A FRAMEWORK FOR QUALITY OF SERVICE OVER A SHARED RESOURCE
AND SHARED NETWORK ENVIRONMENT

Paul S. D. Card

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

Faculty of Graduate Studies
University of Manitoba

Copyright © 2006 by Paut S. D. Card

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
sk
COPYRIGHT PERMISSION
A FRAMEWORK FOR QUALITY OF SERVICE OVER A SHARED RESOURCE
AND SHARED NETWORK ENVIRONMENT
BY

Paul S.D. Card

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

Doctor of Philosophy

Paut S.D. Card © 2007

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written anthorization from the copyright owner.

Abstract

“Volunteer” and Peer-to-Peer (p2p) computing are classes of resource management systems that
make use of volunteered resources for off-line computation or file distribution. We propose a
framework that uses these resources as a medium for deploying on-line on-demand Internet ser-
vices. For our experiments we chose Web Delivery and Data Base Management System (DBMS)
as together they are used to deliver wide-area Web based applications or services. They also both
require computing resources and network resources. Using Planetlab we examine several con-
tributing factors to service performance such as resource configuration, resource loading and the
wide-area network. From these results we continue to develop resource selection algorithms and a

probe based monitoring system that contribute to an overall resource management framework.

ii

COMMITTEE SIGNATURE PAGE
This dissertation was presented
by

Paul S. D. Card

It was defended on

December 19, 2006

and approved by

(Signature)

Committee Chairperson

Prof. Muthucumaru Maheswaran

(Signature)

Committee Member
Prof. Robert Mcl.eod

(Signature)

Committee Member

Prof. Ken Ferens

(Signature)

Committee Member

Prof. Peter Graham

it

(Signature)

Commiitee Member

Prof, Toanis Nikolaidis, (University of Alberta)

v

Dedication

Dedicated to the people that had to put up with me during the completion of this mighty tome of

learning.

Acknowledgements

I would like to express my gratitude to my supervisors Prof, M. Maheswaran and Prof. B. McLeod
as well as my thesis committee members Prof. K. Ferens, Prof. D. McNeill and Prof. P. Graham
for their valuable suggestions, comments and for evaluating this work. T am very apprecialive to

TRLabs and their sponsors whose support and input made this work possible.

Vi

Contents

1 Introduction

1.1 Terminology
1.2 Motivation
1.3 Motivation L
L4 ThesisOudlineo L

2 Literature Survey

2.1 Performance Prediction
22 WebServices
Distributed Web Serviceso

2.2.1 Content Delivery Networks
222 Multi-Computer RMS

223 GridBasedRMSs
224 Volunteer RMSo

225 Peer-to-Peer (P2P)

2.3 Motivation

3 Framework Architecture

3.1 Framework Components

10

11

33

34

Cascading Deployment

Outstanding Questions L

Application Performance vs. Layer 2, 3 and Host Performance Measurements

4.1

4.2
4.3
4.4

4.5

Application Performance vs. Layer 2, 3 and Host Performance Measurements:

Experiments
HTTP Application-Layer Testing: Results . . .,
MySQL Database Engine Experiment: Results
Noteworthy Results

Testing Conclusions L

Framework Components

5.1

53

Performance Predictions L
5.1.1 Performance Predictions Experiments
5.1.2 Results of Performance Prediction Experiments
5.1.3 Performance Prediction Experiments: Conclusions
Remote Resource Selection Algorithm
5.2.1 Remote Resource Selection Algorithm Testing
5.2.2 Results of Resource Selection Algorithm Testing
5.2.3 Revisiting Resource Selection

Development

Resource Clustering Study

6.1

Ping Based Resource Clustering,

42
42
42
43
45
46
47
48
49

52

53

6.3 Ping Based Anchor Point Clustering 54
Resource Clustering 60
T ProbeTests L 60
Network Measurement 60

7.1.1 Resource Measurement 61

7.1.2 Probe BasedClusters 62

7.2 Deployment oL 67
7.3 Probe Based Clustering Results 67
Probe to Application Matching 68
8.1 Client Application Benchmarking 68
8.2 Probe to Application Matching Evaluaton 70
8.3 Probec to Application Results 71
Framework Assessment 72
9.1 EmulatonlInputs 72
9.2 Emulation Algorithms L 73
93 EmuladenResults L 74
94 Scalability L 75
9.41 GridRMSs 76
Load Scalability, 76

System Size 76
Administrative Size L 76

9.42 Volumteer RMSs 77

Load Scalability 77

10

Administrative Size L 77

943 P2PRMSs . . . L 78

Load Scalability 78

SystemSize L 78
Administrative Size 78

944 CDNRMSs 78
Load Scalability 78

System Sizeo, 79
Administrative Size Lo L 79

9.4.5 The Developed Framework 79
Load Scalability, 79

System Size 80
Administrative Size L0 80

9.5 Robustness 51
9.6 Securityand Trust 33
9.7 RMS System Comparison 84
9.8 Summary 85
Conclusion and Contributions 86
10.1 Overview 0oL 86
10.2 Thesis Contributions 86
10.3 RMS Framework 87
10.4 Application Performance Measurements 87
10.5 Performance Predictions 88
10.6 Resource Selection Algorithm 88

10.7 Anchor Point Clustering

[0.8 Application Profiling

10,9 Summary Lo

11 Directions for Future Work

111 Concluding Remarks,

X1

Xii

List of Tables

2.1

4.1

5.1

Resource management system attributes. 6

Absolute value of the Pearson correlationof tests. 28

Percentage of false predictions over database of results for different window size

and deviations from the mean. 46
Traditional demand placement algorithms. 48
Five TCP download test sizes. 61
Five remote computation tests. 61

Resource management system attributes comparison. 84

List of Figures

2.1 Webservices architecture. L L 7
22 CDNarchitecture. 9
23 Grdarchitecture. 10
2.4 Volunteer architecture. L 12
2.5 P2Parchitecture. L. 13
3.1 Proposed system. L 17
3.2 Messagesequencechart. 19
4.1 Apache performance vs. CPU speed and system memory, respectively. 30
4.2 Apache performance vs. integer and floating point benchmark, respectively. 30
4.3 Apache performance Vs. file /O benchmark and 135 min. load average, respectively. 30
4.4 Apache performance vs. hop count, latency and distance, respectively. 31
4.5 Apache performance vs. TCP and UDP benchmarking program, respectively. . . . 32
4.6 MySQL workload 1 vs. CPU speed and total memory, respectively. 33
4.7 MySQL workload 2 vs. CPU speed and total memory, respectively. 33
4.8 MySQL workload 3 vs. CPU speed and total memory, respectively.o L L L 33
4.9 MySQL workload I vs. integer and floating point benchmarks, respectively. 34
4.10 MySQL workload 2 vs. integer and floating point benchmarks, respectively. 34
4.11 MySQL workload 3 vs. integer and floating point benchmarks, respectively. 35

xiii

4,12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

4.22

5.1

5.3

54

6.1
6.2

7.1

7.3

7.4

8.1

MySQL workload 1 vs. file I/O benchmark and 15 min. load average, respectively. 35
MySQL workload 2 vs. file [/O benchmark and 15 min. load average respectively. . 36

MySQL workload 3 vs. file I/O benchmark and 15 min. load average, respectively. 36

MySQL workload 1 vs. hop count and latency, respectively. 36
MySQL workload 2 vs. hop count and latency, respectively. 37
MySQL workioad 3 vs. hop count and latency, respectively. 37
MySQL workload 1 vs. TCP and UDP benchmarks, respectively. 38
MySQL workload 2 vs. TCP and UDP benchmarks, respectively. 38
MySQL workload 3 vs. TCP and UDP benchmarks, respectively, 39
Difference between peer client evaluations vs. distance between peer clients. 40
Server performance evaluation from client next to the server vs. remote client

server performance evaluation. 41
Long term remote resouce performance vs. time (4 hour interval). 43
Short term renote resource performance vs. time (10 min. interval). 44
Remote resource performance and prediction vs. time (4 hour interval). 45
Cumulative percentage of demand satisfied vs. timestep. 32
Global distribution of ping based neighbor clusters. 57
Global distribution of ping based neighbor clusters. 58
Geographical distribution of compute probe based neighbor clusters. 63
Geographical distribution of network probe based neighbor clusters. 64
Number of clusters vs. X threshold, Y varied from O to | at each X value. 65
Number of clusters vs. number of hours. 66

9.1

Comparison of probe based clustering and previous algorithms

XV

Chapter 1

Introduction

Many computing applications benefit from being distributed over a local or wide area network.
Often this benefit comes from centralizing data or recruiting a large number of resources to work on
a problem. Resource management is a problem that has received a large amount of study since the
birth of computing networks. Recently Volunteer, Peer-to-Peer (p2p), Content Delivery Networks
(CDNs) and Grid Resource Management Systems (RMSs) have shown that much progress has
been made for various applications. In this work, we develop a novel framework for resource
management of remote resources. The framework attempts to be generic enough to aflow a large
variety of applications to be deployed over it. We examine some potential applications in the
Literature Survey and provide conclusions. To drive the framework experiments we developed, we

selected Web service as a wide area application on which to focus our work.

1.1 Terminology

We define some of the components of Resource Management System (RMSs) to standardize the

language for this dissertation:

¢ Client Computer: The computer at a particular network location that requests and receives
1

CrapTeEr |. INTRODUCTION 2

the results of the application’s execution.

» Application: The application is the software that will produce the results needed by the client
computer. The application is the software that will be deployed onto a remote resource under

direction of the Resource Management System (RMS).

e Resource: The computers that will do the processing needed to return results to the client

computer, as well as the interconnecting network.

e Resource Management System (RMS): The RMS is the collection of software components
that implement the control logic for placing the applications onto a particular resource for
execution. It also monitors progress and takes corrective action when required results are not

being achieved. The RMS may be implemented in a centralized or decentralized fashion.

These four components form the basic building blocks of Resource Managements Systems
(RMS) whether it be a Volunteer Computing System, Content Delivery Network (CDN) or a Com-
putational Grid. We will use these basic building blocks to examine existing systems in the next

chapter and as a basis for our study the framework developed in this thesis.

1.2 Motivation

During the past efforts have been made to design and build RMSs that can hamness the combined
power of many resources. The short coming of these systems is that the perceived performance, as
observed at the client, is not taken into account. The performance an end user sees is a by-product
of the RMS design rather then a direct input. In effect, there is no feed back loop from the client
to the RMS itself, Running an network application across various donated or best effort resources
in an becomes open-loop, and forces the application to try to build in QoS without overtop of the

RMS’s built in decision process.

CHaPTER |. INTRODUCTION 3

In these traditional deployments, the end-user performance can vary due to the condition of the
resources being used. The interconnecting network can span 10s of different countries operated
by 100s of different organizations. The remote resources can be congested, miss configured, or
removed from service at any time. To this point the focus has been on building RMSs from the
ground up. By building systems from the ground up, the focus is always on the low level details
and the end user application is ignored. Resources or interconnecting networks for one application
may not be relevant to another. For example, the bandwidth and loading of a distant resource
may not be of importance if the application is streaming of a fow bandwidth signal where little
bandwidth or processing is needed. If the application is a coordination server for an online game
application the latency may be the most relevant factor. In off-line computation the bandwidth,

latency and congestion of the interconnecting network may be irrelevant.

1.3 Objectives

The development of an application focused RMS has some interesting implications.In web delivery
farms that are backed by DBMSs can leverage our RMSs a web server front-end could tune its
private RMS fo maximum DBMS performance for itself. The web farm client could make use
of the RMS to select the web servers delivering the best web performance. In other existing
RMSs there is no way to tune of adjust the RMSs behavior for a given application without major

reconfiguration of the system.

We intend to show in this thesis that traditional low layer measurements do not coordinate well
with application performance when deployed over wide area networks of shared resources, We will
show that the application itself should drive the selection of resources that take part in a deploy-
ment. We develop some skeletal algorithms for resource selection, and performance prediction,

then present their performance results.

Crarter 1. INTRODUCTION 4

1.4 Scope

This thesis documents, the development of a skeletal RMS that places the end user application
at the top of the system hierarchy. We propose that, all system performance measurements and
algorithms should be driven and customized by the application contacting the RMS for service.
To this end, we propose that applications should provide an application specific software plug-in
that directs the RMS to evaluate and choose resources most suitable for the application driving the
RMS. To reduce the complexity of this endeavor to manageable scale, the RMS we develop will
focus primarily on web delivery. The consideration of other applications will not be explored.

We do not intend to explore the implications of robustness, scalability, uptime, security, trust
or any of the other factors that would obviously be needed in a wide spread deployment. We do a
cursory exploration at the end of these to explore what may need to addressed to further our work.
For the purposes of this thesis we focus our attention on the novel aspect of the proposed system,
which is to turn RMS performance focus to the application. Without first exploring this vital step,

exploration of the other, equally important aspects, would premature.

1.5 Thesis Outline

In this thesis, we explore a skeletal framework for allowing remote applications to be shared or
load balanced over a wide area network backbone. In Chapter 3, we examine several existing
Resource Management Systems (RMSs) to determine their strengths and weaknesses. In Chapter
4, we continue to examine the impact the wide area network and the selected resources have on
application performance using a PlanetLab test bed. In this examination, we test the performance
of the Apache HTTP server and the MySQL DataBase Management System (DBMS} over a wide
area network. From these observations, we develop a simple perfermance prediction algorithm

and develop a resource selection algorithm using an emulator we created, Chapter 5. We discover,

CrapTeER 1. INTRODUCTION 5

in Chapter 5, that clustering resources together yields great benefit to application performance. In
Chapter 6, we do a preliminary study of resource clustering. In Chapter 7, we further our clustering
work by developing a distributed programmatic algorithm that clusters clients together. Finally, in
Chapter 8, we revisit our emulator from Chapter 4 to evaluate the performance of the system. We

then conclude and discuss future work,

Chapter 2

Literature Survey

Many computing problems can benefit from deployment on muliiple computing resources. The
benefits are usually better resource utilization through load balancing and better application per-
formance due to the availability of a larger resource pool. The larger the resource pool and the
larger the application set, the better the chance of finding a good balance between resource uti-
lization and application performance. Resource Management Systems (RMSs) try to find the best
resource(s) on which to deploy a given application or set of applications. The RMS can be opti-
mized for application performance or resource utilization. RMSs can be categorized by a number
of architectural attributes as shown in Table 2.1. Each of the key attributes affects the RMSs goals

for allocation of applications to resources.

2.1 Performance Prediction

For a RMS to deploy application(s) onto resources it needs to be able to predict the performance
of the application on a particular resource. The application’s performance can be affected by the
type of application, the type of resource, and competing applications running on the resource,

since they may be in competition for the system’s resources. In some systems there may not be
6

CuArTER 2. LITERATURE SURVEY 7

RMS Type Grid | Volunteer | P2P CDNs
Donated Resources no yes yes no
Number of Applications | many many one many web sites
Dedicated Resources ves no no shared with QoS
Predictable Performance yves no no | no, wide area affects
Level of Controt partial | centralized | fully partial

Table 2.1: Rescurce management system attributes.

any competing resources and the applications may have very predictable run times. In others, the
resources may be heavily loaded with applications that do not have deterministic run times. The
application placement algorithm that makes use of the performance predictions can also vary in
complexity and goals. For example, the RMS may be maximizing application performance or

maximizing global system throughput. In the following sections we examine some existing RMSs,

2.2 Web Services

The World Wide Web (WWW) is becoming a critical component of many businesses. At one time
the WWW was only a publishing system for static content. Today, the WWW includes a multi-
tude of interactive dynamic content. Technologies such as XML-RPC (XML Remote Procedure
Call) and AJAX (Asynchronous JavaScript and XML) are allowing developers to create WWW
applications that react like local applications by side stepping the need for a new TCP cennection
and web page reloading for each inferaction, as is common in traditional WWW interactions. This
new found flexibility in web technology means that traditionally client based applications, such
as email, calendaring and even spreadsheets and word processing, are being deployed through a

web browser. Another advantage of these standard technologies is that they allow companies to

CHAPTER 2. LITERATURE SURVEY 8

expose their APIs (Application Programming Interfaces) to the web. Today, multiple web services

are being combined together to form new WWW applications often called mashups.

-
Browser [
Widle Areg Matwork
-+
Wosl Se el Cliet
RIIRTCTN
Apphication Logic lfc yered
B RGS
DB
Y &

Figure 2.1: Web services architecture.

