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ABSTRACT

The possibility of the existence of a bound state of
a hydrogen molecule and a positron is investigated using two

approaches,

First, a variational calculation of the energy is
performed using a wave function which represents a positronium

atom bound te a hydrogen molecular ion.

Second, a wave equation describing a positron moving

in the field of a hydrogen molecule is studied.

Neither line of investigation indicates that the
positron will form a bound state with a hydrogen molecule., These
results are inconclusive, however, due to the nature of the
variational method.used, This method can, under favourable
circumstances, conclusively demonstrate the occurence of binding.
However, failure to demonstrate binding, as occurs in the present
case, does not mean that the system .studied is necessarily not

bound.
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CHAPTER I
. INTRODUCTION

The existence of the positively charged electron, or posi-
tron, was predicted by Dirac in 1928, and experimentally verified
soon after. The experimental verification was accomplished by study-
ing the electron-positron pairs created by'gﬂradiaticn from radioactive
sources., 1In the study of the reverse process,}{-ray creation from an
electron-pcsitron pair, it was found that the two particles could form
a quasi-stable two-particle atom similar to the hydrogen atom.

The existence of this electron-positron bound state was
demonstrated by measuring the lifetimes of positrons in different
gases, It was found that, in addition to the component due to the
annihilation of free positrons, the decay curves had a component which
was easily explained in terms of this electron-positron pair., This
system was named "positronium' by Wheeler in 1946,

The main difference between positronium and the hydrogen
atom is that the reduced mass of positronium is about one~-half that
of the hydrogen atom. This results in an increase in the linear dim-
ensions of the positronium atom by a factor of two, and a reduction -
by a factor of one-half in the energies of the ground and excited
states, as compared to the states of the hydrogen atom,

Two types of annihilation of the positron-electron pair
are possible from the ground state of positronium. It can be shown
that the singlet state of positronium results in two-photon annihil-

ation, while the triplet state results in three-photon annihilation.,

l. S. De Benedetti and H. Corben, Ann. Rev, of Nuclear Sci.
4, 196, (1954),




&

The mean lifetimes of these two states are ~ 1-35x10  sec. for
singlet positronium, and ~i:% % \0" ' sec. for triplet positronium,
Positronium is not the only bound system of which a positron
can be a member., Theoretical investigations have shown that systems
consisting of two positrons and an electron 2 and two electrons and
a positron 2 both have positive binding energies against dissociation
into their constituent parts, while a system of a negative hydrogen
ion and a positron has a positive binding energy against dissocation
into a hydrogen atom and positronium. 3,4
On the other hand, positrons will not bind with all atoms
or molecules. 1In particular, investigations by Oczkowski5 indicate
that a positron will not bind with atomic hydrogen, or with helium.
The object of this thesis is to investigate the system of
a hydrogen molecule and a positron. The approaches employed will be
twofold, First, the behaviour of positronium in the vicinity of a
hydrogen molecule ion (H2+) will be investigated, and second the

behaviour of a2 positron near a hydrogen molecule (HZ) will be con-~

sidered.

2. J. A. Wheeler, Ann. N.Y. Acad., Scis 48: 219 (1946)

3, A. Ore, University of Bergen Yearbook, No. 5, Bergen, Norway (1952).

4, G, Darewych, Thesis: The Interaction of a Positron with Negative
Hydrogen Ion,University of Manitoba, (1961).

5. G. Oczkowski, Thesis: The System of a Helium Atom and & Positron,
University of Manitoba, (1961).




CHAPTER 11
REASONS FOR CHCOSING THE TWO LINES OF INVESTIGATION

The Schrodinger equation for a system of two protons and
one electron, the hydrogen molecular ion, has been solved numerically
by Burrauo1 The system shows a minimum energy of - 16,39 e.v.
against infinite separation of all components, and this value occurs
at aninter-proton separation of 1.06A°, or 2 ao, where ao is tﬁe
first Bohr Radius.

The hydrogen molecule itself has a minimum energy of
- 31,78 e.v. against infinite separation of all constituent parts,
and this value occurs at an internuclear separation of ,751A° or
140 ap. Graphs of the energies of a hydrogen molecular ion and a
positronium atom (Curve II), and of a hydrogen molecule plus a posi-
tron (Curve I), plotted as a function of R, the separation of the
protons is made in Figure I. In Curve 11, the molecular ion and the
positronium atom are assumed to be separated - the energy of inter-
action between the two systems is neglected. In Curve I the positron

is assumed to be not bound to the molecule.

b N
-1
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-30 M 'z ] T Y
' 3 3% s
pg

Figure 1

1. O. Burrau, Kgl. Danske Vidensk Lelskab: Math-fys, Meddelelser,
vii, 14 (1927).




4

The presence of a positron completely separated from the
molecule (Curve I) does not affect the energy curve, and this curve
is actually just the energy of the molecule plotted as a function of
the internuclear separation. The presence of the positronium atom
completely separated from the hydrogen molecular ion (Curve II) has
the effect of adding to the energy of the molecular ion a constant
amount - the energy of the positronium atom. This constant amount
has a value of .50 in units of e2/2a¢y° Therefore Curve II is merely
the graph of the energy of the molecular ion plotted as a function
of R, but shifted downward by one-half a umnit.
We shall now discuss qualitatively the two approaches we
shall employ in investigating the interactions of these five particles.
We shall first assume that the positron is bound to the mole-
cule, and qualitatively examine the resulting configuration. Since
the electronic wave function for the hydrogen molecule is greatest in
the region between the nuclei, this would be the region which attracts
the positron. Coulomb repulsion will then cause the two protons to
re-adjust themselves further apart than the equilibrium distance for
the molecule itself., At the same time the net charge, neglecting
the protons, is -e. This configuration (i.e. two protons further
apart than in the hydrogen molecule, and a net charge of -e distributed
principally in the region between the nuclei) is the same sort of qual-
itative description which could be applied to the hydrogen molécular
ion, It would, therefore, be not unreasonable to expect a graph of
E vs R for the molecule-plus-positron system to have a shape similar

to that of the molecular ion plot, with the minimum occuring at a
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value of R larger than RHZ, and perhaps approaching the value of
+
Hy °

+
It will be noted that the "potential well" for H2 is wider

than the well for the molecule. This means that the curvature of the
+

H2 well, near the minimum, is less than the corresponding quantity

for the molecule. If we consider the lowest vibrational 1eve1)of

energy 3 1 , in such a well, and use the semi-classical argument

that the average potential energy is one-half the total energy, we

have

PR Y

ooty WO K

a 2-1

where | % represents the position which the particle in the well

would occupy in order to have the kinetic energy at this position

equal to the average kinetic energy.

