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Abstract

Knowledge of forces, exerted on brain tissues during the performance of neurosurgical
tasks, is critical for quality assurance, case rehearsal, and training purposes. Quanti-
fying the interaction forces has been made possible by developing SmartForceps™,
a bipolar forceps retrofitted by a set of strain gauges. The unknown values of imple-
mented forces are estimated using voltages read from strain gauges. To this end, one
needs to quantify the force-voltage relationship to estimate the interaction forces
during microsurgery. This problem has been addressed in the literature by following
the physical and deterministic properties of the force-sensing strain gauges without
obtaining the precision associated with each estimate. In this thesis, we employed
different probabilistic methodologies such as bootstrapping, weighted least squares
regression, Bayesian regression and multi-level modeling in order to estimate the
implemented force on tissue using voltages read from strain gauges. We obtain both
point and interval estimates of the applied forces at the tool tips and calculate the
precision associated with each point estimate. As a proof-of-concept, the proposed
techniques were then employed to estimate unknown forces, and construct necessary
confidence intervals using observed voltages in data sets that are measured from
conducting surgical tasks on a cadaveric brain. Results indicated that the proposed
techniques are capable of estimating tool-tissue interaction forces with acceptable

level of accuracy.
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Chapter 1

Introduction

This chapter provides background information on the importance of tool-tissue force
interaction measurement in neurosurgery. The chapter elaborates on the underlying
motivation of this research, that is, to help neurosurgical trainees and residents have
knowledge of the amount of forces required to complete a surgical task by providing
information on implemented force on tissues during the performance of microsurgery.
A complete list of research objectives and questions is also presented in this chapter.
Finally, the research plan section describes how each research objective could be

addressed.

1.1 Background and Motivation of the Problem

Knowledge of the interaction forces in neurosurgery is essential in training process of
novice neurosurgeons and neurosurgical trainees. According to statistics, significant
amount of errors in neurosurgeries (more than 50%), are due to applying excessive
force to the brain tissue, that may result in tissue injury (Maddahi et al., [2016]). This

clearly demonstrates the necessity of avoiding the application of excessive forces.



Knowing the amount of interaction forces, would not only reduce damages caused
by excessive applied forces, but would also help neurosurgeons learn about safe
margins of forces when dealing with brain tissue. The safe level of applied force is
considered as a value between the maximum and minimum effective forces, and may
be very useful in the training of novice surgeons and trainees. Determination of safe
limit of forces help residents in neurosurgery acquire surgical skills by practicing
surgery on cadaveric brains, and even in clinical trials. Knowledge of force values
may also improves the learning curve significantly, since the residents can “learn-
by-doing”, instead of only “observing” experienced surgeons performing surgical

tasks.

On the other hand, novice neurosurgeons require years of experience as well as
multiple pre-clinical and clinical trials to become educated in dealing appropriately
with the brain tissues. Nevertheless, as the hours of surgeries are significantly
decreasing, the opportunities for gaining the appropriate experience for a novice
surgeon are decreasing (Reznick and MacRae, 2006)). As a result, there will be an
increasing demand for improving the efficiency of the learning process and providing

trainees with quantitative tools to assess their surgical skills (Gan et al., [2015).

Nowadays, simulation-based training of neurosurgeons is becoming an integrated
part of the neurosurgical training modules (Clark et al., 2017)). Simulations provide
surgeons the opportunity to rehearse the neurosurgical case so that they can learn,
practice, and acquire the experience in a significantly shorter period of time (Zareinia
et al., 2015)). However, to do this, it is necessary to find a reasonable relationship
between organ tissue and applied forces to the surgical tool. Simulators are mostly

based on simulation techniques, such as Finite Element method and Boundary



Element method, that are not able to provide very realistic information compared to
results obtained using an experimental study. There are several literature addressing
the design of simulators for training neurosurgeons (Rosseau et al., [2013; Marcus
et al) 2016)). Nevertheless, the effectiveness of simulation-based training highly
depends on the safe margins measured during an actual surgery. For example, if the
maximum (safe) force exerted to the brain tissue performing task A is 0.3 N (where
N is Newton), then the maximum allowable force during the simulation of task A

should always be less than 0.3 N.

Although, in microsurgery{l] and especially for training purposes, it is often
necessary for neurosurgeons to quantitatively measure the amount of force applied
to the brain tissue. However, there are not many appropriate tools to properly and
precisely quantify the technical aspects of surgical skills. Therefore, this training

process has remained mainly qualitative.

In order to provide force feedback to the surgeon, conventional surgical tools have
to be modified. This modification occasionally involves the addition of force sensors
to conventional surgical tools. As an example, Tanimoto et al.| (1998) proposed a
micro force sensor for a catheter, that is, a surgical tool for endovascular surgeries.

The force sensor measures interaction forces between catheter and blood vessels.

Authors claim that the sensor has reasonably high sensitivity and it is able to

measure even small interaction forces.
Several other studies were conducted to design surgical tools that are able
to efficiently measure the interaction forces in surgeries. For example, a team

of researchers at the University of Calgary, Department of Clinical Neuroscience,

)

'The term ”microsurgery” refers to a class of surgical operations performed by an operating
medical-grade microscope (Yasargil, 2013]).



performed series of research on force sensing, real-time force measurement and robot
assisted surgeries (neuroArmy, |1997). This group of researchers, under the project
neuroArm, addressed the problem of interaction force measurement and introduced
the idea of a SmartForceps™ (Zareinia et al., [2015). The SmartForceps™ is a
bipolar forceps equipped with several strain gauges that enables neurosurgeons to
keep track of the amount of applied forces. In SmartForceps™, the applied forces
to the brain tissue generates a change in the electrical resistance of the strain gauge,

and as a result, the voltage would change.

The goal in this thesis is to develop and validate several statistical tools in
order to find proper models that are capable of predicting the applied forces during
neurosurgery, using the observed voltages in the strain gauges of SmartForceps™
developed by scientists in project neuroArm at the University of Calgary (Zareinia
et al., 2015). This prediction capability not only enables neurosurgeons to apply safe

amount of forces during neurosurgery, but also accelerates the process of training

novice neurosurgeons.

1.2 Research Objectives

The main objectives of this research are as follow:

e Preliminary study to obtain high-level understanding of the practice of neu-
rosurgery, including terminologies, definitions, surgical tasks, and surgical

tools.

e Identifying and developing statistical methods in order to find a reasonable

statistical model between forces applied to the brain tissue and voltages read

4



from strain gauges.

e Investigating advantages and disadvantages of some important and commonly-

used applicable statistical methods.

e Developing necessary techniques to perform calibration 2-dimensional (2D)
and 3-dimensional (3D) SmartForceps™ using techniques such as multilevel

modeling, Bayesian analysis, and the bootstrap methodology.
e Validating the application of the proposed models in a real-world scenario.

e Comparing the performance of suggested statistical methods via simulation

studies as well as real data applications.

1.3 Research Question

In order to meet the above research objectives, among others, the following questions

should be addressed:

e What is the application of predicted forces in the real field?

e What are the statistical models that are more suitable for force prediction in

neurosurgery?

e How asymmetric loss functions can be used to provide more reliable force

predictions in the Bayesian context?

e [s it feasible to use a combination of statistical methods to further improve

the estimation accuracy?



e What are the differences between all available tools for 1D, 2D, and 3D forces?
And, what are the advantages/disadvantages of each method for each tool (i.e.,

1D, 2D, 3D)?

e [s there any obligation to filter the calibration data set?

1.4 Research Plan

1.4.1 Preliminary Studies on Neurosurgery

Understanding the underlying concept of this research requires some preliminary
knowledge about the performance of neurosurgery. This knowledge can be classified

into several aspects listed bellow:

e Gaining knowledge on instrument handling and becoming familiar with different

components of the forceps.

e Understanding important forces in a neurosurgical operation, such as dissection

(opening) and coagulation (closing) forces.

e Obtaining information about the range of effective forces in neurosurgery to

avoid injury or incomplete task.

e Studying the structure and applications of force-sensing strain gauges, as well
as information about the position of the configuration/position of installed

strain gauges.



1.4.2 Identifying and Developing Statistical Methods

The main goal of this research is to first identify and compare appropriate statistical
tools in order to predict applied forces during neurosurgery and possibly, develop new
techniques or use a hybrid of them in order to address challenges associated with our
real data problem. In the first step, it is essential to find proper statistical models
and quantify the relationship between applied forces and output voltages obtained
from strain gauges. The underlying problem of interest can be classified as an inverse
regression problem, that is called calibration. In calibration problems, the response
variable is observed and the explanatory variable needs to be predicted. The main
challenge is to use and develop statistical approaches that are easy to understand by
practitioners and are capable of constructing efficient point and interval estimates of
implemented force by surgeons using the observed voltages in stain gauges mounted

on the prongs of the medical forceps.

1.4.3 Important Features of a Proposed Statistical Model

Several factors are involved when selecting the statistical methodology for our
underlying calibration problem. Some of the key factors when selecting a proper

statistical method include:

e Time Complexity: This factor considers the time required to run a method
and obtain force estimations. For instance, some methodologies, such as
bootstrapping, require long run simulations, whereas other methods (e.g. |,
Eisenhart’s method) do not need any simulation and are therefore more time

efficient.



e Computational Complexity: This is a function of the number of steps and
complexity of the estimation required by the proposed method in order to

obtain the results.

e Accuracy: The accuracy, in the context of statistical estimation is defined in
terms of the bias, and the prediction’s Mean Squared Errors (MSE). Bias and

the MSE are inversely proportional to the accuracy.

e Available Options to Modify the Results: Some methodologies are able
to provide point estimation only (e.g., the naive approach), whereas other

methods are capable of providing interval estimation (e.g., bootstrapping).

The most important factor for this research is accuracy, since even small values
of excessive forces in this problem could be resulted in serious injuries. After this
factor, we should take time complexity into account to provide real-time results.
The last but not least significant factors are available options to modify the results

and computational complexity.

1.4.4 Applying Proposed Methods to the Calibration Data
Set

After a thorough investigation into available statistical methods and determining
which methodologies have the potential of further improvements, a few are chosen
based on their advantages and disadvantages. Selected methods should be applied
to the calibration data set. By the calibrations data set, we mean the training data
set obtained in the lab, that includes both applied forces to the forceps tips and also

read voltages from the strain gauges. This process helps us identify a reasonable
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relationship between voltages and forces, and enables us to predict the amount of

force in the future neurosurgical operations.

1.4.5 Application in Real Practice

Estimation of applied forces to the brain tissue during the performance of neuro-
surgery, not only improves the quality and efficiency of novice neurosurgeons and
surgical residents training, but also prevents damages caused by excessive forces
to the brain tissue (Zareinia et al., 2015)). However, to ensure that the proposed
statistical methods are capable of estimating true amount of applied forces, we will
implement the proposed methods through conducting surgical tasks on a cadaveric

brain.

1.4.6 Comparing All Suggested Statistical Methods

A comparison of all statistical tools, employed in the thesis, is required to identify
the most applicable method. This comparison is mainly based on the trade-off
between the items explained in Section A summary of this comparison will be
provided in Chapter

1.5 Organization of the Thesis

The organization of the thesis is as follow. Chapter (1| provides detailed description
of the problem and explains the significance of force estimation in neurosurgery.
Identified research objectives and questions as well as a plan to scientifically address

each question are also described in Chapter [1}
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Terminologies, definitions, and concepts commonly encountered in the field of
neurosurgery (e.g., surgical equipment, surgical tasks, force measurement devices)
are briefly described in Chapter [2 This provides the necessary basis for the rest of
the thesis. Furthermore, a review of statistical calibration methods is also presented

in Chapter

Theory, application, and results of the bootstrap technique and Multi-level
modeling, are presented in Chapters [3] and [4] respectively. Some concluding remarks

as well as a few future research plans are presented in Chapter [5
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Chapter 2

Literature Review

In this chapter, background information on force sensing, in the context of neuro-
surgery is presented. We explain the process of obtaining force data using Smart-
Forceps™ and provide some preliminary information on the statistical tools that

are often used in calibration problems.

2.1 Force Sensing in Neurosurgery

Measuring the amount of interaction forces implemented with a surgical tool by
surgeons provides a unique opportunity in order to better handle surgical tools and
more appropriately interact with tissues. To this end, several new methodologies
are developed to employ force sensors and measure the interaction forces during the
surgical operations. One solution is to perform operation using a computerized and
sensorized machine such as surgical robotic manipulators. Early traces of research
in the area of robot assisted surgery and intelligent surgical tools, date back to the

late 1990’s and early 2000. Taylor et al. (1995)) and Berkelman et al| (2003) are

examples of such attempts. A more recent example is [Uneri et al. (2010)), in which a

11



microsurgery robot with micro-force sensors was used for an eye surgery application.
However, due to obvious risks and higher safety margins associated with neurological
surgery (also known as neurosurgery), there has been less attempt and willingness
to perform experiments with technology-assisted tools for these types of surgeries.
Nevertheless, there are multiple ongoing research on this topic. Examples of such

studies can be found in neuroArm| (1997), Beretta et al. (2016) and |Yin et al.| (2016).

Recently, |Gan et al.|(2015) conducted a pilot study to develop the SmartFor-
ceps™ by adding force sensors to regular surgical forceps. Authors evaluated
the functionality of their developed SmartForceps™ by performing three different
neurosurgeries on cadaveric brains. The pilot study provided surgeons with real-time
dissection and coagulation force data. The study also claimed that more than 70%
of the interaction forces are between 0 N and 0.3 N. It is also mentioned that applied
forces are dependent on a variety of factors such as tissue type, region of the brain

and the surgical task itself.

Researchers of the NeuroArm group focused on methodologies to enhance safety
in neurosurgery (neuroArm) 1997). In particular, they conducted several research on
robot-assisted surgeries and the use of SmartForceps™. For instance, in Maddahi
et al.| (2016), the SmartForceps™ was employed to perform fifty different neurosur-
gical tasks. The goal was to measure the peak force values during the performance
of a set of coagulation and dissection tasks. This work also presented the limitations
of different sensory systems such as altering the shape of the forceps that is not of
interest since it would change instrument handling as well as the amount of the force

needed to be applied.
In another research by the NeuroArm group (Marcus et al., 2014)), obtaining

12



quantitative data on microneurosurgery with tele-operated robotic system was
explained. While this data was measured with a blade and Rhoton dissector that
was held by a robotic arm, it was not very helpful in presenting true forces, because

it was dependent on the arm feedback mechanism.

Furthermore, in Maddahi et al.| (2015), four different robot-assisted neurosurgeries
were conducted using a haptic hand-controller, and the amount of forces, exerted
to the brain tissue, were measured. In Maddahi et al.| (2015), NeuroArm surgical
system, an image-guided computer-assisted manipulator, was employed to perform
those surgical procedures. Maximum amounts of interaction forces were reported as

1.67 N, 1.65 N and 1.68 N along x, y, and z axes, respectively.

In Wang et al.| (2015), development of commercially-available SmartForceps™
(Codman & Shurtleff Inc., MA, USA) that is capable of measuring the interac-
tion forces and quantifying the displacements, was explained thoroughly. This

development follows several steps that are summarized as follow:

e Three pairs of strain gauges was installed on the two prongs of the SmartForceps™,
3 on each prong, in order to keep track of forces along z, y and 2z axes. As
shown in Figure 2.1] forces along z axis are measured through strain gauges
S and S,. Strain gauges S3 and Sy are in charge of force measurement in y
direction, and the last two strain gauges, S5 and Sg, keep track of forces along
z axis. Performance of all pairs of strain gauges was examined by implement-
ing different surgeries on cadaveric brains. [Zareinia et al. (2015)), compared
the results obtained through installing only one pair of strain gauges versus

mounting two pairs, having the same experimental conditions. The comparison
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showed that having a pair of strain gauge on each prong (having two pairs
in total) would result in more accurate measurement. An specific type of an
electric resistance wire strain gauge was used in this project (CEA-13-125UN-
350, Micro-Measurements, Wendell, NC, USA), and the output obtained from

all these strain gauges was voltage.

4

Xf
S5
SIQ U
.
S2 »53 Xy
® 1
S4 36 Yr

Figure 2.1: Graphical illustration of 6 strain gauges mounted on the prongs of
SmartForceps™. Where, applied forces along = and y axes are measured through
strain gauges Sp, Sa, S3, Sy, and forces along z axis are measured by strain gauges
S5 and Sg. Source: Maddahi et al., “Quantifying workspace and forces of surgical
dissection during robot-assisted neurosurgery.” The International Journal of Medical
Robotics and Computer Assisted Surgery 12, no. 3 (2016): 528-537.

e The Fastrak software (Fastrackl 2017) was employed to record the data.

e Coordinate system considered for calibrating the SmartForceps™ is shown in
Figure (x, y or z).

e A force sensor, Titanium Nano 17, was also employed to measure the amount
of force in Newton. Force reading is required to find reasonable relationships
between output voltages read from strain gauges and the observed forces

obtained from the force sensor.
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(a) Calibration along z; axis

(b) Calibration along y; axis

(c) Calibration along zy axis

Figure 2.2: Coordinate system considered on the bipolar forceps tips during the
process of calibration. Source: Wang et al., “Development of an instrumented surgical
setup for quantifying displacement and force in surgical dissection.” In Proceedings
of ASME international mechanical engineering congress and exposition. Houston,
Texas, USA. 2015.

Variety of techniques as well as different sensory systems, as mentioned in

(2015), were employed to keep track of the amount of exerted forces during

surgeries. Two of those applicable techniques are strain gauge (load cells) and
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pressure-based tactile sensors. According to |[Zareinia et al.| (2015), among all types of
sensory systems, strain gauges are the most popular. This is mainly because strain
gauges are relatively cost efficient and provide reasonable robustness. Furthermore,
there are normally minimum complication in the implementation and operation

when using strain gauges.

Employing the SmartForceps™ equipped with strain gauges and using the Nano
17 sensory system, the NeuroArm group was able to calibrate the SmartForceps™.
A calibration data set provided by performing different surgical tasks on cadaveric
brains. The calibration data is crucial to find proper statistical model between read
voltages and exerted forces. The model should be capable of predicting the amount
of interaction forces for future surgical operations. The governing equations and
operational principle of strain gauges are briefly explained here. However, we should
point out that comprehensive explanation of concepts such as mechanical stress,
strain, tension, and their relationships is available in Shigley et al.| (2004)). Most of
the equations in this section are presented without details and proofs. Interested
reader may refer to available handbooks on Mechanical Engineering with focus on
mechanics of material for further explanations (e.g. see Potma, (1967) and Window
et al|(1982)). For the purpose of our work, it is sufficient to mention that these
equations are obtained using the mechanical characteristics of the material and

structures of the sensors.

The design of the strain gauge is based on the Wheatstone bridge idea originally
introduced by an English Physicist, Sir Charles Wheatstone (1802-1875) (Hoffmann,

1974). A simplified version of the Wheatstone bridge circuit is shown in Figure .
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R4 R4

R2 R3

3

Figure 2.3: Wheatstone bridge circuit.

In Figure 2.3 R; through R, denote resistors in the bridge circuit. If the corner
points (sometimes referred to as the nodes) 2 and 3 are connected to a known voltage
source Vg (known as the excitation voltage), an output voltage Vi appears between
nodes 1 and 4. The magnitude of that voltage depends on the ratio of the resistors
Ry : Ry and Ry : R4 (Dally et al., [1983)). Using a similar concept, in a strain gauge,
applied mechanical strain is transformed into a proportional change in the resistance.
Let us briefly explain the role of strain gauge in the context of Wheatstone bridge
circuit.

Consider the Wheatstone bridge circuit shown in Figure[2.4] In this configuration,
one of the resistors in Figure (Rj3), is replaced with a strain gauge (Hereafter is
called Rg). A particular class of strain gauges use a wire (uniform conductor) of
electric resistivity R, length [, and cross-section A. The resistance of the wire is a
function of the geometry and can be obtained by R = %, where p is the resistivity

of the material of the wire. Figure [2.4], presents the strain gauge that captures forces

in x direction, configuration for the strain gauge that captures forces in y direction
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is similar to this.

Strain gauge

3

Figure 2.4: Simplified strain gauge in Wheatstone bridge configuration.

Furthermore, assume that the strain gauge is perfectly attached and bounded
on the surface of an object. The object in this case is the smart forceps. In this
scenario the strain of the strain gauge wire is proportional to the strain of the object.
Therefore, alternation in strain (deflection in wire), changes the electrical resistance
of the circuit. The rate of change of the resistance can be defined as (Zareinia et al.,
2015))

dR dl dA dp

Note that other resistors in the circuit are chosen to be R (all with equal resistivity).
In this configuration, if the nominal resistance of the strain gauge is R4, the output
voltage of the circuit (Vp) would be zero, only if R = R,. The bridge in this situation
is said to be in balance. However, if the resistance of the strain gauge changes due
to strain, V) would not be zero. By measuring the change in the electrical resistance

of the strain gauge (AR), average value of strain for the object can be obtained.
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As shown in Hoffmann| (1974) and |Zareinia et al. (2015)), for a constant strain
gauge factor (5) and a constant excitation voltage (Vg, and Vg,) there exists linear
relationships between axial and lateral strain (e, and €,) and the output voltage of

the Wheatstone bridge (V) given by

4V, 4V,
€x & , €y R )
Ve’ U SV,

(2.2)

According to , the amount of mechanical strain is measured given that S,
Ve and Vg, are known. S is provided by strain gauge manufacturer and excitation
voltages are obtained from a voltage regulator. In addition, the amount of stress
is proportional to the amount of strain by the so-called modulus of elasticity, also

known as the Young’s modulus (E,,,), presented by

A4E,,Vo
O = Eymeac ~ SZ‘//E;(: ’
(2.3)
1B, Vs
oy = Eyne, = SV,
Yy

where 0, and o, are the amount of stress, and £, is the modulus of elasticity

(Zareinia et al., 2015).

In [Zareinia et al.| (2015), it is explained that by considering the configuration
similar to the one in Figure [2., when a tension loading is applied to the wire, strain
in both the axial, and the lateral direction is observed. The so-called Poisson’s
ratio (v) defined the correlation between the axial and the lateral strains of the wire.

Zareinia et al|(2015) defined the relationship between input stress and output strain
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in a forceps equipped with two pairs of strain gauges by

() - (500 (0) e

where o, and o, are the input stresses and €, and ¢, are output strains along = and y

axes, respectively. Metals have a very small Poisson’s ratio; thus the diagonal values
in (2.4) are expected to be significantly greater than off-diagonal values (Zareinia

et al., 2015).

Based on ([2.4), having an applied force in z direction, o, > 0 and o, = 0, since

the amount of v is considerably small, the amounts of strains would be:

—0y, —0V

- . (2.5)

Therefore, force in x direction would create strains in both z and y axes.

2.2 Statistical Calibration

This section describes the necessary statistical definitions and terms constantly used
throughout this thesis. A brief overview of the methods used in the statistical

calibration is also explained.

