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¡,BSTRÄCT

A new model for the solution of the i¡rverse problem of electromagnetic

scatEering by smooth, convex-shaped, perfectl-y conducting' Ëhree-

dimensional scatterers has been developed. Certain geometrical as well

as physícal optics approximatíons were used to íncorporate the concepts

of the Minkor,rskí problem of dífferential geometry into the space-tíme

ílltegral soluËion of el-ectromagnetíc scaËËering to yiel-d the fornal

solution for the recovery of the surface profile of the scaËterer from

the backscattered far-field data. Àlthough.various efficient solutions

for target identificatíon are available, sti11 informatíon contained in

poLarízatíon-depol arj:zatior- characteristics of the scatÈerer is noË yet

exploited to its full extent. Therefore, the underlying assumPtion in

this investiBation was based on the facÈ thaË the depolarization charac-

Ëeristics of the scatËered fíeld do necessarily contain inforroation re-

garding the surface profile of the scatterer'

ApplicaÈionofthisnewinversescatteríngmodeltothetesËcaseofa

perfectly conducËing prolate spheroid has been underÈaken' various re-

sults,alongwitherrorbor¡ndsandli¡ritationsarediscussed.
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ZUSAM}4ENFASSI]NG

Ein neues Model der Lösung für das inverse Problem der elektromagneÈ-

ischen streuung an konvexen, unendlich leitenden dreí-dímensionalen

Streuernr¿-urdeenËri,ickelt.Gewissegeometrischewieauchphysikalisch_

optische Approxirnationen wurden benutzt um das Minkowskitsche Problem

der differentíe1len GeoueËrie í¡a die Raum-ZeLt-Tntegral-Lösr'rng der

elekËromagnetischen SËreut¡ng einzuführen so, daß die formale Lösung

der Zurückgewínnung der StreuungsoberflächengestalË von dem rückge-

sËreuten Fernfeld gewährleisteË wird. Obwohl etliche wirk'ngsvolle

Lösungen der ZíeLerkennung bekannt si'd, so v/urde InformaËion die ín

den Polarisations/Depolarisations-Eigenschaf ten des Streuers enthalten

ist nicht vöttig ausgenutzt. Deshalb 'uÏde 
die dieser Arbeit 'nter-

liegenden Annahme auf d-''.e DepolarisaLionseigenschaften des Streufelds

gestütztr_das notwendigerweise Eigenschaften ïiber die Oberflächengestalt

des Streuers enthalten muß. Die Anwendung dieses rieu eingeführten

ínversen SËreur:ngsmodels für den Fall ei¡res ideal leitenden ProlaËen

Sphäroids wurde ausgeführt. Verschiedene Ergebnisse zusauunen uit

Fehlergrenzen und Anwendungsbeschräkungen werden untersucht'
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PiE.SIIME

on a deveJ-oppÉ. un nouveau modà1e pour 1-a solution du problème Í¡rverse

de la diffractión dRondes álectromagn6.tique-si le-s objects diffusants

à trois dÍmensions que lton considàre sont perfaitement conducteurs eË

i1s ont une surface lisse de forme convexe ne pr6senËant aucunes dis-

contÍ¡ruitâs. Certaí¡res approxÍmations dtoptique g6onátrique et dtoptique

physique ont 6tâ utilisáes pour ílËroduíre les concepts du probl'eme de

'linkowski relatif à la gÊotnÉtrie diJferentielle. dans la soulution

intågrale Creliant ltespace et le Ëemps) de 1a diffusion álectromag-

2-necl-que. rrlnsr-, le profil de la surface de lFobjecË díJfusant a 6tá

dáterrninÊ à partir des donnáes sur le le champs lointaÍn de retour

DiffÉrenÈes solutions efficaces pennettent de reconnaltre la cible,

cependanË ltinformation contenue dans les caractáristiques de polarisa-

tion - dápolaríxation du diffuseur nta pas encoïe 6{e entiàrement

exploitée. Par consequerÌË, lthypothàse fondamentale de cette invest-

igation átait bas6e sur le faiÈ que les caractárisËiques de dápolarisa-

Ëion du champs diffus6 contiennent n6cessairement des renseignements sur

1e profil de la surface du diffuseur.

On a coasid6r6 les applications de ce nouveau modèle dans Ie cas dtessai

dtune sphère a11ong6e, parfaitement conducËrice. Des rásultats différents,

aínsi que les erreurs de troncaËures et les 1ímr'tatíons sorit discuÈés.
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1.1

chapter one

REVIEW OF TITE LITERATURE

INTRODUCTION

The phenornena of scat.teríng and diffraction have been k¡ror^m to and studied

by mankind for about three hundred years, however the research in this

field has for¡nd particular ínterest and application mostly in the last

quarter century. The advenÈ of uicrowave Èechnol-ogy, in particul-ar of the

radar system during the second world T¡rar, has led to a renewed interest

in scaLtering and inverse scattering theorÍes. The identificaÈion of re-

:aote objects has been the goal of radar operators, designers and research-

ers si¡ce the fírst radar set r,ras builÈ. lJtril-e Ëhis problem has not been

solved for the general "t"., various approxímations, e.g., high frequency

limíËs, and restricting the class of scaËtering bodies, have resul-ted,in

fo::ural solutions for the r:nknou¡n shape [2130]. In derivations of inverse

scatterí¡1g techniques, stringent requirements r¡rere generally pl-aced on

the nature of the scatterer; this resulted in methods whích can deËermine

only a very narrow class of unknor"m shapes. Furtherutore, these existing

techniques, owíng to the exhaustive amount of ínput information require-

ments, seeru increasingly unfeasíble. Thus, although the inverse scatter-

ing field has generaÈed a greaÈ deal of interest in the past decade, the

demand for ner¡ basic model theories is as strong as ever, as those model

theories are fundanental to remote sensing problems such as air traffic

control , oceanography, telenetry, satel-lite tracking, etc.

tühen radiation of any Ëype is íncident upon ån objecË, some of the radia-

tion is scattered in all directions by the object. The direct problem
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of the Ëheory of scatterlng or diffractlon ís that of determí¡ring the

radiatíon scattered in each directíon when the propertíes of the Íncident

radiation as well as those of the objecË are known. The inverse scatter-

ing problem requires the deËermínatíon of the síze and shape of a scatter-

ing target from some given scattered radiation data, such as Ëhe far-fiel-d

backscattered at certain aspects and frequencies for a given incident

fiel-d. It í3 evident that any approach Ëo this probl-em must be based on

either Ëhe exact or some approxímnte theory of dírect scatterÍng. Thus

ín order Ëo establish new inverse scatter'íng model Èheories which can be

applied more effectivel-y and relíably to the recovery of targeËs ra símult-

aneous maËhematíeal anal-ysis of direct, and ínverse scatËeríng theories

needs to be undertaken.

In general-, two fund.amental- approaches for obtaining approxímaËe solutíons

to electromagne_tic scaËtering probl-ems [1] are knov¡n, í.e. estímates of

eiËher the frequency-dependent phasor response, or, the ti¡e-dependent

ímpulse response can be aÈtempted. Extensive amount of work i¡r the fre-

guency as well as the time domain have been done ín the past [3r9rI2r27,

45,6L,677. The inverse solution of Bojarski [2L,25,51,66,81] i¡ the fre-

quency domain and Cosgriff-Kennaugh-Moffattrs [ 44,45,61] "time domain

approaehtr fail to be the practical solutions because of a very large ín-

put ínformat.ion requirement; however, they provide an excellenÈ mathema-

tíca1 treatment of the problem. In contrast, the polarizatíon-depolariza-

tion characteristics of Ëhe electromagnetic rùaves whích appear to have

the poÈentiâI to add. new dj¡ensions to í¡rverse scat.Ëering tecbniques

[7r8r32r33] have had very little Ímportance i¡. the direct and Ëhe i¡rverse

scatËeríng ínvestigatíons so far. Depolarization as r¡nderstood ín this



ínvestigatl-on, refers to the change of the polarization of an electro-

magnetíc wave fron one state Ëo another, brought about by the inter-

action of the q¡ave with the scatterer. An elecLromagnetic wave has four

basic characteristícs : amplitude, frequerlcy, phaSe and po1-arization;

howèver, the research devoted to polarízatíon problems, whetTrer in oPtics

or radÍo physícs, has in the past represented only a small fraction of

the research in electromagnetic r¡rave propagation. Thís sítuation is

gradually changíng. Problems of polarizatíon and depolarLzatíon have

appeared w-ith increasing frequency in recent yea:rs: In optics, due to

the advent of the l-aser and coherent líght; ín radio physics, due Ëo space

communications, and the more exacting requiremenËs on theoretical predic-

tions for scaÈterÍng by various classes of radar targeËs. In many cases

observation of change in polarízatlon permits greater ínsight into physi-

cal phenornena and this should be sufficíent justifícation for studying

the probl-..ï of poLarízation and depolarization Íl íntimaÈe detail. Thus,

the purpose of this study is to use polarLzation-depolarization charact-

eristies of el-ectromagnetic r^rave scattering as a basic tool in developíng

improved tectrriques which can be applied successfully to the recovery of

radar targets r¡nder various dífficult siËuations. Based on the fact [7 rL97

that the t'depoLarizaEío¡ characterísticstt of the scat,tered field do

necessarily depend on the surface profile of the scaËterer, Ëhe solutíon

of the ínverse problen of electromagneËic scaËteríng by suooth, convex

shaped, perfectly conducting, three-dimensional scaËterers is analysed.

To the best of the auttrorts knowl-edge, thís is the first atteupt to solve

the inverse problem of electromagnetic scatÈering along Ëhese i-ines.

Therefore the uaín objective of this work is to show that Ëhe polarization-

depol-arization characteristics can Índeed be used to recover the shape of



Ëhe surface from observation of the monostatic backscattered field data.

At, present, Ëwo ínverse scattering nodel theories have found parÈicular

applícatíon in target recovery schemes. These are Ëhe Bojarski-Lewis

ínverse scatteríng theory [21r51] and the Kennaugh-Moffat. time domain

transient response method [45 r6Lf, both of which are based on the physical

optícs approxírnation [51-r61]. Therefore, these meÈhods can only be applíed

Ëo identification of perfecËly conducting shapes and further¡nore, radar

frequencíes aust be chosen such that Èhe high-frequency approxímatíon is

satísfied. The objective thus ís to ínvestigate the possibíl-ity of ex-

tending the findings of the polarization-depoLarLzaËíon studies and thus to

add a new dimension Èo the Bojarski-Lewis, Èhe Kennaugh*foffat and other

inverse scaËËering theories. AË Èhis point it is appropriaËe to give a

brief presenÈaËion of Ëhe various existing techniques mentioned above.

1.2 THE BOJARSKI_LEI^IIS TNVERSE SCATTERTNG THEORY

The Èheory developed here was based on the physícal oPtics or Kirchhoff

approxímaÈion [5]-r61] for direct scattering. The starÈÍng point for this

inverse scatËeri:rg model is a remarkable identity obtaíned by Bojarskí

[21,22r25f and rederived by Le\^'is [50,5]-]. Therera Èhree-dimensional

space of vector" F r"¡as Í¡troduced whose direction coi¡rcides with the

aspect direction and whose magniËude is K = ltct - Zulcrrwtrere trl is the

frequency. They also defined t,he characÈeristic function Y(Ð- of the

target and a function pCF) vrtlich ca¡r be obtaÍned by measuríng the far-

field backscattered in Ëhe direction of K at the frequency tl = [ãlco/2

See Fig.1.1- . The function y(l) is 1 ínside the ÈargeÈ and 0 outside
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of iÈ. Then Bojarskfrs l-dentity states that

*
f (r) = ztt Tt P(r)+P C:t<)

l*l'

rG) = [ n'ci-ãlvGl¿ã, on'
J*'

Ëhe functions y(x) and

are a Fourier-transform paír. Thus íf g(t<) could be measured ín all

of ¡< space one could innnedíately obtain Y(Ð and hence determine the

target.

In practíce, p(-¡<), and hence f(ã), can be measured on1-y írr a restricÈed

range of aspecËs and frequencies, i.e., in a certaín subset of K space

and thus, the ínverse Fourier Ëransform can no longer be used to direct-

1-y obtaín T(Ð. At this poínt Lewis [51] showed that if a is the regíon

in which f is known, one can choose a function N(K) v¡hich is zero

outside Q and nonzero inside Q , so that Nk-)f(F) = t*-, can be meas-

ured ín a. Furthermore, ít is possible Ëo choose N such thaË NG)f G)

has an Ínv_erse Fourier transform and the convolution theorern holds. In

Ëhis way one obtains Ëhe convoluÈion íntegral- equation of the first kind

where fr and

peetively. If

of a perfectl-y

kr are the inverse

this equation can be

conducting Èarget carr

Fouríer transfoms of

solved, Èhen the size

be deterrn:ined.

(1.1)

(L.2)

and N res-

the shape

measurement

and in Q',

q corres-

rmfortr.rnately

F

and

The expression for fú<l given by (1.1) indicates

of f (-K) ín a domain a requíres measurement of

wfuich is the reflection of a through Ëhe orígin.

ponds to arl aspect near the t'front" of the target,

that the

pínq
thus íf

p nusÈ



be measured also near the t'backt'. Since this would, fu many applications,

be a severe límitatlon, Lewis [51] atte¡npted to ell-roínate the domain Qt.

There, a modificatfon to the general theory is presented which, under

suíËable condítions, yíelds the t'front hal-f" of the ÈargeË using measure-

ments of p in a. Lewís [50,51-], Tabbara [B]-] and Bojarski, in a

multitude of reports [21- r22,24,25), have obtaíned solutions of (L.2)

for specifíc apertures. Iïowever, a study of these report.s reveals Ëhat

a staggering amounÈ of data is required, and that the Bojarski-Lewis in-

verse scaËËeririg Èechnique, at the present time, cannot be applied í-n

prac tíce.

The fundamental difficulty ín obtaining a solution to the Bojarski-Lewis

inverse problem is that the available method used in solving Ëhe Bojarski

identíty, that Ís Ëhe sol-uËíon of (1.2), is an Íll-posed problem [48,51,

66J. A detail-ed study of the shorËcomings of the Bojarski-Lewis inverse

scaËËeríng solutÍon r¡ras presented by Perry [66] who noË only showed that

(1.2)ÍsiJ-l-posedrbuÈ ËhaË for stable inversion the lowest eigenfrequency

of the kernel inQ.2) corresponds to the value of lFl far below the high-

frequency region. ThÍs fact, however, rules ouË the judicious applica-

Ëíon of the Bojarski-Lewis inverse scat.tering technique as it is based

on the physical optics approximation which holds only for hígh-frequency

scattering.

From the large body of liÈerature dealing with the Bojarski-Lewís problem

it is apparent that the Bojarski-Lewis inverse theory requires ftmd¡mental

improvement. For example, it does not Íncorporate cornplete polarization

infornation which can be made avaÍlabIe raiËh modern pol-arizatÍon doppler

radar systems. Utilization of polarízation as related to Ínverse scaÈÈering



is discussed later
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in this chapter.

1.3 TI]'IE DO}4AIN APPROACH

Compared to the freguency domain and the classícal approach to elecËro-

magnetic scatterÍ¡tg problems, there has been relaËively little work done

on scattering problerns wÍth general time variation. Yet the most dis-

tincËive radar signature of an object surely lies ín'Ëhe tirne variation

of the scattered sígnal. Probably Ëhe mosË fundamental and useful re-

sult would be the computation of Èhe fíeld scatÈered by an arbitrary

shape r¿hen the incídent wave is an iupulse. Thís scattered field is

cal-Led the elecÈromagnetic impulse response.

For a number of reasons the el-ectromagneËic impulse response of a scaËter-

er is one of the mosË interesting resulËs to be obtained from the t.ime

domain analysis. First, the transienÈ scattering produced by an arbitrary

time-varying excitaËion fiel-d can be obtaíned from the Ímpul-se response

by use of the convol-uËíon inËegral. Second, the Fourier transform of the

ímpulse response leads to the spectral- or frequency domain characteris-

tic. One practÍcal use of the Ëransient behaviour is the analysÍs of

radar returns vrherein the impulse response can serve as a ttsignaturetr for

target idenÈificaÈÍon. Thus in an inverse scatterÍng problem, the irnpulse

response iÈseIf may be used as a characterisÈic f¡¡nction of the scatter-

ing object.

Various approaches have been used to obÈa:Ln the response of different

scatËerers to impulse excitaÈion. The physícal optics approximation was



evidently first employed by Kennaugh and Cosgriff [44] to calculate the

monostatic far-fiel-d impulse response of a rectangular plate, a spheroid,

and a sphere. FurËher exÈensions of the physícal optics approach were

carried out in a series of pub'lications by Kennaugh and Moffatt [45159-61].

They defined an impul-se response transforrn pair [FI(t),G(jo)] for the

scaËterí¡rg sysËem, i.e.

cfio) (1.3)

0

Furtherrrrore by using the power series expansíon of G(jt¡) they obtained

a restriction on fr(t) in the form of moDent conditions [61]. lIith

Rayleíghrs l-arv of scattering postul-ations, and uËilizing the moment con-

diÈíons along ¡v-Íth the assumption that the currents set up on the scatÈer-

er surface are approximated by the physical optícs approximation, Kennaugh-

Cosgriff [44] obtained Ëhe approxi-urate result that the "ptojected area

fr:nction", A(L), of a target is proportional to its ramp response (Fíg.L.2).

This irnplíès that the impul-se response predicted by physical- optics ís

a waveform equal- to a multiple of the second derivative of A(t). The

exact, expression given by Kennaugh and Moffatt [45] is:

rr(r) = - #, #t i "o , ät::::r";:.:trn' (1.4)

Tine douain scatÈering analysis has al-so been done in the area of acous-

tics. Sound pu1-se díffraction by infinite length, arbitrary cross+ecÈion

cylinders has been considered by Friedman and Shaw [35], while transient

scatËeríng by rigid spheres has been studied by Soul-es and Mitzner [76].

The avaiJ-able published work in tíme domain scatÈering can be separated

Ínto different, classes. In one approach th-e calculated frequency response

= [ rr(t) e-jurtu,
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of the scatterer is used to synthesize the t.íme domaín response for a

specifíed excíËation. Two separate catagories are conËained withín thís

approach, one of ruhl-ch uses Èhe anal-ytical frequency domaln sol-ut.ion

which has a very límited scope, whíle Ëhe other makes use of nrmerícally

evaLuated frequency domain solutions. A second approach íncludes Ëhose

analyses wñ-ích employ approxímations Ëo the frequency domain response

such as physical and gemoetrícal optics. Obvíously thís particular aP-

proach has iËs lími¡¿¿iens; however, iË does índeed show merits at high

frequencies. A third method for obtaining the i:npulse response of scat-

t.erers is one whích oríginated from a sËrícËl-y tínoe domain view point.

ThÍs method has been applied to acoustics by Soules and MiËzner [76] and

Ëo electromagnetic problems by Bennett and Lrteeks [10] and also by Sayer

and Harrington [71]. It is Ëhis parÈícular approach, using the tÍ-me domain

integral equation, which has been followed in this ínvestigaÈíon and used

t.o develop an ínverse scaËÈering model in l-ater chapters.

A solutÍon for the inverse scaËËerí¡rg probl-em using a sPace-Ëime integral

equaÈÍon was repoïted by Bennett and co-workers []-1'13]. In thÍs study

the i:rverse scatÈeríng problen is formulated as an inversion of the sPace-

tiue inÈegral equation. An íterative technique was devel-oped for the

solution of the inversion equaÈion and applied to some simple sy'r'metrical

cases with success. The results of this work provide a sound for¡ndaËion

on r¿hich a viable time domain approach Ëo the ínverse scaÈterÍng problem

can be built. This Èechnique a1-so poínted out the fact (as expected from

the asymptotic nature of the physical- optícs soluËion) th-at Èhe relation

between Èhe ímpulse response and Ër¡o derivatives of the projected area

fr:nction is exact onJ-y at the leadÍng edge of ttre scattered field resPonse '
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a síngle point ln tfme. After the leading edge, the response is altered

by currents arríving from oËher space poÍnts. Therefore, the physical

optics sol-uËion must be I'correcÈed" to accounË for these current.s flowing

on the body. For a gíven object, if Ëhe incidenË pulse r¿ídth is smálI

compared to body síze (the high frequency límít), then Ëhe correction

current.s will have a small- effect and opËical rays can be placed ín one-

to-one correspondence with poínts on the body. ConËrary to this, if the

body ís comparable í¡r size to the pulse width, then the "correctionil

terms have a strong effect on the solution and the physical optícs solu-

tion is degraded. In the case of small bodies, the correct,ion terrns

dominate Ëhe result and the physícal optics solution is ¡:eaningless.

A second approach to Ëíme domain ínverse scatteríng sras based on the ob-

servaËíon that the low frequency approximation of the ímpulse response

of the scaËËerer determines the waveformrshape and size, wtrereas the

high-frequency information relates to Ëhe fine st.rucËure and detail in

the waveforn [6]-]. This fact has been used in obtaining a technique for

radar Ëarget classification by usj:rg multi-frequency radar returns [57,

63169183]. The time domain signature used ín such a technique is the

ramp response Traveform, r,ñ-ích was first suggested for implementation

ín radar ídentifieation by Kennaugh and Moffatt [45]. As described earl-ier,

the ramp response is the second integral of the ÍmpuI-se response of a

target, and hence shares several- of its useful properÈies. The ramp res-

ponse is unique witlr- respecË to target shape, orientation, and material

composition. It ís the ínverse Fourier transform of a targetts conplex

backscaËrered frequency specËrr¡m uul-tiplied by the factor (1/fiol))2t611.

