Multiversion Concurrency Control in Objectbased Systems

by

Ahmad Reza Hadaegh

A thesis
presented to the University of Manitoba
in partial fulfilment of the
requirements for the degree of
Doctor of philosophy
in
Computer Science

Winnipeg, Manitoba, Canada, 1997

©Ahmad Reza Hadaegh 1997

ivl

National Library
of Canada

Acquisitions and
Bibliographic Services
395 Waellington Street

Ottawa ON K1A ON4
Canada

du Canada
Acquisitions et

Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre riférence

Qur file Notre rétérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-23605-6

Canadi

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

L2211

COPYRIGHT PERMISSION PAGE

MULTIVERSION CONCURRENCY CONTROL IN OBJECTBASED SYSTEMS

BY

A Thesis/Practicam submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfiliment of the requirements of the degree

of

DOCTOR OF PHILOSOPHY

Ahmad Reza Hadaegh 1997 (¢)

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis
and to lend or sell copies of the film, and to Dissertations Abstracts International to publish
an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or indi-
viduals for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or individuals for
the purpose of scholarly research.

il

The University of Manitoba requires the signatures of all persons using or photocopying
this thesis. Please sign below, and give address and date.

Abstract

Current approaches to enhancing concurrency in database systems have focused on devel-
oping new transaction models that typically demand changes to either the atomicity, con-
sistency, or isolation properties of the transactions themselves. Indeed much of this work
has been insightful but most of these attempts suffer from being either computationally in-
feasible or requiring the transaction designer be sufficiently knowledgeable to determine. d
priori, how the application semantics must interface with the transaction model (see [Wei88]
or [Wei91] for examples). Our approach exploits an object-oriented world and is different
than others because the transaction designer is not expected to have intimate application
knowledge; this load is placed on the transaction system which must determine, by static
analysis, how to maintain database consistency.

We adopt an extremely aggressive approach whereby each transaction is given its own
copy (version) of all of the objects it needs to execute so it can proceed without interruption
from other processes running on the same system. This dissertation describes an overall
architectural model to facilitate multiversion objects that are explicitly designed to enhance
concurrency. The reader should be aware that version management has been used in the
object literature in several ways, most commonly dealing with design issues, but our goal
here is related to concurrency control and reliability so care must be taken to ensure the
reader is not misled by this overloading of terminology. Within the context of concurrency
the key aspects addressed by this thesis are: 1) A new correctness criterion is described
that emits more histories than conflict serializability and is computationally tractable; 2)
An architectural model is developed to support multiversioning that provides the well-
known ACID transaction properties; 3) An optimistic concurrency control algorithm that
functions on this architecture is described and demonstrated to be correct with respect to
the new correctness criterion; 4) The algorithm is enhanced to examine the history of past
versions with the goal of inserting a committing transaction at a time earlier in the sequence
when it would have been valid if other, later transactions, had not completed before this one
attempted to commit; and 5) Based on static analysis information, algorithms are developed
to modify the compiler to generate reconciliation procedures automatically from the initial
transaction specification.

iv

Acknowledgements

Finally the painful days of studying for my PhD are over. I feel great and I am ready to
concentrate on my next destination. Before I close this chapter of my life I owe acknowl-
edgements to some people.

First, I would like to thank my advisor Dr. Ken Barker, whose determination, motiva-
tion, ingenuity, and management helped me getting through my PhD. I will never forget
his encouragement and support.

[would also like to thank the members of my PhD committee, Dr. Randal Peters, Dr.
Mark Evans, Dr. Robert McLeod, and my external examiner Dr. Vadim Doubrovski for
their insight and their comments. I am especially grateful to Dr. Peters for the time he
spent in discussion with me and giving interesting comments on my research.

Thanks are also due to the members of the Advanced Database Research Laboratory,
especially Dr. Peter Graham, who read drafts of articles related to my thesis and motivated
my thoughts at early stage.

I would like to express my sincere gratitude to my wife, my parents and my wife’s parents
for their encouragement and love that gave me strength to do this dissertation.

Finally I would like to dedicate this masterpiece to my wife Sahar and my son Miad
who have waited patiently in this cold land for the day when the snow melts and my vehicle
can progress down the road of Phd. I also would like to dedicate this thesis to my parents
Reza Hadaegh and Parvin Farahnak through whose prayers and tears Almighty Allah (my
beneficent and merciful God) turned our dream into a reality.

Contents

1 Introduction

2

1.1 Motivation . . . & v v v i e et e
1.2 TaXONOMLY . . « v v v v v v v et vttt et et e e e e m e e e
1.3 Outline v i e

Related Work

2.1 Classical DataModels
2.1.1 Flat Transaction v v v vttt
2.1.2 Histories and Serializability
2.1.3 Reliability e
2.1.4 Concurrency Control

2.2 Nested Transactions ¢« i vt v i vt vt e et e e e e e
2.2.1 Concurrency Control

2.3 Object-Oriented Data Models
23.1 TheConcept ittt
2.3.2 Prototypes i i e e e e e e e e e e e e
23.3 Transactionmodels
234 Concurrency Control,

2.4 Multiversion DataModels
2.4.1 Histories and Serializability
24.2 Concurrency Control
2.4.3 Multiversioning in Objectbases
2.4.4 Concurrency control in Multiversion Objectbases

vi

O D e

vil

2.5 Performance Comparison 10
2.6 SUMMATY o o vt e ot et e e e et e et e e e e e e e 41
The Computational Model 43
3.1 Fundamental Concepts and Definitions 43
3.2 Versionable Objects e 46
3.3 Tramsaction Model 48
3.3.1 User Transactions, 49
3.3.2 Version Transactions 49
3.4 Serializability e 50
3.4.1 Value Serializability 51
3.4.2 1Value Serializability 59
3.5 DataDependency e 66
3.5.1 Definitions Related to Concurrency Control 67
3.5.2 Static Information L L e 69
3.5.3 Thedepends Function 76
3.6 Summary of Assumptions L oo . 80
The Architectural Model 83
4.1 The Architecture i i e e e e e 83
4.1.1 The Architectural Model 85
4.2 The Implementation, 91
4.3 Correctness of the Algorithm 107
4.3.1 Version-Level Concurrency Control 107
4.3.2 User-Level Concurrency Control 109
Simple Reconciliation 110
5.1 Decision Manager e 112
5.1.1 Intra-object Serializability 112
5.1.2 Inter-Object Serializability 115
52 Commit Manager e 118
5.3 Retrieving Historical Information 121

viil

6 Complex Reconciliation 124
6.1 DetectingStaleDatao 126
6.2 Generating Reconciliation Routines 130

6.2.1 Simple Methods 0. 130
6.2.2 Complex Methods, 134

7 Conclusions and Future Work 139

7.1 Algorithm Enhancements 141

7.2 Future Work o . e e e e e e e e e e e e e e 143

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Historical Multiversion Objectbase Design Taxonomy 7
Relationship between histories v ov vt 17
Zapp and Barker’s architecture o L. 30
Zapp and Barker’s expanded architecture 31
An abstract view of active and committed versions of an object 47
serialization graphs for conflict and value-conflict serializabilities 56
Relationship between value, view, and conflict serializabilities 57
Reads-from edges of a serialization graph for a MV history 63
Control flow graph of a program segment 71
A connected and a disconnected dependence graph 75
The depends function, 7
dependency of the statements in a method 79
Logical structure of committed versions in an object family 84
The Main Components of the Architecture 85
The Transaction Processor. 86
The Version Processor 87
The Validation Processor 88
Insertion of an active version in thechain 89
The Architecture it e 92
The User Transaction Manager 94
The Method Scheduler 95

4.10 The Version Transaction Manager 97

4.11 The Execution Manager 99
4.12 The Decision Manager ittt it nnn.. 101
4.13 Revision may be required before promotion af active version 102
4.14 The Commit Manager 104
4.15 Revision of an updated active version 105
4.16 Intra-UT Concurrency Control 108
5.1 Reconciliation isrequired o0 oL, 111
5.2 Finding a position in thechain 113
5.3 Possible cases when reconciliation may or may not succeed 114
5.4 The Decision Manager doing simple reconciliation 116
5.5 Example of a possible inter-object serialization Problem 117
5.6 The Commit Manager doing simple reconciliation 119
5.7 Propagation of the values to higher level committed versions 120
5.8 Retrieving a data item at a particular time 123
6.1 Situation when Reconciliation is required 125
6.2 An invalid version may effect other valid versions 128
6.3 Determining the Infected Active Versions Referenced by a User Transaction 129
6.4 The Three Address Code for m{ and Associated Data Structure 132
6.5 The Related Statements 133
6.6 Procedure BitString for Simple Methods 134
6.7 FindrelatedCode Procedure for Simple Methods 135
6.8 The Reconciliation Procedure for Method m{ 135
7 136
6.10 Procedure BitString for Complex Methods 137
6.11 Procedure FindRelatedCode for Complex Methods 138

7.1 Re-execution of statementsinaloop 142

Chapter 1

Introduction

Multiversioning for the purpose of enhancing concurrency and reliability is not a completely
unexplored topic (see [BGH87, Nak92, Mor93, WYC93]), but the approach has been less
than successful primarily because of the application domains where it has been proposed.
For example, using a complicated multiversioning scheme to manage a “short-lived” busi-
ness transaction like an account balance update is not justifiable because of the amount of
overhead and relatively simple data structures involved. These application domains demand
that very little time be spent in runtime overhead to support multiversioning and there is
little to be gained from spending time before hand preparing for a partial rollback when
complete re-execution could occur much more rapidly. However, current transactions and
the systems they execute on are becoming increasingly complex and their execution times
have increased substantially. “Long-lived” transactions such as those found in design sys-
tems, muitidatabase systems, or cooperative information systems will benefit greatly from
the ability to rollback to a consistent state and then proceed forward without the need to
completely re-execute. This dissertation assumes that the environment of interest is of the
more complicated variety. We now digress briefly to provide a framework for the rest of the
dissertation. The balance of the introduction reviews several issues related to the myriad

themes raised in this dissertation.

Chapter 1. Introduction 2

Traditional multiversion databases environments have used data versioning for historical
purposes as well as for issues related to transaction management. Data versioning reduces
the overhead involved in recovery and impacts concurrency especially in environments where
contention between read-only and update transactions is problematic. This dissertation
addresses the problem of concurrency control in a multiversion objectbase environment.
An objectbase provides a persistent repository for data stored as objects. Objects contain
structure and behavior. The structure is the set of attributes encapsulated by the objects.
An object’s behavior is defined by procedures called methods. A method’s operations can
read or write an attribute, or invoke another method, possibly on another object. The
fundamental difference between traditional data models and those supported by object-

oriented systems is the encapsulation property of the objects.

Users’ requests submitted to a system are called user transactions. A user transaction
includes a set of messages sent to the objects to execute the routines in the objects. Ob-
jectbase systems are provided with transaction management facilities to control the effects

of the user transactions on the objectbase.

One aspect of transaction management is concurrency control. A concurrency control
algorithm allows transactions to interleave and shares the resources among the transactions;
thereby, utilizing the resources and enhancing the system performance. A concurrency
control algorithm must guarantee that each transaction appears to execute atomically and
in isolation from other concurrent transactions. It must also ensure that each transaction

leaves the database in a consistent valid state.

Traditional transaction models consist of a sequence of read and write operations on
passive data. In an object-oriented system a transaction consists of a sequence of method
invocations which perform operations on object attributes on the transaction’s behalf. We
distinguish two types of transactions: user transactions and version transactions. A user
transaction is a sequence of method invocations on objects. Method executions are managed
as version transactions. A version transaction is the execution of read /write operations on a

version of an object as well as any nested method invocations. Since the nested invocations

Chapter 1. Introduction 3

are themselves managed as transactions, our model exploits nested transactions (Mos85].

Concurrent execution of a set of transactions must be controlled so that the final result
of the execution is equivalent to the result of some serial execution of the transactions (i.e.
“serializable” [BGH87, GR94]). An objectbase system is provided with a scheduler that or-
ders the operations of the concurrent transactions based on a correctness criterion. Conflict
serializability and view serializability are two correctness criteria often selected for trans-
action models. View serializability allows more schedules than conflict serializability but
has been shown to be an NP-complete problem [Pap86]. Some correctness criteria devel-
oped for advanced database systems relax the restrictive properties of conflict serializability.
Examples include quasi serializability [DE89], serializability for polytransactions [SRK91],
and reverse serializability [KM94]. This dissertation introduces a new correctness criterion
called value-serializability. Value serializability is more efficient to implement than some
traditional correctness criteria and permits a greater range of schedules than those used by

computationally efficient algorithms like two phase locking.

Correctness criteria are enforced by concurrency control algorithms that ensure serial-
ization of concurrently executing transactions. Concurrency control algorithms are divided
into two broad categories: pessimistic and optimistic. Pessimistic protocols block the trans-
actions by deferring the execution of some conflicting operations. Optimistic algorithms do
not block the transactions but validate their correctness at commit time. Pessimistic proto-
cols tend to perform better when transactions usually access some common data; whereas,
optimistic protocols are more desirable when contention between the transactions is rela-
tively low. Focusing on the centralized objectbase systems, this dissertation introduces the
object versioning technique and develops related optimistic concurrency control algorithm.
The concurrency control is performed based on static information captured at pre-run time.
Our model introduces two types of concurrency control: inter-UT and intra-UT concur-
rency. Inter-UT concurrency is done optimistically and refers to the concurrent execution of
multiple user transactions. Intra-UT concurrency is performed pessimistically and refers to

concurrent execution of multiple subtransactions originated from the same user transaction.

Chapter 1. Introduction 4

Another aspect of transaction management is recovery. To make an objectbase reliable,
transaction management should ensure that a recovery mechanism is provided. An object-
base may fail in several ways, including: transaction failure, system failure, media failure,
etc. Since failures may leave the objectbase in an invalid state, recovery mechanism are
needed to ensure that no intermediate results of failed transactions remain in the object-
base and that all “lost” effects of successful transactions are propagated to the persistent
objectbase. Although recovery is closely related to concurrency control, this dissertation

does not address it in detail.

Data versioning in database systems impacts concurrency and recovery. In a multi-
version system, transactions create new data versions as they access data. This reduces
contention between transactions accessing the “same” data and thereby increases concur-
rency. Further, since transactions only affect their own versions, recovery from a failure

should be easier than in a single-version environment.

Multiversioning has been also applied to the advanced database environment [CKS86,
Nak92, GB94b, HB96]. Objects may have several versions. A version is usually created
from the object or another existing version of the object, goes through a series of changes,
and eventually may become a fixed stable version. If the number of versions exceeds a

certain limit, some versions are purged or archived in secondary storage.

1.1 Motivation

In classical databases, data are centralized and have simple structure. Since transactions
are short-lived, locking techniques usually do not defer the execution of related transactions
for a long period. Further aborting and restarting unsuccessful transactions may not be
problematic in optimistic concurrency control protocols because of the relatively small cost

of the re-execution. Therefore, conventional concurrency control is suitable and successful.

In advanced database environments, users interact with complex and possibly dis-

tributed data. Transactions are relatively long and may be executed in parallel [NRZ92] so

Chapter 1. Introduction 5

mechanisms are required to provide inter-transaction synchronization. Locking a page or
an object may unnecessarily delay the execution of some operations which in turn severely
degrades the system performance. Optimistic protocols are even less desirable for such envi-
ronment because by aborting a transaction, not only the resource and the time allocated for
the transaction is wasted, successful termination of the transaction will not be guaranteed
if the transaction is restarted. Thus a transaction may be unduly delayed before it can be

executed successfully.

This dissertation develops an optimistic concurrency control to overcome the above
limitation. When a transactions cannot be serialized at commit time, it is reconciled instead
of being aborted. Reconciliation can be simple which may involve changing the commit
order of the transactions or complez in which partial re-execution of the transactions is
required to make the result of the transactions consistent with respect to the current state

B

of the objects in the objectbase.

Object versioning techniques [Nak92, GB94b], nested transaction models [Mos85], and
static analysis information [Gra94] have significant roles in the reconciliation algorithm.
Since nested transactions are modularized, reconciliation is performed only against the
subtransactions which have referenced stale data. Therefore, nesting reduces the problem
space. Multiversioning provides a mechanism to maintain the previous state of the objects
in the objectbase. If a transaction cannot be committed relative to current state of the
objects, it might be committable relative to an older state. Pre-run time static analysis
information used to increase concurrency may also be used to reconcile the unsuccessful
transactions at commit time. Reconciliation may involve partial re-execution if the data it

used was incorrect.
This dissertation makes the following contributions:

1. Provides a taxonomy for reasoning about transactions in a multiversion objectbase.

2. Defines a computational model for multiversion objectbases and identifies the difficul-
ties encountered in providing concurrency control.

3. Proposes a two level abstraction for the system: a user level and a system level.

Chapter 1. Introduction 6

e An optimistic concurrency algorithm is provided to serialize user requests at the
user level.

e A pessimistic protocol serializes execution of system transactions at the system
level.

4. Defines a correctness criterion for serializability.
5. Proposes a concurrency control algorithm and describes its implementation.

6. Proposes reconciliation algorithms to ensure that transactions commit if no failure
occurs.

1.2 Taxonomy

The taxonomy shown in Figure 1.1 characterizes possible database environments in terms of
(1) historical, (2) complexity, and (3) multiversioning support. The data complexity dimen-
sion refers to the structural complexity of the data in a system. The historical dimension
refers to systems where some of the previous data values are preserved as the state of data
changes overtime, and the maltiversioning dimension indicates whether the data and/or the

schema are versioned in a system.

The complexity dimension divides systems into three categories: simple data, abstract
data types, and object-oriented. The point at the origin refers to conventional systems such
as relational schemes where data is collected in sets of tables each containing a collection
of formatted homogeneous data. The data is composed of primitive types such as integers

or strings and are accessed “directly” by the users.

Abstract data types (ADT) are supported by some programming languages. An abstract
data type contains a set of data and a set of operations on the data. It refers to a way of
packaging structure and their operations into a useful collection. Operations are the only
means of accessing and manripulating the data. This is also called encapsulation. ADT’s
have simple interfaces. They are implemented in arbitrary ways representation such as
arrays and pointers, but their representation is transparent to the users so they can be used

by understanding their abstract interface’s properties [Sta94].

Chapter 1. Introduction

-1

Historical

Data Complexity

Hisorical Multiversion
Objectbase Systems

Multiversioning

Figure 1.1: Historical Multiversion Objectbase Design Taxonomy

Chapter 1. Introduction 8

The next level is objectbase systems. In objectbase systems, entities are modeled as ob-
jects. Like an abstract data type, an object encapsulates a set of data and their operations.
The data defines the structure of an object and operations controlling the object’s behavior.
It is generally assumed that the behavioral aspect moves objects from one consistent state to
another. In addition, objectbase systems provide inheritance and aggregation. Inheritance
allows some objects to obtain some or all of the characteristics of other objects. Aggregated
objects, sometimes called complez objects, have hierarical structure. Complex objects in-
clude other objects which in turn may include other objects, so they can be viewed as being
nested. Complex objects may either physically contain other objects in their structure or

they may reference other objects by storing their object ids.

The second dimension is version management. This dimension includes three types of
systems: single-version data, multi-version data, and schema versioning. In a single-version
data environment, versioning does not occur. Therefore, every time a data item is modified,
the new information replaces the old. However, in a multi-version data environment versions
of data items can be preserved. New versions are created whenever data items are modified.
When data items are updated, the database may enter a temporarily inconsistent state that
is transparent to the users. Versions of data items may eventually become immutable and
they can only be changed by deriving new versions [BGH87, MPL92, Nak92]. The last point
in this dimension refers io systems which support schema versioning. Kim and Chau [KC88]
discuss the schema versioning in an object-oriented prototype called Orion [KGBW90].
They explain the implication of schema versioning in a multi-user environment. Support

for schema versioning is not the subject of this dissertation.

The historical dimension is divided into two parts: non-historical and historical systems.
Non-historical systems do not keep the previous values of data as data changes overtime.
The only records of past data that is reachable is through backup copies of the data and
transaction logs. Historical systems keep several snapshots of data. Snapshots of the data
are immutable. They indicate the evolution of data as data is modified. Snapshots are

usually produced after some modification to data [RH90]. Storage management becomes a

Chapter 1. Introduction 9

problem as the number of snapshots grows in the system. Therefore, some of the snapshots

are archived in a separate secondary storage and only brought to the system on demand.

In this dissertation, we address historical muitiversion objectbase systems in which ver-
sioning is limited to objects. Investigation of other points on the taxonomy is left as future

research.

1.3 Outline

The outline of this dissertation is as follows. The related material in Chapter 2 discusses con-
currency control in nested transactions, object-oriented data models, and multiversion data
models that will motivate this dissertation. Chapter 3 defines a computational model and
its key concepts. It also lays out the relevant concepts of data dependency and compile time
static analysis used for enhancement of transaction management. Chapter 4 illustrates an
architecture for our model, describes its components, and details its implementation. Sim-
ple reconciliation is described in Chapter 5. The conditions under which transactions may
be reconciled are presented too. Chapter 6 describes complex reconciliation and provides
the steps required to generate the reconciliation procedures. Finally, Chapter 7 makes some

concluding remarks and suggests directions for future work.

Chapter 2

Related Work

In this chapter, the fundamental terminology used in conventional databases is reviewed.
We investigate previous work directly related to this research. The structure of this chapter
is as follows: Section 2.1 provides a summary of classical transactions and transaction
management including concepts of concurrency control and recovery. Section 2.2 introduces
nested transactions while Section 2.3 presents the characteristics of object oriented models.
Transaction management and concurrency control in object based systems are also studied
in Section 2.3. Section 2.4 describes techniques applicable to multiversion database systems.

Finally, Section 2.5 makes some summary comments.

2.1 Classical Data Models

Before providing a detailed formalism, an intuitive overview is provided to guide the subse-
quent more detailed discussion. Users interact with the database by sending their requests
in the form of a transaction. Transactions are sets of read and write operations. The opera-
tions are executed against the data in the database. Executing transactions in progress are
called active transactions. An active transaction either aborts or commits. If a transaction

commits, its execution has been successful and the result of the execution persist in the

10

Chapter 2. Related Work 11

database. A transaction aborts as the result of software or hardware problems leaving the

database unchanged by the transaction’s execution.

A traditional transaction is considered correct if it supports the properties of atomic-
ity, consistency, isolation, and durability. These are known as A.C.I.D properties [Gra81].
Atomicity ensures that a transaction either completes successfully or it has no effect on the
database. Consistency requires that a successfully committed transactions must move the
database from one consistent state to another. Isolation guarantees that a transaction does
not read the intermediate results of other transactions. Finally, durability guarantees up-
dates of a committed transaction remain in the database in the face of system or transaction

failure.

The remainder of this section defines flat transactions, history, and serializability in
classical databases. In addition, we review the concurrency control protocols widely used

in these environments.

2.1.1 Flat Transaction

Flat transactions are the “application programs” used to access the data in traditional
database systems. Before defining flat transaction, we need some nomenclature. We denote
operation p of transaction ¢ as 7;p, a set of all operations of transaction i as OS;, and the
termination operation as N; € {commit, abort}. Operation 7, €{r(z), w(z)}, where r(z)
and w(z) denote read and write operations, respectively; and z refers to an arbitrary data

item in the database.

Definition 1 (Flat Transaction): A flat transaction T; is a partial order T;=(3;, <;)
where!:

1. ¥, =08:U {N:},

2. for every Tip, Tig € OS;, operating on some data item z in the database, if either one
is a w(z), Tip <i Tiq OF Tig <i Tip, and

A standard notation for a binary relation <; is a set of pairs (p, g) such that p <, ¢

Chapter 2. Related Work 12

3. V1ip, € 055, Tip <i Ni. [

Point 1 enumerates the operations in T;. Point 2 states that conflicting operations occurring
within a transaction are ordered by <;. Point 3 prevents any operations of a transaction

from occurring after the transaction terminates.

2.1.2 Histories and Serializability

A history (schedule) records the execution order of a set of transactions. It contains the
order of the operations of the transactions executed against the data in the database. The
execution order of two operations in a history is significant if they conflict. Two operations
conflict if they are executed on the same data item and one of them is a write operation.

Given T = {T4,T2,...,Ty}, a history for 7T is defined as follows:

Definition 2 (History): A history H is a partial order H = (5, <y), where:

1. 37 =U;3; where 3~ is the domain of transaction T; € 7,
2. <g2 U; <; where <; is the ordering relation for transaction T; at the DBM S, and

3. for any two conflicting operations p,q € H, either p <y q or ¢ <y p. []

Point 1 guarantees that the operations in H are precisely the operations submitted by 77,
T,, ..., T,. Point 2 refers to all operation orderings specified within the transactions. Point
3 ensures that the conflicting operations of all transactions are ordered. The definition of
history and transaction enables the discussion of serializability and reliability in a database

management system.

Correctness Criteria

A common correctness criterion used for classical transactions is Conflict serializability.
Conflict serializability guarantees that conflicting operations in a set of transactions are
executed so that transaction executions produce the same result as if they are executed

serially. Serial execution of a set of transactions in a history is defined as follows:

Chapter 2. Related Work 13

Definition 3 (Serial): A history H is serial (SR), iff (p € T;,3q € T;, where p < q) =
(Vr € T;,Vs € Tj,r < s8). |

This definition indicates that for every two transactions T; and T}, either all operations of

T; appear before all operations of T; or vice versa.

Executing transactions serially unnecessarily orders the non-conflicting operations as
well. However, transactions can interleave freely so only conflicting operations are ordered.
Before we define this concept of correctness, we must define when two histories are equiva-

lent.

Definition 4 (Conflict Equivalent): Two histories are conflict equivalent if they are defined
over the same set of transactions and identical operations of nonaborted transactions are

ordered in the same way. []

Definition 5 (Conflict Serializable): A history H is conflict serializable iff it is conflict

equivalent to a serial history. [

Serializability of a history is checked by constructing a serialization graph. For history H

over transact uns 7 = {T,T>,..., T}, we define a serialization graph for H by:

Definition 8 (Serialization Graph): The serializable graph (SG) for H, denoted SG(H),
is a directed graph SG(H) = (T',A). The nodes (I') are the transactions in 7 that are
committed in H and the edges (A) are all T; — T (¢ # j) such that some operations of T;

precede and conflict with some operations of T} in H. []

Theorem 2.1.1 A history H is serializable iff SG(H) is acyclic.
Proof: See Bernstein et al. [BGH87] page 33. |

Another possible correctness criterion is view serializability. While a conflict serializable
history must be conflict equivalent to a serial history, a view serializable history must be
view equivalent to a serial history. Before we define view equivalent, we reed to explicitly

define “reads from” and “final write” relations.

Chapter 2. Related Work , 14

Definition 7 (Reads-From): A transaction 7; reads z from T in a history H, if:
1. wi(z) <y ri(z),
2. ri(I) <H aj,

3. Ywy(z), if wj(z) <y wi(z) <g ri(z), then ax <y ri(z). []

Point 1 states that the write operation on z in T; must precede the read operations in T;.
Point 2 ensures that T; reads z from T3, only if Tj is either still active or already committed.
Point 3 guarantees that no other non-aborted transactions have updated r between the time

that T; updated z and T; read z.

Definition 8 (Final Write): The final write of data item z in a history H is the operation
wi(z) € H, such that a; ¢ H and for any w;(z) € H (j # i) either wj(z) <g wi(z) or
a; € H. |

Definition 9 (View Equivalent): Two histories H; and H; are view equivalent if:

1. they are defined over the same set of transactions and have the same operations,

2. for any nonaborted T; and T; in H, and H; and for any z, if T; reads = from T in
H, then T; reads z from T; in H,, and

3. for each z, if w;(z) is the final write of z in H; then it is also the final write of z in
H,. []

Note that in the above definition, equivalence of two histories is not based on ordering of

the conflicting operations but histories are checked for the same reads-from and final write

relations. This leads to the definition of view serializability.

Definition 10 (View Serializable): A history is view serializable if it is view equivalent to

some serial history. |

Most systems use conflict serializability. Recently researchers have attempted to create
new correctness criteria to overcome the limitation of conflict serializability but that do

not suffer from being NP-complete, like view serializability {DE89, SRK91, KM94]. These

initiatives are discussed in the next chapter.

Chapter 2. Related Work 15

2.1.3 Reliability

Reliability refers to the resiliency of a system to various types of failure and the system’s
ability to recover from the failures. Database failures can occur from software or hardware
faults. The three most common types of failures are transaction failure, system failure, and

media fatlure.

If a transaction fails to complete its task, it will abort. Abortion occurs for a number of
reasons. For example, if a user inputs improper values for the data, the transaction cannot
proceed with its execution. It is also possible to abort a transaction involved in a deadlock

cycle to allow other transactions to obtain resources and continue their executions.

A system failure occurs if one or more components of the system fail. For example,
a power failure, main memory fault, or a software fault in the operating system. System

failures typically results in the loss of information in main memory.

Finally, media failure refers to the failure of a secondary storage device. For example,
a disk head may crash or the controller fails to operate properly. In some systems, the
disk information is copied to another secondary storage periodically to help protect against

media failures [0S91].

Recovery

Recovery refers to the mechanism used by a database system to bring the database into a
consistent state after a failure occurs. Therefore, when a failure occurs, the recovery system
must ensure that the effects of all committed transactions remain and no effect of aborted

or active transactions persist in the database.

The most common recovery mechanisms use logging. A log is stored in non-volatile
memory where the effects of transactions on the data are recorded. When a failure occurs,
the log is used to undo the effects of active and aborted transactions and redo committed
transactions. Different forms of logging have been used in traditional databases [BGH87]

and are being developed for the newer systems [RM89, Mos87, Wie94].

Chapter 2. Related Work 16

A non-serial history may not always be recoverable. For example, it is possible that
transaction 7, reads data written by transaction T7 before T} commits. If 72 commits and
later T, aborts, abortion of T} triggers abortion of T,. Unfortunately, T, cannot be aborted
because its commit operation may have made its effects user visible [BGH87]. Therefore,
to create a recoverable history some operations need to be ordered. Using the “reads from”

relation (Definition 2.1.7), a recoverable history is defined.

Definition 11 (Recoverable): A history H is recoverable (RC) if when T; reads from T;
(t#7j)in Hand c; € H, ¢; <y ¢;. |

This assures that a transaction commits after all transactions (other than itself) from which

it read have already committed.

[t is also possible to set more restriction on the order of the operations to avoid cascading

aborts.

Definition 12 (Avoid Cascading Abort): A history H avoids cascading abort (ACA) if

whenever T; reads z from T; (i #), ¢j <y 7i(2). |
This ensures that transactions read only values written by committed transactions or itself.

