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Abstract

"volunteer" and Peer{o-Peer (p2p) computing are classes of resource management systems that

mal<e use of volunteered resources for of-line computation or file distribution. we propose a

framework that uses these resources as a medium for deploying on-line on-demand Intemet ser-

vices. For our experimenfs we chose Web Delivery and Dara Base Manâgement System (DBMS)

as together they are used to deliver wide-area web based applications or services. They also both

rcquire computing resources and network resources. using planctl-ab we examine several con-

tributing factors to service performance such as resource configuration, resource loading and the

wide-area network. From these resulß we continue to develop resource selection algorithms and a

probe based monitodng system that contribute to an overall resource managemert framework.
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Chapter 1

Introduction

Many conìputillg applications benefìt lrorn being distdbuted over a local ot wicle area netwolk.

Ofterl lhis l¡enefit comcs 1ì our centraliziÌ'ìg data or recruiting a large number of tcsources to work oÍì

a problen. Resource lllanagelnent is a problcn lhat has receivecl ¿ large âlìrouÌtt of stucly since the

birth of cor]]puting networks. Reccntly volunt.rer, Peer'-to Peer (p2p), conte r Delivery Networhs

(CDNs) and Grid Resource Management Systerns (RMSs) have shown tha¡ much pr.ogress has

been r¡ade f'ol vadous applications. In this wolk, we develop a novel framework for resource

luìanagerrent of remote ftrsouÌces. Thc fì amervork atternpts to be gcncric enough to allow a large

varìcty of applications to bc deployed over it, we examine some potential applications in the

Litetalurc Sutvey and providc conclusions. To drive the frau.lcwork experintents wc cleveloped, we

selected Web selvice as a wiclc area application on which to focus our work.

1.1 Terminology

we define some of the corrponents of Resource Mânagcn.ìent System (RMSs) to standaldize the

language for thìs dissertation:

o Client Con.tpuler: The coÍìlputer at a pârlicuÌar netwolk location tl.ìat requests anci recell,es

l
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the results of the application's execution

Applicadon: The application is the software th¿rt will produce the resulrs needed by the client

computer. The application is the softwarc that will be depÌoyed onto â ren.ìotc resouÌce under

direction of the Resourcr: Management System (RMS).

Resource: The corlpurers that will do the processing needed to retunt lesults to the client

cornputer, as well as the intetcontìectilìg l'ìetwod(.

o Resoutce Management Systern (RMS): The RMS is tììe collection of software colììponents

that ilnplement the control logic fbr placing rlìc applications onto a particul resoutce for

execution. lt also monitors progress and takes corrcctive action when required lesuÌts are not

being acliieved. The RMS may be implencrìted in a cenrralized or decentlalizecl lishion.

These four components l'ontr the basic buildìng blocks of Resource Matìagenents Sysrems

(RMS) whether it be ¿r Volunteer Cornputing Systeln, Contcnt DelivetJ Netwol-k (CDN) or a Coln-

putational Grid. We will usc these basic building blocks to examine existilrg systetns in the next

châptcr and as a b¿sis for our stùdy tlÌe fralncwork developed in this thesis.

1.2 Motivation

During thc pâst eflbrts havc bcen rnade to design and build RMSs that can hamess the conbited

power of many lesources. Thc shorl coniing of these systerns is that the perceived performance, as

obscrved at the clíent, is r]ot taken into account. Tìte perfomance aul end user sees is a by-product

of the RMS desìgn rathel tlìen a direct input- In elltct, there is no f'eed back loop fìom the client

to the RMS itsclf, Running a network application acLoss various donated or best effort resources

in an becomes openJoop, and forces the application to tÐ/ to ttuild in QoS without oveltop of the

RMS's l¡uilt in decision process.
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In these tt ¿rdi¡ional depÌoyrnents, the end-user perfomânce cân vary due to the condition of the

lesoulces being used. The intcrconnecting networli can span l0s of difercnt count¡'jes opelated

by 100s of dillirent organizations. Thc renìole resoulces calì be congested, miss configuted, or.

remor,ed from servicc ât any time. To this poinr the focus has been on building RMSs flom the

ground up. By building systents fìom rhe glound up, the focus is aìways on rhe low level dctails

and the end user applicâtioli is ignored. Resources or inr(]rconnecting networks for one application

may not be rel(]vaut to another. For example, the banclwidth and loading of a distant r.esource

Iìlay not be of imporlalìce if the application is strearring of a low l¡andwidth signal where lit¡le

bandwidth ol pr-ocessing is needed. I1 the applicarion is a coordination scwer for an online garne

application the latency lray be tl.ìc rnost releval'ìt l-actor. In off-líne computation rhe bandwidth,

lalency and congestion (]1'the intercorìnecting ncfwork ll'ìay be irrelevant.

1.3 Objectives

The developtnent o1'an application l'ocused RMS has some intcrcsting irrplications.Iu web delivcly

fanns that are backed by DBMSs can leve;:age our.RMSs a web scl.vcr lì.ont-end could tuue irs

privale RMS to maxin'ìurn DBMS pertbnlance for itsclf. The rveb fann clieut coulj;nakc use

of the RMS to select the web servers delivering lhc best web peffomrance, In othel exìsting

RMSs thele is uo way lo tune of adjust the RMSs l¡ehaviol fol a givcn application without major

reconfi guration of tl.ìe systct't't.

We inteüd to show in this thesis that tladitionâl Ìow layer measurelnents do not coordjnate well

with application perfomauce when deployed over rvide area nr: twor ks of shaled rcsources. Wc will

show that the application itself should drive the selection of resoulces rhat take pârt in a cleploy-

l]lelìt. We develop sotle skeletal algolithms fol resource selection, and perfonnance predictiou,

then preserlt tl.ìeir petfon¡ance resùlts,
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1.4 Scope

This thesìs docul'nents, the developrlent of a skeletal RMS rhar places the end user application

at the top of tÌre system hierarchy. We propose tltat, all system perfonnance n.ìeasurements and

algorithms should be driven and customized by the applicaríon contacring the RMS for service.

To this cnd, we propose that applications shouÌd provide an application specific softwar-e plug-in

lhar dirccts tl.re RMS to evâluate an<i choose Íesoulces rnost sujtable for the application dríving the

RMS. To reduce the complexity of this endeavor to mânageable scale, rhc RMS we develop wilÌ

focus plûrar-ily on web delivery,. The consideration of otlìer applicatior.rs will not be expÌored.

We do not irlteud to explore the irnplicatior.rs of robustness, scalabiìity, uptitne, seculiry, trust

or any of dle odrer fàcrols that would obviously l¡e needed in a wide spleacl cleployntent. We do a

cursory exploration ât tl.ìe elld of these to explorc what may need to addresscrì to fufiher oul wolk.

Fot the putposes of this thesis we focus our at¡crltion on the novcl aspect of the proposed systeÌll,

which is to tum RMS petfornrance locus to tl.ìe applicatìon. Withouf lirst exploling this vita] srep,

exploration of dte ofher, equally ilnpoúant âspects, would prenìaturc.

1.5 Thesis Outline

In this thesis, wc explote a skeletal fl'arncwork for-allowing reurote applicatiorrs to be shaled or

load balanced over a wide areâ ncrwolk backbone- Ilì chapter 3, wc examine sevelal existing

Resource Malìâgenìeut Systems (RMSs) to detcnrline their stlengths ancl weaknesses. In Chapter

4, we continue to r:xall'ìine the impact the rvide arca network ¿ìnd the selected resoulces have on

application pefoluance using a Planetlab test bed. In this exanin¿rtion, we test thc perfolmance

of the Apaclie HTTP server and the MySQL DataBasc Management systern (DBMS) over a wide

area network- Fron thcse obsen'ations, rve develop a simple perfomance precliction algorithm

and develop a Lesource sclection algorithm using an cmulator we createcl, chapter 5. we discover,
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in Chapter 5, that clustering resoutces rogether yields great benett to application peri-or-rnance. In

Chaprer'6, we do a preliminary study of resoulce clustering. In Chaprcr 7, we further our clusrering

work by developiug a distributed plogranìnratic algodthm thât clusters clicnts together. Finally, in

Chapter' 8, we revisit our enìulator fì'or.rì Chapter 4 to evaluate the petfo uance of tlte sysrern. We

thell conclude and discuss future wort.



Chapter 2

Literature Survey

Many computing problems can bene{ìt l-r-om deploymelt on multiple computing resouÌces. The

bencfits are usually betler resouÍce utilization through loacl balancing and better application pet-

follancc due lo the availability of a lalger resource pool. The larger-the resource pool ancl the

larger rhc application set, tl'ìe br:rlcr the chance of llnding a goocl balance lletween resource uti-

liz¿tion and application perf'ormancc. Resourcc Managerrent Systems (RMSs) tly ro find thc besr

resoulce(s) on which to depÌoy a given application or.set of applications. Tl.te RMS can bc opti_

mizcci for applicättion ped'onnaucc or lesource utilization. RMSs c¿rn be categolizecl by a number

of aÌchitecturâl attributes as show[ in Table 2. ] . Each of the key attributes affects thc RMSs goals

for allocarion ol'applicatìons to lr:sources.

2.1 Performance Prediction

For a RMS to deploy applìcation(s) onto resources it needs to be able to predict the pedorntirnce

of the application on ¿r pafiicular lesource. The application's pcrformance can be aflected by the

type of application, the ¡ype of resource, and competing appÌications running ou tì.rc lesource,

since they may be in con.tpetition f'or the system's resout'cÈs. In some systenrs thcle nt¿ìy not be

6
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RMS Type Gcl Volunteer PZP CDNs

Donarccl Resources uo yes yes no

Number of AppÌications nìxny míìny one rnany web sites

Dedicarcd Resources yes no llo shalcd with QoS

Predict¿ble Pcrfonrauce yes no IìO no. wide arca aflècts

LeVel of Control partial centrâllzed fìÌly partjal

Table 2.1 : Resource ulanagerìlent systen âftlibutes.

any conìpcting resources and the applications may have very predictable run tilres. In othcrs, the

resources may be heavìly loaded with applications tlrat do not have detelÏrinistic run times. The

application pÌacenent algolithrl that rnâkes use of the pefonnance predìctions can also vary i¡

courplexity and goals. For example, the RMS may bc naxinizing application perfornance ol

rnaxirlizing globzrl systern throughpnt. In the following scctions we examine some existing RMSs.

2.2 Web Services

The World Wide Web (WWW) is becoming a clitical component of many busiuesses. At one tin.ìe

the WWW was only a publishing systen'ì fbr static content. Todây, the WWW inclucles a llulti-

tude of interâctive dynamìc content. Techuologies such as XML-RPC (XML Remote Proceclure

Call) and AJAX (Asynchlorlous Jâv¿Scripr and XML) are alÌowing developers to cr.eate WWW

applicalions lhat react like local applicatious by side stepping the need for a ncw TCP connection

and web page leÌoadirtg for each interactior, as is common in tl¿ilitional WWW in¡eractions. This

new lound flexìbility in web technoÌogy mea s that rraditionally client based applicarions, such

as enìâí1, calendaring and even sprc¿dslteets and word processÌng, are being cleployed through a

web browser. Another advantage of these standard technologies is that they allow companies to
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expose their APIS (Application Programming Iltterfaces) to the web. Today, multiple web serviccs

are being combined togetheÍ to form new WWW applications oftcn caÌled masl.rups.

il+nt

Figur-e 2.I : Web services architccture.

These Web applicarions or selvices are usually bascd on a 3 layel sr:t-ver aÌchitecturc showl'l

in Figule 2.1. The client conÍìects through the wide area netwolk to communicate with thc rveb

sewer. The web señ'er in turn executes thc application specific logic to gcnetate the requested

content. The appÌicatiou logic can bc implemented in auy programming language but there is a

srrall subset Òf populal laugu¿ges such as PHP, ASP, Ruby, Perl and various forms of Java. The

appÌication logic on any non tt-ivial rvcb applicarion is ofren backed up by a DBMS (DarâBase

Management System) for contelìt lÌanagcment and access to application da[a. For slnaÌlel web

applications or services, the web scrver, application logic, and rhc databâse engine rlay reside

on a single physical coniputer-. Thesc finctions can, however, âlso be split over sevelal physical

cor.ìlputers in larger dcploytnents. In even Ìalger deployments any of thc 3 server contponeDts could

be replicated multiple tiÌres to handÌe a large client lrase. When these conponents aÌe replicatcd

and placed on sepat ate colnputers tl'ìey usually communicat(] tl.ìrough â shâred network connection

folr.ning a WWW serving famr. The incoming requests ale then load balanccd over the col'llputers

in the server fant. One shoftcoming of this architecture is that the numbet of scrving compurers

ft"-.,--..", I
1,'i 'l ¿ .+rË ii f1 +t "' :' t l.r

f ''"'- l
|.¡."'.""..*]r;_l
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nlust be sized fol the maximum load expected. Maintaining enough capacity for infiequent full

loadìng is wasteful iu tenls of capital cost, power consut).ìption and IT resources. Great sâviugs

ale possible if the resources can be dynamically sized for' the current wor*load.

Distributed Web Services

Î-aditional WWW services often use a simple client / server architcctut'e. Today. lnoLe and ntol'e

applications are a mashup of manv existing online WWW servers. These mashups result in a

single web service composed of sevcrâl servers ât difìèrerìt retnote locations. Mashups slìow rhat

the IÍìtemet backbone is capable of delivcring services from rnultiple physical locations as ¿ì new

colnbinàtion of cxisting services. These ad hoc web service combinations are an example of how

geographical proxirnity is not ar requirement for successful web service applications,

Fl'orn these new mashu¡: web selvices, we see that even in the ¿rbsence o1'CDNs, threc layer

rveb services can be splead actoss multiple undcllying physìcal resources. Fur-ther in a rlashu¡r

these resources rnay bc sp|eird geographically. Mashups slìow us that thc physical locarion of a

web servicc component may not be importaltt. We explore this jdea further ilt Clìâpter 3.

