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ABSTRACT

The validity of the derivative expansion (DE) method for calculating one-loop
quantum vacuum densities is investigated. Source contributions from fermionic loops
in a nonuniform, spherically symmetric background scalar field are considered. The
convergence of a derivative expansion for the fermion vacuum scalar density is ex-
amined in 3+1 dimensions by means of a partial wave analysis. This is done by
comparing the contribution to the density from each partial wave with that of a nu-
merical calculation based on an exact evaluation of the fermionic Green function. For
cases where the expansion is not rapidly convergent, a method is introduced that en-
ables us to interpolate between the exact calculation and the full derivative expansion.
The procedure combines a derivative expansion for the contributions from large loop
energies and high partial waves with the numerical evaluation of the small energy and
low partial wave part. It is found that a diminishing sum of correction functions yield-
ing the exact result can be calculated and applied. The effect of including vacuum
corrections in self consistent models is then tested. For the quantum hadrodynamics
model of finite nuclei, including terms up to second order in the derivatives of the
background mean fields gives an accurate evaluation of the one-loop vacuum. It is
found that the DE terms have a large effect on the value of the fitted parameters.
Small effects are found on physical observables, in accordance with relatively small
corrections from the DE terms in a background where the expansion is convergent.
The convergence of the derivative expansion is also tested for a soliton solution of
fermions coupled to a scalar field for the case of large Yukawa coupling bag model. In

this case the derivative expansion does not converge rapidly, and we apply the cor-



ix

rection method to obtain the correct one-loop fermionic vacuum scalar source effect.
For a coupling of g = 10, we need 4 partial wave corrections to reach convergence.
We see a decrease in the scalar field depth of 27%, and the fermion energy levels and
scalar field change by 49% and 5%, respectively. However, the total energy of the
bag changes by only 0.6%. For a large coupling of g = 25, the fourth partial wave
correction gives a 103% change in the scalar field depth, while the total energy of the
bag changes by 2.6%. A small change in the total energy is important here because

for large coupling the energy of the bag is such that it is bound by less than 5%.



Chapter 1

OVERVIEW

1.1 Introduction

In what is known as the standard model, physicists have devised a theory that has
the ability to account for a large portion of observable phenomena. The standard
model incorporates three of the four known interactions of nature: it includes Quan-
tum Chromodynamics (QCD), the theory accounting for strong interactions, and the
Electro-weak model in which the effects due to electromagnetic and weak forces are
unified. These interactions take place between quarks and leptons (which are the fun-
damental matter fields), and are mediated by gauge bosons (the force field quanta).
The standard model is a field theory, and therefore quantum fields play the part of
the underlying physical degrees of freedom. The accuracy of this model has been
repeatedly reaffirmed by experimental findings (such as the recent discovery of the
top quark).

Despite its many successes. the standard model is by no means complete or fully
understood. In fact there are many reasons that make an extension of the model a
necessity, such as uniﬁcation; the hierarchy problem, reducing the number of input
parameters, and explaining phenomena, such as the flavor structure and CP violation.
Also, many questions remain regarding the tractability of the model itself. A major
part of this problem lies in the difficulty of doing calculations in the strong coupling
regime, where perturbation theory is not applicable. One of the more important

manifestations of this problem is that of solving the bound state problem in QCD.



For QCD at low energies, the dynamical quarks and gluons are strongly coupled
with three and four body forces, and large vacuum effects that have so far made
direct solution impossible. Even promising lattice gauge techniques have yet to yield
an accurate solution. It is in this context that it becomes useful to make solvable
approximations to the theory.

In the low energy domain, on the scale of a few fm, the hadronic particles and
their interactions are the items of physical observation. This is the realm of so called
nuclear interactions. One possible approach is to make use of hadronic field theories
— effective field theories which incorporate hadronic particles as the effective degrees
of freedom. Here we are really considering interactions mediated by bound states of
the exact theory. We attempt to gain an understanding of the bulk properties of the
nucleus by solving for interactions between nucleons using meson exchange fields. By
gaining an understanding of how far the phenomenology will fit with such a model,
we hope to gain a better understanding of the exact theory. Examples of such models
include the Walecka model of nucleons and neutral scalar and vector mesons, some-
times called Quantum Hadrodynamics (QHD) [3], and the linear sigma model (with
nucleons, pions and neutral scalar mesons) [4]. Other phenomenological theories are
often attempts to incorporate the exact QCD theory in a solvable manner. A proto-
type is the Friedberg-Lee non-topological soliton model, which models confinement
in QCD by adding a phenomenological scalar field that mimics the gluon condensate
and confines the quarks to color singlet states [5]. This model incorporates both the
MIT and SLAC bag models in appropriate limits.

The starting point in dealing with all such phenomenological theories is the La-

grangian density. For example, the QHD Lagrangian density is

Logp = P[yu(i0* — g V*) — (M — gs9) 1 + 5(8,¢p 0" — m2¢?)
2 Fu 4 m2V, V¥ 4 6L, (11)

Here 1 is a two component nucleon spinor field (neutrons and protons), ¢ is a scalar



field, F,, = 0,V, —0,V,, is the field tensor for vector field V,,, and g, gs, my, ms, and
M, are coupling and mass parameters. As is customary, 6L is taken to represent the
terms necessary to renormalize the Lagrangian. Units are chosen so that A = ¢ = 1.
A further example is furnished by the Lagrangian density of the Friedberg-Lee non-

topological soliton model [5]
L = PP~ (M ~ .0 — 36.(8)F5, FE
+30,0 0" — Im2¢” - 56" - %aﬁ“ + 6L, (1.2)
where

i C
D,u = 8u - —igSACA;p
FS, = 0,AL — 0,45 + g, fgcAgA;u. (1.3)

Here v represents the quark spinor fields (flavor indices are suppressed), ¢ is a scalar
field, A} are the gluon fields, B(¢) a dielectric constant, and g, K, A, m, are the
coupling and mass parameters. In the literature the scalar field may often be found

in one the following equivalent forms:
gs 0(33) =M — gsd)(:r) = gs(¢0 - Qb(z)) (1-4>

A general feature of the theories we consider is the appearance of large couplings
so that nonperturbative methods must be used if contributions from the vacuum are
to be included. A brief background of the relevant field theory formalism will be
given in the next section. In addition, the details of our notational convention can
be found in Appendix A.

This thesis investigates the calculation of vacuum effects in the context of including
them in self-consistent bound state solutions. In particular, we consider including
effects from the one-loop effective action, where our background source may have
arbitrary spherically symmetric form. For cases other than a constant background

field, the one-loop effective action cannot in general be evaluated analytically. For



this reason it is important to investigate local approximations, such as the derivative
expansion, which make analytic methods possible. Often the validity of such an
expansion is taken for grantéd in a particular problem even though its convergence
properties have not been well determined. To remedy this, a systematic method is
provided for testing the degree of convergence and interpolating to the exact Green
function result. The manner in which this is done makes it suitable for inclusion in
self-consistent calculations. For simplicity we deal solely with the case of fermionic
loops coupled to a background scalar source. It is possible to generalize the method to
other background sources (in particular to a vector source). Including boson loops is
also a possibility, although the necessity of a self-consistent solution makes it harder

to study the density in this case.

1.2 Quantum field theory formalism

The following is a review of the main aspects of quantum field theory which will be
needed in the following text. Primary references include [3, 6, 7, 8, 9, 10]. In classical
field theory we work with the theory of a Lagrangian of a continuous parameterized
variable, where our canonical variables are not a discrete set, but are functions of
continuous parameter. The variables in our case are the quantum fields and their
conjugate momenta fields, and the parameter is taken as the four vector of position,

or spacetime. The Lagrangian here is a density, and the action is defined by

S = [ &5 L(6(2), (). (15)

For illustration we limit ourselves here to the case of a Lagrangian depending on a
real scalar field ¢(z). The dynamics are determined through Hamilton’s principle,
4S5 = 0, with suitable boundary conditions, and lead to the Euler-Lagrange equations

for the case of continuous media

)
3¢ 0z, 0(06/01,)

= 0. (1.6)



The quantum nature of the field theory can be introduced by making our fields
into Heisenberg picture operators that obey equal time commutation relations. This

method is known as canonical quantization. For spin-0 and spin——% fields, we have [7]

Bosonic Field:  [¢(Z,1), (Z', )] = i6®(& — T7), (1.7)
Spinor Field: (w(F, 1), '@, )} = 6O (T — 1) (1.8)

The quantum states here are elements of a Hilbert space known as Fock Space [11],
and are multiparticle states .representing particle occupation. The ground state is
chosen to be the vacuum state with no real particles, and is written |0). However,
interactions with this state are nontrivial, as it must be interpreted as representing
an infinite product of oscillator ground states which are self interacting through ex-
citations. Observables are then expressed as matrix elements of the field operators
between these particle states.

Another important concept for understanding the structure of quantum field the-
ory is that of the Feynman diagram expansion. By expressing an interaction dia-
grammatically we not only have a way of defining the interaction but also a method
of calculating the corresponding amplitude by applying the appropriate Feynman
rules. One important quantity to know when dealing with diagrams and calculating

observables are the n-point Green functions
G’(”)(:cl,...,:cn). (1.9)

These are defined so they represent the sum of all Feynman diagrams with n external
legs [12]. In a free field theory, the two-point Green functions are simply the free field
propagators, and can be written in several equivalent forms [7):

Free scalar theory propagator:

iD(z —y) = [8(x),6(y)] = (0T (¢(z)¢(y))0)
' d*k e-—ik-(m—y) o poo d*k e~ tk-(z—y)
B Z/c (2m)* k2 — m? =Z/—oo (27)4 k2 —m? + e’

(1.10)



Free fermionic theory propagator:

iS(z—y) = {¥(&), %)} = (O (¢(=)P(v)) [0)
o dip ey
/_oc @Mt g— M +ie

= (@+M)yiD(z—vy)=1 (1.11)

T here is the time-ordering operator. The limits on the integrals are for py, the energy
of the corresponding four-momentum. The curve C represents a closed path encom-
passing the poles of the integrand for this variable. This path is more simply dealt
with by introducing the e shift in the pole, where ¢ is a positive infinitesimal, so that
the energy can run over real values. When dealing with bound states, the propagators
will no longer be free, as interactions with other fields are taken into account. The
bound state propagator may be calculated by including diagrams representing the
Interactions to the prescribed order.

The following manipulations will show us how to deal with the n-point Green
functions in general, and will enable us to remove contributions from undesirable
disconnected diagrams. First of all we define the generating functional in the presence
of an interaction governed by an external source j(z). In the interaction picture this
contributes a term to the Hamiltonian density with the form H = ¢(z)j(z), and the

generating functional may be written

Wil = (0T exp i/d% ¢()j(z)|0) (1.12)
- ig/d"xl e d* T (1) § () G @, mg). (1.13)

This expression allows us to determine the n-point Green functions by simple func-

tional differentiation

G™(zy,...,z,) = (0|T (¢(z1)-- - ¢(z,)) |0) (1.14)

an 1 o .
= yEse ae Yo

To eliminate disconnected diagrams, we note that each is composed of a finite

number of connected diagrams which, when counted properly, can be removed by



defining the generating functional for connected Green functions, G{™, as
izlj] = WmW[j]
oC Zn ' . :
= ZE/d‘lml-..d4l’n‘7(xl)...](ajn)G£ )(xl"'-yxn)- (116)
n=1"""

A further reduction can then be made by considering truncated diagrams which essen-
tially have their external lines removed. These diagrams can then be further refined
to one-particle irreducible (denoted 1PI, and also called proper) diagrams by taking
the truncated diagrams which remain connected when an arbitrary internal line is
cut [6]. The importance of these one particle irreducible diagrams can be seen as
follows [12]. Let —:II(p®) be the sum of all such 1PI diagrams that have had two
external legs removed. If we wish to consider the full propagator of a theory, this can
be obtained by adding up a sum of contributions from these 1PI diagrams with free
particle external legs (a so called ring sum) to give
)
p? — m? — II(p?) + ie

(1.17)

as the exact propagator.
The generating functional I' for these proper diagrams is found by taking the

Legendre transformation of Z[j]. Defining

) .
le) = 75rsGeld) (118)
iClg] = (Z[j] - i/d‘i:z:j(x)qﬁc(x))j(m):j o (1.19)
we find that
. é
Jelz, P) = —5¢C($) ). (1.20)
It can then be shown that
o] = Z —7’% / dizy - - dz, 1“(”)(3:1, oy Tn) Ge(T1) - - Pe(zn) (1.21)
n=1"'""

is the generating functional for the proper Green functions I'™ (z1, .. .Z), which are

the sum of 1PI diagrams with n legs. For instance, in momentum space the two point



function is found to be
r® (p, —p) = p? —m? — E(pZ), (1.22)

which contains the contribution ¥(p?) from all two-point irreducible graphs.
Another useful formalism of quantum field theory can be made in terms of the path

integral approach. Here the fields remain complex-valued functions, but the theory

is formulated in terms of functional integration over all possible configurations of the

field. The generating functional here can be written

Wil =N [lde) exp {i [ a'a 1£(6.00) + j(2)ea)]} (1.23)

where N is a normalization constant. In this approach, we define Z[j] and I'[j] as
was done above, but use expression (1.23) for W[j]. This formalism is useful for

variational calculations such as the one-loop expansion, which we now consider.

1.3 The loop expansion for the quantum vacuum

Our objective in this section is to derive the form of the well known loop expansion
[3, 4, 6]. The expansion in this case is with respect to the number of loops appearing
in the irreducible Feynman graphs. Therefore it remains exact to all orders in the
coupling to external fields at each level of the expansion. This will allows us to
perturbatively include vacuum corrections to the classical equations of motion. We
will deviate slightly from our system of units here by leaving in the factors of A. This
is done because consideration of the following simple argument [4] reveals that A is
the natural bookkeeping parameter.

As we are considering one particle irreducible diagrams, only internal factors are

relevant, and we have the following relation:

(#Loops) = (#internal lines) — (#internal vertices) + 1 (1.24)



(where a line occurs between two vertices). In the Feynman rules, each propagator
has a factor % and each vertex a factor ™', plus an overall factor % for each diagram.
Thus, for each additional loop we gain an additional power of k.

To illustrate the method of expansion, we consider a self interacting scalar theory

with the Lagrangian
L= 3(0.90"¢ — m2®) + jé — V(9). (1.25)

Here j is an external source and V(o) is the self interaction potential. Taking ¢q to

be the solution to the classical equation of motion
(8° +m2) ¢o+ V(o) = j, (1.26)

where the prime denotes a functional derivative with respect to ¢, we use the path
integral formalism and expand the action about ¢g. We set ¢ = ¢ + ¢, and make a

Taylor series expansion of V(¢) about ¢y. The action functional is therefore

Sl = [ d's [3(8,00"6 — m26®) + jo - V(9)]

= [ @' | H(0u000" 60 — m208) + o — V(o) + O(9)

.- - " ~ @D (pa) ~
H(0,0005 —mi) - L0 g 5~ V(@) dﬂ}
21 =2 q!
— Sloo] + [ d'z 4 (8,606 — (m2 + V" (60)) )
V@ -
= ﬂw] (1.27)
q>2 q:

The order O(¢) term vanishes because ¢y was defined to leave the action stationary.
Using Wick’s Theorem [6], contributions from odd powers of ¢ in the action will
vanish when we calculate the generating functional. Omitting the normalization for

now, we have

Wi = 1] exp {1 5101}
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= et [1ad] exp{ [ %[} (3,66°6 — (m2 + V"(90))3?)

V(2q)(¢0) “24
_q;__@q)! 3 ]} (1.28)

The scalar field has i dependence é ~ Rl/2. By rescaling the field to hl/% we can

display this dependence explicitly:
Wl = e85 [[ad] exp{i [ d'a[4 (0,606 — (m? + V"(60)))

=1V ) (¢0) -,
_q;h qu ]} (1.29)

We see explicitly that our expansion is in powers of A. Keeping terms up to those

quadratic in the fluctuation from the classical field yields values valid to one-loop

order. After an integration by parts, we have
Wj] = et Slool /[dd;] exp {z‘/d4a: %4317—143} . (1.30)
The interacting and free scalar propagators, D and Dy, satisfy
(82 +m?+V"(¢0)) D(z,2') = —6W(z— 1), (1.31)
(82 +m?) Do(z,2') = —6W(z—2'). (1.32)

The path integral in (1.30) may be normalized by dividing out the free field result,
which is obtained by letting D' — Dg'. The path integral of the quadratic part

can then be performed, giving the normalized result
W) = exS%l (Det(DoD™)) ™" + .. (1.33)

Making use of the identity
Det A = ¢TrIn4 (1.34)

we can evaluate the generating functional for connected Green functions, Z[j], where

Wil =exp { 2217} (1.35)
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Z[5] = S|¢o] + %n Tr In(Do DY) + O(h2). (1.36)
To obtain the effective action from this connected generating functional, we make the

Legendre transformation

¢(z,j) = gjz([;g (1.37)

Mgl = zlj] - [ d'zj(@)e(a) (1:38)

Note that as we are expanding about the stationary point S(¢) = S(@g) + O(R?), and
¢ = ¢o + O(R). Hence

= [ &' [1(8u00"6 — (2 + V"(9))¢7]
+—2~hTr In(De D7) + O(R?), (1.39)
where the interacting scalar propagator D(z,z') now satisfies
(82 +m?+V"(¢)) D(z,2") = -6 (z — 2). (1.40)

As this expression does not explicitly contain the field ¢, we have the freedom of
choosing the ground state of our theory to include the one-loop vacuum effects. The

one-loop effective action contribution from scalar loops is therefore
Fvac[¢] = ';:h Tr ln(-DO-D_l)
- %h (Tr In(D™) = Tr In(D5 1)) . (1.41)

To see that this contribution includes one-loop diagrams with an arbitrary number

of external vertices, we may write [4]
Tt In(DeD™Y) = Tr ln(l - DOV”(abo))
= -—T‘[‘ Z DOV” ¢0
- "/d% Do(z, 2)V"(do())

- / &z / d*z’ Do(z, 2')V" (¢o(2)) Do(a’, 2)V" (¢o(x))
_ (1.42)
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The fermionic contribution at the one-loop level can be evaluated in a manner
analogous to the boson case given above. One important difference is that here the
fields of our internal loop lines have a different background source field. To derive
an equation similar to (1.41), an assumption must be made about this source. In
general the path integral is over all the independent fields in the Lagrangian. In
the Relativistic Hartree Approximation (RHA) we treat the background fields that
appear as classical. Then the only difference in the derivation is that because of the
spin—% nature of the fermions, the fields in the path integrals are Grassman valued
[3]. This leads to a quadratic path integral which evaluates to (Det(A)) rather than
(Det(M))~Y/2. The final result for the effective action in a background of scalar and

vector fields is [3],
Tyac[tf] = —iA(Tr In(S™) — Tr In(Sg)), (1.43)
where the interacting and freé fermion Green functions, S and Sy, obey

(i3 — (M — go¢) — ,V)S(z,2') = & (z—12'), (1.44)
(i@ — (M — gsdo) — 9oV )So(z,2") = &*(z —2'). (1.45)

The effective actions given in (1.41) and (1.43) will be applicable to any Yukawa
coupled scalar-fermion field theory. However, these expressions still require renor-
malization. The relevant counterterms will be discussed when we use the actions to
calculate physical quantities. To go beyond one-loop methods similar to those devel-
oped by Jackiw [13] may be employed. For instance, Coppens and Verchelde have
applied functional methods to calculate the 3-loop effective potential for scalar ¢*
theory in 3 + 1 dimensions [14] .