These Web applications or services are usually based on a 3 layer server architecture shown
in Figure 2.1. The client connects through the wide area network to communicate with the web
server, The web server in turn executes the application specific logic to generate the requested
content. The application logic can be implemented in any programming language but there is a
small subset of popular languages such as PHP, ASP, Ruby, Perl and various forms of Java. The
application fogic on any non trivial web application is often backed up by a DBMS (DataBase
Management System) for content management and access to application data. For smaller web
applications or services, the web server, application logic, and the database engine may reside
on a single physical computer. These functions can, however, also be split over several physical
computers in larger deployments. In even larger deployments any of the 3 server components could
be replicated multiple times to handle a large client base. When these components are replicated
and placed on separate computers they usually communicate through a shared network connection
forming a WWW serving farm. The incoming requests are then load balanced over the computers

in the server farm. One shortcoming of this architecture is that the number of serving computers

CHAPTER 2. LITERATURE SURVEY 9

must be sized for the maximum load expected. Maintaining enough capacity for infrequent full
loading is wasteful in terms of capital cost, power consumption and IT resources. Great savings

are possible if the resources can be dynamically sized for the current workload.

Distributed Web Services

Traditional WWW services often use a simple client / server architecture, Today, more and more
applications are a mashup of many existing online WWW servers. These mashups result in a
single web service composed of several servers at different remote locations. Mashups show that
the Internet backbone is capable of delivering services from multiple physical locations as a new
combination of existing services. These ad hoc web service combinations are an example of how
geographical proximity is not a requirement for successful web service applications.

From these new mashup web services, we see that even in the absence of CDNs, three layer
web services can be spread across multiple underlying physical resources. Further in a mashup
these resources may be spread geographically. Mashups show us that the physical location of a

web service component may not be important. We explore this idea further in Chapter 3.

2.2.1 Content Delivery Networks

Content Delivery Networks (CDNs) [33] are an extension of web services. A schematic of a typical
CDN architecture can be seen in Figure 2.2. To offload web farm loading, a CDN module on the
web farm server rewrites the base Hypertext Markup Language (HTML) to link to content hosted
on the remote CDN resources. The CDN periodicaltly transfers a copy of the entire web farm
content to its resources to keep current, One drawback of this system is the continued reliance on
the originating web farm. During an originating server farm failure, the CDN cannot continue to
deliver content without the page rewriting module on the hosting farm server, CDNs, however, also

have many advantages for example, they can share their resources a large client base increasing

CHAPTER 2. LITERATURE SURVEY ‘ 10

]

COk Liata Center

] =
o re=s]
COb Data CaRer COB Drata Carfer

Figure 2.2: CDN architecture.

global resource utilization and thus lowering costs. Another advaniage CDNs have is that they
typically have many global locations allowing for the bulk of the web service to be delivered from
the nearest CDN center, possibly shortening the path taken from resource to client. In CDNs the
RMS is usually built in two parts. The first half is in the HTML page rewriting modute that offloads
traffic Lo the CDN content servers during periods of high origin resource load. The other half of
the resource management function is at the CDN data center where the CDN needs to manage the
amount of traffic it handles for each of its customers to ensure they are meeting their Quality of
Service (QoS) agreements [53] [44]. The CDN data centers are usoally large and have a diverse
client group. This allows for extra capacity to be given to one loaded client when not being used
by another. Other than meeting the QoS agreements between the CDN and the originating web
service, a CDN does not need to address the special security concerns that a Grid would. As well,
since CDNs only deploy one application, i.e., web services, they need not worry about the complex

configurations that Grids host.

CHAPTER 2. LITERATURE SURVEY 11

2.2.2 Multi-Computer RMS

Multi-Computer management toolkits RMS such as ROCKS {42] or Beowulf [12] are used to
manage a single cluster of computers attached to a high speed local network. These management
toolkits are a subclass of an RMS. In these RMSs a head node [ypica_lly manages the jobs sub-
mitted to the cluster, then dispatches the incoming jobs to the pool of computing resources. In
these systems the resource pool is under direct control of the cluster’s head node. This makes the
resource load easy to know and predict. These systems are typically accessed through a cluster
Application Programming Interface (API) where the programmer can select the placement algo-
rithm the cluster head node wilt choose [37]. Normally, the placement algorithm simply attempts
to balance the load across the pool nodes. The RMS’s goal is to virtualize the resource cluster to
simplify programming and management. As the entire cluster is usually owned and operated by a

single owner, setting policy and policing user foading is usually a simple task.

"EE ©5=E

arid Slte

@@@ﬁT

El Clisnt

Figure 2.3: Grid architecture.

CHAPTER 2. LITERATURE SURVEY 12

2.2.3 Grid Based RMSs

Grid systems such as Globus [21], [15] and [22] are composed of several multi-computer systers
(see Figure 2.3). In grids, a grid overlay manages the cluster head nodes. The grid acts a large scale
virtualization of the underlying pools of resources. Grids are typically composed of resources
owned by multiple organizations and connected over a wide-area network. As the underlying
resources are not as tightly coupled with the Grid overlay resource, loading is somewhat more
complicated and requires tighter load monitoring. The setting of resource usage policy can be done
by each member site. Large scale implementations such as Enabling Grids for E-sciencE (EGEE)
[24] make use of Globus for system management and Condor [48] for workload management. One
of the hurdles Grids need to overcome is wide area management. Many of the applications that run
on Grids will need reliable long lived resources with security assured on the node and on the wide
area network. Often applications will require complex configurations with bandwidth guarantees
between subsets of resources. Grids attempt to achieve all of these goals.

The typical apphications that are deployed on grids and multi-computer RMSs are high perfor-

mance tasks such as:

» Distributed Ray Tracing for 3D graphics rendering [17]

Climate Prediction [30] or [11]

Earthquake Simulation [47]

& Nuclear Fusion Simulation [26]

Astrophysics Simulation [41]

These application require multiple computers to achieve the volume of processing needed.
They also usually have some amount of interprocess communication, timing or security concems

that do not atlow them to run in Volunteer RMSs.

CHAPTER 2. LITERATURE SURVEY 13

- =

siallteer

¥

siadunte s

[N R R
Witle Areq

Metwork

E}J

y st
wolunteer Data Centar

Figure 2.4: Volunteer architecture.

2.2.4 Volunteer RMS

Volunteer systems such as BONIC [7], [4] or [5] are centralized RMSs where applications are
submitted to a central authority that manages a globally dispersed pool of volunteer resources (see
Figure 2.4). Which are most often dedicated to some primary (i.e. non-RMS) task. When idle,
the resources switch to the application provided by the central RMS. Application performance
prediction becomes very hard in this environment due to the inability of the RMS to predict when
a resource will be dedicated to the RMS or to its primary task. To do performance prediction
these system use a large aggregation of the total system capacity splitting the application across
hundreds of machines. With the large variety of resources and network connections in use inter-
application communication is not practical. Volunteer systems typically only support off-line style
processing with no communication between resources. This is a strong limitation of the type of
application that can run on Volunteer RMSs. The class of problems best suited for this type of
RMS are referred to as “Embarrassingly Parallel” for their inherent suitability to processing by

many independent resources. Volunteer systems generally do not provide any security measures

CHAPTER 2. LITERATURE SURVEY 14

on the resource or network connections. They often need to schedule multiple executions of each
application to allow for consensus checks to ensure that the results have not been tampered with
by the volunteered resource.

Some examples of application that make use of Volunteer Computing RMSs such as, BONIC

are:

e SETI@Home: Searching radio telescope data for extra-terrestrial signals [3]

» Rosctta@Home: Finding the 3 Dimensional shapes of proteins [1]

e Seasonal Atiribution Project: Global weather simulation [2]

These applications do no have any interprocess communication. They also can ensure quality
of results by having calculations repeated on many hosts and comparing results. The data security

in these applications is not sensitive in nature.

Frear

il Lreg

Fetsork

Igl Clignt

Figure 2.5: P2P architecture.

CHAPTER 2. LITERATURE SURVEY 15

2.2.5 Peer-to-Peer (P2P)

Peer to Peer (P2P) systems (see Figure 2.5) are designed from the ground up for a single applica-
tion, often file distribution [46]. P2P system rely on users donating resources of network bandwidth
and storage to the system in a tit-for-tat manner where users gain from the RMS in proportion to
what they contribute. As early P2P systems were affected by legal difficulties over the content
rights management, new P2P system are fully distributed. The fully distributed nature makes them
very robust to retwork fragmentation or individual systems failure. By limiting themselves to a
single application, p2p systems can better optimize their performance. This could include build-
ing in additional security over what can be provided by a Volunteer RMS. One drawback of p2p
file distribution systems is the digital rights that can be violated. Because of the abuses that often
happen on p2p systems, their reliability is often uncertain. Despite an evolution towards fully dis-
tributed algorithms (at the cost of performance) legal exchanges still surround most p2p systems
making them unreliable for long term availability. Being application specific limits their applica-
tion to high performance computing. They do have the potential to evolve into a general purpose

RMS.

2.3 Motivation

Our proposed {ramework maintains strengths from the above systems while attempting to suppress
their shortcomings. In our framework we propose to make use of volunteer resources as is done in
volunteer computing. Rather than simply supporting ofiline style processing, however, we propose
Lo support inter-resource communication as is done in grid systems and cluster computing. For the
moment we do ignore the security and trust considerations that grids implement to simplify our
design. These items can be re-introduced at a later time using existing trust models and encryption

as done 1n existing RMSs. We see web services such as those deployed over CDNs as our initial

CrAPTER 2. LITERATURE SURVEY 16

application. We will not sacrifice support for offline processing or large computation problems that
grids support. We would also like to support some amount of QoS as is done in CDNs. We would
also like our framework to be decentralized and robust as p2p networks are by using decentralized
algorithms [46].

We expect the resuliing system to reduce the computing capacity needed by individual appli-
cations by being able to use resources from our framework in a CDN style. We also expect our
framework to increase global resource utilization by allowing idle resources to contribute to the
framework. We expect the resulting framework to be a component of a larger Public Computing

Utility (PCU) described by Maheswaran et al. {291,

Chapter 3

Framework Architecture

One of the problems with attempting to hamness shared resources over shared networks is the asso-
ciated quality of service (QoS). Some mechanism is required to ensure that the resources promised
will be delivered; otherwise, the job should not be accepted {561 [39]. To further complicate things,
some online applications need to measure how successful or “good™ the delivery was. For exam-
ple, it is not enough in a streamed movie to deliver it to the customer; the jitter and burstiness of
the delivery must also be managed. If the framework is contracted to deliver a service it needs
to arrive at the clients location, with a specific level of quality. This can be a very challenging
problem when one considers that the resources employed to deliver the service can switch back to
their primary use at any time, as is the case for shared resources. In addition, the interconnecting
network being used to deliver the service can become saturated with competing traffic.

We have developed a new framework for clients to find on demand resources for online appli-
cations. In our system we propose to start with the end user’s location, and from there allow them
to specify what QoS is required for each application. That means that the service being contracted
is always measured in terms of delivered performance to the client at his or her location. The
measurement and evaluation occur at the end host itself or, when more appropriate, at a gateway

device near the client. We also include the caveat that the performance is measured by the applica-
17

CHAPTER 3. FRAMEWORK ARCHITECTURE 18

Remote Fesouries

Figure 3.1: Proposed system.

tion software. This implies that, for each application or dataset, we require an application-specific
plug-in to return an assessed performance value. This plug-in may also go one step further and
be dataset specific where the dataset would drastically alter application performance. This means
that the set of resources needed to satisfy a request or demand will be different for cach applica-
tion, as the plug-in may have different measures of QoS requirenients. In Figure 3.1 we provide
an example of a table of remote resources and their performance for different applications. From
such a table the local anchor point would then decide on a set of resources on which to deploy
the applications. Previous work in such tunable applications has to the best of my knowledge only

been done in the context of mobile computing [20].

Doing performance evaluation at the client has had some indirect study. Rolia et al. {387 have
looked into QoS in resource pools. Cherkasova et al. [I14]have studied end to end server perfor-
mance looking for bottlenecks and Ruan et al. [407 have studied the network effects on providing
services over a wide area. These works, together, point us towards moving to an application layer

measurement of performance.

One problem we anticipate is bootstrapping new applications. To create new application plug-

CHAPTER 3. FRAMEWORK ARCHITECTURE 19

ins the characterization of the client’s needs can be performed by running the application. In our
framework applications are profiled by running them on a random set of resources. From this
trial set we generate a weight vector by comparing this performance to the existing probe data for
each of the resources used. We can then use ongoing probe data to predict a baseline application
performance for each application and each resource. As the application runs we can then swiich to

using the live returned performance data as discussed in Chapier 5.

3.1 Framework Components

Our framework consists of a number of software elements; the client software, and resources. Tt
also includes a host near the client that acts as a local resource broker we call an " Anchor Point”.
These may all be deployed on a single physical resource or spread across a wide area network.,
In this thesis we assume that the resources and anchor points are deployed on several machines

distributed over a wide area network.

3.1.1 The Client

The client in our model needs to be connected to the wide area network where the framework
is deployed. It must also have the application and dataset in a packaged form such as a Linux
RPM (RPM Package Manager)[10] format or equivalent. The file must be publicly available for
a download manager such as Linux YUM (Yellow dog Updater, Modified){52]. The client then
makes vse of an anchor point list that is posted on a central server to find nearest anchor point.
It then contacts that point with the application file that is to be deployed. The anchor point will
return with a weight vector that is used to generate performance predictions. Once the weight
vector is generated, the anchor point will be ready to give initial performance predictions for any

local client. The client can then make demands for service to its location. As more application

CHAPTER 3. FRAMEWORK ARCHITECTURE 20

deployments are executed, the anchor point (see Section 3.1.2) will learn the characteristics of this

application, improving their performance predictions.

Cliernt Arphvar Paint R ol =
— Sngoing Frobe
o —

> Blew Spplication

Test Deployment
CamiEll sude et
-« Fesults
—_— Fetirmsd results
Znplication to prabe matc Ring
1 [:
. IitEl Czployment
< Jngdng Resalfs

Sngaing Beturmed results
» Deplovment

Adpstnrznts
based on

returmed data

Figure 3.2: Message sequence chart.

3.1.2 The Anchor Point

The anchor points act as local brokers for the RMS, refer to the message sequence chart Figure 3.2.
They maintain the current conditions and loading of remote resources. An anchor point consists of
two major sub components. The first is a probe thread of execution that probes a pseudo random
subset of remote resources on a predefined schedule. Each probe consisted of 10 different tests,
which we discuss later in the thesis. During our testing we used a four hour schedule, and a subset
size of 50 of the 500 available nodes, to maintain our haseline resource performance measures.
From the baseline probe values the anchor point forms a signature that represents its position in
terms of remote resource performance. The signature is a vector of remote resource performance

for each probe test evaluated. The anchor point will then contact other anchor points to see if they

CHAPTER 3. FRAMEWORK ARCHITECTURE 2]

are available to cooperate. In order for two anchor points to cooperate they need to have the same
view of remote resources. This test for cooperation is a simple comparison of probe signatures. If
the signatures are within the system wide tolerances they form a cooperative cluster. The signature
comparison algorithm and tolerance values are discussed in Chapter 6 and 7. As we will show
later these clusters so formed tend 1o be geographically clustered on a city wide scale for our
test environment. The anchor point clusters work cooperatively to maintain a shared database of
application performance and resource loading,.

The second function the anchor point performs is resource selection for application deploy-
ment. When a client first contacts an anchor point with a new application it needs to have an
application weight vector generated. To generate the weight vector the anchor point deploys the
application to a subset of resources (see Chapter 6). After a short test, the anchor point compares
the delivered performance to its probe signatures to generate a weight vector for the application.
Then when the application is initially deployed the weight vector in combination with the current
resource probe data will be used for performance prediction. As performance results are returned
from the deployed applications the anchor point broadcasts the results to its cooperative cluster. As
the results for the cluster accumulates the performance predictions shift to our resource selection
algorithm described in Chapter 5.

Similar frameworks that use anchor points, or "landmarks”, exists in experimental Label Switched
Paths (LSP) [34] and sensor networks {3171, In these situations the landmarks use either fixed WAN
locations or they are used for host positioning. In these all cases to purpose of the “landmarks”
is to find a nodes network position in terms of connectivity. Qur framework places these node on
the edge of the network and perform significantly different and larger task then traditional “land-
marks”. This 1s the reason we describe our "landmarks™ as anchor points. Our anchor points are
not low layer static positioning nodes, but application performance monitoring and application
deployment agents that work on behalf of the client.

1t should be noted that, the anchor points performs a local cooperative load balancing among

CHAPTER 3. FrRAMEWORK ARCHITECTURE 22

the cluster to help reduce the chance of swamping out nodes. There may still be interference on
the resource from other, non cluster anchor points, but that should show itself when application
performance suffers reducing client perceived performance. Al this point the global average of
performance for this resource will be reduced as will the cluster’s evaluation of the node. Further

discussion included in Chapter 5.

