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ABSTRACT

Abstract

Electrical paper insulation used in power transformers thermally deteriorates during the

normal transformer operation. When this deterioration becomes significant, tensile strength

is reduced, and the risk for insulation failure is increased. The most accurate method for

paper condition assessment is the degree of polymerization (DP) measurement, where a

sample of paper is removed from the transformer for chemical analysis. However, the

quantity of paper required for DP measurement is often considered too invasive. In this

research, methods for texture analysis on microscopic images of thermally aged insulation

paper, is presented as an alternative approach for condition assessment.

An experimental setup was developed to artificially age oil-impregnated Kraft paper

samples. The samples were thermally stressed in an oven at temperatures above those

normally present in power transformers, to produce a sample set with varying levels of

insulation deterioration.

Microscopy images of the paper samples were analyzed using two texture analysis meth-

ods. The first method is a statistical-based texture analysis method called the spatial grey

level dependence method (SGLDM). SGLDM converts images into matrices containing in-

formation about the statistical variation of pixel grey-level intensities in an image. Mathe-

matical operators applied to the SGLDM are used to extract 22 statistical texture features

for each sample image. The second method uses a two-dimensional Wavelet transform to

extract detail information from Wavelet decomposition coefficient matrices. The Wavelet

method is applied recursively, with four decompositions, producing a total of 12 Wavelet

texture features per sample image.

Analysis of the microscopy images obtained from thermally aged samples show that

thermal deterioration of the insulation paper produces changes in the surface morphology

and physical structure. These changes are detectable by the texture features extracted from

the SGLDM and Wavelet texture analysis. Correlations between texture features and DP

measurements performed on the paper samples are analyzed, and statistical classification is
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performed on the feature set to demonstrate that differentiation between oil-impregnated

paper samples with different levels of thermal degradation is reliable with low error rates.

Therefore, development of a practical method to assess condition of oil-impregnated paper

insulation using optical microscopy and texture analysis is promising.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Together with switchgear and generators, power transformers are one of three main compo-

nents used for the transmission of electrical energy [1]. A photograph of a power transformer

is shown in Fig. 1.1. The main purpose of power transformers in the electrical transmission

system is to convert voltage from one magnitude level to another. Power transformers are

highly reliable apparatus with life expectancies that can exceed 40-years when operated

under normal loading conditions and system voltages [2–4]. However, shortened life spans

occur when power transformers are operated at or near their full load rating continuously.

Aging models used within the utility industry predict end-of-life criteria may be reached in

as little 20.5 years (180,000 hours) [2]. Therefore utilities which are forced to operate at full

load continuously should expect life spans much shorter than 40-years. Some utility com-

panies in Asia report that less than 5% of their 110 kV class power transformers achieve an

operational life of 30 years and less than 1% reach 40 years. [5]. For utilities, forced outages

of power transformers due to insulation failure is costly. Outage durations can be long and

the replacement costs are high; typically in the order of $1 million dollars. There is also the
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1.1 Problem Statement and Motivation

Fig. 1.1. A power transformer, courtesy of Manitoba Hydro.

potential for legal and financial implications due to customer service disruptions as well as

potential for safety risks to field workers or the public when failures are explosive.

In most power transformers, the electrical insulation system is composed of mineral oil

and oil-impregnated paper, and the most common type of paper used is a cellulose based

paper called kraft paper. During normal, in-service operation of the transformer, thermal,

electrical, and chemical stresses continually degrade these materials [2, 6]. With regular

planned maintenance, the transformer insulating oil can be replaced or reprocessed to restore

its original properties. For the kraft paper the effects of degradation are permanent. The

most common cause of power transformer failure occurs when the kraft insulation paper

degrades to the point that its mechanical properties are inadequate to sustain isolation

between the transformer winding turns.

Existing methods for evaluating the condition transformer paper insulation include

detection of chemical markers found in oil samples taken from the transformer [7], or by

tests performed directly on paper samples removed from the transformer, such as the degree

of polymerization(DP) measurement [8, 9]. Effective assessment of the paper condition

based on detection of chemical markers in the insulating oil are hindered by dilution. The

relative concentrations of these markers in the overall oil volume may be indicative of

- 2 -



1.2 Research Objectives

distributed defects where the paper still has a considerable amount of remaining life, or

may be indicative of an acute defect where the paper is close to failure. The degree of

polymerization test which is performed with samples of paper removed from the transformer

is problematic because the sample size required for analysis are large enough to be considered

invasive and potentially damaging to the power transformer.

Previous research has shown that the deterioration of kraft insulation paper in power

transformers manifests morphological changes to the microscopic structure of the insulation

paper. Distortions to the paper fibers and their network structure occur as a consequence of

thermal deterioration [5,10,11]. Analysis of the changes to fibers and their woven structure

have been limited to qualitative observations, and no research work has been conducted

to quantify or measure changes to the insulation paper surface morphology occurring as a

consequence of thermal aging.

The motivation for this research is for the development of an optical method to estimate

deterioration in power transformer cellulose paper by using a combination of microscopy

and image texture analysis. Optical methods are desirable for this application because they

can provide a less invasive method for direct assessment of the insulation where sample

sizes needed for analysis could be reduced from the established industry method; degree of

polymerization test. Optical methods also have the potential for in-situ measurement in

which the need to remove a sample may be eliminated entirely.

1.2 Research Objectives

The first objective of this research is to apply texture analysis methods to thermally aged

transformer cellulose insulation to characterize how texture features change as a function

of thermal deterioration level and to correlated this data with degree of polymerization

measurements.

The second objective in this research is to examine how image texture analysis features

- 3 -



1.3 Outcomes and Contributions

may be used with machine learning techniques for automated classification of thermally de-

teriorated transformer insulation. The purpose of this objective is to evaluate the potential

of microscopy and image texture analysis as a method for the condition assessment of power

transformer paper insulation.

1.3 Outcomes and Contributions

In this research, accelerated aging experiments were used successfully to produce a set of

kraft paper samples belonging to four coarse deterioration levels roughly categorized as new-

condition, aged, end-of-life, and beyond end-of-life condition. Two texture analysis methods

have been applied to transformer winding insulation kraft paper to analyze microscopic

surface morphological changes in the paper caused from thermal deterioration. One of the

texture analysis methods is a traditional, statistical histogram based technique [12,13], while

the second is a transform type method based on the two-dimensional Wavelet transform

[14,15].

A key outcome obtained in this research is finding that a number of statistical texture

features appear well correlated with degree of polymerization (DP) measurements obtained

from a set of thermally deteriorated kraft paper samples. Results have shown that a few

statistical texture features share a logarithmic relationship with DP, and vary linearly with

tensile strength. Another important outcome obtained in this research has been the im-

plementation of statistical and Wavelet texture features in machine learning algorithms to

train an automated classifiers that can estimate deterioration level into one of the four aging

levels at high accuracy, with a classification error of 6% or less.

To the author’s best knowledge, this Ph D. thesis is the first research work to attempt

measurement of thermal deterioration changes in the transformer winding paper insula-

tion by applying texture analysis to microscopic images of paper. The finding that certain

statistical texture features trend proportionately to tensile strength of the transformer in-
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1.3 Outcomes and Contributions

sulation paper is a novel finding, and implies that the mechanical strength of the paper is

directly related to the morphological changes which occur to paper fibers and their network

structure in response to thermal deterioration.

1.3.1 Publications

A list of publications prepared or planned for preparation during the course of this research

are listed below in chronological order:

� A journal publication describing results from statistical texture analysis on micro-

scopic images of thermally deteriorated paper samples was published in [16]. This

paper provides an analysis results obtained from automated classification of insula-

tion paper belonging to one of four deterioration levels. The classifier is derived from

the statistical texture analysis features after processing by standard machine learning

techniques.

� A conference paper describing results from statistical texture analysis of microscopy

measurements performed on transformer pressboard electrically deteriorated from sur-

face partial discharges was published in [17]. However, results from these experiments

were largely inconclusive, and as a result this work is considered to be outside the

main scope of this thesis. Discussion and analysis from these experiments are detailed

in Appendix B.

� A conference paper on the correlation between DP measurements from thermally

deteriorated paper insulation samples and statistical texture analysis features from

microscopic images of the thermally deteriorated paper samples was published in [18].

� A conference paper which presents a portion of results obtained from Wavelet texture

analysis on thermally deteriorated paper sample has been submitted and accepted for

conference presentation in [19].
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1.4 Organization/Outline of Thesis

� A final journal publication on the complete results obtained from Wavelet texture

analysis along with comparison to the statistical based results is in preparation and

planned for submission by February 2018.

1.4 Organization/Outline of Thesis

This thesis is organized in six chapters with content as described below:

Chapter 1: Presents an introduction to this research with motivation, research objectives,

and main contributions and outcomes of the research.

Chapter 2: Presents background technical information applicable to this research work.

Details on the power transformer insulation system construction are discussed along with

deterioration mechanisms. Existing methodologies used for detection of insulation deteri-

oration are reviewed along with discussion on morphological changes occurring in paper

micro-structure as a consequence of thermal stress. An introduction to texture analysis is

also presented with discussion on applications.

Chapter 3: Presents the experimental test arrangement for preparing thermally deterio-

rated paper samples and the microscopy measurement arrangement. Initial observations

from microscopic images of thermally deteriorated paper are discussed. Results for degree

of polymerization measurements on the prepared samples is presented.

Chapter 4: Presents results from texture analysis by a statistical based histogram method

called the Spatial Grey Level Dependence Method (SGLDM). Texture features extracted

from the SGLDM method are analyzed in terms of their variation and sensitivity to thermal

deterioration and correlated with DP measurements. Machine learning techniques are ap-

plied on the SGLDM features to determine the effectiveness of this texture analysis method

for automated estimation of deterioration.
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1.4 Organization/Outline of Thesis

Chapter 5: Presents results from a transform based texture analysis method which uses

a two-dimensional Wavelet transform to extract texture features from thermally deterio-

rated paper sample microscopy images. Identical to the approach used for the SGLDM

method in Chapter 4, the Wavelet texture features are evaluated in terms of their variation

and sensitivity to thermal deterioration and a correlation with DP measurements is ana-

lyzed. Machine learning techniques are applied to the Wavelet features to determine the

effectiveness of this texture analysis method for automated estimation of deterioration.

Chapter 6: The thesis is concluded by discussing the results obtained in relation to the

original research objectives stated in Chapter 1. A discussion on future work that would

improve and expand on this thesis work is presented.

Appendix A: Formulae used for machine learning methods; Linear Discriminant Analysis

and Principal Component Analysis are presented.

Appendix B: Results and analysis from electrical stress by surface tracking partial dis-

charge experiments on transformer pressboard insulation are presented.

Appendix C: A brief method description for the viscometric degree of polymerization test

is provided as background.
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Chapter 2

Background and Literature Review

- Power Transformer Insulation

System, Condition Assessment

Methods, and Texture Analysis

In this chapter, a brief overview of power transformer construction and insulation systems

design will be presented along with a description of the common deterioration processes

and failure mechanisms. Morphological changes occuring in kraft paper as a consequence

of thermal deterioration will are described along with a description of changes to the paper

mechanical properties.

A review of existing transformer paper insulation condition assessment methods are

covered along with discussion regarding their strengths and limitations. Finally the con-

cept of texture analysis will be introduced with references to current applications in paper

measurements.
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2.1 Power Transformer Insulation Materials and Construction

2.1 Power Transformer Insulation Materials and Construc-

tion

The basic design of the power transformer has remained conceptually similar since the

1920s [20–22]. The tranformer core is made from steel laminations, stacked and compressed

to form a closed magnetic circuit and the windings are made from copper or aluminum

turns wound around the core. The core and windings are housed inside of a steel tank with

the electrical insulation system.

The most common insulation materials in power transformers use a combination of

electrical grade mineral oil and oil-impregnated paper. The insulating oil occupies a ma-

jority of the insulation volume. Most of the electrical strength in the power transformer

insulation system is attributed to the fluid component [23] which also provides cooling to

the core and coils of the transformer. Although refined mineral oils are the most common

dielectric fluid used for insulation in power transformers, some alternative fluids such as

synthetic or vegetable oils are used in special applications [1, 24].

The oil-impregnated paper materials are layered on or around the energized windings

[23, 25]. The most common material used for the solid insulation component in power

transformers is kraft paper. Kraft paper is an unbleached paper, brown in color, made

from softwood coniferous trees such as spruce and pine [25]. Kraft may be manufactured

as plain or thermally upgraded, where modifications during the pulping process improve

the paper resilience to thermal degradation [26]. The paper is constituted with interwoven

fibers which individually are approximately 50µm in diameter by 1mm in length [27].

The paper materials in power transformers serve a number of purposes. Firstly, the

paper provides electrical separation of live parts, insulating between winding phases, wind-

ing turns, as well as between the windings to the core, or tank. Secondly, paper materials

mitigate the propagation of partial discharges in the oil. Bare conductors in oil are far less
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effective at mitigating ionization processes that produce partial discharges in oil [25]. In

addition to electrical insulating benefits, paper materials also provide mechanical support

to the windings, and guide the flow of insulating fluid as coolant to the core and windings.

Examples of these different forms of kraft cellulose papers and their use in a power

transformer is shown in Fig. 2.1. The kraft paper tape constitutes the major portion of

the transformer solid insulation. This paper tape is wrapped on the winding conductors

to insulate individual turns from one another. To insulate the lead connections from the

transformer winding to high voltage bushings, often a different type of kraft paper, called

crêpe tape, is used. Crêpe tape is more elastic than the kraft paper tape and absorbs more

oil per volume than regular kraft paper. For electrical insulation barriers between the high-

voltage to low-voltage windings, between phases, and between the windings and the core or

tank, a more dense cellulose product called pressboard is used. Pressboard is also used for

bracing the space between the winding discs to allow for the flow of oil as coolant.

In this thesis, plain kraft winding insulation paper is analyzed in thermal deteriora-

tion experiments. Although pressboard and crêpe paper insulation degrade similarly to

the winding insulation paper when under thermal stress, the winding insulation paper is

more commonly associated with electrical insulation failures. The mechanism of winding

insulation paper failure is discussed in Section 2.2.

2.1.1 Chemical Composition of Cellulose

The chemical composition of kraft paper contains approximately 95% cellulose. Cellulose is

an organic polymer with a molecular structure as shown in Fig. 2.2. The structure shown

in Fig. 2.2 depicts the cellulose monomer. This monomer is repeated in long chains to

form polymer cellulose molecules and in new kraft paper, polymer molecule chains of with

lengths of approximately 1000-1500 monomer units are present.

In kraft paper, intermolecular bonds are formed between adjacent cellulose molecules
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2.1 Power Transformer Insulation Materials and Construction

Fig. 2.1. Transformer core and coils removed from tank. Kraft tape winding insulation,
crêpe tape HV bushing lead insulation, pressboard spacers between discs, and pressboard
barriers between phases are identified by arrows.

- 11 -



2.2 Deterioration Mechanisms and Failure Modes of the Transformer Insulation System

in groups of approximately 2000 molecules. The groups make up fibrils that constitute cell

walls of individual paper fibers [27]. In the finished kraft paper, the fibers are interwoven

in a network. Characteristics of the fibers and their interwoven network determine many

physical properties about the kraft paper which are important for their use in power trans-

formers. For example the density of the paper network structure can affect its porosity for

impregnation of insulating oil and its mechanical strength [23].

When kraft paper is subjected to thermal stress, breaks in the intermolecular bonds

occur along with scissions breaking the chain cellulose molecules. When breaks in the

polymer molecules occur, the molecule length is reduced and by reducing the length of

cellulose molecules changes in the paper properties occur; the most significant of which

affect the mechanical strength of the paper. In Section 2.2.2, the changes in paper properties

progress, and their impact on transformer reliability will be discussed. The standard test

for DP [9] in paper is an indirect method for estimating the average length of cellulose

molecules in electrical insulation paper materials. The DP test will be described in Section

2.3.4. New kraft paper after processing and impregnation by mineral oil may be expected

to have cellulose molecules of 1000 monomer units or greater, while transformer insulation

which is considered to be deteriorated to an end-of-life condition, may be expected to have

cellulose molecules with 200 monomer units or fewer on average.