When we attempt to solve a model with effective fields the question arises whether
we should include interactions that occur beyond tree level. Should we include loop
effects if the field in question is not fundamental? Proponents [15] argue that their

inclusion makes the theory physically complete. It seems hard to justify the case for
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formulating a relativistically covariant model while ignoring some of the dynamics
which the model predicts. In any case, it is interesting to include the loop terms to
see what effect they have on the dynamics of the effective phenomenological theory.

This will be our ideology when we examine loop effects in QHD for finite nuclei.

1.4 Bound state calculations with interacting fields

For the calculation of scattering processes where the interaction occurs for a limited
time with a small coupling, a valid assumption is to use the analytically known free
wave functions for the external lines of the various diagrams contributing to a par-
ticular amplitude. This is the usual Feynman perturbation expansion, and in the
case of small couplings calculations can be extended to many orders perturbatively.
However, when the problem we are dealing with has the form of a bound state we
must use wave functions that are solved with source terms from the other fields. The
calculations are in general no longer possible analytically. When vacuum corrections
are included they must also be calculated with respect to the interacting wave func-
tion, yet these corrections will in turn affect the wave function solution, so they must
be included in a self-consistent manner. Also, for cases where the coupling is large,
expansions with respect to the coupling are no longer valid and methods such as the
one-loop approximation must be employed. This expansion is still, however, pertur-
bative in the number of loops. Below some methods that are used to deal with bound
state problems are outlined.

To attempt a steady state solution of an effective field theory model we begin by
working at tree level. Writing down the Euler-Lagrange equations from the appro-
priate Lagrangian gives us equations which are quantum in nature and represent the
interactions of many body states. As an example, we consider the Walecka model

Lagrangian (1.1). The field equations here are:

(@ +md)s = g, (1.46)
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8, F"  +m2VH = g™y, (1.47)
@0y — 9uVi) = (M — gs@)lyp = 0. (1.48)
The first approximation we consider in solving these equations is the Mean Field

Approximation (MFA). Here the scalar and vector field equations are evaluated at

their classical expectation values [3]. Our dependent variables are
¢ — <¢> = QSO) Vp. — <Vp,> = uO%- (149)

It is simplest to begin by considering the case of a spatially uniform system. The
spacelike component of the vector field vanishes due to rotational invariance. The

field equations then become

¢o = T%%(W) = i—}ps, (1.50)
Vo = i—%@%w = ;g;—’gp”, (1.51)
[i@ — 9u7°Vo — (M — gso)lyp = 0. (1.52)

Equation (1.52) for the nucleon fields is the only remaining quantum equation. Be-
cause of the classical nature of the potentials, the fermionic operator can be expanded
in a normal mode sum. This reduces the equation to a single particle equation for
the mode wave functions, which can be identified as the Dirac equation with shifted
mass and energy. The solutions are therefore known analytic functions. The scalar
and vector fields are fixed by the fermion source expectation values, which define the
scalar and vector fermion densities p* and p?, respectively.

In a uniform system the conservation of baryon number density fixes the value of
Vo. However, the equation (1.50) for the scalar field must be solved self-consistently
with the nucleon equation (1.52). This approximation is physically valid for the case
of media with an infinite extent, such as infinite nuclear or neutron matter. The
ground state is obtained by filling states of the MFA Hamiltonian up to the Fermi

momentum kr. In terms of diagrammatic techniques the MFT involves modifying the
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free propagators by adding the effect of tadpole diagrams self-consistently. However,
only contributions from nucleons in the levels filled up to kr are included, and effects
from the negative energy sea are neglected.

The MFA can be extended to apply to systems that are nonuniform in space
such as finite nuclei. If the scalar and vector fields are allowed spherically symmetric
spatial dependence, their field equations become Poisson like equations with source

terms from the fermionic densities:

Vip(r) —mio(r) = —g.0°(r), (1.53)
V WVo(r) —miVo(r)y = —gup(r), (1.54)
(i@ — g7 Vo(r) = (M = gs¢(r))] = 0. (1.55)

The densities are derived in the same way as in the uniform MFA — from the ex-
pectation value of the appropriate fermionic fields with respect to the corresponding
state. The nucleon equation can again be reduced because the field equation allows
normal mode solutions. The angular momentum dependence in the equation for the
mode wave functions can be factored out in the standard manner [16], leaving a ra-
dial Dirac equation. Because the potential terms are now radially dependent, we have
three coupled equations to solve for a self-consistent solution.

To include the vacuum contributions in a self-consistent calculation we desire an
analytic form for the contributions that can be included in the field equations. To do
this we make use of the effective action formalism and one-loop approximation given
in section 1.3. Extending the MFT by including contributions from this approxima-
tion is known in nuclear physics as the Relativistic Hartree Approximation (RHA).
Note that the expression for the one-loop fermion action (1.43) is derived under the
assumption of the fields interacting at tree level. When the scalar field is constant,
the one-loop contributions can be evaluated exactly. We will see how to do this cal-
culation in section 2.3. When the scalar field is radially dependent, the zero-point

corrections can be calculated under the Local Density Approximation (LDA), which
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simply replaces the constant potential in the MFA vacuum result with the radially
dependent potential. This essentially evaluates the one-loop level contribution under
the assumption of a locally uniform source field configuration.

'To improve on the Local Density Approximation, we consider adding in one-loop
level terms that depend on derivatives of the field. This gives the so called Derivative
Expansion (DE) approximation. The exact one-loop quantity is expanded in a series
of derivatives of the source field, which is also an expansion in inverse powers of the
effective mass (i.e. the local scalar field value). This follows in a straightforward
manner from dimensional considerations [17]. These two expansions are not identical
as essentially the choice of the expansion parameter defines what terms are included
at each order. Here we consider the order of the derivatives as they will be the
important factor in determining a solution self-consistently, and seem to have better
convergence properties [17]. The termwise convergence of this series will give some
indication as to the validity of the expansion, although a much better method is
through comparison with the exact “brute force” result.

The convergence has been studied by several authors. In 141 dimensions, Li,
Perry and Wilets [18] utilized the numerical Green function method to study the DE
convergence of the vacuum energy in soliton theories for both fermionic and bosonic
loops in a background scalar field. Blunden [19] has studied the convergence of
fermionic scalar and vector densities at the one-loop level for both scalar and vector
background fields in 141 dimensions by also comparing the results with exact Green
function calculations. To improve the speed of convergence of the exact calculation,
Wasson and Koonin [20] considered using the DE and WKB methods to account for
the high energy loops. Wasson [21] has devised a method of interpolating the 1+1
dimension loop results in a background scalar potential by incorporating the exact
calculation up to a cutoff. In 341 dimensions, DE results for the energy have been
tested by Perry through partial wave analysis of fermionic loops in a background

scalar theory [22]. These calculations have been extended to both fermionic and
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bosonic loops with an improved numerical method by Li, Wilets and Perry [2, 23].
In this work these results are extended to include a calculation in 341 dimensions
of the fermionic vacuum scalar density in a background scalar field. This derivative
expansion is then tested for each partial wave. The advantage here is that using
the vacuum density allows the one-loop contribution to be included directly in the
equations of motion. This is an improvement over the method used by Li [24] who
attempts to gain self-consistency by minimizing the energy of the system with respect
to parameters in a postulated background field. Also, when we examine the conver-
gence of the derivative expansion energy, some of the information may be lost in
the spatial integration. Using the density, we can naturally examine the convergence
at different spatial locations. When the density is not convergent, methods devised
along a similar line to those of Wasson [21] can be implemented to interpolate the
DE to the exact result. The result will be a derivative expansion improved exact

calculation of the dynamic vacuum density in 3+1 dimensions.
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Chapter 2

DERIVATIVE EXPANSIONS

2.1 Methods of derivation

The idea of a derivative expansion consists of writing the one-loop contribution to
the effective action as a series in an increasing order of spacetime derivatives of the
background field. Consider a theory with Yukawa interactions between fermions and
scalar and vector bosons as well as three and four body scalar self interactions. We

write the Lagrangian as

L = 1/_1[’}’#(2'8“ - gvvﬂ) - (M - 9s¢)]¢‘ + %a,u ¢5#¢ - U(¢)
1

=7 Fw ™ + Im2V, V¥ 4+ 6L, (2.1)

where

2
Mg o, K3 A 4
=== — —@*. 2.

Ulg) = 5 ¢" + 50"+ ;¢ (2.2)
The vacuum contributions arise from fermion loops in a background of scalar and
vector fields, as well as boson loops from the scalar self interactions. We therefore
have contributions to the effective action under the one-loop approximation from

both equations (1.41) and (1.43). The general form of the derivative expansion of the

effective action follows from Lorentz covariance, and to fourth order is:

Pvac = /d4q: [—Us(gb) -+ %le((ﬁ) 8u¢ aliqs + %Z23(¢)(82¢)2
+1Z3,(6)(8,8)%(8%0) + 1 Zus(6)(0u8)* + . ..

+3Z10(8) Fyus F* + 3 Z2u()(0aF ) (07 Fu) + .-

~Up(¢) + 3 Z16(0) 0,9 0" ¢ + 1 Z5(8) (6°0)?
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+523(0)(8,0)2(8°0) + 3 Zan(9)(0u8)* + ... | (23)

Some effort is required to find the expansion coefficients. For the effective action they
have been evaluated by many authors. For most applications, considering the effects
of terms of up to fourth order is sufficient, although terms up to sixth order have
appeared in the literature [25]. In practical self-consistent calculations the expan-
sion is found to be useful oniy when the second order terms dominate higher order
terms, because including the fourth order derivatives tends to make the self-consistent

solution numerically unstable [26].

We define
gso(z) = o(z) = M — gso(x), 9s0o — 0o = M. (2.4)

The coupling has been absorbed into the definition of the effective scalar field o(z)
to simplify the form of the following equations. This convention will be followed until
the end of section 2.2. Results for the expansion in 3 + 1 dimensions with derivatives
up to 4th order of the scalar field, and 2nd order in the vector field are given below
(some terms can be found in [15, 23, 24, 27, 28, 29], a general method is discussed in
Appendix B):

Fermion Loops:

U = A {04(33) In <02($)> + kzz)fnoé_k(ao — 0(:1:))}“}, (2.5)

~ 16m2 ot
Zys = —8% {m (Uz(;)>+zls}, (2.6)
Zos = 8(;\71'2 Uztx) 2_2(2,3}’ (2.7)
s = -7;(1);:2 03135)}’ (28)
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A o?(z)
L1y = v ¢ i
1 1972 {h’l < 0_(2) > + 21 } (2 10)
A 1 29y
Doy = — s 2.11
2 6072 {02(:1:) * o8 } (211

Boson Loops:

Uy = 641W2{W2(:c) In (-M%O‘Q) - %(W(a:) — Wo)(3W (z) — W)
+fb(¢)}, (2.12)
- a3 o
Loy = 19207r2{ } (2.14)
Zn = 4807r2{3W3 - 214(2/”)}’ (2.15)
Zn = 48(1)7r2 {(8W4 W;)mg?/”) (}fv/vf} (2.16)

where W(z) = Ul(¢), primes denote differentiation with respect to ¢, and X is
the degeneracy parameter of the field ¥. The parameters f,, 215, 226, 210, 220, and the
function f3(¢), are fixed by the choice of renormalization, and are written to facilitate
the different models we consider. In this expansion the terms with no field derivatives,
Us(¢) and Uy(@), give the local density approximation. The LDA is therefore the first
term in the derivative expansion. The next orders in the expansion are given by the
Z1(¢) and Zy(@) terms respectively. The analogous results in 1 + 1 dimensions can
be found in [18].

There are several variations of the methods by which the above expansion(s) can
be derived that have grown from early work on the subject [27, 30, 31, 32, 33]. One
method by which we can quickly arrive at the expansion is that based on the knowl-
edge of the polarization insertion (II(p?)) calculated for the appropriate Feynman
diagrams [22, 34]. Often in a problem the form of the polarization insertions for a

particular diagrams or set of diagrams has been calculated. In this case it becomes a
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straight forward exercise to calculate vacuum contributions to the effective potential
by simply expanding the momentum space polarization about zero momenta. For ex-
ample, Furnstahl and Horowitz [35] give a scalar polarization function due to fermion

loops whose momentum dependent terms are

M(g) = N (L - [ ds(ote = 21 - 1) m e = ZW)) -

[+

4m? il
(2.17)
The derivative coefficients can then be determined using
I,(q? 10%11,(q°
7, = _9 (2‘1) L= ___.__2(‘12) (2.18)
(@) |, 2 0(¢*) |0

As the expression (2.17) has previously been renormalized, the effective action with
these coeflicients will obey the same normalization conditions.

An alternative approach to the derivation starts directly from the equation for the
one-loop effective action. In this method we work in momentum space and expand
the log of the inverse Green function in various derivative orders. Often, some sim-
plifying manipulations are made depending on the exact form of the quantity being
calculated. Some authors [24, 29, 32|, for instance, find it useful to introduce ad-
ditional parameters into the expansion. This involves making use of identities such

as

1
TrIn(X +Y)=Tr lnX-i—/ dz B, (2.19)
0

1
A+ zB
where X and Y are operators. A rather elegant derivation [25] makes use of the
identity

TrIn(XY)=Tr (InX +1InY). (2.20)

which follows from the Campbell-Hausdorff relation and contains no additional pa-
rameters. Special attention is made to the gauge invariance and symmetries in this
derivation, allowing the authors to obtain results for the bosonic expansion to 6th
order in the the derivatives. At this order 28 terms were found. In a later section

of this thesis a similar calculation will be made for the fermionic fields. However,
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we choose to expand the Green function directly instead of using either of the above
identities.
Before doing this we consider how the effective action expansion can be used to

give us the quantities of interest. The full effective quantum action is given by

r — /d4x£+rm
- /d% (£ + Loge)

/df‘x Lofr. | (2.21)

This defines the effective Lagrangian L.;; (where the renormalization still needs to
be defined). The energy functional is related to the effective action by

r[®]

Bl#] = S5,

(2.22)

where ® is a general source field. The ground state of the system ®, is then defined
at the minimum of E[®], where
— =0. (2.23)

3=,
In this expression we see how the nature of the one-loop expansion allows us the
freedom of choosing the true ground state about which we are expanding after the
expansion has been made.

The expression (2.23) is essentially equivalent to applying the Euler-Lagrange
equation to the effective Lagrangian. However, the effective Lagrangian depends on
higher order derivatives of the field so we reapply Hamilton’s principle to generalize

equation (1.6) to

oc . ( ocC ,( or ~
a5~ (saa1) 2 () + =0 .

where £ = £(9,0,9,5°®,...). Recall that terms beyond the first two only have

contributions from the vacuum part of the effective Lagrangian. To group the vacuum
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contributions together in the Euler-Lagrange equations we may define

_ 5£vac 8£vac 2 aﬁvac
e = %5 =0 a7 +0 () + 229

This is one way in which the vacuum density can be defined. As a result the vacuum
density can be represented in the field equations as a source term. We see that the
derivative expansions for the energy and the density can thus be derived from the
effective action derivative exbansion using a combination of equations (2.21), (2.22),

and (2.25).