2.2.1 Necessary Definitions

In simple linear regression, values of the response variable y, also known as the

response variable, are regressed on x values, or explanatory variables. The goal is to
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predict the value of the response based on the observed x value. However, in the
calibration, this trend is reverse. In other words, we are interested in predicting x

values, where y values are observed.

In calibration studies, there are two main strategies: controlled calibration, and
random calibration. In random calibration, researchers do not have any control
over the data set, and they only observe and record data. However, in controlled
calibration, researchers design experiments such that they are able to control which
values of explanatory variables should be included in the experiment. This would
enable them to, for example, control the explanatory variable values to be in an
specific range. This study falls into the category of controlled calibration as in the
process of collecting necessary training data sets, explanatory variables (i.e., forces
in each direction) are fixed, starting from a minimum value in a range and gradually
increasing by a fixed amount to reach the maximum force. For each value of the
applied force in different directions, voltages are recorded from different strain gauges
that are implemented in the forceps. The test data consists of observed voltages in
practice, and the goal is to estimate the implemented force by the surgeon associated

with observed voltages.

Calibration has widely been used in areas such as univariate and multivariate
linear regression (Osborne, |1991, Besalu, 2013), nonlinear models (Ni et al., 2014,
Schwartz, |1977)) as well as spline regression(Carey and Yee, 1992). As explained
in (Osborne, (1991)), statistical calibration, also known as inverse prediction, is
highly related to instrument calibration. Nevertheless, statistical calibration is more

complicated than instrument calibration.

There are two types of calibration: comparative versus absolute calibration. It is
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necessary to distinguish between these two types since they are conceptually different.
While in comparative calibration two instruments or methods are calibrated with
respect to each other, absolute calibration mainly deals with one measurement
approach that is not standard, and comes with minor errors. From this point

forwards, the term calibration refers to the absolute calibration for simplicity.

Calibration approaches can be performed using univariate calibration and mul-
tivariate calibration. Considering each category, and as we explain later, there
are different statistical methods that are applicable in univariate and multivariate
calibration problems. Some of the well-known methods in univariate calibration
include: classical regression (Besald, [2013), inverse regression (Parker et al., 2010)),
Bayesian methods(Hawkins-Daarud et al) 2013), and non-parametric approaches
(Rueda et al., [2010). The first three methods will be explained in Sections and
2.2.4] The non-parametric approach was not part of this study and as such will not
be explained here. Interested readers are referred to |[Lwin and Maritz| (1980) for

detailed explanation of this method.

In univariate calibration, we deal with one explanatory variable ”z;” and one
response variable, 7y;”, where x; values are measured without any error, while y;’s
are calculated having some errors, ¢;’s. The linear relationship between the response

and explanatory variables is defined as follow:
Y :B0+51xi+6i> 7= 1,2,...,71, (26)

where ¢; ~ N(0,02). Having (2.6), 3, and j3; are obtained using the training data
set, that contains (x;,y;)’s pairs and following either the maximum likelihood or

least squares approaches.. Then, observing the y values in the test data set (that
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includes only y values) x values can be estimated as:

@:%g%. (2.7)
1

Here, one needs to assume the test data follows the linear model assumption used
in the training step, that is y; = By + lej +¢; with ¢; ~ N(0,03). This is the

assumption that does not necessarily hold in real application.

2.2.2 Classical and Inverse Approaches in Calibration

In this section, two of the most important predictors that are mainly used in statis-
tical calibration are presented, namely classical and inverse predictors. Statistical

characteristics and comparison of these two methods are provided.

The following notations are frequently used throughout this section:

n n n

S:L’y = Z(IZ - f)(?JZ - g)a Sac:c - Z(xz - j:)Qa Syy = Z(yl - g)2’ (28)

i=1 i=1

The Classical Predictor

In [Eisenhart, (1939)), the following estimator, which is obtained through regression
of y on z, is denoted as the classical estimator. Mathematical formulation of the

classical predictor is as follows. Let X and Y be two random variables, such that
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Suppose we have the training data set as (z1,v1), (Z2,%2), ..., (Tn, yn). The least

squares estimators of model (2.10) is obtained by minimizing the Sum of Squared

Errors (SSE), that is Y7, (y; — Bo — f124)?, resulting in

B = and [y =7 — 7.

Suppose we observe y1, Ys, ..., Y, Without knowing their associated x; values. one

can rewrite (2.10]) to obtain the classical predictors of x}s. To this end, working with

%

i= 0+ 22— ) 2.11)
results in
A~ — Sxm _! _
xc =T + Sxy (y y)
R (2.12)
_ (¥ — bo)
Io

where ¢ is the mean value of the observations yi, ya, ..., Ym, and Says Szz, T and Yy

are defined in (2.8), ([2.9), and it is assumed that 8, # 0 . It is easy to show that,
the classical predictor, .., is also the maximum likelihood estimator of x if the errors

follow a normal distribution as in and .

The classical estimator has two major drawbacks (under the commonly used
normality assumption). First, its MSE is infinite for fixed z;’s and finite n. Because
when Bl in (2.12) is normally distributed, the probability of Bl = 0 is not zero (n is
the number of calibration data points). Second, its mean value is undefined. These

drawback are due to the fact that Bl is normally distributed independently of v;’s,
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and the variance of Bi is infinite. Therefore, z. has undefined mean and infinite
1

variance and consequently infinite MSE (Williams, [1969)).

The Inverse Predictor

Krutchkoff| (1967)) introduced another estimator for the calibration problem, that is
called the inverse predictor. While in the classical predictor it is assumed that x;’s
are fixed, in the inverse approach, it is assumed that z;’s are also random. Therefore,
instead of regressing y;’s on z;’s (as was the case for the classical predictor), in the
inverse prediction approach, z;’s are regressed on y;’s. The model in this case is
given by:

EX=xz|y)=v+nly—-1), (2.13)

and the least squares estimators of the model (2.13]) is obtained by minimizing the

SSE, with a minimum value given by > (z; — 90 — 91 (y; — §))?, where,

. Say
f)/l f—
Syy

and Ay =7,

and as before, S,,, S;;, T and g are defined in (2.8) and (2.9).

Considering above formula, if we observe y1,ys, ..., Y, Without knowing their

associated x; values, the inverse predictor would be

n

Br=3+ 22 — )
Syy

(2.14)

=40 + 7 ,



where 7 is the mean value of ¥, vs, ..., Ym at the estimation stage, and 7 is the mean

value of y1, s, ..., y, at the calibration stage.

Inverse predictor might initially appear to be more straightforward than the
classical predictor, because it does not need inverting the regression model to
provide an estimate for the explanatory variable. Nonetheless, the basic regression
assumption that insists on independency of errors (¢; = x; — 40 — 1y;) and y; values,
is not valid in inverse predictor. Also, in many experimental settings such as the
one we consider in this thesis, the explanatory variables are fixed and do not satisfy

the required assumption in the inverse approach.

2.2.3 Comparison of the Classical and Inverse Predictors

Krutchkoff] (1967) conducted a Monte Carlo simulation study to support the idea
that inverse predictor is better than classical predictor, since its MSE was uniformly
less than the MSE of classical estimator. However, in Berkson| (1969) it is shown
that when S, is not very small (or z;’s are not very close to = in (2.8))) and g—l

is small, the asymptotic MSE of the z. is smaller than that of Z;, where o is the

variance of the errors.

As mentioned in Section [2.24] the MSE and the mean value for the classical
estimator (Z.) are not finite, but by truncating B, such that the probability of
B, = 0 is close to zero, one can make the MSE and the mean finite. Considering

Tchebycheft’s inequality given by

0.2

P(|Bl - 51|Z K) < m, (2.15)
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where K > 0, the probability of Bl being equal, or close to zero would be very small

if Sy is large and |£-| is not large.

Lemma 2.2.1. Suppose Y; ~ N(By + Bixi,02), and we observe yo. Assume that we
are interested in estimating its corresponding X wvalue denoted by xo. The asymptotic
Bias, MSE, and variance for the classical predictor ., are obtained as follow:

0.2

Bias(Zo.) =~ 3. (xo — T), (2.16)
R o? 1 (z9—1)
Var(Zo.) ~ 5—12(1 + - + TS ), (2.17)
O'2 1 (33'0 — ZYJ)Q (£C0 — .fi'>20'2
MSE(Zo.) ~ —(1+ — . 2.18
Stmilarly, for the inverse predictor To; we have
Bias(ior) ~ —(@—3) (2.19)
1 + BlS.’L’Z'
(n—1)02
O-QSQH: (xo _ j)?
tor) & 14 =+ —— 2.2
Var(Zor) 25, + (1 — 1)02( + - + 5 ), (2.20)
0% Sea 1 (o — 1) (20 — 1)
MSE(Zor) = 14— . 2.21
o)~ B et )y )

Proof. In the regression model ([2.10]), estimates of coefficients are normally dis-
tributed as follow

72 2

By~ N(B1, ), and By ~ N(Bo, 02(2 + £-)), and Cov(fo, B1) = 2=,

X
rxT

where 02 is the variance of errors, S,, and T are defined in (2.8)) and (2.9)), respectively.
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Since the classical and inverse predictors are the ratio of two dependent normal
random variables, to calculate above formulas, we employ the J-method to find below
expressions for the expectation as well as the variance of the ratio of two arbitrary

variables U and V' with finite variances. (Casella and Berger, 2002, [Parker et al.,

2010)
U EWU) EU) Cou(U,V)
E(=) =~ - 2.22
U, _Var(U)  E*(U) E(U)
Var(v) ~ ) + E4(V)Va7’(V) 2E3(V>COU(U, V). (2.23)
According to , the classical estimator for estimating Zy is
oo = 2P0 (2.24)

A

The Bias, variance, and MSE for the classical estimator is calculated as follow:

BZ-CLS(.C%OC) = E(.i'oc — l’g)

= Elfoc) = %o (2.25)

:EijBO_ ,
T

where, E(yo — fo) = fizo and Var(yo — fo) = 0®(1+ 1 + ).
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Now, using (2.22))

2

Bias(&o.) &~ xo + (xg — ) — o

%Sma:
2
o _
~ 75 (xo — T).
1°Pzx
Also, following ([2.23)), we get
Var(Zo.) = Va?"(y0 - BO)
b
0'2 1 (330 — f)2
~—=(1+—
ﬂf( Ta s )

Finally, the MSE for the inverse predictor is

MSE(z.) = Var(io.) + Bias*(Zo.)

o? 1 To — T )2 To — T)%0?
~ G T BT,
For the inverse estimator
Zor = Yo + Y1 (vo — ), (2.26)

the Bias, variance, and MSE are calculated as follow. For the Bias, we have
Bias(:%m) = E("A)/o + "A)/l (yo - :lj) - .1'0), (227)

where, E(%) = Z, and since 41 = S;,(S,,) " is independent from yo, we can rewrite

EZD) s

B’ia8<f0[) =T+ ﬁ1<1‘0 — SZ’)E(”S@) — Xy.
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Considering that 47 is the ratio of two random variables and using (2.22)) and ([2.23]),

given below expressions

E(Syy) = B1Suas  E(Syy) = (n —1)0” + 528,

Var(Sy,) =2(n — 1)04 + 402,8359096, Cov(Syy, Syy) = 281028z,

it is easy to show that

~ Blsxx 1 ].
EH) ~ 5 5 +o(—) ~ e
— n—1)o2 )
(n=1)o* + BiSea 7 LE 4,
and
N 0255,;1; 1 (1130 — 57)2
Var(x()]) ~ BlZSxx + (n - 1)02 (1 * ﬁ * Sxac )

Finally, we are able to calculate the Bias and MSE as

o . (@o—2)B
Bias(Zor) =~ T + (El_ol)g—z)l — Iy
ﬁlszz + 51
(w0 —7)
ﬁ2S"L\’L ’
L+ (nl—l)a2
and
MSE(io;) = Var(zor) + Bias*(Zor)
N 0%S0a (1+ 1 . (2o — ;z)2) . (o — 2)°
~ 92 _ 2 82555 \2°
St (=D T n TS (1 )
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2.2.4 The Bayesian Method in Prediction

The Bayesian method in calibration has two common approaches, namely the
Bayesian calibration and the Bayesian regression. While the former employs Bayesian
concept directly to estimate the explanatory variable, the latter provides estimation
for the coefficients first, using the Bayesian method, and then uses the classical

predictor (2.12)), to predict the explanatory variable.

In this section, first the idea of Bayesian calibration is explained followed by a
review of some of the commonly used Bayesian models for the calibration problem.

Then, a brief description of the Bayesian regression approach is presented.

Bayesian Calibration

Bayesian calibration is one of the well known methods in calibration problems which
has been extensively studied in the past (Osborne, 1991} Hoadley, (1970, |Dunsmore,
1968). Suppose that Data = {x;,y;, ¢ = 1,2,...,n} is the calibration data set,
and we observe 1, at the prediction stage and we are interested in estimating its
corresponding xy. The Bayesian formula that is employed in the Bayesian calibration

problem is defined by:

P(zo | Data,yo) = f(Data, y, | ¥o) Plao) x f(Data,yo | xo)P(xo).  (2.28)

B fsz f(Data,yo | zo)P(x0)

where P(x | Data,yo) is called the posterior distribution, P(xq) is known as the
prior density, and f(Data,yo | o) = L(xg) is the Likelihood function of xy and is

defined as the predictive function of observations.
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According to (2.28)), Posterior < Prior x Likelihood. Because, the denominator

is the scale factor and does not have any effect on making inference.

~

In classical estimator, 5; cannot be equal to zero, since it appears in the denomi-
nator of z. (2.12). Therefore, one needs to test whether or not 5; = 0. Testing this

hypothesis is achieved through the F-Statistic defined by

(2.29)

where,

=1

According to , one can reject the null hypothesis (Hy : f; = 0), if F' <
Fo.1,(n+1-2), where « is the significance level of the test. The rejection of the null
hypothesis means that the classical predictor is not accurate enough. As Hoadley
(1970) explains, it can be concluded that the calibration data set (x;,y;) maintains
some information about the accuracy of the classical predictor, and we can give less
weight to the classical estimator when we fail to reject the null hypothesis, and more

weight when the null hypothesis is rejected.

Therefore, the Bayesian method would be beneficial in this case, since it sum-
marizes the available information on zy through observing the calibration data set.
In other words, the posterior distribution of xy would provide estimation through

conditioning the prediction on the calibration data set.

In the Bayesian approach, the first step towards prediction is to find the appro-

priate prior density for the parameter. Hoadley| (1970)) proposed a theorem to find
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the marginal posterior distribution of x.

Theorem 2.2.2 (Application of the Hoadley’s Theorem for non-centered data).

Suppose xq is independent of By, B1, and o, and consider a noninformative prior

density for the parameters, that is

1
P(Bo, f1,0%) x —. (2.31)
o
Then, the marginal posterior distribution for xoy would be
P(xo | Data, yo) o< L(x0) P (o), (2.32)
where,
1 1 (xg—17)?
L(o) = e =0t ( o Sy,

and 62 is defined in ([2.30]).

Proof. Following [Hickey| (2006)) and under the assumed model, we first write

0(Bo, B1, 0%,z | yo, Data) o< £(By, B, 0 | Data)l(Bo, B1,02, w0 | yo)- (2.33)

Now, the marginal posterior distribution of xg given yo and Data can be written as:

P(z¢ | yo, Data) < P(zq | Data) P(yo | xo, Data)
(2.34)
x P(xo) P(yo | xo, Data).

Suppose yo = fo + Bi1xo + €y, and,
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) 1

o] 0%~ N(0,0%), fo| o® ~ N(fo,0%(= + ;f ),
A 9 o? A —To?

pr| o~ N(B, S—m)7 Cov(Bo, f1) = 5

One can show that

A~ N 1 =)\2
(| %0, Date) x N (o + By, 21+ &+ 222 T0y ).

Now, under chosen noninformative prior for parameters and considering the com-

monly used inverse gamma distribution for o2,
o~ ? | Data ~ *(n — 2,6%),
where, 62 was defined earlier in , we will get
P(zo | Data) < P(zo)P(yo | o, Data)
P(x0)

~ 1 —Bo—B1m0)2\ n=1 "
(O oo+

[]

Remark: This is easily obtained as, if yo ~ N (8o + Brao ,0%(1 + 14 %)), and

N A A N x0—7)>
0% ~ x*(n —2,6%), then yo | xo, Data ~ t,_o(Bo + Prwo, 6>(1 + 5 + %))
Theorem 2.2.3 (Hoadley’s Theorem). Suppose we have the exact same conditions

as in Theorem except x;’s are standardized. The posterior distribution of x

given 1o and Data is defined by
P(xo | Data, yo) < L(xo) P(z0), (2.35)
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where,

(1+n+ad)"s" Ro_ I ;o
(1+n+ Ra3, + (25 +1)(wo — R23,)?) "7 F'tn—2

L(l’o) =

A~

62

Note that the parameter F in ([2.29)), is changed to F' after standardizing x;’s.

Proof. Proof is similar to the proof of Theorem hence omitted. However, one

can see |[Hoadley| (1970)) for a complete account for the derivation of the result. [

In Aitchison and Dunsmore| (1980) it has been stated that if the prior distribution

S$l‘
n—3

for zo be considered as t,_3(z, (1 + 1)222) then Zo; is equal to the mean of the

posterior distribution.

In |Osborne| (1991)), the inverse estimator (2.13)), in the Bayesian terminology
has been interpreted as a movement from the classical predictor (2.12)), towards

the mean value of prior distribution. Consequently, the more accurate the classical

estimator, the less shift towards the inverse predictor.

Bayesian Regression

In regression analysis, least squares and maximum likelihood approaches are the
most commonly used methods in estimating the regression coefficients. Another
well-established methodology that considers prior on the parameters of the model,
is based on the Bayesian regression approach that can also be used hopping that
the extra assumptions in this approach result in more precision in estimating the

coeflicients.
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In linear regression model, observations include response variable, y, and one or
more explanatory variables, x. Suppose y = X3+ ¢, where ¢ ~ N(0,0?), X is called

the design matrix, and the parameters of the model are 3 and o2. The posterior

distribution in this case is defined as follow:

P(B,0 | y) o< P(y | B,0%)P(B)P(c?), (2.36)

where, P(3) and P(0?) are prior distributions, and P(y | 3,02) is the likelihood
function. As in (2.36]), posterior distribution is proportional to product of the
likelihood function and prior distribution. Therefore by obtaining the posterior

distribution, we can make inference on the parameters of the model.

For instance, suppose o2 is known. Considering non-informative prior on 3, as
B ~ N(0,03), where ¢} is known and considerably large such that the underlying

prior distribution can be interpreted as a flat prior, the likelihood function is as

follow:

Ply | 8) o exp(=5(y = XB) (y — XB)). (2:37)

where, a = 0_—12 is called the precision. Furthermore, the posterior distribution is:

P(B | ) o exp(—2(y — XB)  (y— XB) x 2(87 ), (2.33)

where, b = (%2 is also called the precision. In order to find the posterior distribution
5

we proceed as follow:

PU5 L) ocexp (3 [ty = X0 (= X9) + (57 )]
(2.39)

X exp (—% [ayTy —2aBX Ty + B aX"XB + bﬁTﬁ)D )
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Since, ay 'y is constant with respect to 3, we can rewrite (2.39) as

P(B | y) o exp (—% [BT(aXTX +bI)B—28"(aX y) + constant])
(2.40)

x N(p, %),

where, = aX "' X Ty, ¥ = aX "X +bl, and [ is the identity matrix. Therefore, we

obtained the posterior distribution.

More details on this method is provided in Chapter [4]
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Chapter 3

Bootstrap Technique in Statistical

Calibration

In this chapter we present the theory and application of the nonparametric boot-
strap technique in the statistical calibration of an instrumented surgical forceps,
i.e. SmartForceps™. Furthermore, an extension of the Eisenhart’s method and
it’s application in our calibration problem is presented. Finally, we compare the
performance of our proposed approach with the Naive method, proposed in |Zareinia

et al.| (2015) to predict the amount of interaction forces.

3.1 Why Bootstrapping?

As mentioned, there is a relationship between the external force applied to the
brain tissue and the read voltages from the mounted strain gauges on the prongs
of the surgical forceps. Therefore, we require to appropriately model the output
voltages (response variable) and the force components (ezplanatory variable), to

estimate the resultant force. A methodology based on the deterministic and physical

38



properties of the force-sensing strain gauges is employed in Zareinia et al. (2015). In
the proposed method, estimates of the force is obtained using equations that relate

recorded voltages from strain gauges to the forces exerted on the brain tissue (See

Section [2.1).

While this technique, which is called the Naive method hereafter, provides the
first step towards estimating the exerted force on the brain tissue, it does not allow us
to obtain the precision associated with each estimate, and hence construct necessary
confidence intervals. In addition, it does not properly use the information of the
training data set to fit the calibration model that is required for estimating force.
The reason is that the proposed method in |[Zareinia et al.| (2015) uses the information
of the training data set to obtain the calibration model through a deterministic
approach, which does not allow to study statistical properties of the estimates such
as unbiasedness or construct confidence intervals for the unknown forces given the
observed voltages. Also, in [Zareinia et al.| (2015)), one needs to assume that the
distribution of the voltages in calibration stage is similar to the distribution of the
observed voltages in the real surgery for the estimation step. However, this is most
likely not the case, as test data are obtained under real surgery situation and it is

highly a function of the surgeon who is performing the surgery.

To address the above issues, in this chapter, we employ a probabilistic methodol-
ogy by using a nonparametric bootstrap approach to obtain both point and interval
estimates of the applied forces to the forceps during the performance of neurosurgery.
Detailed explanation of the bootstrap technique is given in Efron and Tibshirani
(1986). We also provide the precision associated with each estimate. To this end,

we use a multivariate calibration technique for calibrating the voltage-force model.
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This is done by first fitting a linear regression model between the voltage and force,
followed by implementing a least squares method without assuming any parametric
assumption, such as normality, for the distribution of the voltages obtained from
four strain gauges mounted on the two prongs of the bipolar forceps. The bootstrap
technique is then used to estimate the unknown forces and construct necessary
confidence intervals using observed voltages in test data sets and following the
inverse of the calibration model. We intentionally use the calibration terminology
as our main goal is to predict the explanatory variable (force) by observing the

response variable (voltage).

There exist several techniques to estimate the explanatory variable, other than
the bootstrap method using the inverse of the calibration model. For more details
see Chapter [2[ as well as Jones and Rocke| (1999)). As we explained in Section ,
the most popular approach is probably the one based on the reverse regression by
modeling the explanatory variable (x) on the response variable (y) using
x = ay + error (Krutchkoff, 1967). In this approach, the goal is to estimate z
based on the observed y values and find the coefficient a by reversing the role of the
variables in the model. However, the structure of our data does not allow to use this

approach, since x values in the training data are not random.