Definition 13 (Strict): A history H is strict (ST) if whenever w;(z) <g oi(z), (i # j),

either aj <y 0i(z) or ¢; <y oi(x) where (0;(z) € (ri(z), wi(z))). |

Strictness means that no data item may be read or overwritten until the transactions that
previously wrote it terminates. The following iheorem is a useful characterization of these

recovery types.

Theorem 2.1.2 ST C ACAC RC
Proof: See Bernstein et al. [BGHS87] page 35.]

Chapter 2. Related Work 17

All Historties

» ACA

ST Hi Hy

Serializable
Histories

Figure 2.1: Relationship between histories

The relationship between histories is shown in Figure 2.1. A history can be a combination
of one of more of the above types. For example, as shown in Figure 2.1, H, is the set
of all serial histories. Hy, H4, Hg, and Hg refer to serializable histories which are strict,
avoid cascading abort, recoverable and non-recoverable, respectively. Similarly, Hsz, Hs.
Hz, Hy are collection of non-serializable histories which are strict, avoid cascading abort,
recoverable and non-recoverable, respectively. It can be shown that each set represented by

H,...Hg is non-empty.

2.1.4 Concurrency Control

“Classical” concurrency control methods are divided into two broad categories: pessimistic
and optimistic. A pessimistic algorithm orders transactions by delaying the processing

of conflicting operations. Operation ordering can occur statically (before execution) or

Chapter 2. Related Work 18

dynamically (during execution). Optimistic algorithms do not delay the operations as they

arrive but aborts them if serializability is violated. Obviously, they may be re-executed.

Pessimistic Approach

Most systems [EGLT76, BG81, CFLN82, ZB93a] use a pessimistic algorithm called two
phase locking to support concurrency control. Transactions obtain read and write locks so
that multiple transactions may read a common data item but only a single transaction can
hold a write lock. A transaction can acquire locks until it releases one, that is the end of
phase one, from which point it is prohibited from acquiring any other locks. Most systems
implement a version of two-phase locking called strict two phase locking where all locks are

held to the end of the transaction to avoid cascading aborts.

An alternative approach is timestamping that was initially proposed by Reed [Ree78].
A unique ordered timestamp is associated with each transaction before the transaction is
executed. Every time an operation of transaction T; accesses data item z, r obtains the
timestamp of T;. Conflicting access to z can only be in increasing order of timestamp.
Therefore, if T; has already read z, another transaction T; can write z if timestamp of 7}
is greater than the timestamp of T;. Furthermore, if T; has written z, T; can access z if its
timestamp is larger than the timestamp of T;. Disallowing an operation of a transaction,

leads to abortion of that transaction.

Optimistic Approach

Other systems use an optimistic concurrency algorithm. Early work by Kung and
Robinson [KR81] proposed the serial validation algorithm. This algorithm records read
and write operations of each transaction 7} in two separate sets called the readset(T;) and
writeset(T;), respectively. Transactions are executed with no restriction until commit time;
however, they must be validated before the final commit or abort decision is made. Let T;
be a transaction committed during the life time of T;. T; is committed if for all T}, the
intersection of readset(T;) with writeset(T};) is empty. This indicates that T; is allowed to
commit if and only if no other transaction has updated any data item read during the time

T; is active. Otherwise, T; is aborted and re-executed.

Chapter 2. Related Work 19

Another optimistic concurrency approach constructs a serialization graph for the his-
tory of the transactions after it completes [Bad79]. Every time a transaction commits, a
serialization graph is constructed. If the graph contains a cycle, the transaction is aborted
and its operations are rolled back. Otherwise, the effects of the transactions are recorded

in the database.

Mixed Method

Different concurrency control methods can be combined to enhance concurrency in some
cases. For example, Carey [Car87] combined Kung and Robinson optimistic serial validation
algorithm [KR81] with timestamp ordering [Ree78] to produce a timestamp based serial
validation algorithm. Carey argues that with large numbers of transactions committed
during the life time of T;, Kung and Robinson’s algorithm is too costly. Carey assigns each
transaction T; a start up timestamp $-7S(T;) and a commit timestamp C-T'S(T;). Further.
each data item z is timestamped T'S(z) with the value of the commit timestamp of the most
recent write of z. T; can commit iff for every z in the readset of T;, S-TS(7T;) > T'S(z). The
main advantage of this algorithm over the simple optimistic method presented by Kung and
Robinson is that stale data read by a transaction may be detected before the transaction

is entirely executed. This provides lower execution cost and better resource utilization.

In brief, some concurrency control algorithms perform better in one environment than
another. Optimistic algorithms are appropriate for the environment where the likelihood
of the conflicting transactions is low. However, pessimistic protocols are suitable where
the rate of conflict is relatively high. Comparison of the performance of pessimistic versus
optimistic protocols is done and discussed in the literature [Car83a, ACL87, CM86]. We

will review them later in this chapter.

Classical transaction models are most appropriate for business and administrative en-
vironments where transactions are simple, short-lived, and non-hierarical. Applications of
new environments such as Computer Aided Design systems (CAD) or some cooperative
environments demand more advanced trarsaction models. In the next sections, we study

some advanced transaction and data models which motivate our research.

Chapter 2. Related Work 20

2.2 Nested Transactions

Nested transactions are an extension of flat transactions that include subtransactions in
addition to primitive read and write operations. The idea of nesting transactions was
extensively investigated after the work of Reed [Ree78] and Moss [Mos85]. This section

reviews nested transactions and discusses their advantages over classical models.

A nested transaction is a tree where nodes are subtransactions and edges are calls to
subtransactions. The root node is called a top-level transaction. The leaves are the primitive
reads and writes on data. Except for the leaves, other nodes are called parents and can have
unlimited children. The top-level transaction does not have a parent. Transactions which
call other transactions either directly or indirectly are called ancestors. Transactions which
are called either directly or indirectly by other transactions are called the descendants.
Since a transactions may call itself recursively, we speak of proper descendant and proper
ancestors to exclude the transaction itself. A transaction hierarchy includes the transaction

descendants. The top-level transaction and its proper descendants form a transaction family.

One advantage of nested transactions over classical transactions is that nested transac-
tions provide a means of controlling concurrency within transactions. In a classical model,
a long running flat transaction may have to be broken into several shorter transactions to
produce better and faster performance [PKHS88]. Breaking a transaction in this way creates
overhead. In a nested transaction model, a long running nested transaction dynamically
creates a set of subtransactions and distribute the task among them. Subtransactions work

independently and can be executed simultaneously.

Another advantage is that nested transactions provide better control over transaction
failure. The effects of a failure is limited to a portion of a transaction. In classical transac-
tions when there is a failure, the entire transaction is aborted. Therefore, the system time
and resoiirces used for the transaction is wasted. This problem is more significant when the
transaction is long and it is close to its commit point. In nested transactions when a sub-

transaction fails, we may only need to recover that subtransaction. Since subtransactions

Chapter 2. Related Work 21

act independently, failure of one component does not necessarily effect other components.

Nested transactions fall into two broad categories: closed nested transactions and open
nested transactions. In closed nested transactions [Mos85], the partial result of subtransac-
tions are not visible to other transaction families. If a child commits, all of its scheduling
information is passed to its parent. Conversely, if it aborts, resources such as locks are
released back to the system. A parent can commit if and only if all of its children have

committed. Abortion of a parent causes abortion of its children.

In open nested transactions [WS91], once a subtransaction commits, its result are
recorded in the database and become visible to other transaction families. Since other
transaction families may read and update the partial results of other transaction families,
problems such as cascading aborts and loss-of-update may occur [BOH*91]. Compared to
the closed nested model, open nesting aillow more concurrency because subtransactions do

not need to wait for the result of other subtransactions when they commit.

An alternative model

Fekete et al. [FLMW90] introduced two ways of viewing nested transactions: procedural
abstraction and data abstraction. The material presented above refer to procedural ab-
straction. Data abstraction, known as multilevel transactions, is another varianc of nested
transactions as defined by Weikum [Wei91] and Berri et al. [BBG89]. A multilevel trans-
action model has a layered system structure. Each layer (level) provides a well-defined
interface of objects and operations. The implementation of one level is done based on the
objects and operations of the level below it. The bottom level includes primitive operations
which cannot be further decomposed. In contrast to procedural abstraction transaction
models, in a multilevel transaction tree, the depth is fixed and all leaf nodes are at the same

level.

Chapter 2. Related Work 22

2.2.1 Concurrency Control

The proposed concurrency control techniques for nested transactions known as upward lock
inheritance was provided by Moss [Mos85]. We review the basic rules and discuss extensions

suggested by others.

Operations acquire three types of lock: a read, a write, or a none lock. Based on re-
strictiveness, the lock modes are ordered as none < read < write. Transactions may either
hold or retain the locks. If a transaction holds a lock, it can access the locked object. If a
transaction retains a lock, it cannot access the object but it blocks other transactions from
setting conflicting locks anywhere in their transaction’s hierarchy; however, the descendants
of the retainer potentially can use the lock. When a transaction becomes a retainer of a
lock, it remains as the retainer of the lock until the transaction terminates. The basic
locking rules for nested transaction T; presented by Moss [Mos85] are:

o Transaction T; can hold a write lock on z, if no other transaction holds a conflicting
lock on z. Only ancestors of T; may retain a conflicting lock on z.

e Transaction T; can hold a read lock on z, if no other transaction holds a write lock
on z. Only ancestors of T; may retain a conflicting lock on z.

¢ When Transaction T; commits, it passes all of its hold/retain locks to its parent. The
parent retains the locks it receives from its children.

e When Transaction T; aborts, all of its locks are discarded. This does not effect any of
the proper ancestors of T; holding or retaining the same locks.

When a parent inherits a lock on z from its child, it allows other transactions in its hierarchy
to view and update the current state. The parent, however, prevents transactions in other

hierarchies from updating z as long as it keeps the lock.

In the nested transaction model presented by Moss [Mos85], non-leaf nodes do not
contain primitive operations. More recent work has relaxed or eliminated this restriction.
Recent nested transaction models [HH91, Zap93] now allow subtransactions to include prim-

itive operations and calls to other subtransactions. Harder and Rothermel [HR87] argue

Chapter 2. Related Work 23

that upward inheritance is not always applicable in this recent work. For example, a parent
transaction may read z and issues a child to update z. Upward inheritance fails in this case
because the parent must wait for its child to terminate successfully before it can commit
and the child must wait for its parent to release its lock. To solve this problem, Harder and

Rothermel [HR87] suggest another locking algorithm called downward inheritance.

In downward inheritance, transaction 7; holding a lock, can pass the lock to any of its
descendants in che same hjerarchy. After passing the lock, T; retains the lock in the same
mode. This rule can also create a problem in some cases. For example, a transaction may
read a few objects and create some subtransactions to execute other operations on these
objects. Children obtain the locks from the parent and may execute simultaneously. Con-
current executions of the subtransactions increase concurrency; however, since the parent
and its children share the same information, one may overwrite the information read by

another.

Harder and Rothermel [HR93] subsequently suggest a solution. They add two more
rules to the basic locking rules of Moss [Mos85]. Using the same locking modes as described
above (none < read < write), a transaction 7T; holding a lock in mode M can

e downgrade its lock to mode M’ (M’ < M), if it retains the lock in mode M and holds

the lock in mode M’.

e upgrades its lock to mode M’ (M < M') if no other transaction holds the lock in a
conflicting mode with M’ and all of the transactions that retain the lock in corflicting
mode with M’ are ancestors of T;.

This algorithm is less restrictive than the simple downward inheritance and it enhances
overall concurrency for nested transactions because it allows more desirable decomposition

of transactions into a set of cooperating subtransactions.

Chapter 2. Related Work 24

2.3 Object-Oriented Data Models

Conventional data models are simple but suffer from several limitations (BM91, HPC93,
ABD*89]. They are not suitable in environments where data is complex, schemas changes
frequently, and transactions take much more than a few seconds to execute. Ob ject-oriented
data models may overcome these limitations. They satisfy the requirements of conventional
data models such as data-sharing, consistency, integrity, and concurrency control while
introducing many useful features. This section explains the concept of object data models
and discusses some of the features of object data models which are not efficiently supported
in conventional data models. Transaction management and concurrency control in ob ject

based systems are also addressed in this section.

2.3.1 The Concept

Object data models model all entities as objects. Each object is uniquely identified. An
object contains a set of attributes which form its structure. Attributes are either simple:
such as integers and strings; or complex values, which may be objects. The values of the
attributes determine the state of the objects. Objects also include a set of procedures called
methods. A method of an object contains a set of operations on that object. The execution

of a method is the only mean to change the state of the objects.

Some features which separate object data models and conventional data models are
encapsulation, inheritance, and aggregation. These characteristics create a flexible environ-

ment in terms of object manipulation, and impact on concurrency control and recovery.

Encapsulation
Encapsulation ensures that only local object methods access an object’s attributes. This

is similar to the concept of abstract data types.

Inheritance

Objects sharing the same structure and behavior are grouped into a class. A class can

Chapter 2. Related Work 25

be a specification/ generalization (subset /superset) of one or more other classes. Class B is
a subclass of class A if B inherits the properties of A. A class with its direct and indirect
subclasses form a class hierarchy. This hierarchy is actually a lattice if multiple inheritance
is supported. Different forms of inheritance appear in the literature [ABD*89]. Detailed

discussion is beyond the scope of this thesis.

Aggregation
Aggregate objects known as complez objects contain other objects which in turn may
include other objects. Therefore, complex objects have a tree structure too. A complex

object is treated as a unit of retrieval and integrity enforcement.

A type of complex object called a composite object is implemented in Orion [KGBW90].
A composite object relationship is ueiined between objects to form a part-of relationship.
Part-of relationship indicates that an object is a part of another object. Two important
features of composite objects are: first, if the root object is deleted, all component objects
(except the ones shared with other objects) are also deleted; second, a constraint such as a

lock on the root object propagates to all other components.

Other Characteristics

e Objects may maintain several versions of an object. Versions of an object play an
important role in transaction management and schema evolution.

e Objects must be persistent. Persistency ensures that objects survive the execution of
a process and they can be reused in another process.

e Object data model may support schema change. Possible modifications include changes
to the definition of a class and changes to the inheritance hierarchy.

2.3.2 Prototypes

Since the foundation of Simula in 1958 and Smalltalk [Gol84] in 1980, many object oriented
prototypes have been developed [WLH90, KGBW90, BB89, RH90]. These prototypes tar-
geted many advanced application models such as Computer Aided Design (CAD/CAM),

Chapter 2. Related Work 26

artificial intelligence, and office information systems. The prototypes are constructed by ei-
ther (1) building on the top of traditional systems or (2) building a “new” facility for storing
persistent objects. In the first category, a new layer of transaction management is added
above underlying system to provide object-oriented facilities (eg. Postgres [WLH90] and
Exodus [Car89]). Conversely, systems in the second category (eg. Orion [KGBW90] and
0O, (BDK92]) require new transaction management tailored to objects. Since this research

belongs in the second category, we limit the review to these systems.

2.3.3 Transaction models

Issues of transaction management such as serializability, concurrency control, recovery, and
reliability are the key factors motivating this dissertation. Some recent material related to
transaction mangement in objectbases include [RKS93, Zap93, Wie94, Gra94, 0zs94]. The
following paragraphs review work in this area. Note that since this section reviews other
researchers work the terminology used here may be different than that described earlier.
If this occurs, we will define the term as the other researchers have and use it with their
meaning in this section. After this section, we will return to our terminology as defined

earlier.

Rakow et al. [RGN90] proposed an object model using open nested transactions. The
objectbase contains a set of homogeneous objects and a set of transactions on these objects
called object-oriented transactions. Operations accessing ob jects are called actions. Actions
are grouped into sets. The set for action A contains all of the actions called either directly
or indirectly by A. An object-oriented transaction forms a tree where the nodes represent
the actions and edges their invocation. The leaves are called primitive actions which are

simple operations on objects.

In Rakow et al.’s algorithm, serialization is defined for transaction accessing individual
object and for the entire transaction system. In the former case, an object schedule is defined

at each object. An object schedule should be conflict equivalent to a serial schedule at that

Chapter 2. Related Work 27

object to ensure correctness [RGN90]. This is done by checking two types of dependency
at each object: transaction dependency and action dependency. Two transactions on an
object have a dependency if some actions in their hierarchies conflict. Two actions have a
dependency if an ordering is enforced between some of their primitive operations, or they are
transactions on other objects in which they are transaction dependent. Two object schedules
are equivalent if they have the same transaction dependency relation. Furthermore, to
ensure serializability for the entire transaction system, another dependency relation called
added dependency is introduced. An added dependency is given to two actions A and B, if
A and B are actions of two different objects which include some actions in object C, and

C creates a transaction dependency between A and B.

Hadzilacos and Hadzilacos [HH91] introduced another object model using closed nested
transactions. In this model, an object consists of a collection of attributes and a set of
procedures called methods. Methods are the sequences of local and message steps. A local
step of an object results from the execution of primitive read and write operations on the
object. Message steps invoke methods possibly in other objects. Transactions submitted
by the user only include message steps. Objects execute the messages by invoking the

appropriate methods.

Hadzilacos and Hadzilacos define two types of synchronization: Intra-object and inter-
object synchronization. Intra-object synchronization serializes operation within an object.
Inter-object synchronization ensures consistency of the independent synchronization deci-
sion made at each object. This implies that if 7} and T, are two transactions accessing
object o/ and T is ordered before Ty, T} must be ordered before T, in all of the objects
accessed by T and T;. Intra-object and inter-object serializability together must guarantee

the serializability of overall computations in all objects.

A history H consists of a set of method executions on objects where local and message
steps of the methods are partially ordered according to intra and inter object synchroniza-
tion rules. Methods cannot be invoked recursively in H. If method M; is ordered before

method M, in H, all the methods called by M; are ordered before the methods called by

Chapter 2. Related Work 28

M,.

Serialization of a given history is checked by constructing a direct access graph where
nodes are the message steps and edges are calls to the message steps. An edge is added

between two nodes N; and N, if either

o descendants of N, and N, conflict or

o if L is the least common ancestor of N¥; and N, and ancestors of N; and NV, conflict
within L’s hierarchy.

If the graph is acyclic, H is serializable.

2.3.4 Concurrency Control

A concurrency control algorithm based on Hadzilacos and Hadzilacos [HH91] model is pre-
sented by Agrawal and El Abbadi [AA92]. This algorithm is the extension of locking
protocol presented in [Mos85] for closed nested transaction models. Agrawal and El Abbadi
define two types of relations between operations: shared relation and ordered relation. If
two operations conflict, each possess an ordered relation with respect to the other. When
an operation T acquires a lock on an object, the lock has an ordered relation with respect
to all operations with which an ordered relation and a shared relation with respect to locks

of all operations with which 7 has a shared relation.

The algorithm is as follows. A lock is associated with each operation . Shared and
ordered lock relations with other locks is set based on the above description. A transaction
maintains all its locks until it either commits or aborts. A transaction must wait for the
termination of all its children before it commits. Locks held by a transaction are discarded
if a transaction aborts. A transaction holding a lock passes the lock to its parent when it
terminates successfully. Finally, 7; must wait for T; to commit, if some lock held by T; have
ordered relation with some lock held by T; and a parent of T; is a proper ancestor of T;.

This is called the Ordered Commmitment Rule.

Chapter 2. Related Work 29

Another algorithm proposed by Resende and El Abbadi [RA92] is based on the serializa-
tion graph. They also use Hadzilacos and Hadzilacos’ model. Their algorithm constructs a
set of graphs; one for each method execution M. It is called Stored Children’s Serialization
Graph of M (SCSG(M)). SCSG(M) is defined as a set of nodes ['(M) which represent
the terminated children of M, and a set of edges A\(M) which refer to relative execution
ordering of children of M. Initially, SCSG(M) is empty. A child ¢ of M is added to the
graph when ¢ terminates. If another child ¢’ of M already exists in the graph, an edge
¢/ — c is added if either of the following two conditions hold:

e Given that L is the least common ancestors of ¢ and ¢/, and some ancestors of c in L

are ordered before some ancestors of ¢/ in L.

¢ Given that ¢’ is a sibling of ¢, then there is local step in ¢’ or in a descendant of ¢’
which precedes and conflicts with another local step in ¢ or in a descendant of c.

After ¢ and its related edges are added to the graph, the graph is tested for cycles. If no
cycle exists, the process continues; otherwise, the top level transaction associated with M
is aborted. This algorithm is optimistic in the sense that an operation does not wait for
others to finish execution. A transaction is aborted and may be restarted if the result of its

execution does not meet the serializability criterion.

Zapp and Barker [ZB93c, ZB93a, ZB93b] define object serializability and a serialization
graph technique to capture serializability in Hadzilacos and Hadzilacos’ model. An archi-
tecture describing interactions between the components of the transaction facilities and a

concurrency control algorithm are presented.

Zapp and Barker [ZB93c]| define two types of transactions: user and object transactions,
by adapting concepts from the nested transaction model. Each transaction forms a tree
whose root (the top-level transaction) is the user-transaction and whose descendants are
called object transactions. Two types of histories are required. One for object transactions
and another for user transactions. An object history defines the ordering relation of object
transactions that have executed at an object. A user history defines an ordering relation of

user transactions which contain the orderings of the user transaction operations. To ensure

Chapter 2. Related Work 30

user .
Transactions | 1A
] © C/A
v l

Execution Monitor

Object
Transactions c/a

Object Processor

r/wlo) ' J objects

Object
Storage

Figure 2.2: Zapp and Barker’s architecture

serializability and thereby assess correctness, the user history and the object history are

combined into a global history called the global object history.

Zapp and Barker’s architecture is composed of two major components: an Execution
Moniter and an Object Processor (see Figure 2.2). The purpose of the Execution Monitor
is to provide an interface to users and to schedule the method invocations on behalf of user
transactions. To schedule a method, the Execution Monitor submits the method to the
Object Processor as an object transaction. The Object Processor schedules and executes
each individual method’s operations. In processing method executions, the Object Processor
retrieves and updates object attributes by accessing the persistent object store. The result
from the execution of a method is returned to the Execution Monitor. When a transaction

commits or aborts, the Object Processor guarantees the ACID properties.

The expanded architecture of Figure 2.2 is shown in Figure 2.3. The Execution Monitor
contains two components: the Transaction Manger and the Method Scheduler. The Trans-
action Manager receives user transactions and submits methods to the Method Scheduler.

The Method Scheduler is responsible for scheduling user transaction operations and passes

Chapter 2. Related Work 31

] i
Executlon | Tran:zce:iions! .A
° i | | C/A
Monitor | ¥ |
! Transaction Manager '
i — X |
: Sothed | | csa
\ 4 |
Method Scheduler
T T Wethed T :lf—ﬁeaao‘cr e T
Calls v’ o _4 Calls *-
Object Manager
TrantiesSons | Tem
v {
Object Scheduler
. ‘ °
r/w(o) ! objects ObJect
v Processor

Figure 2.3: Zapp and Barker’s expanded architecture

Chapter 2. Related Work 32

the scheduled methods to the Object Processor for execution.

The Object Processor also contains two components: the Object Manager and the
Object Scheduler. When the Object Manager receives a method, it converts the method
to an object transaction and sends it to the Object Scheduler. The purpose of the Object
Manager is to facilitate the communication between the Method Scheduler and the Object
Scheduler. The object transaction received by the Object Scheduler is executed against

objects in the object base.

The operations of an object transaction are read, write, and method invocations. The
read and write operations are executed against an object in the objectbase. The method
invocations must be sent to the Method Scheduler so that they can be scheduled with other
methods of the user transaction level. When an object transaction terminates (successfully
or unsuccessfully), the Object Scheduler sends the result of the execution to the Object
Manager and the Object Manager in turn passes the message to the Method Scheduler. An
object transaction pre-commits as the result of a successful termination. A pre-committed
object transaction must wait until it receives a commit message from a coordinator. If an
object transaction aborts, it must release all the resources it is holding. The execution
of two object transactions T) and T, on an object is controlled as in the strict two phase
locking protocol. If T, requests a lock on an object which conflicts with the lock already set
by Ty, T3 is blocked. When T pre-commits, T; can be processed if T} and T3 are from the
same user transaction. Otherwise, T must wait until 77 commits completely and releases

its locks.

Another pessimistic concurrency control algorithm is presented by Graham and Barker [GB95.
GB94a). Concurrency is performed based on the static analysis information captured at
pre-run time. Information includes control flow information, method invocation informa-
tion, and attribute reference information. Control flow information mainly details what
sections of the methods might be executed. Method invocation information determine the
calling sequence between objects, and attribute reference information in a method include

the read/write relationships. The detail of the deriving these information are presented

Chapter 2. Related Work 33

in {Gra94].

Graham and Barker discuss intra-object and inter-object concurrency as follows. Sup-
pose a user transaction UT; directly invokes a set of message steps m;;, m;2, ..., mi,. For
every pair of message steps < mk,m;; >, mir and m;; are executed concurrently if they
directly or indirectly access a disjoint set of objects. Otherwise, for every object o/ which
may commonly be accessed (possibly indirectly) by m;x and m;; in a conflicting manner
(conservative assumption), a message is sent to o/ to enforce serialization order between
m;; and m;;.

Each object o/ contain a local scheduling graph (LSG). Vertices of LSG(of) represent
the methods (object transactions) that are either active at o/ or may eventually execute at
o/. When an ordering message m;x — m;; (mix happens before m;;) is sent to o/, an edge
is added to the LSG(o/) to order the execution of m;; after m;; at of/. When a method is
invoked in o/, its execution is blocked if LSG(of } indicates that some other methods should
be executed first. When the execution of an object transaction terminates, its corresponding
node and all related edges are removed from LSG(of); thereby, some object transactions

may be unblocked and executed.

The Global Serialization Graph of Zapp and Barker [ZB93b] is adapted to control inter-
object serialization. When a new user transaction arrives, the set of objects it may refer-
ence is compared with the set of objects that might be referenced by the currently active
transactions. Suppose set A and set B represent the set of objects referenced by the new
transaction UT; and a currently active transaction UT}, respectively. If UT; and UT), both
access o € AN B in a conflicting manner, a message is sent to o/ to set a serialization
order between UT; and UT;. Graham and Barker have developed a function which re-
turns the serialization order of the new user transaction with respect to the currently active

transactions.

The above algorithm prevents deadlock problems because serialization is done statically
prior to the execution of the transactions. However, some sub-transactions may still be

aborted and rolled back. For example, if the new user transaction UT; is scheduled after

Chapter 2. Related Work 34

all other currently active user transactions, no roll back is necessary. Otherwise, if UT; is
decided to be serialized before a currently active transaction UTj, subtransactions of UT)

operated at some object o/, may be rolled back if UT; references o”.

2.4 Multiversion Data Models

Most database systems keep one version of data. In multiversion database systems more
than one version of data can be created and stored. Versions associated with data item =

show the evolution of z as z is updated by some transactions.

Using multiple versions of data items as a transaction synchronization technique can
enhance concurrency and support recovery. Transactions interested in the old versions of
data can be executed concurrently with other transactions which compete to access the
latest committed versions of data. In addition, multiversion systems do not usually require
logging because before and after images can be searched via the versions. Multiversion
systems have increased overhead such as purging unnecessary versions and controlling their

number.

This section reviews multiversion serialization theory including notions of serializabil-
ity in a multiversion environment. Concurrency control and how to enhance concurrency

through versioning is also described.

2.4.1 Histories and Serializability

A multiversion history is different from a single-version history in at least two ways. First
a “write” operation on a data item z may produce a new version of z, keeping both ver-
sions. Second, if more than one version of z exists, a “read” operation may not always
be restricted to reading the most recent version of z. This indicates that the definition
of conflict may also change in a multiversion system. For example, two write operation

each producing a different version do not necessarily conflict. Similarly, a read operation

Chapter 2. Related Work 35

reading the old versions does not conflict with a write operation unless other restrictions
are involved in the model. Bernstein et al. [BGH87] extend one-version serializability to

multiversion serializability as follows:

e A write operation of 7; on z produces a new version z;.

e A read operation of T; reads z;. If z; has not been produced, the last committed
version of z is read.

e Before a transaction commits, every transaction which produced versions it read must
have committed already.

Based on the above conditions, a serial multiversion history called one-copy serial is defined

as follows:

Definition 14 (One-Copy Serial): A serial multiversion history H is one-copy serial if for
every T; and T in H:

1. (3p € T:,3q € T}, such that p < q) = (Vr € T},Vs € T}, r < s) and,

2. foralli, j, and z, if T; reads z from T}, then either T; = T}, or T} is the last transaction
preceding T; that wrote into any version of z. |

A multiversion serializable history is defined.

Definition 15 (One-Copy serializable): A multiversion history is one-copy serializable if

it is conflict equivalent to some one-copy serial multiversion history. »

This serializability definition does not set any limit on the number of versions that
can be created for each data item. Practical system considerations such as system storage
capacity requires that limits be placed on the number of versions that can be simultaneously
managed. Problems related to space limitation caused by maintaining multiple versions have
been discussed in the literature [BHR80, HP86, PK84, CG85, Mor93] but it is beyond the

scope of this thesis.

Chapter 2. Related Work 36

2.4.2 Concurrency Control

Several concurrency control algorithms have been proposed for centralized and distributed
multiversion databases [SR81, BG81, CFLN82, Lau83]. Multiversion timestamp ordering
was introduced by Reed [Ree78]. The multiversion two phase locking protocol was proposed
by Chan et al. [CFLN82]. Examples of initial optimistic concurrency control schemes in

multiversion environment are presented in [Ree78, SLR76].

Bernstein and Goodman [BG83] modify traditional timestamp ordering and two phase
locking for the multiversion environment. Before discussing their work, some nomenclature
is required. We use the notation r;(z;) when T; reads a version of z written by transaction
J,and w;(z;) denotes a write operation on data item z by transaction ¢; thereby creating a
new version z;. Further, acquisition of a read or a write lock on z indicates that no other

transaction can obtain a conflicting lock on any version of z.

Multiversion timestamp ordering (M VT Q) assigns each transaction T; and its operations
a unique timestamp, ts(7;). A multiversion timestamp scheduler, processes operations in a
first-come, first-served order. When the scheduler executes a read operation of transaction
T:, the version of z with the largest timestamp less than or equal to ts(7;) is read. A write
operation of T; is processed in one of two possible ways. A write operation is rejected if the
scheduler has already processed a r;(zx) such that ts(T%) < ts(T;) < ts(T;). Otherwise, the
scheduler executes w;(z;). Note that the last committed version of z may not necessarily
be the z with the largest timestamp. For example, it is possible that ts(T;) < ts(7;) and
the scheduler processes a w;(z;) before a w;(z;). Finally, the commit of T}, ¢;, is delayed
until all other transactions, T}, that wrote versions read by 7; have committed. This delay

ensures recoverability.