3.2 The Resources

The resources used in my experiments are Linux computers that make use of the Linux VServer
virtualized sandbox. We exploit the VServer slice abstraction provided by PlanetLab [35]. The
Vserver in a kernel based virtualization that provides many simulated Linux systems on a single
hardware instance. The resource must then set its use policy in terms of the resources it is willing
to donate to the framework. The resource then responds to application deployment requests from
the framework anchor points.

‘The other function each resource provides is tracking the performance of applications that are
currently running and those which have completed. For applications that have recently run on
the resource, the resource maintains an average performance, as observed from each client loca-
tion, This published average is used by anchor points in their performance predication algorithm

desciibed in Chapter 5.

3.3 Cascading Deployment

In our framework we do not explore larger more complicated deployment beyond basic client /
server. In a system deployment we envision that our framework could be used in a cascading
deployment style. In the case of a multi-layer web service, the head en web server counld contact

our framework to provide backend DBMS services. From the client perspective we would in effect

CHAPTER 3. FRAMEWORK ARCHITECTURE 23

have a cascading service.

3.4 Outstanding Questions

Certain fundamental questions regarding this proposed framework still need to be answered. First,
how does low layer measures correlate with application performance in a shared-resource and
shared-network environment? It is possible that traditional low layer performance prediction {28}
[50] [54] [27] [57] may be better suited to this task. Second, by what mechanism can one predict
the performance of a resource for a specific plug-in, given only its performance history [55] {451.
Thirdly, we examine the clustering of anchor points using resource performance probes (o look for
system performance gains. Finally, one must be able to decide which resource to select given a set
of demands with their predicted performances. The rest of this thesis describes our examination of

these questions and the framework components.

Chapter 4

Application Performance vs. Layer 2, 3 and

Host Performance Measurements

We propose, that in a shared network/resource environment, traditional low-layer performance
techniques [49], such as measuring of network or resource load [54], are not appropriate for de-
termining the performance of an application or service. To test support this statement, we de-
signed a number of experiments using the PlanetLab network. PlanetLab is a network of globally-
distributed resources. These resources are donated by participating institutions, along with the as-
sociated network bandwidth, in return for access to a virtual slice of ail of the participating nodes.
These nodes and their networks tend to be foaded by researchers running network experiments. As
the nodes are virtualized, we have no way of knowing the exact nature of the lead or the number
of participants. This makes for an excellent test bed for our purposes. Without knowledge of the
loading on the network and resources, we can test the low-layer techniques in a real-world setting.
We believe that, if our techniques show promise in the unpredictable environment of PlanetLab
[35], where we cannot predict what other processes are running, they should perform even better
in a SETI@Home style network [6], where machines that when idle are dedicated to the Resource

Management Framework (RMS). In these cases the RMS would be the only one submitting jobs
24

CraPTER 4. APPLICATION PERFORMANCE vSs. Laver 2, 3 anp HosT PERFORMANCE MEASUREMENTS 25

to an otherwise idle machine.

4.1 Application Performance vs. Layer 2, 3 and Host Perfor-
mance Measurements: Experiments

To evaluate the performance of traditional host and layer 3 measurements vs. application perfor-
mance measurement, we pseudo randomly selected 25 nodes from the Planetlab network. Each

node was configured with the following software:

o Apache HTTP Web Server. We wanted to include a real world dataset for our tests. However,
because the size of standard datasets is prohibitive, we designed a 15MB workload that had
file size and request frequencies to match the well-known University of Saskatchewan dataset
[9]. This allowed us to have a workload with real-world characteristics, without needing to
use huge sets of web server traces. The total number of requests in cur workload was 5000

documents.

» Apache Flood. Apache Flood is part of the Apache family of software designed for load-
testing web servers. We used this program to load the remote server, and to generate a
performance evaluation of the Web Server, based on the time in milliseconds it took to
download the workload. The Apache Flood program creates a separate TCP connections

for each download.

¢ MySQL Data Base Managemenr System (DBMS), MySQL is an open source database en-
gine. We employed it with 3 different workloads. Each was designed to progressively in-

crease the load on the server and network.

~ Workload 1: This consisted of an SQL query that generated light server load and light

reply volume. The query is a 2-table join which results in a complete data set of about

CHAPTER 4. APPLICATION PERFORMANCE vS. LAYER 2, 3 anD Host PERFORMANCE MEASUREMENTS 26
50,000 rows. We limited the return set using the LIMIT SQL option. The database is

part of the standard MySQL test library. By limiting the result set to 1000 rows, we
reduce the retumed data volume and the work load. By using LIMIT, the DBMS query
processor stops the table join once it has reached the limit value, thereby reducing the

workload.

- Workload 2: This query generated a larger server load and a larger reply volume. The
only difference between this query and the first is that we increased the limit by a factor

of 10, setting it to 10,000 records.

— Workload 3: This query had a very high reply volume and high server load. In this final
query we did not limit the return size of the query, letting the DBMS process the full

Jjoin and return the 52,000 record result set.

+ Ping Time in Milliseconds, measured using the system /bin/ping program from client to
server. The packet size used was 56 bytes, which translates into 64 ICMP data bytes when
combined with the 8 bytes of ICMP header data. This measure returns the latency of the

interconnecting network.

e Server CPU Load Average over the past 15 minutes, as reported by the /proc file system

(kernel interface). This returns the current loading of the server resource.

o Installed Server CPU clock speed, as returned by the /proc file system. This provides a

good indication of the server’s unloaded performance potential.

¢ Server Installed Memory, as reported by /proc file system. This is another good indicator

of the computer’s unleaded performance potential.

¢ Distance from server to client in Km, measured as the crow flies. Each Plaretlab node has

a latitude and longitude entry in the PlanetLab database. We used these values to calculate

CHAPTER 4. APPLICATION PERFORMANCE VS. LaYER 2, 3 anD Host PERFORMANCE MEASUREMENTS 27

the geographical distance between nodes. This was included as an additional measure for its

convenience. We do not expect it to correlate at all with server performance.

e We also installed a series of benchmarking programs to test the servers’ live performance
near the time we tested it with the other benchmarks. We wrote these ourselves to bypass the
need for remote Secure Shell (SSH) connections needed to deploy standard benchmarking
utilities. Writing our own tests allowed us finer grain timing. Tt should also be noted that
we are trying to test apphcation interfaces to the application-laver. By writing our own
benchmarking tools we test exactly what an application developer would see rather then the
under]laying hardware that most available benchmarking tools try to exploit. As an example
we are interested in how fast we can load a web workload in to memory, not the raw disk
speed available. We belive that our simple benchmark tools are more appropriate, for our

purposes, then available benchmark tools that look for raw hardware performance.

— TCP test program, used to deliver a test stream of TCP traffic from the server to the
client. This was a small Java client / server pair that moved 5MB of data between the
2 nodes. We wrote this program, rather then use an existing benchmark, to gain tighter
control of the remote timing of the test. We open a second set of TCP ports on each of
the client/ server pair (o allow signaling of test start / stop and timing. Using traditional
benchmarks would have meant starting and stopping tests using an Secure Shelf (SSH)

connection, a much longer process. Typical run times were from 0.2 to 0.7 minutes.

— UDP test program, used to deliver a UDP stream from the server to the client. A
Java client / server pair was used to move SMB of data using the UDP protocol. We
found that over 99.2% of UDP transfers, when SMB was transfered, the full 5MB was
received. We did not examine if there was any data corruption in the transfer as most
UDP applications would be robust to some data corruption. Also, most single packet

corruption would be detected by the UDP checksum and would appear as a lost packet.

CraPTER 4. APPLICATION PERFORMANCE vs. LAYER 2, 3 anD HosT PERFORMANCE MEASUREMENTS 28

We also did not look into packet reordering. As with the TCP benchmark, we wrote
the application to gain tighter timing control. Typical run times were from 0.2 to 0.7

minutes.

- Integer Benchmark: We wrote a small program to test the performance of the server
performing integer manipulation. typical run times for this program was 20-200 sec-

onds. Again, we wrote our own simple program to tighten timing control.

— Floating Point Benchmark: To see if the resource performed any better on floating point
calculations, we also wrote a floating point benchmarking program. Typical run times

were from 2 to 200 seconds.

— File I/O Benchmark: As a memory-limited web server must perform many file opera-
tions, we also wrote a small file /O test program that reads the web server workload
into memory. This should be useful in determining whether the performance is file
1/O limited. typical run times were from 2 - 20 seconds. fhis was a Java based im-
plementation and like the other benchmarking programs not as sophisticated as other
available benchmarking tools. These tools were however more then sufficient to show
relative performance between nodes. We did not intend to compare the relative speed
of PlanetLab nodes using benchmarks to other computers, as such there was no need
for standardized benchmarks. This implementation used as standard blackdown java

F.4.2 {file socket.

We pseudo randomly selected 25 nodes from the Planetlab network, then had each of the 25
nodes test all of its peer nodes, giving 25 x (25-1) = 600 tests.

The ltargest amount of development time was spent creating a quick deploy/test environment
for the above tests. We wanted to make sure that all of the tests happened as close to one another as
possible, to avoid having other activity skew our results. Otherwise other PlanetLab researchers’

actions might change the resource or network conditions. The tools I created allowed us to quickly

CHAPTER 4. APPLICATION PERFORMANCE vs. LAYER 2, 3 AND HosT PERFORMANCE MEASUREMENTS 29

deploy and run multiple tests at one time. We also scheduled the tests to ensure that they would
not interfere with each other. The tools allowed us to complete the 600 tests within 6 hours. As the
nodes were randomly selected they would naturally be spread around the globe, avoiding time of

day fluctuations.

4.2 HTTP Application-Layer Testing: Results

As expected, we found that in the shared network and resource environment of PlanetLab, the
traditional low-layer measurements do not provide a satisfactory correlation with the measured
apphcation performance. We began by examining the performance reported by Apache flood,
downloading our custom workload from a remote server running the Apache HTTP server. We

compared the reported performance with various traditional measures.

Benchmark MySQL 1 | MySQL 2 | MySQL 3 | HTTP
Integer Benchmark 07 09 05 06
Floating Benchmark A5 10 A1 22
File IO Benchmark 03 .03 00 A3
15 min Load Average 06 .03 02 4
Server Memory 13 A0 06 18
CPU Clock Speed 5 32 12 19
TCP Benchmark 72 53 63 .69
Hop Count 30 .29 31 58
Distance 00 39 A3 16
Ping Latency 53 54 57 87

Table 4.1: Absolute value of the Pearson correlation of tests.

CHAPTER 4. APpPLICATION PERFORMANCE vs. Laver 2. 3 anp HosT PEREORMANCE MEASUREMENTS 30

The Pearson Correlation r,, is defined as:

_ 20 = m))Gy = m(y))

w (n—Dsysy

Where m(x) is defined as the mean of the x sample and
s, 18 defined as standard deviation of sample x

Pearson correlation equation. (4.1)

We calculated the absolute value of the Pearson correlation factor (see Equation 4.2) for each
of the low level measures vs. the performance of the remote host acting as a server, summarized in
Table 4.1. The absolute value of the Pearson correlation factor ranges from zero to one, where zero
has no correlation and one is a linear correlation. We would like to see correlations above .75, we
however observed that most results have low very little corelation. Ping latency and the TCP bench-
mark both reflect some correlation of the performance of the resource as a server. Unfortunately,
only in the single case of ping latency vs. HTTP performance do we start to see some corelation
above .75. We conclude that for a general purpose deployment, ping latency alone would not be
enough to predict future resource performance. We make use of the Pearson corelation throughout
the following section.

We first examined the server resources to see if this had any effect on the performance of the
machine as a web server (see Figure 4.1). T have plotted the server performance as time in seconds
to download the workload versus the installed CPU in MHz, as well as the amount of installed
memory in MB. We found the Pearson correlation of these tests to be .18 and .19 respectively
this indicates that there is no significant correfation between the machine configuration and the

performance of the machine as a WWW server.

CHAPTER 4.

CPU {MHz)

Figure 4.1: Apache perforimance vs.

Integer Test (sec.)

APPLICATION PERFORMANCE VS, LLAYER 2, 3 anD HosT PERFORMANCE MEASUREMENTS

HTTP Perf. vs. CPU Speed

2600 T T
2400 v ¥ 4
2200 -
2000
1800 [e =
1800
1400
1200
1000

TF
+

ERAERT oS ++

800 I L L 1 L
0 200 400 €00 800 1000

HTTP Workioad {sec.)

HTTP Perf. vs. Integer Tast

1200

Memory (Mh)

HTTP Perf. vs. Memory

2200 T T T T
2000 E* T v ++

1800
1600
1400
1200
1000 ¥+
800 -
6800 -
400 - +

200 ; 1 1 L L
0 200 400 800 800 1000

HTTP Workload (sec.}

1200

CPU speed and system memory, respectively.

300 — T T
. B
250 FTETN '§+¢+I_ + +]
LT -+ .
200 B T .
I ++: * . Ty T H
150 " b g
; i gt A L
» g . e e P R b
100 fhan i O PRI
a B+ 1
% ohw + gt
s gnm%
50 A
g
i

o
o 200 400 600 800
HTTP Workioad (sec.}

1000

1200

Float Test (sac.)

HTTP Per, vs. Floating Point Test

900 T T T ¥
Boo b+ s t .
700 4 . +f + -

600
500
400
300 |-
200 h
100 §

3 l. e,
1 200 400 800 800 1000
HTTP Workload (sec.)

1200

Figure 4.2: Apache performance vs. integer and floating point benchmark, respectively.

10 Test {sec.}

Figure 4.3:

HTTF Perf. vs. File 10 Test
50 T r T ¥ T

0 200 400 600 800 100
HTTP Workload {sec.)

Load Avg. (N}

HTTP Perf. vs. 15min Load Avg.

25 ¥ T T T T

20 -

+
F3
E

600 800
HTTP Workioad (sec.]

1008

1200

3l

Apache performance Vs. file I/O benchmark and 15 min. load average, respectively,

32

We then observed the server performance running a few benchmarking routines to test the

CHAPTER 4. APPLICATION PERFORMANCE vS. LAYER 2, 3 anp Host PERFORMANCE MEASUREMENTS

machine performance near the time we downloaded the web workload (see Figures 4.2 and 4.3).
As can be seen, the raw performance of the server does not scem to influence its performance
delivering our workload, nor does the reported 15 minute load average. Correlations of .13 and .14

respectively.

HTTP Perf. vs. Hop Count

30

B

++

+

+

=+
A SR b

Hops (M)

Distance (Km}

20

10 |

5 -

H
T
it
4

i h
ey T R A
B e e e+

T R Ll s

M S+ -+ + +

i

Fopiir-aid
.

-+ +

1

s c L+

8000
7000
8000
5000
4000
3000

200 400 500 800 1000
HTTP Workload {sec.)

1200

HTTP Peri. vs. Distance to Server

2000

e

%f +it«

¥

%

Ping Time (msec.}

800

HTTP Perl, vs, Ping Latency

700

T T T

1000

400 600 o0
HTTP Workload {sec.}

1200

1000 P . B
+ + +
0 .1 ""t«mit; E-3.2 1 H L L 1
0 100 200 300 400 500 600 70O 800 800 1000

HTTP Workload (sec.)

Figure 4.4: Apache performance vs. hop count, latency and distance, respectively.

As the previous resource tests did not show any strong correlation, we assumed that the bot-
tleneck must be in the network. We examined the HTTP performance versus the number of hops,
latenecy and distance (see Figure 4.4), Correlations of .58, .87 and .16 {'é.Spectively. We observed
from the plots and corelation figures, the number of hops and latency did have some correlation
with the resource performance. We assume that this is due to the heavy reliance of the HTTP pro-
tocol on the TCP protocol. As TCP uses many packet exchanges to confirm data transmission and

to handshake, latency would affect the server performance. This is because the initial handshake

CraPTER 4. APPLICATION PERFORMANCE vs. Laver 2, 3 anD HosT PERFORMANCE MEASUREMENTS 33

must be repeated for each of the small file transfers. In our case there are 5000 TCP connections

each one would have to wait for the SYN/ACK to occur before the transfer could being.

HTTP Perf. vs, TCP Test HTTP Pert. vs. UDP Test

r T T 7 T T T

TCP Test {sec.)
UDP Test {sec.)
&

" e
HAg
+ +

B + + 4 » a4
0.5 bl s da]
o T e]
Lol i o 1 4 L 1 I L
a 200 400 600 800 0o 1200 0 100 200 300 400 500 &00 700 800 900 1000

HTTP Workload (sec.) HTTP Woridoad (sac.)

Figure 4.5: Apache performance vs. TCP and UDP benchmarking program, respectively.