2.2 QED vacuum polarization

As a simple example of the effective Lagrangian formalism and the validity of the
derivative expansion we consider the vacuum polarization process in Quantum Elec-
trodynamics (QED). Abundant evidence exists that supports the idea that QED is
the fundamental theory of electromagnetic interactions below 100 GeV. As well, it is
usually considered to be the most well understood physical field theory. The simplest
form is that of a theory of spin—% charged fermions with field ), mass M, and charge
e, with interactions mediated by the spin-1 massless gauge field for photons, A,. The

QED Lagrangian in the Feynman gauge is

Lopp = Pa(i0" — ) — My — 1FF* — 10,47 +6£, (226
where F,, = ,A, — 0,A,. We treat a case which may be evaluated perturbatively
about the free particle solution. In this setting we will clearly be able to see the
effects of the shape of the source density in a calculation that has the same flavor
as the DE approximation. The analysis is simplified here by treating the interaction
perturbatively in the coupling and comparing quantities only to O(a), where o =
e®/4m is the usual fine structure constant. This is accomplished by considering the

modification of the free photon propagator by the O(a) vacuum polarization insertion.
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In momentum space the propagator iD,5(q) then becomes
iDaﬁ(q) = iDOaﬁ(Q) + iDOau(Q) iHuu(Q) iDOuﬁ(Q)' (227)

Note that from gauge invariance ¢#I1,,(g) = 0, which dictates the Lorentz invariant

form

uy ny quV 2
" = (¢" — 7 ) (g%), (2.28)
so that

. igaﬁ igaﬁ 2
D, = — — I1 . 2.2
Dasle) =~ JeE () 229)

From the well known Feynman rules of QED with the usual charge renormalization,

the propagator’s polarization insertion is found to be [§]

2
q
(¢*) = / dzz(1—2)In (1 —2(1=2) M2> (2.30)
This integral can be evaluated, and for the case of a stationary source the momentum
is spacelike, g2 = —q?, and
2 2 2 1+ 42 4
- o! 5 4M 2M 4M? K
HR(_q2):_'§%__ —§+TQ‘+(1—TQ‘)\J1 — In —
9 q q Y1+ -1

(2.31)
To write an expression for the vacuum polarization potential we fold a background
spherically symmetric charge charge density source, p.,(r), over the new part of
the propagator. This is most easily done in momentum space, where for a time
independent source
3 -2
VE@) = [ o o0t TRCT D @) 232

The angular part may be integrated, leaving

o [ in(gr —q°
Ve =2 [T ICD ), (2.33)

vac

where

o o0 sin{qr
per (g /d3 T (T) = 47r/0 drr? q(f )pch(r). (2.34)
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This expression gives the “exact” effect of vacuum polarization in our theory (to
O(a)).
For comparison, the derivative expansion coefficients can be evaluated using equa-

tion (2.18) and the integral form (2.30), giving

' o
= Ly = ——. 2.
Zl O) 2 157TM2 ( 35)
The result Z; = 0 is a manifestation of charge conservation, which implies that

corrections to the charge density are total derivatives that vanish under a spatial
integration. This allows us to write an effective Lagrangian for low energy photons
that takes into account the vacuum polarization loop in an additional derivative
term. The full effective one-loop Lagrangian will contain contributions for the photon-
electron vertex correction that are of order a?. It is referred to as the Euler and
Heisenberg Effective Lagrangian [4]. Here we are interested in the order « part (only

the vacuum polarization)

.«
30mM?

1
Lejs = —ZFWF““ (8, F* ) (0" F,3) — j*A,. (2.36)

The fermion part of the Lagrangian has been dropped here, and an external
source current j* is included. The gauge fixing term can be dropped because we will
restrict ourselves to the time like part of the vector potential in the case where it is

independent of time. The suitable form for the Euler-Lagrange equations are

oL oL o 0L\
o~ (5o + 7 sy = (237

Considering the time-like part of the potential Ay and a source current j# = %5,

we obtain a modified form of Maxwell’s equation

. 67
62140 = Jo + W(94A0, (238)

which for a time independent potential becomes

V2 Ao = —jo -

64
Y Ao (2.39)
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Making use of the identity V21/|Z| = —4m§(Z) this can be written as an integro-

differential equation:

- / Ry Q —/
A@) = o [a ~|(J°<“+WV‘1A°<“’U )
1
_ 3.1 N 3./ 2 2
= 47T/ci o7 _f]ao(w) 0 QMZ d (v >v Ao(Z")
= 5 [ @) - Y ),

As the electromagnetic coupling « is small, we can solve this equation iteratively by

(2.40)

substituting for the RHS A; with the LHS Ay in an iterative manner. For example,

with a point-like source with charge —Ze we have Jo(T) = ~Zed® (), so
Ze? o
Ao(T) = — - 2A0(Z
o) TR T VARG
Za 468)(x)
_ Lo R pE) 2.41
iZ] ~ Y e (241)

This is the familiar term which contributes to the Lamb shift in hydrogen [8].
To understand how useful the effective Lagrangian is here we consider the spher-
ically symmetric charge density, jo = pen(r). Solving (2.40) iteratively we have for

the vacuum polarization contribution to the potential

402
Viae(r) = Te370en(r). (2.42)

This expression can be compared to the exact result which we also calculated to

O(a?) (2.33). For simplicity, we choose a Gaussian source density

1 —(r 2 A2
pen(r) = —5—5 e /el penlg) = e ¥4 (2.43)

where the parameter a controls the shape of the potential. (This potential has a height
of 773/2q73, a width at half max of av/In2, and is normalized to unity). Equations
(2.33) and (2.42) can then be compared for different values of a, as seen in figures 2.1

and 2.2.
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Figure 2.1: Validity of the DE level QED vacuum potential for large a.
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We see that for large a (small height, big width) the derivative procedure gives
a valid description of the vacuum. For smaller a, the height increases and depth
decreases, and the approximation loses its validity. It is important to remember that
a is large or small compared with the length scale 1/M. In other words, we expect
the derivative expansion to be valid for fields that fall off slowly compared with a
length scale determined by the inverse of the fermion mass. Here we have used the
mass of the electron, with m;' = 386 fm, and observe that the derivative expansion
breaks down for a comparable or small than this value. For muon loops, we would

expect the derivative expansion to be valid down to length scales of m;l = 1.88 fm.

2.3 Direct expansion

2.3.1 Ezpressions for the energy and density

As an alternative method to deriving the derivative expansion for the effective action,
we can derive equations for the energy and density in terms of the Green function and
expand the Green function directly. To see how this is done, consider the one-loop

fermionic contribution to the effective action for a scalar background:

Piae = —iTr™ (InS7(g.) — In S5 (¢e))
— / d'ztr (z] (I S7H(ge(x)) — In S5 (0e(2))) |2). (2.44)

Here TY" denotes a trace taken over spacetime as well as the internal degrees of free-
dom (such as spin, isospin etc.) whereas tr denotes simply the trace over the internal
degrees >0f freedom. This action has not yet been renormalized and is technically an
infinite quantity. To deal with the renormalization we consider all four dimensional
integrals in D dimensions. This is the method of Dimensional Regularization which
allows us to consider finite quantities in our intermediate steps and take care of the
renormalization at the end. As an even further simplification we drop the contribu-

tion from the free Green function Sy, and will pick it up again when performing the
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renormalization, so that
Tpoe = —i Tr (1n S‘l(gbc)) . (2.45)

The fermion Green function S(¢.) can be written symbolically as

1
i§ — o.(z) +ic’

S(¢e) = (2.46)

where o.(z) = M — gs ¢.(z). Because the scalar field is independent of time we can

equivalently use the Fourier transformed Green function

S(pe) = / dt S(8,)e= ", (2.47)

Also, the energy functional E(¢.) = —I'/ [ dt, so we have
Bue = —5- / dpo Tr™ In S~ (py). (2.48)
s

A Wick rotation of the pg contour integral to the imaginary axis can be made by the
replacement pg — iw, where w is taken to be real. This alleviates the necessity of the
i€ prescription for getting the path right, so

1
Ciyw + i -V — oc(z)

S(iw) (2.49)

Using this expression in (2.48) and an integration by parts of the resulting line in-
tegral, we obtain the following result for the energy in terms of the fermion Green
function

Epee = —27—'7r / dww TrP (oS (iw)). (2.50)
The scalar vacuum density can be obtained from the energy by taking the functional

derivative
S (,’E) — 6E’UG.C — 5E‘UG.C
Puac 8gd.(z) do.(z)

When this result is used in the expression for E,,,., the spatial integral part of the trace

(2.51)

is removed, leaving simply the diagonal spatial matrix element, denoted S(z, z;iw).

The result can be further simplified by making using of the identity [21]

o ... .0 o
aUcS(zw) = —tri EZS(W)' (2.52)

tr Yo

o)
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This expression can easily be derived from the form of the Green function (2.46). An

integration by parts will then give the result for the scalar density,

Prac(Z) = ——2—17; /dwtr(S(.r,a:;z’w)). (2.53)

One possible advantage of using equations (2.50) and (2.53) is that from a derivative
expansion of the Green function we obtain the expansion directly in terms of physical
quantities we are interested in. The importance of this will become clear when we
consider numerical calculations. Although formally the vacuum density as given in
equation (2.53) is equivalent to that derived from the vacuum Lagrangian or energy
functional using (2.25) or (2.51), these expressions will differ when a finite numerical
cutoff is imposed on the w integral. This cutoff is in no way related to our method
of renormalization but is simply imposed by a numerical solution. Essentially the
formalisms will differ by a total derivative under the w integral, which will not vanish
when a finite cutoff is imposed. Therefore, the convergence versus the cutoff becomes
an important issue. In 1 + 1 dimensions the connection between the two methods is
cited by Wasson [21]. However, no attempt is made to compare the the difference
of the two methods for cutoff convergence. A comparison of the convergence versus
the form of the expansion will be given in section 3.1. Similar things happen in
3 + 1 dimensions. When a partial wave decomposition is made, we find that the
value of a particular partial wave term may differ if a total momentum divergence
is added before the decomposition is made. The calculation of each of the partial
wave terms involves imposing a cutoff which is again another dependence on any
derivative added under the w integral. Thus here the form of the expansion may
affect the convergence with respect to both the partial waves and cutoff. The hope
is that by direct application of equation (2.53) to the Green function expansion and
careful manipulation of intermediate terms we will obtain a form of the density that

will converge rapidly with cutoff.
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2.3.2 Fermion Green function expansion

The method used here to derive the derivative expansion involves an explicit ex-
pansion of the fermion Green function in momentum space. This method was first
introduced by Chan [27], who used it to calculate the expansion for the boson Green
function up to terms with four derivatives. Since then many others have made use
of this technique in different forms. Wasson [21], for instance, used this method to
expand the energy trace of the fermion Green function in 1+ 1 dimensions. Another
benefit of this method is that the terms are represented in momentum space in a
simple manner, which makes it easy to expanded in a partial wave sum in 3 + 1
dimensions. This method is necessary not only to improve numerical convergence
but also to allow extrapolation away from the DE result in cases where it does not
rapidly converge. Here we make an explicit expansion of the fermion Green function
in arbitrary dimension under the influence of a background scalar field. The necessary
traces are evaluated at the end of the calculation, so that the expansion can be used
to directly give either the energy or the density.

As only the diagonal spatial elements of the fermion Green Function are required,

we can write

Sz, z;iw) = (z|S(iw)|z)
1
(=i@ + o(z))
1

1 , "ot
= *W/ddp d%p <x|p)<p[mlp><p |z)
1 ipT __.1—_. e
= _(zw)d/ddpe —F+06Z)
1
~#+a(ig)

|z)

= —(f

—1ipx
= ~Try (e e %), (2.54)

Here the d denotes the number of spatial dimensions, d = D — 1, and the sign in

the denominator is introduced for later convenience. To proceed we note that the
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translation operator e~%% obeys the following relation:

f(z'%) TP = Te f(a:—!—ia%). (2.55)
This can be easily proven by doing a Taylor series expansion of the function f.
Therefore,
1
Sz, ;1 = —Trz . 2.56
(z, ;W) Y5 —pf—i-a(:z:—i—i(%) (2.56)
Next the following two expansion equations are introduced:
0 2, ™ 0 0 am
—) = R e - 2.57
fetig) = 2 o (8:6“1 D | m) 8P - Oy, (2:57)
= £(2) + U0 @) o — (0,00 () o
N S op, 21V o Op,.0p,
_ 1/ 1 2.
X+Y mZ::OX< YX) (2.58)
1 1.1

1.1 1

Equation (2.57) is the covariant Taylor series expansion for the function f about
z, while equation (2.59) is an inverse operator series expansion where X and Y are
operators. The choice of the separation of an operator into X and Y defines the
nature of the expansion being made. With respect to (2.56), two useful choices are

given below.

(i) For instance, to expand the interacting fermion Green function about the free
field configuration, where o(z) = oq is simply the mass of the fermion, we let
X = *Z?’/ + go,
Y a(x—H'a) oy = ~(31:—{—2'8) (2.59)
= - ) — = O - ). .
op’ " 9p

Then —1/X = Sp(iw), the free fermion Green Function, and

S(z,z;iw) = Trp (Sg(iw) + So(iw) 6(z + z%) So(iw)

+ So(iw) 6(z +i5%) Soliw) &(z + fza%)so(zw) +.). (2.60)
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"This form of the expansion will be useful for deriving the necessary counterterms

In momentum space.

(ii) The derivative expansion is obtained by a slightly different choice of X and Y

X = —pg+o(z),
Y = oz + Za%) - o(z) (2.61)
. %, 1 b2
= Z(aua'(ﬁf))”a?u— — 5{(6M8U0'(1’))8ppapu -+ ...

In fact both of the above expansions can be handled simultaneously. Before pro-
ceeding with the expansion we convert to a slightly different form of the Green func-
tion S. This is done to reduce the number of terms that must be kept in the inverse
operator expansion (2.59), as well as to bring the spin structure to the numerator,

which makes taking internal traces straightforward. We put

1
(=@ + o(z))
(if + o(z)) 1
(i + o(z)) (—id + o(z))

S(z,z;iw) = —(z|

|z)
—(z|

|z)

(
_ id + o(x) _
= TUE e gem ™ T
Ty | (F4 o(z+ i) ! (2.62)
= — = g 11— .
P dp —p2+02(a:+i5‘95) +igo(z+ig) |’
where p? = p? — 5% = —w? — 5% Again we will make use of the expansion (2.59)

for the inverse operator term. The two expansions (i) and (ii) can be obtained by

setting:

Counterterm Expn. Derivative Expn.

2.63
X : _p2 + 0-(2) ___p2 + 0'(33)2 ( )

0 0 0 0
. 2 . _ 2 . . 2 . . 2 . .
Y: o (:1:+z——8p) o +z@a(az+z———8p) o (a:+z——8p) o(z) +z&a(x+28—p)
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By using equation (2.57), the contributions in the Y term can be written as a
series in momentum derivatives. To treat both cases in the table simultaneously, we

work with the following notation:

X — A7! .
0 o d*o(z)
Y — <A+Bu*8p—#+cw,m+0( 773 )+> (264)
where
1 1
8= ey ot S o(z)?
A = o*(z)—ci+ido(z) or A =ifo(z)
B, = 2io(z)0,0(z) —v"6,0,0(x) (2.65)
d*o(z)
Cw = = (8u0(2)) (0,0(2)) — 0(2) 8u8,0(z) + O(— =)

With this formulation only three terms in the inverse operator expansion must be
retained to derive the counterterms and obtain the derivative expansion up to second
order. To see this we can count powers of momentum and notice that the first
convergent piece (under [ d4p) has p~° dependence. Terms beyond the third are of
order p~° or higher and are therefore not relevant to finding the counterterms. For the
derivative expansion we see that each factor of Y contributes at least one derivative,
so terms beyond the third (which has two Y"’s) are order (d®/dz®) and higher. In fact,
due to the covariance of the expansion, only even numbers of derivatives appear, so
that the next terms will be of order (d*/dz?).

Looking again at our definitions in (2.65) we see that A contains all of the p
dependence. Spacetime derivatives of A can be taken easily, and to simplify our
formula we will denote a p, derivative of A by A*. The coefficients 4, B,,C,,, and
the factor g + o(z + i—c%) contain the scalar field derivatives as well as the spinor

matrix structure. Using equations (2.57), (2.59), and (2.64) in (2.62), we have
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S(z, z;iw)

_ T, <pf+a(o:+iz%)> (A AYA+AYAYA +.. )

= —Tr; [<;¢+ o(z + i%))
x {A — A’A— AAB, — AAPC,, + APA2 + A2AFAB,
FATAPYAC,, + A(A?)F B A+ A O A + A(AA“)"BMBU}

Lo ]

dzd

.
# + o(z)) {A _ A’A— AAFB, — ANC,, + AP A% + A2AFAB,
FA2AM AC,, + A(ADEB,A + A(A)HC,, A + A(AA“)”B#B,,}
+ (100 () {A’\ — (AP A — (AA)B, + (A% A?
+(A2AMPAB, + (A(AQ)“)AB#A}
+ (1030, (x)) {AY = (A A+ (AT A} + O(ig—)

dz3

Recall that the scalar field is time independent, so when the four-momenta that

(2.66)

appear in the derivatives are contracted with the corresponding field derivatives they

contribute only through the spacelike part. After simplifying the multiple p deriva-

tives we can reduce the above equation by noting that under the momentum trace

Trs terms with odd powers of 7 vanish. Hence

S(z,z;iw)
_ Ty, [
4 {A — A2A— AAMB, — AAPC,, + APA% + 3APAFAB,
+3A2ARAC,, + 2AAFAYAC,, + A2A™ BB, + AA“A“B#BU}

+o(z) {A _ APA— ANPC, + NA? 4 NPAAC,, + 20PAR AC,,
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+2AAFAYAC,, + A2AM B, B, + AA"A”B#BV}
+(i0ro(z)) {-A*A'B, — AAB, +8AA*A AB, + 3A°A™ 4B, )
+(i0:8,0(z)) {AY — 2APATA - 2ANVTA + AN ANTA? 3APAN A7}

o). (2.67)

From this equation we can derive the general expansions for both the energy and the

density using equations (2.50) and (2.53).

2.3.8 Energy and density expansions

For the energy (2.50), we see that by incorporating the w integral into the trace we
have an overall four-momentum trace of the form Tr,, (w%S(iw)). Consider the
reduction caused by the internal trace here. This can easily be done by recalling

some well known trace theorems for the gamma matrices [7]:

YuYv + WY = 29#1/, (268)
tr(Yu - Ym) = O (n odd), (2.69)
Ctr(y ) = Do (2.70)

The v matrices that appear in the coeflicients A, B,, C,, do not include v because
this matrix appears multiplied by the vanishing time derivative of the scalar field.
The trace of v, times any number of y; (¢ = 1,2, 3) vanishes so these terms cannot
contribute to the trace. The only remaining terms come from the iw part of the p
terms. These are further reduced by the fact that some of the terms are now odd

with respect to p. The remaining contributions come from the following terms
Epe = —1 Tr;,”f; w v S(z, z;w)
Tr;?; WA — ATA 4+ A3(AY) — AA*C, + 3A2AM(AC,,)'

+2AAFAY(AC,,)  + A2AM(B,B,)' + AMAY(B,B,)'|. (2.71)
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The prime here denotes the parts of the coefficient(s) with an even number of gamma
matrices.

