. Bernstein and N. Goodman. Multiversion Concurrency Control-Theory and Algo-
rithms. ACM Transaciions on Databnse Systems, 8(4):465-483, December 1983.

P. Bernstein, N. Goodman, and V. Eadzilacos. Concurrency Control and Recovery in
Database Systems. Addison Wesley, Reading, Massachusetts, 1987,

R. Bayer, H. Eieller, and A. Reiser. Parallelism and Recovery in Database Systems.
ACM 7kansactions on Daiabase Systems, 5(2):139-156, 1980.

J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. Arnerican Elsevier
Publishing CO., INC., 1976.

E. Bertino and L. Martino. Object-Oriented Database Management Systems: Concepts
and Issues. IEEE Cornputer, 24(4):33-47, Aprii LY91.

Chapter 7. Future Work

[BOEI+9 11 A. Buchmann, T. Ozsu, M. Hornick, D. Geogakopoulos, and F. Manola. A Transaction
Mode1 for active Distributed Object Systems. In Ahmed K. Etrnagarmid, editor, Data-
base Transaction Models for Adganced Applicaiions, chapter 5, pages 123-158. Morgan
Kaufmann Publishers, 1991.

[Car83a] M. Carey. Modeling and Evaluation of Database Concurrency Control Algon'tlrms. Ph.D.
dissertation, Cornputer Science Div .(EECS) , Univ . of California, Berkeley, 1983.

[Car83b] M. Carey. Multiple Versions and Performance of Optirnistic Concurrency Control. Tech-
nical Report 517, University of Wisconcin-Madison, October 1983.

[Car871 M. Carey. Improving the Performance of an Optirnistic Concurrency Controi Algo-
rithrn Through Timestamps and Versions. IEEE Transactions on Soffurare Engineering,
13(6):746-751, June 1987.

[Car891 M. Carey. Storage Management for Objects in Exodus. In W. Kim and F. Lochovsky, ed-
itors, Object-Oriented Concepts, Databases, and Applications, pages 341-369. Addison-
wesley, Reading, Mass., 1989.

[CCHKSO] C. Callahan, A. Carle, M. Hall, and K. Kennedy. Constructing the Procedure Cal1
Multigraph. IEEE Transactions on Sofiware Engineering, 16(4):483-487, April 1990.

[CFLN82] A. Chan, S. Fox, W. Lin, and A. Nori. The Implementation of an Integrated Concur-
rency Cont roi And Recovery Scheme. In Pmceeding of the ACM SIGMOD International
Conference on the Management of Data, pages 184-191, 1982.

[CG851 A. Chan and R. Gray. Implementing Distributed Read-Only Transactions. IEEE Trans-
actions on Sojiware Engineering, 1 l(2):205-212, February 1985.

[CK86] H. Chou and W. Kim. A Unifying Framework for Version Contirri in a CAD. In Pro-
ceeding of the 12th International Conference on VLDB, pages 336-344. Microelectronics
and Corn puter technology Corporation, 1986.

[CM861 M. Carey and W. Muhanna. The Performance of Multiversion Concu:;.ency Control
Algorithrns. ACM transactions on Computer Systems, 4(4):338-378, Novernber 1986.

[DE891 W. Du and A. Elmagarmid. Quasi Serializability: A Correctness Criterion for Global
Concurrency Control in InterBase. In Proceedings of Very Large Data Bases (VLDB),
pages 347-355, 1989.

[EGLT76] K. Eswaran, J . Gray, R. Lorie, and 1. Traiger. The Notions of Consistency and Predicate
Locks in a Database System. Communications of the ACM, 19(11):624 - 632, November
1976.

[FLMWSO] A. Fekete, N. Lynch, M. Merrit, and W. Weihl. Commutativity-based Locking for
Nested Transactions. Journal of Computer and Sysiem Sciences, 41(1):65-156, 1990.

[GB94a] P. Graham and K. Barker. Enhancing Intra-transaction Concurrency in Object Bases.
Journal of computing and information, 1(1):795-811, May 1994.

[GB94b] P. Graham and K. Barker. Effective Optimistic Concurrency Control in Multiversion
Object Bases. In Proc. Internationa(Symposium on Object Oriented Methodologies and
Systems (ISOOMS), volume 858, pages 313-328. In Springer-Verlag Lecture Notes in
Cornputer Science, September 1994.

[GB95] P. Graham and K. Barker. Improved Scheduling in Object Bases C'sing Statically
Derived Information. The Internaiional Journal of Microcomputer Appl?'cations (IJMA),
14(3):114-122, 1995.

[Go184] A. Goldberg. Smalltalk-80: The Interactive Programming Environment. Addison-
Wesley, Reading, Massachusetts, 1984.

[GR943 Gray and Reuter. Transaction Processing Concepts. Addison-Wesley Publishing Com-
pany, 1994.

Chapter 7. Future Work 138

J. Gray. The Transaction Conce t: Virtues and Limitation. In Proceedings of the 7th
Internalional Conference on VLBE, pages 144-154, 1961.

