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Abstract

Optical coherence tomography (OCT) is a biomedical imaging technique with
many current applications. A limitation of the technique is its shallow depth of imag-
ing. A major factor limiting imaging depth in OCT is multiple-scattering of light. This
thesis proposes an integrated computational imgaging approach to improve depth of
imaging in OCT. In this approach ultrasound patterns are used to modulate the refrac-
tive index of tissue. Simulations of the impact of ultrasound on the refractive index
are performed, and the results are shown in this thesis. Simulations of the impact of
the modulated refractive index on the propagation of light in tissue are needed. But
there is no suitable simulator available. Thus, we implemented a Monte Carlo method
to solve integral equations that could be used to perform these simulations. Results for
integral equations in 1-D and 2-D are shown.
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Chapter 1

Introduction

Optical Coherence Tomography (OCT) is an optical imaging technique used mostly in

biomedical optics and medicine. OCT provides high resolution cross-sectional imaging of

the internal structure of tissues by measuring backscattered light. It is capable of imaging

in situ and in real time with axial resolutions between 1 µm and 15 µm [1]. Its unique com-

bination of resolution and penetration depth makes OCT a very promising and interesting

imaging technique.

OCT was originally applied in ophthalmology where it has already established itself

as a reliable diagnostic tool. Many more applications of OCT have been developed since

its inception. Some of OCT applications include cancer detection in a variety of tissues,

optical biopsy, monitoring of coronary diseases, gastrointestinal imaging, caries detection

in dentistry, and more. Aside from its applications in biomedical imaging, there are a also

number of applications in non-destructive testing of materials. OCT can be used for non-

destructive testing of polymers, ceramics, and art objects. However, in the applications

outside of ophthalmology a limitation of OCT is its shallow depth of imaging.

The main factor limiting imaging depth in OCT is multiple scattering of light. The

OCT model assumes that only single backscattered photons provide useful information

about the tissue being imaged. But deeper in tissue the contribution of multiple-scattered

photons to the detected signal dominates that of single-scattered ones, reducing the amount
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of useful information obtained from these depths. This thesis presents a novel way to

reduce the effect of multiple scattering in OCT imaging. By applying ultrasound patterns

to modulate tissue’s refractive index, multiple-scattering at the detector can be reduced

and OCT imaging depth increased. The modulation of the refractive index is considered

as a step in a integrated computational imaging approach to OCT. The goal of this thesis

is to study the feasibility of an integrated computational imaging OCT system that uses

ultrasound patterns to modulate the refractive index of tissue. To do this simulations of the

effect of acoustic pressure on the refractive index are performed and the results discussed.

To assess the performance of these patterns in reducing multiple-scattering a simulation

of light interaction with tissue in the presence of the patterns is needed. However, there is

not a suitable simulation software available to perform such work. It would require a lot

of computational resources to simulate the interaction of light and modulated tissue in a

volume as large as required in the simulation software available. It would also take a lot

of time. Thus we decided to develop our own simulator. We want information on the

whole optical field, intensity and phase. So we need to solve the integral equation of scalar

scattering. A Monte Carlo method approach is selected to solve the integral equation of

scalar scattering. We decided to use the Monte Carlo method for its efficiency in high

dimensional problems, and because it is possible to solve the integral equation at specific

points of the domain with it. Some 1-D and 2-D integral equations are solved to test the

performance of the solver.

1.1 Organization of this thesis

The thesis is organized in the following way. In chapter 2 we discuss Optical Coherence

Tomography. We present a description of the main classes of OCT systems, discuss some

applications of OCT in various fields, and show how multiple-scattering affects this tech-

nique. In chapter 3 we present the novel idea of an integrated computational OCT system.

In chapter 4 we present a discussion on the relationship of the refractive index and applied
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acoustic pressure. Knowledge of this relationship is needed to successfully simulate the

effect of an ultrasound beam on the refractive index of tissue. Chapter 5 presents the re-

sults of the simulation of the effect of ultrasound patterns on the refractive index of tissue

and a discussion of these results. After this chapter we need to perform simulations of the

interaction of light and tissue modulated by the ultrasound patterns, however we found that

there is not an available simulator that is adequate for our requirements. So we decide to

develop our own simulator based on the solution of the integral equation of scattering. The

rest of this thesis deal with the development of that simulator. In chapter 6 we introduce

some required concepts about Monte Carlo methods, and in chapter 7 these concepts come

together for the implementation of a Reversible Jump Markov chain Monte Carlo solver

for Fredholm integral equations of the second kind. Finally we present our conclusions in

chapter 8.

1.2 Contributions of this thesis

The contributions of this thesis are as follows: We introduce the idea of an integrated

computational imaging OCT system. This system uses ultrasound patterns to modulate the

refractive index of tissue. We performed simulations of the application of these ultrasound

patterns to homogeneous and inhomogeneous tissue. The results of these simulations show

that:

1. The ultrasound patterns produce a meaningful change on the refractive index,

2. The change in the refractive index can be obtained within safety levels of application

of ultrasound to tissue,

3. Acoustic scattering inside an inhomogeneous medium does not change the ultrasound

pattern much, thus it is possible to design the ultrasound pattern considering only

homogeneous tissue.
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These results indicate that an integrated computational OCT system that uses ultrasound

to modulate the refractive index of tissue is viable. In the second part of this thesis we

implemented a Reversible Jump Markov chain Monte Carlo (RJMCMC) method to solve

Fredholm integral equations of the second kind. We tested the implemented RJMCMC

solver on several 1-D integral equations obtaining very accurate results. We also tested

the implemented RJMCMC solver on 2-D integral equations, obtaining accurate results

and proving that the implemented RJMCMC integral equation solver can be applied to

problems of higher dimensions. We perform an analysis of error for our implemented

RJMCMC solver of Fredholm integral equations of the second kind obtaining the relative

error of the estimate and its variance.

1.3 Related publications

The research done in this thesis was also of use in the production of the following papers:

1. Pedro F. Pereira and Sherif S. Sherif, ‘’Design of an optimum ultrasound pattern to

minimize multiple-scattered light reflected from inhomogeneous tissue”, Proc. SPIE,

vol. 8223, 2012

2. Pedro F. Pereira and Sherif S. Sherif, ‘’Simulation of the interaction of light and

tissue in a large volume using a Markov chain Monte Carlo method”, Proc. SPIE

Photonics North, Montreal, 2012

3. S. S. Sherif and P. Pereira, ‘’Methods and systems for use in imaging using interfer-

ometry” (PCT patent application filed) 2011.

4



Chapter 2

Optical Coherence Tomography

2.1 Introduction

Optical Coherence Tomography (OCT) is an optical imaging technique used mostly in

biomedical optics and medicine. OCT provides high resolution cross-sectional imaging of

the internal structure of tissues by measuring backscattered light. It is capable of imaging

in situ and in real time with axial resolutions between 1 µm and 15 µm [1]. Its unique com-

bination of resolution and penetration depth makes OCT a very promising and interesting

imaging technique.

OCT has common features with ultrasound and confocal microscopy. It is useful to

compare these technologies in order to highlight unique characteristics. Clinical ultrasound

has a resolution varying between 0.1 mm and 1 mm depending on the frequency used for

imaging. At standard ultrasound frequencies sound waves are only lightly attenuated in

tissue and hence it is possible to image a few centimetres in tissue. On the other hand,

confocal microscopy is capable of extremely high resolution, of around 1 µm. But optical

scattering can significantly degrade image signal and contrast, hence it is only possible to

image a few hundred micrometres in tissue [1].

OCT stands at the middle ground between ultrasound and confocal microscopy. See

Fig. 2.1 It is capable of imaging with axial resolutions between 1 and 15 µm. At the same

5



time, it is possible to penetrate a few millimetres in tissue using OCT. This shallow imaging

depth is a great disadvantage of OCT, yet since it is an optical technology, it is possible to

use endoscopes and catheters to perform imaging inside the body.

Figure 2.1. Different imaging modalities with their resolution and penetration depth. OCT fills a gap between
ultrasound imaging and confocal microscopy.

As mentioned before, many applications of OCT are found in the biomedical imaging

field. OCT is an established technique in opthalmology, where it is easy to image using

an optical technique due to the transparency of the eye. A few other applications of OCT

include the assessment of coronary diseases, optical biopsy and cancer detection, and appli-

cations in dentistry [2–5]. There are also a number of applications being developed outside

of the medical imaging field [6].

OCT can be classified as either time-domain OCT (TD-OCT) and Fourier-domain OCT

(FD-OCT), depending on how the imaging is done. There are also a number of extensions

to OCT that allow the technique to obtain some functional information from the tissues

being imaged, e.g.: Doppler OCT, polarization sensitive OCT and combinations of OCT

with other techniques like fluorescence imaging and spectroscopic measuring. In the next

sections we shall present the more important variants of OCT, namely TD-OCT and FD-

OCT.
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2.2 Time domain OCT

OCT is based on an optical measurement technique known as low-coherence interferometry

[1, 7]. Interferometry techniques perform correlation between light that is backscattered

from tissue and light that has traveled a known distance in a reference arm. Interferometry

measures the optical field rather than light intensity. A first approach toward tomographic

imaging was presented by Fercher at the ICO-15 SAT conference in 1990. Fujimoto and

co-workers pioneered OCT using a fibre optic Michelson interferometer in 1991. The

first in vivo tomograms of human retina were obtained independently by Fercher et al and

Swanson et al in 1993 [7].

A schematic of a Michelson interferometer for a TD-OCT system is shown in Fig. 2.2.

Incident light from the source is separated into a reference beam and a signal beam which

travel different distances in the two arms of the interferometer. The output is the summation

of the reference field and the signal field, and a detector measures the intensity of the output.

If we call the reference field Er(t) and the signal field Es(t), and if we consider a coherent

light source then we can write,

Io ∼ |Er(t)|2 + |Es(t)|2 + 2Er(t)Es(t)cos(2k∆L)

∆L is the path length difference between the signal and reference arm in the interferometer.

If the reference path length is scanned interference fringes will be generated as a function

of time. When using low coherence light these interference fringes will only be generated

if the path length of the reference and signal arms is matched within the coherence length

of the source.

Operation of a TD-OCT system is based on the occurrence of interference fringes when

the optical path length of the signal and reference arms coincide within the round trip

coherence length, lc. The coherence length is dependent on the wavelength of the light

source as well as on its spectral width. If we assume a Gaussian spectrum for the light
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Figure 2.2. TD-OCT scheme with Michelson interferometer.

source then,

lc =
2 ln 2

π

λ̄2

∆λ
(2.1)

where λ̄ is the mean wavelength of the source and ∆λ is its spectral width. As an ex-

ample, using a superluminescent light diode (SLD) with λ̄ = 820 and ∆λ = 20, both

in nanometers (nm), yields a round trip coherence length and thus a depth resolution of

lc ≈ 15 µm [7].

Thus, TD-OCT is based on low time-coherence interferometry. It requires a broadband

low coherence light source, as the coherence length is related to the bandwidth of the

source. Scanning the length of the reference arm allows for the determination of the depth

in tissue from which backscattered light is being detected. The depth scan is called, in

analogy with ultrasound imaging, an A-scan. To produce a 2-D image a lateral scan is

required. TD-OCT is capable of producing 3-D images of volumes by performing a raster

scan, as well as its axial depth scan. The sensitivity of TD-OCT ranges between -60 and

-90 dB of the incident light intensity, meaning intensities as low as -90 dB with respect

with the incident light intensity can be detected [1].

8



2.3 Fourier domain OCT

FD-OCT differs from TD-OCT in that there is no need to scan the reference path length.

FD-OCT measures backscattered light from all depths simultaneously. There are two types

of FD-OCT. Spectral domain OCT uses an interferometer with a low-coherence light source

and measures the interference fringes by using an spectrometer and a high speed line scan

camera. The other approach is called Swept source domain OCT, or by some authors optical

frequency domain imaging (OFDI). It uses an interferometer with a narrow-bandwidth,

frequency-swept light source and detectors. It measures the interference fringes of the

output as a function of time.

2.3.1 Spectral FD-OCT

The first implementation of Spectral domain OCT (SD-OCT) was reported in 1995. Even

though the technique presented some advantages over TD-OCT it took some time to be

accepted. In SD-OCT, the reference arm is kept stationary, and the depth information

is obtained by a Fourier transform of the spectrally resolved interference fringes in the

detection arm of a Michelson interferometer [8]. This approach provides an advantage in

signal to noise ration (SNR) when compared to TD-OCT.

Spectral domain OCT uses a very similar scheme as the one shown in Fig. 2.2 for TD-

OCT. Unlike TD-OCT there is no need to scan to scan the position of the reference mirror

to obtain an A-scan of the sample. Instead in SD-OCT the cross-spectral density in the

detection arm of the Michelson interferometer is measured by using a spectrometer. All

spectral components of the OCT signal are captured simultaneously by the spectrometer

[9].

An A-scan is obtained in SD-OCT by doing an inverse Fourier transform of the detected

signal. As in TD-OCT, light from a broad-bandwidth source is split by the Michelson

interferometer, part of it goes to the reference arm in which is reflected by a fixed mirror;

the other part goes to the tissue to be imaged in which it is reflected back from internal
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structures at different depths. The recombined light from both arms of the interferometer

is then spectrally separated. The detected interference signal at the spectrometer can be

expressed as [8],

I(k) = Ir(k) + 2
√
Ir(k)Is(k)

∑
n

αn cos k zn + Is(k) (2.2)

where Ir(k) and Is(k) are the wavelength-dependent intensities reflected from the reference

and sample respectively and k is the wavenumber. The second term in the right-hand side

represents the interference between the reference and sample arms of the interferometer.

