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Abstract

Knowledge of forces, exerted on brain tissues during the performance of neurosurgical

tasks, is critical for quality assurance, case rehearsal, and training purposes. Quanti-

fying the interaction forces has been made possible by developing SmartForcepsTM,

a bipolar forceps retrofitted by a set of strain gauges. The unknown values of imple-

mented forces are estimated using voltages read from strain gauges. To this end, one

needs to quantify the force-voltage relationship to estimate the interaction forces

during microsurgery. This problem has been addressed in the literature by following

the physical and deterministic properties of the force-sensing strain gauges without

obtaining the precision associated with each estimate. In this thesis, we employed

different probabilistic methodologies such as bootstrapping, weighted least squares

regression, Bayesian regression and multi-level modeling in order to estimate the

implemented force on tissue using voltages read from strain gauges. We obtain both

point and interval estimates of the applied forces at the tool tips and calculate the

precision associated with each point estimate. As a proof-of-concept, the proposed

techniques were then employed to estimate unknown forces, and construct necessary

confidence intervals using observed voltages in data sets that are measured from

conducting surgical tasks on a cadaveric brain. Results indicated that the proposed

techniques are capable of estimating tool-tissue interaction forces with acceptable

level of accuracy.
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Chapter 1

Introduction

This chapter provides background information on the importance of tool-tissue force

interaction measurement in neurosurgery. The chapter elaborates on the underlying

motivation of this research, that is, to help neurosurgical trainees and residents have

knowledge of the amount of forces required to complete a surgical task by providing

information on implemented force on tissues during the performance of microsurgery.

A complete list of research objectives and questions is also presented in this chapter.

Finally, the research plan section describes how each research objective could be

addressed.

1.1 Background and Motivation of the Problem

Knowledge of the interaction forces in neurosurgery is essential in training process of

novice neurosurgeons and neurosurgical trainees. According to statistics, significant

amount of errors in neurosurgeries (more than 50%), are due to applying excessive

force to the brain tissue, that may result in tissue injury (Maddahi et al., 2016). This

clearly demonstrates the necessity of avoiding the application of excessive forces.
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Knowing the amount of interaction forces, would not only reduce damages caused

by excessive applied forces, but would also help neurosurgeons learn about safe

margins of forces when dealing with brain tissue. The safe level of applied force is

considered as a value between the maximum and minimum effective forces, and may

be very useful in the training of novice surgeons and trainees. Determination of safe

limit of forces help residents in neurosurgery acquire surgical skills by practicing

surgery on cadaveric brains, and even in clinical trials. Knowledge of force values

may also improves the learning curve significantly, since the residents can “learn-

by-doing”, instead of only “observing” experienced surgeons performing surgical

tasks.

On the other hand, novice neurosurgeons require years of experience as well as

multiple pre-clinical and clinical trials to become educated in dealing appropriately

with the brain tissues. Nevertheless, as the hours of surgeries are significantly

decreasing, the opportunities for gaining the appropriate experience for a novice

surgeon are decreasing (Reznick and MacRae, 2006). As a result, there will be an

increasing demand for improving the efficiency of the learning process and providing

trainees with quantitative tools to assess their surgical skills (Gan et al., 2015).

Nowadays, simulation-based training of neurosurgeons is becoming an integrated

part of the neurosurgical training modules (Clark et al., 2017). Simulations provide

surgeons the opportunity to rehearse the neurosurgical case so that they can learn,

practice, and acquire the experience in a significantly shorter period of time (Zareinia

et al., 2015). However, to do this, it is necessary to find a reasonable relationship

between organ tissue and applied forces to the surgical tool. Simulators are mostly

based on simulation techniques, such as Finite Element method and Boundary

2



Element method, that are not able to provide very realistic information compared to

results obtained using an experimental study. There are several literature addressing

the design of simulators for training neurosurgeons (Rosseau et al., 2013; Marcus

et al., 2016). Nevertheless, the effectiveness of simulation-based training highly

depends on the safe margins measured during an actual surgery. For example, if the

maximum (safe) force exerted to the brain tissue performing task A is 0.3 N (where

N is Newton), then the maximum allowable force during the simulation of task A

should always be less than 0.3 N.

Although, in microsurgery1 and especially for training purposes, it is often

necessary for neurosurgeons to quantitatively measure the amount of force applied

to the brain tissue. However, there are not many appropriate tools to properly and

precisely quantify the technical aspects of surgical skills. Therefore, this training

process has remained mainly qualitative.

In order to provide force feedback to the surgeon, conventional surgical tools have

to be modified. This modification occasionally involves the addition of force sensors

to conventional surgical tools. As an example, Tanimoto et al. (1998) proposed a

micro force sensor for a catheter, that is, a surgical tool for endovascular surgeries.

The force sensor measures interaction forces between catheter and blood vessels.

Authors claim that the sensor has reasonably high sensitivity and it is able to

measure even small interaction forces.

Several other studies were conducted to design surgical tools that are able

to efficiently measure the interaction forces in surgeries. For example, a team

of researchers at the University of Calgary, Department of Clinical Neuroscience,

1The term ”microsurgery” refers to a class of surgical operations performed by an operating
medical-grade microscope (Yaşargil, 2013).
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performed series of research on force sensing, real-time force measurement and robot

assisted surgeries (neuroArm, 1997). This group of researchers, under the project

neuroArm, addressed the problem of interaction force measurement and introduced

the idea of a SmartForcepsTM (Zareinia et al., 2015). The SmartForcepsTM is a

bipolar forceps equipped with several strain gauges that enables neurosurgeons to

keep track of the amount of applied forces. In SmartForcepsTM, the applied forces

to the brain tissue generates a change in the electrical resistance of the strain gauge,

and as a result, the voltage would change.

The goal in this thesis is to develop and validate several statistical tools in

order to find proper models that are capable of predicting the applied forces during

neurosurgery, using the observed voltages in the strain gauges of SmartForcepsTM

developed by scientists in project neuroArm at the University of Calgary (Zareinia

et al., 2015). This prediction capability not only enables neurosurgeons to apply safe

amount of forces during neurosurgery, but also accelerates the process of training

novice neurosurgeons.

1.2 Research Objectives

The main objectives of this research are as follow:

• Preliminary study to obtain high-level understanding of the practice of neu-

rosurgery, including terminologies, definitions, surgical tasks, and surgical

tools.

• Identifying and developing statistical methods in order to find a reasonable

statistical model between forces applied to the brain tissue and voltages read

4



from strain gauges.

• Investigating advantages and disadvantages of some important and commonly-

used applicable statistical methods.

• Developing necessary techniques to perform calibration 2-dimensional (2D)

and 3-dimensional (3D) SmartForcepsTM using techniques such as multilevel

modeling, Bayesian analysis, and the bootstrap methodology.

• Validating the application of the proposed models in a real-world scenario.

• Comparing the performance of suggested statistical methods via simulation

studies as well as real data applications.

1.3 Research Question

In order to meet the above research objectives, among others, the following questions

should be addressed:

• What is the application of predicted forces in the real field?

• What are the statistical models that are more suitable for force prediction in

neurosurgery?

• How asymmetric loss functions can be used to provide more reliable force

predictions in the Bayesian context?

• Is it feasible to use a combination of statistical methods to further improve

the estimation accuracy?

5



• What are the differences between all available tools for 1D, 2D, and 3D forces?

And, what are the advantages/disadvantages of each method for each tool (i.e.,

1D, 2D, 3D)?

• Is there any obligation to filter the calibration data set?

1.4 Research Plan

1.4.1 Preliminary Studies on Neurosurgery

Understanding the underlying concept of this research requires some preliminary

knowledge about the performance of neurosurgery. This knowledge can be classified

into several aspects listed bellow:

• Gaining knowledge on instrument handling and becoming familiar with different

components of the forceps.

• Understanding important forces in a neurosurgical operation, such as dissection

(opening) and coagulation (closing) forces.

• Obtaining information about the range of effective forces in neurosurgery to

avoid injury or incomplete task.

• Studying the structure and applications of force-sensing strain gauges, as well

as information about the position of the configuration/position of installed

strain gauges.

6



1.4.2 Identifying and Developing Statistical Methods

The main goal of this research is to first identify and compare appropriate statistical

tools in order to predict applied forces during neurosurgery and possibly, develop new

techniques or use a hybrid of them in order to address challenges associated with our

real data problem. In the first step, it is essential to find proper statistical models

and quantify the relationship between applied forces and output voltages obtained

from strain gauges. The underlying problem of interest can be classified as an inverse

regression problem, that is called calibration. In calibration problems, the response

variable is observed and the explanatory variable needs to be predicted. The main

challenge is to use and develop statistical approaches that are easy to understand by

practitioners and are capable of constructing efficient point and interval estimates of

implemented force by surgeons using the observed voltages in stain gauges mounted

on the prongs of the medical forceps.

1.4.3 Important Features of a Proposed Statistical Model

Several factors are involved when selecting the statistical methodology for our

underlying calibration problem. Some of the key factors when selecting a proper

statistical method include:

• Time Complexity: This factor considers the time required to run a method

and obtain force estimations. For instance, some methodologies, such as

bootstrapping, require long run simulations, whereas other methods (e.g. ,

Eisenhart’s method) do not need any simulation and are therefore more time

efficient.
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• Computational Complexity: This is a function of the number of steps and

complexity of the estimation required by the proposed method in order to

obtain the results.

• Accuracy: The accuracy, in the context of statistical estimation is defined in

terms of the bias, and the prediction’s Mean Squared Errors (MSE). Bias and

the MSE are inversely proportional to the accuracy.

• Available Options to Modify the Results: Some methodologies are able

to provide point estimation only (e.g., the naive approach), whereas other

methods are capable of providing interval estimation (e.g., bootstrapping).

The most important factor for this research is accuracy, since even small values

of excessive forces in this problem could be resulted in serious injuries. After this

factor, we should take time complexity into account to provide real-time results.

The last but not least significant factors are available options to modify the results

and computational complexity.

1.4.4 Applying Proposed Methods to the Calibration Data

Set

After a thorough investigation into available statistical methods and determining

which methodologies have the potential of further improvements, a few are chosen

based on their advantages and disadvantages. Selected methods should be applied

to the calibration data set. By the calibrations data set, we mean the training data

set obtained in the lab, that includes both applied forces to the forceps tips and also

read voltages from the strain gauges. This process helps us identify a reasonable

8



relationship between voltages and forces, and enables us to predict the amount of

force in the future neurosurgical operations.

1.4.5 Application in Real Practice

Estimation of applied forces to the brain tissue during the performance of neuro-

surgery, not only improves the quality and efficiency of novice neurosurgeons and

surgical residents training, but also prevents damages caused by excessive forces

to the brain tissue (Zareinia et al., 2015). However, to ensure that the proposed

statistical methods are capable of estimating true amount of applied forces, we will

implement the proposed methods through conducting surgical tasks on a cadaveric

brain.

1.4.6 Comparing All Suggested Statistical Methods

A comparison of all statistical tools, employed in the thesis, is required to identify

the most applicable method. This comparison is mainly based on the trade-off

between the items explained in Section 1.4.3. A summary of this comparison will be

provided in Chapter 5

1.5 Organization of the Thesis

The organization of the thesis is as follow. Chapter 1 provides detailed description

of the problem and explains the significance of force estimation in neurosurgery.

Identified research objectives and questions as well as a plan to scientifically address

each question are also described in Chapter 1.
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Terminologies, definitions, and concepts commonly encountered in the field of

neurosurgery (e.g., surgical equipment, surgical tasks, force measurement devices)

are briefly described in Chapter 2. This provides the necessary basis for the rest of

the thesis. Furthermore, a review of statistical calibration methods is also presented

in Chapter 2.

Theory, application, and results of the bootstrap technique and Multi-level

modeling, are presented in Chapters 3 and 4, respectively. Some concluding remarks

as well as a few future research plans are presented in Chapter 5.
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Chapter 2

Literature Review

In this chapter, background information on force sensing, in the context of neuro-

surgery is presented. We explain the process of obtaining force data using Smart-

ForcepsTM and provide some preliminary information on the statistical tools that

are often used in calibration problems.

2.1 Force Sensing in Neurosurgery

Measuring the amount of interaction forces implemented with a surgical tool by

surgeons provides a unique opportunity in order to better handle surgical tools and

more appropriately interact with tissues. To this end, several new methodologies

are developed to employ force sensors and measure the interaction forces during the

surgical operations. One solution is to perform operation using a computerized and

sensorized machine such as surgical robotic manipulators. Early traces of research

in the area of robot assisted surgery and intelligent surgical tools, date back to the

late 1990’s and early 2000. Taylor et al. (1995) and Berkelman et al. (2003) are

examples of such attempts. A more recent example is Üneri et al. (2010), in which a
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microsurgery robot with micro-force sensors was used for an eye surgery application.

However, due to obvious risks and higher safety margins associated with neurological

surgery (also known as neurosurgery), there has been less attempt and willingness

to perform experiments with technology-assisted tools for these types of surgeries.

Nevertheless, there are multiple ongoing research on this topic. Examples of such

studies can be found in neuroArm (1997), Beretta et al. (2016) and Yin et al. (2016).

Recently, Gan et al. (2015) conducted a pilot study to develop the SmartFor-

cepsTM, by adding force sensors to regular surgical forceps. Authors evaluated

the functionality of their developed SmartForcepsTM by performing three different

neurosurgeries on cadaveric brains. The pilot study provided surgeons with real-time

dissection and coagulation force data. The study also claimed that more than 70%

of the interaction forces are between 0 N and 0.3 N. It is also mentioned that applied

forces are dependent on a variety of factors such as tissue type, region of the brain

and the surgical task itself.

Researchers of the NeuroArm group focused on methodologies to enhance safety

in neurosurgery (neuroArm, 1997). In particular, they conducted several research on

robot-assisted surgeries and the use of SmartForcepsTM. For instance, in Maddahi

et al. (2016), the SmartForcepsTM was employed to perform fifty different neurosur-

gical tasks. The goal was to measure the peak force values during the performance

of a set of coagulation and dissection tasks. This work also presented the limitations

of different sensory systems such as altering the shape of the forceps that is not of

interest since it would change instrument handling as well as the amount of the force

needed to be applied.

In another research by the NeuroArm group (Marcus et al., 2014), obtaining
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quantitative data on microneurosurgery with tele-operated robotic system was

explained. While this data was measured with a blade and Rhoton dissector that

was held by a robotic arm, it was not very helpful in presenting true forces, because

it was dependent on the arm feedback mechanism.

Furthermore, in Maddahi et al. (2015), four different robot-assisted neurosurgeries

were conducted using a haptic hand-controller, and the amount of forces, exerted

to the brain tissue, were measured. In Maddahi et al. (2015), NeuroArm surgical

system, an image-guided computer-assisted manipulator, was employed to perform

those surgical procedures. Maximum amounts of interaction forces were reported as

1.67 N, 1.65 N and 1.68 N along x, y, and z axes, respectively.

In Wang et al. (2015), development of commercially-available SmartForcepsTM

(Codman & Shurtleff Inc., MA, USA) that is capable of measuring the interac-

tion forces and quantifying the displacements, was explained thoroughly. This

development follows several steps that are summarized as follow:

• Three pairs of strain gauges was installed on the two prongs of the SmartForcepsTM,

3 on each prong, in order to keep track of forces along x, y and z axes. As

shown in Figure 2.1, forces along x axis are measured through strain gauges

S1 and S2. Strain gauges S3 and S4 are in charge of force measurement in y

direction, and the last two strain gauges, S5 and S6, keep track of forces along

z axis. Performance of all pairs of strain gauges was examined by implement-

ing different surgeries on cadaveric brains. Zareinia et al. (2015), compared

the results obtained through installing only one pair of strain gauges versus

mounting two pairs, having the same experimental conditions. The comparison
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showed that having a pair of strain gauge on each prong (having two pairs

in total) would result in more accurate measurement. An specific type of an

electric resistance wire strain gauge was used in this project (CEA-13-125UN-

350, Micro-Measurements, Wendell, NC, USA), and the output obtained from

all these strain gauges was voltage.

Figure 2.1: Graphical illustration of 6 strain gauges mounted on the prongs of
SmartForcepsTM. Where, applied forces along x and y axes are measured through
strain gauges S1, S2, S3, S4, and forces along z axis are measured by strain gauges
S5 and S6. Source: Maddahi et al., “Quantifying workspace and forces of surgical
dissection during robot-assisted neurosurgery.” The International Journal of Medical
Robotics and Computer Assisted Surgery 12, no. 3 (2016): 528-537.

• The Fastrak software (Fastrack, 2017) was employed to record the data.

• Coordinate system considered for calibrating the SmartForcepsTM is shown in

Figure 2.2 (x, y or z).

• A force sensor, Titanium Nano 17, was also employed to measure the amount

of force in Newton. Force reading is required to find reasonable relationships

between output voltages read from strain gauges and the observed forces

obtained from the force sensor.
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(a) Calibration along xf axis

(b) Calibration along yf axis

(c) Calibration along zf axis

Figure 2.2: Coordinate system considered on the bipolar forceps tips during the
process of calibration. Source: Wang et al.,“Development of an instrumented surgical
setup for quantifying displacement and force in surgical dissection.” In Proceedings
of ASME international mechanical engineering congress and exposition. Houston,
Texas, USA. 2015.

Variety of techniques as well as different sensory systems, as mentioned in Zareinia

et al. (2015), were employed to keep track of the amount of exerted forces during

surgeries. Two of those applicable techniques are strain gauge (load cells) and
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pressure-based tactile sensors. According to Zareinia et al. (2015), among all types of

sensory systems, strain gauges are the most popular. This is mainly because strain

gauges are relatively cost efficient and provide reasonable robustness. Furthermore,

there are normally minimum complication in the implementation and operation

when using strain gauges.

Employing the SmartForcepsTM equipped with strain gauges and using the Nano

17 sensory system, the NeuroArm group was able to calibrate the SmartForcepsTM.

A calibration data set provided by performing different surgical tasks on cadaveric

brains. The calibration data is crucial to find proper statistical model between read

voltages and exerted forces. The model should be capable of predicting the amount

of interaction forces for future surgical operations. The governing equations and

operational principle of strain gauges are briefly explained here. However, we should

point out that comprehensive explanation of concepts such as mechanical stress,

strain, tension, and their relationships is available in Shigley et al. (2004). Most of

the equations in this section are presented without details and proofs. Interested

reader may refer to available handbooks on Mechanical Engineering with focus on

mechanics of material for further explanations (e.g. see Potma (1967) and Window

et al. (1982)). For the purpose of our work, it is sufficient to mention that these

equations are obtained using the mechanical characteristics of the material and

structures of the sensors.

The design of the strain gauge is based on the Wheatstone bridge idea originally

introduced by an English Physicist, Sir Charles Wheatstone (1802-1875) (Hoffmann,

1974). A simplified version of the Wheatstone bridge circuit is shown in Figure 2.3.
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Figure 2.3: Wheatstone bridge circuit.

In Figure 2.3, R1 through R4 denote resistors in the bridge circuit. If the corner

points (sometimes referred to as the nodes) 2 and 3 are connected to a known voltage

source VE (known as the excitation voltage), an output voltage V0 appears between

nodes 1 and 4. The magnitude of that voltage depends on the ratio of the resistors

R1 : R2 and R3 : R4 (Dally et al., 1983). Using a similar concept, in a strain gauge,

applied mechanical strain is transformed into a proportional change in the resistance.

Let us briefly explain the role of strain gauge in the context of Wheatstone bridge

circuit.

Consider the Wheatstone bridge circuit shown in Figure 2.4. In this configuration,

one of the resistors in Figure 2.3 (R3), is replaced with a strain gauge (Hereafter is

called Rg). A particular class of strain gauges use a wire (uniform conductor) of

electric resistivity R, length l, and cross-section A. The resistance of the wire is a

function of the geometry and can be obtained by R = ρA
l

, where ρ is the resistivity

of the material of the wire. Figure 2.4, presents the strain gauge that captures forces

in x direction, configuration for the strain gauge that captures forces in y direction
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is similar to this.

Figure 2.4: Simplified strain gauge in Wheatstone bridge configuration.

Furthermore, assume that the strain gauge is perfectly attached and bounded

on the surface of an object. The object in this case is the smart forceps. In this

scenario the strain of the strain gauge wire is proportional to the strain of the object.

Therefore, alternation in strain (deflection in wire), changes the electrical resistance

of the circuit. The rate of change of the resistance can be defined as (Zareinia et al.,

2015)

dR

R
=
dl

l
− dA

A
+
dρ

ρ
, (2.1)

Note that other resistors in the circuit are chosen to be R (all with equal resistivity).

In this configuration, if the nominal resistance of the strain gauge is Rg, the output

voltage of the circuit (V0) would be zero, only if R = Rg. The bridge in this situation

is said to be in balance. However, if the resistance of the strain gauge changes due

to strain, V0 would not be zero. By measuring the change in the electrical resistance

of the strain gauge (∆R), average value of strain for the object can be obtained.
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As shown in Hoffmann (1974) and Zareinia et al. (2015), for a constant strain

gauge factor (S) and a constant excitation voltage (VEx and VEy) there exists linear

relationships between axial and lateral strain (εx and εy) and the output voltage of

the Wheatstone bridge (V0) given by

εx ≈
4V0

SVEx
, εy ≈

4V0

SVEy
. (2.2)

According to (2.2), the amount of mechanical strain is measured given that S,

VEx and VEy are known. S is provided by strain gauge manufacturer and excitation

voltages are obtained from a voltage regulator. In addition, the amount of stress

is proportional to the amount of strain by the so-called modulus of elasticity, also

known as the Young’s modulus (Eym), presented by

σx = Eymεx ≈
4EymV0

SVEx
,

σy = Eymεy ≈
4EymV0

SVEy
,

(2.3)

where σx and σy are the amount of stress, and Eym is the modulus of elasticity

(Zareinia et al., 2015).

In Zareinia et al. (2015), it is explained that by considering the configuration

similar to the one in Figure 2.1, when a tension loading is applied to the wire, strain

in both the axial, and the lateral direction is observed. The so-called Poisson’s

ratio (ν) defined the correlation between the axial and the lateral strains of the wire.

Zareinia et al. (2015) defined the relationship between input stress and output strain
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in a forceps equipped with two pairs of strain gauges by

(
σx
σy

)
=

Eym
(1 + ν)(1− 2ν)

(
1− ν ν
ν 1− ν

)(
εx
εy

)
, (2.4)

where σx and σy are the input stresses and εx and εy are output strains along x and y

axes, respectively. Metals have a very small Poisson’s ratio; thus the diagonal values

in (2.4) are expected to be significantly greater than off-diagonal values (Zareinia

et al., 2015).

Based on (2.4), having an applied force in x direction, σx > 0 and σy = 0, since

the amount of ν is considerably small, the amounts of strains would be:

εx =
−σx
Eym

, εy =
−σxν
Eym

. (2.5)

Therefore, force in x direction would create strains in both x and y axes.

2.2 Statistical Calibration

This section describes the necessary statistical definitions and terms constantly used

throughout this thesis. A brief overview of the methods used in the statistical

calibration is also explained.

2.2.1 Necessary Definitions

In simple linear regression, values of the response variable y, also known as the

response variable, are regressed on x values, or explanatory variables. The goal is to
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predict the value of the response based on the observed x value. However, in the

calibration, this trend is reverse. In other words, we are interested in predicting x

values, where y values are observed.

In calibration studies, there are two main strategies: controlled calibration, and

random calibration. In random calibration, researchers do not have any control

over the data set, and they only observe and record data. However, in controlled

calibration, researchers design experiments such that they are able to control which

values of explanatory variables should be included in the experiment. This would

enable them to, for example, control the explanatory variable values to be in an

specific range. This study falls into the category of controlled calibration as in the

process of collecting necessary training data sets, explanatory variables (i.e., forces

in each direction) are fixed, starting from a minimum value in a range and gradually

increasing by a fixed amount to reach the maximum force. For each value of the

applied force in different directions, voltages are recorded from different strain gauges

that are implemented in the forceps. The test data consists of observed voltages in

practice, and the goal is to estimate the implemented force by the surgeon associated

with observed voltages.

