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Abstract

Since mammalian target of rapamycin (mTOR) and N-myristoltransferase (NMT) have been shown

to be potentially related to breast cancer, mTOR-NMT signalling pathway is taken into specific

consideration. In this thesis, mathematical models are developed to not only describe the mTOR-

NMT signalling pathways, but also to analyze and predict the response to a treatment. Based on

different biological hypotheses, candidate models are obtained by using an ordinary differential

equation formalism. An optimization method called the Differential Evolution algorithm is ap-

plied to find the best parameter sets for our candidates. Doing so, will give the smallest distance

between experimental data and simulated results. The experimental data are provided by Dr

Shrivastav’s laboratory, Department of Biology, University of Winnipeg. Furthermore, the math-

ematical analysis for our candidate models has been found to show their asymptotic behaviours.

To determine which candidate model is most likely to be the ”best” among the subgroup of mod-

els, model selection is used. Ultimately, the collaboration with Dr Shrivastav’s laboratory let us

understand the simplified mTOR-NMT signalling pathway.
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Chapter 1

Introduction

1.1 Motivation

In 2015, breast cancer was one of the most diagnosed cancer among Canadian women over the

age of 20 and was the second most lethal cancer [3]. During the last few decades, some kinases

(enzymes that catalyze the phosphorylation of substrates) have been shown to promote tumori-

genesis through the coordinated phosphorylation of proteins that directly regulates cell-cycle pro-

gression and metabolism, as well as transcription factors that regulate the expression of genes in-

volved in oncogenic processes [6]. The importance of these kinases in oncology is widely accepted

to be related to mutation of cells [6]. Signalling events that activate these kinases are important

to understand the mechanism of tumorigenesis and to develop effective therapies against cancer.

For instance, phosphatidylinnositol-3 kinase/protein kinase B/mammalian target of Rapamycin

( PI-3 Kinase/Akt/mTOR) pathway is a specific signalling event that has been shown to be dys-

regulated in cancers [31]. Mutations of PI-3 Kinase/Akt /mTOR pathway proteins are common in

breast cancers and their activations have been known as one of the potential mechanisms respon-

sible for the resistance to drugs used in breast cancer treatment among patients [31]. Therefore,

inhibitors of PI-3 kinase, Akt, or mTOR in this pathway are of particular interest. The aim of

our study is to develop mathematical models that can predict the response of cells to treatment

protocols in breast cancer therapy. Doing so, individual tailor-made treatments for breast cancer

patients can be determined.

1



1.2 Signal pathways

1.2.1 Signal transduction

There are a large number of intracellular signalling pathways responsible for transmitting infor-

mation within the same cell or between different cells to regulate their corresponding proteins’

activations; this information transmitting process is called signal transduction. Signal transduc-

tion is a process of signal relay which occurs when, for instance, either an extracellular signalling

molecule binds to its specific transmembranar receptors on the cell membrane, or pass through cell

membranes to activate a specific receptor within the cell. In turn, this receptor triggers a chain of

biochemical events inside the cell, creating a response. Depending on the cells’ type, the response

can be the change in metabolism, gene expression, or cell proliferation.

For example, as described in Figure 1.1, when insulin binds to insulin receptors present on the

cell membrane, it triggers a conformational change of the receptor and activates its intrinsic ty-

rosine kinase activities. The receptor undergoes autophosphorylation and subsequently activates

other downstream target molecules, including insulin receptor substrate (IRS), phosphatidylin-

nositol-3 kinase (PI3-Kinase), protein kinase B (Akt), endothelial nitric oxide synthase (eNOS), ni-

tric oxide (NO), retrovirus-associated DNA sequences (Ras) and mitogen activated protein kinase

(MAPK) through a series of phosphorylation events. Target molecules are mainly involved in two

sorts of activation of insulin signalling pathways with the first being Ras/ MAPK which results

in cell proliferation; the second is PI-3K/Akt/ eNOS/NO, resulting in metabolic modulation [32].

1.2.2 mTOR-NMT signalling pathway

In the 1970s, in Easter Island, scientists found a special soil sample that contains a bacterial strain,

streptomycin hygroscopicus, which produces an anti-fungal metabolite [38]. This metabolite hap-

pened to be a macrocyclic lactone and was named Rapamycin. Subsequently, it was shown to

have immunosuppressive effects and to be able to suppress cell proliferation [38]. That stimulated

further research on its properties and its target protein. In the 1990s, the target was identified as a

protein, and named TOR (target of Rapamycin) [25, 39].

The molecule “mammalian target of Rapamycin” (mTOR) belongs to the series of Akt-activated

molecules mentioned in Figure 1.1 [32]. This signalling pathway senses and integrates a variety of

environmental stimuli to regulate major cellular processes, organismal growth and homeostasis

2



Figure 1.1: Insulin signalling pathways. Insulin binds to the insulin receptor, causing mainly two
sorts of activations; the activation of Ras/MAPK signalling pathway and/or the activation of PI-
3K/ Akt/ eNOS/NO signalling pathway [32].

[18]. Recent research indicate that the immunoreactivity of phosphorylated mTOR (pmTOR) on

tissue sections is present in 63.5% of hepatocellular carcinoma cases, and a significant association

was found between pmTOR expression and tumour size/metastasis [7].

The mTOR pathway have shown a critical effector in apoptosis/programmed cell-death which

is associated with the recent cancer research. Genetic showing, the mutations in the PTEN (phos-

phatase and tensin homolog deleted on chromosome 10) gene impinging upon mTOR signalling

are commonly found in human cancer [36]. PTEN mutations are related to the cancers, including

breast, lung, bladder, brain, and so on, making it one of the most frequently mutated in tumour-

related genes [8]. PTEN affects the signalling activities in the mTOR signalling pathway, and

causes the mTOR pathway dysregulation [8]. As the dysregulation of the mTOR pathway is com-

monly found in different cancers, the inhibitor of mTOR, Rapamycin is widely used as a drug in

effective therapies and cancer study [25].
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N-myristoltransferase (NMT) is an enzyme that catalyses the addition of the myristic acid

group to N-terminal glycine residue of its target proteins, allowing proper functioning and lo-

calization [28]. Many proteins involved in a variety of signal cascades are myristoylated such as

several G-proteins, kinases and phosphates.

1.3 Objectives

1.3.1 mTOR-NMT signalling pathway: a simplified version

Research at Dr Shrivastav’s laboratory, Department of Biology, University of Winnipeg have iden-

tified that the mTOR pathway member Akt/PKB regulates NMT1 activity, establishing a con-

nection between mTOR signalling pathway and NMT signalling pathway [30], i.e., mTOR “in-

directly” phosphorylates N-myristoltransferase (NMT). Collaboration with Dr Shrivastav’s lab-

oratory allowed us to investigate the interactions between the target molecules of mTOR-NMT

signalling pathway. As the mTOR pathway is a complex system, a simplified version is consid-

ered. Figure 1.2 represents the partial mTOR-NMT signalling pathway studied in this work. The

simplified mTOR-NMT signalling pathway involves the following events:

• Binding of Rapamycin to mTOR prevents the phosphorylation of mTOR. Rapamycin re-

presses the activation of mTOR by binding to it and ”occupies” the phosphate site of mTOR,

inhibiting the phosphorylation/activation of mTOR [40].

• Phosphorylation of mTOR by some kinase. The phosphorylated mTOR (pmTOR) induces

the activation of mTOR.

• Dephosphorylation of pmTOR by some phosphatase.

• Phosphorylation of NMT by pmTOR.

• Degradation of pNMT.

• Dephosphorylation of pNMT by some phosphatase.

Figure 1.2 presents the biological events considered in this work.

1.3.2 Modelling the mTOR-NMT signalling pathway

Mathematical models are developed to describe and analyze the signalling pathways. Our goal

in this thesis is to develop mathematical models to not only describe the reactions in simplified

4



Figure 1.2: Simplified mTOR-NMT pathway. Four target molecules are considered: mammalian
target of rapamycin (mTOR), phosphorylated mTOR (pmTOR), N-myristoltransferase (NMT) and
phosphorylated NMT (pNMT). Rapamycin inhibits the phosphorylation of mTOR. Active enzyme
pmTOR plays the role of catalyst that deactivates NMT by phosphorylation.

mTOR-NMT signalling pathway presented in Figure 1.2, but also to analyze the response to the

treatment (Rapamycin). Some well-known methods can be applied to develop the mathematical

models of signalling pathways, such as ordinary differential equations (ODEs), stochastic pro-

cesses [1], game theory [21], and Boolean logic [12].

In this work, we consider time to be continuous and the observed kinetic dynamics to be determin-

istic. That is why the ODE formalism is used. The models that we develop are based on the law of

Mass Action and Michaelis-Menten kinetics. Additionally, a collection of models were designed

to follow the different biological hypotheses.

1.3.3 Structure of the manuscript

Chapter 2 presents the methods for developing mathematical models, fitting mathematical models

to experimental data to estimate the parameters, and to finally determine the ”best” model among

the group of candidate models that we have selected. In Chapter 3, based on different hypotheses,

candidate models are introduced. Furthermore, in Chapter 4, mathematical analysis and results

5



are introduced. In Chapter 5, numerical analysis and results are presented. Lastly, in Chapter 6,

we briefly discuss some interesting conclusions from the previous analyses.
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Chapter 2

Methods

Several methods used in this project are introduced in this chapter. Specifically, in Section 2.1,

we describe how to translate the signalling pathways into mathematical models using the ODE

formalism. In Section 2.2, in order to calibrate the models to the experimental data, it is explained

how parameters are estimated by Differential Evolution (DE) algorithm. In Section 2.3, to deter-

mine which hypothesis is the most likely to occur, model selection is finally presented.

2.1 Modelling Approaches

2.1.1 Modelling a reversible chemical reaction

Consider a general reversible chemical reaction in the signalling pathway:

mA+ nB
k+−−⇀↽−−
k−

pA+ sC,

where A, B, C are reactants involved in the reaction. Rates constant k+ and k− are the propor-

tionality constants for a given reaction. The numbers m, n, p and s describe the participation of

reactants in reactions. Identically, the reversible chemical reaction can be separated into two sub-

reactions R1 and R2:

Forward reaction R1:

mA+ nB
k+−−→ pA+ sC.

7



Backward reaction R2:

pA+ sC
k−−−→ mA+ nB.

Taking the reactant A as an example, the evolution equation of reactant is derived by using the

Mass Action Law [16]. The evolution equation describes the rate of change of the reactant amount

or its change with respect to the time, which is written as follows:

Rate of change of the reactant = Stoichiometric Number × Reaction Speed.

The stoichiometric numbers and reaction speeds are now introduced for each reaction.

• Stoichiometric number is the net number of the amount of a reactant consumed or produced

in the reaction. For reactions Ri, the stoichiometric number is denoted ni.

Forward reaction R1:

n1 = p−m.

Backward reaction R2:

n2 = m− p.

• Reaction speed reflects how fast the chemical species react. For a reaction Ri, the reaction

speed is denoted vi.

Forward reaction R1:

v1 = k+AmBn.

Backward reaction R2:

v2 = k−ApCs.

Thus, the evolution equation for reactant A is:

dA

dt
= (p−m)k+AmBn + (m− p)k−ApCs.

Similarly, the differential equations for all reactants present in the reversible reaction are:

dA

dt
= (p−m)k+AmBn + (m− p)k−ApCs,

dB

dt
= −nk+AmBn + nk−ApCs,

dC

dt
= sk+AmBn − sk−ApCs.

8



2.1.2 Michaelis-Menten dynamics

The biochemical reactions considered for the simplified mTOR-NMT signalling pathway are shown

in Figure (1.2). Some reactants of this pathway are enzymes and it is assumed that the enzymatic

reactions follow the Michaelis-Menten kinetics [24].

Consider the following enzymatic reaction, in which E is the enzyme, S is the substrate and P

is the product. The reaction is noted as

S
E−→ P.

It can be decomposed as follows,

E + S
Binding(k)−−−−−−⇀↽−−−−−−

k̃

N1
Catalysis(k∗)−−−−−−−→ P + E,

where N1 is the complex formed by the binding of the enzyme E to the substrate S. Using the

previous derivation, the enzymatic kinetics is described by the following differential equations:

dE

dt
= −kES + k̃N1 + k∗N1, (2.1a)

dS

dt
= −kES + k̃N1, (2.1b)

dN1

dt
= kES − k̃N1 − k∗N1, (2.1c)

dP

dt
= k∗N1. (2.1d)

Adding (2.1a) and (2.1c) reveals a common feature of enzymatic reactions:

dE

dt
+
dN1

dt
= 0.

This implies that the total number of enzyme is conserved over time and stays constant, E(t) +

N1(t) = c, ∀t ≥ 0, where c is the initial concentration of enzyme. Hence, E(t) = c−N1(t), ∀t ≥ 0.

That allows us to reduce the dimension of System (2.1) by ignoring the equation for E(t). More-

over, as System (2.1) does not depend explicitly on concentration P (t), Equation (2.1d) can be

9



decoupled from the system. Hence, System (2.1) can be analyzed as a 2-dimensional system:

dS

dt
= −kES + k̃N1 = −k(c−N1)S + k̃N1 = −kcS + (k̃ + kS)N1, (2.2)

dN1

dt
= kES − k̃N1 − k∗N1 = k(c−N1)S − k̃N1 − k∗N1 = kcS − (k̃ + k∗)N1. (2.3)

In enzymatic reactions, the concentration of enzyme is much less than the concentration of sub-

strate. Here, it yields that the concentration ofE(t) is less than S(t); the enzyme is always working

at its maximal capacity (also known as saturation rate), so that the concentration of complex N1 is

virtually constant, which means that

dN1

dt
= 0

or equivalently from (2.3),

N1 =
kcS

k̃ + k∗ + kS
. (2.4)

Substitute (2.4) into (2.2), giving

dS

dt
= −kcS +

(k̃ + kS)kcS

k̃ + k∗ + kS

= − kk∗cS

k̃ + k∗ + kS

= − k∗cS
k̃+k∗

k + S

= − KmcS

Kn + S
, (2.5)

where is Km = k∗ and Kn = (k̃ + k∗)/k.

Substituting (2.4) into (2.1d) gives

dP

dt
= k∗N1 =

kk∗cS

k̃ + k∗ + kS
=

k∗cS
k̃+k∗

k + S
=

KmcS

Kn + S
= −dS

dt
. (2.6)

Thus, Michaelis-Menten dynamics can be described by Equation (2.6), where Kmc is the maxi-

mum consumption rate of substrate or the maximum production rate of product achieved by the

system parameter Kn (often known as the half saturation constant) corresponds to a substrate

concentration. When the concentration of S reaches Kn, the reaction rate of substrate S is half of

the maximum rate Kmc.
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Note that c is related to the total concentration of active enzyme E(t); hence, E(t) can be intro-

duced in the Equation (2.6) instead of c:

dS

dt
= −dP

dt
= −KmES

Kn + S
.

Mass Action Law and Michaelis-Menten kinetics will be applied to design the collection of models

that are based on the biochemical reactions introduced in Figure 1.2.

2.2 Parameter Estimation & Differential Evolution Algorithm

Based on different biological hypotheses, four candidate models will be obtained; for each model,

two versions will be considered. These models will be presented in the next chapter and are

summarized in Table 3.1. Here, we explain how parameters of these models will be obtained.

Each model contains a different number of parameters that represent the different chemical

reactions considered. To obtain the smallest distance between simulated results and experimental

data, the parameter set P is acquired in a cost function C(P ) which is defined as follows:

C(P ) =

N∑
i=1

H∑
j=1

(Mj(P, ti)−Dj(ti))
2. (2.7)

Here P represents the parameters for a given model. N is the number of time points. H is the

number of observations at given time points. Mj(P, ti) is the model response corresponding to

the observation j obtained with the parameters P at time ti. Dj(ti) are the experimental concen-

trations of the observation j at time ti.