αn is the square root of the sample reflectivity at a depth zn. The depth information is

obtained by performing an inverse Fourier transform of Eq. (2.2), which yields [8],

|FT−1[I(k)]|2 = Γ2(z)⊗

{
δ(0) +

∑
n

α2
nδ(z − zn) +

∑
n

α2
nδ(z + zn) +O[I2s /I

2
r ]

}
(2.3)

where Γ2(z) representing the envelope of the coherence function. The first term within

braces is the autocorrelation signal of the reference arm and has magnitude 1. The second

and third term within braces on the right-hand side represent the interference between the

reference and sample arms. They provide two mirror images of which only one is kept. The

final term on the right-hand side represents autocorrelation noise from the sample arm. Is

and Ir represent the intensity reflected back from the reference and sample arm respectively.

The greatest advantage provided by Spectral-domain OCT over TD-OCT is an con-

siderable increase in imaging speed. Imaging speeds can be 50 to 100 times faster [1].

This increase in imaging speed enables the possibility of higher resolution images, as it

is possible to do more axial scans. It can also increase the amount of cross-sectional im-

ages acquired to produce 3D volumes. The increase in imaging speed is largely due to

an increase in sensitivity when using spectral domain detection. SD-OCT can show an

improvement of 21.7 dB in sensitivity when compared to TD-OCT [8].
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2.3.2 Swept source FD-OCT

Although SD-OCT provides high-speed imaging and a better SNR than TD-OCT it also

has some problems. For example, the use of array detectors may cause problems associated

with phase washout by changes in the sample arm length during the pixel integration time.

Also it is difficult to implement balanced detection and polarization diversity, which may

be needed in some applications, with the scheme. An alternative way of implementing a

Fourier domain OCT, hence maintaining the benefits of high-speed imaging and SNR, is

optical frequency domain imaging(OFDI) [10] also called swept source OCT. It is based

on frequency-domain reflectometry and uses a wavelength tunable laser and single-element

detectors.

Again we can refer to Fig. 2.2 as the scheme is very similar. The main differences in

OFDI case is the use of a wavelength tunable laser source, and the reference mirror being

fixed. Operation can be described in the following way. The output from the light source

is split between the reference arm and the sample arm. Interference between the reference

and sample arms is detected using a square-law photodetector while the wavelength of the

monochromatic source is changed or swept. The path lengths of the reference and sample

arm are maintained constant. The axial reflectivity profile is obtained by performing a

Fourier transform of the detected signal.

As was the case with SD-OCT, OFDI provides a great increase in imaging speed when

compared with TD-OCT. Imaging speeds of 115,000 axial scans per second were obtained

in 2005 using novel swept-laser technology. And catheter/endoscope imaging speeds of

100,000 axial scans per second were obtained in animal models [1]. These speeds are 50

to 100 times faster than TD-OCT. These high-imaging speeds enable 3D-OCT of luminal

structures.

OFDI presents the advantage over SD-OCT that it does not require the use of line scan

cameras. Thus, it can be used with wavelengths of 1000 nm and 1300 nm, where CCD

cameras lack sensitivity. These longer wavelengths have more penetration in scattering

tissues, hence allowing imaging of these kind of tissues.
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2.4 Applications of OCT

As mentioned earlier OCT is mostly applied in biomedical imaging. OCT is an established

diagnostics technique in ophthalmology. The earliest clinical studies of OCT were done

in this field. OCT has been demonstrated for the detection and monitoring of a variety

of macular diseases, The retinal nerve fibre layer thickness, which is a predictor of early

glaucoma, can be quantified using the technique. OCT is a promising technique for the

diagnosis and monitoring of glaucoma and macular edema associated with diabetes because

it provides quantitative information on retinal pathology which is a measure of disease

progression. [1, 11].

The fact that OCT is done mostly with fibre optic interferometers allows an easy com-

bination with endoscopes and catheters. The use of endoscopes and catheters with OCT

allows imaging inside the body, thus enabling a number of applications. A very interesting

application of catheter based OCT is intravascular imaging. OCT is capable of detecting

plaque formations in atherosclerotic arteries as well as thrombus [2]. This can be of great

help in the treatment of coronary diseases, which are one of the major causes of death in

North America. This particular area of application has greatly benefited from FD-OCT

techniques. Blood is one of the most strongly scattering tissues in the body. Hence it is

necessary to use a saline flush or a balloon occlusion to remove blood from the area to be

imaged, this only provide a few seconds to perform imaging. Thanks to FD-OCT tech-

niques high-imaging speeds it is possible to obtain much better images in one flush than it

was possible with TD-OCT.

Another application of OCT in the biomedical imaging field is optical biopsy [11, 12].

OCT provides resolution comparable with histology. Though certainly OCT is still not

capable of replacing histology in the assessment of cancerous lesions, the capability of

performing in situ, in real time imaging of tissue morphology opens some interesting pos-

sibilities. OCT can be used to assess tissue pathology in regions where excisional biopsy

is too dangerous. It also be used to guide conventional biopsy, thus reducing the number
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of false results due to samples obtained from regions with no lesions. Finally, due to its

real-time imaging capabilities, OCT is a promising option to guide surgical procedures in

order to ensure that all of the diseased tissue is removed.

It is worth mentioning that although a great number of OCT applications are found in

biomedical imaging, the technique can also be applied to other fields. OCT presents great

possibilities for non-destructive testing (NDT) and material sciences [6]. One such applica-

tion of OCT for NDT is the evaluation of ceramic materials. Advanced ceramic materials

are used in many industrial applications. But their performance is highly related to the

presence of surface or near-surface damage. One study found 0.5 mm of imaging depth

in ceramic materials using a 1,300 nm source and 130 µV of output power [6]. Although

very shallow, the penetration depth obtained with OCT is sufficient to evaluate sub-surface

cracks generated due to material strain and stress.

One other field of application outside of biomedical imaging can be found in arts ob-

jects. One of the first OCT studies related to art featured archaic jade objects. The whiten-

ing effect seen in jade objects that have been buried for centuries is similar to the one

whitening seen in jade objects that go through a forging method by burning. In this study

it was shown that OCT can detect differences in the sub-surface morphology that help au-

thenticate the real archaic jade objects. One of the most studied application of OCT in arts

though, is related to paintings. In particular OCT is used to evaluate the thickness of the

varnish layer that is applied on top of paintings for protective reasons. In old paintings

this varnish cracks and becomes yellow, and have to be removed and re-applied. OCT pro-

vides a means to evaluate the removal process and prevent removal of the paint layers, as

normally the paint layers present very high absorption [6].

These are just but a few of the applications of OCT. Extensions of the technique, like

Doppler OCT, and polarization sensitive OCT enable a number more of applications. The

ones presented here are just a sample to show the incredible potential of this imaging tech-

nique.
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2.5 Multiple-scattering effect on OCT signal

Despite its great potential OCT applications remain limited by the technique’s shallow

imaging depth. In a scattering medium the imaging depth of OCT is around 3 millimetres.

Although improvements in penetration depth can be obtained by imaging using 1,300 nm

wavelengths, this is related to absorption in tissue. It has been shown that the dominant

process limiting imaging depth in OCT is optical scattering [4, 13].

Multiple scattered light forms a disturbing background in the image. Its effects are

a reduction of imaging contrast, a reduction of resolution, and a reduction of penetration

depth [7]. Scattering limits imaging depth because it causes attenuation of the light as well

as randomization of image information. Simulations done in [13,14] show the contribution

of single-scattered photons and multiply-scattered photons to the OCT signal according

to depth in tissue. In Fig. 2.3 obtained from [14] it is visible that, after a certain depth

has been reached, the signal contribution from multiple-scattered photons exceeds that of

single-scattered photons.

Figure 2.3. Class I reflectance represent that obtained from ballistic photons. Class II reflectance is obtained
from photons that undergo more than one scattering event. It is clearly seen that after a certain depth Class II
reflectance is dominant.
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It can be inferred from Fig. 2.3 that increasing the output power of the light source won’t

have much effect on improving penetration depth, as the amount of Class II reflectance

will also increase. The point at which Class I and Class II reflectance is the same should

be noted; in the simulation result shown this occurs at around 0.6 mm in depth. Which

indicates that Class II signals increase in contribution very fast.

Since many of OCT applications would greatly benefit from an increased imaging

depth, this line of research is very interesting. We shall note that some improvement can be

obtained by adjusting the wavelength parameters of the source, or the amount of power of

the light source. But the best way to obtain improvement in imaging depth is to tackle the

effect of multiply-scattered photons in OCT signal. In chapter 3, we propose an Integrated

Computational Imaging method that aims to reduce the effect of multiple-scattering in the

OCT signal. This method could help improve OCT imaging depth, thus enabling improve-

ments in current applications of OCT, as well as new applications of the technique.

15



Chapter 3

Integrated Computational Imaging for

OCT

3.1 Introduction

In this chapter we describe an integrated computational imaging system for OCT. An inte-

grated computational imaging system, also know as a hybrid system, combines a modified

optical imaging system and a digital post-processing step. A hybrid imaging system is

different from a system obtained by cascading a standard imaging system and a digital

post-processing step. In a hybrid system, both the optical and digital modules are parts of

a single system, and the imaging process is divided between them [15]. A block diagram

is show in Figure 3.1.

Figure 3.1. A block diagram of an integrated computational imaging system
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In the proposed system a continuous-wave (CW) ultrasound is applied to tissue at the

same time as OCT imaging is performed. This ultrasound signal changes the density of the

tissue to which it is applied, thus changing the refractive index of that tissue. We can call

this a modulation of the refractive index, or a modulation of the sample [16]. We propose to

manipulate the acoustic signal in such a way as to produce a modulation of the sample that

would benefit OCT imaging depth. Let us first present evidence that applying an ultrasound

signal simultaneously with the OCT beam is beneficial for the OCT imaging process.

3.2 OCT imaging in the presence of ultrasound

We have stated that the presence of CW ultrasound in tissue at the time of imaging can

benefit OCT. There is evidence showing this in [17] and [18]. In these papers the authors

show that the presence of an ultrasound beam parallel to the OCT beam reduces multiple

scattering as measured by the point spread function (PSF) by at least 20%. The cause for

these improvements of the OCT signal is assumed to be the interaction of multiply-scattered

photons with the acoustic wave.

An acoustic wave traveling in a homogeneous medium creates a perturbation of the

refractive index. The medium becomes inhomogeneous with a time-varying stratified re-

fractive index. Yet due to the great difference in the frequencies of light and sound we

can, for the purpose of studying light-sound interaction, regard the refractive index as be-

ing static [19]. Considering the refractive index as being static, we obtain in the medium

a diffraction grating in the direction of the ultrasound propagation. The simplest form of

of light sound interaction is the partial reflection of light from the sound created diffraction

grating depending on the angle of incidence θ of the light. This interaction is known as

Bragg diffraction.

Taking these considerations about the interaction of an acoustic wave and an optical

one we can now explain the reduction of multiple scattering in [17] and [18] rather simply.

Given that in the experiments the ultrasound beam was parallel to the OCT beam, the inci-

17



dent light and back-reflected photons which underwent just one scattering event had little

interaction with the grating. However, photons that underwent more than one scattering

event have a higher probability of hitting the grating at an angle cause them to be diffracted

to a region away from the photodetector. We note here, that since many OCT systems are

based on single-mode fibre optics the detection area is only a few microns in radius [13].

Thus the angle of the diffraction events do not need to be an extremely high one to turn

multiple-scattered photons away from the detection region.

3.3 A novel method: Ultrasound patterns

We know from the experimental evidence that the application of an CW ultrasound signal

to tissue has a beneficial effect to OCT by increasing imaging depth. And we know, from

the same experimental evidence that this benefit is due to a reduction of multiply-scattered

photons at the detector. We present here a novel idea to take advantage of this knowl-

edge. That is, instead of considering ultrasound modulation of tissue and OCT imaging as

separate events; treat them as parts of an integrated computational imaging for OCT.

In a integrated computational imaging system approach modulation of the sample via

the application of ultrasound and OCT imaging are considered as steps of a process, and not

independent processes themselves. Thus ultrasound application should be designed con-

sidering that OCT imaging will be done depending on it. And also, OCT post-processing

should take into account that the sample have been modulated using ultrasound. A sim-

ilar idea was shown in [16], though in this work the authors were more concerned with

obtaining new information by post-processing the obtained OCT signal. Our interest is in

designing a whole integrated imaging system. But, we shall concern ourselves first with

the ultrasound modulation to be applied to the sample.

Previous works in the literature about OCT imaging in the presence of acoustic waves

use only one CW ultrasound beam [16–18]. We propose the design and utilization of

ultrasound patterns to perform the modulation of the sample. This ultrasound patterns are
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obtained by the combination of two or more ultrasound beams. In this thesis we design

standing-wave ultrasound patterns. These patterns present the interesting characteristic of

presenting areas of no-change in the refractive index surrounded by acoustic generated

gratings. Thus the standing-wave patterns behave like a waveguide for the optical OCT

beam.

A proof of concept image is shown in Figure 3.2. This figure was obtained in MATLAB

assuming a medium with a speed of sound of 1500 m/s and a frequency for the acoustic

waves of 1 MHz. Two acoustic waves with angles of π/8 and −π/8 were used to produce

the standing-wave patterns. The obtained pattern shows the areas of no change in the re-

fractive index surrounded by acoustic generated gratings that could be used as waveguides

for single-scattered photons.

Figure 3.2. A standing wave ultrasound pattern generated by two ultrasound sources in a homogeneous
medium

Of course, to be of use the ultrasound patterns should be applied to inhomogeneous

tissue. An useful ultrasound pattern will not be much affected by the inhomogeneity of

tissue, that is the acoustic scattering resulting from the inhomogeneity will not change the
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pattern much. In order to test the feasibility of obtaining patterns like the one shown in

Figure 3.2 simulations were performed. These simulations were done using COMSOL

Multiphysics software and the results obtained are shown in Chapter 5.