Calibration has widely been used in areas such as univariate and multivariate

linear regression (Osborne, 1991, Besalú, 2013), nonlinear models (Ni et al., 2014,

Schwartz, 1977) as well as spline regression(Carey and Yee, 1992). As explained

in Osborne (1991), statistical calibration, also known as inverse prediction, is

highly related to instrument calibration. Nevertheless, statistical calibration is more

complicated than instrument calibration.

There are two types of calibration: comparative versus absolute calibration. It is
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necessary to distinguish between these two types since they are conceptually different.

While in comparative calibration two instruments or methods are calibrated with

respect to each other, absolute calibration mainly deals with one measurement

approach that is not standard, and comes with minor errors. From this point

forwards, the term calibration refers to the absolute calibration for simplicity.

Calibration approaches can be performed using univariate calibration and mul-

tivariate calibration. Considering each category, and as we explain later, there

are different statistical methods that are applicable in univariate and multivariate

calibration problems. Some of the well-known methods in univariate calibration

include: classical regression (Besalú, 2013), inverse regression (Parker et al., 2010),

Bayesian methods(Hawkins-Daarud et al., 2013), and non-parametric approaches

(Rueda et al., 2010). The first three methods will be explained in Sections 2.2.2 and

2.2.4. The non-parametric approach was not part of this study and as such will not

be explained here. Interested readers are referred to Lwin and Maritz (1980) for

detailed explanation of this method.

In univariate calibration, we deal with one explanatory variable ”xi” and one

response variable, ”yi”, where xi values are measured without any error, while yi’s

are calculated having some errors, εi’s. The linear relationship between the response

and explanatory variables is defined as follow:

yi = β0 + β1xi + εi, i = 1, 2, ..., n, (2.6)

where εi ∼ N(0, σ2
1). Having (2.6), β̂0 and β̂1 are obtained using the training data

set, that contains (xi, yi)’s pairs and following either the maximum likelihood or

least squares approaches.. Then, observing the y values in the test data set (that
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includes only y values) x values can be estimated as:

x̂j =
yj − β̂0

β̂1

. (2.7)

Here, one needs to assume the test data follows the linear model assumption used

in the training step, that is yj = β̂0 + β̂1xj + εj with εj ∼ N(0, σ2
2). This is the

assumption that does not necessarily hold in real application.

2.2.2 Classical and Inverse Approaches in Calibration

In this section, two of the most important predictors that are mainly used in statis-

tical calibration are presented, namely classical and inverse predictors. Statistical

characteristics and comparison of these two methods are provided.

The following notations are frequently used throughout this section:

Sxy =
n∑
i=1

(xi − x̄)(yi − ȳ), Sxx =
n∑
i=1

(xi − x̄)2, Syy =
n∑
i=1

(yi − ȳ)2, (2.8)

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi. (2.9)

The Classical Predictor

In Eisenhart (1939), the following estimator, which is obtained through regression

of y on x, is denoted as the classical estimator. Mathematical formulation of the

classical predictor is as follows. Let X and Y be two random variables, such that

E(Y | X = x) = β0 + β1x. (2.10)
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Suppose we have the training data set as (x1, y1), (x2, y2), ..., (xn, yn). The least

squares estimators of model (2.10) is obtained by minimizing the Sum of Squared

Errors (SSE), that is
∑n

i=1(yi − β̂0 − β̂1xi)
2, resulting in

β̂1 =
Sxy
Sxx

and β̂0 = ȳ − β̂1x̄.

Suppose we observe y1, y2, ..., ym without knowing their associated xi values. one

can rewrite (2.10) to obtain the classical predictors of x′is. To this end, working with

ŷ = ȳ +
Sxy
Sxx

(x− x̄), (2.11)

results in

x̂c = x̄+
Sxx
Sxy

(ȳ
′ − ȳ)

=
(ȳ
′ − β̂0)

β̂1

.

(2.12)

where ȳ
′

is the mean value of the observations y1, y2, ..., ym, and Sxy, Sxx, x̄ and ȳ

are defined in (2.8), (2.9), and it is assumed that β̂1 6= 0 . It is easy to show that,

the classical predictor, x̂c, is also the maximum likelihood estimator of x if the errors

follow a normal distribution as in (2.6) and (2.7).

The classical estimator has two major drawbacks (under the commonly used

normality assumption). First, its MSE is infinite for fixed xi’s and finite n. Because

when β̂1 in (2.12) is normally distributed, the probability of β̂1 = 0 is not zero (n is

the number of calibration data points). Second, its mean value is undefined. These

drawback are due to the fact that β̂1 is normally distributed independently of yi’s,
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and the variance of q

β̂1
is infinite. Therefore, x̂c has undefined mean and infinite

variance and consequently infinite MSE (Williams, 1969).

The Inverse Predictor

Krutchkoff (1967) introduced another estimator for the calibration problem, that is

called the inverse predictor. While in the classical predictor it is assumed that xi’s

are fixed, in the inverse approach, it is assumed that xi’s are also random. Therefore,

instead of regressing yi’s on xi’s (as was the case for the classical predictor), in the

inverse prediction approach, xi’s are regressed on yi’s. The model in this case is

given by:

E(X = x | y) = γ0 + γ1(y − ȳ), (2.13)

and the least squares estimators of the model (2.13) is obtained by minimizing the

SSE, with a minimum value given by
∑n

i=1(xi − γ̂0 − γ̂1(yi − ȳ))2, where,

γ̂1 =
Sxy
Syy

and γ̂0 = x̄,

and as before, Sxy, Sxx, x̄ and ȳ are defined in (2.8) and (2.9).

Considering above formula, if we observe y1, y2, ..., ym without knowing their

associated xI values, the inverse predictor would be

x̂I = x̄+
Sxy
Syy

(ȳ
′ − ȳ)

= γ̂0 + γ̂1ȳ
′
,

(2.14)
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where ȳ
′

is the mean value of y1, y2, ..., ym at the estimation stage, and ȳ is the mean

value of y1, y2, ..., yn at the calibration stage.

Inverse predictor might initially appear to be more straightforward than the

classical predictor, because it does not need inverting the regression model to

provide an estimate for the explanatory variable. Nonetheless, the basic regression

assumption that insists on independency of errors (εi = xi− γ̂0− γ̂1yi) and yi values,

is not valid in inverse predictor. Also, in many experimental settings such as the

one we consider in this thesis, the explanatory variables are fixed and do not satisfy

the required assumption in the inverse approach.

2.2.3 Comparison of the Classical and Inverse Predictors

Krutchkoff (1967) conducted a Monte Carlo simulation study to support the idea

that inverse predictor is better than classical predictor, since its MSE was uniformly

less than the MSE of classical estimator. However, in Berkson (1969) it is shown

that when Sxx is not very small (or xi’s are not very close to x̄ in (2.8)) and σ
β1

is small, the asymptotic MSE of the x̂c is smaller than that of x̂I , where σ is the

variance of the errors.

As mentioned in Section 2.24, the MSE and the mean value for the classical

estimator (x̂c) are not finite, but by truncating β̂1 such that the probability of

β̂1 = 0 is close to zero, one can make the MSE and the mean finite. Considering

Tchebycheff’s inequality given by

P (|β̂1 − β1|≥ K) ≤ σ2

K2β2
1Sxx

, (2.15)
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where K > 0, the probability of β̂1 being equal, or close to zero would be very small

if Sxx is large and | σ
β1
| is not large.

Lemma 2.2.1. Suppose Yi ∼ N(β0 + β1xi, σ
2), and we observe y0. Assume that we

are interested in estimating its corresponding X value denoted by x0. The asymptotic

Bias, MSE, and variance for the classical predictor x̂c, are obtained as follow:

Bias(x̂0c) ≈
σ2

β2
1Sxx

(x0 − x̄), (2.16)

V ar(x̂0c) ≈
σ2

β2
1

(
1 +

1

n
+

(x0 − x̄)2

Sxx

)
, (2.17)

MSE(x̂0c) ≈
σ2

β2
1

(
1 +

1

n
+

(x0 − x̄)2

Sxx
+

(x0 − x̄)2σ2

S2
xxβ

2
1

)
. (2.18)

Similarly, for the inverse predictor x̂0I we have

Bias(x̂0I) ≈
−(x0 − x̄)

1 +
β2
1Sxx

(n−1)σ2

, (2.19)

V ar(x̂0I) ≈
σ2Sxx

β2
1Sxx + (n− 1)σ2

(
1 +

1

n
+

(x0 − x̄)2

Sxx

)
, (2.20)

MSE(x̂0I) ≈
σ2Sxx

β2
1Sxx + (n− 1)σ2

(
1 +

1

n
+

(x0 − x̄)2

Sxx

)
+

(x0 − x̄)2(
1 +

β2
1Sxx

(n−1)σ2

)2
. (2.21)

Proof. In the regression model (2.10), estimates of coefficients are normally dis-

tributed as follow

β̂1 ∼ N(β1,
σ2

Sxx
), and β̂0 ∼ N(β0, σ

2( 1
n

+ x̄2

Sxx
)), and Cov(β̂0, β̂1) = −x̄σ2

Sxx
,

where σ2 is the variance of errors, Sxx and x̄ are defined in (2.8) and (2.9), respectively.
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Since the classical and inverse predictors are the ratio of two dependent normal

random variables, to calculate above formulas, we employ the δ-method to find below

expressions for the expectation as well as the variance of the ratio of two arbitrary

variables U and V with finite variances. (Casella and Berger, 2002, Parker et al.,

2010)

E(
U

V
) ≈ E(U)

E(V )
+

E(U)

E3(V )
V ar(V )− Cov(U, V )

E2(V )
, (2.22)

V ar(
U

V
) ≈ V ar(U)

E2(V )
+
E2(U)

E4(V )
V ar(V )− 2

E(U)

E3(V )
Cov(U, V ). (2.23)

According to (2.12), the classical estimator for estimating x̂0 is

x̂0c =
y0 − β̂0

β̂1

. (2.24)

The Bias, variance, and MSE for the classical estimator is calculated as follow:

Bias(x̂0c) = E(x̂0c − x0)

= E(x̂0c)− x0

= E(
y0 − β̂0

β̂1

)− x0,

(2.25)

where, E(y0 − β̂0) = β1x0 and V ar(y0 − β̂0) = σ2
(
1 + 1

n
+ x̄2

Sxx

)
.
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Now, using (2.22)

Bias(x̂0c) ≈ x0 +
σ2

β2
1Sxx

(x0 − x̄)− x0

≈ σ2

β2
1Sxx

(x0 − x̄).

Also, following (2.23), we get

V ar(x̂0c) = V ar(
y0 − β̂0

β̂1

)

≈ σ2

β2
1

(
1 +

1

n
+

(x0 − x̄)2

Sxx

)
.

Finally, the MSE for the inverse predictor is

MSE(x̂0c) = V ar(x̂0c) +Bias2(x̂0c)

≈ σ2

β2
1

(
1 +

1

n
+

(x0 − x̄)2

Sxx
+

(x0 − x̄)2σ2

S2
xxβ

2
1

)
.

For the inverse estimator

x̂0I = γ̂0 + γ̂1(y0 − ȳ), (2.26)

the Bias, variance, and MSE are calculated as follow. For the Bias, we have

Bias(x̂0I) = E(γ̂0 + γ̂1(y0 − ȳ)− x0), (2.27)

where, E(γ̂0) = x̄, and since γ̂1 = Sxy(Syy)
−1 is independent from y0, we can rewrite

(2.27) as

Bias(x̂0I) = x̄+ β1(x0 − x̄)E(γ̂1)− x0.
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Considering that γ̂1 is the ratio of two random variables and using (2.22) and (2.23),

given below expressions

E(Sxy) = β1Sxx, E(Syy) = (n− 1)σ2 + β2
1Sxx,

V ar(Syy) = 2(n− 1)σ4 + 4σ2β2
1Sxx, Cov(Sxy, Syy) = 2β1σ

2Sxx,

it is easy to show that

E(γ̂1) ≈ β1Sxx
(n− 1)σ2 + β2

1Sxx
+ o(

1

n
) ≈ 1

(n−1)σ2

β1Sxx
+ β1

,

and

V ar(x̂0I) ≈
σ2Sxx

β2
1Sxx + (n− 1)σ2

(
1 +

1

n
+

(x0 − x̄)2

Sxx

)
.

Finally, we are able to calculate the Bias and MSE as

Bias(x̂0I) ≈ x̄+
(x0 − x̄)β1

(n−1)σ2

β1Sxx
+ β1

− x0

≈ −(x0 − x̄)

1 +
β2
1Sxx

(n−1)σ2

,

and

MSE(x̂0I) = V ar(x̂0I) +Bias2(x̂0I)

≈ σ2Sxx
β2

1Sxx + (n− 1)σ2

(
1 +

1

n
+

(x0 − x̄)2

Sxx

)
+

(x0 − x̄)2(
1 +

β2
1Sxx

(n−1)σ2

)2
.
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2.2.4 The Bayesian Method in Prediction

The Bayesian method in calibration has two common approaches, namely the

Bayesian calibration and the Bayesian regression. While the former employs Bayesian

concept directly to estimate the explanatory variable, the latter provides estimation

for the coefficients first, using the Bayesian method, and then uses the classical

predictor (2.12), to predict the explanatory variable.

In this section, first the idea of Bayesian calibration is explained followed by a

review of some of the commonly used Bayesian models for the calibration problem.

Then, a brief description of the Bayesian regression approach is presented.

Bayesian Calibration

Bayesian calibration is one of the well known methods in calibration problems which

has been extensively studied in the past (Osborne, 1991, Hoadley, 1970, Dunsmore,

1968). Suppose that Data = {xi, yi, i = 1, 2, ..., n} is the calibration data set,

and we observe y0 at the prediction stage and we are interested in estimating its

corresponding x0. The Bayesian formula that is employed in the Bayesian calibration

problem is defined by:

P (x0 | Data, y0) =
f(Data, y0 | x0)P (x0)∫
Sx
f(Data, y0 | x0)P (x0)

∝ f(Data, y0 | x0)P (x0). (2.28)

where P (x0 | Data, y0) is called the posterior distribution, P (x0) is known as the

prior density, and f(Data, y0 | x0) = L(x0) is the Likelihood function of x0 and is

defined as the predictive function of observations.
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According to (2.28), Posterior ∝ Prior×Likelihood. Because, the denominator

is the scale factor and does not have any effect on making inference.

In classical estimator, β̂1 cannot be equal to zero, since it appears in the denomi-

nator of x̂c (2.12). Therefore, one needs to test whether or not β1 = 0. Testing this

hypothesis is achieved through the F -Statistic defined by

F =
β̂2

1Sxx
σ̂2

, (2.29)

where,

σ̂2 =
1

(n− 2)

{
n∑
i=1

(yi − β̂0 − β̂1xi)
2

}
. (2.30)

According to (2.29), one can reject the null hypothesis (H0 : β1 = 0), if F <

Fα;1;(n+1−2), where α is the significance level of the test. The rejection of the null

hypothesis means that the classical predictor is not accurate enough. As Hoadley

(1970) explains, it can be concluded that the calibration data set (xi, yi) maintains

some information about the accuracy of the classical predictor, and we can give less

weight to the classical estimator when we fail to reject the null hypothesis, and more

weight when the null hypothesis is rejected.

Therefore, the Bayesian method would be beneficial in this case, since it sum-

marizes the available information on x0 through observing the calibration data set.

In other words, the posterior distribution of x0 would provide estimation through

conditioning the prediction on the calibration data set.

In the Bayesian approach, the first step towards prediction is to find the appro-

priate prior density for the parameter. Hoadley (1970) proposed a theorem to find
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the marginal posterior distribution of x0.

Theorem 2.2.2 (Application of the Hoadley’s Theorem for non-centered data).

Suppose x0 is independent of β0, β1, and σ2, and consider a noninformative prior

density for the parameters, that is

P (β0, β1, σ
2) ∝ 1

σ2
. (2.31)

Then, the marginal posterior distribution for x0 would be

P (x0 | Data, y0) ∝ L(x0)P (x0), (2.32)

where,

L(x0) =
1

((n− 1)σ̂2σ2
0)

1
2 (1 + (y0−β̂0−β̂1x0)2

((n−1)σ̂2(σ2
0)

)
n−1
2

, σ2
0 = (1 +

1

n
+

(x0 − x̄)2

Sxx
),

and σ̂2 is defined in (2.30).

Proof. Following Hickey (2006) and under the assumed model, we first write

`(β0, β1, σ
2, x0 | y0, Data) ∝ `(β0, β1, σ

2 | Data)`(β0, β1, σ
2, x0 | y0). (2.33)

Now, the marginal posterior distribution of x0 given y0 and Data can be written as:

P (x0 | y0, Data) ∝ P (x0 | Data)P (y0 | x0, Data)

∝ P (x0)P (y0 | x0, Data).

(2.34)

Suppose y0 = β0 + β1x0 + ε0, and,
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ε0 | σ2 ∼ N(0, σ2), β̂0 | σ2 ∼ N(β0, σ
2(

1

n
+

x̄2

Sxx
)),

β̂1 | σ2 ∼ N(β1,
σ2

Sxx
), Cov(β̂0, β̂1) =

−x̄σ2

Sxx
.

One can show that

(y0 | σ2, x0, Data) ∝ N

(
β̂0 + β̂1x0, σ

2(1 +
1

n
+

(x0 − x̄)2

Sxx
)

)
,

Now, under chosen noninformative prior for parameters and considering the com-

monly used inverse gamma distribution for σ2,

σ−2 | Data ∼ χ2(n− 2, σ̂2),

where, σ̂2 was defined earlier in (2.30), we will get

P (x0 | Data) ∝ P (x0)P (y0 | x0, Data)

=
P (x0)

((n− 1)σ̂2σ2
0)

1
2 (1 + (y0−β̂0−β̂1x0)2

((n−1)σ̂2(σ2
0)

)
n−1
2

.

Remark: This is easily obtained as, if y0 ∼ N(β̂0 + β̂1x0 , σ
2(1 + 1

n
+ (x0−x̄)2

Sxx
)), and

σ−2 ∼ χ2(n− 2, σ̂2), then y0 | x0, Data ∼ tn−2(β̂0 + β̂1x0, σ̂
2(1 + 1

n
+ (x0−x̄)2

Sxx
)).

Theorem 2.2.3 (Hoadley’s Theorem). Suppose we have the exact same conditions

as in Theorem 2.2.2, except xi’s are standardized. The posterior distribution of x0

given y0 and Data is defined by

P (x0 | Data, y0) ∝ L(x0)P (x0), (2.35)
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where,

L(x0) =
(1 + n+ x2

0)
(n−2)

2

(1 + n+Rx̂2
0c + ( F ′

n−2
+ 1)(x0 −Rx̂2

0c)
2)

n−1
2

, R =
F
′

F ′ + n− 2
, F

′
=
nβ̂2

1

σ̂2
.

Note that the parameter F in (2.29), is changed to F
′

after standardizing xi’s.

Proof. Proof is similar to the proof of Theorem 2.2.2, hence omitted. However, one

can see Hoadley (1970) for a complete account for the derivation of the result.

In Aitchison and Dunsmore (1980) it has been stated that if the prior distribution

for x0 be considered as tn−3(x̄, (1 + 1
n
) Sxx
n−3

), then x̂0I is equal to the mean of the

posterior distribution.

In Osborne (1991), the inverse estimator (2.13), in the Bayesian terminology

has been interpreted as a movement from the classical predictor (2.12), towards

the mean value of prior distribution. Consequently, the more accurate the classical

estimator, the less shift towards the inverse predictor.

Bayesian Regression

In regression analysis, least squares and maximum likelihood approaches are the

most commonly used methods in estimating the regression coefficients. Another

well-established methodology that considers prior on the parameters of the model,

is based on the Bayesian regression approach that can also be used hopping that

the extra assumptions in this approach result in more precision in estimating the

coefficients.
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In linear regression model, observations include response variable, y, and one or

more explanatory variables, x. Suppose y = Xβ + ε, where ε ∼ N(0, σ2), X is called

the design matrix, and the parameters of the model are β and σ2. The posterior

distribution in this case is defined as follow:

P (β, σ2 | y) ∝ P (y | β, σ2)P (β)P (σ2), (2.36)

where, P (β) and P (σ2) are prior distributions, and P (y | β, σ2) is the likelihood

function. As in (2.36), posterior distribution is proportional to product of the

likelihood function and prior distribution. Therefore by obtaining the posterior

distribution, we can make inference on the parameters of the model.

For instance, suppose σ2 is known. Considering non-informative prior on β, as

β ∼ N(0, σ2
β), where σ2

β is known and considerably large such that the underlying

prior distribution can be interpreted as a flat prior, the likelihood function is as

follow:

P (y | β) ∝ exp(−a
2

(y −Xβ)>(y −Xβ)), (2.37)

where, a = 1
σ2 is called the precision. Furthermore, the posterior distribution is:

P (β | y) ∝ exp(−a
2

(y −Xβ)>(y −Xβ)× b

2
(β>β)), (2.38)

where, b = 1
σ2
β

is also called the precision. In order to find the posterior distribution

we proceed as follow:

P (β | y) ∝ exp

(
−1

2

[
a(y −Xβ)>(y −Xβ) + b(β>β)

])

∝ exp

(
−1

2

[
ay>y − 2aβX>y + β>aX>Xβ + bβ>β)

])
.

(2.39)

36



Since, ay>y is constant with respect to β, we can rewrite (2.39) as

P (β | y) ∝ exp

(
−1

2

[
β>(aX>X + bI)β − 2β>(aX>y) + constant

])
∝ N(µ,Σ),

(2.40)

where, µ = aΣ−1X>y, Σ = aX>X + bI, and I is the identity matrix. Therefore, we

obtained the posterior distribution.

More details on this method is provided in Chapter 4.
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Chapter 3

Bootstrap Technique in Statistical

Calibration

In this chapter we present the theory and application of the nonparametric boot-

strap technique in the statistical calibration of an instrumented surgical forceps,

i.e. SmartForcepsTM. Furthermore, an extension of the Eisenhart’s method and

it’s application in our calibration problem is presented. Finally, we compare the

performance of our proposed approach with the Näıve method, proposed in Zareinia

et al. (2015) to predict the amount of interaction forces.

3.1 Why Bootstrapping?

As mentioned, there is a relationship between the external force applied to the

brain tissue and the read voltages from the mounted strain gauges on the prongs

of the surgical forceps. Therefore, we require to appropriately model the output

voltages (response variable) and the force components (explanatory variable), to

estimate the resultant force. A methodology based on the deterministic and physical
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properties of the force-sensing strain gauges is employed in Zareinia et al. (2015). In

the proposed method, estimates of the force is obtained using equations that relate

recorded voltages from strain gauges to the forces exerted on the brain tissue (See

Section 2.1).

While this technique, which is called the Näıve method hereafter, provides the

first step towards estimating the exerted force on the brain tissue, it does not allow us

to obtain the precision associated with each estimate, and hence construct necessary

confidence intervals. In addition, it does not properly use the information of the

training data set to fit the calibration model that is required for estimating force.

The reason is that the proposed method in Zareinia et al. (2015) uses the information

of the training data set to obtain the calibration model through a deterministic

approach, which does not allow to study statistical properties of the estimates such

as unbiasedness or construct confidence intervals for the unknown forces given the

observed voltages. Also, in Zareinia et al. (2015), one needs to assume that the

distribution of the voltages in calibration stage is similar to the distribution of the

observed voltages in the real surgery for the estimation step. However, this is most

likely not the case, as test data are obtained under real surgery situation and it is

highly a function of the surgeon who is performing the surgery.

