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Abstract

This thesis studies the use of Operational Transconductance Amplifiers to

model neurons in Artificial Neural Networks. The intrinsic properties of

the OTAs is studied for VLSI implementations. Two types of OTAs are

investigated for multiple input capabilities; the common and the cascaded.

Two test circuits have been designed that contain 4 neurons modeled by

the two types of OTAs and have a digitai controi circuit for updating and

refreshing the weights.
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Chapter 1-

Introduction

In some special computational problems such as image processing, familiar-

ity recognition, categorization and word identification, the biological systems

out-perform an. aggregation of super computers. Digiial computer architec-

ture is not amenable for analyzing ftzzy and ill-defined problems like face

recognition.

Some differences [3] between computer systems and the neurobiological

systems are observed below.

o The neurobiological systems are made of. wet 3-dimensional cells , the

others is made of inorganic flat 2-dimensional chips.

r The neurobiological systems are powered by biochemistry whereas the

other are powered by rectifiers and transformers.

¡ The neurobiological systems have 100 millivolt level nerve impulses

lasting nearly a millisecond while the others have 5 volt signal levels



switching at nanosecond intervals.

The neurobiological systems communicates mostly in an analog manner

in real time, while the other computes in a digital mode with hierar-

chical pr-ocessing.

o The neurobiological systems are fault tolerant, so the loss of few cells

will not affect the brain's performance. On the other hand the loss of

1 transistor might cause the disfunctionality of the whole conventional

computer.

Those observations suggest the usefulness of analog VLSI (Very Large Scale

Integrated cilcuits) technology in rnicroelectronic simulation and emulation

of neurobiological systems. An entirely new type of analog computer (using

VLSI circuits) is sought to investigate neurobiological systems for further un-

derstanding. It will be capable of performing some tasks presently achieved

only by the neurobiological systems. This type of analog processor is called

an Artificial Neural Network (ANN). Analog VLSI networks are very attrac-

tive architectures to build ANNs for simulation of neurobiological systems

consisting of a massive aggregates of regularly spaced neurons and synapses.

It is estimated that the human brain consists of about 100 billion neurons

and each neuron is typically connected to approximately 10,000 other neurons

[19]. A neural system has two types of amplifiers, namely normal (excita-

tory) and inverted (inhibitory). It is also required that the ANNs be capable



Figure 1.1: Biological neurons.

of implementing feedback. By using VLSI technology, a parallel architecture

for real time computations can be accommodated. Processors and sensors

can be integrated on the same chip. The biological systems have more layers

available for wiring, as compared to 2-dimensional chips.The speed advantage

of the chip may be used to offset the spatial problem by time-multiplexing

the signals on a single wire.

1-. L Neurobiological systems

Neurobiological systems have inspired interest in ANNs. Fig. l.l shows two

biological neurons in synaptic contact [2]. The system is formed of:

The cell body, the large round central body of the neuron approximately

I00 p,m in diameter.



Th¡eshold

Net input

Figure 1.2: Formal model of a biological neurons.

The axon, which is attached to the soma and electrically produces the

pulses which are emitted by the neuron.

Electrical signals travel through the axon to other neurons. These

signals are transmitted to other neurons across a narrow gap between

the cell membranes (Synapse).

r The synapse controls the conductance of the membrane.

o The dendrites are electrically passive and receive inputs from other

neurons by the synaptic contacts.

Fig. 1.2 shows the formal model of a biological neuron. It sums inputs from

other neurons and turns on (fires) by sending a series of voltage spikes down

the axon when the net input is greater than some threshold.

The synapse conductance, which transmits these voltage spikes from the

sending neuron to the receiving neuron [1], increases if the sending neuron



from neuron

\ úo other neurons

Figure 1.3: Artificial neurons.

repeatedly causes the receiving neur-on to fire.

The human cerebral cortex is comprised of about 1011 neurons, with each

one having roughly 1000 dendrites, that form some 1014 synapses, ( the sys-

tem operates at frequency = l00äz), and functions at the rate of about

10,000,000 billion interconnections/sec. l2l. The human brain weighs ap-

proximately 1.5 Kgs, covers an area of 0.15m2 and 2 mm in thickness.

L.2 Artificial neurons

Artificial neurons are similar to the biological neurons, the simplest represen-

tation of artificial neuron is shown in Fig. 1.3. Neurons become processing

elements, the axon and dendrites become wires, and synapses become variable

resistors carrying weighted inputs that represent data fi-om other neurons.

An individual neuron does only very simple computations, but together they

become very po\Merful parallel plocessing machines, Fig. 1.3 shows a process-

ing node (amplifier) interconnected to other neurons by resistors. The output

oufput



of the node is a sigmoidal function and neuron (i) gets

through a resistor with the conductanceT¿¡ (known as

input from neuron (j)

weight)[8].