2.2.L Content Delivery Networks

Conlen¡ DelivetJ Networks (CDNs) 133l are an extension of web services. A schemaric of a typical

CDN alchitecture can be seen in Fìgute 2.2. To ollioad web fann loading, a CDN module on the

web fann scrver rewdtes ¡lìe base Hypertcxt Markup Language (HTML) to link to content hosted

oÍì tlìc remo[e CDN resources. The CDN penodically transfers a copy of the eutjre wcb i¿nïì

con[en[ to its resources to keep current. One drawback of tlÌis syster].ì is the continued reliance on

tlie originati g web fänn, Duling an originating server fanl failurc, tlie CDN cannot coÌltinue ro

deliver conlent without tlle page rewriting rlodule on the hosting fât-m scn'er'. CDNs, however, also

have urany advantages for exarlple, lhey can share their resources a large client base increasing
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Figure 2.2: CDN architectule.

global resoutce utiliz¿tion and thus lowering costs. Alìotlìer advantage CDNs h¿rve is thaL they

typically have niany global loc¿rtions allowing for the bulk of the web selvice to be delivcrecl flom

the neâr.:sl CDN centcr, possibly shortening the parh taken fì-om resource to client. ln CDNs the

RMS is usually buill in two pafts. The first haìf is in the HTML page rewliting motìule that ofìloads

n-aÍlìc to the CDN content serve;:s duling periods of higli origin resource Ìoad. Thc o¡her half of

thc rcsoulce lnanagetnent funclion is at tl.ìc CDN data center wherc the CDN needs to manage the

amount of tlaflìc Ìt l.ìaÍìdles for each of irs custou]ers to ensule they e meeting their euaìity of

Service (QoS) âgreements f53l 1441. The CDN datâ centers are usually large and have a {ivelse

client group. This allows f'or extr-a capacity to be givcn to one loaded client when not beirg used

by anotl.ìer, other than meeting the Qos agrecÍìlents between tlle cDN and the originating web

se[,ice, a CDN does not need to âddrcss the special security concenìs that a Grid woulcl. As we]1,

sillce CDNs onÌy deploy one application, i.e., rveb senices, they need not woflJ âbout the complex

confì.qurations ¡hat Gdds host.

tEtIH
tE.,l

atil.l tr.,lt.,i iÉ¡l;r
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2.2.2 Multi-Computer RMS

Multi-Computel managernenr toolkits RMS such as ROCKS [42] or-Beowulf [12] are usecl to

uartage a singlc cÌuster of compurers attached to a liigh speed local network. These managenrerrt

toolkits are a subclass of an RMS. In thesc RMSs a head node typically manages rhe jobs sub-

mitted to the cÌuster, then clispatchcs the incoming jobs to the pool of cornputing tesoulces. In

tllcse systeDls the resource pooÌ is under dircct coÌ.rtroÌ of the cluster''s head node, This nrakes the

fesoulce ìoad easy to know and predicr. Thcse systelns are typicaÌly accesscd through a cluster.

Application Plogramming lntedäce (API) wherc the pÌogrânìn.ìer can seÌecr thr: pÌaceDlent âlgo-

rithrl thc cÌuster head node will choose [37]. Nonnally, the placetnent algodthm simpìy attertpts

to balaÍìce lhc load acloss lhe pool nodes. The RMS's goal is to virtualize the resource cluster to

simpÌify programlr.rìng irnd lrânâgr:lrent. As the entil-e cÌuster js usualÌy owned and opcratecl by a

single owner, setting policy and policing user loading is usually a sitlple task.

HHH EEE--,--rÌ52
L l;i..,r¡

EEEP
'' l:,,t]- |

lfl .r*',t\#

Figure 2.3: Grid archítccLure
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2.2.3 Grid Based RMSs

Gr-id sysrems such as Globus t2 I l, t l5l and [22] ae composed of severaÌ n.ìultj computer systems

(see Figure 2.3). In gr-ids, a grid overlay manages the clustel.head nodes. The gr.id acts a large scaÌe

virluâlizâtion of the underlying pools of resources. Grids are typically composed of lesources

owned by r.r.rultiple organizations and connected ovel.a wide,area network. As the under.lying

resources âre nor ¿ìs tightly coupled with thc Gl'id overlay r.esource, loading is sornewhat more

complicated and requir-es tighter load rlonitodng. The setting of'resource usage polìcy can be done

by each membel site. Large scale imple urentations such as Enâbling Grids fol.E-sciencE (EGEE)

[24] rlirke use of Globus for system rranagernent and Condor [48] for workload rnanagement. One

of the hurdles Grids need to overcoÍìe is wide area management. Many of lhe applications that run

on Glids will need leliable Ìong lived rcsources witll security assurecl on the node aÍìd on the wide

area lletwork. Oftcn applicarions will requile complex confìgur¿rtions with banclwidth guat âurees

between subsets of resoulces. Glids attentpt to aclìieve all oi'these goals.

The typical applications rhat are tleployed on grìds and rnulti-computcr. RMSs are high perfor-

ìÌlance tasks such âs:

. Distributed Ray Tracing f'or' 3D graphics rendering flTl

o Clirna¡e Prcdiction 130] or []ll

o Earlhquake Simulation [47]

. Nuclear Fusion Siurulation [26]

. Astrophysics Siniulatìon [.11]

These applicatiorl require ntultiple cornputers to achieve the volulne of proccssing needed.

They also usually have sonre atrlolrnt of interprocess coÌìrmunicâtiolt, timing or securìty concents

tha¡ do not allorv theìn to run ìn Voluuteel RMSs.
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Figure 2.4: Volunteer archìrecture

2.2.4 Volunteer RMS

VoÌuntecr systelns such as BONIC [7], 14] or [5] ât.e centralized RMSs whele applications arc

subnitted to â cenlral âuthority tl'ìat n.ìanâges a globally dispelsed pool of volunteer resources (see

Figurc 2.4). Which ate utosr often cledìcated to sotne pritrâry (i.e. non-RMS) task. When idlc,

tlìe resoutces swilcìl to the application provided by the central RMS. Application perf'ormance

plediction becones very hard in this environnent due to the inability of thc RMS to predict when

a resource will be dedicated to the RMS or-to its primaly task. To do perfomrance precliction

these syslellr use a largc aggregariorì of the toral sysLem capâcity splitting the application across

hundreds of nachines. With tl.re large variety of resouLces and nctwo¡k connectiorls in use inte¡

application corrmunicatiorl is not practicâÌ. VoluÍìteer systerns typically only support ofl.line style

processit.tg with no comlnunìcation belwcen resources. This is a strong linitation of the type of

application tlÌal can rurl on Volunteel RMSs. The clzrss of ploblems best suited for this type of

RMS arc refered to as "Emballassingly Palallel" for their inherent suitabiliry to proccssing by

rlany independenl Lesources. volunreer systems gcnerâlly do not provide any security DeasuLes
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on the lesource or network connections. Tliey often need to schcdule luultiple executions of cach

application to allow for coÍìscnsus checks to ensure thât the results have not been tarnpered with

by the volunteered resource.

Sorne examples of application that mâke use ol'Volunteer Colnputing RMSs such as, BONIC

afe:

o SETI@Home: Searchíng ladio telescope datâ 1'ol extra-ter-restriaÌ signals [3]

. Rosetta@Home : Finding the 3 Dirnensional shapes of proteins [1 ]

o Seasonal Attdbution Project: Global weather siniulation [2]

These irpplications do no have lny intelplocess cornnrun icrtion. They also can ensure quality

of resulls by having calculations repealcd on many hosts ancl cornpadng rcsults. The datâ secu ty

irt tltcse rtp¡licatiors is nor selrsitirc in natu¡e.

Figure 2.5: P2P al chi¡ecture
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2.2.5 Peer-to-Peer (P2P)
t5

Pcer to Peer (P2P) sysrenis (see Figure 2.5) are designed fÌom the glound up for a singÌc applica-

tion, often file distt'ibution [46]. PZP system rely on users don¿ltiug tesources of nerwol'k bandwidtli

and storage to the system in ¿ tit-for-tat lt'ìalner where users gain fr-om the RMS in proportion to

whar they contlibute. As ear'ly P2P systems weÍe aflected by legal dif'lìculties over the content

rights management, new P2P systcm are fully disrlibuted. The fully distlibuted narulc makes rl.ìem

very robust to ncrwork flagrnentâtion or individual systems faiìure. By limiting thentselves to a

single application, p2p systeIrrs cân bettet'optìmize their perfbmance, Thjs could include build-

ing in additional security over what can be plovided by a Volunteer.RMS. One drawback oi- p2p

file distribution systems is rhe digital dghts thât can be violated. Because of the âbuses rhat often

happen ott p2p systems, thcir leliability ìs ofieu uncefiain. Despìte an evolution towards lilÌy dis-

tr-ibuted algorithms (àt the cost of pclfomrance) lcgal exchanges still surround Ìltosl pZp systcrrs

making them unteliable fol long term availn[rility. Bcing application specific lintits their-erpplica-

tion to high perfomarce cotnputing, They do havc the porentìal to r:voÌ\,e into a general purpose

RMS.

2.3 Motivation

Our proposed frameworli maintains strengths l'r'om the above syste)lls while attcrnpting to suppless

their shoúcotnings. ln our fl'amework we propose to make use of voluntcer resoulces as is done i¡
volunteer computing. Rather tllan simply suppoting ofììiue style pr.ocessing, however, we plopose

to suppofi inter-r'esource comntunicalion as is done in glid systems and clustel. colnputing. Fot the

rìlolrettt we do iguote tl.ìe security and trust considelations that grids inplemenl to sìmpÌify our

design. These items can be te-introduced at ¿ì later tin]e using existing trust models irncl encryption

as done in existing RMSs. We sec web services such as those deployed ovel CDNs as ou¡ initial
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applical-ion. We wiÌÌ not sacrifice support for ofììiue processing oI largc corììputation problents rhar

grids support. We would also like to suppoft solne âmount of QoS as is done in CDNs. We rvould

also like our framework to be decentralized and lobust as p2p netwodis are by using clecentlalizecl

algorithms f461.

We expecl the Iesulting systeÍn to reduce rhe cotnputing capacity neccìed by individual appli-

catíons by being able to use resoul'ces fiom our framework in a CDN style. We also expect our.

fratnework to inclease global resource utilization by aÌlowing idle resources to contdbute to the

fialnework. we expect the resultilìg framewo i to be a corrponent of a largel Public conrputing

Utility (PCU) desclibed by Maheswaran et at. [29].



Chapter 3

Framework Architecture

One of the ploblems with altempting to hamess shared Lesoulces over shared networks is the asso-

ciated c1ualitl, of s¿n]ic¿ (QoS). Some ¡lechanism is lequiled to eusurr: tl.ìat the resources plotnised

will be deliver cd; othelwise, the job should not lle âccepted t5q t391. To further. complicâte tlìings,

some onlìne applications need to lleasure how successl'ul or'"good" rhe delivery was. For exaut-

plc, it is not enough iu â strear'ì.ìed movic to dcliver it to the custorner; the jitter and burstiness of

the dclively rrrust also be managed. If the framework is contracted to deliver a sclvice it needs

to a jvc at the clients Ìocâtion, witìl a specific lcvel of quality. Tliis can be a very challenging

problen when one considers thàt the resourccs employed to deliver the service can switch back to

thcir prirlaryr use at any tirle, as is thc case l'ol shaled resources. In addition, the intercolìnectitlg

netwolk being used ro dcliver the service can becolne satut'ated wirli competing tr.aflÌc.

We havc developed a new framework for clients to lÌnd on clemand resources fol online appli-

câtions. In out sysletrr we propose to staú with the end user's location, and froÌn there aÌlow theur

to specify what QoS is rcquired fol each application. That mcans that tlìe servicc being contractecl

is always measured in tenns of deliveled peúbmance to the client at his or her location. The

n]eâsurernent and evåluation occut'ât the elld host itself or, when ntor-e xppropt.irtc, at grtewxy

device neat fhe clicnt. We also include the caveat thât tlle pe¡fo rance is measured by the ¿pplica-

t7
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Figure 3.1 : Proposed system.

tioll software. This inrplies that, for each âppÌication ot dataset, we tequile an application-specifìc

plug-in to leturn ¿ìn :rsscsscd performance value, This plug-in rtray also go one step firrher.and

be dataset specific wherc the dataset would drastically alter application performancc. This me¿ns

tl.ìat the set of resources neeclcd to satisfy a l(]quest or delnand will be different for eacl.r applica-

¡ion, as the plug-iu llay havc diflèrent nìeasures of QoS requirenents. In Figure 3.1 we pr.ovide

an cxampÌe o1'a t¿bÌe of rer.ì.ìotc resources ancl theiI perfonrancc for dil'lèrcnt applic:rtìons. From

such a table the local anchol point would theu decide on â sct of resources on rvhich to deploy

the applications. Previous worli in such tunable applications has to the best of rny knowledge only

been done in the context of mobile conputing [20].

Doing perfor-rr.rance cvaluation ât thc clìent h¿s had some indirect study. RoÌiâ et al. [38] have

looked into QoS in rcsoulce pools. Chcrkasova et al. []4lhave stuclied eud to end server perfor'-

tnance looking fol l¡ottlenecks and Ruan et al. [40] have stuclied the network ellècts on pr-oviding

services over a wide area. These works, together, poiltt us towards moving to all application layel

me asule ren[ of perfbll]Ìance.

Onc problem we anticipate is bootsûapping new applications. To create ncw application plug-

I8
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ins lhe characterization of the client's needs can bc perforrled by running the applicafioll, In our

fia;lework applications are profiled by rlnning tl.ìr:m on â randon.ì set of resources. Ftolìì this

tlial set we generalc a weight Vectol by cornparíng this perfonnancc to the existing probe data for

each of the resources used. We can then use ongoing probe data to predict a baseÌine application

perfor-mance for each application and each resource. As rlìe âpplicâtion rïns we can then switch to

using the live retur-ned performance data as discussed in Chapter 5,

3.1 FrameworkComponents

Our fiamework consists of a nurlber of softwarc elenents: the clien¡ sofiwale. and rcsourccs. Il

also includes a hosI ncal tììe client that acts as a local resource bt'oket wc call an "Anchor Point".

Tl.rcsc nay all be deployed on a singlc physical resource or spread acloss a wide area nctwork.

In this lhesìs we assurne thal tlìe resources and anchor poirts ale deployed on sneral nachincs

distributed over ¿r wide âlea network.

3.1.1 The Client

The client in oul model needs to bc connected to the widc arr:a Íìetwork where lhe fiamework

is dcpÌoyed. It must also have the application and dataser in a packagcd fonl such as a Linux

RPM (RPM Package Manager')[ l0] lbrnat or r:quivâlenr. The lìle musr be publicly available fbr.

a download nanager such as Linux YUM (Yellow dog Updatet, Modifiecl)[52]. The clienr then

nakes use of an anchor point list thal is posled on â central server to find neârest anchor point.

It then contacts that point with the appÌication lile that ís to be deploycd. The anchor point w;ll

letum with a weiglìt vector that is used to gelìerate pedonltance predictions. Once tlie weight

vector is geÍìerated, the anchor point will be ready to give initial pcrfontrance predictions for any

local client. TÌre client cân then trrake demands for setvice to its location. As more appÌication
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deployments are executed, the ânchor point (see Section 3.1 .2) will leam th(3 châracteristics of this

appÌication, improving their perfonnance pr.edictions.
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Figure 3.2: Message sequencc chart.

3.1.2 The Anchor Point

The anchol points âct as local broker-s for the RMS, lel'er to rhc message sequence chafl Figurc 3.2.

They maintain the current conditions and loading of rcmote resources. An irnchor ¡roint consists oI

two major sub components. The first ìs a plobe thread of cxccution tlÌat probcs a pseudo random

subset of ren]ote resources on a predefìned schedule. Each probe consisted of l0 differcnt tests,

which we discuss lâtcr in the thesis. Duling oul testing we used a four hour scheclule, ancl a subset

size of 50 of the 500 avaìlable nodes, to r)raintâin our baseline resource perfomance measures.

