OSEDIT: AN INTERACTIVE EDITOR FOR 0S5/360

pi=

thesis presented o

The Facnlty of Graduate Studies

The Oniversity of Manitoba

In partial fulfilment of fthe reguireasnts

for the Degree Haster of Science in Computing Scizncs

by

K. B. Rugger

ABSTRACT

The work of this <thesils

ths design,

implemantation,

ot

interac

r_'\
3
£
ja¥
C
Q
o
:_3
]
ct
s
;..J «
&
s
(&
+
w
3

iva
source-file =diting vpackage, called O0SEDIT. 1In ordar to
parform some of the funcrtions desired in such a package,
considerable dirteraction with the operating system must bhe
done. Thess interfacss are general, and may bs useful in
other and siamilar applications. The data structures usaed to
do thz file editing, and *he command languages that the user

o~

kas availabls at his terminal are also described.

ACKNOWLEDGEHENTS

The author wishes to thank the members of the Computer
Scispce Department and of the Computer Csntre at the
Oniversity of Manitoba for thair continuning assistance in
+he implementation of OSEDIT. In particular, Bill Reid has
provided mary ra2finem=2nts and improvements to the original
code. Because of his position in the Computer Centre, ho has
also undertaken the sometimes diztasteful task of desaling
with +the local suzerains. Mike Dovle has provsn himself o

bs a4 very useful advisor: his suggestions havae besn freagnient
99 .

and always technically correct.

&

TABLE OF CONTENTS

I. INTRODUCTION . . o o ¢ v v 4 v 4 4 o o o w » o 2 o 1

IT. 0S8/35C DATA MAWAGEMENT TINTERFACES e e e e e e e 5

ERD OF VOLUHME . . . ¢ o v ¢ v v v 4 s + « « 10

TII. OSEDIT INPUT/0UTPUT OPERATIONS . .+ + + « « + « . .13
READI®G TROM A SOURCE DATA SET e e e e e W13

WRITING A SOURCE DATR SET . & & v+ o 2« « 17

WORK DATA SET ORGANTIZATION T B

TV, CHANGE FILE ORGANIZATION s e e e e e e s e . w20
v, COMHAND PROCESSING LOGIC . o & & v v v « « o « o« .26
COMMAND SCANNER . ¢ 4 v o v s v o o & « o & 428

DATA SET ORIENTED COMMANDS s e e e a . . .28

FPRTCH COMMAND PROCESSOR e e e e e e s .28

SAVE COMMAND . o . v ¢ o v 4 2 4 o o &+ 229

AELGCATE COMMAND . . . + .+ + « + v & . .3

SCRATCH COMMAND N

EDITING CCMMANDS L

DELETE COMHAND« .+ & .+ + + & 4+ « .32

LIST COMMAND . . o v o o v v 4 v w « + .32

SCAN COMHMANDS T

AGTOGLINE COMMAND « « + o+ « + + .33

SINGLE CARD INSERTIONS+ .+ . . .34

VI. HU¥M INTERFACE s s e e e e s+ e s s s a e a e s 435

VIT.

CONCLUSIONS . . .

=
3

APPENDICES . . .

%

A. OSEDIT USER'S

B. CCM¥ DSECT

C. SAMPLE TERMINAL SESSTION

BIBLIOGRAPHY . .

~

[e

JIDE

.

.

OSEDIT

I. INTRODOCTION

OSEDIT is an implementation of an dinteractive
source-file aditing package. This systam has hasan
succaessfully implemented under +the Hanitoba University
Monitor (MUM) system [9] as one of the 404 application
prograws, and uander the Time Sharing Option (TS0) of *he
Syatem/360 operating system. OSEDIT allows for online
updating of Systen/360 Ffiles which reside on direct-acrossgs
storagn and are organizad as vphysical seguential or
partitionad files. Thesa files must also he in one nf the

System/360 "fixed" record formats[6].

The design criteria <that were initially decided upon
for OSEDIT were primarily motivated by +tha failings of
earlier and siwmilar text-editing systems. Tha for=aost
obijective was fo provide a svystem which would be extrem=ly
raliable, not only from the opsrating system viewpoint, bus
also in protecting the integrity of users' Jata. This goal

124 to designing a system which kept changas to the file

being edited completely separate from the original fils.

formally, in the

Are 8 tible to damagoe.

usecaep

failure, changes can usually he

Our second obiectiva was to provide

it
G

the interactive Good Tespons:

uEer.

v

subjective term, dictatad objectively

total system 1oad, the complexity cf a

atc. MUM uasers typically expect response
one sa=20ond; consequently, this was the
for tho most conmonly used OSEDIT

any system of this will be a

bheotyeen
is also affected greatly by the

sharing certainr resources, This

plac=s ingofar as O0OSEDIT is concerned: in
charnel and device contention, and in

corz storage

was the nmore

The status

conservative in

is maintained in a o0 which is

the vuser's status is on disk,

used for him. This reflocts +he desiTe

usage to a minimum--a goal in direc:k

response time,

command language ths faci

chosen with +the above

Time,

event of a system failure,

particalar

chosan

commands,

fotal system load
nHCcassar

gerTialization
dacided that
of a par
Xept on

no cora

to k2=p

Many

e
>
)
b
N

o
u

only the changes
S not th2 causse of

good responsa ifime

tim= 13 a somewhat
hy such things as

tima of less than
design=-point
As happens in
atrony correlation
y serialization
occurs in

input/ontput
the acquisition of
core storage
OSEDIT is very
ticular uger
disk by #TH,

core

conflict with good

‘U
foe

lities implemsant
reliability,

additions are

possible,

PAGE 3
hut we bglieve that thos2 which have Dbeen

fnlfill wmost aditing recguirements.

This documentation details the impl=ementation of OSEDIT
in =z more or less "bottom=-up? fashion, starting with tha 05
data managsment intertace, and ending with +tha command
structure that the user soes. An OSEDIT uaser's guide is
suppliad as appendix A. It is intended that =2ach section can
he read as a complete uni*t, with 1it+ls dependence on

nravions
opzration:

(1

(2)

(3)

(4)

(5)

Tha=

classified

Tha first
data s2t

sactions. Hers present an ovarview of OSEDIT

w2

The user signs on to OSEDIT. A disk data set is
allocared, called the work data sot, which will be
s - card image3 entored by the user
d ion.,

the FETCH coazmand. This conmand

anters

spac 5 a data set, called the fetch data sat,
which the user wants to edit.

Rditing commands are antered, causing a repetoire
¢f changes to b2 accumalated in +he work data set,

but causing no changes to the fetch data set. The
user at his terminal, however, seeos a virtual data

set formed from the fetch data set and the changes
he has applied. 7This virtual data set is called
the charge data s=t.

A SAVE command is then used to write the change
data set dinto a real 0S/380 data setr, callsd the
save data set.

The user may Teturn to step [2) to edit another
data set or he may sign off. The sign off

processing deletes the work data sot from disk.

commands available +o +the 0NSEDIT user

into two categorics according to their function.

category comprises those commands which taks a
nam2 as an operand, and which are therefore called

PAGE 4

data set oriented commands. PThese compands include PETCH and
SAVE as described above, and also ALLOCATE and SCRATCH,

which create and destroy disk data ssats, rospsactively. The

o]
th

sacond category consists the teoxt editing commands., ALl
of these operate on the FETCHad data set, and all of then
take a range of sequencs numbhers ags an operand. LIST allows
the data set to bes listed to the tarminal. DELETE specifias
the deletion of one or more card images in the data sot.
FIND and AFIND allow the data set fo be scanned for the
occurrance of some particular character string. CHANGE and
CHANGE operate in nmuch the same manner, a2xcept that the
character string being sought 1is replaced by another
character string. The algorithms used to iaplement thase

commands are discussed in section 7.

av}
e
oyl
x5}
Ut

TI. 0S/360 DATA MANAGEMENT INTERFACES

The data @aanagement intarfaces that 0SEDIT nses wers

develop=d bacaase the standard I8M interfaces were
ansuitable, Actually, they vere yrittzn twice. The

”practiceﬁ implementation Aiffered very significantly fron
thz final versior in that it attempted to use2 conventional
data managsment sarvices supplied by the oparating svsten.
These services do not provide any form of dynamic davice
allocation, exca2pt under the Time Sharing Option (TS0). The
TSO services, which are not available to bhatch jobhs, are
implementad ir such an ad hoc manner that they cannot sasily
or safely be oxtended to hatch jobs. Onz can approach a

solution %o providing dynamic allocation in two ways, given

that the TS0 code is not used.