\
T \ A
) . oy m - !
We would write UoN \&ﬁh&}j

- R
In considering these two potential wells, the one with the
greater curvature is the one with the greater angular frequency (1) ’
and thus is the one with the least value of kE ;;I .
In this case this would be the well for the molecule. This means that
the wave function for the molecule, plotted as a function of R, would
occupy a narrower region than the wave function for the molecular ion
plus separated positronium system, these regions being centred about
the minimum of the well in each case.
Assuming that the positron is bound to the hydrogen molecule,
we now consider the relative transition probabilities between this

system and the system of a molecule and a separated positron on one

hand, and between the former system and the system of a molecule ion



and a separated positronium atom on the other.

The probability of a transition between any two states 4
denoted by {éi and %}. 9 will depend, to a large extent, on
the amount of overlap of the two functions, This can be described in

terms of the overlap integral for the two states, which is denoted

¢
A

( §$\3k$g~). When this overlap is small, there is a small probability
of transition between the two states., In other words, a large overlap
of wave functions is a necessary, but not sufficient, condition for
large transition probabilities between the states defined by the func-
tions. An exact calculation of the transition probabilities would have
to take into account the mechanism by which these transitions take
place, but the principle stated above holds true in most cases.

This procedure, when applied to radiative transitions between
vibrational levels of molecules, is well-known as the Franck-Condon
principle.2

Let us consider a graph of E vs. R for the system of a hydrogen
molecule plus a bound positron, assuming for the moment that the positron
is indeed bound. 1If, as was reasoned previously, this graph resembled
more the graph of E vs. R for the molecular ion plus free positronium
than the corresponding graph for the molecule plus free positron, then
the overlap between ground state wave functions for the bound system
and the molecular ion plus free positronium would be greater than the
overlap between the ground state wave function for the bound system and
the system of molecule plus free positron., This, in turn, would mean

that the transition probability in the former case would be greater than

2, W. Kauzzmann, Quantum Chemistry, Academic Press, (1957);pp. 664, ff,
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the transition probability in the latter case.

A hydrogen molecule has an energy of -31,95 €sV,, while
the energy of a molecular ion is =16,.39 e.v. Since the energy
of a free positronium atom is -6.80 e.v., a positronium atom
would have to be bound to a molecular ion with a binding energy
of 8.76 e.v. in order that the system be stable against dissoc-
iation into a molecule plus free positron,

Such a binding energy, greater than the energy of the
positronium atom, is not likely to occur, and the bound system
would likely be unstable against dissociation into a hydrogen
molecule plus free positron. However, if, as was discussed above,
the overlap of the wave functions of the molecule plus positron
and molecular ion plus bound positronium configurations is small,
such a bound system might be sufficiently long-lived such that
the lifetime of the positron in the bound positronium atom could
be calculated. An investigation into molecular ion plus bound
positronium configuration is justified for this reason.

1f we consider a positron in an atmosphere of molecular
hydrogen, the most favoured mode of binding, from a viewpoint of
the energies of various configurations, is a configuration represent-
ing a positron bound to the molecule. Therefore, an investigation
of the motion of a positron in the field of a hydrogen molecule
will also be made, to see if such a direct mode of binding can be

found.



CHAPTER III
THE CONFIGURATION OF A HYDROGEN MOLECULAR ION AND POSITRONIUM

Before discussing the details of the investigation of the
configuration of a hydrogen molecular ion and a bound positronium
atom, it will be necessary to discuss the calculation of upper bounds
of energies by the variational method.

The mathematical basis for the variational method is out-
lined in most elementary quantum mechanics textso1 A brief summary
of basic ideas of the variational method follows.

The postulates of quantum mechanics state that the states
of a physical system are in one-to-one correspondence with the elem-
ents in a Hilbert space, Dynamical variables of the system can be
represented as hermitian operators in the Hilbert space, such that
a measurement of the variable corresponding to the operator A gives

a value A', where A' is an eigenvalue of A. Furthermore, after

the measurement, the system will be in the state TQQ » Where
Q¥§§ is an eigenfunction of A such that
Nk RS
B Wa = A Wy
3-1

On the other hand, d4f the state of the system corresponds

i
to the element <? in the Hilbert Space, the expectation value of A,
the weighted average of all possible values of the variable corres-

ponding to the operation A, is

<ay = (9,R9)

.
el

V?z@j

1. See, for example, L. I. Schiff, Quantum Mechanics, McGraw-Hill,
second edition,(1953; pp.1l71 ff.
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where ( ﬁleg ) is the inner product defined for the Hilbert space,
If the Hilbert space is a function space, the inner product

is defined such that

SN 3-3

where the integration is over all the variables needed to specify
the states,

The basis for the variational principle is that the energy
expectation value for any state %@ must equal or exceed the least
eigevalue of the Hamiltonian, the Hamiltonian being the operator in

the space corresponding to the energy, This can be written

(wy) 3-4

where Eo is the ground state energy of the system we are trying to
describe, Furthermore, the exact @quality holds true if and only if
the state function fﬁ? is an eigenfunction of H belonging to the
eigenvalue Eo.

This is the basis of the variational method. It is applied
in the following manner:
A trial wave function ”@ is assumed, where %% is a function of
several parameters, and the average energy corresponding to this
state calculated. This energy will be a function of the parameters.
The parameters are then varied so that the minimum energy is found,
Since any state function serves as an upper bound to the least energy

eigenvalue~the ground state energy-this minimum energy, found by vary-

ing the parameters, will be the least upper bound to the ground state
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energy of the system for all wave functions of the type assumed.

The degree to which this minimum energy is a measure of the actual
ground state energy depends on how closely the type of trial function
assumed approximates the true state function of the system.

Let us now turn our attention to the €onfiguration of two
protons, two electrons and a positron, We shall label the two
protons "a' and "b", and the positron as "1", The two electromns
will be denoted by 2" and "3, This configuration is illustrated

in figure 2.

e 3,
&

\“ iy

+ S R
P - P1'
a b
1et
Figure 2

Configuration of two protons, two electrons and a positron.

We shall denote as |L1y the distance between particles 1
and 2. The distance ‘law will be denoted by R.

We shall denote the spin coordinate of the i“t&xparticle
by ST .

The hydrogen molecular ion is a bound system of two protons
and one electron. We shall neglect the motion of the protons,and
regard them as fixed in space. This is a ressonable assumption, since
the ratio of proton mass to electron mass is 1836: | . The velocity
of the protons will therefore be much smaller than that of the electrons.

Our configuration will therefore consist of two fixed particles and

three particles whose positions are variable. Relative to the positions
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of the two protons, nine coordinates will be required to completely
specify the spatial orientation of the electrons and positron.

We now consider the type of wave function we shall choose
for variation,

We shall assume a spin-independent Hamiltonian.

In order to satisfy the Pauli exclusion principle, the total

wave function must be antisymmetric with respect to interchange of the

H
H

two electrons, Therefore, if 3 denotes the total wave function,
bt

we can write

T len T uone) =m0y 26 mus) g

Since we have assumed a spin-independent Hamiltonian, and
since there are only two identical particles in the wave function,

namely the electrons, we can write the wave function as

{ LE‘\G\’ y a0 LENEVES Y "EE‘\EQaE}} Mo \vg‘jﬁyiwa\g‘%} 3-6
where elther AT is antisymmetric and W is symmetric, or AI”
is symmetric and fk% is antisymmetric on interchange of the

two electroms,

Since there is no apriori reason for choosing either type
of wave function, both types will be considered.