From the baseline plobe values lhc anchor point forms a signature thât represents its position in

ten.l.ìs of rerllote resource peformancc. The signature is a vector of remotc resoulce pclfolnancc

for each plobe test evaluated. The anchor-point will then contacl othel anchor points to see if they
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aÍe availablc to cooperate. Lr order for two anchor points to cooperate they need to h¿ve the same

vjew of rcmote rcsources. This test for cooperation is a sirrple cotrrparisolr ol'plobe signatures. If

the signatules are within the syslelr wide tolerances thcy fomr a cooperative cluster', The signatule

comparison algorithm and tolel:ance values are discussed in Chapter 6 and 7. As we will show

later these clusters so fomed tend to be geographicaÌly clustered on a city wicle scale ior our

t(]sl environlnent, The ¿nchor point clusters wor-k cooperâtively to rnàintain a sharcd database of

application peú'omance and resource loading.

The second lilrctiolt the anchor point petfouns is resource selection for applìcation deploy-

t]-lent. Wllen â client first contacts an anchor lloilìt with a new applicafion it needs to have an

application weight vector generatcd. To generâte the weight vector the ânchor point deploys rhc

application to a subset of resoulces (sec Chapter 6). After a sllort test, the ancltor point corÌpares

the deliveled perlbnrance to its probe signatures to generate a weigbt vectol'fol tÌre application.

Then when the application is initially dcpÌoyed the weight vector-in cotnbination with rhe cu ent

tesouÌce probe dâta will be used lòl performancc prediction. As pcrfonnance results are rcfu led

front Lhe deployed applìcations the anchor point broadcasts the results to its cooperative cluster. As

the results for the cluste[ accurrulates tl.ìe performance ptedictions shift ¡o our resource selection

rrlgolirhrn dcsclibeLl jn CIrirptet 5.

Similar- frarnewo is thât use anchor points, or "llndmarks". cxists in expet imental Label Switched

Paths (LSP) [34] and sensor networks [31]. ln these situations tl.ìc landrÌìarks use either fixed WAN

locations or they are uscd 1òr host positioning. In these all câses to purpose of ¡he "l¿ndnarks"

is to find a nodes netwot-k positìon in terms of connectivity. Our flamcwoLk places these node ou

the edge of the network ând per-iorn sìgnificantly difÌereut and lalger task then trâditional "land-

niarks". This is the reason we describe our "landllarks" as anchoL points. Our anchol points are

not low layer static posítioning nodes, but application perfbn.nance monitoring and a¡:plication

deploynent â.qents tl.ìat worJi on behalf of tlìe client.

It should be noted that, the anchot points pelfoms a loctl cooperativc load balancing among
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the cÌuster to help reduce the chance of swanping out nodes. There may stilÌ be ir'ìterference on

the resource from other, non cluster anchor points, but that should show itself when application

performance sufJèrs reducing client perceívcd pefonrance. At tlris point the global avelage of

perfbnnance for this tesource will be reduccd as will the clustet's evalualion of the node. Further

discussion incìutled in Cha¡t.'r' 5.

3.2 The Resources

The tesoutces used in lny expedrììents are Linux computers thât Íì.ìake usc of the Linux VSetVer

virtualized sandbox. We exploit the VServer slice abstlactjon provided by Planerlab [35]. The

Vserver in a kemel based virtualizarion thât provides many simulated Linùx systens on a single

harclware inst¿ìnce. The tesoutce lr.ìust then set its use policy in teflns of the resouLces it is willing

to donate to the fraÐlework- The lesource then responds to application deployuent requests fr on]

thc framewolk anchor points.

The otlter function cach resource provides is tlacking the perfonnance of appÌications thât are

cu ently running and those which have cornpleted. For applications that have tecentÌy ruu on

the resoul'cc, rhc resoulce naintains aÍì aver¿ìge perfbn.nance, as obselved fron each cÌient loca-

tion. Thìs published average is used by anchor points in their pefonuance ¡rredìcation algotitlìnl

describecl in Chapter 5.

3.3 CascadingDeployment

In oul lì¿rnewol* we do not explore largcl tnorc complicated deploylncnt beyond basic clienL /

servcr. In ¿ì systen deployrrent we envision th¿rt our framewolk could be used in â cascacling

deployrnenl style. In the case of a multi-Ìayer-web service, the head en web server could co tact

our framewoLk to provide backend DBMS sel'vices. From the client pelspecrive we would in eflèct
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have a cirscading sen'ice.

3.4 Outstanding Questions

Ccrrain fundamentaÌ questions r-egar-ding this ploposed fì-amework still need to be ¿ìnswered. FiNt,

how does low Iayel mcasures collelate with application perf'onnance in a shared-resource ancl

shared-network environment'J It is possitrle that tÌaditioual low layer peúbnrance prediction f28l

t50l t54l 121) 157) may be better suited to this rask. Second, by what meclianism can one predicr

the perfonnance of a resource f'ol a specilic plug-in, given only its perfbnrance history f55l t451.

Thirdly, we examine the clustcrìng of anchor points using tesource peú'onnance probcs to look for

systelìr peú'onrance gains. Finally, one must be able to decide which rcsouLce to select given a set

of denlands with rheil pr-edicted perforr.nanccs. TIie rest of this thesis describes out examination of

these questiol.rs and the frarnewor-tri compon(]nts-

23



Chapter 4

Application Performance vs. Layer 21 3 and

Host Performance Measurements

'We propose, rhat in a sltar-ed networli/r'csou¡ce environnrent, tladitioual Ìow-layer peúbmance

techniques [49], such as measuring of netwoÍk or resouÌce loâd [54], are not appropriate for de-

temrining the perfonnance of an application ot service. To test suppol't this statelnent, we de-

signed :r numbet of experitnents using thc Planetl-ab netwolk. PÌânetl-ab is a lìetwork of globally-

tlislt-ibuted resources. These resoulccs arc donated by participating institutions, along with the as-

sociated netwodi b¿ndwidth, ìn rctun lbl access to a vir¡ual slice of all of the particìpating nodes.

These nodes and their networks tend to be loaded by researchers runníng netwolk experinìents. As

the nodes are virtualizcd, we llave no way of knowing the exact nâture of the load or the nuurl¡er

of participants. Thìs makcs for an excellent test bed for our puryoscs. Without knowleclge of the

Ìoadiug on the netwolk and tesources, we cân test lhe low-lâyer techniques in a real-world settir.rg.

We belleve that, if our techniques shorv promise ir'ì the unpredictable environrnent of Planetlab

[35], where we cannot predict wh¿ìt otlter proclrssl3s are lunning, they should perfom even berter

in a SETI@IJot¡e style network [6], whele machìnes that wllen idle are dedicated to tlìe Resoutce

Management Flamework (RMS). In these cases the RMS would be the only one submitting jobs

24



Clrrplsn 4. ApplrcrrroN PERFoRNIANcE vs. Lly¡n 2. 3 exn Hosr P¡nponl,r,lt¡cs Mt¡surelç¡¡l s 25

to an otherwise idle machine.

4.1 Application Performance vs. Layer 2, 3 and Host Perfor-

mance Measurements: Experiments

To evaluate the petfomance of tladitional host and layer 3 Dle¿lsuÌeme[ts vs. application perfor-

rrance leasurcrrent, we pseudo randourly selected 25 nodes from tlie PÌanetlâb network. Each

node was configured with the following software:

o Apache HTTP Web Server. We wanted to include a real wolld dataset for our tests. However,

because the sizc of srandard datascts is prohibitive, we designed a I5MB wolkload thar had

fìle size and requcst fì'equelìcies to r'ìratch the well-known Univelsity of Saskatcl'ìewan dâtascr

[9]. This allowed us lo h¿ve a workload with real-world clìaracreristics, without needing to

use huge sets of rveb server traces. The total number ol requests in oul' workloâd was 5000

docurnents

. Apache Flood. Apache Flood is part of rlie Apache farnily of software dcsigned for-load-

testilig web servers. We uscd this program to load the l.entote selvel and to gener¿rte â

perfornance evaluation of thc Web Server, based oll tl.ìe tiu'ìe in r¡illiseconds it took tL)

download the workÌoad. The Apachc Flood prograrn creates a sepalate TCP connections

f'or each dowuload.

. MySQL Doto Base Muugenrcnt Sltstznr (DBMS). MySQL is an open source database en-

gine- We ell- ployed it widt 3 diff(rrent worliloads. Each was designed to ptogressively Ìn-

crease th(] load or'ì the server and networ-li.

- WorkÌoad l: This cor.rsisted of an SQL que|y rhâr generated lighr scr.r,cr lond and ligÌrt

reply volume. The querl is a 2-tablejoin which results in a courpletc dâta set of âbour
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50,000 rows. We Iimired the rerunì set using the LI¡{IT SQL option. The dar¿ibase is

part of the standald MySQL test library. By linliting the t€sult ser to 1000 rows, we

rcduce the retumed data volume and rhc work load. By using LII{IT, the DBMS query

processor stops the table join once it has reached rhe limit value. theteby reducing the

workload.

* Wo*load 2: This quety genelated a larger server load and a lar-ger reply volurr.re. Thc

only diflèrence between this query and the first js that we inclcased the liuiir by a factor

of 10, sctting it to 10,000 r'ecords,

- Workload 3: This quely had averyhigh rcply volume and high setvel load. In ¡his 1ìnaÌ

query we did no¡ limit tÌte feturt size of the query, letti]ig the DBMS process the fuÌl

join and rr:tum tlie 52,000 tccord result set.

Ping Time in Milliseconds, rneasured using the systern /bin/ping prograÌn frour clìent to

serve;-. The pâcket size used was 5ó trytes, which translatcs into 64 ICMP data bytes whclr

combincd with the 8 bytes of ICMP header data. This nreasure Íetuflrs rhe latency of the

interconnecting netwod(,

Server CPU Load Average over thc past I5 minutes, as tcported by the /proc lìle system

(kernel interface). This retunìs thc culent loirdiug of the server resource.

InstaÌÌed Servel CPU clock speed, as retumed by the ,/proc fiÌc system. This pr-ovides a

good indication of the selve¡-'s unloadcd pcrlomrance potential.

Server Installed Memory,, as repot'tecl by /proc file systen. This is auother good indicator

of the computer''s unloaded pefomtance potentìâ1.

Distance fi-om servel to clieltt in Kur, measuled as the crow flies. Each Planetl-ab node has

â latitude and longitude entry in thc Planetlab database. We used these values to calculate
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the geograpl.rical distance between nodcs. This w¿rs included as an additional mcasure for its

convenience. We do not expect it to corrclate at all with servcr perfounance.

o We also installed a series of benchnrarking progrâms to test the servel s' live perfomance

near the titne wc tested it with the orhel benchmarks. We wrote these oul selves to bypass thc

need for remote Secure Shell (SSH) connections needed to deploy standald benchmarking

utiÌities. Wriring our own tests âllowed ùs finer-grain timing. Ir should also br: nored thât

we are trying to test application interf¿ìces to the application-layer. By wúting our own

benchmarking tools we test exâclly whal ân applicatiou developer wouÌd see r¿ìther tlìen the

underlaying hardware that rnost avaílabÌe benchmarking tools try to exploir. As an example

we are intelested in how fast we can load a rveb workload in to lnenory, not the rarv dísk

speccl availabÌe. We belivc that our simplc benchmark tools are morc appr.ollriate, lor our

pur?oses, then available l¡encltm¿tk tools that Ìook for raw Ìrardware perfomance.

- TCP test program, used to deliver a test strcam of TCP trirllìc from the server to tl.ìc

client. This was a snrall Java clienr / server pair thât moved 5MB of dâta betweeÍì the

2 nodes. We wrotc this program, râther thell use an cxisting benchlnark, to gain tighrcr

contlol of the rentote tín'ìing of the test. We open a second set of TCP porfs on each of

the client / seruer pair to allorv signaling of test stafi / stop ard tilring. Using traditional

benchlnarks would have ]neant starring and stopping tests us¡ng an Secure Shell (SSH)

cor]nection, a tnucl] longel process. Typicâl run tintes were lì.om 0.2 fo 0.7 rrinutes.

- UDP ¡cst progral'ì1, used to deliver a UDP stleam frolìl tlìe server to thc client. A

Java clìent / server pair was used to move 5MB of dâta using rhe UDP protocol. Wr:

found tlrat over 99.27a of UDP tlansl'ers, rvhen 5MB was transfeled, the full 5MB wâs

received. We did not examinc if there was any data cormption in the transfèt.as tnost

UDP appÌications would be robust to soure data corftrption. Also, mosr single packet

col'lïption would be detccled by the UDP checksum and would ¿rppear as â Ìost packet.
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Vy'e also did not look into packet reordering. As witlì tlie TCP benchÌllark, we wrore

tìre application to gain cìgliter riming control. Typical rLrn times wele froln 0_2 to 0.7

minutes.

- Integer Benchmark: Wc wtote a small program to test the petfonnance of the servcr

pelforrling integer manipularion. typical lxn rimes for-this program was 20-200 sec-

onds. Again, wc wrote our own simple plograÍì] to tighten Lining control.

- Floating Point Benchmalk: To see if the resource perfonned any befter on lloaring point

calculations, we also wrore a floating poinr bcnchniuking proglam. TypicaÌ run titncs

wele from 2 to 200 seconds.

- Filc I/O Benchmark: As a memory ìinited web selver lrust perfon'ìl Inany fiìe opera-

tions, wc also wrcte a small file I/O test pr-ograrn th¿ìt reâds the web server workload

into memory. This should be useful in clctennining whethel tlìr: pcfornance is fiÌe

i/O limited. typical run tines wele florl 2 - 20 seconds. This was a Java trased im-

plel'llenlâl-iort and like the other ber'ìchnarking programs not as sophisticated as other

available benchmuliing tools. These tools wer€ however noLc then suflìcieut to show

telative petf'otrnarlce belwecn nodes. We did not intencl to compare the r-elatìve speed

of Planetl¿b nodes usÌng benchmarks to other corrlluters, as such there was no need

for slandardized benchmarks. 'l'his irnplerlentation uscd as standard blackdown java

1.4.2 tle socket.

We pseudo t'andourly selected 25 nodes fro|r the Planetl-ab nctwork, fhen had cach of tÌÌe 25

nodes test all of its pecr nodes, giving 25 x (25- I ) = 600 tests.

The largesr alìount of devcloprlent tir'ìre was speu¡ ctcatìng a quick deploly'test elìvironment

for the above tests. We rvanled lo rÌake sure rhat all of the tests happenecl ¿rs close to one anothel as

possible, to avoid having other activity skew our lesulrs. Otherwise other Planerl-âb resealchers'

actiorìs might change the rcsource or networ* conditions. The tools I cleated allorved us to quickly
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deploy and nrn n.tultiple tests ¿ìt on(] rime. We also scheduled thc tcsts to ensure that rhey woulcl

l.ìot intetfere witlÌ each other. The tools allowed us to cornplete the 600 tcsts within 6 houts. As the

nodes were randomly selected rhey rvould naturaÌly be sptead around the globe, avoiding tirne of

day fluctuations.