N
Vouti: f (ÐV"*¡Tl¡) (1.1)

i=7

The advantage of analog networks is that a single resistor can perform a

multiplication using ohm's law and currents summed according to Kirchhoff's

law. Therefore, an analog circuit that computes sums of products can be built

much moÌe compactly than a digital circuit which requires multipliers and

adders that take a large space of the silicon wafer.

L.3 0TA

The Operational Transconductance Arnplifier (OTA) is a natural gain device

of large gain bandwidth. Basically it is a voltage controlled current source

and easily amenable to large scale integration. It has a transfer characteristic,

f out: g(V, - Vr) (r.2)

Figure 1.4: Symbol for an OTA.



where g is the transconductance controlled by bias current ,I¿. The common

symbol used for OTA is shown in Fig. 1.4. The characteristics of an ideal OTA

are similar to those of an op-amp except that the OTA has very high output

impedance. Due to the fact that the output impedance is high, the output

signal of the OTA is best described in terms of current that is proportional

to the difference between the input voltages.

dlout
" dVn

(1.3)

The unique features of the OTAs are the current output and the external

control of the transconductance or gain. They are general purpose amplifiers

suitable for a wide range of applications. The other important feature is

that it is suitable for monolithic design. In spite of those attractive features,

OTAs have not yet found wide spread applications. Due to their limited

differential input linear range -30mV, the output current saturates making

the device nonlinear at small voltage values.

L.4 Objective

The objective of this research is to reevaluate and analyze OTAs for use in

modeling the multiple input neuron in artificial neural networks. The in-

trinsic propelties of the OTA will be closely investigated for possible dense

arrays to generate a large number of subcilcuits in a cross-bar arrangement

to be useful for- VLSI implementations. Two types of OTAs that are under



investigation: namely the typical differential OTAs and the cascaded OTAs.

A new way of modeling neurons using the typical differential oTA with

variable weight and small synaptic sizes that are suitable for VLSI imple-

mentations \¡/ere suggested and investigated. A chip that contained 4 fully

connected neurons and a weight control circuit was designed. The CAD tools

used for the \¡LSI design was Electric 4.058 and simulations were carried out

using SPICE3B and HSPICE.

Multiple input neurons using cascaded stages OTAs was reevaluated, ana-

lyzed and tested. Synaptic sizes that are suitable for VLSI implementations

were also suggested. Another chip that contained 4 futly connected neurons

and weight control circuit was fabricated by Canadian Microelectronics Cor-

poration's fabrication service. The CAD tools and simulators were the same

as above.

The possibility of implementing a number of controlled inputs using both

types of OTAs was developed and tested within the context of OTAs.



Chapter 2

Neurons Modeling \Mith
Typical OTAs

OTAs are very useful building blocks for analog networks since amplifiers

may be designed in CMOS (Complementary Metal Oxide Semiconductors)

technology. This makes OTAs very suitable for VLSI implementations.

2.L The typical OTA operation

The simple differential amplifier ( or OTA) in CMOS is very compatible with

analog VLSI technology. The main objective of the OTA is to arnplífy the

difference between the input signals. The simple OTA circuit consists of 5

CMOS transistors as shown in Fig. 2.1.

7r and T2 form the differential pair, and are designed to have the same

threshold and size. 73 and Ta are of the same size and form the pMOS current

mirror. They are used to generate an output current that represents the

difference between the input voltages. 7s is the current sink of the differential



I1

"!

Figure 2.1: The simple OTA circuit.

pair and it controls the gain (weight) of the OTA.

The output current is derived as follows [13]:

Ia: It * Iz

V¿¿Í :V -Ilz: ,[+ -ulr

(2.1)

(2.2)

Where þ : '""ri*
F : mobility, Co,

Iength,

Substituting (2.1)

: Oxide thickness, I4l : transistor width, tr : transistor

into (2.2) yields

L:IJ+Iu-22

I2

î

10

(2.3)



.IuIu
'22

Tto

2þV¿';¡

I6
_ þ'V¿X¡

T2tb
(2.4)

(2.5)

(2.6)Io: Iu

:It-Iz

zþV¿r¿¡ _ 7rv¿x¡

hr3

Simulations of this circuit using Spice parameters [20] are shown in Fig. 2.2,

where the output current saturates when there is enough voltage difference

between the two inputs. The gain (transconductance) is the slope of the

output current.

The transistor sizes are as below:

2.2 Output Stage of the OTA

The simple OTA has a iimited output voltage range in which it operates cor-

rectly l3]. There is an upper limit neal the supply voltage VDD where the

output current decreases rapidly and a lower limit near I/¡ where the current

increases rapidly, as shown in Fig. 2.3.

Transistor w lpm) L(p*)
T1
T2
T3
T4
T5

I
I
7
È7
I

I

7

I

7

I

19

11
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Figure 2.2: Output current of the typical OTA as a function of differential
input voltage.
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lo vs. Vo

a 20.00
ö
x

è
E
(ú

o

-20.0o
0.00 6.00

Vo (volts)

Figure 2.3: Output current versus output voltage for a simple OTA.