3.4 Delivery of ultrasound and OCT beams

In the literature about performing OCT imaging in the presence of an acoustic wave the

orientation of the ultrasound beam is not given much consideration. The acoustic wave can

be parallel, perpendicular or anti-parallel to the OCT beam. Although these orientations

need only be approximate. For example, [18] mentions an angle of about 10◦ between

the OCT beam and the ultrasound beam, due to alignment difficulties, still considering the

beams to be parallel. Fig. 3.3 and Fig. 3.4 show two of these arrangements between the

ultrasonic wave and the OCT beam.

Figure 3.3. Parallel orientation between ultrasound wave and OCT beam. OCT beam is shown by an arrow,
ultrasound wave shaded cone.

Figure 3.4. Perpendicular orientation between ultrasound wave and OCT beam. OCT beam is shown by an
arrow , ultrasound wave shaded cone.

These simple arrangements work well in [17] and [18] because they are not concerned

with the exact angle of incidence of the ultrasound wave. That is not the case when trying

to obtain a specific ultrasound pattern to modulate the sample. The ultrasound pattern
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obtained will depend on the angles between the different ultrasound plane waves used. We

may also need to locate the OCT beam in an specific region of the ultrasound generated

pattern. Thus we can not simply deliver the ultrasound waves in a separate manner from

the OCT imaging beam, we shall require a delivery system that provides ultrasound waves

and OCT beam in a coordinated manner. In other words the system will require a specially

designed probe, capable of delivering both signals.

In order to design this probe simulations of the interaction of an OCT beam with the

designed patterns is required. The goal of these simulations is to determine the optimal ul-

trasound patterns that minimize multiple-scattering for a particular class of tissue. However

there is not an adequate simulation software for this problem. That is, there is no simulator

capable of simulating light interaction with tissue in a very big volume, relative to the light

wavelength, with reasonable computational resources. Because of this fact, we decided to

develop our own simulator. The implementation of an algorithm to perform this simulation

is shown in Chapters 6 and 7 In the meantime we show in Fig. 3.5 one proposed design for

the probe discussed.

(a) Lateral view: Optical beam focused
by microscope objective in red with
piezoelectric transducers generating ul-
trasound in blue.

(b) Top view: Piezoelectric transducers
are shown in gray inside a sleeve con-
nected to the microscope objective.

Figure 3.5. A proposed design for a probe capable of delivering ultrasound and OCT beams to the sample in
a coordinated manner.
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3.5 Conclusion

This chapter introduces the idea of an integrated computational OCT system. There is

evidence showing that OCT sees improved imaging depth in the presence of ultrasound.

Taking this into consideration our proposed integrated computational OCT system uses ul-

trasound to modulate the refractive index of tissue. Instead of just applying an ultrasound

beam as in the literature, we propose that an ultrasound pattern can be designed to mini-

mize the effect of multiple-scattering in OCT imaging. To be useful the ultrasound pattern

has to be applied to inhomogeneous tissue. Acoustic scattering caused by the inhomogene-

ity should not affect the pattern considerably. To test the feasibility of this requirement

simulations of the effect of ultrasound pressure on the refractive index were performed.

As a first step to perform the simulations of the effect of ultrasound pressure on the

refractive index, we need to establish a relationship between acoustic pressure and the

refractive index. In the next chapter, we discuss the relationship between acoustic pressure

and the refractive index. The formulae derived in chapter 4 are used to connect the effect

of pressure on the density of the medium with a change in the refractive index. Afterwards,

in chapter 5 we present the results of our simulations performed in COMSOL Multiphysics

software.

To design ultrasound patterns that minimize multiple-scattering in tissue we need to

simulate the interaction of light with tissue modulated by these ultrasound patterns. How-

ever there is not an adequate simulation software for this problem. So we need to develop

our own simulator of light interaction with tissue. We decide to use Monte Carlo methods

because of their computational efficiency in high dimensions. Chapter 6 introduces the

basic theory of Monte Carlo methods. Chapter 7 discuss the implementation of Reversible

Jump Markov chain Monte Carlo solver for Fredholm integral equations of the second

kind. In chapter 7 we present the method to solve integral equations with Monte Carlo, we

implement the algorithm and MATLAB and show the results obtained in its application to

1-D and 2-D equations.
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Chapter 4

Relationship between pressure and the

refractive index

4.1 Introduction

In this chapter we will discuss the relationship between pressure and the refractive index.

We will first present the effect of acoustic pressure in the density of a medium. Afterwards,

we will discuss the polarization of dielectric materials. This serves as a basis to introduce

the Classius-Mossotti equation, which relates the density of the material with its polariz-

ability. Then we will be able to link changes in density due to acoustic pressure to changes

in the refractive index of the material. This knowledge is required to simulate the effect of

ultrasound patterns on the refractive index of tissue.

4.2 Compression due to acoustic pressure

Let us consider first a fluid under equilibrium. Under equilibrium the equation of state of

the fluid is given by [20]

kT = − 1

V

(
∂V

∂P

)∣∣∣∣
T

= −1

ρ

(
∂ρ

∂P

)∣∣∣∣
T
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and

β = − 1

V

(
∂V

∂T

)∣∣∣∣
P

= −1

ρ

(
∂ρ

∂T

)∣∣∣∣
P

where kT is called the isothermal compressibility and β is called the coefficient of thermal

expansion of the fluid. Both kT and β are functions of P and T.

For sound frequencies below 109cps, in gases, however it is a better approximation to

assume adiabatic compression.In this case

(
∂ρ

∂P

)∣∣∣∣
S

= ρkS =
1

γ

(
∂ρ

∂P

)∣∣∣∣
T

and (
∂T

∂P

)∣∣∣∣
S

=
γ − 1

γ

(
∂T

∂P

)∣∣∣∣
ρ

so that a change in density due to the applied pressure is given by

ρ+ δ = ρ+ ρkSp (4.1)

and a change in temperature by

T + τ = T + (γ − 1)
kS
β
p (4.2)

where γ is the ratio of the specific heat at constant pressure of the gas to the specific heat

at constant volume. And kS is called the adiabatic compressibility.

4.3 The relationship between refractive index and density

We can link the refractive index with the density of the material via the Classius-Mossotti

equation. We shall now show the derivation of this relationship.
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4.3.1 Polarization of materials

In considering the polarization of molecules we must start by considering the polarization

of isolated atoms. In a neutral system, two charges +e and −e a distance x apart have a

dipole moment p = ex. The dipole moment of a set of such dipoles is

P =
∑
j

exj = Np (4.3)

in which N is the density of dipoles.

Polarization of atoms

The simplest case is that of an isolated atom with no dipole moment in the absence of an

external field. The application of a homogeneous field induces a dipole moment given by

pe = 4πε0αeE (4.4)

where αe is the electronic polarizability of the atom.

Polarization of molecules

The situation for molecules is a little more complex. Some molecules may have permanent

dipoles depending on their charge distributions. Materials with such molecules are called

polar materials. When the electronic charge distribution within the molecule is symmetric,

it has no permanent dipole. This type of molecule is called nonpolar. For nonpolar ma-

terials, the application of an external electric field gives rise to dipole moments described

by

pa = 4πε0αaEloc (4.5)

where αa is the atomic polarizability and Eloc is the local field surrounding the molecule.

The atomic polarizability is the average effect of all possible polarizations in relation to the

applied field. αa is, in principle, a function of the electric field, but for a wide range of
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field strengths it is a constant that characterizes the response of the molecules to an applied

field [21]. The expression for the atomic polarization per unit volume can be expressed as

Pa = Npa = 4πε0NαaEloc (4.6)

where N is the dipole density.

Permanent dipoles contribution in polar molecules

Permanent dipoles are created in molecules when electron charge distributions are asym-

metrical. An example of this is the water molecule where the two hydrogen atoms form an

angle with the oxygen atom [22]. The Langevin theory is used to determine the average

molecular dipole moment parallel to an applied field as a function of temperature. The

potential energy of a molecule with dipole moment pa in an electric field E, where φ is the

angle between pd and E is

P.E. = pdE cosφ (4.7)

The average dipole moment per unit volume is

Pd = Npd〈cosφ〉 (4.8)

where N is the density of molecules. The factor 〈cosφ〉 is given by [22]

〈cosφ〉 = L(a) = coth a− 1

a
(4.9)

when a� 1 then L(a) = a/3. In our case a = pdE/kBT � 1, so

L(a) =
1

3

pdE
kBT

(4.10)
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plugging this value back into Eq. (4.8)

Pd = Npd〈cosφ〉 = Npd ·
pdE

3kBT
=
Np2

dE
3kBT

(4.11)

From this the molecular or dipolar orientation polarizability is

αd =
p2
d

3kBT
(4.12)

The total polarizability of a substance must include the electron contribution (Eq. (4.4))

and the atomic polarizability (Eq. (4.6)). Thus the total polarizability is

α = αe + αa + αd (4.13)

4.4 The Lorentz field and the Debye Equation

4.4.1 Derivation of the Lorentz field

A particular molecule in a liquid is affected by both the applied field and the fields of the

dipoles present on other molecules surrounding it. We want to describe now the field at the

location of a given particle and to determine its effect on that particle. This field is the local

field.

The local field is determined at the centre of a small spherical region within the dielec-

tric material. This spherical volume is chosen to be sufficiently small with respect to the

dimensions of the dielectric material so that the external volume surrounding the sphere

may be regarded as homogeneous and continuous and to have dielectric constant ε. How-

ever, the sphere must be large with respect to the dimension of the particle (See Figure 4.1).

The internal field is affected by several factors. The first one is the charge density on

the plates on either side of the dielectric, given by Evac = D/ε0 = q/ε0. The effect of

the charges induced at the interface adds the depolarizing field ED = −P/ε0 to the field
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Figure 4.1. Spherical region for calculation of the electric field. It’s big enough to include a number of
particles, yet small enough to consider the external region to be homogeneous. Some fields are also shown.

strength. Thus, the induced charges on the surface of the region are a factor to be con-

sidered. Here, we shall only consider the components parallel to the applied field. An

element of surface area on the surface of the spherical region has an area 2πr2 sin θdθ.

The angle θ determines the surface charge density given by −(P/
√

4πε0) cos θ. Then

−(P/
√

4πε0) cos θ · 2πr2 sin θdθ is the charge on the element of surface area. The field

on the spherical surface is

√
4πε0dES =

2πr2 sin θdθ · P cos θ · cos θ√
4πε0r2

The charge on the spherical surface is thus found to be

ES =
P

2ε0

∫ π

0

cos2 θ sin θdθ =
1

3ε0
P (4.14)

The sum of these three components (D/ε0 + ED + ES) give the local field as

Eloc =
D

ε0
− P
ε0

+
P

3ε0
= D − 2P

3ε0

Using the well known fact that,

D = εE = P + ε0E
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we can now write,

Eloc = E +
P
ε0
− P

3ε0
= E +

1

3ε0
P (4.15)

Now we substitute P = E(ε− ε0) into our last equation we obtain

Eloc = E +
E

3ε0
(ε− ε0) = E[1 +

1

3ε0
(ε− ε0)]

or after rearranging

Eloc = E
ε+ 2ε0

3ε0
(4.16)

Eq. (4.16) is called the Lorentz field. It does not include the effects of the dipoles

within the internal spherical region. This field depends heavily on the lattice structure of

the material. When a material is composed of several different ions, each ion will have a

different local field because each has different surroundings. A modification of Eq. (4.15)

gives the field for one such ion as

Eloc = E + β
P

4πε0
(4.17)

where β represents the particular field constant for a given case. Eq. (4.16) is a special case

of Eq. (4.17) that holds only in the special case when the net effects of the dipoles within

the spherical region are zero.

4.4.2 Derivation of the Debye Equation

Including atomic and dipolar polarizations we can now write,

P = E(ε− ε0) = Pa + Pd

we can substitute Eq. (4.6) and Eq. (4.12) here to write

P = E(ε− ε0) = 4πε0NαaEloc+N
p2d

3kBT
E (4.18)
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Assuming E ≈ Eloc we get

P =
ε− ε0
ε+ 2ε0

=
N

3ε0

(
4πε0αa +

p2d
3kBT

)
(4.19)

This is the Debye equation for the polarization of a pure substance. It combines the

Langevin theory and the Classius-Mossotti equation. In so doing it accounts for the ef-

fects of permanent dipoles and temperature. At this point is is helpful to define a molar

polarization as

A =
ε− ε0
ε+ 2ε0

· M
ρ

(4.20)

in which M is the molecular weight and ρ is the density of the substance. Taking Eq. (4.20)

into account we can now express Eq. (4.19) as

P =
ε− ε0
ε+ 2ε0

=
NA

3ε0

(
4πε0αa +

p2d
3kBT

)

where NA = 6.0221415 × 1023 is the Avogrado’s number, that express the number of

elementary particles in a mol of a substance.

4.5 Derivation of the Classius-Mossotti equation

We decided to work with the well known Lorentz-Lorenz relationship, that is an extension

of the Classius-Mossotti equation. The Classius-Mossotti was derived considering nonpo-

lar material, water our material of interest is a polar liquid. But, in the range of optical

frequencies the part of the polarization due to permanent dipoles is zero. And because of

that a polar liquid behaves as a nonpolar one at these frequencies [23].

