Personal Adaptive Web

Agent for Information
Filtering
by Imran Khan

A thesis submitted to the Faculty of Graduate Studies in partial fulfilment
of the requirements for the degree of

MASTER of SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba

February, 1997

© Imran Khan, 1997

i+l

) i
c,Nfanonal Library E:Jlioﬁléque nationale
uisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your e Votre référence
Our fie Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. Ia forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-23361-8

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
COPYRIGHT PERMISSION

PERSONAL ADAPTIVE WEB AGENT FOR INFORMATION FILTERING

A Thesis/Practicum submitted to the Faculty of Graduate Studies of the University of Manitoba
in partial fulfiliment of the requirements for the degree of

MASTER OF SCIENCE

Iaran Khan © 1997

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA
to lend or sell copies of this thesis/practicum, to the NATIONAL LIBRARY OF CANADA to
microfilm this thesis/practicam and to lend or sell copies of the film, and to UNIVERSITY
MICROFILMS INC. to publish an abstract of this thesis/practicum..

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and
copied as permitted by copyright laws or with express written authorization from the copyright
owner.)

Abstract

This thesis presents one possible design solution for a Web agent which reduces informa-
tion overload for Web users by autonomously retrieving documents that the user is inter-
ested in. The document provides a brief primer on software agents, preseats a design
solution for an unique model for a Personal Adaptive Web (PAW) Agent, and simulates
the individual components of the model.

The agent primer defines what a software agent is, identifies some on-line references to
software agents, defines the scope of agent based applications, recommends an agent tax-
onomy system, and concludes with opinions on the social implications of new technology.

The PAW agent is a personal assistant which learns different categories of Web documents
that the user is interested in, then finds and suggests new similar documents to the user.
Similar document vector representations and Inverse Document Frequency Weight
(IDFW) techniques are employed as in other Information Retrieval Agents. However, this
approach is otherwise quite new and produces an agent that is much more autonomous
than the others. In fact, the only piece of information that must be supplied to the agent is
the number of categories that the user would like to establish.

The PAW agent performs seven subtasks to achieve its goal. It (i) monitors the user while
she is browsing the Web, (ii) determines the relevant documents that the user visits, (iii)
textually analyses the relevant documents to obtain document vectors using a modified
form of the IDFW technique, (iv) classifies the document vectors into categories using
unsupervised competitive learning, (v) scans the Web for similar documents, (vi) classi-
fies the new document vectors using the trained neural network, and (vii) decides whether
the new documents should be referred to the user.

In accomplishing the above seven subtasks, a real-time database, an automatic text analy-
sis technique, competitive learning network, and a fuzzy inference system are incorpo-
rated into the PAW agent. These components are simulated independently in order to
verify the design of the individual components.

Personal Adaptive Web Agent for Information Filtering i

Acknowledgements

I would like to thank Dr. Howard Card for bringing my attention to this interesting field of
research and for many helpful discussions. As well, thanks to Andy Brown and Dean
McNeill for insightful discussions on agents. Additional thanks to Professors Jim Peters,
Witold Pedrycz, Dave Blight, and Bob McLeod for their involvement.

Financial support from the Natural Sciences and Engineering Research Council and the
Canadian Microelectronics Corporation is also gratefully acknowledged.

Personal Adaptive Web Agent for Information Filtering iii

Contents

Abstract ii
Acknowledgements iii
Contents iv

List of Figures vi
List of Tables viii
Nomenclature ix

CHAPTER 1 Introduction 1

1.1 On-line Explosion 1
1.2 TheProblem 2

1.3 Solutions 2

1.4 Thesis Design Problem 3
1.5 Overview 3

CHAPTER 2 Background 4

2.1 Hierarchical Colored Petri Nets (HCPN) 4
2.2 FuzzySets 6
2.2.1 Membership Functions 6
2.2.2 Fuzzy Measures 7
223 IF-THENRules 7
2.3 Artificial Neural Networks 8
2.3.1 Competitive Learning 10
2.4 Automatic Text Analysis 10
24.1 Term Weighting Functions 11
2.5 Whatis an Agent? 11
2.6 On-line References for Software Agents 13

CHAPTER3 PAW Agent Model 15

3.1 Relevant URL Real-Time Database 17
3.1.1 Building the Database 17
3.1.2 Calculating the Relevance 18
3.1.3 Updating the Length of the Period 21
3.14 Awaiting the Next Period 22
3.2 Neural Document Classifier 23
3.2.1 Generating Relevant Document Vectors 23
3.2.2 Generating New Document Vectors 27

Personal Adaptive Web Agent for Information Filtering

CHAPTER 4

CHAPTERSS
APPENDIX A

APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

3.2.3 Classifying Document Vectors 29
3.3 Fuzzy Inference System 31

PAW Agent Simulation and Results 33

4.1 Relevant URL Real-Time Database 33
4.1.1 Simulation#1 33
412 Simulation#2 34
4.1.3 Simulation#3 35
4.14 Observations 37

4.2 Neural Document Classifier 37
42.1 Training Data Simulation 37
422 Testing Data Simulation 38
423 ANN Simulation 39

4.3 Fuzzy Inference System 41
43.1 Results of Simulation 41
43.2 Observations 42

Conclusions and Recommendations 43

HCPNs for Relevant URL Real-Time Database
Component 46

Neural Document Classifier Component 52
Fuzzy Inference System Component 55
Scope for Agent Implementations 60
Taxonomy System for Agents 65

Social Implications of New Technology 68

References 72

Personal Adaptive Web Agent for Information Filtering

FIGURE 2.1.
FIGURE 2.2.
FIGURE 2.3.
FIGURE 3.1.

FIGURE 3.2.
FIGURE 3.3
FIGURE 34.
FIGURE 3.5.
FIGURE 3.6.
FIGURE 3.7.
FIGURE 3.8.
FIGURE 3.9.

FIGURE 3.10.
FIGURE 3.11.

FIGURE 4.1.
FIGURE 4.2.
FIGURE 4.3.
FIGURE 44.
FIGURE 4.5.
FIGURE A.1.
FIGURE A.2.
FIGURE A.3.
FIGURE A 4.

FIGURE A.S.
FIGURE B.1.
FIGURE C.1.
FIGURE C.2.

FIGURE C.3.
FIGURE C4.

FIGURE C.5.
FIGURE C.6.
FIGURE C.7.
FIGURE C.8.

List of Figures

Colored Petri Net Model 5

Possibility & necessity measures 7

Nonlinear model of a neuron 9

Block diagram for the interaction between the user, agent, and
WWW 15

Components of the Agent 16

Typical test data file 18

Associated database generated from test data file 19

Sample relevance caiculations 20

Fuzzy sets for relevance 21

Flowchart for the operation of the train.c program 26

Typical ANN dataset 27

Flowchart for the operation of the test.c program 29
Architecture of the Competitive network 30

Flowchart for the operation of the simulate.m program 31
Results of Simulation #1 34

Results of Simulation #2 35

Resuits of Simulation #3 36

Bar chart for ANN simulation runs 40

Bar chart for learning convergence 41

Hierarchical Colored Petri Net Model 47

Decomposed Petri net for Read File 48

Decomposed Petri net for Calculate R 49

Decomposed Petri nets for a) Modify P1, b) Modify P2, & c)
Modify P3 50

Decomposed Petri net for Wait 51

Stop list words 53

Block diagram for FIS 55

Membership functions for inputs a) certainty, b) query, c)
response, & output d) action 56

IF-THEN rules for the FIS 57

Snapshot of the IF-THEN rules for a) casual & b) important
queries 57

a) 3D and b) 2D FIS response for QUERY input levelof 2 58
a) 3D and b) 2D FIS response for QUERY input level of 4 58
a) 3D and b) 2D FIS response for QUERY input levelof 6 59
a) 3D and b) 2D FIS response for QUERY input level of 8 59

Personal Adaptive Web Agent for Information Filtering vi

FIGURE D.1. Block diagram for the Adaptive Education Agent
System 62
FIGURE D.2. Adaptive Education Agent System 63

Personal Adaptive Web Agent for Information Filtering

List of Tables

TABLE 2.1. On-line References for Software Agents 13
TABLE 3.1. Fuzzy controller truth table 32

TABLE 4.1. Results of the Simulations 37

TABLE 4.2. ANN simulation results 40

Personal Adaptive Web Agent for Information Filtering

Nomenclature

AEA......... adaptive education agent

Al artificial intelligence
ANN......ccovneeeeen artificial neural network

FIS fuzzy inference system

IT. information technology
PAW.........cuceuee. personal adaptive web
PPM.........cc...... period performance measure
WWW.....ueenee world wide web

Personal Adaptive Web Agent for Information Filtering

CHAPTER 1 Introduction

“Engineering here is the collision of art & science. It's Imagineering.”

-BRAN FERREN

1.1 On-line Explosion

The “creators” of ARPAnet could never have foreseen that their US military research
project begun in the late 1960’s would have given birth to the current IT phenomena
known as the Internet. The text based “network of networks” has quickly procreated as
well. The new offspring is known as the World Wide Web (WWW). This is a relatively
new Internet application introduced in 1990. A WWW evolutionary jump took place in
1993 with Mosaic which is a graphical Web browsing tool which enhanced the text based
browsing. Netscape, Internet Explorer, and several other browsers have come into exist-
ence since 1993 which together with network programming languages such as Java, can
publish text, graphics, sound, and interactive applets on the WWW.

The users of the Internet and especially of the WWW are growing exponentially. Some
estimates report that there are 35 million people on-line and that there will be a billion
users by the end of the century. Unlike the users of the radio and television era, the
WWW users are not passive entities. They are not only consumers of information but
they are also producers. Thus, the WWW is historically the largest and fastest medium
for publishing information ever conceived. Given such a large pool of information pro-
viders, it is not difficult to imagine that a typical user will be overwhelmed with the vast
amount of data on the WWW,

Personal Adaptive Web Agent for Information Filtering 1

Introduction

1.2 The Problem

The on-line explosion has created an enormous Information Resource System. But a side
effect is that it has given rise to two inherent problems with information systems. The
first problem is information overload. This refers to the large amount of information
present, and the new information being added constantly on the Web, with the result that a
user can not sift through and interpret all the information. For instance, when a query is
made and 400,000 enteries are retrieved, the user is expected to traverse through the links
and nested links to find the desired material.

The second problem is information recall. This problem addresses the level of accuracy
and completeness of the information that the user retrieves from a query on a particular
topic. For instance, when a query is made, the user can not be certain that all of the infor-
mation retrieved is relevant and even if it is, the user can not be certain that the retrieved
material is all that is available on the topic.

Presently, there is no complete solution for either problem. However, improvements are
being made which help users cope with these problems.

1.3 Solutions

In order to navigate the WWW more efficiently, there are many search engines available.
These are reference sites which try to map the contents of the WWW. Given one or more
query terms, they recall websites catalogued within their database which match those
terms. Most of the search engines use spiders and crawlers to periodically navigate the
Web and catalogue their findings. The reader is referred to (Cheong, 1996), for more
information on these topics.