Another well-known estimation method is the mazimum likelihood approach.
This method uses the profile likelihood function for unknown x variable (Brown
and Sundberg, [1987)). This approach measures the mutual inconsistency, which
would help to understand the differences between the likelihood-based and Bayes
confidence regions with other unconditional sampling approaches. However, this

approach requires some parametric and sometimes unverifiable assumptions about
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the distribution of the errors of the calibration model. For example, one needs to
assume that the underlying distribution of the errors for the test and training data
sets are the same. An obvious problem is that the information available at the
prediction step is usually limited, and the distribution of the observed voltages in

the real surgery depends on the surgeon’s experience and surgical skills.

In contrast, our proposed bootstrap approach is rather straightforward, and does
not require such assumptions and the model adjusts itself by taking into account
the effect of the surgeon using the bipolar forceps in the estimation process using a

pooling approach during a required resampling step.

Another method that is able to provide point and interval estimation of the
explanatory variable is known as the Eisenhart’s method. Detailed explanation
of this method is available in |Eisenhart| (1939). However, so far, the Eisenhart’s
method has been only used to address univariate problems. An extension to the
original Eisenhart’s method is proposed in Section [3.4.1] This extension allows us to
employ this method for our multivariate problem. The outline of this chapter is as

follow:

First, we address the statement of the problem, then the concept of the bootstrap
technique with univariate as well as multivariate linear models is explained in
Sections [3.2) and [3.3] Eisanhart’s method in calibration is also explained in Section
.4 Section explains how the calibration data set is obtained and results of
bootstrapping are reported in Section [3.6] Results of implementing the developed
model in the real field are reported in Section by obtaining the amount of
interaction forces and corresponding intervals using data set quantified during the

performance of neurosurgical tasks on a cadaveric brain. Finally, concluding remarks
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are presented in Section

Throughout this chapter, we use two types of data sets: (i) Standards or Training
data set, in which both response and explanatory variables are observed, that
is (F1,V1), (Fy,Va), ..., (F,,V,) and (ii) Unknowns, which involve only response
variables (Vo1, Vog, ..., Vor). In the simulation study and to evaluate the performance
of our proposed method, we will also have Test data sets where we observe both the
response and explanatory variables. These data sets are then treated as Unknowns
by discarding their true values of the forces and predicting them using our proposed

method to measure its accuracy in predicting the true forces.

3.2 Bootstrapping in Controlled Calibration With

Univariate Linear Models

Suppose we observe a training data set of size n, (Fy, V1), (Fy, Va), ...., (F,,, V,,), from
the calibration station and assume that the relationship between the response variable
(observed voltage, V) and the explanatory variable (applied force, F) is given by

the following calibration curve:

Vi = BF; + &, (3.1)

with ¢;’s being independent random errors having E(¢;) = 0, and Var(e;) = o

This model is easily justified through the model proposed in [Zareinia et al. (2015)),

following the physical and deterministic properties associated with the surgical tool.

A common practice with model (3.1)) is to predict a future value of the voltage

from an observed value of the force. In the proposed application, however, the
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interest lies in doing the reverse, that is, given (Vo1, Voo, ..., Vo), we want to estimate

corresponding values of applied forces.

The bootstrap method could be a very helpful tool to estimate the force in
our calibration setting. It not only helps to predict the force, but also enables
us to obtain the precision of the estimates and construct confidence intervals. To
implement the bootstrap technique using the measured data from the calibration
station and under the linear model , we used both the Training and Unknowns
data sets. The training data set was obtained under a control setting that covers
the required range of the forces that could be observed in a practical situation after
discretizing the force range with enough resolution. However, for the Unknowns, we

only observed the voltages and the goal was to estimate their associated forces.

In order to estimate the amount of force Iy associated with an observed voltage

Vb, following a least squares method, the calibration curve V= @F was first obtained

2im Vil

ST Then, an estimate of the force,
1=1"1

from the Training data set, where B =

denoted by Fy was obtained as follow:

Iy = E (3.2)
B

given that B # 0. Note that if we observe several values of the voltage associated
with a fix value of force, one could simply replace V; in (3.2)) by Vj, the average of

the observed voltages.

One way to construct the bootstrap data set, that is required for the bootstrap
calibration, is to obtain the residuals from both Training and Unknowns. In real

application, this will help to adjust the estimation method and account for the effect

43



of the surgeon through combining the data sets from the calibration station and the
real operation to form the bootstrap residual pool. To this end, for the Training

data, we set,

e =V,—BF, i=1,2,...n, (3.3)
and, for Unknowns,

€& =Vo; —Vo, 1=1,2,...,1. (3.4)
Since the variation of the residuals around the mean is very small, there is a need

to adjust residuals by the adjustment factor, , /n%p, where n is the number of data
points and p is the number of parameters (Jones and Rocke, 1999)) .

The next step is to place the residuals in the residual pool. Therefore, the

bootstrap data set for Training is given by:
VF=BE+ R i=1,2,....,n= (F, V), (3.5)

and for Unknown is defined as:

*

_ Vi
Vi =Vo+ R, j=1,2,..,r = Fy =2, (3.6)

*

where R}, and R} are random samples from the residual pool, and B* is obtained

by fitting a linear regression model to the bootstrap data set. Here, we consider a
general case where we assume r values of the voltages are observed for each unknown

force. In our setting, we simply take » = 1, and the bootstrap estimate of the

Y&

B One needs to

corresponding force in one run of the procedure is given by £ =

repeat this process B times, with large B, to obtain the bootstrap estimates of the
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force associated with an observed voltage, denoted by (Fg, Fify, -, Fjz). The mean

of these estimates is then used as an estimate of the force. One can also construct

confidence intervals for the true but unknown value of the force Fj.

There exist several methods to obtain 100(1 — a)% confidence intervals for £,

where « is usually taken o = 0.05 resulting in a 95% confidence interval. Examples

are:

1.

11.

Percentile bootstrap, that involves finding quantiles qe and ¢i—g of the bootstrap
values (F{y, Foy, ..., i) and to constructing a confidence interval of the form

<Q%? qlf%)‘

bootstrap-t, which is computationally expensive, and it is based on approxi-
mating the distribution of \/n(Fy — Fy)/se(Fy) by /n(Fy — Fy)/se(Ey), and

constructing the confidence intervals.

A

(FO - C?n,a/Q)SAe(ﬁb)? FO + C?n,lfa/2)§e(ﬁ0))7 (37)

where cf,, , o) and c{,, ;5 are the o/2-th and (1 — o/2)-th quantiles of the

empirical distribution of \/n(F; — Fp), and

1 1 (Fy—F)?
\/r+n+ SSp (3:8)

Here s represents the estimate of the standard deviation of the errors, B is

the slope of the regression line, SSr is the force variance, and finally n and r

denote the number of data points and replications, respectively.
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3.3 Bootstrapping in Calibration with Multivari-

ate Linear Models

There is a methodological difference between bootstrapping univariate and multi-
variate linear models for the force-voltage problem in our setting. In the univariate
setting, which is only used for the illustration purpose, we assume that there is
only one voltage associated with each force. However, in our real data set, and
compared with the univariate model, there are two dimensional voltages associated
with each force component. Suppose F, and F} denote the applied forces along the
x and y directions, respectively. For each force we measure two sets of voltages. For
example, if F}, is the amount of force in x direction, we observe a vector of voltages
(Vy, Viy), where V,, is obtained from the strain gauge 1 and V,, from strain gauge
2, respectively. To implement the bootstrap technique for estimating the unknown

values of F}, and F},, we fit the following model to the Training data set:
‘/$1 %1 Qg 61 Fﬂc 0 €x;  Eyy
_ + , 3.9
(sz V;/z) (Oé? B2 (U €zy  Cyo (3:9)

where, (V,,, \/5,,,2)T is the observed voltages when the surgeon applies the force F),

along the z direction. Similarly, (V,,,V,,)" denotes the observed voltages when a

force F), is applied along the y direction. The error is represented by € = (Exl Eyl).
zo Eyo

Therefore, the values of F,, and F), are estimated using the fitted models,

Si= (a1 f) (18 PQ) Y, (3.10)
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Sy = (an ) (1”(; FO) te, (3.11)

where S = G;“) and Sy = ij”) Here, S;, refers to the voltages obtained from
91 Y2

Eyl €y2

strain gauge 7,7 = 1,2,. Also, ¢ = <€$1) and ey = (%) . We use ¢, 1 = 1,2,

to show the error terms associated with the models that are used to fit linear

relationships between the forces in x and y directions and voltages that are obtained

from each strain gauge.

After fitting the necessary regression models, the following steps are used in

order to obtain bootstrap estimates of the forces F,, and Fy,.

1. Calculate &, B1, and @s, B, from (3.10) and (3.11)) using the Training data

set.

2. Compute the residuals using,

~ A Fm 0
€1, = Sli - (Oél 61) ( 0 F ) 5 (312)
yi

~ A Fm 0
€9; = So; — (042 52) ( 0 F ) ) (3-13)
where, 1 =1,2,...,n.

3. Obtain the bootstrap data set by first forming the residual pool {ey;, €9, i =

1,2,--- ,n} and then resampling it to obtain:
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>
VR
S
wﬁjo

= (541 51) > + €1

Training (3.14)
* ~ A Fm *
2% — (OQ 52) ( 0 Z) + €25

@ﬁj =)

and,
Voiu = Voj1 + €qu;
Unknowns (3.15)
Vojz = Vojz + o

where, €}, €5, €, and €}, are random samples with replacement from the
residual pool. Note that, we obtain separate residual pools from models (3.10)
and (3.11). Vo;1 and Vp,o are considered as the observed response vectors, and

are used to predict the amount of relatively F,, F),.

4. Fit new models (3.14)) to bootstrap data sets and obtain corresponding values
of &3, B} and a3 ,0;.

5. Estimate £, and Fy using,

( * ~ A Fm 0
0J1:(a>f 5;)(0 A');

(3.16)

6. Repeat steps 3 to 5 B times.

7. Quantify confidence intervals for estimated forces.
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Remark: In practice, when we employ the task data, the force is not necessarily
applied in one direction, and one may expect to have force in both x and y directions.

In this case, the regression model (3.16]) in step 5 is replaced with the following

A

equation to obtain (Fm, F,;) given the voltages that are observed:

‘/OTH = dTFm + BTFyia
(3.17)
Vi = a3Fui + B3y
where V5, and V[, represent the recorded voltages from strain gauges 1 and 2,

respectively.

3.4 Eisenhart’s Method in Calibration

Eisenhart| (1939) suggested a methodology based on Student-t distribution to obtain
confidence intervals for classical predictor (2.12)), where we are dealing with univariate
calibration problem. Suppose 1 is observed, the confidence bounds for zy can be

obtained by

gy Do—p) ot \/ ST el S Tt ) P T

A2 5212 AQ 5242 )
e n Sza Sza

where, S;., (Z, §), and ¢ are defined in (2.8)), (2.9), and (2.30)), respectively. And
t = (1 — §)% percentile of the Student-t distribution with (n — 2) DoF.

3.4.1 Multivariate Eisenhart’s Method for Calibration

In this section, we provide a multivariate extension to the Eisenhart’s calibration

method. The major impact of this extension is that it provides confidence intervals
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without running any simulations, therefore, the results are obtained much faster.
Suppose we observe Vy = (Vo1, Vo2). The extension of the Eisenhart’s point estimates
and confidence intervals of F, and F), are obtained by solving the following system

of equations

(OAélpOx + BlFOy - %1)2 = tQMSEl(l + Bxy)a
(3.19)
(é{zFOx + BQFOy - ‘/02)2 - tQMSEQ(l + Bzy),
where, M SFE; and M SFE, are the mean squared errors obtained from Sy (3.10) and

Sy (3.11]), respectively. Moreover,

FO:E

Oy

By = (Foe Fyy) (FTF)‘l( ),F:(le,---,Fm,Fly,---,Fny)T, (3.20)

In (3.19), éu, dia, A1, Ba are also obtained through (3.10) and (3.11)), and ¢ = (1— $)%

percentile of the Student-t distribution with (n — 2) degree of freedom (DoF'). We
first obtain the point estimates FOI and Foy from (3.19)), and then calculate the roots

of the first and second quadratic equations to construct confidence intervals for Fy,

and Fi oy, Tespectively.

Lemma 3.4.1. Asymptotic approzimations of the MSE and the Bias of Fy, are

given by
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Ve B o R, MSE S, F?
Bias(Fy,) =— biFo, — onto + (Vor — BiFoy) ) —
(071 Q1 Agy

_ FOyMSEl Z?:l Finiy
Agy ’

(3.21)

R VE,\ .
MSE(Fy,) = 1 ”’) + Bias*(Lp,),

2
Ty aq o

_MSEl & (FOyEx _ (‘/01 _ﬁlFOy
1

where, Azy = Z?:l 2 Z?:l Fz2y - (Z?:l E’wﬂy)Q-
Proof. Suppose, Vo1 = a1 Fy, + BlFoy, then we can estimate Fp, by

Vor — b1 Fy,

aq

F(]a::

Note that as we observe Vi, it is considered to be constant. Here, first we obtain
variances and covariance for the coefficients through calculating M SE,(F'TF)~!,

where F'is given in (3.20)). Therefore

MSE;, &

4, 2t

=1

MSE;,
Agy

éél ~ N(al,

ZE@)? Bl ~ N(/Bl)
i=1

. —MSE; &
Cov(al,ﬁl)zA—lg Fip Fiy.
xy i—1

We obtain expectation and variance of Fy, using the expressions given in ([2.22])

and ([2.23)), where
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MSE1

E(Vor — BIFOy) = Vo1 — BiFoy, Var(Vor — BlFOy) = Z (3.22)
To this end,
, — B F,
E(Fy,) = E(V‘n—M)

ol

— F, + Vor — 51F0y — o Fo, + MSE, Z VEn 51F0y)

€51

K
—MSElz o Fy 22?/ (3.23)

Also,

Vo1 — BlFOy

aq

VaT(FOx) = Var( )

(3.24)

_ MSE, < <F0yFiz (%1—51F0y)ﬂy)2
== _ a .
=1

Ty aq aq

Using (3.23)) and(3.24)), we can obtain expressions for the Bias and MSE, as follow:

Bl.CLS(F()m) = E(F0x> — F()ac

Vor — BiFyy — o Fy MSE, Y | F?
— Fy, + 01 51 Oy 1140 + (V01 . ﬁngy) 132 =1
o2 ayAgy

Fo,MSE, S F, F,
W 12 i Y~ Fow, (3.25)
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and

MSE(Fy,) = Var(Fo,) + Bias*(Fo,)

M E n F F _ F F 2 A~
_ AS 1 ( OyLix . (‘/01 /812 Oy) 11/) + BiaSQ(FOx)_ (326)
Ty 1

]

In order to obtain the confidence bounds for Fy,, first we obtain Fy, and Foy from
(3.19), then we assume Foy is known in (dlﬁ’% + BIFOy —Vo1)2 = t*MSE (1 + Byy).

Therefore, our problem reduced to a quadratic formula with respect to Fy,, that
is unknown. One can use the quadratic formula to find the roots of this equation,

that are upper and lower bounds of desired confidence interval. . One can obtain
confidence bound for Foy in a similar way, by assuming Fy, is known and using

(GaFop + BoFoy — Vi)? = 2MSEy(1 + Bay).

3.5 Obtaining Calibration Data Through Experi-

ment

In order to obtain the data set for Training, the data from 20 trial runs were used
during calibration of the bipolar forceps measured using the developed automatic
calibration station, (see Figure . The motor, connected to the force sensor on
the calibration station, was programmed to move in two directions: forward (moving
towards the point o in Figure and backward (moving away from o). Data
measurement was performed for 10 times under the same test conditions along each

direction. Therefore, in total, 40 sets of data were collected when the force was
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applied along x axis (10 trial runs for forward and 10 trials for backward, for the
left and right prongs) and 40 data sets for when the force was applied along y axis
(10 trials for forward and 10 trial runs for backward, for the left and right prongs).
In forward motion, the tips were applied a force of 0 N to 2 N, and in backward, the

force reduced from 2 N to 0 N. Note that the force of 2 N is the peak force that we

can expect during the performance of a neurosurgery (Zareinia et al., 2015]).

(a)  Calibration station

= A

(b) Calibration along x (c) Calibration along y
Figure 3.1: (a) Calibration station and the setup used to calibrate the instrumented
bipolar forceps along (b) x axis and (c) y axis. Arrows show the direction of the
applied force by the motorized system connected to the force sensor.Source: Azimaee

et al., “Nonparametric bootstrap Technique for Calibrating Surgical SmartForceps:
Theory and Application.” Revision Submitted (2017).
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Figure 3.2: Surgeons are performing neurosurgery by using SmartForceps™ to

measure applied forces along z, y, and z axes. Source: Maddahi et al., “Quantifying
workspace and forces of surgical dissection during robot-assisted neurosurgery.” The
International Journal of Medical Robotics and Computer Assisted Surgery 12, no. 3
(2016): 528-537.

3.6 Results from the Bootstrap Method

This section presents the results obtained by implementing the methodologies
explained through this chapter. A comprehensive graphical and numerical analysis

of results is also presented.

3.6.1 Univariate Calibration

As a typical example, suppose we aim at predicting the amount of force for a given

voltage of V; = 0.26 V. Results of this examination, using two methods, under 95%
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bootstrap confidence intervals, are presented in Table [3.1]

Table 3.1: 95% confidence intervals obtained using different methods of univariate
calibration when V7 = 0.26 V is observed, and the true force of F, = 1.5 N is given.

Method True Force Confidence Interval
Percentile Bootstrap 1.5 (1.466 , 1.539 )
Bootstrap t 1.5 (1.460 , 1.541 )

3.6.2 Multivariate Calibration

Force along x direction

In this part, predictions of applied forward and backward forces to the right and
left forceps tips along x direction are presented as confidence intervals. As observed
from Table [3.2] the length of force intervals obtained for the right tip in forward
direction are narrower than the backward direction. For instance, when the true
force of F} is equal to 1.7 N, the force interval in forward direction for the right tip
is (1.684 N, 1.730 N), while, in backward is (1.698 N, 1.750 N). This trend is also
observed along left tip as can be seen in Table For instance, when the true force
of F, = 1.7 N is considered, the force interval in the forward direction of the left tip
is (1.672 N, 1.745 N), that is again narrower than interval in the backward direction,
(1.654 N, 1.741 N). As expected, all intervals contain the true values of force. The
bounds for forward and backward F,, € [0 N, 1 N] are plotted in dotted and dashed
lines, respectively, as shown in Figs. and
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Figure 3.3: Confidence intervals of the forces at the right tip, obtained using the
bootstrap method in forward (top) and backward (bottom) directions, when force
along x is applied to the right prong (F}).
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Table 3.2: Estimated confidence intervals for different amounts of F), applied to right
forceps tip. To examine results of the bootstrap method, amounts of true forces
were considered as unknown values.

Forces Applied to Right Tip

Forward Force Backward Force
True F, Cl True F, C.lI
0.1 (0.095 , 0.139) 2.0 (1.950 , 2.002)
0.2 (0.181 , 0.227) 1.9 (1.861 , 1.912)
0.3 (0.258 , 0.303) 1.8 (1.784 , 1.836)
0.4 (0.367 , 0.413) 1.7 (1.698 , 1.750)
0.5 (0.455 , 0.502) 1.6 (1.590 , 1.640)
0.6 (0.595 , 0.641) 1.5 (1.461 , 1.516)
0.7 (0.697 , 0.742) 1.4 (1.378 , 1.429)
0.8 (0.760 , 0.807) 1.3 (1.286 , 1.338)
0.9 (0.888 , 0.932) 1.2 (1.199 , 1.252)
1.0 (0.972 , 1.019) 1.1 (1.056 , 1.107)
1.1 (1.087 , 1.132) 1.0 (0.990 , 1.043)
1.2 (1.185 , 1.230) 0.9 (0.875 , 0.927)
1.3 (1.266 , 1.311) 0.8 (0.769 , 0.821)
1.4 (1.389 , 1.436) 0.7 (0.676 , 0.727)
1.5 (1.464 , 1.509) 0.6 (0.544 , 0.642)
1.6 (1.579 , 1.623) 0.5 (0.481 , 0.534)
1.7 (1.684 , 1.730) 0.4 (0.364 , 0.418)
1.8 (1.799 , 1.844) 0.3 (0.279 , 0.330)
1.9 (1.883 , 1.931) 0.2 (0.184 , 0.236)
2.0 (1.991 , 2.038) 0.1 (0.093 , 0.146)
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Table 3.3: Estimated confidence intervals for different amounts of F, applied to left
forceps tips. To examine results of the bootstrap method, amounts of true forces
were considered as unknown values.

Forces Applied to Left Tip

Forward Force Backward Force
True F, Cl True F, C.lI
0.1 (0.069 , 0.142) 2.0 (1.921 , 2.008)
0.2 (0.136 , 0.208) 1.9 (1.837, 1.922)
0.3 (0.269 , 0.341) 1.8 (1.755 | 1.839)
0.4 (0.361 , 0.433) 1.7 (1.654 , 1.741)
0.5 (0.459 , 0.532) 1.6 (1.559 , 1.646)
0.6 (0.533 , 0.606) 1.5 (1.490 , 1.577)
0.7 (0.677 , 0.750) 1.4 (1.352, 1.437)
0.8 (0.773 , 0.846) 1.3 (1.256 , 1.342)
0.9 (0.861 , 0.933) 1.2 (1.171 , 1.259)
1.0 (0.989 , 1.062) 1.1 (1.083 , 1.171)
1.1 (1.075 , 1.147) 1.0 (0.969 , 1.056)
1.2 (1.156 , 1.231) 0.9 (0.860 , 0.947)
1.3 (1.283 , 1.355) 0.8 (0.797 , 0.882)
1.4 (1.372 , 1.444) 0.7 (0.680 , 0.767)
1.5 (1.470 , 1.543) 0.6 (0.570 , 0.658)
1.6 (1.588 , 1.662) 0.5 (0.450 , 0.536)
1.7 (1.672 , 1.745) 0.4 (0.329 , 0.416)
1.8 (1.772 , 1.845) 0.3 (0.255 , 0.340)
1.9 (1.893 , 1.966) 0.2 (0.163 , 0.249)
2.0 (1.958 , 2.030) 0.1 (0.076 , 0.162)
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Figure 3.4: Confidence intervals of forces at the left tip, obtained using the bootstrap
method in forward (top) and backward (bottom) directions when F, is applied to
the left prong.

Force along y direction

Similar forces as calibration along = axis were applied to the forceps tips along y
direction, first to the right tip and then to the left tip. Here again, lengths of force
intervals, obtained in backward direction along right tip, were broader than intervals
in forward motion (see Table [3.4)). However, we could not see this trend for the forces

along left tip; it means that the obtained intervals for forces in forward direction
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are broader than the ones for backward direction along left tip (see Table [3.5]). For
instance, when the true force of 1 N was given, the estimated force intervals of the
right tip in backward motion was (0.933 N, 1.047 N) compared to (0.992 N, 1.087
N) in forward direction. But the force intervals of the left tip were (0.909 N, 1.063
N) in backward motion and (0.900 N , 1.058 N) in forward direction. Figs.
and illustrate the confidence force bounds in forward and backward directions,

respectively.