A multiversion two phase locking (M V2P L) scheduler uses three lock types; read, write,
and certify. Two locks conflict if either one is a certify lock or write locks. Read and write
locks are acquired during transaction execution as in two phase locking [EGLT76]. In

processing a read operation on a version of z, the ith version of z is read if the scheduler

Chapter 2. Related Work 37

has processed a w;(z;) already. Otherwise, the last committed version of z is read. Read
locks are granted only if no other transaction holds a conflicting certify lock (i.e.: ri(z;) is
executed if no certify lock is holding z;). When the scheduler receives a write operation on
a version of z, it delays the execution if another transaction has a write or a certify lock
on any version of z. Qtherwise, it sets a lock on z and executes w;(z;). A new version of
z, z;, results from this execution. When a transaction wants to commit, its write locks are
changed to certify locks. The effect of certify locks is to delay transaction 7;’s commitment
until all of the active transaction readers of some versions of the data items written by T;
terminates. Thus the scheduler can only convert a write lock on z; into a certify lock if
there are no read locks on any certified versions of z. A version of z, z;, is certified when
T;, the transaction that wrote z;, commits. T; is certified when all the versions it read have

been certified.

Read-only Versus Update Transactions

One of the main advantages of multiversion concurrency control (M VCC') protocols over
one-version concurrency algorithms is the reduction of data contention between read only
transactions and update transactions. Read only transactions may see old versions of data
but they can be executed concurrently with other update transactions. Some recent work
have been done by Mohan et al. [MPL92] and Wu et al. [WYC93]. Wu et al. use dynamic
finite versioning to enhance the performance of systems where short update transactions
and long read only queries execute concurrently. Queries read from a small, fixed number
of dynamically derived transaction consistent logical snapshot of the database. Snapshots

may include old versions of some data.

Logical snapshot production may require stopping transactions submission and wait un-
til all active transactions commit. An alternative solution is to mark the versions produced
by active transactions and remove the marks when transactions commit. In this case, the
snapshot of the database will include the unmarked data. Wu et al. argue that the former
solution is not feasible because it is inefficient to stop and restart the process. They also

claim that in the latter solution, searching for the marked versions incur a high cost because

Chapter 2. Related Work 38

versions can be scattered around in the database.

Wu et al. suggests the following algorithm. When transaction T; becomes active, its id
is entered in a list kept for the active transactions. Every time T; produces a new version
of data item z (z;) it maintains a time-invariant footprint of T;. When T; commits, its id is
removed from the list. A snapshot of the database is created by including all the versions

in which their time-invariant footprint are not from the transactions in the list.

2.4.3 Multiversioning in Objectbases

The notion of version control is provided in object-oriented prototypes such as Orion [KGBW90],
Iris [WLH90], and Avance [BB89]. The following summerizes some common features of ver-
sions in these protocols:

e Several versions can be derived from an object and other versions can be derived from

these versions. An object with all its direct or indirect versions derived from it form
a version hierarchy.

e Each version has its ow.. unique identifier. Therefore, it can be accessed and modified
directly.

o Versions are divided into two groups: stable and unstable versions. Stable versions
are considered consolidated and are not usually updatable. Unstable versions are not
yet consolidated and can undergo modification. Versions derived from a stable version
are unstable versions. Unstable versions can be promoted to stable versions on user
request or automatically by the system.

2.4.4 Concurrency control in Multiversion Objectbases

Nakajima [Nak92| presents an optimistic multiversion concurrency control mechanism. Mul-
tiversioning techniques are applied to the concepts of backward and forward commutativity
introduced by Weihl [Wei88]. According to Weihl, two operations executing on an object
commute if they can be scheduled in any order without affecting the result of computation.
Nakajima argues that forward commutativity uses the latest committed version of the ob-

jects to determine a conflict relation while backward commutativity uses the current states

Chapter 2. Related Work 39

of the objects. Forward and backward commutativity relations are combined into a new
relation called the general commutativity relation. A general commutativity relation exists

between two operations if they either backward commute or forward commute.

In Nakajima’s model, each object consists of a collection of versions. The versions
are classified into two groups: committed and uncommitted versions. The most recent
committed version of an object of is called the last committed version of of (denoted
LCV(0f)), and the most recent uncommitted version of o/ is called the current version
of of (denoted CV(of)). When transaction Tj invokes method m] in object o/ a new
uncommitted version of o/ (denoted NV(o/)) is created for T;. If the return result from
NV(of) backward commutes with CV(o/) or forward commutes with LCV(of), NV (o)
becomes the new current version of o/ and replaces the old current version. Otherwise,

NV (of) is discarded and T; invokes method m] again.

Another multiversion transaction model for objectbase systems was proposed by Graham
and Barker [GB94b]. An object is characterized based on its initial state, a set of valid states,
its operations, and a set of transaction functions which move the object from one valid state
to another. A transaction is simply a set of read and write operations. Objects are versioned
and there exist only a single committed version of each object in the object base called the
last committed version (denoted LCV). A set of transactions 7 = {T},T3,..., Tx} which
require access to object of, each obtains a copy of the last committed version of of, of*.
The version of* is called the base version for the transactions in 7. The created copies are
called the active versions. When every transaction in 7 terminates (commits or aborts),

oft is deleted if a new committed version of of, 07, is created by another transaction.

Each transaction acquires its own set of active versions of objects. A transaction modifies
its versions by executing the methods and does not interact with other transactions. If a
transaction aborts, its versions are discarded. If a transaction completes successfully, before
it commits, all of its active versions which conflict with their corresponding LCV in the
object base must be reconciled. This allows correct effects to be reflected in the objectbase.

When a transaction commits, its active versions become the new last committed versions.

Chapter 2. Related Work 40

Graham and Barker proposed an optimistic concurrency control algorithm. The main
feature of this algorithm is that of reconciling the unsuccessful transactions instead of abort-
ing them. The reconciliation procedure is as follows. Assuming that two transactions T
and T, execute against two separate copies of object o/, o/! and 0/2. The following four

conditions are possible:

1. T; and T, are read only transactions
2. one of T or T is read only transaction and the other one is not

3. T1 and T: are update transactions and one has less costly operations relative to an-
other, or

4. Ty and T, are update transactions and they have equally costly operations.

In case 1, the state of o/ remains unchanged because transactions do not conflict. In case
2, the new state of o/ is set to the update transaction. In case 3, the less costly transaction
should be re-executed against the new state created by the other transaction. In the last
case, either transaction can be executed before another. Thus, the execution order of T}
and T, can be in either order depending on which is cheaper to compute. Therefore, the

serialization order is determined by reconciliation.

Two types of reconciliation are introduced: simple reconciliation and complez reconcili-
ation. Simple reconciliation merges the result of the execution of two versions o/ and o/? of
object of accessed by two transactions Tj and T3, respectively and provides a serialization
order between T) and T,. Versions of! and o/? can be merged if T) and T do not access
common data, or at least one transaction does not read the same data written by another

transaction.

Complex reconciliation is attempted if simple reconciliation cannot be performed. Com-
plex reconciliation of two transactions Ty and T; may require the less costly transaction be
re-executed against the state created by another transaction. The cost of the re-execution of
a transaction is estimated by static compile time analysis [Gra94]. Complex reconciliation

of a transaction is mainly partial re-execution of operations which have read stale data in

Chapter 2. Related Work 41

that transaction. Reconciling an unsuccessful transaction at commit time is often a less

costly procedure than the complete roll-back and re-execution of the transactions.

2.5 Performance Comparison

Carey and Mohan [CM86) investigated the performance of three algorithms. Reed's multi-
version timestamp [Ree78], the version pool algorithm which is a type of multiversion two
phase locking used by Computer Cooperation of America (CCA) in their LDM database
system [CFLNS82], and multiversion serial validation algorithm of [Car83b] which is based
on the algorithm of Kung and Robinson [KR81]. The algorithms were compared both with
each other and with their corresponding single versions (basic timestamp ordering, two
phase locking, and serial validation algorithm). The performances overheads were analyzed
based on throughput, average response time, number of disk accessed per head, work wasted

due to restarts, and space required for old versions.

Experiments were performed with various mixes of read only and update transactions.
It was shown that as the number of read only transactions increases relative to update
transactions, the multiversion algorithms perform better than the single version counter-
parts. As the number of update transactions in the mix increased, the performance of
basic timestamp ordering and serial validation algorithms significantly fell because some
lcng-term read-only transactions starved and multiversion and regular two phase locking

algorithms outperformed other algorithms.

In general, it was shown that multiversion protocols provided improvements in perfor-
mance by allowing large read-only transactions to access previous versions of data items.
Storage overhead to maintain old versions required satisfying read requests for ongoing
transactions is not large, but the overall size of the version pool becomes significant when
the read only transactions accessed more than 10 percent of the database or the number of

update transactions becomes very large.

Chapter 2. Related Work 12
2.6 Summary

In this chapter, we presented an overview of the classical transaction model to create a
framework for this dissertation. Then nested transactions and the issue of concurrency
control in both closed and open nested environment were reviewed. Next, we explained some
of the characteristics of object-oriented data models which reflect object manipulation, and
concurrency control. Finally, the role of version management in database systems and the
advantages and disadvantages of creating multiple versions of data were discussed. We also

briefly mentioned some common features of object versioning in object-oriented prototypes.

The material presented by Graham and Barker [GB94b, GB94a, GB95] and by Zapp
and Barker [ZB93c, ZB93a, ZB93b)] are the closest to our research. We have adapted the
model of Zapp and Barker for a closed nested transaction environments. Zapp and Barker’s
algorithm is a pessimistic approach. Graham and Barker [GB94b] provide a mechanism
to maintain versions of objects in the objectbase; however, their work does not discuss
reconciliation in detail for nested transaction models. We extend this work to a model and
architecture for multiversion objectbases which supports nested transactions and provide a

suitable reconciliation algorithm.

Chapter 3

The Computational Model

This chapter begins by formally defining class, methods, objects, and transactions. We
then extend this formalism to reflect our computational model which incorporates version-
ing. Next a new correctness criterion is introduced to ensure serialization of concurrently
executing transactions. Finally, concepts and definitions related to data dependency and

information which can be captured by static analysis are presented.

3.1 Fundamental Concepts and Definitions

This section provides the definition of some fundamental concepts used in an object-oriented

environment.

A class is a collection of homogeneous objects; that is, objects of the same structure

and behavior belong to one class. Informally classes define the types of the objects.

A class C = (),C.A,CM) where i is the unique class identifier, C' 4 is the set of attributes
that the class defines such that forall caj,car € CA, ca; # car, and CM is the set of
methods that the class defines such that forall emj,emy € CM, ecm; # cmyg. In this
dissertation, class 7 is denoted as C*. The set of attributes and the set of methods of C* are

unambiguously referenced by C A* and C M*, respectively.

43

Chapter 3. Computational Model 14

CA' = {ca},ca},...,ca,} contains the attributes defined by C*'. An attribute ca! €
CA' is of type t where j is the unique attribute identifier in C* and t is either a class
(composite/complex objects [KGBW90, BDK92]) or a primitive type. A primitive type is
a builtin type whose semantics is well-defined and understood by the compiler. Typically
primitive types are those implemented by the underlying ontology. For example, a system

set of primitive types might be {int, float,char, string}.

CM*' = {cmi,cm},...,cmi} is a set of methods in C'. Each method cmi € CM*

contains:
o Ii =(IP,IP,,...IP,),
e 0i=(0P,0P,,...,0P,), and
L J S; = (s}l,sjz,-.-, S_;:!)' .

where I; and 0;- are the set of input and output parameters, respectively and S} specifies

the executable statments of a class method.

A class groups a set of homogeneous objects that are created at object instantiation
time. Zapp and Barker’s [ZB93c] object model defines a set of uniquely identifiable objects
containing structure {attributes} and behavior (methods). We adapt this definition for our

model.

Definition 16 (Object): An object is an ordered triple, o = (f, A, M), where:

1. f is a unique object identifier,
2. A s the object’s structure, defined by attributes such that Va;,q; € A, a; # ¢;, and

3. M is the object’s behavior, defined by methods such that Vm;,m; € M, m; # m;.

Point (1) assigns unique identifiers to each object. Point (2) specifies the attributes of

an object and (3) specifies the methods of an object. This dissertation identifies object

Chapter 3. Computational Model 45

f by of. The set of methods and the attributes of of are unambiguously referenced by
M = {m{,mi,. .. mf} and Af = {al,al,...,af}, respectively. Note that we have used
cm§ and mj— to denote class method and object method, respectively. In the subsequent

sections, method and object method are used interchangeably if appropriate.

The values of an object’s attributes determine the state of the object. The state of
an object can only be modified by transactions. A transaction is a sequence of operations
executing on the objects. As mentioned earlier, transactions are either flat or nested. Flat
transactions were defined in Section 2.1.1. A nested transaction may be described by a
tree where the root is the top-level transaction, a sequence of intermediate transactions,
and a set of leaf transactions. The top-level transaction and its descendants, constitute a

transaction family. Transaction families appear atomic to other transaction families.

The nomenclature used for flat transactions is extended to nested transactions. The di-
rect and indirect descendant transactions of a nested transaction, NT;, are NT;,,NT;2,....NT;n.
When some NT;. attempts to complete, it enters a pre-commit state where it is ready to
commit subject to the commitment of its parent transaction. The operation pc denotes
entry into the pre-commit state by a nested subtransaction. Thus, the operation set of NT;

is 0S; = Ur{7it}, where 1 € {read, write, pc, NTii}.

One feature of nested transactions is that it is possible to execute subtransactions con-
currently. Two subtransactions can be executed concurrently if there is no dependency
relation [GB95] in their internal semantics; therefore, freedom from conflict can be verified.
Zapp and Barker [ZB93c] define a boolean function, depends, which takes two operations
within a transaction, at least one being a subtransaction invocation and returns true if there

is a dependency relation that requires the transactions be ordered.

Definition 17 (Nested Transaction): A nested transaction NT; is a partial order NT; =
(R, <;) where:
1. ;, =0S; U {Ni},

2. (a) for any two 7ip,my; € OSy, if Ty, = w(z) and 7y € (r(z),w(z)) for some =z,
Tip <i Tig OF Tig <i Tip,

Chapter 3. Computational Model 46

(b) for any two Tip,Tiq € OS; if 7, = NT;, and depends(tip,7iq) or depends(Tiq,Tip),
Tig <i Tip OF Tip < Tig, respectively,

3. if ip = pe, Tip is unique and Y7y, € OS5, p # q, Tig <i Tip,
4. V¥1ip € OS;, where 13, = NT;, then Ny = N, and
5. VT,'p € 08;, Tip <i N;. a

Point (2a) orders the conflicting local operations of the nested transaction. Point (2b)
allows the concurrent execution of subtransactions but it orders their conflicting operations.
The significance of the depends function in this point is that it provides information to
allow intra-transaction concurrency. The function depends(Tiy, 7iq) returns true if internal
semantics of operation 7, depends on operation 7;,. Detailed implementation appears later
in this chapter. Point (3) indicates that all operations of a nested transaction must occur
before its pre-commit operation. Point (4) ensures that the termination conditions of all
subtransactions invoked by the nested transaction are the same as the termination condition
of the nested transaction itself. Point (5) places all the operations of a nested transaction

before its termination operation.

3.2 Versionable Objects

We now extend the model of Zapp and Barker [ZB93c] to support versionable objects.
Objects are versionable in that several versions may be derived from an object. A version

of an object is formally defined as follows:

Definition 18 (Version): A version of an object v = (f,¢, A, M), where:

1. fis the unique object identifier of v,
2. cis the unique version identifier of v,

3. A is the object’s structure, defined by identifiable attributes such that Va;,a;,€ A,
a; # a;, and

Chapter 3. Computational Model 47

Committed Versions Active Versions
/,_\ T T~

< \

1} L

0 :

9 }

é committed
[
=N

) \\%___/‘// \v//.

Figure 3.1: An abstract view of active and committed versions of an object

4. M is the object’s behavior, defined by identifiable methods such that Ym;, m;, € M,
m; # m;. .

Point (1) identifies the object from which v has been derived. Point (2) distinguishes the
versions of an object from each other. Points (3) and (4) are unchanged from Definition 16.
All versions of an object must have the same object identifier and methods but we farther

annotate the identifier to indicate the version identification.

Versions of an object are either committed or active. Committed versions are sequenced
according to some correctness criteria so that the most recent correct version is stored at
the head of the sequence and is called the last committed version (LCV'). An active version
of an object begins as a copy of the last committed version which can then be manipulated
independent of all other such versions. When an active version attempts to commit, the
correctness specification is used to determine if and where in the committed version sequence

the active version can be inserted.

Figure 3.1 shows the active versions and the committed versions of an object of. When

an active version of of is created, its state may be modified extensively for some period.

Chapter 3. Computational Model 48

Eventually, the modified active version may commit and become a new committed version
if its state is consistent with the states of other committed versions of of. Otherwise. the
active version may be modified again and if it still cannot be committed, it is disposed.
Committed versions are linked into a version-chain. A new committed version is added in
an appropriate position in the version-chain that is identified by the correctness criterion.
Once the new committed version is inserted in the version-chain, changes may need to be
propagated to the last committed version and all intervening committed versions. Since the
size of the version-chain is limited; periodically older committed versions are removed from
the version-chain and are archived. The version-chain of an object effectively captures the

evolution of the object (historical information) through time.

We adopt the notational shorthand where v/¢ identifies active version ¢ of object of. An
arbitrary data item in v/¢is unambiguously denoted z/¢. Notations to represent committed

versions will be introduced appropriately later in this chapter.

3.3 Transaction Model

Users submit transactions that invoke a set of object methods. Transactions submitted by
a user are atomic so the underlying system must ensure that the nested method invocation
produce atomic results too. Users submit methods that may subsequently invoke others.
Thus, nested transactions submitted by the users may be divided into two groups. The first
group includes top-level transactions explicitly created by the users and the second group
contains transactions occurring as a consequence of the method invocations made by the
top-level transactions. The transactions in the first group are user transactions and those

in the second group are version transactions.

A user transaction cannot directly modify an object’s state in the objectbase. This is
accomplished by the methods it invokes. Such methods are eventually converted to version
transactions. Version transactions are created by the system and operate on active versions

of the relevant objects.

Chapter 3. Computational Model 19

3.3.1 User Transactions

The nomenclature used for nested transactions is also used for the definition of user and
version transactions. User transaction ¢ is denoted UT;. Operation T;t of user transaction
UT; is an invocation of a subtransaction denoted by T,-i. The subtransaction T‘{ refers
to subtransaction k of UT; operating on active version v*. The set of operations for UT;
is 0S; = Ui{Tit}, where the 7;’s are enumerated by finding the transitive closure of the

method invocations made by UT;.

Definition 19 (User Transaction): A user tramsaction UT; is a partial order (}_;,<;),

where:

1. ¥, =0S; U {N;},

2. for any two Tip,Ti, € OS;, if depends(Tip,Tiq) or depends(Tiq,Tip) then 7y < Ty or
Tip <i Tigs respectively,

3. VT,‘p € 08;, where Tip = T'-'; then Ny = N;, and

4. V1ip € 0S;, 1ip <i Ni.]

The points in this definition are directly reflective of those found earlier in Definitions 17

and 18.

3.3.2 Version Transactions

Additional notation is required. The k* step of a version transaction of UT}, executing
on v/t is denoted Vch The version transaction VT;{c is created when operation i of
UT; invokes a method of o/. This nomenclature may be more easily understood by noting
that superscripts represent ob ject identifiers while subscripts identify transactions and their

operations.

Recall from Section 3.1 that NTixy, NTiko,...NT;x, represent the subtransactions of

nested transaction NT;.. This is extended for version transactions so a descendant of VTI-{_

Chapter 3. Computational Model 50

is denoted VT, that represents subtransaction p of VTif,; executes on v®*. The set of
operations for VT‘!,; is OSik = Up{Tikp}, where 75, € {read, write, pc, VTfkp}. Two version
transactions may execute on a common active version of an object (i.e.: method executions

from the same user transaction share a single active version of a particular object).

Definition 20 (Version Transaction): A version transaction Vfl';{c is a partial order VT7, =

(Q{k, "({k)’ where:

1. Q{k =08;: U {N;k},
2. (a) for any two Tikp,Tikg € OSik, if Tikp = w(zf') and 1, € (w(2f?), r(zf)), for any
J:ﬁ, Tikp <;-fk Tikq OT Tikq -<;-fk Tikps
(b) for any two Tikp,Tikg € OSik if Tikp = VT3, and depends(Tiip,Tikg) or depends(Tikg,Tikp).
Tikq -<{k Tikp OT Tikp <{k Tikq, respectively,
3. if 1ixp = pec, then iy is unique and V1ikg € OSik, p # ¢ Tikq -<{k Tikps

4. VT;kp € 0S;i, where Tikp = VTfkp then Nikp = N, and

5. VTikp € OSik, Tikp -({k Ni. []

The significance of the Points (1) (3-5) are similar to that for nested transactions. The
only significant difference between nested transactions and version transactions is that the
latter can only access the data items of its active version of an object. Point (2b) orders
the conflicting operations of two subtransactions of a version transaction which are invoked

on the same active version.

3.4 Serializability

Traditional databases use conflict or view serializability correctness criteria [BGH87]. This
section begins by introducing a new correctness criterion called value-serializability. Value
serializability relaxes the restrictive properties of conflict serializability. Value serializability
is then extended to lvalue-serializability which is the correctness criterion developed for

a multiversion database environment.

Chapter 3. Computational Model 51

3.4.1 Value Serializability

Before discussing the specification, several notational elements need to be provided and an
extension to the traditional definition of a “history” [BGH87] must be stated. First, without
loss of generality, a history H is always a committed projection of a schedule created by
a scheduler in the system [BGH87]. Further, a read operation by user transaction UT; in
history H is represented as r;(z,v) and a write operation as w;(z,v) where v is the value

read or written by UT;. A history is now defined as follows:

Definition 21 (History): A complete history over a set of user transactions 7={UT,,UT5,

is a partial order (3" 4, <) where:

L. Tu = UAUL 4}, (1< i <n)
2. <2 U.'{Ui *:!k}» and

3. for every two operations 7, and T;4 € 3_p, and two distinct values u and v, if 7, =
wi(z,u) and 7jy € (ri(z,v), wi(z,v)), either 7, <y Tj5 Or Tjq <y Tip. []

Point (1) enumerates the operations of all transaction families. (see Definition 20). Point
(2) defines the ordering relation for the operations of all transaction families. Point (3)
indicates that two conflicting operations belonging to two transaction families must be

ordered if they read or write overlapping values.

Conflict serializability states that a conflict occurs if two operations access the same
data and at least one is a write operation. Our definition of conflict is called value-conlici.
Before formally defining this concept we discuss the differences between traditional and
value-conflicts. Value-conflict relaxes the confict definition in two ways. First, conflicting
operations which read/write the same values may not necessarily value-conflict. For exam-
ple, two write operations that write the same value into a data item z can be executed in
any order. Further, any read and write operations which utilize the same data value will not
value-conflict if the read proceeds the write operation in the history. For example, consider

the following:

UT.)

Chapter 3. Computational Model 52

H, = {w1(z,5), wa(z,10), r3(z, 10), wa(z, 10)}

In A,, r3(z,10) and w4(z, 10) conflict, but they do not value-conflict because their ordering
does not effect the value of z. However, a read and a write operation value-conflict if the
read operation reads-from (see definition 7) the write operation. For example, T3 reads
from T, in H,. Reordering the execution of wy(z,10) and r3(z, 10) requires T3 reads from

Ty which implies it would incorrectly use the value of 5.

Second, some conflicting operations that read/write distinct values into a data item z

may not value-cornflict. For example, consider the following:
H = {w\(z,1),r2(z, 1), wa(z, 3), wa(z,4), ws(z, 1), wxz, 2), we(z, 6), €1, 2, €3, €4, C5, Cg}
Consider,
A = {wi(z, 1), 2z, 1), wa(z,3), ws(z,4), ws(z, 1)}

a projection of H. Since A does not contain any write operation of UTy, it makes no
difference if ro(z, 1) reads from wy(z, 1) or from ws(z,1). This implies that r3(z, 1) may be
executed in any order with respect to ws(z,3) or w4(z,4) as long as it reads either from
wy(z, 1) or from ws(z,1). Thus, under these conditions, r2(z, 1) does not value-conflict with

w3(z,3) or with wy(z,4).

Projection A is called a range for r3(z,1) and is defined as follows:
Definition 22 (Range): Given three transactions UT;, UT,,UT, € H, projection A in H
is a range for operation r;(z,v;) if:

1. wy(z,vp) of UT, and wy(z,v,) of UT, are the first and the last elements in A, respec-
tively and v; = v, = vy, and

2. A contains no write operation by UT; on any data item. []

The rational for Point (3) is explained as follows. Consider the following history:

Hy = {r2(z,3), wi(z, 1), ro(x, 1), wa(z, 3), woy, 2), wy(z, 4), ws(z, 1), €1, ¢z, €3, €4, €5}

Chapter 3. Computational Model 53

and projection

Al = {wl(xv 1)7 TZ(Iv 1)7 'IU3(2:, 3)1 w2(y7 2)7 'lD4(.’l.', 4)v tU5(2', 1)}
of H,. For operation ro(z,1) in H;, A; satisfies the first condition of Definition 22 but not
the second condition. Suppose the value of y for wy(y,2) in H; is calculated based on the

value of & read by UT; (ex: y = z+1). Note that in H;, w(y,2) uses the value of z read by

ro(z,1). However, this will not be the case if 7;(z, 1) reads from ws(z, 1) instead. Consider

Hi = {r2(z,3), w(z, 1), wa(z, 3), wAy,4), wa(z,4), ws(z, 1), r2(z, 1), €1, €2, €3, 4, 5}
Since r2(z, 1) reads from ws(z, 1), the value of y in wy(y,4) is calculated based on the value
of z read by r(z,3). Clearly, H, and H| do not have the same set of operations so they can
not be equivalent. This implies that in H;, the execution order of ro(z,1) with respect to
ws(z, 3) and wy(z,4)is important because A; contains a write operation of UT;. Therefore,
ro(z, 1) value-conflicts with ws(z,3) and wy(z,4) and A, is not considered as a range for

T‘Q(I, 1)

The notion of value-conflict can now be formally defined as follows:

Definition 23 (Value-conflict): Two operations 7;, and 7, in a history H value-conflict
if:

o Ti,=w;i(z,v), T;p=w;(z,u),and u # v,

o Tip=wi(z,v), Tjg=r;(Z,u), Tip — Tjq', and Tj, reads from r;, in H, or

o Tp=wi(z,v), Tjp=7;(Z,u), u # v and 7y, is not in any range of 74 in H. [|
This gives rise to the concept of the equivalence between two histories.

Definition 24 (Value-conflict Equivalent): Two history H, and H; are value-conflict equiv-
alent if H, and H;, are defined over the same set of user transactions, and have the same

operations, and the order of their value-conflicting operations is the same.]

!5 — q means that operation p proceeds the operation ¢ in the history

Chapter 3. Computational Model 54

A history is serializable if it is equivalent to some serial history (BGH87]. Recall that
in a serial history (Definition 3) operations of distinct transactions do not interleave and

transactions are executed in a total order.

Definition 25 (Value Serializable): A history is value-serializable if it is value-conflict

equivalent to some serial history. [)

The Value Serializability Theorem

Suppose history H is defined over a set of user transactions 7 = {UTy,UT>,...UT,}.
We determine whether H is value serializable by constructing a graph called a Value Serial-
ization Graph denoted VSG(H). The VSG(H) = (V, E) where a vertex v; € V represents
a transaction UT; € 7, and an edge in E from vertex v; to vertex v; indicates that at least

one operation of UT; proceeds and value-conflicts with an operation of UT; in H.

Theorem 3.4.1 (Value Serializability Theorem): A history H is value-conflict serializable
iff VSG(H) is acyclic.
Proof (sketch):

(if): Suppose H is a history over T = {UTy,UT>,...UT,} and VSG(H)is acyclic. With-
out loss of generality, assume UTy, UT3, ...,UT, are committed in H. Thus, UTy,UT3,....UT,
represent the nodes of VSG(H). Since VSG(H) is acyclic, it can be topologically sorted.
Let 4y, ¢2, ..., in be a permutation of 1,2,...,n such that UT;;,UT;,,...,UT;, is a topological
sort of VSG(H). Let H; be a serial history over UT;;,UT;s,...,UT;,. We prove that H is
value-confiict equivalent to H,. Let 1, ard 7j, be operations of UT; and UTj}, respectively
such that 7, and 7j, value-conflict and i, precedes 7y, in H (7, — Tjg). By definition
of VSG(H), there is an edge from UT; to UT; in VSG(H). Therefore, in any topological
sort of VSG(H), UT; must appear before UT;. Consequently, in H, all operations of UT;
appear before any operation of UT;. Thus, any two value-conflicting operations are ordered

in H in the same way as in H,. Thus, H is value-conflict equivalent to H,.

(only if): Suppose history H is value-conflict serializable. Let H, be a serial history
that is value-conflict equivalent to H. Consider an edge from UT; to UT; in VSG(H).

(o1}
(34

Chapter 3. Computational Model

Thus, there are two value-conflicting operation 7, and 7, of UT; and UTj, respectively,
such that 7, — 7, in H. Because H is value-conflict equivalent to H,, i, — 7, in H,.
This indicates that because H, is serial and 7, in UT; proceeds 7;, in UT}, it follows that
UT; appears before UT; in H,. Now suppose there is a cycle in VSG(H) and without loss
of generality let that cycle be UT)y — UT; — ... = UTy — UT,. This cycle implies that in
H,, UT, appears before UT, which appears ... before UT; which appears before UT; and
so on. Therefore, each transaction occurs before itself which is an absurdity. So no cycle

can exist in VSG(H). Thus, VSG{H) must be an acyclic graph. »

An Example
Consider the following history:

H = {ws(x,5), wi(z, 1), r2(z, 1), wa(z, 3), wa(z, 1), wa(x, 10), rs(z, 10), ws(z, 9), cs, €1, €3, €4, €2, C5 }

Figure 3.2 shows serialization graph and the value-serialization graph for H. The edges in
the serialization graph refer to the conflicting operations in # and the ones in the value
serialization graph correspond to the value-conflicting operations. Note that the three
bold edges in Figure 3.2A are not included in Figure 3.2B. The edge Tp — T4 reflects the
operations ra(z, 1) and wy(z, 1) in H because ry(z, 1) conflicts with wy(z, 1) in H. However,
ro(z,1) and wy(z, 1) do not value-conflict because they read and write the same value and
r2(z,1) happens before w;(z,1) in H in which changing their order does not reflect the
value read by rp(z,1). Thus the edge T, — T4 is not added to the value serialization
graph. Similarly, it is not necessary to add the edge Ty — T4 to the value-serialization
graph because the operations wy(2z,1) and wy(z, 1) write the same value into value z and
do not value-conflict. The edge T; — T3 which is associated with the operations ry(z, 1)
and w3(z,3) is also not added to the value-serialization graph because ws(z,3) occurs in

the following range of r,(z,1).