As mentioned previously, the goal is to obtain the smallest distance between the simulations

and the data. Thus, the best parameter set P ∗ satisfies the following condition,

C(P ∗) = min
P
{C(P )}. (2.8)

Cost function (2.7) is minimized by varying values in parameter set P . The optimal values of pa-

rameters can be obtained by using the Differential Evolution (DE) algorithm running on a Matlab

platform.

The DE algorithm is a simple and efficient heuristic method for global optimization over con-

tinuous spaces. It minimizes the cost function by iteratively updating its candidate solutions (pa-

rameters in this work) space. Similarly, other well-known optimization methods under genetic
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algorithms (GAs) work as well as DE, where both GAs and DE are examples of evolutionary com-

putation [23]. However, there exists some difference between them. Generally, GAs solutions are

represented in binary as strings of 0s and 1s, resulting in the application in discrete problems (e.g.

the application in Markov chain). However, the solutions of DE are ranging over the real number

field, where it is more commonly used in continuous optimization problems. Another difference

between these two algorithms are mentioned previously that in DE, the candidate solutions space

is iteratively updated, where in GAs it is not. Recent research has shown that in many single-

objective and multi-objective optimization cases, the Differential Evolution algorithm performs

better than the Genetic algorithms [26, 34]. For that reason, the DE algorithm is preferred in this

work.

The Differential Evolution algorithm is based on the greedy criterion [33], which means that

the new parameter values are accepted by the algorithm if and only if the value of the cost function

is reduced.

The DE algorithm includes intrinsic parameters which are:

• G the maximum generation;

• NP the maximum running times in one generation;

• CR the crossover constant, which is to increase the diversity of the parameter values and it

is determined by the user;

• F the differential weight, which is to control the enlargement of the variation of the target

parameter set.

• D the dimension of the parameter set.

The DE algorithm uses variables Tl, x and Cl(P ) that are initialized to random values at the begin-

ning.

• Tl the current best value of parameter set in l loop. The size of T is equal to 1× D;

• x the varying candidate parameters space for each generation. The size of x is equal to NP ×

D, where D depends on the parameter set P from Equation (2.7).

• Cl(P ) cost function defined in Equation (2.7) and used in l loop with parameter set P .

• P ∗ the best parameter set defined by Equation (2.8).

12



We assume a uniform distribution for all random integer numbers chosen unless otherwise stated.

The running time NP does not change during the process of DE.

Procedures followed by the DE are

1. Initialize G, NP≥ 4, CR ∈ [0, 1], F ∈ [0, 2], D and T0 randomly. The entries of x are all random

numbers and C0(T ) is chosen a large real number.

2. Start loop For i ∈ [1, G] do.

Start loop For l ∈ [1, NP ] do.

Pick up three integer numbers a, b and c from [1, NP ] at random, and a 6= b 6= c.

Pick up another integer number j ∈ [1, D] randomly.

i. Start loop For k ∈ [1, D] do.

If a random number < CR then

Do the mutation Tl(j) = xl(c, j) + F ∗ (xl(a, j)− xl(b, j))

Otherwise

Tl(j) = x(l, j)

End if

End for k

ii. Calculate the cost function Cl(P ).

If Cl(Tl) < Cl−1(Tl−1) then

Tl+1 = Tl and Cl+1(Tl+1) = Cl(Tl).

Update the ith row of x by Tl.

Otherwise

Tl+1 = Tl−1 and Cl+1(Tl+1) = Cl−1(Tl−1).

End if

End for l

End for i

3. Save the best parameter set P ∗ = T .

The general implementation of DE algorithm is given as MATLAB code in the Appendix A.
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2.3 Model Selection

The goal of model selection is to find the best model among all candidate models to support the

corresponding hypothesis [15]. In order to determine which model has the highest likelihood to

be the ”best” model, the method of Akaike Information Criterion (AIC) will be taken into consid-

eration.

AIC is based on Kullback-Leibler information theory, developed by Akaike. It shows that the

information lost between the observations (data) and the representations (models) can be calcu-

lated by the Kullback-Leibler divergence [29]. The method of AIC combines the goodness of fit

and the complexity of models [13]. Model complexity refers to the number of parameters for the

given model.

The general form of AIC [2] is defined as

AIC = −2× ln (likelihood) + 2×Q,

where ln is the logarithm function, likelihood is the maximum value of the likelihood function of

the specified model and Q is the number of the estimated parameters of the model. Assuming that

the residuals (deviation between the data and model responses) of the candidate models follow a

normal distribution, we have:

ln(likelihood) = −N
2
× ln (RSS/N),

where N is the number of data points and RSS is the sum of squared residuals or RSS is the cost

function (2.8) evaluated at the best parameter values, RSS = C(P ∗). Hence, AIC for each model

can be calculated as follows:

AIC = N × ln(RSS/N) + 2×Qe,

where Qe is the number of estimated parameters. As RSS/N is considered as the estimate of the

variance [15], Qe = Q + 1 where Q is the number of model parameter estimated. Moreover, the

smallest value of AIC indicates the ”best” model. To evaluate the likelihood of each model, the

difference between the AIC value of each model and the AIC of the best model is first calculated
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as

∆i = AICi −min AIC. (2.9)

Then, the likelihoods of the models are equal to

exp(−0.5 ×∆i).

Ultimately, in order to compare the candidate models, the likelihoods are normalized. The nor-

malized likelihoods are called the Akaike information weights Wi. The definition of the Akaike

information weight Wi is as follows:

Wi =
exp(−0.5 ×∆i)∑R
i=1 exp(−0.5 ×∆i)

, (2.10)

where R is the total number of candidate models.

The Akaike information weight Wi is the conditional probability of the candidate model i being

the ”best” model. A larger value ofWi reflects a larger possibility for the candidate model i among

all the candidate models to occur.
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Chapter 3

Candidate Models & Preliminary

Results

Based on the discussions with Dr. Anuraag Shrivastav and Dr. Varma Shrivastav 1, we designed

multiple models of mTOR-NMT signalling pathway resulting from different assumptions.

3.1 Candidate Models

Some candidate models are developed to represent the different effects or actions of the drug Ra-

pamycin on the cell machinery, others are considered without drug. For each model, there exist

two versions, Version (a) and Version (b); each scenario is studied with and without the dephos-

phorylation of pNMT. The list of models is given in Table 3.1. Furthermore, each candidate model

can be separated into mTOR and NMT components. The mTOR component contains reactants

mTOR, Rapamycin-mTOR (if the reactions involves the drug), and pmTOR. The NMT component

contains reactants NMT and pNMT.

In Model I, only NMT component is considered. In this case, the underlying assumption is

that the reactions related to mTOR components are much faster than those related to NMT compo-

nents. In contrast, in other models, reactions involving mTOR and NMT components are assumed

to occur in the same time scale. More specifically, in Model II, coupled mTOR-NMT components

are taken into account. We assume that there is no Rapamycin involved in Model II. In Model III,

mTOR and NMT components are both considered and an irreversible drug reaction is assumed to

1Department of Biology, University of Winnipeg.
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occur. In Model IV, we also consider the coupled mTOR-NMT components and a reversible drug

reaction.

Table 3.1: Table of models

Name Assumption

Model I (a) NMT component with dephosphorylation of pNMT

Model I (b) NMT component without dephosphorylation of pNMT

Model II (a) coupled mTOR-NMT components with dephosphorylation of pNMT

Model II (b) coupled mTOR-NMT components without dephosphorylation of pNMT

Model III (a) coupled mTOR-NMT components with irreversible drug reaction with dephosphoryla-
tion of pNMT

Model III (b) coupled mTOR-NMT components with irreversible drug reaction without dephosphory-
lation of pNMT

Model IV (a) coupled mTOR-NMT components with reversible drug reaction with dephosphorylation
of pNMT

Model IV (b) coupled mTOR-NMT components with reversible drug reaction without dephosphoryla-
tion of pNMT

The state variables used in models are:

• M(t), the concentration of mTOR at time t,

• P1(t), the concentration of Rapamycin-mTOR at time t,

• P2(t), the concentration of pmTOR at time t,

• P3(t), the concentration of NMT at time t,

• P4(t), the concentration of pNMT at time t.
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Table 3.2: Table of parameters

Name Definition Model Unit

k1 drug reaction rate III IV µM−1 s−1

k unbinding rate of Rapamycin-mTOR IV s−1

K̃m maximum rate of consumption of mTOR II III IV µM s−1

K̃n Michaelis constant of mTOR II III IV µM

K+
m maximum rate of consumption of pmTOR II III IV µM s−1

K+
n Michaelis constant of pmTOR II III IV µM

Km maximum rate of consumption of NMT I II III IV µM s−1

Kn Michaelis constant of NMT I II III IV µM

K∗m maximum rate of consumption of pNMT I II III IV µM s−1

K∗n Michaelis constant of pNMT I II III IV µM

Π rate in producing NMT reactions I II III IV µM s−1

r degradation rate of pNMT I II III IV s−1

R concentration of drug Rapamycin III IV µM
All the values of the parameters are nonnegative.

Figure 1.2 (page 4) shows the simplified reactions studied in this work. More specifically, reac-

tions considered for each model are now detailed and the corresponding equations are given. All

models are formulated using the ODE formalism. The red part in the following systems highlights

the difference between our candidate models, and the blue part highlights the difference between

Version (a) and (b) of each model. In Version (a), the dephosphorylation of pNMT is assumed to

be present, whereas in (b), the dephosphorylation of pNMT does not occur.
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Model I (NMT Component):

Chemical reactions:

Model I (a)

P3
P2−→ P4

P4
phosphatase−−−−−−→ P3

P4
r−→ �

� π−→ P3

Model I (b)

P3
P2−→ P4

P4
r−→ �

� π−→ P3.

Governing equations:

Model I (a)

dP3

dt
= − KmP3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π

dP4

dt
=

KmP3

Kn + P3
− K∗mP4

K∗n + P4
− rP4

Model I (b)

dP3

dt
= − KmP3

Kn + P3
+ Π

dP4

dt
=

KmP3

Kn + P3
− rP4.

Model II (mTOR-NMT components-no drug reaction):

Chemical reactions:

Model II (a)

M
kinase−−−−−−⇀↽−−−−−−

phosphatase
P2

P3
P2−→ P4

P4
phosphatase−−−−−−→ P3

P4
r−→ �

� π−→ P3

Model II (b)

M
kinase−−−−−−⇀↽−−−−−−

phosphatase
P2

P3
P2−→ P4

P4
r−→ �

� π−→ P3.

Governing equations:

Model II (a)

dM

dt
= − K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

dP2

dt
=

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

dP3

dt
= −KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π

dP4

dt
=
KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4

Model II (b)

dM

dt
= − K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

dP2

dt
=

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

dP3

dt
= −KmP2P3

Kn + P3
+ Π

dP4

dt
=
KmP2P3

Kn + P3
− rP4.

Model III (mTOR-NMT components-irreversible drug reaction):
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Chemical reactions:

Model III (a)

R (constant) +M
k1−→ P1

M
kinase−−−−−−⇀↽−−−−−−

phosphatase
P2

P3
P2−→ P4

P4
phosphatase−−−−−−→ P3

P4
r−→ �

� π−→ P3

Model III (b)

R (constant) +M
k1−→ P1

M
kinase−−−−−−⇀↽−−−−−−

phosphatase
P2

P3
P2−→ P4

P4
r−→ �

� π−→ P3.

Governing equations:

Model III (a)

dM

dt
= −k1RM −

K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

dP1

dt
= k1RM

dP2

dt
=

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

dP3

dt
= −KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π

dP4

dt
=
KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4

Model III (b)

dM

dt
= −k1RM −

K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

dP1

dt
= k1RM

dP2

dt
=

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

dP3

dt
= −KmP2P3

Kn + P3
+ Π

dP4

dt
=
KmP2P3

Kn + P3
− rP4.

Model IV (mTOR-NMT components-reversible drug reaction):

Chemical reactions:

Model IV (a)

R (constant) +M
k1−⇀↽−
k

P1

M
kinase−−−−−−⇀↽−−−−−−

phosphatase
P2

P3
P2−→ P4

P4
phosphatase−−−−−−→ P3

P4
r−→ �

� π−→ P3

Model IV (b)

R (constant) +M
k1−⇀↽−
k

P1

M
kinase−−−−−−⇀↽−−−−−−

phosphatase
P2

P3
P2−→ P4

P4
r−→ �

� π−→ P3.

Governing equations:
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Model IV (a)

dM

dt
= −k1RM −

K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

+ kP1

dP1

dt
= k1RM−kP1

dP2

dt
=

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

dP3

dt
= −KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π

dP4

dt
=
KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4

Model IV (b)

dM

dt
= −k1RM −

K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

+ kP1

dP1

dt
= k1RM−kP1

dP2

dt
=

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

dP3

dt
= −KmP2P3

Kn + P3
+ Π

dP4

dt
=
KmP2P3

Kn + P3
− rP4.

Now, we generalize the systems as follows:

dM

dt
= −F1(M) + F2(P2)−D(·),

dP1

dt
= D(·),

dP2

dt
= F1(M)− F2(P2),

dP3

dt
= −F3(P3, P2) + F4(P4) + F5(·),

dP4

dt
= F3(P3, P2)− F4(P4)− F6(P4),

(3.1)

F1(M) =


K̃mM
K̃n+M

Model II III IV

0 Model I

F2(P2) =


K+

mP2

K+
n +P2

Model II III IV

0 Model I

F3(P3, P2) =


KmP2P3

Kn+P3
Model II III IV

KmP3

Kn+P3
Model I

F4(P4) =


K∗

mP4

K∗
n+P4

Version (a)

0 Version (b)

F5(·) = Π and F6(P4) = rP4 for all models
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All parameters are nonnegative constants listed in Table 3.2.

Finally, D(·) depends on the properties of the drug; the different expressions used for D(·) are

listed in Table 3.3.

Table 3.3: The expression of D in different models

Expression of D(·) Assumption Model

0 No drug reaction I II

k1RM Irreversible drug reaction III

k1RM − kP1 Reversible drug reaction IV
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Chapter 4

Mathematical Analysis & Results

4.1 Preliminary results

4.1.1 Existence and uniqueness of solutions

Set System (3.1) as follows
dM

dt
= E1(M,P1, P2, P3, P4),

dP1

dt
= E2(M,P1, P2, P3, P4),

dP2

dt
= E3(M,P1, P2, P3, P4),

dP3

dt
= E4(M,P1, P2, P3, P4),

dP4

dt
= E5(M,P1, P2, P3, P4).

(4.1)

System (4.1) can be also considered as

X ′(t) = E(X(t)) with E : R5 → R5,

where t ∈ [t0,∞), X(t) = (M(t), P1(t), P2(t), P3(t), P4(t)) and X(t0) ≥ 0.

We set a is Lipschitz constant, b is the radius of the closed ball in R5 around X0, C is the least

upper bound of |E(X)|.

Theorem 4.1. With an initial condition X(t0) ≥ 0, System (4.1) has a unique solution that exists on

interval I : [t0 − τ, t0 + τ ], where 0 < τ < min{a, b/C}, a is Lipschitz constant, |X − X0| < b,

C = sup|E(X)|.
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Proof. System (4.1) is an autonomous system with the initial conditions

X(t0) = (M(t0), P1(t0), P2(t0), P3(t0), P4(t0)) and X(t0) ≥ 0;∀ t ∈ [t0,∞).