To improve the output stage, the wide range oTA made of g CMOS transis-

tors as shou'n in Fig. 2.4 is used. Fig. 2.5 cornpares the quality of the output

stage of the simple OTA and the wide range OTA. One can observe that the

output current of the wide range OTA does not vary a great deal with the

output voltage. The input and output voltages can vary from 0 ---+ VDD

. The output transistors of the wide range OTA yield the gain higher than

those of the simple OTA.

13



2.3

"'-l

Figure 2.4: The wide range OTA.

Modeling synapses

The synapse can be modeled by a 3 transistor multiplier. The differential

pair is used to form the inputs while the weight is controlled by the current

sink transistor.

One method is to use I and Vz as inhibitory and excitatory inputs, where

one of these inputs is grounded or used as a reference. Therefore each input

would be inhibitory or excitatoly only. The weight is controlled by V6 and

the charge is stored on a capacitor as shown in Fig. 2.6(a).

Another method is to use I/6 as the input while storing weights on the two

capacitors [8]. The input then is multiplied by the voltage difference on the

L4



lo vs. Vo

-20.00
0.oo 2.00

Vo (volts)

Figure 2.5: The quality of the output stages of the simple OTA and wide
range OTA.

(a) (b)

Figure 2.6: Two ways of weight storage.
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two capacitors as shown in Fig. 2.6(b). This method requires 2 capacitors.

Several of these synapses can be connected together to form a multiple input

neuron as shown in Fig. 2.7. The pMOS and nMOS current mirrors per-

form the addition and subtraction of the excitatory and inhibitory inputs,

while the gain ( or weight ) of each input (or Synapse) is individually and

continuously controlled by 7¡.

1^: \-1*."u"r
^'- I

2þVÎ¿¡, _ l3rv¿X¡,

Io¡ Iî,
(2.7)

The area of the pMOS and nMOS mirlors is 84 x 10I¡.tm and each synapse

takes an area of 57 x 75¡.tm. The synapse density is 2S4synapses f mmz. These

small sizes suggest that implementation is very feasible for VLSI technology.

2.4 Control of the synapsets weight

Fig. 2.8 shows the variations of /, with respect to fi for four different values of

Vb. At smaller values of V¡ the output curlent saturates at smaller differences

of input voltages. Fig. 2.9 shows calculated variations of g with 76. They

have an almost linear relationship. g varies from 2 --+ 14p,Af uolt as 76 varies

from 1 --+ 2.5v. If power consumption is a problem it could be operated

in the subthreshold mode of the gain transistor, which means that the gain

transistor has to be little wider to realize a nanoamp current. The only

16
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Figure 2.7: The multiple input OTA to model a neuron.
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-1 0.00
1.00 2.00

V1 (voll)

Figure 2.8: Variations of the 1, with input voltage.

with % in this mode. ln someproblem is that 1¿ increases exponentially

applications this might be required 13].

2.5 Multiple input structure

To test the capability of multiple inputs, SPICE simulations of one input

and of twenty inputs were performed. Fig. 2.10 shows resuits of one input

when Vu: LY, and Fig. 2.11 shows the simulation of twenty inputs having

the same gain, to show that they indeed do multiply add and subtract. The

multiple input structure suggested is shown in Fig. 2.7.

18
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Figure 2.9: Variations of g with 76.

Figure 2.10: Simulations of one input.
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2.6

If the synapses are to be operated in the subthreshold of the gain transistor

then there is no limit to the number of the synapses that could be connected

to the current mirror.

Simulations showed that when the common OTA is used above threshold,

and has more than 38 synapses there were large differences between the

positive input and negative input limiting currents (i.e., when W > I.7 volts).

The negative inputs limiting current exceeded the positive inputs limiting

current by more than 40%. Typically the difference between the positive

and negative limiting currents is 20% [3]. To solve this problem a dendrite

Figure 2.11: Simulations of twenty inputs.

Evaluation of the common OTAs for modelirtg
neurons



of one curtent mirror and 38 synapses could be used to collect the weighted

inputs which are then are easily summed by the neuron. If this OTA is to

be used above threshold (i.e., if Vr : 0.7 volt) then it is recommended that

0.7 <W<I.5 volts.

27



Chapter 3

Neurons Modeling With
Cascade Staged OTAs

The cascaded stage OTA is based on the cascade stage to control the gain

and input voltage, while a current mirror is used to produce a single output

that is a function of the weighted sum of inputs. These inputs have a wide

linear range and this type of oTA has the capability to accept a large number

of inputs.