To address the above issues, in this chapter, we employ a probabilistic methodol-

ogy by using a nonparametric bootstrap approach to obtain both point and interval

estimates of the applied forces to the forceps during the performance of neurosurgery.

Detailed explanation of the bootstrap technique is given in Efron and Tibshirani

(1986). We also provide the precision associated with each estimate. To this end,

we use a multivariate calibration technique for calibrating the voltage-force model.

39



This is done by first fitting a linear regression model between the voltage and force,

followed by implementing a least squares method without assuming any parametric

assumption, such as normality, for the distribution of the voltages obtained from

four strain gauges mounted on the two prongs of the bipolar forceps. The bootstrap

technique is then used to estimate the unknown forces and construct necessary

confidence intervals using observed voltages in test data sets and following the

inverse of the calibration model. We intentionally use the calibration terminology

as our main goal is to predict the explanatory variable (force) by observing the

response variable (voltage).

There exist several techniques to estimate the explanatory variable, other than

the bootstrap method using the inverse of the calibration model. For more details

see Chapter 2 as well as Jones and Rocke (1999). As we explained in Section 2.2.2,

the most popular approach is probably the one based on the reverse regression by

modeling the explanatory variable (x) on the response variable (y) using

x = αy + error (Krutchkoff, 1967). In this approach, the goal is to estimate x

based on the observed y values and find the coefficient α by reversing the role of the

variables in the model. However, the structure of our data does not allow to use this

approach, since x values in the training data are not random.

Another well-known estimation method is the maximum likelihood approach.

This method uses the profile likelihood function for unknown x variable (Brown

and Sundberg, 1987). This approach measures the mutual inconsistency, which

would help to understand the differences between the likelihood-based and Bayes

confidence regions with other unconditional sampling approaches. However, this

approach requires some parametric and sometimes unverifiable assumptions about
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the distribution of the errors of the calibration model. For example, one needs to

assume that the underlying distribution of the errors for the test and training data

sets are the same. An obvious problem is that the information available at the

prediction step is usually limited, and the distribution of the observed voltages in

the real surgery depends on the surgeon’s experience and surgical skills.

In contrast, our proposed bootstrap approach is rather straightforward, and does

not require such assumptions and the model adjusts itself by taking into account

the effect of the surgeon using the bipolar forceps in the estimation process using a

pooling approach during a required resampling step.

Another method that is able to provide point and interval estimation of the

explanatory variable is known as the Eisenhart’s method. Detailed explanation

of this method is available in Eisenhart (1939). However, so far, the Eisenhart’s

method has been only used to address univariate problems. An extension to the

original Eisenhart’s method is proposed in Section 3.4.1. This extension allows us to

employ this method for our multivariate problem. The outline of this chapter is as

follow:

First, we address the statement of the problem, then the concept of the bootstrap

technique with univariate as well as multivariate linear models is explained in

Sections 3.2 and 3.3. Eisanhart’s method in calibration is also explained in Section

3.4. Section 3.5 explains how the calibration data set is obtained and results of

bootstrapping are reported in Section 3.6. Results of implementing the developed

model in the real field are reported in Section 3.7 by obtaining the amount of

interaction forces and corresponding intervals using data set quantified during the

performance of neurosurgical tasks on a cadaveric brain. Finally, concluding remarks
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are presented in Section 3.8

Throughout this chapter, we use two types of data sets: (i) Standards or Training

data set, in which both response and explanatory variables are observed, that

is (F1, V1), (F2, V2), ...., (Fn, Vn) and (ii) Unknowns, which involve only response

variables (V01, V02, ..., V0r). In the simulation study and to evaluate the performance

of our proposed method, we will also have Test data sets where we observe both the

response and explanatory variables. These data sets are then treated as Unknowns

by discarding their true values of the forces and predicting them using our proposed

method to measure its accuracy in predicting the true forces.

3.2 Bootstrapping in Controlled Calibration With

Univariate Linear Models

Suppose we observe a training data set of size n, (F1, V1), (F2, V2), ...., (Fn, Vn), from

the calibration station and assume that the relationship between the response variable

(observed voltage, V ) and the explanatory variable (applied force, F ) is given by

the following calibration curve:

Vi = βFi + εi, (3.1)

with εi’s being independent random errors having E(εi) = 0, and V ar(εi) = σ2.

This model is easily justified through the model proposed in Zareinia et al. (2015),

following the physical and deterministic properties associated with the surgical tool.

A common practice with model (3.1) is to predict a future value of the voltage

from an observed value of the force. In the proposed application, however, the
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interest lies in doing the reverse, that is, given (V01, V02, ..., V0r), we want to estimate

corresponding values of applied forces.

The bootstrap method could be a very helpful tool to estimate the force in

our calibration setting. It not only helps to predict the force, but also enables

us to obtain the precision of the estimates and construct confidence intervals. To

implement the bootstrap technique using the measured data from the calibration

station and under the linear model (3.1), we used both the Training and Unknowns

data sets. The training data set was obtained under a control setting that covers

the required range of the forces that could be observed in a practical situation after

discretizing the force range with enough resolution. However, for the Unknowns, we

only observed the voltages and the goal was to estimate their associated forces.

In order to estimate the amount of force F0 associated with an observed voltage

V0, following a least squares method, the calibration curve V̂ = β̂F was first obtained

from the Training data set, where β̂ =
∑n
i=1 ViFi∑n
i=1 F

2
i

. Then, an estimate of the force,

denoted by F̂0 was obtained as follow:

F̂0 =
V0

β̂
, (3.2)

given that β̂ 6= 0. Note that if we observe several values of the voltage associated

with a fix value of force, one could simply replace V0 in (3.2) by V̄0, the average of

the observed voltages.

One way to construct the bootstrap data set, that is required for the bootstrap

calibration, is to obtain the residuals from both Training and Unknowns. In real

application, this will help to adjust the estimation method and account for the effect

43



of the surgeon through combining the data sets from the calibration station and the

real operation to form the bootstrap residual pool. To this end, for the Training

data, we set,

εi = Vi − β̂Fi, i = 1, 2, ..., n, (3.3)

and, for Unknowns,

εj = V0j − V̄0, j = 1, 2, ..., r. (3.4)

Since the variation of the residuals around the mean is very small, there is a need

to adjust residuals by the adjustment factor,
√

n
n−p , where n is the number of data

points and p is the number of parameters (Jones and Rocke, 1999) .

The next step is to place the residuals in the residual pool. Therefore, the

bootstrap data set for Training is given by:

V ∗i = β̂Fi +R∗i , i = 1, 2, ..., n =⇒ (Fi, V
∗
i ), (3.5)

and for Unknown is defined as:

V ∗0j = V̄0 +R∗j , j = 1, 2, ..., r =⇒ F ∗0 =
V̄ ∗0

β̂∗
, (3.6)

where R∗i , and R∗j are random samples from the residual pool, and β̂∗ is obtained

by fitting a linear regression model to the bootstrap data set. Here, we consider a

general case where we assume r values of the voltages are observed for each unknown

force. In our setting, we simply take r = 1, and the bootstrap estimate of the

corresponding force in one run of the procedure is given by F ∗0 =
V ∗0
β̂∗

. One needs to

repeat this process B times, with large B, to obtain the bootstrap estimates of the
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force associated with an observed voltage, denoted by (F ∗01, F
∗
02, ..., F

∗
0B). The mean

of these estimates is then used as an estimate of the force. One can also construct

confidence intervals for the true but unknown value of the force F0.

There exist several methods to obtain 100(1− α)% confidence intervals for F̂0,

where α is usually taken α = 0.05 resulting in a 95% confidence interval. Examples

are:

i. Percentile bootstrap, that involves finding quantiles qα
2

and q1−α
2

of the bootstrap

values (F ∗01, F
∗
02, ..., F

∗
0B) and to constructing a confidence interval of the form

(qα
2
, q1−α

2
).

ii. bootstrap-t, which is computationally expensive, and it is based on approxi-

mating the distribution of
√
n(F̂0 − F0)/se(F̂0) by

√
n(F ∗0 − F̂0)/ŝe(F̂ ∗0 ), and

constructing the confidence intervals.

(F̂0 − c∗(n,α/2)ŝe(F̂0), F̂0 + c∗(n,1−α/2)ŝe(F̂0)), (3.7)

where c∗(n,α/2) and c∗(n,1−α/2) are the α/2-th and (1− α/2)-th quantiles of the

empirical distribution of
√
n(F ∗0 − F̂0), and

ŝe(F̂0) ' s

β̂

√
1

r
+

1

n
+

(F̂0 − F̄ )2

SSF
. (3.8)

Here s represents the estimate of the standard deviation of the errors, β̂ is

the slope of the regression line, SSF is the force variance, and finally n and r

denote the number of data points and replications, respectively.

45



3.3 Bootstrapping in Calibration with Multivari-

ate Linear Models

There is a methodological difference between bootstrapping univariate and multi-

variate linear models for the force-voltage problem in our setting. In the univariate

setting, which is only used for the illustration purpose, we assume that there is

only one voltage associated with each force. However, in our real data set, and

compared with the univariate model, there are two dimensional voltages associated

with each force component. Suppose Fx and Fy denote the applied forces along the

x and y directions, respectively. For each force we measure two sets of voltages. For

example, if Fx is the amount of force in x direction, we observe a vector of voltages

(Vx1 , Vx2), where Vx1 is obtained from the strain gauge 1 and Vx2 from strain gauge

2, respectively. To implement the bootstrap technique for estimating the unknown

values of Fx0 and Fy0 , we fit the following model to the Training data set:

(
Vx1 Vy1
Vx2 Vy2

)
=

(
α1 β1

α2 β2

)(
Fx 0
0 Fy

)
+

(
εx1 εy1
εx2 εy2

)
, (3.9)

where, (Vx1 , Vx2)
> is the observed voltages when the surgeon applies the force Fx

along the x direction. Similarly, (Vy1 , Vy2)
> denotes the observed voltages when a

force Fy is applied along the y direction. The error is represented by ε =

(
εx1 εy1
εx2 εy2

)
.

Therefore, the values of Fx, and Fy are estimated using the fitted models,

S1 =
(
α1 β1

)(Fx 0
0 Fy

)
+ ε1, (3.10)
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S2 =
(
α2 β2

)(Fx 0
0 Fy

)
+ ε2, (3.11)

where S1 =

(
Vx1
Vy1

)
and S2 =

(
Vx2
Vy2

)
. Here, Si, refers to the voltages obtained from

strain gauge i, i = 1, 2,. Also, ε1 =

(
εx1
εy1

)
and ε2 =

(
εx2
εy2

)
. We use εi, i = 1, 2,

to show the error terms associated with the models that are used to fit linear

relationships between the forces in x and y directions and voltages that are obtained

from each strain gauge.

After fitting the necessary regression models, the following steps are used in

order to obtain bootstrap estimates of the forces Fx0 and Fy0 .

1. Calculate α̂1, β̂1, and α̂2, β̂2, from (3.10) and (3.11) using the Training data

set.

2. Compute the residuals using,

ε1i = S1i −
(
α̂1 β̂1

)(Fxi 0
0 Fyi

)
, (3.12)

ε2i = S2i −
(
α̂2 β̂2

)(Fxi 0
0 Fyi

)
, (3.13)

where, i = 1, 2, . . . , n.

3. Obtain the bootstrap data set by first forming the residual pool {ε1i, ε2i, i =

1, 2, · · · , n} and then resampling it to obtain:

47



Training


S∗1i =

(
α̂1 β̂1

)(Fxi 0
0 Fyi

)
+ ε∗1i,

S∗2i =
(
α̂2 β̂2

)(Fxi 0
0 Fyi

)
+ ε∗2i,

(3.14)

and,

Unknowns


V ∗0j1 = V0j1 + ε∗01,

V ∗0j2 = V0j2 + ε∗02,

(3.15)

where, ε∗1i, ε
∗
2i, ε

∗
01, and ε∗02 are random samples with replacement from the

residual pool. Note that, we obtain separate residual pools from models (3.10)

and (3.11). V0j1 and V0j2 are considered as the observed response vectors, and

are used to predict the amount of relatively Fx, Fy.

4. Fit new models (3.14) to bootstrap data sets and obtain corresponding values

of α̂∗1, β̂∗1 and α̂∗2 ,β̂∗2 .

5. Estimate F̂x, and F̂y using,


V ∗0J1 =

(
α̂∗1 β̂∗1

)(F̂xi 0

0 F̂yi

)
,

V ∗0J2 =
(
α̂∗2 β̂∗2

)(F̂xi 0

0 F̂yi

)
.

(3.16)

6. Repeat steps 3 to 5 B times.

7. Quantify confidence intervals for estimated forces.
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Remark: In practice, when we employ the task data, the force is not necessarily

applied in one direction, and one may expect to have force in both x and y directions.

In this case, the regression model (3.16) in step 5 is replaced with the following

equation to obtain (F̂xi, F̂yi) given the voltages that are observed:


V ∗0J1 = α̂∗1F̂xi + β̂∗1 F̂yi,

V ∗0J2 = α̂∗2F̂xi + β̂∗2 F̂yi.

(3.17)

where V ∗0J1 and V ∗0J2 represent the recorded voltages from strain gauges 1 and 2,

respectively.

3.4 Eisenhart’s Method in Calibration

Eisenhart (1939) suggested a methodology based on Student-t distribution to obtain

confidence intervals for classical predictor (2.12), where we are dealing with univariate

calibration problem. Suppose y0 is observed, the confidence bounds for x0 can be

obtained by

x̄+
β̂1(y0 − ȳ)

β̂2
1 − σ̂2t2

Sxx

± σ̂t

β̂2
1 − σ̂2t2

Sxx

√
(1 +

1

n
)(β̂2

1 −
σ̂2t2

Sxx
) +

(y0 − ȳ)2

Sxx
, (3.18)

where, Sxx, (x̄, ȳ), and σ̂ are defined in (2.8), (2.9), and (2.30), respectively. And

t = (1− α
2
)% percentile of the Student-t distribution with (n− 2) DoF.

3.4.1 Multivariate Eisenhart’s Method for Calibration

In this section, we provide a multivariate extension to the Eisenhart’s calibration

method. The major impact of this extension is that it provides confidence intervals
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without running any simulations, therefore, the results are obtained much faster.

Suppose we observe V0 = (V01, V02). The extension of the Eisenhart’s point estimates

and confidence intervals of Fx and Fy are obtained by solving the following system

of equations 
(α̂1F̂0x + β̂1F̂0y − V01)2 = t2MSE1(1 +Bxy),

(α̂2F̂0x + β̂2F̂0y − V02)2 = t2MSE2(1 +Bxy),

(3.19)

where, MSE1 and MSE2 are the mean squared errors obtained from S1 (3.10) and

S2 (3.11), respectively. Moreover,

Bxy =
(
F̂0x F̂0y

)
(F>F )−1

(
F̂0x

F̂0y

)
, F = (F1x, · · · , Fnx, F1y, · · · , Fny)>, (3.20)

In (3.19), α̂1, α̂2, β̂1, β̂2 are also obtained through (3.10) and (3.11), and t = (1− α
2
)%

percentile of the Student-t distribution with (n− 2) degree of freedom (DoF). We

first obtain the point estimates F̂0x and F̂0y from (3.19), and then calculate the roots

of the first and second quadratic equations to construct confidence intervals for F̂0x

and F̂0y, respectively.

Lemma 3.4.1. Asymptotic approximations of the MSE and the Bias of F̂0x are

given by
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Bias(F̂0x) =
V01 − β1F0y − α1F0x

α1

+ (V01 − β1F0y)
MSE1

∑n
i=1 F

2
iy

α3
1Axy

− F0yMSE1

∑n
i=1 FixFiy

Axy
,

MSE(F̂0x) =
MSE1

Axy

n∑
i=1

(
F0yFix
α1

− (V01 − β1F0y)Fiy
α2

1

)2

+Bias2(F̂0x),

(3.21)

where, Axy =
∑n

i=1 F
2
ix

∑n
i=1 F

2
iy − (

∑n
i=1 FixFiy)

2.

Proof. Suppose, V01 = α̂1F0x + β̂1F0y, then we can estimate F0x by

F̂0x =
V01 − β̂1F0y

α̂1

.

Note that as we observe V01, it is considered to be constant. Here, first we obtain

variances and covariance for the coefficients through calculating MSE1(F
>F )−1,

where F is given in (3.20). Therefore

α̂1 ∼ N
(
α1,

MSE1

Axy

n∑
i=1

F 2
iy

)
, β̂1 ∼ N

(
β1,

MSE1

Axy

n∑
i=1

F 2
ix

)
,

Cov(α̂1, β̂1) =
−MSE1

Axy

n∑
i=1

FixFiy.

We obtain expectation and variance of F̂0x using the expressions given in (2.22)

and (2.23), where
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E(V01 − β̂1F0y) = V01 − β1F0y, V ar(V01 − β̂1F0y) =
F 2

0yMSE1

Axy

n∑
i=1

F 2
ix. (3.22)

To this end,

E(F̂0x) = E(
V01 − β̂1F̂0y

α̂1

)

= F0x +
V01 − β1F0y − α1F0x

α1

+MSE1

n∑
i=1

F 2
iy

(V01 − β1F0y)

α3
1Axy

−MSE1

n∑
i=1

FixFiy
F0y

α2
1Axy

. (3.23)

Also,

V ar(F̂0x) = V ar(
V01 − β̂1F̂0y

α̂1

)

=
MSE1

Axy

n∑
i=1

(
F0yFix
α1

− (V01 − β1F0y)Fiy
α2

1

)2

. (3.24)

Using (3.23) and(3.24), we can obtain expressions for the Bias and MSE, as follow:

Bias(F̂0x) = E(F̂0x)− F0x

= F0x +
V01 − β1F0y − α1F0x

α1

+ (V01 − β1F0y)
MSE1

∑n
i=1 F

2
iy

α3
1Axy

− F0yMSE1

∑n
i=1 FixFiy

Axy
− F0x, (3.25)
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and

MSE(F̂0x) = V ar(F̂0x) +Bias2(F̂0x)

=
MSE1

Axy

n∑
i=1

(
F0yFix
α1

− (V01 − β1F0y)Fiy
α2

1

)2

+Bias2(F̂0x). (3.26)

In order to obtain the confidence bounds for F0x, first we obtain F̂0x and F̂0y from

(3.19), then we assume F̂0y is known in (α̂1F̂0x + β̂1F̂0y − V01)2 = t2MSE1(1 +Bxy).

Therefore, our problem reduced to a quadratic formula with respect to F̂0x, that

is unknown. One can use the quadratic formula to find the roots of this equation,

that are upper and lower bounds of desired confidence interval. . One can obtain

confidence bound for F̂0y in a similar way, by assuming F̂0x is known and using

(α̂2F̂0x + β̂2F̂0y − V02)2 = t2MSE2(1 +Bxy).

3.5 Obtaining Calibration Data Through Experi-

ment

In order to obtain the data set for Training, the data from 20 trial runs were used

during calibration of the bipolar forceps measured using the developed automatic

calibration station, (see Figure 3.1). The motor, connected to the force sensor on

the calibration station, was programmed to move in two directions: forward (moving

towards the point o in Figure 3.2) and backward (moving away from o). Data

measurement was performed for 10 times under the same test conditions along each

direction. Therefore, in total, 40 sets of data were collected when the force was
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applied along x axis (10 trial runs for forward and 10 trials for backward, for the

left and right prongs) and 40 data sets for when the force was applied along y axis

(10 trials for forward and 10 trial runs for backward, for the left and right prongs).

In forward motion, the tips were applied a force of 0 N to 2 N, and in backward, the

force reduced from 2 N to 0 N. Note that the force of 2 N is the peak force that we

can expect during the performance of a neurosurgery (Zareinia et al., 2015).

Figure 3.1: (a) Calibration station and the setup used to calibrate the instrumented
bipolar forceps along (b) x axis and (c) y axis. Arrows show the direction of the
applied force by the motorized system connected to the force sensor.Source: Azimaee
et al., “Nonparametric bootstrap Technique for Calibrating Surgical SmartForceps:
Theory and Application.” Revision Submitted (2017).
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Figure 3.2: Surgeons are performing neurosurgery by using SmartForcepsTM to
measure applied forces along x, y, and z axes. Source: Maddahi et al., “Quantifying
workspace and forces of surgical dissection during robot-assisted neurosurgery.” The
International Journal of Medical Robotics and Computer Assisted Surgery 12, no. 3
(2016): 528-537.

3.6 Results from the Bootstrap Method

This section presents the results obtained by implementing the methodologies

explained through this chapter. A comprehensive graphical and numerical analysis

of results is also presented.

3.6.1 Univariate Calibration

As a typical example, suppose we aim at predicting the amount of force for a given

voltage of V1 = 0.26 V. Results of this examination, using two methods, under 95%
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bootstrap confidence intervals, are presented in Table 3.1.

Table 3.1: 95% confidence intervals obtained using different methods of univariate
calibration when V1 = 0.26 V is observed, and the true force of Fx = 1.5 N is given.

Method True Force Confidence Interval
Percentile Bootstrap 1.5 (1.466 , 1.539 )

Bootstrap t 1.5 (1.460 , 1.541 )

3.6.2 Multivariate Calibration

Force along x direction

In this part, predictions of applied forward and backward forces to the right and

left forceps tips along x direction are presented as confidence intervals. As observed

from Table 3.2, the length of force intervals obtained for the right tip in forward

direction are narrower than the backward direction. For instance, when the true

force of Fx is equal to 1.7 N, the force interval in forward direction for the right tip

is (1.684 N, 1.730 N), while, in backward is (1.698 N, 1.750 N). This trend is also

observed along left tip as can be seen in Table 3.3. For instance, when the true force

of Fx = 1.7 N is considered, the force interval in the forward direction of the left tip

is (1.672 N, 1.745 N), that is again narrower than interval in the backward direction,

(1.654 N, 1.741 N). As expected, all intervals contain the true values of force. The

bounds for forward and backward Fx ∈ [0 N, 1 N] are plotted in dotted and dashed

lines, respectively, as shown in Figs. 3.3 and 3.4.
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Figure 3.3: Confidence intervals of the forces at the right tip, obtained using the
bootstrap method in forward (top) and backward (bottom) directions, when force
along x is applied to the right prong (F̂x).
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Table 3.2: Estimated confidence intervals for different amounts of Fx applied to right
forceps tip. To examine results of the bootstrap method, amounts of true forces
were considered as unknown values.

Forces Applied to Right Tip
Forward Force Backward Force

True Fx C.I True Fx C.I

0.1 (0.095 , 0.139) 2.0 (1.950 , 2.002)

0.2 (0.181 , 0.227) 1.9 (1.861 , 1.912)

0.3 (0.258 , 0.303) 1.8 (1.784 , 1.836)

0.4 (0.367 , 0.413) 1.7 (1.698 , 1.750)

0.5 (0.455 , 0.502) 1.6 (1.590 , 1.640)

0.6 (0.595 , 0.641) 1.5 (1.461 , 1.516)

0.7 (0.697 , 0.742) 1.4 (1.378 , 1.429)

0.8 (0.760 , 0.807) 1.3 (1.286 , 1.338)

0.9 (0.888 , 0.932) 1.2 (1.199 , 1.252)

1.0 (0.972 , 1.019) 1.1 (1.056 , 1.107)

1.1 (1.087 , 1.132) 1.0 (0.990 , 1.043)

1.2 (1.185 , 1.230) 0.9 (0.875 , 0.927)

1.3 (1.266 , 1.311) 0.8 (0.769 , 0.821)

1.4 (1.389 , 1.436) 0.7 (0.676 , 0.727)

1.5 (1.464 , 1.509) 0.6 (0.544 , 0.642)

1.6 (1.579 , 1.623) 0.5 (0.481 , 0.534)

1.7 (1.684 , 1.730) 0.4 (0.364 , 0.418)

1.8 (1.799 , 1.844) 0.3 (0.279 , 0.330)

1.9 (1.883 , 1.931) 0.2 (0.184 , 0.236)

2.0 (1.991 , 2.038) 0.1 (0.093 , 0.146)
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Table 3.3: Estimated confidence intervals for different amounts of Fx applied to left
forceps tips. To examine results of the bootstrap method, amounts of true forces
were considered as unknown values.