We shall now proceed to derive the Classius-Mossotti equation. Assume a local field

applied to a substance which main polarization effect is electronic, then

Pe = N4πε0αeEloc = E(ε− ε0) (4.21)
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where N is the density of the dipole. We can obtain an expression for the local field from

Eq. (4.17) and Eq. (4.4)

Eloc = E + βNαeEloc

Collecting terms,

Eloc(1− βNαe) = E (4.22)

Substituting Eq. (4.22) is substituted into Eq. (4.21) for E we get

N4πε0αe = (1− βNαe)(ε− ε0)

or

ε− ε0 =
4πε0Nαe
1− βNαe

(4.23)

in this last case if the effects of the dipoles are zero in the spherical region, then β = 1/(3ε0)

from Eq. (4.15)

Another useful relationship can be obtained starting from

E = Eloc −
P

3ε0
(4.24)

We divide both sides of Eq. (4.21) by E and Eq. (4.24) is substituted in the denominator to

give

χe =
Pe
E

=
N4πε0αeEloc

E
=
N4πε0αeEloc

Eloc − P
3ε0

(4.25)

where χe is the electric susceptibility. We can obtain another expression for χe by consid-

ering that ε
ε0

= P
ε0E + 1, Equating this to Eq. (4.25) we have

χe =
P
E

= (ε− ε0) =
N4πε0αeEloc

Eloc − 4πε0NαeEloc

3ε0

(4.26)
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where we replaced P using Eq. (4.6). We can reexpress Eq. (4.26) as

(ε− ε0)
(

1− 4π

3
Nαe

)
= 4πε0Nαe

ε− 4πε

3
Nαe − ε0 +

4πε0
3

Nαe = 4πε0Nαe

ε− ε0 =
4π

3
Nαe(3ε0 + ε− ε0) =

4π

3
Nαe(ε+ 2ε0)

Finally, if we consider α = αe + αa

P =
ε− ε0
ε+ 2ε0

=
4π

3
Nα (4.27)

Eq. (4.27) is the Classius-Mossotti equation for a pure substance. It relates the po-

larizability and the dielectric constant. It will be noted that this equation does not take

orientation effects into account and its not a function of temperature. We can relate the

polarizability with the density of the material by remembering our definition of molar po-

larizability,

A =
ε− ε0
ε+ 2ε0

· M
ρ

=
4

3
πNAα (4.28)

where NA is the Avogrado number. Putting it in function of the density

ε− ε0
ε+ 2ε0

= ρ · 4πNAα

3M
= ρC (4.29)

where C is a constant for each given material. The constants C may be calculated from

published values of A, the molar polarizability.

4.6 Conclusion

In conclusion, the refractive index of a medium is directly related to its density. That

relationship can be reduced to a dependence on a single constant C that varies for each

material, as shown in Eq. (4.29). This constant can be easily calculated from data about the
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material of interest. Thus, it is possible to obtain the variations in the refractive index of

tissue due to applied acoustic pressure by first calculating the change in density. And then,

converting this change in density into a change of refractive index using Eq. (4.29).

Of course it is also possible to obtain the change in refractive index caused by acoustic

pressure using a formula as,

n(r, t) = n0 + η
p(r, t)

ρc2
n0 (4.30)

where, ρ is the average density of the medium, c is the average speed of sound in the

medium and η is called the elastooptic coefficient. This formula is found in [24]. The

elastooptic coefficient is much like C in Eq. (4.29), it links variations of the refractive

index with the corresponding variation of density. η is also particular to each material. A

similar formula, that relates refractive index to the strain caused by acoustic pressure can

be found in [19].

Each of this approaches is valid when solving acousto-optic problems. In this particular

case, for the simulations shown in the following chapter I chose to use the first approach.

Finding first the variations in density due to acoustic pressure and then converting those to

variation of the index of refraction.
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Chapter 5

Results from the simulations of

ultrasound patterns

5.1 Introduction

Simulations of ultrasound in tissue were needed to assess its impact on the refractive in-

dex. This chapter presents results of simulations of ultrasound patterns in tissue. These

simulations were done using the software COMSOL Multiphysics.

5.2 COMSOL setup

COMSOL Multiphysics is a simulation software capable of working with a number of dif-

ferent physics models. It is based on the finite element method (FEM). COMSOL provides

the necessary acoustic simulation features, it also has a very structured work method to

setup the simulation. One first defines the modol, this includes the geometry and the ma-

terials. Then one set the physics, with the equations that has to be considered. Lastly, one

setups the solver, which includes assigning a mesh and setting the parameters for the sim-

ulations. We describe here the setup required to perform these simulations with COMSOL

Multiphysics.
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We first define the geometry, in this simulation it is 2-D rectangular region with dimen-

sion of 1 cm × 1 cm. COMSOL allows its user to construct the geomtry directly inside

the software or to import it from some CAD softwares. Since the region we are defining

is simple, we just constructed it inside COMSOL. Water is selected as the material for the

simulation of a homogeneous medium. Water is available in COMSOL library of materi-

als, so all the relevant parameters for the simulations in a homogeneous medium are already

available in the software. The inhomogeneous medium is obtained by randomly changing

the refractive index inside the region of simulation between 1.3 and 1.5. As stated before,

this means a change in the density of the medium used for the acoustic simulation. Consid-

ering the model given by Eq. (4.30), the speed of sound of the medium is kept constant, and

equal to the value of the speed of sound in water. The setup of the homogeneous medium

is shown in Figure 5.1.

Figure 5.1. Screen capture from COMSOL Multiphysics showing the geometry of the model and the material
selected for the homogeneous medium.

After setting the geometry and the material, one needs to set up the physics. In these

simulations COMSOL is set to study an acoustic model. The side and top boundaries of
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the region of simulation are set as absorbing boundaries. The bottom boundary is set as the

pressure source. Pressure sources are set as incident pressure fields on the boundary, with a

pressure amplitude of 5× 105 Pa in the ultrasound standing-wave pattern simulations. Two

incident pressure fields are used for the ultrasound standing-wave pattern simulations. For

the plane-wave pattern simulations one pressure source of 1 MPa was used. The value of

pressure provided by these sources was adjusted in a way as to not surpass the safety limits

for ultrasound application in tissue. The setup of the pressure sources is shown in Figure

5.2.

Figure 5.2. Screen capture from COMSOL Multiphysics showing the pressure sources applied to the lower
boundary of the model.

Once the physics and all the sources are defined, one has to adjust the size of the mesh to

be used. We used the extremely fine setting from the default meshing options in COMSOL.

With this setting the constructed mesh had 12480 elements, with a maximum element size

of 0.2 mm. Using a coarser mesh produced inaccurate results. Configured like this COM-

SOL provides results on the applied pressure and the change in density it produces. We

use the Lorentz-Lorenz equation defined in Eq. (4.29) to convert this result of change in

density to a change in refractive index. The results obtained can be found in section 5.4.
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5.3 Ultrasound safety considerations

The design of the hybrid imaging system must consider the effect of ultrasound in tissue.

There are two major mechanisms through which an acoustic wave can produce damage in

tissue. To prevent any kind of harm, safety limits for the application of ultrasound in tissue

are established. These limits include indices for each of the cited mechanisms.

We took particular care to respect the mechanical index. This index is related to the

possibility of acoustic cavitation. Acoustic cavitation involves the expansion and then quick

implosion of bubbles in liquids or gasses. Equipment marketed in the US can not exceed

a mechanical index of 1.9. This means a peak negative pressure of 1.9 MPa at 1 MHz, or

6 MPa at 10 MHz.

There are three thermal indices that are applied under different conditions. One of them

(TIS) is applied when only soft tissue is exposed to ultrasound. The other two (TIB and

TIC) are used when bone is exposed to ultrasound. Though we payed less attention to these

indices we note that the tissue that absorbs ultrasound more strongly is bone, which is not

one of the tissues normally imaged with OCT. Also, we note that for the operating con-

ditions of most diagnostic ultrasound equipment damage due to heating is unlikely under

most conditions [25].

Our system must adhere to the safety limits for application of ultrasound. At the same

time we would like to produce the maximum amount of change in the refractive index,

where change in the refractive index is directly related to the amount of pressure applied.

At a frequency of 1 MHz, at which the simulations were performed, we took care not to

exceed the safety standard limit imposed by the mechanical index. That is, a peak negative

pressure of 1.9 MPa [25] was not exceeded.

5.4 Results

We show in this section the results of the performed simulations. We first show the medi-

ums used in the simulations (Fig. 5.3). We note that the refractive index used for the
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inhomogeneous medium is randomized between 1.3 and 1.5. This is the range of refractive

index commonly found in tissue. We also emphasize the fact that it is unlikely that one

shall find this much variation in real tissue, it is more likely that tissue of similar refractive

index is grouped together.

Fig. 5.4 shows the effect of an ultrasound plane wave on the refractive index of the

mediums. We note that the obtained patterns obtained in both the homogeneous and inho-

mogeneous mediums are very similar. This suggest that the effect of acoustic scattering on

the ultrasound pattern is not significant.

Fig. 5.5 shows the effect on an ultrasound standing-wave pattern on the refractive of

the mediums. We can notice that patterns in the inhomogeneous medium are similar to

the patterns in the homogeneous medium. Some distortion of the pattern is observed in

the inhomogeneous medium, for example comparing Fig. 5.5(a) and Fig. 5.5(b), but most

features of the desired ultrasound pattern remain.

In Fig. 5.6 we show the pressure applied to produce the ultrasound standing-wave pat-

terns. We note that it does not exceed the safety limit of 1.9 MPa at 1 MHz.

We need a measure to assess how similar the produced patterns are. We decided to use

the angle in Hilbert space, defined for two vectors x and y as

cos θ =
xy

‖x‖2 ‖y‖2
(5.1)

where 0 ≤ θ ≥ π/2. With this measure, if θ = 0 both patterns are the same, if θ = π/2 the

patterns are orthogonal. To perform the comparison we make a vertical cut in the p tterns,

and compare the obtained vectors representing A-scans. For the plane-wave patterns of

Fig. 5.4 we found that θ = 9.8040◦. For the standing-wave patterns of Fig. 5.5 we found

that θ = 8.6170◦. Thus, we confirm that the patterns obtained for the homogeneous and

inhomogeneous mediums are similar.

From looking at Figs. 5.4 and 5.5 we notice that it is possible to produce significant

change in the refractive index without exceeding safety limits. The change obtained is
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(a) Refractive index of homogeneous medium used in simulations

(b) Refractive index of inhomogeneous medium used in simulations

Figure 5.3. Refractive index of mediums used in simulations. Homogeneous medium with n = 1.33 on top
(fig. (a)), and inhomogeneous medium with n varying between 1.3 to 1.5 bottom (fig. (b)).
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(a) Homogeneous medium

(b) Inhomogeneous medium

Figure 5.4. Fig. (a) shows the effect of an ultrasound plane wave on the refractive index of the homogeneous
medium. Fig. (b) shows the effect of an ultrasound plane wave on the refractive index of the inhomogeneous
medium.
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(a) Homogeneous medium

(b) Inhomogeneous medium

Figure 5.5. Effect of an ultrasound standing-wave pattern on the refractive index. Fig. (a) shows the effect
on the homogeneous medium, while fig. (b) shows the effect on the inhomogeneous medium.
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(a) Homogeneous medium

(b) Inhomogeneous medium

Figure 5.6. Pressure applied to the mediums to generate the ultrasound standing-wave patterns shown in fig.
5.5
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approximately ±2.5 × 10−4. This is a significant change in the refractive index of the

medium, corresponding to a propagation phase change ∆φ = (2π/λ)∆nz. If λ = 1µm

then ∆φ = 2π×106×2.5×10−4z ≈ 1571z. Such change in phase should have a significant

effect on light propagation in the medium.

5.5 Conclusions

The most important conclusion we can obtain from the simulation results shown is that we

can design the ultrasound patterns assuming an homogeneous acoustic medium. We can see

in Figs. 5.4 and 5.5 that even though there is some change in the ultrasound patterns due to

acoustic scattering this change is small. And the ultrasound patterns remain similar to those

obtained in the homogeneous medium. Even more, in these simulations the refractive index

of the inhomogeneous medium varies between 1.3 and 1.5 randomly. In tissue variations

of the refractive index this large are not common. It is much more common to have tissue

of similar refractive index grouped together.

Another important conclusion can be made by looking at the scale of change in the re-

fractive index in Figs. 5.4 and 5.5. I emphasize again that the applied pressure was adjusted

to comply with the limits of safe application of ultrasound in tissue. Within these limits the

change in refractive index obtained was ∆n ≈ ±2.5 × 10−4. This is a significant change

in the refractive index of the medium, corresponding to a change in propagation phase

∆φ = (2π/λ)∆nz. If λ = 1µm then ∆φ = 2π×106×2.5×10−4z ≈ 1571z. Such change

in phase should have a significant effect on light propagation in the medium. Therefore, ul-

trasound patterns can be designed assuming an homogeneous acoustic medium. This was

also shown with an extreme case of optical inhomogeneous medium in the simulations.

These results show that an integrated computational OCT system, that uses ultrasound pat-

terns to modulate the refractive index of tissue, is feasible.
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Chapter 6

Monte Carlo Methods

6.1 Introduction

So far in this thesis we have shown that it is feasible to modulate the refractive index

of tissue using ultrasound patterns generated by a combination of acoustic beams, and

that these patterns can be designed inside an homogeneous medium and still be applied

to an inhomogeneous one. To assess the effectiveness of these patterns in minimizing

multiple-scattering, we need to simulate the propagation of light within tissue modulated

by ultrasound patterns. The simulation of light propagation involves the solution of an

integral equation. Though there are many methods for solving integral equations we opted

for a Monte Carlo method. We based this decision in the fact that Monte Carlo methods

are efficient in high dimensions, and can solve the problem just at the domain of interest.

In the present chapter we present the basics of Monte Carlo methods. Then in chapter 7

we present an approach to use Reversible jump Markov chain Monte Carlo for solving

Fredholm integral equations of the second kind. We implement the presented approach in

MATLAB and test it with integral equations in 1-D and 2-D. We then present the results of

our tests.
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6.2 Why use a Monte Carlo approach?

The first question we have to answer is certainly, why Monte Carlo methods? There are a

number of methods available to solve integral equations, e.g., method of moments, finite

element method. These methods require some discretization of the problem, in the form of

a grid or mesh, which when dealing with optical wavelengths can be quite big. Consider

the region of 1 cm × 1 cm used in our ultrasound simulations and a light source with

wavelength of 1,300 µm. Mesh elements should be smaller than the wavelength to obtain

accurate results. Consider grid elements of half the wavelength in size, that would amount

to approximately 237 million elements in the grid. If we want to solve in a volume of

1 cm3, then 3.64 × 1012 elements would be required if we use just two grid elements per

wavelength. The amount of elements required though is usually more than 2, so the number

of elements in the could quickly become impractical.