2.2 Deterioration Mechanisms and Failure Modes of the Trans-

former Insulation System

2.2.1 Mineral Oil Deterioration

Although a majority of transformer failures are not caused by deterioration of its mineral oil.

Indirectly, the degradation of oil will accelerate the deterioration of paper materials in the

power transformers [28]. Deterioration of insulating oil is mainly caused by oxidation, which
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Fig. 2.2. Molecular structure of cellulose.

is a chemical process where ambient oxygen reacts with the transformer oil; using heat as

a catalyst [1, 29]. When oxidation of the insulating oil occurs, it initiates chemical changes

that produce dissolved acids and water in the oil as well as other other chemical byproducts

that thicken the oil. Thickening of the oil impacts flow which therefore hinders cooling of

the transformer core and windings [27]. These chemical byproducts can also produce low

molecular weight acids and water in the oil that may accelerate deterioration of the paper.

Moisture in the oil also reduces the oil’s dielectric strength and enables the inception of

partial discharges or internal arcing on paper surfaces inside the power transformer. These

discharges can cause additional heating of paper materials and therefore accelerate the

thermal deterioration of the paper [30]. In extreme cases, partial discharges themselves

may lead directly to failures of the insulation system.

While the production of water and sludge in the insulating oil are undesirable, failures

due to deteriorated oil in power transformers is uncommon. Utilities regularly maintain

insulating oil by replacing or reprocessing the oil to remove sludge and moisture. Preventa-

tive measures may also be taken by adding inhibitor agents to the oil. These agents reduce

acidification and the accumulation of sludge by reacting with the byproducts of oxidation,

to make these byproducts readily soluble in oil [1].

- 13 -



2.2 Deterioration Mechanisms and Failure Modes of the Transformer Insulation System

2.2.2 Thermal Deterioration of Kraft Paper

The operational life of power transformers are mainly dependent on the condition of the

paper insulation. The most common deterioration mechanism of the paper insulation com-

ponent in power transformers is caused from thermal stress [26]. Over time, heat produced

by the transformer core and windings during normal operation, thermally ages cellulose

materials, resulting in a loss of their mechanical tensile strength. As this deterioration

becomes significant, the cellulose materials become brittle [2, 6].

Many transformer failures occur when the deteriorated paper insulation is subjected to

a system disturbance, such as a through-fault or load rejection [2]. Such electrical system

events cause abrupt electromechanical forces on the windings which can disturb the brittle

winding insulation between turns. In Fig. 2.1, the winding insulation paper is shown with

kraft tape insulation on radially wound turns. These turns are wrapped tightly against one

another. When the insulation becomes brittle from thermal deterioration, the likelihood

of the paper tearing is increased when the tensile strength has been compromised due to

thermal aging. Tearing leads to turn fault, which is a metal-to-metal contact between adja-

cent turns [2,6]. The turn fault produces high circulating currents and a rapidly increasing

temperature which in-turn leads to a thermal fault and insulation failure.

As mentioned in Section 2.1.1, the chemical mechanisms which lead to the paper becom-

ing brittle relate directly to intermolecular bonds between cellulose molecules that constitute

the paper, as well as the average length of the polymer cellulose molecules themselves [27].

Under thermal stress, the average length of cellulose molecules in the paper are reduced

when thermal energy works to break bonds in the cellulose. When chemical bonds in the

paper cellulose are broken, byproducts of these reactions produce water, carbon monoxide,

acids, glucose, and organic compounds known as furans. These byproducts may reside in

the paper or be suspended in the oil after formation.

Water and acid byproducts from thermal deterioration have an influence of accelerating
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the paper degradation further as the water released can lead to hydrolysis of the paper where

the paper reacts chemically with suspended water in the oil, causing a secondary mechanism

for breakdown of cellulose [6]. Low molecular weight acids created from pyrolysis of the

paper can also react with cellulose to degrade the paper [28]. Similar to the occurrence of

oxidative degradation in mineral oil (Section 2.2.1), suspended oxygen in the oil can react

directly with outer hydrogen atoms. When such a reaction occurs, it too causes breaks in

the cellulose molecule.

2.3 Methods for Power Transformer Insulation Condition

Assessment

2.3.1 Electrical Diagnostic Tests for Power Transformers

There exist a number of electrical diagnostic tests that are performed on power transformers

during maintenance outages. The most standard of these electrical tests are the insulation

resistance and dielectric loss factor measurements [31]. The insulation resistance measure-

ment involves applying a low magnitude direct voltage and measuring the change in leakage

current over time. If the insulation resistance remains low during test, this can be indicative

of an insulation problem. Similarly the measurement of dielectric losses can be indicative

of an insulation problem if the power factor losses of the insulation are high. In either case,

problems may be attributed to contaminants or moisture in the oil or paper [32] making

these methods generally ineffective at isolating problems with solely the insulating paper.

A modern diagnostic method called dielectric frequency response (DFR) analysis ob-

tains dielectric loss measurements over a range of test supply frequencies [33]. The method

is most accurate at estimating the amount of moisture present in paper insulation. Because

degradation of the transformer paper insulation generates moisture in the paper, DFR can

be indicative of paper deterioration level [34]. However, this method is still a bulk measure-
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ment and not suitable for detecting acute defects in the paper insulation system.

2.3.2 Dissolved Gas Analysis

The most common method of insulation assessment performed on power transformers in-

volves analyzing samples of oil removed from the transformer. One of the analysis methods

is called dissolved gas analysis (DGA) [7,31]. In performing DGA, an oil sample is retrieved

from valves accessible externally to the transformer tank, usually at ground level. These

samples may be retrieved while the transformer is in operation. Determination of content of

gases dissolved in the oil is achieved by technique called gas chromatography. Measurement

of the relative concentrations of gases present in the oil are indicative of certain insulation

problems related to high temperatures, partial discharges, and/or internal arcing. The spe-

cific methodology for analyzing the transformer oil for detection of insulation problems is

called dissolved gas analysis (DGA) [3,7, 35].

Degradation of the insulation paper from DGA is sometimes detected by comparing

the relative concentrations of carbon monoxide to carbon dioxide present in the oil. When

the relative concentration of carbon monoxide is equal to or exceeds carbon dioxide, this is

usually indicative of thermal stressing to the paper insulation [6, 36].

The shortcomings of using oil samples to detect insulation problems in the paper are due

to the limitations associated with the methods being indirect. The analysis performed on

a sample taken from the large volume of transformer oil may make the method insensitive

to the detection of acute defects in the paper insulation system. Accumulation of gases

in the oil could be contributed from small defects distributed to multiple regions of the

paper insulation system, or they may be caused from a singular defect which is quickly

deteriorating toward failure. This lack of sensitivity is the main drawback for making

assessments about the paper condition from DGA.
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2.3.3 Detection of Chemical Compounds in Insulating Oil

There are a number of chemical markers that may be present in oil that are indicative of

paper degradation [37–39]. The most commonly cited chemicals found in oil samples that are

considered indicators of paper deterioration are called Furan compounds [40], and are carbon

ringed molecules which are a byproduct of breakdown of the cellulose chain molecules from

thermal deterioration. Furan compounds become dissolved in the oil and can be measured

using high-performance liquid chromatography (HPLC) [38]. Other work [41] has shown

that the presence of low molecular weigh acids in the oil are a more serious indicator that

the transformer may be much closer to failure.

However, the shortcomings of finding chemical compounds suspended in the oil to detect

paper degradation are identical to the shortcomings associated with DGA. Measurement

of furanic compounds as a diagnostic tool for insulation paper are ineffective at discerning

between distributed and acute defects in the transformer winding insulation.

2.3.4 Measurement of Degree of Polymerization

The most established and accurate method for direct assessment of thermal deterioration

in the paper insulation component is the DP test [8, 9]. The DP test has been shown to

correlate well with mechanical tensile strength of cellulose paper. The test is performed on

a sample of paper taken from the transformer which is then dissolved in a special solution

to form slurry. The viscosity of the slurry has been shown to be directly proportional to

the average length of the cellulose molecules in the original sample of paper. As paper is

thermally aged it forms breaks in the cellulose molecules to form shorter chains. This reduces

the mechanical strength of the paper and reduces the DP. In general, for new transformer

paper insulation DP is expected between 1000-1200 units. If the paper becomes critically

aged and its tensile strength reduced so that it is a high risk for failure, DP is expected to

be less than 200 units, at which point the tensile strength has reduced to less than 30% of
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its original strength. [2, 6].

The relationship between paper tensile strength and degree of polymerization is well

documented in numerous industry standards and guides [2, 6, 8, 9]. In Fig. 2.3, the graphs

display this relationship. The upper graph shows experimental results obtained by Emsley

et al. [42], and Lundgaard et al. [43] where tensile strength and DP were measured from

thermally deteriorated kraft paper samples. The data from both measurement sets appears

to show a logarithmic relationship between tensile strength and DP. The data set have been

fitted by a natural log curve using least-squares curve fitting. Equations for these curves

are displayed on the graph. The lower graph in Fig. 2.3 shows the relationship between

tensile strength and the inverse of DP multiplied by a factor of 1000 (1000/DP ). This

relationship produces a straight line and is referenced in [42]. These relationships between

tensile strength and DP will prove useful in the analysis of texture features later in Section

4.3.2.

Although the DP test is a direct measurement making it more suitable for detection of

acute defects, its main drawback is that it requires a sample of paper removed from the power

transformer. As mentioned in Section 1.1, the downside to methods requiring a physical

sample are that they are inconvenient and may not be performed while the transformer is

in operation. They are also potentially invasive to the insulation system. The standard DP

test requires a physical sample of 3g removed from the transformer winding [8,9]. Removal

of this much paper from a single region of the transformer winding could be potentially

damaging to the transformer making the DP test impractical.

2.4 Alternative Methods for Paper Condition Assessment

Given the limitations of established methods available for power transformer paper condition

assessment discussed in Sections 2.3.2 to 2.3.4, research exploring alternative methods have

been explored [32]. For an alternative method to be desirable, it must provide benefits over
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Fig. 2.3. Relationship between Tensile Strength and Degree of Polymerization from
empirical data given in [42] and [43].
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the established methods. Alternatives should be capable of direct assessment making them

suitable to detect acute defects (unlike DGA and Furan analysis), while being less invasive

than the DP measurement. Because the DP methods require relatively large sample size

(3 g)for analysis it is often considered too invasive. To be less invasive, alternative methods

must reduce the required sample size or potentially eliminate the need for removal of a

sample by allowing measurements be performed in-situ.

As already discussed in the previous section, the tensile strength of paper, is influenced

by characteristics of individual fibers, their density, and their orientation inside the paper

structure [23]. As paper thermally deteriorates it causes distortion to the paper fibers and

their arrangement. This effect has been demonstrated using various microscopic imaging

methods. In [5, 10, 44, 45] the authors used scanning electron microscopy (SEM) to show

that thermal deterioration caused fissures and cracks on the fiber walls along with thinning

of individual paper fibers and a loosening in the interwoven paper network.

Alternative to imaging methods which observe the surface morphological changes ther-

mal aging, other research work has implemented methods which detect chemical changes

in kraft paper. In [11, 46], Atomic Force Microscopy (AFM) was used to analyze ther-

mally deteriorated kraft pressboard samples with results suggesting the reduction of certain

molecular bonds was indicative of a deterioration.

Methods implementing infrared spectroscopy have been used with limited success in

[47–50] to show that changes in molecular bond vibrations excited from spectroscopy were

correlated with DP to allow for direct estimation of deterioration level. It is also noteworthy

that the infrared spectroscopy methods in [50] demonstrated the possibility for in-situ mea-

surements where a scanning probe was developed that could perform assessment of kraft

paper without requiring removal of a sample. The infrared spectroscopy method promised

the potential for significant advantage over the SEM and AFM methods in [5, 44]. In-situ

measurement could be possible and direct assessment of the paper condition could be made
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from data correlated to DP measurements. The SEM and AFM research work has been

limited to qualitative observations of the changes without enabling direct estimation of

deterioration level. Some limitations in accuracy were however observed for the infrared

method in [50] when it was discovered that results could be affected by irregular reflectance

due to variations of curvature on insulation surfaces and the enhanced scattering of paper

in the optical to the near-infrared range.

In work conducted by the same research group involved in this thesis, optical speckle

diffraction patterns were measured from the surface of kraft paper samples having varying

levels of thermal aging [51]. This work demonstrated an ability to differentiate between

different levels of thermal deterioration based on statistical texture analysis of the optical

speckle diffraction pattern images.

In this research, optical microscopy is used for paper measurements on thermally dete-

riorated kraft paper samples. Compared with SEM and AFM, optical microscopy is a much

more simplistic imaging approach. The paper and pulp industry have a lengthy history for

using optical microscopy as a tool for quality assurance where paper samples are retrieved

at different stages of production for microscopic analysis [52]. Microscopy measurements

can be used to analyze individual paper fibers and their network structure.

One of the challenges concerning optical microscopy measurements on paper materials

is that at high magnification, the varying surface profile of the paper network structure

makes imaging difficult and can result in images with out-of-focus regions due to shallow

depth-of-field of the optical measuring equipment [23]. Imaging of paper materials at lower

magnification is more appropriate [23].

In Section 3.3 we will observe that at lower magnifications differences in bulk texture

as a consequence of thermal aging are still observable using standard microscopy, and in

Chapters 4 and 5 we will determine that these differences are measurable using texture

analysis methods.
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2.5 Texture Analysis of Images

2.5.1 Methods for Image Texture Analysis

Texture refers to the concept of perceiving physical attributes of a material surface. Surfaces

may be perceived as rough, smooth, heterogeneous, or homogeneous. In computer vision and

image processing, texture analysis refers to a class of mathematical procedures and models

that are used to quantitatively characterize the spatial variations in images [13, 53–55].

These quantitative measures may or may not be associated with actual perception of texture.

Methods for texture analysis, typically fall into one four categories: statistical, structural,

model-based, and transform based methods [53].

Statistical methods are the most well-known and involve translation of an image into

matrix or histogram representations of an image that contains information about the sta-

tistical frequency and/or variation of pixel intensities [12]. The most widely used method

first presented by Haralick et al in [12] will be applied to thermally deteriorated kraft paper

samples in Chapter 4.

Structure-based methods associate texture features with well defined structural ele-

ments or simple geometric shapes or contours. The analysis is defined in terms of placement

of the structure at different locations of the image [53]. An example of a structure-based

method may be to correlate a texture image with parallel spaced lines. If for example the

image texture being analyzed had a checker board type pattern then depending on orien-

tation we might expect the correlation to yield a large number. Conversely if the image

texture appeared as small randomly distributed dots, then we would expect the correlation

with parallel spaced lines to produce a small number. Structure-based methods are best

applied to textures having very regular and predictable patterns. Structure-based methods

were not applied to the microscopic images of thermally deteriorated paper. It will be shown

in Chapter 3 that the paper surface texture is very random in nature, therefore making it
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a poor candidate for texture analysis using structure-based methods.

In model-based texture analysis methods, an empirical model is developed for each pixel

in an image by analyzing content in the surrounding pixels. These models are then used as

feature descriptors [53]. In these methods the parameters of the model are estimated from

a set of training images. Then the estimated parameters are used to quantitatively describe

the entire image set being analyzed. These methods are useful in image segmentation where

small areas of an image have distinctly different texture qualities than those modeled from

regions covering the majority of an image. In thermal aging experiments performed in this

thesis, we expect that the images of thermally deteriorated paper samples will have defects

uniformly distributed in image frame, therefore model-based methods and segmentation

have not been applied in this thesis.

Transform based texture analysis convert images into a new form while extracting

textural information from the transformed images. Wavelet texture analysis is the most

popular form of transform based texture analysis [56]. In Chapter 5 a method of Wavelet

texture analysis will be applied to thermally aged kraft paper.

In instances texture analysis is used for discerning between material having different

surface textures, features extracted from the texture analysis method are commonly pro-

cessed using machine learning algorithms to enable automated classification of a material

category, quality, or condition [57].