With this spin-free Hamiltonian, the functions wki@?ﬁ and
Mrié\&*ﬁrgé do not affect the expectation value of the energy, and
we need not be concerned with the spin functions any further.

Let us now consider the details of the type of wave function

which we shall choose. We wish to have a function which describes a

positron bound to a hydrogen molecule. One choice of function could
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be of the type

Py

3-7

where‘?i%aasﬁag;represents electron 2 bound to the two protons in

a molecular ion configurationm, % . i3} represents the positron

bound to electron 3 in a positrgﬁium configuration, and~imé;?”3
represents the binding of the two systems through the attraction
between the positron and the electron bound to the protons.

This is not an acceptable wave function from the point of
view that it implies we can tell which electron is bound to the mole-
cular ion, and which one to the positron. In order that ‘Y~ have
the required symmetry properties en interchange of the two electrons,
we chocse

B 39 B
Y T b, Ty

where choice of + or - sign depends on whether we wish to refer to
the symmetric or to the antisymmetric spatial function,

We shall choose

s 3-9

These represent positronium~like wave functions, For the positronium

ground state, the coefficient of X9 would be (22¢9¢) . A

=

value of ¢ =0 in equation (3-%%) means that equation (3-8)
would correspond to systems of a molecular ion and a positronium atom

with no binding between them.

Our wave function will then have the form
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[l

We now must choose ;QTL%§§{@§ s & function which describes
the hydrogen molecular ion configuration. A good discussion of various
variational functions for the ground state of H2+ is given by Pauling
and Wilson,

The greatest problem in dealing with this configuration
(two protons, two electrons and a positron) is that most of the integ-
rals involved have two fixed points - the positions of the protons.
This greatly adds to the complexity of the resulting expressions for
the kinetic and potential energies. The problem is to choose a wave
function for the H2+ configuration which is simple enough so that the
integrals involved can be calculated, and yet is a reasonably accurate
description of the molecular ion.

The function which we shall choose is

o ~ AT -k Tls
e .
J

e, i) = O O

3-11

This function was first discussed by Finklestein and Horo-
witzo3 Due to changes in the accepted values of the physical con-
stants, and the corresponding changes in the results, it will be
necessary to redo the work of these authors. This is done in Appendix
II1. The values which give a minimum of energy were found to be

H o= 1»238&0-1, R = 2ag,. The minimum energy is =15.96 e.v. giving
a binding energy against dissociation into a hydrogen atom and a
hydrogen ion of 2.36 e.v. This compares with the expérimental value
of 2,791 e.,v., The error in the binding energy for this function is

about 167%. The error in energy is due to the fact that the wave

2. L. Pauling and E.B. Wilson, Jr., Introduction to Quantum Mechanics,
MCGraT’J-Hill, (1935); ppo 3279 fafo

3. B. N. Finklestein and G, E. Horowitz, Z.f. Phys. 48, 118 (1928)
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function does not sufficiently localize the electron charge density
in the region between the two protons.

The total wave function for the two fixed protons, two

electrons and a positron is therefore

We now proceed to calculate the average energy, the expect-

y

ation value of the Hamiltonian, as a function of the parameters .

b

We write the wave function as

B=T &V 3-15

In orger to perform the integrations involved in the cal=-
culation of the average value of H, the following volume elements
for two-fixed point integrals will be used.

For the 3 dimensional coordinate system illustrated in

igure 3, {0a, 1o where { is the angle between the

h
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plane of three'points involved and a reference plane passing through

the two fixed points,

o

Figure 3,
Configuration for Two-Fixed Point Integrals.

4
the volume element 1is

3-16

For some of the integrals it will be advantageous to use

the prolate spheroidal coordinate system ( 53'%13 é/ ) where

, i 3-17
B —

and

g

is the same as previously defined.

4
For this coordinate system the volume element is

o~ R ?} “i . ~ ? é ”‘;m{ .y i?%
v RS \ Gy T
o 3-18
G
£ A
3L oS
where 2‘-% A
-l gg
O30 davw

4, See Appendix I



16,

The contribution to the immer product ( V., W @ ) from
the potential energy terms will be considered first,
Since our wave function is real, this contribution can be

written

3-19

3-20

Since there are ten terms in Yv , and ten distinct
terms in ﬁ§&” , there would seem to be one hundred
integrals to be calculated to find the contribution to ( Wy E%§? )
from ( W | v i? ). Due to the symmetries of the wave function
and the Hamiltonian, however, this number can be reduced to twenty-six
distinct nine-dimensional integrals,

These terms can all be expressed as functions of the para-

meters using the functions

oe LAY
¢ L {0 —othi - DRa m oy )
A (GOt =L e e A T
Toren e WY Y b [ iy Tla DU [ 3-21a
o
Ve T
and S T
- M x 4 Pl TR At [AR s N oy
o WOy ByED XL R fLa  OWLa o5y 3-21b
4 J T
© \n-ol vl

A discussion and table of these functions is found in
Appendix I, and the explicit expression for ( ‘¥, XJ%Q ) is found in

Appendix 11,
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We now turn our attention to the evaluation of (%?)”?’Q} Ys

the contribution of the kinetic energy part of the Hamiltonian to

3-22

where is the Laplacian operator in a anine-dimensional

space, and the integration is over the whole of the nine-dimensional
space.
Within the nine-dimensional space, we can find a set of

nine mutually orthogonal unit vectors %gi

kN

-4 , such

-

that the set (&3, &y Ty ) is a basis for the subspace . defin-

ing the position of particle 1, (& ,, &35 , €, ) is a basis for
the subspace defining the position of particle 2, and (i;?§.§® LEq )
— e Sl

is a basis for the subspace defining the position of particle 3.

Associated with this set 9 , there will be
9 independent coordinates RS L
We can then write
g
—
N 2 Y s 7 DIEURY Y
V=) = R S S T 3-23

where V1= &)L %

} < are
,/‘) }i { oY% Su

similarly defined. In this case

VF., i
e

‘/ 3-24

y4y 3 and therefore
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We can then write

T

S ' 3-25

Let us define an origin for our coordinate systems at the midpoint

of the internuclear axis, and let ggi be the position of the

BT particle, Furthermore, we shall define @;é-=@g~§§;where

to be defined by Cartesian

-}, then

3-27

o,
H i Ly
o] 9 N

o g(,%i\’ L%,

%
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This is illustrated in figure 4.