Finally we compared the results from two network benchmarking programs with the HTTP
performance measures taken (see Figure 4.5). As shown, the TCP performance benchmark does
again exhibit some correlation (.69) with server performance. We expect that this can be explained
by the same HTTP reliance on TCP as earlier. The UDP test did not correlate well (21) with the
server performance, which leads us to believe that the raw bandwidth between the server and the

client is not a limiting factor in HTTP performance for me expertmental parameters.

4.3 MySQL Database Engine Experiment: Results

We next observed the performance of a remote resource instatled with the MySQL DBMS. We
compared its performance serving a light query to a remote client, and compare the results to the
same previous low-layer technigues.

We began by looking at the raw performance figures of the server vs. the performance of the
resource as a MySQL server (see Figure 4.6). As one can see from the first workload, again fow
correlations of .13 and .15 respectively.

We then compared the other 2 MySQL workloads to determine the effect of increasing the load

Cuarter 4,

CPU Speed (MHz)

Figure 4.6: MySQL workload 1 vs. CPU

CPU Speed (MHz)

Figure 4.7: MySQL workload 2 vs.

CPU Speed (MHz)

APPLICATION PERFORMANCE vs. Laver 2, 3 anD Host PERFORMANCE MEASUREMENTS

2800
2600
2400
2200
2000
1800
1600
1400
1200
1000

800

2800
2800
2400
2200
2000
1800
500
400
1200
1000

800

2800
2600
2400
2200
2000
1800
1600
400
1200

MySQL {(Workload 1) vs. CPU Speed

T T T T T T T T
I+ + 4
Pkt 4 4 P + i
b+ 4
e et + o+ +
ot e s H
o F o4 + +
I 1 I : 1 L r]
8 S 10 15 20 25 30 35 40 45

MySGL Workload {sec.)

MySQL (Warkinad 2) vs, CPU MHz

50

T T T T T T T T T

s L I 1 L 1 4 I t

0 10 20 30 40 50 80 VO 80 90
MySQL Workload {sec.)

MySQL (Workload 3) vs. CPU MHz

100

CPU

1
L 4

W

1000 4

a0o

H
I

+

M e 4

+

T

1

¢ 50

100
MySQL Workioad {sec.)

150

200

250

300

Mamary (M)

2200
2000
1800
1800
1400
1200
1000
800
800
400
200

MySQL {Workload 1} vs. Totai Memary

T T T T T T t 1

4+ +

e S T o T SO

1t

i

o 5 10
MySQL Workload (sec.)

15 20 25 30 35 40 45

speed and total memory, respectively.

Memory (M

2200

2000
1800 |-

1600
1400
1200
1000
800
600
400
200

MySOL (Workioad 2} vs. Total Mamory

t T T 4 T T T T

o W | L 1 L 1 L k

1

0 10 20 30 40 50 60 7O
MySQL Warkload (sec.)

20 90

100

speed and total memory, respectively.

Memory (Mb)

2200
2000
1800
1608
1400
1200
1000
800
600
400
200

MySQL (Warklaad 3) vs. Total Memeory

T T T T T
|ttt i
e 4+ + + 4
[0 7
Sk bk 4+ g+ . L i
b 50 100 150 200 250 300

MySQL Workload (sac.}

Figure 4.8: MySQL workload 3 vs. CPU speed and total memory, respectively.

34

CHAPTER 4. APPLICATION PERFORMANCE vs. Laver 2, 3 anp Host PErFORMANCE MEASUREMENTS 353

(see Figures 4.7 and 4.8) We found that increasing the volume of the workload did not seem to
greatly change the dependence of the server on the raw computing power, (32 and .10) and (.12
and .06) respectively. This leads us to believe that, in a real-life deployment, the raw pesrformance
of a computer will have little effect on the performance of online applications. It will be more

important in offline style applications that do not heavily rely on the network.

MySQL (Workioad 1) vs. Inleger Test MySQL (Workload 1} vs. Floating Point Test
B00 e 800 B e S m
LR A R * 4 o
80 Hf%v + + 500 * j + + |
180 |7 P + 4 -)
RN *. o i
2 8]
5 2
g g -
£ e K
e
++++ + 4
i A AT H %f+“t + < '
0 2 4 5 & 10 12 14 16 18 20 o 2 4 6 8 10 12 14 1B 18 20
MySOL Workinad {sec) MySCQL Workioad (sec.}

Figure 4.9: MySQL workload 1 vs. integer and floating point benchmarks, respectively.

MySQL {Workioad 2} vs. Integar Test MySQL {Workload 2} vs. Floating Test

integer Test {sec.)
Float Test {sec.)

I

o 5 10 15 20 25 a0 35 40 2 40
MySQL Workioad {sac.) MySQL Workload (sec.)

Figure 4.10: MySQL workload 2 vs. integer and floating point benchmarks, respectively.

Given that the raw unloaded performance of a machine did not affect the performance of the
DBMS, we then looked into how the current loading of the machine would affect the performance
that a given resource could provide. We started by comparing the performance of the 3 workloads

vs. our floating point and integer benchmarking programs (see Figures 4.9, 4.10 and 4.11). We

Cuaprer 4.

integer Tesl {sec.)

APPLICATION PERFORMANCE v8. LavERr 2, 3 AND Host PERFORMANCE MEASUREMENTS

200

MySQL (Workload 3) vs. Integer Tesl

180
160
140
120
160
80
&0
40
20

Vi E|

I

0 20 30
MySCL Workioad {sec)

40 50 60

70 80 80 100

Float Test {sec.)

MySQL (Warkload 3) vs. Floating Point Test
400

36

TR T T T T t T

a 20 40 50 80
MySQL Workload (sec.)

100 120 140

160

Figure 4.11: MySQL workload 3 vs. integer and floating point benchmarks, respectively.

expected that, with the 3 workloads, we should be able to see some performance variation of a

machine with increased loading. However, the results suggest no such strong correlation. The

correlations we saw for workload 1 were .07 and .15 for workload 2 .09 and .10 and for workload

3 .05 and .11 respectively.

15min Load Avg. (N)

MySQL (Warkload 1) vs. 15min Load Avg.

i

il

I L

n
PR

:

i

15 20 25 30 3% 40
MySOL Workload (sec.)

§ 10

45

50

Filg 10 Teost {sec.}

MySQL (Worklead 1) vs. File IO Tast on Server
40 Y T T T T T

+ 4, F
L ot

0 5 10 15 20 25 30 35
MySQL Werkload {sec.)

40

Figure 4.12: MySQL workload] vs. file /O benchmark and 15 min. load average, respectively.

We then compared the performance of the 3 workloads with the 15 min load average reported

by /proc to the DBMS performance (see Figures 4.12, 4.13 and 4.14). Correlations were .06,

03, and .02 for loading and .03, .03, and .00 respectively for file I/O performance. The plots

and correlations again show that neither the load average nor our I/O test program provided good

indications of the performance of a resource such as a MySQL server.

As with the HTTP performance tests, we observed very little correlation of the resources’

CHAPTER 4.

18min Load Avg. {N)

APPLICATION PERFORMANCE vs. Laver 2, 3 AND HosT PERFORMANCE MEASUREMENTS

MySQL (Workload 2) vs. 15min Laad Avg.

/ 1 £ t 1 1 L 1

10 20 30 40 50 60 70 80 90
MySQL Workload {sec.)

Fite 1O Tesl {sec.)

MySQL (Workload 2) vs. File 10

37

30

MySOL Workload {sac.)

+
. +
R * PR
+, ++ 4]
o How -
Lk
25 3 3/ A0

Figure 4.13: MySQL workload 2 vs. file I/O benchmark and 15 min. load average respectively.

15min Load Avg. (N}

MySQL (Workfoad 3} vs. 15min Load Avg.

T T T T T
+ + +
_‘M ++4 + + 7
i + B
* *
b £
i I
+ +
: - £
ti+ £ . 4 3
Fiic : i il
' =
a 50 100 150 200 250

MySOL Workload (sec.)

300

File 10 Test {sec.)

30

MySQL (Workload 3} vs. Fite IO Test

¥ OOF T T T T T

40 80 80
MySQL Waorkioad (sec)

00 120

150

Figure 4.14: MySQL workload 3 vs. file I/O benchmark and 15 min. load average, respectively.

Hops {N}

25

20

0
0 10 20 30 40 50 80

MySQL (Workload 1} vs. Hop Counl

VI W S T S WU U SR SR |

70 80 80
MySQL Workload (sec.)

100

Ping Latency {msec.)

150
100
50

MySCQL (Workload 1} vs. Ping Latency

10 15 20 25
MySQL Workload {sec.)

30

Figure 4.15: MySQL workload 1 vs. hop count and latency, respectively.

CHAPTER 4.

Hops {N)

Hops (N}

APPLICATION PERFORMANCE vs. LAYER 2, 3 AND HosT PERFORMANCE MEASUREMENTS

MySQOL {(Workload 3) vs. Hop Count

30 Y T T T T
f P
+ + + +
+ o+ + +
0 4
St +

i + v + 4+ +
ioad 2} vs.ﬁop@nﬁnt .+

g

T

o

et E
EL.Wor F
-4 + X . =
B+ ik wad 4 + 5

Lo = T T T T= T —
U + + q

-

+ 7 =]

+ + - £

P + PR g

2

+‘-+L . + +4 E

G| Lo T -
0435 T s 200 . 250 spo £
MySQOL Workload {sec) 3 E

“ - 2

£

Figare 4.17: MySQL workload 3

0
0) 20 30 40 58 60
MySQL Workioad (sec)

70 BO 90 100

800
700
800
500
400

800

300
700

200 1

6060
104
500

0
400

MySQL (Workload 3) vs. Ping Latency

* My%%ﬂt‘\@{iimad 2) vs. Lalengy

) T T T T

T 1“¢T TR L VT T |+ T T T e

LA 4 T]

A R AR

- 4 &]

e, . - 1 L T i Il
50 ‘+agB¥ s+ 150 T 200 250 3po
= +
o ’ﬁMyS.OL Workloag tsec.) .. +
gl ”1114- ++ ++ + o e

i+ ++ Ty 7 + oy
nd latengy, respectively. -

020 30 40

50 60 70 80 90 100
MySQL Workioad (sec.)

Figure 4.16: MySQL workload 2 vs. hop count and latency, respectively.

38

CHaPTER 4. AprrLICATION PERFORMANCE vs. LAavER 2, 3 AND HosT PERFORMANCE MEASUREMENTS 30

performance to their performance as a DBMS server. We then examined the network for a stronger
influence on performance. We began by looking at the hop count and latency vs. the DBMS
performance tests (see Figures 4.15, 4.16 and 4.17). Correlations were .30, .29, and .31 respectively
for number of hops and .53, .54, and .57 respectively for latency. Examining the results, we see

litile correlation between the latency and the resource performance.

MySQL (Workload 1) vs. TGP Tesl

MySQL {Warkload 1) vs. UDP Test

0.8 Y T T T T T T T T
07 .\ .]
.
o 08 + P + N n +
. i
% 2.5+ - w o4t - a E 5 *
= - . = + + +
g 04 et .. «or i - 1
E 0.3 Lo T Tt e e E i +<i£‘&l{* +:ﬁ:*
3 ECN S + E 5 N i T 4
T ezl 4 f e ST LR 2 B Dw S
- . *"?.-++ o5 o+ F Ve LT o DA 4
01 b o) 4 LA RN +
o w2 at IS T L : b1 L s
18 20 2 4 B B 10 12 14 18 18 20

8 2 4 8 8 10 12 14 18

MySQL Workload {sec |

MySQL Workload {sec.)

Figure 4.18: MySQL workload 1 vs. TCP and UDP benchmarks, respectively.

TCP Test {sec.}

MySQL (Workiaad 2) vs. TCF Test

MySQL Workload {sec.}

UDP Tast {sec.)

MySOL {(Workload 2} vs, UDP Test

+

i e T
A+ + ¥
oAb et + i

i0 15 20 25
MySCQL Workload (sec.)

Figure 4.19: MySQL workload 2 vs. TCP and UDP benchmarks, respectively.

To verify the results and to complete the tests we looked at MySQL performance vs. our
TCP and UDP benchmarking tests (see Figures 4.18, 4.19 and 4.20). The correlations were .72,
.33, and .63 respectively for our TCP benchmarks and .29, .28, and .12 respectively for our UDP

benchmark. Again, There is little correlation. This is unlike the HTTP test that did show some

CHAPTER 4. APPLICATION PERFORMANCE vs. Layer 2, 3 AND HosT PERFORMANCE MEASUREMENTS 40

MySQL {(Workload 3} vs. TCP Tast MySQL (Workload 3) vs. UDP Tast
T T
% PN 3 z b
8 L k
o P o 4
E k2% hd +| % 1
&L 4 |
PR s
Bl 4T
0 10 20 30 40 50 60 YO 80 S0 100 & 10 20 30 40 5O B0 YO B8O 9D 100
MySQL Workload (sec.) MySQL Workload {sec.)

Figure 4.20: MySQL workload 3 vs. TCP and UDP benchmarks, respectively.

correlation. We believe that this may be due to the fact that the HTTP workload was larger than
the result set returned by the DBMS test.

From the above results, we further conclude that traditional low-layer performance measures
have limited value in the shared network/resource environment of PlanetLab. We therefore choose
to explore other mechanisms to predict performance. If we want to consider a range of other
applications, we believe that the only general way to unify the measuring of remote application

performance is to do so by using only application performance.

4.4 Noteworthy Results

One of the interesting results we found was that the performance of a resource varies drastically,
depending on where in the network one measures its performance. We found that a resource’s
performance can vary by as much as an order of magnitude depending on where the measurements
are taken. We also noticed that the variation in the evaluation of the remote resource shrinks as
the resource measurement points approach each other in the network. Closer neighbor clients
tend to have similar evaluations of the performance, whereas two distant peers are likely to have
very dissimilar evaluations of a remote resource. To verify these findings we pseudo randomly

selected 10 remote servers from Planetlab, and plotted the difference between a server evaluation

CHAPTER 4. APpPLICATION PERFORMANCE vs, LavER 2, 3 aND HosT PERFORMANCE MEASUREMENTS 4]

Totat Profile Discrepancy aver 10 nodes vs. Distance from Neighoar
3500 T T T T ¥ Y Y

3000

T
1

2500 - R

2000

T
1

1500 e 4

T

1000

Sum of Profile Discrepancy in sec.

500 - 3

I I L 1 L r L L L
o] 1000 2000 3000 4000 5000 8000 FOOC 8000 8000
Distance fram Peer Cliant in kim

Figure 4.21: Difference between peer client evaluations vs. distance between peer clients.

taken by a 2 clients at different locations vs. the distance between the client nodes evaluating the
server (see Figure 4.21). One observes almost a linecar refationship. We belive that this is due to
the network influence. The closer two evaluation points are, the larger the number of common

network elements. In retrospect this should be an intuitive result.

To further verify these findings, we plotted the performance of a resource as a server evaluated
by a peer node at the the same site vs. the evaluation done by a peer at a remote site (see Figure
4.22). If there was little effect on the network position we would see a strong correlation between
the 2 measures and a strong linear relationship. When we calculated tﬁe Pearson correlation we
found a value of 0.12, reflecting little correlation. One of the effects that can be seen in the plot is
the two strong horizontal lines through the plot. In this plot two sizes of test can be seen. The first
one takes about 200 seconds to complete, the other 20 seconds, when evaluated by a peer at the

same site. When the same resource is evaluated remotely, its value varies wildly over the x axis.

From these results we see that a server’s value is highly dependent on its location in the net-
work. One of the drawbacks of evaluating server performance at the client is scalability. As we

have seen, the performance is highly position dependent.

CHAPTER 4. ApPLICATION PERFORMANCE vs. Laver 2, 3 anD HosT PERFORMANCE MEASUREMENTS 47

Client Resource View vs. Server View
1200 T T

i

T
+ T oAty

+

1000
800
600

400

200 b

Server Resource Evaluation (sec.)

0 200 400 600 800 1000 1200
Client Resource Evaluation {sec.)

Figure 4.22: Server performance evaluation from client next to the server vs. remote client server

performance evaluation,

4.5 Testing Conclusions

As shown from our first set of experiments, traditional measurement technigues do not correlate
well with actual server performance in a shared network and shared resource environment. We
also determined that a client’s evaluation of the network resources is highly location-dependent.
Nearby clients tend to have a very similar view of the network. This suggests that nearby nodes

could cooperate 1n building a shared network view,

Chapter 5

Framework Components

In this chapter we explore some components we used to build our framework.