Functions E are the well-defined rational functions which are the continuous functions of (M,P1,

P2, P3, P4). dE/dX are also continuous functions of (M,P1, P2, P3, P4). Thus, by the Picard-

Lindelof Theorem [14], for some values τ ∈ (0,min{a, b/C}), there exists a unique solution of

System (4.1) on the interval I : [t0 − τ, t0 + τ ] [4], where a is Lipschitz constant, b is the radius of

the closed ball in R5 around X0, C = sup|E(X)|.

4.1.2 Nonnegativity of solutions

Now we prove the nonnegativity of solution of System (3.1).

Theorem 4.2. System (3.1) has nonnegative solutions, when considered with an initial condition X(t0) ≥

0.

Proof. Assume X(t0) ≥ 0 When M is 0,

dM

dt
= F2(P2)−D(·) =

K+
mP2

K+
n + P2

−D(·).

Recall from Table 3.3, D(·)|M=0 ≤ 0. It implies the derivative of M is nonnegative for any P2 ≥ 0.

Therefore, M is increasing at M = 0 and M stays nonnegative.

When P1 is 0,
dP1

dt
= D(·).

Recall from Table 3.3, D(·)|P1=0 ≥ 0. It implies the derivative of P1 is nonnegative for any M ≥ 0.

Therefore P1 is increasing at P1 = 0 and P1 stays nonnegative.

When P2 is 0,
dP2

dt
= F1(M) =

K̃mM

K̃n +M
,

which implies the derivative of P2 is nonnegative for any M ≥ 0. Therefore P2 is increasing at

P2 = 0 and P2 stays nonnegative.

When P3 is 0,
dP3

dt
= F4(P4) + F5(P5) =

K∗mP4

K∗n + P4
+ Π,
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which implies the derivative of P3 is nonnegative for any P4 ≥ 0. Therefore P3 is increasing at

P3 = 0 and P3 stays nonnegative. Note that if Π > 0, then P3(t) > 0 ∀t > t0.

When P4 is 0,
dP4

dt
= F3(P3, P2) =

KmP2P3

Kn + P3
,

which implies the derivative of P4 is nonnegative for any P2, P3 ≥ 0. Therefore P4 is increasing at

P4 = 0 and P4 stays nonnegative.

Now, the mathematical analysis of each model is discussed. Recall that the difference between

Version (a) and Version (b) of the models is the reaction of dephosphorylation of pNMT. By sub-

stituting K∗m = K∗n = 0 in Version (a), results of the Version (b) are obtained. Therefore, only the

models in Version (a) are discussed in detail.

4.2 Model I–NMT Component

Model I is expressed as follows,

dP3

dt
=− KmP3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π,

dP4

dt
=

KmP3

Kn + P3
− K∗mP4

K∗n + P4
− rP4.

(4.2)

Parameters are listed in Table 3.2.

Theorem 4.3. When Km > Π +
ΠK∗

m

Π+K∗
nr

, System (4.2) has a unique equilibrium point

(P ∗3 , P
∗
4 ) =

(
K∗mΠKn +K∗nΠrKn + Π2Kn

K∗nKmr + ΠKm −K∗mΠ−K∗nΠr −Π2
,

Π

r

)

that is locally asymptotically stable.

Proof. In order to find the equilibrium point, we solve the system:

− KmP3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π = 0, (4.3a)

KmP3

Kn + P3
− K∗mP4

K∗n + P4
− rP4 = 0. (4.3b)
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Adding (4.3a)-(4.3b), we have Π + rP4 = 0, which gives P ∗4 = Π/r.

Substituting P ∗4 into (4.3b), we get

KmP
∗
3

Kn + P ∗3
− K∗mΠ

rK∗n + Π
−Π = 0 ⇐⇒ KmP

∗
3

Kn + P ∗3
=

K∗mΠ

rK∗n + Π
+ Π.

Solving the above equation for P ∗3 , we obtain

P ∗3 =
K∗mΠKn +K∗nΠrKn + Π2Kn

K∗nKmr + ΠKm −K∗mΠ−K∗nΠr −Π2

.

In order to have P ∗3 positive, the denominator is required to be:

K∗nKmr + ΠKm −K∗mΠ−K∗nΠr −Π2 > 0⇐⇒ Km > Π +
ΠK∗m

Π +K∗nr
.

Therefore, the unique equilibrium (P ∗3 , P
∗
4 ) =

(
K∗

mΠKn+K∗
nΠrKn+Π2Kn

K∗
nKmr+ΠKm−K∗

mΠ−K∗
nΠr−Π2 ,

Π
r

)
exists, when

Km > Π +
ΠK∗

m

Π+K∗
nr

.

The Jacobian matrix J1 of System (4.2) is

J1 =

 −KmKn

(Kn+P3)2
K∗

mK
∗
n

(K∗
n+P4)2

KmKn

(Kn+P3)2
−K∗

mK
∗
n

(K∗
n+P4)2 − r

 .

For any values of (P ∗3 , P
∗
4 ), tr(J1)= −KmKn

(Kn+P∗
3 )2 −

K∗
mK

∗
n

(K∗
n+P∗

4 )2 − r < 0, and det(J1)= rKmKn

(Kn+P∗
3 )2 > 0.

Hence, by the Routh-Hurwitz criterion [5], we know that the real parts of eigenvalues of J1 eval-

uated at any equilibria are all negative, so that the equilibrium point

(P ∗3 , P
∗
4 ) =

(
K∗mΠKn +K∗nΠrKn + Π2Kn

K∗nKmr + ΠKm −K∗mΠ−K∗nΠr −Π2
,

Π

r

)

is locally asymptotical stability (LAS) when it exists.

Note that the condition is only specific in the existence of equilibrium; when the equilibrium exists,

it is always LAS.

The global stability of the equilibrium is now investigated.
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Theorem 4.4. For positive initial conditions and when Km > K∗m + Π, the unique equilibrium (P ∗3 , P
∗
4 )

of System (4.2) is global asymptotic stable.

Proof. Recalling System (4.2), we set:

dP3

dt
=− KmP3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π =: F1(P3, P4),

dP4

dt
=

KmP3

Kn + P3
− K∗mP4

K∗n + P4
− rP4 =: F2(P3, P4).

As proved previously in Theorem 4.2, the solutions of System (4.2) stay nonnegative for nonnega-

tive initial conditions. Moreover, for positive initial conditions P3(t0) > 0 and P4(t0) > 0, dP3

dt > 0

and dP4

dt > 0, which implies that for any positive initial conditions, P3 and P4 stay positive. Then,

we define a simply connected open set S1 = {(P3(t), P4(t)) | P3 > 0, P4 > 0} for the later proof.

System (4.2) can be bounded as follows:

dP3

dt
=− KmP3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π ≤ − KmP3

Kn + P3
+K∗m + Π, (4.4)

dP4

dt
=

KmP3

Kn + P3
− K∗mP4

K∗n + P4
− rP4 ≤ Km − rP4. (4.5)

As System (4.2) is continuous and C1, it is monotone dynamic. If we prove that the solutions of

dP̃3

dt = f(P̃3) = − KmP̃3

Kn+P̃3
+ K∗m + Π are bounded, then the solution of the differential equation

dP3

dt in (4.2) cannot be unbounded by comparison theorem [20]. To find the equilibrium for P̃3,

we set − KmP̃3

Kn+P̃3
+ K∗m + Π=0, which gives us the equilibrium point P̃ ∗3 =

Kn(K∗
m+Π)

Km−K∗
m−Π that exists,

when Km > K∗m + Π. Recall that to have a positive equilibrium in System (4.2), the condition

Km > Π +
ΠK∗

m

Π+K∗
nr

is required. Combining the above two conditions, we have Km > max{Π +

K∗m,Π +
ΠK∗

m

Π+K∗
nr
} = Π +K∗m.

When considering dP̃3

dt = f(P̃3) = − KmP̃3

Kn+P̃3
+K∗m + Π,

P̃3 ∈ (0, P̃ ∗3 ), f(P̃3) = − KmP3

Kn + P3
+K∗m + Π > 0,

P̃3 ∈ (P̃ ∗3 ,∞), f(P̃3) = − KmP3

Kn + P3
+K∗m + Π < 0.

By phase line analysis, we can conclude that the equilibrium P̃ ∗3 is globally asymptotically stable.

Moreover, 0 < lim sup{P̃3(t)} ≤ m = max{ Kn(K∗
m+Π)

Km−K∗
m−Π , P̃3(t0)}. Thus, we conclude that the solu-

tion of P3(t) in System (4.2) is also bounded on S1 and 0 < lim sup{P3(t)} < lim sup{P̃3(t)} ≤ m.
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From Inequation (4.5), we have dP4

dt ≤ Km − rP4. Integrating with respect to time,

P4(t) ≤ Km

r
+ c̃e−rt with c̃ =

[
P4(t0)− Km

r

]
ert0 .

As previously proved, we have the positivity of P4 when P4(t0) > 0; therefore,

0 < P4(t) ≤ Km

r
+ c̃e−rt

and

0 < lim sup{P4(t)} ≤ max

{
Km

r
;P4(t0)

}
.

Hence, the solution P4 is bounded in the domain S1.

System (4.2) has bounded solutions in domain S1. By Poincaré-Bendixson Trichotomy, the locally

asymptotically stable (LAS) unique equilibrium point is globally asymptotically stable (GAS) or

periodic solutions exist. Next, Bendixson’s negative Criterion [19] is applied to rule out the exis-

tence of periodic solutions in S1. For this, we compute the divergence,

div(F1, F2) =
dF1

dP3
+
dF2

dP4

= − KmKn

(Kn + P3)2
− K∗mK

∗
n

(K∗n + P4)2
− r

< 0 in S1.

The sign of div(F1, F2) does not change in S1. By Bendixson’s negative Criterion, there does not

exist periodic solutions of System (4.2). Therefore, the equilibrium point (P ∗3 , P
∗
4 ) is GAS when

Km > K∗m + Π.

In summary, the equilibrium point exists in both cases, it is the stability that varies. Specifically,

for System (4.2) the following conclusions hold.

1. If Km >
ΠK∗

m

Π+K∗
nr

+ Π, there exists a unique equilibrium point

(P ∗3 , P
∗
4 ) =

(
K∗mΠKn +K∗nΠrKn + Π2Kn

K∗nKmr + ΠKm −K∗mΠ−K∗nΠr −Π2
,

Π

r

)
,

which is LAS.
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2. If Km > K∗m + Π, there exists a unique equilibrium point

(P ∗3 , P
∗
4 ) =

(
K∗mΠKn +K∗nΠrKn + Π2Kn

K∗nKmr + ΠKm −K∗mΠ−K∗nΠr −Π2
,

Π

r

)

that is GAS.

Remark that the condition for the global stability is more conservative, since Km > K∗m + Π >

ΠK∗
m

Π+K∗
nr

+ Π.

Theorems (4.3) and (4.4) all hold for Version (b) of Model I. However, both conditions for local

and global stability simplify to Km > Π. For Version (b) of Model I, when Km > Π, there exists a

unique equilibrium that is globally asymptotic stable.

Biological Interpretation

In Model I, we only consider the NMT component. When the rate of phosphorylation of NMT is

large enough, the NMT concentration stabilizes. The critical value for the rate of phosphorylation

depends on the “production rate” of NMT.

4.3 Model II–Coupled mTOR-NMT Components–No drug reac-

tion

Recall Model II (a):
dM

dt
=− K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

,

dP2

dt
=

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

,

dP3

dt
=− KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π,

dP4

dt
=
KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4.

(4.6)

Parameters are listed in Table 3.2.

In System (4.6), adding the differential equations for M and P2 gives,

dM

dt
+
dP2

dt
= 0⇐⇒ ∃ c ∈ R, M(t) + P2(t) = c, ∀t ≥ 0,
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since M(t) + P2(t) = c,∀t ≥ 0, where c = M(0) + P2(0).

In order to reduce the dimension of System (4.6), we substitute M(t) in System (4.6) with

c− P2(t), and we have:
dP2

dt
=
K̃m(c− P2)

K̃n + c− P2

− K+
mP2

K+
n + P2

,

dP3

dt
=− KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π,

dP4

dt
=
KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4.

(4.7)

We define the following:

A = K+
m − K̃m,

B = −K̃mK
+
n −K+

mK̃n − (K+
m − K̃m)c,

C = K̃mK
+
n c,

D =
K∗mΠ

rK∗n + Π
+ Π.

(4.8)

Theorem 4.5. System (4.7) has a unique equilibrium (P ∗2 , P
∗
3 , P

∗
4 ) =

(
P ∗2 ,

DKn

KmP∗
2−D

, Π
r

)
when P ∗2 >

D
Km

=
K∗

mΠ+rK∗
nΠ+Π2

rK∗
n+ΠKm

,

where

0 < P ∗2 =


−B−

√
B2−4AC
2A , when A 6= 0.

−CB , when A = 0.

When the equilibrium exists, it is locally asymptotically stable.

Note that the condition is only a condition for the existence of equilibrium; when the equilib-

rium exists, it is always LAS. The proof is given in Appendix B.

Theorem 4.6. If, additionally to the conditions in Theorem 4.5, there holds that Kmε > K∗m + Π with

ε = minP2(t) > 0, then the equilibrium (P ∗2 , P
∗
3 , P

∗
4 ) in Theorem 4.5 is globally asymptotically stable.

Proof. Observe that System (4.7) can be considered as a hierarchical system, by writing it as fol-

lows:

mTOR subsystem:
dP2

dt
=
K̃m(c− P2)

K̃n + c− P2

− K+
mP2

K+
n + P2

= F1(P2). (4.9)

NMT subsystem:


dP3

dt = −KmP2P3

Kn+P3
+

K∗
mP4

K∗
n+P4

+ Π,

dP4

dt = KmP2P3

Kn+P3
− K∗

mP4

K∗
n+P4

− rP4.

(4.10)
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First, we investigate the asymptotic behaviour of mTOR subsystem.

To find the equilibrium point of the mTOR subsystem, we set F1(P2) = K̃m(c−P2)

K̃n+c−P2
− K+

mP2

K+
n +P2

= 0.

That is the same as f(P2) = AP 2
2 + BP2 + C = 0 defined in polynomial equation (B.2) with nota-

tions defined in (4.8).

We are using the same cases I, II, III as in the proof of Theorem 4.5. Recalling that there is a

unique P ∗2 value in (0, c]

1. In case I, when A > 0, based on the Figure B.1,

if P2 ∈ (0, P ∗2 ), dP2

dt > 0,

if P2 ∈ (P ∗2 , c],
dP2

dt < 0,

by phase line analysis, P ∗2 is GAS in case I.

2. In case II, when A < 0, based on the Figure B.2,

if P2 ∈ (0, P ∗2 ), dP2

dt > 0,

if P2 ∈ (P ∗2 , c],
dP2

dt < 0,

by phase line analysis, P ∗2 is GAS in case II.

3. In case III, when A = 0, based on the Figure B.3,

if P2 ∈ (0, P ∗2 ), dP2

dt > 0,

if P2 ∈ (P ∗2 , c],
dP2

dt < 0,

by phase line analysis, P ∗2 is GAS in case III.

Thus, for the mTOR subsystem, there exists a unique interior equilibrium that is always GAS.

Finally, we investigate the stability of the NMT subsystem. For any positive initial condition

P2(t0) > 0, we have dP2/dt > 0. Moreover, since, as previously mentioned, M(t) + P2(t) = c

from System (4.6), we have P2(t) < c, ∀ t > t0. Thus, we define the domain S2 = {P2 |0 < P2 < c}.

Domain S2 is invariant under the flow of System (4.9), so ∃ ε > 0 such as P2(t) > ε, ∀t ≥ 0.