2.5.2 Industrial Applications for Image Texture Analysis

Statistical texture analysis on microscopic images of materials are used in a number of

different industry applications ranging from analysis of wood materials, to quality assurance

in the manufacturing of textiles [57,58]. For applications in the electrical apparatus industry,

texture analysis has been used to qualify thin polyamide films for their suitability to install

in electrical components [59].
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A few publications have demonstrated the successful application of texture analysis

on microscopic images of paper materials specifically [60, 61]. Similar to other industrial

applications the motivation for work in this area is for improving quality assurance in the

paper making industry. Given that the application of statistical texture analysis has been

successfully applied for analysis of paper materials in other research work, this suggests

that the proposed methodology to analyze changes in kraft paper surface morphology using

texture analysis methods in Chapters 4 and 5 is reasonable.

2.6 Chapter Summary

The power transformer electrical insulation system is commonly composed of mineral oil

and oil-impregnated kraft paper materials. Insulation failure can occur due to deterioration

of the paper component when the paper is subjected to thermal stress. The common cause

of insulation failure is due to the loss of mechanical tensile strength in the paper, which

is attributed to a chemical changes occurring in the paper as a consequence of thermal

deterioration. Kraft paper which is composed of 95% cellulose, loses tensile strength when

the average length of cellulose molecules are reduced. Chemical reactions in the paper are

activated by heat causing breakdown in the cellulose molecules. Coincident with changes

in the mechanical properties of kraft paper, changes also occur to the microscopic surface

morphology of paper as a consequence of thermal deterioration. These changes are percep-

tible using microscopic imaging methods such as SEM. With breakdown, paper fibers are

distorted as cracks and fissures form on paper fibers.

Current methods for assessment of the paper insulation in power transformers have

a number of limitations. Electrical diagnostic test methods such as insulation resistance,

dielectric loss measurement, or dielectric frequency response analysis, are ineffective at

isolating deterioration occurring in the paper component versus the oil insulation. Methods

which involve analysis of an oil sample taken from the transformer are ineffective at detecting
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deterioration of acute or regional insulation defects. Lastly, methods such as the DP or

tensile strength tests require too large a paper sample retrieved from the transformer making

the test too invasive and therefore impractical.

A brief overview of texture analysis in images and its methodologies have been pre-

sented. Given the nature of changes to the surface morphology of paper that occur from

thermal deterioration, kraft paper appears to be a good candidate for texture analysis meth-

ods with intent to develop an alternative assessment method for the kraft paper materials

in power transformer insulation.
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Chapter 3

Experimental Method for

Preparation of Thermally Aged

Paper Samples and Microscopy

Measurements

This chapter will cover experimental test arrangements used for preparing thermally dete-

riorated kraft paper from winding insulation samples for microscopic texture analysis. The

experiments are designed to emulate deterioration mechanisms caused by in-service stresses

present in the power transformer but in an accelerated manner. The results from DP mea-

surements obtained on control samples are also presented for correlation to the statistical

texture analysis results that will be discussed in Chapters 4 and 5.
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3.1 Description of Specimen Materials

Fig. 3.1. Turn insulation paper installed on a sample of winding conductor.

3.1 Description of Specimen Materials

The kraft paper used in thermal aging experiments of this research is a flat untreated

cellulose based paper manufactured by Weidmann Electrical Technology Inc. The winding

insulation paper samples were new/unused and not previously impregnated by insulating oil.

The paper dimensions are 1.9 cm wide and approximately 76 µm (3mil) thick as supplied.

An example of turn insulation paper installed on a section of transformer conductor is shown

in Fig. 3.1.

For thermal deterioration experiments, papers samples are impregnated by Luminol

type TR mineral oil. Luminol TR is a transparent mineral oil, that is slight yellowish color.

The oil was tested prior immersion of the cellulose papers to verify that the moisture content

in the oil was less than 30 ppm water content by mass. As mentioned in section 2.2.2 high

moisture content will accelerate the deterioration of the paper making it difficult to control

the desired rate of deterioration in the experiment.
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3.2 Preparation of Thermally Deteriorated Winding Insula-

tion

The method for preparing thermally deteriorated winding insulation samples emulates an

accelerated aging test method described in an industry guide used for thermal evaluation

of combined liquid and solid electrical insulation components [62]. The use of accelerated

aging under thermal stress is a common technique used in the evaluation of insulation

material performance and compatibility between materials [63]. Although there is no specific

standardized test method to explore the degradation of kraft paper materials used in power

transformers, a number of different accelerated aging test arrangements have been reported

[64]. Similar accelerated aging tests on oil-impregnated Kraft papers have been performed

in other work focused on measuring the retained tensile strength after thermal stress at

temperatures elevated above normal operating thermals of a power transformer [10,65].

Samples of the kraft paper tape were cut individually to 3-4 cm in length. Two samples

are prepared for each aging class; making eight samples in total. The approximate weight of

each sample was 0.05 g. The samples were then inserted in cylindrical glass vials as shown

in Fig. 3.2 and placed uncovered in an oven at 105◦C for 24 hours to remove the preexisting

moisture present in the paper caused from the ambient humidity [66]. This drying phase

is required to obtain better control of the rate of paper deterioration in experiments; as

discussed in Section 2.2.2 moisture has significant influence on the rate of paper deterioration

due to hydrolysis chemical processes in the paper.

After drying, the samples were removed from the oven and immediately sealed, and

weighed. The sample’s weights after drying indicating that on average approximately 8%

moisture by mass has been removed from the paper samples during the drying phase.

Approximately 25mL of Luminol insulating oil was added to each vial to impregnate the

paper samples as shown in Fig. 3.3.
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Fig. 3.2. Preparation of sample vials containing Kraft winding insulation for removal of
pre-existing moisture. Samples dried for 24-hours at 100◦C.

Fig. 3.3. (a) Sample vial containing winding paper insulation and 25ml of insulating oil,
(b) Preparation of sample set for accelerated aging in an oven at 140◦C

.
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One set of vials containing oil-impregnated paper samples were sealed and stored in

an air-tight box. These vials are intended to serve as new-condition transformer winding

insulation after drying and impregnation. The remaining vials containing oil-impregnated

paper samples were then returned to the oven at a temperature of 140◦C for accelerated ag-

ing. Individual samples were removed from the oven after 120, 250, and 400 hour durations

of accelerated aging. In each instance, the samples were sealed upon removal, and stored

until microscopy measurements were made.

The accelerated aging temperature of 140◦C was selected because it is sufficiently well

above operating temperatures that the insulation would be exposed to during service. The

same temperature was selected for aging experiments performed in [42, 44]. Industry stan-

dards [67] require that the maximum hot-spot temperature of a power transformer to be less

than 80◦C above the ambient temperature. Therefore assuming an ambient temperature of

35◦C, the transformer winding paper insulation may be expected to reach as high as 115◦C

during normal operation. The accelerated aging temperature of 140◦C used in these exper-

iments is approximately 20% hotter than would occur in service. The aging durations of 0,

120, 250, and 400-hours aging duration were chosen based on the results obtained in [42] so

as to achieve a suitable spectrum of aging conditions from new condition to end-of-life that

could be analyzed using microscopy and texture analysis.

At the end of accelerated aging tests, the insulating oil color in the sample vials has

become darkened from the thermal stress duration as shown in Fig. 3.4. The mineral oil

color prior to thermal aging was a translucent, light yellow color as shown in Fig. 3.3.

After 120-hours at 140◦C the color is darkened to a translucent brown color, and after 250

and 400-hours the color became a dark opaque brown. This darkening is caused from the

oxidation of the mineral oil as was described in Section 2.2.1. In section 3.3, we will see

that this darkening has some influence on the microscopy images of paper samples.
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Fig. 3.4. Sample vials containing paper samples and mineral oil after accelerated aging
tests. From left to right in groups of 5, the vials contain samples aged 120-hours (first
group), 250-hours (second group), and 400-hours (third group).

3.3 Microscopy of Thermally Deteriorated Paper Samples

After accelerated aging, paper samples were removed from the vials and cut into smaller

sections approximately 1cm × 1cm. The sections were placed on microscope slides with a

few drops of insulating oil taken from their respective vials and covered with glass cover

slips to minimize exposure to air humidity. An inverted Olympus IX73 optical microscope

was used to capture images of the samples at 10× magnification in 256-bit grey scale. Care

was taken to ensure that all images were captured with the same aperture and exposure

settings. Between 50 and 65 sample images were captured for each of the four aging groups;

new condition, 120, 250, and 400-hours of accelerated thermal aging at 140◦C.

For statistical texture analysis, it was decided that 10× magnification images was suit-

able because it provided a large enough area of the paper within the image field of view to

provide a representative sample of the overall surface texture needed in texture analysis. At

higher magnifications the texture images were not usable. Due to the shallow depth of field

at higher microscope magnifications, some regions of the sample images were out-of-focus.

Having out-of-focus regions in the images would produce errors in the texture analysis.
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In Fig. 3.5, the influence of oxidized oil in the sample vials is obvious. The thermally

deteriorated paper samples are stained by the oxidized oil causing the samples with more

thermal deterioration to appear darker. This darkening is easily visible in microscopy mea-

surements also. In Fig. 3.6, microscopy measurements from samples having new condition

after impregnation, and 120, 250, and 400-hours of accelerated aging at 140◦C are shown.

The sample aged 400 hours is evidently darker in color than the new-condition sample.

This darkening caused from staining by oxidized oil is not representative of what would

occur in an actual power transformer where the large volume of the oil and its circulation

during normal operation prevents the oil from reaching this level of oxidation. In Chapter

4, Section 4.1 image preprocessing methods that reduce the influence of sample darkening

will be presented.

Changes to the paper surface morphology, as a consequence of thermal aging, are already

evident in the microscopy images in Fig. 3.6. In the new-condition sample we can see

pristine individual fibers in an interwoven network. As thermal deterioration progresses,

after 120-hours we can see that the fiber walls that were once pristine, start to develop holes

and fissures. After 250-hours we can see that although individual fibers are visible, there

is a thinning of the fiber widths, and a higher density of cracks and fissures in the fiber

walls. Finally, after 400-hours of thermal aging the breakdown of the fibers has progressed

to the level that few individual fibers are visually perceptible. The high density of cracks

and fissures makes for a more homogeneous appearing texture.

3.4 Degree of Polymerization Measurement

For correlation with results from statistical texture analysis of thermally aged paper samples,

DP measurements were made on a set of control samples. These control samples were

prepared in the same manner as described in section 3.2 only they have been prepared with

3 g of paper immersed in mineral oil. This is the amount of paper recommended for DP
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3.4 Degree of Polymerization Measurement

Fig. 3.5. Slides prepared for microscopy of thermally aged insulation paper. Notice
darkening of paper from staining by oxidized oil. The sample on the left is aged 250-hours
in insulating oil, the middle is aged 250-hours without oil, and the right is aged 400-hours
in oil.

measurements in industry standards [9]. Two samples for DP measurement are prepared

for each aging level. A short description of the viscometric degree of polymerization test

method is provided in Appendix C.

The results from DP measurements are summarized in Table 3.1. Values for DP are an

average of two independent measurements obtained on the two separately prepared reference

samples. The DP values shows that a good spectrum of paper condition has been obtained

for analysis. The new-condition sample is 717 DP units with nearly full remaining life

estimated. The small reduction in DP for the new-condition paper was likely caused from

the drying phase performed at 100◦C which was effective at reducing the moisture content

to 3.15%. With this level of moisture after drying, we can assume that degradation due to

moisture was well-controlled in these experiments. The sample aged 120-hours resulted in a

DP of 316, which corresponds to an estimated remaining life of 34%, which is a significantly

aged sample. The sample aged 250-hours produces a sample with a DP of 193, which just

surpasses the conventional end of life criteria of 200. Finally, the sample aged 400-hours

corresponds to a DP of 115, which is well-beyond the end of life criteria.
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Fig. 3.6. Microscopy images of winding insulation Kraft paper deteriorated for 0, 120,
250, and 400 hours at 140◦C; corresponding DP values of 717, 316, 193, and 115 DP
units.
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Table 3.1. Degree of Polymerization measurements on samples aged 0, 120, 250, and
400 hours at 140◦C.

Thermal Aging Duration at 140⁰C Degree of Polymerization Estimated Remaining Life Moisture Content

0-hours 717 88% 3.15%

120-hours 316 34% -

250-hours 193 0% -

400-hours 115 0% -

3.5 Chapter Summary

In this chapter, an experimental method for the preparation of thermally aged kraft paper

samples is described. The experimental method appears to have been effective at obtaining a

set of paper samples with a good distribution of aging levels from nearly full remaining life, to

well past end-of-life criteria in terms of the sample DP measured values. Microscopy images

of the paper samples show clear textural changes as a consequence of thermal deterioration.

New condition paper contains fibers that have pristine fiber walls. With progressive thermal

aging, cracks and fissures develop in the fiber walls until the surface morphology of the paper

becomes more homogeneous in appearance due to the density deterioration. A byproduct of

the thermal aging experimental method, is the darkening of the paper samples caused from

oxidation of the insulating oil. The oxidized mineral oil stains the paper samples creating

an artificial level of darkening that is not representative of what would occur in an actual

power transformer.
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Chapter 4

Statistical Texture Analysis of

Thermally Deteriorated Paper

Samples by Spatial Grey Level

Dependence Method

In this chapter, the microscopic images of thermally deteriorated paper samples are analyzed

using a statistical-based texture analysis method called the spatial grey level dependence

method (SGLDM). This method is also commonly referred to as the grey-level co-occurrence

method (GLCM). The results and analysis of the computed statistical texture features

is presented along with automated classification of deterioration level of using standard

machine learning techniques.
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4.1 Preprocessing of Thermally Deteriorated Paper Sample

Microscopic Images

Image processing is the manipulation of a digital image to produce an output image with

modified or enhanced properties as compared to the original in order to achieve a specific

objective [68]. Prior to performing statistical texture analysis on the images of deteriorated

paper samples, image preprocessing is required in order to convert the microscopic images

from color to an 8-bit grey-scale image format, and to normalize differences in tone or

brightness between paper sample images. Some tonal or brightness differences are due

to inconsistent illumination, but more significantly, in the case of thermally deteriorated

paper samples, differences are due to staining of the paper samples caused by oxidation

of the insulating oil. In Chapter 3, it was shown that after 250-hours or 400-hours of

thermal stress the samples become significantly darkened by staining from the oxidized

mineral oil. Similar observations of discoloration due to thermal stress experiments has been

observed in [10,21,45]. These variations are problematic for statistical texture analysis which

requires comparison of sample images with varying levels of deterioration. Brightness or

color changes may mistakenly be interpreted as textural changes. Because this darkening is

not representative of what could realistically occur in a power transformer while in-service,

preprocessing is used to normalize out differences in tone and darkness so that only the

textural differences will be analyzed.

4.1.1 Image Preprocessing Grey-Scale Conversion

In grey-scale images, all color information is removed and only the intensity information

about individual pixels is retained. In an 8-bit grey-scale image there are 256 discrete shades

of grey ranging between 0-255, where 0 represents the darkest pixel grey-value (black) and

255 the brightest pixel grey-value (white).

- 37 -



4.1 Preprocessing of Thermally Deteriorated Paper Sample Microscopic Images

The pixels in the original color image are defined by an RGB color model. To convert

a color to an equivalent grey-scale intensity the red, green, and blue value coefficients are

scaled by:

Irgb2gray = (0.2989×R) + (0.5870×G) + (0.1140×B), (4.1)

where R, G, and B are the respective red, green, and blue color values and Irgb2gray is the

equivalent greyscale intensity level rounded to the nearest integer value. The formula in

(4.1) is adopted from the commercial software package in [69].

4.1.2 Image Preprocessing Normalization

As discussed in Section 3.2 the darkening of thermally deteriorated paper samples was

caused by insulating oil which had oxidized in the sample vials during the accelerated ag-

ing. The accelerated aging temperature of 140◦C used in this experiment produced more

rapid oxidation of the oil than would occur during normal transformer operating tempera-

tures. As a consequence, field-aged paper samples would not be as dark as those subjected

to accelerated ageing in this experiment. The darkening of the paper samples shows up

prevalently in microscopy measurements as discussed in Section 3.3. The relative change

in sample darkening is evident by the general shift of grey scale pixel intensities towards

lower values and the average pixel intensity levels became 4.7%, 35.5%, and 47.4% darker

after 120, 250, and 400 hours of thermal degradation at 140◦C. Because the texture analysis

methods extract information from the spatial arrangement of pixel intensity values in an

image, the sample darkening can have an influence on the computation of texture features.