Forces Applied to Left Tip
Forward Force Backward Force

True Fx C.I True Fx C.I

0.1 (0.069 , 0.142) 2.0 (1.921 , 2.008)

0.2 (0.136 , 0.208) 1.9 (1.837 , 1.922)

0.3 (0.269 , 0.341) 1.8 (1.755 , 1.839)

0.4 (0.361 , 0.433) 1.7 (1.654 , 1.741)

0.5 (0.459 , 0.532) 1.6 (1.559 , 1.646)

0.6 (0.533 , 0.606) 1.5 (1.490 , 1.577)

0.7 (0.677 , 0.750) 1.4 (1.352 , 1.437)

0.8 (0.773 , 0.846) 1.3 (1.256 , 1.342)

0.9 (0.861 , 0.933) 1.2 (1.171 , 1.259)

1.0 (0.989 , 1.062) 1.1 (1.083 , 1.171)

1.1 (1.075 , 1.147) 1.0 (0.969 , 1.056)

1.2 (1.156 , 1.231) 0.9 (0.860 , 0.947)

1.3 (1.283 , 1.355) 0.8 (0.797 , 0.882)

1.4 (1.372 , 1.444) 0.7 (0.680 , 0.767)

1.5 (1.470 , 1.543) 0.6 (0.570 , 0.658)

1.6 (1.588 , 1.662) 0.5 (0.450 , 0.536)

1.7 (1.672 , 1.745) 0.4 (0.329 , 0.416)

1.8 (1.772 , 1.845) 0.3 (0.255 , 0.340)

1.9 (1.893 , 1.966) 0.2 (0.163 , 0.249)

2.0 (1.958 , 2.030) 0.1 (0.076 , 0.162)
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Figure 3.4: Confidence intervals of forces at the left tip, obtained using the bootstrap
method in forward (top) and backward (bottom) directions when Fx is applied to
the left prong.

Force along y direction

Similar forces as calibration along x axis were applied to the forceps tips along y

direction, first to the right tip and then to the left tip. Here again, lengths of force

intervals, obtained in backward direction along right tip, were broader than intervals

in forward motion (see Table 3.4). However, we could not see this trend for the forces

along left tip; it means that the obtained intervals for forces in forward direction
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are broader than the ones for backward direction along left tip (see Table 3.5). For

instance, when the true force of 1 N was given, the estimated force intervals of the

right tip in backward motion was (0.933 N, 1.047 N) compared to (0.992 N, 1.087

N) in forward direction. But the force intervals of the left tip were (0.909 N, 1.063

N) in backward motion and (0.900 N , 1.058 N) in forward direction. Figs. 3.5

and 3.6 illustrate the confidence force bounds in forward and backward directions,

respectively.
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Figure 3.5: Confidence intervals of forces exerted on the right tip, obtained using
the bootstrap method for the forward (top) and backward (bottom) directions when
the force is applied along y axis.
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Table 3.4: Estimated confidence intervals for different amounts of Fy applied to
right tip. To examine results of the bootstrap method, amounts of true forces were
considered as unknown values.

Forces Applied to Right Tip
Forward Force Backward Force

True Fy C.I True Fy C.I

0.1 (0.096 , 0.192) 2.0 (1.861 , 1.975)

0.2 (0.179 , 0.277) 1.9 (1.805 , 1.914)

0.3 (0.252 , 0.350) 1.8 (1.696 , 1.807)

0.4 (0.373 , 0.470) 1.7 (1.594 , 1.702)

0.5 (0.497 , 0.592) 1.6 (1.585 , 1.692)

0.6 (0.510 , 0.605) 1.5 (1.428 , 1.539)

0.7 (0.632 , 0.729) 1.4 (1.300 , 1.411)

0.8 (0.774 , 0.870) 1.3 (1.222 , 1.331)

0.9 (0.875 , 0.974) 1.2 (1.146 , 1.258)

1.0 (0.992 , 1.087) 1.1 (1.058 , 1.172)

1.1 (1.005 , 1.101) 1.0 (0.933 , 1.047)

1.2 (1.147 , 1.244) 0.9 (0.832 , 0.943)

1.3 (1.229 , 1.324) 0.8 (0.747 , 0.858)

1.4 (1.349 , 1.446) 0.7 (0.618 , 0.727)

1.5 (1.494 , 1.591) 0.6 (0.552 , 0.663)

1.6 (1.554 , 1.650) 0.5 (0.444 , 0.557)

1.7 (1.637 , 1.734) 0.4 (0.331 , 0.442)

1.8 (1.791 , 1.889) 0.3 (0.259 , 0.368)

1.9 (1.874 , 1.971) 0.2 (0.159 , 0.269)

2.0 (1.910 , 2.007) 0.1 (0.090 , 0.201)
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Table 3.5: Estimated confidence intervals for different amounts of Fy applied to
left tip. To examine results of the bootstrap method, amounts of true forces were
considered as unknown values.

Forces Applied to Left Tip
Forward Force Backward Force

True Fy C.I True Fy C.I

0.1 (0.025 , 0.180) 2.0 (1.906 , 2.061)

0.2 (0.137 , 0.299) 1.9 (1.776 , 1.925)

0.3 (0.216 , 0.372) 1.8 (1.748 , 1.900)

0.4 (0.307 , 0.467) 1.7 (1.655 , 1.808)

0.5 (0.411 , 0.568) 1.6 (1.478 , 1.633)

0.6 (0.493 , 0.652) 1.5 (1.424 , 1.575)

0.7 (0.633 , 0.788) 1.4 (1.387 , 1.540)

0.8 (0.694 , 0.848) 1.3 (1.213 , 1.368)

0.9 (0.820 , 0.977) 1.2 (1.156 , 1.309)

1.0 (0.900 , 1.058) 1.1 (1.031 , 1.183)

1.1 (1.021 , 1.179) 1.0 (0.909 , 1.063)

1.2 (1.145 , 1.304) 0.9 (0.826 , 0.978)

1.3 (1.203 , 1.361) 0.8 (0.698 , 0.854)

1.4 (1.373 , 1.529) 0.7 (0.636 , 0.798)

1.5 (1.404 , 1.558) 0.6 (0.495 , 0.649)

1.6 (1.462 , 1.620) 0.5 (0.410 , 0.564)

1.7 (1.634 , 1.794) 0.4 (0.300 , 0.459)

1.8 (1.726 , 1.884) 0.3 (0.212 ,0.364)

1.9 (1.753 , 1.906) 0.2 (0.135 , 0.289)

2.0 (1.881 , 2.038) 0.1 (0.017 , 0.171)
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Figure 3.6: Confidence intervals of forces applied to the left tip, calculated using the
bootstrap method for the forward (top) and backward (bottom) directions when Fy
is applied.

3.7 Real Field Application and Further Discus-

sions

The forces of tool tissue interaction, while providing a force feedback to the surgeon,

is an important information source for the ongoing development of techniques to

train neurosurgery residents and novice surgeons, as well as assess their surgical

skills. Specifically, the quantification of tool-tissue interaction forces will allow
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implementation of a high force warning system, such that surgeons are warned when

safety threshold for forces of tool-tissue interaction is reached (Payne et al., 2015,

Payne and Yang, 2014). In this section, we provide a real field application of our

proposed methods and discuss the accuracy of each approach.

3.7.1 Replications of the Voltages

Results presented in this study were calculated using one single replication of

unknown voltages. However, it is also important to investigate the effect of using r

replications of the voltages for the same amount of force, and investigate the effect

of the number of replications on the size of force interval.

As a typical test, we used replications of the voltages for Fx = 1.5 N and Fy = 1.5

N in both left and right tips. The replications were extracted from the real data set

measured using the calibration station. Figure 3.7 illustrates the confidence intervals

for different number of replications (r). As observed, an increase in the number of

replications results in a narrower force interval.
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Figure 3.7: Confidence intervals obtained for different numbers of replications, when
the true Fx = 1.5 N, and Fy = 1.5 N for the right tip (top) and the left tip (bottom).
While dotted and dashed lines show the C.I for Fx and Fy applied to the tips,
respectively. Solid line represents the true force value.

3.7.2 Accuracy of the Bootstrap Method

Comparison of the estimation based on the bootstrap method with the deterministic

method was also performed. Considering the deterministic Näıve method, we

estimated the matrix of coefficients with the data set obtained from calibration

station in forward and backward direction to put in (3.27) and estimate the amount
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of Fx and Fy,

(
V1

V2

)
=

(
f1x f1y

f2x f2y

)(
Fx
Fy

)
, (3.27)

where fij is the slope of the fitted regression line of voltages obtained from strain

gauge i as a result of applied force in j direction. The coefficients matrices for right

and left prongs were equal to (3.28) and (3.29), respectively, where the matrices

on the right side are for backward forces and the ones on the left are assigned to

forward forces. Results of the calibration in forward and backward direction are

shown in Figure 3.8.

(Right, Forward) =

(
0.16876 0.01222
0.02816 0.07195

)
, (Right,Backward) =

(
0.17198 0.01393
0.02829 0.07839

)
,

(3.28)

(Left, Forward) =

(
0.15565 0.01048
0.02657 0.07398

)
, (Left, Backward) =

(
0.15765 0.01290
0.02738 0.07310

)
.

(3.29)

As listed in Table 3.6, the bias of the Näıve method in most cases is greater than

the bias for the bootstrap method. Moreover, the amount of the force estimated

using the mean value of the bootstrap force estimates is closer to the true force than

Näıve method. However, overall there is not that much difference between bootstrap

point estimations and the Näıve method estimates, which can be explained with the

small variation of residuals obtained from fitting models S1 (3.10) and S2 (3.11) in

bootstrapping, which means that the values of residuals are relatively small.

In next step, the confidence bounds obtained from the bootstrap technique were
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Figure 3.8: Calibration forces applied to the right tip in x and y directions vs.
voltages read from strain gauges for 10 trials in forward (top) and backward (bottom)
directions. Fitted regression lines are also presented for V1 and V2 vs. Fx and Fy,
respectively.
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compared against the ones obtained from the extension of the Eisenhart’s method

for multiple regression models(Eisenhart, 1939).

As observed in Table 3.6, the length of the intervals obtained from the bootstrap

method are significantly narrower than those obtained by the extension of the

Eisenhart’s method. For example, when Fx = 1.8 N is applied, the confidence bound

that is given by the bootstrap method is (1.798 N , 1.845 N), while the interval that

is obtained by extension of Eisenhart’s method is (1.780 N , 1.844 N). The difference

in the confidence interval bounds is even more evident for Fy.

3.8 Concluding Remarks

In this chapter, the bootstrap technique was used to calibrate the interaction forces

between a surgical tool (SmartForceps) and the brain tissue. The instrumented

bipolar forceps is generally employed to conduct a variety of neurosurgical tasks

including dissection, coagulation and squeezing the brain tissue. Two sets of strain

gauges were mounted on each prong of the forceps, away from tips to measure the

components of the interaction force in four directions. In practice, the interaction

forces are calculated using reading the voltages of the strain gauges during surgery.

Therefore, a model was required to map the voltages read from strain gauges and the

forces applied to the forceps tips. The Näıve model has previously been employed by

Zareinia et al. (2015) to determine the force. In this study, the bootstrap technique

was used to calibrate the forces.The bootstrap method takes into account effects of

the surgeon who is using the bipolar forceps in the estimation process through a

pooling stage during required resampling steps in the procedure. Obtained results
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indicated that the bootstrap technique provides a more accurate estimate of the

force value, compared to the Näıve method. More precisely, the bias obtained from

the bootstrap technique was smaller. Furthermore, the Näıve method only provides

point estimates while the bootstrap provided confidence intervals, and hence, the

bootstrap technique provided a more reliable estimation.
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Chapter 4

Multilevel Modeling and Bayesian

Approach for Calibrating

SmartForcepsTM

In this chapter, limitations and difficulties associated with mounting the third pair of

strain gauges on the smartForcepsTM are discussed. Furthermore, several statistical

approaches such as weighted least squares, multilevel modeling, and Bayesian ap-

proach in multi-level modeling are suggested to address these problems. We consider

the calibration problem under the Bayesian approach using both symmetric and

asymmetric loss functions. To this end, LINEX loss function is used as an alternative

to the usual squared error loss (SEL) in order to asymmetrically penalize over and

under estimation in the underlying calibration problem.

4.1 Problem with 3-D Data

In this section, first we describe the problem of predicting the amount of forces, while

observed voltages from all three pairs of strain gauges are considered. Moreover,
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graphical illustrations and tables are used to clarify this problem. Then, bootstrap

method that is proposed in Chapter 3, is employed to predict the amount of forces,

and results are obtained through weighted least squares as well as ordinary least

squares prediction approaches. First, we briefly explain the challenges involved in

using 3-D data.

4.1.1 Data Set Specification

Calibration data set for the z direction is obtained in a similar fashion explained

in Section 3.5. Another pair of strain gauges were mounted on the prongs of the

SmartForcepsTM to record voltages in z direction. Therefore, calibration data set is

obtained by applying force along x, y, and z directions, where each pair of the strain

gauges measures the output voltages in corresponding direction (S1, S2, and S3 are

used to obtain voltages when force is applied in x, y, and z directions, respectively).

When force is applied in a certain direction, we expect to observe substantial

amount of output voltage from the strain gauge that is installed to measure voltages

along that particular direction. For instance, applied force in x direction, should

result in large output voltages from S1. Similarly, applied force in z direction should

result in output voltages in S3 that are significantly higher than those recorded

in S1 and S2. However, an anomaly occurs in the y direction i.e. when force is

applied in the y direction, considerable amount of voltages are observed from S3

instead of S2, and observed voltages in S2 is negligible. This problem is illustrated

in Figure 4.1: when force is applied in x direction, observed voltages in S2 and S3

are relatively small and close to zero, while S1 voltages are increasing corresponding

to the increase in Fx. However, when Fy is applied, observed voltages in S2 and

74



S1 are close to zero, but voltages in S3 are increasing remarkably with increasing

the amount of applied Fy’s. Nevertheless, we expected to observe voltages in S2

rise with increasing Fy. The last plot of Figure 4.1, shows the behavior of the three

strain gauges when force is applied in z direction.
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Figure 4.1: Observed voltages from 3 different strain gauges (S1, S2, and, S3) are
presented when force is applied in x (top), y (middle), and z (bottom) directions.
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This problem is probably caused by improper position of the third pair of strain

gauges. In other words, when force is applied in Y direction, first it deforms S3

instead of S2. And this is mainly because there should not be any alteration in the

shape of conventional neurosurgical forceps.

Another issue that affects force prediction having 3 pairs of strain gauges is the

variability of observed voltages in each strain gauge, when force is applied along

different directions. In other words, variance of the observed voltages obtained from

3 strain gauges are significantly different given applied forces along each axis. Figure

4.2, shows the box plots of the voltages in S1, S2, and S3 when force is in x, y, and

z directions, respectively. Plot on the left panel of Figure 4.2, shows that variance

of S1 is between 0 V and 0.35 V, and as it is shown in the middle panel, when force

is applied along y direction, variability of voltages in S3 changes from 0 V to 0.8 V.

However, as can be seen in the last panel, variance of S3 is remarkably lower than

other strain gauges, that is between 0 V and 0.08 V.
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Figure 4.2: Box plots of observed voltages in strain gauges 1,2, and 3
(S1, S2, and, S3), when force is applied in 3 directions. Different strain gauges
are specified with different colors.

So far, two main issues that directly affect force prediction in 3 directions are

explained. These problems are due to installing the third pair of strain gauges and

they make the force prediction along 3 directions rather difficult. Another difficulty

of force estimation considering 3 pairs of strain gauges is shown in the following

section where bootstrap method that was proposed in Chapter 3, is employed to

obtain interval estimation for applied forces along x, y, and z axes.
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4.1.2 Bootstrap Calibration for the 3-D Case

In this section, we have employed the bootstrap method (proposed in Chapter 3) for

the calibration data set that includes the amount of forces between 0.1 N and 2 N, in

3 directions and also observed voltages in S1, S2, and S3. Through out this chapter,

as true force values are between 0 N and 2 N, confidence intervals are truncated

when the lower bound is negative or the upper bound is bigger than 2 N.

The procedure of the bootstrap method is similar to the one explained in Section

3.3, except that we have also considered observations obtained from S3. Consequently,

residuals are obtained from 3 different regression models that are listed below:

S1 =
(
α1 β1 γ1

)Fx 0 0
0 Fy 0
0 0 Fz

+ ε1,

S2 =
(
α2 β2 γ2

)Fx 0 0
0 Fy 0
0 0 Fz

+ ε2,

S3 =
(
α3 β3 γ3

)Fx 0 0
0 Fy 0
0 0 Fz

+ ε3,

(4.1)

where, S1 = (Vx1, Vy1, Vz1)
>, S2 = (Vx2, Vy2, Vz2)

>, and S3 = (Vx3, Vy3, Vz3)
> are

observed voltages obtained from each strain gauge, where Vxi, Vyi, and Vzi are

observed voltages from strain gauge i, i = 1, 2, 3, when force is applied in x, y, and

z directions, respectively.

Suppose we observe (V0J1, V0J2, V0J3) voltages from 3 strain gauges, and our goal

is to predict the amount of applied forces in x, y, and z direction. First, we need
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to fit models in (4.1), and then we will proceed to the following steps to obtain

bootstrap predictions:

1. Obtaining α̂1, β̂1, γ̂1, α̂2, β̂2, γ̂2, and α̂3, β̂3, γ̂3 from (4.1) using the Training

data set.

2. Calculating the residuals using,

ε1i = S1i −
(
α̂1 β̂1 γ̂1

)Fxi 0 0
0 Fyi 0
0 0 Fzi

 , (4.2)

ε2i = S2i −
(
α̂2 β̂2 γ̂2

)Fxi 0 0
0 Fyi 0
0 0 Fzi

 , (4.3)

ε3i = S3i −
(
α̂3 β̂3 γ̂3

)Fxi 0 0
0 Fyi 0
0 0 Fzi

 , (4.4)

where, i = 1, 2, . . . , n.

3. Forming the bootstrap data set by constructing the residual pool {ε1i, ε2i, ε3i i =

1, 2, · · · , n} and obtain the following by resampling it.
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Training



S∗1i =
(
α̂1 β̂1 γ̂1

)Fxi 0 0
0 Fyi 0
0 0 Fzi

+ ε∗1i,

S∗2i =
(
α̂2 β̂2 γ̂2

)Fxi 0 0
0 Fyi 0
0 0 Fzi

+ ε∗2i,

S∗3i =
(
α̂3 β̂3 γ̂3

)Fxi 0 0
0 Fyi 0
0 0 Fzi

+ ε∗3i,

(4.5)

and,

Unknowns


V ∗0j1 = V0j1 + ε∗01,

V ∗0j2 = V0j2 + ε∗02,

V ∗0j3 = V0j3 + ε∗03,

(4.6)

where, ε∗1i, ε
∗
2i, ε

∗
3i, ε

∗
01, ε∗02 and ε∗03 are random samples with replacement from

the residual pool. Note that, we obtain separate residual pools from each model

of (4.1).

4. Fitting new models (4.5) to bootstrap data sets and obtaining corresponding

values of α̂∗1, β̂∗1 ,γ̂∗1 , α̂∗2 ,β̂∗2 , γ̂∗2 , and α̂∗3 ,β̂∗3 , γ̂∗3 .
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5. Calculating F̂x, F̂y, and F̂z using,



V ∗0J1 =
(
α̂∗1 β̂∗1 γ̂∗1

)F̂xi 0 0

0 F̂yi 0

0 0 F̂zi

 ,

V ∗0J2 =
(
α̂∗2 β̂∗2 γ̂∗2

)F̂xi 0 0

0 F̂yi 0

0 0 F̂zi

 ,

V ∗0J3 =
(
α̂∗3 β̂∗3 γ̂∗3

)F̂xi 0 0

0 F̂yi 0

0 0 F̂zi

 .

(4.7)

6. Repeat steps 3 to 5 B times.

7. Quantify confidence intervals for estimated forces.

In the following table, estimated bootstrap confidence bounds in each direction

for the amount of forces between 0.1 N and 2 N are presented.
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Table 4.1: Estimated bootstrap confidence intervals for different amounts of forces
applied to right forceps tip, in x, y, and z directions. To examine results of the
bootstrap method, amounts of true forces were considered as unknown values.

Estimated Forces by Bootstrap Approach
True Force Fx C.I Fy C.I Fz C.I

0.1 (0.000 , 0.920) (0.154 , 2.000) (0.000 , 2.000)

0.2 (0.000 , 0.893) (0.000 , 2.000) (0.000 , 2.000)

0.3 (0.008 , 2.000) (0.000 , 2.000) (0.000 , 2.000)

0.4 (0.275 , 2.000) (0.000 , 2.000) (0.000 , 2.000)

0.5 (0.257 , 2.000) (0.000 , 2.000) (0.000 , 2.000)

0.6 (0.447 , 2.000) (0.777 , 2.000) (0.000 , 2.000)

0.7 (0.000 , 1.301) (0.000 , 2.000) (0.000 , 2.000)

0.8 (0.994 , 2.000) (0.851 , 2.000) (0.000 , 2.000)

0.9 (1.000 , 2.000) (0.991 , 2.000) (0.000 , 2.000)

1.0 (0.000 , 1.105) (1.370 , 2.000) (0.000 , 2.000)

1.1 (0.184 , 1.762) (0.000 , 2.000) (0.000 , 2.000)

1.2 (0.314 , 1.691) (0.000 , 2.000) (0.000 , 2.000)

1.3 (0.687 , 2.000) (0.000 , 2.000) (0.000 , 2.000)

1.4 (0.890 , 2.000) (0.442 , 2.000) (0.000 , 2.000)

1.5 (0.000 , 1.375) (0.000 , 2.000) (0.000 , 2.000)

1.6 (0.728 , 2.000) (0.000 , 2.000) (0.000 , 2.000)

1.7 (1.026 , 2.000) (0.325 , 2.000) (0.000 , 2.000)

1.8 (1.263 , 2.000) (0.974 , 2.000) (0.000 , 2.000)

1.9 (1.521 , 2.000) (1.824 , 2.000) (0.000 , 2.000)

2.0 (1.269 , 2.000) (1.324 , 2.000) (0.000 , 2.000)

As it can be seen from Table 4.1, not only the lengths of intervals are too wide,

but also the estimated force are very different from the true force values. Although

constructed bootstrap confidence intervals are very wide, still in certain situations
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the true value of the force is not within the interval. As an example, when the true

amount of applied force is 1.5 N, the estimated bootstrap confidence intervals in

x, y, and z directions are (0.000 N, 1.375 N), (0 N, 2.000 N), and (0.000 N, 2.000

N), respectively, where 1.5 N is not within the interval constructed for force in x

direction.