3.1- Modeling a synapse

Fig. 3.1 shows the synapse which represents one weighted input to the neu-

ron. It sinks a current 1" which is a linear function of Vn and has a weight

(transconductance) controlled sepalately by the bias voltageV6 (i.e., the gain

of the block represented by the transconductance g).

fi operates as VCCS (Voltage controlled curcent source) of comrnon source

confi,guration and it regulates the output current. T2 ( common gate tran-



",-_|

vin 
--]

Figure 3.1: The synapse (cascade stage).

sistor / increases the output resistance and decreases the input capacitance

[10].

3.1.1- Operation of the synapse

Z1 is operating in the active region. Assume that the Threshold voltages are

equal Vr : Vrt:Vrz, and I/6" effects are ignored [7], then

VssL-V7)V¿r1

l, : pc.,TKvn", - vr) -

p: tC",T

)1 0",

Where¡r:mobility,Cor:oxidethickness,W:transistorwidth,L:transistorlength.

23



When W U ff and ?2 is biased in the saturation region

Vssz - V7 1V¿"2

V¿"t=V-Vr

Since Vu is a constant voltage,

IL : p(W - Vr)lV^ -* ;",

\: s(V,-n=r,r)

Therefore, the tr"ansconductance(gain) of the cascade stage is determined by

the transconductanc e of. Z¡,

g:Ê(Vu-Vr) (3.3)

where 0 : pC.rW. The relationship between Vn and.lo is linear, but when

Vs"1 1 V6, the response becomes nonlinear and 1, approaches 0 as shown

in Fig. 3.2. Thus the input must be > Vb. Fig.3.3 shows the relationships

between .Io and V- for different values or Vb. When V6 goes from 2 to JV, the

transconductance changes from 1.3 to3 ¡,tAlV. g is linear function of vb.

The linearity is dependent on the ratio of (W l+), where large ratios give a

more linear response [7]. In Neur-al Networks linearity is not a critical factor,

therefore the ratios will be smaller to be useful for VLSI implementations.

( All simulations in this work have used SPICE parameters listed in appendix

A.)

(3.1)

(3.2)

24
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Figure 3.2: Variations of the output current withV,.
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Figure 3.3: Controlling the weight in the synapse.
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3.L.2 Input/Output impedance of the synapse

Fig. 3.4 shows the capacitances involved. They present no problem (no load )

when operated at low frequencies [9]. When fi is biased in the active region

the total capacitance is

Cøt: Cna* Cn" = CorWL

The input capacitance can be made small by keeping fi small.

(3.4)

The output impedance of the OTA should be very high (ideally should be oo).

Fig. 3.5 shows the simulations of 1, and Vou¿, where Vu : 3V, Vn - gV,

WtlL, : 51L0, WzlLz :2515, where W and L in p,m.

Z" =33 M0 for 4V < Vu 1 8V. Fig. 3.5 also shows that for the output

impedance to be high the output voltage should be:

V">Vb-Vr (3.5)

From Fig. 3.5 Io is relatively independent of 7o, therefore output nodes of

several cascade stages could be connected together to provide multiple input

stages as shown in Fig. 3.6. The output current is then the algebraic sum of

the individual currents.

f o: Iot * I.z t los* Ioa* . .. (3.6)

27
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Figure 3.5: The output irapedance of the cascade stage.
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À/l

1, : i g¿(v,, - v' -r" )
'i=7

where, as before, g¿ is

g;: þ(Vu,-Vr)

Io3

*l

"'l

Io2

*l

"'"1

Iol

j
"'"1"'"1

Figure 3.6: Synapses connected together to form multiple input

The weight of each synapse is separately and individually controlledby V6¿.

(3.7)
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3.2

Figure 3.7: A simple current mirror.

Current Mirrors

Current mirrors are very important building blocks in MOS analog circuit

design. They determine the offset voltages, thus if matching is not correct

there will be an error in the output current. Their design is very important

since low output resistance will be influenced by ihe changes in the output

voltage. This in turn change the current ratio f . fn" nMOS current mirrors

will be discussed for sake of simplicity. The circuit performance and small-

signal output resistance are similar to that of the pMOS [13].

3.2.L Simple current mirror

Fig. 3.7 shows the simple current mirror whele both transistors have the

same gate source voltage [11].

Io _ L, uw,
I¿ Wt" L, (3.s)
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Figure 3.8: Simulation results of the simple current mirror.

Thus the current ratio f; is determined by the aspects ratio of the transistors,

for identical transistors the ratio is unity that is I¿: Io.

For the simple two transistor current mirrors it is quite impossible in the

real world for the two drain-source voltages to be the same. Therefore, the

current ratio has an error due to the channel shortening effects when drain-

source voltages are not equal [11].