To address the problems of tonal variations and artificial darkening due to staining by

oxidized oil, normalization methods are employed in preprocessing. Two different methods

of image normalization enhancements are utilized in this research; minimum-maximum nor-

malization, and histogram equalization. Min-max normalization increases image contrast
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4.1 Preprocessing of Thermally Deteriorated Paper Sample Microscopic Images

by linearly extending the range of intensities over the full range between 0-255 [68]. Each

pixel is scaled using:

IN = (I − IMin) · (INmax − INmin)

(IMax − IMin)
+ INmin (4.2)

where I represents any pixel within the original image, and IMin and IMax are the respective

minimum and maximum pixel intensities within the original image. The values INmin and

INmax are the minimum and maximum pixel intensities for the full range; 0-255. Each pixel

in the original image is transformed by this equation and the final normalized pixel values

in the normalized image are represented by IN .

Although minimum-maximum normalization enhances contrast and reduces a portion

of variation in brightness between sample images, differences in color between sample images

will still be present after normalization. Histogram equalization permits normalization of

sample images by evenly distributing the pixel intensity level content over the full range.

The algorithm for histogram equalization is adopted from [68] and given in (4.3) and

(4.4). Equation (4.3) computes the relative probability pr that a grey-level rk occurs in an

input image that has (L − 1) different grey-level intensities. The parameter n represents

the total number of pixels in the image, and nk the number of instances that pixel intensity

k occurs in the image.

pr(rk) =
nk
n

where k = 0, 1, 2,...., (L-1) (4.3)

The transformed output image is represented by sk, given in (4.4). The transformation,

T (rk), effectively transforms each pixel grey-level such that it is scaled relative to its fre-

quency of occurrence in the original image rk and its corresponding cumulative distribution

function value. In other words each pixel intensity value is re-mapped to its cumulative

density value rescaled in the pixel intensity range between 0-255.
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4.2 Spatial Grey Level Dependence Method (SGLDM) Transform

sk = T (rk) = floor((L− 1)

k∑
j=0

pr(rj)) where k = 0, 1, 2,..., L-1 (4.4)

The effect of these normalization methods on the images of a thermally deteriorated

kraft paper samples is shown in Fig. 4.1. The far left column of Fig. 4.1 shows images

of samples aged 0, 120, 250, and 400 hours at 140◦C. These are images after grey-scale

conversion but prior to normalization. Images in the center and right column of Fig. 4.1

show sample images have been preprocessed by minimum-maximum and histogram equal-

ization normalization respectively. For the minimum-maximum normalized images we can

see that there is a slight improvement in contrast for the very dark thermally aged sample

at 400-hours of thermal stress. However, the general trend towards darkening of the sample

images as a function of aging is still present, and there is only a modest improvement from

the original unprocessed images.

For the images normalized by the histogram equalization method, the influence of the

darkening color shift has been compensated for by normalizing the average grey level to the

median in the range between 0-255 and uniformly distributing the grey-scale level intensities

over the range. In doing so contrast has been enhanced and textural details are more visible.

4.2 Spatial Grey Level Dependence Method (SGLDM) Trans-

form

The spatial grey level dependence method (SGLDM) converts grey-scale images into a his-

togram matrix containing information about frequency of occurrence of each pixel grey-level

intensity value between 0-255, along with information about their arrangement spatially

within an image [12]. The SGLDM histogram matrix is a square matrix with the number

of rows and columns equivalent to the number of grey levels in the original sample image.

The matrix is populated by recording the number of instances in an image that a pixel
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4.2 Spatial Grey Level Dependence Method (SGLDM) Transform

Fig. 4.1. Original images of thermally deteriorated transformer winding paper compared
to minimum-maximum and histogram equalization normalized images at 0, 120, 250, and
400 hours of thermal stress at 140◦C.
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4.2 Spatial Grey Level Dependence Method (SGLDM) Transform

Fig. 4.2. Example computation for SGLDM matrix on an imaginary 4× 4 sample image.
The parameter R in (c) represents the sum of all elements in the matrix.

having a certain grey level intensity appears next to another pixel having a certain grey

level intensity. An example for the computation of an SGLDM having three grey levels is

provided in Fig. 4.2. In this example, an original image is represented by the matrix shown

in Fig. 4.2a which has colored cells with varying grey-level intensity values of 0, 1, and 2.

The grey-tone map in Fig. 4.2b illustrates how the SGLDM is populated. If the SGLDM is

used to display the number of times a specific grey-level is neighbored by another specific

grey-level at directions of 0◦ and 180◦ then the result is as shown in Fig. 4.2c. For example,

the number of times the grey-level 2 is neighbored by the grey-level 1 is equal to seven. This

corresponds to the grey-tone row 2 and column 1 shown in Fig. 4.2c. Finally, the SGLDM

is normalized by the sum of all grey level intensities present in the original image.

In this work, the insulation paper sample images were captured with 256 grey scale

levels, therefore the size of the SGLDM matrices are 256×256. Statistical textural features
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4.2 Spatial Grey Level Dependence Method (SGLDM) Transform

of the original sample images were computed by performing mathematical operations on

the SGLDM. Eleven textural features in two directions within the plane of an image are

extracted. One direction for horizontal neighboring pixels (0◦ and 180◦) and the other for

vertical neighboring pixels (90◦ and 270◦). Each microscopic image of deteriorated paper

is converted in to a feature vector containing 22 texture features in total. Formulas for

the texture features is provided in Section 4.2.1 along with a qualitative description of the

feature meaning.

4.2.1 Haralick Statistical Texture Features

The formulas for statistical texture features are shown in (4.5)-(4.17) below and have been

adopted from [12]. The cell entries of the SGLDM matrix are represented by p(d,θ)(i, j) where

d and θ represent the distance and angle relative to a reference pixel used in constructing

the SGLDM. The ith row and jth column of the SGLDM matrix are identified by (i, j).

As was mentioned in Section 4.2, the SGLDM matrix has been defined using a distance

d = 1 pixels from the reference pixel and at angles 0◦ and 180◦ for one complete feature set.

Another set has been defined using the vertical neighboring pixels at 90◦ and 270◦ from the

reference pixel. In total twenty-two features are computed for each image.

Angular Second Moment: In (4.5), the feature angular second moment (ASM) may

be described as a measure of uniformity in the pixel grey-scale intensities contained in

the original image. For an image having a large number of pixels with similar grey-scale

intensities, it will result in a large ASM feature quantity.

Angular Second Moment: F1 =
N∑
i=1

N∑
j=1

p2(d,θ)(i, j) (4.5)

Contrast: The feature described by (4.6) is a measure of contrast in the original image.

For an image containing a high number of bright pixels neighbored by dark intensity pixels,
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the contrast feature quantity will be high.

Contrast Feature: F2 =

N∑
n=1

n2
{ N∑
i=1

N∑
j=1

p(d,θ)(i, j)

}
, Where n = |i− j| (4.6)

Variance: A statistical measure of the overall variation of pixel intensities in the original

image. The paramter µ represents the global mean of the SGLDM histogram matrix. Images

containing a large variation of pixel intensities will have high variance feature quantity.

Variance (Sum of Squares): F3 =

N∑
i=1

N∑
j=1

(i− µ)2p(d,θ)(i, j) (4.7)

Inverse Difference Moment (IDM): Inverse difference moment (4.8) is a measure of

the local homogeneity in an image. Images containing pixels neighbored by other pixels with

same or similar intensity will results in large inverse difference moment feature quantity.

Inverse Difference Moment (IDM): F4 =

N∑
i=1

N∑
j=1

1

1 + (i− j)2
p(d,θ)(i, j) (4.8)

Sum Vector: A sum vector expressed in (4.9), is obtained from the SGLDM histogram

matrix. The sum vector is computed from the addition of the histogram matrix cell entries

where the cell indices satisfy the condition that k = i + j in the range from 2 to 2N . The

sum vector is used in the computation of features F5, F6, and F7 given by (4.10) to (4.12).

p(x+y)(k) =

N∑
i=1

N∑
j=1

p(d,θ)(i, j), where k = i+ j (4.9)

Sum Average: The sum average feature in (4.10) computes the average value of the sum

vector in (4.9).

Sum Average : F5 =

2N∑
i=2

i · p(x+y)(i) (4.10)
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Sum Variance: Expressed in (4.11), sum variance computes the variance of entries in the

sum vector in (4.9) about the sum average F5 from (4.10).

Sum Variance F6 =
2N∑
i=2

(i− F5)
2 · p(x+y)(i) (4.11)

Sum Entropy: Equation (4.12) computes the entropy of entries in the sum vector in 4.9.

Entropy is commonly described as a measure of disorderliness.

Sum Entropy: F7 = −
2N∑
i=2

p(x+y)(i)log(p(x+y)(i)) (4.12)

Entropy: Equation (4.13) calculates the entropy of the original image, which is a measure

of chaos or disorder in an image. The statistical texture feature for entropy is related to the

information theory definition of entropy which relates to the density of information in an

image [71]. Entropy is inversely related to inverse difference moment in 4.5 where a com-

pletely homogeneous image would have little information and thus low entropy. Conversely

an image having densely concentrated details would yield a large entropy quantity.

Entropy: F8 = −
N∑
i=1

N∑
j=1

p(d,θ)(i, j)log[p(d,θ)(i, j)] (4.13)

Difference Vector: Equation (4.14) calculates a difference vector from the entries of the

SGLDM matrix. The difference vector relates to the number of occurrences SGLDM entries

differ by a value k = |i − j| ranging from 0 to N . The difference vector is used in the

computation of features F9 and F10 given by equations (4.15) and (4.16).

p(x−y)(k) =

N∑
i=1

N∑
j=1

p(x−y)(i)log[p(x−y)(i)] where k = |i− j| (4.14)
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Difference Variance: Equation (4.15) calculates the variance of entries in the difference

vector in (4.14).

Difference Variance: F9 =
N∑
i=1

(i− F ′
9)

2 · p(x−y)(i)

And F
′
9 =

N∑
i=1

i · p(x−y)(i)

(4.15)

Difference Entropy: Equation (4.16) calculates the entropy of entries in the difference

vector in (4.14).

Difference Entropy: F10 = −
N∑
i=1

p(x−y)(i)log(p(x−y)(i)) (4.16)

Information Measures of Correlation: Equation (4.17) calculates the information mea-

sures of correlation feature which is a statistical metric developed from the sums of row i

and column j entries of the SGLDM.

Information Measures of Correlation: F11 = (1− exp[−2(HXY 2−HXY )]1/2)

Where, HXY 2 = −
N∑
i=1

N∑
j=1

px(i)py(j)log(px(i)py(i))

HXY = −
N∑
i=1

N∑
j=1

p(d,θ)(i, j)log(p(d,θ)(i, j))

px(i) =

N∑
j=1

p(d,θ)(i, j)

py(j) =
N∑
i=1

p(d,θ)(i, j)

(4.17)
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4.3 Analysis of SGLDM Features from Thermally Deterio-

rated Kraft Paper

For the set of thermally deteriorated winding insulation paper samples described in Chapter

3, forty images of each aging class (0, 120, 250, and 400-hours at 140◦C) have been converted

to forty feature vectors per aging class using the SGLDM method described in Section

4.2. Each feature vector contains 22 texture features obtained from (4.5)-(4.17) based on

SGLDM matrices developed in two orientations; vertical and horizontal. These features will

be analyzed in the subsections 4.3.1 and 4.3.2. Firstly, feature sensitivity will be evaluated

to determine how substantially the feature values change between aging classes. Secondly,

feature values will be analyzed by correlating the features with aging class information and

degree of polymerization measurements on the thermally aged paper samples.

4.3.1 Statistical Texture Feature Sensitivity Evaluation

To analyze sensitivity of the SGLDM texture features as metrics for discerning between

differing levels of deterioration, Fisher Discriminant Ratios (FDR) have been applied to

individual texture features to measure feature differences between aging classes. Fisher

Discriminant Ratios are a linear measure commonly used for discriminating between to

statistical variables or data sets [72]. The formula for calculating the Fisher Discriminant

Ratio is given in (4.18),

FDR =
(µ1 − µ2)2

σ21 + σ22
(4.18)

where µ1 and µ2 represent the mean of the two data sets respectively, and σ1 and σ2 are

the standard deviations of the data sets.

Prior to computing the feature FDR values using (4.18), the features were normalized

using (4.19). The feature value x is normalized to x̄ by subtracting the global mean µxglobal
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(average of all classes) and dividing by the feature global standard deviation.

x̄ =
x− µxglobal
σxglobal

(4.19)

Normalization is necessary because some features have magnitude ranges greater than

others and without normalization these features would have disproportionately larger FDR.

After normalization the computed the FDR values may be compared directly between fea-

tures.

To evaluate the sensitivity of individual SGLDM features, the FDR was computed for

each class comparison (0-to-120, 120-to-250, 250-to-400, 0-to-250, 0-to-400, and 250-to-400)

and averaged. By computing the average FDR per feature, it will show which SGLDM

texture features are the most sensitive to detecting surface morphological changes caused

from thermal deterioration.

The average FDR values for each SGLDM feature are ranked in order of highest to lowest

sensitivity in Tables 4.1 and 4.2, representing features computed using minimum-maximum

normalization and histogram equalization, respectively. The feature values for minimum

maximum normalization on average have higher FDR than histogram equalization. This is

due to histogram equalization causing a more dramatic change to the pixel intensity values

in the original sample images to the extent that some texture information may be lost. It

is also noteworthy that some features are significantly impacted by the image preprocessing

method. The feature sum-average ranked near the top in sensitivity when using minimum

maximum normalization but is near the bottom when using histogram equalization.

The entropy feature, expressed in (4.13), has the highest FDR among SGLDM fea-

tures for both image preprocessing methods. This suggests that entropy (4.13) is the most

sensitive SGLDM feature to changes in the paper surface morphology from thermal deteri-

oration. The inverse difference moment feature (4.8) also yields relatively high FDR values

in both preprocessing methods.
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Table 4.1. Average Fisher Discriminant Ratio from all class comparison on winding paper
insulation image set preprocessed using minimum maximum normalization.

Feature Name Feature Number
Averge FDR between all class 

comparisons

Entropy F8 & F19 30.14

Inverse Difference Moment F4 & F15 22.63

Sum Average F5 & F16 22.19

Difference Entropy F10 & F21 20.20

Contrast F2 & F13 18.25

Sum Variance F6 & F17 17.00

Angular Second Moment F1 & F12 14.84

Sum Entropy F7 & F18 14.34

Difference Variance F9 & F20 11.36

Variance F3 & F14 9.39

Information Measures of Correlation F11 & F22 1.58

Table 4.2. Average Fisher Discriminant Ratio from all class comparison on winding paper
insulation image set preprocessed using histogram equalization normalization.

Feature Name Feature Number
Averge FDR between all class 

comparisons

Entropy F8 & F19 19.61

Angular Second Moment F1 & F12 9.40

Sum Entropy F7 & F18 8.73

Inverse Difference Moment F4 & F15 7.63

Difference Entropy F10 & F21 2.55

Information Measures of Correlation F11 & F22 1.53

Difference Variance F9 & F20 1.52

Contrast F2 & F13 1.15

Variance F3 & F14 0.80

Sum Average F5 & F16 0.17

Sum Variance F6 & F17 0.03
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4.3.2 Correlation of SGLDM Features to Degree of Polymerization

The SGLDM features for entropy and IDM showed strong sensitivity to changes in thermal

deterioration level in Section 4.3.1. In this section, the correlation between these SGLDM

features and DP will be analyzed. The purpose of this analysis will be to observe how the

statistical texture feature values trend in relation to aging.

In Fig. 4.3, the top graph shows the relationship between the SGLDM feature for

entropy and DP. The four data points pertain to the aging levels at 0, 120, 250, and 400

hours of deterioration at 140◦C. Vertical bars in the graph indicate 95% confidence limits

for the variance in feature entropy. Horizontal error bars for DP measurement are not

available because the number of samples evaluated for DP are too few to evaluate statistical

confidence limits. However, the laboratory which performed the DP measurements estimate

less than 2% error in measurement. Figure 4.3 shows that as deterioration of the paper

sample increases (i.e. direction of reducing DP) the statistical texture entropy reduces.