In the left panel of Fig 4.3, observed voltages from each strain gauge are plotted,

and the direction of the applied force is specified with different colours. 3 different

residuals (4.2), (4.3), and (4.4) obtained from different models in (4.1), are also

illustrated in the right panel of Figure 4.3. One can see that in the right panel

of Figure 4.3, voltages in S3 are not close to zero when force is applied in the y

direction. Nevertheless, we expected significant amount of voltages to be observed

when force is applied in the z direction. Therefore, the residuals are also significant

in S3 only when force is excerted in the y direction.
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Figure 4.3: In the left panel, observed voltages from each strain gauge is presented
versus the amount of force in 3 directions. In the right panel, residuals obtained
from fitting models in each strain gauge is illustrated versus the fitted values of
voltages for all 3 directions. Different directions are specified with different colours.
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In what follows, several methods are proposed in order to address the issue with

estimating the force in z direction. For each proposed method results are provided

for the comparison purposes.

4.2 Weighted Least Squares Regression

According to Draper and Smith (2014), when the variances of all observations on

different variables are not equal, or when observations are highly correlated, one

can apply the Weighted Least Squares (WLS) approach to estimate the regression

coefficients instead of the commonly used Ordinary Least Squares (OLS) method.

Considering Figure 4.3, it can be seen that the variability of the residuals obtained

from fitting regression models using an OLS approach is changing within the third

strain gauge (S3). This suggests using a WLS approach by considering suitable

weights in the regression models (4.1) in order to obtain more suitable regression

models to be used in our proposed bootstrap method. To this end, we use the inverse

of the variances of observations in each strain gauge to construct the necessary

weights in the WLS approach to run the bootstrap calibration procedure.

To be more specific, for each regression model (4.1), 3 different weights are

considered:

W1 = (V ar−1(V1x), V ar
−1(V1y), V ar

−1(V1z)),

W2 = (V ar−1(V2x), V ar
−1(V2y), V ar

−1(V2z)),

W3 = (V ar−1(V3x), V ar
−1(V3y), V ar

−1(V3z)),

(4.8)

where W1, W2, and W3 are the associated weights for S1, S2, and S3 in models

(4.1), respectively. After implementing the necessary expressions for WLS estimates
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of regression model parameters (e.g., Draper and Smith (2014)) the bootstrap

calibration will be implemented as before.

4.2.1 Results Obtained from Bootstrapping with WLS

The results that are obtained through employing WLS with weights (4.8), are

peresented in Table 4.2. As we observe, estimated confidence intervals are significantly

improved compared to the results in Table. 4.1. For most cases, the true amount

of forces in the x and y directions are within the estimated confidence intervals.

However, estimated confidence intervals for forces in z direction are not accurate

enough, and the length of the intervals are considerably wide. For example, when

the true force is 0.7 N (in x, y or z directions), estimated intervals for forces in x and

y directions are (0.697 N , 0.742 N) and (0.657 N , 0.750 N), respectively, while the

obtained interval in z direction is (0.650 N , 1.129 N). As we observed, although WLS

results in more accurate estimates of true forces compared with the OLS approach,

still results for the z direction are not as precise as they need to be in order to be

used in practice. Part of the difficulty related with estimation in the z direction is

associated with the technical problem with improper implementation of the censors

in the device. In the next section we proceed the underlying estimation process using

the Bayesian methodology hoping that this will results in more accurate estimation

of the true force values in the z direction.
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Table 4.2: Estimated confidence intervals for different amounts of forces applied to
right forceps tip, in x, y, and z directions, using WLS approach. To examine results
of the bootstrap method, amounts of true forces were considered as unknown values.

Estimated Forces by WLS Approach
True Force Fx C.I Fy C.I Fz C.I

0.1 (0.095 , 0.138) (0.094 , 0.190) (0.228 , 0.715)

0.2 (0.156 , 0.199) (0.169 , 0.264) (0.290 , 0.766)

0.3 (0.299 , 0.344) (0.272 , 0.368) (0.379 , 0.860)

0.4 (0.394 , 0.438) (0.347 , 0.442) (0.378 , 0.867)

0.5 (0.498 , 0.541) (0.471 , 0.566) (0.542 , 1.014)

0.6 (0.580 , 0.625) (0.589 , 0.682) (0.657 , 1.143)

0.7 (0.697 , 0.742) (0.657 , 0.750) (0.650 , 1.129)

0.8 (0.760 , 0.805) (0.791 , 0.886) (1.050 , 1.530)

0.9 (0.881 , 0.925) (0.887 , 0.981) (1.060 , 1.553)

1.0 (0.975 , 1.020) (0.998 , 1.090) (1.153 , 1.622)

1.1 (1.087 , 1.130) (1.121 , 1.218) (1.432 , 1.913)

1.2 (1.199 , 1.243) (1.216 , 1.310) (1.636 , 2.000)

1.3 (1.275 , 1.319) (1.298 , 1.394) (1.526 , 1.994)

1.4 (1.390 , 1.436) (1.389 , 1.483) (1.739 , 2.000)

1.5 (1.461 , 1.505) (1.510 , 1.605) (1.716 , 2.000)

1.6 (1.586 , 1.630) (1.566 , 1.659) (1.859 , 2.000)

1.7 (1.688 , 1.733) (1.691 , 1.785) (1.947 , 2.000)

1.8 (1.800 , 1.846) (1.801 , 1.897) (2.000 , 2.000)

1.9 (1.902 , 1.947) (1.918 , 2.000) (2.000 , 2.000)

2.0 (1.976 , 2.000) (2.000 , 2.000) (2.000 , 2.000)
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4.3 Multi-level Modeling

Multi-level models are generalizations of the regression models in which a set of data

is structured in different categories based on their characteristics and the model

coefficients can vary within each different category. There are three commonly used

formulations in multi-level modeling. These formulations are briefly explained as

follow:

1. Models with varying slope, Yi = α + βj[i]Xi + εi.

2. Models with varying intercept, Yi = αj[i] + βXi + εi.

3. Models with varying slope and intercept, Yi = αj[i] + βj[i]Xi + εi.

Here, j = 1, 2, .., J indicates the group factors with J levels, and i = 1, 2, ..., n

represents the data points. Figure. 4.4, illustrates these models for the case of a

simple linear regression model with three group levels. The left, middle, and right

plots represent model 1, 2, and 3, respectively.

Multi-level models appear with different names in the literature. For example, in

Ruppert et al. (2003), these models are referred to as mixed models. Mixed models

or mixed-effects models are comprised of fixed, as well as random coefficients, where

multi-level models include these two types of coefficients as well. In this regard,

random effects are defined as varying coefficients (αj’s and βj’s ), while the fixed

effects are fixed for different group levels in these models.

As in Gelman and Hill (2006), multi-level modeling could be defined as an

adjustment between completely excluding the effects of different group levels (com-
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Figure 4.4: Three possible models in multi-level modeling are illustrated. First plot
from the left, presents a model with varying slop, middle plot is showing the model
with varying intercept, while the last plot illustrates the case where both slope and
intercepts are varying for different groups.

plete pooling) and considering separate models for different groups (no pooling).

Therefore, multi-level models are referred to as partial-pooling estimation models,

since they consider the average of the available observations at each group level to

estimate the coefficients. While no-pooling estimation results in overfitting the data,

complete-pooling ignores the variation between different groups. Such undesirable

effects can be avoided (or minimized) using multi-level modeling.

Multi-level modeling approach is applicable to our calibration problem as we
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are dealing with categorical data set. As mentioned earlier, explanatory variable

(force) in this problem includes 3 different directions (x, y, z), that is considered as

a group factor. Having calibration data set, varying slope without intercept models

are fitted to obtain relative coefficients:

Skij = Fiβk + Ziujk + εkij, (4.9)

where, k = 1, 2, 3 is the strain gauge number, i = 1, 2, ..., 3n is calibration data point

number, F = (F1x, · · · , Fnx, F1y, · · · , Fny, F1z, · · · , Fnz)>,

j =


1, x direction,

2, y direction,

3, z direction,

and, Z =

F1x · · · Fnx 0 · · · 0 0 · · · 0
0 · · · 0 F1y · · · Fny 0 · · · 0
0 · · · 0 0 · · · 0 F1z · · · Fnz

>

Furthermore, E

(
uk
εk

)
=

(
0
0

)
, and Cor

(
uk
εk

)
=

(
Gk 0
0 Rk

)
, where Gk = σ2

uk
,

Rk = σ2
εk

. Therefore,

V ar(Sk) = ZGkZ
> +Rk = Σk. (4.10)

In model (4.9) βk’s are called fixed effects and uk’s that are varying for different

j’s (direction) are called random effects.

4.3.1 Estimation of Fixed and Random Effects Coefficients

Suppose Σk (4.10) is known, fixed effects coefficients are estimated through either

the ML, or Generalized Least Squares (GLS) approach. Under the multivariate

normality assumption, the log-likelihood function under the model (4.2) is,

`(βk) = −1

2
{n log(2π) + log |Σk|+ (Sk − Fβk)>Σ−1

k (Sk − Fβk)}. (4.11)
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Consequently, β̂k = (F>Σ−1
k F )−1F>Σ−1

k Sk, that is the Best Linear Unbiased Predic-

tion (BLUP).

To estimate random effects, Best Linear Unbiased Prediction (BLUP) approach

under Squared Error Loss (SEL) is employed. Let δk(Sk) be an estimation for uk.

Then,

δBLUP = argmin
δk

E
[
(uk − δk(Sk))2 | Sk

]
. (4.12)

In order to obtain δBLUP , let

f(δk) = E[u2
k | Sk]− 2δk(Sk)E[uk | Sk] + δ2

k(Sk). (4.13)

One can obtain δBLUP , by taking the derivative of f(δk), as follow:

d

dδk
f(δk) = −2E[uk | Sk] + 2δk(Sk) = 0

⇒ δk = E[uk | Sk].

(4.14)

Therefore, the BLUP estimation of uk under SEL for a given βk is obtained, assuming

that Sk and uk are normally distributed, as follow:

ûk = E(uk|Sk)

= E(uk) + E[(uk − E(uk))(Sk − E(Sk))
>]V ar−1(Sk)(Sk − E(Sk))

= E(ukS
>
k )Σ−1

k (Sk − Fβk)

= Z>k E(u2
k)Σ

−1
k (Sk − Fβk)

= Z>k GkΣ
−1
k (Sk − Fβk),

(4.15)
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However, in practice, βk is replaced by its estimation, that is β̂k, and Gk and Rk

have to be estimated.

In what follows we extend our results under SEL to LINEX loss function. The

LINEX loss is an asymmetric function, that enables us to use different penalties for

over and under estimation of the parameter of interest. In our calibration problem,

underestimating the amount of forces is more serious than overestimating as excessive

force on brain tissues can cause serious damages and hence it is recommended to

protect against under estimation. To address this problem, LINEX loss function has

been also applied in our prediction process, to obtain more reliable results. LINEX

loss function is defined as

Lα(ûk, uk) = eα(ûk−uk) − α(ûk − uk)− 1.

In order to use LINEX loss function, we first need an extension of the notation of

unbiasedness to take into account the role of the loss function in the estimation

(prediction) process. To this end, we use the following theoretic definition of

unbiasedness.

Definition: A predictor ûk of uk is said to be loss-unbiased if it satisfies

E[L(ûk, uk)] ≤ E[L(ν, uk)], for any ν 6= ûk. (4.16)

In particular, when L(ûk, uk) = (ûk−uk)2, then the notation of unbiasedness reduces

to E(ûk − uk) = 0.

Under the Linex loss Lα(ûk, uk), it is easy to see that

E[Lα(ûk, uk)] ≤ E[Lα(ν, uk)], ∀ν 6= ûk.

Now, the problem reduces to finding the Best Linex Unbiased Predictor (BLinexUP).

To obtain such a predictor, we need to minimize E[Lα(ûk, uk)], with respect to ûk
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by minimizing the left-side of the following equation with respect to ûk:

E[Lα(ûk, uk)] = E
[
E[Lα(ûk, uk)] | Sk

]
,

that is equivalent to minimizing E[Lα(ûk, uk) | Sk], with respect to ûk. Under the

LINEX loss function, let

Q(ûk) = E[eα(ûk−uk) − α(ûk − uk)− 1 | Sk], (4.17)

taking the derivative of Q(ûk) with respect to ûk, one can obtain BLinexUP as

follow:

d

dûk
Q(ûk) = E[αeα(ûk−uk) − α] = 0,

which results in

ûα,k =
1

α
logE[e−αuk | Sk]. (4.18)

Assuming uk | Sk ∼ N(µ∗, σ
2
∗), where µ∗ = E(uk | Sk) = ûk, then,

ûα,k = µ∗ −
σ2
∗α

2
= ûk −

σ2
∗α

2
. (4.19)

4.3.2 Estimation of Covariance Matrices, Gk and Rk

In Ruppert et al. (2003), the ML approach and Restricted (or Residual) ML (REML)

strategies are proposed to estimate Gk and Rk. We first establish ML approach by

writing the log-likelihood function as follow:

`(βk,Σk) = −1

2
{n log(2π) + log |Σk|+ (Sk − Fβk)>Σ−1

k (Sk − Fβk)}. (4.20)
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We then substitute β̂k in (4.20) to get

`p(Σk) = −1

2
{log |Σk|+ S>k Σ−1

k (I − F (F>Σ−1
k F )−1F>Σ−1

k )Sk}−
n

2
log(2π), (4.21)

where, `p stands for profile log-likelihood, and Σk is defined in (4.10). At this point,

we can obtain ML estimates of Gk and Rk in Σk, by maximizing (4.21). Since, Σk is

the function of (Rk, Gk), estimation of them involves maximizing `p(GkZZ
> +Rk)

The likelihood function to obtain REML estimates for Gk and Rk is

`REML(Σk) = `p(Σk)−
1

2
log |F>Σ−1

k F |. (4.22)

According to Ruppert et al. (2003), the REML is a more accurate method to obtain

the estimates than ML method, specially when we are dealing with small sample

sizes. Nevertheless, when the sample size is large enough, ML and REML estimates

are very close.

The reason that REML is preferable over ML is the fact that the influence of

fixed effects’s degrees of freedom has not been considered in the ML approach (Searle

et al., 2009). As it is mentioned in Ruppert et al. (2003), REML estimation is more

complicated since it requires the estimates by maximizing the linear combination

of components of likelihood function that are independent of βk. More details on

REML approach is given in Searle et al. (2009).

4.3.3 Results Obtained from Multi-level Modeling

In this part, multi-level modeling approach is employed to obtain point and interval

estimates of applied forces in x, y, and z directions. Results are obtained using R
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built-in function ’lmer’, within ’lme4’ package (De Boeck et al., 2011).

In theory, we should not consider intercept in the model, since voltages are not

observed when applied force is 0 N. However, we violated the model and considered

intercepts as bias in the model to get better predictions. Also, we have provided

the results under both SEL and LINEX loss functions. For obtaining the results

under LINEX loss, we use α ∈ (0.1, 0.5, 1) to provide different measures of penalty

for overprediction compared with underprediction. Tables 4.3 and 4.4 present the

results obtained under SEL and LINEX loss, respectively.
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Table 4.3: Point estimates obtained by multi-level modeling for different amounts of
forces applied to right forceps tip, in x, y, and z directions under SEL loss function.
As before, to examine results, amounts of true forces were considered as unknown
values.

Models Without Intercept Models With Intercept

True Force F̂x F̂y F̂z F̂x F̂y F̂z

0.1 0.086 0.096 0.216 0.094 0.090 0.237

0.2 0.169 0.188 0.303 0.176 0.183 0.322

0.3 0.302 0.297 0.515 0.308 0.292 0.530

0.4 0.405 0.448 0.525 0.411 0.444 0.540

0.5 0.495 0.477 0.612 0.501 0.473 0.625

0.6 0.573 0.587 0.698 0.577 0.583 0.710

0.7 0.652 0.763 0.833 0.656 0.760 0.843

0.8 0.798 0.733 0.853 0.801 0.731 0.862

0.9 0.899 0.863 0.882 0.902 0.861 0.890

1.0 0.980 0.968 1.094 0.982 0.967 1.099

1.1 1.079 1.077 1.239 1.081 1.076 1.241

1.2 1.221 1.224 1.267 1.222 1.224 1.269

1.3 1.308 1.308 1.354 1.308 1.308 1.355

1.4 1.418 1.396 1.412 1.418 1.396 1.411

1.5 1.514 1.560 1.422 1.513 1.561 1.421

1.6 1.582 1.648 1.557 1.581 1.649 1.553

1.7 1.730 1.698 1.615 1.727 1.700 1.610

1.8 1.827 1.849 1.702 1.825 1.852 1.696

1.9 1.910 1.959 1.875 1.907 1.961 1.866

2.0 2.022 2.055 1.943 2.019 2.058 1.932
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Table 4.4: Estimated forces in x, y, and z directions under LINEX loss function, considering
three different values for α. Top part of the table presents the obtained force estimates for
models without considering intercept, and the bottom part presents the estimation for
models with intercept.

Estimated Forces in Models without Intercept
α1 = 0.1 α2 = 0.5 α3 = 1

True Force F̂x F̂y F̂z F̂x F̂y F̂z F̂x F̂y F̂z
0.1 0.086 0.096 0.221 0.087 0.096 0.244 0.087 0.096 0.281
0.2 0.170 0.188 0.310 0.170 0.188 0.342 0.171 0.188 0.394
0.3 0.302 0.297 0.527 0.303 0.297 0.582 0.305 0.298 0.670
0.4 0.406 0.448 0.537 0.407 0.449 0.593 0.409 0.449 0.683
0.5 0.496 0.478 0.626 0.498 0.478 0.692 0.500 0.479 0.796
0.6 0.573 0.587 0.715 0.575 0.587 0.790 0.578 0.588 0.909
0.7 0.653 0.763 0.853 0.655 0.764 0.942 0.658 0.765 1.084
0.8 0.798 0.734 0.873 0.801 0.734 0.964 0.804 0.735 1.109
0.9 0.900 0.864 0.903 0.903 0.865 0.997 0.906 0.866 1.147
1.0 0.981 0.969 1.120 0.984 0.970 1.237 0.988 0.971 1.423
1.1 1.080 1.078 1.268 1.084 1.079 1.401 1.088 1.080 1.612
1.2 1.222 1.225 1.298 1.226 1.226 1.433 1.231 1.228 1.649
1.3 1.309 1.309 1.386 1.313 1.310 1.532 1.319 1.312 1.762
1.4 1.419 1.397 1.446 1.424 1.398 1.597 1.430 1.400 1.838
1.5 1.515 1.560 1.456 1.520 1.562 1.608 1.527 1.564 1.850
1.6 1.584 1.649 1.594 1.589 1.650 1.761 1.596 1.652 2.026
1.7 1.731 1.699 1.653 1.737 1.701 1.826 1.744 1.703 2.101
1.8 1.829 1.850 1.742 1.835 1.852 1.924 1.843 1.854 2.214
1.9 1.912 1.959 1.920 1.918 1.961 2.121 1.926 1.964 2.440
2.0 2.024 2.056 1.989 2.031 2.058 2.197 2.039 2.061 2.528

Estimated Forces in Models with Intercept
α1 = 0.1 α2 = 0.5 α3 = 1

True Force F̂x F̂y F̂z F̂x F̂y F̂z F̂x F̂y F̂z
0.1 0.094 0.090 0.242 0.094 0.090 0.267 0.095 0.090 0.306
0.2 0.177 0.183 0.329 0.177 0.183 0.363 0.178 0.183 0.417
0.3 0.309 0.292 0.543 0.310 0.293 0.598 0.311 0.293 0.686
0.4 0.411 0.444 0.552 0.413 0.445 0.609 0.414 0.445 0.699
0.5 0.501 0.474 0.640 0.503 0.474 0.705 0.505 0.475 0.809
0.6 0.578 0.583 0.727 0.580 0.584 0.801 0.582 0.585 0.919
0.7 0.657 0.760 0.863 0.659 0.761 0.951 0.662 0.762 1.091
0.8 0.802 0.731 0.882 0.804 0.732 0.972 0.808 0.732 1.115
0.9 0.902 0.861 0.911 0.905 0.862 1.004 0.909 0.863 1.152
1.0 0.983 0.967 1.124 0.986 0.968 1.240 0.990 0.969 1.422
1.1 1.082 1.076 1.270 1.086 1.078 1.400 1.090 1.079 1.606
1.2 1.223 1.224 1.299 1.227 1.225 1.432 1.232 1.227 1.643
1.3 1.309 1.308 1.386 1.314 1.310 1.528 1.319 1.311 1.753
1.40 1.419 1.397 1.444 1.424 1.398 1.592 1.430 1.400 1.827
1.5 1.514 1.561 1.454 1.520 1.563 1.603 1.526 1.565 1.839
1.6 1.582 1.650 1.590 1.588 1.652 1.753 1.594 1.654 2.011
1.7 1.729 1.700 1.648 1.735 1.702 1.817 1.742 1.704 2.084
1.8 1.826 1.852 1.735 1.832 1.854 1.913 1.840 1.857 2.194
1.9 1.908 1.962 1.910 1.915 1.964 2.105 1.923 1.966 2.415
2.0 2.020 2.059 1.977 2.027 2.061 2.180 2.035 2.064 2.501
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As can be seen in Tables 4.3 and 4.4, force estimates in x and y directions are

very close to the true amount of applied forces for models without intercept as well

as models with intercept, but estimation in z directions is not accurate enough

irrespective of the values of α. The problem with force estimation along the z axis

is caused by adding the third pair of strain gauges as was discussed in Section 4.1.

For instance, when the true force is 0.3 N, estimation of models without intercept

in x and y directions under SEL and also LINEX loss are 0.302 N and 0.297 N,

respectively. However, estimated force in z direction is 0.515 N and 0.527 N under

SEL and LINEX loss for α = 0.1, respectively, that is still far from the true amount

of force.

To address the issues with force estimates along the z direction, we decided to

apply weights in the multi-level modeling approach (WLS approach was explained in

Section 4.2). Since the problem was only in estimating the forces along z direction,

we applied weight only for k = 3 in model (4.9) (third strain gauge).

Considering the calibration data set, S3 includes three different types of voltages,

which are observed voltages when force is applied in x, y, and z directions. We

therefore considered three different weights associated with each part of the S3. Table

4.5 presents six different weighting schemes applied to the S3 models. We applied all

six weights presented in Table. 4.5, in our models to obtain force estimation along z

axis. Table. 4.6, presents the results for models with and without intercept.
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Table 4.5: Six different proposed weights to use in multi-level modeling approach.

Weights
S3 Components W1 W2 W3 W4 W5 W6

Type I a 1 1 1 v1y
b v1y 1

Type II c 1 1 1 v2y
d v2y 1

Type III e 1
σ2(v3z)

f 1
σ2(v2y)

1
(v2y)

v3y
g v1x

h 1
µ(v3z)

aObserved voltages when force is applied in x direction
bObserved voltages in S1 when Fy is applied
cObserved voltages when force is applied in y direction
dObserved voltages in S2 when Fy is applied
eObserved voltages when force is applied in z direction
fObserved voltages in S3 when Fz is applied
gObserved voltages in S3 when Fy is applied
hObserved voltages in S1 when Fx is applied

As can be seen in Tables 4.6 and 4.7, models with intercept provide better force

estimation compared to models without intercept. For instance, when the true Fz is

0.1 N, models without intercepts under SEL do not provide accurate estimation (all

estimated the force as 0.22 N), while models with intercept provide accurate force

prediction as 0.11 N, when W3 is applied in the model. This is also true for results

under LINEX loss, considering all three values of α. As it is presented in Table 4.7,

when α = 1, forces are overestimated, and the best results are obtained for α = 0.5

considering W1 in the model. Since σ2
∗ is very small, the differences between force

predictions obtained under SEL and LINEX loss functions are not significant.
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Table 4.6: Estimated forces in z direction, considering six different weights under
SEL. Top part of the table presents the obtained force estimates for models without
considering intercept, and the bottom part presents the estimation for models with
intercept.