Now consider the scalar density. Including the w integral as part of the momentum
trace we see from equation (2.53) that the density involves the factor Tr, S(iw). The
expression (2.67) can be reduced under this trace by vanishing internal traces as well

as factors that are odd in . The remaining terms are

Prule) = —TE™ S(a, i)
= —Tr;,”t{
¥ {~AAEB, + 302N AB, + BAPAM AC,, + 200 AYAC,, )
+o(z) {A — AA 4 AY(AD) — AAMC,, + APAM(AC,,)
+2A%2AM (AC,,)" + 2AA*AY (AC,,)'
+AA(B,B,) + AN AY(B,B,)'}
+(i0ya(z)) {—NNB#' — AAMB,’ + 8AAMA(AB,)’
+3A2AMN(AB,) }
+(i030,0(2)) {A” COAMATA — AN A
FEAANAT(A2) + 3A2AN(A2) }

3
+0(%) } : (2.72)

The prime again denotes the part of the coeflicient that has an even number of gamma,
matrices.

To go further we must insert a form for the coefficients. We choose to insert
the counterterm form of the coefficients, as it will be a simple exercise to obtain the
derivative expansion form from the resulting equations, so that we then have both

expansions. We note that since

1

A = _ ———
Bo= T on

, (2.73)
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we have

AF = 2p*A?. (2.74)

Using this expression to evaluate derivatives, and taking all internal traces, we find

the following form upon grouping like terms:

Fre = Tips D wz[
{A = (0*(z) = ) AZ+ (o2(z) — 00)* AT+ ..}

+o(2)(@,0,0@){ (89" MY +20" A3

+(0*(z) — 073) ( 32pHp” AJ + 6gH Aé) + ... }

+(Bu0(2)) @ ()] (89 88 + 97
—402(z) (12pp"AJ + 2g"AG)

—(0*(z) - 03) (32pP" A5 + 69““Aé)} } ,

—~
o
~1
@]

~—

piac(x) = ——TI‘p D
[o(z) Ao - 0(2)(0*(z) — o2) A3 + 0(a)(0(x) — B A+ ...}

+(6u6ua(x)){— (2p"p” Ad + g™ A%) + o*(z) <8p“p“ AG + 2g* Af’))

+(o?(z) — of) (6p“p” AG + 2g* Ag) +... }

+Bur(@)(@,0(@){o(e) (2095 Af +59" AY)
~o?(z) (48p“p” A+ 8g* Aé)
—o(z)(c*(z) — 0?) (128p“p" A5+ 17gH Ag) } ] : (2.76)
The form of these equations can now be simplified using various transformations

that are valid under the momentum space trace. We must proceed with caution,
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however, as making use of a transformation under the w part of this trace will affect
the convergence when a finite cutoff is placed on this integral. Any transformation
that vanishes under the § trace will affect the termwise form of any partial wave
expansion. This dependence will in fact allow us to consider which form converges
the most rapidly. For purpose of illustration we consider the density. The first thing
to note is that none of the terms p* will have an energy part contributing because
the time derivative of the scalar field 8y o(z) vanishes. This allows us to reduce the

dependence p*p” as follows:

Tr,(pp” A™) = ¢* g7 TrP(pi p; A)
i v 61 — n
= ¢"'¢" 5 Tr(P"A)

I NS (2.77)
D-1""7

To make the partial wave expansion, we will find that it is useful to remove the p 2

dependence from the numerator. This may be done by noting that
pl= (A —w? -0 (2.78)
The equation for the density is then

flacl®) = =T, D)|
{O‘(SC) A = o(z)(c*(z) — 08) A2+ a(z) (0 (z) — 03)* A® + .. }

+(320($)){— (%A?’ + —z—(cf + 02(m))A3> - —§-02(a:) <A3 — 4(w? + az(x))A)

+2(Ué($) ~0?) ((w2 + az(m))A4> + .. }

+(0ua(az))2{—-§a(m) (8% = 4(? + o2 (2))AY)

+80°(z) (A* — 2(w* + o*(z))A?)
1

+30(2)(0%(@) — of) (TTA1 — 128(0" + 0°(2))2°) } } (2.79)
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So far we have done nothing to affect the convergence with cutoff or partial wave.
We now consider a reduction that affects the partial waves but not the cutoff. Effec-
tively what we do is to add the total divergence of a function under the § integral
where the function is such that it vanishes at infinity. Although this term makes
no net contribution, it’s individual partial wave contributions may be nonzero. This

mechanism may be implemented by letting

(W? + o) A™ = A — F2AT (2.80)
and then taking
(7*)° (n+28-2) / 1
— , 2.81
/ P& + M2y 2(a—1) p”2+M2)a1 (2.81)

where the integral is over the n dimensional Euclidean 5. This gives us

piac(m) = ——TYP D{
{o(@) o — o(2)(0*(x) — 02) A2 + o(2)(0?(z) — 03) A +..}

+(8%@:)){--A2 g 2(2)A3 + (02(z) — 02) A3 +}
+(8,0(z))? {g o (2)A3 - 26%(z) Ag—a(x)(aﬁ(z)—agmg” L (282)

The purpose of the manipulations between (2.79) and (2.82) should be, however,
to maximize the convergence of the partial wave series. It will be seen in the next
section that in fact the expression (2.82) is the most useful. The purpose of these
manipulations has been simply to allow us to consider other forms. In particular,
once this choice has been established we see that expression (2.82) could have been

obtained in a much simpler manner by simply using the following formula.

/ dk Ll - / &k L (2.83)
(W2 + k2 + M2« 2(a—1) (W2 + k2 4+ M2)e—1’ '
to reduce the form of the spatial part of the p integrals in (2.76).
It is important to note that we are not making use of the w part of the p integration,

so this reduction again affects only the partial waves. Also, as the energy contractions
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vanish, formula (2.83) can be implemented by letting

ptp” o g 1
(—p*+ M2)e " 2(a—1) (—p? + M2)e1

Applying this shortcut to the energy expression (2.75) gives

(2.84)

Eyoe = Trpe D w?
{80 = (0%(z) — aD)AZ + (0%(z) — 02)? A + .. y
+o(z)(8%0 () {%AS +2(%() - o) A3+ .|

+(6ﬂa(z))2{—%Ag—202(x)Ag—2(02(13) —ag)AgH (2.85)

2.3.4 Counterterms

To see which of the terms in the expressions (2.82) and (2.85) are divergent, we can
count powers of p and consider whether the integral over all p space will converge
in the dimension we are considering. Alternatively we can make use of the following

formulas (see [3] for method of derivation ):

1 w? _ —i(=1)2r P2 Pl —1-D/2)
(27)D / @°p (=p? + M?)> —  2)f2a-D-2 T'(a) » (280)
1 1 _ (=172 I(a—D/2)
(2m)P / PP T amE = D o) (2.87)
Terms that may diverge in 4 or fewer dimensions are
B = —% D 7=D/2 ppp+2 Trz{
-I'(-D/2)  , »rl-D/2)  , 221'(2—D/2)
(TG - ) - 2 - ) - o TE DI
+o(2)(8%(2)) {—E%g@} + (8,0(2))? { F—(z#} J . (2.88)
Pracle) = —i D P2 M7
{ ot 57 - atete) - oy TEL 22

60 ()) { —P—%%g-@} } | (2.89)
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Divergent terms are then the terms where a I" function will be evaluated at a pole. If
we regularize our expressions under the p integral, the terms that must be included
in the counter term expression are the terms in (2.85) and (2.82) that correspond to
the divergent terms in (2.88) and (2.89). Depending on the renormalization scheme,
other finite terms may also be included in the subtraction. The mechanism for deter-
mining a scheme is simply to make our expressions reduce to those which satisfy the
appropriate relations placed upon the coefficients in equation (2.3). This reduction

is accomplished by evaluating the renormalized momentum integral.

2.3.5 Derivative expansion expressions

Looking back at (2.64) we see that expressions for the derivative expansion can easily
be determined from the above counterterm equations by simply replacing (—p? + 02)
with (—p?+0?(z)) and removing all factors containing (02(z) — 02). From (2.85) and

(2.82) we have

1

(=p* + 0*(z))
1 e@)f 6
3(=p*+%z))® (P +0%(z
. o(z) 1 % (z) 2
Prac(@) = —Tr, D [(—p2 +0(2)2)  2(—p*+o(z)?)? T3 +

s o)l e
3(-p*+0a(z)?)® (P +o(z)?)) ]’

Fue = Trps Do [

These expressions agree with [19, 21] in 1 + 1 dimensions, and in 3 + 1 dimensions
the energy agrees with the results of [23, 24]. The new expression here is that for the

3 + 1 dimension density in momentum space.

2.4 Termwise convergence

In this section we evaluate the momentum integrals obtained above. When this is

done, we regain the original expressions which we quoted in section 2.1. The results
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obtained will agree with any other method that may have been used to derive the DE
energy and density. Our purpose here is to consider the termwise convergence of our
derivative expansion expressions for the energy and the density in 3 + 1 dimensions.
The direct derivative expansion for the energy can be evaluated by choosing the
counterterms that correspond to the 3 + 1 dimensional divergences in (2.88) and
subtracting them from (2.90). We obtain a result for which the p trace can be
evaluated and which agrees with the value given in section (2.1) with the choice:

3

f0:O> f1:2: f2=_73 f3:67 f4:_—2— (292)

Including the fourth order derivative terms from section (2.1), and writing the energy

grouped in orders of the derivatives, we have

Evc(o) = Eo(o)+ Ex(o) + Ey4(0), (2.93)
-1 o, 1 .
Ey, = Tr; o= <04 ln(U—g) - 5(302 ~og)(o? — 03)) . (2.94)
E, = Try; — 1n("—2)(vg)2 (2.95)
2T T q6r2 T g2 ' '
B -1 [((V3%0)* 11(Vo)*:(V?) 11(Vo)!
Boo= Trs g ( o2 953 1804 )’ (2.96)
where o = o(z). Note that the method of renormalization is such that
N dEo(O'O) . d2E()(O'0) _ .
Eo(O'o) = O, —E;— = 0, —Ez—;— = 0, EQ(O’()) = 0. (297)

The derivative expansion for the density can be evaluated by subtracting the
counterterms corresponding to those in (2.89) from (2.91). A finite term given by the
term in (2.82) with 02(1)820($) dependence is also subtracted. By doing this we will
see that our expressions agree up to second order with the ones found by applying
equation (2.25) or (2.51) to the energy. As the fourth order derivative term is not
subject to renormalization and all traces have been performed, we can obtain the

fourth order density term from the energy by using equation (2.25) or (2.51):

pf)ac(’r) = po(?") + pQ(T) + ,04(7'), (298)
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po(r) = — 1 (a ln(g;)—o +aa§> (2.99)
pa(r) = ( 1n(3—5)), (2.100)
_ 1 s 4Vo-V(V3i) 16(V?20)?
palr) = ~ 80m20? (V o B 90
11(6%0/8%*r)*  43(Vo)*(V %0)
90 N 902
44(Vo)?(8%c/0%*r) 11(Vo)?
- - =) (2.101)

Note that the terms in ps(r) with second derivatives of r appear from covariant
expressions like (8,0,0)* etc. All operators V are derivatives with respect to 7, and
all operators V ? indicate the radial part of the Laplacian.

We could now put the coupling explicitly back into these expressions for the
energy and density. However, we find it more useful to simply rescale these equations
in terms of the free field mass, M = g oy, so that all quantities are dimensionless and

explicitly coupling free:
o(z) = =, z' = zog. (2.102)

With this choice our energy is expressed in units of M* and density in units of M?3.
Also, the explicit dependence on the coupling has been folded into the z’ variable and
will thus only appear in the rescaled field as ¢'(z) — o’(z’). (The rescaling in (2.102)
may be implemented by simply setting gog = 1.) To test the convergence of these
derivative expansions we pick a representative analytic form for the field. We choose
a spherically symmetric field potential, o/(r), which has a form similar to that of a
shifted hyperbolic secant:

a(1+ )

6b rn + fe—b rn

a(l+f)

eblr/n +fe_blr/n 1

o(r) =0y — o(r')y=1- (2.103)

where a' = @ and &' = b/(goo)™ are positive numbers, and 7 is an integer greater than

0. Note that ¢'(0) = 0 in all cases (n > 1) and that ¢/(r — co) = 1. This choice of
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boundary conditions ensures that our field o remains smooth at 7 = 0. and decays
to a constant value at infinity (the fermion mass). The effect of the parameters in

(2.103) are that

e a’ controls the depth of the potential at the origin,
o b affects the width and maximum slope of the potential,
e n controls how long the potential remains flat near the origin,

o f affects the “slope” of this flat piece near the origin.

From the definition of b" we see an implicit dependence on the coupling g. For a fixed
background field, increasing g effectively decreases ¥’ and therefore gives a potential
with larger radius of effect. As g is a coupling this behavior is as expected. The
parameter f is included to make the Laplacian of the potential nonzero at r' = 0.
The interesting case is where n = 2, as

_ 12ab(1 - f)
B

For the purposes of the figures in this section, g was fixed at a value of 25. As

Vi (r' = 0) (2.104)

mentioned, a different value of g amounts to a redefinition of the given b’s.

We begin by examining how the terms in the energy contribute as compared to
those in the density. For this purpose we look at the value of the density at the
origin 7 = 0. In figure 2.3 we see that for the energy the expansion appears to
be convergent for all a whereas for the density it definitely is not. Notice that the
expansion is increasingly divergent as we increase the depth of the potential.

This behavior of the energy versus the density is of fundamental importance to
remember when solving the Euler-Lagrange equations. In this case it is the density

which is the quantity of interest. Even though we are minimizing the energy functional

3
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Figure 2.3: Comparison of the energy and density DE versus depth of the scalar

background potential. The solid line is LDA, small dashes are DE to 2nd order and

large dashes include the DE 4th order term.
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by our choice of scalar field, to do so in an exact manner we must solve the equations
of motion which involve the density. We now confine our interest to the density terms.

In figure 2.4 we consider the termwise behavior for potentials of different width
and fixed a = .5. Small values of b give convergent behavior in a similar manner to
what was found for small values of a. In the figure the plots shown are concentrated
in the region of small widths (large b). At the origin the behavior is predictable, with
steeper potentials having larger and larger contributions from the higher derivatives.
At a nonzero value of r, increasing b is effectively pushing this point from a location
on the flat part of the potential near the origin, up the steep boundary and then into
the asymptotic region. Here this has been done for the point r = .1, which is fairly
close to the origin. Notice that for smaller b the DE shows oscillatory convergence,
but that this behavior disappears as our point moves out. In the asymptotic region
the dominant contribution is that of the fourth order derivative terms.

To complete the analysis of our potential parameters we give plots of the density
at a fixed spatial point versus n and f, figure 2.5. The depth and width are fixed at
the reasonable values a = .5 and b = 30. In the first plot we see a similar effect
for n as was seen for parameter b at r = .1. The points with n > 2 are on the flat
part at the bottom of the potential, while smaller n start up the slope. Looking at
the f plot, we see the value of f can completely control how different terms in the
DE contribute to p,.(r = 0). A value f = 1 makes derivatives of second and higher
order zero at the origin, so ‘ghat the 4th and higher DE terms can not contribute.
Smaller values of f make the flat piece of the potential at the origin slightly convex,
while larger values of f make it concave. We will favor a value of f = .8 for our
fixed backgrounds as giving representative behavior while not suppressing the effects
of higher derivatives.

Finally, consider the shape of the entire vacuum density p,.(r). An interesting
question is what effect the width of our potential has on the termwise convergence

at various points. In figures 2.6 and 2.7 we see three plots of p, () versus r. As
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Figure 2.6: DE density terms for a background where the DE converges at all points.

the width is decreased higher derivative terms contribute substantially to the vacuum
density at the origin. In the b = 30 plot of figure 2.7 the 2nd order expansion is still
qualitatively correct. For higher b we definitely need more terms.

We may also ask what effect the potential depth has on the pointwise convergence.
Starting with the parameters of figure 2.6 and increasing a we see in figure 2.8 that
again the higher order terms contribute near the origin. Notice that keeping only the
2nd order terms gives an anomalous parabolic form which is removed at 4th order.
In this case we are on the borderline of being able to see what the vacuum density
looks like using only the derivative expansion.

Finally, in figure 2.9 the'potential is taken to be a very deep well. Note the

interesting appearance of a local maximum and two minima in the density structure
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when the 4th order terms are included. However, at this point it is entirely unclear
that we can interpret the form of the vacuum density using just terms from the DE.

It is interesting to note that the 2nd order DE seems to do qualitatively quite well
at approximating the vacuum scalar density. We can see the essential shape of the

vacuum density for potentials of depth of up to a = 0.8.
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Chapter 3

EXACT CALCULATIONS AND DERIVATIVE
EXPANSION IMPROVED CONVERGENCE

3.1 Exact fermion vacuum scalar density in 1 + 1 dimensions

As the next step in our formalism, we consider testing and improving the derivative
expansion series with exact calculations. In this section we restrict ourselves to the
1+1 dimensional case. The usefulness of the 1+1 dimensional DE has been considered
previously by several authors [18, 19, 20, 21]. Our purpose here will be to illustrate an
important idea about the numerical convergence of calculations with a finite cutoff.
This is done by making use of the framework given by Wasson [21], where calculation
of the 1+ 1 dimensional scalar fermion density is discussed. To evaluate the one-loop
vacuum contributions exactly we must solve for the full interacting fermion Green

function. Thus we must solve the equation
(7% + 70, — go(2))S(z, 2/ iw) = 8z — o), (3.1)

where go(z) = M — g,¢(z) is the background scalar field contribution, and 7° = o,
and ! = io, following the notation in [21]. The Wick-rotated Green function in

momentum space may then be written,

1
w4 iyl8, — g o(z)

S(iw) (3.2)

The propagator S(z,z’) can be written in terms of the homogeneous solutions of
this equation [19] by the Wichmann-Kroll method [36]. (This is often referred to as

the Green function method.) This will allows us to solve for the trace in equation
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(2.53) for each value of w. Then, by subtracting the appropriate counterterms and
integrating over all w, obtain a solution for p°(z).
To consider the convergence of this exact method Wasson [21] works with a fixed

classical kink soliton background given by
o(z) = tanh(z/v2). (3.3)

As o(o0) = 1, the fermion has a bare mass g. Thus the convergence of the DE at
large distances depends on the size of 1/g. Also, this field has a zero at z = 0,
so the derivative expansion is divergent at this point. Therefore, we subtract the
appropriate counterterms and calculate the vacuum density exactly up to a cutoff A

in the w integral. Wasson’s expression for this contribution in our notation is

W

s, — i * w | tr S{iw) — go :
) = g [ o (1S060) ~ 9008)

_51%_ Atr[S(iA) + S(—ih)]. (3.4)

The renormalization terms are displayed explicitly here. The superscript E denotes
that this is the exact result, up to the cutoff A.