Another issue with these type of methods is that they are more suited to the global

problem. That is, the problem has to be solved at all points in the domain, even if one

is only interested in the solution at one point. As we mentioned before, the number of

points is very high when dealing with optical wavelengths, so the size of the matrices

generated by these methods is huge. The storage requirements for these matrices could

also be impractical.

Our choice of a Monte Carlo method to solve our integral equation of interest is re-

lated to these issues. Monte Carlo methods are very computationally efficient, they are

considered the best algorithm for evaluation of multidimensional integrals in cases of high

dimension [26]. We note here that solving a Fredholm integral equation of second kind, as

we want to do, requires the evaluation of integrals of increasing dimension. Monte Carlo

methods have a convergence rate of
√
N regardless of dimension, withN being the number

of points being evaluated. That is the Monte Carlo estimate converges to the exact value

with a rate of
√
N . If one wants to reduce the standard deviation of a Monte Carlo algo-

rithm by half, four times the number of samples are required [27]. Most quadrature rules
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have their convergence rates reduced by a factor of 1/d as the dimension d increases [28],

see table 6.1. Since the convergence of Monte Carlo is independent of the dimension there

is always a value of d above which Monte Carlo converges to the solution faster than the

other methods.

Table 6.1. Comparison of convergence rate of Monte Carlo with different quadrature rules

Convergence as function of n
Monte Carlo

√
n

Trapezoidal rule n−2/d

Simpson’s rule n−4/d

Gauss’ rule n−(2m−1)/d

Another very attractive characteristic of Monte Carlo methods is that they are well

suited to solve both the local problem and the global problem. The global problem in-

volves finding the solution on the whole domain, while the local problem means finding

the solution at just one point in the domain or just one part of the domain. There are times

when one is only interested in the solution of the problem at some region in the domain, in

these cases Monte Carlo methods present the advantage of being able to solve the problem

only at the points of interest; as opposed to solving the whole domain to obtain the solution

for just those points. This in itself allows a simplification of the problem as the number of

points in which the solution needs to be calculated is reduced. Also the storage required for

a Monte Carlo method is minimal, as a minimum only the summation of the estimate has

to be stored. From a more computational side Monte Carlo presents the advantage that the

algorithm is naturally suited to run in parallel; thus reducing the amount of time required

to obtain solutions of complicated problems.

In summary, we chose Monte Carlo as the algorithm to solve the integral equation of

scattering because of the following reasons,

1. The Monte Carlo algorithm is computationally efficient, especially in high dimen-

sions.

2. Solving an integral equation involves evaluating a sum of integrals of increasing

dimensionality.
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3. It is relatively easy to parallelize the algorithm.

4. Monte Carlo methods can solve the local problem, that means the problem can be

solved only in the domain of interest.

5. It can solve the global problem as well, that is it can solve the problem on the whole

domain.

6.3 History of Monte Carlo methods

Monte Carlo methods are a group of algorithms in which the solution to a particular prob-

lem is found through repeated random sampling. The essence of the method is to use

distributions of random numbers that reflect a particular process in a series of processes,

such as the diffusion of neutrons in various materials, to calculate samples that approximate

the real diffusion history [29]. Although the name Monte Carlo method dates back to the

1950’s, statistical sampling have been known for a long time. It was not very popular due

to the complications of calculations involving random numbers. However, the development

of powerful computers helped to greatly increase the number of applications for the Monte

Carlo method.

It is generally considered that the Monte Carlo method was officially introduced in

1949, the year on which Metropolis and Ulam published their paper on the subject [26].

However there are earlier examples of what could be called Monte Carlo method. In 1777

George-Louis Leclerc posed the following problem: given a needle of length l dropped on

a plane ruled with parallel lines t units apart, what is the probability P that the needle will

cross a line? He established that the probability was P = 2l/(πt). In 1866 Pierre Simon

de Laplace showed that this result can be used to approximate the value of the number π

by repeatedly throwing a needle onto a lined sheet of paper and counting the number of

intersected lines [26, 27, 30].

The development and the intensive application of the Monte Carlo method are related

to the Manhattan Project. That is the project by the United States to develop the first
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nuclear weapons during World War II. This project brought together such people as John

von Neumann, Enrico Fermi, Stan Ulam and Nick Metropolis. It also give them access to

some of the most advanced computers of that time. In order to study neutron transport,

what we now call Monte Carlo methods were developed.

6.4 Random number generation

The application of Monte Carlo methods usually require the generation of an uniform ran-

dom number ξ between (0,1). Once this random number can be generated, any other type

of probability distribution, or interval can be sampled from it. Before the advent of comput-

ers statistical sampling implied the use of random number tables, or some other methods,

to obtain the random samples required. Nowadays Monte Carlo calculations in comput-

ers are the standard. A source of random numbers capable of delivering them at a rate

adequate for a machine capable of billions of floating point operations per second is thus

required. Natural sources of random events don’t supply the events at such a rate. And

it would require an enormous table of previously obtained random numbers to complete a

large calculation [30]. Furthermore, repeatability of the results is desired in order to debug

and verify our algorithms. Thus, pseudo-random number generators are used.

A pseudo-random number generator is an algorithm which creates a sequence of num-

bers with statistical properties similar to those of random numbers. One of the most im-

portant of this properties is called the period. The period of a pseudo-random number

generator is the length of the sequence it creates.

6.4.1 Classes of pseudo-random number generators

The earliest, purely deterministic method of generating pseudo-random numbers was the

mid-square method proposed by von Neumann. We take a number xn that has 2a digits and

square it. The result has 4a digits, of which the amost significant and the a least significant
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digits are discarded. Then xi+1 is formed from the remaining digits as

xi+1 =

[
x2i
ba

]
−
[
x2i
b3a

]
· b2a (6.1)

where b is the base of the number representation. This method was soon abandoned because

of its short period.

Linear recurrence methods

Many pseudo-random number generators used are special cases of

xi+1 = a0xi + a1xi−1 + · · ·+ ajxi−j + b (mod P ) (6.2)

The generator is initialized with a vector of numbers with length j + 1. This generator

has a period τ which cannot exceed P j+1 − 1. The statistical properties of the generated

sequences depend on the selection of aj , b, and P .

Multiple recursive generator

A multiple recursive generator uses the following recursion

xi+1 = a0xi + a1xi−1 + · · ·+ ajxi−j (mod P ) (6.3)

Multiple recursive generators can be combined to create a generator with larger a modu-

lus and a longer period. If each individual modulus P` = 1, . . . , L is prime and each compo-

nent generator has a period τ`, then the period of the combined generator is τ1×· · · τL/2L−1.

The coefficients of each individual generator should be selected such that the combined

generator has a good lattice structure in higher dimensions.
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MATLAB random number generators

Monte Carlo simulations in this work were done in MATLAB. The default (pseudo)-

random generator in this software is the Mersenne twister algorithm. However, since a

number of independent random number streams were needed, the combined multiple re-

cursive generator was used in the simulations. This generator has a period of 2127 and

allows the creation of multiple independent streams [31].

6.5 Monte Carlo integration

Let us now discuss the solution of integrals via a Monte Carlo quadrature. Consider an

integral of the form

G =

∫
D

g(x)f(x) dx (6.4)

where

f(x) ≥ 0

∫
D

f(x) dx = 1 (6.5)

We must note here that the integral to be evaluated need not explicitly contain the function

f(x). It is possible to assume in those cases that f(x) = 1/D. That is f(x) is a probability

density function uniformly distributed in the domain D.

To evaluate such an integral the following procedure could be used. Draw samples

x1, x2, . . . , xN from the distribution f(x), and form the estimate

GN =
1

N

∑
i

g(xi) (6.6)

GN is an estimator for G, and given a large enough number of samples N it is guaranteed

that 〈GN〉 will converge to the value of G, in other words

〈GN〉 = G as N →∞ (6.7)

At this point we should make the interesting question, how big should N be? In order
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to answer that we need to somehow evaluate the quality of the estimate constructed.

6.5.1 Assessment of the estimate

It is usually the case when performing Monte Carlo calculations that one would need eval-

uate the quality of the estimate. This quality evaluation can be needed to decide on a

particular Monte Carlo algorithm to use. Or more importantly, to decide the number of

samples required to obtain an estimate with a particular level of error. Since Monte Carlo

methods are normally used to tackle problems that would require a great amount of time to

be solved by other methods, it is not efficient to continue the calculation once the estimate

is within a reasonable level of error.

Normally, to assess the quality of the estimate one would keep track of some other

estimates during the Monte Carlo simulation. Let us call the accumulator for the estimate

S1. Then an estimate of z(x) is given by,

z̄ =

∫ b

a

z(x)f(x)dx ≈ 1

N

N∑
i=1

z(xi) =
S1

N
, (6.8)

where xi is a given random sample.

Another accumulator can provide an estimate of z2. Let us call it S2, then

z̄2 =
1

N

N∑
i=1

z2(xi) =
S2

N
(6.9)

with this an estimate of the standard deviation of z̄ can be obtained,

s(z̄) ≈ 1√
N

√
N

N − 1
(z̄2 − z̄2) =

1√
N − 1

√
(z̄2 − z̄2), (6.10)

We can notice in Eq. (6.10) that the standard deviation is proportional to 1/
√
N for

large N. This means that to reduce the standard deviation by half, four times the number of

samples would have to be recorded [27]. To improve the estimate without the need of an
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incredible amount of samples being recorded we resort to variance reduction techniques.

6.6 Importance Sampling

The most basic variance reduction technique is importance sampling. Importance sampling

involves choosing a sampling distribution that favours important samples [32]. That is

samples concentrated in an area of greater contribution to the integral being solved. See

Fig. 6.1 for an example of what this means.

Figure 6.1. An example of importance sampling. The samples are concentrated in the area of higher value
of the distribution. There are still a few samples in areas of lower value.

To explain the concept of importance sampling, let us suppose we want to evaluate

integral in Eq. (6.4). Let us further assume that it is rather difficult to sample from the

probability density distribution f(x). In this case it is possible to introduce a different

probability distribution function (pdf), f̃(x), into the integral and sample from it as follows.

G =

∫
g(x)

f(x)

f̃(x)
f̃(x) dx (6.11)
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f̃(x) should have the same characteristics of f(x), as described in Eq. (6.5). Also, f̃(x)

should dominate f(x). That is, f̃(x) > 0 wherever f(x) > 0. Taking random samples

xi, . . . , xN from f̃(x) it is possible to construct the unbiased estimator

G̃N =
1

N

∑
i

g(xi)
f(xi)

f̃(xi)
(6.12)

where f̃(x) is called importance sampling density, importance distribution or proposal den-

sity. The ratio of densities,

W (x) =
f(x)

f̃(x)
(6.13)

is called the likelihood ratio, or just the weight of the samples. The likelihood ratio need

only be known up to a constant, that is W (x) = cw(x) [32].

We would like to select an f̃(x) that minimizes the variance of the estimate. It is

possible to prove (see [30]) that one can obtain zero variance if one selects

f̃(x) =
g(x)f(x)

G
(6.14)

of course, this means that the correct answer G is known. In other words, if we know

the correct answer we can always perform a Monte Carlo calculation that will return an

estimate with zero variance. This does not seems like a very useful conclusion. Yet we can

expect that if we select f̃(x) somehow similar to Eq. (6.14) we should obtain estimates of

very low variance.

6.7 Sequential Importance sampling

An extension of importance sampling is called sequential importance sampling or dynamic

importance sampling. It is useful when one wants to sample from very complex distribu-

tions. The technique works as follows. First, we assume we can decompose X as a vector

X = (X1, . . . , Xn), and it is possible to sample from a density g(X) sequentially.
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Specifically we assume,

g(X) = g1(x1)g2(x2 | x1) . . . gn(xn | x1, . . . , xn−1) (6.15)

where we generate x1 from density g1(x1), x2 is obtained from g2(x2 | x1), and so on until

one obtains a random vector X from g(X). This is repeated N times obtaining vectors

X1, . . . ,XN and then an estimate can be calculated using Eq. (6.12).

The importance weights will be represented as,

W (X) =
f(x1)f(x2 | x1) . . . f(xn | x1:n−1)
g1(x1)g2(x2 | x1) . . . gn(xn | x1:n−1)

(6.16)

where we represent f(X) sequentially and abbreviate (x1, . . . , xn) as x1:n [32]. In this way,

importance sampling allows one to sample from complex distributions as long as those

distributions can be represented as a joint distribution.

6.8 Markov Chain Monte Carlo

So far all the random samples we considered were independent and identically distributed

(i.i.d.) random variables. There could be cases in which it is very difficult to obtain i.i.d.

samples, e.g.: high-dimensional distributions. In these cases it is still possible to use the

Monte Carlo method, by sampling correlated samples. These correlated samples are ob-

tained using the sampling method known as Markov chain Monte Carlo.

Markov Chain Monte Carlo (MCMC) allows to approximately generate samples from

any arbitrary distribution. An advantage of MCMC is that it only requires specification of

the target probability distribution function (pdf) up to a normalization constant. MCMC

was developed in Los Alamos in the decade of 1950’s by Metropolis et al.. They were

doing simulations of thermodynamic equilibrium of a liquid with its gas phase, and realized

that they did not need to simulate the exact dynamics, but only some Markov chain with

the same equilibrium distribution. Hastings generalized the the Metropolis algorithm in the
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1970’s, and simulations using his scheme are said to use the Metropolis-Hastings algorithm

[33].

The usual approach to Markov chain theory is to start with the transition kernel P (x,A).