The first solution is to use those facilities alraady
vrovided, and *to resort to Millegal tricks" only when
required. Por =xample, one could avoid the problam of not
having dynamic data set allocation faciliti=s by providing
05 Job Control Languags "DD cards” [47 for avery vack on
which «diting 1is +to be done. This type of solution has
obvious shortcomings, such as only a parmanently mountad
volume may be accessed. This particular iimitation is not
serious 1in many installations, including our own. Othor
problems accompany this tvpe of solution, however, and thay
are not quite so obvicus. For example, the STOW facili*v of

the operating system operates only with the partitioned data

set ACC
uses 1ts

performaence

NF b

N

s method supplied by the operating svysten. OSEDIT
own access methods to attain a much higher leval of
than is available otherwise. This makas the

O5EDPIT access method dincompatible with STOW and precludes
the use of partition=d data sets, Becausz we are not willing
T0 give up partitioned Aata set support, we must resort to a

considerabla

by

amount of coding effort

STOW facility. This ypa of problem is
acquiring a very good understanding of
system code, and handing it such varamcterizat

to ovarcoms the poorly

usually

the

ion

that it is tricked into perferming ths desirsd funciion.
Such tricks ar=s ry often depandent on the ralease of the
operating system, and may not provide adequate arror
checking. One of the worst problems is the op=ratiag
system's predilection ¥or issuing ABEND requests from
saryice routines such as OPEN, CLOSE, and ROV. Thase may ba
trapped via the STAE aechanism, but the side effects of

ABEYD procecdings

Rather than attempt +to =solve the many problams
interfacing with the existing data management services,
was decided +that OSEDIT would directly handle some of
sarvices itself. The O0SEDIT-supplied facilitias include:

(n
(2)
(3)
(%)

aTs VerV hard +to withstand.

volume alloc a+lor/dﬁallvﬂqflon,
data set QOPEN/CLOSE sarv ces,

an End-0f-Yolume (EQV) service, and
Partitioned Data Set (PDS) support.

PAGE 7

The data management facilities of +*he operating system used
by O3EDIT are:
(1Y the Exocute Channel Progran {EXCP) level of I/0
supervision [81],
{2} catalog management [81,

(3) data set creation and deletion [37, and
(4) the STOW facility for partitioned data sets [67.

OSEDIT contains a module named COM which supplies the
equivalent services of the operating systen's job
ma nagement, device allocation routines, and the EXCP leval
OPEN/CLOSE/EOV ssrvices. COM accepts, as input, a paraneter
list which 1is detailed by the COP dsect [Appandix B]. This
parameter list is also used by other routines which do
oparations at the data set level. Tt contains informa+tion
about the data set, and a code which tells COM what

oparation is to bha performed. e now give a detailed

description of *the services provided by COH.

O
ja~]
=

A data set is opened by COM in the following mannoaro.
First of all, Con estabiishes and initializes a work area
{described by the COD dsect [Appendix 31) for its internal
operations. This area contains the necessary control blocks
to do operations on the VYolume Table of Contents (VTOC) [7]
for a direct-access device., COM then attempts to engueusz on

the data set's name, using the opszrating systam's RHNQ macro

{63. Exclusive or sharaed control of ths data set is

PAGE 8

requestad, based on whether OSEDIT will write into or re=ad
from the data set. COM will return anp 2rror code to the

caller 1f +he data set is not available at +this tim

o7y
132

-

e 2

CoM +then Aascertains vwhether ©r not the dirsct-access
volume requested is availabls. This consists of a nupber of
tests on the status of the device which is maintained by the
oparating system in +the Unit Control Block {UCB) [7]. A
device 1is considered available by OSEDIT if the following

conditions hold:

{1) the device is a direct-access device,
(2) the device is "ready" {(turn=d on),

{3) the device is logically "onlina" %o the systen,

{4) an operator raguested fmpount?”, Adismonnt®, or
"unload” operation is not pending,

(5) the device i1s not marked "non-sharable", and

(6y the device is not the TIBY 2321 data czll.

If the volume 1is not available, COM Ad=gueues from the
data sot (using +he DEQ macro [67]), and Teturns an error
code to the callar. Othervwise, a count field in the devicers
ICB, the data managemsent count, is incremented bv one to
indicate that +thers 1is a new user on the device. The
operating system will permit such opsrations as changing
removable packs on the devics onlyv when this count is zaro.

zd by the Fob

[

Normally, this allocation function is suppl
manragement routines which ensure that a disk pack will
rzmain mounted for the duration of a job by incrementing +he

same fileld at Job initiation tim=. If the device has in fact

t=

besn allocated to O0OSEDIT by Job mwmanagzment, +the data

managemasnt count is not incremented by COH.

e
[
!
3
e

Exclusive control of the VYTOC is then raqussted {(via
thz ENQ macro), and & read operationn is started which
szarches the VTOC for an enftry corresponding to the naan=z of
the desired data set. If this search fails, the OPEN fails

at this point; if the s=arch succeeds, the VTOC entry

-

{called a Data Set Control Block or DSCB [71]) for the data
set 1s read into the COH® work area. The important data set
attributes are copied from the DSCB into the caller's
paramzter 1list for later use when processing the data sat.
If the data set is being opened for output, COM will nake

sure that the expiry date for the data set has pass=2d bafore

1]

proceeding with the OPEN ({unless this check is specifically

IS

overridden by the caller). Tf this check sncceeds, the ODPEY
will succeed providad that there are no errors in the D3CR
for the data set, This is normally a very serious situation
because the VTOC may not raflect the trus allocation of

space on the device,

All that remains to be done to complets the OPEN is to
build an operating system control block, usad by the T/0
supsrvisor, called the Data Txtent Block (DEB) [7]. The
contents of the DREB are used by the T/0 supervisor to chagk

the wvalidity of disk addresses suppli=d by the requestin

e

4]

program during an I/0 oparation. The address of the DEB i
raturnad to ha useor via the paramster list as part of his

DCB.

z

PAGE 190

CLOSE

Close processing chiafly undoes ths work performed by
the OPEN function. COM first of all obtaius and initiates
its work area (described by the COD dsect). If the VTOC
entry for the data set is to be updated, the entry is read
from +the VTOC, updated, and rewritten. This update consists

of moving informatior from the user supplied parameter list

o the DSCB, and is don= ornly for an output data set. Tt is

3

necsssary to enqueus on the VTOC during the updating

2]

operation., The area of core occupied by ths DEB, which was
constructe when the data set was opensd, 13 freed, and the

data managsment count for the device is decrsmented by onnae.

This last operation Teleases OSEDIT'!'s claim on the device

which was required to proevent the volums from being
dismounted while OSEDIT was processing the data set. COH

then dequeunes from the data set to allow other jobs to

accass the data set.

END OF VOLUME

The End of Volume function is performad by COM for the

purpose of increasing the space allocated to a data set. The

1)

jade

operating system allows a data set to consist of up +o
sixt=en aextents, =ach veprasenting a block of contiguous
storage on the direct-access devica. The normal operating

system tToutines for extending a data sst are an intagral

part of 0SS data management, and cannot be entered fron

3]
=

OSEDIT therefore,

fxs

) . CO¥,

¥

function for OSEDIT routine

and CLOSE s is

(& +

(=

OPEN 3inc

the

extonded data set.

oY proceeds with

initializing +the standard

concarnad data re

rm

3

freesqd. f

there

§

S e
o 54

a

;

data s=2t, or if no seconda

aXxtension when the data se

wvould for CLOSE, and return

Th= gspace allocation
the new extent. This gp
contiguous block; consequ
extant. This dg different
function which allocates
reguired amount if there
of space to satisfy the
convention mainly for
rezliability, but the red
normally cause any probl
data sets.

The space allocatad

new data set on the volume.

nerges

2xtended. The YTOC entry

11

PAGFH

implements an almost eguivalsant
s. BOV shares manvy functions with
nacessary to build a naw DEBR for
EOV by first allocating and
work ar2a. The DSCB for the
ad into the work area and the nld
re already sixteen extants in the
ry quantity was specified for the
t was created, COM procesads as it

s with an errvor indication.