H = {w(z,1),ryz, 1), wy(z,3), ws(z, 1)}

Chapter 3. Computational Model 56

A: Serialization Graph B: Value-serialization Graph
Figure 3.2: serialization graphs for conflict and value-conflict serializabilities

Figure 3.2A contains a cycie because it considers all of the conflicting operations;
whereas, Figure 3.2B is acyclic because edges only correspond to the value-conflicting op-
erations. A topological sort of vertices (transactions) in Figure 3.2B produces the following

serial history Hy which is value-conflict equivalent to H.

H, = {wg(x, 5), cs, wi{z, 1), c1, wa(z, 3), c3, wa(z, 1), ¢4, ra(z, 1), wa(z, 10), ca, rs(z, 10), ws(z, 9), cs5}

Relationship with other Correctness Criteria

Since the edges of the value serialization graph for history H are determined based on
the value conflicting operations in history H, there is only one way to construct the value
serialization graph for H. Selection of every two operations in a history takes O(n?) to
decide if they do value-conflict. It also takes O(n?) to check if a projection of a history is a
range for an operation. Furthermore, once a serialization graph for a history is constructed,
a cycle in the value serialization graph can be detected in polynomial time. Thus the decision

problem that determines if a history is value serializable can be solved in polynomial time.

(3]
=1

Chapter 3. Computational Model

/ View
/ Serializable
f

Figure 3.3: Relationship between value, view, and conflict serializabilities

The following compares value serializability with view and conflict serializabilities in terms

of scheduling and the cost of implementation.

Figure 3.3 depicts the relationships among these criteria and we argue that each subset

is non-empty. Consider the following histories:

Hl = {1‘2(2:, 5),7‘1(£, 5)1 lU2(.‘B,6), Cl,Cg}

H? = {'lDl(z, 5)7 UJQ(Q:, 6)1 'UJg(y, 7)1 wl(ys 8)3 c2, 'lU3(.’L‘, 9)’ w3(ya 10)7 C3, 'wl(zv 11)1 Cl}

H3 = {wl(z, 1)? 'w]_(I, 5)7 clvr2(y7 1)1 1‘3(3.‘, 5)7 wg(l', 5)1 C2, w3(yv I)s C3}

Hy = {7'1(:%5)7 7'3(7”5 1), Tz(y,5), wl(ys 5)’ w1(2, 1)7 w‘l(z! 1)? 'l.l)g(z, 1)7 lU3(I, 1}, c1, €2, C3}

Histories H,, H;, H3, and H4 are elements of sets A, B, C, and D, respectively. Clearly H, is
conflict serializable. H; is view serializable but it is not conflict serializable because w;(z, 5)
proceeds and conflicts with w,(z,6) and w2(y,7) proceeds and conflicts with wy(y,8). H,
is also not value serializable because any two conflicting operations in H, do value-conflict
too. Hj is value serializable because r3(z, 5) and wo(z,5) do not value-conflict so VSG(H3)

does not contain a cycle. However, H; is neither view equivalent to T, T3, T3 nor Ty, T3, T52.

2We do not need to check other combinations because T} terminates before T: and Ts.

Chapter 3. Computational Model 38

History H, is view serializable to T, T}, T3. It is also value serializable to T, T3, T3 because
r2(y,5) and wy(y,5) do not value-conflict and VSG(H,) is acyclic.

In some environments, concurrency control algorithms that enforce value serializabil-
ity can be less costly and more efficient to implement than the ones which use conflict
serializability. A common concurrency control algorithm that uses conflict serializability
is two phase locking (2PL). Suppose two phase value locking (2PVL) is the corresponding
concurrency control that enforces value serializability. The following compares 2P L verses

2PV L.

Consider the execution sequence of 2PL. If a lock is required, a request is made to the
system kernel in privileged mode which requires the suspension of the currently running
process, a lock acquisition, and a control switch back to the first process. This is an
extremely expensive process that involves approximately one hundred (100) machine cycles

(if conflict does not occur) or more (if conflict occurs) [Moh90].

If the compilers can detect through static analysis, that a “value” is not in conflict, then
the process above can be usurped for this particular access. The cost of 2PV L would be a
comparison operation between the current value and one read, at the time the transaction
initially began execution. This requires only three (3) machine cycles. If you include the
cost of the initial reads and the storage of these initial values, it only costs a total of ten

(10) cycles. This results in a magnitude savings at execution time.

Unfortunately, two conditions make the scenario problematic. First, if the transactions
do actually value-conflict, the locking mechanism (2P L) must be added to the checking cost
which leads to a ten percent increase in overhead. Secondly, the compiler must embed the
comparison operations into the methods which requires a substantial rewrite of the compiler
itself and will minimally slow down the compilation process. The former concern is an issue

of ongoing research while the latter is irrelevant since it is a pre-runtime issue.

Therefore, environments with low data contention or where the domain of values for the

data items is small will benefit the most from 2PV L. On the other hand, if transactions are

Chapter 3. Computational Model 59

constantly updating a small member of data items with a wider range of values (typically

by hot-spots) 2PL will outperform 2PV L.

3.4.2 1Value Serializability

This section extends value serializability and develops a suitable correctness criterion called
lvalue serializability for a multiversion environment. Value serializability and 1value se-
rializability are analogous to conflict serializability and 1-copy serializability developed by
Bernstein et al. [BGH87].

Since traditional databases keep a single version of each data item in the database, this
dissertation refers to a traditional history as single version history {SV history). Similarly a
serial history (Definition 3) is called a single version serial history (SV serial history). The
specifications and notational elements introduced for SV history in the previous section are
adopted for the definition of multiversion history. The only extension is that a read and
a write operation on a data item z is denoted by ri(z;,u) and w;(z;,v), respectively. A
specific version of z accessed for a read or a write operation are annotated with the identifier

of the user transaction which has produced that version of z.

A multiversion history is formally defined as follows:

Definition 26 (Multiversion History): A complete multiversion history (MV history) over

a set of user transactions UTy,UTs,...UT, is a partial order H = (3" g, <p) where:

1. Ty =UdU{QL 0 <i<n),
2. <2 U{UL *{k)

3. for every two operations 7i, and T, € Y g, if Tip = wi(zi,u) and 1, = r(z4,0)
Tip <H Tjq and u = v, and

4. if 1jp = rj(zi,u) € Ty and ¢ € 3 g, then ¢; <y c;. [|

Point (1) and (2) reflect the ones in Definition 21. Point (3) indicates that a transaction may

not read a version until it has been produced. Point (4) ensures that before a transaction

Chapter 3. Computational Model 60

commits, all transactions that produced versions it read must have already committed. This

guarantees recoverability.

A multiversion serial history is defined as:

Definition 27 (MV Serial): A MV history H is MV serial, iff:

1. (3p€ UT;,3q € UT;, where p < q) = (Vr € UT;,Vs € UTj,r < s), and

2. a read operation of UT; on data item z can read any previously created version of

z. .

Note that in SV serial histories (Definition 3) only one version of a data item z, the last
committed version, is available for transactions to access. However, this restriction is relaxed

in MV serial histories.

Definition 28 (Correspond): A serial MV history H, corresponds to a SV serial history
Hg if:
1. H, and H; occur over the same set of transactions and there is one to one mapping

between operations in H; and H,, and

2. if ¢; <cjin Hy, ¢; <¢jin Hy. [|

Point (1) indicates that for every read/write operation on a version of a data item z in
a MV serial history there is a corresponding read/write operation on data item z in its
corresponding SV serial history. Point (2) ensures that the commit order of the transactions
in MV serial history is the same as the commit order of the transactions in its corresponding

SV serial history.

Some MYV serial histories may not behave as their corresponding SV serial histories. For

example consider the following two histories:

Hl = {1‘1(.’1:0, 3)7 wl(xlv 5)7 €1, w?(z% 10)7 C2, T3(.’L'1, 5)? ’lD3(.’l'3, 20)1 63}

H, = {ri(=,3), mi(z, 5), €1, w2z, 10), ¢z, 73(z, 10), wa(z, 40), c3}

Chapter 3. Computational Model 61

H, is a MV serial history and H; is its corresponding SV serial history. Both H, and H,
contain the same set of transactions UT},UTs,UT3, and execute the transactions in the
same order of UTy,UT», and UT3. H, and H; do not behave similarly because in H;, UTj;
reads the version of z produced by UT; and in H2, UT5 reads the version of z produced by

UT,.

Bernstein et al. [BGH87] introduce a subset of MV serial histories called 1-serial histories

that behave the same as their corresponding SV serial histories.

Definition 29 (1-Serial): A MV history H is 1-serial, if it is MV serial and for all 1. 7,
if UT; reads z; (the version of z produced by UT}), then either i=j or UT; is the last

transaction preceding UT; that writes into any version of z. |

Since our definition of MV history takes the values read or written by each operation into
account, the above subset of MV serial histories, 1-serial histories, can be extended to

include a wider range of MV serial histories.

Definition 30 (Ivalue Serial): A MV history H is lvalue serial, if it is MV serial and if

UT; reads z; written by operation wi(zk,u) of UTy, then either:
o 1=k,
o UT, is the last transaction proceeding UT; that writes into a version of z, or

e there exists a UT; which is the last transaction preceding UT; that writes into a
version of z and u=v. : |

For example, consider the following MV history:
Hy = {ri(z0,3), wr(z1,4), €1, 72(21,4), w2, 3), €2, r3(Z0, 3), wa(2z3,6), c3}

UT; reads zg from UT, rather than z; from UT;. Thus H, is not 1-serial. However, A, is
1value serial because whether UT3 reads zg from UTy or z2 from UT,, it receives the same

value and subsequent operations of UT3 that depend on this read in H; are not effected.

Chapter 3. Computational Modei 62

Proposition 3.4.1 Two MV histories are equivalent if they have the same set of operations.

Proof: (see Bernstein et al. [BGH87] page 148).]

Now a 1value serializable history is defined as follows:

Definition 31 (Ivalue Serializable): A MV history is lvalue serializable if it is equivalent
to a lvalue serial history. B

The 1value Serializability Theory

The following definition is required to discuss lvalue serialization theory.

Definition 32 (Version Order): Given a MV history H and a data item z, a version order,
&, for z in H is a total order of versions of z in H. A version order for H is the union of

the version orders for all data items. []

For example, the version order for
H3 = {wi(z1,2), wi(y1,3), €1, w22, 3), €2, w3(y3, 3), €3, wa(24, 4), €4, w5(¥ys,5), €5}
is) € T2 € 74, and y1 K Y3 K ¥s.

Given a MV history H and a version order <, the multiversion value serialization
graph for H and €, MVVSG(H,<)is (V, E) where a vertex in V represents a transaction
UT; € H, and an edge in F from vertex UT; to UT; is either a reads-from edge or a
version order edge. A reads-from edge is added to MVV SG(H, <) from UT; to UT; if UT;
reads a version of a data item z created by UT;. A version order edge is added as follows.
For every two value conflicting operations ri(z;,v) and w;(z;,u) in H, (i.e. u # v and
w;(z;,u) is not in the range of ri(z;,v)) if r; < z; then include an edge from UT; to UT;
(UT; — UTj); otherwise, include UT;y — UT;. Note that in multiversion environments two
write operations do not conflict because each write creates a different version of the data

item.

The following shows the significance of version order edges in MVVSG(H,<). Let
RFV SG(H) (stands for reads-from value serialization graph) be a subgraph of MV VSG(H, <

Chapter 3. Computational Model 63

l \

K
i

¢
® o

Figure 3.4: Reads-from edges of a serialization graph for a MV history

) which only includes the reads-from edges. Given that RFVSG(H) is acyclic, a MV se-
rial history H, obtained from RFV SG(H) by topologically sorting may not necessarily be
1value serial. For example, consider the following history:

H4 = {WO(I(]’ 1)1 TS(ZO’ 1)3 1‘1(.'120, 1)1 wl(zlv 2)9 7‘2(1:19 2)7 w?(z% 4)’ w,g(fl::-;, 5)v €1, C2, 63}
RFV SG(H,) is shown in Figure 3.4. A serial MV history H,4 obtained from topological
sorting is:

Hyq = {wo(zo, 1), co, 71(z0, 1), wi(z1, 2), €1, T2(21, 2), wa(T2, 4), €2, T3(T0, 1), w3(z3, 5), €3}

Hg, is not 1value serial because UT3 does not read a proper version of z.

The purpose of version order edges is to prevent the above problem. For every two
operations r¢(z;, u) and w;(z;,v) in H, the version order edges can force w;(z;,v) to either
precede w;(z;, w) or to follow r¢(z;,u) in H, if necessary (when w;(z;,v) does not value-
conflict with ri(z;, u) the order is not important). Reads-from edges together with version-
order edges must find a lvalue serial history for H, as long as MVV SG(H, <) is acyclic.

This leads us to the following theorem.

Theorem 3.4.2 (lvalue serializability Theorem}: A MV history H is lvalue serializable iff
there exists a version order < such that MVVSG(H, K<) is acyclic.

Proof:
(if): Let H, be a MV serial history UT;;,UTi2, ..., UTin, where UT;y,UT;s,...,UT;y, is a

Chapter 3. Computational Model 64

topological sort of MVVSG(H, <). Since H, has the same operations as #, by Proposi-
tion 3.4.1 H, is equivalent to H. Now we need to show that H, is 1value serial. Consider
any reads-from relationship in H,, say UT} reads the version of z, z;, from UT; (rx(z;, u)),
k # j. Let wi(zi,v) (i # j and j # k) be any other write operation on z in H. If w;(z;,v)
value-conflicts with ri(z;,u), and z; € z;, MVV SG(H, <) includes the version order edge
UT; — UT; which forces UT; to follow UT; in H,; otherwise, if z; € z;, MVVSG(H.K)
includes the version order edge UT. — UT;, which forces UT}. to precede UT; in H,. There-
fore, no transaction that writes a version of z falls in between UT; and U7} in H,. Thus

H, is lvalue serial.

(only if): Since H is lvalue serializable, there exists a lvalue serial history F that is
equivalent to H. For a given &, let VOV SG(H, <) (stands for version order value se-
rialization graph) be a subgraph of MVV SG(H, <) containing only version order edges.
Version order edges depend only on the operations in A and «; they do not depend on the
order of operations in H. Thus, since H and H have the same operations, VOVSG(H. K
) = VOV SG(H,,K) for all version orders <.

Let RFVSG(H;) be a subgraph of MVVSG(H,, <) containing only the reads-from
edges. All edges in RFVSG(H,) go in one direction (for convenience we call it “left-
to-right”); that is if there is an edge UT; — UT; in RFVSG(H,), then UT; precedes
UT; in H,. Define <« as follows: z; <« z; only if UT; precedes UT; in H,. All edges
in VOVSG(H,,<) are also left-to-right. Therefore, all edges in MVVSG(H,, <) =
RFVSG(H;) UVOVSG(H,, &) are also left-to-right. This implies MVVSG(H,, <) is
acyclic. Since H and H, are equivalent (Proposition 3.4.1), MVVSG(H,<K) = MVVSG(H,, K
). Since MVVSG(H,, <) is acyclic, so is MVVSG(H, K). |

The following provides an example to show that 1value serializability controls serializa-
tion order of the transactions both at each object (intra-object serializability) and in the
entire system (inter-object serializability).

Suppose UT) and UT; are two user transactions concurrently accessing attributes £ and

y in o® and Hj is the MV history over UTy and UT; in o®. If UT) reads the version of z

Chapter 3. Computational Model 65

produced by UT,; and UT; reads the version of y produced by UTy, MVV SG(H,, <) will
contain a cycle and H, is not 1value serializable. Now suppose UT} and UT; do not contain
any read operation but each write a version of z and y. As long as no other transaction UT}
reads a version of z and/or a version of y produced by either UT, or UT,, UTy and UT:
can be serialized in any order. Otherwise, the version order edges can enforce a serialization

order between UT, and UT;. For example, consider the following MV history for object o”:

HP = {wl(zl'r 2)’ 'UJ2(1‘2, 3)7 Tk(Eg, 3)’ 'lDQ(yQ, 4)1 wl(yla 5)7 rk(ylv 5)7 €1, C2, ck}

The two reads-from edges in MVVSG(H,, <), UTy — UTi and UT, — UTy, do not
create a cycle. When the version order edges, UT)y — UT; and UT, — UT, are added,
MVVSG(H,, <) will contain a cycle to indicate that H, is not lvalue serializable. The
edge UTy — UT; is added because w;(z,,2) value-conflicts with r(z2,3) and z; < z,.
Similarly, the edge UT, — UT) is added because w,(y,,4) value-conflicts with r«(y;1,5) and

r<<n.

Similar argument to the above can be given for inter-object serializability. Suppose
z is an attribute in o® and y is an attributes in 09, and UT; and UT, access o and o7
concurrently. Suppose, UT; commits before UT> at o and UT, commits before UT; at o9.
Now if a new transaction UT} access of and 07, it may read z2 produced by UT> in of and

¥ produced by UT; in 0%. The MV histories of the transactions at o” and 07 are as follows:

Hp = {wl(xlv 1)1 C1, ID2($2, 2)7 €2, Tk(zzv 2)1 ck}

Hq = {‘ll]g(yz, 2)1 €2, wl(ylv 1)1 C1, Tk(yl’ 1)3 Ck}

The MVVSG(Hp, <) contains two edges. One is a reads-from edge UT; — UT; and
the other is the version order edge UTy — UT,. UT, — UT; was added because UT}
reads from UT, and UT, — UT, was added because z; < z; and wy(z;,1) value-conflicts
with r¢(z2,2). The MVVSG(H,, <) also contains two edges. One is a reads-from edge
UTy — UT) and the other is the version order edge UT; — UTy. UT, — UT, was added

Chapter 3. Computational Model 66

because UT) reads from U1, and UT; — UT; was added because y» < y; and w2(y2,2)
value-conflicts with r¢(y1,1). Although neither MVVSG(H,, <) nor MVVSG(H,, <)
contain cycle, the union of both graphs has a cycle and the system is not inter-object
lvalue serializable. Thus by combining the multiversion value serialization graphs of all

object histories, inter-object serializability is controlled.

3.5 Data Dependency

This section presents definitions related to data dependency and concurrency control. Re-
quired static analysis information used to enhance concurrency is also addressed. Some

concepts may also be used for reconciliation.

Executable statements of a method are divided into two categories: local steps and
message steps ([HH91]. The local steps, LS (m;'»), of a method are those which operate on
object attributes and the local variables of the method. The message steps, M S(mj»), of
a method correspond to method invocations. The set of all steps in a method is denoted

STEPS(m}) = MS(m%)u LS(m?).

Method steps car be related by a partial order to allow intra-step serializability. Im-
posing execution order on some steps such as within the ones that access separate attribute
sets might be unnecessary. However, other method steps must be executed in a particular
order because the execution of one depends on the execution of the others. Data depen-
dency defines access by defining accessors and mutator steps. An accessor step is a local
step which reads an attribute value or a message step which uses an attribute value as an
input parameter. A mutator step is a local step which assigns a value to an attribute or a

message step where the attribute is one of its output parameters [Gra94].

Basic forms of data dependencies that exist between accessor and/or mutator steps of
a method are true dependence, anti dependence, and output dependence. True dependence
between a mutator step S; and an accessor step S in a method (5165;) occurs if Sy and

S2 access the same attribute and S; precedes S,. Anti dependence between an accessor

Chapter 3. Computational Model 67

step 51 and a mutator step S7 in a method (5;8S;) occurs if §; and S2 operate on the
same attribute and S, precedes §2. Output dependence between two mutator steps 5, and
S2 in a method (5,6°5;) occurs if §; and S, modify the same attribute and S; precedes

Sa [Wol89].

The following two definitions generalizes the above dependence relations.

Definition 33 (Arbitrary direct dependence:) Arbitrary direct dependence between two
steps S, and S in a method (516°52) occurs if there is a true, anti, or output dependence

between the steps. u

Definition 34 (Arbitrary indirect dependence:) Arbitrary indirect dependence is the tran-
sitive closure of the arbitrary direct dependence relation. Two steps S; and S, in a method
are arbitrary indirect dependent (516*5>) if there is a chain of arbitrary direct dependencies

between them (i.e.: §16*S, = 518°85:1675:267, ...,8°5:n87 S, for some (n > 0)). [|
Now the partial order relation for the steps of a method is formally defined as:

Definition 35 Steps of a method m; are related by a partial order STEPS (m}, <) where
for every two steps Sp, §, € m}, S, < Sy if $,875,, or §,6*S, in STEPS(m}, <,). [|

3.5.1 Definitions Related to Concurrency Control

Steps which are not related by the partial order < (Definition 35) can be executed concur-
rently. To perform concurrency control, it is necessary to capture and compare the data
items read/written in the steps. The readset of a step includes the input parameters, the
local variables read from the users, and attributes retrieved from the local object. The
writeset of a step contains the output parameters and the local object attributes which are
modified when the step is executed. The readset and the writeset of a step S}k in method
m§~ are denoted by RS (S;:k) and W§ (S;k), respectively. The information read/written by a

method can be captured effectively by taking the union of the readsets and the writesets of

Chapter 3. Computational Model 68

the steps in the method. Construction of readsets and writesets of a method are presented

later in this dissertation.

To perform concurrency control, it is also required information be obtained related
to inter-object communication. Objects communicate by passing information to each other
through the message steps. A message step in a2 method directly invokes the object methods
directly specified in the message step. Further, a message step indirectly invokes the object
methods that are either directly or indirectly invoked by the method it directly invokes. To

capture this information, the following definitions are needed.

Definition 36 (eztent): The extent of a message step Si, (eztent(S};)) consists of all

object methods that may be directly or indirectly invoked by its execution [Gra94]. |

Definition 37 (reachableset): The reachableset of a message step S}, (reachableset(S%;))
consists of those objects containing one or more methods in the extent of the message

step [Gra94].]

The above concepts can be also expressed for the entire method. The extent and the

reachableset of a method are constructed as follows:

ea:tent(m;-) = U eztent(SJ‘:k)
St EMS(m})
reachableset(mj) = U reachableset(S;:k)
S) EMS(m})

Concurrent nested transaction execution can occur in several forms. Three levels of
potential concurrency are identified: coarse-grained concurrency, medium-grained concur-
rency, and fine-grained concurrency [Gra94].

1. Coarse-grained concurrency arises due to the availability of multiple concurrent nested
transactions issued by different users (user transactions [HH91]).

Chapter 3. Computational Model 69

2. Medium-grained concurrency results from the concurrent execution of subtransactions
invoked by a user transaction (concurrent message steps).

3. Fine-grained concurrency occurs between local steps of a method.

Concurrent execution of subtransactions within a single user transaction is intra-transaction
concurrency and corresponds to medium-grained concurrency. Concurrency between nested
transactions issued by different user transactions is inter-transaction concurrency and cor-
responds to coarse-grained concurrency. This dissertation does not address fine-grained

concurrency.

3.5.2 Static Information

Recall that our intention is to use static information to enhance concurrency in a multi-
version objectbase system. The following sections provides the required static information
and their representation. The detailed discussion that demonstrates the derivation of static

information is presented in [Gra94] and will not be repeated in this dissertation.

The Required Static Information

The required static information can be divided into three general categories: control flow
information, method invocation information, and attribute reference information. The con-
trol flow information details what sections of the code may be executed. It also determines
the order of executable sections and the necessary conditions to execute each section. Con-
trol flow information is required for serialization within a method. Concurrent execution of
some sections in a method is correct if the execution order of these sections is based on the
partial ordering relation defined over the steps of the method (Definition 35). The control

flow information reflects this partial ordering.

Method invocation information illustrates communication among the objects by detail-

ing the calling sequence between the objects. Method invocation information is needed

Chapter 3. Computational Model 70

to capture method’s extent and reachable sets. Techniques such as call graphs [Ryd79,

CCHK90] can be developed to represent communication between the objects.

Attribute reference information details the order in which the data is referenced and
their read/write relationship. This information is needed to capture serializability between
and within a method. Attribute reference information detects possible conflict between
two concurrently executing methods of an object. Further, comparison of the attributes
referenced by the steps of a method determine data dependency relation between the steps.
The data dependence relation shows what steps of a method are related by the partial order.

Steps which do not depend on each other locally can be executed concurrently.

Representation

This section presents graph techniques developed by Graham [Gra94] to represent control
fiow, method invocation, and attribute reference information. This section discusses how

these information concepts relate to concurrency control and reconciliation.

Control Flow Information

A method contains a collection of executable sections called basic blocks. A basic block
is a sequence of consecutive steps entered at the beginning and exited at the end without
halt or branching except on the last operation. The detailed algorithm to derive the basic
blocks of a program routine is presented by Aho et al. [ASU86]. In brief, the algorithm
accepts an encoded form of a program routine called three address code ® and determines

the basic block leaders. A leader is the first statement of each basic block and is determined
by:
1. the first statement in the program,

2. any statement that is the target of a conditional or unconditional goto,

3. any statement that immediately follows a goto or conditional goto statement.

*The three address code is an encoded of the program in which all of the complex statements have been

decomposed to their simplest form and cannot be decomposed further.

Chapter 3. Computational Model 71

8B1 P
v _
—
isl;
if expr then BE2 53
s1; !go BBS:
sgz :
s3; -
elseh 4 Kk
while expr do (if noc
s4; 8BS e ¥
s5; ~
endwhile; T
endif; _w__
BB4 o5,
‘go EBJ:;
8BS | ;
; ;
| '
A: The program routine B:The control flow graph

Figure 3.5: Control flow graph of a program segment

For each leader, its basic block consists of the leader and all the statements up to but not

including the next leader or the end of the program.

A basic block may contain one or more branch statements which link the basic block
to other basic blocks. The relation between basic blocks are captured in a control flow

graph [ASUS86).

Definition 38 (Control Flow Graph): The control flow graph of a method m§ is a directed
graph CFG(mj-) = (V, F) where each vertex vy € V represents a basic block z (BB;)

and an edge from v, to v, indicates that the control directly passes from BB, to BB, in

:
mi.]

A control flow graph does not provide any information regarding how many times a basic
block may be visited (reflecting the loop structure). It only shows if and when a basic block

is executed. Figure 3.5 provides an example of program, and its corresponding control flow

Chapter 3. Computational Model 72

graph. Note that BB, is linked to BB, and BBj3, and BB, is linked to BB; and so on.
Every basic block except the ones which represent the leaf nodes in the control flow graph

is linked to one or more other basic blocks.

In a particular execution of a method, only a subset of the basic blocks are visited. This
is because, based on the current state of the object, the control (conditional) statements
prevent the execution of some basic blocks. For example in Figure 3.5B, if ezprel evaluates
to true during the execution, BB, is visited; otherwise, the control is passed to BBj;.
A sequence of basic blocks visited during an execution of a method forms a control flow

path [ASU86).

Definition 39 (Control Flow Path): Control Flow Path C FP, through method m§ is a
sequence of basic blocks < BBy,, BBy, , ..., BBx,_, > where BBy, is the entry node in the
control flow graph for the method mg, BB, _, is an exit node of the graph, and there exists
an edge from BBy, to BBy, (0 << n-1) to indicate that the control flows directly from
BBy, to BBy, . |

In general, if a method contains n control statements, there are at most 2" control flow
paths. Prior to the execution of a method, it might not be possible to determine which
path will be executed. However, it is possible to enumerate the control flow paths of a
method at compile time. Note that as the number of n increases, the number of control
flow paths grows exponentially. But n is bounded by the size of the method and methods
typically have small sizes in our environment. Further, n refers to the number of control
flow statements in a method which is always smaller than the size of the method (i.e: not
all of the statements in a method are control flow statements). Thus 2" is manageable so

enumerating the control flow paths at compile time is not problematic.

The following table shows all possible control flow paths through the program in Fig-
ure 3.5A.

Chapter 3. Computational Model 73

ezprl | expr2 path

true true < BB,,BB;,BBs >
true | false < BB,,BB;, BBs >
false { true | < BB,,BB3,BB,4, BBs >
false | false < BB,, BBz, BB; >

In this example, there are only three distinct paths because when ezprl is true the result

of expr2 is irrelevant.

Method Invocation Information

Conventionally, call graphs were used to illustrate the calling relations between the
procedures of a program. Informally, a call graph is a directed graph where the vertices
represent the routine calls in a program and the edges show how these routines invoke each
other. The equivalent of call graph is class call graph [Gra94] for an ob jectbase environment.
Class call graph shows if an object (an instance) of a class should communicate with some
objects of its own class and/or objects of other classes; but, it does not specify with which
objects. To construct the extent and the reachable set of the objects, it is necessary to
identify the set of objects in the objectbase which an object o/ communicates. Object call

graphs [Gra94] captures this information.

Definition 40 (Object Call Graph): The object call graph of an object method m_‘7 is a
directed graph OCG(mj-) = (V, E) where:

1. vpo0t € V is the root of the graph which represents m;-,

2. vy € V — {vro0} represents an object method that is either directly or indirectly
invoked by m}, and

3. Given that v; and v, represent two object methods m37 and mY, respectively, an edge
e € E from v; to vy indicates that m] directly invokes my. |

Construction of an object call graph for a method mj- is subject to two conditions. First,

the object associated with m; must have been created. Second, objects referenced directly

Chapter 3. Computational Model 74

or indirectly by mj- must exist. In contrast to call graphs and class call graphs, object
call graphs can be constructed at object instantiation time rather than at compile time.
An object may not be instantiated unless it is referenced. However, once an object is
instantiated, object call graphs of its methods can be used in subsequent access to that

object.

Attribute Reference and Dependence Information

Attribute reference information together with control flow graphs are used to construct
the dependence graph which reflects the dependence relation. As mentioned earlier, 2
method is encoded to a sequence of non-decomposable three address codes [ASU86] which
minimizes the unnecessary dependency between the steps in a method. The dependence
relation between any two steps in a method is determined by comparing their readsets and

writesets. This gives rise to the following definition.

Definition 41 (Dependence Graph:) The dependence graph of a method m§ is a directed
graph (possibly disconnected [BM76]) DG(m}) = (V, E) where each vertex v € V repre-

sents a step S ;k in m} and a direct edge e € E from v, to v, indicates that Sj,E?Sj,.]