P.J. Graham. Applications of Static Anafysts to Concurrency Controi ans Recovery in
Objectbase Systems. Ph.D. thesis, University of Manitoba, 1994.

P. Graham, M. Zapp, and K. Barker. Concurrency Control in Object-Based Systems.
Technical Report technical report: 92-07, University of Manitoba, June 1992.

A. Hadaegh and K. Barker. Value-serializability and an Architecture for Managing
Transactions in Multiversion Objectbase Systems. In Proceeding of third international
workshop on Advances in Databases and Information Systems, Moscow, pages 126 -133.
September 1996.

T. Hadzilacos and V. Hadzilacos. Tramaction Synchronization in Object Bases. Journal
of Computer and System Sciences, 43(1):2-24, lÇ51.

T. Hadzilacos and C. Papadimitriou. Algorithmic Aspects of Multiversion Concurrency
Control. Journal of Computer and System Sciences, 3(3):297-310, 1986.

A.R Hurson, S.E. Pakzad, and J. Cheng. Object-Oriented Database Management Sys-
tems: Evolution and Performance Issues. IEEE Cornput er Society Press. [First appeared
in IEEE Cornputers, 26(2):48-60, 1993.

T. Harder and K. Rothermel. Concurrency Control Issues in Kested Transactions. iBM
Research Report RJ 5803 (585331, Almaden Research Center, 1987.

T. Harder and K. Rothermel. Concurrency Control Issues in Nested Transactions. VLDB
Journal, 2(1 j:39-74, 1993.

W. Kim and H. Chou. Versions of Schema for Object-oriented Databases. In Proceedings
of the 14th International Conference on VLDB, pages 148-159, 1988.

[KGBWO] W. Kim, J.F. Garza, N. Ballou, and D. Woelk. Architecture of the Orion Next-
generation Database System. IEEE Transactions on k-nowledge and Data Engineenng,
2(1):109 - 124, 1990.

H. Kwon and S. Moon. Reverse Serializability as a Correctness Criterion For Optimistic
Concurrency Control. Microprocesstng and Microprogramming, 40(10-12):759-762, De-
cember 1994.

H.T. Kung and J .T. Robinson. On Optimistic Methods for Concurreiicy Control. A CM
Traasactions on Database Systems, 6(2):213 - 226, June 1981.

G. Lausen. Forma1 Aspects of Optimistic Concurrency Control In a Multiple Version
Database System. Information Systems, 8(4):291-301, February 1983.

C. Mohan. Commit-LSN: A Novel and Simple Method for Reducing Locking and Laching
in Transaction Processing Systems. In Proceedings of lôih VLDB Conference, pages 1 -
14, 1990.

T. Morzy. The Correctness of Concurrency Control for Multiversion Database Systems
with Limited Number of Versions. In Proc. of 9th Int. ConJ on Data Engineering, pages
595-605, Vienna, 1993. IEEE Computer Society Press.

J.E.B. Moss. Nested Transactions -
The M I T Press, 1985.

An Approach to Reltable Dastributed Cnrnputing.

J .E.B Moss. Log-based Recovery for Nested Transactions. In Proceeding of the 19th
International Conference on VLDB, pages 427-432, 1987.

C. Mohan, E. Pirahesh, and R. Lorie. Efficient and Flexible Methods for Transient
Versionin of Records to Avoid Locking by Read-Only Transactions. In Proceeding
of ACM ~ I G M O D Int. Con/. on Management of Data, pages 124-133, IBM Alrnaden
Research Center, San Jose, CA 95120, USA, 1992.

Chap ter 7. Fu t ure Work 149

[Nak92]

[N RZ921

[OS911

[Orsgq

Pap861

[P K84]

[PKHS8]

~ 9 2 1

[Ree78]

[RG WO]

[RH901

[RKS93]

[RM89]

[Ryd791

[SA861

[SLRTG]

[S R8 11

[SRK9 11

[S t a941

T. Nakajirna. Commutativity Based Concurrenc Control for Multiversion Objects. In
Proceedings of the International Workshop on &siributcd Object Monagemenl, pages
101-1 19, 1992.

M.H. Nodine, S. Ramaswamy, and S.B. Zdonik. A Cooprative Transaction Mode1 for
desigir Databases. In Ahmed K. Elmagarmid, editor, Daiabase If-ansaction Models for
Advanced Applications, chapter 3. Morgan Kaufmann Publishers, 1992.

P. Butterworth A. Otis and J . Stein. The Gemstone Object Database Management
System. Communications of the ACM, 34(10):64-77, October 1991.

M.T. &su. Transaction Models and Transaction Management in O bject-Oriented Data-
base Management Systems. In A. Dogac, M.T. ozsu, A. Biliris, and T. Sellis, editors,
Advances in Object-Oriented Daiabase Systems, volume 130, pages 147-184. NATO AS1
Series: Springer-Verlag , 1994.