61



= = = C.I for Forward Force
= = True Force

V, (V)

0.02 0.04 0.06 0.08 0.10

== (C.I for Backward Force
] e True Force -

V1 (V)

0.02 0.04 0.06 0.08 0.10

0.6
Fy: (N)

Figure 3.5: Confidence intervals of forces exerted on the right tip, obtained using
the bootstrap method for the forward (top) and backward (bottom) directions when
the force is applied along y axis.
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Table 3.4: Estimated confidence intervals for different amounts of F), applied to
right tip. To examine results of the bootstrap method, amounts of true forces were

considered as unknown values.

Forces Applied to Right Tip
Backward Force

Forward Force

True F, ClI True F, ClI
0.1 (0.096 , 0.192) 2.0 (1.861 , 1.975)
0.2 (0.179 , 0.277) 1.9 (1.805 , 1.914)
0.3 (0.252 , 0.350) 1.8 (1.696 , 1.807)
0.4 (0.373 , 0.470) 1.7 (1.594 , 1.702)
0.5 (0.497 , 0.592) 1.6 (1.585 , 1.692)
0.6 (0.510 , 0.605) 1.5 (1.428 | 1.539)
0.7 (0.632 , 0.729) 1.4 (1.300 , 1.411)
0.8 (0.774 , 0.870) 1.3 (1.222 , 1.331)
0.9 (0.875, 0.974) 1.2 (1.146 , 1.258)
1.0 (0.992 , 1.087) 1.1 (1.058 , 1.172)
1.1 (1.005 , 1.101) 1.0 (0.933 , 1.047)
1.2 (1.147 , 1.244) 0.9 (0.832, 0.943)
1.3 (1.229 , 1.324) 0.8 (0.747 | 0.858)
1.4 (1.349 , 1.446) 0.7 (0.618 , 0.727)
1.5 (1.494 , 1.591) 0.6 (0.552 , 0.663)
1.6 (1.554 , 1.650) 0.5 (0.444 | 0.557)
1.7 (1.637 , 1.734) 0.4 (0.331 , 0.442)
1.8 (1.791 , 1.889) 0.3 (0.259 , 0.368)
1.9 (1.874 , 1.971) 0.2 (0.159 , 0.269)
2.0 (1.910 , 2.007) 0.1 (0.090 , 0.201)
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Table 3.5: Estimated confidence intervals for different amounts of F), applied to
left tip. To examine results of the bootstrap method, amounts of true forces were
considered as unknown values.

Forces Applied to Left Tip

Forward Force Backward Force
True F, C.l True F, C.I
0.1 0.025 , 0.180 2.0 (1.906 , 2.061)

0.2
0.3
0.4
0.5
0.6
0.7

0.137 , 0.299
0.216 , 0.372
0.307 , 0.467
0.411 , 0.568
0.493 , 0.652
0.633 , 0.788

( )
( ) 19 (1776, 1.925
( ) 18  (1.748,1.900
( ) 17 (1655, 1.808
( ) 16 (1.478,1.633
( ) 1.5 (14241575
( ) 14 (1.387,1.540
08  (0.694,0.848) 1.3  (1.213,1.368
09  (0.820,0977) 1.2  (1.156 , 1.309
1.0 (0.900,1.058) 1.1  (1.031,1.183
1.1 (1.021,1.179) 1.0  (0.909, 1.063

( )

( )

( )

( )

( )

( )

( )

( )

( )

— — — — — ~— ~— ~— ~— ~—

1.2 1.145 , 1.304 0.9 (0.826 , 0.978
1.3 1.203 , 1.361 0.8 (0.698 , 0.854
1.4 1.373 , 1.529 0.7 (0.636 , 0.798
1.5 1.404 , 1.558 0.6 (0.495 , 0.649
1.6 1.462 | 1.620 0.5 (0.410 , 0.564
1.7 1.634 , 1.794 0.4 (0.300 , 0.459
1.8 1.726 , 1.884 0.3 (0.212 ,0.364
1.9 1.753 , 1.906 0.2 (0.135 , 0.289
2.0 1.881 , 2.038 (0.017 , 0.171

~— ~— T~~~ ~— ~—

0.1
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Figure 3.6: Confidence intervals of forces applied to the left tip, calculated using the
bootstrap method for the forward (top) and backward (bottom) directions when F,
is applied.

3.7 Real Field Application and Further Discus-

sions

The forces of tool tissue interaction, while providing a force feedback to the surgeon,
is an important information source for the ongoing development of techniques to
train neurosurgery residents and novice surgeons, as well as assess their surgical

skills. Specifically, the quantification of tool-tissue interaction forces will allow
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implementation of a high force warning system, such that surgeons are warned when
safety threshold for forces of tool-tissue interaction is reached (Payne et al.l 2015,
Payne and Yang, [2014). In this section, we provide a real field application of our

proposed methods and discuss the accuracy of each approach.

3.7.1 Replications of the Voltages

Results presented in this study were calculated using one single replication of
unknown voltages. However, it is also important to investigate the effect of using r
replications of the voltages for the same amount of force, and investigate the effect

of the number of replications on the size of force interval.

As a typical test, we used replications of the voltages for F,, = 1.5 N and F,, = 1.5
N in both left and right tips. The replications were extracted from the real data set
measured using the calibration station. Figure illustrates the confidence intervals
for different number of replications (r). As observed, an increase in the number of

replications results in a narrower force interval.
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While dotted and dashed lines show the C.I for F, and Fj applied to the tips,

respectively. Solid line represents the true force value.

3.7.2 Accuracy of the Bootstrap Method

Comparison of the estimation based on the bootstrap method with the deterministic
method was also performed. Considering the deterministic Naive method, we

estimated the matrix of coefficients with the data set obtained from calibration

station in forward and backward direction to put in (3.27) and estimate the amount

67



"9010] JO ON[BA 9TLI} 9} PUR POYIDUW S, }IRTUSSTH
9} JO UOISUS)Xd O} UO POse] UOIJRUIYSO JO UOIIRFIOdX0 U00MI( SOUSIOHIP O3 ST POYIOWL S, JIRYUISIH oY) JO UOISUOIXD UL SPIf,
"9010J 9TLI} SY[) PUR POYJOUIL SATRN 91} UO Paseq UOIJew s JO U0Ie)dadxe Woam)a(q 9OUSISPIP S} SB Paulep SI POYISUW dlABN UI SeIg,
10110 porenbs ueaw Jo 3001 drenbs = FSIN,
"9leA 9210] OTLI) 9} puR sojewinse s, deijsjooq jo uoryeldadxs Usemiaq 9OULISHIP oY) ST poyjewt deijsjooq ul seiq,

€r0'0  €P00  (L0T'T C996'T) 9961 - ge0’0- 896'T TG00 €00 (00TT ‘000G SE0T 0661
ch0'0  ZF00 (Go0T 18ST) IS8T - GT0°0- 988°T  ¥S0°0 6800 (€10°C “¥I6'T) OFV6'T  T06T
L5000 L2000 (9061 “G9LT) CILT - SP00 SPRT  FRO0  Fg00 (9681 T 66LT) FE8T 0081
161000 G100 (€247 “1€9°1) T1€9°T - 820°0- TL9T  0V0'0  ST0°0 (L8LT°069T) GILT  00LT
01000 600°0- (19T ‘08G°T) €L9°T - 600 9¢9°T 000 FT0°0- (89T g9ST) LSST 1091
€e0'0 €800 (L6ST ‘GSHT) GSPT - er0'0  €PST €00 TRO0  (TT9T C9IST) TIFST 0061
€100 €100 (G8F'T ‘epe’1) el - 200 CEFT L8000 €000 (9LFT S 6LET) €OFT  00F'T
¢ec0’0  ¢e0’0 (20T T192°T) T9TT - 8€0°0 8€¢T  €F00 1200 (S6LT CL6TT) TEET  00€°T
6200  6£0°0 (86G°T ‘LT 1) LST'T - 1€0°0- O0L1'T 9S00 1900 (PIET ‘L1CT) &heT  10GT
G700 P00 (9021 G90°T) G90°T - ge00 oI’ $90°0 2S00  (SggT ‘LeT'T) oST'T 0011
gASINY  pseld W 101D ] gASINY wfeld Y gISINY mSeld o 10§ 1D g enay
@OQH@E mnu.ﬂﬁﬂﬁwmmm @Sw .wO ﬁommﬁwuxm UOSG@E ®>.~.MZ @OSU@E thuwuoom

7000 F00°0- (LT0°C 3S6'T) 810G - 650°0- TE6'T 8100  F00°0- (€80T GL6T) L86'T 1661
€100 €100 (6761 “ G88°T) G881 - Lg00  Lg6T 0300 0100 (FP6'T°668°T) TI6'T 0061
100 TI0°0 (SPS'T “#8LT) ¥8LT - I100 68LT  0%00  0T00 (GPS'T“86LT) 0T8T  008T
10000 1000~ (6841 #99°T) 6LT - 1000 TOLT L1000 000~ (€8T °L89T) 669T  00LT
7000 F00°0- (929°T “ 19G'T) 9291 - 7000~ L6S°T 8100 S00°0- (0€9°T “¥8CT) 96T  T09°T
6200  620°0~ (90S°T ‘ T¥F'1) 90G°T - €200~ LLF'T 6200  ¥200- (TICT CGOPT) OLF'T  00S'T
10000 1000 (STh'T‘€9e1) €9¢'T - 1000 T0F'T L1000 0000 (PEF'T  88€T) 00T  00F'T
¢10'0  CT0°0- (GTET ‘1STT) GIET - €10°0- L8Z'T €300 S10°0- (61€T°PLET) G8G'T  T0€T
6000 6000 (S€TT‘FTLTT) FTLIT - ¢I00 eIe’l 000 0100 (P91 S6TT) OIGT  00GT
€000 €000~ (8T'T‘€90°1) STI'l - L0000 L0T'T 2100 ©00°0- (€ET°T °280°T) 860°T 00T'T
gASINY  |y|seld S 105D  gUSINY |perd Y || SN [ofserd g 10§ T T T enuy,
POYIOIA S }TequUSSIH 971} JO UOISUIXH POYIRIN AIRN] PoyIoN deaysyioog

"UOT)RYS UOTIRIGI[RD SUISTL PAINSRIUW S8DI0J SILI) [RISASS I0J POYJSUIL S, JIRYUSSULH
JO UOISUA)Xa 1) pue ‘enbruray aareN oY) ‘porewt derysjooq ay) Suisn sejeuryse fiy pue 77 jo wostredwo)) :9°¢ (e,



of F, and F,

‘/l fla; fly FCC
= , 3.27
(‘/2) <f2:p f2y Fy ( )
where f;; is the slope of the fitted regression line of voltages obtained from strain
gauge ¢ as a result of applied force in j direction. The coefficients matrices for right
and left prongs were equal to (3.28) and (3.29)), respectively, where the matrices

on the right side are for backward forces and the ones on the left are assigned to

forward forces. Results of the calibration in forward and backward direction are

shown in Figure (3.8

0.16876 0.01222

(Right, Forward) = (0,02816 0.07195

) (Right Backward) — (0.17198 0.01393)

0.02829 0.07839
(3.28)

0.15565 0.01048

0.02657 0.07398

(Left, Forward) = ( 0.02738 0.07310

) , (Left, Backward) = (0‘15765 001290) '

(3.29)

As listed in Table [3.6] the bias of the Naive method in most cases is greater than
the bias for the bootstrap method. Moreover, the amount of the force estimated
using the mean value of the bootstrap force estimates is closer to the true force than
Naive method. However, overall there is not that much difference between bootstrap
point estimations and the Naive method estimates, which can be explained with the
small variation of residuals obtained from fitting models S; (3.10) and Sy (3.11)) in

bootstrapping, which means that the values of residuals are relatively small.

In next step, the confidence bounds obtained from the bootstrap technique were
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Figure 3.8: Calibration forces applied to the right tip in x and y directions wvs.
voltages read from strain gauges for 10 trials in forward (top) and backward (bottom)
directions. Fitted regression lines are also presented for V; and V; vs. F, and F,,
respectively.
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compared against the ones obtained from the extension of the Eisenhart’s method

for multiple regression models(Eisenhart), (1939).

As observed in Table the length of the intervals obtained from the bootstrap
method are significantly narrower than those obtained by the extension of the
Eisenhart’s method. For example, when F,, = 1.8 N is applied, the confidence bound
that is given by the bootstrap method is (1.798 N | 1.845 N), while the interval that
is obtained by extension of Eisenhart’s method is (1.780 N , 1.844 N). The difference

in the confidence interval bounds is even more evident for F),.

3.8 Concluding Remarks

In this chapter, the bootstrap technique was used to calibrate the interaction forces
between a surgical tool (SmartForceps) and the brain tissue. The instrumented
bipolar forceps is generally employed to conduct a variety of neurosurgical tasks
including dissection, coagulation and squeezing the brain tissue. Two sets of strain
gauges were mounted on each prong of the forceps, away from tips to measure the
components of the interaction force in four directions. In practice, the interaction
forces are calculated using reading the voltages of the strain gauges during surgery.
Therefore, a model was required to map the voltages read from strain gauges and the
forces applied to the forceps tips. The Naive model has previously been employed by
Zareinia et al| (2015) to determine the force. In this study, the bootstrap technique
was used to calibrate the forces.The bootstrap method takes into account effects of
the surgeon who is using the bipolar forceps in the estimation process through a

pooling stage during required resampling steps in the procedure. Obtained results
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indicated that the bootstrap technique provides a more accurate estimate of the
force value, compared to the Naive method. More precisely, the bias obtained from
the bootstrap technique was smaller. Furthermore, the Naive method only provides
point estimates while the bootstrap provided confidence intervals, and hence, the

bootstrap technique provided a more reliable estimation.
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Chapter 4

Multilevel Modeling and Bayesian

Approach for Calibrating

SmartForcepsTM

In this chapter, limitations and difficulties associated with mounting the third pair of
strain gauges on the smartForceps™ are discussed. Furthermore, several statistical
approaches such as weighted least squares, multilevel modeling, and Bayesian ap-
proach in multi-level modeling are suggested to address these problems. We consider
the calibration problem under the Bayesian approach using both symmetric and
asymmetric loss functions. To this end, LINEX loss function is used as an alternative
to the usual squared error loss (SEL) in order to asymmetrically penalize over and

under estimation in the underlying calibration problem.

4.1 Problem with 3-D Data

In this section, first we describe the problem of predicting the amount of forces, while

observed voltages from all three pairs of strain gauges are considered. Moreover,
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graphical illustrations and tables are used to clarify this problem. Then, bootstrap
method that is proposed in Chapter [3] is employed to predict the amount of forces,
and results are obtained through weighted least squares as well as ordinary least
squares prediction approaches. First, we briefly explain the challenges involved in

using 3-D data.

4.1.1 Data Set Specification

Calibration data set for the z direction is obtained in a similar fashion explained
in Section [3.5] Another pair of strain gauges were mounted on the prongs of the
SmartForceps™ to record voltages in z direction. Therefore, calibration data set is
obtained by applying force along x, y, and 2 directions, where each pair of the strain
gauges measures the output voltages in corresponding direction (S, So, and Sz are

used to obtain voltages when force is applied in z, y, and z directions, respectively).

When force is applied in a certain direction, we expect to observe substantial
amount of output voltage from the strain gauge that is installed to measure voltages
along that particular direction. For instance, applied force in x direction, should
result in large output voltages from S;. Similarly, applied force in z direction should
result in output voltages in S5 that are significantly higher than those recorded
in S; and S;. However, an anomaly occurs in the y direction i.e. when force is
applied in the y direction, considerable amount of voltages are observed from S5
instead of S5, and observed voltages in S5 is negligible. This problem is illustrated
in Figure [4.1; when force is applied in = direction, observed voltages in S5 and S5
are relatively small and close to zero, while S; voltages are increasing corresponding

to the increase in F,. However, when F} is applied, observed voltages in S, and
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Sy are close to zero, but voltages in S3 are increasing remarkably with increasing
the amount of applied F}’s. Nevertheless, we expected to observe voltages in S,
rise with increasing F,. The last plot of Figure .1, shows the behavior of the three

strain gauges when force is applied in z direction.

0.10  0.20 0.30

0.00

05 1.0 1'5
Force in x Direction

0.6

S

0.4
]

Voltage

0.2
]

0.0
i

0.5 1.0 1.5
Force in y Direction

Voltage

0.0 0.5 1.0 1.5 2.0

Force in z Direction

Figure 4.1: Observed voltages from 3 different strain gauges (S, Sz, and, S3) are
presented when force is applied in z (top), y (middle), and z (bottom) directions.
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This problem is probably caused by improper position of the third pair of strain
gauges. In other words, when force is applied in Y direction, first it deforms Sj3
instead of Sy. And this is mainly because there should not be any alteration in the

shape of conventional neurosurgical forceps.

Another issue that affects force prediction having 3 pairs of strain gauges is the
variability of observed voltages in each strain gauge, when force is applied along
different directions. In other words, variance of the observed voltages obtained from
3 strain gauges are significantly different given applied forces along each axis. Figure
shows the box plots of the voltages in S7, So, and S3 when force is in z, y, and
z directions, respectively. Plot on the left panel of Figure [4.2) shows that variance
of S is between 0 V and 0.35 V, and as it is shown in the middle panel, when force
is applied along y direction, variability of voltages in S5 changes from 0 V to 0.8 V.
However, as can be seen in the last panel, variance of S5 is remarkably lower than

other strain gauges, that is between 0 V and 0.08 V.
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Figure 4.2: Box plots of observed voltages in strain gauges 1,2, and 3
(S1, So, and, S3), when force is applied in 3 directions. Different strain gauges
are specified with different colors.

So far, two main issues that directly affect force prediction in 3 directions are
explained. These problems are due to installing the third pair of strain gauges and
they make the force prediction along 3 directions rather difficult. Another difficulty
of force estimation considering 3 pairs of strain gauges is shown in the following
section where bootstrap method that was proposed in Chapter [3] is employed to

obtain interval estimation for applied forces along x, y, and z axes.
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4.1.2 Bootstrap Calibration for the 3-D Case

In this section, we have employed the bootstrap method (proposed in Chapter [3) for
the calibration data set that includes the amount of forces between 0.1 N and 2 N, in
3 directions and also observed voltages in S, Ss, and S3. Through out this chapter,
as true force values are between 0 N and 2 N, confidence intervals are truncated

when the lower bound is negative or the upper bound is bigger than 2 N.

The procedure of the bootstrap method is similar to the one explained in Section
3.3 except that we have also considered observations obtained from S3. Consequently,

residuals are obtained from 3 different regression models that are listed below:

F, 0 O
Si=(a1 B M) 0 F, 0] +e,
0 0 F,
F, 0 O
52:(062 52 ")/2) 0 Fy 0 +€2, (41)
0 0 F,
F, 0 O
Sy=(as B3 73)[ 0 F, 0] +es,
0 0 F,

Where? Sl == (Vx17‘/ylu‘/21)—r7 SQ == (%27%27‘/22)T7 and S3 = (%37Vy37‘/z3)—r are
observed voltages obtained from each strain gauge, where V,;, V,;, and V,; are
observed voltages from strain gauge 7, ¢ = 1,2, 3, when force is applied in z, y, and

z directions, respectively.

Suppose we observe (Vo 1, Vose, Voss) voltages from 3 strain gauges, and our goal

is to predict the amount of applied forces in z, y, and z direction. First, we need
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to fit models in (4.1), and then we will proceed to the following steps to obtain

bootstrap predictions:

1. Obtaining G, i, Y, G2, o, Yo, and b3, s, 43 from (4.1)) using the Training

data set.

2. Calculating the residuals using,

A F; 0 O
€1; = S1i — (541 B 71) 0 Fy 0], (4'2)
0 0 Fy
A F., O 0
€i=2Su— (G2 B2 A2) | O Fu 0|, (4.3)
0 0 Fy
F, O 0
€50 ="Ss— (a3 B3 43) | 0 Fu 0 |, (4.4)
0 0 F,

where, 1 =1,2,...,n.

3. Forming the bootstrap data set by constructing the residual pool {€y;, €9, €3, @ =

1,2,--- ,n} and obtain the following by resampling it.

Y
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( F., 0 0
Sy=(a B M) | 0 Fi 0| +e,
0 0 F,
R F., 0 0
Training{ Sy = (&a B2 A2) | 0 F,i 0 | +e5, (4.5)
0 0 F,
R F., 0 0
=6 B3 43) | 0 Fu 0 | +e,
L 0 0 F,
and,
Vo = Vojr + €
Unknowns § Vo = Voja + €52, (4.6)

* _ *
V()js = Vojs + €03,

where, €],, €, €5, €)1, €52 and €55 are random samples with replacement from

the residual pool. Note that, we obtain separate residual pools from each model

of (4.1).

. Fitting new models (4.5]) to bootstrap data sets and obtaining corresponding

Ak Q% Ak Ak Qx A% Ak Q% Ak
VaIU_GS Of alv 617717 062 M2 727 and 043 7537 73‘
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5. Calculating Ey, Fy, and F, using,

(

F, 0 0
Von=1(a; Br 40| 0 Fu 0,
0 0 Fy,
F;, 0 0
052:(54; 5%) 0 yi p ) (4-7)
0 0 Fy,
F, 0 0
Vis=(a3 85 %) [0 Ei 0
0 0 F,

6. Repeat steps 3 to 5 B times.

7. Quantify confidence intervals for estimated forces.

In the following table, estimated bootstrap confidence bounds in each direction

for the amount of forces between 0.1 N and 2 N are presented.
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Table 4.1: Estimated bootstrap confidence intervals for different amounts of forces
applied to right forceps tip, in z, y, and z directions. To examine results of the
bootstrap method, amounts of true forces were considered as unknown values.