Another popular solution to deal with information overload and recall are personal
homepages. These are analogous to newspapers because someone else gathers the infor-
mation in a manageable format. However, unlike newspapers, the user can customize
these personal pages. This approach is a complementary solution to the search engine.

Other complementary solutions are personal Web agents. These agents will be explained
in detail in Chapter 2. At this time, it is sufficient to say that they are software programs
too which the user delegates tasks, in order to reduce her information overload.

Personal Adaptive Web Agent for Information Filtering 2

introduction

In the future, the above three complementary solutions along with other solutions will
help ease the burden of information overload and recall for the user.

1.4 Thesis Design Problem

This thesis provides one possible solution for the design of a Personal Adaptive Web
(PAW) agent which helps reduce the information overload for its user. The agents’ dele-
gated task should be to determine which types of documents its user is interested in then
be able to find and suggest new similar documents. The design should result in an agent
that is autonomous, personalizable to a single user, and adaptive.

1.5 Overview

The remainder of the thesis is organized as follows. Chapter 2 is a brief background on
hierarchical colored Petri nets, fuzzy logic, artificial neural networks, automatic text anal-
ysis, and software agents. Chapters 3 and 4 present the PAW agent model and simulation
respectively. Chapter 5 presents the conclusions and recommendations. Finally, Appen-
dices D, E, and F present related topics on the Scope for Agent Implementation, Taxon-
omy Systems for Agents, and Social Implications of New Technologies respectively.

Personal Adaptive Web Agent for Information Filtering 3

CHAPTER 2 Backgmund

“I know what it does but I don’t know what it will undo!”’

-NIEL. POSTMAN

This chapter provides a brief background on the topics of hierarchical colored Petri nets,
fuzzy sets, artificial neural networks, automatic text analysis, addresses the question:
What is an Agent? and lists on-line references to existing software agents. For more
details, the reader may refer to the suggested references and Appendices D, E, and F.
Appendix D emphasizes the wide scope of agent-oriented applications, by suggesting how
agents be applied to an education system. Appendix E presents some initial thoughts for a
taxonomy of agents. Finally, Appendix F comments on the social implications of new
technology in general.

2.1 Hierarchical Colored Petri Nets (HCPN)

Petri nets are models that can represent very general discrete event systems. They were
developed by C.A. Petri in the early 1960’s. The Petri net is a device that manipulates
events according to certain rules. The type of Petri nets used in the thesis are the HCPN.
The HCPN model is an enhanced version of the original Petri net. This allows very com-
plex schemes to be represented through a hierarchical format and is also able to convey
more detailed information.

In this section, a brief informal introduction to HCPN is given. Readers should refer to
(Abouaissa et al., 1991; Jensen, 1992) for a more complete and formal explanation. Like
any Petri net, the HCPN includes a finite set of places, tokens, transitions, and arcs. The

Personal Adaptive Web Agent for Information Filtering 4

initial marking —__ ColorSetl ~

color set region
inputarcexptusion\x place name
guard region~___ [X=TRUE] = transition name
T1Fn(X)
/ ColorSet2
output arc expression

FIGURE 2.1. Colored Petri Net Model.

places represent the possible states of the system which are indicated by circles. The
tokens represent the data associated with each place which is indicated by small dots. The
transitions are events which are indicated by rectangles. The arcs are indicated by
directed arrows which connect the places and transitions in the net. The distribution of
the tokens over the places is called a marking. The marking changes whenever a transi-
tion fires. A transition can fire when each of its input places contains at least one token.
After the transition fires, each input place loses one token and each output places gains
one token.

In the HCPN there are several enhancements. Each place has three associated regions.
The Name region is a string which identifies the place. The Color Set region indicates the
type of tokens allowed in the place. The tokens can be complex data structures. The Ini-
tial marking region indicates the type and number of tokens at each place at the start of the
simulation.

There are also two regions associated with each transition. The Name region is a string
which identifies the transition. The Guard region prevents the transition from firing until
the boolean expression (guard) with colors as terms is satisfied. By default, if there is no
guard region then the transition fires when the input places have the required number and
type of tokens.

The arcs have associated expressions. The input arc expressions represent the tokens that
will move from the input place to the transition. The output arc expressions represent the
new token that is added into the output place. Figure 2.1 illustrates a simple example of a
CPN model.

Personal Adaptive Web Agent for Information Filtering s

Background

Hierarchy is introduced in CPNs in order to make large complex models easier to under-
stand. Transitions which are shaded represent the embedded hierarchy. These transitions
are decomposed into subnets which are then shown separately.

2.2 Fuzzy Sets

This section introduces fuzzy sets, membership functions, fuzzy measures, and if-then
rules. For more detailed studies the reader may refer to (Pedrycz, 1995). Classical sets
impose a binary membership whereas fuzzy sets allow analog values of class
membership. Consider, for instance, the following question: Is today hot? In classical or
crisp set theory, the answer would be either yes (1) or no (0). However, the fuzzy set
answer might be 0.5 which means that it is in between hot and not hot.

2.2.1 Membership Functions

A membership function is a curve that must vary between 0 and 1. It is associated with a
specific fuzzy set and maps an input value from the input space to its appropriate member-
ship value. In set theory, a set A defined in X is represented completely by

A:X - {0,1} such that,

AG) = {l,ffxeA
0,if xe A

A fuzzy set A defined in X is characterized by its membership function A : X — [0, 1]
where A(x) represents the degree of membership of x in the concept conveyed by A.

Personal Adaptive Web Agent for Information Filtering 6

Background

2.2.2 Fuzzy Measures

Fuzzy measures are operations which are performed on fuzzy sets. In this thesis, only the
possibility and necessity measures are used. These concepts are illustrated in Figure 2.2.

Nec(XIA)

FIGURE 2.2. Possibility & necessity measures.

Let A represent a fuzzy set while X constitutes an input datum. X and A are defined on
the same universe of discourse. The possibility measure represents the degree to which X
and A overlap and is given by

Poss (X|A) = sup, _ y[min(X(2),A(2))]
The necessity measure represents the extent to which X is included in A and is given by

Nec (X|A) = inf, _ ylmax((1-X(2)),A(2))]

2.2.3 IF-THEN Rules

A typical fuzzy if-then rule might be of the following form: if (x is A) and (y is B) then (z
is C) where A, B, and C are linguistic terms defined by fuzzy sets on the corresponding
input spaces X, Y, and Z respectively. In fuzzy if-then rules, the premise is an interpreta-
tion that returns a single real number in the range [0,1] while the conclusion is an assign-
ment that assigns the entire fuzzy set C to the output variable z.

Personal Adaptive Web Agent for Information Filtering 7

Background

The if-then rule is evaluated in three steps. First, the premise is evaluated which involves
fuzzifying the input statements between O and 1. Second, the appropriate fuzzy operators
are applied, in order to obtain a single real number in the range [0,1]. This is the degree of
support for the rule. Finally, the previous result is applied to the conclusion which is
known as implication. Thus, if the premise is true to some degree then the conclusion is
also true to that same degree. One of the most common implication methods is the min
function which modifies the output fuzzy set using truncation.

In general, there are several if-then rules. Thus, the output fuzzy sets for each rule are
aggregated into a single output variable usually using the max function. Finally, the result-
ing fuzzy set is defuzzified usually using the centroid function, in order to obtain a single
real number in the range [0,1].

2.3 Artificial Neural Networks

This section briefly introduces artificial neural networks (ANN) and competitive
learning. For more detailed studies, the reader may refer to (Haykin, 1994).

An ANN is an information processing machine. It is loosely based on the way the biolog-
ical nervous system such as the human brain processes information. ANNS are increas-
ingly being used to solve real world problems which do not have algorithmic solutions or
where the algorithmic solution is complex. An ANN is composed of a large number of
neurons (processing elements) that are interconnected. The neurons and their intercon-
nections are configured to solve specific applications in pattern recognition and data com-
pression using a learning process. The ANN learns by example by repeatedly adjusting
the strengths of the interconnections between the neurons.

An ANN viewed as an adaptive machine is a massively parallel distributed processor that
has a natural propensity for storing experimental knowledge and making it available for
use. It resembles the brain in two respects. First, knowledge is acquired by the network

Personal Adaptive Web Agent for Information Filtering 8

Background

through a learning process. Second, intemeuron connection strengths known as synaptic
weights are used to store the knowledge.

Inputs

X

Output

X3 L Yk

FIGURE 2.3. Nonlinear model of a neuron.

A neuron is an information processing element with three basic elements as shown in Fig-
ure 2.3. The first element is a set of synapses. Each synapse is a connection between an
input and a neuron, and has an associated synaptic weight. The second element is an
adder, which sums the input signals, multiplied by their respective synaptic weights. The
last element is an activation function ¢ (-} which is used to limit the output of the

neuron. A neuron k can be represented as
p
U, = > Wi & Y = (p(uk—ek)
i=1
where X 15 %o ...,xp are input signals, Wi Wi wkp are synaptic weights, and

0 k is a threshold value.

Personal Adaptive Web Agent for Information Filtering 9

Background

2.3.1 Competitive Learning

Competitive learning is employed to cluster a set of input patterns without supervision.
The neurons in the competitive layer learn to recognize different regions of the input
space where input vectors occur. The ANN has a single layer of output neurons which are
fully connected to the input nodes. All the neurons compete with each other to win the
competition for a given input vector. A neuron wins if it has the largest internal activity,
uy, for a specific input pattern among all the other neurons. The winning neurons’ output

is set to 1 while all the neuron outputs are set to 0. The winning neuron learns by moving
its weight vector in the direction of the input vector, while the losing neurons do not learn
on this input pattern. The standard competitive learning rule, is given by

n(x.-w..) if neuron j wins
Aw.i = tn
J

0 if neuron j loses
where n is a learning rate parameter.

2.4 Automatic Text Analysis

This section briefly introduces automatic text analysis and term weighting functions. For
more information on these topics, the reader may refer to (Salton, 1982). The automatic
text analysis process involves the assignment of index terms to a collection of documents
for the purpose of classifying the documents. The process involves the following steps.
The first step is to identify all the individual words within the document collection. The
next step is to eliminate all the high frequency words since they are poor discriminators
and are not by themselves useful in identifying document content. In English, there are
about 250 common words that have this high frequency characteristic and are usually a
part of a stop list. After the stop words are eliminated, the suffixes of the remaining words
can be removed. This reduces the original words to only their word stems. With the use
of the stems as index terms there are potentially more relevant items that can be
identified. For more information on suffix removal algorithms, the reader is referred to
(Salton, 1982; Salton, 1968). The next step is to assign to each of the remaining words a
weight value, reflecting its importance for content identification purposes, as discussed in
the next subsection. The index terms with sufficiently high weight values can be assigned
to the documents of the collection with a binary index mode. Thus an index term that

Personal Adaptive Web Agent for Information Filtering 10

Background

occurs in a document is assigned a value of 1 and 0 otherwise. For each document, a doc-

ument vector is createdas D, = {dﬂ, di2’ ooy di t} where each dij is the binary value

assigned to the jth identifier for document D; and ¢ represents the number of identifiers.