Because of tt¡-is factor, Kennaugh and Moffatt predicted that a satisfactory
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app'roxfuate ramp response could be obtaíned with a comparatively narrorü-

er bandwídth ínterrogatíng sígnal than for the ímpulse response. Thus,

the cornplex harmonic samples of the backscattered response for three

orthogonal look angles l95 196l aË ten harmonic frequencies (with o as
0

the fundamental frequency Ëh-e. tenth harmonic would be lOtrro) lyíng Ín Ëhe

1or¿ resonance range of the target response spectrum rare used as input

data for thís approach. A periodic ramp response waveform synÈhesized

from these data is used to construct the surface of the scatteïer. Two

general- rel-ationships whÍch are ímportant for Ëarget íraaging have been

utilized ín th:Ls method for generatíng the target surface. FirsË, the

amplitude of the r¿aveform versus tÍme ís approximately proportional to

the "Ëarget profile function" [61-]. The profile function is defined as

an artificial tÍme domain waveform equal to Ëhe target cross-sectÍonal

area inÈersected by an ímaginary trarisverse plane moving along Èhe line
of síght at one half the velocity of the transient íncident signal as

shoçrn in Fíg. L.2. The second relationshíp utilized is that the integral-

of the ramP resPonse \{aveform ís proportional to the RayleÍgh coefficíent.

Thi-s has also been predicted from analysis of Ëhe lower order moments

t61] . Thus an approxímate vol-uue esËí-uate was obtaíned from the ramp

response r¿aveform.

The above relationships and their appl-icatíons í¡r this technique indicate

that the rarp resPonse is a promising signature for target identification

puïposes. However, because of the nature of the data, i.e. three ortho-

gonal look angles, a three-di-uensional- image cannot be uníquely specified.

It, ca¡r be proven that more than one shape satisfies any three look angle

proflle fr-mctÍon seË. Thus, Ëhis uethod generates a t'likely" i-age using
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símplifíed, rather than generaLLzed surfaces r^rj-th a few adjustable para-

meters. There are obviously many questions unans\.rered concerning this

technique. For example, the possibility of estí¡aaËíon of target oríenta-

tion usíng the poLatízaxion properties of the RayleÍgh coefficient could

be í¡rvestigated. Also, í¡r all Ëhe above mentioned techniques only the

first three terms of the po\¡rer series expansion of C(jt¡) vrere consider-

ed, however iË rníght be possible to sËudy higher order tencs whích rúght

yíeld an ÍmportanË relationship between target wave-form response and

target poLarízation-depol-arizaËion characËerístics.

1.4 CLASSICAL ANALYSIS

The classícal approach to electromagnetic scaËüering problens is an analysis

based on the dífferential equaËions for the fields, together with the bound-

ary conditions at the scatËerer. A classícal inverse ¡oethod of port.ray-

ing roÈationall-y syrnnetric scatËerers was based on the inversion of the

scattered fiel-d matrix associated r^iiÈh Ëhe representation of the far scat-

terered field i¡r terms of a series expansion in appropriate vector r^Iave

functions. As an applieation of the above mentioned meÈhod, the circul-ar

cylinder [16], the sphere [17], Èhe elliptic cylinder [86]rand the prolate

spheroid [87] have been specified uniquely in terms of associaËéd expansion

coefficients. In this series of publications it has been demonstrated

that for Èhe cases of the above menÈioned rotationally symeËric scatÈer-

ers the electrical radii of curvature c¿m be recovered direcËly frou a

límited set of contiguous expansion coeffÍcients, wh-ich are obtained to

an accuracy dictated only by the measurement techniques if a cerËairi sPec-

ific optímfzation procedure [89] is eopl-oyed.



15

Hcwever, if the electrical radl-us is much larger than unity, vhich ín-
creases the order of the scattered field matríx, or Íf the domain of ob-

servation is línited to a small solid angLe, the inversíon of the matrix

remains highly unstable and leads to partíally erroneous resul-ts. FurËher

ínvestigatíon has revealed that although this classical approach to Ëhe

recovery of the curvature results in a great savÍng of time in computa-

tion and rather símplifíed calculations, it suffers several limitaËíons

in practice which requíre further analysís. FirsË of all thís classical

approach [L6rL7 r86r87] ís st,rictly concerned with the identification of

the shape of rot.ationalLy syuretríc objects, for which separaËion of the

r^lave equatÍon into orËhonormal vecËor wave functÍons is possíble. Second-

ly, in order to recover the elecËrical radius wj-th a hígh degree of con-

fidence, the field coefficíents [79] must be specífied up to rhe first

four sígnifícant digits [18]. In practice, Èhe accuracy and the resolution

of any ueasurement technique is not f-ikely to be up to ÈhÍs standard,

especially if both anplitude and phase of Ëhe far-scattered fíeld must

be measured as is requíred here. Thus it can be sr-¡uuned up by sayíng that,

this classical ínversion method is presently not applicable in practíce

where other techniques demanding J-ess accuracy are desirable. This class-

Ícal approach, hoq'everr conËinues Èo be of much imporËance in present

theoretical and possible future practícal probleus.

Another classical approach to inverse scat,terÍng which makes use of the

so called concept of el-ectromagnetic Ínverse boundary conditions was Ín-

troduced by tr{esÈon and Boerner and others 192-941. Me.tt¡-ods using these

Í¡rverse borandary condiËions to recover boËh the shape and the averaged

materÍal- surface properties q of a closed scaÈterer, íf the near field
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can be recovered aceurately, r,üere show4 by ßoerner and othens [18r20].

In direct þroblems of scattering and diffraction the shape and the mater-

ial constituents of the scatterer, which are known a'priori Logether

with the prespecífied incident fíeldr mây be íncorporat,ed into the bound-

ary conditions. In an inverse problem, Ín general, no ínformatíon about

the scatterer may be assumed. Therefore, in thís case such boundary con-

ditions must be sought whích do not depend on the shape or the material

propertíes of the scatteríng body, but allow to specify those charact,er-

istic Parameters uníquely from the near fíeld which needs to be recovered

f rom f ar-fiel-d measurements .

In princÍpLe, the inverse boundary conditions derived by Weston, Boerner

and others [92-94] result from the inversí.on of the Leontovich or scalar

impedance bounclarylcondition [49] which ís an approximation and thus its

application Ís restricted. To point out the major restríctíons imposed

on the naËure of the. scatterer which can be treated r,¡ith the LeonËovich

boundary condítÍon, it is noted t.hat'this boundary condítion Ís. a valid

approximatíon to the true conditÍon tf the radíl- of curvature are large-

ever¡vhêre comparecl wtth the wavelength 1,721. It can also be justifíed

[73] even when ¡ varies from point to poínt, provided the variaÈion l-s

sufficientfy s1ow.. For an open surface the aforementLoned conditíons are

s-ufficlent, whe.reas f,or a closed surface ít is requfred ín additíon [18]

that the penetration depth 1s smal1 compared with the srnallest radíus

of curvature ín question, so that inward-traveling fields do not reach

thq surface again, Consequently, loss-less objects such as dielectric

slabs, cylinders, spheres etc. are untreatable by the surface Ímpedance

conditions regardJ-ess of their dimensions. The question'of uniqueness
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of the inverse boundary conditions derfved from the Leontovích boundary

condiËÍon was studied l¡r detail recenEly [ 20] and ít was shor^m that for

both the perfecËly as well as the imperfectly conducting cases, the

uniqueness of Èhe ínverse boundary condiËions depend on polarization and

Ëarget synmetry. For example, incidence of a círcularly polarized plane

wave along the invariant axis of a rotationally symmeËric scatterer will

result írr the fact that Ëhe inverse boundary condítions are satisfied

ever¡rvrhere, thus they cannot be appl-íed in this particular degeneraËe

case. Ot.herwise, it was shown that it is possible that the shape, the

phase and the modul-us of the averaged surface ímpedance of the scaËterer

can be recovered uníquely. Finally, it is pointed out thaË although in

practice Ëhe measureûEnts required for the aforementioned exacË ínverse

probl-em are not possible, the understandíng of the exact problem gives

a better ínsíght into the firn'í¡¿¿ions and errors when approximate or as-

ymptot.íc Ëechniques are employed, and can lead to further development

of these methods.

SIGT{ATURE COMPARISON TECHNIQITES

Two representative signaÈure comparison techniques are discussed in this

sec tion.

(i) Iterative averaging meËhod [88]:

Based on Èhe facÈ that smooth and convex-shaped scatterers of

idenËical curvaËure about the monostat,ic direction give rise to identical

far-scattered field magnitude in the lr:igh frequency case' an i¡rverse

scaËteríng Èechnique for Èhe recovery of the l-ocal radíí of curvat,ure of

rêmoËe scaËterers about. the specul-ar poínt was developed [88]. It was

1.5
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asstrned that measured data are. avaf'lable for various directions of illum-

ination covering all sets of or¡erl-apping finiËe domains of the scatter-

Íng surface.

Fron the theory of geometrical opËics, as applÍed to the problem of

higlr--frequency díJfraction by scaËterers of slowly varyilg corì.vex shape

[4Lr43], iË is known that tlæ leading term in Èhe asymptotic expansion

of the scattered field depends prímarily on the local radíus of cur-

vature of the illumÍnated area. This behaviour, in the backscatteríng

direction, is the foundaÈion of the system s¡mthesis approach intro-

duced ín Ëhis recovery technique referred Èo as the iterative-averaging

meËhod. This method uses the fact that a knowledge of the fieldls

magnitude nece.ssarily reflects sone ínforuratiorÌ orr the curvaËure of

Ëhe scatterer. By comparing the scattering patt.ern of various objecÈs

it was found thaË the larger Ëhe radius of curvature, Èhe larger is

the magnitude of the backscattered fie.ld. Not\^riËhstandÍng this gen-

eral overall behaviour, small superímposed amplitude oscillations

abouË a mean value of the field magnitude ofËen arise. These second

order effects are dependent on the second term in the asymptotic ex-

pansion [41] which includes both the local radius of curvaÈure of

a snooth, convex shaped scatterer and its space rate of change wiLh

respecÈ to the surface coordinate. The íteraËive averaging meËhod

however neglecËs these superimposed, small-field oscillaÈions. Apply-

ing techniques well-known i:r sysËem systhesis, thís iterative averagí+g

method compares the a-yeraged magnitude- of th-e hackscatt.ered fie.Id, given

off by th-e unknorrn, w-itb- thet re-sulËîng from a known rotationally syrnmetric

scatteJer, wLlch can be. most easíly calculated. fñrrs, from t5p mean
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value of Ëhe. field, calculated at various backscattered direcÈions, the

l-ocal radíus of curvature of the scatËerer is obtafned via an iterative

comparison process, euploying well established methods of system syn-

Ëhesis. The recovery of the local radius is, hence, víewed as the slm-

Ëhesis of the system descríbed by the reLationshíp betvreen the geometry

of the rerrote scatterer and the measured backscat,tered fieldts magnitude

for given wave íncídence. fÈ should be observed that the suggesËed

iteratíve-averaging uethod ís applícabJ-e only Ín high frequency cases

i.e., qrhen the local radii of curvature are large enough so that creep-

íng wave effects are negligibl-e ín determíníng the field distribution

near the backscatterí-ng angle.

(ii¡ Pattern recognition technique [37]:

This technique investígates Èhe radar targeË identifÍcation

probleu through an approach that does not depend on obtaining radar

ímagery of optical quality and hígh resol-ution in range and azímuth. In-

stead, patËern recognÍtion techniques are applied Èo radar magniËude and

phase-versus-frequency data r^rhich are obtained at resonance region frequen-

cies. FurÈhermore it is also undersËood in this problem Ëhat no aspect.

angle ínformation Ís either known a priori or measured.

In this work, it rras concluded that the sol-uËion to Ëhe problem lies in

the resonance regíon. If the frequency is too low (Rayleigh region)

there ís no shape-dependent ínformatÍon in Ëhe scattering. If 1t is too

hígh, the scatÈeríng becomes highly aspecË-angle dependent. If the

exact aspect angl-e of the target is not known, application of the Pattern

recognition t,ectrníque to magnitude-versus-frequency data obtained at

hígh frequency nay become ¿m enorrnous task because of the huge auormt
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of data that have Ëo be catal-ogued. At. resonance region frequencies,

small changes in aspect angle do noÈ cause rapíd fluctuatíons ín Ëhe data,

yet there is shape-dependence of the data. For the objects studied in

thís ínvestigatíbn, there appears to be enough information ín one or tI^Io

octaves (íf the lowest frequency used is $, one octave wouLd be hr)

of radax bandwídth to alLow separatíon and classífication of radar t.ar-

gels. Thus the design logic here is based on tr^io const.ituents: Ëhe

use of lower radar frequencies as díscrí¡oinants [45], and data process-

Íng by pattern recognition Ëechnique to achieve target identification.

Based on digital spatial- frequency fÍlteríng of curves of the radar

return versus the radar frequency, algoríthms r¡hích optímize separatíon

between pairs of input data rn'ere developed.

From the results obtained by the above technique it is evidenË that Ëhere is

enough information in Ëhe data contained ín one or t\^ro octaves of reson-

ance region freguencíes for a radar to discriminate beËween targets that

are the same in size but different in shape. To achieve identíficatíon,

Ëhe wavelengËh need be just short enough for the differentiating features

to be at l-east a quarter-waveLength apart. WiËhin the lÍrnit.s of this

restriction, however, the wavelength should be as long as possible to

minímize aspect angle-dependence. It ís also concluded that a practical

mu1-tifrequency radar system Ël.at can measure phase and cancel out polari-

zat,ion effects by means of the method developed in this t,echnique is

feasible. Such a systes gen províde data suítable for pattern recogni-

tion algorithms. For the ptrase rneasurenent to be absoluÈe rather than

relative, the phase of Èhe backscaÈtered field musË be known

at one frequency. Ttlis can be ensured by choosÍng a frequency lon'enough



for the Ëargets

been shov¡n that

of

l-ft

2L

interest to be jrr the upper Rayleigh region; it has

this region the phase shíft is zero.
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From Ëhe revíeÍr of various available sígnature comparison Ëechníques

it Ís reaLized thaË these meËhods are applicable onl-y to a restricted

cl-ass of objects whose characteristic scaËËering behavíour is known ø

prioz"i. Thus such an approach to i¡verse scatteríng problems can at besÈ

provide a partial- solution. Furthermore very little insight to the

physical- phenomena is províded by such approaches.

SINGIIIARITY EXPANSION METHOD (SEl'f)

SEM provÍ-des a neÍr approach [6] to the problem of the i¡rteracËion of

el-ectromagnetic fields hrith bodies l-ocated ín free space or in other

símple nedia. The basic idea Ínvol-ved í¡r this technique is to expand

the solutiàn to an el-ect.romagneËíc interactÍon problem Iscattering prob-

Iem, propagation problem, or any linear problem (not necessarily electro-

nagnetic)] in tems of the singularities of the response in the complex

frequency plane. Such síngularítíes can take various forms such as

poles, branch poinÈs (and associated branch cuËs), essential singul-ari-

ties, and singularitÍes at infinity. For restricted classes of objecÈs,

such as finite sizpdobjects in free space, these s-plane singularities

are límited to poles and possibl-e sÍngularities at ínfinity [6136r82].

In the singularÍty expansion method the electromagneËic interacÈion with

objects is characÈerized in terros of quantities direcËly identÍfÍable w'ith

various characÈerÍstics of resultÍng ínÈeracËion waveforms. Some charac-
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teristics are assocíated w:í-th Ëhe object characterisËÍcs llcLuding the

presence of neíghboríng objects. Other characËerístics are associated

with the waveform of the Íncide¡rt field. Yet others are associated with

the spatlal distríbutíon of the íncident fíelds, such as speciffed by

the dírecËÍon of Íncidence and po1-arízation. ithat is in effect accomplish-

ed through this techníque is a deconposítíon of the inËeractíon probl-em

into various quantítíes which depend on differenË variables of the problem.

The dependence of the ínteractíon on different variables can then be

separately considered resulting in a considerable simplífication in under-

standing how the resulting electromagnetic ínËeraction can vary over all-

possible variaËions of the paråmeters of a particular problem being con-

sidered. This effectively extends the complexiÈy of the objecu geometries

one may be r¡ill-íng to consider for detailed calculations.

Based on the fact that the electronagnetic ínteraction probleu coul-d be

decomposed Ínto various quanÈíties which depend on different variables

of the problem, some sche¡res for detection and discrimination of radar

targets have been proposed 147,63,83]. Moffatt a¡rd Mains [63] have re-

cently suggested the concept of using Èhe cornplex natural resonance of

objects Ii.e.singularitíes of the object response waveform in Èhe complex

frequency pl-ane] as a tool in target discriminatíon. They make use of

the fact. that Èhe posítíons of the natural resonances in the complex

freguency pl-ane are excitation i¡rvariantri.e., they are not a fr¡nction

of aspecË angle, and that in general only Èhe first fer,¡ low frequency

pol-es are necessary to characterLze an object [61]. Their identÍfica-

tion scheme uses a fittilg technique to achÍ-eve a quaritíËative eval-uation

of the correlat.ion beËween a measured transient waveform synthesized
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from multíple frequency scattering daLa [63] and a calculaËed difference

equ4tion waveform using dÍfference coeffícienËs (obtained fron complex

naËural TesonanË frequencies) fot a part,icul-ar scatterer. Examples of

díscrimination results obtained for Ëwo wire geometries over a wíde range

of aspects in two princípal ptanes usÍng complete (10 frequencies) back-

scatter clata.has been reported t63]. The same procedures vrere also applíed

using incomplete backscatter data, i.e., with amplitude and phase data

at cert4in frequencies arbitrarily set to zexo. I^Iith ninímal backscatter

data requireuents .esËablished, discri¡ninat,ion resul-Ës were presented

when the mínímal data are taken'fro. diiferent Èarget orientations [55,

"63]. The results have demonstrated the possibility of drastíc reduction

in the bandwfdth requirements for a mutr-tiple frequency discrimfnatlon

tadat and also that the baclcscatter clata required can be ol:tained using

near-conventional r adar systems

A similar ra.dar target recognition technique that makes use of the fact

that the complex nat,ural frequencies of a target are ín'trinsic only to

the body geometry, was reported by Va4 Blaricu¡n and'Mittra [83]. This

scherue makes use of a technique whÍch numerically extrácts the complex

resonance,s of a target fiom a Èirne signat.ure tB4]. The recognitlon tech-

nique suggeÉted.by Van tslaricum and Mittra [83] applies Ëhis rnethod to

reduce the digttizecl backscattered time signature Eo a collectíon of corn-

plex frequencles which, as, shown by Mains and Moffatt [55r63], character-

izes the scatterer. Then these frequencÍes serve as the ihput to a

.pattern recognitj.on algoriËhm r/rhich compares these extracted poles to

Ëhose in a catalog to iclentify the target. The basic dtsLinction beËween

thís scher" "n.i the Mains and Ì.loffatt [55] scheme is thä forrn in which
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nìeasured data are compared with target dictionary informatfon. Malns

and Moffatt generate a given t.ransient waveform based both on Ëhe

measured waveform and a given dictíonary entry. This waveforrn is compared

with Ëhe measured waveform. The scheme reported ín Van Blarícum and

MiÈtra [83] exÈracts the nat,ural frequency content directly from the

measured waveform, and the natural- frequencies themselves are compared

with dictionary entríes.

Agaín al-l these target recognition schemes based on the singuLarity ex-

pansion meËhod are símp1y signature comparison techniques. Thus their

applicaËíon is límited to a restrícted class of objects whose character-

istic scaËtering behaviour is knor,¡n a priori. Further¡nore polarizat.ion-

depolarizatíon aspect of the síngulariËy expansion meËhod has not been

exploited in these techniques.

POLARIZATION UTILIZAT ION

The problem of polarization and depolarization have gained a considerable

amount of atÈentÍon ín recent years; in optics, due to the advent of the

laser and coherent light; ín radio physics, due t,o space serrrmuniq¿¡len

and the more exacting requirements on theoretical predictions for scatter-

ing by rough surfacesìand radar targets. The possible application-of the

phenomenon of depolarization in the inverse scatterÍng theory for better

target identification/discrÍmination under various difficult siËuations

needs to be Ínvestigated. Rigorous equat,ions describing the depolarized

echo of radar reflectors as a function of their ptr-ysical shape and the

poLarizational state of the incídent lrave are known I7r8r77J. Th-ese

r.7
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rel-ations could possibly be used i-n recovery of target shape and mater-

ial i¡rformation from known depolarizatÍon characteristics of the target.

An exhaustive treatment of the depolarízaËíon caused by flat or rough

surfaces [7'8] reveals that physÍcal opt.ícs prédicts a cross-polarized

componenË in the backscat,tered direction whereas geometrical optics

fail-s to uncover ít. Starting \,i.ith Ëhe SËratton-Chu-Sílver irrtegral-

1,751 and by applying proper boundary conditions and resol-ving the scatter-

ed field ínto parallel- and eross-polarízed components, integral repre-

sentaËíons for the depolarlzatio¡ ratfo are obtained. This expression

is.a function of the shape and material composítion of the scattering

obj ecË.

To the best of the author¡s knowledge, so far, the applicatÍon of the

depolarization characterÍstics to the i¡rverse scattering problen (a1--

Ëhougþ with a l-iníted scope) r,ras attempted only by Erteza and Doran

[32,33]. Although they call-ed it t'application of the concept of differ-

ential- reflect.ivity", however essentíal Èo the determination of the r:n-

known parameters úras the measurement of the ratio of the povier densities

i¡r two cross-polaxized components of the scattered fiel-d. Erteza and

Doran [32133] presented a method for the determinatíon of the permit-

ivity and permeability of a large (compared with wavelength), smooth

convex body, using a ray tracing technique [26] for vect,or fields. Im-

plementation of the method involved the measuremenË of Èhe ratio of two

components of a reflected fiel-d for Ëwo distinct source-targeÈ-scattered

f iel-d point configurations, r^r-ith monochromatic, lÍnearly polarized

íl-h:mínatÍon of the targeË. This differential reflectivity technique

essentially circtmvenËed the bor¡ndary-value probleu and l-ed directly to
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the integral- expressions for the scattered ftelds. Although a Laxge

number of símpl-ifying assr-rmptions tüere made in order to acconplibh

evaluation of these integrals [32], the resulting fíel-d and power ex-

pressíons contaín as first-order terms ídenËícal oipressions Èo those

that r.rould be obtainable by a straightforward geometrícaI-optics approach.