SVC is issusd to obtain space for

aca is always raquested in a
ently, COM will always add one

from the operating system =xtend
up to three extents +totalling the

is not a sufficiently large block

&

reguest. COM does not follow this
programming convanisnce and

efinition of this rule should not

em when operating on small sourcse

by the allocate SVC repressants a
OSEDIT reads this VT0OC antry and

the space into the VIOC entry for the data set bheing

for the data set just created is

PAGT 12

zoroed {ie. the data set ceases to exist) and the entry for
the data set being extended is rewritten. This wmsrging of
space 1is actually sowmewhat mors complicated than it sounds

bzcause a data set may have one or two VTOC entries,

fs

apending on the number of extents it has, and bacause it is
necessary to update information in the DSCB describing *he

YTOC extant.

Extend finalizes by building a new DEB for the data sot

whichk contains the new sxtent information.

ITI. OS5EDIT INPUZ/QUTPUT OPBRATIONS
The design criteria for 0OSEDIT make the input/output
opsrations provided by the normal access wmetrhods +o00

inefficient for the retriaval and writing of source data sat
records. This section describes how these operations are
dopa in terms of the channel prograns [57 built +o do than.
Additionally, the work data set, in which OSEDTIT checkpoints

changes as they are ontered online, is dsscribed.

READIEG FROM A SOURCE DATA SET

O3EDIT must Dbe able to read data sets with small or

el
et}

it

large blocking factors. Clisarly, the normal access metho

1

technique of reading one physical block into a buffer ha

i

limitations. For example, consider scarning 1000 80-byte
source records in a date set on the IBM 2214 disk-storage
device [3]. If the records are completely unblockad, the
records will span 25 tracks. Tf the records are rsad one at
a time, the davice will do a pininum of 1025 rotations
{about 25 seconds). If +the TrTecords ars blocked at the
maximum amount permissible (32K-byte blocks), 11 tracks will
be required, and +the data can be read in a minimum of 13
rotations ({abou:r a quarter of a second). This method would
require a 32K-by+te buffer, however, which is larger than the
total core requirements of OSEDIT. For small block sizes, we

wish to read several physical rtecords to save time; for

¥

large block sizes (eg. such as those which occur with track
overflow [6]), we wish to read a partial block to save
buffer spacs. OSEDIT builds chann=2l prograns which do
exactly this. Regardless of what the physical bhlocksize is,
OSEDI®T builds channel programs which £il1l a buffer which is
a constant size for any data set. This buffer is referrad *o
as a logical buffer and its length is raferred to as a
logical blocksize. Note that +he 1logical blocksize will

seldom b

]

equal to the physical blocksize of ths data set.
Continuing the above example, if a 2K-byte logical buffer is
ased, the reading can be done in a minimum of 65 rotations
for the unblocked data set and 51 rotations for the blocked

data set (one or two seconds).

This scheme also greatly simnplifies the problems of
bnffer control, directorv maintenance, =tc., becauss to
modules other than the I/0 module, all data sets have the

same logical block size.

The2 1I/0 nmodule for reading data sets, called READBLK,
accepts as input a logical disk address which is composed of
a physical disk address and a displacemsnt into that
physicél block. It then constructs a channel program which

will fill the in-core buffer. This channel program consists

of the following parts:

{1y 2 search sequence is built to position the device
to the start of the physical block specified.
{(2) read data CCW with the SKIP bit on (to0 supprass

A
data trarsfer Jduring the read) is constructed if

[S2]

PAGE 1

the displacenant in the logical addrass is
non-zero, This dumpy Tead will position the device
to the reguired displacement into +tha physical

block.

{3) At +this point, a read data CCH iz constructed to
either read +*he rast of the physical block or +o
read sufficient data from it to fill the in-core
buffer, whichever is the smaller of the two.

() A read count CCW is generated. The count will be
used in case of problems as described below. This
is the end of the channel program if sufficient
reads ave Dbeen generatsd to fill the in-core

{5) 2 read data CCW 1
physical block or a partiaml physical block. Tn +the
latter case, a read data CCW with the skip bit on
is also generated +to space over the end of the
physical block if it has not already been reach=4d.
Step {(4) is then repeated,

A1l CCH's above arz generated with the multiple-track

Ui

bit {27 on in the read CCY¥ modifier fields. This permits the
channel program to cross track boundariss without program
intervention and to process track overflow data sets withont
any special programming. Note that the channel progran
generated in the cases of data sets with small block sizes
will b= very long (over one hundred CCH's in practice), bhut

that the data transfer +imes will be commesurable with +hose

for largsr block sizas.

A4 number of error or exceptional situations can occur
during the execution of such a channel program. Some of

these are handled directly by +the I/0 suparvisor in +tha

h

operating syst=m, and the rast by OSEDIT itself. W=

summarize these conditions below [61.

g
[
[

4
-
o

I/0 Supervisor Error Rzcovery

Command Peject =-- This results from an 0OSEDIT channel

program attempting to cross a track boundary in a
data set which does not span the =ntire cylinder.
The w»protection check bit in th2 channsl status
word will also be on. The channal program is
restarted if +the operation is not violating the
data se2t's boundaries.

Cylinder and -- System/360 thardware provides for

/0

automatic track switching within a cylindsr, but
will not allow a channel program without explicit
seek operations to c¢ross from the bottom of one
cylinder +to th2 *top of the naext cylinder. The T/0
supervisor provides this operation in softwars by

restarting the chanunel prograa in the next
cylinder.

arrors for which retry is possible ~-- Thess are
handled by ths operating system. If retry fails,
OSEDIT will not nmse the data sat,

DSEDIT Error Recovery

End

End

of file -- The last 1logical block returnad by
OSEDIT's READBLX rToutine may ba a short block.

of extent -- This is handled as either end of file
(no further extants in thke data set) or a nev

channel program is built to continue £illing tha
in-core buffer from the next oxtent.

Incorrsct length =-- It 1is perwissible to have short

physical ©blocks in the data set being read. Their
presence c¢an be detected only by not suppressing
the inpcorrect-length I/0 dintsrruption. This is
because OSEDIT wmay be reading saveral blocks in
ons oparation, The channel status word contains a
residual length, but this applies only to ths last
block read. If the incorrect-length exception were
masked, it wounld be possible for OSEDIT to accapt
a short block without knowing it. The short block
is accepted and a new channel program is built to
continue £illing +the buffer from <he record
following the short block. The physical address is
krown because of the read count CCWs in the
channel progran,

PAGE 17

Upon successful executrion of the block rsad, OSEDIT
zither returns indication of end of file or the address of
tha noext logical block. Thig permits sequential or direct

rotrieval of logical blocks from the data saet.

WRITING A SOURCE DATA SET

OSEDIT writes a seaquential data set or a member of a
partitioned data ss2t in response to the SAVE conmand.
+he saks of efficiency, 1t 1s desirabls to minimizs the
numbar of I/0 operations required to write the data saot. The
approach taken here is similar to that taken for reading a
data set: a fixed-size Dbuffer 1is filled in core and is
yritten to the device. Teo support arbitrarily large block
s#izes, this operation reguires a buffer whose capacity is
that of a track on the device. It is not possible to write
part of a physical block in the mapnser that it is possible
to rszad one. Consequently, this module gsnsrally writes a

track a+* a time.

The algorithm is mimilar, once again, to that used for
reading a data set, because long channel programs are built,
The eossential CCH ir the chain is the writs count k=2y and
data CCW. Addresses for the records writt=n are allocat=d

nsing the standard IBM formulae for disk spacs [8].

Therse are no eorror o exceptional conditions which
arise during the writing of a date set which concern OSEDIT,

laction of

@
1]

re

other than a permanent I/0 error. This is

the fact +that OSEDIT contrels the format of an output data

s=t 1in contrast to the fact that there is a lot of latitnde

in the format of an inpuit data sot.