4.2 HTTP Application-Layer Testing: Results

As expected, we found that in the shared network and resource environment of Planetlab, the

trâditionâl low-layer measurements do not provide a satislactory correlation with the measuted

applìcation perforrrance. Wc began by examining rhe pcffomance reponed by Apache flood,

clorvnloading our custon'ì workload frorìì a renlote server running the Apache HTTP server. Wc

compared the leported pedbrmance with various traditÌolìal lTteasul(]s.

Benchnalk MySQL l MySQL 2 MySQL 3 HTTP

Intcgel Benchmark

Floating Benchrnalk

File IO Bcnchmadi

J5 min Loacl Average

Sewer Mcmory

CPU Clock Speed

TCP Bencl.ul¿di

Hop Counr

Distance

Ping Latency

.07

_15

.03

.06

.13

.i5

.12

.30

.00

.53

.09

.10

03

03

t0

32

53

29

39

54

.05

.ll

.00

.02

.06

.12

.63

.31

.13

.57

.06

.22

.13

.14

.t8

.19

.69

.58

.16

.87

Table 4.1 : Absolu¡e value of the Pearson correlation of tests.
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The Pearson Correlation r-,,, is defined as

I(;¡ - nr(¡))(r,, r?(Ì))t,'=-- 
t,, _ fL,_,,

'Where rr(.r) is defiued as the mean of the x sample and

.r, is defìned as standard deviation of sânìple x

Pealsolr conelatiou equation. (4. 1)

We calculated the absolurc value of the Pearson conelation factor (see Equation 4.2) Íor each

of the low level t¡easutes vs. lhe pelfonna ce of tl.rc remote hÕst acting as â server, suml¡arized ìn

Table 4.1. The absolute value of the Pcarson correl¿rtion fàctor ¡-anges flolìt zero to one, where zero

has no colrelation and one is a lilteal correlation. We wÒuld like to see corr(]Ìations above .75, we

howevcr obselved that mosl results have low verl little corelatior.r. Piug lâtency and the TCP bench-

lnark both rcflect some couelation of the perfonnance of the resource as a server. UnfoftunateÌy,

only in thc single case of ping latency vs. HTTP pelfonlance do we start to sec some corelation

above .75. Wc conclude tha¡ for a general purposc deploynient, ping latency alone would nor be

enougl] to prcdict futule resource perfonlance. We make use of tl.ìe Peârson cor(]lâtion throughout

the folìowilìg section.

We firsl examìned tl'ìe seNer resources to see if thìs had any effcct on the peúbnnance of the

ll.l¿tchine as a web selver (see Figure zl.I). I have plotted the server perfomtance âs time in seconds

to download the worJiload versus the installed cPU in MHz, as well as the arnount of instâlÌed

rlemory in MB. We fouud the Pea¡son correlarion of these tests to be .18 and ,19 tespectiveÌy

this indicates tlìa¡ there is no signilìcant correlatÌou between thc machine configuration and the

performance of the lnachinc as a WWW sen'er-
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Figurc 4.2: Apache perl'ormance vs. iutegel ¿ìnd floating poirìt benchnlark, lespectively
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Wc lhen observed the sclvel perfonnance running a few benchmarliing routines to test the

machine perfonlance ncar the time we downloaded rhe web workload (see Figures 4.2 ãnd 4.3).

As can bc seelì, the raw performance of the server does not seem to influence its pelfonlance

deliveling our workload, nor does the repofir: d 15 minute load average. Cor-relations of . I 3 and . l4

respectivcly.
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¿
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Figur-e 4.4: Apache performance vs. hop count, latency aud distance, respcctively.

As the plevious resource tests did not show any strong corÍelatiol], we assurned thât the bot-

tleneck must be in the uetwolk. We exanrined ¡he HTTP perforÍìtance \¡ersus the number of hops,

latency and distance (see Figutc 4.4). Collelations of.58, .87 and .16 respectively. We obscrved

from the pÌots alld corel¿tion hgures, the numbel of hops and latency did have solne correlatio

witl.ì tl.ìr: lesource peformance. We assume tliat this is due to tlre heavy rcliance of the HTTP pro-

tocoÌ on the TCP protocol. As TCP uses many packet exchanges to corìfilm data rransmission and

to handshake, latency would aflect lhe server peifbnlance, This is because the initial handsh¿Lke

Êl-lfP Perl vs. Hop Counl

,1t
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musl be repeated for each of the small file transfe|s. In our case tlìele are 5000 TCP connections

e¿ch one would have to wait for the SYN/ACK to occur before the transfèr could being.

05

0

1.2

o.2

0

NlrP Ped vs ICP lesL NIrP Ped vs UDP lesl

200 100 600 300 1000 1200 0 100 200 300 400 500 600 700 800 9oo looo
FfrPworktoad (sôc.) Http wo.ktoãd (sè..t

Figure 4.5: Apache performance vs. TCP and UDP benchmarking plograln, respectively

Finally wc compared the results fì'om two networ* benchnlârking progr-arrs wìth tlie IJTTP

perfomancc l.rìeasul€s taken (see Figute 4.5). As shown, the TCP pclfomance benchrrar.k does

again cxhibtt some conelatiorì (.69) witli sclveI peLlolmance. We cxpect that this can bc explained

by rhe same HTTP reliance on TCP as eallier. The UDP tcst did not correlate well (.21) wi¡h thc

set'ver pcrfbnnance, whiclÌ leads us to belÌeve that the r¿ìw bândwidth between thc servet and the

clienr ís nol a linriting factor in HTTP perlòrm¿nce for me experimental pal'alneters.

4.3 MySQL Database Engine Experiment: Results

We nexf observcd thc perl'on]'Ìance of a lemote rcsource installed with thc MySQL DBMS. We

cotlpated its perfonnance selving a light queq, to a remote client, ând coÍì1pâre the results to the

satle previous lowJaycr techniques.

We began by looking ât the raw perfomauce figures of tl.ìe server vs. the perfonlance of thc

resource as a MySQL selver'(see Figure 4.6). As one can see from the first workload, agaÌn low

conelations of - l3 and .15 respectively.

We then compârcd the other- 2 MySQL wor-liloads to deterrrrinc tho efÌect of increasilìg rhe load
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(sec Figules 4.7 and 4.8) We found that increâsiug tlìe voÌulne of the wolkload did not seem to

greatly changc rhe dependence of the servcl'on the raw computing powcr, (.32 and .10) and (.12

and .06) r'cspecrively. This le¿rds us ¡o belìeve thât, in a reaÌJi1è deploymentr the raw performancc

of a computer will have litde efÌèc¡ on tÌìe perfonr'ìance of onlir'ìe applicatjous. It will be lnore

irnportant in ollline style applications rhat do Íìor heavily rely on the network.
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Given ¡liac rhe raw unlo¿rded pelfomance of a rlachine did not afÌèct the perforrrarlce of the

DBMS, wc then looked intÕ how the cuüent loading of the tachine would allèct the performance

tlìat a given resoulce could provide. We slafied by comparing the pcrfonnance of the 3 workloads

vs. ouf lloating poinr and integer benchmadiing programs (see Fì.qures 4.9, 4.10 and 4.ll). We
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expected that, with the 3 workloads, rvc should be able to sce sorne performance var-iation of a

machine with incrcased loading. However, the results suggcst no such strong cor.relation. Thc

corir:lations we saw fol workÌoad I were .07 and . l5 for workload 2 .09 and .10 and fbr. workload

3 .05 and .11 respectively.

"r"u. 
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'o

Figure 4.l2: MySQL workload I vs. file I/O l¡cnchmark and l5 min. loacl averâge, respectively.

We thcn cotlparecl the perfbntrance of the 3 wolkloads with the l5 urin load averàge Ílrpot'ted

by ,/proc to thc DBMS ¡rerfon.nance (see Figures 4.12,4.13 ancl 4.14). Correlations were .06,

.03, and .02 for loading and .03, .03, and .00 respectiveÌy for- lìle I/O per.formance, The plots

and coreÌations again show that neitl'ìer tlle ìoad aver-age nor our I/O test ptograrll plovided good

indicaLìons of the pcrfomtance of a resource such as a MySQL setver.

As rvith the HTTP perfonlance tests, we observed very little correlation of the resources'
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perform¿ìnce to their peúbmance as a DBMS server. We then examined the network for a stronger

influence on pelfomance. We began by looking at the hop count ând latency vs. the DBMS

pe;:fornrance tests (see Figures 4.15, 4.)6 and 4.17). Correlations were .30, .29, and .31 respectively

for number of hops and .53, .54, and .57 respectively lor latency. Exarnining the results, we see

little cori'clation between the latency and the resource peú'onance.
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Figure 4.19: MySQL worliload 2 vs. TCP and UDP benchrnarks, respecti\¡ely

To verify llìe rcsults and to coltplete the tests wr: looked at MySQL perfonânce vs. our

TCP and UDP benchrrarking tests (sec Figules 4.18, 4.19 ancl 4.20). Thc correl¿rions were.72,

.53, and .63 respectively lòr' our TCP benchmarks and .29, .28, and .12 r-espectively for oul UDP

benchlnalk. Again, There is ü¡tle colrelation. This is unlike the HTTP test fhat did show some



CHlpr¡n 4. Appucmloru Pnn¡onu,tNc¡ vs. L,qvsn 2, 3 ,tNo Hosr P¿nronu,rNc¡ M¡,tsunsl,r¿xrs 40

MySOL (wô.koad3)vs ]-rDP l€sl

o 10 20 30 40 50 60 70 30 90 100 0 10 20 30 40 50 60 70 30 90 loo
MySOLWo*road (ssc ) MySOLWorkoad lsoc.)

Figule,tr.20: MySQL wolkload 3 vs. TCP and UDP benchmatts, respectively.

correla¡iolr- We beÌieve that this may be due ro the fäct th¿t the HTTP wolkÌoad was larger rhan

the lesult set letumed by the DBMS tcst.

From the above results, we fufther conclude lhat tladitional lowlayer perfornance tneasures

have limited value in thc shared network/r esource environn'lcnt ol'Planetlab. We therefore choosc

to explore other Ìnechanisms to pÌedict perfonnance. If wc want to consider zr range of other

appÌications, we believe thar the only general way to unify the mcasudng of lelnote application

peffomrance is to do so by using only application perfon'nance.

4.4 Noteworthy Results

One of the intcresting rcsults wc fbund was that tlìe perfomancc of a resource varies dlasticaÌly,

depending on whele in the netwotk oue Dleasurcs its perfomance. We found tl.ìâ¡ â resource's

perfomance can vary by as nrucll as ar'ì order of magnitude depending on where the me¿ìsurclnents

âre takert. We also noticcd th¿ìt the \'âriatior'ì in the evaluaLion of the tr:nìore resource shrinks as

the resource n]eâsurcmenl poìnts âpproach each other in the network. Cìoser neiglibot clients

telìd to have similar evaluations of the perfonnancc, whereas two disfânt peers are likely to have

very dissimilal evalu¿ìtions of a lernote resource. To verìfy these findings wc pseuclo randotnly

selected l0 remole servers from Planetlab, and plotted the difference between a servel evaluation
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Figure 4.21: Diffl]rence between peer client evaluations vs. distânce betweer'ì peer clients

taken by a 2 clien¡s ât difièren¡ locations vs. the distalìce between the client nodes evaluating the

selver (see Figure 4.21). Oue obsel'ves âhllost a lincâr rlrlationship. Wc belive that this is due ro

lhe network inf'luence. 'lhe closer two evaluation points arl], the larger thc nunlber of co:ntnol]

netwod( elenlr:nts. In retrospect tliis shouÌd be ¿n intuitive result.

To further verify these findings, we plotted the perforlance of a resoulcc as a ser.ver evaluatcd

by a peet nodc ât the the saÌne silc vs. the ev¿ìlu¿,rtion done by a peer ât a ler.note site (see Figurc

4.22). If tliere was litrle eflèct on thc nctwork position we would see â strong corrclatiou between

tl.ìe 2 Íììeasules and a strong Iínear relationship. When we calculated [hc Peârson corrclation we

found a value of 0.12, reflecting litLle corl-elalion. One of ¡he eflècts thât calì be seen in thc plot is

tl.ìe lwo stl'ong horizontal lines througlÌ the plot. ln this plot two sizes of test can be seen. The fir'st

one takes about 200 seconds to colrplete, tlie other 20 seconds, when evaluated by a peer ât the

same sile. When lhe sânìe Lcsource js evaluated rcmotely, its value v¿uies rvildly over tlie x axìs.

From these results wc see tlìât a server's value is highly dependent on its Ìocation in the net-

wolk, One of the drawbacks of evâluating selvel perfomrance ât the client is scalability. As we

have seen, the perfol.lrance is highly positìon dependent.
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Client Resource View vs. Server View

0 200 400 600 800 1000 1200

Client Resource Evaluation (sec.)

Figurc 4.22: Server petformance evaluation from client next to the server vs. remote client scrver

perfbnlance evaluâtion.

4.5 Testing Conclusions

As shown flom our 1ìrst set of expedments, ¡'aditional rreâsure ]en[ techniques do not coffelatc

well with âctual server pelfor-mance in a shaled netwolk and shared resource cnviroul'nent. We

also detemined that a client's evaÌuation of the netwolk resoulces is highly location-dependenl.

Nearby clicnts tend to hâvlr a vety sirnilar view of thc nctwork. This suggests that near.by nodes

could cooperate in building a shared netwo r view.
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Chapter 5

Framework Components

In this ch¿pter we explore sorne comporìents we used to build our framewor-k.

5.1 PerformancePredictions

FroÌ'n our first set of tests we concludcd that one should nol look into tl.ìe low netwoÌk layers to do

relrotc rcsourcc perfomance predictions. Our goal is to predict the futute perforrnancc of a node

based solely upon its past performance at the application layer Sirnilar work has been done in

olher donains I45l t36l tl6l t581. If tlìis prediction is possible, it could potentially provìde rnuch

grcatcr vâlue than the traditional measures, siuce the high-Jevel tneasurelnents would, in effect,

crlcompass all of the low-layer details. Untbnunâtely, it n'ìay be that predictions would become

specific to the applícatíon and remotc resource specific. Horvever, the pr-edictions could be shalcd

amongst a pool of clients that had the same cvaÌuation of the temote rl]source-

5.1.1 Performance Predictions Experiments

To test our theory that the furure pefomance of a lemote rcsource can be predicted, we simplified

our previous lest suite. As many of the resulfs are the sante for the MySQL workloads and thc

43
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Apache workloads, we elirninated thc MySQL tests ¿rs weÌl as the low-layer testing. As the testing

will bc long tenn, the reduction of lesting volume hcÌps us renain good Plainetlab citizens, We

bclicvc rhar the Apache sen'er and its workload is a closc r.ì.ìatch to a leal-world applicatìon since

the workload is llodelcd on real data while the MySQL wor-kload was sirnply a convenicnt test.

We randomly selected 50 nodes from the Planetlab network for our tests. Each of the selected

nodes, on a 4 hour cyclc, would test all of irs peers' perfonnance with our workload. One of the

drawbacks of Planc¡Lab is thât it is a tesr network. We found that it requires 50 nodes to keep

approxinately 35 nodes coufiguled and runníng. Our tests executed for approximately 8 months,

generatirg about 300 tests an hour'.