5.1 Performance Predictions

From our first set of tests we concluded that one should not look into the low network Tayers to do
remote resource performance predictions. Our goal is to predict the future performance of a node
based solely upon its past performance at the application layer. Similar work has been done in
other domains {45] {36] {16] [58]. If this prediction is possible, it could potentially provide much
greater value than the traditional measures, since the high-level measurements would, in effect,
encompass all of the low-layer details. Unfortunately, it may be that predictions would become
specific to the application and remote resource specific. However, the predictions could be shared

amongst a pool of clients that had the same evaluation of the remote resource.

5.1.1 Performance Predictions Experiments

To test our theory that the future performance of a remote resource can be predicted, we simplified

our previous test suite. As many of the results are the same for the MySQL workloads and the
43

Charrer 5. Framework COMPONENTS 44

Apache workloads, we eliminated the MySQL tests as well as the low-layer testing. As the testing
will be long term, the reduction of testing volume helps us remain good PlanetLab citizens. We
believe that the Apache server and its workload is a close match to a real-world application since
the workload is modeled on real data while the MySQL workload was simply a convenient test.
We randomly selected 50 nodes from the PlanetLab network for our tests. Each of the selected
nodes, on a 4 hour cycle, would test all of its peers’ performance with our workload. One of the
drawbacks of PlanetLab is that it is a test network. We found that it requires 50 nodes to keep
approximately 35 nodes configured and running. Our tests executed for approximately 8 months,

generating about 300 tests an hour.

5.1.2 Results of Performance Prediction Experiments

History of node # as seen From node 3

n
=)
1

-
@
T

Py
=

b
ko
T

-
=y
T

o
T

Mimstes for workload

Dec:08:04

Dernil3:22
Dec:19:17 -
Dec:31:07 ;
tanios:io2 b
dan:23:41
Jan:Z9:056 F
Feb104:00

Feh10o:i9
Febil5:id

fFog:21:00 b
Feb:27:04

Har 04 :23 -
Har:2o:1e

Figure 5.1: Long term remote resource performance vs. time (4 hour interval).

The results show that most nodes operate in a dual mode fashion. In one mode, they have a
base performance level that is quite constant. In the second mode, they jump into an overload

condition where their performance drops by a factor of 2 or more. We speculate that the overload

CHAPTER 5. FrAMEWORK COMPONENTS 45

was probably due to high load experiments being run on the nodes by other researchers. This

artifact can be observed in the blue line in Figure 5.1.

History of node 8 as seen from node 345

m
o
T

Mirutes Fog work oad
o
T

il

AUgIOBIOE
Aug:td:ot |-
Aug:lS:20 3
frug:25:15 —
fug 3t ies [
Sep:06:0d |-
sepitlizsh
Sep:i7:18}-
Sep:23iizp
Sep:23:08 |
Betaosi03f
votat0szzf
00t :16:17 |-
Oct:22:41
Oct:28:06 -
Nov:03:60 L

Figure 5.2: Short term remote resource performance vs. time (10 min. interval).

To be sure that this dual mode behavior was not an artifact of our selected 4 hour window,
we ran a small test set of 5 nodes. These nodes tested one another on a 10 minute window with a
reduced workload of 1.3MB. The results in shown in Figure 5.2 seem to have similar characteristics
to the 4 hour window version.

From these results, we developed a simple moving average prediction algorithm shown by the
red Tine i Figure 5.3. The algorithm selects a window of past data and takes the average and
standard deviation in the window. It then predicts the future performance to be within x standard
deviations of the mean. We defined a successful prediction to be one that felt between a lower
bound, in which the performance was as good as the prediction, and an upper bound, in which
the performance was within a factor n of the prediction. The lower bound was included to ensure
that there wasn’t an inordinate waste of resources. We then tested many values of the parameters
1, X, and various window sizes, trying to minimize their values without dropping below a 95%

successful prediction rate. We found a minimum in those values.at n=3 for an upper bound value,

CHAPTER 5. FRAMEWORK COMPONENTS 46

e m= oanee Foo seany 'rar e 3

i

b T

o i . -

Figure 5.3: Remote resource performance and prediction vs. time (4 hour interval).

x=2.50 sigma and 6.35 days for the window size. These values gave a successful prediction 93.88%
of the time as shown in Table 5.]. Table 5.1 shows the percentable of times of averaging algorithm

produced false predictions as defined above, for each of the inputs.

5.1.3 Performance Prediction Experiments: Conclusions

From the last set of experiments, we found that with about one week of data our simple averaging
algorithm works well for future performance predictions, for our application and dataset running
on Planetl.ab. One of the advantages of this algorithm is its simplicity. As the algorithm input is
based on application specific plug-in performance evaluation, it should prove to be robust in light
of new datasets and varying applications. More accurate prediction algorithms do exist but, as the
averaging algorithms works well we decided to move on to other portions of the system rather

then, explore improving our predictions with more sophisticated techniques.

CHAPTER 5. FrRaMEWORK COMPONENTS

Deviation from the Mean (in sigmas}

[.75 2.00 2.25 2.50 275 3.00 3.25 3.50

3.5 |1 8.30% | 8B.05% | 7.91% | 7.80% | 7.91% | 8.01% | 8.14% | 8.29%

3.63) 7.72% | 7.46% | 7.36% | 1.29% { 7.37% | 7.48% | 7.63% | 7.80%
Window 417 || 6.82% | 6.52% | 6.44% | 6.38% | 6.47% | 6.59% | 6.79% | 6.95%
480 1 6.94% | 6.64% | 6.53% | 6.45% | 6.53% | 6.60% | 6.89% | 7.11%

Sizein 552 § T.01% | 6.62% | 6.45% | 6.36% | 6.42% | 6.52% | 6.76% | 6.96%
6.35 || 6.79% | 6.36% | 6.21% | 6.11% | 6.12% | 6.27% | 6.48% | 6.73%

Py T30 7.02% | 6.73% | 6.58% | 6.46% | 6.54% | 6.68% | 6.93% | 7.19%
3.39 9 7.14% | 6.73% | 6.60% : 6.57% | 6.67% | 6.85% | 7.08% | 7.34%

9.65 | 7.25% | 6.90% | 6.85% | 6.84% | 6.96% | 7.16% | 7.47% | 7.72%

47

Table 5.1: Percentage of false predictions over database of results for different window size and

deviations from the mean.

5.2 Remote Resource Selection Algorithm

One of the key components a deployed system will need is the ability to balance new load as it is

introduced into the system. We found some interesting phenomena in our first set of tests, such

as the relationship between node locations and their view of resource performance. We sought

to leverage these findings and the results from Chapter 5 two to produce a resource selection

algorithm.

Similar work has been done in Grid research [51] [8] [32] [13]. These Grid based resource

selection algorithms balance application specific design vs. complicated QoS agreements. We

propose to use an application fayer plug-in in place of a complicated QoS specification to drive our

selection algorithm.

CHAPTER 5. FRaMEWORK COMPONENTS 48
5.2.1 Remote Resource Selection Algorithm Testing

We returned to the database of results obtained in earlier in this chapter to develop our new algo-
rithm. As the database contains a record of the performance of all of the peers, we have complete
knowledge of almost all of the resources in each time slice. We say almost, as in the last 8 months
we have had a few transitions in our PlanetLab management system and at any one time 10-20
nodes are offline. We generated a synthetic demand list for each node at various time slots to
match the database data, areas of the data set where we did not have any data. The synthetic de-
mand consisted of a series of plug-in demand values and durations. We generated demands for
each of the anchor-point locations, We made sure that the demands avoided gaps in data. As we
already know what the performance of a resource would have been, as seen from all of its peers, we
can emulate the demand placement decision a node would have made. We tested various selection

algorithms:

Load Based Based on examining the load on all of the resources and selecting the resource with
the lowest load. This algorithm has been proposed by some research Content Delivery Net-

works (CDNs) such as Coral [23].

Range Based We then used an algorithm that selects the node nearest to itself. This is the algo-
rithm that many commercial CDNs use, such ag Akami [1&]. Commercial CIDNs do consider

loading of data centers but, we ignore this as the dominant factor is range.

Uptime This algorithm is based on the length of time a resource has been online. In our case this

means the number of time steps the resource has been returning data.
Local Learning Local learning uses the averaging algorithms from cur Chapter 4 tests.

Random We also included a random selection algorithm as a litmus test to be compared against

our other algorithms.

CHapTER 5. FRAMEWORK COMPONENTS 49

Global Learning Global learning is another implementation of an averaging algorithm, but is
implemented as a shared object. We did not mtend this algorithm to be implemented in
a true deployment. Rather we expected it to act as an upper bound to our performance
measures. As a shared object, the entire population of clients learn as a group by updating a

shared data structure, rather than by acting independently.

Clairvoyance The Clairvoyance algorithm was another litmus test. It looked ahead into the
database to see the performance of resources in the next time slot and used this clairvoy-

ant information to make its placement decision,

5.2.2 Results of Resource Selection Algorithm Testing

Algorithm | Percent of Demand Satisfied

Global T6%
Clairvoyance 68%
Load 67%
Local 05%
Range 04%
Uptime 57%
Random 569

Table 5.2: Traditional demand placement algorithms.

In Figure 5.2 one can observe that algorithms with some load balancing built-in did well.
Clairvoyance didn’t manage to do much better than load based, because load based was able to
avold systems that already had some demand placed on them. As expected, the random approach

performed the worst, but not much worse than uptime. This can be attributed 1o the fact that the

CHAPTER 5. FrRAMEWORK COMPONENTS 50

random approach has some inherent load balancing huilt in. Our local learning technique from the
previous experiments did not fare very well either. We expect this is because of its tack of load
balancing, which would take no steps to avoid swamping the high performance nodes leaving the
slower nodes unloaded. Figure 5.2 shows the average demand satisfied up to the current step in the

plot. As the plot continues, values will level off.

5.2.3 Revisiting Resource Selection

Unsatisfied with the results obtained, we revisited the previous emulations. Here is a list of the

algorithms we re-implemented in the redesigned emulator

Random Selection

»

Clairvoyance

*

Range Based

Local Leaming

To further expand this set of emulations, we increased the number of anchor points by a factor
of 6. We chose 6 because 6.3 nodes is the average number of Planetlab nodes in an arca. Often
office or campus size networks have very small Iatency and high bandwidth. This distance is
important as we make the assumption that communication delays on this metropolitan scale will
be negligible. We leverage this low communication cost to allow nearby anchor points to form
cooperative clusters. As nearby nodes tend to have a similar view of the network we reuse the
same performance figures for each of the emulated anchor points. We explore self clustering in a
later chapter and live rather than emulated data is used.

We then tried to leverage knowledge from the last set of experiments, together with the similar

view nearby nodes have of the network. We then implemented a series of new algorithms;

CHAPTER 5. FraMeEwork COMPONENTS 51

Load Balancing on the Resource: In this algorithm, we enabled the resource itself to maintain a
list of the performances experienced by the clients that use it. If a new client wants to make
use of the resource, the resource can report what its average performance has been over the

past N recordings.

Load Balancing on the Anchor Point Cluster: Each cluster had 6 clients. These were emulated
clients. In the emulation, we assumed that the nodes had: negligible communication cost
among the group. This assumption is appropriate as we found that PlanetLab has on average
6.3 resources per city (50km range). In Chapter 9 we return to this assumption and find
actual clusters further improving performance. For the moment the assumption is that all the

nodes in a city size area have the same view of the global network.

We decided that if the clients cooperated, by telling one another that they were using a

resource, they could have load balancing among the local cluster.

Shared Correction: In this algorithm, each resource maintains a “published” performance aver-
age over the last 6 days of jobs. The run times being averaged are returned to the resource
from the client after the run is complete. The anchor points make use of this average as a

first approximation of the resources future performance.

When the client returns the job run time to the resource it also ‘sends a copy to the local
anchor points. The anchor points then compare the run time of the last 6 days of jobs (their
own local average) to the resource’s “published” average. The local anchor points uses the
ratio between the global “published” resource average and the “local average” to create a
local “correction”. The local “correction” is the ratio between the “published” prediction

and the “local™ prediction.

When scheduling new jobs the anchor points multiplies the “correction” with the global

“published” prediction to find a performance prediction that has been corrected for its posi-

CHAPTER 5. FrRaMEwORK COMPONENTS 52
tion in the network. It then selects the lowest predicted runtime resource for the client.
When the anchor point selects a resource to deploy a job it notifies the other anchor points
m the cluster. All the anchor poiats in the cluster adjust the expected performance of the
resource Is use by incrementing its “in use” variable by one. In subsequent scheduling,
resources that have jobs running on it, will have its “published” performance divided by the

number of jobs currently “in use” on that node.

Anchor points un-mark resources when they are notified by the client that the job is complete.
Anchor points also periodically poll the resource to check to see in a client’s job is still
running. If it stopped or the client becomes unresponsive (ping alive) the anchor point will

cancel the job and decrement the resources “jobs™ counter, to free it up for new jobs.

By making use of local load balancing, the algorithm avoids over loading nodes. Some
interference may occur from other anchor points, but this would soon be reflected in the client

performance numbers. On subsequent deployments the resource would not be as attractive.

1t should be noted, that by making use of averages across many nodes globally, or locally, the
influence a single malicious node, or set of nodes, can have is reduced. As well, a malicious

node is easily detected by returning values far from the expected average.

Figure 5.4 shows the average demand satisfaction vs. emulation steps for the various algo-
rithms. For each emulation step we plot the percentage of demands that have been satisfied up tilt
the current step. The plot should, and does, level off to some fixed values as more accumulates.
Neither the traditional algorithm nor our new simple algorithms perform very well. However, our
shared correction algorithm performed even better than the clairvoyant algorithm. Its true strength
comes from leveraging the large client base to average the resource’s global performance while a
cooperative cluster learns a local view. This algorithm forms a global cooperative network where

all anchor points contribute to benchmarking the resource.

CHAPTER 5. FRAMEWORK COMPONENTS 53

Ragource Selection Algorithms

bR I - —

S0 - _ - T

8.0 F . - _ - T

| B " .
e B - B T T e s e _——
- e ——
550 m—— . _— i
Z e
Fn. I e — Shared Correction Factor
& L
= N Clairvoyance Selection
34,0 Load Balancing within Group
Randem Seleciion

3.0 — Range Sased

- Load Bajancirg

o ~{.ocal Resourge Learning

Load Balancing on Res. {Na Corre.)

. . et
g 3
3

Erulation Stef’

150k
a0
mal
00
12

Figure 5.4: Cumulative percentage of demand satisfied vs. time step.

The Shared Correction algorithm achieves top performance by taking into account the short
term average loading of the resource. This published rescurce loading figure allows all anchor
points that make use of the resource to quickly learn the global loading of resources. At the same
time a cooperating cluster of anchor points can work together to learn the “correction” factor from
the resources’ published value, allowing them to learn the nature of their position in the network.
One key factor to making this cooperative cluster work is making sure the cluster is formed of
nodes that share a similar network view. We show how these clusters are formed in Chapter 6 and

7.

5.3 Development

With a resource selection algorithm and performance prediction scheme in place we continue onto

dynamically creating clusters of cooperative anchor points.

Chapter 6

Resource Clustering Study

We have observed in our emulations that clusters of anchor point neighbors can have advantages
over anchor points acting alone. In our emulations, the clusters themselves were emulated at the
same geographical location due to insuflicient data. We are confident that clustering of resources
shows good promise. To further explore this possibility we developed a series of tests to quickly

establish if the clustering of resources is possible.

6.1 Ping Based Resource Clustering

In previous tests it was impossible to detect client clusters due to the small number of nodes being
used. With only 40 nodes mvolved in the tests, cluster sizes would have consisted of only one or
two nedes. In this test we made use of 400 PlanetLab nodes, giving 400 x 400 possible evaluations
or just under 160,000 tests. With the large number of tests, each measurement needed to be small
to reduce our total impact on the PlanetLab network. We chose to do a simple network ping.
This did show some correlation in our original test of HTTP and transactional performance, as
well as being simple to implement. We acknowledge that the ping test will only provide simple

latency information between nodes. As was shown in Chapter 4, this only has weak correlation
54

CHAPTER 6. RESOURCE CLUSTERING STUDY 55

with application performance. These results show good promise and we intend to redeploy the
tests with application layer tests. We ran the tests for 2 weeks, repeating the 160k tests every 4

hours.

6.2 Anchor Point Network Position

To cluster the anchor points in terms of the resources’ latency, we defined each of the PlanetLab
nodes involved in the test as both a resource and an anchor point. To define an anchor point’s
position in the network in terms of resource pings, we define the anchor point’s position as a
signature composed of a vector of ping times to the remote resousces (see Equation 6.2). For the
moment use the term signature despite that it contains all of the data collected. In Chapter 7 we

should how a large portion of the data can be discarded forming a true “signature”.