WOREK DATA SET CRGANTZATTON

The OSEDIT work data set is allocated whean a user signs
on to the system, and is used to store changes as they are
being applied +to 2 socurce file. It is orqanized into *wo
areas. The first track is reserved for writing a checkpoint
razord. This record 1is used only in the event of a system
failure during a saession to allow the sossion to be resumed
later. The Dbalance of the data s2t is ased to hold source
images which age =2aither additions or replacements to bhe

applied o the source data sot.

The checkpoint area confains all informatior necessary

to resume a session., It is automatically written to disk

re

after every ten alterations +to the change datra s2t. The
chackpoint area consists of the pointer structures detailsd
in Section IV along with +the data set names and various
flags necessary to restors the previous change data soet.
Yhen a wuser =sigps on to OSEDIT, the work data set is
allocated., If +his allocation fails because the data set

18

alrzady exists, the cause is assumed +to be that a previous

-
4l

sassion did nrot terminate normally. The checkpoint record

cant then be read and usaed to resume the session.

PAGE 19

The additions and replacements avea is accessed through
routine which keeps the records in that area blocked. This
rzsults inr increased cxpense to add a record +to a b

hecause the block must be r2ad, updated, and rewrittan,

However, access to records in this area is qgreatly improvad

5]

in the event tha* large blocks of data are added +to +h
file. This will happen if the user is creating a file or

making extensive additions to an existing file. Tt was felt

2

that +this 13 a normal occurrence

D
foN]
jan]
o
-+
oy
o
e
[te)
e
Q
joT}
ol
G
Q
r‘D
0
U
ot
S

thes= racords should be provided +o help the data sot

scanning commands.

IV. CHANGE FILE ORGANIZATION

OSEDIT wupdates sourcs data sets 1in the following
mannar, First a FETCH command is used to indicate which data
s2t 1s being operated on. FETCH performs a number of
oparations related +to checking authorization, opening the

source data set, resetting buffer pointers, =ztc., but after

14y

ot

hi FETCH builds a directory, +the antries of which

P-J
U‘
F..Y .
4]
Py

ion
correspond directly to the logical blocks in the fetch data
set {see description of RFADBLK routine for a definition of
"logical blockM™). As the user =2dits the changs data s2t, the
directory is updated to indicate dele*ions and additions. A
replacement reguires no special treatment; internally it

appears as an addition.

There are four entry points *to the 1logic vwhich
maintains the superposition of the changes on the original

fatch data set. These allow the command processors to be

Ui

completely independent of the access method ussd to maintain

the changes. These entry points are as follows.

SETL -- This entry point operates in much the sane
menner as 1its counterpart in the ISAM access
method [6]. SETL accepts a pair of saguence
numbers which «comprise the range over which
subsequent READFs will operate.

READP -- This routine is entered after a SETL oparation
in order to read the change data set. READF
returns an end-of-file indication in the asvent
that oither the Jast card has been tead or that
the next card available has a sequence number
which is greater than the uppar limit specified in
the SETL command.

DLT =-- Deletion of cards is accomplished by giving DLT
2 range of sequence numbers over which deletion is
to be done. A single card image is deleted by
making both ends of the range =2qual.

ADD -- This routines allows insertion of new card images
or replacesment of existinrg ones. It accepts the
card image and its sequence numbar as parameters.
The card image is written into ths work data set,

In order to explain how these routinss work, it is

first necessary to exXplain the organization of +ha
directory.

There are two types of entries in the directory, Block

D=finition Elements (BDEs) and addition ElL=nents (ARLs). A

ot

BDOE is created for each logical block in the source data set

¥

by the FETCH command. There is also a "duammy", end-of-file
BDE which 1is usesful to terminate searches and for the case

in which the source data set is empty.

o e e e ——————————— +
| |
j BDE AREA i
| {allocated by FETCH) }
] |
F e e e e +

AEL AREA i
{allocated by editing commands) |

PO

FREE AREA !
for AEL's as required)|

A e s . o
ol
et
i
Q
Q
o
[
O
Qu

ORGANIZATION OF OSEDIT DYNAMIC CORR

PAGE 22

The BDEs are created by FETCH in a linear order, and
can be searched guite easily to detaermine the logical block
address 1in which a card with a given seguenca nurher would
be found. This 1is the key to random access of the change
data s2t. Deletions and additions are indicated in the
directory by AELs which are chained from the BDE for the

logical block to which thev apply.

b e ————————— +
{ |
i HIGHEST SEQUENCE NUMBER 1N i
| LOGICAL BTLOCK |
| !
+ _____________________________________ .*..

| |]
| FIRST AEL 1 LAST AEL I
{ FOR THIS BLOCK | FOR THIS BLOCK |
| i |
+ + +

]] |
| FLAGS | DISK ADDRESS FOR i
]] BLOCK (CCHHR FORMAT) |
|]]
o e = — o e +
| {]
| { DISPLACEMENT |
| | IN BLOCK |
|] |
e Bttt +

FORMAT OF BLOCK DESCRIPTOR ELEMENT

ae}
=g
@
o
AW
¥

*

The flag bits in the AEL indicate in which of four
possibls formats a specific AFRL has besen built. an addition
{for replacement) is indicated by no flag bits in the AEL.
The sequénce nupber of the card and an index into the work
data set are specified. For deletions, either a single card
or a range of cards may be deleted by the presence of
delation AELs. The single card case is indicated by a $DEL1
flag, and of course, the sequence number of the daleted
reacord is in the AEBL. A range of card images is delated by
constructing AEL markers at the boundariss of the deleted
range. The start and finish of the deleted range are

indicated by the $DELON and $DELOFF flags, respsctively.

e e e —————_——— +

!
} SEQUENCE NUMBER i
| |
e e e b e e +

| DISPLACENEWNT TO | DISPLACEMENT TO |

| NEXT AEL] PREVIOUS AFRL]
Hom—————— o ————— $ e e e +

| FLAGS | LOCATION IN WORK DATA |
i | SET OF ADDITION x

FORMAT OF ADDITION ELEMENT

Th= AELs which apply o a particular logical block of
the data set ars chained in sequence numbor ordsr from the
BDE for that block. It is clear, then, that the process of
segnentially retrieving records from the changs data set is
one of merging the feitch data sect with the card images in
the work data set. The ARLs serve to access the records in
the work data set, and o indicate the deletad portions of

the FETCH data set.

Considerabls effort has been expanded to ensurs that
AEL's are not created neadlessly, bhecause of the reqguirement
of doing updating in a fairly small amount of core storage
Thus, =a 3DEL1 element will not be constructed if =ither the
refarenced card image does not exist in the sourcs data sat,
or if the image is already deletod, or if deletion can bz

don2 by removing an addition RAEL. Siamilarly, overlapping

dzlztion ranges are merged o minimize the number of $DRELON

o

and DELOFF elements. If an AEL for a card already exists,

that AFRL will not be reallocated.

The core storaqge used for BDEs and ARLs is shared from
oné area. The size of this area dictates the ultimate limit

on ths size of source data set which can he processed or tha

2
i
o+
-

total number of changes that can be appli=d to a data
If +*he entire area 1is devoted to BDEs, w: have an upper
limit on the size of data set that can be PETCHed. Thisg
ppsT limit is based on the fetceh data sat logical blocksize
and the number of 16-byte BDE entries that can bes storad.

One BDE entry is created for each logical block in the data

PAGE 25

s2t. The numbar of logical blocks is egual to:

.....,
7
e
<
@]

it
‘:*‘i
jes]
)
@]
e
~
H
jus]
%]
et
[
€3}

e

whers
NMREC = the number of records in the data set,

LRECL = the logical racord length of the data set,

LBSIZE = the logical buffer size, and
[1 denotes the integer part of a number.

For exaapls, in a 4800-bvie pointer storage arsa it is
possible to store 300 BDEBs. If the fetch data set buffer is
2000 bytes and 80-byte card images are being procassad, the
logical blocking factor is 25. This allows & 7500 card data

32t to bhe FETCHed.

Similarly, +the number of AFRL's which can be allocatszd
limits the number of changes which can be put in the changs
file, prior te sach save. Ar AEL occupias twelve bytes.
Tsing the figures in the above example, it can be sesn that
thz 8800-byte vpointear area wlill hold 400 AELS. This means
that 1f scurce is being antered to create a new data set,
400 line=s may be antered before a SAVE oparation is don=. Tf
charges aroe being applied to & 2000-card data set, 80
logical blocks avs in the data set. This requiraes 1280 bytes
of BDE space, leaving 3520 bytes for AEL allocation, or

space enpough for 293 AEL's.