5.1.2 Results of Performance Prediction Experiments

Htstôrg o{ nô.Iê I as sëëh lroh ho.lê 3

I

I

)i

l*rr,l,in -- 
*'iïil'T'iJl,'.rlïl

Figure 5.1 : Long tenlt relrote lesource perfonnance vs. tinie (4 hour ínterval).

The rcsults slÌow that most llodes operâtc it'l a dual mode fashion. In one mode, they have a

base perfon.nance level that is quite constant. ln the second node, they jump ìnto an over'ìoad

condition where their perfonlance drops by a factor of 2 or nlorc. We speculate that thc overload
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was probably due to high load expedments being run on the nodes by other rcsearchers. This

artifact can be observed in the bÌue line in Figure 5.1.

Figule 5.2: Short tenn rclnote resource peformance vs. tirne (10 min. interr'¿l).

To be surc rliat this dual mode behaviol wâs not an artifact of oul sclccted 4 hour wiudow.

we ran a small test set of 5 nodes. Thcse nodes tested one anotller on a l0 minule window with a

reduced workload of I .5MB. The results in shown in Figur e 5.2 seem to have similar chal acteristics

to the 4 hour window version.

Frorn these results, we developed a simple moving averagc prediction algorithrn shown by tl.rc

red line in Figurc 5.3. The algorithn selects a wiÌtdow of past data ancl takes the average and

standard deviâlion in the window. It tlielì prcdicts the future perfomance to lre within x standard

deviations of the rneân. We defìned a successfil plediction to be oue that felÌ between a lower

bound, in which the pefomance w¿ìs as good as thr: ptediction, and an upper bound, in which

the petfot-mance was within a fâctor n of the plediction. The lower bound was includcd to ensute

that thele wasn't an inordin¿rte waste ol'resources. We then test{]d rrany values of tl.ìe patâmeters

n, x, and Various window sizes, trJing to minimize their values without droppiug below ¿r 957o

successful prediction rate. We found a ntinitnum in those values at n=3 for an upper bound value,
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Figure 5.3: Rerrote resoutce perfonlance and prediction vs. tinte (4 hour inter-val).

x=2.50 sigma and 6.35 days for the window size. These values gave a successfil pledictìon 93.88%

of llìc lime as shown in Table 5. i . Table 5. I shows the percentable of times of' averaging algorithnt

pr-oduced tàlse predictions as delìned above, for each of the jnputs.

5,1,3 Performance Prediction Experiments: Conclusions

From rlìe last sel of experiments, we fbund that with about one wcck of d¿rLa our simple averaging

algorithn works well for future perfonlance predictions, for oul application and dataset rlnning

on Planetlab. One of tlic advânt¿ìges of rhis algorithm is its sin.rplicity. As the algolithtn inpur is

based on applicatíon specilìc plug-in perfonnance evaluation, it should prove to be robusr in light

of new dâtasets and varyring applications. Mole accurate prediction algor ithnrs do exist but, ¿s tlìô

averaging algorithnis wolks well we decided [o n.ìove on to other portior]s of the system rather

tl'ìen, explore improving our predictions wi¡h more sophisticarlrd tcchniques.
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Table 5.1: Percentage of false predictìons over database of rcsul¡s fol diflÞr'ent wjndow sizc and

deviations liom the mean.

5.2 Remote Resource Selection Algorithm

One of the key cor'ìrponents a depÌoyed system wíll nccd is the ability to balance ncw Io¿d as it is

introduced ilìto tlle systen. We found son]e jrtelesting phenonena in our first sct of tests, suclì

as the Ielationship betwecn node locations and their view of rcsource perfoÍtìrance. We sought

to leverage lhese findings and the results fl'om Chaptet 5 two to produce a I'esource selection

algofithm.

Siniilar work h¿rs been done in Gr-id rescarch f5ll tSl [32] tl3l. These Glid based resource

selection algorithns balance application specifìc design vs. compljcated QoS agrcements. We

propose to use ân application lâyer plug-in in place ol'a colnplicated QoS spccilìcation to drìr'e our

sclectiolì algo¡tlìl'n.
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5.2,1 Remote Resource Selection Algorithm Testing

We retumed to the databâse of results obtained in earliel in this châpter to develop our new algo-

rithm. As the dâtabase contains a record of the perfomrance of all of tlie peers, we lìave complete

knowledge of almost all of the resources in each tirne slìce. We say aìmost, as in the last 8 nonths

we havc had a few tÌansitions in our Planetl-ab n]anagcrncllt syslcm and at any otìe time l0-20

nodes are olììine. We generated a synthetic demand list fo¡ each node ât v¿rious lirne sÌots to

match lhe database data, areas ol'the data set where we did not have any data. The synthetic de-

mand consisled of a series of plug-in clernand values and durarions. We generaled denands for

each of rhe anchor-point locations. We mads sure thât the demands avoided gaps ìn data. As we

aÌready know what the pelfonnance of a rcsource would have been, as seen from all of its peels, we

cân emulate the demand placement decision a node would have urade, We tested val ious selection

algorithms:

Load Bascd Bascd on examining the load ou âll ol: the resources and selecting the resource with

thr: lowesr load- This aÌgorithm has been proposed by sor.r.rc reseârch Content Delivery Net-

wolks (CDNs) such as Colal [23].

Range Based We then used an irlgor-ithrr that selecls tlle node nearest to itself. This is the algo-

lithn.ì tl.ìat many comlnercial CDNs use, such ¿rs Akani [l 8]. Commer-cial CDNs do consider

loading of data centers but, we ignor e this as the dominanl faclor is l ange.

Uptime This algolithm is based on the length of time a resouÌce has been online. ln our case tlìis

nìcans tl.ìe number of lime steps the resoulce hiìs bee[ r€turnirÌg data.

Local Learning Local leaming uses the âverâging algolithms fì'om our Chapter 4 tests.

Randon We also included a randol]] selection algorithm as a litrnus test to be compaÌed against

our otlìcr âlgorithn.ts.

48
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Global Learning Global lealning is another ilnplelnentation of an averaging algorithm, but is

inplemented as a shared object. We did not intend this algolirhm ro be irnpÌernented in

a nÏe deployment. Rather we expected it to act as ân upper bound to our pelfolrnance

meâsures. As a shared object, tlie entile popularion of clien¡s leam as a group by updating a

shared data structure, rather than by acting independently.

Clairvoyance The Clairvoyance algorìrhm was another litmus tcst. It looked aÌread into the

database to see thc pcrfomance of rcsources in the next time slot ¿rnd used this claìrvoy-

ant infomation ¡o make ifs plâcerÌent decision.

5.2.2 Results of Resource Selection Algorithm Testing

AÌgor-ithrr Pe¡-cenl of Denrand Satisfied

Global -7 
6C,,

Clirirvoyance 68Vo

Load 61%

Local 657n

Range 64%

Uptilne 51%

Random 56ak

Table 5.2: Traditional dcmand pÌacement ¿ìlgofithms.

In Figure 5.2 one c¿n observe thât algorithms rvith some load balancing built in did well.

Clairvoyance didn't manage to do nuch belter than load based, because load bâsed was âble to

avoid systems that alrcady h¿rd some demand placed on them. As expected, the random approach

pefofircd the worsl, but not rnuch wor-se lhan uptilne. This can be attributed to the fact that the
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random app|oach has some inheren¡ load balancing built in. Our local leaming rechniquc from rl.ìc

previous expedmenls did not fare vely well either. We expect this is because of ìts lack of load

balancing, which would take no steps to avoid swaltping the high perfbnnance nodes Ìeaving the

slower nodes unloaded. Figure 5.2 shows the average demand satisfìed up ¡o the current srep in the

plot. As the plot continues, r'alues wilì level off.

5.2.3 Revisiting Resource Selection

Unrrtisfied with the lesults ùbtirincd. wc rcvisitcJ the pre\iou\ ernulrtions. Hcle is r ìi\t of rhe

algorithrns wc re-implemented in the redesigned emulator

¡ Randour Selectiou

¡ CÌairuoyance

. Range Based

o Local Leanring

To fufther expanrl this set of elnuìations, we incre¿sed the number of anchor points by a factor

of 6. We chose 6 because 6.3 nodes is the averagc nunbcl of Planetl-ab nodes in an arca. Olien

omce or c¿ìDlpus size retworks have very st'ìlall lâtency and high bandwidth. This dis¡ancc is

import¿ìnt ¿ìs we mâke the assumptìon tl]at cornmunicâtion delays on this merropolitan scale wìlì

be negligible. We levelage this low comrnunication cost to allow nearby anchor points to fonr

coopcrative clustcls. As nearby nodes tend to have a sinilal view of thc nctwork we reuse the

same petfonnancc figures fot each of the emulated anchor points. Wc cxplolc scÌf clusteling in a

later chaprer and live rathel than ernulated data is uscd.

We then tried to leverage knowledge from dre last set of experirnents, together with the sirnilar

view nearby nodes have of the netwolk- We then implernented ¿ì serjes of new algorithms;
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Load Balancing on the Resource: In rhis algolilhm, we enabÌed the resÒurce itsclf lo maintaìn â

hst of ¡he ped'omances experienccd by lhc clicnts that use it. If a new client wants to nake

use of the resource, tl'ìe lesource cân rcpolt what its average pedormance has been over the

past N recordings.

Load Balancing on the Anchor Point Cluster: Each cluster had 6 clíents. These were emuÌated

clienls. In the ernulation, rve assumed that the nodes had negligible comlnunication cost

among the group. This assumption is apllrollriâte as we found that Planetlab has on average

6.3 resources per city (50knr |ange). In Chapter 9 we returr to tl.ìis assuÌnption ancl lìnd

actual clusters further impÌoving performance. For tlìe lìoment the assumption is tliat all the

nodes in a city size area hal'e the samc vicw of the global network.

We decided ùa¡ if tlie clients cooperatcd, by tclling one ânother that rhey were using a

resource, they could have Ioad l¡alancing arì.ìorlg thc local cluster.

Sharcd Correction: ln tÌris algorithm, each resoulce rnaintains a "pubÌishecl" perfonnance aver-

age over the last 6 clays of jobs. The run tirnes being averagcd ale retumed to tl.ìe resource

fron thc clienl after the run is colrpÌete. The anchor points make use of this average as â

firsl approxinatior.r of the resouLces future performancc.

W.ren flic clierìt retulns the lob run tiu]e to tbe resoulce jt llso sends iì cop) Lo the local

anchof points. The anchof points tl'ìer] colnpale the lrn time of the last 6 days ofjobs (rheir

own locaÌ average) to the resource's "published" average. The local anchor poilìts uses the

râtio bctweelÌ the global "published" resource averâge and the "locaÌ average" to crcate a

locaÌ "correction". The loc¿rl "colection" is the la¡ìo bclween tlìe "published" plediction

and the "local" pr ediction.

When scheduling new jobs the anchor points nulriplies lllr "collectiolì" with the global

"publislied" prediction to fìnd a perfomance prediction lhal has been córrected fbr-its posi-
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tiol'ì in the nelwork. It tÌ]en selects the lowest pleclicted runtiÍì]c lesource for the client.

When the anchor poinl selects a lesource to cleploy a job it notifies tlìe othcr anchor poiDts

in the cluster. All the anchol points in the cluster adjust the expected perfbrmance of the

resource is use by incrcr.nenting ìts "in use" var-iable by one. In sullsequent scheduling,

resources thal have jobs running on i¡, rvilÌ Ìrave irs "published" perfo nance clivìded by the

nurlber ol'jobs currcntly "iû use" on that nodc.

Anchor poinrs un-uralk lesout.ces when they arc notified by the clicnt that thejob is cotnplete.

Anchor points also periodically poll the resourcc to check to see in ¿r client's job is still

mmiing. If it stopped ol the client becomes unresponsivc (ping alìve) the anchor point will

cancel the job and decrement the resources "jobs" counter, ro free it up lìr new jobs.

By niaking use of local Ìoad balancing, the algorithnt avoìds ove¡ loirding nodes. Some

inteffet ence may occur fi'om other anchor pojnls, but this would soon be reflected in the client

performance numbers. On subsequent d(]ployments the resource woulcl not be ¿ìs ¿lttr¿tctive.

It should be noted, that by making usc of averages across Ìltany nodes globalÌy, or locally, tl'ìe

influence a singÌe rnalicious nodc, ol sct of nodes, c¿ur have is reduced. As welÌ, a lraÌicious

ode is easily delccted by rctulning values far f¡oru the expected âverage.

Figure 5,4 slrows the average demand satisfàction vs- emulatioít str:ps f'or the vatious algo-

rithurs. For each er]lulation step we plol the pelccntage of demands th¿ìt have been satisfied up till

the cunent slep. The plot should, and does, lcvel off to some fixed values as nlore accutnulates.

Ncither tlie tladitìonâl algorithrn nor our new simple algor-ithnts perfour very weÌÌ, However, our

shaled correction algofithrn perforïrcd even better tlìân the clairvoyant algotitl.ìm. Its tlxc sttcngtl'l

col'ì'ìes frotn leveraging thc large client base to average the resource's global perfonnancc while a

cooperative clustel leams a local view. This algorithm fonns a global coôperative netwoltri whet'e

all anchor points contrjbute to benchmadiing tlìe Iesource.
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Figure 5.4: CumuÌative percentagc of dem¿rnd satislied vs. tine step.

The Shaled Corection algofithm achieves top perfonìance by taking ilìto account the short

tern âverage loading o1'the resourcc. This published resource loading figure aÌlows all anchol

points that make use of the resource to quickly Iearn the global loading of resources. At tlle sâtÌìe

tiin(] a cooperâling clustel of anchol points can woÌk together to leâm thl] "coflection" factor froll

the tesources' published value, allowing them to Ìearn the nature of their position in ¡he netwo¡k.

One key factor to making this cooperative clustcr work is ntaking sure tl]e cluster is fomred of

nodes that shate a similar network view. We show how these clusters are fbnned ìn Chapter 6 and

7.

5.3 Development

With a resoutce selection algorithm and pefonlance prcdiction scheme ìn plâce we continue onto

dynarnically creâtìng clusters of cooperative anchor points.



Chapter 6

Resource Clustering Study

We have observed in our emulâtions lhal clustcls of anchor point ncighbols can have advantages

over anchor points acting alone. In our emulalions, tlle clusters themselves wcrc enìulated ât [lìe

sane geogr-aphical location due ro iusufÌìcient dàta. We are confìdent dlat clustedng of resources

shows good plomise. To fuÍher explore lhis possitrility we developed a se¡ies of tests to quickly

establish if the clustering of resources is possible.

6.1 Ping Based Resource Clustering

In ptevious tests ìt was inipossìble to detecr clìent clusters due to thc small nurlber of nodes being

used. With only 40 nodes involved in the tests, clustel sizes would have cor'ìsisted of only one or

two nocles. In lhis test we made use of 400 Planerlab nodes, giving 400 x 400 possiblc evaluations

orjust under ló0,000 tests. Vy'ith rhe large nurnber oftests, each ureasurcment needed to be srnall

10 [educe our tofâl ilr.ìpact on the Planc¡Lab network- We chose to do a sirnple netrvotk ping.