An important concern of Markov chain theory is to determine the conditions under which

there exist an invariant distribution π∗ and the conditions under which iterations of the

transition kernel converge to the invariant distribution. MCMC methods turn the theory

around. The invariant density is known, this is the target density π(·) from which the

samples are desired, but the transition kernel is unknown. To generate samples from π(·)

the methods find and utilize a transition kernel P (x, dy) whose nth iterate converges to π(·)

for a large n [34].

To do this we propose a generating density q(x, y) where
∫
q(x, y)dy = 1. This density

is to be interpreted as saying that when a process is at x, the density generates a value y

from q(x, y). The distribution q(x, y) should satisfy the reversibility condition. That is,

π(x)q(x, y) = π(y)q(y, x) (6.17)

then, we would have generated a proper Markov chain. To ensure this, we introduce a

probability α(x, y) < 1. We call α(x, y) the probability of move.

Transitions for x to y are given by

pMH(x, y) = q(x, y)α(x, y), x 6= y

With α(x, y) being a probability its upper limit will be 1.

Since α(x, y) should satisfy the reversibility condition, we can state that

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x) (6.18)
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The transition kernel of the Metropolis-Hastings chain created by the algorithm is given by

PMH(x, dy) = q(x, y)α(x, y)dy +

[
1−

∫
R

q(x, y)α(x, y)dy

]
δx(dy) (6.19)

In summary, the Metropolis-Hastings algorithm works as follows;

• Set x0 to randomly or deterministically

• Repeat for k=1,2,...N

• Generate y from q(xk, ·) and u from U(0,1)

• If u ≤ α(xk, y)

set xk+1 = y

• Else

set xk+1 = xk

• Return the values {x0, x1, ..., xN}

The Metropolis-Hastings algorithm provides a method to sample from essentially any

distribution regardless of its analytic complexity or its number of dimensions. However,

sampling is correct only asymptotically. Meaning that the algorithm has to converge to

the stationary distribution before providing correct samples. And as mentioned before the

samples obtained are correlated, sometimes strongly.

6.8.1 Evaluating performance of MCMC

Evaluation of the performance of an MCMC sampler is related to the convergence of the

Markov chain to its stationary distribution. Before we can do any correct estimation the

Markov chain should have converged to this distribution. Note, that by the theory of

MCMC the chain is constructed in such a way that this convergence is guaranteed, but

there is no indication of the rate of convergence.
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There are many methods of monitoring stationarity of the Markov chain. The simplest

method is to plot the evolution of the chain in time and visually check for stationarity. A

more elaborate method is the application of a test of fit, like the Kolmogorov-Smirnov test.

This test can be applied to two different runs of an MCMC sampler or to two halves of one

chain from one run. Since convergence is not usually exact, test of fit are not that used by

practitioners of MCMC. A more common way to assess convergence of an MCMC sampler

is to run several chains in parallel and perform an analysis of variance [35].

We can evaluate the variance of the estimate after we are sure of convergence to the

stationary distribution. Since samples are now correlated, we can’t proceed exactly as in

the i.i.d. Monte Carlo case. We cite here a couple of methods described in [36], window

estimators and specialized estimators for Markov chains. In his paper Geyer consider an

integral,

µ =

∫
g(x) dP (x) (6.20)

For window estimators the lag t autocovariance is estimated first as,

γ̂n,t =
1

n

n−t∑
i=1

[g(xi)− µ̂n][g(xi+t)− µ̂n] (6.21)

where µ̂n is the Monte Carlo estimator of the integral using n samples. The variance can

be estimated as

σ2
n =

∞∑
−∞

wn(t)γ̂n,t (6.22)

where wn(t) is some weight function called lag window.

The specialized method described by Geyer, assumes that Γm = γ2m + γ2m+1, a sum

of adjacent pairs of autocovariance, is an strictly positive, decreasing function of m. A

possible estimator of the variance is

σ2 = −γ̂0 + 2
m∑
i=1

Γn,i (6.23)

where m is the largest integer such that Γn,i > 0.

57



We end this section by emphasizing that there are more methods to check convergence

of MCMC samplers. There is not a method generally accepted as the most accurate or

convenient, and all methods can fail to assess convergence in some cases. Thus, it is good

practice to use more than one of the suggested methods when evaluating an MCMC sam-

pler.

6.9 Reversible Jump Markov Chain Monte Carlo

Reversible Jump Markov chain Monte Carlo allows to generalize MCMC simulation to

cases when the dimension of the parameter space can vary between iterates of the Markov

chain. The reversible jump sampler can be viewed as an extension of the Metropolis-

Hastings algorithm onto more general spaces [37]. The method was proposed by Green

[38] as a framework to apply Markov chain Monte Carlo to Bayesian model determination

problems where the dimensionality of the parameter vector is typically not fixed.

To explain the reversible jump sampler we first assume a number of candidate mod-

els M = {M1,M2, . . .} indexed by a parameter k ∈ K. Each model Mk has a nk-

dimensional vector of unknown parameters θk ∈ Rnk , where nk can take different values

for different models k ∈ K. As with standard Metropolis-Hastings transitions from a state

θ = (k, θ′k) in modelMk are done by first proposing a new state θ′ = (k′, θk′) in modelM′
k

from a proposal distribution q(θ, θ′), as before we must ensure the reversibility condition.

The reversibility condition is ensured through the acceptance probability α(θ, θ′), where

the proposed move is accepted with probability α(θ, θ′). If rejected the chain stays in the

previous state θ in model (M)k [37].

To implement this sampler we first define a set of moves M . We sample the next move

from q(·, (k, θ)) = pθ(m)qm(θ, θ′). That is we select a move type from pθ(m), which

means the dimension k is increased, decreased or left unchanged. Then a new θ is selected

from a transition probability qm(θ, θ′) [32]. We can summarize the reversible jump sampler

as follows,
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Given the current state θk

1. Generate m ∼ pθk(m)

2. Generate θ′ ∼ qm(θ, θ′). Let m’ be the reverse move.

3. Generate U ∼ U(0, 1) and deliver

θk′ =


θ′ if U ≤ α

θk otherwise,

where

α = min

{
f(θ′)pθ′(m

′)qm′(θ′, θk)

f(θk)pθk(m)qm(θk, θ′)
, 1

}
(6.24)

6.9.1 Evaluating performance of RJMCMC

RJMCMC is a generalization of MCMC where the dimensions of the parameters stud-

ied can vary between iterations. Taking this into consideration the methods discussed for

MCMC could be applied in this case too, with proper care taken about the change of di-

mensionality. To use the methods for fixed-dimension MCMC one has to perform the

diagnostics on parameters whose interpretation does not change when there is a change

of dimension. However, such parameters could be difficult to identify. There are some

methods suggested specifically for the RJMCMC case, but they require special constraints

on the formulation of the problem [39]. All things considered, evaluating performance of

RJMCMC is a difficult matter and one which requires careful consideration of the problem

being solved.

6.10 Summary

The present chapter introduced the Monte Carlo method. We make emphasis on impor-

tance sampling as a variance reduction technique and Markov chain Monte Carlo as a very
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powerful sampling method. In the next chapter we show the application of Monte Carlo

methods to solve Fredholm integral equations of the second kind, of which the equation of

scalar optical scattering is an example.
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Chapter 7

Implementation of a RJMCMC solver

for Fredholm integral equations of the

second kind

7.1 Introduction

In the previous chapter we discussed the basics of Monte Carlo methods. Our interest in

Monte Carlo methods come from our wish to used them to solve integral equations. In

particular we want to solve the equation for optical scattering.

U t(r) = U i(r) +

∫
vol

O(r′)G(r − r′)U t(r′) dr′ (7.1)

where U t(r) is the total optical field, U i(r) is the incident field, G(r − r′) is a Green’s

function, and O(r′) is the object. Eq. (7.1) is what we call a Fredholm integral equation of

the second kind. Finding analytical solutions for Fredholm equations of the second kind

is usually difficult, and can be done only for the simplest of problems. Therefore, much

work has been devoted to developing numerical methods to obtain approximate solutions

of these systems.
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Numerical approaches for the solution of integral equations can be broadly categorized

as either deterministic techniques; or Monte Carlo techniques [40]. Deterministic tech-

niques typically depend upon quadrature or finding a suitable finite representation of the

system and using numerical techniques to solve for that representation. However, obtaining

a good finite dimensional representation of the system can be complicated, in particular for

high dimensional problems. Therefore, we chose to concentrate in Monte Carlo methods.

7.2 Linear integral equations

An equation in which an unknown function appears in a linear fashion under one or more

signs of integration is called a linear integral equation. The study of such equations is

mostly of interest because they appear rather naturally in various practical problems [41].

Examples of integral equations are shown below;

g(x) =

∫ b

a

K(x, y)f(y) dy x ∈ [a, b] (7.2)

f(x) = g(x) +

∫ b

a

K(x, y)f(y) dy x ∈ [a, b] (7.3)

Eq. (7.2) is normally known as a Fredholm integral equation of the first kind; and

Eq. (7.3) is normally known as a Fredholm integral equation of the second kind. Equation

7.3 is the main concern of this chapter. The integral in Eq. (7.2) and Eq. (7.3) is also called

an integral operator A. That is, the integral operator is defined by

(Aϕ)(x) :=

∫
D

K(x, y)ϕ(y) dy, x ∈ D,

This operator is bounded with norm [42]

‖A‖∞ =

∫
D

|K(x, y)| dy. (7.4)
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7.3 Monte Carlo methods to solve integral equations

We are interested in solving Eq. (7.3) using Monte Carlo methods. The first step in looking

for the solution through Monte Carlo methods is to expand the solution of Eq. (7.3) into a

Neumann series [40, 43],

f(x) = g(x0) +

∫
vol

K(x0, x1)f(x1) dx1

= g(x0) +

∫
vol

K(x0, x1)g(x1) dx1 +

∫
vol

∫
vol

K(x0, x1)K(x1, x2)g(x2) dx1 dx2 + . . .

(7.5)

existence and uniqueness of a solution can be established by the Neumann series provided

that the operator A, as defined by Eq. (7.4), is a contraction; i.e. ‖A‖ < 1 [42].

Eq. (7.5) can be expressed as an iterative process like,

f(x) = g(x0) +
∞∑
n=1

∫
vol

(
M∏
m=1

K(xm, xm−1)

)
g(xM) dx1:M (7.6)

The integral on the right-hand side of Equation 7.5 resembles a random walk process

with a transition kernel K(xm, xm−1). At each step of the random walk xm, one samples

K(xm, xm−1) to obtain the next point of the walk. The process is repeated till the walk is

terminated at some point xM . This requires that K(xm, xm−1) ≤ 1, so that the walk will

terminate at some point. This last condition was already established as a condition for the

existence and uniqueness of the solution of Eq. (7.3). Thus we have that Eq. (7.6) can be

approached as a random walk.

An approach to the solution based on random walks could be summarized as follows,

• Generate N random walks of length M + 1, X0:Mn

• Average over the weights W n of N random walks X1
0:M1 , . . . ,XN

0:MN generated be-

fore

where we note that W n means the weight associated with the random walk n of the N
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random walks generated. And Mn indicates the maximum length M for random walk n.

This notation is maintained through this chapter, a super-script n indicates that the quantity

is from the Markov chain n, it does not indicate a power.

7.4 A solution based on sequential importance sampling

Computing Eq. (7.6) involves an infinite sum of integrals of increasing dimensions. As

has been stated an approach based in random walks seems reasonable. One of the earliest

methods to solve integral equations via Monte Carlo methods was proposed by Albert in

the 1950’s [44]. This standard approach is based on sequential importance sampling, and

we will summarize it here.

Consider a Markov chain with an initial probability distribution given by µ(x) and a

transition probability P (y, x) that gives the probability to move to state y when the current

state is x. We have to select µ(x) such that the initial point can be anywhere in the domain

of interest. That is µ(x) > 0 in the whole domain. P (y, x) should be selected such that

it dominates K(y, x), that is P (y, x) > 0 whenever K(y, x) 6= 0. We must also select a

probability Pd that the chain will be terminated at a certain step. That is the chain possess

an absorbing state. We note that instead of choosing a probability for the termination of

the chain, we could also sample from a distribution of possible lengths of the chain at the

beginning of the algorithm.

Having defined these probabilities we can now proceed as follows,

1. Simulate N independent random walks Xn
0:Mn with n = 1, . . . , N , from x0 selected

from the distribution µ(x) till absorption at length M .

2. Assign each of the simulated random walks a weight given by

W n(Xn
0:Mn) =

g(xM)

µ(x)

M∏
m=1

(
K(xm, xm−1)

P (xm, xm−1)

)
, (7.7)

64



3. Then the average

f(x) =
1

N

N∑
n=1

W n(Xn
0:K)δ(x− Xn

0 ) (7.8)

gives an unbiased estimate of 7.6.

The estimate provided by Equation 7.8 is for the global case. That is it estimate the

value of the full function f(x). Sometimes it is just required to obtain a solution f(x0)

at a certain point x0. This is normally called the local problem, and it can be solved very

efficiently via Monte Carlo methods. Using the sequential importance sampling method

we are describing we proceed as follows to solve the local problem,

1. Select the starting point for the random walks x0. We are solving for this point.

2. Generate N independent random paths from x0 to xM .

3. Assign each of the generated random walks an importance weight given by,

W n(Xn
0:Mn) = g(xM)

M∏
m=1

(
K(xm, xm−1)

P (xm, xm−1)

)
, (7.9)

4. Then the following is an unbiased estimate of f(x0),

f(x0) =
1

N

N∑
n=1

W n(Xn
0:M) (7.10)

Equation 7.10 provides an estimate of the function at the point x0. Thus, we could use

Monte Carlo methods to solve the integral only on the points of our interest.

7.4.1 Limitation of the sequential importance sampling approach

The estimates provided by Eq. (7.8) and Eq. (7.10) will have reasonable variance if the

variance of the importance weights remains small. However this can be difficult to assure.