V. CONMAND PROCESSING LOGIC

All commands in OSEDIT are entered into a central
command scanner which does a simple lexical analysis of +he
command entered at the +termpinel. The actual command
procegsor has this input available to it in addition to the
services of the OSEDIT access method plus several other
niscellaneocus sarvice routines. Many command processors are

quite short as a result.

COMMAND SCANNER

Thz command scar roeoutins processss nositional and

kayword operands along with the delimiters which saparate

“hem. The following rules apply to cormand syntaX.
(1Y Operands are separated by blanks or commas. &
nissing oper izd may be indicated by consecutive
CORMAS.

{2) Keyword operands have the format 'KEYWORD=VALUZE?!,
Thus the sesguence 'DSN=A.B.C' specifises 'A.8.C' as
the 'DSN' keyword value., Keyword oparands may be
specified in any order, except that if one is
specified twice, <the second occurrence overrides
the first,

1

i

H

(3) Positional operands are scannad and passed to th
command processor Wwith the indication of the orde
in which they occurred. The first occurrance of a
positional opsrend which scans successfully as a
sequence range is passed to the command procassor
as a sequence range., It does not appear as a
positicnal operand as well.

5

t

) A sequence ranges operand is eithesr a single
sequencs number or two seguence nunbers separated
by a slash (/y. If the sequence number preceding
the slash is omitted, the smallest sequences numher

(5)

{6)

(7

is assumed (ie. 00000000) as the start of the
rang=. If the seguence number following the slash
is omitted, the largest sequence numbaer is assumad
{ie. 89999999) as the end of the range. A s1 h
alone represents the entire rangs of poss] 2
sequence numbars.

A sequence number i3 specified scaled by ten
thousand to allow a large inter-record sequencing
increment to bs used without the penalty of tyning
low-order =zeros. Thus 2.3 reprasents the actual
sequence number 00023000,

Operand values may be specifiad in one of several

formats.

{3} A string of characters excluding parenthesis,
commas, single gquotes, and space characters
is converted +o upper case and is passed as
such.

{(b)y A string of characters surrounded by single
guotes allows parentheses, compas, and space
characters +o be passed. A single guote may
be specified as +two consecutive gsingle
guotes, Alphabetic characters are convertad
to upper case 1f +the data sat 1is bhaing
processed in upper-case node.

{c} The *hree nmodifiers U, L, and X wmay bhe
followed by a quoted string which is to be
translated +o upper case, lower case, OrC

haexadecimal digits, respactively, This
facility allows, for exanple, insertions of
lowar «case charvacters into source data while
using a terminal which has no lower cass
facility.

{d) The modifier ¥ allows a mixture of upper or
lower case characters and hexadecimal digits.,
2 haxadecinmal digit is entered as an
amppersand (8} followed by the two characters
wvhich comprise +the digit. An ampersand is
entersd as two consecutive ampsrsands in this
format.

Abbreviations of command names and keywords are
allowed by permitting truncated versions of the
frll spellings. This usuvally means that only on=e
or +two characters need bhe entersd to provide an
unambiguous abbreviation for a word.

Keyword values are 2dited by rootines associated with

each kesyword. This permits keywords whose values are in the

form of

cartain

an operand 1list. The attempt here was to maks

keywords appear exactly as their 05/360 Job Control

PAGT 28

Languags [471 counterparts (eg. SPACE and DCB operands).
Although scome of fhese may have a rather pervarse format, it
was felt that most terminal users ars also JCL users and are

likely to remsmber the JCL formats.

DATA SET ORIENTED COMMANDS

There are a number of commands which require that a
data s2t name be supplied to the command processor. Notably,

th=2 FETCH and SAVE commands, which effect the reading and

]

baing adited, fall into this cats

e

writing of data sets gory.

19

Also provided are the ALLOCATE and SCRATCH commands which

create and destroy disk data sets.
FETCH COMMAND PROCESSOR

FETCH has been discussed to some degree in the ssctions
on the OSEDIT access method., Hence we will not radescribe
hzre the data structures that FETCH builds while operating

as part of the access method.

FETCH 1is oentered from the command scanner. It first
determines 1if a fetch data set is already open becausa of a
previous FETCH., If so, this data set is closed immediately.
A service routine to both FETCH and SAVE, nam=ly DEFDSHN, is
antered to validate the operands given in these commands,
and which reads the VTOC entry for the targat data set. Tho
DCB attributes of this data set are overridden by those

suppliad by the termiral user (if any). The data set 1is

pzned by <c¢alling the
ITf +*he data sat 1is
directery search 1is a
r=ad to build the dirsct

mequence numbering is

checked

are
above succeeds,
for subse

such things

I/0 errors, ¢tc. If one

4

nroduced the

information.

ne¥W data set, rather t

facilitated meAns

by

command. The processin

building an empty BDE dir

SAVE COMMAND

SAVE writ:s an

The channel programs buil

data

+ o
550

;J

ck at a time to t

ati

O

complicated oper n:

routines which have

for validity

the directory is

quent commands

being cataloged, the

directory is

0s

management chapter.

been

COM module, des

cf the

cribed in

3 partitioned organiz

Section TI.

ation, a

lso performed., The data set is then
ory for +the O0SEDIT access method., If

present on the source

. The
data set
data

sSat

of these occurs,

that *the u

han to
of

g in

ectory.,.

data set from

1t have been 3disc

The goal
he output

it is

and ascanding sequance,

flagged asg

marked as

sar wishes
edit an exis

option

the

is hasically
da*ta s=2t. SAVE

organizad into

records, they
If all of

heing valld

FETCH command may fail becaussa

having bad DCB attributes,

an °rror messaga is

containing invalid

t creata

;l‘,

This i

0

n

ting on=.

in the FETCH

consists only of

change data s2t.

ss»3 in the QSEDIT

to write one

desigrated as SAVET through SAVES.

1
3]

PAGE 30

SAVET uses tho subroutine common to PETCH and S5AVE,

q

o

DEFDSH, to tread *he save data set VTOC antry [7] and mergs

DCB atiributes. It also if the SAVE operation iz dirvrected to

{r

=

FETCH data set which is currently opensd because of a
previous FRETCH operation. If this 1is +thz case, special
procassing is reguired. In the case of a partitioned data

sat, 1t 1s necessary only to get exclusive accass to the

¥
i

data set as opposad to the shared access requasted by FETCH.
ITn the case of a physical sequential data set, the problen
is much 4grezater Dbhecaunse +the changes would, in gesneral,
overwrite information which is part of the changs data sot

{iz. the fetch data set). This problem i3 rewmedia=d by

w

¢
{

allocating a new data set in which to perform the actual

SAVE.

£~

SAVE2 opens the data set and performs initialization
functions. A ‘buffer pool is built, based on the block size
of the save data set, The 087360 devica +able [87 is
consulted to get Aevice information reguired to do track
balance calculations in SAVE4., The address of the first
write operation is calculated, and will either be the start
of 'the data se% or +he next available position in the data

set. Control then passes to SAVE3.

SAYE3 allocates and fills single buffers which will be
written to the save data set. The minor editing functions
that are available in SAVE are performed at this point. ¥When

a buffar 1s full, SAVE4 dis called to schedule it to be

written., SAVE3 terminates by passing conirol to SAVES6.

PA

(]
)

E 31

SAVEY is passed buffers from SAVE3. I+ has the problen
of assigning a recerd address to the block being scheduled.
In doing this assigement, SAVE4 queuss blocks until a

oy

complaete track of information has accumulatad. If the block
passad from SAVE3 fits on the track currently bheing built, a
channel pregram to write +o +his track is modified to write
this block. Should the record not fit on the present track,
SAVES 1is called to write the track using buffers gueuad
because of previous calls to SAVES#. When control returns to
SAVE4, +the current block will be scheduled as record one on
the next track of the data set. In allocating the next track

to be written, +the epd-of-volume function of COM might be

used to get additional space in the save data sot,

SAVE5 starts the charnel program that has been built.
It then returns +to +*the bhuffer pool the buffers that were

Yritten.