Estimated Forces by Bootstrap Approach

True Force F, Cl1 F, CI F,Cl
0.1 (0.000 , 0.920) (0.154 , 2.000) (0.000 , 2.000)
0.2 (0.000 , 0.893) (0.000 , 2.000) (0.000 , 2.000)
0.3 (0.008 , 2.000) (0.000 , 2.000) (0.000 , 2.000)
0.4 (0.275 , 2.000) (0.000 , 2.000) (0.000 , 2.000)
0.5 (0.257 , 2.000) (0.000 , 2.000) (0.000 , 2.000)
0.6 (0.447 , 2.000) (0.777 , 2.000) (0.000 , 2.000)
0.7 (0.000 , 1.301) (0.000 , 2.000) (0.000 , 2.000)
0.8 (0.994 , 2.000) (0.851 , 2.000) (0.000 , 2.000)
0.9 (1.000 , 2.000) (0.991 , 2.000) (0.000 , 2.000)
1.0 (0.000 , 1.105) (1.370, 2.000) (0.000 , 2.000)
1.1 (0.184 , 1.762) (0.000 , 2.000) (0.000 , 2.000)
1.2 (0.314 , 1.691) (0.000 , 2.000) (0.000 , 2.000)
1.3 (0.687 , 2.000) (0.000 , 2.000) (0.000 , 2.000)
1.4 (0.890 , 2.000) (0.442 , 2.000) (0.000 , 2.000)
1.5 (0.000 , 1.375) (0.000 , 2.000) (0.000 , 2.000)
1.6 (0.728 , 2.000) (0.000 , 2.000) (0.000 , 2.000)
1.7 (1.026 , 2.000) (0.325, 2.000) (0.000 , 2.000)
1.8 (1.263 , 2.000) (0.974 , 2.000) (0.000 , 2.000)
1.9 (1.521 , 2.000) (1.824 , 2.000) (0.000 , 2.000)
2.0 (1.269 , 2.000) (1.324 , 2.000) (0.000 , 2.000)

As it can be seen from Table [4.1] not only the lengths of intervals are too wide,
but also the estimated force are very different from the true force values. Although

constructed bootstrap confidence intervals are very wide, still in certain situations
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the true value of the force is not within the interval. As an example, when the true
amount of applied force is 1.5 N, the estimated bootstrap confidence intervals in
x, y, and z directions are (0.000 N, 1.375 N), (0 N, 2.000 N), and (0.000 N, 2.000
N), respectively, where 1.5 N is not within the interval constructed for force in x

direction.

In the left panel of Fig[4.3] observed voltages from each strain gauge are plotted,
and the direction of the applied force is specified with different colours. 3 different
residuals , , and obtained from different models in , are also
illustrated in the right panel of Figure 4.3l One can see that in the right panel
of Figure 4.3], voltages in S3 are not close to zero when force is applied in the y
direction. Nevertheless, we expected significant amount of voltages to be observed
when force is applied in the z direction. Therefore, the residuals are also significant

in S3 only when force is excerted in the y direction.
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Figure 4.3: In the left panel, observed voltages from each strain gauge is presented

versus the amount of force in 3 directions. In the right panel, residuals obtained

from fitting models in each strain gauge is illustrated versus the fitted values of

voltages for all 3 directions. Different directions are specified with different colours.
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In what follows, several methods are proposed in order to address the issue with
estimating the force in z direction. For each proposed method results are provided

for the comparison purposes.

4.2 Weighted Least Squares Regression

According to |Draper and Smith| (2014), when the variances of all observations on
different variables are not equal, or when observations are highly correlated, one
can apply the Weighted Least Squares (WLS) approach to estimate the regression
coefficients instead of the commonly used Ordinary Least Squares (OLS) method.
Considering Figure [4.3] it can be seen that the variability of the residuals obtained
from fitting regression models using an OLS approach is changing within the third
strain gauge (S3). This suggests using a WLS approach by considering suitable
weights in the regression models in order to obtain more suitable regression
models to be used in our proposed bootstrap method. To this end, we use the inverse
of the variances of observations in each strain gauge to construct the necessary

weights in the WLS approach to run the bootstrap calibration procedure.

To be more specific, for each regression model (4.1)), 3 different weights are

considered:

W, = (Var’l(le), Var’l(Vly), Var’l(Vlz)),
Wy = (Var='(Va,), Var—(Va,), Var ' (Va.)), (4.8)
W3 - (Var_l(‘/?)x)a VCLT_l(‘/gy), Var_l(‘/&z»?

where Wy, W5, and W3 are the associated weights for S, Sp, and S5 in models

(4.1)), respectively. After implementing the necessary expressions for WLS estimates
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of regression model parameters (e.g., Draper and Smith| (2014])) the bootstrap

calibration will be implemented as before.

4.2.1 Results Obtained from Bootstrapping with WLS

The results that are obtained through employing WLS with weights (4.8)), are
peresented in Table[d.2] As we observe, estimated confidence intervals are significantly
improved compared to the results in Table. [£.1] For most cases, the true amount
of forces in the x and y directions are within the estimated confidence intervals.
However, estimated confidence intervals for forces in z direction are not accurate
enough, and the length of the intervals are considerably wide. For example, when
the true force is 0.7 N (in z, y or z directions), estimated intervals for forces in x and
y directions are (0.697 N | 0.742 N) and (0.657 N, 0.750 N), respectively, while the
obtained interval in z direction is (0.650 N , 1.129 N). As we observed, although WLS
results in more accurate estimates of true forces compared with the OLS approach,
still results for the 2z direction are not as precise as they need to be in order to be
used in practice. Part of the difficulty related with estimation in the z direction is
associated with the technical problem with improper implementation of the censors
in the device. In the next section we proceed the underlying estimation process using
the Bayesian methodology hoping that this will results in more accurate estimation

of the true force values in the z direction.
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Table 4.2: Estimated confidence intervals for different amounts of forces applied to
right forceps tip, in z, y, and z directions, using WLS approach. To examine results
of the bootstrap method, amounts of true forces were considered as unknown values.

Estimated Forces by WLS Approach

True Force F, Cl1 F, CI F,Cl
0.1 (0.095 , 0.138) (0.094 , 0.190) (0.228 , 0.715)
0.2 (0.156 , 0.199) (0.169 , 0.264) (0.290 , 0.766)
0.3 (0.299 , 0.344) (0.272, 0.368) (0.379 , 0.860)
0.4 (0.394 , 0.438) (0.347,0.442) (0.378 , 0.867)
0.5 (0.498 , 0.541) (0.471, 0.566) (0.542 , 1.014)
0.6 (0.580 , 0.625) (0.589 , 0.682) (0.657 , 1.143)
0.7 (0.697 , 0.742) (0.657 , 0.750) (0.650 , 1.129)
0.8 (0.760 , 0.805) (0.791 , 0.886) (1.050 , 1.530)
0.9 (0.881,0.925) (0.887,0.981) (1.060 , 1.553)
1.0 (0.975,1.020) (0.998 , 1.090) (1.153 , 1.622)
1.1 (1.087 , 1.130) (1.121,1.218) (1.432,1.913)
1.2 (1.199 , 1.243) (1.216 , 1.310) (1.636 , 2.000)
1.3 (1.275 , 1.319) (1.298 , 1.394) (1.526 , 1.994)
1.4 (1.390 , 1.436) (1.389 , 1.483) (1.739 , 2.000)
1.5 (1.461 , 1.505) (1.510, 1.605) (1.716 , 2.000)
1.6 (1.586 , 1.630) (1.566 , 1.659) (1.859 , 2.000)
1.7 (1.688 , 1.733) (1.691 , 1.785) (1.947 , 2.000)
1.8 (1.800 , 1.846) (1.801, 1.897) (2.000 , 2.000)
1.9 (1.902 , 1.947) (1.918 , 2.000) (2.000 , 2.000)
2.0 (1.976 , 2.000) (2.000 , 2.000) (2.000 , 2.000)
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4.3 Multi-level Modeling

Multi-level models are generalizations of the regression models in which a set of data
is structured in different categories based on their characteristics and the model
coefficients can vary within each different category. There are three commonly used
formulations in multi-level modeling. These formulations are briefly explained as

follow:

1. Models with varying slope, Y; = a + 3;3X; + €;.

2. Models with varying intercept, ¥; = a;p) + 8X; + ;.

3. Models with varying slope and intercept, Y; = oy + 55 Xi + €.
Here, j = 1,2,..,J indicates the group factors with J levels, and i = 1,2,...,n
represents the data points. Figure. [4.4] illustrates these models for the case of a
simple linear regression model with three group levels. The left, middle, and right

plots represent model [1], 2] and [3] respectively.

Multi-level models appear with different names in the literature. For example, in
Ruppert et al.| (2003), these models are referred to as mized models. Mixed models
or mixed-effects models are comprised of fixed, as well as random coefficients, where
multi-level models include these two types of coefficients as well. In this regard,
random effects are defined as varying coefficients («;’s and ;s ), while the fixed

effects are fixed for different group levels in these models.

As in |Gelman and Hill| (2006]), multi-level modeling could be defined as an

adjustment between completely excluding the effects of different group levels (com-
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Figure 4.4: Three possible models in multi-level modeling are illustrated. First plot
from the left, presents a model with varying slop, middle plot is showing the model
with varying intercept, while the last plot illustrates the case where both slope and
intercepts are varying for different groups.

plete pooling) and considering separate models for different groups (no pooling).
Therefore, multi-level models are referred to as partial-pooling estimation models,
since they consider the average of the available observations at each group level to
estimate the coefficients. While no-pooling estimation results in overfitting the data,
complete-pooling ignores the variation between different groups. Such undesirable

effects can be avoided (or minimized) using multi-level modeling,.

Multi-level modeling approach is applicable to our calibration problem as we
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are dealing with categorical data set. As mentioned earlier, explanatory variable
(force) in this problem includes 3 different directions (x, y, z), that is considered as
a group factor. Having calibration data set, varying slope without intercept models

are fitted to obtain relative coefficients:
Skij = FiBr + Zivji + €kij, (4.9)

where, k£ = 1,2, 3 is the strain gauge number, ¢ = 1,2, ..., 3n is calibration data point

number,F:(FM,~~ 7Fn:v7F1y7"' >Fny>Flzy"' 7Fnz>T7

1, x direction,

F, - F, 0 - 0 0 - 0
j =12, wydirection, and, Z=| 0 0 Fy -~ Fy 0 -+ 0

3, z direction,

ug) (0 ug) _ (G 0 _ 2
Furthermore, F <€k> = (O)’ and Cor (@:) = (0 Rk)’ where Gy = oy ,

— 52
Ry = o’ . Therefore,

Var(Sy) = ZGrZ" + Ry, = 5. (4.10)

In model (4.9) B;’s are called fized effects and wy’s that are varying for different

J’s (direction) are called random effects.

4.3.1 Estimation of Fixed and Random Effects Coefficients

Suppose X (4.10) is known, fixed effects coefficients are estimated through either
the ML, or Generalized Least Squares (GLS) approach. Under the multivariate

normality assumption, the log-likelihood function under the model (4.2 is,
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Consequently, 3, = (FTS'F)"'FTY, 1S, that is the Best Linear Unbiased Predic-

tion (BLUP).

To estimate random effects, Best Linear Unbiased Prediction (BLUP) approach
under Squared Error Loss (SEL) is employed. Let 6,(Sk) be an estimation for uy.
Then,

dBLUP = arg(sminE [(Uk; — 61(Sk))? | Sk} . (4.12)

In order to obtain dgryp, let
f(0k) = Eluj, | Sk — 204(Sk) Eluy, | Sk] + 67(Sk). (4.13)

One can obtain dgryp, by taking the derivative of f(dy), as follow:

%f(ék) = —2F[uy, | S] + 20x(Sk) = 0
k (4.14)

Therefore, the BLUP estimation of u; under SEL for a given S is obtained, assuming
that Sy and wu; are normally distributed, as follow:
Uy, = F(ug|Sk)
= E(ux) + El(uy — B(w))(Sk — E(S)) ' [Var™(Si)(Sk — E(Sy))
— B(uS))Z; Sk — FA) (4.15)
= Z, E(u})S; ' (Sk — FBy)

= 7, GivS (Sk — FB),

91



However, in practice, 8 is replaced by its estimation, that is Bk, and G, and Ry,

have to be estimated.

In what follows we extend our results under SEL to LINEX loss function. The

LINEX loss is an asymmetric function, that enables us to use different penalties for
over and under estimation of the parameter of interest. In our calibration problem,
underestimating the amount of forces is more serious than overestimating as excessive
force on brain tissues can cause serious damages and hence it is recommended to
protect against under estimation. To address this problem, LINEX loss function has
been also applied in our prediction process, to obtain more reliable results. LINEX

loss function is defined as
La<ﬂk, uk) = Ba(ﬂk_uk) — Oé(ﬂk — uk) — 1.

In order to use LINEX loss function, we first need an extension of the notation of

unbiasedness to take into account the role of the loss function in the estimation

(prediction) process. To this end, we use the following theoretic definition of

unbiasedness.

Definition: A predictor u; of uy is said to be loss-unbiased if it satisfies

E[L(ly,ux)] < E[L(v,uy)], for any v # . (4.16)
In particular, when L(dy, ug) = (tx —ug)?, then the notation of unbiasedness reduces
to E(ﬂk — uk) =0.
Under the Linex loss L, (t, uy), it is easy to see that

E[Lq (i, ug)] < E[La(v,ur)], Vv # .
Now, the problem reduces to finding the Best Linex Unbiased Predictor (BLinexUP).

To obtain such a predictor, we need to minimize E[L,(lg, uy)], with respect to iy,
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by minimizing the left-side of the following equation with respect to y:
E[La e, )] = E[E[Lai, )] | S,

that is equivalent to minimizing E|[L, (g, ug) | Sk, with respect to . Under the

LINEX loss function, let
Q(ak) — E[ea(ﬁk_uk) — Oé(’LALk — uk.) —1 | Sk], (417)

taking the derivative of Q(u) with respect to iy, one can obtain BLinexUP as

follow:

d
diiy,

Q(uy) = E[aea(ﬁ’“_"’“) —al =0,

which results in

1
ﬁa,k = — IOg E[eiauk | Sk] (418)
o
Assuming uy, | S, ~ N(jis, 02), where pu, = E(uy, | Sg) = g, then,

N cla . ocla
Uak = Hsx — 9 = U —

(4.19)

[\]

4.3.2 Estimation of Covariance Matrices, G, and R},

In Ruppert et al.|(2003), the ML approach and Restricted (or Residual) ML (REML)
strategies are proposed to estimate Gy and Rj. We first establish ML approach by

writing the log-likelihood function as follow:

(B, Zp) = —%{nlog(%r) +log S| + (Sk — FB) TSNSk — FB)Y. (4.20)
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We then substitute 35 in ([4.20) to get
1 - o _ n
0(Z8) = —§{log ISk + SIS - F(FTES )RS NS — o) log(27), (4.21)

where, ¢, stands for profile log-likelihood, and ¥y, is defined in (4.10]). At this point,
we can obtain ML estimates of Gy and Ry in X, by maximizing (4.21). Since, Xy is

the function of (Ry, Gy), estimation of them involves maximizing ¢,(GrLZZ" + Ry)

The likelihood function to obtain REML estimates for G and Ry is
1
Crevrn(Zr) = 0,(2)) — 5 log Falb ol (4.22)

According to Ruppert et al|(2003), the REML is a more accurate method to obtain
the estimates than ML method, specially when we are dealing with small sample
sizes. Nevertheless, when the sample size is large enough, ML and REML estimates

are very close.

The reason that REML is preferable over ML is the fact that the influence of
fixed effects’s degrees of freedom has not been considered in the ML approach (Searle
et al 2009). As it is mentioned in |[Ruppert et al.| (2003)), REML estimation is more
complicated since it requires the estimates by maximizing the linear combination
of components of likelihood function that are independent of ;. More details on

REML approach is given in [Searle et al.| (2009).

4.3.3 Results Obtained from Multi-level Modeling

In this part, multi-level modeling approach is employed to obtain point and interval

estimates of applied forces in z, y, and z directions. Results are obtained using R
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built-in function “Imer’, within Tme4” package (De Boeck et all 2011)).

In theory, we should not consider intercept in the model, since voltages are not
observed when applied force is 0 N. However, we violated the model and considered
intercepts as bias in the model to get better predictions. Also, we have provided
the results under both SEL and LINEX loss functions. For obtaining the results
under LINEX loss, we use o € (0.1,0.5, 1) to provide different measures of penalty
for overprediction compared with underprediction. Tables and [4.4] present the

results obtained under SEL and LINEX loss, respectively.
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Table 4.3: Point estimates obtained by multi-level modeling for different amounts of
forces applied to right forceps tip, in z, y, and z directions under SEL loss function.
As before, to examine results, amounts of true forces were considered as unknown
values.

MoAdels Witllout InterAcept MAodels WiiA:h Interceipt
True Force F, F, F, F, F, F,

0.1 0.086 0.096 0.216 0.094 0.090 0.237
0.2 0.169 0.188 0.303 0.176 0.183 0.322
0.3 0.302 0.297 0.515 0.308 0.292 0.530
0.4 0.405 0.448 0.525 0.411 0.444 0.540
0.5 0.495 0.477 0.612 0.501 0.473 0.625
0.6 0.573 0.587 0.698 0.577 0.583 0.710
0.7 0.652 0.763 0.833 0.656 0.760 0.843
0.8 0.798 0.733 0.853 0.801 0.731 0.862
0.9 0.899 0.863 0.882 0.902 0.861 0.890
1.0 0.980 0.968 1.094 0.982 0.967 1.099
1.1 1.079 1.077 1.239 1.081 1.076 1.241
1.2 1.221 1.224 1.267 1.222 1.224 1.269
1.3 1.308 1.308 1.354 1.308 1.308 1.355
1.4 1.418 1.396 1.412 1.418 1.396 1.411
1.5 1.514 1.560 1.422 1.513 1.561 1.421
1.6 1.582 1.648 1.557 1.581 1.649 1.553
1.7 1.730 1.698 1.615 1.727 1.700 1.610
1.8 1.827 1.849 1.702 1.825 1.852 1.696
1.9 1.910 1.959 1.875 1.907 1.961 1.866
2.0 2.022 2.055 1.943 2.019 2.058 1.932
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Table 4.4: Estimated forces in x, y, and z directions under LINEX loss function, considering
three different values for a. Top part of the table presents the obtained force estimates for
models without considering intercept, and the bottom part presents the estimation for
models with intercept.

Estimated Forces in Models without Intercept

O{1:0.1 0(2:0.5 0[3:1
True Force F’T Fy Fz FT F'y F'Z FT F'y FZ
0.1 0.086  0.096  0.221 0.087  0.096 0.244 0.087  0.096  0.281
0.2 0.170  0.188  0.310 0.170  0.188  0.342 0.171  0.188  0.394
0.3 0.302  0.297  0.527 0.303  0.297  0.582 0.305 0.298  0.670
0.4 0.406  0.448  0.537 0.407  0.449  0.593 0.409 0449 0.683
0.5 0.496  0.478  0.626 0.498  0.478  0.692 0.500  0.479  0.796
0.6 0.573  0.587 0.715 0.575  0.587  0.790 0.578  0.588  0.909
0.7 0.653 0.763  0.853 0.655  0.764  0.942 0.658  0.765  1.084
0.8 0.798  0.734  0.873 0.801  0.734  0.964 0.804 0.735  1.109
0.9 0.900 0.864  0.903 0.903 0.865  0.997 0.906 0.866  1.147
1.0 0.981 0.969 1.120 0.984 0.970 1.237 0.988 0.971 1.423
1.1 1.080 1.078  1.268 1.084 1.079  1.401 1.088  1.080 1.612
1.2 1.222 1.225  1.298 1.226  1.226  1.433 1.231  1.228  1.649
1.3 1.309 1.309  1.386 1.313  1.310  1.532 1.319  1.312  1.762
1.4 1.419  1.397  1.446 1.424  1.398  1.597 1.430  1.400  1.838
1.5 1.515  1.560  1.456 1.520  1.562  1.608 1.527  1.564  1.850
1.6 1.584 1.649 1.594 1.589  1.650 1.761 1.596  1.652  2.026
1.7 1.731  1.699  1.653 1.737  1.701  1.826 1.744  1.703  2.101
1.8 1.829  1.850  1.742 1.835 1.852  1.924 1.843 1.854 2.214
1.9 1.912  1.959  1.920 1.918 1.961 2.121 1.926  1.964  2.440
2.0 2.024  2.056  1.989 2.031  2.058  2.197 2.039  2.061  2.528
Estimated Forces in Models with Intercept
0[1:0,1 0[2:0.5 a3:1
True Force F‘m F‘y Fz F‘x Fy FZ F‘x Fy F'Z
0.1 0.094  0.090 0.242 0.094  0.090 0.267 0.095 0.090 0.306
0.2 0.177  0.183  0.329 0.177  0.183  0.363 0.178  0.183  0.417
0.3 0.309 0.292  0.543 0.310  0.293  0.598 0.311  0.293  0.686
0.4 0.411 0444  0.552 0.413  0.445  0.609 0.414  0.445  0.699
0.5 0.501  0.474  0.640 0.503  0.474  0.705 0.505  0.475  0.809
0.6 0.578 0.583  0.727 0.580  0.584  0.801 0.582  0.585  0.919
0.7 0.657  0.760  0.863 0.659 0.761  0.951 0.662 0.762  1.091
0.8 0.802 0.731  0.882 0.804 0.732  0.972 0.808 0.732  1.115
0.9 0.902 0.861 0.911 0.905 0.862 1.004 0.909 0.863 1.152
1.0 0.983 0.967 1.124 0.986  0.968  1.240 0.990 0.969 1.422
1.1 1.082 1.076  1.270 1.086  1.078  1.400 1.090  1.079  1.606
1.2 1.223  1.224  1.299 1.227  1.225  1.432 1.232  1.227  1.643
1.3 1.309 1.308  1.386 1.314  1.310  1.528 1.319  1.311  1.753
1.40 1.419  1.397  1.444 1.424  1.398  1.592 1.430  1.400 1.827
1.5 1.514  1.561 1.454 1.520  1.563  1.603 1.526  1.565  1.839
1.6 1.582  1.650  1.590 1.588  1.652  1.753 1.594 1.654  2.011
1.7 1.729  1.700  1.648 1.735  1.702  1.817 1.742  1.704 2.084
1.8 1.826 1.852  1.735 1.832 1.854 1.913 1.840  1.857  2.194
1.9 1.908 1.962 1.910 1.915 1.964 2.105 1.923  1.966  2.415
2.0 2.020 2.059  1.977 2.027  2.061  2.180 2.035  2.064 2.501
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As can be seen in Tables and force estimates in x and y directions are
very close to the true amount of applied forces for models without intercept as well
as models with intercept, but estimation in z directions is not accurate enough
irrespective of the values of a. The problem with force estimation along the z axis
is caused by adding the third pair of strain gauges as was discussed in Section {4.1]
For instance, when the true force is 0.3 N, estimation of models without intercept
in z and y directions under SEL and also LINEX loss are 0.302 N and 0.297 N,
respectively. However, estimated force in z direction is 0.515 N and 0.527 N under
SEL and LINEX loss for a = 0.1, respectively, that is still far from the true amount

of force.

To address the issues with force estimates along the z direction, we decided to
apply weights in the multi-level modeling approach (WLS approach was explained in
Section . Since the problem was only in estimating the forces along z direction,

we applied weight only for k£ = 3 in model (4.9) (third strain gauge).

Considering the calibration data set, S3 includes three different types of voltages,
which are observed voltages when force is applied in z, y, and z directions. We
therefore considered three different weights associated with each part of the S5. Table
presents six different weighting schemes applied to the S3 models. We applied all
six weights presented in Table. in our models to obtain force estimation along z

axis. Table. .6 presents the results for models with and without intercept.
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Table 4.5: Six different proposed weights to use in multi-level modeling approach.