First, we are imposing an arbitrary distribution to the path lengths, through Pd which might

not always be appropriate. And also, if P (y, x) 6= K(y, x), or at least very close, the
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variance of the weights will increase exponentially fast [40]. In many applications the

kernel of the integral equation can not be selected as the transition probability.

These performance problems of sequential importance sampling are usually solved us-

ing a resampling step. The resampling consist in monitoring the variance of the weights

during execution, and when it becomes too large discard those paths with small weights

and multiply those with high weights. Then all the remaining weights are set to the same

value in a way that retains the expectation of the estimator. However, when solving integral

equations the starting point of the paths is very important. And every time a resampling

step is used it decreases the diversity of the paths starting from time 0. Thus, the resampling

step should be avoided when using sequential importance sampling to solve integral equa-

tions. In the next section we present an alternative method to solving integral equations

using Monte Carlo methods.

7.5 A solution based on RJMCMC

We noted that a problem of sequential importance sampling is related to the selection of

a transition probability P (y, x) that is close enough to the kernel of the integral equation.

This difficulty increases the variance of the importance weights. It would be very interest-

ing to be able to sample from an optimal importance distribution. One that minimizes the

variance of the importance weights. In [40] it was shown that this is possible using trans-

dimensional Monte Carlo, like the reversible jump Markov chain Monte Carlo sampler.

We define this optimal importance distribution as

πM(X0:M) =
1

cM

∣∣∣∣∣g(xM)
M∏
m=1

(K(xm, xm−1))

∣∣∣∣∣ (7.11)

where is πM is a joint posterior distribution for a certain path of length M + 1, and cM is a
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normalization factor defined as

cM =

∫
D

∣∣∣∣∣g(xM)
M∏
m=1

(K(xm, xm−1))

∣∣∣∣∣ dx0:M
We also consider that,

pM =
cM
C

with C defined as

C =
∞∑
m=1

cm

We note that if the series converges then C <∞.

Taking all these considerations, we can sample from the optimal importance distribution

using RJMCMC as follows.

1. Define two sampling distributions, for update and birth, qu, qb

2. We sample from π(X0:M) using a reversible jump sampler as follows,

(a) Set an starting vector X0
0:M of arbitrary length M + 1

(b) Select uniformly among the move types, birth, death and update.

i. In case of an update move,

A. Sample J uniformly from 0, . . . ,M

B. Sample a new value for xJ from a density qu(XJ , ·)

C. Accept the new value with probability,1

min

{
1,
π(M, (X0:J−1, xJ ,XJ+1:M))qu(xJ , xj)

π(M, (X0:M))qu(xj, xJ)

}
(7.12)

If the new value for XJ is not accepted the chain does not change from

the previous iteration

ii. In case of a birth move,
1In these equations the index J represents the new value at the point and the index j the previous value
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A. Increase the dimension of the chain to M + 1

B. Sample J uniformly from 0, . . . ,M

C. Sample a new value for xJ from a density qb(XJ)

D. Accept the new value with probability,

min

{
1,
π(M + 1, (X0:j−1, xJ ,Xj:M))dm+1

π(M, (X0:M))qb(xJ)bm

}
(7.13)

where dk is the probability of obtaining a death move and bk is the

probability of obtaining a birth move. In our described method, they

are equal. If the new value XJ and dimension M + 1 are not accepted

the chain does not change from the previous iteration

iii. In case of a death move,

A. Decrease the dimension of the chain to M − 1

B. Sample J uniformly from 0, . . . ,M

C. Eliminate the value at xJ from the chain,

D. Accept the new value with probability,

min

{
1,
π(M − 1, (X0:j−1,Xj+1:M))qb(xJ)bm−1

π(M, (X0:M))dm

}
(7.14)

where dm is the probability of obtaining a death move and bm is the

probability of obtaining a birth move. In our described method, they

are equal. If the elimination of the value XJ and dimension decrease

to m− 1 are not accepted the chain does not change from the previous

iteration

3. At this point, assuming

c0 =

∫
D

|g(x) dx|
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is known or can be estimated we can use the following estimation of the solution

f̂(x) =
C

N

N∑
n=1

sgn

(
g(xnM)

M∏
m=1

K(xnm, x
n
m−1)

)
δ(x− Xn

0 ) (7.15)

where we can use an estimate of the normalization factor C obtained from

Ĉ =
c0
p̂0

where p̂0 is the number of random samples with length M = 0.

Equation 7.15 provides a global estimate Equation 7.6.

We note here that to calculate the ratios in (7.12)-(7.14) we need only to be able to

compute

π(M,X0:M)

π(L,X0:L)
=
cMπ(X0:M)

cLπ(X0:L)
=

∣∣∣g(xM)
∏M

m=1 (K(xm, xm−1))
∣∣∣∣∣∣g(xL)

∏L
l=1 (K(xl, xl−1))

∣∣∣
7.5.1 Local Solution through RJMCMC

A local estimate of Eq. (7.6) can also be obtained. In this case we adjust the algorithm to

sample from a distribution π(M, (x0 : X1:M)), defined as

πK(x0 : X1:M) =
1

cM

∣∣∣∣∣g(xM)
M∏
m=1

(K(xm, xm−1))

∣∣∣∣∣ (7.16)

that is x0 is a fixed point and we sample chains X1:M of length M through RJMCMC.

In this case we need to be able to estimate the constant c1, defined as

c1(x) =

∫
D

|g(y)K(x, y)| dy

and we can get an estimation of C from

Ĉ =
c1
p̂1
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where p̂1 is the proportion of samples of length M = 1. Finally, we can find an estimate of

the solution through

f̂(x0) = g(x0) +
Ĉ

N

N∑
n=1

sgn

(
g(xnM)

M∏
m=1

K(xnm, x
n
m−1)

)
(7.17)

7.6 Implementation of a RJMCMC solver for Fredholm

integral equations of second kind

We implemented the described RJMCMC solver for Fredholm integral equations of second

kind as a MATLAB function. To test our function we use it to solve integral equations

with known analytical solutions. The analytical solutions of the test problems can either

be found in the literature or found via straight application of a formula. For each one of

these examples we ran the algorithm ten times. We report averaged results, relative error

compared to analytical result and variance between the different runs.

Example 1. The integral equation of the second kind

f(x) = .9x2 +

∫ 1

0

.5x2y2f(y) dy (7.18)

whose exact solution is given by f(x) = x2 [43].

Results are shown in Table 7.1 and Fig. 7.1.

Example 2. We solve the equation

f(x) =
2

3
ex +

∫ 1

0

1

3
e(x−y)f(y) dy (7.19)

which has the known exact solution f(x) = ex [40].

Results for this example are shown in Table 7.2 and Fig. 7.2.
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Table 7.1. Results obtained for Eq. (7.18) with 10 runs of 300,000 samples.

x Exact Estimate % Error Variance
0.1 0.01 0.0100 -0.0005 1.5× 10−12

0.2 0.04 0.0400 -0.0009 4.9× 10−11

0.3 0.09 0.0900 -0.0001 1.1× 10−10

0.4 0.16 0.1600 -0.0019 2.4× 10−10

0.5 0.25 0.2500 -0.0023 1.17× 10−9

0.6 0.36 0.3599 -0.0019 4.3× 10−9

0.7 0.49 0.4900 -0.0013 1.3× 10−9

0.8 0.64 0.6400 -0.0036 9.3× 10−9

0.9 0.81 0.8100 -0.0010 6.4× 10−9

1 1 1.0000 -0.0060 1.7× 10−8

Figure 7.1. The curves of the analytical solution and the estimates for Eq. (7.18) are on top of each other in
the graph. Points of evaluation are shown.
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Table 7.2. Results obtained for Eq. (7.19) with 10 runs of 300,000 samples used for the estimation.

x Exact Estimate % Error Variance
0.1 1.1052 1.1051 0.0081 1.6× 10−6

0.2 1.2214 1.2226 -0.0969 1.1× 10−6

0.3 1.3499 1.3490 0.0634 5.2× 10−6

0.4 1.4918 1.4919 -0.0028 1.7× 10−6

0.5 1.6487 1.6495 -0.0491 6.9× 10−6

0.6 1.8221 1.8218 0.0149 1.6× 10−6

0.7 2.0138 2.0136 0.0072 8.2× 10−7

0.8 2.2255 2.2256 -0,0027 8.5× 10−6

0.9 2.4596 2.4587 0.0381 1.2× 10−5

1 2.7183 2.7197 -0.0534 7.6× 10−6

Figure 7.2. Figure shows the curves of the estimate and analytical solution on top of each other.
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Example 3. The equation

f(x) = x+ (1− x)ex +

∫ 1

0

x2ey(x−1)f(y)dy (7.20)

has the solution f(x) = ex [43].

We show our results in Table 7.3.

Table 7.3. Results obtained for Eq. (7.20) with 10 runs of 300,000 samples used for the estimation.

x Exact Estimate % Error Variance
0.1 1.1052 1.1053 -0.0091 5.2× 10−10

0.2 1.2214 1.2217 -0.0287 1.3× 10−8

0.3 1.3499 1.3507 -0.0588 7.3× 10−8

0.4 1.4918 1.4929 -0.0736 3.8× 10−7

0.5 1.6487 1.6504 -0.1045 1.6× 10−6

0.6 1.8221 1.8237 -0.0863 1.1× 10−6

0.7 2.0138 2.0153 -0.0772 5.1× 10−6

0.8 2.2255 2.2257 -0.0088 6.1× 10−6

0.9 2.4596 2.4590 0.0222 2.6× 10−5

1 2.7183 2.7132 0.1884 2.6× 10−5

The next example has separable kernels a described in [45]. Their analytical solution is

given by,

f(x) = g(x) + λhj(x) where, h =

(
1− λ

∫ b

a

j(y)k(y)dy

)−1 ∫ b

a

k(y)g(y)dy

Example 4.

f(x) =
1

8
ex +

1

4

∫ 1

0

xeyf(y)dy (7.21)

We show our results for this example in Table 7.4.

Example 5. This example shows another integral equation with a separable kernel,

f(x) = 2 + x+

∫ 1

0

x2e(y−x)f(y)dy (7.22)

Result for this example are in Table 7.5.
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Table 7.4. Results obtained for Eq. (7.21) with 10 runs of 300,000 samples use for the estimation.

x Exact Estimate % Error Variance
0.1 0.1515 0.1514 0.0036 7.7× 10−10

0.2 0.1793 0.1792 -0.0189 3.4× 10−9

0.3 0.2087 0.2087 0.0260 1.7× 10−8

0.4 0.2397 0.2398 0.0432 2.2× 10−8

0.5 0.2726 0.2727 0.0265 3.3× 10−8

0.6 0.3076 0.3076 0.0053 2.3× 10−8

0.7 0.3449 0.3449 0.0180 1.0× 10−7

0.8 0.3847 0.3847 0.0152 8.6× 10−8

0.9 0.4272 0.4274 0.0444 6.3× 10−8

1 0.4729 0.4729 0.0023 7.7× 10−8

Table 7.5. Results obtained for Eq. (7.22) averaging 10 runs of 300,000 samples.

x Exact Estimate % Error Variance
0 2 2 0 0

0.1 2.1602 2.1602 -0.0015 -0.0001
0.2 2.4179 2.4183 0.0135 0.0016
0.3 2.7437 2.7436 -0.0031 -0.0005
0.4 3.1137 3.1153 0.0486 0.0094
0.5 3.5091 3.5094 0.0092 0.0023
0.6 3.9148 3.9142 -0.0147 -0.0045
0.7 4.3193 4.3238 0.1043 0.0390
0.8 4.7137 4.7153 0.0325 0.0145
0.9 5.0916 5.0908 -0.0151 -0.0083
1 5.4482 5.4469 -0.0226 -0.0134

The next problem shows that our implementation can be extended to higher dimensions,

in this case two. To extend our solver to 2-D we sample a vector (x, y) instead of an scalar

at each step of the random walk.

Example 6. Consider the 2-D integral equation,

f(x, y) = g(x, y) +

∫ 1

0

∫ 1

0

x

(8 + y)(1 + t+ s)
f(t, s) dt ds (7.23)

where

g(x, y) =
1

(1 + x+ y)2
− x

6(8 + y)
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its exact solution is f(x) = (1 + x+ y)−2 [46].

We show the results obtained in Table 7.6.

Table 7.6. Results obtained for equation 7.23 with 10 runs of 4 million samples used for the estimation.

(x, y) Exact Estimate % Error Variance
(0,0) 1 1 0 0

(0.1,0.1) 0.6944 0.6958 0.2041 -0.2117
(0.2,0.2) 0.5102 0.5140 0.7539 -0.2498
(0.3,0.3) 0.3906 0.3957 1.3065 -0.2391
(0.4,0.4) 0.3086 0.3167 2.6326 -0.2164
(0.5,0.5) 0.2500 0.2579 3.1727 -0.1914
(0.6,0.6) 0.2066 0.2188 5.9076 -0.1709
(0.7,0.7) 0.1736 0.1888 8.7659 -0.1531
(0.8,0.8) 0.1479 0.1604 8.4254 -0.1345
(0.9,0.9) 0.1275 0.1387 8.7813 -0.1194

We consider the results obtained to be accurate. There is still adjustments to be done

when increasing the dimensionality of the problem, although the 2-D problem solved shows

that the method can be extended to higher dimensions and still provide good estimates of

the solution. An analysis of the variance between the different runs was performed to

evaluate the quality of the estimation in these problems. A method to assess the conver-

gence of the algorithm will be required for problems with unknown analytical solutions.

Many methods to assess convergence of RJMCMC have been proposed in the literature.

However, none of them works in all cases, and some of them only work under certain

constraints [36,39,47]. We can say that convergence analysis on RJMCMC should be con-

sidered in an application by application basis. In future work we shall develop a a suitable

convergence analysis for our integral equation solver.