Fig. 3.8 shows the simulation results of the simple current mirror when both

transistors have identical sizes W :20!,m and .L : íp,m. It is obvious that

the value of -I, is dependent on Vo,t. The small-signal output resistance of

Vo (volts)
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the simple current mirror is proportional to the slope of the cur:ve shown in

Fig. 3.8. Zo :105/{f) for 3V l Vut < 5V. The current variation was 50p,A

for 3V lVut < I\V. When the ratio of.ff was reduced to 1, the current

variations decreased to 72p,4 which is still too large for this application. The

output resistance of the simple current mirror is low and should be increased,

because a low output resistance means that the output current will be affected

by the changes in the output voltage.

The problem can be solved by using the Wilson current mirror as shown in

Fig. 3.9, ol by using the cascaded current mirror of four transistors as shown

in Fig. 3.11.

3.2.2 Wilson current mirror

The Wilson current mirror circuit is shown in Fig. 3.9. The output resistance

is increased with the use of negative feedback. Simulation results are shown

in Fig. 3.10, where Wz - I5¡1,m, Ls : \¡tm and Wt - W2 - 70¡1,m, Lt :
Lz : \p'm. One can observe that the output resistance has increased when

compared to the simple current mirror output resistance. Zo :10M0 for

3V < V*, 1 5V. The current variation was TBnA for 3V 1 Vut < l\V,
which is low compared to the simple current mirror.

3.2.3 Cascaded current mirror

The cascaded current mirror is shown in Fig. 3.11. In the cascaded current

32



Figure 3.9: The Wilson current mirror.

lo vs. Vo

5.00
Vo (volts)

Figure 3.10: Simulation results of the Wilson current mirror.
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Figure 3.11: Cascaded current mirrors.

mirror 7z shields 7r from any variations in voltage that might occur at the

output node. This mirror causes 1o to be less dependent on I/,.

The small signal output resistance is [9]:

Du,Zo : 
T 

: rdsr * r¿rz * g2r¿¡r¿r2

Zo x r¿"1(gzr¿sz)

(3.e)

where rds : The small signal output resistance and g : the transconduc-

tance.

Fig. 3.12 shows the simulation results of the cascaded current mirror, where

W : 20¡tm and L : \p,m. Clearly this shows a much better perfor-

mance and higher output impedance than the previous current mirrors.
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Zo : 500M0 for 3V < Vu 157. The current variation was 10 nAf.or 3V < Vú < !0V.

When the transistor ratio (f) was reduced to 2, that is W : I\¡tm and

L : 5p.m, the Zo increased to 1000&1f1. The current variation was 5nA for

the same range as shown in Fig. 3.13.

The cascaded current mirror is clearly the best choice for this application

because of:

o lower offset voltage

o high output resistance

which are tequired for the OTA, since the output resistance is the parallel

combinations of Zo of. the current mirror and Zo of the cascade stage.

tÉ.()J
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Figure 3.12: Simulation results of the cascaded current mirror (Y : Ð.
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Figure 3.13: simulation results of the cascaded current mirror (Y :2).
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3.3 Construction of neurons

At was discussed previously, each cascade stage (synapse) has a separate bias

voltage V6 and if U" < % the input transistor is not in the active region.

In order to cancel the offset voitage, the cascade stage must be connected in

pairs as shown in Fig. 3.14 and the transistors must be of identical size. The

output cu'r'ent will be the difference between the two currents that have the

same offset. ( If fi and 7t have the same bias, size and threshold their offsets

wili be equal and will cancel each other.) If ?t is used as an input then ?j wilt

be used as leference and adjusted to account for the offset, and vice versa.

Another alternative is to model each synapse by one cascade stage connected

as excitatory or inhibitory input to the neuron and an extra cascade stage

to be used to cancel the offset of all the inputs to that neuron.

Each synapse will therefore have 2 nMOS transistors as was shown in Fig. 3.1,

where W1 : \pm, Lt : L\p,m and lV2 : 25¡tm, Lz : \pm. The actual

synaptic density will be 378 synapsef mmz. The transfer characteristic of

this OTA is shown in Fig. 3.15.

3.3.1 Synaptic weight control

The gain is controlled by V as shown in Fig. 3.15. Fig. 3.16 shows the

calculated transconductance plotted against V6. One can see that g varies

quite linearly with %, increasing from 0.66 --> L2¡tAlV as I/6 varies between

-3.5V --+ -0.5V.
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T2' '.12

T1' T1

Vss

Figure 3.14: The connection of the OTAs

To test the multiple input capability a test on two inputs and a ten input

OTA were performed with I/¡ : -L.5V as shown in Fig. 3.17.

The multiple input neuron structure is shown in Fig. 3.18, the inhibitory

inputs are connected on one side and the excitatory inputs are connected

on the other side of the cascaded current mirror. The output current is the

weighted difference between ihe inhibitory and excitatory inputs [7]. Since

the devices will have the same size, the expression for 1o will be

(3.10)

Where the * sign of the above equation depends on whether the input is

excitatory or inhibitory. If an op-amp with a feedback resistor is used to

¡¡
¡, : i tg¿(V, -'o' ar" 

)
i=1
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Figure 3.15: Variations of the output current with input voltage for different
gain voltages.
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Figure 3.16: Variations of transconductance with the gain voltage.

convert the output current to output voltage (transresistance amplifier) then

V: RF(I") (3.11)

When .Io is greater than some value % will saturate at the supply voltage

which will give it sigmoidal shape.