A dependence graph chains the steps in a method according to the dependence relation
which reflects the partial order relation between the steps (Definition 35). A dependence
graph can be either a connected graph or a disconnected graph. A connected graph has only
one root whereas a disconnected graph has two or more disconnected roots. Figure 3.6B
and 3.6D illustrate an example of a connected graph and disconnected dependency graph

of the methods of Figure 3.6A and 3.6C, respectively.

Suppose § TEPS(m}) contains the steps in a method that occur according to the partial
order defined between the steps. The writeset of a method m; is constructed by taking the
union of the writesets of the steps in m; The readset of mj only contains the data that are
either retrieved from the objectbase or the local variables entered by the users. The readset

of m} (RS(m})), and the writeset of m’ (W S(m})) are constructed as follows:

Let RS(mt) = {}; WS(m}) = {};

2
<

GRE/2

Chapter 3. Computational Model

—

st

—

/\—L m:.e _A
(5} ‘.ia/,: lqs1'A-1' 2
A=3; \,‘:‘4/ $2:B=A+1; B
B=A+1; A s::C=A+2;
C=A+2 R s4:D=X+Y,
D=C+B; X SS:E=D+1+2Z; A
E=D+C+B .85 s6:F=D+2 s
A B C

Figure 3.6: A connected and a disconnected dependence graph

For each S;:k € STEPS(m!)
RS(m}) = RS(m}) U(RS(S}) — (WS(mi) N RS(S5%,)))
WS(ms) = WS(mj-)UWS(Sjk)

end

Suppose, y is in the readset of step S}, € STEPS(m!), then y is also in the readset of

m‘-

7 Therefore,

if it is not written by some previous steps that occur before §%; in m:.
in construction of the readset of mg» shown above, (WS (m;'-)ﬂRS (S_;:,c)) detects the data
in S}k which have been previously modified in m; and (RS(S;:,:) — (WS(m;)ﬂRS(Sjk)))
collects the data which have not been accessed by previous steps in m}. For example, in
Figure 3.6A RS(m;) = {} because every data in STEPS(m;) has been already written
in some previous steps in m;. However, in Figure 3.6C, R.S'(mf,) = {X,Y,Z} because X,
Y, and Z are the only data which are read from the objectbase and not written in some

previous steps.

The definition and the concepts discussed in this section are important factors for en-
hancing transaction management in a multiversion objectbase environment. Recall that the
goal is to develop an optimistic concurrency control algorithm and apply the information
captured from static analysis to increase concurrency control and produce reconciliation
function for unsuccessful transactions at compile time. Information such as conservative

construction of readset and writeset of methods determine if potential conflict exists be-

Chapter 3. Computational Model 76

tween two transactions accessing the same object. Extent, reachableset, and attribute
reference information form the basis of the implementation of the depends function (Defi-
nitions 19 and 20) which exploits intra-UT and inter-UT serializability. This is explained

further in the next section.

Other information such as control flow path and dependence graph can impact the
reconciliation algorithm. Reconciliation may involve re-execution of some operations. If re-
execution is necessary, the dependency graph can be used to reread the stale data in order
to re-execute the operations which are affected by the stale data. Further, if partial re-
execution of a method affects other methods referenced or being referenced by the method,

extent and reachableset can determine what other methods should be reconciled.

3.5.3 The depends Function

The detailed implementation of the depends function can now be discussed. Recall that
the depends function accepts two operations within a transaction; at least one being a
method invocation and returns true if there is a dependency in the internal semantics of
the operations. The significance of the depends function is that it provides information to
allow intra-transaction concurrency. This implies that operations of a transaction which do

not depend on each other can be freely executed concurrently, leaving the rest serialized.

Fully describing the implementation of the depends function requires a deep examination
of compiler construction and a thorough treatment of the runtime systems. This is beyond
this dissertation’s scope but a brief discussion of the fundamental compile-time techniques
should be sutficient to demonstrate feasibility. A more complete description is available in

Graham [Gra94] and others [ASU86, GZB92].

Dependency between two operations can be of three forms: direct dependency, indirect
dependency, and hidden dependency. Direct dependency occurs if the two operations directly
conflict in the local object. Indirect dependency occurs if the operations commonly access
conflicting methods in some other object. Hidden dependency happens if two operations

conflict indirectly in the local object (typically the result of recursion).

-

Chapter 3. Computational Model 7T

Algorithm 3.5.1 (depends Function- the interface section)

Algorithm depends(argl,arg2)

begin
if argl=read/write OP; = argl and OP>=arg2 (D
elseif arg2=read/write OP; = arg2 and OP>=argl (2)
else argl=0P, and O P>=arg?2 (3)
W SECTION A (Checking direct dependency between a local step and a message step)
if (OP,=read) and (OP, € WS(OPF-)) OR (CY)]
(OP,=write) and (OP; € (WS(OPz2) U RS(OP,))) then (5)
return true; (6)
nt SECTION B (Checking hidden dependency between a local step and a message step)
elseif (OP, is a read/write on object o/) and o/ € reachableset(OP:) then (M
for every m! of o/ € extent(OP;) do (8)
if (OP,=read) and OP; € WS(m!) OR (9)
(O P =write) and OP; € (RS(m!) U WS(m{)) then (10)
return true (1)
! SECTION C (Checking direct dependency between two message steps)
elseif
RS(OP)NWS(OP) # {} OR (12)
RS(OP:)NWS(OP) # {} OR (13)
WS(OP) N WS(OP:) # {} (14)
return true; (15)
Mt SECTION D (Checking indirect dependency between two message steps)
else if Con flict-Set(OP,,0P,) # {} then (16)
return true (17)

M SECTION E (Checking hidden dependency between two message steps)
elseif (OP; is a message step of a method in object o/) and o/ € reachableset(OP2) then (18)

for every m{ of o/ € extent(OP,) do (19)
if (RS(OP)NWS(m!)) # {} OR (20)
(WS(OPy) N (RS(m])UWS(m]))) # {} then (21)
return true (22)
elseif (O P, is a message step of a method in object o/) and o/ € reachableset(OP;) then (23)
for every m{ of o/ € extent(OP,) do (24)
if (RS(OP:)nWS(m!)) # {} OR (25)
(WS(OP;) 0 (RS(m!) UWS(m]))) # {} then (26)
return true (27)
" NO DEPENDENCY EXIST
else
return false (28)
end

Figure 3.7: The depends function

Chapter 3. Computational Model 78

The algorithm to implement the depends function is shown in Figure 3.7. The algo-
rithm consists of several sections. The first two sections consider the case when one of the
arguments passed to the depends function is a simple read/write operation and the other
parameter is a method invocation. The next sections refer to the dependency between two
method invocations. Suppose O P, represents the read/write operation and O P; represents
the method invocation operation in sections A and B. Section A determines if the oper-
ations referenced by O P, (input and output parameters) locally depend on OP; (direct
dependency). This dependency exist if OP; and OP; operate on the same data in a con-
flicting manner. Section B shows a form of hidden dependency between a simple read/write
operation and a method invocation. Suppose O P; calls m! (a method in object o) which in
turn calls m{ (2 method in object of). If OP; is an operation on object o/, some attributes

referenced by m,{ may conflict with OP; and as the result O P, and OP;, can be dependent.

Similarly, section C checks if two message steps invoked from the same object method
locally depend on each other (direct dependency). This is done by comparing the data
referenced by the two message steps. Section D checks if two message steps may indirectly
call some conflicting methods in a common object (indirect dependency). The function

Con flict-Set(O P;,OP,) shown in line 16 detects such a dependency and can be defined as:

Definition 42 (Conflict-Set): The Conflict-set of two message steps msgl and msg2
(Conflict-Set(msgl,msg2)) is a set of pairs < m{,mf > where m{, and me are two
methods of object of such that m! € extent(msgl), me- € extent(msg2), and m;-f and mf

:

may access attributes in o/ in conflicting manner.]

If the conflict-set is empty, no indirect dependency occurs; otherwise, potential indirect

dependency exists.

The function Con flict-set may not always detect some hidden dependencies. For ex-
ample, if OP, and OP; are two message steps of method m;-f in object o/ and of is an
element of reachableset(QOP,), then there exists at least a method m{- € ezxtent(OF;) in

which O P, and the method m;f may access some conflicting attributes in o/. This is another

Chapter 3. Computational Model 79

h. | .
. : ‘ ‘
0 ?:I: Fm;{x)% readfy) | .
a : .
() ob 52 call mP | :
< s ’ .

T . oc
syl =fin) ; ' o
g | - .
s2:y2=fivl} i) i
c v
of O e
¢ ! J .
i read(x) ¢ writex) | X -
‘ ‘ i | -
A B C

Figure 3.8: dependency of the statements in a method

form of hidden dependency which may exist between two message steps invoked from the
same method. The last section in the algorithm (section E) determines if such a hidden
dependencies exist. If none of the above conditions are satisfied, the depends function re-
turns false indicating that no dependency exists between the two operations. Examples of
direct, indirect, and hidden dependencies are illustrated in Figure 3.8A, 3.8B, and 3.8C,

respectively.

Figure 3.8 illustrates several cases. Direct dependency is the easiest case. Figure 3.8A
shows an example of direct dependency between two statements s; and so in method m{ .
Clearly s; and s; access conflicting operations. Comparing the readsets and the writesets
of s; and s, determines that the execution of s, depends on the execution of s;.

Figure 3.8B illustrates indirect dependency between two statements s; and s; in m{ .

51 and sz do not conflict locally but both indirectly invoke some conflicting methods in o9.
The Conflict-Set(m$, m}) = {< mi, m} >} because m{ and mJ belong to the extents of

mi and mj, respectively, and access some conflicting operations in o9.

Chapter 3. Computational Model 80

Figure 3.8C illustrates an example of hidden dependency. Note that statements s; and
s2 neither directly nor indirectly conflict. But s; indirectly accesses some other methods
in of which has some conflicting operation with s,. This dependency can be detected by
comparing the readset and the writeset of s; with the readset and the writeset of the method
that is indirectly invoked by s, in of. Similarly, s; may conflict with some methods that

may be called by s, in o/ indirectly.

If the result of the depends function is false, the two operations can be freely executed
concurrently. Otherwise, if a local dependency exists, one operation is blocked until the
other is completely executed. If the two operations are not locally dependent, but the
result of the depends function warns about the potential indirect dependency or hidden
dependency, the two operations can be executed concurrently as long as their executions

are serialized based on a defined correctness criterion.

3.6 Summary of Assumptions

In the description of the architecture and the computational model presented in this chapter,

we have made some assumptions. The assumptions are as follows.

1. Although the ideas in this research may also be applicable to some other database

systems, discussion is limited to the objectbase environments only.

2. The objects referred to in this research only embody the key requirements of objects
without including unnecessary extensions. This limitation simplifies the problem by
the elimination of unnecessary special cases and makes the work more generally ap-
plicable because it does not need to cater to particular features of some objectbase

systems.

3. We assume that during the execution of a set of transactions, the schema is static.
Schema evolution may change the structure and the behavior of the objects which in

turn may impact transaction management. Therefore, we assume that if a change in

Chapter 3. Computational Model 81

the schema must occur, the system stops accepting the users requests and waits for
the active transactions to terminate. Once the schema is changed, recomplied, and

tested, the system accepts the user requests again.

. This research adopts the convention of including method invocation using a procedure

call syntax. Therefore, a method invocation (including one within a user transaction)
can accept several parameter and where appropriate optionally returns explicit results.
(eg: Routine MethodName(argl,arg2,...)). This is merely the most familiar notation

available.

. Creating a version of an instance of a class (object) does not add a new instance to

that class. In other words, versions are just the copies of objects that are used for the
purpose of transaction management. Versions are non-persistent entities that may be

promoted to stable objects.

. The model assumes that a number of subtransactions are executed on versions of ob-

jects on behalf of the user transactions. It is assumed that the user transaction model

identifies the version transactions as it is done in nested transaction models [Mos85].

Transaction nesting is closed in our model. When a subtransaction of a user transac-
tion updates the data in the versions of objects, the changes are revealed to other sub-
transactions from the same transaction family after the subtransaction pre-commits.
The changes made in some versions by the subtransactions of a transaction family are

revealed to other transaction families when that transaction family commits.

Like flat transactions, it is assumed that ACID properties are enforced on user trans-
actions in our model. The execution of each user transaction is atomic; its results
leaves the objectbase in a consistent state; its execution is isolated from the execution
of other user transactions; and the changes it makes in the objectbase are persistent
after it commits. Note that our concurrency control algorithm which will be presented
in the next chapter ensures consistency and isolation of transactions. But, we assume

that transactions are durable and the system is reliable.

Chapter 3. Computational Model 82

9. Our model mainly utilizes encapsulation in the object model as it relates to con-
currency. Other interesting object properties such as inheritance, aggregation, and
polymorphism may impact transaction management but exploitation of these issues
is beyond the scope of this thesis. Therefore, we treat each object individually and
do not worry about how each object is instantiated. We assume that objects are
created by some mechanism and our task is to manage these objects efficiently. In
other words, whether an object has inherited properties of other objects (a part-of
hierarchy) or from other classes (an inheritance hierarchy) does not impact on the

correctness or performance of the algorithms presented in this thesis.

Chapter 4

The Architectural Model

This chapter introduces an architecture and an optimistic multiversion concurrency control
algorithm. The algorithm describes the components of the architecture in detail. Examples
illustrating complex parts of the algorithm are provided incrementally. We argue about the

correctness of the algorithm based on intra-UT and inter-UT serializabilities.

4.1 The Architecture

A versioned object store is comprised of two parts: a non-persistent unstable working store,
and a persistent objectbase. The unstable store contains active versions. Committed versions
are maintained in the objectbase. An object, with its committed versions, construct an

object family.

1. An active version is

e mutable,
¢ derived from a committed version, and

¢ can be promoted to a committed version.
2. A committed version is

¢ persistent,

83

Chapter 4. The Architectural Model 84

: vt |VRptr n
r o
\
vt [VRptr [fn-—
[[e]
' |
gl
!
-

Figure 4.1: Logical structure of committed versions in an object family

e created from the promotion of an active version.

Beside the characteristics captured by Definition 16, an object needs system attributes

that describe its versions. The system attributes of an object are:

e OBptr: points to the last committed version of an object.

® VerCount: keeps track of the number of committed versions of an object.

A version of an object also requires the following system attributes:
o VRptr: points to the next current committed version of the object; otherwise, it points
to nil.

® vt: records the valid time [SA86] of the version. The valid time is when the transaction
associated with the version commits and the version may be revealed.

To distinguish different version types of of, we denote v/* and of* to represent an active
version and a committed version of o/, respectively. A particular data item z in version v/
is unambiguously denoted as z/i. Figure 4.1 shows a logical structure of committed versions

of an object of in the objectbase. Committed versions of!,0/2, ..., 0" are associated with

Chapter 4. The Architectural Model 85

user

Transactions E A
; c/a
A 4 {
Transaction Processor
Tznzgigig:ns ' C/A
i
omggggdoie;sion v:g;i:gs ///////////////
Version Processor Unstable

.] T
Version
Lists f‘ C/A
Y.] e

ed act: ons
Vers;, dcty . L~ s
long Ve Validation Processor ¥

Figure 4.2: The Main Components of the Architecture

user transactions UTy, UTy, ..., UT,, respectively and their positions in the version-chain of

of reflect the serialization order of such transactions.

Creating an active version, vf*, from a committed version of the object family f, requires
copying a committed version and giving it a unique version identifier :. Promoting an active

version v/* to a committed version requires recording v/* as o/* in the objectbase.

4.1.1 The Architectural Model

Three major components form the basis of our architecture: the Transaction Processor,
the Version Processor, and the Validation Processor (Figure 4.2). The Transaction Proces-
sor accepts user transactions and returns results to the user. It processes transactions for
syntactic correctness and performs coordination functions for inter-object method execu-
tions by converting the method invocations to version transactions and scheduling version
transactions (using the depends function) for each user transaction. The Version Processor
receives the version transactions from the Transaction Processor and creates new active
versions of the objects required by the version transactions by copying from the committed

versions of the objects from the objectbase. The active versions associated with the ver-

Chapter 4. The Architectural Model 86

____._...r________]&___.___,
| user | |
| Transac:icns¢ } c/a
‘ |
|
‘ User Trans Manager

]
! version V'I‘E : ?
Trans ip{ Lc/a

" i

Method Scheduler
. scheduled i }
‘version Trans C/A
————

Figure 4.3: The Transaction Processor

sion transactions of a given user transaction are logically grouped into a version list after
their completion and are submitted to the Validation Processor. The Validation Processor
examines the version list and decides whether to abort or commit the user transaction. If
it is possible to commit the user transaction, the Validation Processor promotes the active

versions associated with it to committed versions.

Figure 4.3 shows the Transaction Processor in greater detail. The Transaction Processor
contains two components: the User Transaction Manager and the Method Scheduler. The
User Transaction Manager coordinates the execution of user transactions by converting
the method invocations to version transactions denoted by VTi{,’s and passes them to the
Method Scheduler. The notation VT,-{, refers to version transaction p of UT; executing on an
active version of the object family f. The Method Scheduler permits concurrent execution
of a user transaction’s version transactions (enforcing intra-UT concurrency control) so
that version transactions of a single user transaction invoked on the same active version are
ordered before they are sent to the Version Processor. Version transactions of multiple user

transactions are executed concurrently.

Figure 4.4 shows the two components of the Version Processor: the Version Transac-
tion Manager and the Execution Manager. The Version Transaction Manager receives the

scheduled version transactions (VT,-’;’S) from the Method Scheduler. An active version from

Chapter 4. The Architectural Model 87

rSeheéduled ” T T T T T A
| version i !C/A
| Transactionswy | .
copy ofllast | yersion Trans Manager £3 '
mmitted|versio, o
75 /4
) { VRLST(UT) TC,A ‘g Unstable
Objectbase | updated|v Store
updated! vi Execution Manager
' : r
| VRLST(UTi) | © C/A
_____ B

Figure 4.4: The Version Processor

the object family f in the objectbase (v/?) is requested and is placed in the unstable store!.
Unless it is specified, the active version v/* originates from the last committed version in
the object family f. Next, the Version Transaction Manager passes VT,-{, to the Execution
Manager. The Execution Manager executes the operations of VT,{, updating v/* in unstable

store.

The Version Transaction Manager also builds a version list for each active user trans-
action. The version list of UT; (VRLST(UT;)) records the active versions referenced by
UT:;. Every time an active version v/? is created for UT;, the Version Transaction Manager
appends f (the object family identifier of v/*) to VRLST(UT;:). When every version trans-
action of UT; completes, VRLST(UT;) is passed to the Execution Manager. The Execution
Manager submits VRLST(UT;) to the Validation Processor.

The Validation Processor checks the validity of the updated active versions (Figure 4.5).
It has two components: the Decision Manager and the Commit Manager. The Decision
Manager checks for the validity of each active version by comparing each updated active
version (v/%) referenced by its object family id in the version list with the last committed

version of object family f in the objectbase.

'In this thesis, since each user transaction UT; obtains at most one active version from an object family,

the active version id can be the same as the user transaction id.

Chapter 4. The Architectural Model 88

copy of thel last .
committed version Decision Manager £i
u

! j
| VRLST(UTi) | Commi t
|

! Y
I

updated, v Commit Manager
!

QObjectbase

Figure 4.5: The Validation Processor

For example, assume Figure 4.6A shows the state of the objectbase just before the
creation of v/*. of7 is the most current committed version in object family f when v{*
is created. Since vf' originates from of7, of7 is referred to as the base version of vfi.
It is possible that during the execution of UT; other user transactions, UTj4y, ..., UT,
commit and produce new committed versions of7*!,0f7%2 of™ in the object family f

(see Figure 4.6B).

When UT; terminates, the Decision Manager compares each updated active version v/*
referenced by its object family id in VRLST(UT;) with the most recent committed version
of object family f, (/™). of™ is the committed version located at the top of the version-
chain of object family f. The purpose of the comparison is to determine if updated active
versions would create inconsistency in the objectbase. The state of an updated active version
v/t is consistent with the states of committed versions in object family f if the values of
the attributes read by UT; in v/* have not been modified in the objectbase during the life
time of UT;. If the states of all active versions of UT; are consistent with states of their
corresponding committed versions in the objectbase, VRLST(UT;) is sent to the Commit

Manager; otherwise some active versions of UT; are invalid and UT; should be reconciled.

Reconciliation is the process of correcting the invalid active versions of UT; with respect
to the current state of the objectbase. First, the Decision Manager determines if it is possible

to change the commit order of UT; with respect to recently committed user transactions.

Chapter 4. The Architectural Model 89

Figure 4.6:

]
I vt VRptr n
fi - l o l
\ I ' Y Ne—
g ¥
__—____(___(J
b vt {VRptr p+1
]
_ updated v
vt JV'Rptrl fp I
- 3 -

-~
'

: vt (VRptrf £5+1
Io '

.

‘ By the base fi
ve ‘VRptr;I ot Iversion of v

vt VRptr| f£0

Insertion of an active version in the chain

Chapter 4. The Architectural Model 90

Then, the Decision Manager attempts to find a position (based on the correctness criterion,
Lvalue serializability) for each active version v/* referenced by UT; in the version-chain of
the object family f. This process is called simple reconciliation. Consider Figure 4.6 again.
An active version »f' can be added between any two committed versions o/? and ofP+!,
j < p < n, in the version-chain if:
1. the values of the data read by UT; in »f* when v/ was originally created are still
unchanged in o/?, and

2. the data read in o/?*1,0/7*2 _ o/" by UTp41,UTpy2, ..., UT,, respectively do not
value-intersect (value-N) with the data written by UT; in v/*. The value-intersection
of two sets A and B is a set C = {z1,%2,...,z,} iffor 1 <i<n, ; € A, z; € B, and
the value of z; in A is not equal to the value of z; in B.

The first point indicates that although UT;, the user transaction associated with »/*, has
read its required data items from 0’7 to manipulate v/*, v/* can also be serialized after o/?
if UT; could have read the required data items from o/? instead. The second point indicates
that if some user transactions UTp4y, UTp42, ..., UT, read a data item z in which z was last
modified by one of UT,,UT,_4,...,UTo, they can still read z from vf* as long as UT; has

not modified the value of z in vf*.

If v/ can be added between any two committed versions of o/, v/* is considered a valid
updated active version. Validity of all updated active versions in the VRLST(UT;) only
ensures intra-object serializability. A mechanism must be developed to check inter-object
serialization of the user transactions. This implies that for any two user transactions UT;
and UTj, that have referenced some committed versions o/* and of7, respectively, if o/* is
serialized before of7, then effectively for every object family k that is commonly accessed by
both UT; and UTj, v** must be serialized before v*7. Techniques such as Global Serialization
Graph {ZB93c] can be used to determine inter-object serializability (see Section 2.3.4). The
vertices in the global serialization graph represent the user transactions. An edge in the
graph from UT; to UT; implies that some committed version o/ of UT; has been serialized
after some committed version o7 of UTj in the object family f. A cycle in the graph can

detect if a set of concurrently running user transactions is inter-object 1value serializable.

Chapter 4. The Architectural Model 91

After checking both intra-object and inter-object serializabilities, the Decision Manager
sends VRLST(UT;) to the Commit Manager.

If both intra-object and inter-object serializabilities are guaranteed, the Commit Man-
ager promotes the updated active versions to committed versions and records them in the
objectbase. Otherwise, version transactions of UT; which have accessed the stale data may
partially be re-executed against some of the active versions of UT;. This process is called
complex reconciliation. Complex reconciliation affects both the invalid active versions and
other active versions which relate directly or indirectly to the invalid versions. In the com-
plex reconciliation of a user transaction, the Decision Manager uses the information from the
dependency graph and the control flow path graph to re-execute the basic blocks affected
by the stale data. When complex reconciliation is complete, and the results made from
all the updating versions of UT; become consistent with the current state of their commit-
ted versicns in their corresponding object families, VRLST(UT;) is passed to the Commit
Manager. The Commit Manager promotes the updated versions to the commiited versions,

records the committed versions in the objectbase, and commits the user transaction.

Since the number of committed versions in the object families grows overtime, period-
ically some of committed versions are archived. Issues related to archiving the committed
versions and their storage management are beyond the scope of this thesis. The complete

architecture is shown in Figure 4.7.

In the rest of this chapter, we explain the function of each component of the architecture
and describe the basic optimistic algorithm. Simple and complex reconciliations are studied

in detail in the subsequent chapters.

4.2 The Implementation

The following is the list of the routines and data structures required by the Transaction

Processor.

Chapter 4. The Architectural Model

i A

ur, | ' c/a
v |
User Trans Manager

%

q "7 : c/a
Method Scheduler
scheduledVTfp! _A /A, ;‘ech"ds'
[~} “L ipe(VTi;)
cgopxtggd the lq:: Version Trans Manager £i
7 mmi versi v
///////////// ,TITEP ! Ac/A, methods, Unstabl
i ; |
Objectbase VRLST {UTi l,f'_ - pet VTfs) update v Sntsore ¢
Execution Manager
£n .
o . - . :ﬁ
% VRLST (UTi) | EC/A , «09'&‘66
96@
(4

VRLST (
archiving

| = = |
4 Decision Manager }
L x

U'ri)}
L 4

committed
versions

Commit Manager

Figu

re 4.7: The Architecture

Chapter 4. The Architectural Model 93

Send(C,MSG): Sends message M SG to component C. Each component contains a mes-
sage queue. The message M SG is located at the back of the message queue of com-
ponent C.

Output(Result): Submits the final result (commit or abort) of the execution of a user
transaction to the user.

CreateVT(M): Converts the method invocation M to a version transaction. A method
invocation is an operation of a user transaction or a version transaction.

SetOrder(f,VT,VT’): Sets an ordering between two version transactions VT and VT’
which may commonly access some active versions of object family f in a conflicting
manner. This ordering ensures that the execution of VT is serialized after VT".

ReleaseOrder(f,VT,VT’): Removes the order between the two version transactions VT
and VT’ which have been previously set by the SetOrder() function.

counter(UT): Is a counter kept for each user transaction UT. The counter is incremented
when a direct/indirect method (version transaction) of UT is invoked and is decre-
mented when a version transaction of UT terminates.

ConflictObject(VT,VT?): Is a function that returns a set of objects which may possibly
be referenced in a conflicting manner by some subtransactions of VT and VT’. This
function can be implemented based on the information captured from the depends(VT,VT'),
reachablesets(VT), reachableset(VT'), and Con flict-set(VT,VT").

A user transaction, UT; is submitted to the Transaction Processor (see Figure 4.8).
The User Transaction Manager decomposes UT; into a set of method invocations (lines
1-2), converts them to version transactions (line 4), and passes version transactions to the
Method Scheduler on behalf of UT; (line 5). This process continues until every opera-
tion of UT; including the termination condition, ¢;, is sent to the Method Scheduler (line
6). A counter is associated with each user transaction UT; (counter(UT;)) to control the
number of pre-committed version transactions of UT;. counter(UT;) is incremented when a
method (version transaction) of UT; is invoked (line 3) and it is decremented when a version

transaction of UT; pre-commits.

The Method Scheduler ensures the proper ordering defined by the depends function
(Section 3.7) is enforced before submitting the version transactions to the Version Proces-

sor (see Figure 4.9). Multiple version transactions executing on a version of an object

Chapter 4. The Architectural Model 94

Algorithm 4.2.1 (User Transaction Manager - the interface section)

Algorithm User.Trans.Mgr
input: A user transactions operation set (}_;) and its partial order (<;) from the user, and
the result of the termination of a user transaction from the Method Scheduler.
output: The operations of a user transaction to the Method Scheduler, or the result of
the execution of a user transaction to the user.
begin
¥%* INFORMATION RECEIVED FROM THE USER **
case input of

UT;:
for every operation 7, € 3 ; do (1)
if rp = m]f then (2)
counter(UT;) — counter(UT;) + 1 (3)
VT — CreateVT(m/) (4)
Send(Method.Scheduler,VT) (5)
elseif 7, = ¢;
Send(Method.Scheduler,c;) (6)
¥*** INFORMATION RECEIVED FROM THE METHOD SCHEDULER ****
C/AUT;):
Output(C/A(UT:)) (7)
end{case}

end

Figure 4.8: The User Transaction Manager

Chapter 4. The Architectural Model

Algorithm 4.2.2 (Method Scheduler - Ordering the related methods)

Algorithn: Method.Scheduler

mmput: A version transactions of a user transaction, the commit operation of a user
transaction from the User Transaction Manager, and a version transaction
of a user transaction, termination condition (pre-commit) of a version transaction,

or the result of the execution of a user transaction from Version Transaction Manager.
output: The scheduled version transactions or the termination condition of a user transaction

to the Version Transaction Manager, and the result of the execution of a user

transaction to the User Transaction Manager.

var: received(c;): It is a flag to indicate that the Method Scheduler has received c;.

begin
case input of

¥ INFORMATION RECEIVED FROM THE USER TRANSACTION MANAGER ****

VTL:
for all active VT, such that depends(VT‘{,,
A — ConflictObjects(VT, VTS,
Yo™ € A do
SetOrder(o™, VTZ,, VTE,)
Send(Ver.’I‘rans.Mgr.V’l}J;)
else
Ci:
received(c;) — true

*+** INFORMATION RECEIVED FROM VERSION TRANSACTION MANAGER ****

C/A:
Send(User.Trans.Mgr,C/A(UT;))
VT
for all VT, such that depends(VTY,,
A — Con flictObjects(VT, VT,{
Yo™ € A do
SetOrder(o™, VT, VT,)
Send(Ver.Trans.Mgr,VT})
pe(VTL):
counter(UT;) «— counter(UT;) — 1
while 3 VT such that depends(VTg,, VT;{,) do
A — Con flictObjects(V T, VT;{,)
Yo™ € A do
ReleaseOrder(o™, VTS, VT,—{,)
if (counter(UT;) = 0) and (received(c;)) then
Send(Ver.Trans.Mgr,c;)

VT}) do

end{case}
end

Figure 4.9: The Method Scheduler

VTy,) do

(1)
(2)
(3)
(4)
(5)

(6)

(10
(11)
(12)

(13)
(14)
(15)
(16)
(17)
(18)
(19)

Chapter 4. The Architectural Model 96

originating from the same user transaction may need to be ordered. For example, suppose
the execution of VT;{, depends on the execution of VT, (line 1) and set A represent the set
of all common objects that may be referenced by some descendants of VTi{, and VT (line
2). The Method Scheduler sets a serialization order between VT,{, and VT,{; for the active
versions of the objects in A to block the execution of VT{:,’S descendants at these active
versions until VT, pre-commits (lines 3-4). Then it sends VT‘-{, to the Version Transaction
Manager (line 5). When the Method Scheduler receives ¢; (line 6), it holds ¢; until all of

the direct and indirect version transactions of UT; pre-commit.