Weights
S3 Components Wy Wo Ws Wy W We
Type 1| 1 1 1 U1y 1y 1
Type 11 1 1 1 Vgy ﬂ Vgy 1
3 1 1 1 7 1
Type 111 11 a?(vszﬂ o2 (v2,) (v2,) Vayf] Vla p(vs2)

?Observed voltages when force is applied in x direction
bObserved voltages in S; when F, is applied
¢Observed voltages when force is applied in y direction
YObserved voltages in Sy when F, is applied
¢Observed voltages when force is applied in z direction
fObserved voltages in Sg when F, is applied
90bserved voltages in S3 when Fy, is applied
hObserved voltages in S; when F, is applied

As can be seen in Tables and [4.7, models with intercept provide better force
estimation compared to models without intercept. For instance, when the true F’ is
0.1 N, models without intercepts under SEL do not provide accurate estimation (all
estimated the force as 0.22 N), while models with intercept provide accurate force
prediction as 0.11 N, when Wj is applied in the model. This is also true for results
under LINEX loss, considering all three values of a. As it is presented in Table [4.7]
when o = 1, forces are overestimated, and the best results are obtained for ao = 0.5
considering W in the model. Since o2 is very small, the differences between force

predictions obtained under SEL and LINEX loss functions are not significant.
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Table 4.6: Estimated forces in z direction, considering six different weights under
SEL. Top part of the table presents the obtained force estimates for models without
considering intercept, and the bottom part presents the estimation for models with
intercept.

Estimated F, in Models without Intercept
True Fz W1 W2 W3 W4 W5 W(;
0.1 0.22 0.22 0.21 0.22 0.22 0.22
0.2 0.30 0.30 0.29 0.31 0.31 0.30
0.3 0.52 0.52 0.50 0.52 0.52 0.52
0.4 0.52 0.52 0.51 0.53 0.53 0.52
0.5 0.61 0.61 0.59 0.62 0.62 0.61
0.6 0.70 0.70 0.67 0.71 0.71 0.70
0.7 0.83 0.83 0.80 0.85 0.85 0.83
0.8 0.85 0.85 0.82 0.87 0.87 0.85
0.9 0.88 0.88 0.85 0.89 0.89 0.88
1.0 1.09 1.09 1.05 1.11 1.11 1.09
1.1 1.24 1.24 1.19 1.26 1.26 1.24
1.2 1.27 1.27 1.22 1.29 1.29 1.27
1.3 1.35 1.35 1.30 1.37 1.37 1.35
1.4 1.41 1.41 1.36 1.43 1.43 1.41
1.5 1.42 1.42 1.37 1.44 1.44 1.42
1.6 1.56 1.56 1.50 1.58 1.58 1.56
1.7 1.61 1.61 1.55 1.64 1.64 1.61
1.8 1.70 1.70 1.64 1.73 1.73 1.70
1.9 1.88 1.88 1.81 1.90 1.90 1.88
2.0 1.94 1.94 1.87 1.97 1.97 1.94
Estimated F, in Models with Intercept
True Fz W1 WQ W3 W4 W5 Wg
0.1 0.05 0.05 0.11 0.07 0.09 0.07
0.2 0.15 0.15 0.21 0.16 0.19 0.17
0.3 0.39 0.39 0.43 0.40 0.42 0.41
0.4 0.41 0.41 0.44 0.42 0.44 0.42
0.5 0.50 0.51 0.54 0.51 0.53 0.52
0.6 0.60 0.60 0.63 0.61 0.63 0.62
0.7 0.76 0.76 0.78 0.77 0.78 0.77
0.8 0.78 0.78 0.80 0.79 0.80 0.79
0.9 0.81 0.81 0.83 0.82 0.83 0.82
1.0 1.06 1.06 1.06 1.06 1.07 1.06
1.1 1.22 1.22 1.21 1.22 1.23 1.22
1.2 1.25 1.25 1.24 1.26 1.26 1.26
1.3 1.35 1.35 1.34 1.36 1.36 1.35
1.4 1.42 1.42 1.40 1.42 1.42 1.42
1.5 1.43 1.43 1.41 1.43 1.43 1.43
1.6 1.58 1.58 1.55 1.58 1.58 1.58
1.7 1.65 1.65 1.62 1.65 1.65 1.65
1.8 1.75 1.75 1.71 1.75 1.75 1.74
1.9 1.95 1.95 1.90 1.95 1.94 1.94
2.0 2.00 2.00 1.97 2.00 2.00 2.00
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Table 4.7: Estimated forces in z direction, considering six different weights under LINEX
loss. Top part of the table presents the obtained force estimates for models without
considering intercept, and the bottom part presents the estimation for models with
intercept.

Estimated F, in Models without Intercept

a; = 0.1 as = 0.5 az=1
True F, Wy W, Wy W, W; W Wy Wy Wy W, Wi W Wy Wy Wy W, Wi W
0.1 022 024 028 0.22 0.24 0.28 021 023 027 0.22 0.25 0.29 022 025 029 0.22 0.24 0.28
0.2 0.31 034 0.39 0.31 0.34 0.39 0.30 0.33 0.37 0.31 0.35 0.40 0.31 0.35 0.40 0.31 0.34 0.39
0.3 0.53 0.58 0.67 0.53 0.58 0.67 0.51 0.56 0.64 0.54 0.59 0.68 0.54 0.59 0.68 0.53 0.58 0.67
0.4 0.54 0.59 0.68 0.54 0.59 0.68 0.52 0.57 0.65 0.55 0.60 0.70 0.55 0.60 0.70 0.54 0.59 0.68
0.5 0.63 0.69 0.80 0.63 0.69 0.80 0.60 0.66 0.76 0.64 0.70 0.81 0.64 0.70 0.81 0.63 0.69 0.80
0.6 071 079 091 0.71 0.79 0.91 0.69 0.76 0.86 0.73 0.80 0.93 0.73 0.80 0.93 0.71 0.79 0.91
0.7 0.85 094 1.08 0.85 0.94 1.08 0.82 090 1.03 0.87 0.96 1.11 0.87 096 1.11 0.85 0.94 1.08
0.8 0.87 096 1.11 087 0.96 1.11 0.84 092 1.06 0.89 0.98 1.13 0.89 098 1.13 087 0.96 1.11
0.9 0.90 1.00 1.15 090 1.00 1.15 0.87 096 1.09 0.92 1.01 1.17 0.92 1.01 1.17 090 1.00 1.15
1.0 1.12 1.24 142 1.12 124 142 1.08 1.18 135 1.14 1.26 145 1.14 1.26 145 1.12 124 142
1.1 1.27 140 1.61 1.27 140 1.61 122 1.34 153 129 142 164 129 142 164 1.27 140 1.61
1.2 1.30 143 1.65 1.30 143 1.65 1.25 1.37 1.57 1.32 146 1.68 1.32 146 1.68 1.30 1.43 1.65
1.3 1.39 1.53 1.76 1.39 1.53 1.76 1.33 147 1.68 141 1.56 1.80 141 1.56 1.80 1.39 1.53 1.76
1.4 145 160 1.84 145 1.60 1.84 1.39 153 1.75 147 1.62 1.87 147 162 1.87 145 1.60 1.84
1.5 1.46 1.61 1.85 146 1.61 1.85 140 154 1.76 148 1.63 1.89 148 1.64 1.89 146 1.61 1.85
1.6 1.59 1.76 2.03 1.59 1.76 2.03 1.53 1.69 193 1.62 1.79 2.07 1.62 1.79 2.07 1.59 1.76 2.03
1.7 1.65 1.83 210 1.65 1.83 2.10 1.59 1.75 2.00 1.68 1.86 2.14 1.68 1.86 2.14 1.65 1.83 2.10
1.8 1.74 192 221 1.74 192 221 1.68 1.84 211 1.77 1.96 2.26 1.77 196 226 1.74 1.92 221
1.9 1.92 212 244 192 212 244 1.85 2.03 232 195 216 249 1.95 216 249 1.92 212 244
2.0 1.99 220 253 199 220 2.53 1.91 210 241 2.02 223 2.58 2.02 224 258 199 220 253
Estimated F. in Models with Intercept
a; =0.1 as = 0.5 Qg =
True F, Wy, W, Wy W, W; W Wy W, Wy Wy Wi W Wy W, Wy Wy Wi W
0.1 0.05 0.06 0.07 0.06 0.06 0.07 0.12 0.13 0.15 0.07 0.08 0.09 0.09 0.11 0.12 0.07 0.08 0.10
0.2 0.16 0.18 0.21 0.16 0.18 0.21 0.21 0.24 0.27 0.17 0.19 0.22 0.19 0.22 0.25 0.18 0.20 0.23
0.3 0.40 045 0.54 041 046 0.54 0.45 0.50 0.58 0.42 0.47 0.55 0.44 049 0.57 042 047 0.55
0.4 0.42 047 0.55 0.42 0.47 0.55 0.46 051 0.59 0.43 0.48 0.56 0.45 0.50 0.59 0.43 0.48 0.57
0.5 0.52 0.58 0.69 0.52 0.58 0.69 0.55 0.61 0.72 0.53 0.59 0.70 0.55 0.61 0.72 0.53 0.60 0.70
0.6 0.62 0.70 0.82 0.62 0.70 0.82 0.65 0.72 0.84 0.63 0.71 0.83 0.65 0.72 0.85 0.63 0.71 0.83
0.7 0.78 0.87 1.03 0.78 0.87 1.03 0.80 0.89 1.03 0.79 0.88 1.04 0.80 0.89 1.05 0.79 0.88 1.04
0.8 0.80 0.90 1.06 0.80 0.90 1.06 0.82 091 1.06 0.81 0.91 1.07 0.82 0.92 1.08 0.81 091 1.07
0.9 0.83 0.94 1.10 0.84 0.94 1.11 0.85 0.95 1.10 0.84 0.94 1.11 0.95 096 1.12 0.84 0.94 1.11
1.0 1.08 1.22 143 1.08 1.22 1.43 1.08 1.21 141 1.09 122 144 1.10 1.23 144 1.09 1.22 143
1.1 125 141 1.66 1.25 1.41 1.66 124 1.38 1.61 1.26 1.41 1.66 126 141 1.66 1.26 1.41 1.65
1.2 129 144 170 1.29 144 1.70 1.27 142 1.65 129 145 1.70 1.30 145 1.70 1.29 1.44 1.70
1.3 1.39 156 1.84 139 1.56 1.84 1.37 153 1.78 1.39 1.56 1.84 1.39 156 1.83 1.39 1.56 1.83
14 146 1.63 1.93 1.46 1.63 1.93 1.43 1.60 1.86 1.46 1.64 1.93 146 1.63 1.92 146 1.63 1.92
1.5 1.47 165 194 1.47 1.65 194 1.45 1.61 1.88 1.47 1.65 194 1.47 165 193 1.47 1.64 193
1.6 1.63 1.83 2.15 1.63 1.82 215 1.59 1.78 2.07 1.63 1.82 2.15 1.63 1.82 214 1.62 1.82 2.14
1.7 1.69 1.90 224 1.69 1.90 2.24 1.66 1.85 2.15 1.69 1.90 2.24 1.69 1.89 222 1.69 1.89 222
1.8 1.80 2.02 238 1.80 2.01 2.38 1.75 1.95 228 1.80 2.01 2.37 1.79 2.00 235 1.79 2.00 2.36
1.9 2.00 224 265 2.00 224 265 1.95 2.17 252 2.00 224 2.64 1.99 223 261 199 223 262
2.0 2.08 233 275 2.08 233 275 2.02 225 262 208 233 274 2.07 231 271 207 232 272
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In order to provide interval estimation, we employed our proposed bootstrap
technique in conjunction with multi-level models. Tables [4.8 and [4.9] present the
estimated confidence bounds for applied forces in x, y, and z directions, as well as
Root Mean Square Error (RMSE) and Bias values. bootstrap results are obtained
from models with considering weights (WLS). The bootstrap procedure is the same
as what we explained in Section [{.1.2] except that instead of linear regression models,
we fitted multi-level models as presented in (4.9). Based on the results presented in
Tables [4.6] and [4.7] we selected W3 to be used in the model for estimating forces in z
direction under SEL and W; under LINEX loss in the bootstrapping procedure. We
also considered o = 0.1, since the results under this value was considerably better

that other values.

Once again, we considered both models with and without intercept for obtaining
the results. As can be seen in Tables and in most cases true value of the
applied forces are within the estimated intervals and the Bias is very low. However,
there are some differences between the results obtained for applied forces in z
direction from models with intercept and models without intercept. While there are
wider confidence bounds for models with intercepts, the bias and sometimes RMSE

is lower for these models and most of the times true value of the force is within the

estimated interval. For instance, when the applied force in z direction, F,, is 0.1 N,
calculated confidence interval by a model without intercept under SEL is (0.11 N |
0.74 N), compared to (0.167 N , 0.987 N) that is obtained based on a model with
intercept. Furthermore, calculated confidence interval under LINEX loss is (0.134 N
, 0.789 N) for models without intercept, and (0.000 N , 0.778 N) for models with

intercept.
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Table 4.8: Point and interval estimation of applied forces in z, y, and z directions using
proposed bootstrap method with using multi-level models under SEL function.

Estimation of Models Without Intercept

1.9 1.90,1.94) 191 0.01 0.02 . 1.96 0.06 0.07 1.75,2.00) 1.81 -0.09 0.37
2.00 0.02 0.03 (2.00,2.00) 2.00 0.05 0.07

Force in z Direction Force in y Direction Force in z Direction
True Force ClI F  Bias RMSE C.I F  Bias RMSE C.I F  Bias RMSE
0.1 (0.07,0.12) 0.08 -0.02 0.02 (0.08,0.18) 0.10 0.00 0.05 (0.11,0.74) 0.18 0.08 0.38
0.2 (0.16 ,0.20) 0.17 -0.03 004 (0.16,027) 019 -0.01 0.04 (0.20,0.80) 0.29 0.09 0.33
0.3 (0.29,0.33) 0.30 0.00 0.02  (0.28,0.38) 0.30 0.00 0.04  (041,0.99) 0.50 0.20 0.38
0.4 (0.39, 0.43) 0.40 0.00 0.02  (043,0.53) 045 0.05 0.07  (042,1.03) 050 0.10 0.42
0.5 (0.48,0.53) 049 -0.01 0.02 (046,055 048 -0.02 0.05 (0.51,1.11) 0.58 0.08 0.35
0.6 (0.56 , 0.60) 0.57 -0.03 0.03 (0.56,0.66) 0.59 -0.01 0.05 (059,1.17) 0.67 0.07 0.53
0.7 (0.64 ,0.68) 0.65 -0.05 005 (0.74,084) 0.77 0.07 0.08 (0.73,1.34) 0.82 0.12 0.52
0.8 (0.78 ,0.83) 0.80 0.00 0.02 (0.71,081) 0.73 -0.07 0.08 (0.73,1.36) 0.82 0.02 0.37
0.9 (0.89,0.93) 0.90 0.00 0.02 (0.84,094) 086 -0.04 0.06 (0.77,1.35) 0.83 -0.07  0.53
1.0 (0.97,1.01) 098 -0.02 0.03 (0.94,1.05) 0.97 -0.03 0.05 (0.98,1.59) 1.07 0.07 0.35
1.1 (1.07,1.11) 1.08 -0.02 003 (105,115 1.08 -0.02 0.05 (1.12,1.71) 1.19 0.09 0.54
1.2 (1.21,1.25) 1.22 0.02 0.03  (1.20,1.30) 1.23 0.03 0.05 (1.13,1.75) 1.20 0.00 0.37
1.3 (1.30,1.34) 1.31 0.01 0.02 (129,1.39) 131 0.01 0.05 (1.22,1.87) 132 0.02 0.39
14 (1.41,1.45) 142 0.02 0.03  (1.37,1.47) 1.40 0.00 0.04  (1.28,1.90) 1.37 -0.03 0.54
1.5 (1.50, 1.55) 1.51 0.01 0.02  (1.54,1.63) 1.56 0.06 0.08 (1.30,1.92) 1.40 -0.10 0.33
1.6 (1.57 ,1.61) 1.58 -0.02 002 (1.63,1.72) 1.65 0.05 0.07  (1.42,2.00) 1.49 -0.11  0.72
1.7 (.72 ,1.76) 1.73 0.03 0.04 (1.68,1.78) 1.70 0.00 0.04  (1.48,2.00) 1.55 -0.15 0.72
1.8 (1.82,1.86) 1.83 0.03 0.03 (1.83,1.92) 1.85 0.05 0.06  (1.57,2.00) 1.65 -0.15  0.37
( ) ( ) ( )
( ) ( )

2.0 2.00 , 2.00 1.81,2.00) 1.86 -0.14  0.43
Estimation of Models With Intercept
Force in z Direction Force in y Direction Force in z Direction
True Force C.I F Bias RMSE C.I F  Bias RMSE C.I F  Bias RMSE
0.1 (0.08, 0.13) 0.09 -0.01 0.02 (0.07,0.17) 0.09 -0.01 0.05 (0.00, 0.74) 0.10 0.00 0.41
0.2 (0.16 , 0.21) 0.18 -0.02 0.03 (0.16 , 0.26) 0.18 -0.02 0.05 (0.10,0.81) 0.21 0.01 0.36
0.3 (0.30,0.34) 0.31 0.01 0.02 (0.27,0.37)  0.29 -0.01 0.05 (0.34,1.04) 044 0.14 0.39
0.4 (0.40, 0.44) 0.41 0.01 0.02 (0.42,0.52) 0.44 0.04 0.07 (0.33,1.05) 0.43 0.03 0.41
0.5 (0.49, 0.53) 0.50 0.00 0.02 (0.45,0.55) 0.47 -0.03 0.05 (0.44 ,1.15) 0.53 0.03 0.38
0.6 (0.57,0.61) 0.58 -0.02 0.03 (0.56 , 0.66) 0.58 -0.02 0.05 (0.53,1.24) 0.62 0.02 0.40
0.7 (0.64 , 0.69) 0.66 -0.04 0.05 (0.74,0.84) 0.76  0.06 0.08 (0.69,1.39) 0.78 0.08 0.37
0.8 (0.79,0.83) 0.80 0.00 0.02 (0.71,0.81) 0.73 -0.07 0.08 (0.70, 1.41) 0.79 -0.01 0.40
0.9 (0.89,0.93) 0.90 0.00 0.02 (0.84,0.94) 0.86 -0.04 0.06 (0.73,1.42) 0.82 -0.08 0.42
1.0 (0.97,1.01) 0.98 -0.02 0.02 (0.94 ,1.04) 0.97 -0.03 0.06 (0.97,1.65) 1.07 0.07 0.39
1.1 (1.07,1.11) 1.08 -0.02 0.03 (1.05,1.15) 1.08 -0.02 0.05 (1.11,1.80) 1.22 0.12 0.39
1.2 (1.21,1.25) 1.22 0.02 0.03 (1.20,1.31) 1.23 0.03 0.05 (1.14,1.83) 1.22 0.02 0.39
1.3 (1.30, 1.34) 1.31 0.01 0.02 (1.28,1.39) 1.31 0.01 0.05 (1.24,2.00) 1.35 0.05 0.39
1.4 (141, 1.45) 142 0.02 0.03 (1.37,1.47) 1.40 0.00 0.04 (1.30, 2.00) 1.39 -0.01 0.42
1.5 (1.50, 1.54) 1.51 0.01 0.02 (1.54,1.64) 1.56 0.06 0.08 (1.33,2.00) 1.44 -0.06 0.36
1.6 (1.57 ,1.61) 1.58 -0.02 0.03 (1.63,1.72) 1.65 0.05 0.07 (1.46 , 2.00) 1.55 -0.05 0.39
1.7 (.72, 1.76) 1.73 0.03 0.03 (1.68,1.78) 1.70 0.00 0.04 (1.53,2.00) 1.63 -0.07  0.40
1.8 (1.81,1.85) 1.82 0.02 0.03 (1.83,1.92) 1.85 0.05 0.07 (1.62,2.00) 1.72 -0.08 0.39
1.9 (1.89,1.94) 1.91 0.01 0.02 (1.94,2.00) 1.96 0.06 0.07 (1.80,2.00) 1.89 -0.01 0.41
2.0 (2.00, 2.00) 2.00 0.02 0.03 (2.00, 2.00) 2.00 0.06 0.07 (1.87,2.00) 1.98 -0.02 0.40
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Table 4.9: Point and interval estimation of applied forces in z, y, and z directions using
proposed bootstrap method with using multi-level models under LINEX loss function.