3-30

The explicit form of ( W, | W ) is given in Appendix IV,
The only quantity remaining to be evaluated is the integral of

the square of the wave function.
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We can write, since W is real
s \\ )

%
-4
A
o
p
c

(v.
g
-
L
1%

‘ o T W,
VA Wi Wy T, 3-31

Due to the symmetry of the wave function with respect to

the two electrons, this can be simplified to

=~

v O TV B AT S O A R S A
\VSﬂ “*ﬂ%% @LVp%%%JI\%%&ztgwg@&L{

i | Y > PR *i |

t; ¢ . J [ 3=-32

Each of these four integrals also appears in the evaluation of

~
]

Coo iy
\\ﬁy“%} T o Explicit expressions for them will therefore

o

be found in Appendix IV,

The explicit value of the average energy for this trial
wave function was programmed for the Bendix G-15D digital computor
at the University of Manitoba, and values of the average energy, as
a function of the four parameters were obtained, This was done for
both the symmetric and antisymmetric functions. The results were
as follows,

For both the symmetric and antisymmetric functions, the
minimum value of the average energy was found to be at the values
of the parameters corresponding to the separated systems. These

values are
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A= 23R Ge
-\
= o 53&0 &oe

o

4
Q

300 oo

The values of { E ) for the symmetric and anti-
symmetric functions are equal when é;.: G
This is to be expected, since the effect of the exchange terms
. S .
becomes negligible. For 30 s it was found
that the energy for the symmetric function is lower than that
for the antisymmetric function for the same values of the para-

meters.,
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Some of the results of the computations are illustrated
in figures 5 to 9. These illustrations give contours of censtant
energy as two of the four parameters are varied. The illustratiens
shown vary .X and é; for the value of ® = 1 23R e
and two values of R;2.00ag (the value giving the minimum energy)

and 1,51 ag, and A and S are varied for

R = 2.00as and ¥ = .55020 T,
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CEHAPTER IV

THE CONFIGURATION OF A HYDROGEN MOLECULE AND A POSITRON

The previous chapter considered the interaction of
two protons, two electroms and a positron from the viewpoint of a
configuration of a positronium atom bound to a hydrogen molecular
ion, 1In this chapter we shall consider the interaction of the same
five particles from the point of view of a positron moving in the
field arising from interaction with a hydrogen molecule. This is
accomplished by applying the variational method to a wave function
which is a product of two wave functions - one which depends only
on the coordinates of the constituents of the hydrogen molecule, and
the other which is a function of the positron coordinates only. Since
we regard the two protons as fixed, this type of function can be
written
Wos i) Kl
4-1

where /X (Elk \§l3\ is a function which describes the electron

distribution,
The Hamiltonian can be written
NEERS
H = V 4o

where

— R 2 by

V= -% (v'iy, +v§)

A

R { 1 -
\/ = L (—~ to— ___-L "l. -1 .-L-_l_ +1 411 4-3
Ta e 0. Tap  W3a D3b T 0 gy R
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Then the average value of the energy can be written

R e
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This could be regarded as the average value of energy
for one-particle Hamiltonian, H(l)
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where H(l) is given
M
by H =
N - / X ';‘“A ﬂ‘lg
...E\d Ty #Qg‘g __E_ + Ve ‘2\'{\ (ﬁ_\_ n\)é*tau \3}»(&:@)4 8
ey L e T Ry B ¥ j

1
We can interpret H S as being the one-particle operator
/ 5,
whose average value is the average energy of the system, \Ea,

is the energy of the two protons and two electrons when they are

in the state X . The function X {gka}gzsg will
therefore be a functien descrlblng the ground state of the hydrogen
(&, W)
molecule, The remainder of W/k¢ ®;W' will be the average
)

energy of the system due to the presence of the positron, This
energy consists of the kinetic energy of the positron and the
potential energy arising from Coulomb interactions between the
positron and the other constituents. We shall denote this remainder

as
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The assumption of a state function of the form’wt‘?ﬁbﬁﬁiﬁhﬁgj
in a calculation of the expectation value of H is equivalent to
assuming a state function QSQQQ . for a Hamiltonian given by H(l>q
If it can be shown that H(l) has no eigenvalues less than {4 E >

2
H @) has no negative eigenvalues, for a given

or equivalently,
2
function X » then it can be concluded that the positron will not

be bound to the hydrogen molecule if the latter is assumed to be in

~ 2
the state A . In other words, showing that H( ) has no negative
/
oY
eigenvalues for a given function A is equivalent to show-

ing that the original assumption of a function of the form
W§>'§\gfr%igg\g§3 in the calculation of the average value of the total
Hamiltonian H leads to no bound states for the positron, regardless of
the choice of 5??@1& , for this choice of ¢ iE‘\§333 o

We now pioceed to choose the function /X (QA)QZ}E and
calculate the potential for the positron.

There have been many suggested wave functions for the ground
state of the hydrogen moleculea1 The choice of function for use here
is limited to some extent, however, by the presence of integrals of the
form %k’X\L ?{;ﬁ“ig‘@“s . Since the two protons are
regarded as fixed, and since, in these integrals, the position of the
positron is also fixed, we have integrations involving three non-collinear
fixed points,

In order to make the potential energy calculations feasible

r~
& not=-too~complicated form for A must be chosen.,

1. A bibliography of hydrogen molecule calculations is given by McLean,
Weiss, and Yoshimine, Rev., Mod. Phys., 32 , 211, (1960).
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The form of 4{ which we shall choose is
~alaas n3s) _g{nwrnael) | | —dlfae+Pae) ~alDaetnae)}
=l Jrigrmerm )

4-10

This was first discussed by Weinbaum,2 who found the best values of

the parameters were R=1,40as, A =1.193/a$,C=3.9. The value of

the binding energy of the hydrogen molecule against dissociation into
two hydrogen atoms, as calculated by using this function, is 4.024 e.v.,
while the experimental value is 4,746 e.,v. The equilibrium internuclear
distance has an experimental value of 1,4008 ap.

We now proceed to calculate the Hamiltonian H(z), which can
be considered as the operator describing the energy of the system due
to the presence of the positron,

Since the function /X'ﬁg‘§233 is symmetric in the pos~

itions of the two electrons, we can write

/ oo \
“ S . | IS G Vol
FACD I Nl RIS B LAY 4-11
o {ma s XX} j s /

The explicit calculation of the integrals arising in equation
4-11 is given in Appendix VI. Only one particular point need be dis-

cussed at present.

Tt y
; VX Jo ATl T ;
In the calculation of /i , integrals
£ ~ A jRaoat D'&;S)

of the form EQ' SURVES arise. These are integrals

puestiny

yALH
which, in general, are functions of three non-collinear points defined

by the positions of the two protons and the positron. This integral

can be evaluated, however, by noting that evaluating this integral

A
S T

2. S. Weinbaum, J. Chem. Phys. 1, 593, (1933).
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is equivalent to solving the Poisson equation

V ‘\_ = "%;\'\ GA

This is simplified further by changing to the {,?,@\\éj
coordinate system discussed in Appendix I, in which this equation

becomes — &R §

4-12

The solution of this equation is discussed in Appendix V,

Numerical calculations of the potential show that the pot-
ential has two peaks at the positions of the nuclei, The potential
is independent of the angle of rotation about the internuclear axis.
A calculation of the potential along a curve \f = constant, that
is, along an ellipse with foci at the positions of the protons, indicate
that the potential is a minimum at the point ?EO, The locus of these
points is the right bisector of the internuclear axis. A cross section
of the potential, taken along the right bisection of the internuclear
axis, indicates a potential barrier at the axis. This barrier has a
height of 24.891 e.v. The potential decreases along the bisector until
there is a shallow well, of depth .079 e.v. at a distance of 1.6Ao from
the axis. Then it begins to increase asymptotically towards zero,
approaching a form of "A/n3 , where [T is the distance along
the bisector from the internuclear axis.