7.7 Conclusion

The standard method for solving integral equations of the second kind via Monte Carlo

methods is called Sequential Importance Sampling. It has difficulties related to the proper

75



selection of a transition kernel to generate the required random walks, and in setting the

length of said random walks. An alternative, to bypass the limitations of sequential impor-

tance sampling, was proposed in [40]. That is using Reversible Jump Markov chain Monte

Carlo.

By using RJMCMC to generate the random walks required in the sequential importance

sampling methods, one can obtain samples from the optimal importance distribution. Thus

obtaining an estimate of the solution of the integral equation that has very small variance.

We presented in this chapter the estimate obtained when using RJMCMC to sample the

random walks, for both the local and the global case. We also presented a number of

examples that show the accuracy of the obtained estimate.
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Chapter 8

Conclusions and future work

8.1 Conclusions

OCT is an imaging technique that provides very-high resolution sub-surface imaging. The

technique is already an established diagnostic tool in ophthalmology and many other fields

of applications are being studied. Most of them in biomedical imaging. In this field the

technique has been demonstrated for optical biopsy, cancer detection, coronary disease

assessment, gastrointestinal imaging, and even caries detection. Indeed many interesting

applications are possible by this technique. The major limitation for many applications

of OCT imaging is its very shallow imaging depth of only a few millimetres. The most

important factor limiting OCT imaging depth is multiple scattering.

In this thesis we presented a novel approach to reduce the effect of multiple scattering

in OCT imaging, and in that way increase imaging depth of this technique. This approach

is based on integrated computational imaging, also called hybrid imaging. Integrated com-

putational imaging modifies the optical system, and accounts for this modification in a

posterior digital post-processing step. Post-processing and modified optical acquisition are

part of a single system and are designed likewise. The proposed hybrid OCT system mod-

ulates the sample by using ultrasound patterns.

There is anecdotal evidence that the presence of ultrasound in tissue improves OCT
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imaging depth. Experiments showing this improvement just applied an ultrasound beam to

tissue at the same time that OCT imaging was performed and found that multiple scattering

was reduced. We proposed the design of an ultrasound pattern to obtain this reduction of

multiple scattering by performing simulations of the interaction of light with tissue mod-

ulated by ultrasound. One such design studied in this thesis is based on standing-wave

ultrasound patterns. The use of these ultrasound patterns to ‘’improve” OCT is approached

as an integrated computational OCT system.

The goal of this thesis was to show the feasibility of this integrated computational OCT

system. We performed simulations in COMSOL Multiphysics of the tissue interaction of

ultrasound causing a change in refractive index. These simulations show that the ultra-

sound patterns can produce enough of a change in the refractive index without exceeding

the safety limits of ultrasound application. These simulations also show that acoustic scat-

tering does not have much effect on the ultrasound patterns. Even in the presence of a

highly inhomogeneous medium the pattern still resemble the one applied to an homoge-

neous medium. This result tells us that the patterns can be designed by considering the

medium homogeneous on the refractive index, with small effect on the later application to

a medium of inhomogeneous refractive index. These results are promising results as they

show that an integrated computational OCT system that uses ultrasound to modulate tissue

could be viable. But to assess how much reduction in multiple-scattering can be obtained

with this system we need to simulate the interaction of light with tissue that have been

modulated by ultrasound. However, there does not exist a simulation software capable of

providing information on the optical field within a volume as big as we need to consider.

Thus, we decided to develop our own simulator. Since we were interested in obtaining the

whole optical field, intensity and phase, we needed to solve the integral equation of scalar

scattering. For this task we decided to use Monte Carlo methods.

The second part of this thesis deals with the implementation of a Monte Carlo algorithm

to solve the Fredholm integral equations of the second kind. The algorithm is based on the

Reversible Jump Markov chain Monte Carlo. The most interesting property of this method
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is that it allows to sample from a distribution of variable dimensions. This is of importance

as the solution of a Fredholm integral equation of second kind can be expressed as a sum

of integrals of increasing dimensionality. We note that with a RJMCMC approach it is not

required for us to truncate this sum of integrals at any order, the sampler selects by itself

which orders of the sum contribute the most to the solution. The Monte Carlo based integral

equation solver was implemented and tested on 1-D integrals. We also present an example

of solving a 2-D integral with our implementation of the algorithm, to show that our solver

can be extended to higher dimensions. Results of these tests show good accuracy when

compared to the known analytical solution of the test problems. However, we haven’t still

tested the solver on the 3-D integral equation of scattering which is of our interest. To use

the solver on the 3-D integral equation of scattering we need to develop an adequate method

to lift the singularity in the equation. The method should be adequate for the RJMCMC

approach we are using. Also, since it is very rare to have known solutions of integral

equations in higher dimensions, that would allow for one to prove the implementation is

working, we need to develop a method to measure the quality of the estimation. This

method should assess the convergence of the estimate toward the unknown solution, and

needs to be developed specifically for our problem of solving the integral equation of scalar

scattering.

8.2 Future work

The implementation the Monte Carlo solver on the 3-D integral equation of scalar scat-

tering is probably the most important goal of any future work based on this thesis, as it

would open many avenues of research. To apply the solver to 3-D integral equation of

scalar scattering requires the development of a method to analyze the convergence of the

RJMCMC algorithm to the solution. In chapter 7 the error of the Monte Carlo solver could

be obtained by comparing with the exact analytical solution, which is not possible in any

practical problem. Many methods have been proposed in the Monte Carlo literature to es-
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timate the variance of MCMC, but there is no method that works for all cases and some

only work under specific constraints. Reversible Jump MCMC is particularly complicated

because of the possible change in dimension involved. The convergence analysis to be de-

veloped should consider specifically the problem of solving the integral equation of scalar

scattering, and also trying to adapt some of the methods available in the literature to this

particular problem is an obvious option in this case.

After the solver is implemented for the 3-D integral equation of scalar scattering, it

could be used to run simulations of light propagation on tissue. One possible avenue of re-

search is to run simulations in tissue modulated by ultrasound patterns. These simulations

could allow one to obtain an optimum ultrasound pattern to minimize the backscattered

multiple-scattered light. It is highly likely that the optimum ultrasound pattern will be dif-

ferent depending on the features of each tissue and their particular distribution of refractive

index. So another possible research involves a classification of tissue types according to

their refractive index and how they are affected by different ultrasound patterns. Of course

the implemented solver can be used to simulate other cases of light propagation in tissue

without any type of ultrasound pattern involved.
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Appendix A

MATLAB code for Monte Carlo

simulations

Shown below is the MATLAB code for the function that calculates 2-D Fredholm integral

equations of the second kind using RJMCMC.

%INTEGRAL_EQ2 calculates the solution for a

%Fredholm integral equation of the second kind,

%at a point x0 using Reversible Jump Markov chain

%Monte Carlo.

%(a,b) : interval of evaluation

% x0 : vector (x,y) at which integral is evaluated

% sigma: std deviation for gaussian used in random walk

% g : input function

% k : kernel function

function [estimate b_length_pdf] = ...

integral_eq2(a,b,c,d,x0,sigma,g,k,seed)

%% Randon walk parameters
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kmax = 100; % maximum length possible for chains

ki = 20; %initial length

max_iteration = 3e5; %number of chains

current_chain = zeros(2,kmax);

%chain from previous iteration

burnin_end = 1e4; %number of samples to drop

%% Set counters for simulation

aupdate = 0; %update moves accepted

rupdate = 0; %update moves rejected

abirth = 0; %birth move accepted

rbirth = 0; %birth move rejected

adeath = 0; %death move accepted

rdeath = 0; %death move rejected

length_pdf = zeros(kmax,1);

%pdf of length of all chains

b_length_pdf = zeros(kmax,1);

%pdf of length of chains after burnin

%% Set the probabilities for each type of move

bi = 1/3 * ones(1,kmax); %vector of birth probabilities

de = 1/3 * ones(1,kmax); %vector of death probabilities

%Special considerations at boundaries of chain length

%Minumum useful chain length is 1 plus x0

bi(1) = .5; de(1) = 0;

bi(kmax) = 0; de(kmax) = .5;

%% Initialization
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estimate = 0;

%% Set independent random streams

% s1: Stream for move selection

% s2: Stream for acceptance / rejection

% s3: Stream for birth candidates

% s4: Stream for update candidate

% s5: Stream to select position to change

[s1,s2,s3, s4, s5,s6,s7] = RandStream.create(’mrg32k3a’,...

’NumStreams’,7,’Seed’,seed);

%% Loop for RJMCMC algorithm

for i = 1:max_iteration

u = rand(s1,1);

%--------------DEATH MOVE------------------------%

if u <= de(ki)

ku = ceil(ki*rand(s5,1));

potential_chain = cat(2,current_chain(:,1:ku-1),...

current_chain(:,ku+1:kmax),[0;0]);

pi_current = g(current_chain(1,ki),...

current_chain(2,ki)) * k(x0(1),x0(2),...

current_chain(1,1), current_chain(2,1));

%pi_current: value of joint pdf for current chain

pi_potential = g(potential_chain(1,ki),...

potential_chain(2,ki)) * k(x0(1),x0(2),...

potential_chain(1,1), potential_chain(2,1));

%pi_potential: value of joint pdf of potential chain

for j = 2:ki

83



pi_current = pi_current *...

k(current_chain(1,j-1),...

current_chain(2,j-1),current_chain(1,j),...

current_chain(2,j));

%ki is included in current chain

if j < ki

pi_potential = pi_potential *...

k(potential_chain(1,j-1),...

potential_chain(2,j-1),...

potential_chain(1,j),...

potential_chain(2,j));

%ki excluded in potential chain

end

end

% Calculate the acceptance ratio alpha

ratio = abs(exp(log(pi_potential)-...

log(pi_current)))...

*(bi(ki-1)/de(ki));

alpha = min(1,ratio);

% Accept the move if random roll < alpha

% otherwise reject

if rand(s2,1) < alpha

adeath = adeath + 1;

ki = ki - 1;

current_chain = potential_chain;

pi_current = pi_potential;

else

rdeath = rdeath + 1;
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end

%---------------BIRTH MOVE-----------------------%

elseif u <= bi(ki) + de(ki)

ku = ceil(ki*rand(s5,1));

xnew = a+(b-a)*rand(s3,1); %new value for x

ynew = a+(b-a)*rand(s6,1); %new value for y

potential_chain = cat(2,current_chain(:,1:ku-1),...

[xnew;ynew],current_chain(:,ku:kmax-1));

pi_current = g(current_chain(1,ki),...

current_chain(2,ki)) * k(x0(1),x0(2),...

current_chain(1,1),current_chain(2,1));

pi_potential = g(potential_chain(1,ki)...

,potential_chain(2,ki)) * k(x0(1),x0(2),...

potential_chain(1,1),potential_chain(2,1));

for j =2:ki+1

if j < ki+1

pi_current = pi_current * ...

k(current_chain(1,j-1),...

current_chain(2,j-1),...

current_chain(1,j),...

current_chain(2,j));

end

pi_potential = pi_potential * ...

k(potential_chain(1,j-1),...

potential_chain(2,j-1),...

potential_chain(1,j),...

potential_chain(2,j));

end
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ratio = abs(exp(log(pi_potential)-...

log(pi_current)))*...

(de(ki+1)/bi(ki));

alpha = min(1, ratio);

if rand(s2,1) < alpha

abirth = abirth + 1;

ki = ki + 1;

current_chain = potential_chain;

pi_current = pi_potential;

else

rbirth = rbirth + 1;

end

%---------------------UPDATE MOVE--------------------%

else %update move

ku = ceil(ki*rand(s5,1));

xnew=current_chain(ku) + sigma*randn(s4,1);

ynew=current_chain(ku) + sigma*randn(s7,1);

potential_chain = cat(2,current_chain(:,1:ku-1),...

[xnew;ynew],current_chain(:,ku+1:kmax));

pi_current = g(current_chain(1,ki),...

current_chain(2,ki)) * k(x0(1),x0(2),...

current_chain(1,1),current_chain(2,1));

pi_potential = g(potential_chain(1,ki),...

potential_chain(2,ki)) * k(x0(1),x0(2),...

potential_chain(1,1),potential_chain(2,1));

for j =2:ki

pi_current = pi_current *...

k(current_chain(1,j-1),...
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current_chain(2,j-1),...

current_chain(1,j),...

current_chain(2,j));

pi_potential = pi_potential *...

k(potential_chain(1,j-1),...

potential_chain(2,j-1),...

potential_chain(1,j),...

potential_chain(2,j));

end

if ((xnew <= a) || (xnew >= b) && ...

(ynew <= c) || (ynew >= d))

alpha = 0;

else

ratio = abs(exp(log(pi_potential)-...

log(pi_current)));

alpha = min(1, ratio);

end

if rand(s2,1) < alpha

aupdate = aupdate + 1;

current_chain = potential_chain;

pi_current = pi_potential;

else

rupdate = rupdate + 1;

end

end

%------------------------------------%

length_pdf(ki) = length_pdf(ki) + 1;

%bin pdf of chain length
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%----------Update estimate-----------%

if i > burnin_end

b_length_pdf(ki) = length_pdf(ki) + 1;

%bin pdf of chain length after burnin

estimate = estimate + sign(pi_current);

end

end

%% print counters

disp(’Update moves’)

fprintf(’Accepted: %d\n’,aupdate);

fprintf(’Rejected: %d\n’,rupdate);

disp(’Birth moves’)

fprintf(’Accepted: %d\n’,abirth);

fprintf(’Rejected: %d\n’,rbirth);

disp(’Death moves’)

fprintf(’Accepted: %d\n’,adeath);

fprintf(’Rejected: %d\n’,rdeath);

%% Estimate the result

myfun =@(y,z) abs(g(y,z).*k(x0(1),x0(2),y,z));

q = quad2d(myfun,a,b,c,d);

norm_c = q/(b_length_pdf(1)/...

(max_iteration-burnin_end));

estimate = g(x0(1),x0(2)) +...

(norm_c/(max_iteration-burnin_end))*estimate;

fprintf(’Estimate: %d\n’,estimate);
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