Thís provides a check for the Erteza and Doran [32133] approach and

also ímpIíes the feasibílÍËy of the use of the depolarizaËion character-

istics for the solut.ion of a larger class of inverse scaÈteríng problens.

A possíbility of incorporating the depoJ-arization raËio in the scatter-

íng matríx (SM) representation [15 r23r34,39] has been í¡rvestigaÈed. - In-

version of the scatÈerÍng matrí:< is expected to yiel-d target informa-

tíon as fr:nction of Èhe depolarízaÈion ratÍo and the aspect angl-e. Some

special radar target scaËtering maËrices are l-isted by Huynen [39], and

Ëheir application to rough surface scattering is presenËed. This approach

níght provide a better understandíng of the physical aspects of Ëhe tar-

geË/cluËter problem. A study of depolatízed backscaËter by ChytiJ- [28'

29] showed thaf for curved surfaces Èhe depolarizaÈion ratio On de-

creases as ka-n (where k = 2nl\) r.rith "a" as Ëhe characterísËic dimen-

sion of Èhe scatterer (i.e.,width of striP, radius of círcular cylinder,

etc.) and 1 < n < 4. Various ínvestigations [40,56,74] have revealed

that the polarízatíon characteristics of the radar return signals from

the atmospheric fo:mation (i.e., clouds or aËmosPheríc precipítation)

cont.ain Ínfornation about the phase sÈate of the water as well as shape

and orientation of the particles ín the formation. This ProPerty of the

po1-arization Ís already ín use for radio meËeorol-ogical ínvestigaÈions

of the shape and orientaËÍon of cloud and precipitation particles aûd
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al-so to anaLyze their phase state f74J. Finally l-t is pointed out that

the targets differ from Ëhe "ínterference-refLectors" ín the medíum

Ëhrough their characterístic shape and sËructure. Therefore Ëhe polari-

zatíoî-transfol¡ring properËles of the targèts should provide an adequate

means for the identífication of the said shapes buried under clutter.

Thís makes the study of the correlation between the depolarizaËion Po$7er

and the shape characterístics of reflectors even more desirable when

dealing r^riËh ínverse scatteríng soluËíons.

1.8 UTILIZATION OF DIFFERENTIAL GEOMETRY IN TNVERSE SCATTERING

PROBLN"fS

BesidespoLarLzation-depolarization characteristics, another asPect, i.e.,

differentíal geometry as relaËed to the surface profíle inversion has

been given very liËtle importance in inverse scatËeríng investigations.

It is to be noted Ëhat for the veeËor treatment of Ëhe scaÈËering at

ühe surface of a convex three-dímensional object, as is the case here,

differenËial geornetry provides additional insight to Lhe physicaI phenom-

enon that governs the interacËion beÈv¡een the objecË and the electromag-

neËíc fields. In differential geomeËry there are classical- problems

concerning closed convex surfaces in three-dimensional space which can

be intimately related to Èhe electromagnetic problem of profile inversion

of closed convex shaped scatterers. In fact one such probl-em, the so

called "l'ünkowski problem" [38164] ís being studied in the context of

the present ínvestigation. It appears Èo be possible to combine the

mathematical concepËs of the Mi¡rkowskí problem r^'ith the po1-arization-

depolarization aspecËs of the eleetromagnetic scatteríng concepts to set
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up a systeJn of equations for the recovery of the surface of the scatterer.

In this invesiigatÍon the fund.amental link between electromagnetic theory

and the differential- geometry is provided by the Gaussian curvature of

the scàtterer at the point of inteirest (i.e., specula.r point). The

Gaussian curvature, being an Lmportant parameter in differential geoinetry

and at the same Ëime'related to the backscattered cross-section aL a

sufficiently high frequency [41], allows one to relate the results of

dífferentfal geometry to the electromagnetic problem of inverse scatter-

ing. A detailed. discussion of Lhis aspàct of the investigation is pro-

vided ín Chapter Two.

In sumrnary, though there exísts a large body of literat,ure dealing with

the drrect scat.Ëering problem, the number of treatíses dealíng with the

fnverse problem are relatively few. This is due'priruarily to the complex-

ities assocíated with the inverse problem. For one thing, it would be

a loË simpler to exLracË the quantitatlve information regarding the

propertíes of a scattering body from the scatËered signals if these

scatÈered signals were derivable in closecl form. UnfortunaLely, even

the sûmplest of scatteríng problems tends to yíeld solution in the form

of slow1y converging infiníte serÍes, from which the desired ínformaËion

can hardly be obtaíned. '.Secondly, many of the ínverse problems do'not

lend thenrselves to a formulêtl-on fn terms of línear matri-x- or integral:

equations; and, consequently, sophlsticated techniques such as polarf-

zation-depol arlzat,íon characteristics and other systems approaches are

required .to resol-ve them. It ís. to be noted that even when it is

possible to descríbe the inverse problem ín terms of a linear mat,rix
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equation, the resulting equation ís oft.en ill--condiËloned, and íËs

inverse ís unstable as was pointed out earlíer ln thís chapter regard-

íng the Bojarski-Lewis ínverse problem. Special- techniques are again

necessary to handle these cases.
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ehapten ü,to

.MNqEOWSKIIS PROBLEM AS RELATED TO ELECTRoMAGNETIc INVERSE scATTERING

2.L INTRODUCTION

For the vector Ëreatment of the scatteríng at the surface of a convex

three-dímensional- object, as is the case here, differential geometry pro-

vides additíonal insight to the physical phenomenon that governs the

ínteracÈion between the object and the el-ectromagnetic fíelds. However,

differentíal geometry as related to the surface profile inversion has

been given very Lítt1e import,ance ín inverse scattering investigaÈions.

In differentíal- geometry there are classical problems concerning closed

convex surfaces which can be intí¡nately related to the electromagnetic

problem of profile inversíon of closed convex shaped scatterers. In the

context of the proposed ínvestigation there are two such problens in

dífferenÈial geomeËry concerning closed convex surfaces in Ëhree-dimensíonal

sPace' i.e., surfaces which are Èhe ful-l-boundaries of bounded convex sets

in three-dÍuensíonal- space. In these cases the paremeter surface is the

entire unit sphere and the surface Ín space ís its topological ímage [64,

80]. These problems concerning such surfaces can be formulated as folloiss

[64]:

(i) Minkor¡skirs probl-ern: The Gaussian curvature K is given as a

posiËive function of the direction of the normal to the surface, i.e.,
the spherical ímage of the surface is arbitrarily prescribed. The exist-
ence and urriqueness of a closed convex surface havíng the prescribed

spherical Írnage is required to be proved.
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(ii) Chrístoffel-Hurr'¡-l-tzrs problem: Thís problem is the same as the

Minkowski problem except that the sum of the príncipal radii of curvature

(or, sËaËed otherw-ise, the ratío of the mean curvature to the Gaussian

curvature), insËead of the'Gaussian curvature, ís prescríbed as a posiËive

fr¡nction of the directÍon of the surface normal. Íhe existence and

uníqueness of the convex surface having this properËy are required to be

proved.

Thís chapter deals with the concepts of differential geometry and

the Minkor,rski problem in partícul-ar. In SecÈíon 2.2, the transformation

of the object surface onËo the uníË sphere via }finkowskits support func-

tion [64180], which ís an ímportanË step tohTards the foroul-ation of the

Mí:rkowski problem, has been discussed. The mathematical sËaËemenË a¡rd

some curvature rel-ated formulas of the probLem itself have been developed

Ín Section 2.3. The geometrical optics relationship [261421 between the

scatËering.- cross-section and the Gaussian curvaËure, along with its

appl-ication ín lÍnkÍng up the Minkowski problem to the inverse scatter-

ing problem, has been pointed out in'Section 2.4. Finallyr ân example

of a Èwo-dimsnsleral case, where it is possible Ëo obtain an expl-icit

solution of the inverse electromagnetic problem directly from the concepts

of geomeÈrical considerations, has been presented ín Section 2.5. At this

poinÈ it is to be noËed that in the present investigation no aÈtempt has

been made to actually solve the MÍnkowski probl-em, but the related differ-

ential equaËions have been used in Chapter Four to derive a condítion

which relates the surface parâme-ter of the scatterer to the radar ueasure-

ables.
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)t MINKOWSKT T S SUPPoRT FIINCTTON [ 52 ,64]

In Fig. 2.L, let î(*ryrr) be a closed conve¡t surface (Gaussían curvature

K>0)containlng the orígin in íts Ínterior. The ínner uniË normal-

(t,nrE) defínes the spherical ímage of the surface. Let p,(E,n,6)

rePresent the distance from the orígin to the plane tangent Ëo the sur-

face at the point where the inner normal_ is (trnrÇ) (see Fig.z.L).

p'(Ernr6) is defined in this manner for al-l- values of Ernr6, satísfy-

íng E'+n'tÇ2=L.

The extension of this functíon to al-l- variabl-es Errlr6 as a homogeneous

function of degree one ís cal-led the Minkowski support function. i.e.,

M(8,n,ç) = (E2+n'+Ç")tlz. prI
(E'+n'+Ç')'l'

ãl!*n\*r"r=t

Ç-t
' (t'*n'+Ç')tl z '

[80] for homogeneous

t

,

t

t

r¡here the subscript denotes partial- differentiatíon with respect to trnr6.

The function M is very useful in the treatrnent of Mi-nkowskits problern,

therefore some of Íts properties are noted next.

(Ez+n2+çz¡t/ z

It satisfies the Euler relations

degree one, í.e.,

FEE*ntEn*r"tç=o

EM- *nM +fM =Q-gn 'nn -rß

ilCE * nt6n 6"ç6 = o

. (2 .1)

function of

(2.2)

(2.3)

(2.4)

(2.5)
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Sínce the Gaussian curvat.ure of ttr-e surface is posiÈive, Ëhere corresponds

to each poínt on the unit sphere exactly one poínt on the surface having

this point as f-ts spherical- ímage. So the coordinates xtytz of the

surface may be consídered as functíons of trnrÇ withín the restrictíon

E'+tI'+Ç'= l" From the definiËion of M given above it is evidenc that

(see Fig.2.1)

ã.î=M(8,1,6)

But sÍnce â'dã = 0 because ñ ís a normal to Î(*ry,z) , it, follows

that
r dâ = dM(trrlrÇ)

with dâ = (d[,dn,dÇ) r or¡ ín coordinate form

*=MErY=MrL, ,=Me (2.6)

Thus, once the Minkowski supporË fr¡nctíon is given over the enËire r:nit

sphere, the correspond.íng cl-osed. convex surface is knor^n. Another Ím-

portant observation which follows fron (2.6) is that if two supporÈ

functions differ by a linear functíon, the corresponding surfaces differ

by aÈ most a transl-ation.

MATIIEMATICAI STATEMENT OF THE MINKOWSKI PROBLEM

In this section the derivation of various formulae whích yield the cur-

vature properties of the surface Î are presenËed. For this purPose'

the forrnula of RodrÍgues [80] which holds along a line of curvature is

used:

^^dX*Ddn=0

Ilere D is the principal- radius of curvature, and â the unit normal.

In components, thÍs uay be rìtritten ín the fom:

2.3
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dx*Ddf=Q ; dY*Ddr¡=6 i dz .uDd6=0

^w-ith [ = (xryrr) and â = (Erîr6) . It ís assumed that the surface is

deËermíned by the support funcËl-on M through (2.6), and hence all

quanËit.íes assocíated wÍth the surface are likewise determined by M

as homogeneous funcËions of an appropríate degree, i.e., from (2.6)

dx=MrrdE+MEndn*trrUt

dr=MnrdE+Mnndt*Mn6dE

dz = Mrrdt + M.ndtl * t66UE

Thus Rodriguest formul-a uay be rer¡ritÈen as

CMEE+D)dE + Mrndn + MrrdÇ = 0

"ntdE 
+ (M 

n+D)dn 
+ Mnrde = o

"CtdE 
* tnun + (M66+D)dE = 0

It is to be noted that the variabl-es Erl ,6 are to be ÈreaËed as i¡r-

dependent variables íri the above equations and in all- the subsequent.

formulae involving the support function.

The hornogeneous linear set of equaËions (2.7a) to (2.7c) for the

quantities dt, dn and dE have a non-trivial solution since principal

directions exist, and the principal radii of curvature O, and D, are

thus rooËs of the following determi¡rantal equaËion

tEE*o 
"En 

*Eç

(2.7 a)

(2.7b)

(2.7c)

M M +D I{nE nn n6

M M M +DÇE 6n ÇÇ

=Q (2.8)
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Frorn (2.3), (2.4) and (2.5) it is evídenr rhar Ëhe dererminanr of rhe

maËríx of the lf.o Cwhere irk = tr[rÇ) vanishes because thaÈ system of

equaËions [i.e., (2.3) to (2.5)] is satisfied for at Least some sets of

values of the (Ernr6) v¡trích do not all vanísh símultaneously. using

thís fact, the above deÈernínantal- equation can be r.rritten as a quad-

raËic equation, í.e.,

o2 + Cvtr' * 
"nn

The quantiËy S[M] is the

+ I'f--)D + S[M] = 0
çç

following sum of diagonal minors:

slMl = (r"rrrunn-utn) + Cnrrucea|.) * %n"ce*ir)
Fron this quadraËic equation for D,

the product Or.O, of the principal_

Ëions of the direction of the normal

"tE 
* 

"nn 
* *ÇÇ = -(o, *

S[t"t]=¡.O =l/KL2

Here K is the Gaussian curvaËure of the surface at the poínt nrhere the

surface normal is â(g,1116). The equations (z.g)-a¡rd (2.10) c¡n now be

viewed as dífferential equations for the support function M ç'Tren the

val-ues of (D +D ) and D D are given as functions of Ëhe variables
L 2 L2

f, ¡ and Ç. It is evidenË from Ëhe staÈement of the }Linkorn¡ski problem

and the Chrístoffel-Hunritz problem given in Lhe introduction Ëo thÍs

ehapter that (2.g) pertains to the Christoffel-Hun+itz problemrwhereas

(2.10) pertains to Minkor¡skírs probleu. Thus based on (2.10) and (2.6),

Minkowskirs probleu can be stated as: Gípen the fztnction K(8,n,6),

find the fzarctions xCE,n,6) , yCE,rr,6) , z(E,î,6)

relations for the sum D +D andt2
curvat.ure of the surface as func-

to the surface are obtai.ned as

or) 
'

(2.e)

(2. t_0)
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2.4 },In{KOWSKITS PROBLEM AND TITE ]]\IYERSE, ELECTROMAG1IETIC PROBLEM

From the stateÍent of the Minkowski problem, given in the previous

sectíon, it is clear th-at i-f the Gaussian curvature of a scatteler can

be rel-aËed to the elecLromagnetic fie:Ld quantities thís problem of

differential geometïy is exactly ttle same as th-e problem of recovery

of tfue surface profile of a scatterer from the known far-fíeld data'

It is knov¡n [42] that ín the geometrical optics region ttre scattering

cross.-section O in the direction of any reflected ray is equal to

R 14K where K is the Gaussian curvature at the point of reflection and
e

R is the energy reflection coefficient [26]. Makíng use of this re-
e

lationshíp, Mínkowskits problem câfr direcËly be used to anaLyze the

i¡rverse problenn. It is clear thaÈ when o and *. are knorqn for all

values of their argr.rmefits, [i.e., 0rÖ] ín Ëhe geometrical optics region,

the Gauss-ian curvature K is determi¡red over the henlsþhere 0 < 0 < Trl2

of the unít splere. This unit sphere, on wtuich each poi-nÈ corresponds

to Ëhe direction of the normal- at one poinË or, an" scattererts surface,

is called tÏr-e spherical ímage of ttrat surface. As mentioaed earlier'

Minkowskits problem is the determination of Èhe surface when its Gaussian

curvature is given on ttre entire surface of Ëhe spherical image. IË

tras one and only one solution for any sufficiently smooth positive func-

tion KCO,ô) úr-ich satisfies the condition [64,78f

K-t (0,ö)nCo,Q)dCI = o (2.11)

TTere. âCO,ö) Ís the unit normal at the poínÈ 0,Ô ; ¿t0 is Ëhe differ-

enËial surface of the un-it spLere, and Ín-tegraËion exte¡'ds oyer th-s

wtr-ole sçrh-ere.-. Tñrrsr corre-sI'olLdÍng to Ëhe Gaussian curvature K given
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by the geometrical optics approxímatLon [42] on one half of the unit

sphere and by arbiËrary Isubject to (2.11)], smooth continuation over

the remainder of the sphere, there exísts exactly one scat,terer. The

scaÈterer shape is determíned by the solution of an elliptic parÈial

differentíaL equation ínvolwing K(0rô). Therefore, it is concluded

thaÈ the shape of all- parts of the scatterer are affected by the arbiË-

rary continuat,ion of K. Consequently, the Gaussian curvatures K pro-

víded over the hemisphere o<0<r/2, do noÈ suffice to determine the

shape of the scatterer nor any part of iÈ. The resul-ting ínverse prob-

le¡a has too large a family of solutions. However, if two fr¡nctions

o+(0'0) and o_(0r0) are given, corresponding to two different incident

l^'aves comíng from opposite direcËíons, and aLso íf *. is knov¡n, then

geomet,rícal opËics determines K over Ëhe whole sphere. rf this K

satisfies (2.11-) (as it rnusÈ if it actuaLly corresponds to a surface),

then Ëhe ínverse problem has a uníque solution. UnforÈunaÈel-y the cal--

culatíon of this solution, in the general case, requires the soluÈion

of an elliptic partíal differential- equatíon whose solution ís extremely

diffÍcul-t and does not l-end iËsel-f to nuroericaL computational techniques.

Thus, in this investigation, no attenpË has been made Èo actually solve

Ëhe Minkowski probfcm, rather Ëhe differential equation of the Mínkor¡ski

problem has been used to derive a set of equations ¡¿hich relate the sur-

face paremeÈeïs to the radar measurables. In this context, iÈ is pointed

out that in Èhe case of a two-d'imensional- convex body of revolution,

C2.10) could be reduced to an ordinary differential equation. Thus i¡

Ëhe nexÈ section an exanple of a two-dímensional convex body of revolu-

tion í-s presented, where Èhe ìfinkowski problem has been used directly

to yiel-d explicit solutions to the Ínverse electromngnetic problem.
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2.5 SOLUTION FoR CONVEX BODIES 0F REVOLUTION (TI4TO-DIMENSIONAL

CASE) [ eI]

As mentloned earlíer, for a snooth, perfectly conducting, convex body

of revolutíon, and ín the hÍgh-frequency li-mít, the radat cross-section

is given by Ëhe geometrícal-optics approximatíon [42]. The monostatic

radar cross-section is given by [nornaLLzeð so that the radar cross-

section of a sphere ís given by (t = T.(radius)21.

o(u) = nr-l (u)

where, as shornrn in Fig. 2.2,

plane wave and K(u) is the

g = f(x)
I

t

u describes Ëhe

Gaussian curvature

(2 .11)

direction of the incidenË

aË the speeular poínÈ.

l_s

on

For an axi-syrmetríc body, whose geometry

principal radií of curvat,ure at any point

shown in Fig. 2.2, two

the surface are given by

(2.L2)- _ [1+( ð,r./dÐ2]2
w-2 dzfldxz

The expression for p, can be obÈained straight fron Fig. 2.2 (by

virtue of the fact thaÈ iÈ ís a body of revolution), and the expression

for p is obtained by usíng the known definition of the radíus of
2

curvature at any point of a curve in differential- geometry [31153168].

Thus, the reeiprocal of the Gaussian curvaÈure is given by

K-r = p .o - f(x)[1+Cdf/dx)2]2
'1 2 dzfldxz

MakÍng use of the fact that

(2.L3)
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d'fd,df-d.1,.df
ã;t = d" td"J = d.l tã;/a-d dx

,df-.,3 d2x=-L- o*t df.z

SubsËituËíng this into (2.13), Ëhe reciprocal of the Gaussian curvature

can be rewrítËen as

,,-r - f (x)[f+(¿xldr)2]2
(dxldf ) (dzx/a*)

(2.L4)

Usírrg (z.LL) and (2.14), the expression relating the roonostaËic radar

cross-sectíon to the scatËerer surface parameter is

o(u) = nr(x) *i#ËÉ" , (2.15)

dxwhere x' = ãF
Eq. (2.15) can be solvéd for f

I f' rxr xtdxtI fdf =l* =+l- J Z Tr ) - r1L(_r1212f=o x.=o [t+(xt ) 
2] 2

!¡Íth the substítution xr = Èanu (see Fig. 2.2), the solution for f.

in terms of the angle u is obtained as

f (u) = { + f 
to(,r) tanu d(tanu)1rl2

t'Jo [l*tanzu]2

= { # f" oC"l sín(2u) ¿u ¡t/z (2.L6)
o

Thus, (2.16) gives the f coordinate of the r¡nknown shape as a fr:ncËÍon

of a uhird params¡er, u. A compl-ete sol-ution woul-d require a simílar

equaËion for x(u). This can be accomplished by considerj-ng the alter-

nate form for the Gaussian curvature, i.e., (2,13), which along lriLh

(2.[) gives
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$= rf[1+(fl)1]2
(d/dx) (f t )

where ft

Solving'for

rdrith the

df
d"

dx

x

x=o
T-
x=

and Íntegrating

- ¡fl. rtclx=x=-l
lTJ

ft=-

substitution,

x(u) = * f"
o

1Íu=?tJ
o

odf I

f [1+(f ,)'J2

fr = L/tanu (see Fig. 2.2) yíelds

o(u) . d(l/ranu)
x(u) [l+(f/tan.r)2]2

d9 sin2u du (2.L7)

Thus, (2-L6) and (2.17) provide the circular cylíndrical coordinares

of the scattering body tQ.L6) must be applied firstl as a function of
the par¡meter u. In order to recover Èhe corplete shape of the scatËer-

er, the radar cross-section must be known for the r^rhole range of the

aspect angles Os,rsr. An application [91] of this explicit sol-uËion for
computing some numerical resuLts suggests that a large varieÈy of body

sizes and shapes can be solved ¡,rith thís two-dimensional- soluËíon of the

Ifinkowski problem.