The following routines are also defined for the description of the Version Processor.

StoreUnstable(v): Stores active version v in the unstable store.
Copy(f): Returns a duplicate of the most recent committed version in object family f.

BeforeImage(v): Is a snapshot of a version v, before v is modified. This snapshot is
required during the validation of the version at commit time.

readset(v): Is a set that collects the attributes in version v retrieved by the transactions.
writeset(v): Is a set that collects the attributes in version v updated by the transactions.
Delete(v): Deletes active version v from the unstable store.

Ordering(VT,VT*,f): Returns true if the Method Scheduler has ordered the execution
of version transactions VT after VT’ in some active versions of object family f.

The Version Transaction Manager maintains a version list for each user transaction.
A version list records the object id of the active versions that are referenced by a user
transaction. Thus, each element of a version list refers to an object family identifier f
in which an active version of of has been derived for a user transaction. The Version
Transaction Manager receives scheduled version transactions (VT,-’;’S) from the Method
Scheduler (see Figure 4.10). For each VT;; received, the Version Transaction Manager
checks the version list of UT; (VRLST(UT;)) to ensure no active version associated with
object family f for UT; already exists in the unstable store (line 2). If this is the case,
the Version Transaction Manager adds the object family identifier f to the VRLST(UT;)

Chapter 4. The Architectural Model 97

Algorithm 4.2.3 (Version Transaction Manager - Creating active versions)

Algorithm Ver.Trans.Mgr
input: Scheduled version transactions of a user transaction, or the commit operation
of a user transaction from the Method Scheduler, and the termination
condition(pre-commit) of a version transaction or the result of the execution of
user transaction from the Execution Manager.
output: A version transaction of a user transaction, or the version list of a user
transaction to the Execution Manager, and a version transaction of a user
transaction, the termination condition of a version transaction, or the result
of the execution of a user transaction to the Method Scheduler.
begin
case input of
+* INFORMATION RECEIVED FROM THE METHOD SCHEDULER **

Cqt
Send(Exe Mgr,VRLST(UT;)) (1)
VT
if f not € VRLST(UT;) then (2)
VRLST(UT;) — VRLST(UT;) u {f} (3)
v/ — copy(o/™) ! 0f™ is the last committed version of of (4)
BeforeImage(v/*) = v/* (5)
StoreUnstable(v/*) (6)
Send(Exe.Mgr,VTY) (7)
++ INFORMATION RECEIVED FROM THE EXECUTION MANAGER **
VTE:
Send(Method.Scheduler,V T, (8)
pe(VTY):
Send(Method.Scheduler,pe(V T7)) (9)
C/A(UT)):
for every v/* € VRLST(UT;) do (10)
Delete(v/?) (11)
Send{Method.Scheduler,C/A(UT;)) (12)
end{case}

end

Figure 4.10: The Version Transaction Manager

Chapter 4. The Architectural Model 98

(line 3). Then it obtains a copy, v/%, of a committed version of o/ (by default the most
recent committed version in object family f) from the objectbase (line 4) and stores vf*
in the unstable store (line 6). Upon the creation of v/!, a snapshot of the state of v
called BeforeImage(v') is taken (line 5). BeforeImage(vf*) is required for validating
vf* at commit time. The significance of BeforeImage will be discussed when we explain
Validation Processor later in this section. Next, the Version Transaction Manager sends

VTé to the Execution Manager (line 7).

When the Execution Manager (see Figure 4.11) receives VTé,, it may not execute VT;;
immediately. Before the Execution Manager executes VT,-';, it needs to check if another
conflicting version transaction VT,-{I has already been ordered before VT,-{J in the object
family f. If this is the case, the Execution Manager blocks the execution of VT,-‘; until it is

notified that Vfl}{, has pre-committed (line 2).

Eventually, VT,{, starts executing on v/'. Recall from Section 3.3 that the operations
of a version transaction are read, write, method invocation, and pre-commit. Also recall
that z/* refers to a data item in v/*. When the operation is a “read” on attribute z/*,
zf* is added to the readset of v/*, if it has not been accessed before (lines 3-4). Then z/*
is read (line 5). When the operation is a “write” on z/*, the Execution Manager checks
if 2/7 has already been updated. If this is not the case, it adds z/* to the writeset of v/*
(lines 6-7). Then it updates z/* (line 8). If the operation is 7;, and 7;, is the invocation
of method j in object o® (m$), the Execution Manager increments counter(UT;) (line 9),
changes the method invocation to version transaction VT, (line 10), and sends VT, to the
Version Transaction Manager so it can be scheduled with other version transactions of UT;
(line 11).

Eventually, VTi{, terminates and processes the pre-commit operation. The pre-commit
operation indicates the end of the execution of VT;;. The Execution Manager notifies the

Version Transaction Manager about the completion of VT,{, (line 12).

The following additional routines are required to describe the Validation Processor’s

algorithms.

Chapter 4. The Architectural Model 99

Algorithm 4.2.4 (Ezecution Manager - ezecuting a version transaction)

Algorithm Exe.Mgr
input: A version transaction of a user transaction, or the version list of the versions accessed
by a user transaction from the Version Transaction Manager, and the result of the
execution of a user transaction from the Decision Manager.
output: The version list of the versions accessed by a user transaction to the Decision Manager.
and the result of the termination of a version transaction of a user transaction, the
subtransaction of a version transaction, or the result of the execution of a user
transaction to the Version Transaction Manager.
begin
case input of
+* INFORMATION RECEIVED FROM THE VERSION TRANSACTION MANAGER **

VRLST(UT;):
Send(Decision.Mgr,VRLST(UT;)) (1)
VT
begin ! begins the execution of VT,{,
while 3V T/ such that Ordering(VT/, VT, f) in of wait (2)
repeat
case operation of
read:
if /7 ¢ (readset(v/*) U writeset(v/%)) then (3)
readset(»/*) — readset(v/?) U {z/i} (4)
read (5)
write:
if z/* ¢ writeset(v/*) then (6)
writeset(vf') — writeset(v/?) U {z/i} (7)
update z/* (8)
Tig = call m$:
counter(UT;) — counter(UT;) + 1 (9)
VT, «— CreateVT(m) (10)
Send(Ver.Trans.Mgr,VTY,) (11)
pe:
Send(Ver.Trans.Mgr,pe(VTL)) (12)
end{case for the operations}
Until operation = pc
end ! ends the execution of VTi{,
*+** INFORMATION RECEIVED FROM THE DECISION MANAGER ****
C/A(UT;):
Send(Ver.Trans.Mgr,C/A(UT;)) (13)
end{case for input}

end

Figure 4.11: The Execution Manager

Chapter 4. The Architectural Model 100

AddEdge(G,UT,UT’): Adds an edge in a directed graph G from the vertex that repre-
sents user transaction UT to the vertex that represents user transaction UT".

Promote(v): Promotes active version v to a committed version.

RemoveVertex(G,UT): Removes the vertex which represents user transaction UT with
all of its associated edges from graph G.

StoreObjectbase(v): Stores a committed version v at the top of the version-chain asso-
ciated with v in the objectbase.

As shown in the architecture (Figure 4.7), eventually the User Transaction Manager
submits ¢; to the Method Scheduler. When the Method Scheduler receives ¢;, it keeps ¢;
until all of the version transactions of UT; terminate (counter(UT;) is set back to zero)
(Figure 4.9 line 18). Then It sends ¢; to the Version Transaction Manager (Figure 4.9
line 19). When the Version Transaction Manager receives ¢;, it sends VRLST(UT;) to the
Execution Manager (Figure 4.10 line 1) and the Execution Manager passes VRLST(UT;)
to the Decision Manager (Figure 4.11 line 1).

When a version list is received by the Validation Processor, it may not be validated im-
mediately if other related version lists are being validated. Two version lists VRLST(UT})
and VRLST(UT;) are related if there exists an object family f in which UT) and UT,
have commonly referenced f and the data items accessed in v/1 and »/2 by UT; and UT,

respectively, value-conflict.

To order the validation of the related version lists, the Decision Manager constructs a
Validation Graph (see Figure 4.12). A validation graph for a set of version lists VRLST(UT)),
VRLST(UT,), ..., VRLST(UT,) is a graph (V, E), where V is a set of vertices and E is
a set of edges. A vertex v; € V represents a VRLST(UT;) and an edge v; to v; indicates
that VRLST(UT;) and VRLST(UT;) are related. The validation graph orders the vali-
dation of related version lists. When a user transaction terminates, VRLST(UT;) with all
of its associated edges are removed from the validation graph (lines 1-3). Thus, eventu-
ally, the Decision Manager processes VRLST(UT;) and must decide whether UT; should

be committed or aborted (line 4).

Chapter 4. The Architectural Model 101

Algorithm 4.2.5 (Decision Manager - Validating the versions accessed by a user transac-
tion)

Algorithm Decision.Mgr

input: The version list of the versions referenced by a user transaction from the Execution
Manager, and successful termination (Commit) of a user transaction from the Commit
Manager.

output: A validated version list of a user transaction to the Commit Manager, and the result
of the execution of a user transaction to the Execution Manager.

begin
case input of

++ INFORMATION RECEIVED FROM THE EXECUTION MANAGER ****

VRLST(UT:):
for every VRLST(UT;) € validation graph (1)
if VRLST(UT;) and VRLST(UT;) are related then (2)
AddEdge(validation.graph,V RLST(UT;),VRLST(UT;)) (3)
if VRLST(UT;) is not related to any other version lists then (4)
for every v/' € VRLST(UT;) do (5)
0/™ — the last committed version in object family f (6)
if 3277 € readset(v/?) such that Beforelmage(z/*) # z/P then (7)
Send(Commit.Mgr,Abort(UT;) (8)
RemoveVertex(validation.graph, VRLST(UT;)) (9)
Send(Commit.Mgr,VRLST(UT;)) (10)
+*INFORMATION RECEIVED FROM THE COMMIT MANAGER **
commit(UT;):
RemoveVertex(validation.graph, VRLST(UT;)) (11)
Send(Exe.Mgr,commit(UT;)) (12)

end

Figure 4.12: The Decision Manager

Chapter 4. The Architectural Model 102

I - ;_ﬁ-‘ v

: vt {vaprtr vt lvngtr ot
—] : T %
vt }’VRptrE ‘-"
. ! O _‘ :
F O

3 Q : vt VRpt:rl ofj +2I
vt 'VRptr f0 :
p{ | I -
] i vt ‘VRptrf] £3+1
}— [e]

A i the b
‘ s the base fi
t I £)
' M VRpEE version of Vv
9 s
] 0 F’
vt VRptr ofo
=
B

Figure 4.13: Revision may be required before promotion af active version

Consider Figure 4.13. Suppose active version »/* originates from of7 when UT; references
object family f. Recall that of7 is the base version of vff. When UT; terminates, the
Decision Manager must check if it is possible to promote v/* to a committed version and
add it to top of the version-chain above o/™. Note that during the life time of UT;, other
user transactions UTj41,UT;42,...,UT, have committed and created committed versions
ofitt ofi+2 _ of™ respectively. v/* can be inserted above o/ in the version-chain, if it is
possible to serialize UT; after UTj41,UTj42,...,UT, in the object family f. This condition
holds if UT; (the user transaction associated with UT;) can read the same information from

o/™ as it originally read from of7.

Thus, to determine if v/* can be inserted above the committed version o/", the Decision
Manager checks if every data item z/% read in v/* is still unchanged in o/™ (see Figure 4.12).
Simple comparison of each data item z/* read in v/* with its corresponding z/? in o/? is
not possible because during the manipulation of v/*, z/* may have been modified. Recall

that when an active version is created, a snapshot of its original state (Be foreImage of the

Chapter 4. The Architectural Model 103

version) is preserved before the version is modified. The Be fore/mage contains the original
values of the attributes in the version. Thus, to ensure that all data items read from v/*
are still unchanged in o/?, z/? in o/? is compared with the value of z/* in the Beforelmage
of v/* (line 5-7).

UT: can be committed if the above condition holds for every active version referenced
by UT;. If this is not the case, UT; is aborted (line 8) and VRLST(UT;) is removed from
the validation graph so that other related version lists can be processed (line 9). Otherwise,

VRLST(UT;) is sent to the Commit Manager (line 10).

Although some data items of the updated versions referred toin VRLST(UT;) are never
accessed, they still have to be checked and updated if necessary (see Figure 4.14). Thus,
for each v/ referenced by UT; (line 1), the Commit Manager compares data in v/* and o/™,
the last committed version, against each other. If data item z/* is not accessed in »/! by
any version transaction and its value is different from the value of z/™ in o/™ (line 2-4), the
Commit Manager moves the value of /™ to z/* overwriting the old value (line 5). We call
the process of updating attribute values in this way “revision”, because some data items of

the updated versions must be revised before they can be stored in the objectbase.

An example is shown in Figure 4.15. Suppose the state of the object family f just before
UT:; starts is shown in Figure 4.15A. When UT; becomes active, it obtains a copy of o/°,
v/, and executes mé against v/*. Figure 4.15B shows the state of object family f when
UT; terminates. Note that during the life time of UT; other user transactions, UT; and
UT,, have committed and produced the committed versions o/! and of2, respectively. UT;
have accessed attributes a and b whereas UT; and UT; have modified attributes ¢ ard d,
respectively (assuming that UT; has executed m{ and UT; has executed m.f against their
own versions). Although operations in UT; does not conflict with the ones in U7y and
UT;, promoting v/* to of* and inserting o/* at the top of the version-chain causes a “loss
of update” to the values of ¢ and d (Figure 4.15B). Thus v/* is revised first before it is
promoted in which the values of ¢ and d in 0/2, the last committed version iz object family

f, are moved to the attributes ¢ and d in v/%, overwriting the old values (Figure 4.15C).

Chapter 4. The Architectural Model 104

Algorithm 4.2.8 (Commit Manager - Revising and storing the versions accessed by a user
transaction in the objectbase)

Algorithm Commit.Mgr
input: VRLST(UT;): a version list of of a user transaction from the Decision Manager.
output: the successful termination of a user transaction to the Decision Manager.

begin
****INFORMATION RECEIVED FROM THE DECISION MANAGER ****
for every (v/*) € VRLST(UT;) do (1)
for every data z/* in v/* and corresponding z/™ in o/™ do (2)
o/™ — the last committed version in object family f. (3)
Vzfi if 27 £ z/™ and z/* not € (readset(v/*) U writeset(v/*)) then (4)
2fi — gin (3)
o/i — Promote(v/*)) (6)
Storeobjectbase(o/*) (7)
vt.of! — gettime() (8)
of .VerCount — of .VeRcount + 1 (9)
Send(Decision.Mgr, Commit(UT;)) (10)
end;

Figure 4.14: The Commit Manager

105

Chapter 4. The Architectural Model

of of
. a
‘10
~_ £2 S
a p 'c .d; ; ————————— o a p 'c ;d
EVRET) ra 'p le ' d i
102 | ' L—-—-——-{——~ 1 {30 40
e 11002013 ' 4} 2 :
| U
e~ Y TR S
O a‘ipc 'd, ° a b _.c d
1002 ;301 4 102 30 4
[{ Q— £0 V___+
o a plc .d: o a b 'c d
12 '3 4 1 '2 '3 4

A
Figure 4.15: Revision of an updated active version

~ f1
e Eromot:ed \'4 £1
: T4 O

. by
revised v

a p ¢ d

“Io 20 30 40

f1

updated v
.2 .b ¢
7!:07_ 20 3

d
4

Chapter 4. The Architectural Model 106

Thus, for each updated v/* (see Figure 4.14), the Commit Manager revises v/* (lines
2-5), promotes v/* to a committed version of¢ (line 6), and places of* at the top of version-
chain in object family f (line 7). o/ is linked to other committed versions and becomes
the last committed version in object family f. Upon the insertion of o/ into the version-
chain, the valid time of o/ is recorded and the system attribute VerCount is incremented
(lines 8-9). Next, the Commit Manager sends a commit message to the Decision Manager
indicating that the effect of UT; is now committed in the objectbase (line 10). Once the
Decision Manager receives the message, it removes VRLST(UT;) from the validation graph
and passes the message to the Execution Manager (see Figure 4.12 lines 11,12). The final

result of the UT; will be eventually passed to the user.

Other Communications

Three different types of information flow from the Execution Manager to the Version
Transaction Manager and from the Version Transaction Manager to the Method Scheduler.
First, when the Execution Manager receives Commit/Abort result (C/A) of UT; from the
Decision Manager, it passes C/A to the Version Transaction Manager (Figure 4.11 line 13).
The Version Transaction Manager retrieves the updated active versions associated with UT;
and removes them from the unstable store (Figure 4.10 lines 10-11). Then it passes C/A to
the Method Scheduler (Figure 4.10 line 12).

Second, recall that the Execution Manager may submit some version transactions to
the Version Transaction Manager. The Execution Manager can only execute the primitive
operations (read, write, pc) against the active versions in the unstable store. Method in-
vocations must be converted to version transactions first. Then the version transactions
must be scheduled before they can be processed by the Execution Manager. Therefore, if
the Execution Manager encounters operation 7, that is the method invocation m? while
processing VT,-{,, it converts m to version transaction VT, (Figure 4.11 line 10) and sends
VT, to the Version Transaction Manager (Figure 4.11 line 11). Since the version trans-

actions must be scheduled with the other active version transactions of UT;, the Version

Transaction Manager passes the version transactions received from the Execution Manager

Chapter 4. The Architectural Model 107

to the Method Scheduler (Figure 4.10 line 8).

Third when the Execution Manager completes the execution of a version transaction

VTZ, it sends the pre-commit message of Vfl",{, to the Version Transaction Manager (Fig-

ip?
ure 4.11 line 12). The Version Transaction Manager notifies the Method Scheduler about
the completion of VTé;, (Figure 4.10 line 9). When the Method Scheduler receives the pre-
commit message of VT,-{,, it removes the order between VT, ,{, and any version transaction
that depends on VT,{J (Figure 4.9 lines 14-17). Since the pre-commit message refers to a
termination of a version transaction of UT;, the Method Scheduler decrements counter(U7T;)
(Figure 4.9 line 13) and checks the counter to determine if the counter is set back to zero
(Figure 4.9 line 18). A zero value for the counter indicates that all the methods of UT; have
been processed and completed. If this is the case, the Method Scheduler sends ¢; to the

Version Transaction Manager (Figure 4.9 line 19).

Finally, the User Transaction Manager receives the result (C/A of UT;) and outputs it

to the user (I'igure 4.8 line 7).

4.3 Correctness of the Algorithm

This section explains serializability of the transactions at version and the user levels.

4.3.1 Version-Level Concurrency Control

Recall that two version transactions associated with two different user transactions never
conflict. However, it is possible that the execution of a version transaction depends on
another if both are associated with the same user transaction. Therefore, some mechanism

must be provided to order these version transactions.

When the Method Scheduler receives a version transactions VT,{,, it calls the depends
function to determine if VT,{, depends on some other active version transactions of UT;. For

example, if VT‘-{, depends on VTS, the Method Scheduler sets an ordering between VTI{,

Chapter 4. The Architectural Model 108

/\

T di

/
-
-

/ /

\ -
f

_—

. i v h

Figure 4.16: Intra-UT Concurrency Control

and VT so that the execution of VT,{, is serialized after VT, in every active version of

UT; which may possibly be accessed by some descendants of VT;-{, and VT,

An example of intra-UT serializability is shown in Figure 4.16. The user transaction UT;
invokes three methods that are eventually converted to version transactions VT, VTS, and
VTE. VT), becomes active first and starts executing. Then the Method Scheduler processes
VTS, and VTS. VTS can be executed with VT since each references a set of separate
objects. However, the set of objects in which VT,-2 and VTM may commonly reference is
A = {0",0%}. Recall that, for each user transaction, only one active version of each object
can exist in the unstable store, and all version transactions of a user transaction execute on
that active version. In this example, descendants of VT, and VT{ may commonly access

the attributes of active versions in A’ = {v"%, 99} in a conflicting manner.

To control intra-UT serializability, the Method Scheduler must ensure that in every

Chapter 4. The Architectural Model 109

active version in A’, the execution of the descendants of VT{’2 happens before the descendants
of VTS, if necessary. Thus when VT/, and VT/, access conflicting operations in v**, VT},
is ordered before VT, in v*. Similarly if VT and VT access conflicting operations, V7%
is ordered before VT4 in v9*. Thus when the Version Transaction Manager sends VT%, and
VTE to the Execution Manager, they have to wait until VT pre-commits. When VT,
pre-commits, the Method Scheduler removes the order between VT, and VT, so that the

descendants of VTE, VTS and VT?E,, can start executing.

4.3.2 User-Level Concurrency Control

User transactions are serialized by the Decision Manager using the validation graph that
orders the related version lists. When a version list is sent to the Validation Processor, two
cases are possible. If the Decision Manager and the Commit Manager areidle, VRLST(UT;)
is added to the validation graph and then is processed by the Decision Manager. Otherwise,
VRLST(UT;) is compared with other version lists in the graph to check if other related ver-
sion lists should be validated before VRLST(UT;). When a user transaction UT; commits
or aborts, VRLST(UT;) and its incoming edges are removed so other version lists related

to VRLST(UT;) are validated as long as they are not related to other version lists.

Although related version lists are ordered by the validation graph, non-related version
lists may contain versions associated with the same transaction families. For example,
if VRLST(UT)) = {v/'} and VRLST(UT;) = {v/?} and the data accessed in v/! and
v/2 are not in value-conflict, VRLST(UT;) and VRLST(UT;) are not related and may
be validated concurrently. However, non-related versions associated with the same ob ject
family should be promoted and recorded in the objectbase one at a time. Thus, before a
version vf' is promoted to of* and recorded in the objectbase, the entire object family f
is locked for validation; therefore, creating a critical section which prevents other versions
from modifying the version-chain. This procedure serializes the validity of the version lists

which in turn ensures inter-object serializability.

Chapter 5

Simple Reconciliation

This chapter introduces simple reconciliation. Simple reconciliation uses previously commit-
ted versions to commit a terminated user transaction. This implies, when a user transaction
UT; cannot be committed after some recently committed transaction UT};, simple reconcil-
iation is an attempt to commit UT; before UT; as long as the state of objectbase remains
consistent. This chapter begins by giving an example of the case when normal committing
procedure of a user transaction fails. Then it shows how to modify the components of the
Validation Processor to do simple reconciliation of unsuccessful transactions. Examples are
provided incrementally to verify complex parts of the algorithm. Finally, as an extension
to the basic algorithm, it will be described how historical information can be retrieved from

the objectbase.

Figure 5.1 shows an example of the case when execution of a user transaction is not
successful and reconciliation is required. Figure 5.1A shows the original state of the object
family f. UT; and UTy start first and each receives a copy of 0/° denoted by »/! and v/4,
respectively. UT; executes m] against v/ and UT, executes m] against v/4. UT; commits
and its associated committed version o/! is recorded in the objectbase (Figure 5.1B). Then
UT, starts, obtains a copy of of! (v/2), executes mJ against v/2, and commits. v/ is

promoted to o/? and is recorded in the objectbase (Figure 5.1C). Next UT; starts, obtains

110

Chapter 5. Simple Reconciliation

vil

Vi
ia b ic ;d_<___

101203040

£

{
o — ¥
b ‘d

[o]
o la! K L

,10[20 30 - 40

A

o3

-_ .
:a b ‘c :dl .
©11:21:30:40:

S

a .p 'C Id‘l
TR TREYRIITY
S11 21330g¢o.

£1 !
o a'p ¢ .4}
11 20,3040

!

T ——
ra iple 'd!

(10| 20|30 140]

C

alp fc jdj -
710! 2030 1 40 o

vz,

v&rb;c ra

1120130 ;40

aip e d -
110 20|30 40

£3
[+]

AR
£2 —_—‘!_..A

° ja|b c ' d
P11°21.30 {49

i
£l !
o i A

laip ;c ‘d

711 203040

:

a b |ec jd]
1101 20{3040;

D

Figure 5.1: Reconciliation is required

a b

<

111

d

e 20 30 32

Chapter 5. Simple Reconciliation 112

a copy of of? (v/3), executes mJ against v/3 and commits. /3 is promoted to o/3 and
is recorded in the objectbase (Figure 5.1D). Now UTy terminates; however, v/ cannot be
committed as the last committed version in the chain because the value of c read in v/* is
stale. Although v/4 cannot be at the top of version chain in the object family f, it might
be possible to insert it in the lower levels without making the state of other committed
versions inconsistent. Simple reconciliation is the process that checks and inserts v/* in an
appropriate position in the version-chain. This is done by the components of the Validation

Processor, the Decision Manager and the Commit Manager.

5.1 Decision Manager

In the simple reconciliation of a user transaction (UT;), for each active version »/% in
VRLST(UT;), the Decision Manager must find a valid position in the version-chain of ob-
ject family f where v/* may be inserted. This is subject to two conditions. First, insertion
of v/* in the version-chain of the the object family f must ensure intra-object serializability
at the object family f. Second, the entire transaction system must remain inter-object

serializable.

5.1.1 Intra-object Serializability

Consider Figure 5.2. Suppose active version v/* originates from of/ when UT; references
object family f. The following additional data structure is required:
ValidPos : is a one dimensional array of integers. The index of each element corresponds

to an active version vf*. ValidPos[v/'] refers to the position in the version-chain of
object family f when v/% can be inserted.

The process of finding Valid Pos[v/'] starts from the top of the chain where o/™ is located
and proceeds down until either a position is found to insert v/¢ or no position can be found.

v/% can be inserted between any two committed versions o/? and oP*! if:

Chapter 5. Simple Reconciliation

1

vt ‘VRp'r.r
vt

‘VRper § £4-~1
‘ : | & I
vt EVRptr! ofol

113

|

vt jvnpt:r! ofnl
o) Q L__A_
3!]
vt ‘VR‘DCI! fp+1|
m
vt vnpcr
~i"
5]
vt 'VRptx of j+1
i j thebase g
ve _VRprzf of) version of v
ST
<
)
vt vRprrf £0
e
-

Figure 5.2: Finding a position in the chain

Chapter 5. Simple Reconciliation 114

x in readset(oﬂf xin writeset(v xin Uwriteser(a) Allowed xin writeset(P x in ceadsett v xin writeser(o) | Allowed

0 } 0 : 0 : 1 o 0 : 0 o 1
s 0 0 1 ;
0 1 U o 1 0 1
: S U WU S SN R S, S S : .
1 | 0 0 ! 1 . 1 ; 0 o 1
S 1 1 0 1 1
T e 1T 1 0 /0
1 1 1 ! 1 4 1 1 | 1 1

A B

Figure 5.3: Possible cases when reconciliation may or may not succeed

1. committed transactions UTg, UTt, ..., UT, can be serialized before UT; in object family
f, and

2. committed transactions UTpyy, UTpy2, ..., UT, can be serialized after UT; in object
family f.

The first condition holds if UT; (the user transaction associated with v/*) can read the
same information from o/? as it originally read from o7 (the base version of v/!). The
second condition can be satisfied if for every data item z in the object family f, in which
UTp41,UTp42,..UT, reads z from one of UTy, UT, ...UTy, the value of z should have not
been modified by UT; in v/. For example, suppose z is read by UTp+ (z € readset(o/P+1))
and it was modified last by UT}, in of? (z € writeset(o/P)). If v/* does not contain the same
value for z as of? does, v/* can be placed between o/? and 0/P+! because UT,4; cannot be

serialized after UT; in object family f.

Figure 5.3A shows all possible cases that arise when the scheduler attempts to insert
v/* below of* (0P*! < of% < 0/™). Similarly Figure 5.3B checks if it is possible to place vf*
above o/™ (0/0 < of™ < 0/?). The truth tables in Figure 5.3 show that v/* can be inserted

in the chain between o/? and of?P*! if:

Chapter 5. Simple Reconciliation 115

if € readset(o’*) and z € writeset(v/?) and z ¢ USZ],, writeset(o/*) then
UT reads the same value for z as UT; writes into z.

and
Yo/™ (00 < of™ < 0fP)
if ¢ € writeset(o/™) and z € readset(v/*) and = ¢ U}, ,, writeset(o*) then
UT; reads the same value for z as UT,, writes into z.

Lines 1 through 14 in Figure 5.4 attempts to find a proper position in the version-chain
where vf* can be inserted. The process starts from the top of the version-chain (lines 2-3)
and proceeds down the version-chain (lines 5-7). To determine if v/* can be inserted above
a committed version o/?, every data item z/' read in v/ must be unchanged in o/?. Recall
the basic algorithm in the previous chapter (Section 4.2), to ensure that all of the data
items read from v/* are still unchanged in o/?, /7 in o/? is compared with the value of z/*

in the BeforeImage of v/* (line 4).

If a proper o/? is found, the Decision Manager has to check whether /% can be placed be-
low the committed versions o?*1,0P%2, ..0f™ in the version chain (i.e: serializing UTp+1, UTp42,.... U T,
after UT; in object family f). This process starts from o/P*! and proceeds up to o/™. For
every of¥ between o/P*! and o™ in the version-chain, if z is a variable that is read in of*
and it has been last modified by one of 09, 0/1,...0/P, the value of z read in o/* becomes
invalid if UT; writes a different value into z in v/* (lines 8-12). If a valid position for the
insertion of v/ is found, this position is recorded in a data structure called ValidPos (line
14). Otherwise, if valid positions cannot be found for some of the active versions of UT;, it

should be aborted (lines 12-13).

5.1.2 Inter-Object Serializability

The above process only ensures intra-UT serializability at each object family referenced by
UT:. The Decision Manager must also check if UT; is inter-object serializable with respect
to other committed transactions in the objectbase. The following example describes a

situation when inter-UT serializability may not be ensured.