3.3.2 The output impedance

The output impedance of this OTA is the parallel combination of the output

impedance of the inverting cascaded stage and the cascaded current mirror.

Therefore, for a high output impedance the cascaded current mirror and 7z of

the cascade stage must be in saturation, wìren Vo > Vnp - ZVr the cascaded

-2.70

4T



-1 60.00
-8.00 0.00

V2 (volts)

Figure 3.17: Comparisons between a numbeÌ of synapses connected together.

current mirror will not be in saturation and when V < Vb the cascade stage

will not be in saturation. The output impedance of both is going to be

maximum whenever V < V. l Von - ZVr.

3.4 Evaluation of the cascaded stage OTA
for modeling neurons

This type of oTA should be used at low gain to minimize the power con-

sumption and to increase the wide linear range of the inputs. Each synapse

could be modeled by two transistors one for the input and one for the gain.

Synapses ar*e connected directly as an inhibitory or an excitatory input. The
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Exciatory inputs VSS krhibitory inputs

Figure 3.18: The rnultiple input structure.

input has to exceed the gain voltage to have a linear variation between 1o

and V¡n. In theory this cascaded OTA can take a large number of inputs,

but simulations have shown that if moÌe than 20 inputs are connected to

the same neuron the negative limiting current seems to exceed the positive

limiting current. Therefore, it should be used as dendrite if a great number

of inputs are required. Then each dendrite will have a cascaded current mir-

ror which takes an area of 65 x 57 p,m to sum the weighted inputs. The

output of the dendrites is the culrent which is then summed by the neuron

and converted to voltage.
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Chapter 4

Irnplernentations of Neurons

The architecture is based on the cross-bar arrangement of synapses (or Hop-

field). The synapses are connected directly as inhibitory or excitatory inputs.

4.L The Hopfield architecture

The Hopfild network consists of an aïray of fully connected synapses. Alt

neurons at'e connected to each other through programmable connections ei-

ther inhibitory or excitatory. The output of each neuron is fedback into the

network. Each synapse will compute a new output value according to the

output of the control neuron and the charge stored on it. Each neuron sums

the output of all the synapses, then this sum determines the neuron's activity

and fixes the neuron's output through its nonlinear transfer function, which

is sigmoidal in shape. This type of network is used in pattern recognition

and associative memories. This model suits the OTA networks discussed in

the previous chapter.
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¡ Inhibitory connection

g Excitatory connection

Figure 4.1: The cross-bar arrangement.
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4.2 frnplementations of neurons using cascade
stages

The cascade stage is used to model a synapse and the cascaded current mirror

is used to sum and subtract currents of the synapses. Since this OTA is going

to be operated between -5 and *5 Volts, a range of 10V the minimum device

size should be at least 5 or 6 ¡zm [14].

4.2.t The synapse model

Each synapse is modeled as shown in Fig. 4.2, the strength of the synapse

is controlled by the amount of charge stored on the capacitor, G is a long

transistor used to control the weight decay if needed and discharge the ca-

pacitors. The capacitor, the cascade stage and the long transistor take up

an area of 0.0052 mm2.

4.2.2 The chip architecture

The neurons are modeled after the cross-bar arrangement shown in Fig. 4.1

The neuron layout connection is shown in Fig. 4.3.
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VSS

From decodeI

Figure 4.2: The Synapse model.

The transistor sizes of Fig. 4.3.

FromD/A
->

The weights folm a matrix I4l.

f wn wtz wrs wtnl
I Wn Wzz Wrs Wrn I

I w, wsz w+z wrn I

Lw^ wn wn" w* )

Transistor wp* Lp*
T1
T2
T3
T4
T5
T6

25

5

20

20

20

20

5

10

5

5

5

t)
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Figure 4.3: One neur-on with 4 synapses.

This type of connection has been shown to be stable if the matrix is sym-

metrical with zeros on its diagonal axis (no connections), that is u¿¡ : wj¿

and w¿¿: 0 [17].

The control circuit is the combination of the address decoder and the analog

multiplexer. The control circuit will handle the refreshing and updating of

the weights on the capacitors as shown in Fig. 4.4. An external D/A con-

verter could be used to set the amount of the weight. The chip's layout is

shown in Fig. 4.7.
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Add¡ess decoder

Analog

MultiplexerDlt
Converter

External

w12

w13B1

B2

B3

B4

Figure 4.4: The chip architecture.