Consequently, the following inequations can be considered:

dP3

dt
=− KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π < − KmεP3

Kn + P3
+K∗m + Π,

dP4

dt
=
KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4 ≤ Km − rP4.
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Similarly to the proof of Model I (NMT component), if we prove that the solutions of

dP̃3

dt
= f(P̃3) = − KmεP̃3

Kn + P̃3

+K∗m + Π

are bounded, then the solution of the differential equation dP3

dt in (4.10) cannot be unbounded. To

find the equilibrium for P̃3, we set −KmεP̃3

Kn+P̃3
+ K∗m + Π = 0, which gives us the equilibrium point

P̃ ∗3 (t) =
Kn(K∗

m+Π)
Kmε−K∗

m−Π that exists when Kmε > K∗m + Π.

Remark that the P3−components of the equilibrium for systems (4.7) and (4.10) are the same, and

all the analysis done on the existence and expression of equilibrium for (4.7) holds for (4.10). Recall

that to have a positive equilibrium P ∗3 in Equation (B.3), the following conditions are required:

P ∗2 > D
Km

=
K∗

mΠ+rK∗
nΠ+Π2

(rK∗
n+Π)Km

and D =
K∗

mΠ
rK∗

n+Π + Π. As shown previously, the condition Kmε >

K∗m + Π is required to the existence of P̃ ∗3 (t). Combining the above conditions, we know that

P ∗2 > ε and K∗m >
K∗

mΠ
rK∗

n+Π . Then, KmP
∗
2 > Kmε > K∗m + Π > D. Thus, when Kmε > K∗m + Π, P ∗3

is positive and the interior equilibrium of System (4.10) exists and so the same is true for (4.7).

Similarly to the proof of Theorem (4.4),

when P̃3 ∈ (0, P̃ ∗3 ), f(P̃3) = − KmεP̃3

Kn + P̃3

+K∗m + Π > 0,

when P̃3 ∈ (P̃ ∗3 ,∞), f(P̃3) = − KmεP̃3

Kn + P̃3

+K∗m + Π < 0.

Therefore, by phase line analysis the equilibrium P̃ ∗3 is GAS when it exists. Moreover,

lim sup

{
P̃3(t)} ≤ m = max{ Kn(K∗m + Π)

Kmε−K∗m −Π
, P̃3(t0)

}

and then,

lim sup{P3(t)} < lim sup{P̃3(t)} ≤ m.

Thus, we conclude that the solution of P3(t) in the NMT subsystem (4.10) is also bounded when

Kmε > K∗m + Π.

The proof of the boundedness of P4(t) and the same analysis as for Theorem 4.4 allows us to

conclude on the asymptotical behaviour of System (4.10). Therefore, the same conclusion holds,

the unique equilibrium (P ∗3 , P
∗
4 ) is GAS when Kmε > K∗m + Π.

Finally, we can conclude that the unique equilibrium (P ∗2 , P
∗
3 , P

∗
4 ) of System (4.7) is globally

asymptotically stable when the condition Kmε > K∗m + Π is satisfied, where ε = min
t
P2(t).
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Now, returning to the full System (4.6), System (4.6) has a unique equilibrium

(
M∗, P ∗2 , P

∗
3 , P

∗
4 ) = (c− P ∗2 , P ∗2 ,

DKn

KmP ∗2 −D
,

Π

r

)
,

where

0 < P ∗2 =


−B−

√
B2−4AC
2A , when A 6= 0.

−CB , when A = 0.

The above notations A,B,C,D are defined in Equations (4.8).

1. When KmP
∗
2 >

K∗
mΠ

rK∗
n+Π + Π, there exists a unique equilibrium that is locally asymptotically

stable.

2. When Kmε > K∗m+Π, the unique equilibrium point is globally asymptotically stable, where

ε = min
t
P2(t).

Note that the condition for global stability is more conservative, since KmP
∗
2 > Kmε > K∗m + Π >

K∗
mΠ

rK∗
n+Π + Π.

Theorems 4.5 and 4.6 hold for Version (b) of Model II. However, the condition for the existence,

LAS and GAS simplifies to ε = min
t
P2(t) > Π/Km. In summary, for Version (b) of Model II, when

ε > Π/Km, there exists a unique equilibrium that is always GAS.

Biological Interpretation

When time is large, if the concentration of catalyst (pmTOR) is greater than the ratio of the pro-

ducing rate over the consuming rate of NMT, the concentration of reactants will stabilize for any

positive initial conditions.
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4.4 Model III–Coupled mTOR-NMT Component–Irreversible drug

reaction

In Model III, we add an irreversible drug reaction to the system. Recall equations for Model III (a):

dM

dt
=− k1RM −

K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

, (4.11a)

dP1

dt
=k1RM, (4.11b)

dP2

dt
=

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

, (4.11c)

dP3

dt
=− KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π, (4.11d)

dP4

dt
=
KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4. (4.11e)

Parameters are listed in Table 3.2.

To find equilibrium points (M∗, P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 ), we reduce the dimension of the system. Since

dM
dt + dP1

dt + dP2

dt = 0, it follows that M(t) + P1(t) + P2(t) = c, where c is a constant, c = M(t0) +

P1(t0) + P2(t0). Thus, System (4.11) can be reduced to a 4-dimensional system:

dM

dt
=− k1RM −

K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

,

dP2

dt
=

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

,

dP3

dt
=− KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π,

dP4

dt
=
KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4.

(4.12)

To calculate the equilibrium solutions, we have to solve the following equations:

−k1RM −
K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

= 0, (4.13a)

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

= 0, (4.13b)

−KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π = 0, (4.13c)

KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4 = 0. (4.13d)
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Using (4.13a) - (4.13b), we can conclude that M∗ = 0. Substituting M∗ = 0 into (4.13b) gives

P ∗2 = 0 and since M(t) + P1(t) + P2(t) = c, P ∗1 = c. Adding (4.13c) and (4.13d), we obtain

P ∗4 = Π/r. P ∗3 cannot be explicitly calculated. We will have a theorem showing the nonexistence

of equilibrium of System (4.11) later.

Observe that System (4.12) can be considered as 2 subsystems as follows:

mTOR subsystem:


dM
dt = F1(M,P2) = −k1RM − K̃mM

K̃n+M
+

K+
mP2

K+
n +P2

,

dP2

dt = F2(M,P2) = K̃mM
K̃n+M

− K+
mP2

K+
n +P2

.

(4.14)

NMT subsystem:


dP3

dt = −KmP2P3

Kn+P3
+

K∗
mP4

K∗
n+P4

+ Π,

dP4

dt = KmP2P3

Kn+P3
− K∗

mP4

K∗
n+P4

− rP4.

(4.15)

The mTOR Subsystem (4.14) does not depend on P3 and P4, then the mTOR subsystem can be

studied independently.

Theorem 4.7. The mTOR Subsystem (4.14) has a unique equilibrium (M∗, P ∗2 ) = (0, 0), which is globally

asymptotically stable and the NMT Subsystem (4.15) is unbounded.

Proof. In the mTOR subsystem, there is a unique equilibrium (M∗, P ∗2 ) = (0, 0). The Jacobian

matrix of the mTOR subsystem is

J3 =

− K̃mK̃n

(K̃n+M)2
− k1R

K+
mK

+
n

(K+
n +P2)2

K̃mK̃n

(K̃n+M)2
− K+

mK
+
n

(K+
n +P2)2

 .

The eigenvalues of matrix J3 evaluated at (M∗, P ∗2 ) = (0, 0) are:

λ1 = −1

2

√(
K̃m

K̃n

+ k1R+
K+
m

K+
n

)2 − 4(k1R)(
K+
m

K+
n

) +
K̃m

K̃n

+ k1R+
K+
m

K+
n

 ,

λ2 =
1

2

√(
K̃m

K̃n

+ k1R+
K+
m

K+
n

)2 − 4(k1R)(
K+
m

K+
n

)− K̃m

K̃n

− k1R−
K+
m

K+
n

 .
Therefore, the real part of the eigenvalue λ1 is negative.

For the eigenvalue λ2, we have the following:

If λ2 ∈ C, Re(λ2) < 0.
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If λ2 ∈ R,

λ2 =
1

2

√(
K̃m

K̃n

+ k1R+
K+
m

K+
n

)2 − 4(k1R)(
K+
m

K+
n

)− (
K̃m

K̃n

+ k1R+
K+
m

K+
n

)


=

1

2

√(
K̃m

K̃n

+ k1R+
K+
m

K+
n

)2 − 4(k1R)(
K+
m

K+
n

)−

√
(
K̃m

K̃n

+ k1R+
K+
m

K+
n

)2

 .
As
√

( K̃m

K̃n
+ k1R+ K+

m

K+
n

)2 − 4(k1R)(K
+
m

K+
n

) <
√

( K̃m

K̃n
+ k1R+ K+

m

K+
n

)2, the eigenvalue λ2 is negative.

Consequently, the equilibrium point (M∗, P ∗2 ) is locally asymptotically stable.

Furthermore, as previously shown, in the mTOR subsystem,M(t)+P2(t) ≤ c. This implies that

the solutions of the mTOR subsystem are bounded in domain S3 defined as S3 = {M ≥ 0, P2 ≥

0, M + P2 ≤ c}. By the Poincaré-Bendixson Trichotomy, either the unique equilibrium (M∗, P ∗2 )

in mTOR subsystem is globally asymptotically stable (GAS) or periodic solutions or homoclinic

orbits exist. However, the equilibrium point is unique and LAS, which rules out of the existence

of homoclinic orbits. If there were periodic solutions, they would have to surround the unique

equilibrium. In this case, the periodic orbit would run out of the positive quadrant as the equilib-

rium is a boundary equilibrium. However, we previously proved that solutions stay nonnegative.

Hence, the presence of periodic solution is ruled out. Finally, under the Poincaré-Bendixson Tri-

chotomy, the only possible situation is the global asymptotic stability of the boundary equilibrium

(M∗, P ∗2 ) = (0, 0).

The solution of P2(t) for the mTOR subsystem is approaching the equilibrium point P ∗2 = 0 with

any nonnegative initial conditions. Hence, for time t sufficiently large, the following differential

equation for P3 can be considered:

dP3

dt
=

K∗mP
∗
4

K∗n + P ∗4
+ Π.

It follows that

Π ≤ dP3

dt
.

Integrating with respect to time t gives Πt+ P3(t0) ≤ P3(t). Consequently, the value of P3(t) will

keep increasing to infinity, P3(t) is unbounded. Thus, there is no equilibrium point in the NMT

Subsystem (4.11).

Remark that Theorem 4.7 holds for Version (b) of Model III.

In summary, the mTOR Subsystem (4.14) has a unique equilibrium (M∗, P ∗2 ) = (0, 0), which is

36



globally asymptotically stable and the NMT Subsystem (4.15) is unbounded.

Biological Interpretation

In the irreversible drug reaction case (Model III), the drug is very efficient and powerful enough to

inhibit all the phosphorylation of mTOR, so that the concentration of catalyst or enzyme pmTOR

will be absent in the long run. Because of the nonexistence of enzyme pmTOR, the system keeps

producing NMT without allowing its phosphorylation, which makes the concentration of NMT

increase without bounds. In reality, the unbounded increase of NMT will not occur.

4.5 Model IV–Coupled mTOR-NMT Components–Reversible drug

reaction for Rapamycin-mTOR

The reaction of Rapamycin-mTOR is now assumed to be reversible. Mathematical equations of

Model IV are expressed as follows:

dM

dt
=− k1RM −

K̃mM

K̃n +M
+

K+
mP2

K+
n + P2

+ kP1, (4.16a)

dP1

dt
=k1RM − kP1 (4.16b)

dP2

dt
=

K̃mM

K̃n +M
− K+

mP2

K+
n + P2

, (4.16c)

dP3

dt
=− KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π, (4.16d)

dP4

dt
=
KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4. (4.16e)

Parameters are listed in Table (3.2).

Adding (4.16a)-(4.16c), gives dM(t)
dt + dP1(t)

dt + dP2(t)
dt = 0. Hence, ∀t ≥ 0,M(t) + P1(t) + P2(t) = c

where c is a constant defined as M(t0) + P1(t0) + P2(t0) = c. So, P2(t) = c−M(t)− P1(t).
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Therefore, the System (4.16) can be reduced to a 4-dimensional system:

dM

dt
= −k1RM −

K̃mM

K̃n +M
+

K+
m(c−M − P1)

K+
n + (c−M − P1)

+ kP1,

dP1

dt
= k1RM − kP1,

dP3

dt
= −Km(c−M − P1)P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π,

dP4

dt
=
Km(c−M − P1)P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4.

(4.17)

Before stating the theorems, we introduce the following notations:

A = (K̃m −K+
m)(1 + n),

B = −(K̃m −K+
m)c− K̃mK

+
n − (K+

m + nK+
m)K̃n,

C = K+
mK̃nc,

D = Π(K∗m +K∗nr + Π),

E = Km(K∗nr + Π),

n =
k1R

k
.

Theorem 4.8. System (4.16) has a unique equilibrium

(M∗, P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 ) =

(
M∗, nM∗, c− (1 + n)M∗,

KnD

Ec−D − E(1 + n)M∗
,

Π

r

)
,

if and only if P ∗2 > D
E =

Π(K∗
m+K∗

nr+Π)
Km(K∗

nr+Π) , where

0 < M∗ =


−B−

√
B2−4AC
2A , when A 6= 0.

−CB , when A = 0.

When the equilibrium exists, it is locally asymptotically stable.

The proof of Theorem 4.8 is presented in Appendix C.

Theorem 4.9. For any positive initial conditions, when Kmε > K∗m + Π with ε = min
t
P2(t), System

(4.16) has a unique positive equilibrium that is globally asymptotically stable.
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Proof. For positive initial conditions, M(t0), P1(t0), P3(t0), P4(t0) > 0, the signs of differential

equations of System (4.17) are: dMdt > 0, dP1

dt > 0, dP3

dt > 0, dP4

dt > 0, ∀t ≥ t0. That implies that M(t),

P1(t), P3(t), P4(t) cannot be equal to 0 withM(t0), P1(t0), P3(t0), P4(t0) > 0. As dM
dt + dP1

dt + dP2

dt = 0,

there is the conservation of total mTOR molecules, i.e. M(t)+P1(t)+P2(t) = c, ∀t ≥ t0, where c is

a constant defined such as c = M(t0) +P1(t0) +P2(t0). Thus, a simply connected open domain S4

is defined as S4 = {M,P1, P3, P4| 0 < M < c, 0 < P1 < c, 0 < P3, 0 < P4}. S4 is invariant under

the flow of System (4.17). Recall the mTOR subsystem,

dM

dt
= −k1RM −

K̃mM

K̃n +M
+

K+
m(c−M − P1)

K+
n + (c−M − P1)

+ kP1 =: F1(M,P1),

dP1

dt
= k1RM − kP1 =: F2(M,P1).

We know that the solutions M(t) and P1(t) are bounded. The Poincaré-Bendixson Trichotomy is

applied to show that either the LAS unique interior equilibrium (M∗, P ∗1 ) is globally asymptoti-

cally stable or periodic solutions exist. The Bendixson negative Criterion is used to rule out the

periodic solutions. Consider the divergence of the vector field defined in the mTOR subsystem:

div(F1, F2) =
dF1

dM
+
dF2

dP1

= − K̃mK̃n

(K̃n +M)2
− K+

mK
+
n

(K+
n + c−M − P1)2

− k1R− k

< 0 in S2.

The sign of div(F1, F2) does not change on domain S4. By Bendixson’s negative Criterion, there

does not exist any periodic solutions. Therefore, in the mTOR subsystem, there exists a unique

equilibrium point (M∗, P ∗1 ) that is GAS.