SAVE6 terminates SAVE processing. A STOW [6] is issued
to wupdate a partitioned data set directory. The data set
which was SAVEd dinto is closed, npdating the VTOC =ntry's

last tecord written information.

ALLOCATE COHMAND

The ALLOCATE command issues a request via tha space

mnagamnent SVC [27 to effect The creation of a nevw data set.

1

)

~

I

1Y

The patvameters +to the SVC are the address of a Job File

¢

Control Block (or JFCB [7]) describing the data set which is

PAGE 32

to be allocated, and the address of the UC3 for the device
7

on which the data set is to bs allocated.

SCRATCH COEMAND

The SCRATCH command uses the operating svyvstem's SCRATCH

SVZ to accomplish deletion of a dirsct-access data set.

"
o]
(]
!

33

EDITING COMMANDS

OSEDIT supplias commands to charge data tesiding in the
change data set. All of these commands accept either a
single szquence number, or a range of saguence numbers, for

which the indicated operation is performad.

DELETE uses +the OSEDIT access nethod fto ramove card
imagess from the change file. Most of the work involved in

the deletior is done by the access method (s2¢ section III).

LIST COMMARND

LIST allows records of the change data Set +0 he
displayed. 2 small amount of formatting i3 done in the

command procegssoer.,

SCAN COMMANDS

Four O0OSERIT commands cause the changs data set fo be
scanned for the occurrence of specified phrases. The CHANGE
anl ACHANGFE commands p2rmit replacement; +the FIND and AFIND
commands only list records in which the phrases occur. The
CHANGE and FIND commands operate on all occurrences of the

phrases in the supplied range; ACHANGE and AFIND stop after

sy

the first occurrencsa.

Each o©0f +these commands accepts multiple phrases which

[N
&)

may be searched for in the change data sot. Becausa it

PAGE 34

possible +to spocify a largse rvange, thes: cowmmands nmust

{

oparats fairly =fficiently 3in order +to provide adeguate
rzsponss tima, Comnssquently, a translate-and-test table is
bailt which will allovw stovpping on the first characters of
+he supplied phrases. The function value storad in the table

indexes a list of phrases being sought which start with that

first character match found by

%)
Q
f=x

first character. After ea
the translate-and-tast instruction, the ramainder of ths
charactsrs in each phrases vhich start with this character is

comparad against the source for a match.

Th= CHANGE and ACHANGE commands follow a successful
match by a replacemsant operation. Because the replacement

field may have a length differsnt from thit of the fi=2ld

s
9]

hbeing replaced, it pecessary to constract the changed
image 1n a second buffer. After all possible changes have

heen made, +this c¢ard image is replaced in the change data

ADTOLINE COMMAND

Tn order to facilitate addipg large bDlocks of source
statem=nts, the AUTOLINE gmode is provided. In this mode, the
aser 1s prompted with sequence numbers to which the user
rasponds by entering card images. AUTOLINE us=2s the access

method to add +ho cards at the indicated seguence positions,

AUTOLINE mode is termina*t2d by antaring a null line.

Changes of wmcde on a terminal systam are usually

somewhat lnconvenient o a *terpinal user. This 1s because

PAGE 15

the mode change implies that *he user has lost some of the

facilities available +o hinm before the mode transition. To

l=mgsen thils annoyvance, OSEDIT allows a normal command to be
sntered in AUTOLINE mode by entering a dollar sign as the
first character on the line. If the line cannot be parsed as

a command, it is addad to ths data sot.

SINGLE CARD INSERTIOQONS

A single card may be inserted by entering a sequance
number followed by the card image. The card image is
right-padded with Dblanks and 1s inserted into the change

data sot.

PA 36

[op]

VI. MUH TINTERFACE

OSEDIT has been incorporated under +the Manitoba
University Monitor (MOM) [97 svystem as one of 1its

rpplication programs. This results in an additional 15K
bytas of code being core resident and a furthaer 9K bytes for
huffers. It 1s possible +o generate a MUM systenm including
OSEDIT with a +total core requirement of approximately 65K
bytes. This 1s extremely reasonable since conmparable systems

today often requirs three fto six times this amount of core.

UM manages the terminal input/ontput opsrations and
provides a "Yroll area" for each user. The contents of +his
roll area reside on disk storage while the usar is inactive
{2qg. yaiting for terminal input/ou;put operations +to
completa). OSEDIT is completely reentrant, and maintains all

st =

L}

tus concerning a given user in the roll area.

MUM makes no attenpt to time-slice the use of the roll
area. Instead, an application program, such as OSEDIT, nust
issuz a PAUSE request to MUM to indicate that it may be
swappad to disk 1f there is a queue for thes roll area. This

is 4 by OSEDIT during the processing of Commands which

O

might be excessively long in duration.

Th= SAVE command, heing by £far thz2 post expansive
command in terms of core storage and disk opsrations, relies
on an enqueue facility added +to MUM o gueus 3AVE

operations. SAVE shares +the r1oll area during a SAVE

PAGE 37

opaeration with other users by issuling the PAUSE request;
however, only one SAVE operation will be in progress at any
time amony nsers. This restriction can bz sasad by allowing

several buffers for SAVE.

In summary, MNIN and OSEDIT ce~-exist guite well since
hoth have besen designed +to achieve high performance in a
small amount of cors. The interfacing was accoumplished in a
very small amount of time, since only the PAUSE requast and

the enqueue faclility had to be added to MUH.

Another ar2a which had fto be handled 1in the MUHM

zcurity. MOUM account

0

environment 1is that of data set
numbers are numerous and easily acquired in our
installation. This poses +the guastion of how to limit the
facilities offered - by OSEDIT to protect against accidental
or malicious damage %o data sets on the system. This must he
done with the realization that the op=rating system itself
offers very 1little facility in this ar=a (as one might

axpact) .

It was decided that a failirly flexible scheme of acces

0

yas regquired because of the great variety of usars on MUM. A

[
“

small field that 1is wmaintained on the accounting file
nsed to indicate what facilities of QSEDIT are availablz to

a given account number.

Ths information in *this accounting fisld classifies an
account nusber in three ways. First, there is an indication

of whether or not the account number may use OSEDIT. This

t

PAGE 38

allows +the installation +to totally deny access to a gilven
account number. Secondly, there is an indication of what

list of veolumes the account number may access. The achtual

e

lists of velume serial numbers are maintained in OSEDIT and
may be modified +through a small asssembly or by usual
systent!s means. The idea here is that volume access
nrivileges usually apply o a group of users, rather than to
a spacific user. The Yzeroth" list allows for unregulated
access. This +type of accaess would be given to systems

programmers, for exampls. Thirdly, ths +typ=s of access
allowed dis specified. There are four lsavals of privilege
associatad with this specification. Thessa are summarized in

the following table.

JSER TYPFE T TT ITT Ty
SYSTEM DATA SET i R R R
USER'S DATA SET WE WF Wr WE
OTHER DATA SET Wr Wr RF none

R =-- read access only

¥ =-- 7Tead/write access

RF ~- read only access, 1f user can use2 volume
JF -~ r=ad/vrite access, if user can use volums

The table shows that any usser may read any systam data
szt, but only a type I user (eg. a system programmer) would
ha allowed to write into a system data set. Similarly, any
usz21r may have read/write access to his own data sets. The
classification of user tvpe indicates whethesr or not access
is allowed to sonsone else's data sset, and if access is

parmitted, whether or not writing is permitted.

It 4is expected that the majority of users will be of

ot

IT, with access to only a specific list of volum=s.

vpe
rhis type of classifciation is well suitsed to the situation

in which a given group of people use an 2atirs volunme.

VYITI. CONCLUSIONS

OSEDIT has been implemented and comparsd with the T3H
supplied editing package for TSO. OSEDIT offers few
improvements in +he editing facilities actually supplied:
the madjor difference 1is in the responss times rvealized by
both systems under heavy loading conditions. OSEDIT appsars
to reduce response time to approximataly one-guariter of that

given by TS0 EDIT. This is most appearant on FETCHes and

SAVEs.

fost of +the improvement in TesponsSa time can he
attributad to the highly efficient chann2l programs that

OSEDIT usses. Simila

i
!
i)

pproacheas have baean used in the past
to achieve the same end results: eg. HAS? builds long

channel programs to control unit-record devices. The central

ot

idea is to get best possible use out of the channels and the
devices attached +to them. This approach tri=s to optimize
asage o0of +tha harvdware without placing any restrictions on

how the device is used. to change the usags patterns of the

hardware.