Estimated Fz in Models without Intercept
True Fz W1 W2 W3 W4 W5 W6

0.1 0.22 0.22 0.21 0.22 0.22 0.22
0.2 0.30 0.30 0.29 0.31 0.31 0.30
0.3 0.52 0.52 0.50 0.52 0.52 0.52
0.4 0.52 0.52 0.51 0.53 0.53 0.52
0.5 0.61 0.61 0.59 0.62 0.62 0.61
0.6 0.70 0.70 0.67 0.71 0.71 0.70
0.7 0.83 0.83 0.80 0.85 0.85 0.83
0.8 0.85 0.85 0.82 0.87 0.87 0.85
0.9 0.88 0.88 0.85 0.89 0.89 0.88
1.0 1.09 1.09 1.05 1.11 1.11 1.09
1.1 1.24 1.24 1.19 1.26 1.26 1.24
1.2 1.27 1.27 1.22 1.29 1.29 1.27
1.3 1.35 1.35 1.30 1.37 1.37 1.35
1.4 1.41 1.41 1.36 1.43 1.43 1.41
1.5 1.42 1.42 1.37 1.44 1.44 1.42
1.6 1.56 1.56 1.50 1.58 1.58 1.56
1.7 1.61 1.61 1.55 1.64 1.64 1.61
1.8 1.70 1.70 1.64 1.73 1.73 1.70
1.9 1.88 1.88 1.81 1.90 1.90 1.88
2.0 1.94 1.94 1.87 1.97 1.97 1.94

Estimated Fz in Models with Intercept
True Fz W1 W2 W3 W4 W5 W6

0.1 0.05 0.05 0.11 0.07 0.09 0.07
0.2 0.15 0.15 0.21 0.16 0.19 0.17
0.3 0.39 0.39 0.43 0.40 0.42 0.41
0.4 0.41 0.41 0.44 0.42 0.44 0.42
0.5 0.50 0.51 0.54 0.51 0.53 0.52
0.6 0.60 0.60 0.63 0.61 0.63 0.62
0.7 0.76 0.76 0.78 0.77 0.78 0.77
0.8 0.78 0.78 0.80 0.79 0.80 0.79
0.9 0.81 0.81 0.83 0.82 0.83 0.82
1.0 1.06 1.06 1.06 1.06 1.07 1.06
1.1 1.22 1.22 1.21 1.22 1.23 1.22
1.2 1.25 1.25 1.24 1.26 1.26 1.26
1.3 1.35 1.35 1.34 1.36 1.36 1.35
1.4 1.42 1.42 1.40 1.42 1.42 1.42
1.5 1.43 1.43 1.41 1.43 1.43 1.43
1.6 1.58 1.58 1.55 1.58 1.58 1.58
1.7 1.65 1.65 1.62 1.65 1.65 1.65
1.8 1.75 1.75 1.71 1.75 1.75 1.74
1.9 1.95 1.95 1.90 1.95 1.94 1.94
2.0 2.00 2.00 1.97 2.00 2.00 2.00
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Table 4.7: Estimated forces in z direction, considering six different weights under LINEX
loss. Top part of the table presents the obtained force estimates for models without
considering intercept, and the bottom part presents the estimation for models with
intercept.

Estimated Fz in Models without Intercept
α1 = 0.1 α2 = 0.5 α3 = 1

True Fz W1 W2 W3 W4 W5 W6 W1 W2 W3 W4 W5 W6 W1 W2 W3 W4 W5 W6

0.1 0.22 0.24 0.28 0.22 0.24 0.28 0.21 0.23 0.27 0.22 0.25 0.29 0.22 0.25 0.29 0.22 0.24 0.28

0.2 0.31 0.34 0.39 0.31 0.34 0.39 0.30 0.33 0.37 0.31 0.35 0.40 0.31 0.35 0.40 0.31 0.34 0.39

0.3 0.53 0.58 0.67 0.53 0.58 0.67 0.51 0.56 0.64 0.54 0.59 0.68 0.54 0.59 0.68 0.53 0.58 0.67

0.4 0.54 0.59 0.68 0.54 0.59 0.68 0.52 0.57 0.65 0.55 0.60 0.70 0.55 0.60 0.70 0.54 0.59 0.68

0.5 0.63 0.69 0.80 0.63 0.69 0.80 0.60 0.66 0.76 0.64 0.70 0.81 0.64 0.70 0.81 0.63 0.69 0.80

0.6 0.71 0.79 0.91 0.71 0.79 0.91 0.69 0.76 0.86 0.73 0.80 0.93 0.73 0.80 0.93 0.71 0.79 0.91

0.7 0.85 0.94 1.08 0.85 0.94 1.08 0.82 0.90 1.03 0.87 0.96 1.11 0.87 0.96 1.11 0.85 0.94 1.08

0.8 0.87 0.96 1.11 0.87 0.96 1.11 0.84 0.92 1.06 0.89 0.98 1.13 0.89 0.98 1.13 0.87 0.96 1.11

0.9 0.90 1.00 1.15 0.90 1.00 1.15 0.87 0.96 1.09 0.92 1.01 1.17 0.92 1.01 1.17 0.90 1.00 1.15

1.0 1.12 1.24 1.42 1.12 1.24 1.42 1.08 1.18 1.35 1.14 1.26 1.45 1.14 1.26 1.45 1.12 1.24 1.42

1.1 1.27 1.40 1.61 1.27 1.40 1.61 1.22 1.34 1.53 1.29 1.42 1.64 1.29 1.42 1.64 1.27 1.40 1.61

1.2 1.30 1.43 1.65 1.30 1.43 1.65 1.25 1.37 1.57 1.32 1.46 1.68 1.32 1.46 1.68 1.30 1.43 1.65

1.3 1.39 1.53 1.76 1.39 1.53 1.76 1.33 1.47 1.68 1.41 1.56 1.80 1.41 1.56 1.80 1.39 1.53 1.76

1.4 1.45 1.60 1.84 1.45 1.60 1.84 1.39 1.53 1.75 1.47 1.62 1.87 1.47 1.62 1.87 1.45 1.60 1.84

1.5 1.46 1.61 1.85 1.46 1.61 1.85 1.40 1.54 1.76 1.48 1.63 1.89 1.48 1.64 1.89 1.46 1.61 1.85

1.6 1.59 1.76 2.03 1.59 1.76 2.03 1.53 1.69 1.93 1.62 1.79 2.07 1.62 1.79 2.07 1.59 1.76 2.03

1.7 1.65 1.83 2.10 1.65 1.83 2.10 1.59 1.75 2.00 1.68 1.86 2.14 1.68 1.86 2.14 1.65 1.83 2.10

1.8 1.74 1.92 2.21 1.74 1.92 2.21 1.68 1.84 2.11 1.77 1.96 2.26 1.77 1.96 2.26 1.74 1.92 2.21

1.9 1.92 2.12 2.44 1.92 2.12 2.44 1.85 2.03 2.32 1.95 2.16 2.49 1.95 2.16 2.49 1.92 2.12 2.44

2.0 1.99 2.20 2.53 1.99 2.20 2.53 1.91 2.10 2.41 2.02 2.23 2.58 2.02 2.24 2.58 1.99 2.20 2.53

Estimated Fz in Models with Intercept
α1 = 0.1 α2 = 0.5 α3 = 1

True Fz W1 W2 W3 W4 W5 W6 W1 W2 W3 W4 W5 W6 W1 W2 W3 W4 W5 W6

0.1 0.05 0.06 0.07 0.06 0.06 0.07 0.12 0.13 0.15 0.07 0.08 0.09 0.09 0.11 0.12 0.07 0.08 0.10

0.2 0.16 0.18 0.21 0.16 0.18 0.21 0.21 0.24 0.27 0.17 0.19 0.22 0.19 0.22 0.25 0.18 0.20 0.23

0.3 0.40 0.45 0.54 0.41 0.46 0.54 0.45 0.50 0.58 0.42 0.47 0.55 0.44 0.49 0.57 0.42 0.47 0.55

0.4 0.42 0.47 0.55 0.42 0.47 0.55 0.46 0.51 0.59 0.43 0.48 0.56 0.45 0.50 0.59 0.43 0.48 0.57

0.5 0.52 0.58 0.69 0.52 0.58 0.69 0.55 0.61 0.72 0.53 0.59 0.70 0.55 0.61 0.72 0.53 0.60 0.70

0.6 0.62 0.70 0.82 0.62 0.70 0.82 0.65 0.72 0.84 0.63 0.71 0.83 0.65 0.72 0.85 0.63 0.71 0.83

0.7 0.78 0.87 1.03 0.78 0.87 1.03 0.80 0.89 1.03 0.79 0.88 1.04 0.80 0.89 1.05 0.79 0.88 1.04

0.8 0.80 0.90 1.06 0.80 0.90 1.06 0.82 0.91 1.06 0.81 0.91 1.07 0.82 0.92 1.08 0.81 0.91 1.07

0.9 0.83 0.94 1.10 0.84 0.94 1.11 0.85 0.95 1.10 0.84 0.94 1.11 0.95 0.96 1.12 0.84 0.94 1.11

1.0 1.08 1.22 1.43 1.08 1.22 1.43 1.08 1.21 1.41 1.09 1.22 1.44 1.10 1.23 1.44 1.09 1.22 1.43

1.1 1.25 1.41 1.66 1.25 1.41 1.66 1.24 1.38 1.61 1.26 1.41 1.66 1.26 1.41 1.66 1.26 1.41 1.65

1.2 1.29 1.44 1.70 1.29 1.44 1.70 1.27 1.42 1.65 1.29 1.45 1.70 1.30 1.45 1.70 1.29 1.44 1.70

1.3 1.39 1.56 1.84 1.39 1.56 1.84 1.37 1.53 1.78 1.39 1.56 1.84 1.39 1.56 1.83 1.39 1.56 1.83

1.4 1.46 1.63 1.93 1.46 1.63 1.93 1.43 1.60 1.86 1.46 1.64 1.93 1.46 1.63 1.92 1.46 1.63 1.92

1.5 1.47 1.65 1.94 1.47 1.65 1.94 1.45 1.61 1.88 1.47 1.65 1.94 1.47 1.65 1.93 1.47 1.64 1.93

1.6 1.63 1.83 2.15 1.63 1.82 2.15 1.59 1.78 2.07 1.63 1.82 2.15 1.63 1.82 2.14 1.62 1.82 2.14

1.7 1.69 1.90 2.24 1.69 1.90 2.24 1.66 1.85 2.15 1.69 1.90 2.24 1.69 1.89 2.22 1.69 1.89 2.22

1.8 1.80 2.02 2.38 1.80 2.01 2.38 1.75 1.95 2.28 1.80 2.01 2.37 1.79 2.00 2.35 1.79 2.00 2.36

1.9 2.00 2.24 2.65 2.00 2.24 2.65 1.95 2.17 2.52 2.00 2.24 2.64 1.99 2.23 2.61 1.99 2.23 2.62

2.0 2.08 2.33 2.75 2.08 2.33 2.75 2.02 2.25 2.62 2.08 2.33 2.74 2.07 2.31 2.71 2.07 2.32 2.72
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In order to provide interval estimation, we employed our proposed bootstrap

technique in conjunction with multi-level models. Tables 4.8 and 4.9 present the

estimated confidence bounds for applied forces in x, y, and z directions, as well as

Root Mean Square Error (RMSE) and Bias values. bootstrap results are obtained

from models with considering weights (WLS). The bootstrap procedure is the same

as what we explained in Section 4.1.2, except that instead of linear regression models,

we fitted multi-level models as presented in (4.9). Based on the results presented in

Tables 4.6 and 4.7, we selected W3 to be used in the model for estimating forces in z

direction under SEL and W1 under LINEX loss in the bootstrapping procedure. We

also considered α = 0.1, since the results under this value was considerably better

that other values.

Once again, we considered both models with and without intercept for obtaining

the results. As can be seen in Tables 4.8 and 4.9, in most cases true value of the

applied forces are within the estimated intervals and the Bias is very low. However,

there are some differences between the results obtained for applied forces in z

direction from models with intercept and models without intercept. While there are

wider confidence bounds for models with intercepts, the bias and sometimes RMSE

is lower for these models and most of the times true value of the force is within the

estimated interval. For instance, when the applied force in z direction, Fz, is 0.1 N,

calculated confidence interval by a model without intercept under SEL is (0.11 N ,

0.74 N), compared to (0.167 N , 0.987 N) that is obtained based on a model with

intercept. Furthermore, calculated confidence interval under LINEX loss is (0.134 N

, 0.789 N) for models without intercept, and (0.000 N , 0.778 N) for models with

intercept.
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Table 4.8: Point and interval estimation of applied forces in x, y, and z directions using
proposed bootstrap method with using multi-level models under SEL function.

Estimation of Models Without Intercept
Force in x Direction Force in y Direction Force in z Direction

True Force C.I F̂ Bias RMSE C.I F̂ Bias RMSE C.I F̂ Bias RMSE

0.1 (0.07 , 0.12) 0.08 -0.02 0.02 ( 0.08 , 0.18) 0.10 0.00 0.05 ( 0.11 , 0.74) 0.18 0.08 0.38
0.2 (0.16 , 0.20) 0.17 -0.03 0.04 ( 0.16 , 0.27) 0.19 -0.01 0.04 ( 0.20 , 0.80) 0.29 0.09 0.33
0.3 (0.29 , 0.33) 0.30 0.00 0.02 ( 0.28 , 0.38) 0.30 0.00 0.04 ( 0.41 , 0.99) 0.50 0.20 0.38
0.4 (0.39 , 0.43) 0.40 0.00 0.02 ( 0.43 , 0.53) 0.45 0.05 0.07 ( 0.42 , 1.03) 0.50 0.10 0.42
0.5 (0.48 , 0.53) 0.49 -0.01 0.02 ( 0.46 , 0.55) 0.48 -0.02 0.05 ( 0.51 , 1.11) 0.58 0.08 0.35
0.6 (0.56 , 0.60) 0.57 -0.03 0.03 ( 0.56 , 0.66) 0.59 -0.01 0.05 ( 0.59 , 1.17) 0.67 0.07 0.53
0.7 (0.64 , 0.68) 0.65 -0.05 0.05 ( 0.74 , 0.84) 0.77 0.07 0.08 ( 0.73 , 1.34) 0.82 0.12 0.52
0.8 (0.78 , 0.83) 0.80 0.00 0.02 ( 0.71 , 0.81) 0.73 -0.07 0.08 ( 0.73 , 1.36) 0.82 0.02 0.37
0.9 (0.89 , 0.93) 0.90 0.00 0.02 ( 0.84 , 0.94) 0.86 -0.04 0.06 ( 0.77 , 1.35) 0.83 -0.07 0.53
1.0 (0.97 , 1.01) 0.98 -0.02 0.03 ( 0.94 , 1.05) 0.97 -0.03 0.05 ( 0.98 , 1.59) 1.07 0.07 0.35
1.1 (1.07 , 1.11) 1.08 -0.02 0.03 ( 1.05 , 1.15) 1.08 -0.02 0.05 ( 1.12 , 1.71) 1.19 0.09 0.54
1.2 (1.21 , 1.25) 1.22 0.02 0.03 ( 1.20 , 1.30) 1.23 0.03 0.05 ( 1.13 , 1.75) 1.20 0.00 0.37
1.3 (1.30 , 1.34) 1.31 0.01 0.02 ( 1.29 , 1.39) 1.31 0.01 0.05 ( 1.22 , 1.87) 1.32 0.02 0.39
1.4 (1.41 , 1.45) 1.42 0.02 0.03 ( 1.37 , 1.47) 1.40 0.00 0.04 ( 1.28 , 1.90) 1.37 -0.03 0.54
1.5 (1.50 , 1.55) 1.51 0.01 0.02 ( 1.54 , 1.63) 1.56 0.06 0.08 ( 1.30 , 1.92) 1.40 -0.10 0.33
1.6 (1.57 , 1.61) 1.58 -0.02 0.02 ( 1.63 , 1.72) 1.65 0.05 0.07 ( 1.42 , 2.00) 1.49 -0.11 0.72
1.7 (1.72 , 1.76) 1.73 0.03 0.04 ( 1.68 , 1.78) 1.70 0.00 0.04 ( 1.48 , 2.00) 1.55 -0.15 0.72
1.8 (1.82 , 1.86) 1.83 0.03 0.03 ( 1.83 , 1.92) 1.85 0.05 0.06 ( 1.57 , 2.00) 1.65 -0.15 0.37
1.9 (1.90 , 1.94) 1.91 0.01 0.02 ( 1.93 , 2.00) 1.96 0.06 0.07 ( 1.75 , 2.00) 1.81 -0.09 0.37
2.0 (2.00 , 2.00) 2.00 0.02 0.03 ( 2.00 , 2.00) 2.00 0.05 0.07 ( 1.81 , 2.00) 1.86 -0.14 0.43

Estimation of Models With Intercept
Force in x Direction Force in y Direction Force in z Direction

True Force C.I F̂ Bias RMSE C.I F̂ Bias RMSE C.I F̂ Bias RMSE

0.1 (0.08 , 0.13) 0.09 -0.01 0.02 (0.07 , 0.17) 0.09 -0.01 0.05 (0.00 , 0.74) 0.10 0.00 0.41
0.2 (0.16 , 0.21) 0.18 -0.02 0.03 (0.16 , 0.26) 0.18 -0.02 0.05 (0.10 , 0.81) 0.21 0.01 0.36
0.3 (0.30 , 0.34) 0.31 0.01 0.02 (0.27 , 0.37) 0.29 -0.01 0.05 (0.34 , 1.04) 0.44 0.14 0.39
0.4 (0.40 , 0.44) 0.41 0.01 0.02 (0.42 , 0.52) 0.44 0.04 0.07 (0.33 , 1.05) 0.43 0.03 0.41
0.5 (0.49 , 0.53) 0.50 0.00 0.02 (0.45 , 0.55) 0.47 -0.03 0.05 (0.44 , 1.15) 0.53 0.03 0.38
0.6 (0.57 , 0.61) 0.58 -0.02 0.03 (0.56 , 0.66) 0.58 -0.02 0.05 (0.53 , 1.24) 0.62 0.02 0.40
0.7 (0.64 , 0.69) 0.66 -0.04 0.05 (0.74 , 0.84) 0.76 0.06 0.08 (0.69 , 1.39) 0.78 0.08 0.37
0.8 (0.79 , 0.83) 0.80 0.00 0.02 (0.71 , 0.81) 0.73 -0.07 0.08 (0.70 , 1.41) 0.79 -0.01 0.40
0.9 (0.89 , 0.93) 0.90 0.00 0.02 (0.84 , 0.94) 0.86 -0.04 0.06 (0.73 , 1.42) 0.82 -0.08 0.42
1.0 (0.97 , 1.01) 0.98 -0.02 0.02 (0.94 , 1.04) 0.97 -0.03 0.06 (0.97 , 1.65) 1.07 0.07 0.39
1.1 (1.07 , 1.11) 1.08 -0.02 0.03 (1.05 , 1.15) 1.08 -0.02 0.05 (1.11 , 1.80) 1.22 0.12 0.39
1.2 (1.21 , 1.25) 1.22 0.02 0.03 (1.20 , 1.31) 1.23 0.03 0.05 (1.14 , 1.83) 1.22 0.02 0.39
1.3 (1.30 , 1.34) 1.31 0.01 0.02 (1.28 , 1.39) 1.31 0.01 0.05 (1.24 , 2.00) 1.35 0.05 0.39
1.4 (1.41 , 1.45) 1.42 0.02 0.03 (1.37 , 1.47) 1.40 0.00 0.04 (1.30 , 2.00) 1.39 -0.01 0.42
1.5 (1.50 , 1.54) 1.51 0.01 0.02 (1.54 , 1.64) 1.56 0.06 0.08 (1.33 , 2.00) 1.44 -0.06 0.36
1.6 (1.57 , 1.61) 1.58 -0.02 0.03 (1.63 , 1.72) 1.65 0.05 0.07 (1.46 , 2.00) 1.55 -0.05 0.39
1.7 (1.72 , 1.76) 1.73 0.03 0.03 (1.68 , 1.78) 1.70 0.00 0.04 (1.53 , 2.00) 1.63 -0.07 0.40
1.8 (1.81 , 1.85) 1.82 0.02 0.03 (1.83 , 1.92) 1.85 0.05 0.07 (1.62 , 2.00) 1.72 -0.08 0.39
1.9 (1.89 , 1.94) 1.91 0.01 0.02 (1.94 , 2.00) 1.96 0.06 0.07 (1.80 , 2.00) 1.89 -0.01 0.41
2.0 (2.00 , 2.00) 2.00 0.02 0.03 (2.00 , 2.00) 2.00 0.06 0.07 (1.87 , 2.00) 1.98 -0.02 0.40
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Table 4.9: Point and interval estimation of applied forces in x, y, and z directions using
proposed bootstrap method with using multi-level models under LINEX loss function.