Using the same method as in the proof of Theorem 4.4 and Theorem 4.6, the solutions P3 and

P4 of system can be proved to be bounded by considering the following inequations:

dP3

dt
=− KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π < − KmεP3

Kn + P3
+K∗m + Π,

dP4

dt
=
KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4 ≤ Km − rP4.

Using a phase line analysis, Poincaré-Bendixson Trichotomy and Bendixson negative Criterion,

we can also easily prove that the unique equilibrium of System (4.16) is globally asymptotically
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stable when Kmε > K∗m + Π, where ε = min{P2(t)} > 0. Combining the condition of existence

and the condition of GAS, we have Π(K∗
m+K∗

nr+Π)
Km(K∗

nr+Π) <
K∗

m+Π
Km

< ε < P ∗2 . Thus, when K∗
m+Π
Km

< ε, the

unique equilibrium exists and is GAS.

In summary, if P ∗2 > D
E =

Π(K∗
m+K∗

nr+Π)
Km(K∗

nr+Π) , System (4.16) has a unique equilibrium

(M∗, P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 ) =

(
M∗, nM∗, c− (1 + n)M∗,

KnD

Ec−D − E(1 + n)M∗
,

Π

r

)
,

where

0 < M∗ =


−B−

√
B2−4AC
2A , when A 6= 0,

−CB , when A = 0.

1. When P ∗2 >
Π(K∗

m+K∗
nr+Π)

Km(K∗
nr+Π) the equilibrium exists and it is locally asymptotically stable,

2. When ε >
K∗

m+Π
Km

, the unique equilibrium point is globally asymptotically stable, where

ε = min
t
P2(t).

A, B, C, D and E are defined in (C.3).

The condition for global asymptotic stability is more conservative, since P ∗2 > ε >
K∗

m+Π
Km

>

Π(K∗
m+K∗

nr+Π)
Km(K∗

nr+Π) .

Theorems 4.8 and 4.9 hold for Version (b) of Model IV. However, the condition of existence and

LAS simplifies to P ∗2 > Π
Km

and the condition for GAS simplifies to ε = min
t
P2(t) > Π

Km
.

Biological Interpretation

In the reversible drug reaction (Model IV), when the consumption rate of NMT (Kmε) is greater

than the producing rate of NMT (K∗m + Π), the concentration of reactants will stabilize for any

positive initial conditions.

40



4.6 Mathematical summary of models

In order to interpret the biological implication of mathematical results, all mathematical conditions

and conclusions are summarized into two different ways in Table 4.1 and Figure 4.1.

Table 4.1: Mathematical summary of asymptotic behaviour of models. Parameters used here are
listed in Table 3.2. LAS means local asymptotic stability. GAS means global asymptotic stability.
The mTOR subsystem is defined in System (4.14). The NMT subsystem is defined in System (4.15).
In each model, the condition for LAS is only a condition for the existence of equilibrium; when the
equilibrium exists, it is always LAS.

Models Equilibria Existence and LAS Condition of GAS

Model I (a)
Positive Initial Condition Unique Interior Equilibrium 1 >

Π(K∗
m+K∗

nr+Π)
Km(K∗

nr+Π)

mTOR subsystem: GAS.
When 1 >

K∗
m+Π
Km

,

NMT subsystem: GAS.

Model I (b)
Positive Initial Condition Unique Interior Equilibrium 1 > Π

Km

mTOR subsystem: GAS.
When 1 > Π

Km
,

NMT subsystem: GAS.

Model II (a)
Positive Initial Condition Unique Interior Equilibrium P ∗2 >

Π(K∗
m+K∗

nr+Π)
Km(K∗

nr+Π)

mTOR subsystem: GAS.
When ε > K∗

m+Π
Km

,
NMT subsystem: GAS.

Model II (b)
Positive Initial Condition Unique Interior Equilibrium P ∗2 > Π

Km

mTOR subsystem: GAS.
When ε > Π

Km
,

NMT subsystem: GAS.

Model III (a)
Nonnegative Initial

Condition

mTOR subsystem
has a unique equilibrium.

NMT subsystem
is unbounded.

-
mTOR subsystem: GAS.

NMT subsystem:
unbounded.

Model III (b)
Nonnegative Initial

Condition

mTOR subsystem
has a unique equilibrium.

NMT subsystem
is unbounded.

-
mTOR subsystem: GAS.

NMT subsystem:
unbounded.

Model IV (a)
Positive Initial Condition Unique Interior Equilibrium P ∗2 >

Π(K∗
m+K∗

nr+Π)
Km(K∗

nr+Π)

mTOR subsystem: GAS.
When ε > K∗

m+Π
Km

,
NMT subsystem: GAS.

Model IV (b)
Positive Initial Condition Unique Interior Equilibrium P ∗2 > Π

Km

mTOR subsystem: GAS.
When ε > Π

Km
,

NMT subsystem: GAS.

In all models, the mTOR subsystem can be considered independently, and the equilibrium in

the mTOR subsystem is always GAS. Furthermore, in Table 4.1, the values of P ∗2 in Model II and

Model IV are different, and ε is defined as the minimum values of P2(t) in the given models. The

specific expressions of P ∗2 can be found in Theorem 4.5 for Model II and Theorem 4.8 for Model

IV, and the expressions of P ∗2 are presented as follows:
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Model II: P ∗2 =
(K̃m −K+

m)c− K̃mK
+
n −K+

mK̃n

2(K̃m −K+
m)

+

√
[(K̃m −K+

m)c+ (K̃mK
+
n )− (K̃nK

+
m)]2 + 4K̃mK

+
mK̃nK

+
n

2(K̃m −K+
m)

,

Model III: P ∗2 = 0,

Model IV: P ∗2 =
(K̃m −K+

m)c− K̃mK
+
n − (1 + n)K+

mK̃n

2(K̃m −K+
m)

+

√
[(K̃m−K+

m)c+(K̃mK
+
n )−(K̃nK

+
m)(1+n)]2+4K̃mK

+
mK̃nK

+
n (1+n)

2(K̃m−K+
m)

.

Note that n = k1R/k.

Table 4.1 shows that except Model III, all models have an unique interior equilibrium under some

conditions. In Model III, the irreversible drug reaction results in the decrease of the concentration

of pmTOR to 0. Consequently, the phosphorylation of NMT by pmTOR is inhibited. As NMT

is synthesized, the concentration of NMT grows unbounded. In Table 4.1, the inequations which

determine the existence of equilibrium, local asymptotic stability and global asymptotic stability

show the connections between the mTOR subsystem and the NMT subsystem.

In Figure 4.1, a summary of the mathematical conditions is presented by taking Km as a bifur-

cation parameter. Only Model I, Model II and Model IV are considered. In Model I, when the

bifurcation parameter Km is less than Π(K∗
m+K∗

nr+Π)
(K∗

nr+Π) , the concentration of NMT in Model I is un-

bounded. However, when parameter Km is between Π(K∗
m+K∗

nr+Π)
(K∗

nr+Π) and K∗m + Π, Model I has a

unique equilibrium that is locally asymptotically stable. Moreover, whenKm is greater than the bi-

furcation valueK∗m+Π, the unique equilibrium of Model I is not only locally asymptotically stable,

but also globally asymptotically stable. For Model II and Model IV, when Km <
Π(K∗

m+K∗
nr+Π)

P∗
2 (K∗

nr+Π) ,

both Model II and Model IV are unbounded. Furthermore, as for Model I, when Km is between
Π(K∗

m+K∗
nr+Π)

P∗
2 (K∗

nr+Π) and K∗
m+Π
ε , Model II and Model IV have a unique equilibrium that is locally asymp-

totically stable. Finally, when Km is greater than K∗
m+Π
ε , the unique equilibrium in Model II and

Model IV is globally asymptotically stable. The values of P ∗2 in Model II and Model IV are distinct

as well as ε = min
t
P2(t).
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Figure 4.1: Mathematical summary of models. Bifurcation values determine the asymptotical
behaviour for Model I, Model II and Model IV.
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Chapter 5

Numerical analysis & results

5.1 Parameter Estimation

5.1.1 Data

Dr. Anuraag Shrivastav and Dr. Varma Shrivastav1 provided the experimental data that are used

for the calibration and validation of our mathematical models. The data represents the concentra-

tions of total mTOR, pmTOR and NMT in cells treated or non-treated with the drug Rapamycin at

60 seconds, 300 seconds, 600 seconds and 1800 seconds. Recall that total mTOR refers to the sum

of mTOR, Rapamycin-mTOR and pmTOR. Raw data from Dr. Shrivastav are shown in Table 5.1

and plotted in Figures 5.1– 5.3. The normalization of raw data is done by taking the data at a given

time and dividing it by the data at 60 seconds.

Table 5.1: Raw data2. Units are listed in Table 3.2, these are concentration

Data 1 min 5 mins 10 mins 30 mins
total mTOR 8,431,024.00 8,551,756.00 7,905,224.00 6,393,388.00

pmTOR 8,479,170.07 7,021,670.96 6,516,744.89 4,299,069.68
NMT 350,262.92 1,442,335.56 2,660,528.56 3,122,983.96

total mTOR (no drug) 9,125,360,00 9,050,100.00 7,888,012.00 8,043,508.00
pmTOR (no drug) 8,831,683.41 7,458,227.31 9,080,854.17 8,211,956.25

NMT (no drug) 3,461,880.52 1,450,754.60 854,565.60 787,133.16

1 Department of Biology, University of Winnipeg.
2 Dr. Vasma Shrivastav et al unpublished data. 2015.
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Figure 5.1: Experimental data without Rapamycin. Left column: (Raw data) concentrations of
total mTOR, pmTOR and NMT. Right column: (Normalized data) total mTOR, pmTOR and NMT.
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In absence of drug, Figure 5.1 depicts the fact that the concentrations of the total mTOR and

pmTOR stay constant. However, the concentration of NMT decreases quickly from 60 seconds to

300 seconds and it stabilizes after 600 seconds.

Figure 5.2: Data with Rapamycin, Left column: (Raw data) concentrations of mTOR, pmTOR and
NMT. Right column: (Normalized data) total mTOR, pmTOR and NMT.
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Under the effect of drug, the concentration of total mTOR stays constant, while the concentra-

tion of pmTOR decreases. Moreover, the concentration of NMT increase and then stabilize (Figure
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5.2). In the presence of the drug, the concentration of NMT is increasing fast (Figure 5.2). This

behaviour can be explained by the fact that the Rapamycin inhibits the phosphorylation of mTOR,

which lowers the concentration of pmTOR and results in less phosphorylation of NMT, and an

increase of the concentration of NMT.

Figure 5.3: Data with and without drug comparison, the dashed curves are the data without drug
and the solid curves are the data with drug.
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Figure 5.3 combines Figures 5.1 and 5.2 to highlight the effect of the drug. The concentration

of pmTOR is decreasing with Rapamycin, while the concentration stays constant without it. In

addition, the total mTOR molecules are conserved and concentration of total mTOR stays constant

with or without Rapamycin. Moreover, under the drug effects, the concentration of NMT increases

at the beginning and stabilizes at the end, while it decreases and stabilizes without the drug.

5.1.2 Parameter Values & Best Fit

Optimization method is applied to estimate the values of the parameter set for each model in or-

der to obtain the best fit for the experimental data. The values of parameters P ∗ obtained by DE

are presented in Table 5.2. Simulations of the model responses, using these parameter sets, are

plotted in Figures 5.4 – 5.7.

Parameter values

Table 5.2: Best values of parameters. Assumptions of Model I (a)-Model IV (b) are presented in
Table 3.1. Model-IanoD (Model-IbnoD) refers to Model I (a) (resp. Model I(b)) calibrated with no
drug data. The last column presents the values of the cost function that is defined in the Equation
(2.8).

k1 r K̃m K+
m Km K∗m k cost

Model-IanoD - 0.0676 - - 0.0493 0.3269 - 0.0001
Model-IbnoD - 0.0108 - - 0.0089 - - 1.9×10−7

Model-Ia - 0.0001 - - 0.8322 0.3978 - 0.4386
Model-Ib - 0.0108 - - 0.4515 - - 3.4355
Model-IIa - 0.1046 0.1776 0.0533 0.0142 0.2504 - 0.0496
Model-IIb - 0.0476 0.3557 0.1063 0.3025 - - 0.0629
Model-IIIa 0.0099 0.0019 0.1231 0.0038 0.6439 0.2789 - 1.7784
Model-IIIb 0.0016 1.5099 0.0058 0.0048 1.5538 - - 2.3723
Model-IVa 0.0203 0.0414 0.1146 0.0426 0.2953 0.0501 0.0507 0.6554
Model-IVb 0.0217 0.1218 0.5436 0.0471 0.3284 - 0.0055 0.7364

Π R K̃n K+
n Kn K∗n cost

Model-IanoD 0.0211 - - - 0.0508 4.8650 0.0001
Model-IbnoD 0.0019 - - - 0.6879 - 1.9×10−7

Model-Ia 0.1122 - - - 49.5053 0.0278 0.4386
Model-I b 0.1370 - - - 211.1888 - 3.4355
Model-IIa 0.0039 - 20.0548 3.6884 0.2954 7.9222 0.0496
Model-IIb 0.5851 - 1.9313 31.1428 0.0091 - 0.0629
Model-IIIa 0.0995 24.9627 53.3736 146.1926 49.2085 0.1922 1.7784
Model-IIIb 0.2582 0.0081 32.6027 262.8448 943.2399 - 2.3723
Model-IVa 0.0377 16.2663 16.8634 3.1134 1.5272 25.2724 0.6554
Model-IVb 0.0337 7.6101 18.9901 3.0226 2.7272 - 0.7364

48



The parameter set P ∗ is defined in Equation (2.8) and values are given in Table 5.2. Depending

on the models, the numbers and the definitions of parameter sets differs and are listed in Table

5.3.

Table 5.3: For each candidate model, the dimensions of the parameter set and the definitions of
the components are given.

Number of parameters Definition of parameter set P
Model-IanoD 6 P1 = [r,Km,K

∗
m,Π,Kn,K

∗
n]

Model-IbnoD 4 P2 = [r,Km, ,Π,Kn]
Model-Ia 6 P3 = [r,Km,K

∗
m,Π,Kn,K

∗
n]

Model-Ib 4 P4 = [r,Km, ,Π,Kn]

Model-IIa 10 P5 = [r, K̃m,K
+
m,Km,K

∗
m,Π, K̃n,K

+
n ,Kn,K

∗
n]

Model-IIb 8 P6 = [r, K̃m,K
+
m,Km,Π, K̃n,K

+
n ,Kn]

Model-IIIa 12 P7 = [k1, r, K̃m,K
+
m,Km,K

∗
m,Π, R, K̃n,K

+
n ,Kn,K

∗
n]

Model-IIIb 10 P8 = [k1, r, K̃m,K
+
m,Km,Π, R, K̃n,K

+
n ,Kn]

Model-IVa 13 P9 = [k1, r, K̃m,K
+
m,Km,K

∗
m, k,Π, R, K̃n,K

+
n ,Kn,K

∗
n]

Model-IVb 11 P10 = [k1, r, K̃m,K
+
m,Km, k,Π, R, K̃n,K

+
n ,Kn]

Best Fit

Figures 5.4 - 5.7 show the time evolution of the concentrations normalized to the initial condition

for the total mTOR, pmTOR and NMT. In these figures, circles are the normalized experimental

data and the curves represent the concentrations of model responses for the given model. Specifi-

cally, the total mTOR is plotted in red, pmTOR is plotted in blue and NMT is plotted in green.