As uentioned earlier, Ëhe I'finkowski problem and the Christoffel-Hun¡itz

problem reduce Ëo questions concerning nonl-inear differentíal equaÈions

of elliptic character. consequently, various propertíes of (2.9) and

(2-10) including existence and uniqueness of their solutions are con-

cerned with questions related to the field of elliptic diffe_r

0F 
^tÁ¡{tTO&A

----r--

equaÈíons. The first unÍqueness proof for the Minkor,¡ski
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given by }finkowski himseff [48]. Under tt¡-e assumption that tlLe solution

is anal-ytic, Lewy [72] gaye a uniqueness proof of the re.levant Mínkor¿ski

probl-em. Hîs work on tie existe¡rce of a solution is discussed ín detail

by Stok-er t 78] r^Iño also gave a parËicular1y simple proof of a uniqueness

the-orem wfuich- requires mere.ly a few derir¡atives of the surface.

In the context of tt¡-e preserit investigation, where the rnaín aim is to

'1'ncoïpoïate in Cz.g) and (2.10) as boundary conditions on Ëhe scaËter-

íng surface, tb-e matÊematical details of the existence and uniqueness

of the solution of (2.9) and C2.10) are not ÍmporÈant. Thus rhe detail-

ed mathematical treatment of Èhese probleus are not included here,

However, an excellenÈ analysis of tb_e soluËions of C2-9) and (2.10)

has been provided by SËoker [78].
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3.1

chapter three

A TIME_DOI4AIN APPROACT TO ELECTROMAGNETIC SCATTERING

INTRODUCTION

The classical approach to the electrornagnetíc scatËering problem is an

analysís based on the differentíal equaËíons for Ëhe fíelds, together

with the boundary conditions at the scatterer. In general this approach

has been confíned to a single, but arbitrary, frequency. rn the last
seventy years, a nr:mber of valuabl_e resulÈs have been produced by this
method, however, only a very restricted class of canonical shapes had

been treated. Moreover, exËension of ttris approach to other target

shapes is becomíng more and more difficult.

Contrary Ëo this, Ëhere has been rel-atÍvely lítt1-e work done on scatter-

ing probl-ems with general tíme varíation although the most s6n¡mon radar

signature of objeets is the tíme variation of the scattered signal.

Therefore, a fundamental and useful ¡rethod for the computation of the

field scattered by an arbitrary shape ¡¿ould. be the treatment of an i¡-
pulsive incídent I^Iave. The primary conceptual- time d.omai¡r model , i.ê.,
the impulse and relaËed Ëransient response waveforms of a scattering

object, first proposed by Kennaugh and cosgriff L44J, has been discuss-

ed Ín secËion 3.2. Further-more, the inËerpretation and application

of such a prímary concePt.ual model for electromagnetíc scaÊtering is
also presented ín tt¡-is section. Another efficient technique, makíng

use of the space-tíme ínËegral equatÍon which is known as the t'Impulse

response augmenÈation technique" for obtaining the far-field electro-
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magnetic response of scattering objects [9 r1'2rL3f will be discussed í-n

Sectlon 3.3. In this context, a bríef derívation of Ëhe space-time

íntegral equaËion for índuced surface currents on the scaÈterer will-

also be presented in thís sect.íon. In Èhe impulse responsê auguenta-

tion technique, ín order to obËaín an estiuate of the leading edge (or

equivalently, the high frequency) response of the Ëarget, the physical-

optics currents have been assr¡med. ThÍs assumpÈion leads to polariza-

tion índependence by virtue of the fact thaË the impul-se response whÍch

results may be wrítËen as the second derivative of Èhe targetrs project-

ed area as shown in Fig. 1.2. It ís then requíred to determíne as Ëo

whether or not the polarization dependent effects appear as singuJ-arity

functions at Ëhe leading edge of the ímpulse response. It is the fínd-

ing of the ínvestigation by Bennett and co-{irorkers [12] that these effects

indeed do appear andrto a firsÈ approxímation for smooth convex bodies,

are functions of the difference in the principal radii of curvature at

the specular poínt and have the form of the fÍrst derivative of the

projecÈed area. These results along wl-th their possibLe applicatÍon ín

the problem of profil-e inversion of smooth, convex, perfectly conducÈ-

ing objects will- be discussed in Section 3.4.

THE CONCEPT OF fiTE TTME DOMAIN MODEL TN ELECTROI"IAGNETIC

SCATTERN.TG PROBLM{S

In tÍme domain rnodeling, the scattering process is modeled by a passive

1ínear ¿ç.e-port with tíme-invariant parâmeters. The input is E(t.), the

output f(t), and the Ëwo-port has an impul-se response fr¡nction FI(t).

The Ínput and output are rel-ated through the convolution integral as

3.2
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The coordinate frame, for defínÍng the varíous quantities in (3.1)

and to explaín the scalar treatment of the electromagnetic fields, is

shown ín Fig. 3.1. With plane wave í¡rcidence of íntensity e(t),

transverse components of the scattered field with intensity r(t)
(nornalized) are produced at an arbitrary location í¡r the far-field

of the scattering object. rn order to remove the tÍme delay between

scatterer and observer, a new Ëi-me scale t.t = t-R/co is íntroduced.

Here R is the distance of the observer from the origin of the coordin-

aËe system. and .o is the free space propagation velocÍty. The input

U(t') issi-uply ECt) r^i'ith t repl-acedby tr. FortheouÈput f(t'),

Ë is replaced by Ër in F(t). The ímpulse response wavefora rr(tt)

is the response when the ínput E(t') is ímpulsíve, i.e., g(t.) = ô(tt).
The l-ower integrati6n fími! tr in (3.1) is Èhe ínitial value of tl

I
aÈ hthich Èhe ímpulse response waveform FI(tt) departs fron zeto. This

linit is, in general, not zero since Èhe initial- contribution need not

arrive at a time t = R/co. The conceptual two-port model has a frequency-

dependent phasor response G(jo) r¿hich is related to the radar cross-

sectíon of the scatterer as

oû,r) = rlc(jo) 12 ß.2)

The freguency-dependenÈ phasor response G(jo) and the time-dependent

'impulse response ¡saveform frCtt) forn a Laplace transform pair

f-
F(r) = J Fr(r)Ecr-t)dt

t
I

cfir) = "n f 
irc.,¡"-jdt'¿¿,

o

rr(t') = ã+{ | îarl"t'j'do

(3.1)

(3.3a)

(3.3b)
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c(") = "o f

48

(s = jtrl)

æ
-o+ 

t
Fr(t')e "' dtt (3.4a)

0

r'r(r') = z*+{J 
n'äc"r"""d"

joô

The í-npu1-se response waveform fr(tt) is the tíme-dependent elecÈro-

magnetíc fíel-d sËrength produced aË the output terminals when the ínput

E(tt) ís an Ímpulsive plane electromagpetic wave, i.e., U(tt) = ô(tr).
This inpulse response of the two-port conceptual model is dependenË on

the orientaËion of the scattering objecË, Ëhe observaËion angle (but

not range) and Ëhe partícular transverse component of the scatËered.

field sel-ected. Once fr(tt) is knor¡n, the response r,raveform for any

incident waveform is determined by (3.f). Tr^¡o other particular res-

ponse waveforms of inËerest in the tÍme domain study of electromagnetic

scaËt,eríng are defined as follows 3

the step response
¡æl'u(t', = J., rr(t)u(t,-r)dt

I

and the ramp response
l-r'*(t') = J rr(t)(t'-t)u(t'-t)dt
ri

The Laplace transform relations in (3.3) and (3.4) state rhat rr(tt)
and GGr¡) can be derived from one another. But GCjo) is known

exactly for only one fi¡rite three-dimensional shape - the sphere, and

even for this shape, the transformation to obtaÍn t(t,) cannot be

achíeved exactly. Th-us, a study of the scattering probleu Ín the time

domaín consists mainly of th-e development of a reasonable estír¡ate for

(3 .4b )

(3.s)

r tt
= 

J ., 
Fu(t) dt (3 'o)

1
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the irnpul-se response r¡Taveform fr(tt). A nr:mber of distinct advantages

of the tíme domain approach, as well- as some disadvantages have been

poÍnted out in recent ínvestigations 19rLZr45161-1677. In the opínion

of the auËhor, the fo1-low-íng reuarks justífy the use of the time domain

approach in the present ínvesËigat.ion:

(í) The impul-se and transíent response waveforms of a scatteríng ob-

ject must be rel-ated in a rather direct lray to the geometry and to the

constitutive parameters of the object. It has been shor.¡n 144r6L7,,for

example, that Ëhe area beneaËh the ramp response waveform is proportional

to the RayleÍgh coefficíent and hence, to the voltme of the scaËterer.

More fundamenËalI-y, however, as the ímpulsive or transient il-l-u¡rination

moves across the object, only thaË portion of the object which has been

il-hmí¡lated can possibly conËribute to the scattered field waveform.

Thereforg, until- Ëhe time when Ëhe transient ilhmínation has passed

compleËely over the object, there is a direcÈ correlatíon between the

response waveform at a given time and a specific portion of the object.

FurËhermore, tr^ro objects wtrich present initially identícal geometrical-

and physÍca1- properties over a gíven region musË produce identical

response waveforms up to the time corresponding to complete illumination

of thís region, regardless of their geometrical and physícal propertíes

beyond Ëhis point.

(ii) IË is thoughÈ that, aÈ least in principle, ít is possible t,o

íncorporaËe ínto an estí-maÈe of the wavefo:m fr(tt) all of the best

features of various approximate or asymPtotic estimates of G(s) while

at Ëhe same t.í-rÊe utíJ-izing certain r:nique features of the time-dependent

waveform. If certain estímates of e(s), whose validity is restricted

to parÈicular porËíons of the spectrum, are kno¡¿n, it is far from cl-ear
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how a consíderatl-on of these estí¡aÈes can be used to approxÍmate a

G(s) corresponding to the remal-nder of the spectrum. In the tlme

domaín, however, the estimate.s of G(s) become tíne-líniËed portíons

of the waveform, and it ís known that Èhese pieces must combine with

other píeces to produce a single waveform. CerËaín conditÍons on this

total- waveform are known from low-frequency derived uoment conditíons

Í45,6LJ. Even very crude estímat,es of hor,¡ the pieces are combined add

soue ne$r' knowledge concerníng G(s). This feature of the time domain

approach has been utilízed in Chapter Five to generate ínput data for

testÍng the proposed ínverse scattering model. There, an approximate

model for the ímpul-se response waveform of a prolate spheroid has been

synthesized by maínly using the hígh-frequency estimates.

The low frequency scatteiíng properties of any finíte, three-dimensional

object prowide interesting and useful- condiËions on the r'mpulse and

transient response waveforms. At sufficientl-y low frequencies, the

phasor response, G(s), of a scattering object can be expanded in a

Taylor series about the orígín s = 0 as

co

G(s) s I. " "otrlo rr
(3.7)

According

and a
1

to Rayleights scatterÍng theory [4,65], Èhe coefficíents 
"o

in such an expansíon are zero, r.*ril-e the coefficient ^, is

proportional Ëo the scaÈterer voh-me. It is to be noted that the co-

effícient a^ depends upon Èhe shape, orÍentation, ¡nd consËituËive2'

parameters of the scatterer as wel-l- as the polarization of Ëhe íncident

and. scattered fields. Expanding "-"tt ín the defin'ition íntegral in

C3.4a) Ín a Taylor series about the origín s = 0, and comparíng the
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re.sultíng series r¿iÈh the

r
.J o 

tttt')dt' =

f- .'rr{. ") dr.
Jo

| ,'2rr(t,)dË,
)

i'. ,""rcr, 
) dr,

Jo

seríes ín (3.7) yields,

a -0
o

=a=Q,
I

2a

ct
tr- -.n .

f 
-l 

I nf ô
\ r/ LL.ø n=__-;-

0

(3.8a)

(3 .8b)

(3 .8c)

(3 .8d)

These are known as the momenÈ condítions on the impulse response Tíave-

form F-(tt). The first three moment conditions have been used success-I

fully ín various ínvestigaËions [59-61] of the tíme dornaín scattering

problern. These three moment conditions have been ínterpreted [61] as

requiring that the net. area beneath the inpulse and the step response

waveforms be zero, and that Ëhe net. area beneath the ramp response

waveform be proportional to the Rayleigh coeffieient, 
^" , of the

scatterer:

The conditíons 'ímFosed on the Ímpulse and Ëransient response waveforms

by the high frequency scaËÈering properties of any finite, Ëhree-

dímensional object have brought forvrard important relatíonships betr¡een

the electromagnetic fíe1d quantities and the shape profile of the

scatterer. In order to derive Èhís rel-ationship, the high frequency

estimate of G(s) is obtainéd by using the well known physical optics

approximation. In the geometry sho¡sn in Fig. 3.1, a surface current
À

dis¿ribution JS over the surface S produces a radiated fiel-d in-

tensity E* aË a large distance R along the negatíve z axis, given

by
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E* = - iH "r{t'it-tnt f {ir.â*)e-jkzu, (3.e)

S

In the physical-optícs approxí-mation, ít is assumed that i, = Zâ * Ë,

over Ëhe ill-umínated portion of S , i, = 0 elsewhere. Under such

an assumption, for a harmonic íncídent pI-ane wave wÍth Ë. polarized

in Ëhe x directíon, traveling in the positive z direction, the x

cornponent of the backscattered field ís given by

ulcur)=-zft_"i(t'rt-kt) f a-.â*â,e-2jk'as , (3.10)
o Jri.cf. x y

where Ë. = â "j 
(ot-kz)

l_x

It is to be noted that in the above equations using the phasor notations,

the real- part of the complex expressÍons are íurpl-íed for the actual

time dependent fiel-ds. Thus the value of G(jo), the normalízed back-

scattered phasor response defined [45] as

ne{c(it¡)eiu:(t-R/co)¡ = çzn/"0)u"(r-R/co),

ís obtained by using (3.1-O) as

c(jr¡) ìûr I -z¡k"â-.âds (3.1-1)= Ç J'*u' -z

Frou Fig. 3.1- it is evídent thaÈ

â .âas = â-.ãl = -dA(z) ,zz

where A(z) ís the area of the scatterer surface between the x-y

plane and a cutting p1-ane at z projected orthogonally on the x-y

plane. IË follows from (3.11-) that G(s) [s = jtrl] can be written

¡r=!T -Zs(zlc )"ðac(s) = - 
"{.|- _" , ,fl ð.2 ,

z=o

(3.12)
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where 
^(z) 

is a monotonic function of z , defíned as zero for z < 0 ,

reaching a constant value A(¿) at Ëhe shadow boundary and beyond,

where z > 9,, 
^(z) 

has been redefined as the projected area function

of the scatterer later Ín this chapÈer. Integration by part,s of (3.L2),

and the substituËion of t\=Zzlco , yiel-ds

G(s) = -
-"- a" a2de) dr

dzz

In arriving at (3.1-3)

0

use has been made of the

.2
- o and d'A(z) - o

- o+ dzz

(3.4a) ímplies thaË

LI
-t
4rl (3 .13)

facÈ that

-L
for z ) 9,' ,z1O

dA(z)
dz

z=o

Comparíng (3.13) with

(3.14)

Thus the ímpulse response predl-cted by physical optics is a simpl-e r¡ave-

form equal to a multipl-e of the second derivative of Ã(z), plotted with

a time scàle such that the cuËËíng plane used to deterdine A(z) moves

r,r-Íth one-half the velocity of the incident impulsive wave (see Fig. 1.2)

starting at the neaïesÈ point of the scatterer, at t = 0 , and

reachíng the shadow boundary at t = 29-/co. The multiplyíng factor

(L/an) on the left-hand-sÍde of (3.14) depends on the partícular norma-

lization reference followed. Thus, it may vary for different normali-

zaËions used aLthough leaving the funcËíonal form of the relaËion (3.14)

r:naltered. The main advantage of this physical- optics approxÍ-mation,

i.e., (3.14), is the ease with ¡*4rich the furpulse response c€m be deter-

mined for any sTr-ape once tlre area functíon A(z) has been obtained.

In practíce, as pointed out in tlre next sectíon, substanËial corrections

must be made to the waveform predicted by physícal optÍcs; nevertheless

rr(t)=-#É+ ¡ z=
dz2

cË
0

2
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the physícal optics approxímaËíon serves as a good starting poínt.

3.3 SPACE_TIME INTEGRAI EQUATION APPROACTI

In order to gain further insight into tiÐe <iomain scattering, a more

direct approach Lo the problem, based on the space-tíme vecËor integro-

differentíal equatLon for Ëhe current density on the surface of the

scaËterer, is adopted in Ëhis section. In the following, fírsË the

space-tíme inÈegral equation for the current density on the scat.tering

surface is discussed and then the impulse response augmenËation tectrnique

[9,13] has been outl-íned bríefly.

3. 3.1 Derivation of the Space-tíme Integral Equatíon

The general- scattering probl-em is shown ín Fíg. 3.2a. E, is the mag-

n'etíc fiel-ã í¡rcident on a perfecÈly conducting body which may be vier¿ed

as the fíeld that woul-d exist if the scatÊerer were not presenÈ. This

incident fíeld sets up a current Ìo on the surface of the scatterer

as shoq¡n ín Fig. 3.2b. These currents ín turn radiate and produce the

scaÈtered magneÈic field fi". Once the surface currenËs have been

deËermined, Èhe far-field may be calculated.

One way to obtain an expression for these surface currenÈs is to start

out wíth a general o<pression for the far-fíeld at an arbitrary poinÈ

Ín space and then move this poinË in space onto the surface of the con-

ducÈÍng body where Èhe bouudary conditions are applíed. For a perfectly

conducÈÍng body, eiËher Ëhe E-field bo¡ndary conditions can be applied



55

Fig. 3.2a General Scatterj¡rg Problem

tar- ø

Equivalent Of General ScaËteríng Problem

l=â x H
.à-

\

,{"rof ield I
./ (fruu spoce)/

TIi/
\../

- Fig. 3.2b

Conducting



56

i

r'¡hich.yiel-d the E-field integral equation (EFIE), or alternately, the

H-field boundary condition can be applied which yield an H-fíeld integ-

ral equaËion (rmrE). Ilowever, ít was found [9,10] that for the case of
solíd conducting bodies the EFIB formulatíon is less appropriate, beeause

ít r'equires that the numerical space derivat.ive be taken on the surface

of the body. Therefore, í¡ thÍs work the MFrE formulatíon Ís used.

the

due

of

-5Js

The

and

The geometry for derivation of the IIFIE for

is shown ín Fig. 3.3. The vecÈor potentíal

ís given by
-!J-(st,r-R/c )ù0

bution 
.on 

,a surface S I

.JJ1

An(r,.) = h-

total magnetic field

Ëhe field produced by

I,tlorking out

Il(r , t) =

induced surface currenr

to any current distrí-

the incídent field

í^

dS?
St

+
H

the

is sirnpLy the sum

induced current

Èd,t) = E'rc',t) + v * Èo$,r)

.J

VxA.P

H. (r.
a

I
R"

0.

= t-K/ c

From thís, lÌ, may be obtained by simply shrinking the observatÍon

point to a poinE on the surface of the rìcatterer ancl then applying the

boundary- condítíons to èxpress Ê in terms of fr. rt is to be noted

thaË alternatively. an equatj-on in t.rr" of Ë can be obtained, ho*"ver

tLe nurrerl-eal computatíon of the far-scattered fie.ld frou Ë takes

somewhat longer than it does using Js [9,10]. I{ence, the integro-

differentíal equaËíon was expressed in terms of f, shrinking the
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observation point on the surface and carryl-ng out the lfuniting procedure,

onefínds+a+J
rr é _a .t I Jo(rtrtt) , Js(.trttl
H(r, t) = 2H. (r, r, * ä- J ,. f -o, . q _-a._f

xâ-as. it. =t-R/cR

Fínally, applyíng the H-fiel-d boundary condiËion, one obtains

îrcit) =âxËG,t)
oft

(3 .ls)

This is the space-tírne vecËor integro-differenËial equation for the

current, density on the surface of the scatterer. Before proceed.ing to

solve for the far-scaÈtered field from QCï,tl , it is worr,hwhíle to

comanent on soue of the features (3.15) extribits.

rË is evident that the equation for Js ,represents a sysËem of three

coupled scalar integrar equations for the three components of i ,ò

but since

ô.Ed,t)=o ,

it is possible to reduce the number of independenË equations to t!ro.

IÈ is al-so clear that the term zâ x il-rdr,tl corresponds to the usual

physical optics approxímaÈion on the ilh:minated portion of the scatter-

er. The Íntegral term on the right-hand-side of the equation for
+,JJSLr't) represen-ts Ëhe Ínfluence of curreo.ts at other surface points

on the cuïrent at, CËral. The ínportant characteristic here is that
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the influence of other currents on the currenË at (ïrtl is delayed

by R/c^ whÍch makes th,e numerical- sol-utlon of the equation feasíbl-e.
0

Tfuis retardation effect is especially ímFortant, since ít al-loÍrs the

solution of the equatfon for the currenË wíthout ínvertíng a matrix

as is requíred for the nurnerical soluËion of the frequency domain in-

tegral- equation. Actually the surface current is may be determined.

by a "steppíng on" procedure in tine [9 ,67f, since the current at time

t ís given in terms of the known incident field at that time and the

currenË on other portions of the scatterer at prior Èímes r¿hích have

already been calculated. Tfuis ín facÉ is a distinct advanËage of the

tíme domain approach over the frequency donain approach.