Figure 4.5: Analog multiplexer.

w12

v/13
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Figure 4.6: The address decoder used to control the capacitor refreshing and
updating.
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Figure 4.7: The layout of the chip.
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4.2.3 Simulations of the cross-bar arrangement

Simulations were performed on the cross-bar arrangement of 4 neurons that

was shown in Fig. 4.1. Each synapse is modeled by a cascade stage. Test

was performed within the context of OTAs for random values of inputs. An

inverter was used to convert the output current to voltage. The output volt-

The input and output voltage of the test cir.cuit:

age varies between U 
""ÊOt î"tår. , a

rheweighrmatrixr,, lå ? å Îl
[r o 1 o.l

where 1 represents -2 volt

Vin(3
-5

-5
1.5

b
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4"3 fmplementations of neurons using cornrnon
OTAs

This design uses the control circuit configuration that is shown in Fig. 4.8.

Synapses are modeled using a 3 transistor multipliers as shown in Fig. 4.9.

The capacitor, the 3 transistor multiplier ancl the long transistor take up an

area of 0.0068 mm2. The Weight is stored on the capacitor, which is refreshed

and updated by an address decoder and an analog multiplexer. The neuron

consists of an inverter to form the gain stage followed by the output buffer

as shown in Fig. 4.10. On chip 3-bit D/A converter is used to set the weight

value.

1o is proportional to Vø, of the weight transistor, and I Vn - %"¡] which is

applied to the differential pair. I{, is applied as inhibitory or excitatory. The

synaptic and neuron circuit is shown in Fig. 4.10. Using V¡¡ and V¿ as the

maximum and minimum output voltage swings, adjusted as required, and

-B¡ is the feedback resistor which determines the closed loop gain (it could

be implemented by transmission gate) [18]. The chip's layout of 4 neurons is

shown in Fig. 4.12.

If power dissipation is a problem then the operation in the the subthreshold

mode is requiled. (In dense array circuits usually po\4rer dissipation becomes a

problem.) This circuit could be modified to suit the operation in subthreshold

mode. The synaptic and neuron configuration are as shown in Fig. 4.10. Since

the output of the neuron is fed to another synaptic connection the output
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Address decoder

Analog

Multiplexer

S1

S2

s3

B1

B2

B3

Figure 4.8: The contlol circuit.

From D/A

Figure 4.9: The Synapse model.

voltage has to be modified to fit the operating range of the subthreshold

mode of the synapse. Therefore the output stage must be at a low po\¡/er

supply and lV¡¡ - Wl is the maximum voltage swing of the outputs.

tVext-
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StupE

'--, C Ir.r{
l---------1lEll{r'llrl

Figure 4.10: The neuron and synaptic connections.

4.3.L The D / A converter used to control the weight

The circuit of the D/A is shown in Fig. 4.11 it takes an area of 0.1883 r¿r¿2

[11]. The data for the 3-bit resistivestring digital to analog conveLter, where

V"¡ : 2V.

ABC V" volt
000
001
010
011
i00
101
110
111

0.0
0.250
0.499
0.749
0.999
1.250
1.500
1.750
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BA

Figure 4.1I: D lA 3 bit converter.
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Figure 4.I2: The layout of the chip.
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4.3,2 Simulations of the the cross-bar arrangement

Simulations were performed on the test circuit of 4 neurons. VDD - 5V,

Vu : 2.6 and Y r : 2.4. The maximum voltage swing is Vu - Vt - 0.2 volts.

The results of the simulations are as follows:
[o 0 1 0'l

rheweighrmatrixt., ll 3 3 ål
[o1ooJ

where 1 represents 1 volt.

The input and output voltage of the test circuit:

r0 0 0 0l
lo o l ol
lo 1o ol
[o o o o]
voltage of the test circuit:

The weight matrix is:

The input and output

Vin(1) Vin(2) Vin(3) Vin(a) Vo(1) Vo(2) Vo(3) Vo(a)
2.6
2.6
2.4
2.4

2.6
2.6
2.4
2.4

2.4
2.6
2.4
2.6

2.6
2.6
2.6
2.6

2. 4

2.6
2.6
2.6

2.6
2.6
2.4
2.4

2.59
2.6
2.4
2.6

2.4
2.4

2.59
2.6

Vin(1) Vin(2) Vin(3) Vin(a) Vo(1) YoQ Vo(3) Vo(a)
2.6
2.6
2.4

2.6
2.6

2.4

2.4
2.6
2.5

2.6
2.6
2.6

2. 6

2.6
2.6

2.59
2.4

2.49

2.4
2.6

2.4

2.4
2.4
2.4
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Chapter 5

Conclusions

The intrinsic properties of OTAs have been examined for possible VLSI sim-

ulations and emulations of neurons. The OTA is a natural gain device that

could be vely useful for modeling neurons. The current output and the volt-

age tunability of the transconductance provide a good method of controlling

the gain.