This did show some corLelation in our oliginal test of HTTP and transâctional peúbntrance, as

weÌl ns being simp)e to ilnpìernent. We acknowledgc thal rhc ping tcst will only provide simple

latency infomation between nodes. As was shown in Chaprer 4, rhis only has weak coffelation
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with application performance. These results show good plomise and we irìterìd to redeploy the

tests witll appÌication layeÌ tesrs. We ran the rests fbr'2 weeks, r'epeating thc l60k tests every 4

ìrouls.

6.2 Anchor Point Network Position

To cluster the ancl]or ¡roints in terls of the resources' latency, rve defined each of the Planerl-atr

nodes involved in tìre lest as both a resource and an anchol point. To define an arnchor point's

posirion in lhe nerwork in lerns of resource pings, we define the anchol point's posirion as a

signaturc composed of a vector of ping tirnes to the rernote resources (see Equation 6.2). For the

rroment use the tenÌì signâtule despite that iI col'ìtail]s aÌl of the data coÌlected. In Chapter 7 we

should horv a large portion of tlìe data can be discalded fbnning a true "signâturc".

Ãl¡ = Ping Results frorn Anchor Poit.tt I lo Resource A

S r = Signaturc ar Anchor Poinl I

S¡ = [R¡¡,R1¡,...,R¡¡y]

Ping based anclìor point location signature definition. (6.1 )

6.3 Ping Based Anchor Point Clustering

To cluster the resulling anchor poinr locations, we developed a sinlple clustering algorithm, The

goal of the clustedng algorÌthûr was to fìnd anchor points thât have sirnilar vicws of the renìote
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resources, We wanted to be able to lìnd these clusters of anchof poir.rts without all of the anchor

points having a full set of lesource data. To achieve these goals, we set two thresl.ìolds: I) an

iudiviclual resource measure match and 2) a sun of ntatches threshold (see Equation 2). The

fonlula fìnds lhe nurnber of remote resources with simiÌar evaÌuation, and corlpates it to the

nunrber of comllon reDlote resouLcr:s. Should a large enough pelcentagc of thc renrote resource

evaluations natch the anchor points fbl a cÌuster. The clustcred rosoulces then use the average of

thcir cvaluarions when compadng with orher anchol pojnts that may want ro jojn.

Two Anchol Points will nlerge or clustcr if C(S r, S:) is True:

Tl tud T2 arc pre-seLeceletl tlrcsltold values

S ,, Is the signature of ancl.rol point S

-R,. Is the ping tirne to resoulcc y as observed fiom anchor point x

I i.it.t,tR.,. t,, L ¡,,¡r. ¡l,,,
0 orhelwisc I I

Cluste ng âlgoritlìm, (6.2)

Tl.ìc ir'ì'ìplenìentation of the algorithm staÍs with each anchor point as an individual cluster. Wr:

then cycle through pairs of anchor poinrs cornpaling s¡gnatules with our cÌustering algorithur (see

Equalíon 6.3). If the result is True, we melge the two anchor points into a cluster. We continuc

until clusters stoll r.ìrergiug. In lhe case rvhere we ale comparing two clustcl's, wc take the âverage

value fol each of the component elements of the cluster. The pseudo code fbllows:
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def: merge(x[],y[]):

for each í (return z[i] = (x[i] + y lil) / 2)

cfustering = True

while clusterÍng:

cfustering = False

for each S[]:

for each S[]:

íf c(s[x],s[y]):

clustering = True

merge (S lxl , S [y] )

Figule 6. 1 shows tl.ìe geogr-aphical distl ibution of the clusters. The cli¿monds on the nt¿p indi-

cate a cluster. Thc di¿rmond clusters âl(] centered on the avelâge position of thc cluster's uremt¡ers,

(as can be obselved. sorne fall in rhe middle of the oceâli). Tlic sizc of the cluster reprcsents the

relative rìutnber of anchot points invoÌved.

Ftom the clusteting results we can see that rrlsources' signatures tend to give good indication of

geographical Ìocarioll by considering that many nodes lend to have simiÌar views of the nctu,ork.

By setting out thresholds to .85 for lwo lneasures of a reulote resourcr: to be considered a match

and .85 for the nurnbet of lesource Íì.ìâtches needed, we see that 167 clusrers were generâted from

the 400 nodes usecl. That results injust over'2 nodes pel- cluster on average. Planetlâb requires rwo

nodes per sile ro join the test bed, leading us lo believe that these threshold Values are well matched

to tlìe co locâted Planetl-ab nodes. As we relax the thresholds, tl'ìe nulnber of clusters dr-ops, as

can be observed in Figure 6.2, where we see tlÌat the number of clusters js 61, witli lârg{r clusters

forrriing in the Nofih America, Europe and Asia. As the nrajority ol-the laryest cor'ìtributing cel.ìters

are located in drese regions, fhe results sccn r-easonable.
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NtLlrìì)Èr' c[ {-]lusters: r,:.,
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Figur e 6.1 : Global distribution of ping based neighbor- clusters.
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Figure 6.2: Global distribution of ping based neighbor clusters
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The results of ping based clustering show tl.ìat finding clusters of anchor points based on re-

source perfonnance rneasurcment is possible. Unfoltunately, bâsing clusteÌing on pings alone may

nor l¡e sufficìenl for applications that ârc computationally bounded. In these cases, ping times will

be iruelevant. We should creâte and altemative method of clusterìng anchol points that can be

bctlr:r tunr:d to the deployed application.



Chapter 7

Resource Clustering

7.1 Probe Tests

Tlie ploniising results bascd on ping tirÌe clustering inspired us to design a new set of experin.ìents

that would capture nìolc than the sil.nple l¿rte cy belween nodes. What we hoped to achieve rv¿rs

a clusteling that could bc custor.nized to ¿r vâriety of client applications. Simply using ping time

nay be appt-opriate for applications tl.ìal make use of many small rnessages where latency is a

consideration, but we would like ouI anchol points to be able to service computationally heavy

applications as well. To addr-ess thìs short col.ì.ìing we undeÍook two sets of measurell.ìents.

Network Measurcrncnt

In the first set, wc had each of the 400 Planetlab ltodes measure 50 pseudo randomly seJected peer

nodes and clownload five dâtasets using TCP As can I¡e ol¡served in Table 7.1, thc data sets ranged

in size fiom 2KB to 20M8. We believe lhât this rânge should relìect rnany network intensit'e client

applications demands, ranging frorn small transactions, such as instant Íìlessaging, to larger 1ìle

transfel appÌications. Typical run tÌmes tanged from 9 to 83 seconds. V/e linited our maxil¡um

download sizc to 20MB as we expect the TCP sliding window to have stabilized to a steady transfer

6l
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Test Number Download Size

Test 0 2KB

Tcsr l 2OKB

Test 2 2OOKB

Tcst 3 2MB

Test 4 20MB

Tablc 7. I : Five TCP download test sizes.

rate. In genelal TCP transfers take some lime to cstablish a constant râte of lransfer. This is almost

always much less the 20M8. EVcn in the rare case where it rnight not, there are few applìcations

where a 20MB transfer would not be sullcíent ro charactel ize the network link.

7 .l.l Resource Measurement

Test Number Number of'Operations (x 1 ,000)

Tcst 5 0.5K Operations

Test 6 I K Operations

Test 7 5K Operations

Test 8 10K Opcrarìons

Test 9 50K Opelations

Table 7.2: Five renote computation tests.

To [ulthel our rìctwôrk lc\ting. \\e lrlso tleploycd r \ct of 6vc tctnole rc\outce cornnuting cx.

pacity tests. In these tesls, we had the r(rmote resource pefolm a llumber of integcr multiplies

to asses the resource's rarv deliverable coniputing power. Each test consisl-ed of 1,000 multipJies.



CH,qprsa 7. R¡souncs Cr-usrsnlNc 63

Again, we varied the loading on the resource tl.ìrough five tests l'anging fronr -500 integer multiplies

tests ro 50,000 integer n.rultiplies tests as can be observed in Table 7.2. typjcal run times ranged

fron l7 ¡o 460 seconds. We límited our upper range to 50,000 rnultiplies when we found rhat rhe

results stabilized.

7,1,2 Probe Based Clusters

By making use of the clustering algolithm used plcviously, we regenelated clusters using our plobe

data, with the results shown in Figures 7.1 and 7.2. As expected, the clustcl's do not fom ìn ¡he

same locations when based on network download probes vr:rsus resource computational capâcity,

It should be noted that, the clustcls (represented by diamonds) alc placed in geographical average

of the cluster leading to clusters appealing in the lniddle of the ocean.

It should Lrc lìoted thât our cÌustering algorithm works well witliout the fill N x N test data

we had in rhe previous ch¿ìpter. As our cluster ing algorithni looks for the intcrsection of matching

probe dat¿, we ncedcd to ¿rdd a fufihe r cor'ìstraint to tlle clustering algofithm, We added a miniululn

allowed size to the interscclion of two signatures. If tlìele were fewer than eight in thc intersection,

rve did not subdÌvide fur-ther. We added this constraìlìt to be sure that clusters werc not being

f'onned willrout suflìcient data.

Ib cvaluate the potentiâl of tlie threshold values, we valied the X flom 0 to 1, for each value

of X we varied the valuc of Y from 0 to l ht Figure 7.3, we see the resulting number of clustcrs

whelt tl'ìe X and Y ¡hresholds ue swept, It is jntercsting to see thât the clustel count ranges fì'om

10s of clusters to oÍìe cluster per node, This shows thâr the X and Y thleslrold values wìll allow us

to adjust the cluster gloups as needed. lt is also inter-estilig to ole that tlìe Y tlueslìold sweep loses

range as the X value apploaches one. The X thleshold is ¡he threshold tl.ìat two nteasures nced in

order to 'lnatcì1". Y is the nullber of "tìlatches" needed for two ânchor points to lneEe into one

clusteÌ. Figurc 7.3 shorvs that, âs we tighten the thr-eshold of "matching" on one lneasure, all of the
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Figure 7.1 : Geoglaphical distlibutioli of compute probe based neighbor clustels.
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Figure 7.2: Geographical dlstribution of netwolk probe based neighbor clusters.
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Number of ClusTers vs. Cluster Threshhold Values
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Figure 7.3: Number of clustcl's vs. X threshold, Y valied fiom 0 to I at each X value.
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olhers rrust ¿ìgree âs rhe Y th|eshold loses its effect. Wc bclicve thât thìs ell'ect can bl] attributed to

the streugth of the X threshold. The fàct thar thc Y rhr.eshold h¿d little effect implìcs rhat â11 of the

X values are âll matching rendering ¡he Y value irrelevant-

Cluster Number Over T¡me
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Figulc 7.zl: Number of clusters vs. number of hours,

In Figure 7.4, we have plotted dte number of clustels over time given fixed values of X and Y

threshold. As can bc obselved, there is verf¡ linle variation in the nurlber of clusters. All variatìon

in this plot was causcd by subset of large clustels swapping a sÌrall set of mcmber resources. This

could be addressccì with a progressivc clusterir'ìg algor-ithrn rather then one th¿ìt regenet'ated the

cÌusrering at each tiÍr.ìc sfep. Overall the clusters ale quite stable even in ¡hc face of fluctuation iu

nr:twork alld tesoutce loading. Our algorithms is cllècrive because it averages Íìtany probes râtlìeÌ

thân over time as was thc case in Chapter 5.
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7.2 Deployment

Once our I'rameworÌ is deployed we envision a number of probes being r-uu an a regular basis to

ensule currer]t data is available for each anchor point's view of the network. The plobes used in a

re¿ deployment raay be fulthel tuned for the specilìc applications ro be deployed. WitÌt a sìgnature

based view of the netwolk, an anchol lloint wilÌ be able ¡o col.ìtact peer anchor points looking for

neighbol nodes to cÌuster witlì. When an appropriate node is found, rhey will merye.

7.3 Probe Based Clustering Results

We discoverecl thât our clusterjng algolithm wolks well witll probe data, even when faced with a

reduced datâset. Vr'ith ¡his new plobe dala, zrnchor points will be able to customize tlicir clustering

to suit the applicâtion's networtrl and resource needs. We susllcct that this probe data cân bl] further

used to cuslomize our frameworli to client applications. Wc cxplole this idea fu¡thet'in the nex¡

chapter.

ó8



Chapter I

Probe to Apptication Matching

One of the drawbacks of basing perfonnance predictions on perfontrancc histories is the need

for hìstodcal data. As we saw prcviously, it takes on the order of 4-5 days for our prediction

algolithm to achieve besl results. It would be benefìcial to h¿ve a pÌitning system thât would âllow

âpplicatious to be pre-benchnalked, allowing perlornance predictions beforc the application has

filled the 4-5 day window. In addrtion, infrequent slìort livedjobs would benefit from an altemative

Íìleans to gcnerâte petfornance predictions. From lhe previous chapte¡ we found a:rechanism for

clustering ânchor points based on a set of ongoing plobes. We plopose that this on going probe

infoflnation could be used to generate perfonnance ¡xedictions of client applications.

8.1 ClientApplicationBenchmarking

To fulthel leverage the plobe data thal wc arc accumulaling, rvc l¡enclrurarked tl.ìe clìent âpplic¿ì,

tions in temrs of plobe data. To do this, we will conrpare the performance of an application to the

cuffr:nt probe data fol a subset ol'the l€soulces. Flom the comparison of ptobc data to clieut appli-

cation petfonrance, we distilled a peúbnnance r-atio of probe values to application perfon'nance.

With this ratio, w{r cârì then fuÍhljr predict applicâtíon perfonlance using probe datâ fÌol'n other
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lesoufces.

To generate lhese latios, we deploy the application onto a subset of resources to Dleasure its

pelfonnance over a shorl time period. With the r-esulting perfor-mancc data, we generate a vecror

of weights that corespond to the relative perfonnancc bclween the application and the paÍicular

probe from that rcsource (see Equation 8.1 ). We can then use tl.rcsc weights with probe data frol¡

other resourccs to give a perfonìal.ìce predictioD for the âpplication on that resource.