For obtainíng expressíons for the far-scattered field from the induced

surface current density -.frCirtl , it is approxirated thaË R is so

l-arge ÈhaE Ëhe contríbutíon of the first term ín the square brackeËs to

Ëhe integral in (3.15) Ís neglígíbl-e. In addition the followÍng assurrp-

Èion can be made (see Fig. 3.3)

I
-+

R

a* ------->

Ëhese approximaËions the expression for the far-scatt.ered field

1
r

ar

I^IíTh

is:
ÊrË,.r = Éf r€++ì x â=ds,

0 - s''

This shows that Ëhe far-fie.ld

íng to determíne the detail-ed

whicll would greatly símplify

; tr =È-R/c (3.1-6)
0

could be considered directly without tTy-

behaviour of the surface currents first,

the problem.
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3.3.2

A new technique called "The impulse response augmentation Èechnique.t

for obtaining the Ímpulse response and frequency response of an arbitrary
target over the entire spectrrm r¡as developed by Bennett and co-workers

ÍL21. The Ímpulse resPonse augÐentation technique utílízes the esÊab-

lished cornputatíonal procedure of deËermining the smoothed impulse

resPonse of an arbitrary target by nr:merical solution of the space-tÍme

íntegral- equaËion and the known variation of the ímpulse response due

to the specular return (high frequency portíon). These two results

provide' respectively, low and high frequency infornation exactly and

are cornbined in a natural- and rigorous manner t.o yiel_d the freque.ncy

response over the enÈire spectrlm and total ímpul_se response with a

minímum of uncertainty.

The spaee-tíme integral equation sol-ves the scattering problem dÍrecË]y

in the Ëime domnin where the unit of time is the light meter. (A light
metêr Ís defined as Èhe time Ít takes an electromagnetic r"¡ave moving aÈ

the speed of light to travel- one meËer. It has the effecÈ of normal-íz-

íng the tine by the speed of rhe light in meters/second.) The impulse

excítatÍon v¡ould yield the universal- solution for a particular target.

However, the Present day couputer limitations preclude the direct. numer-

ical solution of the space-tíme Í-ntegral equaÈion for the Írnpulse

excitation. The most. useful excitation has be.en found to be a regular-

ized Cor sxûoothe"d) ímpulse of the form shorn¡n ín Fig. 3.4a. The response

H. CÈ) due to this excitation is knor^¡n as the regularized (or srnoothed)ò

'''mPul-se resPonse and can be computed exactly lrith the spaee-tíre integral
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of the target.
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of the pulse and chosen such that the
producË (na) Ís a constant.

r(l)* R(ø)

Fig. 3.4a Regularized (6r Smoothed) Impulse Excítatíon
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Fig. 3,4h FunctÍonal Diagram Of The LÍnear SysËem

(t) * G(r)
Lineor System
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equation. The regions of slow variation in the smoothed irnpulse res-

ponse remain the same in the exact ímpuLse response; thus, it Ís only

necessary to detenníne the structure of the sírrguLar regions and any

other regíons of fast variation. But the síngular portíons of the

exact ímFulse response that results from scattering by specular points

on smooth convex targets ean be couputed from the physical optícs approx-

imations and hence need not be computed by solving the space-time intr

gral equation.

The ímpulse response augmen-tation technique has been explained [9] by

consídering the basic approach to Ëhe deconvolutíon (or system idenÈifi-

cation) problem. Fig. 3.4b shows the functíonal diagram of a l-inear

system (in this case electromagnetic scaËtering by a targeË) that ís

characterÍzed by i¡s r'nFulse response;\(t) , or equivalently, its

system function (or frequency response) G(o). In the problem beíng

considered here, e(t) the incident Gaussian pulse is specffied analyti-

cally and r(t) is couputed by solving Ëhe space-time integral equation.

It is desired to fl-nd FI(t) andlor G(o). However, rhe esÈimaÈe of

the system response ?Ca> that is conputed. contains some uncerÈainty

or noise. Thus, the transform of the computed or measured smoothed

impulse response R(o) also conÈains noise wo (ur) and rnay be written

as l(r) = R(or) +'N (ûr)

and the corïesponding sysÈem fuhction tCrl is

t(r) = e(o) + 
"(u/2n)z 

.N (r¡)
0

Thus, the noise at high frequencíes ín the esÈÍ-mate of the system func-

tion íncreases or¡ronentially. Physicall-y this occurs because the inter-

rogaËion signal Ís a smooËhed ímpulse and íts transfo:m deeays exponenË-
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1ally wl-th frequency. Thus, this method by f_tself r¿ill_ not yiel_d the

system functíon at all frequencíes.

How this defect is circumvented by the ímpuJ-se response augmentaÈion

technique is displ-ayed in the block diagram of Fig. 3.5. This rechnique

first augments the smoothed ímpul-se response to remove the contribu-

tion from singular portions (í.e., mainly the specular poínts) of the

impulse response that are knor.m from physical optics approximations.

If fa(t) is a suiËable augmentation fr-rnctíon that. contains the known

sÍngul-ar portions of the ímpulse response, the augmented smoothed impulse

response r"(t) Ís given as

r"(t) = r(r) - e(È) * f"(r)

Next the transform of the augmented smoothed impul_se response n"(o)

is computed and divÍded by the transform of the incidenË pulse to yield

the augmenËed frequency response Ul(o). This function contains noise

whieh íncreases exponenÈially at frequencies above some val-ue. However,

it is knor^¡n that the augmenËed frequency response must go to zero with

increasíng frequency. Thus, an esÈimate of the high frequency behavÍour

of the augmented frequency response Ê"úrl) is of the form

û"Qrr) = H'(o) i ul < trl.

= P(trl) ; 0ì0c

where o_ is the boundary poínt and P(6) is the high frequency esti-c

maËe of IIaú,J). The i¡rverse Fourier transform of û."{r) Èhen yíel-ds

the estímate of the augmented ímpulse response â"(t). Fínal-ly, the

ínverse of tbe. augmentation proced.ure is performed on f,"{t), r"fr-ich

yields the estimate of ¡¡¡s impulse response FrCt). An estinate of the
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Fig. 3.5 Impulse Response Auguentation TechnÍque [12]



systen functl-on Ii(üJ)

augment.ation procedure

65

obtained by applying

ttre frequeney domain

inverse of the

u, (rrl) .

Èhe

Ëo

1S

in

3.4 POLARIZATION CORRECTION IN TI{E LEAnt{c EDGE OF THE IÌTÍPULSE

RESPONSE

In the expression

Ëhe first Èerro on

the induced

right-hand

H.
]-

for

the

¿nx

0

1-
.J-

p0

surface current density, i.e., (3.1_5),

side is the physíca1 optics currerit, i.e.,

illumínated side

shadow side

The corresponding physical opties approximation for the far-field

impulse response, as was derived ín section 3.2, rras found to be [12]

(3 .l-7)

v¡here A(Ë) is the projected area fr¡nction as shorm in Fig. L.Z, an.d

4,, is the unit vector in the direction of f. . It is to be notedflr- i
that the scattered magnetíc field has been weighted by r0, the

distance of the observer from the scatÈerer. Expression (3.17) is

sinpl-y the physical- optícs approxÍmation to the Ímpul-se response, and

since iË is on1-y a funcÈion of the projected area, then as noted earlier,

it is polarization independent.

The first order correction to the physical optics approxímation is ob-

taÍned by applying the more gêneral results of Bennett et al [12] which

províde arr expression for the effects of local currents on Ëhe observer.

The validity of the consÍderation here is restricted to the leadíng

edge porÈion of Ëhe Ímpulse response, i.e., thís correction holds better

=o-"noG,r) = *Ilt +, ,



66

towards the high frequency end of the phasor frequency response. To

derive an analytic expressÍon for the first order correction to the

physical optics far-fíel-d, Èhe physícal optics currents are assumed on

the surface of the scatterer. These physical- opËics currents, in turn,

are substituted ínËo the inËegral part of (3.15), which yields a first-

order correction Ëo the physical- optícs currents,

inor,?,') = *fl ^ " {tL+ 
+þr.rîro.'',t')x fo} as' (3.18)

e

where S, is the whole surface Sr of the scaËterer excluding the

observat.ion point. These first-order corrections to Ëhe physícal- optícs

currents are then used to comput,e the first-order correcËion to the

physical optícs far-fiel-d as shown tu (9.16), i.e.,

r r t Íl ðf^ itt,tt),n- (î,t) =Lf f rJ-a-r_------1 *â dsr (3.19)-o-Þor'-'-¿ ,r" ll' âr.sr v,

Next Ëhe expansion of the triple cross-product in (3.18) yields

Por

where the operator L represenÈs the operatÍon -1 1 â 'l*r**q*"1 'o
circularly shaped patch for S, r¡ith radius Po could be assumed, be-

cause consideration is restricted here to l-eading edge effects and

therefore only the current írr the wicinity of the observation poínt, need

be accounted for. Usíng this facÈ and the various geometrical interpreta-

tions of the inner product terms in the above íntegral ILzf, an analyti-

cal expression for tno, was derived I12]. Tb,is is given by

J
J = +ff [â . u*t(io) - ttâ ' ino)] dsr

s
Ê
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J
.J-

P0 r

+

K.K
à #*) lnp.rI +¡t o ¡Po

K.K
àzçaf) lnoorrno

no2 âJ'0 lÞ0r
2 -6tf-J

no' aJ'o 2P0r
2 =Ñ-J (3.20)

where J = -2H-rPo L2

J = -2H.zPo 11

p ís the radíus of a
0

and could be esËÍmated

tíme.

curvature at the specular point respectívely,

entíng the correspondíng curvatures. 
"rr. 

and

of the incident magnetic fíel-d ín ", and. a"

circular Íltegration paËch about Èhe observer,

from Ëhe mean area íllurninated as a function of

^^Here â , e are unit Ëangent vecËors to the príncipal lines of
7Z

with K andK repres-!2
H- denote Ëhe components

L2

directions respectÍvely.

Substituting the expression for tno ínto (3.20) yields

r K- -K- TP2

40, = z(ftilrpo + ê, ) þ,^ * ri,â,

K -K noz
+ z(+)[rpo + ,+, þ,t *HLrà.

The relation for the first-order correct.ion to the physical optics far-

field is obtained by replacing î- in (3.19) rúith the expression i¡r
Por

(3.21), which yields

-. 1 ^ rrK-K Tpz 
^

'o4o , = *þ rt, I|r.rt tnpo *c*) fu*r,ün,oj
SI

.^,[[ ,5],¡noo .S, þ"r"*n,oj
ST

(3.21)

(3,22)
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v¡here dA _-_ . representsproJ

defined in Fíg. 1.2. As

aË t.he specular point ís

whích gives [12]

r,H() Po l

the ilcremental projected area function,

a first approximãtíon for g , the surface

assumed to be spherical with curvature Kt i

(3 .23)

where t. ancl z axe defined ín Appendix rr, and the coordinate sur-

face is oriênted so that the incídent rùave is propagating Ín the negative

z direction and the specular poínt is located on the z axís at the

origin. The effect of the second term in (3.23) is of second order,

and Ehus it will be neglecËed for thís consíderation

substitution of (3.23) (with Kr = 0) inro (3.22), lerring rhe incídenr

field be an impulse, md carrying out the integr:ation, yields for the

first orcler correction [12]

po = (t+z) -F,. *z)2

_ I AA(r)
2n ât [âr"t, - âr"rr.] tT' (3.24)

Thus fron (3,24) iE is evídent that the first order correction to the

'physÍcal optics approxímatÍon Ís proportional to the difference between

the principal curvatures at the specular point and ic has the function-

al form of the iirst derivative of the projected area function A(t).

It shoulcl be noted that the valíclity of the analyt,ic expressíon as a

Ëotal correction to the physical optics approxJ-mation for the field is

the function of the validity of the approximation used in derl-víng it.

One questionable asSumption during the clerivation of (3.24) is that the

clÍfference ln princípal curvatures renrains the same i¡r the vicÍnl-ty of

the specular point. But, again to a first approximation, this assr¡mp-

tion is certaÍnly valíd, Fiually, iË is felt that the cor.recËion Ëerns
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presenÈed here are vàlid to the extent of giving the funcËional forn of

the correcËion termsrthe polarrzational dependence .they introduce, and

their relationship to the difference of príncipaL curvatures at Èhe

specular poinË. The Ínter-relationship betr,¡een scatËerer surface para-

meËers and the scattered. wave polarization characteristics predicted by

thi-g correction term will be uti-lÍzed fn the next chapter ín proposing

a scheme for the recovery of the surface of a snooth, convex closed,

perfectly conducting object from far-field. scatteríng,data.
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ehaptez, four

A MONOSTATIC INYERSE SCêTTHRDIG ].,IODEI BASED ON POLARIZATION UTILIZATION

4.L INTRODUCTION

In thfs ch,apte.r the solution of the inr¡erse problem of e.lecÈromagnetic

scattering by srnootfr-, convex shaped, perfecËly conductÍng, three-

dímensional scatte.rers is anaLyzed.. CertaÍ¡r high frequen.cy approxímations

[27 ,42,47f were used ín Íncorporating the concepts of the l,finkowski

probleu Ínto Ëhe spaee-ËÍme int.egral solution of elecËromagnetic scatËer-

íng to yield a set of equations for the recovery of the surface pro-

file of the scatterer from the scatte.red field daËa. The underlying

assr:uption in th-is invesÈigaËion was based on the fact [7,B,zB] that

the 'tdepoLarizatíon characËeristics. of the scattered field do necessar-

i1y coatal rnfornation regarding the surface profile of the scatteïer.

It has been established [47188] that a knowledge of the scaËtered fieldts

magnitude about the monostaÈic angle contaÍns Ínfornation on the curva-

ture of the scatterer at the specular point. In order to elaborate on

Èhis fact, a brief derivation of the geomeÈrieal optics approximation

for the reflecËed fie.lds is presented ín section 4.2. For the three-

di-mensional cases, this stipulation about tb-e scattered fieldts magnitude,

pe-rro-its one Ëo assume that for any smooth, slowly and r¡nifo:mly varying

conrrex-shaped scaÈterer, an rre-quivalenË ellipsoidr', centered at the origírr

and of ide¡-tical curyatures about the monostatic direction¡givaq rise to

an identical hackscattered field magnitude. fhis equivalenÈ eJ-lipsoid

modeling of the. scatterer¡s surface is discussed in deËail r-n Section 4.3.
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Repre-sentation of eactr poínË of the- scatÉerer by such an equivalenË

model (see Fig. 4.1-l makes ît possibl-e to combí¡re- the matheoatical con-

cepts of "Minkowskits problomN rritb- the polarization-depolarizat.ion

áspects of the electromagne-tic scatterÍng concepËs to yield a systen of

equatíons for tl¡-e recovery of the surface of the scaËt.erer. Th-is is

achieved i¡r Sectior- 4.4 through 4.6.

4.2 ilGE FREQUNCY APPROXn"IATTON FOR Tm SCÀTTERED FTELDS

Th-e consideration here w-Í11 be restricted to isotropic homogeneous uedia;

Ëhus, one is concerned. with- elect.ric fields E (or magnetic field" Ð

r¿Lich are sol-uËions of
-l _lV'E+k'E=0

subject to the condition that V . Ë = 0

The Lr:neberg-Klíne asymptoËic expansíon for large o [46r54f is

ùì,)="-jkoqrG) Ï H+ , (4.1)
rtr= o

where k = u/e , r¡rith c beíng the phase velociÈy in free space.tro[t
ip represents the phase fr:nction and it is evident ÈhaË the surfaces

ù = consta¡rt are equíphase-surfaces or wavefronts. In the high

frequency IímiÈ, the asyu¡rtoÈic expansion (4.1) for Ë reduces xo [47]

Ê(¿,r) * 
"-jtokorf 

&)Eo G')

wÍ-ere
AE C{,)

o

\,¡:iËb- f, de-fÍne.d

rlr&
= Ê (s )opt- * f V21ds,(l ,û tr _ ¿ Ig.

c
in a r.,i-a¡ sucb- that,

(4.2)

(4.3)

â

-=â1,
VtÞtV c4.4)
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IT iS

üCr) =

lar to

níne.d

to be noted that VU has a direction perpendicular to

constanÈ, so thåt & specifies a position oÊ a curve

this surface. Fron C4.3) it is clear thaÈ E'C¿l is
tr

if its value at th-e reference poínt ßo is kaown.

the surface

perpendicu-

deter-

(4. s)

nt is

For homogeneous media, t5e rays are straight línesr ând, for isotropíc

media, th-e rays are PerPeJldicular to tlp wavefronËs; thus,

dú= lV,t,l¿t-:ntdh

along the ray paÈh and

Integïatj$E (4.5) Yields

t¡{rere dh- is an íncrene¡rtal distance

the refractive índex of the medir-ur.

rÞ=iÞ +nth '0

r¿h,ere ü is the reference phase function. It
o

along \^r-iËh C4.5) and the fact that lVrpl' = nt2

dh = ntdÎ,.

Introducr'ng th-e Gaussian curvature of the wavefronË

D and D are the príncipal radii of curvature of
72

face rÞ , it can be shown [47] that

also

l47f,

(4.6)

follows from (4.4),

th.at

_gS = _W2,ltlor .
dh

Integrating Ëhis equaËion yields
¡9.

r(r,)/KC[o) = exp[- J v',!al']
gû

Using C4.6) antl (4.7), one uay wriÈe (4.2) as

Ëcsl . {cln).:jhÜotrce)/Kc&c) ltlz ' .-ih

K= l/D D , where
72

Ëlre wavefront suT-

(4.7)

(4.8)
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whe.re k = ntk-, This ewpre.ssion for E is directly related to the
0

geometrical optics approxÍmation, as is shor,m next.

Accordílg to classical geometrical optics, the flux of light energy be-

tween the points t, and P" is gove.rned by Fermatts principle, i.e., ít

follows a ray path- whích satisfies

I P,
6t['ntctL]=Q C4.9)

J t,

The wave follows a curve wÍ-ich uakes the opt.ícal distance between t, and

P (given by the aboye Íntegral) stationary. Usually th-e ray path
2

mí¡rfr¡f zes this distaÌtcer

Ttre íntensiËy of the geomeËrical optics field ís governed by the conser-

vation of the energy fh-o< Í¡r a tube of rays, sueh as tlre astígmatic

tube of rays showu in Fig, 4.2. LeË T2 be the ínËensíty of the field

at P and T2 Ëhe í¡rtensiËy at Ëhe reference point P , Ëhen for an20 1'
isot.ropic, homogeneous medi rm

l2df, -- I aI00.
l¡lr.ere dI and UXo are the cross-sections of the tube of rays aÈ P,

and P , respecÈively. It follor,rs from differential geometry [47]7'

that

dxK
E =ñ ' b-e.oce'

trQ

r=r @ C4.10)q.o

witb- K = KC&l and Kn = KnCf.o) r

From C4.91 and C4.1Ol iË is clear Èhat classical gecmetrical- optics
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correctly describes th-e path- along which Ëhe high frequency fíeld,

given by C4.8), propagate-s and aLso the manner í¡r r"¡hích the fie-ld in-

Ëensity varies ri-ith- positÍ-on. Ilowever, the description of the electro-

magnetic field Ín Ëhe l-ínit of large o by the Luneberg-I0íle asymp-

totic expansion, i.e. C4.8), is superior to the one by tb,e classical

geometrical optics¡ i.ê¡ C4.10). This is because classical- geometrical

optics ignores tb.e polarization and wave nature of the light, hence

wtrí1e predicting the directions of reflection and refraction at a

boundary surface, it cannot. accoun.t for the Íntensities of the reflected

and refracted waves. In order to overcorDe this shorËcoming, most in-

ve.stigators have. Íncluded artÍficialLy l47l polarization and phase í-nform-

ation so thaË Ëhe classical geometrical optÍcs fíeld ís modified to'the

form given by C4.8). Thus, Èhe field ïepre.sente.d by (4.8) has corrmonly

been referred Ëo as the geometrical opties fíeld.

The ratio IVK has been.0

radil of curvaËure of Èhe

Ëhis ê-{pression for (K/K
0

J r _.ikoûo
E(1,) n, E (.Q, )e J

oû

It is to be note.d that, wlren n - -gror -grr

and Èhe geometrical optics field is invalid.

the lÍ¡.es L-2, 34 in Fig. 4.2 Ls cal1ed a

through- a caust,ic lfner ¿he sign of (p+b-)

ql+Ð-] ¡z = l6gril- /" | .j Cn/z)

for:od [47] i¡r Èerms of h and 0, , g, , the

reference wavefronË shown Ín Fig. 4.2. trIhen

) is substituted í¡rto (4.9), one obtains

-ikh (4.11)

the field becomes ínfiniËe

The congruence of rays at

causÈic. As one passes

changes, i"e.,

I

and thrrs the correct phase shífË of T/2 is íntro<luced naturally.
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In order
J

field Et
surface,

^He.re. n

surface

follows

is the. outward

at the. poÍnt P

from (4.2) and

E'(p).-jkoürû'-

to fÍ:ed the high-frequency approxÍmation for the reflected

from th-e point P on a perfectly conductíng, scnooth'ly curved

rhe following boundary condition. is applÍed

^--nx(ErtEr)=0

directed unÍt normal vector to tle
J

, and E- is the i¡rcident electric't_

(4.t2) t47l rhaÈ

= [îâ - Êâl . Ër[r)

(4.L2)

scatteríng

field. I't

(4.13)

(4.L4)

^v¡ñ-ere b is a rnit vecÈor tangen't to the surface and is defined by

Ê6-{l==âxcâ*-\_)

The quanËity in Èhe brackeË in (4.13) is a dyadic reflection coefficient

which changes Ëhe direcrion but not the magnirude of îrCr) . rt
sjmplifieè to scalar -1 wú-en {Crl is tangent to Ëhe surface, which

is the case for backscaËter. rn the far zone, the quanËity r:nder the

squaïe root in (4,11) reduces Ëo f pf , /R , where R í.s the distance

from P to tle obse.rvation poínt. silver [75] h.as deternined f pr%

for an íncident spherical vrave. For Ëhe case of plane r.¡ave í¡cidence

{ Lp- = ñî- lzt2 12

wlrere D, and D, are the. prÍncipal radü of curvature of the reflect-
íng surface aË P. rË ís Èo be noted that íJ o, or D, become ínfínite,

as ín Ëb-e case. of a flat plate or cylÍndrical scatterers¡ the geometrÍ-

cal optics approximaÈion becomes iq¡alid.
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Thus C4.11) along with C4,14) slrcw that Èhe assrmprion made at the begin-
íng of Ëhis cb-apËer' nafûely thaË a knowl-ed ge of. Ëhe scattered fieldrs
magnituda abouË the monostatic angle contai¡rs i¡rformation on the curva-
Èure of th-e' scatterer at the specular poin-È is a valid one. TLis facË

is used Ín the rtext section in developÍng an equivalenÈ ellipsoid. model

for tbe surface- of a smooth, conve)<, cl-osed scatteïer.