Chapter 5. Simple Reconciliation

Extension of Decision Manager to do Simple Reconciliation
begin

for every v/* € VRLST(IT;) do
pos — 0
0P — of/™ ! STARTING FROM TOP OF THE CHAIN
if 3z/7 € readset(v/!) such that BeforeImage(z’*) # z/? then
pos — pos +1
o/P — next committed version (going down the chain)
go to line 4
if a 0/? is found then
for every o/* that occurs above 0/? in the chain
if 3zf* € readset(of*) such that z/f € writeset(v/*) and z/* £ zf
Vol* (o/P*! < of* < ofF), if z/° ¢ writeset(o*) then
Abort UT;
else
Abort UT;
Valid Pos[vf'] — pos

for every v/' € VRLST(UT;) do
for every o/* that occurs above v/? in the chain do
if readset(v/?) value-n writeset(o’*) # {} OR
readset(o’*) value-n writeset(v/*) # {} then
add an edge from UT, to UT; in GSG
for every o/™ that occurs below v/* in the chain do
if readset(vf*) value-n writeset(o’™) # {} OR
readset(of™) value-N writeset(v/') # {} then
add an edge from UTy to UT; in GSG
if there is a cycle in GSG then
Abort UT;
Send VRLST(UT;) and ValidPos[] to the Commit Manager
end

Figure 5.4: The Decision Manager doing simple reconciliation

116

(1)
(2)
3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

(13)
(14)

(15)
(16)

(17)
(18)
(19)

(20)
(21)
(22)
(23)
(24)

Chapter 5. Simple Reconciliation 117

vt VRptr o e2

i vt {VRptx m i vt 'Rper | e3
|

e — —_—

= . e
- - Q
i
vt ! VRptr £0 vt - VRptr, oeo
” ! O I l I

A: object family f B: object family e

Figure 5.5: Example of a possible inter-object serialization Problem

Suppose three user transactions UTy, UT,; and UT3 each accessing both object family f
and object family e. UT starts first, commits, and creates committed versions of! and o°!
in the objectbase. Then UT; and UTj start, make copies (active versions) of the committed
versions created by UT; in object families f and e, and execute concurrently. Figure 5.5
shows the state of the object families f and e after UT, and UT3; commit. Clearly, since
0/? occurs before of3 (UT, — UT3) in object family f (Figure 5.5A) and o/3 occurs before
02 (UT3 — UT:) in object family e (Figure 5.5B) inter-object serializability may not be
ensured. The Global Serialization Graph provided by Zapp and Barker [ZB93c] can be used

to control inter-object serializability.

A Global Serialization Graph for a set of user transactions 7 = {UTy,UTy,...,UT,}
denoted (GSG(7T)) is a graph (V, E), where V is a set of vertices and E is a set of edges.
Each vertex v; € V represents a user transaction U7; and an edge from v; to v; indicates
that there exist a committed version of an object family f, o/, associated with UT; which
occurs above the committed version ofi associated with UT; in the version-chain of object

family f and UT; and UT; have accessed some value-conflicting operations in ot and o9,

Chapter 5. Simple Reconciliation 118

respectively. Thus, if there is an edge going from v; to v; in GSG(T) then there must be
a pointer (system attribute V Rptr — see Section 4.1) going directly or indirectly from of*
to o/7. Thus, an edge in the global serialization graph shows the serialization order of two

user transactions.

Recall that the value-N (value-intersection) of twosets Aand Bisaset C = {z1,23,....2,}
ifforl <i< n,z; €A, z; € B, and the value of z; in A is not equal to the value of z; in
B. Consider Figure 5.2 again. Let o/F be a committed version in the version-chain located
between ofP*! and o/™. An edge from UT} to UT; is added to the global serialization graph
if the following condition holds.

writeset(o*) value-N readset(v/?) # {} OR
writeset(v!?) value-N readset(o*) # {}

Similarly, let 0/™ be a committed version located between 0/° and o/P. An edge from UT;

to UTy, is added to the GSG(T) if the following condition holds:

writeset{v/?) value-N readset(o’™) # {} OR
writeset(o’™) value-N readset(v/*) # {}

When the edges are added to the GSG(7), the graph is checked for a cycle. As long as no
cycle is detected, inter-object serializability is ensured. When both intra-object and inter-
object serializabilities are ensured VRLST(UT;) and ValidPos are passed to the Commit
Manager (see Figure 5.4 lines 15-24).

5.2 Commit Manager

Based on the information in the ValidPos, the Commit Manager promotes the active
versions to committed versions and locates them in the objectbase. Before an active version

v/t is added between of? and o/P*! (see Figure 5.2), in the version-chain, the Commit

Chapter 5. Simple Reconciliation 119

Extension of the Commit Manager to do Simple Reconciliation

begin
for every v/* € VRLST(UT;) do (1)
level — ValidPos[v/?] (2)
ofP — the committed version in object family f that is supposed to occur just below v/t (3)
for every data zf* in »f* and corresponding z/? in o/? do (4)
if zf* # /P and z/* ¢ (readset(v/*) U writeset{v/%)) then (5)
2ft o P (6)
for each z/¢ € writeset(o/*) do
for each o/* that occurs above o/ do (7)
if z/* ¢ writeset(o/*) then (8)
zfk — £/} PROPAGATING THE VALUES (9)
else
break; (10)
promote v/* to o' and store it in Valid Pos{v/i]
Commit UT; (11)
end

Figure 5.6: The Commit Manager doing simple reconciliation

Manager must ensure that insertion of v/* in the version-chain leaves other committed
versions of object family f in a consistent state. Note that during the execution of UT;
against v/%, some other user transactions may operate on the data items in their own versions
in which UT; does not access the corresponding data in v/*. Thus when v/? is inserted above
o/?, the Commit Manager must check if the value of every attribute z/* in v/* that is not
accessed by UT; is the same as its corresponding attribute z/? in ofP. If this is not the

case, the value of z/? is propagated to z/* overwriting the old value of z/* (Figure 5.6 lines
(1-6)).

An example is shown in Figure 5.7. Suppose UT; has obtained a copy of o/° and
during its life time other committed versions of!,0/2, and 0/3 have been created (5.7A).
Suppose the Decision Manager has found that v/* can be inserted between o/! and o/2
(5.7B). Although attribute c¢/* in v/ has not been accessed by UT:, the value of ¢/! has to
overwrite the value of ¢/! in order to serialize UT; after UT) in the object family f.

readset={(}
writeset={a}

readsec=(b}

writeset={b} .

readsec={}
writeset=(c}

readset=()
writesec={}

Chapter 5. Simple Reconciliation

£3
a;i biecidl £3 °
‘10i20|30] S

_—y oEz
_aibiclal g
1.201300 5 °

. A
a birecidlfy

1 2.30, 5|°
2.30 3|

.y £1
a'biciad, N
LS L 1]
1 2:3;:5:°

i o0

A

[a] bf e] a | readset=()
10| 20] 30| s |writeset={a}

a| b{ ¢| d | readsec=(b}
1| 20! 30| 5| writeset=(b}
a

————

g3 8 bl ci d | readsec=(a.b}
v

- 1 2| 3 sol writeset=(d)

— s
i a| bi ¢! d readset=(}
1 2?30; 5 ' writeset=(c)

aib]c] d | readset=(}
1] 2! 3: 5iwriteset={)

1] 2

120

—_—

£3 A& bj ¢ ' d: readset=(}
! 10! 20| 30| 50, writeset={a}
[St SRS

—_—
f2 1 a: bl cid readsec=(b}

120} 10! 50' writeset=(b}
a
€3 a ;——c d readset=(a.c
o 1 2 1309 sg Wwriteset=(d}
g1.8., b ¢c d vreadsec=()
"1 27300 S writeset=(c}
[PR at
——y
f0 2. B . d readset=()
o " ;. 2.3 5§, writesect=(}
ol

Figure 5.7: Propagation of the values to higher level committed versions

Further consider Figure 5.7B. If a user transaction requests a copy of the most recent

information in the object family f, a copy of of3 is obtained. However, of3 in Figure 5.7B

does not include all of the recent information after v/! joins the object family f. The reason

is that the value of d in o/3 is 5 which is not the most recent value of ¢ in the object family

f. The most recent value of d is 50 which is seen only in »/*. This problem can be solved by

propagating the values of the variables in the writeset of v/* to the corresponding variables

of the other committed versions which occur above it (Figure 5.6 lines 7-10).

Finally, v/' is promoted to the committed version o/* and inserted in the proper position

in the version chain. When all active version transactions of user transaction UT; are

promoted to committed versions and recorded in the objectbase, the Commit Manager

stores the promoted active versions referenced by UT; in the objectbase and commits UT;

(Figure 5.6 line 11). Figure 5.7C shows correct states of all committed versions in version

family f.

Chapter 5. Simple Reconciliation 121

5.3 Retrieving Historical Information

One advantage of executing transactions in multiversion databases compared to traditional
databases is that, it may be possible to execute read-only transactions concurrently with
update transactions. Further, with the maintenance of historical data, transactions may
request the information on past data values. This section presents the extensions to the

algorithm to show how read-only transactions may retrieve historical data in the objectbase.

Three modifications are required. First a read-only user transaction is required to
specify the time t in which the information should be retrieved. Second, since read-only
transactions, do not modify the state of the objects, the Version Transaction Manager is
not required to create a set of active versions for the associated version transactions. This
reduces the overhead involved with creating the versions. Third, since no active version is
created, the Execution Manager, is not require to send the result of the execution to the
Validation Processor but the commit/abort result is sent directly to the user rather than

to the Validation Processor.

Recall that the Method Scheduler keeps a counter for a user transaction to keep track
of the number of active version transactions associated with that user transaction. Since
there is no dependency between version transactions of a read-only user transaction UT;,
the Method Scheduler passes the version transactions of UT; to the Version Transaction
Manager once it receives them from the User Transaction Manager. Since version transac-
tions of UT; do not update any data, the Version Transaction Manager simply passes them

to the Execution Manager without creating any active versions.

The Execution Manager directly executes the version transactions of a read-only user
transaction against the committed versions in the objectbase. For each read operation on
data item item z in version transaction VT;;, if z is a data item of a committed version in
object family f, the value of z at time t specified by the user is searched as follows.

1. Sort the committed versions in the version-chain of the object family in ascending
order of their validation time.

Chapter 5. Simple Reconciliation 122

2. Find the first committed version of? in the sorted list in which z is in writeset of of?
and the validation time of 0/7 is less than or equal the requested time ¢.

Note that once committed versions are sorted based on their validation time, it is possible
to make a binary search to find the first committed version in which its validation time is
less than or equal to t and from there on, linear search is required up the sorted list to find
the first committed version which has z in its writeset. If the value of z at time t is not
found among the existing committed versions in the objectbase, the archived committed

versions can be similarly searched.

Figure 5.8B illustrates the sorted list of the version-chain shown in Figure 5.8A. The
committed versions of!,...,0/1° have been created from 5:00 o’clock until 6:31. Suppose a
user transaction requests the value of b at time 6:15. Using a binary search, it is possible
to find that o/® has been the last committed version at 6:15. Starting from o/¢ and going
up the sorted list it is possible to find that UT3 (the user transaction associated with o/3)

has been the last user transaction which has modified z before 6:15.

When version transaction VT;; of a read-only user transaction terminates, the Execu-
tion Manager sends the pre-commit message of VTi{, to the Version Transaction Manager
and Version Transaction Manager passes it to the Method Scheduler. Once the Method
Scheduler receives the pre-commit message, it decrements the counter(UT;). If all of the
version transactions of the read-only user transaction UT; are terminated and the commit
condition ¢; for UT; has been received by the Method Scheduler, the Method Scheduler
sends a Commt(UT;) message up to the User Transaction Manager. Since temporal trans-
actions do not need to go through the Validation Processor, they may not be aborted unless

a transaction failure or a system failure occurs.

Chapter 5. Simple

Reconciliation

vt=6:01 IVRpE; readset={}
— o writeset={d}
—

e, T i
vt=5:00 ;VR?trI °

1 Jreadset=(}
writeset={a}

- 1

vt=6:10 [VRptr

—

vt=6:07 |VRptrfjl °
—

readset={a}
writeset=(}

readset={(a}
writeset=(b}

]

vt=6:11 |VRptr

readset={b}
writeset={}

-

vt=6:08 VRptr

readset={b)
writeset={c}

——

vt=6:29 'VRptr

readset={c}
writeset={}

ve=6:28 VRptr readset=(c}
- p . ° writeset={d}

]
vt=6:31 ' VRptr readset={(d}

[S

writeset=(}

ve=6:27 'VRPCII °

readset={c}
writeset={d}

ke

A

123

vt=5:00 VRptrl ofl

‘ =6: E\IRt:r_ £2
vt=6:01 'VRp I I
)
! =6: | t
! ve=6:07 VRp rl !!

_ 3

tVRptr

L__»vt:=6:11 ‘VRptr! OEEI
=6: 'VR; t57 t
vt=6:27 pee ° ZI

ve=6:28 .VRptr ;fﬁ

j vt=6:29 ;VRp:r! OEEI

vt=6:31 |VRptr oflO

' vt=6:10 o

Figure 5.8: Retrieving a data item at a particular time

readset={}
writeset={a}

readset={}
writeset={d}

readset={a)
writeset=(b}

readset={(b}
writeset={(c}

readset={a}
writeset={(}

readset=(b}
writeset={}

readset={c}
writeset=(d}

readset={c}
writeset={4d}

readset={c}
writeset={}

readset={d}
writeset={}

Chapter 6

Complex Reconciliation

Complex recorciliation will re-execute (partially or entirely) some version transactions of
an unsuccessful user transaction. Re-execution is done on the active versions containing the
stale data accessed by the version transactions. Complex reconciliation is only attempted
when simple reconciliation fails. This chapter begins by giving an example of such a case.
Algorithms are developed to detect the stale data and build appropriate reconciliation

routines which re-execute the code related to the stale data.

Figure 6.1 shows an example of a case when simple reconciliation of a user transaction
UT; fails and complex reconciliation is required. Figure 6.1A shows the original state of
the object family f. UT, and UTy start first and each receives a copy of o/® denoted
by v/! and v/4, respectively. UT; executes m{ against v/! and UT} executes m‘{ against
vf4. UT) commits and its associated committed version of! is recorded in the objectbase
(Figure 6.1B). Then UT; starts, obtains a copy of of! (v/2), executes m£ against v/2, and
commits. vf? is promoted to 02 and is recorded in the objectbase (Figure 6.1C). Next UT3
starts, obtains a copy of o/? (v/2), executes m:{ against v/3 and commits. v/3 is promoted

to 0/3 and is recorded in the objectbase (Figure 6.1D). Now UT; terminates; however, v/*

cannot be committed anywhere in the chain since:

o inserting v/* at the top of the chain is not possible because UT; reads the stale attribute

124

£0
o

Chapter 6. Complex Reconciliation 125

vE2, —— ‘
8 |b jc idje:f ig ;h
o {11]20]30(40[s0] 6070 B0
1
I a b |¢ d|e gig h .,
10| 20130 40| 50| 60] 70 | 80 Ry
w4
.aip clalel€e g |n N !
1 10| 20130/ 40} 50 60]70 |80 .

‘aib]:IdFe

10 2030 40]s0

|

£
6

0

80

vil

A

e flg |n

i11] 20 |30 | 40|50 60] 70 | 80|

fapblec |die ¢ g Inl
{101 20030 [40[50| 60170 80|

a'p,c d e if g b,

11 213040150 60/70 {801

Q

£
upda:edv4
, ! , £2 | ro— ‘ , - T — e
a p.c i die £ 'g ihj O ia|pic jd)jeif g thi ~;@ b c . d e £ g b
11 21/30 40{50; 6070 (80| [11721730 40/501 60/70 |80/ — ~:10120:60 4051 61 71 81
| .
I £1 <—_’x
_a‘b?c:d e:f[g h | oia}bicl‘d e | fig R
11 2030 40/50; 60,7080 [11] 2030 [40[s0] 60}70] 80}
Y i — — K
£0 . £0 _
aip'c dieif g ih © 'alp je def[g h‘}
110, 20i30:40{50! 6017080 {101 20]30{40[s0} 60|70]80]

C

D

Figure 6.1: Situation when Reconciliation is required

Chapter 6. Complex Reconciliation 126

)

e inserting v/’ between of3 and 0f? is not possible because U'T; reads the stale attribute
b,

e inserting v/* between of? and of! is not possible because U7} reads the stale attribute
a, and

e inserting v/* between of! and of° is not possible because UT; modifies attribute ¢
which has been accessed by UT53 in o/3.

Since v/4 cannot be inserted anywhere in the version-chain, UT; could not commit unless
it is re-executed. One solution is to obtain a new copy of the last committed version from
the object family f and re-execute m4f entirely. This is not feasible because although UT,
has accessed stale attributes a, b, and c, it has also accessed e, f, g, and h which are not
stale. Complete re-execution of m{ against v/' re-reads both the stale and the non-stale
data wasting time and the resources in the system. Another solution is to do complex
reconciliation of UT; in which the stale data accessed by UTy (a, b, c) are properly detected
and are passed to a reconciliation procedure called reconciliM-4- f associated with method

m,{ . This reconciliation procedure accepts a set of stale data and re-executes only the code

related directly or indirectly to the stale data.

6.1 Detecting Stale Data

Recall that the Decision Manager identifies an active version vf* as invalid if v/* contains
some stale data. The first step of complex reconciliation is to find the stale data accessed by
a version transaction executed against an invalid version. This section develops the related

algorithms.

Suppose v/ is an active version of object family f referenced by UT; and VT4, VTS, ..., VT/,
are the version transactions which have executed against vf*. If it is found that »f* is in-
valid, some of these version transactions executed against v/* may need to be partially

re-executed.

Chapter 6. Complex Reconciliation 127

A simple case is when only one version transaction VT has executed against v/'.
Suppose of1,0/2,...,0/™ are the committed versions of of which were created during the

life time of UT;.

Recall the definition of value-intersection (value-N) from Section 4.1.1. Let WST/ =
Ui=1 writeset(of7) be the set of data items which have been changed in the object family f
during the life time of UT;. If RS (VTA) and W§ (VT,{) are the readset and the writeset of
VT,{, on v/ during the execution, the stale data read by VTi{ denoted by staledata(VTifl)

is:
staledata(VTY) = RS(VTY) value-n WST!

Once the stale data are found, they are passed to some appropriate reconciliation procedures
and VTf; is partially re-executed against v/* which are explained later in this chapter.
After partial re-execution of VT,-{, v/* becomes a valid version and can be promoted to a

committed version.

Now suppose the active version v/* has been accessed by two version transactions VT,{
and VTS. 1f VT and VT‘f2 do not access value-conflicting operations, the stale date for
each of them is found as explained above. If VT‘f1 and VT, value-conflict and VT is
processed first, the serialization order will be VTt-f1 — VT;Q or vice-versa. Otherwise, the
serialization order will be VT,-’; — VT,-{. The following considers the case when serialization

order is VT,{ — VT,{!.

First, VT,-{ is reconciled. The stale data for VT are found as:
staledata(VTS) = RS(VTY) value-n WST!

If staledata(VT,{) ¢ &, VT,{ is partially re-executed. Next, VT;Q is reconciled and the stale

data accessed by VTé are found as:

staledata(VTL) = RS(VTY) value-n (WST! uwS(VTY))

Chapter 6. Complex Reconciliation 128

Figure 6.2: An invalid version may effect other valid versions

Note that WSTf U W S§(VT}{) determines the changes which have been made by recently
committed transactions (W ST/) plus the ones made after the reconciliation of VT,-jl (WS(VT{I))-

In general, to find the stale data for the kth version transaction (VT‘{C) where k-1 other
value-conflicting version transactions have already been reconciled and partially re-executed

on v/t is calculated as:

staledata(VT‘-jl) = RS(VTifl) value-N
(WSTS UWS(VT) uWS(VTL)U...uWS(VTL_,))

What to Reconcile?

A version transaction VT,{, which has accessed some stale data may pass its results to
other versions transactions. For example, consider Figure 6.2 where the circles are ver-
sion transactions, edges are the invocations, and rectangles represent the active versions.
Suppose the Decision Manager has found v?* invalid. Thus VT7, has accessed some stale

data and its results may not be correct. Note that VT}, may pass its results to VT in

Chapter 6. Complex Reconciliation 129

Procedure Infected-Versions(U'T;)

begin
for every VT! invoked directly by UT; do (1)
if (v is vahd) and (VTI indirectly access an invalid version) then (2)
infected — infected U{u-’) (3)
for every two version transactions VT! and VTY directly invoked by UT; do (4)
if depends(VT,{,, VT3) or depends(VT,‘q, VT} ») then (5)
if v/* € (infected U invalid) then (6)
infected — infected U{v*'} (7)
else if v** € (infected U invalid) then (8)
infected — infected U{v/?} (9)
for every version transactions VT/ directly invoked by UT; do (10)
if v/* € (invalid U infected) then (11)
Let mf be the method associated with VTf (12)
for every mj € eztent(m{) do (13)
infected «— infected U{v*} (14)

end

Figure 6.3: Determining the Infected Active Versions Referenced by a User Transaction

v™ and return other results to VT5. Then VTS may use this information, produce other
results, and pass them to VT%;. Thus beside the version transactions which have executed
against some invalid versions, the results of every other version transaction which has been
infected by the results of such versions has to be checked during the reconciliation process.
If a version transaction VT;; executes on an invalid version v/* and passes some incorrect
results to another version transaction VT executing on v, v® becomes an infected ver-
siton. Complex reconciliation is done for version transactions which have accessed either an

infected or an invalid version.

The algorithm shown in Figure 6.3 finds the infected versions accessed by the version
transactions of UT;. Note that information such as the depends function and eztent are
used to determine how an active version may be infected by an invalid version or another

infected version.

Chapter 6. Complex Reconciliation 130

6.2 Generating Reconciliation Routines

Partial re-execution is the second step of complex reconciliation. This section develops

reconciliation algorithms which only re-execute code related to stale data.

If a statement (s;) in a method should be re-executed, statements related to s; should also
be found and re-executed. The data dependency relation [Wol89] between the statements
in a method is determined by considering the Three Address Code for the method. Three
address code is an encoded form of a program in which all of the complex statements
have been decomposed to their simplest form and cannot be decomposed further [ASU86].
Section 6.2.1 explains reconciliation for simple methods where routines include simple read
and write statements. Then the approach is extended in Section 6.2.2 for compler methods

which may include loops and other conditional statements.

6.2.1 Simple Methods

Suppose m{ is a method of object of. 3m£ denotes the corresponding three address code

for m,{, and s; refers to statement ¢ in 3m£. RS(s;) and W S(s;) denote the readset and the
writeset of s;, respectively. If s; and s; are two statements in 3m,{, then s; < s; indicates

that s; precedes s; in 3m£. Similarly, s; > s; means s; follows s; in 3m£.

The following data structures are associated with method m{:

TACMIK(]]: is a one dimensional array of records. TACMkf (Three Address Code for
m‘,:) represents 3m{. Each record contains four fields: op, argl, arg2, and result

where op is the operation and the other fields contain the operands.

FinalWriteMkf[]: is a one dimensional array of integers. The index of each element
corresponds to a variable z € RS(m{). If FinalWriteMkf[z] = s;, s; is the last
statement of 3m,{ that modifies z. (i.e: s; makes the final write operation on z).

ReadsFromMKk{[]: is a two dimensional array of integers. Each row corresponds to
a variable z € RS(mi) and each column corresponds to a statement of 3m£. If
ReadsFromMEk f[z,s;] = sj, s; reads r from s; (i.e: s; is the last statement that
modifies z prior to the execution of s;).

Chapter 6. Complex Reconciliation 131

bitstringMKkf[]: is a one dimensional array of bits. A bitstring is associated with each
variable z € RS (m{) (bitstring Mk f[z]). The length of each bitstring is equal to the
size of the array TACMkf. A 1 in the i*® position of the bitstringMk f[z] indicates
that the s; should be re-executed if z is stale.

Figure 6.4 shows Three address code for mi, and the arrays TACMESf, FinalWrite Mk f,

and ReadsFromMkf. TACMEk(is created by the compiler. The values in arrays ReadsFromMk f
and FinalWriteMk f can be calculated by scanning through TACMk f. The following dis-

cusses how to find the values of each element of bitstring Mk f.

Suppose user transaction UT; has terminated and it is found that v/, an active version
of UT; that is accessed by a set of version transactions VT,.{, VT;Q, ..., VT is invalid. The

mn?

following explains how to do partial re-execution of VT;; (1<j<n)

Suppose one of the methods m{ (1 € k £5) shown in Figure 6.5 is associated with V' T,-?.
If s;:r=p*qis a statement in m£ that is either directly or indirectly related to the stale data
read by VT,-’;-, s; should be re-executed. Consider an operand p € RS(s;). There are four
possible cases when the re-execution of s; may cause the re-execution of other statements:

Case 1: p is neither modified in s;..s;_; nor in s;4;..5, (ex: m{ is Figure 6.5).

Case 2: p is unmodified in s;..s;-; but is modified in s;4,..s, (ex: m{ is Figure 6.5).

Case 3: p is modified in s;..s;—; but is unmodified in s;4;..5, (ex: m{; is Figure 6.5).
Case 4: p is modified both in s;..s;—; and in s;41..5, (ex: m,‘f is Figure 6.5).

In Cases 1 and 2, since p is not modified prior to s;, a new value for p is re-read from the
objectbase and re-execution of s; may only cause re-execution of the statements which relate
directly or indirectly to the other two operands r and ¢. In Case 3, let sy (s; < s < si—1)
be the last statement that modifies p before s;. Since p is not modified in $;41..5,, ss is the
statement that makes the final write on p during the execution. The value of p created by
sy is available in v/* and is re-read when s; is re-executed. In Case 4, the correct value of
p may neither be available in the objectbase nor in v/*. This is because p is modified both
before and after the execution of s;. Let sy be the last statement that modifies p prior to
si, and s; be the statement that issues the final write on p during the execution. In order

to re-execute s;, sy must also be re-executed to calculate the value of p that should be read

Chapter 6. Complex Reconciliation

Imf

sl: k =k+c
s2:h=h-2
s3: x = x*k;
s4: c = x*h
s5: m=m*70
s6: j=j/m
s7: k=x*3
s8: m=m+1
s9:m = m/h

FinalWriteMk{T]

k s7
¢ s4
h 52

s3

. -1
."r s6

C

132

TACMK(]
<result, argl, op, arg2>
sli < k + ¢ >
2. <h h - 2>
31 < X x * ko>
sd < c X * h>
s <m m * 70> |
$6 < i/ m> \
s7 < k X * 3 > }'
s8 < m m + 1>
sQiL <m m / h> |
B
ReadsFromMkf]
sl s2 3 s4 s5 s6 g7 s8 s9
k. sl
c —
h s2 s2
x s3 s3
m‘ s5 s5 [s8
J
D

Figure 6.4: The Three Address Code for mi and Associated Data Structure

Chapter 6. Complex Reconciliation

133

m{ : m{ : m:{: m{: mé :

81 1 eees 81 ¢ ... 81 - ..o 81 % eeene 81 2 .uees

" " s;ip=man spip=men .

N St : St © o St e N
Si:T=p*q $i:T=pxgq S;:r=p*gq Si:T=p*q $i:T=p=xgq
Sit1 Sig1 - Sit1 Si41 ¢ - Sit1

" seip=urv o sip=ukxv sir=usv
ot o ot e S o o S
Case 1 Case 2 Case 3 Case 4 Case 5

Figure 6.5: The Related Statements

by s;. However, re-execution of s; overwrites the value of p that is in the v/*. Thus s,
must also be re-executed so that the correct final value of p can be recorded in v/* when

re-execution terminates!.

Now consider the following two cases for the result operand r € WS(s;). In all of the
Cases (1-5) shown in Figure 6.5, when s; is re-executed, every other statement in s;;..s,
that reads the value of r produced by s; must be re-executed. Further, in Case 5, since s,
overwrites the value of r that is written earlier by s; (s¢ > s;), the statement that executes

the final write on 7 must also be re-executed.

The Algorithm

Suppose z € RS (mi) and set X’ contains the statements in 3m£ which read the value of z
from the objectbase. If it is found that z is stale, every statement s; € X" in addition to those

statements in 3m£ that directly or indirectly relate to each s; should be re-executed. Pro-

!Operation g € RS(s:) is handled analogously.

Chapter 6. Complex Reconciliation 134

Procedure Bitstring(RS (mi))

begin
for every ¢ € RS(m{) do (1)
X — set of statements in 3m{ that read z (2)
for every s; € X do (3)
FindRelatedCode(s;, ReadsFromMkf[], FinalWrite Mk f[], bitstring Mk f[z]) (4)
end

Figure 6.6: Procedure BitString for Simple Methods

cedures BitString and FindRelatedCode shown in Figure 6.6 and Figure 6.7 respectively,

find the statements which directly or indirectly relate to each variable z € RS(m{)-

First, for each variable z € RS (mi), procedure BitString finds the statements which
are related directly to z (Figure 6.6 lines 1-2), and then calls procedure FindRelatedC ode
to search for the statements which are indirectly related to z (lines 3-4). Find RelatedCode
is a recursive procedure that accepts a statement s; and marks statements which are related
directly or indirectly to s; (refer to Figure 6.7). It contains three parts. First statements
which s; reads from are recursively found and marked (lines 1-4). Then s; is marked (line
5). Finally, given that r € WS5(s;), statements which read r from s; are recursively selected
and marked for re-execution (lines 6-9). In addition, the last statement that modifies r

(FinalWriteMk f[r]) is also marked for re-execution (lines 10-12).

Procedure Reconcil-M-k- f (see Figure 6.8) accepts a set of stale data and re-executes
the code related to the stale data. The bitstrings of all stale data are merged into one
bitstring called string to find out what code should be re-executed (lines 1-3). A 1 in the

i** position of string indicates that s; in 3m,{ should be re-executed (lines 4-6).

6.2.2 Complex Methods

In methods which include conditional statements, finding the values of the bitstrings is

complicated by two problems. First, it may not be possible to determine all of the values

Chapter 6. Complex Reconciliation 135

Procedure FindRelatedCode(s;, ReadsFromMkf[], FinalWrite Mk f[], var bitstring Mk f[z])

begin
for every y € RS(s;) do (1)
sj — ReadsFromMEk f[y, s;] (2)
if (s; is not marked) and (FinalWriteMk f[y] > s;) then (3)
FindRelatedCode(s;, ReadsFromMkf(], FinalWrite Mk f[], bitstring Mk f[z]) (4)
set bit s; in bitstringMk f[z] to 1 (5)
Let r be such that r € WS(s;) then (6)
for every s; in which s; = ReadsFromMk f[r,s;] do (7)
if s; is not marked then (8)
FindRelatedCode(s;, ReadsFromMEkf[], FinalWrite Mk f[], bitstring Mk f[z]) (9)
sy — FinalWriteMk f[r] (10)
if s; is not marked then (11)

FindRelatedCode(s;, ReadsFromMEk f[], FinalWrite Mk f[], bitstringMk f[z]) (12)
end

Figure 6.7: FindrelatedCode Procedure for Simple Methods

Procedure ReconcilM-k-f(Stale Data)

begin
string — empty (1)
for every z € StaleData do (2)
string — string OR bitstringMk f[z] ! bit union of two string (3)
for i = 1 to sizeof(TACMEf) do (4)
if i*® bit of string = 1 then (5)
execute s; !!'! ACTUALL RE-EXECUTION TAKES PLACE IN HERE (6)
end

Figure 6.8: The Reconciliation Procedure for Method m,{

Chapter 6. Complex Reconciliation 136

s1:k=p=*10 sy:while (¢ < b) do
so:if (a > b) then So:t=t+35
{s3:e=z+1 sz3:a=kx*2
sg:p= 5} sq:k=k+10
else ss:endwhile
{ss:c=z2+2
s¢:p= 10}
st:h=c¢%10
A B
Figure 6.9:

of the ReadsFromMkf and FinalWriteMkf arrays at compile time for a method m{.
For example in Figure 6.9A, the last write operation on p is either s4 or s depending on
whether a > b. Also it is not possible to know if s7 reads ¢ from s3 or ss until the code is
executed. To solve this problem, statements related to a variable (such as ¢ in the example)

can be conservatively selected for re-execution in both if and else blocks.