Estimation of Models Without Intercept
Force in x Direction Force in y Direction Force in z Direction

True Force C.I F̂ Bias RMSE C.I F̂ Bias RMSE C.I F̂ Bias RMSE

0.1 (0.072 , 0.116) 0.085 -0.015 0.024 (0.076 , 0.179) 0.098 -0.002 0.046 (0.134 , 0.789) 0.212 0.112 0.413
0.2 (0.156 , 0.202) 0.169 -0.031 0.036 (0.165 , 0.267) 0.188 -0.012 0.045 (0.240 , 0.856) 0.329 0.129 0.368
0.3 (0.290 , 0.333) 0.302 0.002 0.018 (0.277 , 0.376) 0.300 -0.000 0.044 (0.461 , 1.069) 0.549 0.249 0.429
0.4 (0.394 , 0.435) 0.404 0.004 0.017 (0.429 , 0.527) 0.450 0.050 0.069 (0.469 , 1.091) 0.484 0.084 1.957
0.5 (0.485 , 0.527) 0.496 -0.004 0.018 (0.458 , 0.554) 0.480 -0.020 0.045 (0.563 , 1.191) 0.640 0.140 0.394
0.6 (0.562 , 0.605) 0.573 -0.027 0.032 (0.564 , 0.664) 0.586 -0.014 0.048 (0.650 , 1.252) 0.719 0.119 0.491
0.7 (0.641 , 0.684) 0.652 -0.048 0.051 (0.743 , 0.840) 0.766 0.066 0.079 (0.801 , 1.445) 0.949 0.249 1.940
0.8 (0.786 , 0.829) 0.798 -0.002 0.017 (0.710 , 0.810) 0.733 -0.067 0.081 (0.814 , 1.465) 0.892 0.092 0.418
0.9 (0.888 , 0.931) 0.900 -0.000 0.016 (0.840 , 0.942) 0.864 -0.036 0.056 (0.848 , 1.454) 0.912 0.012 0.463
1.0 (0.970 , 1.011) 0.981 -0.019 0.026 (0.945 , 1.047) 0.969 -0.031 0.054 (1.072 , 1.711) 1.161 0.161 0.405
1.1 (1.069 , 1.115) 1.081 -0.019 0.026 (1.054 , 1.153) 1.078 -0.022 0.049 (1.215 , 1.840) 1.298 0.198 0.472
1.2 (1.211 , 1.255) 1.223 0.023 0.029 (1.204 , 1.305) 1.227 0.027 0.052 (1.233 , 1.880) 1.312 0.112 0.429
1.3 (1.298 , 1.341) 1.310 0.010 0.020 (1.286 , 1.387) 1.309 0.009 0.047 (1.331 , 2.016) 1.438 0.138 0.462
1.4 (1.409 , 1.455) 1.421 0.021 0.028 (1.374 , 1.468) 1.397 -0.003 0.042 (1.397 , 2.050) 1.503 0.103 1.002
1.5 (1.506 , 1.548) 1.517 0.017 0.025 (1.537 , 1.635) 1.560 0.060 0.076 (1.417 , 2.075) 1.521 0.021 0.337
1.6 (1.575 , 1.617) 1.585 -0.015 0.023 (1.627 , 1.723) 1.649 0.049 0.066 (1.545 , 2.171) 1.625 0.025 0.473
1.7 (1.722 , 1.765) 1.733 0.033 0.038 (1.677 , 1.780) 1.699 -0.001 0.043 (1.611 , 2.257) 1.693 -0.007 0.480
1.8 (1.819 , 1.862) 1.831 0.031 0.035 (1.827 , 1.918) 1.849 0.049 0.065 (1.712 , 2.345) 1.794 -0.006 0.366
1.9 (1.902 , 1.946) 1.914 0.014 0.022 (1.936 , 2.033) 1.958 0.058 0.073 (1.889 , 2.548) 1.966 0.066 0.396
2.0 (2.015 , 2.060) 2.027 0.027 0.033 (2.030 , 2.132) 2.055 0.055 0.071 (1.959 , 2.629) 2.041 0.041 0.593

Estimation of Models With Intercept
Force in x Direction Force in y Direction Force in z Direction

True Force C.I F̂ Bias RMSE C.I F̂ Bias MSE C.I F̂ Bias MSE

0.1 (0.082 , 0.126) 0.094 -0.006 0.019 (0.067 , 0.173) 0.091 -0.009 0.048 (0.000 , 0.778) 0.072 -0.028 0.452
0.2 (0.165 , 0.207) 0.177 -0.023 0.029 (0.158 , 0.262) 0.182 -0.018 0.047 (0.063 , 0.851) 0.193 -0.007 0.401
0.3 (0.298 , 0.339) 0.310 0.010 0.020 (0.270 , 0.372) 0.294 -0.006 0.045 (0.333 , 1.110) 0.449 0.149 0.430
0.4 (0.401 , 0.440) 0.411 0.011 0.020 (0.424 , 0.522) 0.445 0.045 0.065 (0.327 , 1.119) 0.427 0.027 0.455
0.5 (0.491 , 0.531) 0.502 0.002 0.017 (0.453 , 0.550) 0.475 -0.025 0.048 (0.438 , 1.236) 0.543 0.043 0.425
0.6 (0.568 , 0.609) 0.579 -0.021 0.027 (0.559 , 0.660) 0.582 -0.018 0.050 (0.546 , 1.320) 0.640 0.040 0.441
0.7 (0.646 , 0.688) 0.657 -0.043 0.046 (0.740 , 0.840) 0.763 0.063 0.077 (0.709 , 1.501) 0.822 0.122 0.420
0.8 (0.790 , 0.833) 0.802 0.002 0.017 (0.705 , 0.807) 0.729 -0.071 0.084 (0.723 , 1.523) 0.822 0.022 0.442
0.9 (0.892 , 0.932) 0.903 0.003 0.016 (0.838 , 0.939) 0.862 -0.038 0.058 (0.767 , 1.528) 0.862 -0.038 0.450
1.0 (0.972 , 1.012) 0.984 -0.016 0.024 (0.943 , 1.045) 0.967 -0.033 0.056 (1.020 , 1.780) 1.131 0.131 0.442
1.1 (1.072 , 1.116) 1.083 -0.017 0.025 (1.052 , 1.151) 1.077 -0.023 0.049 (1.181 , 1.954) 1.296 0.196 0.460
1.2 (1.213 , 1.254) 1.224 0.024 0.029 (1.203 , 1.306) 1.227 0.027 0.052 (1.202 , 1.972) 1.300 0.100 0.446
1.3 (1.299 , 1.340) 1.310 0.010 0.020 (1.285 , 1.389) 1.309 0.009 0.047 (1.319 , 2.220) 1.445 0.145 0.452
1.4 (1.409 , 1.454) 1.420 0.020 0.027 (1.374 , 1.469) 1.397 -0.003 0.042 (1.386 , 2.207) 1.491 0.091 0.474
1.5 (1.505 , 1.545) 1.516 0.016 0.023 (1.538 , 1.638) 1.561 0.061 0.077 (1.412 , 2.228) 1.543 0.043 0.398
1.6 (1.573 , 1.613) 1.583 -0.017 0.024 (1.627 , 1.724) 1.651 0.051 0.067 (1.560 , 2.322) 1.666 0.066 0.434
1.7 (1.719 , 1.760) 1.730 0.030 0.035 (1.678 , 1.783) 1.701 0.001 0.043 (1.637 , 2.452) 1.748 0.048 0.441
1.8 (1.816 , 1.857) 1.827 0.027 0.032 (1.830 , 1.922) 1.852 0.052 0.067 (1.734 , 2.535) 1.848 0.048 0.427
1.9 (1.898 , 1.940) 1.910 0.010 0.020 (1.939 , 2.038) 1.961 0.061 0.076 (1.924 , 2.757) 2.038 0.138 0.472
2.0 (2.010 , 2.053) 2.022 0.022 0.029 (2.034 , 2.136) 2.058 0.058 0.074 (2.005 , 2.852) 2.131 0.131 0.460

4.4 Bayesian Approach

Bayesian methodology could be employed in multi-level modeling regression to obtain

better and more accurate estimation. According to Ruppert et al. (2003), Bayesian

statistics is distinct from other statistics (e.g. ML statistics), because of the essence
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of the prior and posterior distributions. By specifying prior in the estimation process,

we consider some information about parameters of our model even before looking at

calibration data set.

In the Bayesian analysis, one can choose informative or noninformative priors.

When there are some available information on the parameters, we can employ

those information to choose an informative prior; however, sometimes we do not

know anything about our data set, in this case, one decides to use noninformative

prior. Noninformative (or flat) priors are mainly chosen as uniform distributions or

normal densities with considerably large variances. As in Ruppert et al. (2003), even

improper priors can lead to proper posterior distributions. The posterior distribution

includes all information about our parameter of interest.

In order to improve our estimation in terms of accuracy, we decided to employ

Bayesian statistic instead of ML and REML procedures. Considering the model

(4.9), βk, uk, Gk, Rk are the parameters of interest that we want to estimate using

the Bayesian methodology. The posterior distribution for this problem is defined as:

P (βk, uk, Gk, Rk | Sk) ∝ P (Sk | βk, uk, Rk)P (uk | Gk)P (Rk)P (βk)P (Gk). (4.23)

Suppose,

uk ∼ N(0, Gk) and Sk | uk ∼ N(Fβk + Zuk, Rk).

Therefore,

P (Sk | βk, uk, Rk)P (uk | Gk) ∝ exp

{
−1

2

(
(Sk − Fβk − Zuk)>R−1

k (Sk − Fβk − Zuk)
)}

× exp

{
−1

2

(
u>kG

−1
k uk

)}
.

(4.24)
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Since (4.24) is a nonnegative function of (βk, uk), after some mathematical manipu-

lations, we have

P (Sk | βk, uk, Rk)P (uk | Gk) ∝ N((C>C +RkDk)
−1C>Sk, Rk(C

>C +RkDk)
−1),

where, C ≡
(
F Z

)
and Dk =

(
0 0
0 G−1

k

)
.

Following Ruppert et al. (2003), and assuming that we do not have enough

information on βk, we use an improper prior on βk as, P (βk) ≡ 1, or βk ∼ N(0, σ2
βk

),

where, σ2
βk

is considerably large.

Furthermore, it has been suggested in Ruppert et al. (2003), to use inverse

gamma densities as priors for Rk and Gk, with parameters (Ark , Brk) and (Agk , Bgk),

that are listed below:
P (Rk) =

B
Ark
rk

Γ(Ark)
(Rk)

−(Ark+1) exp

(
−Brk

Rk

)
,

P (Gk) =
B
Agk
gk

Γ(Agk)
(Gk)

−(Agk+1) exp

(
−Bgk

Gk

)
,

(4.25)

where, (Ark , Brk) and (Agk , Bgk) are called hyper parameters, that are positive. If

we consider hyper parameters to be equal to zero, then the priors for Rk and Gk

would be improper and equal to 1
Rk

and 1
Gk

, respectively. It has been recommended

in Ruppert et al. (2003), to consider hyper parameters close to zero (e.g. 0.1), to

come up with noninformative, but proper priors. Based on 4.24,

Rk ∝ (Rk)
−( 3

2
n+Ark+1) exp

{
−1

2

(
(Sk − Fβk − Zuk)>R−1

k (Sk − Fβk − Zuk) +Brk

)}
.

(4.26)
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Comparing 4.25 with 4.26, it is straightforward to show that

[Rk | Sk, βk, uk, Gk] ∼ IG(Ark +
3

2
n,Brk +

1

2
(Sk − Fβk − Zuk)>(Sk − Fβk − Zuk)).

(4.27)

An argument similar to the one used in 4.26 for Gk shows that

[Gk | Sk, βk, uk, Rk] ∼ IG(Agk +
3

2
, Bgk +

1

2
u>k u). (4.28)

Finally, in order to make statistical inference, we use Markov Chain Monte Carlo

(MCMC) to sample from the posterior distribution based on the following algorithm

(Ruppert et al., 2003):

1. Sample (β, u) from the following multivariate normal distribution

N((C>C +RkDk)
−1C>Sk, Rk(C

>C +RkDk)
−1).

2. Sample Gk from IG(Agk + 3
2
, Bgk + 1

2
u>k u).

3. Sample Rk from IG(Ark + 3
2
n,Brk + 1

2
(Sk − Fβk − Zuk)>(Sk − Fβk − Zuk)).

4. Repeat steps 1 - 3, M times, where, M is the number of iterations.

In step 1 of the MCMC algorithm, we sample (βk, uk) given (R
(0)
k , G

(0)
k ) values, while

in steps 2 and 3, (Gk, Rk) are sampled when (β
(0)
k , u

(0)
k ) are given. Given (βk, uk),

Rk and Gk are independent, therefore, steps 2 and 3 of the MCMC algorithm are

exchangeable. The values of (β
(0)
k , u

(0)
k , R

(0)
k , G

(0)
k ) to start the MCMC algorithm

are estimated using the ML or REML approaches as explained in Sections 4.3.1
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and 4.3.2. According to Ruppert et al. (2003), this MCMC algorithm is flexible in

terms of the values of (β
(0)
k , u

(0)
k , R

(0)
k , G

(0)
k ). This is because the Marcov Chain would

gradually converge to the stationary distribution and it discards the starting.

For the comparison purposes, we obtain the predictions under SEL, as well as

LINEX loss functions. Through the Markov Chain Monte Carlo, we obtain samples

with length of M for β and u, where under the SEL, we consider the mean value of

these samples û and β̂ as follow:

û =
1

M

M∑
i=1

ui,

β̂ =
1

M

M∑
i=1

βi.

(4.29)

However, based on (4.19), û and β̂ under the LINEX loss function are obtained

as follow:

ûα =
1

M

M∑
i=1

ui −
σ2
ui
α

2
,

β̂α =
1

M

M∑
i=1

βi −
σ2
βi
α

2
.

(4.30)

4.4.1 Results Obtained from Bayesian Approach

In this section, we report predicted values of the applied forces along x, y, and z

directions that are obtained using the Bayesian approach under both SEL and LINEX
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loss functions. To obtain the results, we used lmer-stan function of ”rstanarm”

package, in R programming language (Gabry and Goodrich, 2016).

Here again, to obtain more precise predictions we violated the physical model and

considered intercepts in the model. Therefore, results are reported for models with,

and without intercept. Point estimates of applied forces along x, y, and z directions

are listed in Tables 4.10 and 4.11. Results show that there is not a significant

difference between predictions obtained through models with intercept and models

without intercept. For instance, when the true force is equal to 1.0 N, the estimated

forces along x, y, and z directions based on models without intercept under SEL

are 0.980 N, 0.969 N, 1.094 N, respectively. And estimated forces along x, y, and z

directions through models with intercept under SEL are 0.982 N, 0.967 N, 1.097 N,

respectively. This is also true for results obtained under the LINEX loss function.

As can be seen in Table 4.11, estimated forces along x and y axes are not altering

based on different values of α. However, estimated Fz’s are changing considerably

with different values of α. For instance, when Fz = 2 N, estimated forces with

α = (0.1, 0.5, 1) using models without intercept and models with intercept are

(1.966, 2.065, 2.203) N and (1.953, 2.040, 2.161) N, respectively.
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Table 4.10: Point estimates obtained by Bayesian approach in multi-level models
considering models with and without intercept under SEL function for different
amounts of forces applied to the right forceps tip, in x, y, and z directions.

Models Without Intercept Models With Intercept

True Force F̂x F̂y F̂z F̂x F̂y F̂z

0.1 0.086 0.096 0.216 0.094 0.090 0.237

0.2 0.169 0.188 0.303 0.176 0.183 0.322

0.3 0.302 0.297 0.515 0.308 0.292 0.530

0.4 0.405 0.448 0.525 0.411 0.444 0.539

0.5 0.495 0.478 0.612 0.501 0.474 0.624

0.6 0.573 0.587 0.699 0.578 0.583 0.709

0.7 0.652 0.763 0.834 0.656 0.760 0.842

0.8 0.798 0.734 0.853 0.801 0.731 0.861

0.9 0.899 0.864 0.882 0.902 0.862 0.889

1.0 0.980 0.969 1.094 0.982 0.967 1.097

1.1 1.079 1.078 1.239 1.081 1.077 1.239

1.2 1.221 1.225 1.268 1.222 1.224 1.267

1.3 1.308 1.308 1.355 1.308 1.309 1.352

1.4 1.418 1.397 1.413 1.418 1.397 1.409

1.5 1.514 1.560 1.422 1.513 1.562 1.418

1.6 1.582 1.648 1.557 1.581 1.650 1.551

1.7 1.730 1.699 1.615 1.728 1.701 1.607

1.8 1.827 1.850 1.702 1.825 1.853 1.692

1.9 1.910 1.959 1.876 1.907 1.962 1.862

2.0 2.022 2.055 1.944 2.019 2.059 1.929
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Table 4.11: Point estimates obtained by Bayesian approach in multi-level models consid-
ering models with and without intercept under LINEX function for different amounts of
forces applied to the right forceps tip, in x, y, and z directions.

Estimated Forces in Models without Intercept
α1 = 0.1 α2 = 0.5 α3 = 1

True Force F̂x F̂y F̂z F̂x F̂y F̂z F̂x F̂y F̂z
0.1 0.086 0.096 0.219 0.086 0.096 0.230 0.087 0.096 0.245
0.2 0.170 0.188 0.306 0.170 0.188 0.322 0.170 0.188 0.343
0.3 0.302 0.297 0.521 0.303 0.297 0.547 0.303 0.298 0.584
0.4 0.405 0.448 0.531 0.406 0.448 0.558 0.406 0.449 0.595
0.5 0.496 0.478 0.619 0.496 0.478 0.650 0.497 0.478 0.694
0.6 0.573 0.587 0.707 0.574 0.587 0.742 0.574 0.588 0.792
0.7 0.652 0.763 0.843 0.653 0.763 0.886 0.654 0.764 0.945
0.8 0.798 0.734 0.863 0.799 0.734 0.906 0.800 0.735 0.967
0.9 0.899 0.864 0.892 0.900 0.864 0.937 0.901 0.865 1.000
1.0 0.980 0.969 1.107 0.981 0.969 1.163 0.983 0.970 1.240
1.1 1.080 1.078 1.253 1.081 1.078 1.316 1.082 1.079 1.405
1.2 1.222 1.225 1.283 1.223 1.225 1.347 1.225 1.226 1.437
1.3 1.308 1.308 1.370 1.310 1.309 1.439 1.311 1.310 1.536
1.4 1.419 1.397 1.429 1.420 1.398 1.501 1.422 1.399 1.602
1.5 1.515 1.560 1.439 1.516 1.561 1.511 1.518 1.563 1.612
1.6 1.583 1.648 1.575 1.584 1.649 1.655 1.587 1.651 1.766
1.7 1.730 1.699 1.634 1.732 1.700 1.716 1.734 1.701 1.831
1.8 1.828 1.850 1.722 1.830 1.851 1.808 1.832 1.853 1.930
1.9 1.911 1.959 1.898 1.913 1.960 1.993 1.915 1.962 2.127
2.0 2.023 2.055 1.966 2.025 2.057 2.065 2.028 2.059 2.203

Estimated Forces in Models with Intercept
α1 = 0.1 α2 = 0.5 α3 = 1

True Force F̂x F̂y F̂z F̂x F̂y F̂z F̂x F̂y F̂z
0.1 0.094 0.090 0.240 0.094 0.090 0.250 0.094 0.090 0.265
0.2 0.176 0.183 0.326 0.177 0.183 0.340 0.177 0.183 0.360
0.3 0.308 0.292 0.536 0.309 0.292 0.560 0.309 0.293 0.593
0.4 0.411 0.444 0.546 0.411 0.444 0.570 0.412 0.445 0.604
0.5 0.501 0.473 0.632 0.501 0.474 0.660 0.502 0.474 0.699
0.6 0.578 0.583 0.718 0.578 0.583 0.750 0.579 0.584 0.795
0.7 0.656 0.760 0.852 0.657 0.761 0.890 0.658 0.761 0.943
0.8 0.801 0.731 0.871 0.802 0.731 0.910 0.803 0.732 0.964
0.9 0.902 0.861 0.900 0.903 0.862 0.940 0.904 0.863 0.996
1.0 0.982 0.967 1.110 0.984 0.967 1.160 0.985 0.968 1.229
1.1 1.081 1.076 1.254 1.083 1.077 1.310 1.084 1.078 1.388
1.2 1.222 1.224 1.283 1.224 1.225 1.340 1.225 1.226 1.419
1.3 1.309 1.308 1.369 1.310 1.309 1.430 1.312 1.310 1.515
1.4 1.418 1.397 1.426 1.420 1.398 1.490 1.422 1.399 1.578
1.5 1.514 1.561 1.436 1.515 1.562 1.500 1.517 1.564 1.589
1.6 1.581 1.650 1.570 1.583 1.651 1.640 1.585 1.652 1.737
1.7 1.728 1.700 1.627 1.730 1.701 1.700 1.732 1.703 1.801
1.8 1.825 1.852 1.713 1.827 1.853 1.790 1.829 1.855 1.896
1.9 1.907 1.962 1.886 1.910 1.963 1.970 1.912 1.965 2.087
2.0 2.019 2.059 1.953 2.021 2.060 2.040 2.024 2.062 2.161
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Once again, since the point estimates of applied forces along z axis were not

accurate enough, we decided to apply weights in the model (WLS). Therefore, weights

that are introduced in Table 4.5 were applied to the models (4.9), and results are

reported for models with considering intercept, as well as models without considering

intercept. Tables 4.12 and 4.13 present the results for models under SEL and LINEX

loss, respectively.

According to Tables 4.12 and 4.13, estimated forces using models with intercept

are closer to the true values of forces. Among all weights that have been employed,

W4 provides more accurate results and most predictions are very close to the true

amount of applied forces for models under both SEL and LINEX loss functions. For

instance, there is no bias in estimating the true force of 2 N, under SEL when W4 is

applied.

Results under LINEX loss function are reported for α ∈ (0.1, 0.5, 1), and as can

be seen more accurate results are provided when α = 1.
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Table 4.12: Estimated forces in z direction using Bayesian methodology in multi-level
modeling, considering six different weights under SEL. Top table presents the obtained
force estimates for models without considering intercept, and bottom table presents the
estimation for models with intercept.

Estimated Fz in Models without Intercept
True Fz W1 W2 W3 W4 W5 W6

0.1 0.22 0.22 0.21 0.22 0.22 0.22
0.2 0.30 0.30 0.29 0.31 0.30 0.30
0.3 0.52 0.52 0.49 0.53 0.52 0.52
0.4 0.52 0.52 0.50 0.54 0.53 0.53
0.5 0.61 0.61 0.59 0.62 0.61 0.61
0.6 0.70 0.70 0.67 0.71 0.70 0.70
0.7 0.83 0.83 0.80 0.85 0.84 0.83
0.8 0.85 0.85 0.82 0.87 0.86 0.85
0.9 0.88 0.88 0.85 0.90 0.88 0.88
1.0 1.09 1.09 1.05 1.12 1.10 1.10
1.1 1.24 1.24 1.19 1.26 1.24 1.24
1.2 1.27 1.27 1.22 1.29 1.27 1.27
1.3 1.35 1.35 1.30 1.38 1.36 1.36
1.4 1.41 1.41 1.36 1.44 1.42 1.41
1.5 1.42 1.42 1.37 1.45 1.43 1.42
1.6 1.56 1.56 1.50 1.59 1.56 1.56
1.7 1.61 1.61 1.55 1.65 1.62 1.62
1.8 1.70 1.70 1.64 1.74 1.71 1.70
1.9 1.88 1.88 1.80 1.91 1.88 1.88
2.0 1.94 1.94 1.87 1.98 1.95 1.94

Estimated Fz in Models with Intercept
True Fz W1 W2 W3 W4 W5 W6

0.1 0.05 0.05 0.11 0.07 0.09 0.07
0.2 0.15 0.15 0.21 0.17 0.19 0.17
0.3 0.39 0.39 0.43 0.41 0.43 0.41
0.4 0.41 0.41 0.44 0.42 0.44 0.42
0.5 0.50 0.50 0.54 0.51 0.53 0.52
0.6 0.60 0.60 0.63 0.61 0.63 0.61
0.7 0.76 0.76 0.78 0.76 0.78 0.76
0.8 0.78 0.78 0.80 0.78 0.80 0.79
0.9 0.81 0.81 0.83 0.82 0.84 0.82
1.0 1.06 1.06 1.06 1.05 1.07 1.06
1.1 1.22 1.22 1.21 1.22 1.24 1.22
1.2 1.25 1.25 1.24 1.25 1.27 1.25
1.3 1.35 1.35 1.34 1.34 1.37 1.35
1.4 1.42 1.42 1.40 1.41 1.43 1.41
1.5 1.43 1.43 1.41 1.42 1.44 1.42
1.6 1.58 1.58 1.55 1.57 1.59 1.58
1.7 1.65 1.65 1.62 1.64 1.66 1.64
1.8 1.75 1.75 1.71 1.73 1.76 1.74
1.9 1.95 1.95 1.90 1.93 1.95 1.93
2.0 2.03 2.02 1.97 2.00 2.03 2.01
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Another point to consider is the robustness of the algorithm with respect to the

choice of different priors for (β, u). To check this, we obtained the force prediction

in x, y, and z directions under SEL function considering noninformative, normal,

and student-t priors, and results are presented in Table 4.14. As demonstrated,

there is not any significant difference between estimates under different priors.
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Table 4.14: Point estimates of applied forces in x, y, and z directions using Bayesian
approach in multi-level modeling using different priors for models with and without
intercept.