4.3 FgUIVALENT tr-LIPSOID MODEL

IË has been established by various ínvestigators that a knowledge of the

scattered fie.ldts magnitude about Èhe monostatic angle conËaí¡s infor-m-

aËíon on the curvature of th-e scatÈeïeï at the specular point [gg].
As it has been shown ín SecËion 4.2 tlr-ís dependence is douinatíng in the

trigh-frequency rggion, i.e., when the wavelength is mueh smaller than Ëhe

dí-mension of the target (exacË bounds oa tbe region aïe not defined,

primaríly hecause body shape and complexiÈy Èo some exte¡t determÍne

which scaËËeríng laws apply to a given situation). Thís s¿ipulation for
the th¡ee-diuensional case pernits one to assume that at sufficienÈ1y

high frequencies for any smooth, srowly and unifornly varyÍng convex

shaped scatterer, an t'equivalent ellipsoidtt, centered at a prefíxed

origin and of identÍcal príncipal curvature about the monostatic direc-

Èion, gives rise to an identical backscatÈered field magniËude (see

Fig. 4.1). Represeating each poí:rË of the scatterer by such ¡n equivalenË

model , changes Ëhe. problem of recove.ry of the specular poínts w-ith res-

pecË to the preassigned origín, i.e., recovery of Xr yr z, xo tb_at of

reco-yerlr of a, b, c - the. serni. ¡:¡es sf the equivalant e.11Ípsoid for e¡ch

mon-ostatic direcËion. SËatùrg it dÍJfercnËlyr in tLis model it is
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assuaed that th.e specular poÍnt (or the poínË of reflectíon) ínstead of

being on tÊc unknown oEject is on an object whose shape and orientatíon

is k¡own (i,e., the ellipsoid centered at the preassigne.d origín) but the

sÍze (i,e.¡ â, b, c) is unRnciwn.

An application of a símílar (tequivale¡¡.t curyaturett modelíng of the

specular poÍnt for tr¿odÍmensional convex, smooth scaËtereïs has been

reported by vandenbergÊ.e. and Boerner [88]. Irowever, they did not

develop any analytic expression, relatí-ng the curvature at the specular

point to the backscattered field, insÈe.ad they applied known techniques

of system s)mttresis. An ite.rative averagÍng method, they had intro-

duced, compares the averaged magnitude of the backscattered field,

given off by the unknown scaÈterer with Ëhat resultÍng from a knor¡n

rot.ationally syn¡me-tÏic scatt.e.rer (e.g., a circular cylinder) which can

easily be calculated.. The. agreement they obtained betr¿een the results

and the e-act values cerËainly validates Ëhe equivalent ellipsoid

assumption for the three-dÍrnensional case encountered ín the pïesenÈ

ínvestigation.

Although there may be many diffeïent ellipsoids ¡shich w-ill satisfy the

criteria of having identical curvature abouË tlre specular point, there

can only be one such ellipsoid which will be centeredat the prefíxed

origín and oriented as shor,¡n Ín Fig. 4.1. In oËher words, for a given

monostatic dire-ction, by fixíng the orígin and the orientation of the

equivalenË ellipsoid, a one-Ëo-one corresponde¡-ce. betlree¡r tb-e set of

r¡nknor.rns Cx, ¡r, zl and, (a, Ë, c) is obËafned, Ohviously tlrere. t¿ÍJ-l be

degenerate cases wÊ-erreye: ËLe specular point corresponds to th-e poÍnÊ
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of sylunetry of the equivalent ellipsoid as slr-orm ín Fig. 4.3a and Fíg.

4.3b. IIowever, th€- coordinates Cx, y, z) of the specular poÍnt, cor-

responding Ëo these two degenerate cases, rnrill be ide¡-tical and thus

the nniqueness of tfe solution is preserved. Therefore, if a sufficienË

nr-mber of equivalenË ellipsoids, corresponding to the. differenË mono-

sËatic directions and th-e same preassigned orientation and origínrare

recovered from th-e krrowledge of the back-scattered field data, then with

these recovered equivalent ellipsoids a¡-d known directioas of incidence,

th-e correspondílg specular poinËs wiËb- respect to the preassigned orígin

will be known uniquely. Thus, instead of solvíng for the coordinates

of the specular point, (x, y, z), the ellipsoidls equivalent semi-:-¡es

(a, b, c) are recovered. In the follor"ring sections, the space-tíme

íltegral equation and the Minkowski probleu have been utilized to obtaín

Ëhree índependent equaËions involrring the unkno¡vns â, b, c of the

equivalent ellipsoid correspondíng Ëo Èhe r¡nknown specular point co-

ordínaÈes (x, y, z) of the targeË aód the known backscattered field

data-

4.4 UTILTZATION OF THE SPACE..TIME INTEGRAI EQUATION

The space-tíme integral equatíon for currents on the surface of a Per-

fectly conducti¡rg body is given by (3.15). It Í-s to be understood

here thaÈ all the results obtaÍned in the time domain can sÍmply be

converted inÈo th-e frequency domain by use of Fourier transfo:mation

and appropriate scaling [12]. As pointed out earlier¡ the first term

on Ëh-e righr-$arrtl side of C3.-15) is the physical optics curren"t' agd

rhis yields Èb-e pLysical optics approxÍmation to the far-field Ímpulse
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responser Tb-e, íntegral tenn on th-e rigtr-t-tr-and side of C3.15) gives

the first<rder correctioa to tle physical optics approxfmation of the

backscatËered far-fie.ld" Thus at sufficiently high frequencies the

total backscattered far-fie.ld may be represented as

Substitutí¡g r¡alues fro¡n (3.17)

,€-.r,t¡ =*Ïi 
",O

If Èhe direction â"- of the
t

Èer:ms of íts componerrt Hi,

the â direction, tfren the
2

field is ¡'rritten as

and (3.24) for 
"no "tU

, 1 âACt) ,"r-'* ht -âË: , ,-). [Hirâ

(4.ls)

å
H - vields

Po1

{r,â1.(4.16)
7L22

incident magnetic field is represented in

alons the â dírection and I_ I dírection and t r. along

e:pression for the backscattered far-

ll'lro\Cr,.) = ä-
, a2e(t) aA(r) K -K
t-T -i;- C+)l E, â

àx2 or L r-1 I

(4.tt)

where the uagnitude of tfr-e Íncident magnetic field lÊrl has been

assr:med to be unity. It is to be noËed that for :n arbitrary, líne.arly

polarized í¡rcident field Ê, , af." polarization angle o, with respecË

to tfre â direction is assumed to be unknowe and for the purpose of
1

Ëhe present ínvestigaËion needs to be determiaed ín terus of radar

measurables.

For the recoyery of each- specular poínt, the semí nxe.q ¿, þ, c of the

corres¡ronding equivalerrt e-11ipsoid ne-e.d to be dete:m:ined. Thus a syster

of th¡ee fncle¡rendent equations Ínvolving â, b, c, rhe direction cosínes

**'ff-+,\4, t Ei,à,
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Er ll, Ç of the íncident \¡rave, and at least three independent ïadar

measurables are required.

Consider a monostatic siËuation, w?r-ere the í¡cídent \,rave and the normal

to the surface at the specular poínt have ttre sâme direcÈion cosínes

(ErqrÇ). Th-en, if. 4 is of unit magnitude and makes an angle c withl_

â at the specular point, the unit vecËor ín the direction of the í¡r-1^

cident magnetic vector may be writÈen as

à. =H.à +H.. âfLJ 1_1 ! LZ zl_

A r:niË vector perpendicular to fu-
]-

â =H-â -H.âcï12titz

Now Ëhe magnitude of the co-polarized

far-field (i.e., the co oponen-t rú_ich

polarization) resulËs fron (4.17) and

(4. 18a)

and í¡r the plane of â and â is
t2

(4.18b)

the backscattered

the í¡rcident ürave

component of

is parallel to

(4.18a) as

(4. le )

$imif¿11y, Ëhe magnitude of the cross-polarízed couponent (i.e., Èhe

component wh-ich is perpendicular to the incident wave polarization) is

l'r4"-',t)l ='oËri',tt â", = #,*r("rr."r-r) SP
NcxÈ¡ consider anoËher incident r,¡ave rnrith Èhe s¡me direct.ion of íncidence,

buÈ ¿6s incident m:gnetic field now encloses an angle (a-t/z) r,rith the

a, direction. The corresponding co-polarized componênt Òf the scattered

field is

r --llr Il
'q.zP

(4.20)

-',r) t = +tÉ#- ,+("î,-"L) P, , (4.2L)
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and th-e cross-pol arîzed componerrÈ îs

['å"cË,tl t = #,5þcuo.ui2) +9
Since 

"i" = Iur["o"o and 
"ir. = lurl"rna , hence frorn (4.19), (4.2A)

aú. (4.2L), one fínds rhat

D _ I'o4o(ir) l-l'o4ocirl I

e 
I ,04" cì.1 I

t_
ì--:--: - tano, (4.23)
tancx,

Eq. C4.23) expresses the pol-arization angl-e o in terms of the back-

scattered fíeld as desired for the purpose of the present investigation,

Í.e.,
D

0 = ran lt-=gt
lt2 ¿

Two uaLues of q, ate cornpLimentazg to each otVter ø¿d

of a 'p'Lust oz, tmLnus, tign in (4.24) does not affeet

system of equntions for thte profiLe inuez,síon as uíLL

Later-

(4.22)

(4.24)

the ehoice

the finaL

be shoum

An inÈeresËing outcome of this analysis ís that the cross-polarized

component of the backscattered far-field, i.e. , (4.20) and (4.22), are

identical for the incident polarization of c and s" - n/2. This is to

be ex¡rected and can easÍly be verified from the theory of reciprociËy

[70]. In Fig. 4.4, let 1, be the polarization d.írecrÍon of the inci-

dent wave and î, be the- poLarízation direction of the response r¡rave-

forn (ín the present case cross-polarized backscattered waye). The

reciprocity theorem then ímplies Èhat by retaining the above condÍtions
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and by changing the polarization direcÈiôn of the incídent wave from

î to î , LtLe corresponding response r¡raveform (with polarization
!z

dírection l" ) will remain identlcal to the previous response hrave-

form. Ilowever, once the creepíng rtave considerations are inËrodueed ln
JJ

(4.20) and (4.22), tlne t\^ro cross-polarized components Hr" 
"rd 

Hr" will-

differ from one another considerably. Thís is mainly because the creep-

ing wave path in the shadow zone of the scatterer rqill be different f,or

differenÈ polari4ations. Thus, it ls concluded that the cross-pol axízo

atÍon terms, í.e., (4.20) and (4.22), are ídentical in the'high-frequency
:

limits only and they rvlll- differ from each oËher as the low frequency

region is approached.

Using (4,19) to (4.2L), Ehe expression for the firsË and second deriva-
:

tives of the projected area functlon are obËained as

ðza(t) = ",[ lr Ê rî , ' --. '-r
r-2 - ¡rLr.o'.rp,.'r')l* ItoÉrn(;rt)lJ G.25)

, dL

and
. K -K ^¡/..\t t al ?A(t) = 1 l-È ri*r¡l\-----Ã-¿ , âr cos',.ãñõ ltonrc(r,t) I (4,2ø¡

It is to be noÈed that Èhe right-hand-síde of (4.25) and (4.26) both

contain only the backscattered field daËa since cl can be represenËed

in terms of the scatterecl field as gíven in (4.24).

4.5 UTILIZATIOT'I OF I4INKOWSKIIS PROBLE}I

As .discussed earlier in Chapter Two, the problem of determining a sur-

face, when its Gaussian curvature KCâ) ís given on the enttre surface

of the spherical image, ís knor,m as Minkornrskits probl-ern. Geometrical
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oPtlcs Predicts that íf o , the monost.atic scattering cross-section,

Ís knosm alL over a perfectl-y conducting, smooth, convex, three-

dímensíonal surface, Ëhen K(â) ís deËermined over the entire surface

of the'nit sphere (i-e., the sphericai- ímage of the scaËterer). rn

the present ínvestigatíon all the poÍlts on the surface of the equíva-

lenÈ ellípsoid (correspondíng to the specular poÍnt of ÍnÈerest on the

scatterí¡rg surfaee) are transformed onto the unít sphere using Mínkowskirs

suPport function M which satisfies the partial differential equatíons

(2-g) anð, (2.10). The supporr funcrion M of rhis equívalenr errip-
soid, w-ith seni axes â, b, c rras obtaÍned ín AppendÍx I as

M(t,n,Ç) = t (aE)t + (rn), + (c6) z¡ lz (4.27)

where -1 < Ernr6 < 1 . The substitution of this expressíon for M into
(2-9) and (2.10) yields two equaríons involwing a, b and. c for knou¡n

val-ues of the dírection cosines (trnrç). rt is to be noted that the

right-hand side of (2.1-0) coul-d be related to radar measurabres, and

therefore (2.1-0) constitutes one equation invol-ving a, b and c as the 'n-
knowns. The othertwo Índependent equations, i.e., (4.25) and (4.26) were

obtained by anal-yzing the space-tíme integral equatíon for scattering

in Sectior. 4.4.

From the above discussion it ís now cl-ear that no attempt has been mad.e

here Èo actuall-y solve the Mínkowski probl-em, but (2.10) has been used

as a condition which must, be satisfied by the surface pa[¡msfs¡s of the

object ín order to have a given value of the backscattered radar-cross-

sect,Íon. In the newt sectionr (4.27) along wirh (4.25) and (4.26) will

be used in proposing a system of equatÍons for the recovery of Èhe sur-
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.i\

face profile of a perfectly conducting, closed convex, smooth objeet

from the knowleclge of the far scattered fÍeld.

4,6
-SYSTEM 

OF EQUÄTIOI{S TOR THE RECOVERY OF SUI(FACE PROFILE

If the projected area functlon n(t), and the dÍfference between the

principal curvatures at the specular point,(K--i< )rare expressed in Ëerms12-
of the unknovmlsemí axes ai b, c of the equivalent ellipsoid and the

known dírectíon cosines (Ern,6) of the incident wave, then (4.25) and

(4.26) wi1-l represent two índependent equaËions of the desired system

of eqr:ations for the recovery of the specular point. Furthermore, from

(4.26)'it.is evidenr rhar the choíce of rhe sign ín (4.24) is nor im-

portant for the recovery as (coso sina) has the sarne value for o = ct..t
andq,=a-r/2

I

The difference betvreen the princípal curvatures at.the specular poín¡,
(K.-K^), has been expressed ín the desired forur Ín Appendix r, and. A(t)l2
has been obtaíned in terms 

'of (a,b,c), (6rn,Ç) and tirne t in Appendix

rr. The third and the firral relation for the sysËem of equations is
obtained by substituring the value of M(E,n,6) ínto (2.10) as shown in
Appendí:r r, and by relating the Gaussian curvature K at the specular

point to the backscattered radar-cross-secËion using the geometrical

optics approxímation [ 27 r42r47]. As nenËioned earlier, this approxima-

tion implies that.the differential scatteríng cross-sec,tion in the

K , where R. Ís Ëhe

reflection coefffcient.. Flnally, by Èransforming the expressions from

the time (t) to the frequency (r¡) domain by appropriate scaling and
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Fourier transformatíon [12] as discussed in (f.:¡ and (3.4), the follov¡-

ing system of equations for the recovery of the eguivalent elLipsoid,

and hence the coordínates of the specular poínt, is arríved aÈ

t+11vrgg:r ' Ito","(o) | (4.28)

(4.2e)

(4.30)

the backscatÈered

the uragnitude of

from Appendix II,

(4.31-)

(4.s2)

cos0,sínq,

t (aE) 2+(¡n) 2+(c6) z1t/ z

perfectl_y
= L/K = 4o ; conducting

case

TTerêr Y represents

radar cross-section.

rpl Ín (4.2s)

gives

the Fourier transform and ú ís

Substituting the expression for

and ror f!lr.{Pi h G.2s)

l*r-""ltcr%l'* ë, ) z¡/z = **

zl(zrc)t + (c/r) z|t/z = [ lHrplr+lH"pl2+zlurnl. l"rnl

'cos(0rp-02p)l

Here, (Ôrp-02p) is the relatÍve phase of Hrp coupared to that of

I1 -, and f and G are defined in Appendix rr. I,Ieighting of the fieldzp'

magniËudes with respect to to is understood in (4.31) and (4.32). The

left-hand-side of (4.28), (4.29) and (4.30) consisr of rhe r¡nknowns

â, b, c and uheir right-hand-sides consist of only the backscaËtered

far-field daËa. Thus, as mentionad earrier, the final system of equa-

tions for the profi-]-e ínversion consisÈs of (4.29), (4.29) and (4.30).

Onee the sernf axes â, b, c are recovered from the above systea of

t ? rqj?r I = r,l'o*rn(r¡) +'o"rn{r) 
¡

(a b c)2
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equations, usírig expressions

the coordÍnates (*ry rr) of

as

M ín (4.27) wLtll

specular poinË are

known (E rnr6) ,

determined by (2.6)

for

the

-- - l^''
t C"E) z+(bn) z+("Ç)27a /' (4 .33a)

(4.33b)

(4 .33c)

1162y=
t (a6) z+(b¡) z+(c6) ,1r' / ,

er2

I (ag) z+(bn) z+(cç)zf t t 2

Application of the i¡rverse scatt.ering model developed here to various

test cases will be undertaken in Chapter Síx . There, as an exanple

of the appl-ication of the proposed ínverse scatLering model, the üest

case of a perfectly conducLing prolaËe spheroíd will be presented. The

major difficulty ín perfo::ming this Ëest Ís that the kÍrrd of ínput

data needed is not readily avaílab1e for most of Ëhe scaËterer shapes.

To circumvent Ëhis difficul-tyr aD approximate solution for the back-

scatËered co- and cross- poLarized fíeld given off by a prol-ate spheroid

is developed ín the nexË chapter.
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cVnpter fiue

APPBOXTMATE CO- AND CROSS- POLARIZED BACKSCATTERED FIELD OF A CONDUCTING

5.1

PROLATE SPI{EROID

INTRODUCTION

rn order to utilize (4.28) and (4.29) for the recovery of the prolate

spheroid, the scatËered field quantíËies on the right-hand-side of these

equations must be known. However, Èo the best of the authorrs knowledge

these input data required for the proposed. ínverse scattering model are

not readily available for uost of the scatterer shapes. To circumvent

this difficulty, an approxím¡te solution for the backscattered field
given off by a prolate spheroid ís devel-oped in this chapter. Starti¡1g

with the vector í-ntegro-differential equaÈion for the induced current

on the surface of the scatterer, and appl-ying the physical_ optics approx-

ím¡tions 
_[45] , the time domain repïesentation for the co- a¡rd cross-

polarized backscattered far-field has been obtained.

The frequency domain treatmenÈs of electromagnetic scattering by a con-

ducËing prolaÈe spheroíd have been reported by Andrease¡r [5] , Oshíro [65],
and I'Iate¡man [90]. However, most of these solutions do not. eover the

entíre frequency sPectrum and also do not take into account the depolar-

Ízation of the electromagnetic wave after the scatËering from the surface.

The approach to the problem via the appl-ication of the time domain con-

cepts have been underËaken successfully by ìloffatt and co-workers [59r60,

621 and by Bennett and co-r,¡orkers [9,10,r27. Although these soluÈions

do cover the entíre frequency dornain, they do not account for the depolar-

ization effects of el-ectromagnetÍ-c hraves at the surface of the scatterer.



92

Compared to Èhe above mentioned results, computationaL. results based on

Ëhe model derived in this chapter are elemenXary, nevertheless they do

yield data for the co- and cross- polarí.zed componenË of Ëhe backscatter-

ed fiel-d and are quÍte relíable tourards the high frequeney end of the

spectruu (whích is the region of interest as far as this investigat.ion

is concerned).

In Sectíon 5.2 certain features of the time domain concepts, which have

been exploíted in developiag the nodel here, are discussed.. In order to
get better insight Ínto these features of the time dornpin concept, an

ímpulse response model synthesized with these concepts by Moffatt [61,

62] has been discussed in section 5.3. rn section 5.4 the i_upulse res-

ponse nodel developed for the purpose of the present investígatíon is
discussed and finally the computational results based on this mod.el are

presented ín Section 5.5.