Recall that in Section 4.2.1, the texture feature for entropy was defined as a measure

of the disorder an texture image. The trend for entropy implies that as the paper becomes

increasingly deteriorated from thermal stress, that the surface texture of the paper would

becomes more orderly; or in other words, homogeneous. In Fig. 3.6, microscopic images

of new condition paper show well-defined fibers, interwoven in a network. As the paper

becomes more deteriorated, the fiber walls breakdown, the fibers become thinner. Overall

the breakdown of fibers makes the texture of deteriorated appear more uniform or homo-

geneous. From these observations it is logical that the entropy feature reduces as the paper

becomes more thermally deteriorated.

Opposite to entropy, the relationship between IDM to DP increases with increasing de-

terioration as shown in Fig: 4.4. This relationship is also logical when drawing comparisons

to the images of deteriorated paper samples in Fig. 3.6. Because IDM is a measure of the

local homogeneity in an image we see an increasing trend in IDM as the paper samples
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Fig. 4.3. Correlation between SGLDM Entropy Feature and DP.In (a) a logarithmic curve
relationship between Entropy and DP is shown. In (b) a linear relationship is visble with
the horizontal axis plotted as 1000/DP.
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become more homogeneous in appearance due to deterioration.

Both entropy and IDM features appear to show logarithmic relationships with DP. In

Fig. 2.3 it was shown that a similar logarithmic relationship exists between tensile strength

and DP. Recall from Fig. 2.3 that a linear relationship exists between tensile strength and

a factor of 1000/DP. A similar linear relationship is be observed for entropy and IDM in the

bottom graphs of Fig. 4.3(a) and Fig. 4.4(b). This information strongly suggests that the

entropy and IDM are directly proportional to tensile strength of the paper. Proportionality

of entropy to tensile strength is shown directly in Fig. 4.5 where entropy is plotted versus

tensile strength based on data obtained from [42] and [43]. It is clear from Fig. 4.5 that

tensile strength and entropy are proportional to one another because their correlation fits

a straight line graph.

The observation that statistical texture features are directly proportional to the ten-

sile strength of paper is significant because it suggests that the characteristics about paper

surface morphology may be used to estimate deterioration level. Unfortunately, because

the confidence limits for entropy in Fig. 4.3 and 4.4 are overlapped between aging classes,

logarithmic expressions obtained from the best fit curves would yield high error when at-

tempting to use them for direct estimation of the deterioration level. In the next section,

the complete feature set will be analyzed with the use of machine learning techniques to

develop a classifier for more accurate estimation of deterioration level.

4.4 Automated Classification of Deterioration using SGLDM

Features

In the previous section, we observed that a few of the SGLDM features trend proportionately

with tensile strength. Large variance in the feature values for a given tensile strength (or DP)

make the use of individual features for estimation of deterioration level inaccurate. In this
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section, we will combine the SGLDM features with standard machine learning techniques to

construct a statistical classifier that will more accurately estimate the deterioration level of

thermally aged paper from microscopy images. Two standard methods of machine learning

have been used to train statistical classifiers, Linear Discriminant Analysis (LDA) and

Principal Component Analysis (PCA).

Linear Discriminant Analysis is a supervised learning method, meaning that the clas-

sifier is trained with the information of which class each training sample belongs [72]. The

classifier is designed to maximize the separation between classes. The final classifier is

represented mathematically as a linear combination of the original feature set that applies

weight (emphasis) on features in the feature space that will maximize the separation between

classes.

Principal Component Analysis (PCA) is categorized as an unsupervised learning method,

meaning that the classifier is trained without knowledge of the class that each sample be-

longs to. Instead, the classifier works by maximizing the total statistical variance available

in the set of sample data [72]. Similar to LDA the final classifier is a linear combination of

the original feature set, but PCA applies weight to features such that all samples will be

maximally separated from each other in the feature space.

The SGLDM texture features obtained from the original set of 40 sample images per

aging class have been used to train the LDA and PCA classifiers. Separate classifiers have

been trained for each image pre-processing method; minimum-maximum normalization and

histogram equalization. To evaluate the classifiers, the k-NN nearest neighbor algorithm

with k=5 neighbors was used [72]. Five neighbors is considered suitable for the size of the

dataset, as k=3 neighbors was considered too few and susceptible to higher classification

error rates, while k=7 is too large relative to the data set with contains only 40 sample

images per class. Evaluation was carried out on an ‘unseen’ test data set of 70 sample

images. These sample images were not used in the original classifier training. A second
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evaluation was performed using leave-one-out cross-validation which applies the k=5 nearest

neighbor algorithm on all training and test data points individually [72].

Two LDA classifiers were generated using training data, one using minimum-maximum

normalization, and the other using histogram equalization. Both LDA classifiers were re-

duced to three LDA features each and the final projections of the training data onto the

LDA feature spaces are shown in Fig. 4.6 and 4.7 for minimum-maximum normaliza-

tion and histogram equalization respectively. The separation between aging classes in the

minimum-maximum normalization feature space appears better than the histogram equal-

ization space. Recall that histogram equalization corrects brightness variations in original

sample images by rescaling the pixel intensity values to be evenly spread over the image.

This has a dramatic effect on the sample images, and may have introduced some loss of

texture information as compared to the minimum-maximum normalization classifier. In

spite of some loss of class separation, the histogram equalization classifier in Fig. 4.7 still

produces four distinctly separate classes. Because histogram equalization removes varia-

tions in brightness between sample images, it is clear that the classification is extracting

differences in texture information.

For the PCA classifiers, the original feature set was reduced to five PCA features because

five features were necessary to obtain at least 95% of the total variance from the original

feature set. With greater than three features it is not possible to visualize the PCA classifier

in its feature space as was done for LDA in Fig: 4.6 and 4.7.

Results from evaluation of the LDA and PCA classifiers are shown in table 4.3. The

classifiers were evaluated using a set of 70-sample images that were not included in the

original classifier training. As expected results for the LDA classifier produces lower clas-

sification error rates than the one trained using PCA. Observations about class separation

in the LDA feature space being less for histogram equalization (Fig. 4.7) appear consistent

with the classification error results. Histogram equalization error rates are higher for both
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Class 0-hours aged

Class 120-hours aged

Class 400-hours aged

Class 250-hours aged

Fig. 4.6. Projection of SGLDM Features using LDA after being preprocessed by Minimum
Maximum Normalization.
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Table 4.3. Classification Error Summary for LDA and PCA classifiers from SGLDM
Features. Errors computed separately for two different image normalization methods;
Minimum-maximum and Histogram Equalization.

Unseen Data Error Rate [%] Cross Validation Error Rate [%]

Minimum 

Maximum 

Normalization

LDA 1.25 1.31

PCA 1.25 2.18

Histogram 

Equalization

LDA 1.25 3.49

PCA 2.50 6.11

LDA and PCA classifiers.

The worst case error rates occur when the classifier is generated from histogram equal-

ization image preprocessing and using PCA at 2.50% for unseen data, and 6.11% for cross-

validation. These are still relatively good in performance and from these results we can

infer that the textural differences between paper aging classes are significant. For the type

of paper thermally deteriorated in experiments the deterioration level may be estimated in

one of the four aging classes with good accuracy.

4.5 Chapter Summary

To address the issues related to the darkening of thermal aged kraft paper samples caused by

staining from oxidized oil, minimum-maximum and histogram equalization image prepro-

cessing is applied to the microscopic images of thermally aged paper. Minimum maximum

normalization improves contrast in te darkened images by extending the pixel intensity val-
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ues over the full available range while histogram equalization redistributes the pixel intensity

values equivalently over the range.

After image preprocessing, the SGLDM transform is applied to the sample images. The

SGLDM converts images into a histogram based matrix that contains information about

the pixel intensity values in the original image and their spatial arrangement in the image.

Texture features are obtained from mathematical operations performed on the SGLDM

matrix. In this thesis, a total of 22 statistical texture features are extracted from each

paper sample image.

Analysis of the statistical texture features revealed that features for entropy and in-

verse difference moment (IDM) appear to be the most sensitive to changes in thermal

deterioration level (aging class). When correlated to DP measurements, entropy and IDM

texture features appear to trend logarithmically with degree of polymerization. In the case

of entropy, the logarithmic relationship resembles the relationship between DP and tensile

strength of paper. These findings suggest that there exists a relationship between the sur-

face morphology of the paper quantified through statistical texture analysis with mechanical

tensile strength properties of the paper.

The SGLDM statistical texture features can be manipulated using machine learning

methods for automated classification and estimation of deterioration level. Classifiers de-

veloped using supervised learning algorithms (LDA) and unsupervised learning algorithms

(PCA) yield low estimates for classification error rate. These results are promising, and

suggest that the textural differences between aging classes are significant and well separated

by classification.
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Chapter 5

Transform-Based Texture Analysis

of Thermally Deteriorated Paper

using the Two-Dimensional

Wavelet Transform

In this chapter, images of thermally deteriorated transformer winding insulation paper

will be analyzed using a Wavelet Texture Analysis Method. Background on the wavelet

transform and its expansion to two dimensions for the application of analyzing images will

be discussed. A methodology for feature extraction from the wavelet transform sub-images

will be described. Feature analysis and evaluation will be carried out in the same manner as

was done for the SGLDM method in Chapter 4; sensitivity of the feature changes caused by

thermal deterioration will be evaluated using Fisher Discriminant Ratios and a correlation

between the wavelet texture features to degree of polymerization measurements will be

analyzed. Lastly, unsupervised and supervised machine learning techniques will be applied

to the wavelet texture features to evaluate the suitability of this method for automated
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classification and estimation of thermal deterioration in transformer paper insulation.

5.1 Wavelet Texture Analysis

5.1.1 Discrete Wavelet Transform

The discrete wavelet transform is a mathematical operation that translates a function or

signal into a linear combination of special basis functions called wavelets. One of the

distinguishing features of the wavelet transform is that it retains spatial and frequency

information from the original signal after transformation. The characteristic of retaining

spatial information is what distinguishes the Wavelet transform from the Fourier Transform;

retains only the frequency information [73].

The discrete wavelet transform representation of a one-dimensional discrete signal

f(n), n = 1, ...,M is given by (5.1) [68]:

f(n) =
1√
M

∑
k

Cφ(j0, k)φj0,k(n) +
1√
M

∞∑
j=j0

∑
k

Dψ(j, k)ψj,k(n). (5.1)

In (5.1), the signal f(n) is expressed as a linear combination of shifted and dilated basis

functions given by φj,k and ψj,k. The scaling and shifting of these basis functions is expressed

in:

φj0,k(n) = 2j/2φ(2j/2n− k) (5.2)

ψj,k(n) = 2j/2ψ(2j/2n− k), (5.3)

where the parameter j dilates (stretches) the basis function and k shifts the basis function

position relative to the original signal f(n). The value j0 is a default starting scale. Cφ(j0, k)

and Dψ(j, k) represent the scaling and wavelet coefficients in the linear combination shown

in (5.1). These coefficients are computed from the convolution of the basis functions, φj,k
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and ψj,k, with the original signal f(n). This convolution is expressed by the inner product

equations given by:

Cφ(j0, k) =
1√
M

∑
n

f(n)φ(j,k)(n) (5.4)

Dψ(j, k) =
1√
M

∑
n

f(n)ψ(j,k)(n). (5.5)

The scaling and wavelet basis functions φ and ψ have some unique characteristics.

Wavelets can have a variety of different waveshapes, but their waveshape must satisfy

certain criteria. The wavelet ψ must have finite length, it must have zero mean, and it must

be orthogonal to its scaling function φ [73]. Therefore, each wavelet ψ will have its own

unique corresponding scaling function φ.

When convolved with the original signal f(n) as expressed in (5.4) and (5.5), the scaling

function φ will extract a low frequency approximation of f(n), while ψ will extract the high

frequency contents or the details. In this manner, the two basis functions act as digital

filters, where convolution with the wavelet function ψ is a high-pass filter operation and

convolution with the scaling function φ is a low-pass filter operation.

5.1.2 Wavelet Transform in Two Dimensions

When applying the wavelet transform to images, the image is treated as a two-dimensional

signal f(x, y) and convolution of the basis functions is applied to the rows (x) and columns

(y) of the image in the combinations expressed by:

φ(x, y) = φ(x) · φ(y) (5.6)

ψH(x, y) = ψ(x) · φ(y) (5.7)

ψV (x, y) = φ(x) · ψ(y) (5.8)

ψD(x, y) = ψ(x) · ψ(y). (5.9)
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The basis functions for dilation and translation in two dimensions are represented by:

φj,m,n(x, y) = 2j/2φ(2jx−m, 2jy − n) (5.10)

ψij,m,n(x, y) = 2j/2ψ(2jx−m, 2jy − n), Where i = {H,V,D} (5.11)

The superscript i in (5.11) applies to the convolution combinations of basis functions

referenced in (5.6)-(5.9) to obtain either horizontal, vertical or diagonal details.

Finally, the coefficients for the approximation image and detail sub-images are given

by:

Cφ(j,m, n) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y) · φj,m,n(x, y) (5.12)

Di
ψ(j,m, n) =

1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y) · ψij,m,n(x, y) (5.13)

5.1.3 Discrete Wavelet Transform of Images

A schematic representation of the two-dimensional wavelet transform applied to an original

image of size M×N , is shown in Fig. 5.1. In the first stage of the transform, a convolution is

performed between the basis functions φ and ψ and the rows of the image. The convolution

effectively applies low-pass and high-pass filtering along the rows in image. In the following

stage of the transform, rows are then down-sampled (decimated) which compresses the

image horizontally. The decimation is analogous to the dilation of the basis functions by

increasing decomposition depth j. At this stage of the transformation, the original image

has been decomposed into two sub-images sized M
2 × N , with one sub-image containing

approximate or low-frequency row information and the other containing detail or high-

frequency row information from the original image.
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Fig. 5.1. Schematic representation of two-dimensional wavelet transform of an image.
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In the following stage, each of the horizontally compressed sub-images from the previous

step are convolved (filtered) by the basis functions φ and ψ along the columns to extract

low-pass and high-pass image information along the columns. Following the convolution,

now columns are down-sampled (decimated). The final result from the Wavelet Transform

is four separate sub-images sized M
2 ×

N
2 ; one is corresponding to an approximation of the

original image, that contains only low-frequency content. The three remaining sub-images

contain detail information from the original image in the horizontal, vertical, and diagonal

orientations.

Successive decompositions using Wavelet Transform on images are manipulated by re-

inserting the approximate image from Fig. 5.1 back in as the original, and repeating the

transform process. In doing so, the detail information can be extracted at lower resolutions.

5.2 Wavelet Texture Analysis Method Implementation

5.2.1 Selection of Wavelet Type

The wavelet chosen for texture analysis of thermally deteriorated paper sample images

is the Daubechies 4 wavelet [74]. The discrete waveform for Daubechies 4 is shown in

Fig. 5.2. Daubechies 4 wavelet is an orthogonal wavelet. It was chosen for the texture

analysis on microscopic images paper samples because it is appropriately sized for the sizes

of texture details in the images of paper samples. From the microscopic images of thermally-

deteriorated paper samples shown in Chapter 3, the approximate width of smallest paper

fibers are estimated in the range of 10-12 pixels wide. The Daubechies 4 wavelet has a

support length of eight, making it is small enough to extract details as small the fibers

imaged for texture analysis.

Another reason that the Daubechies 4 Wavelet was chosen over other wavelet types is

because it’s wavelet basis function waveshape contains sharp transitions. These sharp tran-
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Fig. 5.2. Discrete form of the Daubechies 4 scaling and wavelet basis functions.
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sitions are useful for analyzing microscopic images of thermally-deteriorated paper samples

because sharp transitions occur at fiber edges and at sites of cracks or fissures in the paper

caused from thermal deterioration.

5.2.2 Decomposition depth

The decomposition depth used for texture analysis depends on the size of the original

image. With successive decompositions the residual approximation image becomes smaller

and smaller in size and at some level the residual texture information becomes negligible.

For the microscopic images of thermally-deteriorated paper shown in Chapter 3, the original

images are sized 1600×1200. Because wavelet decompositions are normally performed with

signal sized by a factor of two, (2j), the sample images were cropped to a size 1024×1024

and the number of decompositions used was limited to four levels (j = 4). After four

decomposition levels the residual approximate image is reduced to a size of 64×64. Past

this level (j = 4) very little texture information remains to be extracted, and at this

decomposition stage the wavelet dilation is equivalent to 1/8th of the original image width

and height.