The tail of the integral was then calculated using the derivative expansion, which
will not diverge over this interval because the integrand is bounded away from zero.
Wasson derives his derivative expansion density by first calculating the energy DE
expression and then taking its variation, dE/d¢ (see equations (2.25) and 2.51)).
As this is a one dimensional calculation, the w integral can be evaluated exactly.
This gives an analytic form with respect to cutoff for the tail of the density under
the derivative expansion approximation. However, because we are dealing with a
cutoftf parameter, the way in which the derivative expansion is derived may effect
its convergence — the differences being total derivatives under the integrand. This
density can also be calculated using the Green function expansion, equation (2.91),

in 1+ 1 dimensions. Including the same counterterm as in (3.4) above, this latter
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method gives

Poac T or (go(z)?)/2 T 4 (w? + g202(z))%/?

sgtrlofola)’
8 (w?+ g202(x))"?2 )

sDE(;) _ 1 /dz.u(( go(z) +1 g w220 (z)
w? +

(3.5)

Evaluating this expression over the tails (—oo,—A) and (A,00), and adding in the
exact contribution (3.4) for the interval (—A,A), we have the derivative expansion

improved result

A+ (/A2 4 g20?
P PPN, 2) = p*B(A, ) + ! {ga(x) In g'o*(z)
. T A+ /A% + g%08
B 80 (x) B A3
12g0?%(z) (A2 + g202(x))3/2

(0,0(2)) (. A%(2A2 + 5g%0%(x))
T g203() <1 2(A2 + 02(z))5/ )} (3.6)

This expression can be regarded as an interpolation scheme between the full DE
result, corresponding to A = 0, and the exact Green function result, corresponding
to A — co. When (3.6) is used rather than equation (3.15) of Wasson’s paper [21],
the convergence with cutoff A is improved!. This can be seen in table 3.1. The first
two columns of this table reproduce the results found in table 1 of reference [21].
The last column shows the results using (3.6). Notice that at a cutoff of A/G = 0.5,
the variational method gets only 27% of the way to the exact result, whereas the
direct Green function method gets 80% of the way there. The direct Green function
method becomes asymptotic at a lower value of A. We anticipate that this result will
be even more important in 3 + 1 dimensions, as higher partial waves converge at a
higher cutoff. In light of this result, we will use the direct expression (2.53) in 3 + 1

dimensions rather than taking the functional derivative of an energy expression.

1 A special thanks to Peter Blunden for writing the numerical code for this calculation in one

dimension.
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Table 3.1: Convergence of various methods for calculating the fermion scalar density

of the kink soliton. Shown is density at 2 = 0.5 with coupling G = g/v2 = 2.

A/G p*(z = 0.5)
oo E p*E+DE (§E/56) pE+DE (41 §)
0.0 0.0000 0.0713 0.0713
0.5 -0.0069 0.0344 -0.0357
1.0 -0.0249 -0.0495 -0.0589
2.0 -0.0463 -0.0606 -0.0612
5.0 -0.0584 -0.0613 -0.0613
10.0 -0.0606 -0.0613 -0.0613
20.0 -0.0611 -0.0613 -0.0613

We can see the importance of using the DE density term to evaluate the high
energy tails by comparing figures 3.1 and 3.2. The former shows the convergence
with cutoff when just the exact calculation is performed. The latter includes equation
(3.6) to evaluate the tail and obtains much more rapid convergence. Also shown are
the LDA and 2nd order DE approximation. It is clear that neither can adequately
describe the density for this kink soliton. In fact, we see explicitly that the DE blows

up at the origin as mentioned previously.
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Figure 3.1: Convergence of the exact density expression (3.4) with cutoff for the kink

soliton. (G = g/v/2)
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3.2 Convergence in 3+ 1 dimensions

3.2.1 Ezact calculation by partial waves

In 3 + 1 dimensions we may attempt to carry out a procedure analogous to that of
the last section for calculating the exact one-loop density. The solution, however, is

now complicated by the presence of angular momentum states. Here we must solve
(ivow + 15 - V — go(z) ) S(Z,%";iw) = 6¥(F — 2). (3.7)

For a spherically symmetric scalar potential ¢ = o(r), equation (3.7) can only be
solved exactly for each partial wave. The full Green function is then expressed as
a sum of the contribution from each partial wave. This exact solution in partial
waves was previously considered by Li, Perry, and Wilets in their examination of the
effective energy [18, 24]. Here it is the density that we are interested in, so we review
the method of partial wave expansion in this context. To expand equation (3.7) in

partial waves, we use
1
S(f’f/;iw) - ?stn(ﬁ T/Giw)®ynmylm> (3.8)
1
§NE -z = —o(r - ™S VeVl (3.9)

With the conventions of reference [3], we have

@ 9) (%) = -1 (£ + f) )Y (3.10)

T r\dr T

The upper components of the 4 x 4 matrix S, (r, r'; iw) couple to Vem, while the lower
components couple with V_,.,,. The result is the following equation for the radial

Green function:

W — go —;l—-i—f . .
d = T S iw) = 8(r —1'). (3.11)
el e go

dr 7
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The Wichmann and Kroll reduction of equation (3.11) can be written

—Yo (Ue(r)VT (#)0(r' = 1) + Vi (r)UT (+)6(r — 1))

S_o(r, 7' iw) = @) , (3.12)
where W, (w) is the 7 independent Wronskian
Welw) = UX(r)V2(r) — UNr)VE(r), (3.13)

(1 and 2 representing the upper and lower components respectively). The homoge-

neous solutions satisfied by U, and V, are:

o d K
—wtgo —— ==

d K ' r r (UR or VK) = 0. (314)
e

The boundary conditions are fixed by the conditions on the scalar field

(i) outward solution Uy : do(r) =0,
ar | _,
(3.15)
(ii) inward solution V. : o(r — o0) = 0.

To smooth the singular nature of the homogeneous solutions we follow the method

given in [2], and scale the solutions componentwise by dividing out the known free

solutions:
U, Uy Ul v; A%
- R , = _ , (3.16)
UE UI%O Uf% sz VKZO Vﬁz
where
Tin—-l (ZOw'r) Tkﬁ—l (Zow’l")
Uko = TZowiK(ZowT) ) Vo = _TZOwkn(ZOwT) ' <317)
goo + iw goo + iw

Here zp, = {/g%02 + w?, and i, k. are modified spherical Bessel functions of order

. This scaling is an important step for the density calculation, as it turns out that
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the solution must be extremely accurate near the origin (r = 0). This is a result of
the fact that the Green function solution and r-dependent counterterms blow up as

r — 0. For the scaled solutions, the new equations we must solve are

(go(r) —iw) F(r,w) —;l— — (gog — w) F(r,w)

d , (goo+iw) " (go(r) +iw) (Ocor Vi) =0, (3.18)
dr — F(r,w) F(r,w)
where
(g0 + i) Z;_E(ZO:;) outward,
= 20w k& \ 20w
F(r,w) = (900 + iw) key(200T) | (3.19)
- inward.
20w kR(ZOwT)

The boundary conditions for this new differential equation can be derived from
the boundary conditions on the scalar field (3.15). For the outward solution we solve
the equations near the origin by making Taylor series expansions of the r-dependent

terms. This is necessary as the function F(r) is singular at the origin. With

Ur =0) = ag+air+apr® + asr® + art + ...
Ui(r = 0) = bo+bir +bor? + bgr® + byr + . (3.20)
o(r = 0)tiw = s§+ 817+ 8or° + 5370 + 547 + .
we find
_ . _ (8385 — zgw)
a = 1, a; =0, ag = 2o 1)
a (blSS— + bOSI)Z(Q)w
° T 32k + 1)(go + iw)’
o [ (bisy+ bosa+basd) 4 bosg
o ( (¢o + iw) 4 “w |1 (¢o + tw)
“ = + (3.21)

42k + 1) 426+ 1)*(26+3) '

and
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85 (9o + 1w) (26 + 1) (g + tw)s;

by = ———, b=

Zbu (2c+2),
by = (26 +1)(g¢o + iw)(azsy + s2)
i (2r+3)2, ’
(s1(do +1w) — bi22)) (26 + 1)(¢o + iw) .
b3 (2/{ —+ 3)(2/43 -+ 4) (2& + 4)Zgw (53 + azsy + CLQSl),
by ((do + iw)(s2 + azsy ) — bC2)

(25 + 3)(2k + 5)
(25 + 1) (o + iw)
(2k + 5)C2

(54 + S309 + Sy1a3 + 85&4). (322)

‘The boundary condition (i) corresponds to setting s; = 0 in these equations. This
extends the results in [2], which gives ay and b;. The large number of terms will
enable us to find the components of the Green function with great precision near
the origin. Also, it is possible to test the sensitivity to the boundary condition near
the origin by including a certain number of these terms. The reason for which such
accuracy is necessary is because when we solve for the Green function components by
making a Taylor series expansion near the origin, it is found that the leading order

terms to the density under the w integral are

100 (ére(w-l) ‘

37 r Z0w

—o(r) ZOw) + O(r), (3.23)
where % is the real part. Here ¢; and W are unknown quantities (the former is the
upper component of V. at the origin). By making similar expansions of the DE and
counter term densities we find that an identical 1/r piece appears. Therefore the
true information for the density at the origin comes from the next term in (3.23),
and depends on the numerically determined c¢;, and W. This requires a numerical
evaluation of the Green function that is valid to 12 digits, and therefore a very
accurate boundary condition near r = 0.

We solve the equations for r — co by similarly making an expansion in 1/7 of the

the r-dependent terms

Vifr=o0) = ag+ay/r+...
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o(r > o0)tiw = cF+c/r+...
and find
ag = 1, bo = 1, (325)

to be sufficient if these conditions are applied at fairly large . This specifies the
boundary conditions for the incoming solution.

To define the partial wave contribution to the density, we combine (2.53) and (3.8)
to find

1 o = 2|k :
s, E —_ ; : . .
panz (1) o /_OC dw > - tr S, (r, 71 iw) (3.26)

K=—CC

Here the angular integral and sum over magnetic substates m have been collapsed to

give the factor 2|x|/4mr?. We proceed by noting that

Se(r, v’y —w) = o7 S_i(r,r'iw) o, (3.27)
tr Se(r,r'i—iw) = trS_.(r,r';iw), (3.28)
tr (Se(r, 7'5iw) + S_y(r,75iw)) = 2R tr Se(r, 7’1 iw). (3.29)

The first equation here can easily be seen from (3.11) by multiplying by ¢; on the left
and right, and by introducing a o? term between the operator matrix and the Green
function. The second then follows immediately, while the third can be seen by taking
the complex conjugate of (3.11). With this reduction, we can express the result for
the exact density as

o0

Prac(r) = D wpl(r), (3.30)

k=1
PE(r) = —— 47 do g RSy r ). (3.31)
" 2 Jeso | Amr? A
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3.2.2 Partial wave DE ezpansion

Next we turn to the evaluating the derivative expansion as given by equation (2.91).

In 3 + 1 dimensions

o(z) 1 Vi) 2 0*@)Via(z)
(~P2+0( ) 2(=p*+o(z)?)? 3(-p*+o(2)?)?
o(z)(Vo(z))* | o*(=)(Vo(z))?
ST e oI o S 1552

pvacE(:E) = _—Trp4

As the exact density in 3 + 1 dimensions could only be calculated in a partial wave
sum we must also decomposé the derivative expansion in order to test its validity.
This can be done for a radially dependent potential o(r) which is assumed in our
form of the RHA. To decompose our expression (3.32) for the density we again follow
the method used by Li, Perry and Wilets (2, 23]. The utility of their method can be
summed up in the following manner. For a constant scalar field ¢ = o the second
order form of the radial Dirac equation is diagonal, and the partial wave solutions
are known. Therefore the form of the radial Green function can be written explicitly.
The Green function can also be expressed as a spectral sum [37]

S(a,'po) = 3 elDalZ) (3.33)

a Do~ €

from which we derive the expression for higher powers of the Green function

T 7 ! _1\n-1 (n—1)
(o s pe) — 3 Lel@le) _ (1)

- S(z,z'; po). 3.34
a (pO - Ea)n (TL —_ 1)‘ dp(()n—l) ( pO) ( )

An equation for the momentum space factors can then be written using the following
procedure [23]. First we take the trace of expression (3.34) for S™ in momentum space
and then make use of equation (3.8) to expand this in partial waves. This implements
the same partial wave expansion that we did for the exact Green function. We then
use equation {3.12) evaluated for the free particle solutions (3.17), whereupon taking

the trace we obtain the sum A?_; + AT given in equation (3.37) below. We then have
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/d3p( } = (=1)" f: KYT, (3.35)

w? 4+ p? + ag?)n =
n 1 n n
Tﬂ C= W(Aﬁ—l + An‘)? (336)
. 1 1 4\,
S ] <2—CT> il (837

where z, = (w? + ¢%)Y2, and i, k. are the modified spherical Bessel functions of

order k. The free particle Wronskian is

20w
Ww) = —= . 3.38

Note that when ¢ is radially dependent we still require only the value of the density
at a fixed radial point, say ', specified on the LHS of equation (3.37). Therefore any
potential that agrees with o(r) at point ' will give the same result. In particular,
we can make the simplest choice of a constant potential o = o(r'). Actually we are
just restating the fact that the derivative expansion is local. Therefore (3.36) can be
used without regard to the radial dependence of 0. The derivative expansion density

is therefore

pot(r) = Zfﬁp (3.39)
pPE(ry = 4/dw< (rYTL+ = V 2o(r)Y2 + %U(T)QV 2o(r) Y3
+§o(r)(a’('r)) T3 4 203(r)(a'(7~))2r;§) . (3.40)

where z, is now dependent on both w and r. This differs from the 1 + 1 dimensional
case in that here we cannot easily evaluate the w integral over a particular range of
w. This is a result of the more complex form of the integrand as products of mod-
ified spherical Bessel functions, along with derivatives of such products. Numerical
evaluation, however, is possible.

The same partial wave expansion as was done for the DE can be made for the

counterterm expansion in an identical manner. We take the terms in (2.82) that
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correspond to the divergent terms from (2.89) in 3 + 1 dimensions. This gives the
following counter term expression which must be subtracted from the DE and Exact
expressions (3.40), (3.31) to give a finite result.
0phac(r) = D wdpu(r),
r=1
1
Soulr) = =524 [ dw (=o(r) T, — (o(r)? - 0}) T,

1 2
+§V20(7‘)Tgﬁ - gangJ , (3.41)

where To, is the T in (3.37) with z, = (w? + 02)!/? for 2.

3.2.8 Interpolation scheme and the numerical procedure

Now that equations for both the exact and derivative expansion densities have been
derived, we are interested in the numerical convergence of our expressions. The aim

in this subsection is to observe how the finite quantity

Prac(r) = Prac(r) = 830 (r), (3.42)

can be determined with the least amount of numerical effort. The way in which

the actual shape of the background potential affects the convergence and size of the

correction will be discussed in the next subsection. The quantity SZ(r) can be
written as follows:
E o~ ( E
Boac(r) = 3 (pE(r) = Spu(r)) (3.43)
K=1
= But(r)+ > (pF(r) = p2E(r)) (3.44)
r=1

where the tilde indicates a renormalized expression. Note that in the latter of the two
expressions the difference between the exact and derivative expansion partial wave
densities gives a result that is independent of renormalization. The renormalization

is entirely taken care of in the DE term p2E(r). Writing Ap, = pP — pPE and
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inserting a finite cutoff on the w integral, we have that

1

om?
——ga(r)zv 2g(r)Y2 — —g-a(r)(a'(r))z'fi — 203(7")(0'(7"))2Ti>. (3.45)

A
Ap(A,r) = /_A dw(r—12§Rtr S (r, " iw) + o(r)TL — %VQO'(T)Ti

All quantities here are even with respect to w, so

A
Apu(Ar) = —= dw(r—t%trSﬁ(r,r';iw)+0(7")T,1{—

72 Jo

1
50”(7‘)Ti

2
—go(r)za"(r)Ti - go(r)(a'(r))2'fi - 203(7‘)(0’(7"))2Ti>. (3.46)
The exact one-loop density is then
Pre(r) = Prac”(r) + 3 lim Apg(A,r). (3.47)
k=1

The renormalization for the exact density is accounted for in the expression for the
DE, and the partial wave sum acts as a correction. Since the former is analytically
known (c.f. section 2.1) the problem is simply to calculate the latter.

The form of our numerical calculation of (3.46) is as follows. For a fixed k we
evaluate the w integral numerically. For each value of w we must solve a set of
complex coupled first order equations (the Wick rotated radial Dirac equation in the
presence of a scalar source). This calculation is performed twice, once going in from
the boundary condition at co and once out from the condition at the origin. We
must also calculate both the modified spherical Bessel functions and their derivatives
because these appear as coefficients in the differential equations as well as explicitly
in the integrand through the factors T7. Note that for each value w the integrand is
determined by this procedure for all r. Finally, we calculate the w integral out from
the origin to a value of the cutoff where convergence has occurred for all 7. This
entire process may then be répeated for the next value of .