5.2 qO}{E RELEVANT BASIC FEATURES OF TIME DOMAIN CONCEPTS

The convoLutíon integral in (3.1), relating the response waveform to the

ÍrrterrogaËing sÍgnal, provídes an understanding of the relationshíp

between the contributions to G(s) from various porËions of the spectrum

and the resPonse wavefom f-(t'). If the ínput signal is a monochromatic

continuous rrave, then the graphical interpretation of convolution is that

of reversing one of the signals wíth respect to tí-me and Êhen sl-iding one

over Ëhe other. At any given time, the response is given by the integ-

ral of the producÈ of the t¡vo waveforms over that time interval- where

Ëhey coÍncide. For the uonochromatic input, this consisËs of sliding

a sÍnusoid of a given period across Èhe reverse rsaveform rr(-tt). rt
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follows that at rel-atively low frequencies, the response can be influenced

littl-e by the minute details of the waveform. Therefore, the ïesponse

aË low frequencies ís basically dependenË on the general size and shape

of the waveform. As the input freguency increases, more and more of the

waveform details become ímporÈant whereas slowly varying portíons of

the waveform become less ímportant since Ëhe contributions from these

are effectively cancell-ed by the posítive and negatíve portions of the

sinusoíd. Two conclusions were drar,¡n from these observations:

Ci) The general- shape and the size of. the ímpu1-se response \¡rave-

form l'r(t') is dictated by the Iow-frequency response of

the object.

(ii) The fine structure a¡rd detail of the waveform is controlled.

by the high-frequency response of the object.

The íropu1-se response as predícted by physícal optics has been d.íscussed

for the general- case ín chapter Three. There, the physical opËics

approximation Èo the tíme-fr:nction i" símFly derived from the cross-

sectional area as a function of distance along the line of r^rave travel-.

rt has been experienced [44] that Èhe ímpu1-se response predícted by

physical opËics is very simple and ít is possible to improve on these

approximations with a little effort.

In order to correct the physical optics impulse appro*ímation to yield

Èhe Rayleigh límit (i.e., Èhe low frequency límit), it has been suggest-

ed that an additional tíme-function may be added to the ímpulse response

so as to give the proper value for the fírst three moments of the result-
ant corrected Ímpulse response. This correction fr.nction may be formed
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in uany r,;ays r but two siruple methods, whích have been found useful [44J ,

are the rrstaircase" and the ltpolynomial" approxímaÈions.

rn the "staírcase approxímation", as shoÍvri in Fig.5.1a, two rec-

tangular pulses are added to che physical- optics response. The

anplitude of the first pulse is the s¿rtre as the finaL value of the

physícal optics pu1-se, while the arnplitude of the second pulse and

the duration of both pulses are deËermí¡red from the first three

momenË equarions, í.e., (3.8a), (3.8b) and (3.gc).

A second meËhod of correcting the physical optics ímFulse response

consísts of adding a polymonial function of time, startirig at the

fínal value of the physical optics tíme response, choosing the pol_y-

monial eoefficients and Íts duration from the three moment equa-

tions. Th:is results ín a quadratic correction function as shown

in Fig. 5.1b.

It ís obvíous that these two methods for correcting the physical- optics

impulse response are crude and empirical. These method.s have been ex-

tended and modified [61] to make use of higher order approxímntions to

the l-orrr-frequency scattering properties as ¡sell- as improved approxima-

tions [61] to the hígh-frequency ïesponse. However, Ëhese simple

examples c1ear1-y demonsÈrate that a first. order approximation to the

Ínpulse response can be made, usíng only the Rayleigh scatteri_ng co-

efficÍent and the physical optics approxÍnation.

To sum up, fu general, the physical optics approxi-mation is used to

predict the shorË tÍ¡re behaviour of the response waveform. Latter por-

tions of the waveform are selected either from a knowledge of the charac-

ter of the response corresponding to specific geometrical features of
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the object or sí-!ûply from a rough guess of íts probable form. These

various pieces of the waveform are Ëhen joíned r¡ith sufficiently un-

deteruined parameters t.o permit the known moment conditions to be saË-

isfied. As an example, in the next section an approri-uaËe general

solution for Ëhe electromagnetic backscattering by a perfectly conduct-

í-ng prolate sph.eroid ís presented [61], w-ithouÈ Ëaking depolarization

effects ínto accotrnt.

5.3 IMPI]LSE RESPONSE MODEL FOR ELECTROMAGNETIC BACKSCATTERING BY

A PROLATE SPIIEROID Í6L.62]

The prol-ate spheroid and Ëhe coordinates for this probl-em are shown in

FÍg. 5.2. Without loss of generaLity the dírectíon of propagation of

the incident plane wave is restricted to the y -z plane, æd the in-

cidenÈ dÍrection is specified by the angle 0 Trro prileipal polar-

ízations defíned for the incident rÂ/ave are:

TE, where Ëhe íncident electric-field vector is normal to the y-

z p1-ane, and

TM, where the incidenÈ electríc-fíel-d vector l-ies ín the y -z

plane.

With each of these principal polarizations a path length is associated

whích corresponds to the line of síght up to the shadow boundary and a

geodesic fn the shadov¡ region (see Fig. 5.2). It is to be noted that

these paths are measured from an ínitíal- reference plane perpendicular

to the líne of sight.

At this point, certafn useful sinplifying approximations, made in the
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course of development of the lmpulse response nodel, need to be dis-

cussed. The first of these símplificaËions involves the poínt of termin-

aËion ín tírne and the í¡rfluence of the shadow boundary on the physical

optics approxinaËion. For the sphere the shadow bor:ndary is-always

normal- to the direction of propagaÈion of the ílcident fÍeld. However,

for a spheroid this on1-y occurs for axial and broadside incidence.

MoffatË [6L,62] simpl-ifíed Ëhis situation by.ignoring the íncLination

of the shadow boundary and terryinating Ëhe physical optics approxíma-

t,ion at. Ëhe point corïesponding to the peak transverse cross-section

encountered by Ëhe cutting plane. A second approxímaËion was made in Èhe

measuremenË of path lengths on the shadow side of the spheroid. For

eiËher one of the principal polarizations, this dísËance should be eval--

uaËed along the perimeter of an ellípse, i.e., by an incompl-eËe e1-liptic

integral . These íntegrai-s are tabulated, but to obtain ¿ simFl-e closed-

form expression, the creepi:rg wave path length on the spheroid was calcu-

I-ated with the asswnption Èhat an e1-lipse of semi-major axis ta' and sem'í-

minor a:ris tbt has a circr¡mference given by

ein = 2t

The

and

inpulse response waveform of the spheroid for

linear polarizatíon (TE or TM) was writÈen as

arbitrary orienËation

Èhe sum of two terüs

l'r (t'1 = Frr (t ') + rrr (t ') (s.1)

where F- (tt) is used to enforce the desired character of the uraveformIl

and F. (t') is used to satísfy the known moment condiLions [45,61].L2

tr{Íth the knowledge of the character of the axial i¡rcidence uodel [60,

61], the high frequeD.cy portion of the basic impulse response waveform
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[i.e., the Portion of Ëhe íropulse response whích contributes nost to the

hígh frequency end of the phasor response (see discusslon ín SecËion 5.2)]

for the spheroid r¡ras assumed to be of the formÍ6L,6Tl

Fr, (t') = -A ô(t')
I

. -0rtrå'E

2(a2cos20 + b2sjrr20)

z(az cosz Q + b2 sLn2 g)3 / 2

-ßAl

-92

(A -A "o't')tu(t')-u(t,-TÈ )2 3 0-

u(t'-rr ) I ,
0

where

A
I

A=
2

0l=

and x = 2blc
00

KA2rlz -ß
2̂

t/ z

abz

(s.2)

(5 .3a)

(s.3b)

(5.3c)
2A"

_A3
I

TÃã -
2

^ ,nlz

' T-Arq

Ilere, K, is the Rayl-eigh coefficient and u denotes the unit step.

The quantity T depends on the prÍneipal polarization. rt is deter-

mined from the geometry of the spheroíd and as expl-ained earlier corres-

ponds Ëo the lÍne of sight up to the poinü of maxi-mr-m cross-section for

the cutting plane rand a geodesic creepÍng wave paËh length in the shadow

region of the spheroid. Two conditions are imposed on Ëhe wavefora in

(5.2), they are,
A <<<A

32

(A - A 
"o'Tto)23 =4"-0rTto=pqI

and

; a consËãrÈ.
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ThÍs gives

A =]-¡ra _p2l
4 ^, 1.2 I

and-AA
.,t-rg"¡t+¡J*f r'n t \ 

(--¿ - 1)l

From this, it is clear that ,, and Ou are not specifíed. Thus, wíth

these tr¡ro parameters, Ít is possible to. achíeve a clegree of control on

the character of the creeping wave contribution. For example, with the

peak creeping wave. contribution P flxed, A controls the slope of

,rr(.1) = EIe-Ört'-.-Özt'1 u(r')

where E, 0_ and $ can be complex. Let tl,e flrst three moments of"7 '2

Ftr(t'), the high frequency portion of the waveform, be l-, I- ancl I^,

i.e. 
I 2 3

the waveform príor t,o the peak. It 1s to be noted that no attenipt has

been made to utilize the low-frequency derived moment. condition to

determine the constanËs P and A or, for that. matter, include add-13
iÈional parameters b satlsfy higher order moment.s. Such an a,pproach

was found t61] to be ineffecËive because it ís dífficult to maintal-n

sl-multaneously the desfred character of the ímpulse waveform. Even

for the simple case, the moment condition may leacl to a. very compl-Ícated

set of símultaneous nonl-inear integral equations..

Next Moffatt [61] proposed to superimpose a second. wavefor* errsurirrg

the correct low-frequency behaviour of the ïesponse. This is an exponent-

ially darnpeci sinusoid whích is written in the form

€o

I'
I ¡'- (t') dtr = rJ r-r I

(5.5a)



to2

I
f t'r- (t') at t = r
Jo 11 2

dtr = I

rmposing t.l',e zero, first and second moment condíËions on

response waveform of the spheroid, i.e., fr(tr), yiel_ds

set of símulÈaneous non-linear equations

E[or-ôrJ = -rrorô,

EÍþ:_O:J = _r.2þ:þ:

2EIo:-Oil = (K,-rr)oio;

It has been shoum[6Lr6z] that if

T2
2

t r t2Frr (rt )
0

(s . sb)

(s.sc)

the total impulse

the followÍng

(5.6a)

(s.6b)

(5 .6c)

(rlT)2+
2--1'.

then ö,, ôr, E

(Kr-T3) /2Tr

are real

Tlt

2l(T lr )2 + (r -r2lr

(T lT )2

t2 + (tr/rr)2 + (Kr-r) lzrr

and given by

)lzr 131

4

) lzt 1z31

0=
2

2t

*+ J2lt-
IG lr )2+(rc -r2tr ) 

2+(r -rf3t(r /r2t )lzr 1
I

0=I

E=
1

0r[(rrlrr)2 +

-r, ö, ô"
ô -ó'2 '1

(K_-r ) lzr 1131
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complex conjugaËes

103

J-nequality is not satisfied, Q and Q becomel2

ó =g'1r '27

: _Lt2'

2r lG /r-t2l ) 
2+(rr-r, 

) /2rJ

4
0.,. i =

(t lt )2+(r -r )/zt2 I r g-- I

t/z=!t
L2+(T lTt2t -T )lzt3l

I
I

where

o- . [ (r-lr_ )2+(K_-r ) /2T ]lr 2 I r 3- l-

I , I and I were found to bet23
A 

"ctT A 
"{tTI =-A, +AT- 3 4

I I z 
---ã--- 

.,i- ,

A_T2 ATeo'T A"ctT AT"{'T O.-C'rTt, = 3- - +t- * *,2- * -t=-- * *-u-2 2 ct0t ct 0

AT3
t -=-4- +

3J [Ae-o'T-A.o'T]q3
tr-rA' ct''3 t 

u

T2
ai- * llrlor"o + Aoe*'rl

-ctT o,tT-e -Ae I .
3

Thus, excepË for A, æd t, Ëhe remainder of the parameters of the

in¡Fulse response vraveform are knom. rt has been felt t61] that very

littl-e is gained by introducing sophisticated procedures and techníques

for est,ablishing Èhe tr¡o pêr:ms¿s¡" Oa and p, above, parËicu[ar]y

when Ëhey are exPect.ed Èo change with aspecÈ angle. Also such sophísti-

cation would be achieved at the expense of a much uore complicated model.

The pur¡rose here is to develop a simple uodel and, hopefully, .one whose

constarit parãmeters are invariant for a given axial spheroid ratÍo regard-

less of orientation and incident polarization. Thus, a rough estimate

of the Paråmeter A' was,obtalned from the axial- wavefo:m results [60r6U,

)2+(rr
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and Ëhe i¡tvariance of the creepllg wave peak wiËh respect to the axial
ratio, obËalned ín [60], was accepËed.

rt has been shown [6L'62J that the ímpulse response mode]- described in
this secËion is in reasonable agreement with measured d.ata for a spheroid

of' 2 : 1 axial ratío. The minor dÍsagreemenÈ betv¡een cal-culated and

measured daÈa has been attributed to the enforced simplicity of the

model, achieved at the exPense of numerous approxím¡tions and estí¡rates,
wll-ich possibly could be correcËed with a more compreted mode1. Based

on Èhe ínsigtr-t gained from Èhis example, ín the riexË section, in a some-

what símilar fashion' an impulse response model for the co- and the cross-
poJ-arized comPonents of the backscattered field (at least for the high

frequency case) off a prol_ate spheroid is developed.

5.4 APPROXIMATE I¡{PULSE RESPONSE MODEL FOR CO- AIqD CROSS-

LO!4tsrZED BACKSCATTERED FrELD

Since the main ai-u is to generate Ínput dat.a for the i¡rverse scattering

model of chapter Four at sufficiently high frequencies, the waveform

synthesized here Ís del-iberatel-y made as simFle as possible. This im-

pulse response model- is uerely the physical optics approxímation for
short tímes and a creeping wave contribuËion consisting of the extension

of ttre physical optics approximation beyond the shadow bogndary (with a

Èime scale stretching to account for the facÈ that the wave travels

along the surface of the scatterer beyond the shadorv bor:ndary) and an

exponential decay beyond the object.
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In order to derLve a general expression for the l-nítial- time porËion

of the prolate spheroíd ímpul-se response, an expression for the area

function A(t) for arbitrary direction of incídence needs to be knor,¡n.

For a general direction of incidence, 0 (the value of 0 d.oes not

matter because this is a two-dimensÍonâl case), on a prolate spheroid,

BenneËt and co-r¿orkers [12] obtained an expression for Ëhe area func-

tion. The calculations needed are identical to that presenËed in
Appendi:< II, except that here on1-y one coordinate transformation (two-

dímensional case) is required. Consíder a prolate spheroid with semi-

major axís rar and semi-rn:inor axis fbr which are centered aË the orÍgin
of the coordinate system. I^IiÈh xt representing the d.istance from the

origin along the direction of incidence(see Fig.A.Ir.1)rA(xt)gives Ëhe projected

area of the scatterer as delineated by the íncident impulse as it noves

across the scaÈterer at one-hal-f Èhe free space velocity of light (ttris

has been discussed in detail in Chapter Ítiree). For a given direction of
íncidence 0 , A(x') is given as [12]

where

wiÈh

A(xt) = "?o'- tr2(O) - x,2l u Ir(0) - x,l ,r'(0)

rco) = [
a2t2r, (ô)

1 tlz
Br(o)urco) - c2(o)

(0) = a2cos"g + b2sin2Q ,

(0) = (^,-b2)sÍnQcosQ ,

(0) = a2sin2ft b2cos2þ

(s .7)

(s.8)

B
I

C I
E

I

case, as discussed i¡ (3.14)
ct

xt=--+-=-tlz
2

In Ëhis



which, on substitution into

106

(5.7), yields the expressl-on

-L'ott'
Gt
2 t4r2(ô) -¿f u [t + 2r(ô)] (s.e)

(s.10)

where
.2

^l - aD
u

13 (o)

It has been shown in Chapter Three ËhaÈ the ramp response is given by

the projected area functíon, i.e.,

rqrrrp ?esponse A(r)

Thís is a physical opties approximation and conventíonally hol-ds true

only up to the shadow boundary. However, in the present model , this

approxímation has been extended beyond the shadow boundary and has been

nodified írr a manner such that Èhe Ëíme beyond the shado¡s boundary Ís

calculated according Ëo the distances measured along the surface of the

scatterer rather than along Iíne-of-sight in free space, i.e.,

1
=

2'tt

!'Øllp ?esponse = a(t)[u(t+2l) - u(t)]

* o(+ t)[u(t) - u(t-rc)]
c

where

T =Tr -Zf
ao

rtrLth T being the total path lengËh as discussed in Section 5.2. It is

Ëo be noÈed that ín (5.10) the consideraÈion of the path length beyond

the shadow boundary has been s'ímplifíed by just scaling the tÍ-ne t by

a factor Qf/T^), i.e., by assrning a línear deformation of the paËh
c

1-ength beyond the shadow bor:ndary. In the present consideration, the

location of the shadow bormdary has been sinrplified in a mânner similar

to MoffaÈË [61], where the incl-ination of the shador'r boundary was ignored
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and, insËead, Èhe shadow boundary u'as l-ocated at the polnt eorresponding

to the peak Èransverse cross-section encounÈered by the cuËting plane

(see Fig. 5.2). trfith this definiËion of the shadow boundary, for a pro-

1-ate spheroid cenËered at the origin (as is the case here), (5.9) indi-
cat.es that the shadow boundary is a]-ways located aË t = 0 on the time

scal-e, and the distance between the shadow boundary and the specular

poínt along the direction of the íncident r,rave is given by r(ô) (see

Fig. 5.2). Using (5.9) and (5.10), rhe expressíon for the projecred

area function of Èhe scatterer ís obtained as

h ot" =Gt
2

Gr4-,2

t4f2 (O) - x2llu(r+zr) - u(r)l

t4r2(o) - qÐ 12llu(r) - u(t-r")J
T2

c

A sketch of the projected area funcÈion given by (5.11) is shown in

Fig.5.3. There, the stretching of the time scale beyond the shador¿

bor.rndary, i¡ order to take care of creeping-wave path length (at l-east

Ëo a fÍrst approxímatíon), has been clearly demonstrated. Taking the

derívative of (5.1-1) with respecÈ to ti:ne yiel-ds

{u(t)-u(r-rc) }l

. (5 .11)

(5.L2a)

shown that

zeTo, thus

(s .12b)

h%9 = -G'r[{u(t+2r)-u(r)} - (+) {u(r)-u(t-rc)}]
c

I (4r2 -x2)ô (r+2r) - (4T2-t2)ô (t)

+(4rz- * t'>ô (c)+(¿r2 + 12 ¡ ô (t-r.) 1T2 Tz
,c

Using the properties of the delta funcÈion, iÈ can easily be

the quantiÈy inside the second square bracket of (5.12a) is

hP = -Gtt[{u(t+zr) - u(t)} -

,- Gt'2

412T
c
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Dlfferentlating (5.12b) with respecË to tfme and using the properÈies

of the delËa funcËion again, yields

1 â24(r) =ZtG,6(r+zr) _+6,g(t_r")2nðJc

G'[{u(r+zr)-u(t)} -+{u(t)-,'(r-rc)}] (s.13)
T2

Now, subsËítuting rhe values of SP and {P from (5 .Lzb) and

(5.13) into (4.L9), the hígh frequency approxímation to the backscarter-

ed co-polarLzed fíeld yÍelds

Ito4o¡ï,t) I = 2rc,ô(r+zr) - +c,6(r-rc)
c

-ct [ 1+Ë (cos2a) ,*, I I u(r1zr) -u(t) ]

-.' tË . + r (cos2cr,) ,+ lt u (r) -u(r-r.) J (s .14)
cc

Here, it 
_has 

been assumed that the írrcident magnetic field -E is of

r:nit magnitude and its polarízation angle is o (see chapter Four for
the definition of the pol-arization angle). Thus 

"r, "ru "r, 
rirere

replaced by cosc, and sino, respectively in (5.14).

A skeLch of the approxima¿g ínpulse ïesponse uodel is shor¿n in Fig. 5.4.

From a knowledge of the axial ímpul-se ïesponse waveform [60161] and

the experience of the prevíous investigators [9 rLzr4sr6Lr67j, it is clear

ËhaË the impulse response waveform in (5.14) has two prímary faults:
FirsÈly, Ëhe erroneous jrmp occuring at the shadow boundary

(t = 0), and secondJ-y, the form of Èhe response waveforu at

Èhe creeping wave peak (Ë = T").

In Èhe first case, there is no evidence that Ín the neigþborhood of tb.e
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Q n, TE CASE

Q ru TM CASE

lHco ( r )l

fH.on rl

(2 TG,)

(zrc')

Sl

Fig. 5.4 Impulse Response War¡efo:m Correspondíng To (5.14)



1l_1

shadow boundary a discontinuity should occur fn the waveform. rn the

second case' although a sharp creepíng wave peak is expected at t = T.,
this peak cannot be Ímpulsive ín nat,ure. For the case of a smooth object,
Èhe delta function contribution to Lhe ímpu1-se response waveforn can

only come from the specular poínÈ. In a similar approach to the problem

(i'e', using the ïãmp response as the sËarting point) Moffatt [6L,62)
also encountered simil-ar defects, and concluded that these defects arise
because of the assrmption made in calculatÍrg the creeping wave path

length and in locating the shadow bo'ndary on the surface. There, Ít
was also poínted out that, in principle, iÈ should be possible to correet
the ramp-resPonse-derived model. However, the additional parameters re-
quíred would exceed the knor,sn conditions on Èhe waveforu. This is the

type of problem one encounters when sËarËfng with an analytic approx.íma-

tion of the remp resPonse waveform. Since this r¿aveform is smoother 
-

Ëhan its first or second derivatives, it can be estimated with fer,¡er para-
meteÏs. Sut Ín the ímpul-se response waveform, Í-.e., r¿hen differentiated
twice, the type of functional depend.ence assr¡ned. is extremely critical .