24.1 Term Weighting Functions

There are several different term weighting functions including the inverse document fre-
quency weight (IDFW), the signal-noise ratio, and the term discrimination value. The
IDFW method is the only method described in this thesis: for the other methods the reader
is referred to (Salton, 1982).

The IDFW assumes that the importance of the term is proportional to the frequency of
each term k in each document (represented as FREQ;;) and inversely proportional to the
total number of documents to which each term is assigned. The number of documents to
which term k is assigned is called the document frequency (DOCFREQy). A possible

measure of the IDFW is:

WEIGHT,, = FREQ;, x [1og, () -logz(DOCFREQk) +1]

where n is the number of documents in the collection. The equation shows that the IDFW
value in a given document increases as the frequency of the term increases but decreases
as the document frequency increases.

2.5 Whatis an agent?

The term agent is rapidly becoming the term associated with network software applica-
tions and especially with WWW applications. It is interesting to speculate why so many
software researchers and developers are using the term agent to refer to their products.
The simple answer is that most of them are following a trend to create a mystical and
futuristic atmosphere for their products. An example of this Smart Magic is reported in
(Dibble, 1996). A more analytical opinion which might be more enlightening has been
expressed by (Foner, 1993): “Like Al before it, the fairly loose specification of the mean-

Personal Adaptive Web Agent for Information Filtering 1n

Background

ing of agent and the use of a word with a nontechnical meaning in a technical way has
blurred the boundaries and made the concept available for appropriation.”

Actually, the word agent means different things to different people in different situations.
This seems to coincide with (Russell, 1995): “The notion of an agent is meant to be a tool
for analysing systems, not an absolute characterization that divides the world into agents
and non-agents.”

It may be wise for the industry to develop a suitable definition for the term agent. One
possible approach is to separate agents into real-world agents (i.e. most animals including
humans), software agents (i.e. which exist in computer operating systems, databases, net-
works, etc.), and artificial life (i.e. artificial biological environments in a computer sys-
tem) as listed in (Franklin, 1996). According to Franklin et al., characteristics that
software programs should have in order to be called agents are:

being situated in and part of an environment

the ability to sense its environment and act autonomously upon it
independence of other entities supplying input or interpreting output

acting in pursuit of its own agenda

current action affects its later sensing

acting continuously over some period of time

LU U 2

Their formal definition is then stated as: “An autonomous agent is a system within and a
part of an environment that senses that environment and acts on it, over time, in pursuit of
its own agenda and so to effect what it senses in the future.”

Franklin’s definition yields a general superclass for agents. If more requirements are
specified then smaller subgroups of agents can be created. Additional terms which can be
used include, but are not limited to, mobile, adaptive, personal, and collaborative which
further define how and what the specific agent accomplishes.

In comparison, (Foner, 1993) states that the crucial notions surrounding agents are:

1. Autonomy: agent pursues an agenda independently of the user
2. Personalizability: agent learns about the user without explicit programming
3. Discourse: a contract between the agent and user

a. Risk & trust: agent is delegated a task by the user which introduces a risk that it
will do something wrong along with the trust that it will do something right

Personal Adaptive Web Agent for Information Filtering 12

Background

5. Domain: agent must have a domain which it is familiar with

6. Graceful degradation: it is better for an agent to accomplish some tasks rather
then fail to do any tasks

7. Cooperation: user and agent are treated as peers
8. Expectation: user’s expectation of agent is important

No matter how an agent is defined, one hopes that they should be delegated tasks in order
to assist users. The tasks that they can be delegated are practically unlimited. They can
help hide complexity of tasks, perform mundane routine tasks, educate the user, monitor
events, collaborate with other users or agents, find information, serve as entertainers, and
serve many other functions.

From this introductory material, we can conclude three things. First, an agent does not
need to be a program. For instance, a robot can be an autonomous agent. Second, all soft-
ware agents are programs but not all programs are agents. Finally, it may require some
time, for the industry to settle on a robust definition of an agent.

2.6 On-line References for Software Agents

Originally, this section was intended to summarize and critique several software agents
already on-line on the WWW. However, since there is no single definition for an agent
which is accepted by industry, it would not be appropriate to scrutinize the work of others
based on subjective opinions and self-imposed definitions. Instead, several links to agent-
related websites are presented. The reader is encouraged to explore these links and decide
on whether the programs they encounter are indeed agents.

TABLE 2.1. On-line References for Software Agents

Name / Description Website

MuBot Description www.crystaliz.com/logicware/mubot.html
The SodaBot Home Page www.ai.mit.edu/people/sodabot/sodabot.html
The Software Agents Mailing List | www.cs.umbc.edu/agentslist/

Brightware at a Glance www.brightware.com/solutions/index.html
Tactical Picture Agent www.itd.nrl.navy.mil/ONR/aci/agents.html
Welcome to Autonomy Agentware | www.agentware.com/index.htm

Personal Adaptive Web Agent for Information Filtering 13

Background

TABLE 2.1. On-line References for Software Agents

Name / Description Website

Autonomous Agents ‘97 www.dlib.com/events/conferences/agents97/
aa97.html

Agents Conferences Database Ics.www.media.mit.edu/cgi-bin/conference0

MIT Media Lab, Agents Group agents.www.media.mit.edu/groups/agents/

UMBC AgentWeb www.cs.umbc.edu/agents/

IBM Agent Building Environment | www.networking.ibm.com/iag/iagsoft.htm

Firefly www.firefly.com/

Personal Adaptive Web Agent for Information Filtering 14

CHAPTER 3 PAW Agent Model

“You don't build it for yourself. You know what the people want & you
build it for them.”

-WALT DISNEY

As stated earlier, the purpose of the Per-
sonal Adaptive Web (PAW) agent is to
monitor it’s Web user in order to learn the
different categories of Web documents
that the user is interested in, then find and
suggest new similar documents for the
user.

The agent learns the category of docu-
ments that the user is interested in by
employing a real-time database, text ana-
lyser, competitive learning network, and
fuzzy inference system. The high level
interaction between the user, the PAW
agent, and the WWW is shown in Figure
3.1. First, the user views Web documents
using a browser. Second, the agent moni-
tors and records this activity. Third, it
learns the category of documents that the
user is interested in and finds new similar
documents. Finally, it suggests the new
relevant documents to the user.

FIGURE 3.1. Block diagram for the
interaction between the user, agent,
and WWW,

Personal Adaptive Web Agent for Information Filtering 15

PAW Agent Model

The PAW agent achieves its delegated task by performing the following seven subtasks:

L. Monitor the user while she is browsing the Web

2. Determine which of the visited documents are relevant

3. Textually analyze these relevant documents and reduce each into a document vector

4. Classify the document vectors into categories using unsupervised competitive learning

S. Scan the Web for new similar documents

6. Produce document vectors for the new documents and classify them using the trained
neural network

7. Decide whether to suggest the new documents to the user

The above seven subtasks are performed by three different components of the agent which
are shown in Figure 3.2.

Fi
Controller

B Relevant URL real-time database
Neural document classifier
O Fuzzy inference system

FIGURE 3.2. Components of the Agent.

Personal Adaptive Web Agent for Information Filtering 16

PAW Agent Model

The first component is the relevant URL real-time database which performs subtasks 1
and 2. It uses a novel approach described in the next section to calculate the relevance
value of the document and uses this value to determine how long its corresponding record
remains in the database.

The second component is the neural document classifier which performs subtasks 3 to 6.
It uses automatic text analysis and competitive leaming techniques which are discussed in
the subsequent section.

The third component is the fuzzy inference system described in the subsequent section
which performs subtask 7. It uses the results from the previous component and two other
criteria to decide whether to reject the new document or suggest it to the user.

3.1 Relevant URL Real-Time Database

The purpose of this component is to monitor the user while she is browsing the Web and
determine which of the visited documents are relevant. At this point in the development
of the Agent, the portion of the software monitoring the user has not been implemented.
Instead, a hand crafted browsing activity file for the user is employed. Each record in the
file is composed of three fields: a URL (representing the HTML document location), the
month, and the date it was accessed. The HCPN model that is developed is shown in Fig-
ure A.l in Appendix A. The database model is implemented using Borland C++ 3.1. The
following subsections describe the sub-components of the database model.

3.1.1 Building the Database

The database is partially generated from the user’s activity data file. Each unique URL is
assigned to a different record in the database. Each record contains the following fields:
URL name, month, period, frequency array, and relevance. Most of the fields are self-
explanatory. The period field is the length of the interval over which the relevance for the
particular URL is calculated. Note that this period is initially set to a default value (7
days) but can change for later periods depending on the number of times the URL is vis-
ited over the current period. This will be explained in more detail later. The frequency
array clements represent the days of the current period. For each day of the period that
the URL is visited the appropriate element in the array is assigned a value of 1. Figure 3.3

Personal Adaptive Web Agent for Information Filtering 17

—

PAW Agent Model

and 3.4 show a typical user’s activity data file (in this example the start of the period is
taken to be Dec. 16) and the associated database structure (without the R computed at this
point) that is created from it. The decomposed Petri Net for the Read File transition in the
HCPN is shown in Figure A.2 in Appendix A.

3.1.2 Calculating the Relevance

The relevance is a normalized numerical value which indicates the relevance of the URL
in terms of its frequency array characteristics (i.e. how often the document is accessed
over the period). In the relevance calculation, the number of visits during the period and
the distribution of the visits are both taken into consideration.

http:\\www.ce.umanitoba.ca Dec 16
http:\\www.media.mit.edu Dec 16
http:\\www.ee.umanitoba.ca\~imran Dec 16
http:\\'www.yellow.com Dec 17
http:\\www.mts.com Dec 18
http:\\www.ee.umanitoba.ca\~imran Dec 18
http:\www.mts.com Dec 19
http:\\www.mts.com Dec 19
http:\\www.cc.umanitoba.ca Dec 19

http:\\www.ee.umanitoba.ca\~imran Dec 19
http:\\www.ee.umanitoba.ca\~imran Dec 20

http:\\'www.yellow.com Dec 20
http:\\'www.mts.com Dec 20
http:\\www.ee.umanitoba.ca Dec 20
http:\\'www.ee.umanitoba.ca Dec 21
http:\\'www.yellow.com Dec 21
http:\\www.ee.umanitoba.ca\~imran Dec 21
http:\\'www.cc.umanitoba.ca Dec 22
http:\\'www.media.mit.edu Dec 22

http:\\www.ee.umanitoba.ca\~imran Dec 22

FIGURE 3.3. Typical test data file.

Personal Adaptive Web Agent for Information Filtering 18

PAW Agent Model

URL Month Period R
Frequency Array

http:\www.cc.umanitoba.ca Dec 7 -
0001001

http:\\www.ee.umanitoba.ca Dec 7 -
1000110

http:\\www.ee.umanitoba.ca\~imran Dec 7 -
1011111

http:-\\www.media.mit.edu Dec 7 -
1000001

http:\\'www.mts.com Dec 7 -
0011100

http:\\www.yellow.com Dec 7 -
0100110

FIGURE 34. Associated database generated from test data file.