Estimation of Models Without Intercept

Force in z Direction Force in y Direction Force in z Direction
True Force C.I F Bias RMSE C.I F Bias RMSE C.I F Bias RMSE
0.1 (0.072, 0.116) 0.085 -0.015 0.024  (0.076, 0.179) 0.098 -0.002 0.046 (0.134,0.789) 0.212 0.112  0.413
0.2 (0.156 , 0.202) 0.169 -0.031  0.036  (0.165, 0.267) 0.188 -0.012  0.045  (0.240, 0.856) 0.329 0.129  0.368
0.3 (0.290 , 0.333) 0.302 0.002 0.018 (0.277,0.376) 0.300 -0.000 0.044 (0.461,1.069) 0.549 0.249  0.429
0.4 (0.394 , 0.435) 0.404 0.004 0.017 (0.429,0.527) 0.450 0.050  0.069  (0.469 ,1.091) 0.484 0.084  1.957
0.5 (0.485, 0.527) 0.496 -0.004 0.018 (0.458 ,0.554) 0.480 -0.020 0.045 (0.563,1.191) 0.640 0.140  0.394
0.6 (0.562 , 0.605) 0.573 -0.027  0.032  (0.564 , 0.664) 0.586 -0.014 0.048  (0.650,1.252) 0.719 0.119  0.491
0.7 (0.641 , 0.684) 0.652 -0.048 0.051  (0.743, 0.840) 0.766 0.066  0.079  (0.801, 1.445) 0.949 0.249  1.940
0.8 (0.786 , 0.829) 0.798 -0.002 0.017  (0.710, 0.810) 0.733 -0.067 0.081  (0.814,1.465) 0.892 0.092  0.418
0.9 (0.888,0.931) 0.900 -0.000 0.016 (0.840,0.942) 0.864 -0.036 0.056  (0.848 ,1.454) 0.912 0.012  0.463
1.0 (0.970 , 1.011) 0.981 -0.019 0.026 (0.945,1.047) 0.969 -0.031 0.054 (1.072,1.711) 1.161 0.161  0.405
1.1 (1.069 , 1.115) 1.081 -0.019 0.026  (1.054,1.153) 1.078 -0.022 0.049 (1.215,1.840) 1.298 0.198  0.472
1.2 (1.211, 1.255) 1.223 0.023  0.029  (1.204, 1.305) 1.227 0.027  0.052 (1.233,1.880) 1.312 0.112  0.429
1.3 (1.298 , 1.341) 1.310 0.010  0.020  (1.286, 1.387) 1.309 0.009  0.047 (1.331,2.016) 1.438 0.138  0.462
14 (1.409 , 1.455) 1.421 0.021  0.028 (1.374, 1.468) 1.397 -0.003 0.042  (1.397,2.050) 1.503 0.103  1.002
1.5 (1.506 , 1.548) 1.517 0.017  0.025  (1.537,1.635) 1.560 0.060 0.076  (1.417,2.075) 1.521 0.021  0.337
1.6 (1.575,1.617) 1.585 -0.015 0.023  (1.627,1.723) 1.649 0.049 0.066 (1.545,2.171) 1.625 0.025  0.473
1.7 (1.722, 1.765) 1.733 0.033  0.038  (1.677,1.780) 1.699 -0.001  0.043  (1.611,2.257) 1.693 -0.007  0.480
1.8 (1.819, 1.862) 1.831 0.031  0.035 (1.827,1.918) 1.849 0.049 0.065 (1.712,2.345) 1.794 -0.006  0.366
1.9 (1.902, 1.946) 1.914 0.014  0.022 (1.936,2.033) 1.958 0.058 0.073  (1.889,2.548) 1.966 0.066  0.396
2.0 (2.015 , 2.060) 2.027 0.027  0.033  (2.030,2.132) 2.055 0.055 0.071 (1.959,2.629) 2.041 0.041  0.593
Estimation of Models With Intercept
Force in z Direction Force in y Direction Force in z Direction
True Force C.I F Bias RMSE C.I F Bias MSE C.I F Bias MSE
0.1 (0.082, 0.126) 0.094 -0.006 0.019  (0.067 ,0.173) 0.091 -0.009 0.048  (0.000, 0.778) 0.072 -0.028  0.452
0.2 (0.165, 0.207) 0.177 -0.023  0.029  (0.158,0.262) 0.182 -0.018 0.047  (0.063,0.851) 0.193 -0.007  0.401
0.3 (0.298 ,0.339) 0.310 0.010  0.020 (0.270, 0.372) 0.294 -0.006 0.045  (0.333,1.110) 0.449 0.149  0.430
0.4 (0.401 , 0.440) 0.411 0.011  0.020 (0.424, 0.522) 0.445 0.045 0.065 (0.327,1.119) 0.427 0.027  0.455
0.5 (0.491 , 0.531) 0.502 0.002  0.017 (0.453,0.550) 0.475 -0.025 0.048 (0.438,1.236) 0.543 0.043  0.425
0.6 (0.568 , 0.609) 0.579 -0.021  0.027  (0.559 , 0.660) 0.582 -0.018 0.050  (0.546 , 1.320) 0.640 0.040  0.441
0.7 (0.646 , 0.688) 0.657 -0.043 0.046  (0.740 , 0.840) 0.763 0.063  0.077  (0.709 ,1.501) 0.822 0.122  0.420
0.8 (0.790 , 0.833) 0.802 0.002  0.017 (0.705,0.807) 0.729 -0.071 0.084 (0.723,1.523) 0.822 0.022  0.442
0.9 (0.892,0.932) 0.903 0.003 0.016 (0.838,0.939) 0.862 -0.038 0.058  (0.767 ,1.528) 0.862 -0.038  0.450
1.0 (0.972,1.012) 0.984 -0.016 0.024  (0.943, 1.045) 0.967 -0.033 0.056 (1.020,1.780) 1.131 0.131  0.442
1.1 (1.072, 1.116) 1.083 -0.017 0.025  (1.052, 1.151) 1.077 -0.023  0.049  (1.181,1.954) 1.296 0.196  0.460
1.2 (1.213,1.254) 1.224 0.024  0.029 (1.203, 1.306) 1.227 0.027  0.052  (1.202,1.972) 1.300 0.100  0.446
1.3 (1.299, 1.340) 1.310 0.010  0.020 (1.285,1.389) 1.309 0.009  0.047 (1.319,2.220) 1.445 0.145 0.452
14 (1.409 , 1.454) 1420 0.020  0.027 (1.374,1.469) 1.397 -0.003 0.042 (1.386,2.207) 1.491 0.091 0.474
1.5 (1.505 , 1.545) 1.516 0.016  0.023  (1.538,1.638) 1.561 0.061  0.077 (1.412,2.228) 1.543 0.043  0.398
1.6 (1.573,1.613) 1.583 -0.017 0.024  (1.627,1.724) 1.651 0.051  0.067 (1.560 , 2.322) 1.666 0.066  0.434
1.7 (1.719, 1.760) 1.730 0.030  0.035  (1.678,1.783) 1.701 0.001  0.043 (1.637,2.452) 1.748 0.048  0.441
1.8 (1.816 , 1.857) 1.827 0.027  0.032  (1.830,1.922) 1.852 0.052 0.067 (1.734,2.535) 1.848 0.048  0.427
1.9 (1.898, 1.940) 1.910 0.010  0.020 (1.939,2.038) 1.961 0.061 0.076 (1.924,2.757) 2.038 0.138  0.472
2.0 (2.010 , 2.053) 2.022 0.022  0.029 (2.034,2.136) 2.058 0.058 0.074 (2.005,2.852) 2.131 0.131  0.460

4.4 Bayesian Approach

Bayesian methodology could be employed in multi-level modeling regression to obtain

better and more accurate estimation. According to Ruppert et al.| (2003)), Bayesian

statistics is distinct from other statistics (e.g. ML statistics), because of the essence
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of the prior and posterior distributions. By specifying prior in the estimation process,
we consider some information about parameters of our model even before looking at
calibration data set.

In the Bayesian analysis, one can choose informative or noninformative priors.
When there are some available information on the parameters, we can employ
those information to choose an informative prior; however, sometimes we do not
know anything about our data set, in this case, one decides to use noninformative
prior. Noninformative (or flat) priors are mainly chosen as uniform distributions or
normal densities with considerably large variances. As in Ruppert et al.| (2003)), even
improper priors can lead to proper posterior distributions. The posterior distribution

includes all information about our parameter of interest.

In order to improve our estimation in terms of accuracy, we decided to employ
Bayesian statistic instead of ML and REML procedures. Considering the model
(4.9), B, ur, Gi, Ry are the parameters of interest that we want to estimate using

the Bayesian methodology. The posterior distribution for this problem is defined as:

P(Br, ur, Gi, Rie | Sk) o< P(Sk | Br, u, Ri) P(ug | G) P(Ry) P(Br) P(Gr). (4.23)

Suppose,
Ug ~ N(O,Gk) and S ’ Ug ~ N(Fﬁk + Zuy, Rk)

Therefore,

N | —

P(Sk | Br, ur, Ri) P(uy | Gi) < exp {—

xexp{—

((Sk — FBy — Zug) " RN (S — FBy — Zuk)) }
(U;G,;Iuk) } .
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Since (4.24]) is a nonnegative function of (g, uy), after some mathematical manipu-

lations, we have

p(Sk ‘ 5k,uk,Rk)P(uk ‘ Gk) X N((CTC + Rka)ilcTSk, Rk(CTC + Rka)il),

0 0
where, C' = (F Z) and D), = 1.

Following Ruppert et al.| (2003)), and assuming that we do not have enough
information on f, we use an improper prior on S as, P(6;) = 1, or B ~ N(0, agk),
where, 03 is considerably large.

Furthermore, it has been suggested in Ruppert et al. (2003), to use inverse

gamma densities as priors for Ry and Gy, with parameters (4,,, B,,) and (A4, , By, ),

that are listed below:

4 A
BTka - Tk
PR = s () e e (2.
(4.25)
A
_ By* —(Ag,+1) By,
(PO =y e (T )

where, (A,,, B,,) and (A, , B,,) are called hyper parameters, that are positive. If
we consider hyper parameters to be equal to zero, then the priors for R, and Gy,

would be improper and equal to R%ﬂ and GL;C’ respectively. It has been recommended

in Ruppert et al| (2003)), to consider hyper parameters close to zero (e.g. 0.1), to

come up with noninformative, but proper priors. Based on [4.24]

3 1
Rk X (Rk)_(in—’—Ark-H) exp {—5 ((Sk — Fﬁk — Zuk)TRlzl(Sk — Fﬁk — Zuk) + B,«k) } .
(4.26)
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Comparing [4.25| with [4.26] it is straightforward to show that

3 1
[Ri | Sk, B, ug, Gi) ~ IG(A,, + -n, B, + §(Sk — FB — Zuy) " (Sy — FBi, — Zuy)).

2
(4.27)
An argument similar to the one used in for G}, shows that
3 -
[Gk ‘ Sk, ﬁk, Ug, Rk] ~ IG(Agk + 5, ng + §uk U) (428)

Finally, in order to make statistical inference, we use Markov Chain Monte Carlo
(MCMC) to sample from the posterior distribution based on the following algorithm

(Ruppert et al., 2003):

1. Sample (3, u) from the following multivariate normal distribution

N((CTC + RiDy,) 'O Sy, Ri(CTC + R Dy) ™).

2. Sample Gy, from IG(A,, + 3, By, + suju).
3. Sample Ry, from IG(A,, + 2n, B,, + 3(Sx — FBr — Zuy,) " (Sk — F B, — Zuy,)).

4. Repeat steps[I]-[3 M times, where, M is the number of iterations.

In step |1] of the MCMC algorithm, we sample (S, uy) given (R,(CO), G,(co)) values, while
in steps |2[ and , (G, Ry) are sampled when ( ,ff’),u,(f)) are given. Given ([, uy),
R, and G, are independent, therefore, steps [2| and |3| of the MCMC algorithm are
exchangeable. The values of (5,@0),u,§°), RS’) ,G,(f)) to start the MCMC algorithm

are estimated using the ML or REML approaches as explained in Sections [4.3.1
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and According to [Ruppert et al.| (2003)), this MCMC algorithm is flexible in
terms of the values of (5,20), u,(co), Rlio), G,(CO)). This is because the Marcov Chain would

gradually converge to the stationary distribution and it discards the starting.

For the comparison purposes, we obtain the predictions under SEL, as well as
LINEX loss functions. Through the Markov Chain Monte Carlo, we obtain samples

with length of M for § and u, where under the SEL, we consider the mean value of

these samples @ and B as follow:

.
U= — U,
Mi:l
(4.29)
o1 X
b= b

However, based on (4.19), u and B under the LINEX loss function are obtained

as follow:
M 2
A 1 ople
%:M;%_Q’
(4.30)
M 2
1 0,
bu= g 20 7y

4.4.1 Results Obtained from Bayesian Approach

In this section, we report predicted values of the applied forces along x, y, and z

directions that are obtained using the Bayesian approach under both SEL and LINEX
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loss functions. To obtain the results, we used [mer-stan function of “rstanarm”

package, in R programming language (Gabry and Goodrich|, 2016)).

Here again, to obtain more precise predictions we violated the physical model and
considered intercepts in the model. Therefore, results are reported for models with,
and without intercept. Point estimates of applied forces along x, y, and z directions
are listed in Tables and [£.11] Results show that there is not a significant
difference between predictions obtained through models with intercept and models
without intercept. For instance, when the true force is equal to 1.0 N, the estimated
forces along x, y, and z directions based on models without intercept under SEL
are 0.980 N, 0.969 N, 1.094 N, respectively. And estimated forces along z, y, and z
directions through models with intercept under SEL are 0.982 N, 0.967 N, 1.097 N,

respectively. This is also true for results obtained under the LINEX loss function.

As can be seen in Table [4.11], estimated forces along = and y axes are not altering
based on different values of a. However, estimated F.,’s are changing considerably
with different values of . For instance, when F, = 2 N, estimated forces with
a = (0.1,0.5,1) using models without intercept and models with intercept are

(1.966,2.065, 2.203) N and (1.953,2.040, 2.161) N, respectively.
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Table 4.10: Point estimates obtained by Bayesian approach in multi-level models
considering models with and without intercept under SEL function for different
amounts of forces applied to the right forceps tip, in x, y, and z directions.

MoAdels Witlfout InterAcept Models Wi’fh Interceipt
True Force F, F, F, F, F, F,

0.1 0.086 0.096 0.216 0.094 0.090 0.237
0.2 0.169 0.188 0.303 0.176 0.183 0.322
0.3 0.302 0.297 0.515 0.308 0.292 0.530
0.4 0.405 0.448 0.525 0.411 0.444 0.539
0.5 0.495 0.478 0.612 0.501 0.474 0.624
0.6 0.573 0.587 0.699 0.578 0.583 0.709
0.7 0.652 0.763 0.834 0.656 0.760 0.842
0.8 0.798 0.734 0.853 0.801 0.731 0.861
0.9 0.899 0.864 0.882 0.902 0.862 0.889
1.0 0.980 0.969 1.094 0.982 0.967 1.097
1.1 1.079 1.078 1.239 1.081 1.077 1.239
1.2 1.221 1.225 1.268 1.222 1.224 1.267
1.3 1.308 1.308 1.355 1.308 1.309 1.352
1.4 1.418 1.397 1.413 1.418 1.397 1.409
1.5 1.514 1.560 1.422 1.513 1.562 1.418
1.6 1.582 1.648 1.557 1.581 1.650 1.551
1.7 1.730 1.699 1.615 1.728 1.701 1.607
1.8 1.827 1.850 1.702 1.825 1.853 1.692
1.9 1.910 1.959 1.876 1.907 1.962 1.862
2.0 2.022 2.055 1.944 2.019 2.059 1.929

110



Table 4.11: Point estimates obtained by Bayesian approach in multi-level models consid-
ering models with and without intercept under LINEX function for different amounts of
forces applied to the right forceps tip, in x, y, and z directions.

Estimated Forces in Models without Intercept

0[1:0,1 0[2:0.5 0[3:1
True Force E, F‘y E, E, Fy E, F, Fy F,
0.1 0.086  0.096  0.219 0.086  0.096  0.230 0.087  0.096  0.245
0.2 0.170  0.188  0.306 0.170  0.188  0.322 0.170  0.188  0.343
0.3 0.302  0.297 0.521 0.303  0.297  0.547 0.303 0.298 0.584
0.4 0.405 0.448 0.531 0.406  0.448  0.558 0.406  0.449  0.595
0.5 0.496 0.478 0.619 0.496  0.478  0.650 0.497 0478  0.694
0.6 0.573  0.587  0.707 0.574  0.587  0.742 0.574  0.588  0.792
0.7 0.652  0.763  0.843 0.653  0.763  0.886 0.654 0.764 0.945
0.8 0.798  0.734  0.863 0.799  0.734  0.906 0.800 0.735  0.967
0.9 0.899 0.864  0.892 0.900 0.864  0.937 0.901  0.865  1.000
1.0 0.980 0.969  1.107 0.981 0.969 1.163 0.983 0.970 1.240
1.1 1.080 1.078  1.253 1.081 1.078 1.316 1.082  1.079  1.405
1.2 1.222  1.225 1.283 1.223  1.225  1.347 1.225 1.226 1437
1.3 1.308 1.308  1.370 1.310 1.309  1.439 1.311  1.310  1.536
1.4 1.419  1.397  1.429 1.420 1.398  1.501 1.422  1.399  1.602
1.5 1.515 1.560  1.439 1.516 1.561  1.511 1.518  1.563  1.612
1.6 1.583 1.648 1.575 1.584  1.649  1.655 1.587 1.651  1.766
1.7 1.730 1.699 1.634 1.732  1.700 1.716 1.734  1.701  1.831
1.8 1.828 1.850 1.722 1.830 1.851  1.808 1.832 1.853  1.930
1.9 1.911 1959  1.898 1.913  1.960 1.993 1.915 1.962  2.127
2.0 2.023  2.055  1.966 2.025 2.057 2.065 2.028 2.059 2.203
Estimated Forces in Models with Intercept
041:0.1 ()[2:0.5 a3:1
True Force Fx Fy F‘Z Fx ﬁy Fz Fx Fy FZ
0.1 0.094 0.090 0.240 0.094  0.090 0.250 0.094  0.090 0.265
0.2 0.176  0.183  0.326 0.177  0.183  0.340 0.177  0.183  0.360
0.3 0.308 0.292  0.536 0.309  0.292  0.560 0.309  0.293  0.593
04 0411 0444  0.546 0.411 0444  0.570 0412  0.445 0.604
0.5 0.501 0473  0.632 0.501  0.474  0.660 0.502 0474  0.699
0.6 0.578  0.583  0.718 0.578  0.583  0.750 0.579  0.584  0.795
0.7 0.656  0.760  0.852 0.657  0.761  0.890 0.658 0.761  0.943
0.8 0.801 0.731  0.871 0.802 0.731  0.910 0.803 0.732  0.964
0.9 0.902 0.861  0.900 0.903 0.862  0.940 0.904 0.863  0.996
1.0 0.982 0.967 1.110 0.984 0.967  1.160 0.985 0.968  1.229
1.1 1.081 1.076  1.254 1.083  1.077  1.310 1.084 1.078  1.388
1.2 1.222 1224  1.283 1.224  1.225  1.340 1.225 1.226  1.419
1.3 1.309 1.308  1.369 1.310 1.309  1.430 1.312  1.310 1.515
1.4 1.418  1.397  1.426 1.420  1.398  1.490 1.422 1.399  1.578
1.5 1.514  1.561  1.436 1.515  1.562  1.500 1.517  1.564  1.589
1.6 1.581  1.650 1.570 1.583  1.651  1.640 1.585  1.652  1.737
1.7 1.728  1.700  1.627 1.730  1.701  1.700 1.732  1.703  1.801
1.8 1.825 1.852 1.713 1.827  1.853  1.790 1.829 1.855  1.896
1.9 1.907 1962 1.886 1.910 1.963 1.970 1.912  1.965  2.087
2.0 2.019 2.059 1.953 2.021  2.060 2.040 2.024 2062 2.161
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Once again, since the point estimates of applied forces along z axis were not
accurate enough, we decided to apply weights in the model (WLS). Therefore, weights
that are introduced in Table were applied to the models , and results are
reported for models with considering intercept, as well as models without considering
intercept. Tables and present the results for models under SEL and LINEX

loss, respectively.

According to Tables and [£.13], estimated forces using models with intercept
are closer to the true values of forces. Among all weights that have been employed,
W, provides more accurate results and most predictions are very close to the true
amount of applied forces for models under both SEL and LINEX loss functions. For
instance, there is no bias in estimating the true force of 2 N, under SEL when Wj is

applied.

Results under LINEX loss function are reported for o € (0.1,0.5,1), and as can

be seen more accurate results are provided when o = 1.
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Table 4.12: Estimated forces in z direction using Bayesian methodology in multi-level
modeling, considering six different weights under SEL. Top table presents the obtained
force estimates for models without considering intercept, and bottom table presents the
estimation for models with intercept.

Estimated F, in Models without Intercept

True Fz W1 W2 W3 W4 W5 WG
0.1 0.22 0.22 0.21 0.22 0.22 0.22
0.2 0.30 0.30 0.29 0.31 0.30 0.30
0.3 0.52 0.52 0.49 0.53 0.52 0.52
0.4 0.52 0.52 0.50 0.54 0.53 0.53
0.5 0.61 0.61 0.59 0.62 0.61 0.61
0.6 0.70 0.70 0.67 0.71 0.70 0.70
0.7 0.83 0.83 0.80 0.85 0.84 0.83
0.8 0.85 0.85 0.82 0.87 0.86 0.85
0.9 0.88 0.88 0.85 0.90 0.88 0.88
1.0 1.09 1.09 1.05 1.12 1.10 1.10
1.1 1.24 1.24 1.19 1.26 1.24 1.24
1.2 1.27 1.27 1.22 1.29 1.27 1.27
1.3 1.35 1.35 1.30 1.38 1.36 1.36
1.4 1.41 1.41 1.36 1.44 1.42 1.41
1.5 1.42 1.42 1.37 1.45 1.43 1.42
1.6 1.56 1.56 1.50 1.59 1.56 1.56
1.7 1.61 1.61 1.55 1.65 1.62 1.62
1.8 1.70 1.70 1.64 1.74 1.71 1.70
1.9 1.88 1.88 1.80 191 1.88 1.88
2.0 1.94 1.94 1.87 1.98 1.95 1.94

Estimated F, in Models with Intercept

True Fz W1 W2 W3 W4 W5 WG
0.1 0.05 0.05 0.11 0.07 0.09 0.07
0.2 0.15 0.15 0.21 0.17 0.19 0.17
0.3 0.39 0.39 0.43 0.41 0.43 0.41
0.4 0.41 0.41 0.44 0.42 0.44 0.42
0.5 0.50 0.50 0.54 0.51 0.53 0.52
0.6 0.60 0.60 0.63 0.61 0.63 0.61
0.7 0.76 0.76 0.78 0.76 0.78 0.76
0.8 0.78 0.78 0.80 0.78 0.80 0.79
0.9 0.81 0.81 0.83 0.82 0.84 0.82
1.0 1.06 1.06 1.06 1.05 1.07 1.06
1.1 1.22 1.22 1.21 1.22 1.24 1.22
1.2 1.25 1.25 1.24 1.25 1.27 1.25
1.3 1.35 1.35 1.34 1.34 1.37 1.35
1.4 1.42 1.42 1.40 1.41 1.43 1.41
1.5 1.43 1.43 1.41 1.42 1.44 1.42
1.6 1.58 1.58 1.55 1.57 1.59 1.58
1.7 1.65 1.65 1.62 1.64 1.66 1.64
1.8 1.75 1.75 1.71 1.73 1.76 1.74
1.9 1.95 1.95 1.90 1.93 1.95 1.93
2.0 2.03 2.02 1.97 2.00 2.03 2.01
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Another point to consider is the robustness of the algorithm with respect to the
choice of different priors for (5, u). To check this, we obtained the force prediction
in x, y, and z directions under SEL function considering noninformative, normal,

and student-t priors, and results are presented in Table As demonstrated,

there is not any significant difference between estimates under different priors.
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Table 4.14: Point estimates of applied forces in z, y, and z directions using Bayesian
approach in multi-level modeling using different priors for models with and without
intercept.