In Figure 5.4, the upper graphs show that for Model I, the concentration of NMT decreases

from 60 seconds to 600 seconds and then stabilize at the end without treatment. However, in the

presence of drug, the lower graphs depict a quick increase of the concentration of NMT at the

beginning and a stabilization the end. As we can see in the graphs, the simulated responses show

a good fit to the experimental data. Moreover, the value of cost function in Table 5.2 for Model

I in Version (a) without drug is smaller than its cost function values with drug (e.g. the value of

cost function for Model I in Version (a) without drug is 0.0001, and the value of cost function for

Model I in Version (a) with drug is 0.4386), and also the model responses in Figure 5.4 show that

Model I has a better performance to fit the experimental data without treatment (upper graphs).

However, we cannot determine whether Version (a) or Version (b) of Model I is more likely to

occur, since Model I in Version (b) fits better data with no treatment and Version (a) performs

better to represent experimental data with treatment. Therefore, we must consider the complexity
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Figure 5.4: Best Fit for Model I-NMT component. Left column: Version (a). Right column: Version
(b). Upper: Without drug. Lower: With drug.
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of models to determine the most suitable version. To achieve this, model selection is used in

Section 5.2.

Models II–IV consider the both mTOR-NMT components, and the concentrations of total mTOR

are always conserved as proved in the mathematical analysis in Chapter 4. The conservation of

the total mTOR was introduced in models to mimic the experimental data (see Figures 5.1– 5.3).
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As an illustration, Figures 5.4 - 5.7 show that the sum of the model responses related to mTOR

always stay constant.

Figure 5.5: Best Fit for Model II, mTOR-NMT components with no treatment. Left column: Version
(a). Right column: Version (b).
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In Model II, Figure 5.5 depicts that in Version (a), the concentration of pmTOR begins by de-

creasing and stabilizes at the end, while it seems to stay constant in Version (b). Furthermore, the
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concentration of NMT starts with a quick decrease and stabilizes at the value of 0.2 to the end. The

graphs of the concentration of NMT in Version (a) and Version (b) are very similar.

Figure 5.6: Best Fit for Model III, mTOR-NMT components and irreversible drug reaction. Left
column: Version (a). Right column: Version (b).
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Figure 5.6 represents the different behaviour of the model responses of pmTOR in Version (a)

and Version (b) for Model III. Both do not fit the experimental data well. The concentration of

pmTOR in Version (a) is decreasing, while it is increasing slightly in Version (b). Furthermore,
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model responses for NMT are slowly increasing in both versions similarly to experimental data.

For Model III, pmTOR transient responses differ depending on the version of the model whereas

their asymptotic responses match as shown in Figure 5.8. Theorem (4.7) states that in Model III,

pmTOR component of equilibrium stabilizes at 0 and the NMT subsystem is unbounded. This

statement is illustrated in Figure 5.8. As shown in Figure 5.8, in Version (a) of Model III, the model

response for pmTOR decreases and then stabilizes at 0 to the end. However, in Version (b), it

increases quickly at the beginning and then decreases to 0. Simultaneously, in Version (a) of this

model, the concentration of NMT increases to the end, while in Version (b) it increases, decreases,

and finally increases again.

In Figure 5.7, both Version (a) and (b) give the same transient behaviour of Model IV. The model

responses of pmTOR decrease quickly at the beginning and become stable after. Simultaneously,

the concentration of NMT is increasing and then stabilizes at the end.

In summary, Figures 5.4 - 5.7 show that model responses of NMT represents the experimental data

(with or without drug), whereas the pmTOR model responses fit poorly.

In Chapter 4, mathematical analyses have been carried out to find the mathematical conditions

that determine the asymptotic behaviour of models. All the mathematical conditions are related

to the parameters. Here, the best parameter sets are obtained by fitting model responses to exper-

imental data. Now, for each model, we check if the best values of the parameter set P ∗ given in

Table 5.2 satisfy the mathematical conditions presented in Table 4.1. The mathematical conditions

for the global asymptotic stability of the equilibrium are first investigated and then those for the

local asymptotic stability. The results that fail to mathematical conditions are not presented, only

positive results are shown. Moreover, in Model II and Model IV, the global asymptotic behaviour

depends on the minimum values of pmTOR ε. We can see in Figures 5.5 and 5.7, the values of ε

are equal to the equilibrium values in these simulations.

1. In Version (a) of Model I, Theorem 4.3 states that there exists a unique LAS equilibrium

when Km >
ΠK∗

m

Π+K∗
nr

+ Π. The best values of parameter, P1 given in Table 5.2 are obtained by

fitting Model I (a) to the no drug data. The best parameter set P1 from Table 5.3 satisfies the

condition of Theorem 4.3.

(0.0493) Km >
ΠK∗m

Π +K∗nr
+ Π (0.0225 + 0.0211 = 0.0436).
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Figure 5.7: Best fit for model IV, mTOR-NMT components and reversible drug reaction. Left
column: Version (a). Right column: Version (b).
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2. In Version (b) of Model I, Theorem 4.3 states that there exists a unique LAS equilibrium when

Km > Π. The best values of parameter, P2 given in Table 5.2 are obtained by fitting Model

I (b) to the no drug data. The best parameter set P2 from Table 5.3 satisfies the condition of

Theorem 4.3.

(0.0089) Km > Π (0.0019).
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3. In Version (a) of Model I, Theorem 4.4 states that there exists a unique GAS equilibrium

when Km > K∗m + Π. The best values of parameter, P3 given in Table 5.2 are obtained by

fitting Model I (a) to the drug data. The best parameter set P3 from Table 5.3 satisfies the

condition of Theorem 4.4.

(0.8322) Km > K∗m + Π (0.3978 + 0.1122 = 0.51).

4. In Version (b) of Model I, Theorem 4.4 states that there exists a unique GAS equilibrium

when Km > Π. The best values of parameter, P4 given in Table 5.2 are obtained by fitting

Model I (b) to the drug data. The best parameter set P4 from Table 5.3 satisfies the condition

of Theorem 4.4.

(0.4515) Km > Π (0.1370).

5. In Version (a) of Model II, Theorem 4.5 states that there exists a unique LAS equilibrium

when P ∗2 > D
Km

. The best values of parameter, P5 given in Table 5.2 are obtained by fitting

Model II (a) to the no drug data. The best parameter set P5 from Table 5.3 satisfies the

condition of Theorem 4.5.

(1.2992) P ∗2 >
D

Km
(0.0051).

6. In Version (b) of Model II, Theorem 4.6 states that there exists a unique GAS equilibrium

when ε = P ∗2 > Π
Km

. The best values of parameter, P6 given in Table 5.2 are obtained by

fitting Model II (b) to the no drug data. The best parameter set P6 from Table 5.3 satisfies the

condition of Theorem 4.6.

(2.9488) ε = P ∗2 >
Π

Km
(1.9342).

7. Theorem 4.14 for Model III for both Version (a) and (b) indicates that the equilibrium point of

the mTOR subsystem is GAS and the NMT subsystem is unbounded without any conditions.

At long run, the model responses illustrate the conclusions from Theorem 4.14 as shown in

Figure 5.8.

8. In Version (a) of Model IV, Theorem 4.9 states that there exists a unique GAS equilibrium

when ε = P ∗2 >
K∗

m+Π
Km

. The best values of parameter, P9 given in Table 5.2 are obtained by
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fitting Model IV (a) to the drug data. The best parameter set P9 from Table 5.3 satisfies the

condition of Theorem 4.9.

(0.6566) ε = P ∗2 >
K∗m + Π

Km
(0.2973).

9. In Version (b) of Model IV, Theorem 4.9 states that there exists a unique GAS equilibrium

when ε = P ∗2 > Π
Km

. The best values of parameter, P10 given in Table 5.2 are obtained by

fitting Model IV (b) to the drug data. The best parameter set P10 from Table 5.3 satisfies the

condition of Theorem 4.9.

(0.5818) ε = P ∗2 >
Π

Km
(0.1026).

In summary, it is interesting to notice that the parameter values that best represent the data satisfy

conditions that have systems in a stable regime. The best parameter values satisfy the mathemat-

ical conditions for the local asymptotic stability of the equilibrium of Model I considered without

Rapamycin and Model II in Version (a). Furthermore, the mathematical conditions for the global

asymptotic stability are satisfied for Model I with Rapamycin, Model II in Version (b), and Model

IV.

5.2 Model Selection

Model selection is presented in Chapter 2, and is applied here to determine the ”best“ model

among our candidates. Moreover, specific questions can be answered by using Akaike informa-

tion weight.

Questions:

1. Is the drug reaction more likely to be reversible or irreversible?

2. Is the dephosphorylation of pNMT more likely to occur or not?

3. Do the reactions in mTOR subsystem and NMT subsystem have the same time scale under

the non-treatment?

To answer the above questions, we need recall the best parameter values from Table 5.2, cost func-

tion (2.8) and its value from Table 5.2, as well as the AIC Equation (2.9). The number of parameters
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Q is given in the 2nd-column in Table 5.3. RSS is the values of cost function given in the last col-

umn of Table 5.2. AICc is the value of Akaike information criterion. ∆ is calculated using Equation

(2.9). W is the Akaike weight calculated via Equation (2.10). SC is the value of Schwarz criterion.

Question 1. Is the drug reaction more likely to be reversible or irreversible?

Table 5.4: Model III vs Model IV.

Q RSS AICc ∆ W
Model-IIIa 12 1.7784 3.0897 12.5808 0.0014
Model-IIIb 10 2.3723 2.5475 12.0386 0.0019
Model-IVa 13 0.6544 -6.9079 2.5832 0.2149
Model-IVb 11 0.7364 -9.4911 0.0000 0.7818

Data with drug are used. Question 1 can be answered by comparing Model III against Model IV.

In Table 5.4, the sum of Akaike weights for Model IV is (0.2149+0.7818)=0.9967, and the sum of

Akaike weights for Model III is (0.0014+0.0019)=0.0033. This indicates that Model IV is 0.9967/0.0033

=302 times more likely to occur than Model III, which answers the above question: the drug reac-

tion is more likely to be reversible.

Question 2. Is the dephosphorylation of pNMT more likely to occur?

Since our data is obtained from two types of experiments, experiments with and without Ra-

pamycin can be subdivided into question 2a and question 2b. For question 2a we consider the

data with Rapamycin, while for question 2b, data without it is used.

Question 2a. In the presence of treatment, is the dephosphorylation of pNMT more likely to oc-

cur?

Table 5.5: Model Version (a) vs Model Version (b).

Q RSS AICc ∆ W
Model-IIIa 12 1.7784 3.0897 28.7995 5.6×10−7

Model-IIIb 10 2.3723 2.5475 28.2573 7.3×10−7

Model-IVa 13 0.6544 -6.9079 18.8019 8.3×10−5

Model-IVb 11 0.7364 -9.4911 16.2187 0.0003
Model-Ia 6 0.4386 -25.7098 0.0000 0.9996
Model-Ib 4 3.4355 -5.0091 20.7007 3.2×10−5

To answer the question 2a, we consider all models (Model III and IV) with treatment of the group

and Model I evaluated with parameter values estimated using with drug data. In Table 5.5, the

sum of Akaike weights for the models in Version (a) is (5.6×10−7+8.3×10−5+0.9996)= 0.9997, and
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the sum of Akaike weights for the models in Version (b) is (7.3×10−7+0.0003+3.2×10−5)= 0.0003.

The dephosphorylation of pNMT reactions are (0.9997/0.0003=)3332 times more likely to occur

under the effect of drug. Moreover, for each model in Table 5.5, the Akaike weights of Version

(a) and (b) can be compared. More specifically, the Akaike weight of Model-IV (b)/Model-IV

(a) which is (0.0003/8.3×10−5)=3.6145, indicates that the reaction without dephosphorylation of

pNMT is 3.6145 times more likely to occur in Model IV. Additionally, a similar calculation can be

done for Model III and Model I. In Model III, the reactions without dephosphorylation of pNMT is

7.3×10−7/5.6×10−7= 1.3036 times more likely to occur. In Model I, in the presence of Rapamycin,

the reactions with dephosphorylation of pNMT is 0.9996/3.2×10−5 =31237.5 times more likely.

Question 2b. In the absence of treatment, is the dephosphorylation of pNMT more likely to occur

or not?

Table 5.6: Model II vs Model I with no drug.

Q RSS AICc ∆ W
Model-IIa 10 0.0496 -43.8574 161.9625 6.8×10−36

Model-IIb 8 0.0629 -45.0107 160.8092 1.2×10−35

Model-Ianod 6 0.0001 -122.0226 83.7973 6.4×10−19

Model-Ibnod 4 1.9×10−7 -205.8199 0.0000 1.0000

All models without treatment are considered as a candidate group. As shown in Table 5.6, the

value of Akaike weight for Model I (b) close to 1, which means in the case where drug is absent,

the dephosphorylation of pNMT in reactions is more unlikely to occur.

Question 3. Do the reactions in mTOR subsystem and NMT subsystem have the same time

scale in the absence of treatment?

Table 5.7: Model II vs Model I without the drug.

Q RSS AICc ∆ W
Model-IIa 10 0.0496 -43.8574 161.9625 6.8×10−36

Model-IIb 8 0.0629 -45.0107 160.8092 1.2×10−35

Model-Ianod 6 0.0001 -122.0226 83.7973 6.4×10−19

Model-Ibnod 4 1.9×10−7 -205.8199 0.0000 1.0000

From Table 5.7 which excludes Rapamycin, the sum of Akaike weights for Model I is greater

than for Model II. This shows that in the absence of treatment, reactions in the mTOR subsystem

are likely to be faster than reactions in the NMT subsystem.
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Figure 5.8: Model III, mTOR-NMT components and reversible drug reaction in long run. Left
column: Version (a). Right column: Version (b).
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Chapter 6

Conclusion & Discussion

6.1 Summary

From the experimental data, we observe that in the presence of the drug, pmTOR decreases.

Hence, less NMT will be converted into pNMT by pmTOR, resulting in an increase of NMT. In-

stead, due to the increase of pmTOR with absence of the drug, we observe the decrease of NMT

(see in Figures 5.1-5.3).

Recall the question from Section 5.2: is the dephosphorylation of pNMT more likely to occur?

As mentioned previously, depending on the data considered (with or without drug), the above

question can be subdivided into question 2a and 2b. The answer to question 2a (related to the

dynamics with drug) is that the dephosphorylation of pNMT is more likely to occur. Moreover,

the answer to question 2b (related to the dynamics without drug) is that the dephosphorylation of

pNMT is more unlikely to happen. Since the drug does not directly affect the dephosphorylation

of pNMT, we expect that for all models considered with or without drug, the same conclusions

should hold for the occurrence in the dephosphorylation of pNMT.

6.2 Discussion

Analyzing effects with the drug, we observe an increase of NMT, and the models selected include

the dephosphorylation of pNMT. While no drug is involved, the decrease of NMT is observed and

models without dephosphorylation of pNMT are preferred. As the dephosphorylation of pNMT

contributes to the increase of NMT and the absence of dephosphorylation induces the decrease of

NMT, the discrepancy in conclusions can be explained as a reinforcement of the dynamics of NMT.
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However, we speculate the activity of one or more molecules controlling the dephosphorylation

of pNMT could be directly or indirectly regulated by Rapamycin. This direction of research may

be considered as very promising for breast cancer research.

Moreover, in this project, mathematical models were introduced to describe not only the tar-

geted activities of mTOR- NMT signalling pathway, but also to analyze the response to treatment.