The algorithm to calculate the relevance for each record (HTML document) is as follows.
The relevance is calculated in log,P stages where P is the period over which the relevance
is to be computed. In each stage the period is subdivided into regions called bins. In the
first stage, the bin size is P and in subsequent stages the bin size is reduced by one half its
previous value. Thus in the last stage, the bin size will be either two or three depending
on whether the value of P was even or odd respectively. In the above calculations only the
integer part of the answers are used.

For the first stage, the partial relevance contributed from this stage is simply the total
number of visits in the period. For each remaining stage, the partial relevance contribu-
tion is computed as follows. Starting from the leftmost bin until the last bin is reached,
adjacent bins are compared. The comparison involves multiplying the number of visits in
the left bin interval by those in the right bin interval. This value is then added to the com-
parison of the next two adjacent bins and so on until the last adjacent pair bins are

Personal Adaptive Web Agent for Information Filtering 19

PAW Agent Model

reached. Before this accumulated sum is added to the other partial relevance values from
the other stages, it is multiplied by a weighting factor. The weighting factor has the effect
of placing the most importance on the partial result from the first stage and geometrically
reducing the importance for each subsequent stage. This weighting factor is given by

1

2stage -1

After the relevance is aggregated from the weighted sums of the log,P stages, it is normal-
ized by the value of perfect relevance. Perfect relevance is the relevance value which is
computed for a hypothetical document that is visited each day of the period, i.e. the maxi-
mum relevance value. From this point on, the normalized relevance value will simply be
referred to as the relevance. Figure 3.5 shows the sample relevance calculations for the
first three documents in Figure 3.4. Note that the first row in Figure 3.5 represents the
perfect relevance frequency array characteristics. The decomposed Petri net for the Cal-
culate R transition in the HCPN is shown in Figure A.3 in Appendix A.

1 1 1 1 | 1 1 S Stage 1 bin

0 0 0 1 0 0 1 —————— StageZbins

1 0 0|0 1 1|0

1 0 1|1 1 141
R = {{il[7] + [172)[G)3)+B)D1} / ([1HT7] + [112N3)3)+BXD]} =13/13 =1

R = {[1][2] + [172]{O)1)+1)(D)1} / {T1(7] + [1/2}[B)3)+B)(D]} =2.5/13
R = {[1](3] + [172J{(1)2)+2)O)1} / {[1][7] + [1/2][B)3)+(3)(1)]} = 4/13
R = {[1][6] + [172](A)3)+(3)(D1} / {[117] + [172][(3)(3)+(3)(D]} = 10.5/13

FIGURE 3.5. Sample relevance calculations.

Personal Adaptive Web Agent for Information Filtering 20

PAW Agent Model

FIGURE 3.6. Fuzzy sets for relevance.

3.1.3 Updating the Length of the Period

After the relevance is calculated, we want to determine whether the period over which it is
calculated needs to be modified for the next interval. To determine this, a period perform-
ance measure is calculated using the relevance value and three fuzzy sets. The triangular
membership functions representing low, medium, and high relevance fuzzy sets are shown
in Figure 3.6. The relevance value, R, is used to create a step function which is also illus-
trated in Figure 3.6 and is defined as

I,O<Rel<R

U(Rel) = {
0, elsewhere

The fuzzy sets can be grouped into three regions. The relevance value, R, defines the
boundaries as follows

Region L,if (R< M)
Region 2,if(M<R<H)
Region 3,if (R> H)

The period performance measure (PPM) is then defined as
PPM = PPM1 + PPM2 + PPM3

Personal Adaptive Web Agent for Information Filtering 21

PAW Agent Model

where (note that L, M, and H refer to Miow, Mmed, and Mhigh respectively)

PPM1 = maxg,; . A~ [0, M] [1-Nec(U(Rel),L(Rel)), Poss(U(Rel),M(Rel))]

PPM2 = MaxXpeie U~ MH] [l —Nec(U (Rel),M(Rel)), Poss (U(Rel),H(Rel))]

PPM3 = maxy,; oy [1-Nec(U(Rel), H(Rel))]

The period is now modified according to the following guidelines.

'IfOSPPMlS%thenreducePtotheminimumvalue

o If %<PPM1_<.1 & ML g (R) <0 thendecreasePby%

«If PPM2 = 1 thenincreasePbyé

*If0<PPM3 < then increase P by 2

-If%<PPM3S1 thenincteasePby%

These guidelines are shown as shaded regions in Figure 3.6. In order to control the size of
the database, those documents that fall into the first guideline twice in a row (i.e. consecu-
tive periods), are removed from the database because they are irrelevant. The decomposed
Petri nets for the three Modify Px transitions in the HCPN are shown in Figure A4 in
Appendix A.

3.1.4 Await the next Period

After any necessary modification to the period has been made for each HTML document
record, the model waits until the end of the next period at which time, the entire cycle of

Personal Adaptive Web Agent for Information Filtering 22

PAW Agent Modet

events are repeated. The decomposed Petri net for the Wait transition in the HCPN is
shown in Figure A.5 in Appendix A. Note that the Wait subnet is basically the Richter
Chime clock.

3.2 Neural Document Classifier

The purpose of this component is first to textually analyse the relevant documents and
reduce them into document vectors. Second, to scan the Web for new documents and pro-
duce their document vectors. Finally, to classify the relevant document vectors into cate-
gories using unsupervised competitive learning, and then to classify the new document
vectors using the trained neural network. The following subsections describe the sub-
components of the neural document classifier.

3.2.1 Generating Relevant Document Vectors

The purpose of this sub-component is to determine a limited set of index terms found
from within all the relevant documents which best represent the whole document
collection. The Web documents are analysed textually one at a time. For each document,
its words are compared to a stoplist. The stoplist is a collection of the most frequent
words used in the English language. The words that are shorter then three characters or
have a match in the stoplist are discarded since they do not help distinguish among differ-
ent documents. The remaining words are recorded in a database and monitored to deter-
mine how many times they occur in each document and within the whole document col-
lection. After all the words in the document collection have been statistically recorded,
each word is assigned a weight according to the modified Inverse Document Frequency
Weight (IDFW) method. The formula for the modified IDFW is

IDFW(termk) = (coef) (logz(n) -logz(DOCFREQk) + 1)

Personal Adaptive Web Agent for Information Filtering 23

PAW Agent Modef

where

DOCFREQ & is the number of documents to which term k is assigned

n is the number of documents in the collection
-1 if FREQik =1

| if 1 <FREQikS 5
2 if 5« FREQik <10
- 2.5 if FREQik> 10

coef =

The formula for the IDFW is modified from the original equation in order to prevent a sin-
gle term obtaining a high IDFW value. An example of a situation which can giverise toa
high IDFW value is as follows. A word is found in only one of the documents in the
entire collection, however it occurs in that document many times, thus resulting in a large
IDFW value. In order to avoid this situation, the coefficient is limited to a maximum
value of 2.5 as indicated in the modified IDFW equation.

The words with the highest IDFW values are selected as the index terms to represent the
collection of documents. The final step is to use only the index terms to extract the docu-
ment vectors from the database to create the input vectors for the ANN stage.

The C program to generate the relevant document vectors is called train.c which is dis-
cussed next.

3.2.1.1 Data Structures

There are three main data structures. The first structure is for the stop list which is
accessed through an array of strings. Each element in the array is for a word in the stop
list. The second structure is for the training database which stores the statistical informa-
tion about the words in the document collection. The database has a record for each indi-
vidual word that is not found in the stop list and is larger then two characters. It is
implemented using a singly linked list. Each element of the list has a data component and
a link to the next element. The data component has five further fields all related to a sin-
gle term: the name of the term, an array to record the frequency of the term in each docu-
ment, the total frequency of the term, an array to record the IDFW of the term in each
document, and the aggregate IDFW value. The third structure is an array of type list ele-

Personal Adaptive Web Agent for Information Filtering 24

PAW Agent Model

ment which contains only those records from the database which correspond to the index
terms. The index terms are the words with the highest IDFW value, and are used to repre-
sent the entire document collection.

3.2.1.2 Input/ Output Files Accessed

The program accesses one input file called stopl.dat which contains the stop list words,
and is shown in Figure B.1 in Appendix B. In addition, there are three data files generated
by this program. The first file called names.dat contains the names of the train data files
that are analysed. The second file called terms.dat contains the index terms selected by
the program. The last file called nnet.dat contains the binary document vectors for the
ANN training data set.

3.2.1.3 Operation of Program

The flowchart for the operation of the train.c program is shown in Figure 3.7. The stop
list words are read into their data structure and the output files are initialized. For each
training document, all the words are compared to the stop list. If the words are not found
in the stop list and are longer than two characters, then the database is updated. The
update occurs in one of two ways. If the word is not in the database, a new element is cre-
ated for it. Otherwise, the word already exists in the database, in which case the fre-
quency counters are incremented.

After all the words in the current document are analysed, the name of the file is appended
to the names.dat file. Now the next document is analysed as before until all the docu-
ments are finished. The next step is to calculate the IDFW for each word and then select
the words with the highest IDFW values as the index terms. The index term names are
then written to the rerms.dat file.

Personal Adaptive Web Agent for Information Filtering 25

PAW Agent Model

[Loadsmptwords]
_¥

[Tnitialize output files |

| Open train documents |

| Read word |

| Close train document J

[Append name to file |

Docs no
finished?

yes
[Calc. IDFW for terms |

y
r Find index terms |

[Print index terms to file |

[Print ANN train data to file|

[Closeoutputfiles |

FIGURE 3.7. Flowchart for the operation of the train.c program.

Personal Adaptive Web Agent for Information Filtering

PAW Agent Model

The next step is to write the ANN train data to the nnet.dat file. A typical ANN data set
containing the document vectors is shown in Figure 3.8. Each row of the training dataset
represents an individual document in which the columns have binary values for each of
the index terms. A 1 indicates that a particular index terms is present while a 0 indicates
that it is missing. Finally, the output files are closed.

111010001000100100000000110000
111011000001110110101100010010
111011000000000110101010111010
011010000000100110111100110000
111011000000100110001011110000

FIGURE 3.8. Typical ANN data set.

3.2.2 Generating New Document Vectors

The category names for the documents are used to query search engines to find new docu-
ments that might be of interest to the user. The purpose of this sub-component is to use
the index terms to generate the document vectors for the newly retrieved documents. The
new documents are analysed one at a time. For each document, it is determined whether
or not the index terms occur in the document. If the index term exists, then a 1 is recorded
in the new database, otherwise a 0 is recorded. The final step is to create the new docu-
ment vectors from the database which is used to simulate the trained ANN.

The C program to generate the document vectors for the newly retrieved documents is
called rest.c which is discussed next.