We now proceed to show that there are no bound states for
the positron for this potential function., We can accomplish this by

(2)

showing that H has no negative eigenvalues.
Let us consider bound energy states for the one-particle
Schrodinger equations corresponding to two potentials Vﬂgﬂ and

Va i) » where iim) & \‘f&( 33 o Specifically we show
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that, if \/a‘\\f) has a bound state with energy Ey, then there
exists a bound energy state for vy with the energy less than or
equal to that of E;:

The proof is quite simple. Let :\E\k\j} be the wave function
which is an eigenfunction of the Hamiltonian with VUB) 3 belonging to

the eigenvalue E2° Then

< 4-13

Ve assume, for simplicity, that @” is normalized.
Let us now apply the variational method to the Hamiltonian
with Y\ U_ﬁ , using ‘”‘E{“ as our trial function. The average

value of the energy is

H

- S s (oY TR T oAl
LBy s LTmY) = O A

Vy YA
or LE>=: Rat+ (Y, %V\~V&\§§Q\&)
Since V, L2} { Vilm) and since J* ?:i[‘ PR we
have that (W\) \__\/\ ;j :\f} i(} °
Therefore SE> S B

Since the average energy for any trial function is an upper bound to

the ground state energy, which we shall denote by Ej, it follows that

E, § <E>» < ERx 415
This is what we had set out to show.
Our next step will be to replace the actual potential in
the Hamiltonian H(z) by one which is of lesser value at every point.

We shall then investigate to find whether or not this lesser potential
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gilves rise to any bound states. If it does not, then the greater pot-
ential gives rise to no bound states also., If there is a bound state
for the lesser potential, there is, of course, nothing which can be
said with certainty about the bound states for the greater one.

The lesser potential we shall employ is spherically symmetric
in a spherical polar coordinate system which has its origin at the mid-
point of the internuclear axis, and has its polar axis along the inter-
nuclear axis. We then define our potential Vi (Q) to be equal
to the value of the actual potential Vo at a distance along the right
bisector of the internuclear axis. If we denote the internuclear axis

as the line defined by @ =0 , then

V\(_W, gaéj: \!}{R\W/A) ¢):V&(n)ﬁ/a] 0) et

Ko
Ho.

o
Figure 10,
Configuration In a Spherical Polar Coordinate System
Since Vy is independent of ¢> s V1 is also
independent of ¢c
We now study the ground state energy eigenfunction for the

potential V;. This ground state eigenfunction will itself be spheri-

cally symmetric, and therefore be a function of 3 only,
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The Schrodinger equation then becomes

"
%

ar-SERURE S | A BT RV T S T

am nE g\ o) L 4el7
If we write () %{ wliz) , then we have

- T\w}\ ~>§i ‘w‘u“z%f) + Viin) wii) = = Ui 4-18

W DL

This is a one-dimensional Schrodinger equation with the
same eigenvalue (E) as the three-dimensional one,

We now consider the properties of the solution of this
equation as a function of E.

We require that the function %%N Uﬁj be finite everywhere,
which, in turn, implies U (V) —=O as L —>0 o This
is to be true for every value of E,

If E is less than the least eigenvalue Eo, the function
will not eross the axis, and will approach a non-zero value as (¢—> ©©
This is illustrated in figure il.

If E is equal to the least eigenvalue Eo the function

will; as before, not cross the axis but will approach zero
asymptotically as L —> &0 o This is illustrated in

figure 4,

WYW\

Figure M. ter"l

E <(Eo
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Figure Il
E=E,

We now attempt to show that this potential, V iﬁl) .

1

gives rise to no bound states,

Let us initially consider this potential for large values

of tr , = %<\ » This potential can be written
Viln) = QF‘§ L = S §w~ékbl&”ag§
\ e M 2y j M J e = s
where e is the distance from the origin to the positron when

the latter is on the right bisector of the internuclear axis. 1If we

\ A B
considered %aa, and o expanded in powers of I
(multipole expansions), the following results could easily be obtained.
First, the net charge that the positron '"sees'", when Y2'7§7§\ , 1s
zero. Therefore the monopole term in thé expansion of V2 does not
appear, The contribution to the dipole terms from %ﬁ\&, and
%€\b is easily seen to be zero from the fact that, along the
right bisector of the internuclear axis, the line joining the midpeoint
of the axis to one of the protons (this line is the internuclear axis)

is normal to the line joining the midpoint to the positron position

(on the right bisector). We can also easily see that the dipole term

S \
[ AT A T . -
arising from | A. STLOVUz is zero in the following manner,

3
4 Vi
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Define a spherical polar coordinate system with origin at
the midpoint of the internuclear axis, and polar axis passing through
the positron position (along the right bisector of the internuclear

!
axis). Then, in the integration over the azimuthal angle Q?O 3"5( UB,D_;)DL’C%

is symmetric about %z?—'ﬂ/;\ , and the coefficient of )E{a
in the expansion of %:{\é\ will be proportional to <wb g o
C sy -
The coefficient of —\*1 in ) ?ﬂ’)‘lg O"\xkgi}‘\’h will
n fval
then be of the form
=V
l (symmetric function) sin o cos S
o}

This will give a value of zero when the integration is performed.
Therefore the leading term in the potential, for vz »>? R

is at least a quadrupole term., Numerical calculations verify this,

for the value of i 13 = 2599 evv.A®
i ~beo
Defining &m/kg\ = K, we can write the one-
dimensional Schrodinger equation, for large values of (T , as
~) dt - B ow s Ew
YOS h n3
We set KA= A, , and note that
e §‘° - 1"30 +- 9(01
e =z - = or W 2 =

The reason for introducing a potential of the form

L =32 4 de

= L o om , as we shall soon see, is that the

solution of the Schrodinger equation for this potential can be easily

expressed.
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it was noted from the numerical calculations that V1
approaches this limit ~ 3 from above, If we define V7o
as the value for which FLS Vi is within 27 of its limiting value,
e can be calculated numerically. Such a calculation indicates
that o & be A® . On the other hand, oA,
has a value of .157A°,

We now define a potential V3( ¥2) in such & manner that
V3 (v ) g v, (L ) at every value of e o Then showing
that Vg ( v* ) has no bound stateswill show that Vi ( fL ) has no

bound states also,

We define V3 ( (v ) by the relations

Valn) = Viin)  , ©$d R <Ne

; 3 , ) _
ng3=i%"%%+%a>, No {0 $ 20 4-20
K n

Consider the solution of the one-dimensional Schrodinger

equation for V3,

P
AN u VB (Q\) woo=0
K> &Wl 4-21

for zero enexrgy.