Estimation of Models Without Intercept

Prior Noninformative Normal Student-t
True Force Fz Fy FZ Fz Fy FZ Fz Fy FZ
0.1 0.086  0.096 0.216 0.086  0.096 0.215 0.086 0.096 0.216
0.2 0.169  0.188  0.303 0.170  0.188  0.301 0.169  0.188  0.303
0.3 0.302  0.297 0.516 0.302  0.297  0.512 0.302 0.297 0.515
0.4 0.405 0.448 0.525 0.405 0.448  0.522 0.405 0.448 0.525
0.5 0.495 0478 0.612 0.496 0477  0.608 0.495 0.478 0.611
0.6 0.573  0.587  0.699 0.573 0.586  0.695 0.573  0.587  0.698
0.7 0.652 0.763 0.834 0.652 0.763  0.829 0.652 0.763 0.833
0.8 0.797 0.734  0.853 0.798  0.733  0.848 0.797 0.734  0.853
0.9 0.899 0.864 0.882 0.899 0.863 0.877 0.899 0.864 0.881
1.0 0.980 0.968 1.095 0.980 0.968  1.088 0.980 0.969 1.094
1.1 1.079  1.078  1.240 1.080  1.077  1.232 1.079  1.078  1.238
1.2 1.221 1.224  1.269 1.222 1.224 1.261 1.221  1.225  1.267
1.3 1.307  1.308  1.356 1.308  1.308  1.347 1.307  1.309 1.354
1.4 1.418 1.397 1.413 1.419 1.396  1.405 1.418  1.397  1.412
1.5 1.514 1.560 1.423 1.515 1.560 1.415 1.514 1.560 1.422
1.6 1.582  1.648  1.558 1.583  1.648  1.549 1.582  1.648  1.557
1.7 1.729 1.699 1.616 1.730  1.698  1.606 1.729  1.699 1.614
1.8 1.827  1.850  1.703 1.828  1.849  1.693 1.827  1.850  1.701
1.9 1.910 1.959  1.877 1.911  1.958  1.866 1.910 1959 1.875
2.0 2.022  2.055  1.945 2.023 2.055 1.933 2.022  2.056  1.942
Estimation of Models With Intercept
Prior Noninformative Normal Student-t
True Force F, E, F, F, E, F. F, E, .
0.1 0.094 0.090 0.238 0.094 0.090 0.236 0.094 0.090 0.235
0.2 0.176  0.183  0.324 0.176  0.183  0.321 0.176  0.183  0.320
0.3 0.308 0.292  0.533 0.308  0.292  0.530 0.308 0.292  0.528
0.4 0.411 0444  0.543 0.411  0.444  0.539 0411  0.444  0.537
0.5 0.500 0.474  0.629 0.501 0473  0.625 0.500 0.474 0.622
0.6 0.577 0.583  0.715 0.578  0.583  0.710 0.577 0.584  0.707
0.7 0.656  0.760  0.848 0.656  0.760  0.843 0.656  0.761  0.839
0.8 0.801  0.731  0.867 0.801  0.730  0.862 0.801 0.731  0.858
0.9 0.901 0.861 0.896 0.902 0.861  0.890 0.901 0.862 0.886
1.0 0.982 0.967 1.106 0.982 0.966  1.099 0.982 0.967 1.094
1.1 1.081 1.076  1.249 1.081 1.076  1.241 1.081 1.077  1.235
1.3 1.308 1.308  1.363 1.308 1.308  1.355 1.308  1.309  1.348
14 1418  1.397  1.420 1418 1.396  1.412 1.417  1.398  1.405
1.5 1.513  1.561  1.430 1.513 1.561 1.421 1.513 1.562 1.414
1.6 1.581 1.650  1.563 1.581  1.649  1.554 1.580  1.651  1.546
1.7 1.727  1.700  1.620 1.728 1.700 1.611 1.727  1.701  1.603
1.8 1.824  1.852  1.706 1.825  1.851 1.696 1.824 1.853  1.688
1.9 1.906 1.962  1.878 1.907  1.961 1.867 1.906 1.963  1.857
2.0 2.018  2.059  1.945 2.019 2.0568 1.933 2.018 2.060 1.923
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Now, we are going to employ the proposed bootstrap method for Bayesian
approach, that was explained in Section [4.1.2l The only difference between the
procedure explained in Section and what we used here is that instead of ,
we used the multi-level model and a Bayesian methodology to estimate the
coefficients (8, u). As we concluded before, we have applied Wy and a = 1 in the

models to obtain the following results.

Results of bootstrapping under SEL and LINEX loss functions are presented in
Tables and [4.16] respectively. As it is shown, calculated confidence bounds for
applied forces along x and y axes under SEL, are not very different between models
with intercept or models without intercept. However, confidence bounds that we
obtained using models with intercept for F, are more precise and almost always
contain the true values of force, nevertheless the bounds are relatively wide. Point
estimates of applied forces in z directions are much more better than other estimates
and the bias is negligible under SEL. For example, when force of 0.9 N is applied
along z axis, bootstrap approach gives the point estimate of 0.892 N, and confidence

bound of (0.797 N,1.345 N).

However, results obtained under the LINEX loss function are not very favorable.
As can be seen, estimated confidence intervals for F, and F), are very narrow, and
often does not contain the true values of force. Although, the calculated bounds for
F, are also narrower, true values of force are not included within the bounds. The
advantage of results obtained under the LINEX loss is that the point estimates with

considering intercept in the models are relatively accurate.
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Table 4.15: Point and interval estimation of applied forces in x, y, and z directions using
proposed bootstrap method with using Bayesian approach in multi-level modeling under
SEL function.

Estimation of Models Without Intercept

Force in z Direction Force in y Direction Force in z Direction
True Force C.I F Bias RMSE C.I F Bias RMSE C.I F Bias RMSE
0.1 (0.071, 0.115) 0.083 -0.017  0.024  (0.073, 0.166) 0.100 0.000  0.035  (0.047,0.478) 0.113 0.013  0.301
0.2 (0.154 , 0.198) 0.166 -0.034  0.038  (0.166 , 0.260) 0.192 -0.008 0.036  (0.203, 0.636) 0.272 0.072  0.309
0.3 (0.287,0.331) 0.299 -0.001 0.017 (0.275,0.369) 0.301 0.001  0.035 (0.359,0.795) 0.430 0.130  0.328
0.4 (0.390 , 0.434) 0.402 0.002  0.017  (0.426 , 0.520) 0.452 0.052  0.063  (0.672,1.113) 0.748 0.348  0.460
0.5 (0.481,0.525) 0.492 -0.008 0.018  (0.455,0.550) 0.482 -0.018 0.040 (0.515,0.954) 0.589 0.089  0.314
0.6 (0.558 , 0.602) 0.570 -0.030  0.034  (0.565, 0.659) 0.590 -0.010 0.036  (0.682,1.123) 0.758 0.158  0.340
0.7 (0.637,0.682) 0.649 -0.051 0.053  (0.741,0.835) 0.767 0.067  0.075 (0.594 ,1.034) 0.668 -0.032  0.303
0.8 (0.786 , 0.827) 0.799 -0.001 0.016 (0.709 , 0.805) 0.733 -0.067 0.075 (0.770,1.213) 0.847 0.047  0.305
0.9 (0.884,0.929) 0.896 -0.004 0.017 (0.842,0.936) 0.867 -0.033 0.048 (0.878,1.326) 0.956 0.056  0.307
1.0 (0.965 , 1.010) 0.977 -0.023  0.028  (0.946 , 1.041) 0.972 -0.028 0.045 (1.094,1.551) 1.174 0.174  0.349
1.1 (1.065 , 1.110) 1.077 -0.023  0.028  (1.056 , 1.150) 1.081 -0.019 0.040 (1.044,1.500) 1.124 0.024  0.303
1.2 (1.207 , 1.252) 1.219 0.019  0.025 (1.202, 1.297) 1.228 0.028  0.045 (1.153,1.613) 1.233 0.033  0.305
1.3 (1.293, 1.339) 1.306 0.006 0.018 (1.285,1.380) 1.311 0.011  0.037 (1.231,1.695) 1.313 0.013  0.303
14 (1.404 , 1.449) 1416 0.016  0.023  (1.373, 1.469) 1.399 -0.001  0.035 (1.408,1.880) 1.491 0.091  0.317
1.5 (1.500, 1.545) 1.512 0.012  0.021 (1.536, 1.632) 1.563 0.063  0.072 (1.536,2.014) 1.620 0.120  0.327
1.6 (1.568 , 1.614) 1.580 -0.020 0.026  (1.624, 1.720) 1.651 0.051  0.062  (1.555,2.034) 1.640 0.040  0.307
1.7 (1.715, 1.761) 1.728 0.028  0.033  (1.674,1.771) 1.701 0.001  0.035 (1.614,2.096) 1.699 -0.001  0.305
1.8 (1.813,1.859) 1.826 0.026  0.031 (1.825,1.922) 1.852 0.052 0.063 (1.693,2.178) 1.779 -0.021  0.306
1.9 (1.896 , 1.942) 1.909 0.009 0.019 (1.934,2.031) 1.961 0.061 0.070 (1.812,2.302) 1.898 -0.002  0.306
2.0 (2.008 ,2.054) 2.021 0.021  0.027 (2.031,2.127) 2.057 0.057 0.067 (1.822,2.312) 1.908 -0.092 0.319

Estimation of Models With Intercept
Force in z Direction Force in y Direction Force in 2z Direction
True Force C.I F Bias RMSE C.I F Bias RMSE C.I F Bias RMSE
0.1 (0.080 , 0.120) 0.092 -0.008 0.018  (0.067 ,0.162) 0.093 -0.007 0.036  (0.000,0.419) 0.000 -0.124 0.354
0.2 (0.162, 0.203) 0.175 -0.025 0.030 (0.161,0.257) 0.185 -0.015 0.038  (0.074,0.593) 0.148 -0.052  0.335
0.3 (0.294 , 0.335) 0.307 0.007  0.017 (0.271,0.367) 0.295 -0.005 0.036  (0.245,0.768) 0.321 0.021  0.331
0.4 (0.397,0.437) 0.409 0.009 0.018 (0.423,0.518) 0.447 0.047  0.059  (0.565, 1.116) 0.666 0.266  0.424
0.5 (0.486 , 0.527) 0.499 -0.001 0.016 (0.452,0.548) 0.476 -0.024  0.043 (0.409 , 0.942) 0.493 -0.007  0.330
0.6 (0.563 , 0.603) 0.576 -0.024  0.029  (0.562, 0.658) 0.586 -0.014  0.038 (0.575 , 1.127) 0.677 0.077 0.339
0.7 (0.642, 0.682) 0.655 -0.045 0.048 (0.738,0.835) 0.763 0.063 0.072 (0.489 ,1.029) 0.580 -0.120  0.352
0.8 (0.786 , 0.827) 0.799 -0.001  0.016  (0.709 , 0.805) 0.733 -0.067  0.075 (0.666 , 1.225) 0.774 -0.026  0.332
0.9 (0.887, 0.928) 0.900 0.000 0.016  (0.839,0.936) 0.864 -0.036  0.050 (0.797 , 1.345) 0.892 -0.008  0.331
1.0 (0.967 , 1.008) 0.981 -0.019 0.025 (0.945, 1.042) 0.969 -0.031  0.047 (1.037,1.584) 1.129 0.129  0.356
( ( (o )
( ( )
( ( )
( ( )
( ( )
( ( )
( ( )
( ( )
( ( )
( ( )

5

1.079 -0.021  0.041
1.227  0.027  0.044
1.311 0.011  0.037
1.399 -0.001  0.036
1.564 0.064  0.073
1.652 0.052  0.063
1.703  0.003  0.036
1.855 0.055  0.065
1.964 0.064  0.074
2.061 0.061  0.071

NN AN NG N N

1.1 1.066 , 1.107) 1.080 -0.020  0.026 1.054 , 1.151 981, 1.530) 1.076 -0.024  0.332
1.2 1.207,1.249) 1.221 0.021  0.026  (1.201, 1.299 1.105, 1.649) 1.194 -0.006  0.332
1.3 1.293,1.335) 1.307 0.007  0.018 (1.286, 1.384 1.195,1.737) 1.280 -0.020 0.333
1.4 1.403 , 1.445) 1.417 0.017  0.023 (1374, 1.473 1.390 ,1.933) 1.474 0.074  0.341
1.5 1.499 ,1.540) 1.512 0.012  0.020  (1.538 , 1.637 1.526 ,2.074) 1.615 0.115  0.353
1.6 1.566 , 1.608) 1.579 -0.021  0.026  (1.626 , 1.726 1.546 , 2.096) 1.636 0.036  0.336
1.7 1.713,1.755) 1.726 0.026  0.031  (1.676 , 1.777 1.611,2.161) 1.701 0.001  0.335
1.8 1.810, 1.852) 1.823 0.023  0.028  (1.827,1.929 1.698 ,2.248) 1.787 -0.013  0.336
1.9 1.893,1.934) 1.905 0.005 0.017  (1.936 , 2.039 1.824,2379) 1917 0.017  0.337

)
)
)
)
)
)
)
)
)
2.0 2.004,2.046) 2,017 0.017  0.024 (2.033, 2.136) 1.834,2.390) 1.927 -0.073  0.344
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Table 4.16: Point and interval estimation of applied forces in x, y, and z directions using
proposed bootstrap method with using Bayesian approach in multi-level modeling under
LINEX loss function.

Estimation of Models Without Intercept

Force in = Direction Force in y Direction Force in z Direction
True Force C.I F Bias RMSE C.I F Bias RMSE C.I F Bias RMSE
0.1 (0.087,0.087) 0.083 -0.017 0.024  (0.096 , 0.096) 0.097 -0.003 0.042 (0.192,0.218) 0.111 0.011  0.361
0.2 (0.170 , 0.170) 0.166 -0.034  0.038  (0.188,0.189) 0.189 -0.011  0.043  (0.373,0.422) 0.268 0.068  0.368
0.3 (0.303 , 0.304) 0.299 -0.001  0.017  (0.297,0.299) 0.298 -0.002 0.042 (0.553,0.626) 0.426 0.126  0.383
0.4 (0.406 , 0.408) 0.402 0.002  0.017 (0.448,0.451) 0.449 0.049 0.064 (0.914,1.034) 0.741 0.341  0.498
0.5 (0.497 , 0.498) 0.492 -0.008 0.018  (0.477,0.480) 0.478 -0.022  0.047 (0.733,0.830) 0.584 0.084  0.372
0.6 (0.575, 0.576) 0.570 -0.030  0.034  (0.586, 0.590) 0.587 -0.013  0.044 (0.925,1.046) 0.751 0.151  0.393
0.7 (0.654 , 0.656) 0.649 -0.051  0.053  (0.762, 0.767) 0.763 0.063  0.076  (0.824,0.932) 0.663 -0.037  0.364
0.8 (0.800 , 0.802) 0.795 -0.005 0.017  (0.733,0.738) 0.734 -0.066 0.078 (1.026, 1.161) 0.840 0.040  0.365
0.9 (0.902 , 0.904) 0.896 -0.004 0.017 (0.863,0.868) 0.864 -0.036  0.055 (1.150,1.302) 0.948 0.048  0.366
1.0 (0.983,0.986) 0.977 -0.023 0.028 (0.968,0.974) 0.969 -0.031 0.052 (1.398,1.582) 1.165 0.165  0.400
1.1 (1.083 , 1.086) 1.077 -0.023  0.028  (1.077,1.084) 1.078 -0.022 0.047 (1.342,1.518) 1.116 0.016  0.364
1.2 (1.225,1.228) 1.219 0.019 0.025 (1.223,1.231) 1.224 0.024  0.048 (1.466,1.659) 1.224 0.024  0.365
1.3 (1.312, 1.315) 1.306 0.006  0.018 (1.307,1.316) 1.308 0.008  0.043  (1.556,1.761) 1.303 0.003  0.364
14 (1.423,1.427) 1.416 0.016 0.023  (1.395, 1.404) 1.396 -0.004 0.042 (1.759,1.990) 1.480 0.080  0.374
1.5 (1.519 , 1.523) 1.512 0.012  0.021  (1.559, 1.569) 1.560 0.060  0.073  (1.906 , 2.156) 1.608 0.108  0.381
1.6 (1.587,1.591) 1.580 -0.020  0.026  (1.647,1.657) 1.648 0.048  0.063 (1.928,2.181) 1.628 0.028  0.367
1.7 (1.735, 1.740) 1.728 0.028  0.033  (1.697, 1.708) 1.698 -0.002 0.042  (1.996 ,2.258) 1.687 -0.013  0.366
1.8 (1.833,1.838) 1.826 0.026  0.031  (1.848,1.860) 1.849 0.049 0.064 (2.086,2.360) 1.766 -0.034  0.368
1.9 (1.916 , 1.921) 1.909 0.009  0.019 (1.957,1.970) 1.958 0.058 0.071 (2.221,2.513) 1.884 -0.016 0.367
2.0 (2.029,2.034) 2.021 0.021  0.027  (2.053, 2.067) 2.054 0.054 0.068 (2.232,2.526) 1.894 -0.106 0.382
Estimation of Models With Intercept
Force in x Direction Force in y Direction Force in z Direction
True Force C.I F Bias RMSE C.I F Bias RMSE ClI F Bias RMSE
0.1 0.093 , 0.097) 0.091 -0.009 0.017 0.088,0.098) 0.090 -0.010 0.043  (0.052,0.209) -0.040 -0.140 0.415

0.2
0.3
0.4
0.5
0.6
0.7

0.176 , 0.180) 0.176 -0.024  0.028
0.309 , 0.312) 0.306 0.006  0.015
0.412, 0.415) 0.409 0.009  0.016
0.502 , 0.505) 0.498 -0.002  0.014
0.580, 0.583) 0.576 -0.024  0.028
0.659 , 0.662) 0.655 -0.045  0.048

( (
( (0.181,0.190) 0.183 -0.017 0.045 (0.271,0.406) 0.134 -0.066  0.396
( (0.291 ,0.300) 0.202 -0.008 0.042  (0.487 ,0.603) 0.309 0.009  0.391
( (0.443 ,0.451) 0.444 0.044 0061 (0.910,1.034) 0.658 0.258  0.468
( (0.473 ,0.481) 0473 -0.027 0.049  (0.699 ,0.810) 0.483 -0.017 0.391
( (0.582,0.590) 0583 -0.017 0.045 (0.924 ,1.049) 0.669 0.069  0.397
( (0.760 , 0.767) 0.760 0.060  0.073  (0.807 ,0.919) 0571 -0.129  0.412
0.8 (0.804 ,0.807) 0.800 -0.000 0.014 (0.731,0.737) 0.730 -0.070 0.081 (1041, 1.176) 0.767 -0.033  0.393
0.9 (0.906 ,0.909) 0.901 0.001  0.014 (0.861,0.868) 0.861 -0.039 0.057 (1.178,1.324) 0.887 -0.013 0.392
1.0 (0.987 ,0.989) 0.984 -0.016 0.022 (0.967,0.974) 0966 -0.034 0054 (1457 ,1.643) 1126 0.126 0.413
11 (1.086 , 1.089) 1.080 -0.020 0.024 (L076,1.083) 1078 -0.022 0.047 (1391, 1.569) 1.072 -0.028 0.394
1.2 (1.228 ,1.231) 1222 0.022 0.026 (1.224,1232) 1224 0024 0048 (1.536,1.731) 1.192 -0.008 0.394
1.3 (1312, 1.315) 1306 0.006 0018 (1.308,1.317) 1.308 0.008 0043 (1635, 1.849) 1.279 -0.021  0.395
( (1.396 , 1.406) 1.396 -0.004 0.042 (1.857,2.120) 1475 0.075  0.403
( (1560 , 1.572) 1560 0.060 0.073 (2019 ,2310) 1617 0117 0.414
( (1649 , 1.661) 1.648 0.048  0.063 (2.044,2.339) 1.639 0.039  0.399
( (1.699 , 1.712) 1.608 -0.002 0.042 (2117 ,2.427) 1.704 0.004  0.397
( (1.851 , 1.865) 1.849 0.049 0064 (2218 ,2544) 1.791 -0.009 0.398
1 (1.961 ,1.976) 1.958 0058 0071 (2.370,2.719) 1.922 0.022  0.400
( (2.057 ,2.074) 2.054 0.054 0.068 (2.383,2.734) 1.933 -0.067 0.405

1.4
1.5
1.6
1.7
1.8
1.9
2.0

1.424 ,1.428) 1418 0.018  0.023
1.520 , 1.523) 1.514 0.014  0.020
1.588 ,1.592) 1.582 -0.018  0.023
1.735,1.739) 1.728 0.028  0.032
1.833,1.837) 1.826 0.026  0.029

1.916 , 1.920) 1.908 0.008  0.016
2.028 ,2.033) 2.020 0.020  0.025
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Chapter 5

Conclusion and Future Work

Our goal in this thesis was to propose statistical methodologies to provide accurate
point and interval estimates of applied forces to brain tissues during a neurosurgery.
To meet this goal, we studied different approaches and developed a few ones. These
include the bootstrap technique, weighted least squares in linear regression, multi-

level modeling and Bayesian approach to estimate parameters of multi-level models.

To be more specific, we first employed nonparametric bootstrap technique in
statistical calibration, that provides accurate point and interval force estimation
along = and y axes. We compared the results obtained from the bootstrapping
approach with those reported in |Zareinia et al.| (2015) (which in this work was referred
to as the Naive method). Furthermore, we developed a multivariate extension of
Eisenhart’s methodology for calibration, that provides point and interval estimation
of applied forces. Results indicated that the bootstrap approach provides more

accurate estimation compared to the Naive method.

Since the proposed bootstrap methodology fails to provide force estimation in

z direction, we applied different weights as introduced in Table in the model
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to come up with more accurate estimation (WLS). After applying these weights,

bootstrap results were improved as well, but still more accuracy was required.

As the next stage of this research, we introduced multi-level modeling that is
applicable when data is structured in groups like this case that calibration data set
is categorized in three different directions of x, y, and z. We realized that multi-level
models yield a better estimation compared with WLS, especially when weights
are applied in the models. Then, we assumed that some information about the
distribution of data set is available and we employed Bayesian approach to estimate
the coefficients in multi-level models. In multi-level models, results are reported

under SEL, as well as LINEX loss functions.

We also employed the proposed bootstrap methodology in conjunction with
multi-level models to provide interval estimation and enhance the accuracy of point
estimation. The overall results suggest that estimations obtained using multi-level
models are more accurate, however, Bayesian approach provides narrower confidence
bounds and less Bias and RMSE in multi-level models. Another important conclusion

is that using intercept in the model helps obtain more accurate results.
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Figure 5.1: Comparison between length of intervals obtained by Weighted least
squares, multi-level modeling, and Bayesian approaches, when force is applied in x
direction.
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Figure 5.2: Comparison between length of intervals obtained by Weighted least
squares, multi-level modeling, and Bayesian approaches, when force is applied in y
direction.
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Figure 5.3: Comparison between length of intervals obtained by Weighted least
squares, multi-level modeling, and Bayesian approaches, when force is applied in z
direction.

Figures and provide the comparison between length of intervals
obtained by WLS, multi-level modeling, and Bayesian approaches. For multi-level
models and Bayesian confidence intervals, we considered results obtained with models

with intercept and under LINEX loss function. As can be seen from all three plots,
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length of intervals obtained by Bayesian methodology is always far less than other

methodologies.

There were several limitations associated with this study, that added to the
challenge of proposing predictions with less bias. The most significant limitation
was the fact that the output voltages read from the third pair of strain gauges, were
not accurate enough. This issue is caused by non-optimal positioning of the strain

gauges on the prongs of neurosurgical forceps.

One interesting direction for the future work is to consider measurement error
in the model, specifically, multi-level models (Goldstein, (Goldstein)). One should
consider the effect of measurement errors in the model, since there are errors in
measuring the applied forces using the read voltages from the strain gauges. Another
method that would be of interests to provide more accurate estimation is meta
analysis (Brockwell and Gordon, 2001). Meta analysis provides pooled estimate of

several separate studies that would be closer estimate to the true value.
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