3.2.2.1 Data Structures

There are two main data structures that are used. The first structure is for the index terms
which is accessed through an array of strings. The second structure is for the binary val-
ued document vectors which is implemented as an array. Each element in the array is a

record for a newly retrieved individual document. The record itself is an array which has

Personal Adaptive Web Agent for Information Filtering 27

PAW Agent Model

one element for each of the index terms. An integer value indicates the number of times
the index term occurs in the document.

3.2.2.2 Input/ Output Files Accessed

The program accesses one input file called terms.dat which contains the index terms gen-
erated from the previous program. There are also two data files that are generated by this
program. The first file called names2.dat contains the names of the newly retrieved docu-
ment files that are analysed. The second file called nntest2.dat contains the binary docu-
ment vectors for the new document collection.

3.2.2.3 Operation of Program

The flowchart for the operation of the fest.c program is shown in Figure 3.9. The first
action is to initialize the new document collection database. This involves setting all the
counters to 0 for each of the new documents. Next, the index terms are read into the index
term array and the output files are initialized. For each of the new documents, all of their
words are compared to the index terms. If a word is the same as an index term, the corre-
sponding counter of that index term is incremented.

After all the words in the current document are analysed, the name of the file is appended
to the names2.dat file. Now the next document is analysed as before until all the docu-
ments are completed. The next step is to write the document vectors to the nntest2.dat
file. Finally, the output files are closed.

Personal Adaptive Web Agent for Information Filtering 28

PAW Agent Mode!

v
| Initialize output files |

| Open tramdocument]

Read word H
End
in mdex of 2l
terms? words?
yes
Increment counter [Close test document |

v

| Append name to file |

yes /Docs no

Close output files I‘-—Lpﬁllt ANN train data to ﬁEl finished?

FIGURE 3.9. Flowchart for the operation of the test.c program.

3.2.3 Classifying Document Vectors

The purpose of this sub-component is to train an ANN to classify similar document vec-
tors into the same class using a competitive network architecture and competitive learning
algorithm. The competitive network is trained using the relevant document vectors gener-
ated from the first stage. Thus, the neurons in the layer learn to represent different regions
of the input space where input vectors occur. After the network is trained, it is simulated

Personal Adaptive Web Agent for Information Filtering 29

PAW Agent Model

using the document vectors from the newly retrieved documents. The network can now
classify the new document vectors into classes according to its learned categories.

The MATLAB program to simulate the ANN is called simulate.m which is described next.

3.23.1 Competitive Learning Architecture

The competitive learning architecture is shown in Figure 3.10. The illustration shows that
there are R inputs and S neurons. The net input of a competitive layer is computed by
finding the negative distance between the input vector and the weight vectors and then
adding the biases. The competitive transfer function receives the net input vector from
the layer and returns the output vector of the neuron. All neurons have an output of 0
expect for the winner neuron which has a value of 1. The winner neuron is the one with
the highest net input. The competitive network is then trained by updating only the
weights of the winning neuron, to be even closer to the input vector. This results in the
winner being more likely to win the competition the next time a similar input vector is
presented, and less likely to win when a significantly different input vector is

presented. The ideal number of neurons in the ANN depends on the number of different
classes that the data represents, which is information supplied by the user.

P a
Rx1 v ——p
SxR Sx1
n |C
Sx1
1— b
R Sx1 S
a=compet(-dist(W,p)+b)
FIGURE 3.10. Architecture of the Competitive network.

3.2.3.2 Data Structures

There are four main variables used. The first is matrix P which contains the training vec-
tors. Each column represents an individual training document vector. The second is
matrix W which contains the weights for the interconnections between the neurons. The

Personal Adaptive Web Agent for Information Filtering 30

PAW Agent Model

next variable fp (training parameters) is a vector which contains the display frequency,
maximum epochs, and learning rate parameters. The last set of variables are the testing

vectors, p, where xen .

3.2.3.3 Operation of Program

The flowchart for the operation of the simulate.m program is shown in Figure 3.11. The
first step is to load the relevant document vectors into variable P. The next step is to ini-
tialize the weights for the neurons. This is followed by training the ANN using the com-
petitive algorithm. The trained ANN is then simulated using the new documents. The
ANN then classifies the new vectors into the different classes.

C_Start_ 2

[Load train vectors into P |

[Init weights for neurons |

[Train the network |

|Simulate with test vectors|

[Show results of classificatior|

FIGURE 3.11. Flowchart for the operation of the simulate.m program.

3.3 Fuzzy Inference System

The purpose of the fuzzy controller is to determine whether the document retrieved by the
Web agent should be referred to the user or rejected. The FIS makes a decision using
three criteria. The first is Certainty which represents the level of belief by the agent that
the retrieved information is important. This criteria would be provided by the ANN stage
after the new retrieved document is textually analysed and then passed through the trained
ANN. However, at this stage of the agent development, the particular measure has not
been decided upon. There are three different levels of Certainty: Low, Med, and High.

Personal Adaptive Web Agent for Information Filtering 31

PAW Agent Model

Similarly, there are two different levels of Query: Casual and Important. The final criteria
is Responses which represents the number of responses that the user has requested. There
are three different levels of Responses: Few, Average, and Many. The last two criteria are
supplied by the user when the Retrieval process is initiated.

The Fuzzy controller uses these criteria to determine whether to refer the retrieved docu-
ment to the user or reject it. Table 3.1 shows how the criteria are used to influence the
result of the Fuzzy controller.

TABLE 3.1. Fuzzy controller truth table.*

if | CERTAINTY | QUERY | RESPONSES | then ACTION
— [Low |Casual |* | |Reest |
Med Casual Average Reject
Med Casual Many Refer
Low Important Few Reject
Med Important Average Refer
High * * Refer
Med Casual Few Reject
Low Important Average Reject
Med Important Many Refer
Med Important Few Reject
Low Important Many Refer

2. The “*" represents don’t care condition.

Personal Adaptive Web Agent for Information Filtering 32

CHAPTER 4 PAWAgent Simulations
and Results

“It’s kind of fun to do the impossible.”

-WALT DISNEY

The PAW agent model described in the previous chapter which includes the relevant URL
real-time database, neural document classifier, and the fuzzy inference system are each
simulated independently in this chapter.

4.1 Relevant URL Real-Time Database

The program for the database is simulated using a user activity test file similar to that
shown in Figure 3.3. Several simulations are carried out for different parameter values as
discussed below.

4.1.1 Simulation # 1

The first simulation involves executing the program with the following characteristics for
the three relevance fuzzy sets. Refer to Figure 3.6 for the interpretations of the
parameters. The parameters are a=0.15, b=0.25, ¢=0.5, d=0.6, and e=1. Five different tri-
als of the program were executed with these parameters while varying the period from 7
days to 11 days.

The graph in Figure 4.1 shows that as the initial P (period) value is increased, the change
in the modification of the new period increases in the negative direction. When the initial

Personal Adaptive Web Agent for Information Filtering 33

PAW Agent Simulstions and Results

Initial P vs. change in modified P
Change in mod. P
[\
2)
0 - Initial P
7 8 9 10 11
2
-4)
-6
[]
-8
-10
-12 e
-14
-16 o
FIGURE 4.1. Results of Simulation # 1.

P increases, it decreases R (relevance) which causes the PPM to fall into the first two PPM
guidelines. Thus the next P values are decreased.

4.1.2 Simulation # 2

The second simulation involves executing the program with the following characteristics
for the three relevance fuzzy sets. Again refer to Figure 3.6 for the interpretations of the
parameters. The parameters are a=0.25, b=0.3, c=0.6, d=0.7, and e=1. This time the rele-
vance fuzzy set have been shifted to the right slightly. Five different trials of the program
were executed with these parameters while varying the period from 7 days to 11 days.

The graph in Figure 4.2 again shows that as the initial P value is increased, the change in
the modification of P increases in the negative direction. The three fuzzy sets in this sim-

Personal Adaptive Web Agent for Information Filtering K}

PAW Agent SIm_ulatlons and Resuits

Imitial P vs. increase in modified P

> Initial P

FIGURE 4.2. Results of Simulation # 2.

ulation are shifted to the right, thus there are more chances that guidelines 1 and 2 are met
then guidelines 3 and 4 which results in more chances for the next period to decrease then

increase.

4.1.3 Simulation # 3

The third simulation involves executing the program with the following characteristics for
the three relevance fuzzy sets. Refer to Figure 3.6 for the interpretations of the
parameters. The parameters are a=0.35, b=0.4, c=0.5, d=0.55, and e=1. This time the rel-

Personal Adaptive Web Agent for Information Filtering

PAW Agent Simuiations and Results

Initial P vs. increase in modified P

Change in mod. P

—— Initial P

FIGURE 4.3. Resuits of Simulation # 3.

evance fuzzy sets Low and High have been stretched while fuzzy set Med has been
compressed. Five different trials of the program were executed with these parameters
while varying the period from 7 days to 11 days.

The graph in Figure 4.3 shows that as the initial P value is increased, the change in the
modification of P increases in the negative direction. The low and high fuzzy sets in this
simulation have been expanded while compressing the med fuzzy set. This time the range
for all five of the guidelines have been increased.

Personal Adaptive Web Agent for Information Filtering 36

PAW Agent Simulations and Results

4.1.4 Observations

From the above three experiments, we notice that the degree to which P is modified
depends on both the initial value of P and the characteristics of the fuzzy sets. However,
the relevance calculations are unaffected by the changes in the characteristics of the fuzzy
set as expected. In general, as the initial values of the periods increase, the relevance val-
ues decrease. The results of the three simulations are summarized in Table 4.1.

From the results of the experiments, the construction of the fuzzy sets, and the period per-
formance measure (PPM), the following general observation can be made. If the Low
fuzzy set is compressed while the Med and High fuzzy sets are expanded then the overall

increase in the modification of the period will be maximized. On the other hand, if the
Low fuzzy set is expanded while the Med and High fuzzy sets are compressed then the

overall increase in the modification of the period will be minimized.

TABLE 4.1. Results of the Simulations

Simulation # 1 | Simulation # 2 | Simulation # 3

Modified Ps Modified Ps Modified Ps Relevance values for
Initial P | for the 6 Docs | for the 6 Docs | for the 6 Docs | the 6 Docs
7 779777 779787 779777 .19 .31 .81 .15 .31 .31
8 7797177 778777 779777 .13 .21 .66 .13 .24 21
9 789788 789788 7710777 .11.18 .56 .11 .20.18
10 7810788 7810778 7710777 09.15 45 .09.13.15
11 7911779 7711777 779777 08.13.39.08.11.13

4.2 Neural Document Classifier

The purpose of the simulation is to train a competitive network with seven neurons to
classify documents from seven different categories using eighty training document vec-

tors.

4.2.1 Training Data Simulation

The train.c program is executed using a standard stop list obtained from (Rijsbergen,
1979) with only the following additional words inserted: copyright, image, rights, and

Personal Adaptive Web Agent for Information Filtering

37

PAW Agent Simulations and Results

reserved. These words are added to the stop list because they are some of the most fre-
quently used words associated with Web documents and do not help differentiate the doc-
ument content. The program is executed on seventy documents with the maximum
number of index terms set to eighty. The training documents that are selected and the
results obtained are discussed below.