Estimation of Models Without Intercept
Prior Noninformative Normal Student-t

True Force F̂x F̂y F̂z F̂x F̂y F̂z F̂x F̂y F̂z

0.1 0.086 0.096 0.216 0.086 0.096 0.215 0.086 0.096 0.216
0.2 0.169 0.188 0.303 0.170 0.188 0.301 0.169 0.188 0.303
0.3 0.302 0.297 0.516 0.302 0.297 0.512 0.302 0.297 0.515
0.4 0.405 0.448 0.525 0.405 0.448 0.522 0.405 0.448 0.525
0.5 0.495 0.478 0.612 0.496 0.477 0.608 0.495 0.478 0.611
0.6 0.573 0.587 0.699 0.573 0.586 0.695 0.573 0.587 0.698
0.7 0.652 0.763 0.834 0.652 0.763 0.829 0.652 0.763 0.833
0.8 0.797 0.734 0.853 0.798 0.733 0.848 0.797 0.734 0.853
0.9 0.899 0.864 0.882 0.899 0.863 0.877 0.899 0.864 0.881
1.0 0.980 0.968 1.095 0.980 0.968 1.088 0.980 0.969 1.094
1.1 1.079 1.078 1.240 1.080 1.077 1.232 1.079 1.078 1.238
1.2 1.221 1.224 1.269 1.222 1.224 1.261 1.221 1.225 1.267
1.3 1.307 1.308 1.356 1.308 1.308 1.347 1.307 1.309 1.354
1.4 1.418 1.397 1.413 1.419 1.396 1.405 1.418 1.397 1.412
1.5 1.514 1.560 1.423 1.515 1.560 1.415 1.514 1.560 1.422
1.6 1.582 1.648 1.558 1.583 1.648 1.549 1.582 1.648 1.557
1.7 1.729 1.699 1.616 1.730 1.698 1.606 1.729 1.699 1.614
1.8 1.827 1.850 1.703 1.828 1.849 1.693 1.827 1.850 1.701
1.9 1.910 1.959 1.877 1.911 1.958 1.866 1.910 1.959 1.875
2.0 2.022 2.055 1.945 2.023 2.055 1.933 2.022 2.056 1.942

Estimation of Models With Intercept
Prior Noninformative Normal Student-t

True Force F̂x F̂y F̂z F̂x F̂y F̂z F̂x F̂y F̂z

0.1 0.094 0.090 0.238 0.094 0.090 0.236 0.094 0.090 0.235
0.2 0.176 0.183 0.324 0.176 0.183 0.321 0.176 0.183 0.320
0.3 0.308 0.292 0.533 0.308 0.292 0.530 0.308 0.292 0.528
0.4 0.411 0.444 0.543 0.411 0.444 0.539 0.411 0.444 0.537
0.5 0.500 0.474 0.629 0.501 0.473 0.625 0.500 0.474 0.622
0.6 0.577 0.583 0.715 0.578 0.583 0.710 0.577 0.584 0.707
0.7 0.656 0.760 0.848 0.656 0.760 0.843 0.656 0.761 0.839
0.8 0.801 0.731 0.867 0.801 0.730 0.862 0.801 0.731 0.858
0.9 0.901 0.861 0.896 0.902 0.861 0.890 0.901 0.862 0.886
1.0 0.982 0.967 1.106 0.982 0.966 1.099 0.982 0.967 1.094
1.1 1.081 1.076 1.249 1.081 1.076 1.241 1.081 1.077 1.235
1.3 1.308 1.308 1.363 1.308 1.308 1.355 1.308 1.309 1.348
1.4 1.418 1.397 1.420 1.418 1.396 1.412 1.417 1.398 1.405
1.5 1.513 1.561 1.430 1.513 1.561 1.421 1.513 1.562 1.414
1.6 1.581 1.650 1.563 1.581 1.649 1.554 1.580 1.651 1.546
1.7 1.727 1.700 1.620 1.728 1.700 1.611 1.727 1.701 1.603
1.8 1.824 1.852 1.706 1.825 1.851 1.696 1.824 1.853 1.688
1.9 1.906 1.962 1.878 1.907 1.961 1.867 1.906 1.963 1.857
2.0 2.018 2.059 1.945 2.019 2.058 1.933 2.018 2.060 1.923
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Now, we are going to employ the proposed bootstrap method for Bayesian

approach, that was explained in Section 4.1.2. The only difference between the

procedure explained in Section 4.1.2, and what we used here is that instead of (4.1),

we used the multi-level model (4.9) and a Bayesian methodology to estimate the

coefficients (β, u). As we concluded before, we have applied W4 and α = 1 in the

models to obtain the following results.

Results of bootstrapping under SEL and LINEX loss functions are presented in

Tables 4.15 and 4.16, respectively. As it is shown, calculated confidence bounds for

applied forces along x and y axes under SEL, are not very different between models

with intercept or models without intercept. However, confidence bounds that we

obtained using models with intercept for Fz are more precise and almost always

contain the true values of force, nevertheless the bounds are relatively wide. Point

estimates of applied forces in z directions are much more better than other estimates

and the bias is negligible under SEL. For example, when force of 0.9 N is applied

along z axis, bootstrap approach gives the point estimate of 0.892 N, and confidence

bound of (0.797 N,1.345 N).

However, results obtained under the LINEX loss function are not very favorable.

As can be seen, estimated confidence intervals for Fx and Fy are very narrow, and

often does not contain the true values of force. Although, the calculated bounds for

Fz are also narrower, true values of force are not included within the bounds. The

advantage of results obtained under the LINEX loss is that the point estimates with

considering intercept in the models are relatively accurate.
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Table 4.15: Point and interval estimation of applied forces in x, y, and z directions using
proposed bootstrap method with using Bayesian approach in multi-level modeling under
SEL function.

Estimation of Models Without Intercept

Force in x Direction Force in y Direction Force in z Direction

True Force C.I F̂ Bias RMSE C.I F̂ Bias RMSE C.I F̂ Bias RMSE

0.1 (0.071 , 0.115) 0.083 -0.017 0.024 (0.073 , 0.166) 0.100 0.000 0.035 (0.047 , 0.478) 0.113 0.013 0.301

0.2 (0.154 , 0.198) 0.166 -0.034 0.038 (0.166 , 0.260) 0.192 -0.008 0.036 (0.203 , 0.636) 0.272 0.072 0.309

0.3 (0.287 , 0.331) 0.299 -0.001 0.017 (0.275 , 0.369) 0.301 0.001 0.035 (0.359 , 0.795) 0.430 0.130 0.328

0.4 (0.390 , 0.434) 0.402 0.002 0.017 (0.426 , 0.520) 0.452 0.052 0.063 (0.672 , 1.113) 0.748 0.348 0.460

0.5 (0.481 , 0.525) 0.492 -0.008 0.018 (0.455 , 0.550) 0.482 -0.018 0.040 (0.515 , 0.954) 0.589 0.089 0.314

0.6 (0.558 , 0.602) 0.570 -0.030 0.034 (0.565 , 0.659) 0.590 -0.010 0.036 (0.682 , 1.123) 0.758 0.158 0.340

0.7 (0.637 , 0.682) 0.649 -0.051 0.053 (0.741 , 0.835) 0.767 0.067 0.075 (0.594 , 1.034) 0.668 -0.032 0.303

0.8 (0.786 , 0.827) 0.799 -0.001 0.016 (0.709 , 0.805) 0.733 -0.067 0.075 (0.770 , 1.213) 0.847 0.047 0.305

0.9 (0.884 , 0.929) 0.896 -0.004 0.017 (0.842 , 0.936) 0.867 -0.033 0.048 (0.878 , 1.326) 0.956 0.056 0.307

1.0 (0.965 , 1.010) 0.977 -0.023 0.028 (0.946 , 1.041) 0.972 -0.028 0.045 (1.094 , 1.551) 1.174 0.174 0.349

1.1 (1.065 , 1.110) 1.077 -0.023 0.028 (1.056 , 1.150) 1.081 -0.019 0.040 (1.044 , 1.500) 1.124 0.024 0.303

1.2 (1.207 , 1.252) 1.219 0.019 0.025 (1.202 , 1.297) 1.228 0.028 0.045 (1.153 , 1.613) 1.233 0.033 0.305

1.3 (1.293 , 1.339) 1.306 0.006 0.018 (1.285 , 1.380) 1.311 0.011 0.037 (1.231 , 1.695) 1.313 0.013 0.303

1.4 (1.404 , 1.449) 1.416 0.016 0.023 (1.373 , 1.469) 1.399 -0.001 0.035 (1.408 , 1.880) 1.491 0.091 0.317

1.5 (1.500 , 1.545) 1.512 0.012 0.021 (1.536 , 1.632) 1.563 0.063 0.072 (1.536 , 2.014) 1.620 0.120 0.327

1.6 (1.568 , 1.614) 1.580 -0.020 0.026 (1.624 , 1.720) 1.651 0.051 0.062 (1.555 , 2.034) 1.640 0.040 0.307

1.7 (1.715 , 1.761) 1.728 0.028 0.033 (1.674 , 1.771) 1.701 0.001 0.035 (1.614 , 2.096) 1.699 -0.001 0.305

1.8 (1.813 , 1.859) 1.826 0.026 0.031 (1.825 , 1.922) 1.852 0.052 0.063 (1.693 , 2.178) 1.779 -0.021 0.306

1.9 (1.896 , 1.942) 1.909 0.009 0.019 (1.934 , 2.031) 1.961 0.061 0.070 (1.812 , 2.302) 1.898 -0.002 0.306

2.0 (2.008 , 2.054) 2.021 0.021 0.027 (2.031 , 2.127) 2.057 0.057 0.067 (1.822 , 2.312) 1.908 -0.092 0.319

Estimation of Models With Intercept

Force in x Direction Force in y Direction Force in z Direction

True Force C.I F̂ Bias RMSE C.I F̂ Bias RMSE C.I F̂ Bias RMSE

0.1 (0.080 , 0.120) 0.092 -0.008 0.018 (0.067 , 0.162) 0.093 -0.007 0.036 (0.000 , 0.419) 0.000 -0.124 0.354

0.2 (0.162 , 0.203) 0.175 -0.025 0.030 (0.161 , 0.257) 0.185 -0.015 0.038 (0.074 , 0.593) 0.148 -0.052 0.335

0.3 (0.294 , 0.335) 0.307 0.007 0.017 (0.271 , 0.367) 0.295 -0.005 0.036 (0.245 , 0.768) 0.321 0.021 0.331

0.4 (0.397 , 0.437) 0.409 0.009 0.018 (0.423 , 0.518) 0.447 0.047 0.059 (0.565 , 1.116) 0.666 0.266 0.424

0.5 (0.486 , 0.527) 0.499 -0.001 0.016 (0.452 , 0.548) 0.476 -0.024 0.043 (0.409 , 0.942) 0.493 -0.007 0.330

0.6 (0.563 , 0.603) 0.576 -0.024 0.029 (0.562 , 0.658) 0.586 -0.014 0.038 (0.575 , 1.127) 0.677 0.077 0.339

0.7 (0.642 , 0.682) 0.655 -0.045 0.048 (0.738 , 0.835) 0.763 0.063 0.072 (0.489 , 1.029) 0.580 -0.120 0.352

0.8 (0.786 , 0.827) 0.799 -0.001 0.016 (0.709 , 0.805) 0.733 -0.067 0.075 (0.666 , 1.225) 0.774 -0.026 0.332

0.9 (0.887 , 0.928) 0.900 0.000 0.016 (0.839 , 0.936) 0.864 -0.036 0.050 (0.797 , 1.345) 0.892 -0.008 0.331

1.0 (0.967 , 1.008) 0.981 -0.019 0.025 (0.945 , 1.042) 0.969 -0.031 0.047 (1.037 , 1.584) 1.129 0.129 0.356

1.1 (1.066 , 1.107) 1.080 -0.020 0.026 (1.054 , 1.151) 1.079 -0.021 0.041 (0.981 , 1.530) 1.076 -0.024 0.332

1.2 (1.207 , 1.249) 1.221 0.021 0.026 (1.201 , 1.299) 1.227 0.027 0.044 (1.105 , 1.649) 1.194 -0.006 0.332

1.3 (1.293 , 1.335) 1.307 0.007 0.018 (1.286 , 1.384) 1.311 0.011 0.037 (1.195 , 1.737) 1.280 -0.020 0.333

1.4 (1.403 , 1.445) 1.417 0.017 0.023 (1.374 , 1.473) 1.399 -0.001 0.036 (1.390 , 1.933) 1.474 0.074 0.341

1.5 (1.499 , 1.540) 1.512 0.012 0.020 (1.538 , 1.637) 1.564 0.064 0.073 (1.526 , 2.074) 1.615 0.115 0.353

1.6 (1.566 , 1.608) 1.579 -0.021 0.026 (1.626 , 1.726) 1.652 0.052 0.063 (1.546 , 2.096) 1.636 0.036 0.336

1.7 (1.713 , 1.755) 1.726 0.026 0.031 (1.676 , 1.777) 1.703 0.003 0.036 (1.611 , 2.161) 1.701 0.001 0.335

1.8 (1.810 , 1.852) 1.823 0.023 0.028 (1.827 , 1.929) 1.855 0.055 0.065 (1.698 , 2.248) 1.787 -0.013 0.336

1.9 (1.893 , 1.934) 1.905 0.005 0.017 (1.936 , 2.039) 1.964 0.064 0.074 (1.824 , 2.379) 1.917 0.017 0.337

2.0 (2.004 , 2.046) 2.017 0.017 0.024 (2.033 , 2.136) 2.061 0.061 0.071 (1.834 , 2.390) 1.927 -0.073 0.344
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Table 4.16: Point and interval estimation of applied forces in x, y, and z directions using
proposed bootstrap method with using Bayesian approach in multi-level modeling under
LINEX loss function.

Estimation of Models Without Intercept

Force in x Direction Force in y Direction Force in z Direction

True Force C.I F̂ Bias RMSE C.I F̂ Bias RMSE C.I F̂ Bias RMSE

0.1 (0.087 , 0.087) 0.083 -0.017 0.024 (0.096 , 0.096) 0.097 -0.003 0.042 (0.192 , 0.218) 0.111 0.011 0.361

0.2 (0.170 , 0.170) 0.166 -0.034 0.038 (0.188 , 0.189) 0.189 -0.011 0.043 (0.373 , 0.422) 0.268 0.068 0.368

0.3 (0.303 , 0.304) 0.299 -0.001 0.017 (0.297 , 0.299) 0.298 -0.002 0.042 (0.553 , 0.626) 0.426 0.126 0.383

0.4 (0.406 , 0.408) 0.402 0.002 0.017 (0.448 , 0.451) 0.449 0.049 0.064 (0.914 , 1.034) 0.741 0.341 0.498

0.5 (0.497 , 0.498) 0.492 -0.008 0.018 (0.477 , 0.480) 0.478 -0.022 0.047 (0.733 , 0.830) 0.584 0.084 0.372

0.6 (0.575 , 0.576) 0.570 -0.030 0.034 (0.586 , 0.590) 0.587 -0.013 0.044 (0.925 , 1.046) 0.751 0.151 0.393

0.7 (0.654 , 0.656) 0.649 -0.051 0.053 (0.762 , 0.767) 0.763 0.063 0.076 (0.824 , 0.932) 0.663 -0.037 0.364

0.8 (0.800 , 0.802) 0.795 -0.005 0.017 (0.733 , 0.738) 0.734 -0.066 0.078 (1.026 , 1.161) 0.840 0.040 0.365

0.9 (0.902 , 0.904) 0.896 -0.004 0.017 (0.863 , 0.868) 0.864 -0.036 0.055 (1.150 , 1.302) 0.948 0.048 0.366

1.0 (0.983 , 0.986) 0.977 -0.023 0.028 (0.968 , 0.974) 0.969 -0.031 0.052 (1.398 , 1.582) 1.165 0.165 0.400

1.1 (1.083 , 1.086) 1.077 -0.023 0.028 (1.077 , 1.084) 1.078 -0.022 0.047 (1.342 , 1.518) 1.116 0.016 0.364

1.2 (1.225 , 1.228) 1.219 0.019 0.025 (1.223 , 1.231) 1.224 0.024 0.048 (1.466 , 1.659) 1.224 0.024 0.365

1.3 (1.312 , 1.315) 1.306 0.006 0.018 (1.307 , 1.316) 1.308 0.008 0.043 (1.556 , 1.761) 1.303 0.003 0.364

1.4 (1.423 , 1.427) 1.416 0.016 0.023 (1.395 , 1.404) 1.396 -0.004 0.042 (1.759 , 1.990) 1.480 0.080 0.374

1.5 (1.519 , 1.523) 1.512 0.012 0.021 (1.559 , 1.569) 1.560 0.060 0.073 (1.906 , 2.156) 1.608 0.108 0.381

1.6 (1.587 , 1.591) 1.580 -0.020 0.026 (1.647 , 1.657) 1.648 0.048 0.063 (1.928 , 2.181) 1.628 0.028 0.367

1.7 (1.735 , 1.740) 1.728 0.028 0.033 (1.697 , 1.708) 1.698 -0.002 0.042 (1.996 , 2.258) 1.687 -0.013 0.366

1.8 (1.833 , 1.838) 1.826 0.026 0.031 (1.848 , 1.860) 1.849 0.049 0.064 (2.086 , 2.360) 1.766 -0.034 0.368

1.9 (1.916 , 1.921) 1.909 0.009 0.019 (1.957 , 1.970) 1.958 0.058 0.071 (2.221 , 2.513) 1.884 -0.016 0.367

2.0 (2.029 , 2.034) 2.021 0.021 0.027 (2.053 , 2.067) 2.054 0.054 0.068 (2.232 , 2.526) 1.894 -0.106 0.382

Estimation of Models With Intercept

Force in x Direction Force in y Direction Force in z Direction

True Force C.I F̂ Bias RMSE C.I F̂ Bias RMSE C.I F̂ Bias RMSE

0.1 (0.093 , 0.097) 0.091 -0.009 0.017 (0.088 , 0.098) 0.090 -0.010 0.043 (0.052 , 0.209) -0.040 -0.140 0.415

0.2 (0.176 , 0.180) 0.176 -0.024 0.028 (0.181 , 0.190) 0.183 -0.017 0.045 (0.271 , 0.406) 0.134 -0.066 0.396

0.3 (0.309 , 0.312) 0.306 0.006 0.015 (0.291 , 0.300) 0.292 -0.008 0.042 (0.487 , 0.603) 0.309 0.009 0.391

0.4 (0.412 , 0.415) 0.409 0.009 0.016 (0.443 , 0.451) 0.444 0.044 0.061 (0.910 , 1.034) 0.658 0.258 0.468

0.5 (0.502 , 0.505) 0.498 -0.002 0.014 (0.473 , 0.481) 0.473 -0.027 0.049 (0.699 , 0.810) 0.483 -0.017 0.391

0.6 (0.580 , 0.583) 0.576 -0.024 0.028 (0.582 , 0.590) 0.583 -0.017 0.045 (0.924 , 1.049) 0.669 0.069 0.397

0.7 (0.659 , 0.662) 0.655 -0.045 0.048 (0.760 , 0.767) 0.760 0.060 0.073 (0.807 , 0.919) 0.571 -0.129 0.412

0.8 (0.804 , 0.807) 0.800 -0.000 0.014 (0.731 , 0.737) 0.730 -0.070 0.081 (1.041 , 1.176) 0.767 -0.033 0.393

0.9 (0.906 , 0.909) 0.901 0.001 0.014 (0.861 , 0.868) 0.861 -0.039 0.057 (1.178 , 1.324) 0.887 -0.013 0.392

1.0 (0.987 , 0.989) 0.984 -0.016 0.022 (0.967 , 0.974) 0.966 -0.034 0.054 (1.457 , 1.643) 1.126 0.126 0.413

1.1 (1.086 , 1.089) 1.080 -0.020 0.024 (1.076 , 1.083) 1.078 -0.022 0.047 (1.391 , 1.569) 1.072 -0.028 0.394

1.2 (1.228 , 1.231) 1.222 0.022 0.026 (1.224 , 1.232) 1.224 0.024 0.048 (1.536 , 1.731) 1.192 -0.008 0.394

1.3 (1.312 , 1.315) 1.306 0.006 0.018 (1.308 , 1.317) 1.308 0.008 0.043 (1.635 , 1.849) 1.279 -0.021 0.395

1.4 (1.424 , 1.428) 1.418 0.018 0.023 (1.396 , 1.406) 1.396 -0.004 0.042 (1.857 , 2.120) 1.475 0.075 0.403

1.5 (1.520 , 1.523) 1.514 0.014 0.020 (1.560 , 1.572) 1.560 0.060 0.073 (2.019 , 2.310) 1.617 0.117 0.414

1.6 (1.588 , 1.592) 1.582 -0.018 0.023 (1.649 , 1.661) 1.648 0.048 0.063 (2.044 , 2.339) 1.639 0.039 0.399

1.7 (1.735 , 1.739) 1.728 0.028 0.032 (1.699 , 1.712) 1.698 -0.002 0.042 (2.117 , 2.427) 1.704 0.004 0.397

1.8 (1.833 , 1.837) 1.826 0.026 0.029 (1.851 , 1.865) 1.849 0.049 0.064 (2.218 , 2.544) 1.791 -0.009 0.398

1.9 (1.916 , 1.920) 1.908 0.008 0.016 (1.961 , 1.976) 1.958 0.058 0.071 (2.370 , 2.719) 1.922 0.022 0.400

2.0 (2.028 , 2.033) 2.020 0.020 0.025 (2.057 , 2.074) 2.054 0.054 0.068 (2.383 , 2.734) 1.933 -0.067 0.405
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Chapter 5

Conclusion and Future Work

Our goal in this thesis was to propose statistical methodologies to provide accurate

point and interval estimates of applied forces to brain tissues during a neurosurgery.

To meet this goal, we studied different approaches and developed a few ones. These

include the bootstrap technique, weighted least squares in linear regression, multi-

level modeling and Bayesian approach to estimate parameters of multi-level models.

To be more specific, we first employed nonparametric bootstrap technique in

statistical calibration, that provides accurate point and interval force estimation

along x and y axes. We compared the results obtained from the bootstrapping

approach with those reported in Zareinia et al. (2015) (which in this work was referred

to as the Näıve method). Furthermore, we developed a multivariate extension of

Eisenhart’s methodology for calibration, that provides point and interval estimation

of applied forces. Results indicated that the bootstrap approach provides more

accurate estimation compared to the Näıve method.

Since the proposed bootstrap methodology fails to provide force estimation in

z direction, we applied different weights as introduced in Table 4.5 in the model
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to come up with more accurate estimation (WLS). After applying these weights,

bootstrap results were improved as well, but still more accuracy was required.

As the next stage of this research, we introduced multi-level modeling that is

applicable when data is structured in groups like this case that calibration data set

is categorized in three different directions of x, y, and z. We realized that multi-level

models yield a better estimation compared with WLS, especially when weights

are applied in the models. Then, we assumed that some information about the

distribution of data set is available and we employed Bayesian approach to estimate

the coefficients in multi-level models. In multi-level models, results are reported

under SEL, as well as LINEX loss functions.

We also employed the proposed bootstrap methodology in conjunction with

multi-level models to provide interval estimation and enhance the accuracy of point

estimation. The overall results suggest that estimations obtained using multi-level

models are more accurate, however, Bayesian approach provides narrower confidence

bounds and less Bias and RMSE in multi-level models. Another important conclusion

is that using intercept in the model helps obtain more accurate results.
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Figure 5.1: Comparison between length of intervals obtained by Weighted least
squares, multi-level modeling, and Bayesian approaches, when force is applied in x
direction.
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Figure 5.2: Comparison between length of intervals obtained by Weighted least
squares, multi-level modeling, and Bayesian approaches, when force is applied in y
direction.
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Figure 5.3: Comparison between length of intervals obtained by Weighted least
squares, multi-level modeling, and Bayesian approaches, when force is applied in z
direction.

Figures 5.1, 5.2, and 5.3 provide the comparison between length of intervals

obtained by WLS, multi-level modeling, and Bayesian approaches. For multi-level

models and Bayesian confidence intervals, we considered results obtained with models

with intercept and under LINEX loss function. As can be seen from all three plots,

124



length of intervals obtained by Bayesian methodology is always far less than other

methodologies.

There were several limitations associated with this study, that added to the

challenge of proposing predictions with less bias. The most significant limitation

was the fact that the output voltages read from the third pair of strain gauges, were

not accurate enough. This issue is caused by non-optimal positioning of the strain

gauges on the prongs of neurosurgical forceps.

One interesting direction for the future work is to consider measurement error

in the model, specifically, multi-level models (Goldstein, Goldstein). One should

consider the effect of measurement errors in the model, since there are errors in

measuring the applied forces using the read voltages from the strain gauges. Another

method that would be of interests to provide more accurate estimation is meta

analysis (Brockwell and Gordon, 2001). Meta analysis provides pooled estimate of

several separate studies that would be closer estimate to the true value.
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