Ry, = Ping Results from Anchor Point | to Resource A
S = Signature at Anchor Point 1
St = [Ria, Ry, .., Rynl

Ping based anchor point location signature definition. (6.1)

6.3 Ping Based Anchor Point Clustering

To cluster the resulting anchor point locations, we developed a simple clustering algorithm. The

goal of the clustering algorithm was to find anchor points that have similar views of the remote

CuaPTER 6. REsource CLUSTERING STUDY 56

resources. We wanted to be able to find these clusters of anchor points without all of the anchor
points having a full set of resource data. To achieve these goals, we set two thresholds: 1) an
individual resource measure match and 2) a sum of matches threshold (see Equation 2). The
formula finds the number of remote resources with similar evaluation, and compares it to the
number of commeon remote resources. Should a large enough percentage of the remote resource
evaluations match the anchor points for a cluster. The clustered resources then use the average of

their evaluations when comparing with other anchor points that may want to join.

Two Anchor Points will merge or cluster if C(S;, 51) 1s True:

T1 and T2 are pre-seleceted threshold values
S ; Is the signature of anchor point S

R, Is the ping time to resource y as observed from anchor point x

S iR Ry < T |
Cs1,S:| > R J181[)Salf> T2

=] 0 Otherwise

Clustering algorithm. (6.2) |

The implementation of the algorithm starts with each anchor point as an individual cluster. We
then cycle through pairs of anchor points comparing signatures with our clustering algorithm (see
Equation 6.3). If the result 1s True, we merge the two anchor points into a cluster, We continue
until clusters stop merging. In the case where we are comparing two clusters, we take the average

value for each of the component elements of the cluster. The pseudo code follows:

CHAPTER 6. RESoUrRcE CLUSTERING STUDY 57
def: merge(x[1,v[]):
for each i (return z[i] = (x[il + v[i]) / 2D
clustering = True
while clustering:
clustering = False
for each S[}:
for each S[]:
if C(S[x],.sSlvD):
clustering = True

merge(S{x],S[y])

Figure 6.1 shows the geographical distribution of the clusters. The diamonds on the map indi-
cate a cluster. The diamond clusters are centered on the average position of the cluster’'s members,
(as can be observed, some fall in the middle of the ocean). The size of the cluster represents the
relative number of anchor points involved.

From the clustering results we can see that resources’ signatures tend to give good indication of
geographical location by considering that many nodes tend to have similar views of the network.
By setting our thresholds to .85 for two measures of a remote resource to be considered a match
and .85 for the number of resource matches needed, we see that 167 clusters were generated from
the 400 nodes used. That results in just over 2 nodes per cluster on average. PlanetLab requires two
nodes per site to join the test bed, leading us to believe that these threshold values are well matched
to the co-located Planetlab nodes. As we relax the thresholds, the number of clusters drops, as
can be observed in Figure 6.2, where we see that the number of clusters is 61, with large clusters
forming in the North America, Europe and Asia. As the majority of the largest contributing centers

are located in these regions, the results scem reasonable.

CHarterR 6. REsource CLUSTERING STUDY 38

Numbey of Clustars: 147

Threshold for individual resource agreement:
Threshhold for signature agreement:

Select Test Date:

2008 Lidd:]d

Figure 6.1: Global distribution of ping based neighbor clusters.

Crarter 5. REsoURCE CLUSTERING STUDY 59

Numlzer of Clusters: =1

Threshold for individual vesource agresment: 075 ~

Threshhold for sigmature agreement:
Select Test Date: |

Figure 6.2: Global distribution of ping based neighbor clusters.

CuarTEr 6. Resource CLUSTERING STuDy 60

The results of ping based clustering show that finding clusters of anchor points based on re-
source performance measurement is possible. Unfortunately, hasing clustering on pings alone may
not be suflicient for applications that are computationally bounded. In these cases, ping times will
be irrelevant. We should create and alternative method of clustering anchor points that can be

better tuned to the deployed application.

Chapter 7

Resource Clustering

7.1 Probe Tests

The promising results based on ping time clustering inspired us to design a new set of experiments
that would capture more than the simple latency between nodes. What we hoped to achieve was
a clustering that could be customized to a variety of client applications. Simply using ping time
may be appropriate for applications that make use of many small messages where latency is a
consideration, but we would like our anchor points to be able to service computationally heavy

applications as well. To address this short coming we undertook two scts of measurements.

Network Measurement

In the first set, we had each of the 400 PlanetLab nodes measure 50 pseudo randomly selected peer
nodes and download five datasets using TCP. As can be observed in Table 7.1, the data sets ranged
in size from 2KB to 20MB. We believe that this range should reflect many network intensive client
applications demands, ranging from small transactions, such as instant messaging, to larger file
transfer applications. Typical run times ranged from 9 to 83 secénds. We limited our maximum

download size 10 20MB as we expect the TCP sliding window to have stabilized to a steady transfer
0l

CuartEr 7. REsource CLUSTERING 62

Test Number | Download Size
Test 0 2KB
Test 1 20KB
Test 2 200KB
Test 3 IMB
Test 4 20MB

Table 7.1: Five TCP download test sizes.

rate. In general TCP transfers take some time to establish a constant rate of transfer. This 1s almost

always much less the 20MB. Even in the rare case where it might not, there are few applications

where a 20MB transfer would not be sufficient to characterize the network link.

7.1.1 Resource Measurement

Test Number | Number of Operations (x 1,000)
Test 5 0.5K Operations
Test 6 1K Operations
Test 7 5K Operations
Test 8 10K Operations .
Test 9 50K Operations

Table 7.2: Five remote computation tests,

To further our network festing, we also deployed a set of five remote resource computing ca-
pacity tests. In these tests, we had the remote resource perform a number of integer multiplies

to asses the resource’s raw deliverable computing power. Each test consisted of 1,000 multiplies.

Cuapter 7. RESOURCE CLUSTERING 63

Again, we varied the loading on the resource through five tests ranging from 500 integer multiplies
tests to 50,000 integer multiplies tests as can be observed in Table 7.2. typical run times ranged
from 17 to 460 seconds. We limited our upper range to 50,000 multiplies when we found that the

results stabilized.

7.1.2 Probe Based Clusters

By making use of the clustering algorithm used previously, we regenerated clusters using our probe
data, with the results shown in Figures 7.1 and 7.2. As expected, the clusters do not form in the
same locations when based on network download probes versus resource computational capacity.
It should be noted that, the clusters (represented by diamonds) arc placed in geographical average
of the cluster leading to clusters appearing in the middie of the ocean.

It should be noted that our clustering algorithm works well without the full N x N test data
we had in the previous chapter. As our clustering algorithm looks for the intersection of matching
probe data, we needed to add a further constraint to the clustering algorithm. We added a minimum
allowed size to the intersection of two signatures. If there were fewer than eight in the intersection,
we did not subdivide further. We added this constraint to be sure that clusters were not being
formed without sufficient data,

To evaluate the potential of the threshold values, we varied the X from 0 to 1, for each value
of X we varied the value of Y from O to 1. In Figure 7.3, we see the resulting number of clusters
when the X and Y thresholds are swept. It is interesting to see that the cluster count ranges from
10s of clasters to one cluster per node. This shows that the X and Y threshold values will allow us
to adjust the cluster groups as needed. It is also interesting to note that the Y threshold sweep loses
range as the X value approaches one. The X threshold is the threshold that two measures need in
order to *match”. Y is the number of “matches” needed for two anchor points to merge into one

cluster. Figure 7.3 shows that, as we tighten the threshold of “matching” on one measure, all of the

CrHarrer 7. Resource CLUSTERING

Average Distance to Cluster Center:
Number of Clusters: 108

Test Series:

Threshold for individual resouwrce agresment:
Threshhold for signature agreement; oss -
Select Test Date:

DLAESE 0G0 -

Figure 7.1: Geographical distribation of compute probe based neighbor clusters.

64

Crarter 7. RESOURCE CLUSTERING

Averape Distance to Cluster Center: 22000 Kn

Thrashhold for signabure agqreement:

Number of Clusters:
Test Series:
Threshold for individual resource agreement:

Select Test Date:

1l

Doz Test =5 =

Figure 7.2: Geographical distribution of network probe based neighbor clusters.

65

CuarTErR 7. REsource CLUSTERING

Number of Clusters vs. Cluster Threshhold Values

200
180
160
140
120
100
80 | 2 .
60 - % % .
40 F £ : .
20 ¥ * i
0 1 l | | + T g |
01 062 03 04 05 06 07 08 08
X Threshold Value, Y Swept at Each Point

Number of Clusters

L
1 I

Figure 7.3: Number of clusters vs. X threshold, Y varied from O to 1 at each X value.

CHaPTER 7. REsoUrRCE CLUSTERING 67
others must agree as the Y threshold loses its effect. We believe that this effect can be attributed to

the strength of the X threshold. The fact that the Y threshold had littte effect implies that atl of the

X values are all matching rendering the Y value irrelevant.

Cluster Number Over Time
255 I 1 T T F T T | 1

250 | .
245 + -
240 F+ o+ + P

235 n

Number of Clusters

230 -
+

205 | I I | | | 1 ! !
0 5 10 15 20 25 30 35 40 45 50

Time in Hours

Figare 7.4: Number of clusters vs. number of hours.

In Figure 7.4, we have plotted the number of clusters over time given fixed values of X and Y
threshold. As can be observed, there is very little variation in the number of clusters. All variation
i this plot was caused by subset of large clusters swapping a small set of member resources. This
could be addressed with a progressive clustering algorithm rather then one that regenerated the
clustering at each time step. Overall the clusters are quite stable even in the face of fluctuation in
network and resource loading. Our algorithms is effective because it averages many probes rather

than over time as was the case in Chapter 3.

Cruarter 7. Resource CLUSTERING 68

7.2 Deployment

Once our framework is deployed we envision a number of probes being run an a regular basis to
ensure current data is available for each anchor point’s view of the network. The probes used in a
real deployment may be further tuned for the specific applications to be deployed. With a signature
based view of the network, an anchor point will be able to contact peer anchor points looking for

neighbor nodes to cluster with, When an appropriate node is found, they will merge.

7.3 Probe Based Clustering Results

We discovered that our clustering algorithm works well with probe data, even when faced with a
reduced dataset. With this new probe data, anchor points will be able to customize their clustering
to suit the application’s network and resource needs. We suspect that this probe data can be further
used to customize our framework to client applications. We explore this idea further in the next

chapter.

Chapter 8

Probe to Application Matching

One of the drawbacks of basing performance predictions on performance histories is the need
for historical data. As we saw previously, it takes on the order of 4-5 days for our prediction
algorithm to achieve best results. It would be beneficial to have a priming system that would allow
applications to be pre-benchmarked, allowing performance predictions before the application has
filled the 4-5 day window. In addition, infrequent short lived jobs would benefit from an alternative
means to generate performance predictions. From the previous chapter, we found a mechanism for
clustering anchor points based on a set of ongoing probes. We propose that this on going probe

information could be used to generate performance predictions of client applications,

8.1 Client Application Benchmarking

To further leverage the probe data that we are accumulating, we benchmarked the client applica-
tions in terms of probe data. To do this, we will compare the performance of an application to the
current probe data for a subset of the resources. From the comparison of probe data to client appli-
cation performance, we distilled a performance ratio of probe values to application performance.

With this ratio, we can then further predict application performance using probe data from other
69

CHAPTER 8. PROBE TO APPLICATION MATCHING 70

TESOUFCES.

To generate these ratios, we deploy the application onto a subset of resources to measure its
performance over a short time period. With the resulting performance data, we generate a vector
of weights that correspond to the relative performance between the application and the particular
probe from that resource (see Equation 8.1). We can then use these weights with probe data from

other resources to give a performance prediction for the application on that resource.

WV = WeightVector

Perf(pn} = Performance of Probe n
Perf(a) = Performance of Application a
WV = [Perf(pl)/Perf(a), Per f(p2)/Perf(a), ..., Perf(pn)/Perfia)l

Weigh vector calculation. (8.1)

To evaluate this technique, we deploved a series of application tests. For these tests, we made
made use of the workload from Chapter 4. For each of the 400 PlanetLab nodes, we pseudo ran-
domly selected 10 remote resources and deployed our workload. Once the workload was complete,
we generated a weight vector by comparing the probe data with the workload runtime. With this
weight vector, we used probe data from the 40 other resources to generate performance predic-
tions. We then deployed our workload on the remaining resources and compared the results to the

prediction. The pseudo code for the signature generation algorithm is as follows:

for p in probe.keys():

sumSig[p] += AppPerf / probeDataip]

CHAPTER 8. PRrOBE 10O APPLICATION MATCHING 71
cntSig ++
appSig = [}
for s to cntSig:
appSig{s] = sumSig[s] / cntSig

print appSig

With these weight vectors, we can use existing probe data to generate a prediction for appli-
cation performance on a remote host. This prediction can be used until enough live performance
data accumulates to generate a performance prediction as developed before. The pseudo code for

the prediction algorithm is given below:

sum =0
for p in probe.keys():

sum += probeData[p] * weights([p]
prediction = sum / p

print prediction

As we see from the pseudo code, generating a prediction is a matter of using the weights and
the latest probe data. In the actual source code, signatures with fewer then 5 remote locations in

common were not included.

8.2 Probe to Application Matching Evaluation

To test the accuracy of our new probe based performance predictions, we pseudo randomly selected

10 remote hosts with probe data. We ran our Apache workload on each of these hosts and made use

CHAPTER 8. PROBE TO APPLICATION MATCHING ' 72

of recent probe data to generate a weight vector. Making use of the weight vector, we generated
performance predictions for 40 remote hosts that were not included in the generation of the weight

veclor.

Distribution of Prediction Rccuracy

Number of Predictions
Wt
S o
T
|

) t I 1
o - 0 0

-1.0

0.8+

0.6

0.2
o

;
=
5

“0.0

® ccuracy oF Fregiction (0.0 Perfect Prediction

Figure 8.1: Distribution of performance predictions, frequency of measurement vs. error fraction.

Figure 8.1 plots the distribution of discrepancy between the predicted value and actual result.
As can be observed, the bulk of the predictions fall within -0.5 and +0.5 or a factor of -2 and +2
(delimiting lines in black). In Chapter 5, we deemed a performance factor of two to be reasonable

for a performance prediction.

8.3 Probe to Application Results

Through further study, the accuracy of weight vector performance predictions could be improved.
At this point, we believe that our simple algorithm is sufficient to show that this technique could
be used to generate performance predictions which compliment our “live” prediction algorithms
developed in Chapter 5. We leave the optimization of this algorithm to proceed to an overall system

evaluation,

Chapter 9

Framework Assessment

To do an overall assessment of our framework, a wide scale deployment would have been ideal.
The deployment itself is not prohibitive, as PlanetlLab has over 400 nodes distributed over the
globe. Our testing and clustering algorithms using PlanetLab have shown good promise in this
environment. Unfortunately, a large scale deployment for testing would require large scale loading
of our framework. As our current contribution to PlanetLab is only two computers, it would be

unfair to other Planetlab researchers to place such a large scale load on the test bed.

9.1 Emulation Inputs

As an alternative to live deployment, we collected a series of probe and Apache Workload tests
from the PlanetLab network. We then used this data to drive the emulator we developed previously
in this thesis. As the emulator did not support probes and the programmatic clustering algorithm,
we needed to make some enhancements to it. To truly test our large scale clustering, the size of the
emulation had to be increased. We expanded the capacity of the emulator up to 400 nodes. Once
our modifications were complete, we loaded our PlanetLab test data. To drive our emulation, we

generated a synthetic anchor point demand workload. This workload pseudo randomly selected
73

CHAPTER 9. FRAMEWORK ASSESSMENT 74

N anchor points on which to start resource demands. For each of the N nodes a pseudo randomly
generated level of demand was requested. For each demand, a lifetime for the demand was pseudo
randomly generated.

It should be noted that during the framework evaluation we did not include the probe to appli-
cation matching from the previous chapter. We believe that, without a live deployment, the value

of this technique would be impossible to determine,

9.2 Emulation Algorithms

With our emulator and workload generated, we evaluated four different resource selection algo-

rithms:

Random Anchor points randomly select the resources to deploy their toad on.

Independent Nodes Anchor points work independently to choose which resource to deploy their

loading on.

Simulated Cooperative Clusters As in our previous emulation, anchor points work coopera-

tively. The clustering of anchor points is imposed based on geographical position.

Probe Based Clustering In this algorithm, anchor points are atlowed to probe the resources as
described in Chapter 7. Making use of this probe data, the anchor points arrange themselves
into clusters. These clusters leverage the fact that they have similar views of the network.
The anchor point clusters work cooperatively using the same algorithms as the geographical

clusters algorithm.