4.2.1.1 Relevant Document Collection

Documents from seven different topics each with ten samples are used as the relevant doc-
ument collection. All the documents were taken from the WWW and saved as text files
with no editing performed on them. Winston Cup racing documents were taken from the
Winston Cup Online website located at http:/Avww.winstoncuponline.com/. Movie
review documents were taken from the MOVIEWEB website located at http:/mov-
ieweb.com/. The home family medicine documents were taken from the Canadian Medi-
cal Association website located at http://www.cma.ca/. The modern aircraft statistic
documents were taken from the US Air Force Museum located at www.wpafb.af-mil/
museum. The 1996 Olympic games documents were taken from the CNN - The Atlanta
Olympic Games website located at http://cnn.com/SPORTS/OLYMPICS/. Finally, the
music group and software agent documents were taken from various other websites.

4.2.1.2 Results of Simulations

The program generates the names.dat, terms.dat, and nnet.dat files. The first file records
the seventy files which are processed along with their names. The second file records the
top eighty words that are selected as the index terms. The last file records the binary doc-
ument vectors used for training the ANN. Each row is for an individual training docu-
ment vector while the columns represent the index terms.

4.2.2 Testing Data Simulation

The test.c program is executed using the terms.dat and nnet.dat files generated from the
previous program. The testing documents that are selected and the results obtained are
discussed below.

4.2.2.1 New Test Data Document Collection

Personal Adaptive Web Agent for Information Filtering 38

PAW Agent Simuiations and Results

The new test document collection is gathered using the EXCITE (tm) search engine to
collect ten documents for each of the seven topics. The category names are used as que-
ries for the search engine to retrieve the new documents.

4.2.2.2 Results of Simulation

The program generates the names2.dat and nntest2.dat files. The first file records the sev-
enty files that are processed along with their names. The second file records the binary
matrix used for testing the competitive network. Each row is for an individual test docu-
ment vector while the columns represent the index terms.

4.2.3 ANN Simulation

The ANN program is executed using the train and test document vectors generated from
the previous two programs. The independent parameters are set as follows: learning rate
(Ir) is 0.01, maximum number of epochs (me) is 4000, and the frequency of progress dis-
play (df) is 1000.

4.2.3.1 Results of Simulation

The MATLAB screen output for the program indicates the update status of the training
after every 1000 epochs. After the network is trained, the original training data and the
new test document vectors are presented to it one at a time. The program then displays
the class to which the vectors belongs.

Table 4.2 and Figure 4.4 show the results produced by simulating the trained network with
the original training data and the new test data. In order to evaluate the trained network in
categorizing new documents, an accuracy measure is defined as

“correct, wrong. \]
i i
+{1-

totali P

Accuracy =

N M

1
Pi=1 2

Personal Adaptive Web Agent for Information Filtering 39

PAW Agent Simuiations and Results

where p is the number of categories, correct; is the number of correctly classified docu-
ments in class;, wrong; is the number of misplaced classes present in class;, and total; is

the total number of documents in class;.

The above equation shows that the accuracy of a particular class depends not only on the
number of documents that were correctly placed in the class but is also inversely propor-
tional to the number of misplaced documents. The overall accuracy of the system is the

average of the individual class accuracy values.

TABLE 4.2. ANN simulation results.

. Accuracy Original | Accuracy New
Categories Training Data Test Data
1) Winston Cup Racing 80% 100%
2) Movie Reviews 93% 100%
3) Music Groups 74% 78.5%
4) Olympic Events 100% 42%
5) Home Family Medicine 40% 50%
6) Software Agents 89% 100%
7) Modern Aircraft Statistics 100% 87%
Overall Accuracy 82% 80%
Percentage error vs categories
% E‘irror
60 Il osiginal Data
50
40 - New Data
30
20
10
0
1 2 3 4 5 6 7 Category #
FIGURE 4.4. Bar chart for ANN simulation runs.

Personal Adaptive Web Agent for Information Filtering

PAW Agent Simuiations and Resuits

Figure 4.5 shows the leaming convergence for the new test data. The competitive learn-
ing algorithm starts off with a relatively large overall accuracy error (29%) at 1000 epocs
and becomes constant (20%) after 3000 epocs.

% Brror Percentage error for new test data
VS epocs
30

Nitii

1000 2000 3000 4000 S000
FIGURE 4.5. Bar chart for learning convergence.

4.3 Fuzzy Inference System

The purpose of the FIS simulation is to verify whether the truth table for the FIS presented
in Table 3.1 is a reasonable design as the document acceptance/rejection controller.

4.3.1 Results of Simulations

All figures referenced in this section are appended in Appendix C. The FIS for the Web
agent controller is shown in Figure C.1. It shows that the FIS has 3 inputs (CERTAINTY,
QUERY, and RESPONSES), 1 output (ACTION), and is composed of 11 rules which are
represented by the black box. It also shows the Fuzzy operators which are a part of the
FIS and the methods used. The only operator that is not used in the Web agent controller
is the “OR”. The other fields were modified and experimented with to see which combi-
nation gave the best results. After conducting, experiments with several combinations,
the following choices were adopted. The AND method was “prod”, IMPLICATION type
was “min”, AGGREGATION type was “max”, and DEFUZZIFICATION was “centroid”.

Each of the 3 inputs have a range in the interval [0,10]. Figure C.2a shows the three mem-
bership functions for the CERTAINTY input using bell-shaped membership functions.
Figure C.2b shows the 2 membership function for the QUERY input. Figure C.2c shows
the 3 trapezoidal membership functions for the RESPONSES input. The output variable

Personal Adaptive Web Agent for Information Filtering 41

RS s S RS

PAW Agent Simulstions and Resuits

also has a range in the interval [0,10]. Figure C.2d shows the 2 triangular membership
functions for the ACTION output.

The 11 IF-THEN rules for the FIS are shown in Figure C.3 and correspond to the rules
that were established in Table 3.1. Figures C.4a and b show snapshots of the 11 rules of
the FIS along with the final results for casual and important queries respectively while
fixing the CERTAINTY to med and RESPONSES to average. The results of these two
snapshots are consistent with the desired results.

Figures C.4a and b show only one calculation at a time (i.e. a microview of the FIS). In
order to see most of the output surface of the FIS, Figures C.5 to 8 have been generated.
These plots show the 3D and corresponding 2D behaviour of the FIS for different input
combinations. The ACTION output variable indicates whether the retrieved document is
to be referred to the user or rejected. If the value of ACTION is greater than or equal to 5
then the document is referred, otherwise, it is rejected. Note that the ACTION output var-
iable also indicates the degree to which the document is referred or rejected.

Only 2 input variables and 1 output variable can be shown at one time. Thus the QUERY
input is kept fixed while the CERTAINTY and RESPONSES inputs are varied for each
plot. Figures C.5a and b show the 3D and 2D plots respectively for the case when the
QUERY input is fixed at a level of 2 (Casual). Similarly, Figures C.6a and b show the 3D
and 2D plots respectively for the case when the QUERY input is fixed at a level of 4 (less
Casual). Similarly, Figure C.7a and b show the 3D and 2D plots respectively for the case
when the QUERY input is fixed at a level of 6 (Important). Finally, Figures C.8a and b
show the 3D and 2D plots respectively for the case when the QUERY input is fixed at a
level of 8 (more Important).

4.3.2 Observations

It is clear from the 3D and 2D plots of the FIS that the greater the level of CERTAINTY
and RESPONSES, the greater the chances that the retrieved document is referred to the
user. Itis also clear that as the level of QUERY increases (i.e. query is important) so does
the chance that the document is referred. The results that are obtained are consistent with
the design attributes of the individual input and output membership functions and the cor-
responding rules.

The FIS developed for the Web Agent is suitable for this application because it uses vague
information obtained from the user together with the agent to make an appropriate
decision. It is worth noting that the form of the membership functions and the rules can
be easily adjusted to obtain different characteristics for the FIS.

Personal Adaptive Web Agent for Information Filtering 42

CHAPTER 5 Conclusions and
Recommendations

“Get a good idea and stay with it. Dog it and work at it until it’s done,
and done right.”

-WALT DISNEY

5.1 Discussion

This thesis has presented a design of a Web agent which meets the requirements of being
adaptive, personalizable, and able to find new documents which its user is interested.
This is achieved by developing three components: (i) a relevant URL real-time Database,
(ii) a Neural document classifier, and (iii) a fuzzy inference system decision controller.
The PAW agent is made adaptive (i.e. is able to learn by monitoring its user) by using
competitive learning. It is made personalizable (i.e. has the ability to tailor itself to its
users preferences) by implementing a relevant URL real-time database which monitors
the user’s activities. The agent accomplishes its delegated task using automatic text anal-
ysis techniques and a fuzzy decision controller.

The first component uses concepts and techniques from fuzzy logic to design a real-time
database. It keeps track of the URLSs that the user has visited in a given time period and
decides whether a particular URL should remain in the database (because it is a relevant
location for the user) or be discarded (because it has become irrelevant) using a relevancy
measure. The simulations for the database indicated that the Period Performance Measure
which was developed to determine if and for how long a URL remains relevant produced
satisfactory results. This first component was required as a preprocessing stage because it
is necessary to separate the useless URLs from those that will be used to train the ANN in
the second component. This component could possibly have been implemented without
using fuzzy logic, however the fuzzy measure allows meaningful representations to be

Personal Adaptive Web Agent for Information Filtering 43

Conclusions and Recommendations

associated with its function, which makes it easier to interpret what it accomplishes. As
well, the fuzzy measure can be easily modified to give different results by changing the
characteristics of the fuzzy sets. The real-time database makes it possible to maintain
manageable size for the database, and only relevant URLSs are maintained since the other
URL:s are removed after two consecutive periods of being irrelevant.

The second component uses techniques from automatic text analysis and competitive
learning to reduce Web documents into document vectors, and to cluster the document
vectors into groups, respectively. The simulation of the automatic text analyser success-
fully parsed the documents to find the most descriptive words to represent the document
collection. The competitive network simulation using Matlab’s Neural Network toolbox
was also successful in clustering the original and new document vectors with about 80%
accuracy. This component allowed the agent to learn the types of documents that the user
was interested in. A limitation in the implementation of this component is that the
number of categories into which the agent should cluster the documents must be known in
advance. The automatic text analysis technique is a good approach because it allows the
whole document to be represented by a single vector, rather then using a meta-form tech-
nique where only set key words are used. As well, the process of using an unsupervised
competitive network for the agent to cluster the documents makes it more autonomous
than most other existing information agents.

The third component again uses basic techniques from fuzzy sets to develop a controller
which suggests or rejects the new documents that are retrieved. It is based on the agent’s
level of confidence that the retrieved document is useful for the user (certaintity), the
number of responses that the user wants (i.e. low/med/high), and on the type of query (i.e.
casual/important). The simulation of the FIS showed that it is very easy to implement a
controller using fuzzy logic. The benefit is that the design can be implemented using lin-
guistic terms which are far easier to employ then equivalent numerical methods. As well,
this approach gives far more information (i.e it does not simply reveal that the document
is accepted or rejected but rather to what extent) and it allows the controller to be easily
modified by changing the characteristics of the fuzzy sets.