5.2.3 Image Boundary Treatment for Convolution

Because the computation of wavelet transformed images involves convolution of rows and

columns in the image with a wavelet and scaling basis functions which have finite length,

border distortions will occur at the edges of the image where the Wavelet extends past the

image boundary. When the wavelet transform is applied recursively to the approximation

coefficients, border distortion can create artificial details that would introduce errors in the

detail coefficient computation in successive decompositions.

To limit the influence of border distortions in calculation of the detail coefficients, a

method called symmetric boundary extension has been applied with the two-dimensional
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wavelet transformation. Symmetric boundary extension, extends the original image by

adding a reflection of the rows and columns at the edge of the image. The length of this

extension is eight-rows and eight-columns to accommodate the Daubechies 4 Wavelet length

in convolution. Because texture in the original paper sample images are uniform over the

entire image, symmetric boundary extension will have little effect on the analysis of texture

detail because the added image content is expected to be similar as everywhere else in the

image.

5.2.4 Extraction of Wavelet Texture Features

Wavelet features are generated by first converting the paper images into gray-scale by the

same method mentioned in Section 4.1 and cropping them to size 1024×1024 as mentioned

in Section 5.2.2. The two-dimensional wavelet transform is applied down to four decompo-

sitions levels (j = 4) using the Daubechies 4 wavelet. Finally statistical texture features

of the paper sample images were computed by performing mathematical operations on the

detail coefficient matrices Di
ψ from the Wavelet Transform. A total of twelve (12) detail

coefficient matrices will be generated from j = 4 decompositions. Note that all of the tex-

ture information is contained in the detail coefficients therefore no features are extracted

from the approximation coefficients. The approximation coefficients only carry information

about tonal variation in the sample images.

Two mathematical operators have been selected for converting the detail coefficient

matrices Di
ψ into a single numerical parameter. The first operator formula is the l1norm:

l1norm =
1

M ·N

M∑
m=1

N∑
n=1

|Di
ψ(m,n)| (5.14)

which computes the sum of the absolute value of the detail coefficients. The second math-

ematical operator is energy:
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Energy =
1

M ·N

M∑
m=1

N∑
n=1

[Di
ψ(m,n)]2, (5.15)

which is computed as the sum of squares of the detail coefficients. Both feature values are

normalized by the number of cells in the detail coefficient matrix.

5.3 Analysis of Wavelet Texture Analysis Results

In Fig. 5.3, the results of two (j = 2) successive Wavelet Transform decompositions on

two kraft paper sample images are shown. The format used for displaying the transfor-

mation where the sub-images are nested within the frame size of the original image, is a

conventional method of displaying Wavelet transformations on images [14]. The quadrant

sub-images display the Wavelet transform detail coefficients DH,V,D
ψ which are extracted

from the original image in the first decomposition (j = 1) and recursively from the residual

approximation image at higher decomposition levels (j > 1). The residual approximation

coefficients are indicated by Cφ. Fig. 5.3a is the image of new-condition paper and Fig.

5.3b is that of the paper after 400-hours of thermal deterioration at 140◦C. The brightly

colored, speckled content in detail sub-images is shows texture detail at those regions of the

original image.

Based on the brightness of the speckled content in Fig. 5.3b, it suggests that the

amount of texture detail present in the new-condition sample is greater than the sample

aged 400-hours at 140 ◦C. From this observation, we may expect the calculated l1norm

(5.14) and energy (5.15) feature values to be greater for the new condition paper than the

aged condition. Figure 5.3 also shows that there may be a relationship between the density

of texture details and decomposition level.

In Fig. 5.4, the total average of the detail coefficient energies (5.15) are plotted as a

function of decomposition level. Curves for each aging class (0, 120, 250, and 400-hours)
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Fig. 5.3. A comparison of Wavelet decompositions (j = 2 levels) for thermally deteriorated
paper samples (a) 0-hours at 140◦C on-left, and (b) 400-hours at 140◦C.
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Fig. 5.4. Average detail coefficient energy (H,V, and D) as a function of decomposition
level j.

are plotted independently. The vertical axis for the average detail coefficient energy is on a

logarithmic scale. From Fig. 5.4, it appears that over four decomposition levels (j=1-4) the

texture energy increases as a function of decomposition. This trend applies to each aging

class. However, because this trend appears in all deterioration levels, i.e. (0, 120, 250, and

400 hours) we consider that the increase in energy as a function of decomposition level may

be a function of the Wavelet Transform method and the selection of Daubechies 4 wavelet

basis functions. Figure 5.4 also shows that the average texture detail energy reduces with

increased thermal deterioration.

5.3.1 Wavelet Texture Feature Sensitivity Evaluation

Similar to the sensitivity analysis performed on the SGLDM features in 4.3.1, the wavelet

texture features are evaluated using Fisher Discriminant Ratios (FDR) calculated between
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Table 5.1. Average Fisher Discriminant Ratio from all class comparisons of Detail Coeffi-
cient l1norm

Feature Name
Averge FDR between all class 

comparisons

Vertical Detail, decomp. j=4 45.24

Diagonal Detail, decom. j=4 29.30

Vertical Detail, decomp. j=3 21.21

Horizontal Detail, decomp. j=4 20.02

Diagonal Detail, decom. j=3 15.69

Horizontal Detail, decomp. j=3 14.16

Vertical Detail, decomp. j=2 11.78

Diagonal Detail, decom. j=2 10.00

Horizontal Detail, decomp. j=2 9.79

Diagonal Detail, decom. j=1 9.10

Horizontal Detail, decomp. j=1 8.58

Vertical Detail, decomp. j=1 7.99
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Table 5.2. Average Fisher Discriminant Ratio from all class comparisons of Detail Coeffi-
cient Energy

Feature Name
Averge FDR between all class 

comparisons

Vertical Detail, decomp. j=4 26.09

Diagonal Detail, decom. j=4 22.35

Horizontal Detail, decomp. j=4 18.34

Vertical Detail, decomp. j=3 13.36

Horizontal Detail, decomp. j=3 13.07

Diagonal Detail, decom. j=3 11.62

Horizontal Detail, decomp. j=2 8.15

Vertical Detail, decomp. j=2 7.89

Diagonal Detail, decom. j=2 7.42

Diagonal Detail, decom. j=1 6.83

Horizontal Detail, decomp. j=1 6.80

Vertical Detail, decomp. j=1 5.59
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the classes of 0, 120, 250, and 400-hours at 140◦C. In total, there are five between-class FDR

comparisons (0-to-120, 120-to-250, 250-to-400, 0-to-400, and 120-to-400). By computing the

average FDR per feature, it shows which wavelet texture features are the most sensitive to

surface morphological change caused by thermal deterioration.

In Tables 5.1 and 5.2, the average FDR values from the l1norm and energy features

are shown, ranked in the order of their sensitivity to thermal deterioration. Results show

that there is an increasing trend in feature sensitivity as the decomposition level j is in-

creased. This means that the features obtained by computing the l1norm and energy of the

wavelet detail coefficients will yield better discernibility between deterioration levels at high

decomposition levels rather than the low ones (in the range from j=1-4).

5.3.2 Correlation Between Wavelet Texture Features and DP

Wavelet texture features for l1norm and energy of the detail coefficients are plotted as a

function of the DP in Fig. 5.5 and 5.6, respectively. Note that the vertical axes in each

figure are plotted on a log scale for better viewing.

The (a), (b), and (c) sub-figures in Fig. 5.5 show the l1norm of the horizontal, vertical,

and diagonal details, respectively. Each individual data point in the figure represents the

mean feature values with 95% confidence limits represented by the vertical error bars. The

mean feature value and 95% confidence limits are obtained from processing forty sample

images.

The general trend here again is that the energy and l1norm wavelet texture features

increase with increasing the decomposition level j. It is also notable the the horizontal,

vertical, and diagonal features in Fig. 5.5 and Fig. 5.6 each have similar characteristics

when plotted as function of DP. For each feature, a best-fit polynomial (of an order of 2)

has been fitted to the dataset’s wavelet feature values.
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Fig. 5.5. Wavelet detail coefficient l1norm versus degree of polymerization.
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5.3.3 Automated Classification of Thermal Aging Using Wavelet Texture

Analysis

The wavelet texture features developed in Section 5.2 were used to train a classifier using

LDA and PCA machine learning techniques. The training methods are the same that were

used on features developed for the SGLDM Texture Analysis method in section 4.4. To

evaluate the classifiers the k-NN nearest neighbor algorithm with k=5 nearest neighbors is

used. The justification for k=5 nearest neighbors is the same as those that were stated in

Section 4.4. Evaluation was carried out on an ‘unseen’ test data set of 70 sample images.

These sample images were not used in the original classifier training. A second evaluation

was performed using leave-one-out cross-validation which applies the k=5 nearest neighbor

algorithm on all training and test data points individually.

The wavelet texture features obtained from the l1norm (5.14) and energy (5.15) of the

detail coefficients were used to generate two separate sets of LDA and PCA classifiers. The

reason for not combining feature sets from l1norm and energy into one large classifier is

because the calculation of these features are too similar, and combining them would effec-

tively create duplication of the same information in the classifier. Because computationally

l1norm is simpler than energy, evaluation of both feature sets will at least indicate if there

are some computational saving to be gained from using l1norm instead of energy if their

classifiers perform with similar classification errors.

The LDA classifiers for l1norm and energy features, reduce the original set of 12 Wavelet

features per sample image to three features. Projections of the thermal deteriorated paper

sample image data into the LDA feature space are shown in Fig. 5.7 and 5.8 for l1norm and

energy classifiers respectively.

Figures 5.7 and 5.8 show that both l1norm and energy feature spaces obtain good

separation between aging classes. This is corroborated by low classification error results in

Table 5.3 where the l1norm LDA classifier obtains ‘unseen’ data and cross-validation error
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Table 5.3. Classification Error Summary for Wavelet Transform LDA and PCA classifiers
from l1norm and Energy Features

Unseen Data Error Rate [%] Cross Validation Error Rate [%]

l1-Norm
LDA 1.88 2.18

PCA 1.25 3.49

Energy
LDA 3.13 3.49

PCA 1.88 3.93

rates of 1.88% and 2.18%, respectively. These results are similar in performance to those

obtained for the SGLDM texture analysis classifier in Table 4.3.

The PCA classifiers for l1norm and energy features, reduce the original set of 12 Wavelet

features per sample image to five PCA features. Five features are required to obtain a

minimum of 95% variance from the original feature data set. Because the feature space is

greater than three dimensions it is not possible to projections of the thermal deteriorated

paper sample image data in the PCA feature space as was done for the LDA space in Fig.

5.7 and 5.8. Error rates for the l1norm and energy PCA classifiers performed similarly well

to the LDA classifier. The Wavelet l1norm PCA classifier yielded error rates of 1.25% for

unseen data and 4.80% for cross-validation, while the energy PCA classifier yielded error

rates of 1.25% and 6.11% for unseen data and cross-validation respectively. Since PCA

is an unsupervised learning method, the classifier training is carried out without knowing

the class that each sample image belongs to. More than LDA, low error rates obtained for

PCA classification suggest that the texture differences between paper samples from different

aging classes are significant.
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5.4 Chapter Summary

These results demonstrate that the Wavelet Texture Analysis method shows good

promise for estimating level of deterioration in the samples aged at 0, 120, 250 and 400◦C.

These deterioration levels correspond to degree of polymerization values of 717, 316, 193,

and 115 DP units respectively, which in a power transformer would correspond to new-

condition, aged, at the threshold of end-of-life, and past end of life (high risk for failure).

5.3.4 Rotation Invariance Verification of the Classification Results

Because the Wavelet Texture features are orientation dependent, with detail coefficients

computed in horizontal, vertical, and diagonal directions, it is needed to demonstrate that

the texture features are rotationally invariant. If the microscopy images of the paper sam-

ples were obtained at different orientations in each class, this would influence the Wavelet

classification because class differences may be due to the paper anisotropy and the com-

putation of different features dependent on sample orientation. To demonstrate that the

Wavelet Texture Analysis method in Section 5.2 is rotationally invariant, the classifier has

been re-evaluated using features computed from randomly rotated sample images. In other

words, the classifier was retrained with the same original training dataset except that prior

to computation of the training features, the paper sample image was randomly rotated at

angles in the range between -45◦ and +45◦. Similarly, the ‘unseen’ or test samples were

randomly rotated during classification and error evaluation. The classification error results

calculated from the random rotation of paper sample images are shown in table 5.4.

5.4 Chapter Summary

Wavelet Transform analysis is a transform-based method of texture analysis. The images of

thermally deteriorated paper samples are processed recursively in decompositions using the

two dimensional Wavelet Transform. A total of four decompositions was performed, which

yielded a total of 12 texture features obtained from the detail coefficient matrices at each
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5.4 Chapter Summary

Table 5.4. Classification Summary Showing Verification of Rotational Invariance for
Wavelet Transform LDA and PCA classifiers developed from randomly rotated sample im-
ages

Unseen Data Error Rate [%] Cross Validation Error Rate [%]

l1-Norm
LDA 1.25 3.93

PCA 1.25 4.80

Energy
LDA 1.88 4.80

PCA 1.25 6.11

decomposition level. Two feature sets were analyzed independently, one which computed

the energy of the detail coefficients and another the l1norm.

Analysis of the Wavelet texuture features showed that the fourth decomposition level

yielded the greatest separation between aging classes. The average FDR between all class

comparisons show and increasing trend with increasing decomposition levels between levels

1-4. Similar, to the SGLDM method, automated classification using supervised and unsu-

pervised machine learning techniqes show low classification error rates. This again shows

that the texture differences between aging classes are significant.
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Chapter 6

Conclusions and Future Work

This research work has demonstrated that microscopy measurements from thermally dete-

riorated kraft paper can be analyzed using texture analysis methods to estimate the level of

deterioration in power transformer paper insulation. An accelerated thermal aging exper-

iment was developed and implemented to produce a set of kraft paper insulation samples

that fall in to one of four coarse categories: new-condition paper, aged paper, end-of-life

condition, and a condition that is beyond reliable operation end-of-life. Degree of polymer-

ization measurements were used to confirm the aging level categories.

Microscopy measurements performed on the thermally deteriorated paper samples con-

firmed that with changes to mechanical properties of the paper that thermal deterioration

also manifests as changes in the paper surface morphology. These morphological alterations

to the paper surface were observed in microscopy measurements by the formation of cracks

and fissures in the paper fibers, reductions in the paper fiber size, and distortions in the

interwoven paper fiber network. Although similar observations about changes in the paper

surface morphology have been made in previous work by other researchers, to the author’s

best knowledge this thesis research work is the first to attempt quantitatively analyze the

surface morphology changes. Analysis was successfully carried out by the implementa-
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tion of two different methods for texture analysis: a spatial grey level dependence method

(SGLDM), and Wavelet texture analysis (WTA).

The SGLDM is a statistical based texture analysis method whereas the WTA is a

transform based method. A main objective for this research was to apply texture analysis

methods on microscopic images of the thermally deteriorated kraft insulation paper samples

in order to characterize how the surface morphology changes as a function of thermal aging

using texture analysis features. Sensitivity analysis of the texture features using Fisher

Discriminant Ratios proved that discernible differences exist between aging classes. Cor-

relation of the texture features with DP measurements showed that some texture features

have a logarithmic relationship to DP. A significant finding from these results pertains to the

SGLDM feature for entropy, which exhibits a similar relationship to DP as tensile strength.

The results presented in this thesis show that the features developed from the SGLDM and

the WTA trend proportionately with thermal deterioration, and that changes in the surface

morphology are quantitatively related to tensile strength. This is a major finding and is

counted as a main contribution in this thesis.

The second objective in this research was to explore integration of the texture fea-

tures with machine learning techniques for automated classification of thermally deterio-

rated transformer insulation. The purpose of this objective is to evaluate the potential of

microscopy and texture analysis as a method for condition assessment on power transform-

ers. Results from applying supervised and unsupervised machine learning on the thermally

aged paper samples demonstrated that deterioration level, falling into one of the four ag-

ing classes, is estimated with good accuracy. For the SGLDM method, the highest error

rate obtained was 6.11% using an unsupervised learning algorithm (PCA). The fact that

unsupervised learning yields a relatively low classification error indicates that the texture

differences between aging classes are well separable. Using the LDA supervised learning

classification method, the error rate is reduced to 3.49%. Similarly, Wavelet texture anal-
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ysis results yield low error rates with an error of 3.93% and 3.49% for the PCA and the

LDA classifiers respectively. These results demonstrate strong potential for the use of tex-

ture analysis on microscopic images of transformer paper insulation to estimate actual of

deterioration level.