WV - WeigltVector

Perf(Pn) = Peúbmance o1'Probe n

Perf(a) = Perfo¡mance ol'Application a

WY = LPer.f (pI)lPer.f (tt¡, Perf (p2)lPer.f(.a),..., Per.[(.pn)lPer.f (a))

Weigh vector calcuÌation- (8.1)

To er,¿rlu¿rte tlìis rechnique. we deployed a series of application tests. For these tests, wc lìade

made use of the rvorkload florn Chapter ¿1. For cach of the 400 Planetlab nodes, we pseudo rirn-

dolnly sclccted l0 remote resouLces and deployed our worklo¿rd. Once the rvolkload was contplcte,

we gencrâted a weight vector by comparing the p|obe data with [he workload runtirne. With this

weight vector, we used probe datâ fron.ì the 40 otlier lesources to generate perforrnance predic-

tions. We thcn deployed our wor*load on the remaining resources arÌd cotnparcd the results ro rhe

prediction.The pseuclo code fbl the signature gcnl:ration aÌgorithl'ì.ì is as follows:

for p in probe. keys O :

sunsig[p] += AppPerf / probeData[p]



Cs,rprsn 8. PRoBri -ro Appuc¡uox Marcnl¡lc

cntsig ++

aPPSis = []
for s to cntsig:

appSig[s] = sunSig[s] / cntsig

print appsig

Wìtlì these weight vectors, we can use existing ptobe data to generarc a prediction for appli-

cation pedbnnance on â rer)lote host. TliÌs prediction c¿rn be used until enough livc perl'ormance

dafa accumulates to generare a perfolnance plediction as developed befote. The pseudo cocle for

the pr-ediction algorithn is given below:

Sum =0

for p in probe.I(eys O :

sum += probeDatalpl ,. ú.reights [p]

prediction=sum/p

print prediction

As we see frorn the pseudo code, generating a plediction is a matter of using tlie weigllts at]d

the lâlest plobe data. In the âctual source code, signatures wjth fewr:r tl.ìen 5 Íemote locatÌons itì

coInlllon were not includcd.

8.2 Probe to Application Matching Evaluation

To tes¡ thc accuracy of our new pr obe based perfonnance predicrions, we pseudo r andonÌy selected

10 rcmote hosts wilh probe dâta. We ran our Apache worJiload on each of these hos¡s ancì made use
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of recent probe data to genelate a weight vector-

perfonnance predictions for 40 Íl]mote lìosts tl'ìat

vector.
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Making use of the weight vr:ctol', we genelated

were not included in the generation of the weight

Distribution of P.ediction Accqracu

Figule 8.1 : Distributio of petfonnance predictions, frcquency of neasuremenr vs, etror fiactìon.

Fìgure 8.1 plots the distribution of discrepancy between the predicted valuc and actuâl rr:suÌt.

As can be observed, tlìe bulk of tl.ìe predictions fall within -0,5 and +0.5 or a factor of 2 and +2

(delitttiting lines in black). In Chapter' 5, we deemed a perfotrnance factor of two to be reasonable

for a peffomrance plediction.

8.3 Probe to Application Results

Through furthcf study, the âccuracy of weight vector perfoflnance ¡rredÌctions could be ímproved.

At this point, we believe that ouÌ simple algolithni is sullìcient to sllow tl.ìat this technique coulcl

be used to generate pclfonnance predictions whìch compliment our "live" plediction algorithms

developed in Chapter'5. We leave the optirrization of rhis aìgorithrl to proceed to an overall sysrem

evaluatior.r.
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Chapter 9

Framework Assessment

To do an ovelalÌ assessl'nent of our framewo i, a wide scale dcployrncnr would have been ideal.

The deployrnent itscÌf is not prohibitive, as Planetl¿b has over 400 nodes distributed over the

globe. Oultesti g and clusterilìg algoritÌrms using Planerlab have shown good prolníse in tlìis

environment. Unfofiunately, a Ìarye scale deployuÌent for testing wouid require largc scale loading

ol'our flarnework. As our currelìt coÌrtfibution to Plànetl-ab is only two computers, it would be

unfair to other Planetlab lesearchers to place such a large scale load on the tes¡ bcd,

9.1, Emulation Inputs

As ¿rn altemative to live deployment, we collectccl a scrícs of probc and Apaclie Workload tests

fr-orl the Planetlab networ-k. We lhen used this data to dl ive the emulator we devclopcd previously

in this thcsis. As the emulator did lìot supporl probes and the prograrrrratic clustering aÌgor-ithm,

we nceded to make some enhanccrrents to jt. To truly test our lalge scale clustcring, the size of tlìe

emulation had to be increased. We expanded tìte càpacity of the emulator up to.tr00 nodes. Once

our modifications were complete, we loaded our Planctlab test data. To drive oul'emulatioll, we

generated â synthetic ânchor poinl demand workload, This worliload pseudo randomly selected

t3
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N anchor-points on which to stafi resource dem¿rncls. For each of the N nodes a pseudo r:rnclomly

gener¿ìted level of demand was requested. For each demand, â lifetine fol the demand was pseudo

randomly gencrated.

It should be noted that during the framework cvaluation we did not jnclude the probe to appÌi-

cation matching from the previous chapter. We believe that, without a live deployment, the value

of this technique would be impossible to deternìine.

9.2 EmulationAlgorithms

Vy'ith our ernulator and workload gcneratcd, we evaluated four differenl resource seÌection aÌgo-

r irhms:

Random Anchor poinls randomly select the lesources to deploy their load on.

Independent Nodes Anchor-points wolk i depcndentÌy to choose which resoulce to deploy thelr

loading on.

Simulated Cooperative Clusters As in our previous ernulation, anchor points wor-li coopera-

tively. The clusterìng of anchor points is irnposed based on gcogtaphical position.

Probe Based Clustering ln this algorithm, anchor points ale allowed to probe the resources âs

clcscril¡cd in Chapter'7. Making use of this probe dala. tl.ìe âuchor points ârrange themselves

into clusters. These clusters leveÌage the fâct that they have similal views of the network.

Tlle anchor point clustcrs worlí cooperatively using the same aÌgolithrls as the geographicâl

clusters algor-ithm.
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Fígure 9.1 : Comparison of probe based clusteling and plevious algolithrns.

9.3 Emulation Results

We reused the randoln, independcnt nodes ¿rnd simulated coopel'ative cluster zrlgorithms fi-on our

previous emulation. Wc rcpeated the algoithms [o ensure tlìat our cl]ânges to thc eÍìrulator and

wortriload had not aflècted the results. In Figule 9.l, we cau see that, as rvith the slnaller scale emu-

l¿tion done before, tlic random, independe[t nodes and siurula¡ed cluster had similar perfbrrlance

as in the eàrliel' experímenls. The probe based clustering showed even br:tter lesults. We believe

tl'ìis is becâuse our programmatic clusleriÌìg can better form cooperatiVe groups. These cooperative

groups âre able to better pleclict rhe perl'ormance of a peer node, as they share â true shated view

of the network. In the emulâtion, the nodes sufler when clustered by geographical disrânce due to

rheir diflering views of netwo ( resources. Wren forced into artificial clustr:rs, tlìe ânchor points

tlay not have the sarn(] network view they would have as clusteled by our probe based clusteling.

The discrcpancy between these two lechniqur:s wouÌd ¡rean the clusters would not âllow mcmbers

of a cluster to lealn ¿ln accurate corrcction for remote resourccs. Wìthout accuratc correction Val-

ues, the anchor poìnts wouÌd have tlouble predicting the perfoflnance of renote resources. The
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figule shows results âs "pcrcent satisfaction", which is the ¿verage satisfaction of ¡he emulation.

For example, 3570 satisfâction irnplìes thar 357o of all the demands placed on the network have

heen satisfied

The emularion was dliven by a demand trâce filr:. The synthelic den.ìand consisted of a selies

of plug-in demand values and duralíons. We generated demands fol each of the ânclìor-poiut

loc¿rtìor.rs. Each anchor-poirìt tried to satisfy the clemancl placecl on ir by dcploying simulated

applications on resoulccs. The perforurance of the application was taken from the cxisting database

of pelforrnance traces. The demand tlace was designed to over tax the system. As can bc observed

in Fìgule 9.1, we see that ovcrall dernand satisfaction nevel exceeds 35clo. Wecould of course

re-generare a demand tÌace such that all of rhe âlgolitl]n]s perfbnncd better.

9.4 Scalability

Scalability, as â property of systerns, is genelally dillicult to deftne [25][9]. On the whole, ir

relalcs to the ability of a system to coutinue to function under the stress of increascd loading.

Somc of the dimensions th¿t are ofren measured include:

¡ Load scalability - As a systen sees more load, tlle systcm pcrfomrance gtacefully degrades.

o System Size - As a systeÌìl grows in lesoulces, it continues to scale, tlìis usuaÌly reÌàtes to

luot lìaving any singlc bottleneck

o Administrative scalability - As the size of the system gÌows, morc and more olgar'ìizatiorìs

can join in ordel to keep tlle nurrber of systcms cornponent a single m¿ìnageÍììent cr'ìtity Il'ìust

nanage reasonable.

In the foÌlowing section we examinc cach of these scalability factors for existing RMS systents:
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9.4.1 Grid RMSs

[21], [ls] and [22]

Grid RMSs [ 5] tend to have tight controls over the executing jobs as they are optimized for

throughpur ovel scalability. They also tend to tightly control the contributed resources not allowing

the resoulccs lo be used for anything but grìd jobs. Because of rhese tight controÌs, grids tend to

be very scalable.

Load Scalability

In a grid RMS are generally Ioad scalable as they hâve â strict âclmissiol.r schemc tl.ìat allows them to

control the systeÌn load. With such a rlechanism they can deny âccess to incoming jobs curtâiÌing

an overload condition. Even ill tl]e situation where jobs a|e allowed to enter tlìe systcm, they lead

only to graceful perfomance degr-adation, as the job placement algorithrl wrll try to m¿rximize

ovcleìl systenr pellolrnrrrce I I l.

Systcrn Size

Grids have proven to be very scalablc. They liave been used to nanage sets tlìousands of conì-

puters. Unforlunately, when general ¡rurpose applications arc dcployed over a wide arca nr:twork,

the latency and reduced WAN b¿ndwidth can limit perfonlancc. This is not a pr-oblem with the

grid itself, but rather the application's scalabiliry. Grids today do not havc a good mechanis;I for

modeling resource pools ovcr WANs tl.ìât can be easily adopted by application programnters, Grid

applications ¿ìre custon] wlitten using gr-ìd toolkits [22]

Àdministrativc Sizc

Grid RMS developels have spent a Ìarge aDrount of time developing the systeÍrìs needed to share

grìd pools among administlative domains. Grjds maintain the ability for local glid pools to tnanage
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their lesources and s¡ill rrade idle resources ârnong thelnselves

9.4.2 Volunteer RMSs

Volunteer systems lilnit lhe nunber of applications thaf can be deployed by only allowing com-

munication to lhe central server. This affords volunteer syster.ì.ìs m¿ny advântages and hurdles to

scalabiÌity even througl.ì rhe câpacity is available [6].

Load Scalability

One of the largest boltlenecks of volunteer systcms is the centlal dat¿ center thât the slave clients

nìus[ cor]tact for corrrÌunication. This also scvcrely lil]]its the type of ¿pplicâtions that can be

deployed. On thc ofhcr l.ìand, as tÌle central location docs not do âny compufation. it can handle a

rclltively lulgc ulnount oi' coord inr ion.

Systern Size

Systems size scalability is nol a problem for volunteel RMSs as the slave clients hâve no iutelpro-

ccss comrnunication ancl thc master slave communication is low. Tlie total size of lhe network ca¡r

becorne verl large. Existing systems scale to l0s of thousands of clìents contr-ibutir]g to â single

application [5].

Administrative Size

Volunteer systems hâve póor contribuler scalability as they have a single deployment point. Unfor-

tunately, the application base is lílnited by lhe central communication alchitectule. Nearìy every

cliellt is owl'ìed by a differenr parly. FroÍn the client per spective thcy are Ve4, scalable.
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9.4.3 P2P RMSs

P2P system are built for scalability rather than over performance. They also tend to focus on sirlgle

applications. This allows thcn'r lo optirìlize their operation for the single application chosen [43].

Load Scalability

Loading on P2P networks tends lo scale vely well as the load is designed to be distr-ibuted over rhe

nerwolk as a whole. The loading is often in a tit-l'or-tat fashion. This n.ìeans that users that place

large amounts ot) the network need lo contribute large resources. This fair shaling l'orces good

scalability inro rhe network but linits the applications that can be deployed.

System Size

The sÌze of P2P networks is usually theìr strength. Most P2P networks assune little resourcr:s at

eacl.r of the corltl'ibuting nodes and âttempt to builcl resources by leveraging a large resource pool.

Administrative Size

As each of the nodes ìs orvncd by a diflerent usel, P2P uetwor-ks are the most scalable RMS today.

'Il.rey often have l0s of'tl.rousauds of uscrs, who cach pclforr.n thc ncccssary administration.

9.4.4 CDN RMSs

CDN RMSs are pulpose built fol scaling up HTTP taflìc. They are designed to addless the scala-

bility issues with today's web servers [23].

Load Scalability

CDNs, like volunteer svsterns have a single disnìbution point at the origin sen'er. This usually

causcs l'ìo ploblem as the lcdilection Ìs a simple operatiolt. In addition, the CDN pool is usually



CH¡.pr¡n 9. Fr¡lrgwonx AssEssMENT

very large, allowing load balancing iìlrong the CDN web sites

System Size

Modem CDNs ser-ve 100s of web sites wjth 1000s of resources geographically dis¡ributed alound

tl.re globc. Thesc networks ale límitcd âs tl.ìey onÌy serve a single application.

Adnrinistrative Size

CDNs avoid the issue of admìnìstra¡ive scalability as they alô usually owned aud operated by a

single entity. Tlie client web ser.¡er s do not handle verl much of the system load and are, of

course, owned by another pal ty.

9.4.5 The Developed Framework

Our frameworli attempts to generalize these systerr into a novel system rhal scales in ¿rll of the

dimensions just discussed. As we saw, each of the prececling RMS suftèr in at lcasl one dimension

of scalability or ânotl.ìsr.

Load Scalability

Our network is designed to be load scalable. The total client loading can be equally distdbuted

over tlìe total resoulce base through the anchor points. Our RN{S l.ìâs another advantage in that,

by our on-linc benchmalking tcchnique, clients gain a corlected view of lhe Íesoulces available,

unlike any of the existing RMSs. The linliting fàctor is the loading pl¿Ìced on the :rnchor points. In

thc degeneratc case, ¿rlÌ of the load could be placed onto one anchor point. In this case, tl.ìe ârÌchor

point would need to replicate itself onto some of the fiee resour-ces in the pool.
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Svstem Size

As oul RMS tikes into ¿rccount the netwod( in its placement algofithrn, it can hide larelìcy cou-

siderations from applications. This isolatiou fia¡ure is one of the majol difÌìculties in glid RMSs.

The distance isolation feature also allows for systell size scalability that no other RMS can natch.

The implicit reduced value of distant resources allows for systern scalability that could potentiâlly

scale globally.

Administrative Size

As each of the resources and clients in our RMS can be owned by a different person, lhe adlninis-

tralive scâlabiÌity is as good as P2P networks. The only limiting factor is the need for â stâfting, or

root, anchor poiut that can replicate itself wirhin lhc rcsoul'cc pool. As thc anchor point pooì can

run o any of the contributed resources ¡his should not bc a limiting factor.

Scalability is an impoftant measuLe I'o| any Resource Man¿ìgernent System (RMS). As all of

óur testing and results are products of thc Plânctl-ab test lled, we believe rhat our fiamework

has been grounded iu leality. Fufther, our algolithms have becn dcsigncd to be dcccntralized,

thereby rrritigàting any overloading of a singlc colì.ìponcnt. Good supporr for ¡his is plovided by

our emulator'. In our firsl round of eÍìrulations, we stafted by ernulating 40 nodes in the nl]twork,

In our last sct, we had 400 nodes whele our algorithms continued lo ollcrate conectly. We believe

that lhe systenì can handle any number of nodes participâting. Some of the liniiting fàctols will be:

. As the application set glows, we uray need ro ùne the probes that are used fol clustering.