Is the PAW agent presented in this thesis really an agent? According to Franklin’s defini-
tion which was stated in Chapter 3, it is indeed an agent and not just a useful software
program. The PAW agent (i) is situated in and part of the users machine and the Web
environment, (ii) has the ability to sense what its user is doing and to act autonomously on
it by finding new documents, (iii) is almost independent of the user or other entities for
supplying it input or interpreting its output (the number of categories of documents at this
stage of development is provided externally), (iv) acts in pursuit of its own agenda which
is to learn the types of documents its user is interested in and to find new ones, (v) dis-

Personal Adaptive Web Agent for Information Filtering 4

Conciusions and Recommendastions

plays current actions which affect its later sensing, which is evident with respect to the
periodic document clustering performed by the competitive network, and (vi) acts contin-
uously over some period of time as indicated by the real-time database.

5.2 Recommendations for Future Work

There are several ways in which the PAW agent can be improved or extended. The por-
tion of the software which monitors the user’s browsing activity should be implemented
and tested. As well, the portion of the software which automatically sends a query to a
search engine to retrieve potentially new documents should also be implemented and
tested.

For the automatic text analyser component, several different techniques can be further
pursued. A larger stop list which is Web-oriented (i.e. contains the most common Web
words) should be generated. This will increase the ability of the text analyser to differen~
tiate between Web documents. Perhaps a suffix removal algorithm should also be added
to increase the number of stem words that are represented by the document vectors. Other
methods that may improve document identification include using continuous valued docu-
ment vectors instead of binary to allow different weights to be assigned to the terms, other
term weighting functions could be implemented to determine how they affect the out-
come, and extracting visually significant features from the documents.

For the neural document classifier, a certaintity measure should be defined which indicates
to the FIS component the level of belief that the document is relevant (i.e. certainty). The
competitive learning algorithm can be generalized, for example to include soft competi-
tive learning and self-organizing maps (Haykins, 1994). This modification allows more
than one neuron to participate in learning for each competition. More than one neuron
updates its weight after each input pattern is presented. Finally, an accuracy measure
should be defined which allows the agent to automatically determine the number of cate-
gories (clusters) required without the user supplying this information. This would make
the PAW agent even more autonomous.

Personal Adaptive Web Agent for Information Filtering 45

APPENDIX A HCPNs for Relevant URL
Real-Time Database
Component

The figures in this appendix are made reference to in Chapter 3 section 1.

Personal Adaptive Web Agent for Information Filtering

HCPNs for Relevant URL Real-Time Database Component

FIGURE A.l. Hierarchical Colored Petri Net Model.

Personal Adaptive Web Agent for Information Filtering

47

HCPNs for Relevant URL Real-Time

Database Component

8

TMOVeY [EOR=true]

| Rj_ (ALY OutlnEOR)

F
Open file
Outl
a(F) R
File R
open R Read 1 record
Outlb(R)
S Record
Record eco
read Not
EOF
. /Al tid
Sort records et—i—{ records [EvalEOR) |FOULEEOE)
read / [EOF=true] [EOF=false]
Outle(R,j)
Sortea R
records —
Record
Records

[EOR=false]

FIGURE A.2. Decomposed Petri net for Read File.

Personal Adaptive Web Agent for Information Filtering

HCPNs for Relevant URL Reel-Time Database Component

FIGURE A.3. Decomposed Petri net for Calculate R.

Personal Adaptive Web Agent for Information Filtering

49

HCPNs for Relevant URL Real-Time Database Component

FIGURE A.4. Decomposed Petri nets for a) Modify P1, b) Modify P2,
& ¢) Modify P3.

Personal Adaptive Web Agent for Information Filtering 50

HCPNs for Relevant URL Reel-Time Database Component

Outl2a(C)

K=0

p \Period
odifi

Set (K.P)

Out12b(P)

Timeout
Clock
setup

Out12f(K.P)

FIGURE A.S. Decomposed Petri net for Wait.

Personal Adaptive Web Agent for Information Filtering

51

APPENDIX B Neural Document
Classifier Component

The figure in this appendix is made reference to in Chapter 3 section 2.

Personal Adaptive Web Agent for Information Filtering

52

Neural Document Classifier Component

about
above
across
after
afterwards
again
against
all
almost
alone
along
already
also
although
always
among
amongst
and
another
any
anyhow
anyone
anything
anywhere
are
around
bar
became
because
become
becomes
becoming
been
before
beforehand
behind

being
below
beside
besides
between
beyond
both

but

can
cannot
could
copyright
down
during
each
either
else
elsewhere
enough
etc

even

ever
every
everyone
everything
everywhere
except
few

first

for
former
formerly
from
further
had

has

have
hence
her

here
bereafter
hereby
herein
hereupon
hers
herself
him
himself
his
home
how
however
image
inc
indeed
into

its

itself
last
latter
latterly
least

less

link

Itd

many
may
meanwhile
might
more
moreover
most

FIGURE B.1. Stop list words.

mostly
much
must
myself
namely
navigation
neither
never
nevertheless
next

no
nobody
none
noone
nor

not
nothing
now
nowhere
off

often
once

one

only
onto
other
others
otherwise
our

ours
ourselves
out

over
own
page

per

Personal Adaptive Web Agent

53

Neural Document Classifier Component

perhaps
rather
reserved
rights
same
seem
seemed
seeming
seems
several
she
should
since
some
somehow
someone
something
sometime
sometimes
somewhere
still

such

than

that

the

their
them
themselves
then
thence

there
thereafter
thereby
therefore
therein
thereupon
these
they

this

those
though
through
throughout
thru

thus
together
too
toward
towards
under
until
upon
very

via

was

well
were
what
whatever
when

FIGURE B.1. (cont’d) Stop list words.

whence
whenever
where
whereafter
whereas
whereby
wherein
whereupon
wherever
whether
whither
which
while

who
whoever
whole
whom
whose
why

will

with
within
without
would

yet

you

your
yours
yourself
yourselves

Personal Adaptive Web Agent

APPENDIX C Fuzzy Inference System
Component

The figures in this appendix are made reference to in Chapter 3 section 3.

#

CERTAINTY

FIGURE C.1. Block diagram for FIS.

Personal Adaptive Web Agent for Information Filtering 55

Fuzzy.inference System Component

c) d)

FIGURE C.2. Membership functions for inputs a) certainty, b) query, c) response,
& ouput d) action.

Personal Adaptive Web Agent for Information Filtering 56

Fuzzy Inference System Component

R EEEay
m N dd

FIGURE C.3. IF-THEN rules for the FIS.

FIGURE C.4. Snapshot of the IF-THEN rules for a) casual & b) important queries.

57

Personal Adaptive Web Agent for Information Filtering

Fuzzy inference System Component

FIGURE C.6. a) 3D and b) 2D FIS response for QUERY input level of 4.

Personal Adaptive Web Agent for Information Filtering S8

Fuzzy inference System Component

FIGURE C.8. a) 3D and b) 2D FIS response for QUERY input level of 8.

Personal Adaptive Web Agent for Information Filtering 59

APPENDIX D Scope for Agent
Implementations

This appendix emphasize the scope of agent-oriented applications, by suggesting how
agents be applied to an education system. Agents can be implemented in most systems to
enhance performance or reduce information overload. To show that agents need not only
be associated with robots or the Internet, a brief explanation on how agents could benefit
an education system is proposed in this appendix. This agent system represents students,
professors, and others involved in a typical education environment with personal student
or educator agents respectively. The personal student agents learn the best approaches
and conditions to teach their clients. This allows the students to learn the prescribed
material more effectively. The personal educator agents are used to assist the educators in
teaching the material more effectively.

D.1 The Education Problem

An education system is meant to prepare or enhance the skills of students for the real
world. One of the motives for education is to prepare for a career. People desire high sal-
ary jobs with a future. As society moves towards a more technical way of life, the need
for core knowledge in a specific field along with applied information technology skilis are
becoming essential.

It seems that the need for a good education and the ability to learn and communicate rea-
sonably are prerequisites for a successful career in most fields. If this demands a proper

Personal Adaptive Web Agent for Information Filtering 60

Scope for Agent implementations

education, is the current education system able to provide us with it? This is a simple
question to ask but rather difficult to accurately measure.

In my opinion, the education system is inherently too large and static to be able to fulfil
the needs of all the students at a given time. We should not expect it to meet everyone’s
needs completely. Instead, the education system should be designed so that the majority
of students benefit from it. Thus, one might attempt to identify how well the education
system works for different types of students. Identifying these subgroups and their
respective quality of education might help to answer the above question.

However, even without referring to the quality of education, it is safe to assume that for
most education systems, there is at least some room for improvement. These improve-
ments might be required in both the curriculum and in the methods by which the material
is being taught.

The present discussion addresses the second type of improvement within the student-edu-
cator relationship. The main issues in improving how the material is taught are the ability
of the educator to teach, the ability of the student to learn, and the student to educator
ratio. It seems intuitive that a smaller student to educator ratio would be more desirable
because the educator could better understand the student and provide a more personal
teaching approach. The ideal situation would be a personal tutor for each student. This
however, is not feasible.

Personal Adaptive Web Agent for Information Filtering 61

Scope for Agent implementations

Figure D.1 shows the components of a proposed adaptive education agent system which

Curriculum

FIGURE D.1. Block diagram for the adaptive
education agent system.

may help to enhance the current education system. It combines the curriculum with input
from students, educators, and industry to improve the learning and teaching skills.

D.2 Adaptive Education Agent System

One method by which to redesign the education system in order for it to perform better
(i.e. provide better education to students, be more responsive to current industry needs,
allow informative feedback, and allow personalization) involves the development of an
Adaptive Education Agent (AEA) system. This agent system is complementary to tradi-
tional teaching methods. The framework for the AEA system is briefly explained in the
following paragraphs. It is not intended to address all of the design issues, but rather to
motivate an agent-user oriented approach.

For this discussion, the term agent is defined to be a software program that assists a user
by monitoring events and procedures in order to perform a particular task that has been
delegated to it. The associated term adaptive implies that the agent is capable of learning
from the user through observation.

Figure D.2 shows the structure of the adaptive education agent system. There are both
student and educator agents in this system, which act as personal assistants for their
clients. They continuously monitor their clients and make suggestions to the education

Personal Adaptive Web Agent for Information Filtering 62

Scope for Agent implementations

system which help improve the learning or teaching performance. The student agent
learns the habits and capabilities of its client (through testing) and suggests to the educa-
tion system how the prescribed material should be presented to the individual student so
that it is most effectively comprehended. The educator agent monitors the performance of
its client (through feedback) and suggests to the education system how the teaching meth-
ods can be improved to more effectively transfer the material to the studeats.

The core education system consists of six components: the course material, test material,
marking procedures, credit assignment procedures, feedback, and a student classifier, as
shown in Figure D.2.