Two types of OTAs have been investigated for multiple input capabilities:

the typical differential oTA and the Cascaded oTA. Those oTAs were im-

plemented in cross-bar arrangement that contained 4 neurons. Simulations

were performed on both circuits within the context of OTAs. The sizes of

the OTAs were compatible for analog VLSI implementations. The common

OTA current saturates at smail values of differential voltages, therefore it

could be used as a thresholding neuron that gives an output of 0 or 1. The

cascaded OTA has a wider linear range of input voltage.

The advantage of using these OTAs is that the weight multiplication of the



inputs and summation of the weighted inputs are done by a small number of

transistors. In the common OTA multiplication of the input with the gain is

done by 3 nMOS transistors and summation of the weighted inputs is done

by a pMOS current mirror. In the Cascaded OTA the multiplication is done

by 2 nMOS transistors and summation of the weighted inputs is done by a

cascaded current mirror.

The weights are of analog values. The OTAs discussed are suited for cross-

bar arrangement of synapses. Inputs are connected directly as inhibitory

or excitatory and a control cilcuit would handle the weight refreshing and

updating.

If the common OTA is used in the subthreshold mode there is no limit to

the number of synapses that could be connected to the current mirror. In

subthreshold mode the synaptic current will be low which means that power

consumption will be low. Simulations have shown that when the common

OTA is used above threshold, and has more than 38 synapses the limiting

currents of the positive inputs tends to exceed the iimiting currents of the

negative inputs. To over come this problem one could use one current mirror

and 38 synapses as dendrite. The output of the dendrites is current which is

easily sumrned by the neuron. If the common OTA is used above threshold

(V, :0.7 volt), it was recommended that 0.7 < W < 7.5 volts.

The problem rvith using the cascacle stage OTA is that the input has to



exceed the gain voltage in order to have linear variation between the input

voltage and output current. Also it must cancel the offset of the inputs. One

may cancel this offset by either dedicating a synapse or by connecting the

synapses in pairs.
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5.1 Future 'Work

For future work the following might be done:

Synapses were designed using 3¡-rm CMOS technology. If smaller tech-

nology is used (i.e.,L.2p,m technology) more synapses per area may be

achieved.

This technique of modeling neurons could be used as the hardware

basis to model neurons in a feedfo'wald network that employs some

algorithm for changing the weight. Also it should include some system

that changes the sign of the synaptic connection either inhibitory or

excitatory as required.

Some modification could be macle so that one can have many chips that

have the same circuit design and connect them together to have large

number of neurons.
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Appendix A

The Transistor Model used
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Drain

Sou¡ce

Gaæ

vgs

Figure 4.1: The transistor small-signal model used.

The small-signal model of the MOS transistor

The ideal equations that describe the behavior of the nMOS transistor device

are as follows [21]:

In the cut-off region Vn" - U < 0

I¿":0

In the iinear ol active region 0 1V¿" SVs" - U

Id" : pllr" - V)V¿" -

In the satulation region 0 < Vn, - V < Vd"

4": f{vn" - r/,)'

vJ,.,

2J

(A.1)

(A.2)

(A.3)
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Appendix B
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The SPICE Pararneters

The SPICE parameters usedamelers used:

Parameter nMOS Model pMOS Model
LEVEL
UO
VTO
NFS
TPG
TOX
NSUB
VMAX
XJ
LD
DELTA
THETA
ETA
KAPPA
PB
IS
JS
CJ
MJ
CJSW
MJSW
CGSO
CGDO
FC

,f

726.L

0.702 v
1.5418+11
1.0

5.048tr-08
2.022E,+16
2.3068+05
1.1328-07
2.693E-07
0.235
0.110
0.616
1.048
0.800
1.000E-16
1.000E-04
4.0908-04
0.498
4.7808-10
0.363
2.9108-10
2.9108-10
0.500

.)

246.8
-0.769 V
4.I278+I1
1.0

5.0488-08
3.8438+15
4.667F+07
3.091E-07
1.6868-07
0.463
0.189
2.70r
2.0008-17
0.800
1.0008-16
1.0008-04
r.440E-04
0.627
3.3608-10
0.434
2.3708-10
2.3708-10
0.500
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The parameters of the of HSPICE

Parameter nMOS Model pMOS Model
LEVEL
UB
VT
FRC
DNB
XJ
LATD
CJ
PHI
TCV
TOX

5

700

0.7 v
0.05
1.6E16
r.2
0.7
0.13
r.2
0.003
800

5

245
-0.7 v
0.25
1.3815
r.2
0.9
0.09
0.5
0.002
800
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Appendix C

8 Neuron Chip layor-rt

This is a chip that contains 8 neurons as shown in Fig. C.1. Neurons modeled

using common OTAs. Two address decoders are used to contlol the synaptic

weight and refreshing the weights that charged on capacitors. It also contain

a D I A converter. This chip contains 8 neurons and 64 synapses.
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Figure C.l: 8 Neuron chip.
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