CHAPTER 9. FRAMEWORK ASSESSMENT 75

Complete Frameuwork Ewaluation

3o | e

20 b

— Probe Based Cooperative Clustered Selection (Thresholds at 0,83, 0.89)
15 L g Simulated Cooperative Cluster Selection

r - Independent Modes

’ Random

Percent Satisfaction

[t}
T

s e s 8 & & B B g g 8 B g B 7
Time Step

Figure 9.1: Comparison of probe based clustering and previous algorithms.

9.3 Emaulation Results

We reused the random, independent nodes and simulated cooperative cluster algorithms from our
previous emulation. We repeated the algorithms to ensure that our changes to the emulator and
workload had not affected the results. In Figure 9.1, we can see that, as with the smaller scale emu-
lation done before, the random, independent nodes and simulated cluster had similar performance
as in the earlier experiments. The probe based clustering showed even better results. We believe
this is because our programmatic clustering can better form cooperative groups. These cooperative
groups are able to better predict the performance of a peer node, as they share a true shared view
of the network. In the emulation, the nodes suffer when clustered by geographical distance due to
their differing views of network resources. When forced into artificial clusters, the anchor points
may not have the same network view they would have as clustered by our probe based clustering.
The discrepancy between these two techniques would mean the clusters would not allow members
of a cluster to learn an accurate correction for remote resources. Without accurate correction val-

ues, the anchor points would have trouble predicting the performance .of remote resources. The

CHaPTER 9. FRAMEWORK ASSESSMENT 76

figure shows results as "percent satisfaction”, which is the average satisfaction of the emulation.
For example, 35% satisfaction implies that 35% of all the demands placed on the network have
been satisfied.

The emulation was driven by a demand trace file. The synthetic demand consisted of a series
of plug-in demand values and durations. We generated demands for each of the anchor-point
locations. Each anchor-point tried to satisfy the demand placed on it by deploying simulated
applications on resources. The performance of the application was taken from the existing database
of performance traces. The demand trace was designed to over tax the system. As can be observed
in Figure 9.1, we see that overall demand satisfaction never exceeds 35%. We could of course

re-generate a demand trace such that all of the algorithms performed better.

9.4 Scalability

Scalability, as a property of systems, is generally difficult to define [25][19]. On the whole, it
relates to the ability of a system to continue to function under the stress of increased loading.

Some of the dimensions that are often measured include:

» Load scalability - As a system sees more load, the system performance gracefully degrades.

e System Size - As a system grows in resources, it continues to scale, this usually relates to

not having any single bottleneck

o Administrative scalability - As the size of the system grows, more and more organizations
can join in order to keep the number of systems component a single management entity must

manage reasonable.

In the following section we examine each of these scalability factors for existing RMS systems:

CHAPTER 9. FRAMEWORK ASSESSMENT T

9.4.1 Grid RMSs

[21], [15] and [22]

Grid RMSs [15] tend to have tight controls over the executing jobs as they are optimized for
throughput over scalability. They also tend to tightly control the contributed resources not allowing
the resources to be used for anything but grid jobs. Because of these tight controls, grids tend to

be very scalable.

Load Scalability

In a grid RMS are generalily load scalable as they have a strict admission scheme that allows them to
control the systemn [oad. With such a mechanism they can deny access to incoming jobs curtailing
an overload condition. Even in the situation where jobs are allowed to enter the system, they lead
only to graceful performance degradation, as the job placement algorithm will ry to maximize

overall system performance [21].

System Size

Grids have proven to be very scalable. They have been used to manage sets thousands of com-
puters. Unfortunately, when general purpose applications are deployed over a wide area network,
the latency and reduced WAN bandwidth can limit performance. This is not a problem with the
grid 1self, but rather the application’s scalability. Grids today do not have a good mechanism for
modeling resource pools over WANS that can be easily adopted by application programmers. Grid

applications are custom written using grid toolkats [22]

Administrative Size

Grid RMS developers have spent a large amount of time developing the systems needed to share

grid pools among administrative domains. Grids maintain the ability for local grid pools to manage

Cuaprter 9. FRAMEWORK ASSESSMENT 78

their resources and still trade idle resources among themselves.

9.4.2 Volunteer RMSs

Volunteer systems limit the number of applications that can be deployed by only allowing com-
munication to the central server. This affords volunteer systems many advantages and hurdles to

scalability even through the capacity is available [6].

Load Scalability

One of the largest bottlenecks of volunteer systems 1s the central data center that the slave chients
must contact for communication. This also severely limits the type of applications that can be
deployed. On the other hand, as the central location does not do any computation, it can handle a

relatively large amount of coordination.

System Size

Systems size scalability is not a problem for volunteer RMSs as the slave clients have no interpro-
cess communication and the master slave communication is low. The total size of the network can
become very large. Existing systems scale to 10s of thousands of clients contributing to a single

application {5].

Administrative Size

Volunteer systems have poor contributer scalability as they have a single deployment point. Unfor-
tunately, the application base is limited by the central communication architecture. Nearly every

client is owned by a different party. From the client perspective they are very scalable.

CnarrER 9. FRAMEWORK ASSESSMENT 79

9.4.3 P2P RMSs

P2P system are built for scalability rather than over performance. They also tend to focus on single
applications. This allows them t¢ optimize their operation for the single application chosen [43].
Load Scalability

Loading on P2P networks tends to scale very well as the Toad is designed to be distributed over the
network as a whole. The loading is often in a tit-for-taf fashion. This means that users that place
large amounts on the network need to contribute large resources. This fair sharing forces good
scalability into the network but limits the applications that can be deployed.

System Size

The size of P2P networks is usually their strength. Most P2P networks assume little resources at
each of the contributing nodes and attempt to build resources by leveraging a large resource pool.
Administrative Size

As each of the nodes is owned by a different user, P2P networks are the most scalable RMS today.

They often have 10s of thousands of users, who each perform the necessary administration.

9.4.4 CDN RMSs

CDN RMSs are purpose built for scaling up HTTP traffic. They are designed to address the scala-
bility issues with today’s web servers [23].
Load Scalability

CDNs, like volunteer systems have a single distribution point at the origin server. This usually

causes no problem as the redirection is a simple operation. In addition, the CDN pool is usually

CHAPTER 9. FRAMEWORK ASSESSMENT 20

very large, allowing load balancing among the CDN web sites.

System Size

Modern CDNs serve 100s of web sites with 1000s of resources geographically distributed around

the globe. These networks are limited as they only serve a single application,

Administrative Size

CDNs avoid the issue of administrative scalability as they are wsually owned and operated by a
single entity. The client web servers do not handle very much of the system load and are, of

course, owned by another party.

9.4.5 The Developed Framework

Our framework attempts to generalize these system into a novel system that scales in all of the
dimensions just discussed. As we saw, each of the preceding RMS suffer in at least one dimension

of scalability or another.

Load Scalability

Our network is designed to be load scalable. The total client loading can be equally distributed
over the total resource base through the anchor points. Our RMS has another advantage in that,
by our on-line benchmarking technique, clients gain a corrected view of the resources available,
unlike any of the existing RMSs. The limiting factor is the loading placed on the anchor points. In
the degenerate case, all of the load could be placed onto one anchor peint. In this case, the anchor

point would need to replicate itself onto some of the free resources in the peol.

CHAPTER 9. FRAMEWORK ASSESSMENT 81

System Size

As our RMS takes into account the network in its placement algorithm, it can hide latency con-
siderations from applications. This isolation feature is one of the major difficulties in grid RMSs.
The distance isolation feature also allows for system size scalability that no other RMS can match.
The implicit reduced value of distant resources allows for system scalability that could potentially

scale globally.

Administrative Size

As each of the resources and clients in our RMS can be owned by a different person, the adminis-
trative scalability 1s as good as P2P networks. The only limiting factor is the need for a starting, or
root, anchor point that can replicate itself within the resource pool. As the anchor point pool can
run on any of the contributed resources this should not be a limiting factor.

Scalability 1s an important measure for any Resource Management System (RMS). As all of
our testing and results are products of the PlanetlLab test bed, we believe that our framework
has been grounded in reality. Further, our algorithms have been designed to be decentralized,
thereby mitigating any overloading of a single component. Good support for this is provided by
our emulator. In our first round of emulations, we started by emulating 40 nodes in the network.
In our last set, we had 400 nodes where our algorithms continued to operate correctly. We believe

that the system can handle any number of nodes participating. Some of the limiting factors will be:

o As the application set grows, we may need to tune the probes that are used for clustering.
As new applications are added, we may find that our probes do not capture the demands that
applications are putting on the resources. Adding new probes at a later time is quite simple

in our framework and need not be tmplemented by al nodes at the same time.

e There are two threshold parameters used to adjust the size of clusters that are generated

from the probe data. As the size of the network grows we may need to limit how many

CHAPTER 9. FRAMEWORK ASSESSMENT 82

nodes cooperate in a neighborhood. These parameters may need to be adjusted to }imit

neighborhood sizes.

e We have yet to design a discovery and dissemination scheme. The distribution of resource
and anchor point lists will need to be done in a scalable way. One advantage this system
has 18 its robustness in dealing with non-current resource and anchor list data. The propaga-
tion of erroneous resource or anchor point information will not seriously affect total system

performance.

» We will also need to further tune our algorithms and probes as new applications with different

network and resource demands are added.

If these four shortcomings are addressed in a framework deployment, we believe the system to
be very scalable to a global size. One major advantage we have over éxisting RMS is basing our
performance predictions on past application performance. By using this technique, our evatuation
of resources includes all of the network and resource limitations. Leveraging this data, we can use
the resources for anchor-point placement, allowing them to be deployed as needed and making the

RMS self healing.

9.5 Robustness

Robustness 1s an impeortant quality of a Resource Managenment System (RMS). As our system is
designed to be distributed, it is by nature globally robust. The loss of large segments of the network
or segmentations will not have a large impact, other than the loss of capacity. Berg {?] defines
robustness as "a measure of the degree of a system which is in the operable and committable state
at the start of mission when the mission is called for at an unknown random peint in time”. In

effect this is directly related to the “uptime” of a system.

CHAPTER 9. FRAMEWORK ASSESSMENT 83

In our experiments we had intended to do a more rigorous examination of robustness through
a study of uptime and availability on PlanetlLab. Unfortunately, during our PlanetLab tests we
had a number of difficulties maintaining accurate data. Some of the down time we captured can
be attributed the PlanetLab down time. But the large majority of the down time we saw was due
to programming errors, server migration problems or configuration errors on our part. As the
majority of the down time was due to our own efforts, we decided to simply do a single point of
failure analysis, rather then a study of our own induced reliability faults.

If we examine some of the existing RMS we see that some are not robust due to existence of a

single points of failure within their design.

e Grid RMS - Grids suffer from loss of capacity due to a WAN failure also a possible loss of

data. This 1s due to the type of applications that run on a grid rather than the RMS itself.

» Volunteer RMS- Volunteer RMSs Suffer from a major issue of having a centralized point of
faiture; the master data center. A loss of the master data center renders all processing and

data offline.

¢ P2P RMS- P2P RMSs only suffer {rom a loss of capacity and data if un-replicated in the

network, an unusual eveni.

e CDN RMS- CDNs Suffer from a loss of access to web data if the central server goes offline.

Usually, the CDN will used cached data.

From a design perspective, our RMS does not sufter from any central point of failure like CDNs
or Volunteer RMS’s. There are still some points that can fail in our RMS, but they will not result

In a catastrophic systems fatlure. Such possible failures points include:

» Neighbor Failure: Should an anchor point neighbor fail, it would be quickly discovered and

disseminated to the other neighbors. The moment any neighbor receives data concerning

CHAPTER 9. FRAMEWORK ASSESSMENT 84

one of its application’s performance, it needs to share it with all its neighbors. Had one or
more of the neighbors failed, they would be removed from the neighborhood. The neighbor

could, of course, re-join following its recovery through the normal clustering mechanism.

e Resource Failure: As resources are constantly being evaluated by application plug-ins and
probing, any reduction in performance, whether from overload or failure would immediately
be noticed. The anchor points would need to start migrating applications to free resources.
In the event of a catastrophic failure, any affected anchor point would be obligated to start

farge scale tromming of its load by reducing service (o its clients.

e Anchor Point Failure: Should an anchor point fail, the client plug-in running on the client
would notice immediately as it is feeding performance results to the anchor point. As the
other resources would still be operating and supplying the data, the interruption in service
would not be immediate. Once the anchor point failure is detected, the application plug-
m ¢an begin to move its resource demand to another anchor point in the neighborhood or

elsewhere.

The only remaining item of the framework that can fail is the wide area network itself. Should
a client lose access to the network, there is nothing that can be done. We see that, by making use

of on-line performance data, the system is relatively insensitive to failures.

9.6 Security and Trust

One important area of consideration for any Resource Management System (RMS) is security, In
systems where not all components are owned by the same party, trust can be a problem as welj.
Before our framework could be used in a commercial deployment, these issues would need to be

addressed. At the moment, we have put them aside for future study.

CHAPTER 9. FRAMEWORK ASSESSMENT

In defense of this discussion security can be easily added though encryption of channels and
secure key exchange, PlanetLab already has these facilities enabled. Trust can be built into the
feed back mechanism of the anchor points. As the anchor points maintain an average performance

number for an area it is easy to check the validity of returned results. Should clients return false

data on a regular basis they could have a “trust” level reduced and weighted accordingly.

9.7 RMS System Comparison

Some aspects of our framework are shared with existing Resource Management Systems (RMS).

We compare our framework (o existing systems, Table 9.1,

Attribute Gnd | Volunteers | P2P CDNs Framework
Donated Resources no yes yes no yes
Number of Applications | many many one one many
Dedicated Resources yes no no shared with QoS yes
Predictable Performance | ves no no | no wide area affects | Some QoS
Level of Distribution partial | centralized | fully partial fully

Table 9.1: Resource management system

We observe that our framework can make use of volunteered resource like p2p and volunteer
systems. Our framework can also make use of dedicated resources similar to cluster computing
or grid systems. Qur framework is fully distributed and self-organizing like p2p networks thereby

making the system more robust. We also have some measure of QoS through performance predic-

attributes comparison.

tion, similar to grid systems. We can also support many applications unlike p2p or CDNEs.

CHAPTER 9. FRAMEWORK ASSESSMENT 86
9.8 Summary

Making use of our probe data to generate anchor point clusters, rather than geographical clustering,
we found improved results from our previous tests where anchor point clusters were simulated.
This was due to the probe based clusters being & much better measure of the shared network
path than trying to infer clusters from geographical topology. From these results, we can see
that probe based clustering works well as a means to self organize anchor peints into cooperative
clusters. Other factors that we considered in the design are scalability, robustness and security. The
scalability and robustness of the framework are integral components of the design of the algorithms

we used. Security and trust still need to be addressed in the future work.

Chapter 10

Conclusion and Contributions

10.1 Overview

We have developed a novel framework for the management of a network of shared resources.
The framework uses a set of anchor points, which probe remote resources to establish resource
clusters among anchor points. The probe data also, provides baseline resource performance. The
anchor points cooperatively manage the loading of rescurces Lo ensure that client performance is

maintained.

10.2 Thesis Contributions

This thesis describes an empirical application performance measurement based RMS. The frame-
work itself, probe based clustering and performance prediction algorithms are novel and have

application in other domains and systems.,
87

CHaprTeER 10. ConcLusion AND CONTRIBUTIONS B8

10.3 RMS Framework

Similar frameworks that use anchor points, or "landmarks”, exists in experimental Label Switched
Paths (LSP) [34] and sensor networks [31]. In these situations the landmarks are used either as
fixed WAN locations or for host positioning. Our framework places these node on the edge of the
network and perform significantly different and larger task then traditional “landmarks”. This is
one of the reasons we describe our "fandmarks™ as anchor points. Qur framework itself is a novel
development. Rather than have fixed points on the network as is the case many RMS system to act
as landmarks, we propose that our anchor-points can be moved off the WAN backbone and into
a LAN environment. The anchor points act as ambassadors to the local network learning the site
specific attributes of the network position and the effect of the site on application performance.
Our framework tries to be application independent, although for the purposes of developing our
RMS we used database and web applications. The RMS itself is designed to be adaptable to any
online application that could make use of a large, wide area pool of resources. We believe these
aspects make the framework a valuable contribution that could be deployed or leveraged by grids,

CDNs, P2ZP or volunteer RMSs.