For R 2> Ne , the solution of this equation is
", T ocadesy
- o/R‘" IS A OQ
W= e &%%Q, e doit |
) 422
ne “

We shall assume, for the moment, that uJ  does not
cross the axis in the range & { R { e » This can be

verified by numerical calculation.
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Since we further require w  and @~ﬂ' to be
L
continuous at v o » we have B> 0, 1In order that V3

show no bound states at all, we would then have to show Co 2 ©

From the relations

PHLonS o/
wine) = e
: . d?/
k@:ﬁ’u) = As  ousr {7e) &+ Co & Re
&n R=Do nol
we find _do /i [ ) _de uy L)
QG = L kb\\.m nca\
4-23
The condition (, 20O becomes
Lt :
\EL hw) = Ko
(VA oA (7 /R:DO L=

In order to verify that this 1s so, equation 4-20 must be
solved for the region 08 < po .
As we saw previously, t&thﬁ , and therefore ikr(h} s

must be %ePo 3L v:o . In order to numerically integrate equation

4-20 in the region O § L4 e one other point near
A Vs
=0 is required. This is found by noticing that o
cat nao o We can then approximate Vg ( 11 ) neaxr the

origin, by

\ — o~ Q
Vil F ~6Gn v + . o

425
Substituting a series expansion of kALCl) ,
valid near =50 , into equation 4-20 enables us to obtain
the first few coefficients of powers of ft in the expansion

of u in terms of F and G, which can, in turn, be found from the

explicit values of V_ ( V1 )at >0 and one neighbouring point,

3
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This procedure was carried out, and the numerical integration
performed on the Bendix G-15D digital computor at the University of
Manitcba. The result was that
T duw |
L s Ci“)n: buh”

6.3800 A°,
while o o = ,1574° .

This means that E=0 is lower than the least eigenvalue
for the Hamiltonian with V3 as a potential. There are no bound states
for V5 and therefore no bound states are indicated for the hydrogen
molecule~positron configuration when the molecule is in the state

defined by X (mx, @3) .
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CHAPTER V -

CONCLUSIONS

We have considered the interaction of two protons, two
electrons and a positron from two points of view.

The first investigation, a variational calculation of
the average energy for a configuration which represented a positron-
ium atom bound to a hydrogen molecular ion did not indicate any
binding. Since the variational method gives only an upper limit
to the actual energy of the system, however, we are unable to
conclude definitely whether or not a positronium atom will attach
itself to a hydrogen molecular ion.

It is not unlikely that a better choice of wave function
for variation could indicate a binding between the two systems.,
Such a wave function should describe the H2+ ion better from the
viewpoint of concentrating the electron more in the region between
the two nuclei, Also, mutual repulsion of the electrons, and the
repulsion of the positron from the nuclei should be incorporated
into the trial wave function., Such refinements would, however,
greatly increase the complexity of the integrals to be evaluated.

The second investigation considered the Coulomb potential
which a positron experiences in the region of a hydrogen molecule.
This was accomplished by assuming that the molecule can be described
by a function ¥ (EL\\ [13) , where 2 and 3 denote the electrons,
and the total wave function is of the form C& {ggxﬁ X ({1&\ [233
where the subscript 1 denotes the positron. A wave function of this
type gives the electrostatic potential for the positron averaged over the

positions of the electrons.



With the function CK(JEF\ §E3} chosen, a potential
well fo: the positron was found, but it was insufficiently deep
to cause binding of the positron. However, the result of this
investigation is also inconclusive, since we have been able to

show only that the positron does not bind to the molecule in the

manner suggested,

43.



APPENDIX I
DERIVATION OF THE VOLUME ELEMENTS AND EVALUATION OF CERTAIN INTEGRALS.

We consider first the element of volume in the coordinate
system ( Tla, riw, ¢ Y. Let us define a spherical polar coordin-
ate system with origin at a , and polar axis along the line

ab. .

This configuration is illustrated in figure Al-1

Fig. Al-1

The relations between the spherical polar and prolate

spheroidal coordinate systems are

it= Mo
2 EY QU
~1 -
%: R"\'“Q, b
}‘?§Y1Q) i
4
I1f we imagine a cartesian coordinate system ( X\a’):% )

as illustrated in figure Al-1 as well, then the volume element is
— % 2N )
AT-Adndhy dhz = & dna @kﬁ# Al-1
\ N iy @
—_—f % -&\
where 4 in& Ny i) is the Jacobian of the transformation
between the (x,y,z) coordinate system and the ( Vi, ¥iyn ) @ )

coordinate system,
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Using the spherical polar coordinate system as an inter-

mediate transformation gives

avsyg| ¢ RN i SN BV N Al-2
\n & 9] (ne e B
o ﬁ“}% Ry
where J | = {1 S , and
\ noe G
/A o O\
ne ¢\ %
\ﬁcx My :}5 i o
\ O ) Lj
YR
BRTRN JiThad e
oy ey 2 Rl
M - £ -~
where | = R +ho -y Al-4
Writing everything in terms of \Tla, Wiy, @} s glves
\ [ oy Y Camy®
T - 211
P T BN A T R
\no my 6 \ é\——s:""“}?\ N
2 e Tin
VR
Then d€= o Mo dng dove L Al-5
BN

where e~ R $ Mo s Ryfle
o 4 N {0
o & ¢ gaw
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We also wish to obtain the volume element for the

( ¥ )”?L3i§ ) coordinate system, where
€ Rex Vs
- R
R Al-6
@ = <?

The volume element for this coordinate system is

%
(R R\ s dondo
dv= J | “.X§ . ; gj&f)\s\,?\i{
ermed LT @)
Cer_on ) = e me &g A d
= RLET-TY ; ® ?§@5$a{\?
¥ A
Al-7
where 1 fi Sy ®
o SR (N
LG & Al-8
49 W

In the evaluation of the potential and kinetic energy terms,

integrals of the type

=0 iy ™
N (o s \ ii{-mm—bm, " .
O R A U
Tomam V0T j gé Ly Tl ova Oy
J
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i

Ty

often occur, The first type, for the case %> = O , has been

extensively tabulated by Darewych 1, and the particular integrals
required for this problem are listed in the following pages.
For the case a=b, it is simpler to make the transformation

g ‘
, il} coordinates, to obtain

fa“
(¥b

to

i ey

§ H H
N % [

~ .
3

y toy e |
g e <Ux\‘&x> N

—M“K
)
ks
&
&
{2

These can also be integrated explicitly, and the ones required

are listed in the following tables,

The integrals gmn(a,b,r) which arise cannot be evaluated

in terms of well known functions, but are best expressed as convergent

infinite series,

1. G. Darewych, Thesis, The Interaction of a Positron with a Negative

Hydrogen Ion, University of Manitoba, 1961.
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Table of Integrals Used:
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EVALUATION OF ( Y, V¥ ) FOR THE HYDROGEN MOLECULAR ION-POSITRONIUM