C.S . Papadimitriou. The Theoy of Databiise Concurrency Control. Cornputer Science
Press, 1986.

C. Papadimitriou and C. Kanellakis. On Concurrency Control by Multiple Versions.
ACM Transactions on Database Systems, 9(1):89-99, 1984.

C. Pu, G. Kaiser, and N. Hutchinson. Split-transactions for Open Ended Activities. In
Proceedings of the 14th International Conference on VLDB, pages 26-37, August 1988.

R.F. Resende and A. El Abbadi. A Graph Testing Concurrency Control for Object
Bases. NSF lRI-917904, 1992.

D. Reed. Naming and Synchronization in a Decentralized Computer System. Technical
Report MIT/LCS/TR-205, MIT Laboratory for Computer Science, 1978.

T.C. Rakow, J. Gu, and E. Neuhold. Serializability in Object-Oriented Database Sys-
tems. In CH~~~O-?/OUUO/OI~ d@I99O IEEE, pages 112-120, Dolivostrabe 15, D-6 100
Darmstadt, West Germany, 1990. Integrated Publication and Information Systems In-
stitute (IPSI).

M. Stonebraker L. Rowe and M. Hirohama. The Implementation of Poatgres. IEEE
Transuctiorcs on Knowledge and Dota Engineering, 2(1):125-141, March 1990.

R. Rastogi, H. Korth, and A. Silberschatz. Strict Histories in Object-Oriented Database
Systems. ACM PODS, pages 288-299, 1993.

K. Rothermel and C. Mohan. ARIESINT: A Recovery Method Based on Write-ahead
Logging for Nested Transactions. In Proceedings of the 15th International Con ference
on VLDB, pages 337-346, 1989.

B. Ryder. Constructing the Cal1 Graph of a Program. IEEE Transactions on Sofiware
Engineering, 5(3):216-225, 1979.

R. Snodgras and 1. Ahn. Temporal Databases. IEEE Computer, 19(9):35-42, 1986.

R. Stearns, P. Lewis, and D. itosenkrants. Concurrency Control for Database Systems.
In IEEE Conference of Foundation of Computer Science, pages 19-32, November 1976.

R.E. Stearns and D.J . Rosenkrantz. Distributed Database Concurrency Control Using
Before-Values. In Proceeding of the A CM-SIGMO D Con ference on Management of Dut a,
pages 74-83, June 1981.

A. Sheth, M. Rusinkiewicz, and G. Karabatis. Using Polytransactions to Manage Inter-
de endent Data. In Ahmed K. Elmagarmid, editor, Daiabase Transaction Models for
~ A a n c e d Applicaiions, cbapter 14, pages 555-581. Morgan Kaufmann Piiblishere, 1991.

T.A. Standish. Data Structure .4lgorithm, a?zd Sofiware Principles. Addison-Wesley
Publishing Company, 1994.

Chap t er 7. Fu t u re Work 1.50

W.E. Weihl. Commutativity-Based Concurrency Control for Abstract Data Types.
IEEE Transactions on Computers, 3 ï (l 2) : 1488 - 1505, 2988.

G . Weikum. Principles and Realization Strategies of Multilevel Transaction Manage-
ment. ACM 7hnsactions on Database Systems, 16(1):132-180, March 1991.

C. Wieler. Reliable and Recovemble Transactions in Object Bases. Master's thesis.
University of Manitoba, 1994.

K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris Architecture and Implementation.
IEEE Transactions on Knowfedge and Data Engineen'ng, 2(1):63-75, 1990.

-M. Wolfe. Optimizing Supercompilers for Supercornpuiers. . MIT Press, 1989.

G. Weikum and H. Schek. Concepts and Applications of Multilevel Transactions and
Open Nested Transactions. In Ahned K. Elmagarmid, editor, Database Transaction
Models, chapter 13, pages 5 16-553. Morgan Kaufmann Publishers, 199 1.

K. Wu, P. Yu, and M. Chen. Dynarnic Finite Versioning: An Effective Versioning
Approach to Concurrent Transaction and Query ~rocessing.1063-6382/93 IEEE,
577-586, 1993.

M. Zapp. Concurrency Control in Object-Based Systems. Technical Report technicd
report: 93-03, University of Manitoba, July 1993.

M.E. Zapp and K. Barker. Modular Concurrency Control Al
In International Symposium on Ap lied Corn uting: Researc
tuare Engineering, Databases, and Bistributel'stpterns, pages
October 1993.

[ZB93b! M.E. Zapp and K. Barker. On Concurrency Control in Object Bases. In Mid-Continent
Infonnction Systems Con ference (MISC'9$), pages 91-97, Fargo, USA, May 1993.

[ZB93c] M . E . Zapp and K. Barker. The Serializability of Transaction in Object Bases. In
Proceedings of the Iniernational Conference on Computers and Information, pages 428-
432, Sudbury, Canada, May 1993.