10.4 Application Performance Measurements

Application performance measurement has been previously used in the modeling of application
performance in grid systems. The use of application performance has not been used to evaluate the
end {o end performance of a general purpose RMS. One reason is by only looking at the application
performance there is no information for the developer to find bottlenecks. Without bottleneck
information there is no clear indication of where to make network improvements. Application
performance measurement is used in P2P networks for file contribution assessment. The use of

application performance in a RMS has not been explored before this work.

Cuaartier 10. ConcLusioN AND CONTRIBUTIONS 89

10.5 Performance Predictions

We discovered that performance predictions can be made at the application using a simple moving
average. We do not consider the moving average a major contribution but rather a good indication
of the strength of application performance measurement as a technique. Even with a naive filtering

algorithm our emulations show good promise.

10.6 Resource Selection Algorithm

We developed a novel distributed cooperative algorithm for resource selection. This algorithm
makes use of simple application performance averaging for resource selection. The combining of
global performance measurement with local network correction is a novel aspect of our work. The
algorithm is very simple and is designed to be application independent. We believe that there is still
room for improvement in the prediction algorithm leveraged by the resource selector. Despite the
simple moving average prediction, our two part cooperative resource selection algorithm performs

well,

10.7 Anchor Point Clustering

One major contribution of this thesis is our discovery of clusters of resources in the network that
share similar views of the remote resource world. We developed an algorithm that can cluster
resources based on their views of the remote resource world. By clustering together resources
with similar views we found that they can act as a cooperative unit. This knowledge could also be
exploited to determine the number of anchor points a network needs. This clustering view can also
be used as an application level technique for determining network topology of networks where no

lower level data is available.

Crapter 10. CoNcLUSION aND CONTRIBUTIONS 90

10.8 Application Profiling

Finally, we found that application performance benchmarks can be found based on a set of generic
application probes. The actual benchmarks could be improved with further study, but even with
the simple measures we studied, web performance could be found with probe data without needing
to deploy the application. This style of application benchmark warrants further study, but based on

our initial stmple tests, this technique shows promise.

10.9 Summary

Our empirical measurements of application performance based on probing and clustering has not
been previously explored as a mechanism for performance prediction or as a basis for an Resource
Management Systems (RMS). We have also developed a fully distributed self organizing frame-
work. Clustering resources based on the performance observed at remote locations has not been
previously exploited. This framework also incorporated existing technologies to build a skeletal
framework that is application independent. Due to its application independence it we believe that
our framework can be applied to any number of applications including, remote computation such
as weather prediction [30], computer graphics rendering [17] or other distributed applications such

a8 web services.

Chapter 11

Directions for Future Work

The framework developed is very skeletal and application independent. To continue the work great
gains could be made by restricting the application domain to one problem rather than continuing
with a generic framework. As an example many of the applications that we would like to use in the
framework, such as streaming media, would require an additional component for modeling server
uptime and managing remote resource configuration time. We started with an initial study of server
uptime but found our short deployment time did not give sufficient data to draw any conclusions.
By restricting the application domain of the framework we could make additional assumptions that

would draw out the application components and allow us to ignore the aspects that are irrelevant.

Another factor that is holding back our work is the large scale network needed to make fur-
ther advances. Even with the 400 nodes of PlanetLab, our total allowed resource consumption
is limited. To gain a true understanding of the universal applicability of our framework a much
larger network with a wider application test set is needed. Again, focusing on a specific compu-
tational task would reduce this problem, allowing us to reduce thé test network size and loading

requirements for evaluation,
91

Craprer 11. DIRECTIONS FOR FUTURE WORK 92

11.1 Concluding Remarks

Attacking a general problem such as an RMS will always be difficult. Despite years of exploration,
no total solution has been found. RMS research will continue for many more years. We have
developed a skeletal framework that shows good promise. We have also developed a number of

novel techniques that could be applied to a full RMS or existing RMSs.

Bibliography

(1]

[2]

(3]

(4]

5]

(6]

[7]

Rosetta@home. In http:fboinc.bakerlab.org/rosetta/, July 2006,

Seasonal attribution project. In http:fattribution.cpdn.org/, Tuly 2006.

Seti@home. In http:/fsetiathome. berkeley.edu/, July 2006.

D. P. Anderson. Public computing: Reconnecting people to science. In Proc. of The Con-

ference on Shared Knowledge and the Web, Residencia de Estudiantes, pp. 90-93, Madrid,

Spain,, March 2004,

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home: An ex-
periment in public-resource computing. In Communications of the ACM November 2002/Vol.

45, No. Il pp. 56-61, November 2002.

D. P. Anderson and G. Fedak. The computational and storage potential of volunteer comput-
mg. In Proc. of Cluster Computing and the Grid, 2006. CCGRID 06, pp. 73-80. Sixth IEEE

International Symposium, May 006.

D. P. Anderson, E. Korpela, and R. Walton. High-performance task distribution for volunteer
computing. In Proc. of The IEEE International Conference on e-Science and Grid Technolo-

gies 5-8 December 2005 pp. 8-12, December 2005.
93

BsLioGrAPHY 94

(8]

[9]

(103

[F1]

(12]

[13]

[16]

D. Angulo, I Foster, C. Liu, and L. Yang. Design and evaluation of a resource selection
framework for giid applications. In Proc. of The IEEE International Symposium on High

Performance Distributed Computing (HPDC-11), pp. 63-71. Edinburgh, Scotland, July 2002,

M. Arlitt and C. Williamson. Web server workload characterization: The search for invari-
ants. In Proceedings of The 1996 ACM SIGMETRICS Conference on the Measurement and

Modeling of Computer Systems, Article 110. Philadelphia, PA,, May 1996.
E. Bailey. Maximum rpm. In htp:www. redhat.com, November 1999,

D. Bernholdt and S. B. et al. The earth system grid: Supporting the next generation of
chimate modeling research. In Proceedings of the IEEE, 93:3, March, 2005, pp. 485-495,
March 2005,

R. G. Brown. Engineering a beowulf-style compute cluster. In

http:jfwww.phy.duke. edu/rgh/Beowulfibeowulf book/beowulf bookfindex. himl, May 2004,

A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for shared data centers us-
ing online measurements. In SIGMETRICS "03: Proceedings of the 2003 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems, pp. 300-301,

New York, NY, USA, 2003. ACM Press.

L. Cherkasova, Y. Fu, and W. T. A. Vahdat. Measuring and characterizing end-to-end internet
service performance. In Journal ACMAEEE Transactions on Internet Technology, (TOIT),

November 2003,

A. Chervenak, 1. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data grid: Towards

an architecture for the distributed management and analysis of large scientific datasets, 1999.

D. Chua, E. D. Kolaczyk, and M. Crovella. A statistical framework for efficient monitoring of

end-to-end network properties. SIGMETRICS Perform. Eval. Rev., pp. 390-391, 33(1), 2005.

BiBLIOGRAPHY 95

(17}

(18]

[20]

(22]

(23]

[24]

[25]

R. Cook, P. T, and C. L. Distributed ray tracing. In Computer Graphics (Proceedings of
SIGGRAPH 1984) 18 (3), pp. 137, 1984.

J. Dilley, B. Maggs, I. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally distributed

content delivery. In IEEE Internet Computing. pp. 50-38, September 2002.

L. Duboc, D. S. Rosenblum, and T. Wicks. Doctoral symposium: presentations: A framework
for modelling and analysis of software systems scalability. In Proc.of The 28th international

conference on Software engineering ICSE °06, ISBN 1-59593-375-1, pp. 949-952, May 2006.

J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned remote execution for pervasive
computing. In Proc. of Hot Topics on Operating Svstems (HotOS-VII), pp. 61-66, Schioss

Elmau, Germany, May 2001.

L. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. The Interna-
tional Journal of Supercomputer Applications and High Performance Computing, pp. 115-

128, 11(2}, June 1997,
L Foster and C. Kesselman. Compurational grids, isbn 1-55860-475-8. pages 15-51, 1999,

M. L. Freedman, E. Freudenthal, and D. Maziéres. Democratizing content publication with
coral. In Proc. 1st USENIXJACM Symposium on Networked Systems Design and Implemen-

tation (NSDI "04), pp. 239-252. San Francisco, CA, March 04.

F. Gaglinardi and F. Grey. Old world, new grid. In IEEE Spectrum Vol 43 Issue 7 pp. 28-33,
July 2006.

M. D. Hill. What is scalability? In ACM SIGARCH Computer Architecture News, December

1990, Volume 18 Issue 4,pp. 18-21, (ISSN 0163-5964), May 1990.

BisLioGrarPny 96
{26] K. Keahey, T. Fredian, Q. Peng, D. P. Schissel, M. Thompson, I. Foster, M. Greenwald, and

D. Mc¢Cune. Computational grids in action: the national fusion collaboratory. Future Gener,

Compur. Syst., pp. 1005-1015, 18(8), 2002,

[27] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca. Measuring bandwidth between

planetlab nodes. In Proc. of (PAM) Passive and Active Measurement, pp. 292-305, 2005.

{28] D. Lu, Y. Qiao, P. Dinda, and F. Bustamante. Characterizing and predicting tcp throughput on
the wide area network. In Proc. of 25th International Conference on Distributed Computing

(ICDCS 2005), pp. 414-424, 2005.

[29] M. Maheswaran, B. Maniymaran, S. Asaduzzaman, and A. Mitra. Towards a quality of
service aware public computing utility, In /st IEEE NCA Workshop on Adaptive Grid Com-
puting (in the proceedings of 3rd IEEE Symposium on Network Computing), August 2004,
Cambridge, Massachusetts, USA, pp 376-379, August 2004,

[30] N. Massey, T. A. M. Allen, C. Christensen, D. Frame, D. Goodman, J. Kettleborough, A. Mar-
tin, S. Pascoe, and D. Stainforth. Data access and analysis with distributed federated data

servers in climateprediction.net. In Advances in Geosciences, 8, pp. 49-56, 2006.

[31} T. Moscibroda, R. O'Dell, M. Wattenhofer, and R. Wattenhofer. Virtual coordinates for
ad hoc and sensor networks. In Proc. of The Joint Workshop on Foundations of Mobile
Computing (DIALM-POMC’04), Philadelphia, Pennsyivaﬁia, pp. 8l-[6, USA. ACM 1-58113-
921-7/04/0010, Ocioher 04.

[32] D. S. Nikolopoutos and C. D. Polychronopoulos. Adaptive scheduling under memory pres-
sure on multiprogrammed clusters. In CCGRID '02: Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Gria’, pp. 22-30, Washington, DC,

USA, 2002. IEEE Computer Society.

BIBLIOGRAPHY 97

[33]

(34]

[35]

(36}

[37]

[38]

[39]

[40]

K. Park and V. S, Pai. Deploying large file transfer on an http content distribution network.
In First Workshop on Real, Large, Distributed Systems (WORLDS '04), pp.i34-142, San

Francisco, CA, December 2004,

C. Pelsser. Using virtual coordinates in the establishment of inter-domain lsps. In Proc.
of The Conference on Future Networking Technologies (CoNEXT'05), pp. 59-64, Toulouse,
France. ACM 1-59593-3/05/00010, October 2005.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing disruptive
technology into the internet. In Proc. of The First ACM Workshop on Hot Topics in Network-

ing (HotNets) pp. 59-64, October 2002,

M. Ripeanu, A. Iamnitchi, and 1. T. Foster. Cactus application: Performance predictions in
grid environments. In Ewro-Par '01: Proceedings of the 7th International Euro-Par Confer-

ence Manchester on FParallel Processing, pp.807-816, London, UK, 2001. Springer-Verlag.

J. Rolia, L. Cherkasova, M. F. Arlitt, and A. Andrzefak. A capacity management service
for resource pools. In Proc of The Workshop on Software and Performance (WOSP'05): P

229-237, July 2005.

1. Rolia, L. Cherkasova, M. F. Arlitt, and V. Machiraju. Supporting application quality of

service in shared resource pools. In Commun. ACM 49(3): pp. 55-60 (2006}, March 2006.

A. J. Roy. End-to-end quality of Service for High-End Applications. PhD thesis, 2001

Adviser-lan Foster.

Y. Ruan and V. S. Pai. The origins of network server latency the myth of connection schedul-

ing. In Proc. of SIGMETRICS/Performance’ 04, pp. 694-698, New York, NY, USA., June 2004,

BisLiogrAPHY 98
[41] M. Russell, G. Allen, G. Daues, I, Foster, E. Seidel, J. Novotny, J. Shalf, and G. von

Laszewski. The astrophysics simulation collaboratory: A science portal enabling commu-

nity software development, pp. 297-304. Cluster Computing, 5(3), 2002.

[42] F. D. Sacerdoti, S. Chandra, and K. Bhatia. Grid systems deployment management using
rocks. In Proc. of IEEE International Conference on Cluster Computing, pp. 337-343, San

Diego., September 2004,
[43] K. P. Shanahan and M. J. Freedman. Locality prediction for oblivious clients, Febuary 2005.

[44] S. Sivasubramanian, B. van Halderen, and G. Pierre. Globule: a user-centric
content delivery network. Poster in Proceedings at the 4th International Sys-
tem Administration and Network Engineering Conference, pp- 3-6, Sept. 2004,

http://www.globule.org/publi/GUCCDN._sane_poster.heml,

[45] W. Smith, 1. Foster, and V. Taylor. Predicting application run times with historical informa-

tion. J. Parallel Distrib. Comput., pp. 1007-1016, 64(9), 2004.

[46] S. Sobu, J. Lai, Y. Shao, N. Garg, C. Zhang, M. Zhang, F. Zheng, A. Krishnamurthy, and
R. Wang. Network-embedded programmable storage and its applications. In Proc. 3rd IFIP-

TC6 Networking Conference (NETWORKING 2004) pp. 1143-1155, May 2004.

{471 B. Spencer, T. Finholt, I. Foster, C. Kesselman, C. Beldica, J. Futrelle, S. Gullapalli, P. Hub-
bard, L. Liming, D. Marusiu, L. Pearlman, C. Severance, and G.Yang. Neesgrid:a distributed
collaboratory for advanced earthquake engineering experiment and simulation. In Proc. of
The 13th World Conference on Earthqueke Engineering, pp. 10-25, Vancover B.C., Canada,

August 2004.

BIBLICGRAPHY | L 99

[48] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. fn F. Berman, G. Fox, and
T. Hey, editors, Grid Computing: Making the Global Infrastructure a Reality, ISBN 978-
0470853191. John Wiley and Sons Inc., December 2002.

[49] M. Z.]J. unwen Lai, A. Krishnamurthy, L. Peterson, and R. Wang. A transport layer approach
for improving end-to-end performance and robustness using rédundant paths. In Proc. of The

USENIX 2004 Annual Technical Conference. pp. 99-112, Tune 2004.

[50] S. Vazhkudai and J. M. Schopf. Using disk throughput data in predictions of end-to-end
grid data transfers. In GRID *02: Proceedings of the Third International Workshop on Grid
Computing, pp. 291-304, London, UK, 2002. Springer-Verlag.

[51] S. Vazhkudai, S. Tuecke, and I. Foster. Replica selection inltHe gldbus data grid. In CCGRID
'01: Proceedings of the 1st International Symposium on':CIuster:‘_fC'omputing and the Grid,

pp. 106, Washington, DC, USA, 2001. IEEE Computer Society.

[52] S. Vidal. Yellow dog updater, modified. In http://linux.duke.edu/projects[yum/, December
2005.

[53] L. Wang, K. Park, R. Pang, V. S. Pai, and L. Peterson. Reliability and security in the codeen
content distribution network. In In Proceedings of the USENIX 2004 Annual Technical Con-
Jerence, pp. 171-184, Boston, MA, June 2004.

[54] R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed resource
performance forecasting service for metacomputing. In Journal of Future Generation Com-

puting Systems,Volume 15, Numbers 5-6, pp. 757-768, October, 1999.

[55] L. Yang, J. M. Schopf, and I. Foster. Conservative schéﬁﬁling:.‘ii}s’ing predicted variance

to improve scheduling decisions in dynamic environments.'__; In SC 03 Proceedings of the

BIBLIOGRAPHY 100
2003 ACM/IEEE conference on Supercomputing, pp. 31, Washington, DC, USA, 2003. IEEE

Computer Society.

{56] H. Zhang, K. Keahey, and W. E. Allcock. Providing data transfer with qos as agreement-
based service. In Proc. of IEEE International Conference on Services Computing (SCC), pp.

344-353, 2004,

[57] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the characteristics and origins of in-
ternet flow rates. In SIGCOMM '02: Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications, pp. 309-322, New

York, NY, USA, 2002. ACM Press.

(58} N. Zhu, J. Chen, T. cker Chiueh, and D. Ellard. Tbbt: scalable and accurate trace replay for

file server evaluation, pp. 392-393. SIGMETRICS Perform. Eval. Rev., 33(13, 2005,