CONFIGURATION

Due to the symmetries of the Hamiltonian and the wave function,
the quantity ( Y,V ﬁ{ ) can be written as

i‘“é\\i“&}:_ ,““{L;; Yyl "ﬂ&n \\é\)'r {04\.,_. “%\)f\ﬂ\\g“ %-%\\}gun_q%j

nﬁa/j
FRe ‘N ke
AR TR ) B L) ek, oo o)

Moy sz* [ \ «.‘(‘._Q:f L ATY y
—— ‘(‘\!(\‘, n\baj QT &:‘{\} ‘ﬂé\&v\} w{‘“?\)mﬁ;i(a} é‘%‘\‘l% 3)*.- \1&‘“. \‘\?nx"’ }i

i

»é«"“’ j
‘F%Q\w\aL “X’\% X U,y L Y} = %W, - j@'m:'. WLy 2
o, ) \ oo, > i BN I SUMV Ly {Q}
HE A Thing “gé /53;"‘{\)» vé‘j""@;: \Q\BL N IS S VNN TR
ae } Ty * L e fl \ W h}\é"vyé“j
By Qa\ltya% U A NS IR PR SURETRRIA Y
e, LM ot AN A e £ I (108 MO0 B8
) e s Y T y ):ug A
)
A2-1
where the quantities Y1, (i=1,2,3,4) are defined by equation

3-13, and in the expressions T oana + , the upper sign refers to the

symmetric function, and the lower one to the antisymmetric.

The first term }%%QEQ\WE 3 does not have to be evaluated
f, s )
explicitly, since we are seeking to evaluate IN=Y = %%}%g?
YA
and this term merely contributes ‘&l/%\ to the final result.

The other quantities contained in equation A2-1 are nine
dimensional integrals. Using the functions tabled in Appendix I ,

they can be evaluated. The results are as follows:
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where (y) =
where (y)
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means that the functions inside the bracket are evaluated for the

argument (2,b,R).
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EVALUATION OF é\E:? FOR THE HYDROGEN MOLECULAR ION:

We wish to calculate the average of the Hamiltonian for

the hydrogen molecular ion function,

' P Y 1 VU
”Q? = | £ +~ &

A3-1

and minimize this with respect to the parameter o/ » and with respect
to R, the internuclear distance.

The Hamiltonian for H2+ is

15"—\ - \%
e T AL I A

_ y
S { e e Ly A3-2

We can write the average value of the Hamiltonian,

{ay~ v |- (4 739) ¢ 250100 @)L 9 5] Lyl
{\\‘A\VB L RNEETS ( Rl My = 1

1
|
A A3-3

The quantities appearing in < E » are given below in
terms of the functions

ESEER YA 141
§ o, | 3 [0 cami-bra
N 15 : &N b\ﬁ ES i ,::2-.g v Y iy, 5 i
Y \ 3 n
3 Y gﬁz \ [ my fly Q«J{Amﬂ‘
3 J
o

in~t

A table of the functions is found in Appendix I.
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as a function of ©\ and R

—

The value of é\t‘>

was calculated on an 1.B,M. 1620 digital computor at the University

of Manitoba.

The best values of the parameter were found to be

A x 1030 o

R = 2a0

e

\E7= "15. 959 €oVe

These, as can be easily seen, differ slightly from the

best values found by Finkelstein and Horowitz1 » which were

A = 1.228207L, R = 2a0, and <& = -15.85 e.v.

1. B.N. Finkelstein & G, E. Horowitz, Z.phys, 48, 118 (1928)
ety ,
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APPENDIX IV

EVALUATTON OF THE INTEGRALS OF SQUARE OF THE LAPLACIAN AND THE SQUARE
OF THE WAVE FUNCTION FOR THE HYDROGEN MOLECULAR ION PLUS POSITRONIUM

CONFIGURATION

The integrals of square of the Laplacian for the hydrogen

molecular ion plus positronium configuration can be written

Ab4-1
Using the symmetry of " with respect to particles

2 and 3, we can express

where “ are defined by equation III-13, and the

integrations are carried out over the nine-dimensional configuration
space,

Similarily we can write

. .
beY [

Fam, s O
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As is shown in Chapter III, the integral of the square of the

wave function can be written

\Q(lé“rc = "%5 YT+ “’k\‘f’(\‘!’ab\t t vé\‘:‘j oot % Wowwdk T
G N 9

*
In all the abeve cases, the expression - refers to + for
the symmetric function and - for the antisymmetric function.
The specific values of the integrals arising in these

nine~-dimensional integrals are as follows.
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APPENDIX V 63.

SOLUTION OF POISSON EQUATION IN PROLATE SPHEROIDAL COORDINATE SYSTEM

We wish to solve the Poisson equation

P
T2V s - ww pL§) AS-1
where § N qs , are prolate spheroidal coordinates. In

particular,we wish to find V( t§\"\ﬂ\(’% ) for the density function

pif)se

-okR

-

If we first attempt to find an axially symmetric solution (gy. = 0

we can write

& S 1 . ;\“1‘
vV o= % 35%&3‘,\)[2/‘&.?;}&1“35)“}”)%&
RX [ §> «5«)1&53\_ 3% ] dhL ol a5-2
where 1 4§ 400
- ¢yl
5§ 9 3aT
We seek a solution of the form
ve ) = w L) RSB A5-3

Substituting this form into A5-1, and equating coefficients of

powers of ’“ gives the equations

fie X A i (9} ‘D\ N
Y %(% Al s -8 TR §{“§)

&%L oo g

[ % r,”\% VD»‘;“
L g )a - o = v WR L -
A | )
dSL S

1., P. Morse and H. Feshbach, Methods of Theoretlcal Physics,
McGraw~Hill, (1953), p. 1284,
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In the second of these, we make the substitution

v= 357~ w lE)

A5-5
and find
= <7 . ~ o \ff — Q ;4:;1
M [ (500se 0] + & {esd- 1] - TRIgLE)
aEr L 4 ARl . A5-6

An integrating factor is (2 %3“1‘ ). Multiplying through by

( 3 "‘ga-«g ) and integrating once gives rise to
.. X [{ g . % i, PR e )
oo wR L Bee) plaeg e A5
s

where Cy is an arbitrary constant.

- - AR €
This equation has the solution, when we set ¢(f)l=¢ 5 9
~ 8 : .
. 47 f ﬁ__d\R € - 3
olghs mwrd (et e 35 s 4

Loga™y \MR MARYS ai4RY3

A5-8
This then provides us with a solution for v (f).

AN
In order to find a solution for W\ %] » we multiply the first

equation in (AIV-4) by three and add to the second.