Because of the large degree of cancelation between terms in (3.46) our calculations

must be very accurate. In particular the differential equations are solved with 12
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significant figures, and all the modified spherical Bessel functions are also calculated
to greater than 12 digits accuracy. This has been found to give sufficient accuracy,
after various manipulations, to determine the integrand over a wide range of r and w.
The required programs were written using double numerical precision in Fortran. The
code is essentially an adaptation of standard routines from [38]. The w integration is
performed through a Romberg integration over a particular interval in w, refining the
value by the n'" stage of the extended trapezoidal rule, and then extrapolating to zero
step size using Neville’s algorithm. This process is repeated over another such interval
until the contributions are shown to be asymptotic. (An estimate may then be made
for the remainder by fitting a second order polynomial in 1 /w? if this is desired.) The
Bessel functions are calculated using the standard iterative procedures, where special
attention is paid to the required accuracy. In particular, large and small values of the
argument are found by using the appropriate series expansions. Derivatives are also
found using iteration, and when this proves unreliable, by expansion. Finally, the
differential equations are solved using an adaptive stepsize 5th order Runge Kutta
routine [38]. Modifications are made to incorporate a minimum 7 mesh on which
the Green function must be found. In particular, the entire routine will run on
any predetermined minimum mesh in 7. All of these routines are combined into a
correction subroutine which, given a background scalar potential, derives a corrected
vacuum density. This makes the routine portable enough for inclusion in a self-
consistent calculation (which is done in chapter 5).

One method by which we can test our numerical code is to recall that our partial
wave method is based on that of [2]. Therefore, with our code, it is a simple matter to
evaluate the expressions that these authors give for the energy of the DE and exact
calculation in each partial wave. Doing this, we obtain the numbers in table 3.2,

which at most disagree by 1 or 2 in the last digit of the numbers quoted in reference

2].
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Table 3.2: Partial wave energies for the soliton potential of reference [2]. (Consistency

check)

K DE Energy Exact Energy
1 0.2240459 x 10° 0.221799 x 10°
2 0.1496159 x 10° 0.148745 x 10°
3 0.1027586 x 10° 0.102322 x 10°
4 0.7202294 x 107! 0.717738 x 1071
5 0.5136474 x 107! 0.512104 x 1071
6 0.3721826 x 107! 0.371170 x 1071
7 0.2737292 x 107! 0.273035 x 107!
8 0.2041825 x 107! 0.203691 x 10!
9 0.1543499 x 107 0.154003 x 10!
10 0.1181852 x 107! 0.117921 x 1071
11 0.9158048 x 1072 0.913817 x 102
12 0.7177235 x 10~2 0.716210 x 102

3.2.4 Ezamining the convergence

The overall goal for testing the convergence of the correction is to see how many
partial waves and what value of the cutoff A are sufficient to correct pSPF to give
the exact result within a required accuracy. Consider the convergence with cutoff
A. In figure 3.3, the benefit of using the expression (3.44) with Ap,(r) rather than
calculating the full exact g in (3.43) can be seen. The derivative expansion corrected
series is seen to converge to an asymptotic form faster with respect to the cutoff. This
behavior is also seen in the sécond and higher partial waves.

The finite cutoff in equation (3.47) can alternatively be viewed as a parameter that
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Convergence vs Cutoff (k=1)
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Figure 3.3: Comparison of the convergence with cutoff between the exact and DE

improved correction calculations. The integrand is given for 7 = 0.01 and x = 1.
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Cutoff Extrapolation (k=1)
0 T — T T
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~0.012 1 L ) 1 ] 1
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Figure 3.4: Implementation of the cutoff extrapolation scheme for x = 1. The curves

shown extrapolate between the DE and the exact result.

makes a continuous smooth extrapolation from the DE result at A = 0 to the exact
result as A — oo. In 1+ 1 dimensions this was the view exploited by Wasson [21],
as explained in section 3.1 . In 3 + 1 for a given partial wave this provides a smooth
extrapolation for including the exact correction for that partial wave. In figure 3.4,
plotting the density for various values of cutoff A, we can see how the density function
converges at different values of . This figure shows the extrapolation mechanism for
k = 1. Note that the largest cutoff curve plotted is a factor of ten bigger than the
preceding curve. This interpolation mechanism turns out to be an important tool
when self-consistent solutions are attempted (see chapter 5).

The final issue of convergence is that of the partial wave series. In particular, it
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was noted that the form of the derivative expansion was at one point manipulated in
a way that affected the termwise definition of partial wave contributions (although
not the entire sum). We can make use of this manipulation by considering three
different forms of the partial wave derivative expansion and examining the partial
wave convergence of these. Two of these forms were derived above, one being (3.40)
(form 1), and the second being the analogous partial wave decomposition of (2.79)
(form 5). The third is a partial wave decomposition that was made of a form obtained
by Blunden [26] (form 4) by éxpanding the first order form (2.56). The equations for

these three forms are given here for reference:

Form 1:
PPE(r) = - 4/dw<—oTl +V2 {ET? + 20%3}
K 271' K 2 K 3 K
+(o')? { gari + 203(r)r§}), (3.48)
Form 4:
pPE(r) = L 4/dw<—a'f1. + VQU{ETQ. — (gw2 + o713 + (Wt - 04)T‘1_}
K 27r A 24 K 3 K K
2 1 5 .
+ (0')2{—£0Ti - Z(mﬂ +50%)0TE — o(5w* + 20%w? — 3w4)rg}>, (3.49)
Form 5:
pPE(r) = 1 4/dw(—aT1. + Vza{}'fz. — g(wQ + 20173 — §(w2 + 02)02T4}
L 27r . K 3 K 3 K 3 K
- (@ go'ri + §(5w2 +1160TE +160°(w" + o112} ) (3.50)

Using these expressions we may now form the corresponding density correction
to (3.46). In figures 3.5 to 3.10 the partial wave terms from these forms are shown
for two different background potentials. The DE is only mildly divergent for the
a = .5 case and is quite divergent for a = .8 case. It appears that forms 4 and 5 may
converge faster with partial wave than the reduced form 1 does. However, form 1
has the advantage of being the simplest form and also does not contain any TS term.

Due to this numerical advantage, form 1 will be used exclusively here. Form 1 gives
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one less derivative of the modified spherical Bessel functions that we must calculate
to 12 significant digits. Another feature to notice is that the solutions pictured in
figures 3.8 to 3.10 have at most one zero crossing unlike the situation in figure 2.9

with the fourth order derivatives.
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Figure 3.8: Convergence with partial wave for Form 1 of the correction functional in

a deep narrow background.
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Figure 3.11: Vanishing correction when the DE is convergent. The partial wave
corrections are shown to be consistent, with essentially zero correction for a case

where we expect the 2nd order DE to be convergent,

3.2.5 Size of the correction for different background fields

Here we consider how varying the shape of the background field affects the size of
the correction. The graphic approach here is analogous to the approach taken in
section 2.4. In particular, we will be able to pinpoint the region where the derivative
expansion is convergent by second order. The shape of the potential is varied by
changing the parameters (a and b) while (g = 25, n = 2, f = .8) are fixed. For
consistency we first consider the case analogous to figure 2.6, where we expect that
the DE will have converged for all r by second order. In figure 3.11 we see the result
of correcting the 2nd order DE (in the manner of equation (3.47)) with two partial

wave terms is essentially no change.
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Figure 3.12: Partial wave corrections for a narrow potential.

Now consider changing the width of the potential for a fixed depth of @ = .5. As
we decrease the width, figure 3.12, the DE begins to break down near the origin and
a nonzero correction appears. In figure 3.13 we squeeze the potential even more and
see that the correction is needed even further out from r = 0. The densities here have
at most one internal zero.

Finally consider what happens when we increase the depth. The sequence of
plots in figures 3.14 and 3.15 have a fixed b = 30 and various a. Notice that for many
potentials we require more partial wave contributions than the two shown to obtain
the exact result. However, we do obtain the ezact result at r = 0 as only Ap, is

nonzero there.
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Figure 3.14: Partial wave contributions for deep potentials.
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Chapter 4

QHD SELF-CONSISTENT CALCULATION

Here we consider the effect of including the one-loop vacuum effects via the DE
in the context of a relativistic bound state calculation. In this chapter we consider
a case where the DE expansion is convergent when terms up to second order in the
derivatives are included. This enables us to investigate the vacuum effects in a non-
trivial model, while dealing directly with the coupled nonlinear dynamical equations.
We consider a renormalizable relativistic meson exchange theory with interacting
fermions (nucleons 1)), scalar bosons (sigma ¢), and vector bosons (omega Vj, rho
bo, and photon Ag) referred to as QHDII [3]. The size of DE effects for finite nuclei
was first considered by Perry [17] for the fixed background field obtained from a LDA
self-consistent solution (often referred to as the relativistic Hartree approximation,
RHA). Self consistent solutions including the derivative terms have been performed
by Wasson [39]. Though unpublished, it is known that these effects were also con-
sidered by Fox'. The aim of using this model to describe finite nuclei here will be to
generalize the results of references [39] and [40]. These previous results are extended
by including the nonlinear scalar interaction terms along with their associated deriva-
tive expansion, and the use of a more general renormalization method. We also take
the photon as coupling to the charge of the protons in nuclei (as opposed to the
method of [39]). It is important to keep in mind the aim of observing the effect of
the vacuum terms in a self-consistent calculation. We will reduce the number of free

parameters in the finite nuclei model by requiring the energy per nucleon to saturate

! W. R. Fox, Ph.D. thesis, referred to by [15].

o
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at a specified Fermi level in nuclear matter.

Current phenomenological models of finite nuclei and nuclear matter often take
more complicated forms than this older prototype model. For example, more recent
relativistic models of finite nuclei often include the pion and other mesons, and pos-
sibly the effects of chiral symmetry [41, 42]. Note that even though the pion is the
lightest meson, no pions are included here. This is acceptable because the neutral
scalar and vector mesons are the most important for modeling bulk properties [15].
For models of infinite nuclear matter, higher orders in the loop expansion have been
considered [43]. Also, the possibility of forming neutral or charged kaon condensates
is of theoretical interest [44]. It is in the interest of illustrating the one-loop effects

that we choose not to overcomplicate the model described below.

4.1 QHD model

A model of finite nuclei is desired that can reproduce the shell structure of bound
valence nucleons. Essentially we will extend the model used by Fox [40] by including
the derivative terms in the vacuum densities derived from both fermionic and bosonic
loops. Also, in the manner of Rudaz et. al. [45], we will vary the choice of our three

and four body renormalization point for the fermion loops. The Lagrangian density

for finite nuclei is [3]

Lonprr = P[id — gu10Vo — gpm3v0b0 — €3 (1 + 73)70 A0 — (M — go¢p)Jb
+((30:0)° = U(9) = 5 (@uV0)* = V) ~ §(8ud)?

Here the scalar field interaction is written

m2

A
U) = 526"+ 56"+ 56" (4.2)
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An extension is made here of the field equations given in [3] by including vacuum

density terms, as well as the general scalar interactions via U (9):

V2% —U(9) = —g5(Par + Phc + P0) (4.3)
Vo —m2V = —gu(oly + Pac) (4.4)
V2o —m2 = —g,(e'y) (45)

V324 = —e(oly) (4.6)

PV L N —, | dr (16 + 1R =1 (4.7)

Fi(r) ’

Here M, is the 2 x 2 operator which implements the radial Dirac equation,

d K
M, = 1—d—7: + o3~ = i02(E — g Vo — tagpbo — (ta + %)eAO) —01(M — g;0). (4.8)

The valence fermion density contributions are

Pral = ;(21;;1) 1Gul® — |FP’] (4.9)
Pra = Z<2i;21) 1Gl? + | Fel?] (4.10)
ot = X (H) (16 + 1B (1) (4.11)
b = T (L) [0 + 1R (ta+ ). (4.12)

a
The filled shells are characterized by the quantum numbers a = (n, K,t) and j =
|| —%. The isospin parameter t, = :i:% differentiates between the proton and neutron
states.

Note in (4.6) that only the scalar sigma meson and the vector omega meson have
terms representing vacuum contributions. The sigma meson equation is the only
one whose vacuum contribution will contribute at the LDA level. The others don’t
contribute as a consequence of isovector and electromagnetic current conservation

and the conservation of baryon number. For the derivative expansion there will
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be contributions to all of the boson equations, however only the sigma and omega
contributions will be significant [15].

It is sufficient to evaluate the vacuum density contributions using the DE to second
order. The validity of this statement can easily be seen from the characteristic size
of the scalar field. It turns out that the size of this field can be modeled by the
parameters from section 2.4 as (a=.3, b=.005, {=.7, n=2, g=1). Thus, the depth is
approximately one-third the mass of a nucleon and the width corresponds to about
3 fm, or 0.6 M~!. In figures 2.6 and 3.11 we saw that even for a deeper narrower
potential no corrections beyond the 2nd order DE are necessary.

The choice of renormalization here is as follows. For the self interactions of the
scalar sigma field, we renormalize in such a way so that the first nonzero contributions

occur beyond the four body term,

d"Ug(¢o)
dd)n

The parameters in (2.13) are therefore [15]

=0, n=01,... 4 (4.13)

W(z) = m§+ﬁ¢+%¢2,

2
s

1 ? 32\ 1 :
f(9) = —3 <;—¢;> (% + 2an> +5 (i:r—g) . (4.14)

Thus the couplings £ and A will not be shifted by the self interacting scalar vacuum.

VVO = m

For the fermionic contribution we renormalize following [45]:

TU60) _ o o _ EUL () _
W =0 (n=0,1,2), e =0,
d*Us
dd}gﬂ) 0, Zhs(o = 0¢) = 0. (4.15)

This fixes the parameters in (2.6) as

fo=In(u/o0), i = 1-4ln(ufor),  fo= 2 +6In(u/ov)

25w 25
f3 3 0'0’ f4 127 z15 O ( 6)
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Here and in the following we will make use of the notation
o(z) =M — g6(z), and oy = M, (4.17)

to simplify and connect the form of the equations to our previous results. The utility
of the renormalization (4.16) is essentially to allow three and four body effective vac-
uum forces to contribute along with the nuclear matter mean field many body terms.
Note that we have reduced the generality of the model by allowing contributions here
from only fermionic and not bosonic loops. The parameter 1 is now not independent,
of k and A, but really gives a one-loop renormalization of their values. With these

specifications the vacuum densities to 2nd order in the DE are

Pacr) = =3 (0° (S) 4 1) = M — 212000
_3.f3]\/j<gs¢)2 - 4f4 (gsd))3>
1 2
—4—;2 (2 In(-)g2¢/(r) - —((g:s0'()* + §<gvvo’(r))2)) . (4.18)
1 ! 1 / /
Paclr) = ~53 (I(5)0V5 (1) = 2.0V )8 (1)) (419)
n ; + A3\ [(1+ K¢+ 2A¢? 1+ ke + SAg?
Ael) = gz (sz ) K 7 ) . ( = )]

Kd + 1he? K , , 1/ «\*
() - () o ne) 3 (7))

L (ed) ([ @wml— ) o
48ng, (m? + K¢ + 3787 (“ (M2 + kg + Iag?) 2(rk+ Ap)o (r)). (4.20)

Now that all quantities have been specified, we can proceed with the solution of
the equations of this section. The method employed is that of relatively straight
forward iteration. The radial Dirac equation is solved using 4th order Runge-Kutta
techniques to shoot to a matching point. Continuity at this point enables us to obtain
a new estimate for the appropriate eigenvalue. The Poisson-like equations are solved

using finite difference methods, while iteratively including nonlinear terms. Some
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degree of technique is required to keep the routine stable, but as a whole the method

is very successful.

4.2 Fitting the parameters

Having completed the specification of our model we now consider the requirements
that are imposed on the parameters (M, mg, my, My, gs, 9u, Gp» €, &, and A). Of these,

the following masses are fixed at their experimental values:
M =939 MeV, m, = 1783 MeV, m,= 770 MeV, (4.21)

with the exception that we use the true nucleon masses for the proton and neutron
(M,=938.28 MeV, M,=939.57 MeV) when solving the radial Dirac equation. Two
couplings are also fixed:

e? _ 1
47 137.035°

and g, = 4.038. (4.22)

The first is the accepted value (at our energy scale) for the electromagnetic coupling,
while the latter is the value fit from requiring a symmetry energy of 35 MeV for the
Mean Field Model of nuclear matter [15, 40]. As these previous models have found
very little sensitivity to the parameter g,, we simplify our description by fixing it at
this value, even though, for complete generality g, should be fit self-consistently with
the other parameters that are determined in nuclear matter.

In nuclear matter for a given m, we fit the couplings g and g, by requiring a bind-
ing energy per nucleon of —15.75 MeV at kr = 1.30 fm™'. To model infinite nuclear
matter (an equal infinite number of neutrons and protons) several simplifications can
be made to the model of finite nuclei described in the last section. We may neglect
electromagnetic effects and, as mentioned above, also the rho meson. The remaining
scalar and vector mesons fields are then fixed at constant values by the translational
symmetry of the infinite medium. The field equations fix the vector meson field in

terms of the baryon number density. The nucleon equation has the standard form of
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a plane wave solution with shifted mass and energy, as noted previously (section 1.4).
The only equation that remains to be solved is the specification of the scalar field.
The scalar field will depend on the nucleon field solution, which also has nontrivial
scalar field dependence. Therefore, there remains a single transcendental equation to
solve for ¢ which minimizes the effective energy. Note that the LDA vacuum densities
contribute to this equation, but the higher order DE terms do not. The equation may

be written [15]

2 . 1
0 = M= —F— (o*n(o) + kro(K + )7 — o* (ke + (k3 + o*)?)
g S
_‘nﬁ (P + pni®) with no derivative terms
s /igﬁ‘? )\¢3
Slszt=x] 4.23
T2 <2g§ " 6g (423)

Finally, we fix one parameter in finite nuclei, the scalar mass m,. The parameter
m; is set to a value that gives the correct charge radius for “°Ca. When the nonlinear
couplings « and A are nonzero, the nuclear matter calculation will depend explicitly
on the value of mg, and we must iterate the two calculations to reach final values.
This is not a problem when the nonlinear terms are left out. In this case the coupling
gs will scale with m; in the same manner throughout the nuclear matter equations,
so that the value of m, may then be independently determined in the finite nucleus
calculation.