As new appÌications are ¿rdded, we may find that oul'probes do not capture the dernands that

applications ale puttìng on the resoulces. Adding new probes at a later time Ìs quite simple

in our fiamewod< and neecl not be implernented by all nodes a[ tl'ìe same titne.

. There ate two threshold palanÌetels used to adjusl thc sizc of clustcl's that are generated

from the probe data. As the sizc of the nelwork grows we may need to limìt how tnany
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nodes cooperate in a neighborhood

neighbolhood sizes.
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These pararnete|s may need to be âdjusted to limit

o We have yet lo design a discovery and dissemination scheme. The distr-ibution of resource

and anchor point lists will need to bc done in a scalable way. Onc adväntage this systen

h¿rs is its robustness in dcaling rvith non-current resource and anchor list data. The propaga-

tion of crroneous Lesource or anchol point infonnatiorl will not seriously af:l€ct total system

perfonnance.

r Wc will also need to fufther tune our algor ithrns and probes as new applications with dillerenr

network and resource delnands are added.

lf these four shortcomings are addressed in a fì-aurework deployment, we believe the systel'ìl to

be very scalable to a global size. One ÌrajoÌ advant¿ìge we have ovel existing RMS is basing our'

perfonnance predictions on p¿st application perfolï.r¿uÌce. By using this technique, our evâluation

o1'resources iucludes alÌ of the network and resource limit¿tions. Leveraging thrs data, we can use

the resources fbr anchor-point placelnent, âllowing therrr to be deployecl as neecled and nrnking the

RMS seli healing.

9.5 Robustness

Robustuess is au important quality of a Resource Management System (RMS). As our system is

designed to be distdbuted, it is by nature globâlly lobust. The loss of large segnìr:rlts of the uetwork

or segmentâtíons will not have â lalge impacr, otlìer tÌìarl the loss ol'capacity. Belg [?] defines

robustness âs "a lreasure of the degree of a system which is iu ¡he operable alìd comnlittable state

at the start of missíon when the mission is called fbr a¡ an ulìknown random point in time". In

effect dris is directly related to the "uptime" of â system-
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In oul experirnents we had intended to do a norc dgorous examination of robustness through

a study of uptil'ne and availability on Plane¡Lab. Unforrunately, dur-ing our Planerlâb tests we

had a number of difliculties maintaining âccur'âte data. Some of the down time we captured can

be attributed the Planetlab down time. But thc large Ìnajodty of the down tÌme we saw was due

to plogrârnming errors, server lnigÌ'ation pr-oblems or configutarion eLrol's on our part. As the

rnajority of the down tine was due to our own eflofis, we decided to silrply do a single point of

failule analysis, râthel then a srudy of our own induced reliability faults.

If we examine sorne of the exisling RMS we see that sonle ârc not robust due to existence of a

single points of failure within their design.

o Grid RMS - Glids suffel tloln loss o1'capacity due to a WAN failure also a possible loss of

da¡a. This is due to the type of applications thât Íun on a grid rather-than the RMS itself.

¡ Volunteer RMS- Volunteer RMSs Sufler'I'rom a major issue of having a centralized point o1'

failure; the n'ìaster data ce ter- A loss of the lnaster data center rendcrs all plocessing and

data oflline.

o P2P RMS- P2P RMSs only sufler from a loss of capacity and data if un-replicated in the

netu olk, un unusull cvent.

o CDN RMS- CDNs Suflèr from a loss of âccess to wr:b data if the central sewcr goes offline.

Usually. the CDN will used cached data.

Flom a design perspcctive, oul RMS does not sufl-el fìom any central point of faiÌure ljke CDNs

ol Volunteer RMS's. TheÌe arc still solre points that can fail in oul RMS, but they will nor result

in a catastropl]ic systen.ìs failure. Sucli possible failures points includc:

¡ Neighbol Failurc: Should an anchor poi t neighbol fäil, ìt would bc quickly discovcred and

disseminated to the otlÌer neighbors. The uroment any neighbor receives d¿ta concer.rin.q
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one of ils application's performance, it needs to share it with all its neighbors. Had onc or

rnole of the neighbors failed, they would be removed from the neighbolhood. The neighbor

could, of course, r'e-join following irs rccovery through the nomrâl clustering mechanisl¡.

. Resource FaiÌure: As resources are coustantly being evaluared by appìication plug-ins and

probirtg, any teduction ín peúorrrance. whether from ovelload or failure would immediately

be noticed. The anchor poìnts would need to stafi trrigrating applications to ftee resources,

Ilì the event of a catàshophic failure, any affected anchol point would be obligated ro star.r

large scale trirnlnìng of its load by reducing service ro its cÌienrs.

o Anchor Point Failure: Should an anclìor pojnt faìI, the clienr plug-in tunning on the clìent

would nolice immediately às il is fccding performance tesults to the anchor point. As the

olher resourcr:s rvould still be operating and supplying the data, tlìc inte uptiou in selvice

would ttot be immediate. Once the anchor point failure is detccted, the âpplicâtioD plug-

in câu begin to move its resource der¡land lo anofl]cr anchor point in tlie neiglibolhood or

elsewhele

Tltc onÌy rernaining iteln of the flancwork th¿ìt c¿ìlì fail is th(3 wide area network itself. Should

a client lose access to tlìe netwod(, thclc is noLhing thâr can lle dotìe. We see that, by rnakíng use

of on-line perfonnance dâta, the systeln is relatively inseusitive to failures.

9.6 Security and Tfust

One iÌ]lpoltanl area of colìsideration for any ResouLce ManagenteDt Sysfern (RMS) js security. In

systerns wl]ere not all components ¿re owned by the same party, ¡rust can be a problem as well.

Before our framework couÌd be used in a commelcial deployment, these issues would need lo be

addressed. At the rr-lolrrent, wc have put- thern asidc for future study.
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In defense of lhis discussion seculiry can be easiÌy added though encryptiorl of channels and

sccurc key exchange, Planetlab ahcady has these facilities enabÌed. Trust cau be built jnto the

feccl back mechanisnr of the anchor points- As the anchor poiuts rnaintain an average performânce

number for an a¡ea it is easy to chcck the validity of leturned results. Should clients retum fâlse

data on a regular basis they could have a "trrst" level reduced and weighted accordingly.

9.7 RMS System Comparison

Some aspects of our framcwork ar-e shared with existing Resource Management Systems (RMS).

We compare our fì'aurework to existing systems, Table 9.1 .

Attribule Gúd Volunteers P2P CDNS Flamework

Donated Resources t'l o yes yes no yes

Number of Applications many l'ìlal-ìy otlc one l,ì1¿lny

Dedicâted Resources yes no no shared with QoS yes

Pledictable Perfolrrance yes no no no wide areâ aflects Some QoS

I-evel of l)istril¡ution paftial cen¡ralized ful Ìy partial fully

Table 9. I : Resource managclnent systetÌ attributes conpa|ison.

'We obscl've that our fÌârnework can make use of volultteered resource like p2p and volunteer

systerrs. Our framework can also make use o1'dedicated resouÌ'ces siÌnilar to cluster colnputing

or grid sysrcns. OuI fr¿rmework is fÏlly distlibuted and self-organizing like p2p networks theteby

making the system more lobust. We also hâvr: sonìe measure of QoS tlÌrough performance pledic-

tion, similar ro grid syslerns. We can also support nany applications unlike p2p or CDNs.
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9.8 Summary

Makìng use of our plobe data to generate anchor point clusteÍs, rather than geographicaÌ clustedng,

we found improved results fi oln our previous tests where anchol point clusters werc simulated.

This was duc to the probe based clusters being a much better measure of rhe shared network

patlì tl.ìan tlying to infer clusters froni geoglaphical topology. From these results, rve can see

thât probe based clustedng worlis well as a Íìeans to sclf organize anchol poir.rts into cooperativ(]

clusters. Othel fàctors that we considered in the design are scalabilíty, robustness and security. The

scalabiliry and fobustlìess of the fi-alneworli are integr'âl components of thc design of the algorithnis

we used. Securjty and trust still nccd ro be addlessed in the litute work.
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Chapter 10

Conclusion and Contributions

10.1 Overview

We have developed a novel fLallework for the manâgemcnr of a netwolk of shared rcsources.

The framewolk uses a set of anchor points, which probc rcmote resources to est¿rblish resource

clusters amoÍìg ancl'ìol poiurs. The probe dâta also, provides baseline resource peformance. The

anchor points cooperatively rranâge the loadirlg of lesour-ces to ensure that client perfonnance is

rnaintained.

10.2 Thesis Contributions

This ¡hesis describes an eurpiricaì application perfonnance n.ìeasureltent based RMS. The frame-

work itseli', probe based clustering and perfollance pr-ediction algodthrns are novel and have

application in other dourains aud systems.
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10.3 RMS Framework

Similar frarnewotks that use arìchor points, or "landrn¿uks", exists in experimental Label Switched

Paths (LSP) [34] and sensor: networks [31]. In these situations the landm¿rks areused either as

lixed WAN locatíons or for host positioning- Our framewor1i placcs rl.ìcsc node on the edge of tlie

nelwork arld petfonr significantly diflerenr and larger-task then trâditional "landntarks". This is

one of the reasons we describc our "landm¿rdis" as anchor points. Our fi.amewoll< itself is a novel

development. Rather than have fixed points on the networt as is thc case many RMS system to âct

as landrrarlis, we plopose thar our ancl'ìor-poinrs can be moved off the WAN backbone and into

a LAN environlnent- The anchor points acl as ambassadors to the locâl network leaming the sile

specific attributes of the network position and the ellèct of thc site on application perfomance.

Oul fi ¿uleworli tries to be application independent, altliough for the puqtoses of'deveJoping our-

RMS we used database and web appÌications. The RMS itself is desìgned to be ¿daptable to ¿ìny

onlinc application that could make use of a large, wide area pool of tesources. Wc believe these

aspecls n.ìakc the frantework a valuable contril¡ution thât coulcl be deployed or leveraged by grids,

CDNs, P2P ol volunteer RMSs.

10.4 Application Performance Measurements

Application pefomtance mcasurenìe t has been previously used in the n.rodeling of application

peúbmattce in grid systeÍr.ìs. The use of application pedomance has not bccr'ì used to evaluate tlìe

end to end perfonnance ofa general purpose RMS. One reason is by only looking at tlìe application

pelfomrance therc is o infoürìation for thc developer to find bottlenccks. Without bottlcneck

infomation there is no clear indication of whele to mak(] network improvements. Application

perfonnance Ílleasurel.ì.ìent is used in P2P networks for file contdbutìon assesslltent. The use of

application perfonnance iu a RMS has not been explored befole this wodi.
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10.5 PerformancePredictions

We discovered that pelfoflrancc predÌctions can be m¿de at the application using a simplc moving

average- We do nol considel the moving average a major contribution but rather a good indication

of the stlength of application perfor-rnance Íìeasurellìent as â technique. Even wíth a naive filtering

algorithrr oul emulations show good prorlise.

10.6 Resource Selection Algorithm

We developed a novel distdbuted cooperative algorithn.r fol lesource selection. This algorithm

makes use of sirnple application performancc averaging for tesource selection- The cornbining of

global pcr'linlance uleasuretrcnf with loca] network correction is a novel aspect of our work. Thc

algorithm is vcry siniple and is designed to be application independent, We believe ¡hat thete is still

toom for improvene t in tlìe plediction algor-ithm leveragcd Lly the resource selecror. Despite the

simple moving avetage ptedictÌon, our two parl coopelative- r'esouLce selection algorifhm perfonns

well.

10.7 Anchor Point Clustering

One major corltlibution of lhis thesis is our discoverJ of clusters of ¡esources in the netwott tlìa¡

share similar views of the ren]otc resoulce wolld. We developed an algorithm tl.ìat can clustet'

resources based on their views of rhe lenlote resource rvorld. By cÌustering togetl]er tesoulces

with simila| views we found that they c¿u act âs a cooperative unit. This knowledge could also be

l]xploited to deteflnine the number of ¿ìnchor poinrs a network needs. This clustering view can also

be used as an applic¿ttion level technique fbr detennining network topology of networts where no

lower level data is availablc.
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10.8 ApplicationProfiling

Finally, we found that applicirtion peúbmance benchmarlis can be found based on a set of genelic

application probes. The actual benchmariis could be irnproved with further study, but even with

the simple measures rve studied, web perfomance could be fbund with probe data without needing

to depÌoy the âppìication. This style of application benchntark warrants fuÍher study, but based on

oul initial sirìple tests, this technique sÌrows pr-otnise.

10.9 Summary

Our en.rpirical Ineâsur€Íìents of application pelfonnance based on probing and clustcdng has not

been previously explored as a nrechanism for perfonrance prediction or as a basis for ¿tn Resource

Managenent Systems (RMS). We have also dcveÌoped a fully distributed self organizing lì'arre

work. Clustering resoulces based on tlìe perfor-nlânce observed at temote locations has not been

pleviously cxploited. This framewotk also incorporated existing technologies to build a skeletal

framewotk that is application independent. Duo to its applicarion independence it we bclieve that

our franeworli can be appliecl to any number of applications including, renote conputatiou such

âs weather prediction [30], computer graphics renderìng ! 7l or other clis¡ributed applications such

as wt:b services.
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Directions for Future Work

The framework dcveloped is very skeletal and application indepenclent. To continue the work grcat

gains could be rnadc by restricting the application dor'ììain to one ploblen r¿tller tÌìall colìtinuing

with a generic tÌamewotii. As an exanrpÌe rnany of the applications that we would like to use in ¡lie

flamework, such as sneaming lledia, would requile an âdditional componr:nt f'ol tnoclelìng server

uptilne and managing retnote resource configuration time. We stafied with au iltitial stucly ol' ser vct.

uptimc but found our short deploynlent tinìe did not give sufficient data to drâw any conclusions.

By rcstlicting rhe application domain of the fiamewolk we could make addìtional assumptions that

would drarv out the application colnponents ¿nd allow us to ignore the aspccts that are irrelevatt.

Another f¿rctor that is holding b¿rck oul worl< is the large scale net\À'ork needed to make fur-

thel'advances. Even with the ,100 nodes of Planetl-ab, our total allowed resoulce consumption

is limited. To gain a true understanding of tÌre univcrsal applicability of our framework a much

larger netwolk with a wider- application tesr ser is needecl. Again, focusing on a specific compu

tational task rvould lcduce this problem, allowing us to reduce the test netwod( size and loading

rcqu jretrrents for evaluation.
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11.1 ConcludingRemarks

Atracking a gcneral problem such as ¿n RMS will always be dillìcult, Despite ycars of exploration,

no total solution has been found. RMS research will continue for tnarìy trrore years. We irave

dcveloped a skeletal fianewodi that shows good prornise. We have also developed a numbcr of

novel lcchniques thar could be applied to a full RMS or.existing RMSs.
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