This leads to

Y% % ; N o £
é»_ {3&;\—&)‘} = -\ RS g(gij\“ji"m)&‘b
9% 50 )
vl ~aRE el e ~ARY ware 7
A TR § U_ble ue ‘igl‘% A5-5
fed : (AR - 33 |
(53 L LAR) {AR] {4R)

o
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when the form of ?Vﬂ is substituted in, Dl is another
arbitrary constant of integration,

Performing the integration and substituting for v leads

to the solution ®
v ~4R¥ co~dRY L § by s
AR DLy 2 e A - - e -2y
W, = L% TR \L £ {&R\l AR AR Rt @‘R)g} f
St I N
v O Jr:i,f\qg > ‘x{i
I - ~ARS/ 5 B B
C €32 i %3 v 3 &8
+ T (3€>-) 2 { 2.3 _
A t éc GEEY) MR ST w;,RﬁJ *
pagaREl L 4 35 ) £5-10
MARYY 2 (aR)3)
W b
* I[ 5 é‘ ‘Lﬁ ! % 3: \t i
~ (380G l-)waigzﬁjt .5 3 E? 4
\% sY Vi “i‘t%ih‘\j;lj

We impose the boundary comndition that V( ‘;,’}’L ) 0 as

L for every value of Tlo In particular, if W=o, ‘Jnh@) Wik

.o © . » . ]
and therefore wli}—=>0 as § — o This in turn implies
D2=0,

. \ o wj&‘”
We can then write the solution of V V = ~A4 @ as
5 =N o Y ‘*e?\z
)2 w Bl e Y Al >) where
e .~ 4R
v L enrl A mARY 3t e
wilg) =-WR 2 ‘

[
Ut
1

11

—_l
A

[y

A5-12
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In order to evaluate the constants, we impose the condition that

v ( §\1A ) be finite as g —> L ., Requiring v to be finite as

c.e b ew«ﬂ(%_ghw)u)

S —1 gives e

Requiring u to be finite implies that Cy=Dy

= 4R (AR
If we write JANERS [ k—g- T AR *\) we can then write

Y

these expressions as

_WR‘R‘E—:\R? ( - ‘E_g_ﬁ « 3AS

w\g) s N

v 3 a L8]y (’iﬂ}

d\RES St
~ 38y “‘*Rg k\é?_\}ﬁ\ué\ﬂg%\)&fi A5-13
J\’\)B @1_\) 3 ..J&
JO
L) - RY Joabsty \ St @” " o\Rf*“\)c}f
3_ 2 LARYP O\ (E¥-Y /
c>£l ey
£ 3 "Mi 338 Mm;s-‘)
AARY T \m/ % (4R)3 LS h
-9 6 %] A5-14
a@ﬂs J

This expression for V ( §\J§ ) can be arrived at in another manner.
The solution of the Poisson equation A5-1 is equivalent to

evaluation of the expression

\/ & §b‘”¥\u\ (i:’oJ \?(\7) (3- &B&Tn

A5-15

Where G ( v, fle ) is the Green's function for the

Laplacian operator. The Green's function is given by Morse and
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= Mo
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where — N Loy Se 3 P N e N VR B P W

I

where Em is the Newmann factor, €o =1

€.m=2 when ™ >0
AN
The functions n \’!333 are the g\gsmigml.-\ﬁgendre functions, and

. e g
the functions ‘== \g } are the Legendre functions of the second

kind, The Legendre functions of the second kind can be defined by
LAY AT Y i -%--ﬂé
a2 k%i‘ = L% HENY ‘“M ;% ~ L P a,{:} SEN k = ) A5-17
" EYNTTRLY (T VAR &7 =
M, \g) | 4
P ; o m oy =
and  Qw lz)s (07 (22 Qate)
SN

In the expression which we are particularly concerned with

o8t E&W

i S U R R \ —~é\R§ 3. B EE
vie A voob G el o 23 TeX ) A a7
U8 he o) = | Gl < R () g LS

| { 1 Py

NN &

1o °

the integration over the variable Ci) leaves zero in the double

2. 1Ibid, p-1291
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summation for all terms corresponding to m % 0. Thus we have

w )v\ )
5 L0050 2‘ 3 J,.r{ An \0‘; o3 Wy
gé kgu\ “i\e} :5 ‘x%‘i—ik \E‘ Lﬁﬁ\a‘.\} ?“"" L é\g)t) é \‘% \m& g@} ?\é‘} J\
J g /
v e A5-18

using the relations

.
1= iy

X

] [ET T B : w%! “%
= ES N VIR (R
~ 5’ .5

and the orthogonality

relation of the Legendrefunctions

4
P (B) Vo iz s 2 O
) A5 -1
~ \VJ"’\.?'-X} 5 9
~{
the integration over“y\gives
EX\ -] ¥ [ 5y "y
{ © ; A fe oy o, %y a4 ) feo Vs
e o\ (e ~arE e o L WP D 1SR E
8 =4 S g Ao g SGJ — & \(‘ AN {.55 POR#

[ 3e, Roj =\ UR@ 2l \ = TNy SARIRLY AL, _
v ‘\)v:;\"* g\ 8 3 Ly A5-20
] L J

L

It is worthwhile to note that the solution of V ( §a,éﬁe\$6 )

can be carried to this point for any density function of the form ? Ls)

since we have not yet made use of the specific form of ? LS
o e S
Substituting the specific form for . ’W’w ks\g and the
relation
1 Ae =11
PN { 3 Ae Y
U A5-21

we can now write
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If we write this as

A5-23

m.w\“.\u

A5-25

t forms
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where we have made use of the expl
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Using the relations

:&g
L anfgian g Seth
H(4R)3 ﬁz‘~§6“‘} A5-27
; a > -d B P 0 2 . A r;‘“«,w;
i et A g o g
B .y
~AR§q
-4 ASo
} A LARY3

~z~2§: ¥ 3

AR alar¥)

These expressions for and

are in agreement with

the expressions contained in equations A5-13 and A5-14,
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CALCULATION OF TERMS IN THE CONFIGURATION OF HYDROGEN MOLECULE PLUS POSITRON:

\We wish to express in explicit form the terms ( X, % )

and 1 ¥ e gl > /E}N\é‘?% s, both of which arise in the
.

definitiop;x ‘\of the operator H(}J given in equation 4-11.

First we consider ( X . X ), where & (1, 93.>

is
given by
roedlansnae) —d(ae s as) ’{w‘trzwmm\ ~d{fser 3 u)]
{’Y ':_C.E QJ + e, +le o j
| L Ab=1
Now
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Performing the integrations gives
LN 5 .
o on { 'éfﬁ'k ’.\%'\TD\ £ ‘o N P § . -~ ey
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HoA®
A6-2

We can also write

o 5 . e 5 -
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1f we denote

Vig -

kX

Yy

Q?J,,
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#

N
where ERAN

as:

was given explicitly in Appendix V, we
can write
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