Educator Agents Education System Student Agents
Credit
Assignment
Professor Student 1
Instructor E Student 2
: < 4P ~
8
S
E
TAs l_"_’_ Student 3
(O — @,
Technicians Student 4{
FIGURE D.2. Adaptive Education Agent System.

The student classifier initially looks at the students’ profile and categorizes the students
into three groups using characteristics such as past performance, level of education, run-
ning performance in the course, time spent on the course, individuals expectations of the
course, students self-evaluation, and a general questionnaire to gauge their interests.
They are separated so that the individual needs of the students can be more easily

Personal Adaptive Web Agent for Information Filtering 63

ScopeforAgontlmplom:—nhtiom

implemented. The three categories represent below average, average, and above average
students. The course material is divided into levels which represent review, mandatory,
and advanced topics. Depending on which category the student is in, the course material
is presented to her in a manner which helps her to learn the material most effectively.
Similarly, the test material is also divided and different groups are given different levels of
tests. In order to be fair to all students, the marking scheme takes into account the differ-
ent levels of tests. The credit assigned to the students depends on their category and their
performance. In order for the education system to be adaptive, both the educators and stu-
dents are required to give explicit and implicit feedback.

The education agent system recognizes that not all students think and learn alike. It sepa-
rates the students and conveys the prescribed course material according to their abilities
and needs. However, students can change the group that they belong to if they show sig-
nificant improvement or if their performance drops. As well, the system recognizes that
students who excel or learn more from the course should be properly recognized which is
reflected in the credit assignment scheme. While separating the students into groups is
necessary, it is advisable that this be done privately so that it does not adversely affect the
students’ self confidence.

Personal Adaptive Web Agent for Information Filtering 64

APPENDIX E Taxonomy System for
Agents

This appendix presents some initial thoughts for a taxonomy of agents. New software
organisms or agents are continuously being created. One of the fascinating and attractive
aspects of the agent world is its extraordinary diversity. It seems that almost every possi-
ble implementation in task, architecture, physiology (composition), and life style (behav-
iour) is being created. In order to make sense of these diverse agents, it is necessary to
group similar organisms together and to organize these groups in a non-overlapping hier-
archical structure.

The discussion in this section does not provide a rigid protocol for an agent taxonomy, nor
does it discuss whether a particular software program is an agent or not. Instead, it sug-
gests a biological-oriented approach to systematically identify and classify agents.

E.1 Whatis an Agent Taxonomy?

Agent taxonomy is the science of agent classification. Synonymous to agent taxonomy is
agent systematics which is the scientific study of software organisms with the ultimate
objective of characterizing and arranging them into an orderly manner. Agent taxonomy
can be regarded as the following three processes.

1. Classification: arrangement of software organisms into groups based on
mutual similarity/evolutionary relatedness.

Personal Adaptive Web Agent for Information Filtering 65

Taxonomy System for Agents

2. Nomenclature: assignment of names to taxonomic groups in agreement with
published rules.

3. Identification: practical side of taxonomy, the process of determining that a
particular isolate belongs to a recognized taxonomy.

E.2 Model for the Agent Taxonomy

Scientists familiar with microbiology might agree that the foundation for an agent taxon-
omy could be based on a microbial taxonomy. Readers unfamiliar with this topic may
refer to (Holt, 1984). In microbial taxonomy (or biology in general), the most general tax-
onomic group is the kingdom and the most basic taxonomic group is the species. Classifi-
cation is based on analysis of possible evolutionary relationships (phylogenetic
characteristics) or on overall similarity (phenetic classification). Characteristics useful in
taxonomy (because they reflect the organization and activity of the genome) are: morpho-
logical, physiological, metabolic, genetic, and ecological.

Initially, most of the above terms and concepts may appear to be unrelated to software
agents. However, many researchers and software developers are currently attempting to
make software agents behave more like biological entities. In which case, a reasonable
approach to accomplish it, may involve keeping biological aspects and terminology in
mind while developing them.

For instance, characteristics useful in microbial taxonomy might be related to agent taxon-
omy as follows:
o morphological: structural features of agents such as interface type and size
» physiological: the agent architecture
¢ metabolic: what type of information the agent consumes/produces and how it
processes it
o genetic: the blueprints for the agent which allow them to collaborate with other
agents and to produce new improved generations of agents

« ecological: the agent environment which influences its life cycle pattern and
symbiotic relationships

In preparing a classification scheme, one places the software microorganism within a
small, homogeneous group that is itself a member of a larger group in a non-overlapping
hierarchical arrangement. A category in any rank unites groups in the level below it on

Personal Adaptive Web Agent for Information Filtering 66

TaxonomLySyst;nforAgnnu

the basis of shared properties. As in microbial taxonomy, the following ranks may be
employed: species, genus, family, order, class, division, and kingdom.

An appropriate naming convention might follow the binomial system presented by the
Swedish botanist Corl von Linne. This assigns to each entity a two part name. The first
part is capitalized which is the generic name (associated with the rank it belongs to). The
second part is lower case which is the specific name (represents the individual entity). For
instance, suppose two software agents were identified to belong to the mobile rank then
they might be named Mobilus crawler and Mobilus webber. If later on, the Mobilus
crawler agent was re-implemented as a personal agent then its name might be changed to
Personus crawler instead. Thus the specific name is stable while the generic name may
change.

Personal Adaptive Web Agent for Information Filtering 67

APPENDIX F Social Implications of New
Technology

This appendix comments on the social implications of new technology in general. Itis
not sufficient for engineers (including software developers) to concentrate merely on the
performance of a product. They also have an obligation to see how that product affects
the society at large. In this appendix, the issue of computers in the classroom will be
discussed. This is just one example where engineers/developers should contemplate the
effect of new technologies on society.

The discussion is motivated by the documentary Computers in the Classroom: Why some
people are worried which was aired by The National on January 15th, 1997. A brief anal-
ysis of it is given which reflects why engineers, developers, policy makers, and society
should be aware of the social implications of new technologies.

F.1 Documentary Overview

There are basically two types of supporters for computers in the classroom. Both sides
recognise that computers are a valuable tool for students. So where is the conflict? The
first group is urging for a fast paced approach where their goal is to have a computer on
each desk. The second group is endorsing a more cautious approach.

Personal Adaptive Web Agent for Information Filtering 68

Social Implications of New Technology

F.2 Fast Paced Supporters

These supporters are encouraging education officials to purchase billions of dollars worth
of computers and to provide on-line access for students that are four years and older.
Some of their paraphrased comments are listed below.

computers serve the curriculum needs; they teach students to read, write, and
think

students (especially young ones) do not find using computers to be a struggle,
in fact they enjoy it very much

technology should not control students, they should use it to create new tech-
nology

the Internet is a good tool because it allows the student to become a producer of
information, not merely a consumer

some students can not afford their own computers, so there must be computers
in the classroom (w.r.t. high school students)

an increasing number of jobs in the workforce demand computer literacy
learning to use computers is as important as reading

the Internet gives students access to a plethora of information: in some cases
this includes the latest material on that subject

the current education curriculum must be redesigned to incorporate computers
and on-line interaction/leaming

F.3 Cautious Supporters

These supporters are for a more conservative approach which introduces computers at all
grades but does not require a computer on each desk. They feel that increasing the
number of computers at the expense of teachers is not the correct policy. Some of their
paraphrased comments are listed below.

it is costing 4 billion dollars to buy computers for each student in Canada while
teachers are being cut

we might prefer better qualified teachers who get paid more

there are currently (in the US) 40% of teachers who are not qualified to teach
the subject that they are in

Personal Adaptive Web Agent for Information Filtering 69

Social Implications of New Technology

» educators think new technologies are automatic solutions to educate students
better

 unless there is money to throw away, we should not be spending so much
money in acquiring computers
e computers are not necessarily good teachers

» people who spend money to hard-wire classroom with computers treat access
to information as though students don’t have enough access to information
already

« we have to be able to distinguish between useful and useless information on the
Web

« teachers should be concentrating on developing fundamental skills such as
reading, writing, and comprehension which don’t always require a computer

F.4 Analysis

There is no doubt that computers are here to stay. Some of the comments by the fast
paced supporters do indeed indicate that computers for each student are essential. Other
comments, however, may or may not lead to a helpful environment for students. Even
though in some cases students are better educated about computers than their teachers, it
seems that educators are the ones that are pushing for the computers and on-line access in
the classroom. This lack of education on some of the educators part is creating a stum-
bling block and a frenzy for teachers to jump on the IT bandwagon whether they under-
stand why they are doing it or not.

On the other hand, most of the comments by the cautious supporters do substantiate that
there is no severe urgency to get computers on each desk at the expense of the quality of
education. Besides, there is no shortage of computers in the schools since there is already
an 11 to 1 computer to student ratio in Canada.

Educators, at the time when radio and then TV became widespread thought that these new
media would help students become better students. However, there is no clear evidence
that this ever materialized. Computers (including the Internet) may, in the same way, not
drastically effect the quality of education for students. Computers like any other tools
have to be properly administered to maximize the benefit that they hold. Thus the issue
goes back to those who will have to teach the students how to use these new powerful
tools, the teachers.

Personal Adaptive Web Agent for Information Filtering 70

Social implications of New Technology

In conclusion, perhaps the important questions to ask are: What is the problem to which
the new technology is a solution? If we solve it, what new problems will be created?

Personal Adaptive Web Agent for Information Filtering !

References

Abouaissa, H., Rabenasolo, B., Ferney, M., and Vaudrey, P. (1991). General Models for
Representing Reactive and Complex Systems Using Hierarchical Coloured Petri Nets.

Cheong, F. (1996). Internet Agents. New Riders Publishing.

Dibbel, J. (1996). Intelligent agents are changing cyberspace for good. The key ingredi-
ents: new technology, clever programming and a bit of Smart Magic. In TIME Digital
Magazine.

Foner, L. N. (1993). What’s An Agent, Anyway? A Sociological Case Study. MIT
Media Labs. URL: http://ftp.media.mit.edu/pub/Foner/Papers/Julia/Agents__Julia.ps

Franklin, S. and Graesser, A. (1996). Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents. In Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages. Springer-Verlag.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. MacMillan.

Holt, J.G. (1984). Bergey's manual of systematic bacteriology. Volume 1. Baltimore:
Williams & Wilkins.

Jensen, K. (1992). Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. In EATCS, Volume 1. Springer-Verlag.

Personal Adaptive Web Agent for Information Filtering 72

Pedrycz, W. (1995). Fuzzy Sets Engineering. CRC Press, Inc.

Rijsbergen, C. J. (1979). Information Retrieval. Second Edition. Butterworth & Com-
pany Ltd.

Russell, J. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Engle-
wood Cliffs, NY: Prentice Hall.

Salton, G. (1982). Introduction to Mcdern Information Retrieval. McGraw-Hill.

Salton, G. (1968). Automatic Information Organization and Retrieval. McGraw-Hill.

Personal Adaptive Web Agent for Information Filtering 73