6.1 Future Work

With further development, this method demonstrates potential as an alternative to the

established degree of polymerization test, however a larger body of experimental data is

needed for the training of a robust classifier. Classification results based one paper type and

thermal deterioration level belonging to one of the four coarse aging classes categorized as

new-condition, mid-life, near end-of-life and beyond end-of-life are very promising and have

low error rate. However, analysis of a much larger catalog of paper types from different

manufacturers is required. Additionally, from the perspective of the asset (transformer)

owner, greater precision is desired and therefore in future work, more samples should be

prepared to aging levels that fall in-between the 0, 120, 250 and 400-hours that were used in

this work. An analysis of actual in-service aged samples should also be performed in future

work. The surface morphology of samples prepared in accelerated aging experiments may

differ from those obtained from those aged in natural processes inside the transformer.

Potential benefits for this method over the degree of polymerization test are that the

sample size required for analysis may be reduced and that the samples may be analyzed

more quickly when factoring for time required to send paper samples to a chemical lab to

have the degree of polymerization test performed. A long term objective in this research is

for development of a reliable method of in-situ assessment on power transformer cellulose

insulation that would not require removal of a physical paper sample. The design of an

optical measurement arrangement suitable for in-situ measurement within a power trans-

former presents a major challenge. Such a method would allow for measurements to be
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taken within the transformer tank during maintenance; while the transformer is off-line and

drained of oil. Factors such as consistent illumination, image stabilization, and incident

angle for imaging during measurement would have to be carefully considered for in-situ

measurement, along with the health and safety of workers. The optical microscopy method

used in this work has shown that texture analysis methods are very sensitive to the sharp-

ness of focus that the images are captured with. Great care is required during the capture

of microscopy images in order to ensure that they are in-focus for a majority of the im-

age frame. Although portable microscopes exist that would be suitable for the application

of in-situ measurement it, is anticipated that in-situ microscopy measurements would be

vulnerable to poor focus in images due to the contoured installation of winding insulation

paper. In future work alternative imaging technologies may be implemented to capture im-

ages of the winding insulation paper surfaces. Confocal laser scanning microscopy [23] and

optical coherence tomography (OCT) may be considered as alternative imaging technologies

for these measurements.
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Force D1.01.10, 2007.

[7] IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers,
IEEE C57.104-2008, 2009.

[8] Standard Test Method for Measurement of Average Viscometric Degree of Polymeriza-
tion of New and Aged Electrical Papers and Boards, ASTM D4243-99, 2009.

[9] Measurement of the average viscometric degree of polymerization of new and aged cel-
lulosic electrically insulating materials, IEC 60450, 2004.

[10] P. Verma, M. Roy, A. Verma, V. Bhanot, and O. Pandey, “Assessment of degradation
of transformer insulation paper by sem and x-rd techniques,” in IEEE International
Conference on Solid Dielectrics, vol. 2, July 2004, pp. 657–660.

[11] L. Ruijin, T. Chao, Y. Lijun, and S. Gryzbowski, “Thermal aging micro-scale analysis
of power transformer pressboard,” IEEE Transactions on Dielectrics and Insulation,
vol. 15, no. 5, pp. 1281–1287, October 2008.

- 88 -



REFERENCES

[12] R. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classifica-
tion,” IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-3, no. 6, pp.
610–621, November 1973.

[13] G. Srinivasan and G. Shobha, “Statistical texture analysis,” in World Academy of
Science, Engineering and Technology, vol. 36, December 2008, pp. 1264–1269.

[14] T. Chang and C. C. J. Kuo, “Texture analysis and classification with tree-structured
wavelet transform,” IEEE Transactions on Image Processing, vol. 2, no. 4, pp. 429–441,
Oct 1993.

[15] M. Popovic, “Texture analysis using 2d wavelet transform: theory and applications,”
in Telecommunications in Modern Satellite, Cable and Broadcasting Services, 1999. 4th
International Conference on, vol. 1, 1999, pp. 149–158 vol.1.

[16] N. Jacob, D. Oliver, S. Sherif, and B. Kordi, “Classification of degradation in oil-
impregnated cellulose insulation using texture analysis of optical microscopy images,”
Electric Power Systems Research, vol. 133, pp. 104–112, 2016.

[17] N. D. Jacob, D. R. Oliver, S. S. Sherif, and B. Kordi, “Statistical texture analysis
of morphological changes in pressboard insulation due to thermal aging and partial
discharges,” in 2015 IEEE Electrical Insulation Conference (EIC), June 2015, pp. 610–
613.

[18] N. Jacob, D. Oliver, S. Sherif, and B. Kordi, “Correlation of microscopic textural
features and degree of polymerization for thermally deteriorated cellulose insulation,”
in Proc. 2016 IEEE Electrical Insulation Conference, June 2016.

[19] N. Jacob, B. Kordi, and S. Sherif, “Quantification of changes in surface texture of
thermally-aged kraft paper using orthogonal wavelets,” in IEEE Electric Power and
Energy Conference, October 2017.

[20] A. A. Halacsy and G. H. V. Fuchs, “Transformer invented 75 years ago,” Transac-
tions of the American Institute of Electrical Engineers. Part III: Power Apparatus and
Systems, vol. 80, no. 3, pp. 121–125, April 1961.

[21] T. A. Prevost and T. V. Oommen, “Cellulose insulation in oil-filled power transformers:
Part i - history and development,” IEEE Electrical Insulation Magazine, vol. 22, no. 1,
pp. 28–35, Jan 2006.

[22] C. Krause, “Power transformer insulation history, technology and design,” IEEE Trans-
actions on Dielectrics and Electrical Insulation, vol. 19, no. 6, pp. 1941–1947, December
2012.

[23] J. Borch, M. B. Lyne, R. Mark, and C. Habeger, Handbook of Physical Testing of
Paper: Vol. 2. Marcel Dekker Inc., 2002.

- 89 -



REFERENCES

[24] W. Ziomek, K. Vijayan, D. Boyd, K. Kuby, and M. Franchek, “High voltage power
transformer insulation design,” in 2011 Electrical Insulation Conference (EIC)., June
2011, pp. 211–215.

[25] T. Shugg, Handbook of Electrical and Electronic Insulating Materials. London: Van
Nostrand Reinshold, 1986.

[26] T. A. Prevost, “Thermally upgraded insulation in transformers,” in Proceedings Elec-
trical Insulation Conference and Electrical Manufacturing Expo, 2005., Oct 2005, pp.
120–125.

[27] “Tutorial on electrical grade papers in power transformers,” Doble Client Committee
Fall Meeting, October 1993.

[28] N. Lelekakis, J. Wijaya, D. Martin, and D. Susa, “The effect of acid accumulation in
power-transformer oil on the aging rate of paper insulation,” IEEE Electrical Insulation
Magazine, vol. 30, no. 3, pp. 19–26, May 2014.

[29] K. S. Kassi, I. Fofana, F. Meghnefi, and Z. Yeo, “Impact of local overheating on
conventional and hybrid insulations for power transformers,” IEEE Transactions on
Dielectrics and Electrical Insulation, vol. 22, no. 5, pp. 2543–2553, October 2015.

[30] A. Lokhanin, G. Shneider, V. Sokolov, V. Chornogotsky, and T. Morozova, “Internal
insulation failure mechanisms of HV equipment under service conditions,” Cigre Report
15, vol. 201, pp. 1–6, 2002.

[31] S. Chakravorti, D. Dey, and B. Chatterjee, Recent Trends in the Condition Monitoring
of Transformers. London: Springer, 2013.

[32] M. Darveniza, T. K. Saha, D. J. T. Hill, and T. T. Le, “Investigations into effective
methods for assessing the condition of insulation in aged power transformers,” IEEE
Transactions on Power Delivery, vol. 13, no. 4, pp. 1214–1223, Oct 1998.

[33] “Draft guide for dielectric frequency response test,” IEEE PC57.161/D2.0, pp. 1–74,
Jan 2017.

[34] M. F. M. Yousof, C. Ekanayake, and T. K. Saha, “Examining the ageing of trans-
former insulation using fra and fds techniques,” IEEE Transactions on Dielectrics and
Electrical Insulation, vol. 22, no. 2, pp. 1258–1265, April 2015.

[35] I. Hohlein and A. J. Kachler, “Aging of cellulose at transformer service temperatures.
part 2. influence of moisture and temperature on degree of polymerization and for-
mation of furanic compounds in free-breathing systems,” IEEE Electrical Insulation
Magazine, vol. 21, no. 5, pp. 20–24, Sept 2005.

[36] Susilo, Suwarno, U. Khayam, M. Tsuchie, M. Thein, M. Hikita, and T. Saito, “Study on
dissolved gas due tue thermally degraded insulating paper in transformer oil,” Procedia
Technology, vol. 11, pp. 257 – 262, 2013.

- 90 -



REFERENCES

[37] A. M. Emsley, X. Xiao, R. J. Heywood, and M. Ali, “Degradation of cellulosic insulation
in power transformers. part 2: formation of furan products in insulating oil,” IEE
Proceedings on Science Measurement and Technology, vol. 147, no. 3, pp. 110–114,
May 2000.

[38] Mineral insulating oils - Methods for the determination of 2-furfural and related com-
pounds, IEC 61198, 1993.

[39] J. Jalbert, M. C. Lessard, and M. Ryadi, “Cellulose chemical markers in transformer oil
insulation part 1: Temperature correction factors,” IEEE Transactions on Dielectrics
and Electrical Insulation, vol. 20, no. 6, pp. 2287–2291, December 2013.

[40] L. Cheim, D. Platts, T. Prevost, and S. Xu, “Furan analysis for liquid power trans-
formers,” IEEE Electrical Insulation Magazine, vol. 28, no. 2, pp. 8–21, March 2012.

[41] N. Azis, Q. Liu, and Z. D. Wang, “Ageing assessment of transformer paper insula-
tion through post mortem analysis,” IEEE Transactions on Dielectrics and Electrical
Insulation, vol. 21, no. 2, pp. 845–853, April 2014.

[42] A. M. Emsley, R. J. Heywood, M. Ali, and X. Xiao, “Degradation of cellulosic insula-
tion in power transformers .4. effects of ageing on the tensile strength of paper,” IEE
Proceedings - Science, Measurement and Technology, vol. 147, no. 6, pp. 285–290, Nov
2000.

[43] L. E. Lundgaard, W. Hansen, D. Linhjell, and T. J. Painter, “Aging of oil-impregnated
paper in power transformers,” IEEE Transactions on Power Delivery, vol. 19, no. 1,
pp. 230–239, Jan 2004.

[44] P. Verma, D. Chauhan, and P. Singh, “Effects on tensile strength of transformer insu-
lation paper under accelerated thermal and electrical stress,” in IEEE Conference on
Electrical Insulation and Dielectric Phenomena, Oct 2007, pp. 619–622.

[45] M. Karlovits and G. Gregor-Svetec, “Durability of cellulose and synthetic papers ex-
posed to various methods of accelerated aging,” Acta Polytechnica Hungarica, vol. 9,
no. 6, pp. 81–100, 2012.

[46] G. Piantanida, M. Bicchieri, and C. Coluzza, “Atomic force microscopy characteriza-
tion of the ageing of pure cellulose paper,” Elsevier Polymer Science, vol. 46, no. 26,
pp. 12 313 – 12 321, 2005.

[47] E. dos Santos, A. Monteiro, S. Silva, W. Fragoso, C. Pasquini, and M. Pimentel,
“Determination of degree of polymerization of insulating paper using near infrared
spectroscopy and multivariate calibration,” Vibrational Spectroscopy, vol. 52, no. 2,
pp. 154 – 157, 2010.

- 91 -



REFERENCES

[48] P. J. S. Baird, H. Herman, and G. C. Stevens, “Non-destructive and in-situ analysis
of insulating materials in high-voltage power transformers,” in Proceedings of the 2004
IEEE International Conference on Solid Dielectrics, 2004. ICSD 2004., vol. 2, July
2004, pp. 719–722.

[49] P. Baird, H. Herman, and G. Stevens, “Non-destructive condition assessment of insulat-
ing materials in power transformers,” in Electrical Insulating Materials, 2005. (ISEIM
2005). Proceedings of 2005 International Symposium on, vol. 2, June 2005, pp. 425–428
Vol. 2.

[50] P. Baird, H. Herman, and Stevens, “On site analysis of transformer paper insulation
using portable spectroscopy for chemometric prediction of aged condition,” vol. 15,
no. 4, August 2008, pp. 1089–1099.

[51] H. Khakmardani, Ageing Asssessment of Power Transformer Kraft Paper Insulation
Using Optical Speckle. University of Manitoba, Faculty of Electrical and Computer
Engineering, 2014.

[52] I. H. Isenberg, “Pulp and paper microscopy,” Institute of Paper Chemistry, 1967.

[53] “Image texture analysis: methods and comparisons,” Chemometrics and Intelligent
Laboratory Systems, vol. 72, no. 1, pp. 57–71, 2004.

[54] A. Dixit and N. P. Hegde, “Image texture analysis - survey,” in 2013 Third International
Conference on Advanced Computing and Communication Technologies (ACCT), April
2013, pp. 69–76.

[55] A. S. Aguado, Feature Extraction and Image Processing for Computer Vision. Aca-
demic Press, 2012, vol. 3rd ed.

[56] S. Livens, P. Scheunders, G. van de Wouwer, and D. V. Dyck, “Wavelets for texture
analysis, an overview,” in 1997 Sixth International Conference on Image Processing
and Its Applications, vol. 2, Jul 1997, pp. 581–585 vol.2.

[57] M. Pietikainen, Texture Analysis In Machine Vision. World Scientific, 2000, no. vol.
40.

[58] M. Pietikäinen and T. Ojala, Texture Analysis in Industrial Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 337–359.

[59] I. Stoica, A. I. Barzic, C. Hulubei, and D. Timpu, “Statistical analysis on morphol-
ogy development of some semialicyclic polyimides using atomic force microscopy,” Mi-
croscopy Research and Technique, vol. 76, no. 5, pp. 503–513, 2013.

[60] M. Reis and A. Bauer, “Image-based classification of paper surface quality using wavelet
texture analysis,” Computers and Chemical Engineering, vol. 34, no. 12, pp. 2014 –
2021, 2010.

- 92 -



REFERENCES

[61] H. Zhai, H. Huang, S. He, and W. Liu, “Rice paper classification study based on signal
processing and statistical methods in image texture analysis,” in 2014 IEEE/ACIS 13th
International Conference on Computer and Information Science (ICIS), June 2014, pp.
189–194.

[62] Electrical insulation systems - thermal evaluation of combined liquid and solid compo-
nents - Part 2: Simplified Test, IEC 62332-2, 2014.

[63] Standard Test Method for Sealed Tube Chemical Compatibility Test, ASTM D5642-09,
2009.

[64] J. Singh, S. Y., and V. P., “Review of different prorated models which detect the
effect of accelerated stresses on power transformer insulation,” International Journal
of Computer and Electrical Engineering, vol. 2, no. 3, pp. 569–574, June 2010.

[65] E. L. Morrisson, “Evaluation of the thermal stability of electrical insulation paper,”
IEEE Transactions on Electrical Insulation, vol. 3, no. 3, pp. 76–82, August 1967.

[66] Y. Du, M. Zahn, B. C. Lesieutre, A. V. Mamishev, and S. R. Lindgren, “Moisture
equilibrium in transformer paper-oil systems,” IEEE Electrical Insulation Magazine,
vol. 15, no. 1, pp. 11–20, Jan 1999.

[67] “Standard for general requirements for liquid-immersed distribution, power, and regu-
lating transformers,” IEEE Std C57.12.00-2010, pp. 1–70, Sept 2010.

[68] R. C. Gonzalez and R. E. Woods, Digital Image Processing 2nd Edition. Pearson
Education, 2009.

[69] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc.,
2010.