Although the mathematical models and their numerical expectation have shown promising re-

sults, they can probably be improved. For example, if we increase the maximum running time,

the estimation of parameters by a differential evolution algorithm may be improved to decrease

the deviation between the model responses and the experimental data. Alternatively, since the

convergence of solutions (parameter sets) in a differential evolution algorithm is not proven, the

candidate solutions (parameter sets) may be stuck in a smaller interval or minima instead of the

entire domain or minimum. Stronger results may be obtained from the differential evolution al-

gorithm by re-running the algorithm. Additionally, if we increase the number of data points, the

accuracy of the application of Akaike information criterion still can be improved.
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Appendix A

MATLAB code for Differential

Evolution algorithm

c l o s e a l l ;

c l e a r a l l ;

%% mainloops

F = 0 . 2 ; %d i f f e r e n t i a l weight

CR = . 8 ; %crossover constant

D = 6 ; %the number of parameters

NP = 2 0 ; %population−the running times in one generat ion

maxgen = 1000 ; %max generat ion

c o s t =1E6 . * ones (NP*maxgen , 1 ) ; %build i n i t i a l c o s t funt ion with random values

x1=zeros (NP,D) ;

t r i a l =zeros ( 1 ,D) ;

x2=zeros (NP,D) ;

f o r i = 1 : 1 :NP %build parameter searching space

f o r j = 1 : 1 : 3

x1 ( i , k)=1E−3+(1E2−1E−3 ) . * rand . * rand . * rand ;

end

end
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f o r count = 1 : 1 : maxgen

f o r i = 1 : 1 :NP

a= f l o o r ( rand * (NP−1))+1 ; %pick up three random numbers

b= f l o o r ( rand * (NP−2))+2 ;

c= f l o o r ( rand * (NP−3))+3 ;

j = f l o o r ( rand *D) + 1 ; %pick up a random from [ 1 ,D]

f o r k = 1 : 1 :D

i f ( rand< CR | | k==D)

t r i a l ( j )= x1 ( c , j )+F . * ( x1 ( a , j )−x1 ( b , j ) ) ; %the mutation happened

i f t r i a l ( j )<=0

t r i a l ( j )= x1 ( i , j ) ;

e l s e

t r i a l ( j )= t r i a l ( j ) ;

end

e l s e

t r i a l ( j )= x1 ( i , j ) ;

end

j =mod( j ,D) + 1 ; %go to the next parameter in parameter space

end

score= c o s t f u n c t i o n ( ˜ , t r i a l ) ; %evaluate c o s t funct ion

i f score<=c o s t ( i +( count−1)*NP, 1 )

x2 ( i , 1 : 1 :D)= t r i a l ( 1 : 1 :D) ;

c o s t ( i +1+( count−1)*NP, 1 ) = score ; %save the b e t t e r c o s t funct ion value

t r i a l 0 ( 1 : 1 :D)= t r i a l ( 1 : 1 :D) ; % the bes t parameter i s saved as t r i a l 0

e l s e

c o s t ( i +1+( count−1)*NP, 1 ) = c o s t ( i +( count−1)*NP, 1 ) ;

x2 ( i , 1 : 1 :D)= x1 ( i , 1 : 1 :D) ;
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end

end

%update searching space x1 by g e t t i n g b e t t e r parameter space

x1=x2 ;

end
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Appendix B

Proof of Theorm 4.5

Proof. To find equilibia, we will need to solve the following 3-dimension system:

K̃m(c− P2)

K̃n + c− P2

− K+
mP2

K+
n + P2

= 0, (B.1a)

−KmP2P3

Kn + P3
+

K∗mP4

K∗n + P4
+ Π = 0, (B.1b)

KmP2P3

Kn + P3
− K∗mP4

K∗n + P4
− rP4 = 0. (B.1c)

From (B.1a), the following polynomial equation is obtained to find the equilibria of system:

f(P2) = AP 2
2 +BP2 + C = 0, (B.2)

where
A = K+

m − K̃m,

B = −K̃mK
+
n −K+

mK̃n − (K+
m − K̃m)c,

C = K̃mK
+
n c.

We now solve polynomial Equation (B.2) for P2. Note that c > 0.

I When K+
m − K̃m > 0, then A > 0 and B = −K̃mK

+
n −K+

mK̃n − (K+
m − K̃m)c < 0.
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To check the existence of a complex root pair, we need to determine the sign of B2 − 4AC:

B2 − 4AC =K̃m
2
c2 +K+

m
2
c2 + K̃m

2
K+
n

2
+K+

m
2
K̃n

2
+ 2(K̃m

2
K+
n c+K+

m
2
K̃nc+ K̃mK

+
mK̃nK

+
n )

− 2(K̃mK
+
mc

2 + K̃mK̃nK
+
mc+ K̃mK

+
mK

+
n c)

=(K̃mc− K̃nK
+
m)2 + (K+

mc− K̃mK
+
n )2 + (2K̃m

2
K+
n c+ 2K+

m
2
K̃nc− 2K̃mK

+
mc

2 + 2K̃mK
+
mK̃nK

+
n )

=(K̃mc− K̃nK
+
m)2 + (K+

mc− K̃mK
+
n )2 − 2(K̃mc− K̃nK

+
m)(K+

mc− K̃mK
+
n ) + 4K̃mK

+
mK̃nK

+
n

=[(K̃mc− K̃nK
+
m)− (K+

mc− K̃mK
+
n )]2 + 4K̃mK

+
mK̃nK

+
n

>0.

Thus, when A = K+
m − K̃m > 0, f(P2) has only real roots.

The polynomial (B.2) has two sign changes in the coefficients (+ - +). By Descartes’ rules of signs,

we have 2 or 0 positive real roots. Considering the polynomial at −P2, we obtain

f(−P2) = AP 2
2 −BP2 + C

that has no sign change (+ + +), which implies no negative real roots. Thus, when A > 0, f(P2)

has 2 positive real roots which are such that

P ∗2− =
−B −

√
B2 − 4AC

2A
< P ∗2+ =

−B +
√
B2 − 4AC

2A
.

However,

f(c) = (K+
m − K̃m)c2 − [(K̃mK

+
n +K+

mK̃n)c+ (K+
m − K̃m)c2] + K̃mK

+
n c

= −(K+
mK̃n)c < 0.

Since the leading coefficient of polynomial (B.2) is positive (A > 0), the graph of f(P2) is a concave

up parabola that has 2 positive real roots P ∗2− and P ∗2+ with P ∗2− < P ∗2+. As f(c) < 0, we can say

P ∗2− < c < P ∗2+and P ∗2+ = −B+
√
B2−4AC
2A /∈ [0, c]. Thus, the unique positive root of f(P2) in [0, c]

is P ∗2 = −B−
√
−B2−4AC
2A when A > 0. The graph is shown in Figure B.1. II When K+

m − K̃m < 0,

then A < 0.

II a). If K̃mK
+
n +K+

mK̃n > −(K+
m − K̃m)c, we have B > 0.

The polynomial (B.2) has one sign change in the coefficients (- + +). By Descartes’ rule of signs, the

polynomial has exactly 1 positive real root.
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Figure B.1: Graph of polynomial (B.2) in Model II (a) when A > 0.
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2
P

2
+

67



Hence, the greater value is chosen as the P2−component of equilibrium between

−B +
√
B2 − 4AC

2A
and

−B −
√
B2 − 4AC

2A
.

Recalling thatB > 0 andA < 0, then−B < 0. We have−B−
√
B2 − 4AC < −B+

√
B2 − 4AC, and

P ∗2+ =
−B +

√
B2 − 4AC

2A
< P ∗2− =

−B −
√
B2 − 4AC

2A
.

Therefore, the unique positive root is P ∗2− = −B−
√
B2−4AC
2A . We will show that

P ∗2 = −B−
√
B2−4AC
2A ∈ [0, c] when A < 0 and B > 0 in the next part II b).

II b). If K̃mK
+
n +K+

mK̃n < −(K+
m − K̃m)c, then B < 0.

The polynomial (B.2) has one sign change in the coefficients (- - +). By Descartes’ rule of signs, the

polynomial has exactly 1 positive real root. Hence, the greater value is chosen as the P2-component

of the equilibrium between

−B +
√
B2 − 4AC

2A
and

−B −
√
B2 − 4AC

2A
.

Recalling thatB < 0 andA < 0, then−B > 0. We have−B−
√
B2 − 4AC < −B+

√
B2 − 4AC and

P ∗2+ =
−B +

√
B2 − 4AC

2A
< P ∗2− =

−B −
√
B2 − 4AC

2A
.

Therefore, the unique positive root is P ∗2− = −B−
√
B2−4AC
2A . When A = K+

m − K̃m < 0, the leading

coefficient of polynomial (B.2) is negative, then, the graph of f(P2) is a concave down parabola

with one positive real root P ∗2− = −B−
√
B2−4AC
2A as shown in Figure B.2. As shown previously, f(c)

is always negative, then, we have P ∗2− < c. Thus, when A < 0 and B < 0, the P2-component of the

equilibrium is P ∗2 = −B−
√
B2−4AC
2A ∈ [0, c]. The same conclusion holds for part II a) when A < 0

and B > 0.

II c). If K̃mK
+
n +K+

mK̃n = −(K+
m − K̃m)c, then B = 0.

The polynomial (B.2) reduces to

f(P2) = AP 2
2 + C.

WhenA = K+
m−K̃m < 0, the leading coefficient of polynomial (B.2) is negative, thus, the graph of

f(P2) is a concave down parabola with one positive real root P ∗2 = −B−
√
B2−4AC
2A =

√
−CA (similar

68



Figure B.2: Graph of polynomial (B.2) in Model II (a) when A < 0.

f(P
2
)

P
2
−P

2
+ 0 P

2c

to Figure B.2). Since f(c) < 0, we have P ∗2− < c, thus, the P2−component of the equilibrium is

P ∗2 =
√
−CA =

√
K̃mK

+
n c

−K+
m+K̃m

∈ [0, c], when A < 0 and B = 0.

Therefore, the P2-component of the equilibrium is P ∗2 = −B−
√
B2−4AC
2A ∈ [0, c] when A < 0.

III When K+
m = K̃m, then A = 0 and B = −K̃mK

+
n − K+

mK̃n < 0. The polynomial can be

rewritten as

f(P2) = BP2 + C = 0.
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Thus, the graph of f(P2) is a straight line with a negative slope (B < 0). Then, the P2−component

of the equilibrium is P ∗2 = −CB =
K̃mK

+
n c

K̃mK
+
n +K+

mK̃n
∈ [0, c] as f(c) < 0. The graph of f when A = 0 is

shown in Figure B.3.

Figure B.3: Graph of polynomial (B.2) f(P2) in Model II (a) when A = 0.

P
2

f(P
2
)

0 cP
2
*

In summary, the polynomial function (B.2) has one positive real root

1. P ∗2 = −B−
√
B2−4AC
2A ∈ [0, c], if A = K̃m −K+

m 6= 0,

2. P ∗2 = −CB ∈ [0, c], if A = K̃m −K+
m = 0.
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Adding (B.1b)-(B.1c), we obtain P ∗4 = Π/r. Substituting P ∗2 and P ∗4 into Equation (B.1c), we get
KmP

∗
2 P

∗
3

Kn+P∗
3

=
K∗

mΠ
rK∗

n+Π + Π. We have

P ∗3 =
DKn

KmP ∗2 −D
, (B.3)

where D =
K∗

mΠ
rK∗

n+Π + Π.

In order to make P ∗3 positive, we require KmP
∗
2 −D > 0.

Therefore, the unique positive equilibrium in System (4.7) is (P ∗2 , P
∗
3 , P

∗
4 ) = (P ∗2 ,

DKn

KmP∗
2−D

, Π
r ) with

the condition P ∗2 > D/Km.

The Jacobian matrix J2 of System (4.7) takes the form:

J2 =


− K̃mK̃n

(K̃n+c−P2)2
− K+

mK
+
n

(K+
n +P2)2

0 0

− KmP3

Kn+P3
− KmKnP2

(Kn+P3)2
K∗

mK
∗
n

(K∗
n+P4)2

KmP3

Kn+P3

KmKnP2

(Kn+P3)2 − K∗
mK

∗
n

(K∗
n+P4)2 − r

 .

Note that K̃n + c− P2 > 0.

Hence, the eigenvalues of J2 at an equilibrium point are,

λ1 = − K̃mK̃n

(K̃n + c− P ∗2 )2
− K+

mK
+
n

(K+
n + P ∗2 )2

< 0,

λ2 = −1

2

[√
(
KmKnP ∗2

(Kn + P ∗3 )2
+

K∗mK
∗
n

(K∗n + P ∗4 )2
+ r)2 − 4

KmKnP ∗2
(Kn + P ∗3 )2

r + (
KmKnP

∗
2

(Kn + P ∗3 )2
+

K∗mK
∗
n

(K∗n + P ∗4 )2
+ r)

]
,

then, we have λ2 < 0 if λ2 ∈ R or Re(λ2) < 0 if λ2 ∈ C.

λ3 =
1

2

[√
(
KmKnP ∗2

(Kn + P ∗3 )2
+

K∗mK
∗
n

(K∗n + P ∗4 )2
+ r)2 − 4

KmKnP ∗2
(Kn + P ∗3 )2

r − (
KmKnP

∗
2

(Kn + P ∗3 )2
+

K∗mK
∗
n

(K∗n + P ∗4 )2
+ r)

]
,

we conclude that Re(λ3) < 0 if λ3 ∈ C.

If λ3 ∈ R, as
√

(
KmKnP∗

2

(Kn+P∗
3 )2 +

K∗
mK

∗
n

(K∗
n+P∗

4 )2 + r)2 − 4
KmKnP∗

2

(Kn+P∗
3 )2 r <

√
(
KmKnP∗

2

(Kn+P∗
3 )2 +

K∗
mK

∗
n

(K∗
n+P∗

4 )2 + r)2 =

KmKnP
∗
2

(Kn+P∗
3 )2 +

K∗
mK

∗
n

(K∗
n+P∗

4 )2 + r, then, λ3 < 0.

Therefore, all eigenvalues or their real part are negative for any equilibrium points. Then, any

equilibria are LAS when they exist.
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Appendix C

Proof of Theorem 4.8

Proof. To find equilibria (M∗, P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 ) of System (4.16), the reduced System (4.17) at equi-

librium point is considered.

− k1RM
∗ − K̃mM

∗

K̃n +M∗
+

K+
m(c−M∗ − P ∗1 )

K+
n + (c−M∗ − P ∗1 )

+ kP ∗1 = 0, (C.1a)

k1RM
∗ − kP ∗1 = 0, (C.1b)

− Km(c−M∗ − P ∗1 )P ∗3
Kn + P ∗3

+
K∗mP

∗
4

K∗n + P ∗4
+ Π = 0, (C.1c)

Km(c−M∗ − P ∗1 )P ∗3
Kn + P ∗3

− K∗mP
∗
4

K∗n + P ∗4
− rP ∗4 = 0, (C.1d)

Note that P ∗2 = c−M∗ − P ∗1 . Substituting (C.1b) into (C.1a), we have:

K̃mM
∗

K̃n +M∗
=
K+
mc− (K+

m + nK+
m)M∗

K+
n + c− (1 + n)M∗

, with n =
k1R

k
.

Hence, the following polynomial is obtained to find the equilibrium point:

f(M) = AM2 +BM + C = 0, (C.2)

where
A = (K̃m −K+

m)(1 + n),

B = −(K̃m −K+
m)c− K̃mK

+
n − (K+

m + nK+
m)K̃n,

C = K+
mK̃nc > 0.

(C.3)
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The M-component of equilibria are the positive real roots of f(M) taking the form:

M∗ =
−B ±

√
B2 − 4AC

2A
.

Now, we investigate the number of positive real roots of f(M).

I When K̃m −K+
m > 0 then A > 0 and B < 0.

The polynomial Equation (C.2) has two sign changes in the coefficients (+-+). By Descartes’ rule

of signs, the polynomial has 2 or 0 positive real roots.