A totally different way to attack the problam would he
to change the physical orgapization of +the data on the
devica to allow efficient apdating using considerably
simpler channel programs. Thus, rathar than attempting to
make channels work harder, one chooses an organization that

is appropriate to ths problem. Unfortunately, this is almost

PAGE i1
impossible to do under the present operating systsm, because

thers 1is no facility +o insert a user-spacified access
method between data and an arbitrary program that procasses
that data,., Without this facility, one cannot =2asily have an
assembler or compiler process the file 1in a sequential

RrRAnNNer.

2

It is to ©be hoped that with the current interest in

fgtructured programminpg® and Msoftware enginesring® will

come a second gensration of software that will influence the

D>

ns. The tarm "modular

1

dzsign of 1IBWM's operating systs

§

programming® applied *to 0S8 denotes +the fact that the
operating system was writiten in one-kilobyte transients, It
doss not in anv way mean that one section of code handles
one fuanction, wraking it easy to redefins or to expand that
function. Tha 085 logic for OPEN/CLOSE/EOQOV 1s very poorly
designed and iwmplemented, and is therefore almost impossible
to alter. The potential warket in data base systems has
causzd some changes 1in this area (eg. the intrcduction of
VSA¥ as a new access me+thod), but has not restructured data
managsmant. Hopefully an OSEDIT approach to providing access

to data will not have to be used within a foaw years.

A second major area, which OSEDIT did not address, is
that of providing a sophisticated command language. The
command lanqguags provided does little more than to provide
an interface between ths user and the OSEDIT access mathod.

I+ has the advantage of being extremely 2asy to learn and

usaz, and fulfills many of the common editing reguirements.

RAowever, we do admit that in the design of O3EDIT too much
time® was spent developing facilities to do functions which

should have been supplisd by an operating systen.

Wae do not argue that a command language should be
arcanz and difficult to learn, but that it should be mors
powerful than that facility which was providad in OSEDIT.
There ars two good rTeasons for +this. First, a powerful
cornmand lanqguage e¢nables a user to guickly spacify exactly
what he wants done. Although +he exacution of a given
command might be expensive, savings will be realized in
lower line connection times, low=ar =swapping loads,

=limination of human errors, =tc. Secondly, w2 contend that

a rvelatively swmall subset of the total usars of an editing

J

systep will provide mnmost of +the usage on the systenm. In

)

other words, we c¢laim +that there are TMeveryday" and
"occasionaly users of a system. Very oftan salesnsn,
administraters, Data Processing managers, and other

marginally interested perscns belong to the second group.
This has 11sad to the requirement +that such systems b=
degigned for the occasioconal user only. We claim that such
reasoning dis every bit as invalid as would be that of

designing a systam which required a long tims to master.

An affective <command language would be composed of at
T~

least two parte: an index system and a data parser. We will

congider these two separately.

An index system should provide many aids fto a
programmer in the area of data housskeeping. The 0SS utility
programs have remained essentially constant since the early
releases of the operating system, and do not provide
sufficient support for a terminal user ({(or anyone else, for
that matter). It is ludicrons that a terminal user is forced
to creaate and submit a batch job to obtain a listing of his
data s2t on the high speed printer. The indeyx systen
mantionzd would prepare such a job for the user as well as
handle all utility functious. For example, it could also

handle backups on demand, accounting for disk spacs, relesasse

0]

anused space in data sets, provide annotation of *h
contents of data sets, provide a certain amount of security,
2tc, In short, +the obiective 1is +to relieve Dboth the
programmer and +the installation of the chore of preparing

and running utility programs.

The data parsar provides conmands +0 =24it within a
given data set. Just how +this ssction of the command
language should be designed is not immediately obvious. He
have simulated a few possibilities by means of a SNOBOL [1]
program, but it seems very difficnlt to resolve a number of
questions about the design. For example, consider the
differznces between an editor which operates on line numbers
{2g. OSEDIT) and one which operates by scanning for a given
context (=g, TS0 EDIT with TEXT filesg). The line nuamber is
to be preferred when it is difficult to specify context, =2qg.

whan locating one of several END statements in a PL/1

PAGE 44

program. Howaver, line numbers ars not at all natural or
convenient when editing B®rglish text. Thae solution is
probably +to allow both means of specification, and maybe a

few mor=2.

Having studied several source editing packages, we
would conclude +that none of them have really solved the

roblem which they set out *to solve. ¥e have also concladed

{

that the major reason for this is the great dependency that
an editor, and indeed, avery program Tun on a machine, has
on the operating system and its data managemsnt componants.
057360 does not provide a good basis; hencs any attempt at

an editer will be at an immediate disadvantags.

%)

PAGE 4

APPENDIX 2

CSEDIT USER'S GUIDE

INTRODUCTION

OSEDIT is a utility program available under MUM for the
nurpose of editing 0S/360 data sets online. The commands
availabla under OSEDIT fall basically into two varietias:
those involving data manragement operations (=2g. allocating a
neyw data set on disk), and those which are used to =2dit
data. Becaus2 many of the commands have similar operands,
this introduction will describke som=s of the operands

available.

The syntax for describing a command consists of the
command name, followed by a list of possible oparands for
this compmand. Command names have leng and short forms: the
shortest form is underlined in this description. Tf an
operand is optional, this will be indicated by enclosing the
oparand description in brackets []. Opartands can be of two
types, keyword or positional. A keyword operand has an egual
sign imbedded in it (eg. DSNAME=YXX). The order in which
keyword operands appear in +the coaplete command 1is
irre=levant. Op2rands are delimitad by either commas or
blanks. TIf an operand contains one of the punctuation
characters coamma, equal sign, parenthesis, or single guots,

this operand nust b= enclosad in single quotes. If a single

fod
o

quote appears i such a guoted string, 1t nust be

The

J
=]
[]
it

45

d by two single guotes.

syntax of certain operand fi=lds follows.

dsname -~ repraosents a data se2t name with an

optional member name enclosed within
parenthases following i1t. If dsname starts
with a period, & user supplied prefix will
be prefixed to the dsname.

volume =~ Teprasents a voluma (or disk-pack)

spaces

dch

name., Yonlume names are six characters in
length.

- Trepregents a space parameter for data
set allocation. This paramseter is coded in
exactly the same manner as that in Job
Control Language [47.

- represents the DCB oparand, and is coded
in exactly the manner as in Job Control
Langquage, Four sub-operands are available,
namely LRECL, BLKSIZE, RECFM, and DSORSG.
These may b2 abbreviated to their first
letters.

seq-no - rapresents a seguencse number rango.

OSEDIT sequence npumbzrs are specified in
fractional form, with a decimal-point
assured in the middle of the eight-digit
sequence numpber. Thus, 23.5 reprasents thse
sequence numnber 00235000. A range may be
use in place of a single soguence numhar
in all comrands., A rangs is specified by
specifying +wo sequence numbers separated
by a slash. For exanmnple, 23.5/43.002
represents all sequence numbars in the
range 00235000 to 00430029, Either end of
thes range wmay be omitted so0 that /5
reprasents 00000000 to 00050000, 5/
represents (00050000 +to 99999999, and /
represents 00000000 to 99999999 (ie. the
entire data set). Segquance numbers in
O0SEDIT are kept from command to command,
and do not have to bs respecified if the
range of operation does not change.

prefix - 1s uased to specify a prefix that is

applied to DSHNANTS,.

column = is used to specify colnmn limits over

which scan commands will operate For
example, (32,45 denotes colunns 3 to 45

DATA SET COMMANDS

ALLOCATE -~ cr=ates a nevw 4disk data set.

ALLOCATE S AWE dsnamsz

g, AL DSN=RUGGER.XYY, VOL=TS0001,5p

This vcommand creates a data set o
TSO0001 with +the name of RUGGER. YX
allocated will have five +tracks
extent, and a secondary allocation
tracks. No DCB information will be

SCRATCH - deletes an existing data set.

SCRATCH DSNAME=dsnane
YOLUME=volunms

The data set identified in ti
permanantly and irretrievably ren
Both the DSNANME and VOLOMT
required.