The second problem is that, although some statements are not affected directly or indi-
rectly by the stale data, they may still have to be re-executed. For example, in Figure 6.9B,
when k is stale, only s;, s3, 84, and ss5, should be re-executed. However, the final value of
t in s depends on the number of times the loop is executed. If the number of iterations
in the loop changes during the re-execution, it changes the value of t calculated during the
execution. Our approach is to consider all of the statements in a conditional block for re-
execution, whenever a particular statement in that conditional block must be re-executed.
This is excessively conservative and can be improved on but we leave this goal as a subject

for future research.

Recall from Chapter 3 that a sequence of basic blocks visited during an execution of a
method forms a control flow path. Consider a method of object of (mi) which contains
conditional statements. For each control flow path CF Py, of m{, we define 3CF Py; to be
the corresponding three address code for CFPy;. TACCFPkj, ReadsFromC F Pkj, and
FinalWriteCFPkj are similarly associated with CF P,;. The following additional data

Chapter 6. Complex Reconciliation 137

Procedure Bitstring(RS(m]))

begin
for every z € RS(m{) do (1)
X — set of statements in 3m£ that read z from the objectbase (2)
for every s; € X do (3)
for each CFP; do (4)
if s; is in the CF P;; then (5)
FindRelatedCode(s;, ReadsFromCF Pkj[],FinalWriteCF Pkj[], bitstringMk f[z]) (6)
M FINDING THE STATEMENTS IN THE CONDITIONAL BLOCK (7)
while condqueue Mk f is not empty do (8)
st ~— pop an element form condqueue Mk f (9)
sy — CondBlk Mk f[s;]).begin (10)
s¢ — CondBlk Mk f[s;].end (1)
for s; = s to s. do (12)
for each CFP;; do (13)
if s; is in the CF P;; then (14)

FindRelatedCode(s;, ReadsFromCF Pkj[], FinalWriteCF Pkj[], bitstringMk f[z]) (15)
end

Figure 6.10: Procedure BitString for Complex Methods

structures are associated with mi:

CondBIkMK{]]: is a one dimensional array of records. Each record contains two fields:
begin and end. The index of each element corresponds to a statement s; in 3m£.
If CondBlkMEk f[s;].begin = s, and CondBlkMk f[s;].end = s., s; is within a con-
ditional block where s, and s, are the starting and the ending statements of that
conditional block. If s; is within a nested conditional block, s, and s. represent the
begin and the end of the outermost block. If s, and s. are zero, s; is not in a condi-

tional block.

condqueueMkf: is a queue of statements in 3m£. Every time a statement s; is marked
for re-execution, it is pushed into condqueue Mk f if it is within a conditional block.
When s; is popped from the condqueue Mk f, the begin and the end of its associated
conditional block, s; and s., are searched and all of the statements within s; and s,
are selected for re-execution.

The BitString procedure requires a major modification. In Figure 6.6, statements

related to each z € RS(m{) are searched within m{ only. This is because m{ consists

of only a single basic block. This is extended in Figure 6.10 (lines 1-6) where related

Chapter 6. Complex Reconciliation 138

Procedure FindRelatedCode(s;, ReadsFromCF Pkj[], FinalWriteCF Pkj{], var bitstringM k f[z])

begin
for every y € RS ;) do (s (1)
sj «— ReadsFromCF Pkjly, si] (2)
if (s; is not marked) and (FinalWriteCF Pkj(y] > s;) then (3)
FindRelatedCode(s;, ReadsFromCF Pkj[], FinalWriteCF Pkj, bitstringMk f[z]) (4)
if s; is not marked then (5)
set bit s; in bitstringMk f{z] to 1 (6)
if (CondBlkMk f[s;].start '= 0) then !!! s; IS IN THE CONDITIONAL BLOCK (7)
push s; into condqueue Mk f (8)
Let k be such that £ € WS(s;) (9)
for every s; in which s; = ReadsFromCF Pkjlk, s;] do (10)
if s; is not marked then (11)
FindRelatedCode(s;, ReadsFromCF Pkj[], FinalWriteCF Pkj[}, bitstringMk f[z]) (12)
s¢ — FinalWriteCF Pkj(k] (13)
if s; is not marked then (14)

FindRelatedCode(s,, ReadsFromCF Pkjf], FinalWriteCF Pkj[], bitstringM k f[z]) (15)
end

Figure 6.11: Procedure FindRelatedCode for Complex Methods

statements to each z € RS (m,{) are searched for along all possible control flow paths in
m,{ . In addition, if any statement s; that is directly or indirectly related to z, is within a
conditional block, all statements in that conditional block are considered to be related to z.
The FindRelatedC ode procedure has been slightly modified to find related statements such
as s; and put them in condqueueMkf (Figure 6.11 lines 5-8). The BitString procedure
pops such statements from condqueue Mk f, searches for the beginning and the end of the
conditional block associated with s;, and processes all statements within that conditional

block for re-execution (Figure 6.10 lines 8-15).

Chapter 7

Conclusions and Future Work

The purpose of this research is enhance concurrency in a multiversion environment. Multi-
versioning in an objectbase systems can also increase concurrency and enhance reliability.
The taxonomy presented in Chapter 1 determines the environments where this research is
applicable. The three dimensions of the taxonomy are historical, multiversioning, and data
complexity. The historical dimension distinguishes the system where no historical record of
the data is preserved versus the system where several snapshots of the data are produced
as the data changes overtime. The multiversioning dimension shows the difference between
the systems where several transient and working versions of data and/or schema can be
created against the systems where only a single copy of each data and/or schema exist. The
data complexity dimension compares the complexity of data between the object-oriented

and conventional data models in terms of the structure and behavior of data.

Chapter 2 reviewed fundamental terminologies such as transaction, history, serializabil-
ity, recovery, and reliability. The research environment is an objectbase. Object data models
are characterized by their support for encapsulation, aggregation, and inheritance. The spe-
cific issue of concurrency control in objectbase systems is the key factor in motivating this

research.

Chapter 3 presented the model. Two types of transactions were defined: user trans-

139

Chapter 7. Future Work 140

actions and version transactions. User transactions cannot directly access the objectbase.
Method invocations are converted to version transactions by the system. A version trans-
action is analogous to the nested transaction model. Versions of objects are created as
transactions become active in the system. Versions are maintained in secondary storages.
All of the data manipulations of transactions are done against the versions. Eventually,

versions may be disposed and purged from the system; or, they become persistent.

The architecture presented in Chapter 4. It contained three components: the Trans-
action Processor, the Version Processor, and the Validation Processor. The Transaction
Processor accepts user transactions from the user, produces a set of versions transactions
and passes the version transactions to the Version Processor. The Version Processor cre-
ates versions of the objects required by the version transactions, and executes the versions
transactions against these versions. When all of the version transactions of a user trans-
action terminate, the Version Processor notifies the Validation Processor. The Validation
Processor checks for the validity of the user transaction. A user transaction is valid if it
has not read any stale data during its life time. If this is the case, the user transactions is

committed; otherwise, the user transaction is reconciled.

Reconciliation was covered in Chapters 5 and 6. Two types of reconciliation were
introduced: simple reconciliation and complex reconciliation. Simple reconciliation is done
based on the information captured during the run time and it is an attempt to achieve a
serializable schedule by changing the commit order of the currently committed transaction.
This change of the commit order is subject to the condition that both intra-object and

inter-object serializabilities are guaranteed.

Complex reconciliation is done based on static analysis information. The idea is to find
the operations of an unsuccessful user transaction which have been influenced by the stale
data and re-execute them. Based on the data dependency analysis, reconciliation procedures
are generated for the object methods; thereby, enhancing concurrency in multiversion object
systems. Reconciliation procedures accept a set of “incorrect” data items and ensure their

consistency. We showed how a compiler can generate the reconciliation procedures based

Chapter 7. Future Work 141

on static analysis information. In brief, this dissertation made the following contributions:

1. Provided a taxonomy for reasoning about transactions in a multiversion ob jectbase.
2. Defined a computational model for multiversion ob jectbases.

3. Defined a new correctness criterion called value-serializability and argued about its
feasibility.

4. Detailed the implementation of the depends function which has a major role in intra-
UT serialization.

5. Proposed a concurrency control algorithm and described its implementation.

6. Proposed two types of reconciliation algorithms, simple reconciliation and complex
reconciliation, to ensure that transactions commit in the absence of failure.

7. Argued about the correctness and suiiability of the algorithms to the problem.

7.1 Algorithm Enhancements

Both the basic algorithm presented in Chapter 4 and the reconciliation algorithms are
subject to improvements. For example, throughout this thesis, stale data are assumed to be
detected by the Validation Processor after the transaction terminates. The problem is that
a user transaction which reads the stale data at the early stage of its execution continues
executing against the incorrect information to the end. Therefore, system time and resources
used for the transaction are wasted. The algorithm can be modified to be a mixture of both
pessimistic and optimistic approaches. Then it may be possible to detect the stale data

before the transaction terminates completely to improve the overall performance.

As another example, recall that a active version of user transaction UT; can be promoted
if it is ensured that UT; can be committed. Further, UT; can be committed if the Decision
Manager ensures that all of the active versions referenced by UT; are valid. Thus, when
an active version v/* is validated, it must wait for the validation of other versions before
it is promoted. During this period, many new transactions may obtain copies of the last

committed version from object family f which do not include the changes from v/*.

Chapter 7. Future Work 142

sy :while (b > 0) do sy :while (¢ > 0) do

{ {
sp:c=c—1 s:c=c—1
s3:d=d+1 s3:d=d+1
s4:b=0b-1 s4:b=b-1
ss:t=t+1 ss:t=t+1

}

A B

Figure 7.1: Re-execution of statements in a loop

One solution is that once a new v/7 for transaction U T; is created, its content is merged
with the corresponding active versions of objects for f which have been validated but they
are waiting to be promoted. The problem with this approach is that if a failure occurs
cascade aborts may be required. However, if we assume that failures do not occur frequently,

the advantages of this approach may overweight its disadvantages.

Reconciliation algorithms may also be improved. In simple reconciliation, we have shown
that a new committed version is inserted somewhere in the version-chain of its corresponding
object family. Insertion does not change the order of the other committed versions in the
chain with respect to each other. Recall that simple reconciliation cannot be performed if
an active version can be inserted anywhere in the version-chain of its corresponding object
family. However, it may be possible to insert the active version in the chain, if some of the

committed versions in the chain are re-ordered; thereby, enhancing concurrency.

Complex reconciliation assumed that if a code in a conditional block should be re-
executed, every code in the block should also be re-executed. This is unnecessarily restric-
tive. Consider Figure 7.1. Suppose variable b is stale and every code related directly and
indirectly to b must be re-executed. In Figure 7.1A, the number of iterations of the while
loop depends on the value of b. Therefore, if the number of loop iterations changes during

the re-execution, it may effect the result of the operation of other statements which may not

Chapter 7. Future Work 143

even be related to . On the other hand, Figure 7.1B shows that the number of iterations
in the loop is determined by the value of ¢. Note that ¢ is not related to the stale data b.
Then as long as c is not stale, the number of iterations during the re-execution remains as
it had during execution. If re-execution does not change the number of iterations in the
loop, it is not necessary to re-execute statements s;, s3, and ss, when b is detected to be
the only stale data. The complex reconciliation algorithm should be improved to reduce

the unnecessary overhead involved in the re-execution of such a conditional blocks.

7.2 Future Work

Implementation

Although we provided the pseudo code for most of the routines in this thesis, the actual
implementation remains a topic of the future research. Before the system presented in this
thesis is implemented optimizing compiler where information from static analysis and issues

related to data dependency can be obtained, should be buiit.

Recovery

Beside concurrency control, another important aspect of transaction management is
reliability and recovery. Usually, when we attempt to enhance the concurrency control
algorithm, reliability is neglected because it is considered orthogonal. However, recovery

algorithm should be provided to guarantee reliable transaction executions.

In traditional database system, the scope of the recovery is the entire database. When
a failure occurs, new transactions cannot be submitted to the system unless the database
is back to a consistent state. This system permits both transaction nesting and version
tools be used to limit the scope of the recovery. Therefore, in case a failure occurs, new

transactions can execute while recovering other user and/or version transactions.

Since we have two levels of abstractions, user and system level, the computational model

may be improved to provide definitions for recoverable, avoid cascading aborts, and strict

Chapter 7. Future Work 144

user transactions as well as definitions for recoverable, avoid cascading aborts, and strict

version transactions.

One obvious recovery solution is that it is possible to purge the active versions in the
unstable store and restart the transactions. This might not always be a feasible solution
when the transactions are already terminated and are being validated by the Validation

Processor. Therefore, some form of recovery scheme may be required. For example:

e logs to coordinate the execution of user transactions,

e logs to coordinate the execution of version transactions of a particular user transaction,
and

e logs to coordinate the execution of version transactions accessing a specific active
version.

The recovery algorithms provided for advanced transaction models may provide solutions

to the reliability and recovery issues [Mos87, RM89, Wie94)].

Other Areas

Some work in this thesis can be extended and combined with other areas of research.
For example, as it is done in temporal databases, we have added validation time [SA86] to
the committed versions. Thus queries can be issued on past data to provide the user with

historical information.

Further, in the taxonomy presented in Chapter 1, it is possible to develop a system
where multiple versions of schema can be supported. Throughout this thesis the schema
remains unchanged during the run time. This problem may be solved by having more than
one version of schema. The active transactions continue their execution against the old
schema, and the new transactions can be executed against the new schema. The trans-
action management should be improved to coordinate the serialization order between the

transactions which are running under different versions of the schema.

Finally, our computational model and the architecture can be improved to be used for

distributed environments. In some distributed systems, data is replicated in different sites.

Chapter 7. Future Work 145

Eventually, because of a problem such as a node or a link failure, the data at some sites
may become stale. Thus some type of reconciliation may be required to make the states of

these sites consistent with the states of other sites in the database.

Bibliography

[AA92)

[ABD*89]

[ACLS7]

[ASUS6]

[Bad79]

(BB8Y]

[BBG89)

[BDK92]

[BG81]
[BG83]
[BGH87]
(BHRS80]
[BM76)

[(BMY1]

D. Agrawal and A. El Abbadi. A Non-Restrictive Concurrency Control for Object-
Oriented Databases. In Proceedings of Srd International Conference on Ertending Data-
base Technology, Vienna, Austria, pages 469-482, 1992.

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The
Object-oriented Database System Manifesto. In Proceeding of First International Con-
ference Deductive and Object-Oriented Databases, pages 40-57. Elsevier Science Pub-
lisher, B.V. Amesterdam, 1989.

R. Agrawal, M. Carey, and M. Livny. Concurrency Control Performance Modeling:
Alternatives and Implications. ACM Transactions on Database Systems, 12(4):609-654,
December 1987.

A. Aho, R. Sethi, and J. Ullman. Compilers Principles, Techniques, and Tools. Addison-
Wesley Publishing Company, 1986.

D. Badal. Correctness of Concurrency Control and Implementations in Distributed
Databases. In IEEE Proceeding of COMPSAC Conference, pages 588-593. IEEE,
November 1979.

F. Bancilhon and P. Buneman. Version Control in an Object—Oriented Architecture. In
W. Kim and F. Lochovsky, editors, Qbject-Oriented Concepts, Databases, and Applica-
tions, pages 451-458. Addison-wesley, Reading, Mass., 1589.

C. Beeri, P. Bernstein, and N. Goodman. A Model for Concurrency in Nested Transac-
tions Systems. Journal of Association for Computing Machinary, 36(2):230-269, 1989.

F. Bancilhon, C. Delobel, and P. Kanellakis. Building an object-oriented Database Sys-
tems, the story of O>. Morgan Kaufmann Publishers, San Mateo, California, 1992.

P.A. Bernstein and N. Goodman. Concurrency Control in Distributed Database Sys-
tems. ACM Compuling Surveys, 13(2):185-221, June 1981.

P.A. Bernstein and N. Goodman. Multiversion Concurrency Control-Theory and Algo-
rithms. ACM Trensactions on Database Systems, 8(4):465-483, December 1983.

P. Bernstein, N. Goodman, and V. Hadzilacos. Concurrency Control and Recovery in
Database Systems. Addison Wesley, Reading, Massachusetts, 1987.

R. Bayer, H. Heller, and A. Reiser. Parallelism and Recovery in Database Systems.
ACM Transactions on Database Systems, 5(2):139-156, 1980.

J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. American Elsevier
Publishing CO., INC., 1976.

E. Bertino and L. Martino. Object-Oriented Database Management Systems: Concepts
and Issues. [EEE Computer, 24(4):33-47, April 1991.

146

Chapter 7.

[BOH*91]

[Car83a]

[Car83b]

[Car87)

[Car89)

[CCHK90]

[CFLN8?]

[CG85]

[CKS86)

[CMS6]

[DES9]

[EGLT76]

[FLMW90]
(GB9%4a]

(GB94b]

[GB95]

[Gol84]

[GR94)

Future Work 147

A. Buchmann, T. Qzsu, M. Hornick, D. Geogakopoulos, and F. Manola. A Transaction
Model for active Distributed Object Systems. In Ahmed K. Elmagarmid, editor, Data-
base Transaction Models for Advanced Applications, chapter 5, pages 123-158. Morgan
Kaufmann Publishers, 1991.

M. Carey. Modeling and Evaluation of Database Concurrency Control Algorithms. Ph.D.
dissertation, Computer Science Div.(EECS), Univ. of California, Berkeley, 1983.

M. Carey. Multiple Versions and Performance of Optimistic Concurrency Control. Tech-
nical Report 517, University of Wisconcin-Madison, October 1983.

M. Carey. lmproving the Performance of an Optimistic Concutrency Controi Algo-
rithm Through Timestamps and Versions. IEEE Transactions on Software Engineering,
13(6):746-751, June 1987.

M. Carey. Storage Management for Objects in Exodus. In W. Kim and F. Lochovsky, ed-
itors, Object-Oriented Concepts, Databases, and Applications, pages 341-369. Addison-
wesley, Reading, Mass., 1989.

C. Callahan, A. Carle, M. Hall, and K. Kennedy. Constructing the Procedure Call
Multigraph. IEEE Transactions on Software Enginecering, 16(4):483-487, April 1990.

A. Chan, S. Fox, W. Lin, and A. Nori. The Implementation of an Integrated Concur-
rency Control And Recovery Scheme. In Proceeding of the ACM SIGMOD International
Conference on the Management of Data, pages 184-191, 1982.

A. Chan and R. Gray. Implementing Distributed Read-Only Transactions. I[EEE Trans-
actions on Software Engineering, 11(2):205-212, February 1985.

H. Chou and W. Kim. A Unifying Framework for Version Contiol in a CAD. In Pro-
ceeding of the 12th International Conference on VLDB, pages 336-344. Microelectronics
and Computer technology Corporation, 1986.

M. Carey and W. Muhanna. The Performance of Multiversion Concurrency Control
Algorithms. ACM transactions on Computer Systems, 4(4):338-378, November 1986.

W. Du and A. Elmagarmid. Quasi Serializability: A Correctness Criterion for Global
Concurrency Control in InterBase. In Proceedings of Very Large Data Bases (VLDB),
pages 347-355, 1989.

K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The Notions of Consistency and Predicate
Locks in a Database System. Communications of the ACM, 19(11):624 - 632, November
1976.

A. Fekete, N. Lynch, M. Merrit, and W. Weihl. Commutativity-based Locking for
Nested Transactions. Journal of Computer and System Sciences, 41(1):65-156, 1990.

P. Graham and K. Barker. Enhancing Intra-transaction Concurrency in Object Bases.
Journal of computing and information, 1(1):795-811, May 1994.

P. Graham and K. Barker. Effective Optimistic Concurrency Control in Multiversion
Object Bases. [n Proc. International Sympostum on Object Oriented Methodologies and
Systems (ISOOMS), volume 858, pages 313-328. In Springer-Verlag Lecture Notes in
Computer Science, éeptember 1994.

P. Graham and K. Barker. Improved Scheduling in Object Bases Using Statically
Derived Information. The International Journal of Microcomputer Applications (IJMA),
14(3):114-122, 1995.

A. Goldberg. Smalltalk-80: The Interactive Programming Enrvironment. Addison-
Wesley, Reading, Massachusetts, 1984.

Gray and Reuter. Transaction Processing Concepts. Addison-Wesley Publishing Com-
pany, 1994.

Chapter 7.

[Gra81]
[Gra94]
[GZB92]

[HB96]

[HH91]
(HP86]

[HPC93]

[HR87]
[HR93]

[KCS88]

[KGBWY0]

(KM94]

[KR381]
[Lau83)

[Moh90]

[Mor93]

[Mos85]
[Mos87]

[MPL92]

Future Work 148

J. Gray. The Transaction ConceBt: Virtues and Limitation. In Proceedings of the 7th
International Conference on VLDE, pages 144-154, 195i.

P.J. Graham. Applications of Static Analysis to Concurrency Control ans Recovery in
Objectbase Systems. Ph.D. thesis, University of Manitoba, 1994.

P. Graham, M. Zapp, and K. Barker. Concurrency Control in Object-Based Systems.
Technical Report technical report: 92-07, University of Manitoba, June 1992.

A. Hadaegh and K. Barker. Value-serializability and an Architecture for Managing
Transactions in Multiversion Objectbase Systems. In Proceeding of third international
workshop on Advances in Databases and Information Systems, Moscow, pages 126 -133.
September 1996.

T. Hadzilacos and V. Hadzilacos. Transaction Synchronization in Object Bases. Journal
of Computer and System Sciences, 43(1):2-24, 165i.

T. Hadzilacos and C. Papadimitriou. Algorithmic Aspects of Multiversion Concurrency
Control. Journal of Computer and System Sciences, 3(3):297-310, 1986.

AR Hurson, S.H. Pakzad, and J. Cheng. Object-Oriented Database Management Sys-
tems: Evolution and Performance Issues. I[EEE Computer Sociely Press. [First appeared
tn IEEE Computers, 26(2):48-60, 1993.

T. Harder and K. Rothermel. Concurrency Control Issues in Nested Transactions. /BM
Research Report RJ 5803 (58533), Almaden Research Center, 1987.

T. Harder and K. Rothermel. Concurrency Contro! Issues in Nested Transactions. VLDB
Journal, 2(1):39-74, 1993.

W. Kim and H. Chou. Versions of Schema for Object—oriented Databases. In Proceedings
of the 14th International Conference on VLDB, pages 148-159, 1988.

W. Kim, J.F. Garza, N. Ballou, and D. Woelk. Architecture of the Orion Next-
generation Database System. [EEE Transactions on Knowledge and Date Engineering,
2(1):109 - 124, 1990.

H. Kwon and S. Moon. Reverse Serializability as a Correctness Criterion For Optimistic
Concurrency Control. Microprocessing and Microprogramming, 40(10-12):759-762, De-
cember 1994.

H.T. Kung and J.T. Robinson. On Optimistic Methods for Concurrency Control. ACM
Transactions on Database Systems, 6(2):213 — 226, June 1981.

G. Lausen. Formal Aspects of Optimistic Concurrency Control In a Multiple Version
Database System. Information Systems, 8(4):291-301, February 1983.

C. Mohan. Commit-LSN: A Novel and Simple Method for Reducing Locking and Laching
in Transaction Processing Systems. In Proceedings of 16th VLDB Conference, pages 1-
14, 1990.

T. Morzy. The Correctness of Concurrency Control for Multiversion Database Systems
with Limited Number of Versions. In Proc. of 9tk Int. Conf. on Data Engineering, pages
595-605, Vienna, 1993. IEEE Computer Society Press.

J.E.B. Moss. Nested Transactions — An Approach to Reliable Distributed Computing.
The MIT Press, 1985.

J.E.B Moss. Log-based Recovery for Nested Transactions. In Proceeding of the 13th
International Conference on VLDB, pages 427-432, 1987.

C. Mohan, H. Pirahesh, and R. Lorie. Efficient and Flexible Methods for Transient
Versioning of Records to Avoid Locking by Read-Only Transactions. In Proceeding
of ACM SIGMOD Int. Conf. on Management of Data, pages 124-133, IBM Almaden
Research Center, San Jose, CA 95120, USA, 1992.

Chapter 7. Future Work 149

[Nak92]

[NRZ92]

[0S91]

[Ozs94]

[Pap86]
[PK84]

[PKHSS]
[RA92]

[ReeT8]

[RGN90]

[RH90]

[RKS93]

[RMS9]

[Ryd79]

[SAS86]
[SLR76]

[SR81]

[SRK91]

[Sta94]

T. Nakajima. Commutativity Based Concurrency Control for Multiversion Objects. In

Proceedings of the International Workshop on Distributed Object Management, pages
101-119, 1992.

M.H. Nodine, S. Ramaswamy, and S.B. Zdonik. A Cooprative Transaction Model for
desigu Databases. In Ahmed K. Elmagarmid, editor, Database Transaction Models for
Advanced Applications, chapter 3. Morgan Kaufmann Publishers, 1992.

P. Butterworth A. Otis and J. Stein. The Gemstone Object Database Management
System. Communications of the ACM, 34(10):64-77, October 1991.

M.T. Ozsu. Transaction Models and Transaction Management in Object-Oriented Data-
base Management Systems. In A. Dogac, M.T. Ozsu, A. Biliris, and T. Sellis, editors,
Advances in Object-Oriented Database Systems, volume 130, pages 147-184. NATO ASI
Series: Springer-Verlag, 1994.

C.4. Papadimitriou. The Theory of Datatase Concurrency Control. Computer Science
Press, 1986.

€. Papadimitriou and C. Kanellakis. On Concurrency Control by Multiple Versions.
ACM Transactions on Database Systems, 9(1):89-99, 1984.

C. Pu, G. Kaiser, and N. Hutchinson. Split-transactions for Open Ended Activities. In
Proceedings of the 14th International Conference on VLDB, pages 26-37, August 1988.

R.F. Resende and A. El Abbadi. A Graph Testing Concurrency Control for Object
Bases. NSF [RI-917904, 1992.

D. Reed. Naming and Synchronization in a Decentralized Computer System. Technical
Report MIT/LCS/TR-205, MIT Laboratory for Computer Science, 1978.

T.C. Rakow, J. Gu, and E. Neuhold. Serializability in Object-Oriented Database Sys-

tems. In CH2840-7/0000/0112@1990 IEEE, pages 112-120, Dolivostrabe 15, D-6100
Darmstadt, West Germany, 1990. Integrated Publication and Information Systems In-
stitute (IPSI).

M. Stonebraker L. Rowe and M. Hitohama. The Implementation of Postgres. [EEFE
Transactions on Knowledge and Data Engineering, 2(1):125-141, March 1990.

R. Rastogi, H. Korth, and A. Silberschatz. Strict Histories in Object-Oriented Database
Systems. ACM PODS, pages 288-299, 1993.

K. Rothermel and C. Mohan. ARIES/NT: A Recovery Method Based on Write-ahead
Logging for Nested Transactions. In Proceedings of the 15th International Conference
on VLDB, pages 337-346, 1989.

B. Ryder. Constructing the Call Graph of a Program. IEEE Transactions on Software
Engineering, 5(3):216-225, 1979.

R. Snodgras and 1. Ahn. Temporal Databases. [EEE Computer, 19(9):35-42, 1986.

R. Stearns, P. Lewis, and D. Rosenkrants. Concurrency Control for Database Systems.
In IEEE Conference of Foundation of Computer Science, pages 19-32, November 1976.

R.E. Stearns and D.J. Rosenkrantz. Distributed Database Concurrency Control Using
Before-Values. In Proceeding of the ACM-SIGMOD Conference on Management of Data,
pages 74-83, June 1981.

A. Sheth, M. Rusinkiewicz, and G. Karabatis. Using Polytransactions to Manage Inter-
dependent Data. In Ahmed K. Elmagarmid, editor, Database Transaction Models for
Advanced Applicetions, chapter 14, pages 555-581. Morgan Kaufmann Publishers, 1991.

T.A. Standish. Data Structure Algorithm, and Software Principles. Addison-Wesley
Publishing Company, 1994.

Chapter 7. Future Work 150

[Weig8]
(Weid1]
[Wie94]
[WLH90]

[Wol89]
[WS91]

[WYC93]
[Z2p93]

[ZB93a]

(ZB93b]

(ZB93c]

W.E. Weihl. Commutativity-Based Concurrency Control for Abstract Data Types.
IEEFE Transactions on Computers, 37(12):1488 - 1505, 1988.

G. Weikum. Principles and Realization Strategies of Muitilevel Transaction Manage-
ment. ACM Transactions on Database Systems, 16(1):132-180, March 1991.

C. Wieler. Reliable and Recoverable Transactions in Object Bases. Master’s thesis,
University of Manitoba, 1994.

K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris Architecture and Implementation.
IEEE Transactions on Knowledge and Data Engineering, 2(1):63-75, 1990.

M. Wolfe. Optimizing Supercompilers for Supercompuiers. . MIT Press, 1989.

G. Weikum and H. Schek. Concepts and Applications of Multilevel Transactions and
Open Nested Transactions. In Ahmed K. Elmagarmid, editor, Database Transaction
Models, chapter 13, pages 516-553. Morgan Kaufmann Publishers, 1991.

K. Wu, P. Yu, and M. Chen. Dynamic Finite Versioning: An Effective Versioning
5A7p7pr508a(.;:hltgoggoncurrent Transaction and Query Processing. 1063-6382/98 IEEE, pages

M. Zapp. Concurrency Control in Object-Based Systems. Technical Report technical
report: 93-03, University of Manitoba, July 1993.

M.E. Zapp and K. Barker. Modular Concurrency Control AlEorit,hms for Object Bases.
In International Symposium on Apglied Computing: Research and Applications in Soft-
ware Engineering, Databases, and Distributed Systems, pages 28-36, Monterrey, Mexico,

October 1993.

M.E. Zapp and K. Barker. On Concurrency Control in Object Bases. In Mid-Continent
Informatior. Systems Conference (MISC’93), pages 91-97, Fargo, USA, May 1993.

M.E. Zapp and K. Barker. The Serializability of Transaction in Object Bases. In
Proceedings of the International Conference on Computers and Information, pages 428-
432, Sudbury, Canada, May 1993.