Considering the polynomial at −M , we obtain a second polynomial,

f(−M) = AM2 −BM + C,

that has no sign change (+++), therefore, f has no negative real root. Checking the existence of a

complex root pair, we compute

B2 − 4AC =(K̃m −K+
m)2c2 + (K̃mK

+
n )2 + (K̃nK

+
m)2(1 + n)2 + 2(K̃m −K+

m)c(K̃nK
+
m)(1 + n)

+ 2(K̃nK
+
m)K̃mK

+
n (1 + n) + 2(K̃m −K+

m)cK̃mK
+
n − 4(K̃m −K+

m)c(K̃nK
+
m)(1 + n)

=(K̃m −K+
m)2c2 + (K̃mK

+
n )2 + (K̃nK

+
m)2(1 + n)2 − 2(K̃m −K+

m)c(K̃nK
+
m)(1 + n)

+ 2(K̃nK
+
m)K̃mK

+
n (1 + n) + 2(K̃m −K+

m)cK̃mK
+
n

=[(K̃m −K+
m)c+ (K̃mK

+
n )− (K̃nK

+
m)(1 + n)]2 + 4(K̃nK

+
m)K̃mK

+
n (1 + n)

>0.

Hence, when K̃m −K+
m > 0, f(M) has 2 positive real roots.

II When K̃m −K+
m < 0 then A < 0.

II a). If −(K̃m −K+
m)c > K̃mK

+
n + (K+

m + nK+
m)K̃n then B > 0.

The polynomial (C.2) has one sign change in the coefficients (- ++). By Descartes’ rule of signs, the

polynomial has exactly 1 positive real root. Hence, the greater value is chosen between

−B +
√
B2 − 4AC

2A
and

−B −
√
B2 − 4AC

2A
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as the M-component of the equilibrium.

Recalling that B > 0 and A < 0; thus, −B < 0, we have −B −
√
B2 − 4AC < −B +

√
B2 − 4AC

and

M1 =
−B +

√
B2 − 4AC

2A
< M2 =

−B −
√
B2 − 4AC

2A
.

Therefore, the M-component of the equilibrium is M∗ = −B−
√
B2−4AC
2A when A = K̃m −K+

m < 0

and B = −(K̃m −K+
m)c− K̃mK

+
n − (K+

m + nK+
m)K̃n > 0.

II b). If −(K̃m −K+
m)c < K̃mK

+
n + (K+

m + nK+
m)K̃n then B < 0.

The polynomial (C.2) has one sign change in the coefficients (- -+). By Descartes’ rule of signs, the

polynomial has exactly 1 positive real root. Hence, the greater value will be chosen between

−B +
√
B2 − 4AC

2A
and

−B −
√
B2 − 4AC

2A

as the M-component of the equilibrium.

Recalling thatB < 0 andA < 0, then−B > 0.We will have−B−
√
B2 − 4AC < −B+

√
B2 − 4AC

and
−B +

√
B2 − 4AC

2A
<
−B −

√
B2 − 4AC

2A
.

Therefore, under the above conditions, the M-component of the equilibrium isM∗ = −B−
√
B2−4AC
2A

when A = K̃m −K+
m < 0 and B = −(K̃m −K+

m)c− K̃mK
+
n − (K+

m + nK+
m)K̃n < 0.

II c). If B = 0, the polynomial (C.2) reduces to

f(M) = AM2 + C.

Therefore, the M-component of the equilibrium is

M∗ =
−B −

√
B2 − 4AC

2A
=

√
K+
mK̃nc

(−K̃m +K+
m)(1 + n)

=

√
−C
A
,

when A = K̃m −K+
m < 0 and B = −(K̃m −K+

m)c− K̃mK
+
n − (K+

m + nK+
m)K̃n = 0.

III Finally, when K̃m −K+
m = 0, then A = 0 and B < 0.
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The polynomial equation (C.2) reduces to f(M) = BM + C = 0. Hence, the M-component of the

equilibrium is M∗ = −CB =
K+

mK̃nc

K̃mK
+
n +(K+

m+nK+
m)K̃n

which is always positive.

In summary, the polynomial equation (C.2) has

1. two positive real roots M∗ = −B±
√
B2−4AC
2A , if A = K̃m −K+

m > 0,

2. one positive real root M∗ = −B−
√
B2−4AC
2A , if A = K̃m −K+

m < 0,

3. one positive real root M∗ = −CB , if A = K̃m −K+
m = 0.

Next, we will seek for the existence of P ∗1 , P ∗2 , and then discuss the conditions of existence of

M∗, P ∗1 , P
∗
2 . Recall that M∗, P ∗1 , P ∗2 ∈ [0, c].

We calculate the equilibrium of P ∗1 by solving (C.1b), and we obtain P ∗1 = k1RM
∗

k = nM∗. As

previously mentioned, P ∗2 = c−M∗ − P ∗1 = c− (1 + n)M∗. Furthermore, M∗, P ∗1 and P ∗2 have to

satisfy the following conditions:

1. 0 ≤M∗ ≤ c.

2. 0 ≤ P ∗1 ≤ c, which implies 0 ≤ nM∗ ≤ c, i.e. 0 ≤M∗ ≤ c
n .

3. 0 ≤ P ∗2 ≤ c, which implies 0 ≤ c− (1 + n)M∗ ≤ c, i.e. 0 ≤M∗ ≤ c
n+1 .

Combining all the above conditions, we have M∗ < min{c, cn ,
c

n+1}. Consequently, we only need

the condition M∗ ≤ c
1+n = ck

k+k1R
to satisfy M∗, P ∗1 , P ∗2 ∈ [0, c].

The Intermediate Value Theorem will be applied to prove M∗, P ∗1 , P ∗2 ∈ [0, c]. Firstly, we calculate

the value of the polynomial (C.2) at c
1+n .

f(
c

1 + n
) = (K̃m −K+

m)(1 + n)(
c

1 + n
)2 + (−(K̃m −K+

m)c− K̃mK
+
n − (K+

m + nK+
m)K̃n)(

c

1 + n
)

+K+
mK̃nc

= −K̃mK
+
n c

1 + n

< 0.

When A > 0, the leading coefficient of polynomial (C.2) is positive, thus, the graph of f(M) is a

concave up parabola with 2 positive real roots as shown in Figure (C.1),

M∗2 =
−B −

√
B2 − 4AC

2A
< M∗1 =

−B +
√
B2 − 4AC

2A
.
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Figure C.1: Diagram of polynomial (C.2) in Model IV (a) when A > 0.

0

f(M)

c/(1+n)M
2
* M

1
*

M

As f( c
1+n ) < 0, we have M∗2 <

c
1+n < M∗1 . Hence, there exists a unique value for M∗, M∗ = M∗2 ∈

[0, c], P ∗1 = nM∗2 ∈ [0, c], P ∗2 = c− (1 + n)M∗2 ∈ [0, c] when A > 0.

When A < 0 and ∀B, the leading coefficient of f(M) is negative, then the graph of f(M) is a

concave down parabola with 1 positive real roots M∗2 = −B−
√
B2−4AC
2A ; see Figure (C.2).

Therefore, when A < 0 and for ∀B, as f( c
1+n ) < 0, we have M∗2 < c

1+n < c. Hence, M∗ = M∗2 ∈

[0, c], P ∗1 = nM∗2 ∈ [0, c], P ∗2 = c− (1 + n)M∗2 ∈ [0, c] if A < 0.
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Figure C.2: Diagram of polynomial (C.2) in Model IV (a) when A < 0.

MM
1
*

M
2
*

f(M)

0 c/(1+n)
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When A = 0, the graph of polynomial f(M) (C.2) is a straight line with a negative slope. The

positive root of f(M) is M∗ = −CB (Figure C.3). As f( c
1+n ) < 0, we have M∗ = −CB ∈ [0, c] when

Figure C.3: Diagram of polynomial (C.2) in Model IV (a) when A = 0.

M*

f(M)

0 Mc/(1+n)

A = 0.

In conclusion, there is a unique value for M∗. When A 6= 0, M∗ = −B−
√
B2−4AC
2A and when A = 0,

M∗ = −CB .

Adding (C.1c) and (C.1d), we obtain P ∗4 = Π/r which is positive. Substituting M∗, P ∗1 , P
∗
4 into

78



(C.1c), we get

Km(c−M∗ − P ∗1 )P ∗3
Kn + P ∗3

=
K∗mP

∗
4

K∗n + P ∗4
+ Π =

K∗mΠ

rK∗n + Π
+ Π =

Π(K∗m +K∗nr + Π)

rK∗n + Π
.

Rewriting the above equation, we have

(rK∗n + Π)Km(c− (1 + n)M∗)P ∗3 = KnΠ(K∗m +K∗nr + Π) + Π(K∗m +K∗nr + Π)P ∗3 .

Thus,

P ∗3 =
KnΠ(K∗m +K∗nr + Π)

Kmc(K∗nr + Π)−Π(K∗m +K∗nr + Π)−Km(K∗nr + Π)(1 + k1R
k )M∗

=
KnD

Ec−D − E(1 + n)M∗
,

with D = Π(K∗m +K∗nr + Π), and E = Km(K∗nr + Π).

In order to make P ∗3 = KnD
Ec−D−E(1+n)M∗

2
positive, we need Ec−D − E(1 + n)M∗ > 0, so that

M∗ <
Ec−D
E(1 + n)

=
k

k + k1R

[
c− Π(K∗m +K∗nr + Π)

Km(K∗nr + Π)

]

with c > D
E =

Π(K∗
m+K∗

nr+Π)
Km(K∗

nr+Π) .

Therefore, when M∗ < Ec−D
E(1+n) and c > D

E , there exists a unique equilibrium point, which is

(M∗, P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 ) = (M∗, nM∗, c− (1 + n)M∗, KnD

Ec−D−E(1+n)M∗ ,
Π
r ) where M∗ = −B−

√
B2−4AC
2A

if A 6= 0, and M∗ = −CB if A = 0.

The Jacobian matrix J4 of System (4.17) is

J4 =



− K̃mK̃n

(K̃n+M)2
− K+

mK
+
n

(K+
n +c−M−P1)2

− k1R − K+
mK

+
n

(K+
n +c−M−P1)2

+ k 0 0

k1R −k 0 0

KmP3

Kn+P3

KmP3

Kn+P3
−KmKn(c−M−P1)

(Kn+P3)2
K∗

mK
∗
n

(K∗
n+P4)2

− KmP3

Kn+P3
− KmP3

Kn+P3

KmKn(c−M−P1)
(Kn+P3)2 − K∗

mK
∗
n

(K∗
n+P4)2 − r


.
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The eigenvalues of matrix J4 evaluated at any equilibrium point are:

λ1 =
1

2

(
− K̃mK̃n

(K̃n +M∗)2
− K+

mK
+
n

(K+
n + c−M∗ − P ∗1 )2

− k1R− k +
√
u

)
,

λ2 =
1

2

(
− K̃mK̃n

(K̃n +M∗)2
− K+

mK
+
n

(K+
n + c−M∗ − P ∗1 )2

− k1R− k −
√
u

)
,

λ3 =
1

2

(
−KmKn(c−M∗ − P ∗1 )

(Kn + P ∗3 )2
− K∗mK

∗
n

(K∗n + P ∗4 )2
− r +

√
v

)
,

λ4 =
1

2

(
−KmKn(c−M∗ − P ∗1 )

(Kn + P ∗3 )2
− K∗mK

∗
n

(K∗n + P ∗4 )2
− r −

√
v

)
,

with

u =

(
K̃mK̃n

(K̃n +M∗)2
+

K+
mK

+
n

(K+
n + c−M∗ − P ∗1 )2

+ k1R− k

)2

−4

(
− K+

mK
+
n

(K+
n + c−M∗ − P ∗1 )2

+ k

)
(k1R)

and

v =

(
KmKn(c−M∗ − P ∗1 )

(Kn + P ∗3 )2
− K∗mK

∗
n

(K∗n + P ∗4 )2
− r
)2

− 4

(
KmKn(c−M∗ − P ∗1 )

(Kn + P ∗3 )2

)(
K∗mK

∗
n

(K∗n + P ∗4 )2

)
.

To check the sign of the eigenvalues, we use the following notation,

a =
K̃mK̃n

(K̃n +M∗)2
,

b =
K+
mK

+
n

(K+
n + c−M∗ − P ∗1 )2

,

x = k1R,

d =
KmKn(c−M∗ − P ∗1 )

(Kn + P ∗3 )2
,

e =
K∗mK

∗
n

(K∗n + P ∗4 )2
,
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where a, b, x, d, e > 0 at equilibrium points.

We also rewrite eigenvalues as follows:

λ1 =
1

2
(−a− b− x− k +

√
(a+ b+ x− k)2 − 4bx),

λ2 =
1

2
(−a− b− x− k −

√
(a+ b+ x− k)2 − 4bx),

λ3 =
1

2
(−d− e− r +

√
(d− e− r)2 − 4de),

λ4 =
1

2
(−d− e− r −

√
(d− e− r)2 − 4de).

As we can see, the eigenvalues λ2,4 or Re(λ2,4) are negative for any value of equilibrium points.

If λ3 ∈ C, Re(λ3) < 0. If λ3 ∈ R, λ3 = 1
2 (−d− e− r +

√
(d− e− r)2 − 4de) = 1

2 (−
√

(d+ e+ r)2 +√
(d− e− r)2 − 4de)).

As (d+e+r)2 = d2+e2+r2+2er+2dr+2de > (d−e−r)2−4de = d2+e2+r2+2er−2dr−6de, we will

have
√

(d+ e+ r)2 >
√

(d− e− r)2 − 4de, which gives−
√

(d+ e+ r)2 +
√

(d− e− r)2 − 4de) <

0. Thus, λ3 = 1
2 (−d− e− r +

√
(d− e− r)2 − 4de) is negative.

If λ1 ∈ C, Re(λ1) < 0. If λ1 ∈ R, λ1 = 1
2 (−a − b − x − k +

√
(a+ b+ x− k)2 − 4bx) =

1
2 (−(a+b+x+k)+

√
(a+ b+ x− k)2 − 4bx) = 1

2 (−
√

(a+ b+ x+ k)2 +
√

(a+ b+ x− k)2 − 4bx).

We will expand and compare (a+ b+ x+ k)2 and (a+ b+ x− k)2− 4bx in order to investigate the

sign of λ1. We have

(a+ b+ x+ k)2 = (a+ b+ x)2 + k2 + 2(a+ b+ x)k,

(a+ b+ x− k)2 − 4bx = (a+ b+ x)2 + k2 − 2(a+ b+ x)k − 4bx.

Hence, we can say that (a+b+x+k)2 > (a+b+x−k)2−4bx, equivalently,−
√

(a+ b+ x+ k)2 +√
(a+ b+ x− k)2 − 4bx < 0. Therefore, λ1 is always negative.

Now, all eigenvalues or their real part of the Jacobian matrix evaluated at any equilibria are nega-

tive. Hence, the unique equilibrium of System (4.16) is locally asymptotically stable when it exists.

To make the conditions for each model consistent, we are going to use the same form of P ∗2 to

express the conditions. Referring that P ∗2 = c − (1 + n)M∗, then M∗ =
c−P∗

2

1+n . The condition for

existence and LAS is M∗ < Ec−D
E(1+n) = k

k+k1R
(c− Π(K∗

m+K∗
nr+Π)

Km(K∗
nr+Π) ). Substituting M∗ into P ∗2 , we have

that c−P
∗
2

1+n < Ec−D
E(1+n) , then the condition is P ∗2 > D

E =
Π(K∗

m+K∗
nr+Π)

Km(K∗
nr+Π) .
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