FETCH - prepares a data set for updating.

FETCH [DSNAME=dsnane)
{ VYOLUME=volume }
[BCB=dcb]
[RENDM
[NONOH]

[CLEAR)
r LOWER]
[UPPER]

RENUM - data set is to be Tenumberse
NONUM - data set is unnumbered.

CLEAR - us=d to FRTCH an empty data
LOWER - terminal input will have lo
UPPER terminal ipput will have no

{

The FETCH ceommand must be used to
set that is going to be edited. I
being c¢reated, the CLEAR option
the FETCH comnmand to indicate that

PAGE 47

A= (TRK, (5,2))

n the disk pack
¥. The data s=zt
as a primary
quantity of two
suppliad.

s comnmand is
v o3

i
oved from disk.
paramsters are

d.

set.
¥er Ccase.
lowsaT case.

ratreive a data
f a data set is
is spacified in

no data set i°

to bhe FEPCHed. The LOWFER anﬂ UPPER commands ha

no effact on the data set bheing edi
only to typswriter entries. Lowa

ted: they apply
r case items in

SAVE

SET

the feotch data set will print as lowsro case in
both LOYER and UPPER modes of opsration. Note that
UPPER i3 the default mode of oparation.

writes current work data set to disk.

AVE

e]

[DSNAME=dsnane]}
FVOLUME=volume]
[DCB=dch]
fseq-no}

[RENUM]

f NONUH]

[UPPER]

DSNAME required if npot FETCH dsnane.
seq-no - allows SAVREing only part of ths data set.
renunbers records in written data set.

RENUM -

NONOM - causes sequasnce number fields +o be blank
UPPER - translate SAVEd data set *to upper case.
SAVE 1s used +to make the changes entersd at the
terminal permanaent. If no data s=2t is specified,
the data s=2t from which the ©previous FRETCH
operation was dons is used. A certain amount of

editing is possible during a SAVE opsration on the
sequence number fields, The RENUM option renunmbers
the sequence field, while +tha ©NONUM option
overlays *he sequence number £isld with blanks.
The UPPER option +translates all lower case
characters in the data set to upper <case
charactars. A range of sequence numbers mav be
specified to limit the amount saved. This has the

ffect of deleting all cards whose seguence
numbers do not lie in the specifiesd range. A data
set may thus be broken up into several smallsr
data s=ts according to seqguence numbar.

set processing defaults.

SET [PREFI¥=prefix]
[DSNAME=dsname]

[VOLUME=volume]

The SET command allows a default data set nanme to
be specified. This name will bs uased 1in all
commands for which the data s=t nam2 is optional.
A default volume may also be specified. If it is,
and no VOLUME operand is spacifisd in a command
for which this operand is optional, data set
searches will be directed to this volume and then
to thke system catalog. A data set name may be
prefixed by setting a prefix with the SET command.

Thereafter, all DSNAME operands which start with a
period will have the prefiz applisd to them.

EDITING COMMANDS

LisT -

DELETE

CHANGE

list elemants of work data sot.

LisT fseq-no]

The LIST command lists records from the work data
sat to the terminal. This allows the2 data set to
be inspectad before and during oditing operations.

- edit work data set.

CHANGE {seg-no]
scan—item replacement-iten
[scan-item Teplacement-item . . .]
[COLUMN=colunmn]

eg. C 3/5 ABC X 'M N' QQQD COL={2,55)

denotes change all occurrences of ABC to ¥ and all
occurrencas of MbN to 0000 in columns 2 to 58 of
cards in the range 00030000 to 00050000 inclusive.

ACHANGE - changes first occurrence of character string.

ACHANGE [seg-no]
zcan-item TrTeplacement-iten
[COLUMN=colunmn]

This command is identical to CHANGE, except that
it ps after making one change,

n
o+
Fe

PAGE 55

FIND - scan work data set.

FIND [seg-no’
scan—-itenm
lscan-itam . . .]
fCOLUMN=column]

The FPIND command is useful for scanning a data set
which is either not line numbersd, or 1is
unfamiliar to the user. Note that more than one
item may be specificd as scan items. Everyv card in
the s=sguance rvange which contains any of the
specified scan itewns is listed on the tsarminal.

APIND -~ scan work data set for f

oo

rst occurraence.

AFIND [seg-no]
scan-item
[scan-iten]
TCOLUMN=column]

The AFIND command 1is identical to FIND, except
that the first sucessful match of a scan item to a
source rtecord terminates thse AFIND command.

AUTOLINE - supply sequence numbers for input.
AUTOLINE start/incr

start - first seguence pumber generated.
inrcr - increment between Seguancs nunbers.

In AUTOLINE mode, a 1line Dbeginning with 3 is
treated as an ordinary OSEDIT command. AUTOLINE
pode is not left during execution of this command.
If a line begins $%, one of these $'s is deleted,
and the resulting card imags 1S entered into the
work data set, AUTOLINE mode is terminated by
entering a null lino.

END - terminates OSEDIT sassion.

END

g
p=4
I
1
Ul
a—)

APPENDIX B

COH DSECT

The following assesmblaer DSECT shows the parameter list

for calling COM, the OSEDIT data manageRent interfaca.

cop DSECT

T
COPBLKSI DS H BATA SET BLOCKSIZE
COPLRECL DS H DATA SET LRECL
CCPIOB Ds 8F Ion
COP3SEEK DS 2F SEEK ADDRESS IN 7TI0B
COPDEBP DS F POINTER TO DEB
COPDSH DS (ORI DATA SET NAHME
COPYVOL Ds CLé VOLUME NAHE
COPMEN DS CL8 MEMBER NAME
COPDSORG DS X DSORG
COPRECFM DS X RECFH
COPTICNS DS X OPTIONS TO CON:
SWRITE EQU ¥1301 OPEN FOR OUTPUT
FOPEN EQU Xy DO OPEN
SNODATE EQU X200 OMIT DATE CHECK
FEXTEND EQU X100 DO EOV OPERATION
$NOENQ EQU X108 NO DSN¥ ENQUEUE
$READ EQU Xoo OPEN FOR INPUT
$CLOSE EQYU X100 DO CLOSE OPER
COPLSTAR DS L3 LAST BLOCK IN DS

COPTRBAL DS
COPDIRCY DS

TRACKX BALANCE
DIRECTORY COUNT

pS

SAMPLE TERMINAL SESS

10N

jng

52

PAGE

APPENDIY C

The following 1is a sample of how the user interacts
with OSEDIT. The material on +the left represents OSEDIT
commands; that on the right is documentation.

fe dsn=rugger.xx¥x.data

L/

00010000 ¥X: PROC;
000620000 DCL I EXTERNAL;
00030000 I = I + 1;
20040000 END;

2.1 dcl j external;

c 3 1 i

Save

“2n

The FETCH command specifies what
data set is to bs editad,

List the data a2t., The slash
with no Operands indicates that
the entire data set 1s to be
l_*_g. t?ﬂ -

Listing cf the data seot.

Add card i
0No210090
secguence

mage 2.1,
since OSE
numbhers.

or
DIT

actually
scales

The CHANGE® conmmand instructs
OSERIT to change all occurrences
of 1 to Jd on card inags
00030000, The <chang=24 image is
printed for wverification.

Save the data set back.

Tnd the sion.

gy a
RSN

i,

BIBLTIOGRAPHY
Griswold, Poage, and Polonsky, The SNOBOL4 Programming

Language®™, Printice-dHall, 1971.

IBM System 360 SRL, "Component Descriptions: 2314 Diract
Accaess Storage Facility®™, Form No. A26-3599,

IBHY Systen 360 SRrL, MDirect Access Device Space
Management®, Form No. GY238-6607.

IB% System 360 SRL, "Job Control Language", Fornm No.
C28-6704,

IBM System 260 SRL, "Principles of Oparation”, Form No.
GM22-6821.

IBM System 360 SRL, "Suparvisor and Data Managemosnt
Saervices”, Torm No. GC28-66U46,

IBM System 360 SRL, "System Centrol Blocks", Form No.
GC28-6628,

IBM sSystem 360 SRIL, "System Programmer's Guide®, Fornm
No. C28-6550.

Bill Reid, Mastear's dissertation, Univaersity of
Manitoba, 197

o