The remaining unspecified parameters in this model are the many body couplings
(K, A, 1), which as we mentioned above, can be regrouped into renormalized couplings

at the one-loop level

. 6g? 7 n
<= ko (1 g G (4.24)
) I

Usually in a renormalization procedure, we have a physical idea or quantity which we

use to fix the meaning of the parameters in our model. (For example, we renormalize
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so that a mass m is the physically observable mass, which from unitarity must be
taken as the pole in the exact propagator [12].) However, here we have not made
such a choice to define the physical meaning of the parameters x and A. Instead they
are treated as an additional manner in which we can adjust the model. If a physical
specification had been made, then the original coupling parameters of the theory
may be modified at one-loop, giving us new couplings k' and X which satisfy this
specification. The value of the parameter u would then telling us how the original
couplings were modified to maintain our specification.

Equations (4.24) and (4.25) allows us the freedom of removing the i dependence
in the fermion renormalization by including it explicitly in the new parameters «’ and
X'. Instead we choose to use the equations as given previously, and simply note that

this functional inter-dependence exists.

4.3 Nuclear matter

The quality of different models (x, A, 1) can be assessed by looking at experimentally
determined quantities. A representative range of models is given in table 4.1.

The first four models do not include nonlinear scalar terms, and simply consider
the effect of u. The fifth model is the MFA, and is the only model which does not
include any vacuum terms. Models six through eight have nonlinear self-coupling
terms and both fermionic and bosonic one-loop contributions. Two of the parameter
sets here (6,7) were chosen to correspond to the most promising nonlinear models
considered in [40]. The last model, number 9, has nontrivial u (u/M = 1.2), as well
as nonlinear terms (nonzero x and A). All of the values in table 4.1 are a result of
the fit to nuclear matter and finite nuclei using a value of 7® _ = 3.483 £0.001 fm for

the root mean square charge radius of *°Ca.

In nuclear matter we have extracted the compressibility K, and skewness S/K



Table 4.1: Parameters from the self-consistent solution of the QHD model of nuclear matter and finite nuclei with

derivative corrections.

Model No. w/M . k/M A K S/K o/M . M Js G
1 0.738277 0 0 149.4 3.881 0.738277 979 10.6250 9.9482
2 0.8 0 0 386.5 11.669 0.6567 790 15.4476 11.7172
3 (RHA) 1.0 0 0 452.5 2.933 0.7306 234 8.5840 10.1281
4 1.2 0 0 280.0 4.033 0.8111 423 6.2436 8.0181
5 (MFT) 1.0 0 0 546.8 9.938 0.5406 015.5 10.3835 13.8055
6 1.0 +5.3248 100 313.8 4.801 0.7826 560 8.6330 8.8253
7 1.0 —1.0650 10 492.5 9.999 0.7217 547 8.8147 10.3339
8 1.0 10.7029 400 397.3 4.241 0.8103 672 9.8886 8.0435
9 1.2 3.1949 100 237.6 3.416 0.8391 440 6.3285 7.1335

g6
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[45]
d2 d3

K= k%&?%(E/A)’ S = k%a@g(E/A)a (4.26)

as well as the effective mass ratio o/M. We may then determine for which models

they approach the experimentally favored ranges [15]

200 MeV < K < 350 MeV, 0.58 < % < 0.65, (4.27)

and where S/K fits breathing mode data [45]. Rudaz et. al. [45] have noted that
for kK = 0, A = 0 the effect of varying the parameter u is to prescribe a semicircle in
the K, S/K plane. The results for the models we are considering are summarized in
figure 4.1. From this figure we see that models 4, 6, and 9 are favorable. However,
when we examine the effective mass ratio o/M in table 4.1, we see that these three
models all fall outside the desired range. The models which have a more acceptable
effective mass (2 and 5) do not satisfy both of the restrictions on K and S/K. This
is known to be a generic feature of this type of finite nuclei model {15, 40].

As a result of the nuclear matter fit we would choose to favor models (2, 4, 6, and
9). Note that the limits from K and S/K make both the MFA and RHA unfavorable.
The conclusion of [45] was to favor a value of 4 = 1.2, as not only does this value agree
with the experimental limits, but also gives the most stable minimum for the effective
scalar field potential. There is yet another aspect of this stability, which appears when
we consider the effect of nonzero x and A. Changing these parameters has the effect
of shrinking and shifting the u semicircle, however the points corresponding to p
around 1.2 remain highly stationary. This can be seen in figure 4.2. This fact gives
us an extra amount of freedom in the evaluation of this model for finite nuclei. With
a value of p = 1.2 we can essentially adjust x and A for the finite nuclei without
having much effect on K and S/K in nuclear matter. As a result of this, model 9
has been introduced. Since we are not that interested in finding a rigorous fit to the

nuclei here, the nonlinear couplings of 9 were simply chosen.
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4.4 Finite nuclei with derivative corrections

Consider the effect that the second order DE terms have in fitting the charge radius
of °Ca. In figure 4.3 and table 4.2 we see the magnitude of the DE effects.

A generic feature of the solution for all models is that the DE terms smooth out
the form of the bosonic fields. This can be seen in the first plot of figure 4.3, which
shows the scalar field of model 3 and the change in this model when the DE terms
are dropped with the parameters left fixed. The second plot of this figure shows
the separate contributions to the fermion scalar vacuum density at the point of self-
consistent solution. The results are for model 7. One place where the effect of the
DE terms can be physically seen is in the single particle nucleon energies in table 4.2.
The energy results here are in qualitative agreement with what was found previously
for model 3 [39]. We see in our table, that the DE terms have caused the nucleons to
become more bound for models 6 and 4. Note that we have refit the models at the
LDA level. The DE is observed to have only a small effect on the results in this table.
This also shows up in the charge density distribution; for model 3 the DE effect was
considered by Wasson, and was also found to be small {39].

The reason for this behavior is that the fields must rearrange themselves to satisfy
a new parameter fit in the LDA. In particular, the couplings and scalar mass had to

be changed as follows:

LDA DE
Model 6 gs = 4.4555 gs = 8.6330
gy = 5.9842 gy = 8.8253
ms = 310. ms = 560.
Model 4 gs = 5.7565 gs = 6.2436
m, = 390. me = 423.

We see that the internal setup of a model is changed to a great extent by the DE,

but that the physical predictions are comparable in the end.
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Table 4.2: Effect of the DE on the single particle nucleon self-consistent energies (in

MeV) for models 6 and 4.

Particles  Level Model 6 Model 4
LDA DE (2nd order) LDA DE (2nd order)
protons: 13% —33.3355 —35.1092 —34.2227 —34.3206
1ps —22.7095 —23.8810 —23.1299 —23.3027
1p; —22.0688 —22.5072 —21.9989 —22.1817
1d% —11.2440 —11.7730 —11.2361 —11.4091
lsy —-8.5722 —7.7375 —7.8065 —7.8260
1d% —10.1577 —9.4602 —9.3347 —9.5188
neutrons: 13% —41.3730 —43.2126 —42.2908 —42.4019
1ps —30.4489 —31.6770 —30.8943 —31.0806
1ps —-29.8193 —30.3201 —-29.7779 —29.9744
1d% —18.6638 —19.2512 —18.6774 —18.8686
lsy —15.9263 —15.1593 —15.1722 —15.2224
1d —17.5819 —16.9375 —16.7739 —16.9785

To examine the usefulness of models we consider a standard complement of even-
even nuclei: €0, °Ca, and 2%®Pb. Using the parameters in 4.1, we resolve the
differential equations (4.3-4.7) for the nuclei *0, and 2°®Pb. To see how well all three
nuclei are modeled, we consider the nuclear charge density. This density is obtained
by folding the nuclear charge form factors over the densities we have determined for
point like constituents. We use the form factor parameterization found in reference

[46]2. These may then be compared with the experimental data. This has been done

2 A special thanks to P. Blunden for supplying the form factor folding code.
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in the past for models 6 and 7 [40] without the derivative terms. In figure 4.4 we see
how models with different x do at determining the charge density of “°Ca. Notice
in particular that the model 4 with i = 1.2 does considerably better than the RHA
model 3. It is interesting to note that model 1 seems to model the charge density
near the origin even better than model 4.

In figures 4.5 and 4.6 we see how well the models we favored in nuclear matter do
at reproducing the charge densities of the nuclei 0 and 2°*Pb respectively. These
models include all DE terms, and also have different y values. For O we see that
models 3 and 4 give essentially the same results. The nonlinear models do slightly
worse, although this situation could likely be improved by doing a careful retuning
of k, and X. Finally, for ?®®Pb we see that model 3 gives the best results. Model 4
here has developed a spurious local minimum in the charge density, making it highly
unrealistic. Note that model 9, which also has p = 1.2, does not suffer from this effect.
The charge density of model 6 is found to be very similar to the charge density found
by Fox [40] in his analogous Set J, using the LDA. The main difference is that the
DE terms have increased the charge density at the origin away from the experimental
curve.

In summary, we emphasize that the main result that appears from the analysis of
the DE in a self-consistent calculation seems to be that it effects the parameters of the
model in a non-trivial way. On the other hand, the DE terms do not seem to effect
the physical predictions of the model very much, as when we refit our parameters
the difference from the LDA is very small. Recall however, that the effect of the DE
terms for this size of scalar background is known to be small in the first place. In
this sense, it is not surprising that the physical quantities are changed by so little. It
is more surprising that the requirement of self-consistency causes the parameters g,

g, and m, to change by so much.
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Chapter 5

VACUUM EFFECTS IN A STRONG COUPLING
SOLITON MODEL

Here we consider the nontopological soliton model of Bagger and Naculich [1, 47].
They consider solving for the bound states of fermions with a large Yukawa coupling
to a scalar field, while including the effects of the one-loop fermion vacuum. There
are N flavors of fermions in this model, and the region considered is the large N
limit. Physically, this model gives an indication of the relevance of quantum bag
formation for Higgs particles in the presence of heavy fermions. The scalar field here
generates mass for the fermions through spontaneous symmetry breaking. Currently,
we know that the top quark has a mass of 180 &= 12 GeV, and that the mass of the
lightest Higgs particle must be greater than 58.4 GeV (95% confidence) [48]. Also,
in supersymmetric extensions of the standard model there are predictions of spin—%
particles (gluinos, neutralinos, and charginos) with masses that may be a fair amount
larger than the lightest scalar Higgs particle.

In their model, Bagger and Naculich [1, 47] account for quantum fermionic vacuum
fluctuations by using the second order DE of the one-loop effective action. However,
we have found that for the size of scalar fields considered in this problem, the DE
will not always converge by second order. This convergence depends on the value of
the coupling g in the model, becoming worse for larger g as the self-consistent scalar
field of the bag shrinks. Although the authors checked the convergence by looking at
the relative size of the fourth order terms in the expansion, they did so only for the

energy. As we found in section 2.4, the energy expansion often hides the true nature
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of the convergence that shows up in the dynamical Euler-Lagrange equations. Our
purpose therefore, is to reconsider this model and make use of the correction method
devised above to be able to account for the fermionic vacuum in an exact manner.
The defining characteristics of this model will be left unchanged, with the equations

changing only by inclusion of our density correction term (3.46).

5.1 Bagger-Naculich soliton model

The choice of Lagrangian density is [47]

L= Zz/)l [z@ ——\/—_—cr} P + 2(8,0) + L MGo” - %0’4 (5.1)

The utility of the large N parameterization here is to suppress the effect of scalar
loops by 1/N, validating the assumption of a classical scalar field. Note that our
notation has been kept consistent at the expense of differing in some cases from that
of Bagger and Naculich. To display the method by which the fermions acquire mass,
we observe that the scalar field will have a nonzero vacuum expectation value. In
terms of the shift from this value, we have 0 = v/Nv + ¢ . Identifying the fermion

mass as M = gv now makes sense, as the fermion part of the Lagrangian has become

L= sz[za gv~\/—_¢}wl (5.2)

The renormalization and reparametrization of this model is discussed in detail in
[47]. The conditions that are applied correspond to fixing v as the vacuum expectation
value, and renormalizing the scalar mass, wave function and coupling g. Also, the
inverse fermion propagator for two points is taken to be that of the free field. This

renormalization prescription is enforced at the one fermion loop level by the choices:

dr®
P(l) = O’ F(? = _.u‘za 7z =1,
¢ I0 | p2—g dp2 -
3) g 2
Fovs im0 TN I (p)=p— M. (5.3)
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These one, two and three 1PI generating functionals are analogous to those in equa-
tion (1.21), where the subscript here denotes the form of the interaction term in the
Hamiltonian density. This prescription will fix (M, p, g), as the finite parameters of
the model.
To examine their model, Bagger and Naculich consider the simple case of states of
N fermions which all appear in the lowest single particle energy state. By rescaling
the scalar field to
o
=N (5.4)
the N dependence in the Lagrangian density now contributes as an overall factor. In

the unrenormalized Lagrangian, this would read
- A
£ = (0 - 9010 + HOul + b = 34*). (55)

For consistency with our notation of chapter 4, we take G(r) and F(r) to denote the
upper and lower k = —1 radial Dirac components of the fermion field 1, respectively.
We find it useful to make further redefinitions so that all variables are dimensionless.

This can be accomplished by the following transformations:

gy AT o 2 4t 2
— —G G —F
M ® Mo T ml T
€
rM = T K/} o, e (5.6)
We may then write the equations for the fermions as
dG G
E = —T— -+ (61 -+ QO)F, (57)
dF —-F
—_— = — — (e — )G .
I ——(a-9)G, (5.8)
subject to the constraint
/ dr(G? + F?) = 1. (5.9)
0
The scalar field satisfies the equation
2
V2<p =pPnl + Pval T TN me)JaDcA + pzl;)af + 73 g_ Apcorr [90]> (510)

Z
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where the source terms are defined to be

A

Pl :, zz(“’ — ), (5.11)

vl = 12

bt = (G ) .12
2

= =5 (V) -+ ). (5.13)

Prae = Sg— ( — +ln(¢2)V2w>~ (5.14)

As written, these equations facilitate examining different levels of approximation:

(i) Classical: m =0, =0, n3=0;

(ii) LDA: m =1 =0 n3=0;
(5.15)
(iii) DE: m=1 m=1 n3=0;

(iv) Exact: m=1 m=1 n=1
Note that only (i) and (iii) were considered by Bagger and Naculich.
For the numerical solution, it is useful to proceed in the following manner. We
begin by rewriting equation (5.10) so that the coeflicient in front of ¢” is unity:

2

2
2 g 2 2 g 3 2 3
= — _ _ 1 _
Vi = (@~ 0t (G- F) —m s (¢ n(e?) - ¢+ o)
2 2 2
g 1 [dy g
2 A corT ) .
T 17 2 (—dr> +1s 7 Apeorr[e] (5.16)
where
92 2
Z=1—-m 8—7;2—1n(<p ). (5.17)

It is also useful to be able to treat our equations entirely as a boundary value problem.

This can be done by treating ¢; as a field, and also introducing a field x for the
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auxiliary equation (5.9) [49], so that

dﬁl

dx _ 2 2
= G*+ F°. (5.19)

The boundary conditions applied here are then

F(r) Loy FR) _ (¢®)-a)"
x(0) = 0 x(R) =1,

where R is large compared to the length scale of the problem. For N fermions the

energy per fermion (in units of M) is

= = Blp)+ale) (521
2

Busle) = 2 [ @2 |3 260007+ Kt -

2
g } 2 2 1y 4 2 )
tmrs (52 -0 B - D= ¢ ()| 522
As we noted above, it was found in [47] that we do not need to correct the second

order terms of the DE in this energy expression.

5.2 Addressing the numerical problem

Next we consider a method for solving the equations (5.7), (5.8), (5.9), (5.16), (5.18)
and (5.19), subject to the boundary conditions (5.20). For this purpose, the solver
COLNEW by Ascher and Bader [50] is used. This version improves upon the orig-
inal solver COLSYS devised by Ascher, Christiansen and Russell [51] by using an
improved solution strategy and a different spline basis. The general purpose of the

package is to solve mixed order coupled nonlinear ordinary differential equations. The
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program implements a finite element method which approximates the solution with
collocation at Gaussian points. The nonlinear equations for the splines are solved us-
ing relaxation and Newton’s method. This method gives us the advantage of solving
the coupled nonlinear equations simultaneously. It enables us to handle cases where
large contributions arise from the nonlinear vacuum pieces, in particular large DE
contributions. Another important aspect of this program is that it keeps track of the
error in the solution at all times. This is accomplished through careful application of
adaptive mesh selection [52]. The routine COLSYS has been applied previously to
soliton bag models. (see [1, 53]).

As in many nonlinear problems, the ability to obtain a solution in reasonable
time hinges on ones ability to provide the solver with a reasonable starting point.
Here the initial guess for the solutions to the fields is obtained by specifying a initial
scalar field of the form (2.103), with f = 1. The initial Dirac spinor fields are then
calculated by integrating the coupled equations (5.7 and 5.8) out from the origin
and in from infinity to some matching point 7,,, with an initial guess for the energy
eigenvalue. The matching point is chosen to be close to the zero crossing of the
effective potential (¢ — €). The solutions are then rescaled to match at 7, and the
energy is adjusted in accordance with that match. The procedure is then repeated
with this new energy. When the true energy eigenvalue is reached, the boundary
conditions will be simultaneously satisfied and the necessary rescaling factor will
approach unity. The solutions obtained from this method can then be normalized by
calculating the integral (5.9). The initial auxiliary fields are then specified from this
spinor solution. For the cases in (5.15) where 1, = 0, providing COLNEW with these
initial fields is enough to obtain an exact solution to the nonlinear equations in a
timely fashion. We may then calculate all quantities of interest, such as the different
contributions to the energy and density expressions.