[70] E. Gonzalez, F. Bianconi, M. Alvarez, and S. Saetta, “Automatic characterization of
the visual appearance of industrial materials through colour and texture analysis: An
overview of methods and applications,” Advances in Optical Technologies, vol. 2013,
no. 503541, pp. 1–11, September 2013.

[71] R. Yeung, Information Theory and Network Coding. New York: Springer Link, 2008.

[72] R. Duda, P. Hart, and D. Stork, Pattern Classification Second Edition. John Wiley
and Sons, 2001.

[73] T. K. Sarkar, C. Su, R. Adve, M. Salazar-Palma, L. Garcia-Castillo, and R. R. Boix,
“A tutorial on wavelets from an electrical engineering perspective. i. discrete wavelet
techniques,” IEEE Antennas and Propagation Magazine, vol. 40, no. 5, pp. 49–68, Oct
1998.

[74] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA, USA: Society for Indus-
trial and Applied Mathematics, 1992.

- 93 -



REFERENCES

[75] E. Kuffel, W. S. Zaengl, and J. Kuffel, High Voltage Engineering Fundamentals 2nd
Edition. Elsevier Ltd., 2000.

[76] V. Sokolov, Z. Berler, and V. Rashkes, “Effective methods of assessment of insulation
system conditions in power transformers: a view based on practical experience,” in
Electrical Insulation Conference and Electrical Manufacturing &amp; Coil Winding
Conference, 1999. Proceedings. IEEE, 1999, pp. 659–667.

[77] P. Mitchinson, P. Lewin, B. Strawbridge, and P. Jarman, “Tracking and surface dis-
charge at the oil-pressboard interface,” IEEE Electrical Insulation Magazine, vol. 26,
no. 2, pp. 35–41, March-April 2010.

[78] “High-voltage test techniques - partial discharge measurements,” IEC 60270, 2000.

[79] P. Hiemenz and T. Lodge, Polymer Chemistry. Boca Raton: CRC Press, 2007.

[80] S. Weissberg, R. Simha, and S. Rothman, “Viscosity of dilute and moderately concen-
trated polymer solutions,” Journal of Research of the National Bureau of Standards,
vol. 47, no. 4, pp. 298–314, September 1951.

[81] Standard Test Method for Intrinsic Viscosity of Cellulose, ASTM D1795-96, 2001.

- 94 -



Appendix A

Machine Learning Techniques

In this appendix, formulas for machine learning methods are reviewed. These methods are

used in Chapters 4 and 5 to develop classifiers that are used for automated estimation of

deterioration level in thermally aged kraft paper samples.

A.1 Linear Discriminant Analysis

Linear discriminant analysis is a machine learning algorithm that uses a supervised learning

method to develop a classifier. This means that the classifier is trained with prior knowledge

of the class that each sample (feature vector) belongs to. From the feature extraction

performed on the sample images belonging to each thermal aging class a feature vector is

obtained for each aging class: 0, 120, 250, and 400 hours.

Linear discriminant analysis is obtained from the feature data set by first computing two

matrices called scattering matrices. The between-class scatter SB given in (A.1) measures

the variance of each independent class mean x̂ feature vector about the global mean vector

µC . The parameter ni represents the class number. The within-class scatter SW in (A.2) is

equivalent to the sum of the covariances among all classes. It provides a matrix equivalent

for the amount of variance in each class independently.
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A.2 Principal Component Analysis

SB =
∑
C

ni(µC − x̂)(µC − x̂)T (A.1)

SW =
∑
C

∑
iεC

(xi − µC)(xi − µC)T (A.2)

The final projection vector is then determined from the eigenvectors of the product

between the between-class SB and within-class scatter SW matrices determined by (A.3).

W = eig{S−1W · SB} (A.3)

By sorting the eigenvalues from (A.3) in descending order the corresponding eigenvec-

tors will ordered in terms of class separation feature class separation from largest separation

to smallest. The vectors represent a linear combination of the original feature set, and by

using only a portion of the feature vectors, dimensionality reduction of the original feature

set may be obtained.

A.2 Principal Component Analysis

Principal component analysis (PCA) is a machine learning algorithm that uses an unsu-

pervised learning method to generate a classifier. This means that the classifier is trained

without prior knowledge of the class that each sample (feature vector) belongs to. Instead

PCA translates the original dataset on to a reduced feature space which maximizes the

variance present in the original dataset.

If the original feature set is represented by X is normalized by subtracting its mean

becomes X̂ then the covariance matrix is computed by (A.4)

Σ = X̂ · X̂T (A.4)
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A.2 Principal Component Analysis

The final projection vector consisting of principal components is determined from the

eigenvectors of the covariance matrix (A.5).

W = eig{Σ} (A.5)

By sorting the eigenvalues from (A.3) in descending order the corresponding eigenvec-

tors will ordered in terms of maximum to minimum variance in the dataset. The vectors

represent a linear combination of the original feature set, and in using a portion of the

principal component vectors, dimensionality reduction of the original feature set may be

obtained.
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Appendix B

Texture Analysis of Pressboard

Insulation Deterioration from

Partial Discharges

This appendix will present results from microscopic statistical texture analysis performed

on transformer pressboard insulation which has been subjected to surface tracking partial

discharge (PD) experiments. Results from these experiments were published in a confer-

ence paper [17]. Similar to transformer winding insulation paper, the intention of these

experiments was to observe and quantify morphological change occurring on transformer

pressboard material surfaces as a consequence of electrical discharges. An experimental test

arrangement consisting of a needle and bar electrode incident on oil-immersed pressboard

sample was used to cause electrical deterioration. The same (SGLDM) statistical texture

analysis method was used analyze microscopic images of the pressboard surface, and the

statistical features were compared between pressboard surface areas subjected to surface

tracking discharges versus those surfaces that were not in an attempt to quantify the mor-

phological change. Note that the results has been relegated to an appendix and outside the
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B.1 Pressboard deterioration and failure mechanisms

main body of work in this thesis because the results obtained are inconclusive.

B.1 Pressboard deterioration and failure mechanisms

Partial discharge (PD) is a phenomena where applying high-voltage across an insulation

system causes localized breakdown or arcing across small voids inside that system, or al-

ternatively tracking along insulation surfaces [75]. Over time, sustained PD activity will

degrade the insulation level of the system and can cause eventual failure.

Within a power transformer PD can occur at various locations of the insulation system

where high electric field stress exists. These high stress regions may include streamer

discharges propagating into the oil from surfaces of the transformer winding, discharges

between the primary and secondary windings, discharge between winding turns, inter-phase

discharges, or as surface tracking discharges.

A complex deterioration mechanism which can lead to power transformer failures in-

volves the formation of PD along pressboard barriers surfaces; these are sometimes referred

to as creepage discharge [76]. The presence of such discharge may originate due to undis-

solved gas or high moisture content in the pressboard resulting in PD or due to a phenomena

called static electrification where surface friction between the pressboard and oil circulated

in the power transformer causes a build-up of static charge on pressboard surfaces [75].

This charge in addition to the internal electric field stresses can result in the formation of

PD. Surface tracking PD is most likely to occur on pressboard barrier insulation near the

end winding regions of the transformer winding. At this region of the insulation system the

electric field stress may be higher and the electric field lines are likely to travel parallel to

the pressboard surfaces.

Recurrent PD can lead to the formation of permanent carbon tracks on the pressboard

surfaces thus reducing the electrical insulation level. As a result the risk of catastrophic

failure during electrical transients such as lightning strike or switching surges is elevated.
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B.1 Pressboard deterioration and failure mechanisms

Fig. B.1. Converter transformer failure where evidence of partial discharge activity found
on barrier surface between two windings.
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B.2 Pressboard Specimen Materials

An example of a transformer failure attributed to creepage discharge on pressboard is shown

in fig. B.1.

B.2 Pressboard Specimen Materials

The pressboard material used in surface tracking partial discharge experiments is called

TIV Transformerboard manufactured by Weidmann Electrical Technology Inc. TIV Trans-

formerboard is a pre-compressed unbleached kraft board with a dimpled pattern on its

surface. The board is supplied in large sheets and measures 1 mm in thickness. The TIV

pressboard dimpled cellulose based pressboard. Samples were prepared in approximate di-

mensions of 100 mm × 80 mm for electrical stressing followed by microscopy and texture

analysis as described in section B.3.

B.3 Electrical stress experimental setup

The experimental test arrangement designed to produce high electric field stress tangentially

along pressboard surfaces, leading to localized partial discharge, is shown in Fig. B.2.

The arrangement consists of a needle and bar electrode installed on a pressboard surface

while immersed in transformer insulating oil. The needle is stainless steel with a 20µm tip

radius, the ground electrode is an aluminum bar (10mm X 10mm X 10mm). A similar test

arrangement has been used in [77].

The arrangement is designed to produce high divergent electric fields at the need tip

along the pressboard surface. This will lead to surface PD in the region between the needle

tip and the ground electrode. Partial discharge activity is measured using a high-voltage

coupling capacitor according to methods described in [78] for apparent charge narrow-

band PD measurement. A gap length of 20mm and voltage of approximately 30-33kV was

sufficient to produce recurrent PD exceeding 1000 pico-Coulombs; where a typical phase-
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B.3 Electrical stress experimental setup

Fig. B.2. Surface tracking partial discharge test arrangement

resolved PD measurement is shown in fig.B.3. The number of hours for which samples will be

electrically stressed will be varied to produce a sample set for optical analysis. Preliminary

experiments performed thus far have shown that after four hours of electrical stress at 30kV

physical changes on a pressboard sample surfaces appeared as shown in fig. B.4. Partial

discharge causes gas channels to form in the pressboard surface. These gas channels are

present only during testing and after the electrical stress is removed, the gas-channels are

re-impregnated by the insulating oil and no longer visible. Carbon marks near the needle

tip are permanent.

A test transformer was used to energize this arrangement and partial discharges mea-

sured using a 1000pF coupling capacitor along with an Omicron MPD Partial discharge

measuring system. The applied voltage was increased to a level between 30-35kV on each of

the pressboard samples. This was sufficient to produce regular discharges with pulse mag-

nitudes greater than 1nC with repetition rates above 100 pulses-per-second. The samples

subjected to electrical stress were exposed to 4-hours of surface PD. Following electrical

stress, the samples were left in the oil for 24-hours at room temperature. These samples

were then removed from the oil for microscopy imaging at 2.5X magnification. Twenty

images were acquired from the pressboard region where surface discharges were active and
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B.3 Electrical stress experimental setup

Fig. B.3. Typical phase-resolved PD plot obtained for pressboard surface discharges with
needle-bar electrode arrangement.

Fig. B.4. Electrical stress test arrangement produces gas channels in pressboard and
carbon tracking marks.
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B.4 Analysis of SGLDM features from surface tracking partial discharge

twenty images from the regions with no surface discharge. The discharge region images were

spread out over a general region between the electrodes but did not include carbonized re-

gions where deterioration was visually obvious. Texture analysis by the SGLDM method

described in 2.5 was performed on each aging class separately where the intent is to detect

textural differences between the discharge regions versus the non-discharge regions of each

sample.

B.4 Analysis of SGLDM features from surface tracking par-

tial discharge

The SGLDM features obtained from microscopic images of electrically stressed pressboard

are analyzed using Fisher discriminant ratios. This is procedure that was used for winding

Kraft paper insulation in . Texture feature differences are measured between the region on

the pressboard where surface tracking discharges occurred versus the non-discharge region.

between features computed for the feature. The Fisher ratios for each SGLDM feature are

shown in Table B.1. With all FDR less than one, this indicates that the morphological

change in pressboard due to surface tracking PD is negligible. Comparatively, FDR values

from pressboard samples subjected to surface tracking PD are considerably less than those

obtained from thermally deteriorated paper samples in Table .

B.5 Appendix Summary

Based on the experiments performed for surface tracking PD deterioration of pressboard,

results remain inconclusive. The change in texture features as a consequence of electrical

deterioration are negligible as compared to those obtained from thermal deterioration of

kraft winding insulation paper. It is anticipated that if surface tracking experiments would

be prolonged that eventually texture differences would be perceptible and measurable using
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B.5 Appendix Summary

Table B.1. Fisher Discriminant Ratio analysis of feature sensitivity comparison between
the pressboard region having significant surface discharge versus region with no surface
discharges.

Feature Name Feature Number

FDR between discharge 

region and non-

discharge region

Sum Variance F6 & F17 0.995

Angular Second Moment F1 & F12 0.709

Sum Entropy F7 & F18 0.528

Sum Average F5 & F16 0.513

Variance F3 & F14 0.394

Entropy  F8 & F19 0.367

Inverse Difference Moment F4 & F15 0.239

Information Measures of Correlation F11 & F22 0.165

Difference Entropy F10 & F21 0.079

Difference Variance F9 & F20 0.040

Contrast F2 & F13 0.015
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B.5 Appendix Summary

this statistical texture analysis method. Presumably localized heat along with generation of

gas channel in the pressboard that morphological changes would occur. This investigation

is reserved for future work.
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Appendix C

Description of the Average

Viscometric Degree of

Polymerization Test

The degree of polymerization of a particular cellulose molecule is equal to the number of

glucose monomers units, C6H10O5, which are connected in series, making up its molecular

structure [8]. In a sample of paper the number of monomer units which make up individual

cellulose molecules will vary. One common method used to estimate the average molecular

weight of a polymer material involves measurement of the intrinsic viscosity of the material

dissolved in a solution [79, 80]. Because intrinsic viscosity is related to polymer molecular

weight, it is therefore related to average molecular length and the degree of polymerization

in cellulose-based materials [81]. Empirical formulas which associate the degree of polmer-

ization to intrinsic viscosity of a paper sample after it has been dissolved in a solution can

be found in industry standards [8, 9].

This appendix provides a short description of the industry standard method used in [9]

to determine the average viscometric degree of polymerization in plain electrical grade
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C.1 Sample Preparation

papers used in power transformers, oil-paper insulated cables, and capacitors.

C.1 Sample Preparation

Preparation of paper samples is required prior to dissolution and viscosity measurement.

Insulating oil impregnating the paper samples must be removed prior to dissolution because

it would cause errors in the viscosity measurement otherwise. To remove oil, paper samples

are cut into approximately 1mm2 sections. The oil content in the paper is removed by a

process called Soxhlet extraction. In Soxhlet extraction, a solvent, either pentane or hexane,

is percolated onto the paper sections which removes the oil. The samples are then left to

dry and acclimatize to the laboratory ambient. Paper samples are then placed in a suitable

blender or grinder to separate fibers and make for easier dissolution. The mass of dry paper

mD is measured.

For dissolution the dry separated paper is then placed in a solution which contains 50%

distilled water and 50% solvent; called Cupriethylenediamine (C4H16CuN4). Guidelines for

the concentration and volume of the solvent to be used are given in [9] and is dependent on

the mass of paper mD and the expected condition of the paper. After the paper sample is

fully dissolved the specific viscosity is measured.

C.2 Viscosity Measurement and Calculation of Viscometric

Degree of Polymerization

Kinematic viscosity is measured using an Ubbelohde viscometer where its flow rate is mea-

sured in mm2/s. All flow rates are measured multiple times per dissolved sample and the

efflux times must agree to within 1%. The viscosity is measured on the Cupriethylenedi-

amine/water solution before and after paper samples are dissolved. From these separate
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C.2 Viscosity Measurement and Calculation of Viscometric Degree of Polymerization

viscosity measurements the specific viscosity νs is determined by (C.1):

νs =
[viscosity of paper solution]− [viscosity of solvent]

[viscosity of solvent]
(C.1)

Intrinsic viscosity is calculated using the specific viscosity by solving [ν] in the empirical

formula in (C.2).

νs = [ν] · 10k·[ν]·c (C.2)

The parameter k in (C.2) is called Martin’s constant; k = 0.14 for plain kraft papers. The

parameter c is the concentration of the solution, dependent on the mass of the sample mD

and the volume of the solution:

c =
mD

νH2O + νCu
[g/dl], (C.3)

with νH2O and νCu representing the volume of water and Cupriethylenediamine solvent

respectively.

Finally, the viscometric degree of polymerization is computed using the empirical for-

mula in (C.4). The constants K and α are called the Mark Houwink constants and are

K=0.0075 and α=1 respectively for Kraft paper.

[ν] = K · (DP ν)α (C.4)
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