Unfortunately, in the mosf interesting of the situations, 74 # 0, we cannot simply

apply the COLNEW routine as given. The reason is that with the inclusion of the cor-
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rection our equations are now actually integro-differential equations which COLNEW
cannot solve. To facilitate this, the code provided by Ascher and Bader was modified
so that the scalar field solution and its derivative can be extracted at intermediate
stages of the calculation to evaluate the correction functional (3.46). The calculation
now becomes internally iterative, with the density correction treated as a source term
that is reevaluated at each new iteration. We found that this could be accomplished
with minimum change to the COLNEW code by simply passing more variables to
the procedure GSUB (which is provided externally to evaluate the boundary value
conditions). This procedure is called at the beginning of each new iteration, and it
is a simple manner to make additional calls to extract the current scalar potential
solution from the splines and evaluate the correction. However, evaluating the cor-
rection in this manner proves to be costly in terms of solution time. In fact the speed
of the entire strategy is limited almost entirely by the number of times the correction
is evaluated. The evaluation of each partial wave correction (given by (3.46)) takes
roughly one minute on a DEC Alpha AXP 3000 Model 300 server. To take this into
account, code has been incorporated to only reevaluate the correction if the solution
is deemed to have changed by a significant amount.

Another issue we should consider is that the scalar field for which we are evaluating
the correction is only a preliminary solution to the dynamical equations. The only
real problem with this is that the boundary conditions (5.20) may not be valid with
high enough accuracy to satisfy the correction routine. The largest effect here occurs
with the condition at » = 0. To adapt to this situation we can use the equations
(3.22) with s; # 0, and because the higher order derivatives are not too smooth,
we set the factors s3 and s4 (proportional to the third and fourth derivatives of the
scalar field at the origin) to zero. This places a restriction on the minimum value of
r at which we can safely apply the correction, but this restriction turns out to be
unimportant for determining the solution here.

A final issue we must address is the manner in which the COLNEW routine
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attempts to improve its solution at each iteration. This is done by making use of
information extracted from the Jacobian of the differential equations and boundary
value equations. If the correction is to be the driving factor in the equations, it may
be useful to have some information as to how this term contributes to the Jacobian.
Unfortunately, this involves evaluating the derivative of the correction term with
respect to the functions ¢(r), and ¢'(r). As the correction is actually a nonlocal
function of ¢ (recall ¢ occurs in the differential equation that had to be solved to
determine the integrand) this in general is a nontrivial procedure. Several ways in
which this information may be included were considered, but no method has been
found that gives faster convergence than simply ignoring these contributions to the
Jacobian.

We start the 74 # 0 cycle with the solution obtained from solving the equations at
the DE level. To allow the aforementioned method of solution to succeed we use the
cutoff parameter A to control how much of the correction is included. As mentioned
in section 3.4, and shown in figure 3.4, we can use the cutoff to extrapolate toward
the full correction for each partial wave. This is done in the following manner. We
start by picking a number of partial waves to include, &q,, and cutoffs A, in such a
manner that the solution converges. Then the solution to this step may be used as
the starting point of another step with different x,,,, and A,. This allows us to test
the convergence of the correction calculation in the self-consistent solution. Another
applicaton of the cutoffs here is to use them to keep the change in the correction
source term small relative to the solution obtained so far. Stepping out in the cutofts
then allows us the full correction to be included while keeping the iterative procedure
rapidly convergent. Close track should then be kept of the solution mesh size each
time Kmqe and A, are changed, so that it does not overflow the routine/machine swap
space. The numerical results presented here do not make use of this latter cutoff

application.
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5.3 Solutions using different levels of approximation.

Having outlined the procedure, we are now in a position to look at the solutions. We
will consider the effect of working at different levels of the approximation as indicated
in (5.15). The quantities obtained from the solution which are of interest include the

wave function solutions (p, G and F'), contributions from different density terms at

LDA

vac

the point of solution (pni, Pval, P pPE Ap.orr), and the contributions of different
terms in the energy expressions (5.21 and 5.22). Our goal is to quantify the effect
of the correction on the solution as the coupling becomes large and the DE breaks
down.

We begin by discussing the nature of the solutions obtained for different levels of
the approximation. The case g = 10, p = 1 will serve as an example. For this value
of g, the effects of the correction are just beginning to show up. This enables us to
examine the robustness of our method for a case where the correction should only
have a fairly small effect. From this solution we also obtain an idea of the directions
in which the scalar potential and energy will shift. For cases (i) and (iii), we repeat
below some of the general solution features discussed in [47].

For the Classical approximation (i), LDA (ii), and DE (iii), the scalar field ¢
and spinor component field G and F self-consistent solutions are shown in figure 5.1.
The contributions from the fermions and scalar field to the overall bag energy are
summarized in table 5.1.

Approximation (i):

Here the equations are treated at the quasi-classical level (no vacuum terms). This
approximation is quite limited as scalar fluctuations are expected to be important
for small g, while for large g the fermionic fluctuations are important. For small
coupling (g < 3), weak shallow bag solutions do exist at this level (see [47] for details).
For larger coupling the bag becomes deeper and the scalar field obtains a zero and

becomes negative for a finite interval out from r = 0. The spinor fields G and F' give
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Scalar Solutions for g=10
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Figure 5.1: Self-consistent solutions of the Bagger-Naculich model for different levels

of local approximations to the vacuum densities.
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Table 5.1: Contributions to the energy per fermion in the system for the g = 10,

A = 1 self-consistent solutions. Values are expressed in units of the fermion mass M.

Approximation Energy per fermion o(r =0)

Fermi level Scalar field Total

Classical 0.3829 0.2373  0.6201 —0.2837
LDA - 0.8628 0.0973  0.9601 0.3683
DE 0.9080 0.0594  0.9674 0.6635
Exact (k=1,A=3)  0.8962 0.0718  0.9680 0.6014
Exact (k=1,A=4)  0.8950 00731  0.9681 0.5948
Exact (k=1 A=5)  0.8945 0.0737  0.9682  0.5902
Exact (k=2,A=3)  0.8819 0.0880  0.9699 0.5515
Exact (k=3,A=3)  0.8698 0.1025  0.9734  0.5212
Exact (k=4,A=3)  0.8650 0.1085  0.9735 0.5177

concentrated probability for the fermions near the region with the largest slope for
the scalar field potential. This behavior can be identified in figure 5.1. The dominant
source density term for the scalar potential equation are the valence fermions.
Approximation (ii): |

For relatively small couplings, adding in the local density terms has the effect of
reducing the depth of the scalar potential, so that a zero no longer appears. The
spinor fields are again peaked in the region of the largest scalar potential slope. The
energy of the solution state has been dramatically changed from that of the classical
approximation. This can be seen in table 5.1. This is the behavior that was noticed
by [47]. In their words, the “quantum corrections deflate the bag”, meaning that the
total energy per fermion in the bag is approaching the free value (M). The largest
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.Source densities for the LDA approximation at g=10
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Figure 5.2: The dominant source density terms for the self-consistent LDA solution

at g = 10.

source density contributions in equation (5.10) are displayed in figure 5.2. Notice
that there is a fair amount of cancelation between the valence density and vacuum
density terms.

For g > 10.4 the LDA approximation is divergent. The reason for this is that
solutions which include vacuum terms tend to have a fair amount of cancelation be-
tween the vacuum density and density contributions from valence fermions. Looking
at the expression for the LDA contribution in (5.13), we see that this function is odd
with respect to the scalar field. Increasing the coupling drives the potential deeper,
and at some point the solution becomes negative at 7 = 0. At this point the LDA
contributions begin to contribute in the opposite direction, driving the solution to
more negative depth. At a critical coupling, near g = 10.4, the equations no longer

support a solution. The reason for introducing the LDA at all is to have an extra
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Source densities for the DE approximation at g=10
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Figure 5.3: The dominant source density terms for the self-consistent DE solution at

g = 10.

indicator which enables us to consider, for g < 10.4, the effect that different terms in
the vacuum density have on the solution.
Approximation (iii):

For smaller couplings, the' DE acts essentially like the LDA. However, as the cou-
pling is increased we still obtain a solution, as now the derivative terms prevent the
vacuum density from changing signs. This allows further cancelation of the vacuum
density with the valence fermionic density to occur. For the example we are consid-
ering, this cancelation is displayed in figure 5.3. In figure 5.1 we see that the shape
of the scalar potential is even shallower than the LDA and also that the width has
decreased. An interesting feature, seen in table 5.1, is that the the energy contribu-
tions have changed in such a manner that the overall energy per fermion is relatively

unchanged from the LDA result. This is reminiscent of the behavior we observed for
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finite nuclei.
Approximation (iv):

We now examine what happens when the density correction term « = 1 is in-
cluded. In figure 5.4 both the scalar and spinor fields are shown. Note that the scalar
solutions are given for two values of the cutoff to indicate that a value of A = L =3
is sufficient for convergence of the correction integral. The energy values for the exact
solutions are also included in table 5.1. We notice that despite the fact that the depth
of the scalar field has changed, the overall energy is affected very little.

The effect of using the exact vacuum density does not follow the progression
of the following three steps but instead favors a deeper potential than in the DE.
This behavior is a manifestation of further terms in the derivative expansion having
oscillatory convergence. We find that to get the exact correction it is sufficient to use
partial waves up to x = 4. This can be seen in figure 5.5, where the self-consistent
solution is shown for calculations including an increasing number of partial waves.
Note that the time for the numerical self-consistent solution grows linearly with &.
By k = 4 the series is convergent. Energies for the higher partial wave solutions are
shown in table 5.1. We see that the scalar potential is becoming deeper, so that the
energy of the scalar field grows and Fermi level drops away from M. However, the
total energy is rising, making the bag even more unstable. The exact calculation has

reduced the binding energy to only 2.7%, from the 3.3% of the DE.
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Table 5.2: Contributions to the energy of the system in the g = 25 self-consistent

solutions. Values are expressed in units of the fermion mass M.

Approximation Energy per fermion o(r =0)

Fermi level Scalar field Total

Classical 0.1345 0.1182  0.2527 —0.4217
LDA - - - -
DE 0.8764 0.0772  0.9536  0.5307
Exact (k=1 A=3)  0.8433 0.1143  0.9576 0.3638
Exact (k=1,A=4)  0.8408 0.1174  0.9582 0.3513
Exact (k=2,A=3) 08118 0.1555  0.9673  0.2865
Exact (k=3,A=3)  0.7903 0.1866  0.9770  0.2423
Exact (k=4,A=3)  0.7851 0.1940  0.9792  0.2612

5.4 Large coupling regime

To further examine the breakdown of the DE result, we now consider a case where
the coupling is even larger. We take the parameters used by Bagger and Naculich,
(g = 25, p = 1). In figure 5.6 we have reproduced the field solutions given by Bagger
and Naculich [1]. Note that our normalization for the spinor fields differs from these
authors. For physical reasons (a Landau pole, tachyon, and vacuum instability) [47],
¢ must be less than 30 in this model, so that g = 25 is close to the upper limit. The
numerical results for the solutions here are displayed in table 5.2.

In figure 5.7, we see that the first partial wave correction is much larger for g = 25.
Also, note that by a cutoff of A = L = 3 the correction is convergent. In table 5.2,
we see that, in a similar manner as for g = 10, the g = 25, kK = 1 correction has a

large effect on the depth of the scalar field, but a much lesser effect on the energy.

e
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Classical Solution for g=25
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Figure 5.6: Reproduction of the results of Bagger and Naculich [1] at g = 25. Fields
are shown for the classical and quantum solutions. Note that the normalization choice

for our spinor wave functions differs from theirs.
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The results for K = 2,3 and 4 are also shown in the table and figure. Notice that
the correction is close to convergence for k = 4. The effect of higher partial waves
for ¢ = 25 has yet to be considered'. Another thing to note is that when higher
partial wave corrections are included the scalar fields develop a small dip very close
to the origin. This is a numerical effect that results from the intermediate boundary
condition issue discussed in section 5.2. To remove this small numerical feature it
would likely be necessary to implement the application of the cutoff that is discussed
at the end of that section. In any case this effect will only slightly increase the value
of the scalar field at the origin.

In this chapter we have learned that in a case where the correction is large it
can substantially affect self-consistent solutions. By being careful with our cutoff
dependence, we have managed to obtain acceptable convergence by A = 3. It is
also promising to see that the partial wave series of corrections for g = 10 converges
under the self-consistent calculation by x = 4. Also, as only a small number of partial
waves are needed, it is possible to obtain the exact solution with the one-loop vacuum

polarization in this model.

Work in progress.
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Chapter 6

CONCLUSIONS

A method has been devised whereby the exact fermionic one-loop vacuum polar-
ization may be calculated for a scalar background field in 3+ 1 dimensions. Using the
method of derivative expansion to calculate contributions from large loop energies,
and high angular momentum partial waves, yields an efficient numerical procedure
for determining the exact one-loop result. One benefit of this procedure is that we
can determine, in an exact manner, whether the DE is convergent for a particular
nontrivial background. More importantly, the procedure can be used to evaluate vac-
uum polarization effects when local methods, like the DE, are not convergent in parts
of phase space. In general, the speed of the calculation is limited by the number of
partial waves of the DE that must be corrected, growing linearly in time with . The
desired numerical accuracy is also influential, as it determines the energy mesh and
maximum cutoff that must be used.

The correction procedure devised here can be extended to fermionic loops in differ-
ent bilinear backgrounds (e.g. vector background fields) in a straightforward manner.
A similar procedure could also be used to find the exact bosonic loop density contri-
butions at the one-loop level.

In terms of using the correction in a self-consistent calculation, the work here has
been restricted to the case of interacting fermion and scalar fields where there are N
flavors of fermions found in the ground state. For this case, we examined the manner
in which using the correct one-loop vacuum polarization effects the self-consistent
solution. The way in which a more structurally complex self-consistent calculation

may be done was also described, but for a case in which the DE converges. The case
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considered involved several mean fields, both bosonic and fermionic loops, as well as
different valence fermionic levels. For a more general theory, where the DE is not
convergent, the correction routine devised here could be used to obtain the correct

vacuum results in an analogous manner.
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Appendix A

CONVENTIONS

The conventions used in this thesis are as follows. The dimensionality of the
applicable spacetime will often be denoted in the form 3 + 1 dimensions, meaning 3
spatial dimensions and 1 time dimension. When a generic spacetime is considered,
the dimension will be denoted by D. The dimension of the spatial part of a generic
spacetime will then be referred to as d, where d = D — 1. The spacetime variables
will be written in regular mathematical text, such as position z and momentum p.
The spatial part of a spacetime variable will be distinguished by an arrow over top,
such as T and p'. All spacetime indices are denoted by lowercase Greek letters, while
Roman letters are used for spatial indices.

The usual notation for a function of a variable is used, such as p(z), and functionals
are distinguished by using square brackets, such as I'[¢]. We will often suppress some
of the function and functional dependencies for the sake of clarity. Operators will
generally be identified by capital Roman letters, such as A, and path integral measures
will be enclosed in square brackets, such as [d¢].

When primes are used to denote the derivative of a function or functional this
will be explicitly noted in the following text. Also, note that Lorentz invariant con-

tractions are implicit on derivative expressions, such as
9% = 0, 0%, (8u0)2 = (0,0)(0"0). (A1)

The metric tensor here is chosen so that tr g,3 = —d+1, so that in 3+1 dimensions
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the three spatial diagonal elements are negative,

1 0 0 O
s |0 -1 0 0
Gap = g = (AQ)
0 0 -1 0
000 0 -1

Hence for a particle of mass m with momentum p, p? = m?.

Traces that involve at least one continuous variable are denoted by 'Ir, whereas
traces over purely internal spaces are denoted by tr. To keep track of the variables
over which a Tr is taken, we use subscripts to list the continuous variables and a
superscript “* to remind us if internal traces are also included. All position space
traces are integrals over spacetime, whereas momentum space traces are integrals

with a normalization factor of (2m)~0. Two examples are:
d%p
Tr, = [ s, Try = /--— A3
? D (2 ’/T)d ( )
Superscripts and subscripts are also used on quantities to denote different types
of the same basic object. In particular, p® denotes a scalar density, while p3 . denotes
the scalar density from fermionic loops.

When a particular representation of gamma matrices is required we use

1 0 0 o;
Yo = ) 71 = 3 (A4)
0 -1 —0; 0

where 7 = 1,2, 3, and o; are the Pauli spin matrices.
Finally, our notation for Dirac angular momentum states follows that of reference
[3], and in particular is simply specified by the separation of variables in the form

G(r)

r

ynm(ea ¢)> (A5)

and the relation (3.10).
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Appendix B

GENERAL EFFECTIVE ACTION DERIVATIVE
EXPANSION

A general method for finding the derivative expansion for either bosonic or fermi-
onic loops can be given as follows. This method was devised by Chan [54] to fourth
order in the background fields, while an extension of the necessary expressions to

sixth order may be found in [25]. To fourth order in our notation the result is

Toac[0, V] = 4T¥M In (- P? + U(X)) (B.1)
i Ty {ln(e"l) + ]—Di@z + —2pi——<264 - (0,6,)?
P D * " DD+2\TTr TR
—2(00M)? + (F,, 02 + 4¢@FW@@#@@V>}, (B.2)
where
0! = —p*+U(X), ©,="D,0,
D, = P,=i8,+ \VHX), Fu=[D,D) (B.3)

The subscripted Greek indices on © denote covariant derivatives, and D,, and A, are
generators of a spin-1 gauge group. The background field U(X) can have arbitrary
internal finite group structure. With this expression we can find the DE, to 4th order
in the background field derivatives, for quite a general class of theories that share the
one-loop functional form (B.1). We stress here the manner in which the fermionic
results can be placed in this form. The key is manipulating the expression for the

action as follows:

Toec[t)] = ~Trg* In(£f — o(X)) (B.4)
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1 )
= ——2—Tr_fc’” [ln(—}’ —o(X))+In(p - O'(X))}
1 ;
= ST [—p2 +02(X) + [P a(X)]} (B.5)
In (B.4) the sign of the P term is irrelevant, as the internal spin trace allows only
terms that are even in the number of v matrices to survive. So from the form (B.5),
with
B(X) = o*(X) + [P, o(X)], (B.6)

we may use equation (B.2) for fermionic actions too.
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