In order Ëo overcome the above mentíoned defects of the in¡pulse response

waveform of (5.14), a direct. model of the ímpulse response wavefor-m is
proposed. rn this uodel arI the desired properties of (5.14) have been

retaíned and the erroneous junp at the shadow boundary is sinpl_y

elÍminated. AlËhough ¡þis sfímírration of the jrrmF is based on somer,rhat

empirical reasoning, it is expected to be valid for the high frequency

end of the spectrrno, which is the region of i¡rterest as far as this
inve'stigation is concerned,. The creepilg wave peak tern (i.e., delta
function at t = Tc) is not included for Èhe tÍ-me being and it wÍll
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be considered with the terninating term which will be added l-ater. With

these above menËioned adjustments to (5.14), the approximate model for

¿¡s imPulse resPonse waveform for Èhe co-poLarized backscaËtered field

is

Ito-%o ci,tl I = zfc'6 Ct+2r)

K-K
-G' [ 1+r (cos2q) (.--JT4] [ u(t+zr) -u(r) ]

-ntf1 - 4f *, 
K -K

s Lr, 12 utcos2ù(+)ltu(t)-u(r-T")J (5.15)
c

SubstituËion of the val-ue of Ð4(t) r'om (5-12

n', = coss ' "'": "'j";",5"""-i]":'::'î;: i;"1]""]"ï":::"
r¡avefo:m corresponding to the cross-pol-arized backscatËered fiel-d as

K-K
I =o4r(ir) I = -c' *f)sin2a,[u(t+2r)-u(t) ]

4n2^, K -K
its *t74sín2a[ u(t) -u(t-r.) ]

c

An undesirabre characËeristic of the model presented fu (5.15) and (5.16)

is the abrupt Ëernination of the wavefonn at t = T". From a physical

point of view the tíme domain backscatËered field should die out smooth-

ly after the íncidsn¿ imFul-se has passed beyond the scatterÍng objecË

[9161]. Thus, for the times after the plane rnoves beyond Ëhe spheroid,

the waveforms in (5.15) and (5.1-6) are extended continuously and mul-ti-

p1-íed by an exponential-ly damped term. As mentioned earlier, the daup-

ing factor could be chosen in such a manner that the resulting wavefom

is forced to satisfy the second nooment condition. However, it has been

shown [61] that such an approach night prove quite cr:mbersome, and. even

for very simple r,raveforms, the íntegratíon indicated by the moment con-

ditíons c¡n l-ead to a very conpl-icated set, of simul-tâneous nonlinear

(s .16)
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equations. Sínce here the Ínterest ís restricted. to the high frequency

end of Éhe spectrum, ¡fus ímpulse response waveform ís kept simpl_e by

choosing the same d.amFíng factor or as given ín (5.3c) and derived

by MoffaËt [61]. Thus, wÍth the new temination term added, the impulse

response model is given as

I .o4o (i, t) I = 2rc'ô (Ë+2r)

-c, [ l+t (cos2cr,) ,$, ] [ u(t+zr) -u(r) ]

-c' [ 1+ + t(cos2a) ,*, ] tu(t) -u(t-r") J
c

-cr[1+ $ c.o"z"l c$l]. o'(t"-t),r(.-r.)
c

I toË.r(i,t) I = -c'.(*+)sin2c[u(t+2r)-u(t) ]

t.r2nt K -K-q-, çl)sÍn2o[ u(r) -,r(t-rc) ]
c

,¡2 K -K at (t^-t)
i "'(#)(sín2a)e' 

c u(t-r")
c

(s.17)

(s .l-8)

The sketch of the ímpulse response r^rave correspondÍng to (5.17) is
given in Fíg. 5.5 for the cases where the ÍncídenË wave po?arLzatron is
close to the TE and TM cases. Cornparison of these two skeÈches ¡v_ith

the impulse response waveforr reported by BenneËÈ and co-workers [12]
brings out the fact that the basic naÈure of the sÍngularities ín both

cases are identical. It is to be noted thaÈ Ëhese are the portíons of
¿¡1 irnpulse response waveform rn'hich contribute to the high frequeÐcy

end of the phasor response ín a major way. rn the next section, usíng

(5'17) *d (5.18), computaËiona1 results for Èhe phasor response of a

prolate spheroid of axial ratio of 2 : 1 are presented.
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CI .-, TE CASE

CI ¿\., TM CASE

O PHYSIcAL oplcs AppRox.

@'eolARrzATroN coRREcroN I srNNrrr er or ; reTJ ]
@ AccoUNTS FoR THE FACT THAT WAVE TRAVELS ALoNG

THE SURFACE OF THE OBJECT BEYOND THE SHADOW
BOUNDARY (i.e. POINT OF t\4AX.CROSS SEC. )

@ ExPoNENTIAL DECAv BEyoND 1x
xT;CORRESPONDS To L|NE oFSIGHT To rHE potNT oF

IVIAX, CROSS SEC. A A GEODESIC CREEPING WAVE PATH
TENGTH BEyoND I lvlorrnrr; t969 ]

s.s Approimote model for the input dotoFig.

Hp(t )
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COMPUTATIONAI .RESI]LTS

The frequency-dependent co- and cross- poLarízed phasor responses can

be obtained directly from (5.L7) and (5.1s) by making use of the Fouríer

transformation paírs defi¡ed in Appendix rrr. However, before this

transformatíon could be performed, values of various parameters in (5.17)

and (5.18) rnust be known for arbitxary polarization of'Èhe incident

hrave. Except f or T" ancl cxt , all other parameters are independent of

tlte incÍdent T¡Iave polarization and could easíly be calculated from the

knoym size of the prolate spheroid and the knovm direction of incidence

Ô. T , the creeping wave path length is directly depenclent on the, c ---o--'

incide.nt wave polarLzatíon as can be easily seen from Fig. 5.2. The

fact,or clt , as defined in (5.¡c), is polarization-clependenú as it in-

volves the Rayleigh coefficient K .

An approxinate analytical expression for the total- path length r
(whieh corresponds Ëo the line-of-sight up to the point of. maxímum

cross:'secËion for the cutting plane and a geodesic creeping. wave path

length ín Ëhe shadow regíon), for two extreme cases of the íncl-denË wave

polarization (i,e,, TE and TM), has b.een reportecl by I'Ioffatt l6Lr62l,

Based on 
.the approximation that the circumference of an ellípse of

semí--major axis 'at and semi-rninor axis 'bt ís given by tt/-Í(Æ\ ,

the path length T correspondíng Èo the two príncípal polarizations,

has been obtained [62] as follows
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.fi ta2+b2 1-6t --z n zt
sínöcos0(a2-b2)_ _ @l@

(s.1e)

T(TE) - sí¡r2Ôcos2Ó(a2-b2)2

u@(a2sin2S-rb2coszp)

-@,îT q$-F- 2b /-=T: ' (5.20)

where

c2 = b2 ,, - 
sin2Ôcos2ó(a2-b2)2

I azbz

* , sin20cos20(b2-a2) (a2-b2) .,2 ì.'r ab(a2cos2Q*b2sinzQ) , t

and

e2 =- azbz-.sí;n2 ôéås2 ö(a2-bz)2'z a2sin2ftb2cãsZþ

+ t sin2ôeos2ö(a2-b2) (b2-a2)
J,

@ (a2sin2frb2.os26)

As q, varies from one extrême Ëo the other (i.e. , 0 to t/2) the creep-

ing wave path length T musr vary from r(rE) to T(m). An empirical-

ly suggested analytÍc expressÍon for this variaËion is

T(o) = T(TE)cos2q,+ T(nf)sin2o (5.21_)

This expression r¡as arrived at rnainly from two considerations. First,
nhen o = 0 , T(e) should become T(TE); and when a = r/2, T(cr,) should

represent T(IÌf). secondly, in case of a sphere, wtrere the creepíng

wave path length ís identÍcal for the TE and the Tlnf polarization (see
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Flg. 5.2), ttre path length T(o) ls índependent of rhe poLarLzation of

the Íncident wave and, therefore, in this degenerate case T(¡¿) should

remain constant for an arbitrary value of c . Although the approxima-

tion in (5.2L) appears Èo be unsophisticated, it certaínly is a valíd

first order approxímation from the physical surface geoÐetry poí¡t of

view (especial-ly for a 2 z 1 prolate spheroid).

. :r

Next, in order to obtain a value of the darying factor ct fron (5.3c)

for an arbiÈrary value of the pol-arizaÈion angl-e ct , an expression fór
the val-ue of the Rayleigh coefficient for an arbitrary val-ue of g r¡ras

devel-oped. Moffatt [61] has presented val-ues of the Rayl-eigh coeffÍcient

for TE and TM cases for various axial- ratios of the prolate spheroÍd.

There' a general solution for the coefficients Ín a power series expansion

of the scattered field in terms of the nave nr¡mber (ka) [61-] has been

utilized to obtain the Rayleigh term for the case of prolate and oblate

spheroids. The Rayleigh coefficient Kr(o) is defíned in a manner such

that

t" (a) = K, (o) . (k") 2 (s.22)

where n"(a) denotes the normaLízed scatÈered fiel-d for an incident polar-

ízation angle o. For TE and IM cases, C5.22) wll-l- yield

and

Es (TE) = K, (TE) (ka) 2

Es (T1"r) = K= (Tn) (ka) 2

(5.23a)

(s .23b)

For an arbitrary linearly polarized, incident wave, where the incident

magnetic field ÈÍ uakes an angle s wirh the â, {m) directíon (see

Fig. 5.6) ' the magnitude of the conponent of the electric field in the

â direcËion ís E.cosc¿ ; and the component in the â direction is2Ll
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E- sfna . From (5 .23a) and (5 .Z3b) rhea

the scattered fiel-d are

Thus, from (5.24),

arbitrary val-ue of

corresponding components of

8", (ru) = Kr(TM)sino,(ka)2

Therefore, Èhe total- scatÈered fíeld is

f u"(cr) I = Kr(o) (ka) 2 = {[Kr(TE)coso]2+(rr(TM)sino,l z¡t/z(ka)2

Es2(TE) = Kr(TE)coso(ka)2 and

(s -24)

expression for the Rayleigh coefficient for a¡r

is given by

the

ct

(s.2s)

I^Iith the val-ues of K.(TE) and K=(TM) for arbitrary directÍon of in-

cid.ence e for a prolate spheroÍd as documented in [61], (5.25) pro-

vides the value of the RayleÍgh coefficient for arbítrary direction of

incidence 0 with arbitrary poLarÍzation c.

Now, with all the paremeters in (5.17) and (5.18) specified for the

arbitrary linearly polarized incident wave and for an arbitrary direc-

tion of i¡rcidence, the frequency-dependenÈ phasor response has been

computed usíng the Fouríer transformation pair given Í¡r (3.3). For the

Ëhro extreme cases (TE and TM) of the íncident !¡ave polarization (i.e.,

when the cross-polarízed return vanishes), the frequency-domaÍn resul-ts

are avail-able in the published líterature [L2]. Therefore, for the

quasi TE and Quasi Tll (i.e., almost TE and al-most TM)cases, the approxi-

maËe solut.ions developed here were converted to the frequeucy d6¡¡in þy

rr(cr,) = {[Kr(rE)coscr]2 ç lKr(ru)sina] z¡tlz
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Fourier transforrnation, and compared \{ith the avaÍLab1e published

results (see Figs. 5.7a to 5.7f). As expect.ed, the agreenent ín naËure

of variation and general shape between Ëhe two sets of results was good.

Ëoruards the hÍgh frequency end (i.e., o ì 5.0). Towards the low frequency

end the approximate sol-utíon differs much from the gs tablishecl solutíons

published in the literature []-2]. This \¡ras t,o be expected, as very

1ittle low frequency information was íncluded in the time d.omain re-
presentaËions in Fig. 5.5. Note, that exact ualues of the field eannot

be cornpared as the y arLs of tlzlis th.e totaL fieLd qnd not the co-

poLarized fieLd. (ALso, note that F¿g? 5.2 prouid.es approæinations fot
the quasi'TT (a:5o) and. quasi TM (o, - Bõo) cases, but not foz, the

eæact rE and. rM sol.utions. ) , Ìt is Ëo be noted that even at the low

frequency end, the position of maxima and minima of Ëhe aurplítude of the

frequency ïesponse were found to be identical t,o those given ín the lít-
erature. The disagreement toward.s the low frequency end, however, does

noL prevent the use of this approxímaËe solutíon as ínput data for the

proposed ínverse scattering model of Chapter Four. This is because Ëhe

proposed inverse scaËteríng model is expected to be good at the relaËLve-

ly high frequency rqgion only. .rn order to gfve a better i¡síght into

the behaviour of the írnpulse scattering nodel proposed in (5.17), values

of l, T- and o' for polarízatíon angle of cr = 30o and -60o (i.e. ,'c
q,- T/2) are compfled in the Tab1e I.

The cross-polarízed frecluency response obtaíned fron the approximaËe

solutÍon \¡ras compared with angther published approxímate result [28]

(which, to the best of the authorrs knowledge, is the only such result

avaílable ín literature) and a good agreemenÈ for the'basic nature and
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TABLE I

PARAMETER VALI]ES FOR IMPI]LSE BNSPONSE I^TAVEFORM

(i) POLARTZATIONANGLE o=30o , 0=90"

(ii¡ POLARIZATION ANGLE o, = -60" , 0 = 90"

ö (dee. ) 2f T
c 0r

10
20

40
50
60
70
80
90

4 .0000
3.9s46
3 .8206
3.6060
3,3236
2.9938
2.6468
2.3256
2.Ogg2
2 .0000

4.9648
4.9094
4.7670
4.57sr
4.3s70
4 .1300
3 .9160
3.74L9
3.632L
3 .59s8

3.2366
3.2697
3.297L
3.2L54
3 .0091
2.7277
2.4273
2.7578
1.9635
1_.8906

ô _(dee. ) 2l T
c 0r

0
10
20
30
40
50
60
70
80
90

4.0000
3.9s46
3.8206
3.6060
3.3236
2.9938
2.6468
2.3256
2.0892
2 .0000

4.9648
4.9463
4.8987
4.8347
4.76L9
4.686L
4.6L47
4.5565
4.5199
4.5077

3.2366
3.L479
2.8936
2.535L
2.]-602
r.8282
r.56L4
r.364r
L.2392
1.1953
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shaPe of the curves v¡as obtaíned (see Figs5.8a-5.8c). ebsolute varues could

not be compared because of. di-fferenË norrDalization used in l,z}j. Further-
more' sufficiently accuraÈe numerical- values coul-d not be obtaíned. from

the plots given in [28]. rn [28,p .27] íË has been clearly poínred our

that the results presented therei¡r are accuïate as far as the shape is
concerned and the absolute values could be about three times too low.

To s'u up, although rhe solutions (5.17) and (5.rg), obtai-ned for the

backscattered fields, were based on cerËain liberal engíneeri¡g approxi-

mations, it is evidenÈ Ëhat they are relíable enough to be used as in-
put data ín (4.28) and (4.29) for o > 5.0. rn the nexr chaprer, (4.2g),
(4-29) and (4.30) have been used to expïess ê, b, c as fr-¡nctions of
ê, b, c as wel-l- as of the Ínput daËa (i.e., the backscattered far-fíeld)
and thus an iteration scheme for computatíon is mad.e possible.
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chøpter siæ

APPLICATION OF THE PROPOSED INVERSE SCATTERING MODEL IN PROFILE INVERSION

OF A PERFECTLY CONDUCTING PROLATE SPHEROID

6.1 NTRODUCTION

Once the forrnal- sol-ution to Èhe problem has been set in Chapter Four,

Ëhe next obvious step is to check its validíÈy numerically. The system

of equations proposed in chapter Four for the recovery of the surface

profile utilizes certain physícal as wel-1 as geometrícal- optics approxi--

mations. Therefore, the solution is expected to be good in the high-
frequency region onl-y. The frequency range over vrhich this system yíelds

best resul-ts needs to be invesrigated. Furthermore (3.14) and, (3.24),

used í¡ a major way to devel-op the formal sol-ution, have been derivgd by

liberal- application of engineering approximations. Their vaLÍdÍty and

accuracy under various different situations needs to be checked.

Application of the inverse scaËÈeríng model, developed in chapter Four,

to the Ëest case of a perfectly conductfng prolate spheroid has been

undertaken in this chapter. The major diffÍculty Ín this direction is
thaË the kÍnd of í:opuÈ data needed is not readily available for most of

the scatterer shapes. It is to be noted that although a complete set of

the required daËa is available for the sphere, the spheïe caanot be a

Ëest case. This is be.cause ttre Ëwo prírrcipal radii of curvature are

the same at all poÍnts on Èhe sphere causíng (3.24) to break down. To

circr-mvenÈ thís difficulty arl appre¡¡ím¡ls solution of the backscaËter-

Í-ng by a perfectly conducËíng prolaËe sphe.roid has bee¡r developed in
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chapËer Five and thís soluËion has been used to generate all_ the ínput
data required ín the presenÈ chapter.

In Sectior- 6.2, the iteration scheme for the actual computatiorr"l ,"-l
cove.Ty of the surface of a perfectly conducting prorate spheroid is
developed' various nr-merical resulÈs showing frequency dependence and

the límitations of the proposed ínverse scaËtering model are presented

in section 6'3. A possible modification of the iteration scheme has

been considered in section 6.4. Furtherrtrore, comparison of the results
obtained frou ttp modifíe.d iÈeratíon sche¡e with those obtaíned frou the

original iteration scheme are also presented in thís section. FÍna11y,

ín Section 6.5, shortcomiags of the ínverse scaËteríng model, as verifíed
by nr-rmerical calculations are d.iscussed.

6.2 ITERATION SCHEME

Eqs- C4.30), C4.31) ancl (4.32) have been used ro express inplicirly
â, b, c as frm.cÈions of a, b, c as well as of the Í-nput data (i.e.,
backscaËte.red far-field) and Ëhus an iËeraÈion scheme for computation

was uade possible. The expression for q-""), the difference betr,¡eeo

Èraro principal curvatures at the specular point, where the nor:rnal direc-
tion of incidence ís given by (Ern,Ç), was obtained Ín Ëe:ms of the semí-

axes of the correspondíng equívalent ellipsoid (a,b,c) in (r-9) of
Appendíx I. Substitution of thís expressíon for q*.) into (4.31)

yie.lds an eJ<pression for tat as



-b2 c2 (qt+6') +

L34

| 
", . 

| / cos (o) sin (s)

a = f(arbrc) =

where

K
t2 = (a282.+ b2\2 + czÇz)t/z

(a b c)2

(6 .1)

{6.2)

The sign before the second term on the right{r.and-síde of (6.r)

taken to be either positive or negative deperrdi'g on whe.thcr

l^' "' 
(82-Ç2) - ^'b' 

(L-Ç2¡ + b2c2 (n'+e,) I ì o,

re'spectively. This criterion arises because of the fact that. the ab-

soluËe val-ue of (K.-Kr) is Èo be considered í:a (4.31).

From c4-32), an Ð<pression for tbr as a function of â, b, c and the

scaËËered field data was obtained as

b = s(a,b,c) = b f 
{lnrolt+lnrolt+zlurol' lurolto"(oro-oro)}1/t

L z{ (zrc) ' + (e lùz|t / z

$'ímíl¿¡ly fron (4-30), an e\.pression for tc( is obtained as

c = h(a,b,c) = I(at)2 + (¡n)2 + (c6)rJl fu¡rl, (6.3)

The developmenÈ of these expressíons for a, b and. c r,ras mainly guided

by the requirement that the resultíng set of equations, i.e., (6.1),
(6.2) and C6.3), for the iteration schcme should not become ill-condition-
ed. Tb-e particular seÈ of functions f (arbrc), g(arb,c) and h(a,b,c)

were- arrived at by perforuíng trials on various otb-er seÈs of functíons.

To elaboraËe on rhís poínË note that if (6.1) , (6.2) and (6.3) are
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chosen i¡t such a maill-er that the nrmerical vaLues of the ríght-hand-

sides of these equations are comparable durílg the iteration cycles,

Èhen the try¡rerplanes correspondíng Ëo these equations will intersecÈ aË

nearly 90". In such a systêm, the Íntersection poínt Cor solution) is
relatively insensiÈive to a slight movêmerlt of these hyperplanes and to

rouad-off errors. Such a systeû of equations is called a well_condiËion_

ed system. on the other hand, if Èhe hyperplanes i¡rËersect at small

angles, Ëhe ror:nd-off eïïors and slight movenent of the hyperplanes

cause apprecíable motion of the intersection point wíth a low degree of
accuracy of tbe resultÍrrg solution. such systems aïe te.rned ill_-

condiËioned,

rn Ëhe above se.t of equations, i.e., (6.t¡ to (6.3), it appears for the

iËeration sche¡e that Ëhe pïocess could be si-uplifíed by usi¡g (4.30)

to solve for one. of the variables (say c) and then Ëo just iterate over

th-e-rernaiñíng two variables (i.e., a and b). Ilowever, the fact rerhains

that this simplification carurot be incorporated i¡rto the iteratíon

sclreme. This it because (4.30) gives a fourÈh-order equation for any of

the variables a, b or c , and it is not possible to flisq¡imínaËe the

proPer value of the variable from the four roots of thís equation since

very frequently two of the four roots are positive real numbers. This

mulËivalued nature-of the analyticaL ïoots prevents the convergence of

Ëhe iteration scheme and therefore this modification of the iteration

seheue is not possible.

The flow chart for the numerical soluËion process on the computer is

shown Ín Fí€. 6-1. In thís scheme tlre backscattered radar cross-sectÍon



I NPUT

+,0,scAT. FTELD DATA

INITIAL VALUE
o=l.O,b=l.O,c=l.O

o (L* i)= t [.tL ), b(L ),c(L)]

s[.tL+l),b(L ),c(r-)]b(L+ I )=

c(L+l)= h [.,t +l), c { r-)]b(L+r),

E X l= ABS

EX2=ABS

EX3=ABS

IS EXI,EX 2,8X3 < O.O5

L=lL=L*l

OUTPUT
o =o( L +l), b=b(L+l ),c=c(L+ l)

Flow chort for iterotion schemeFig. 6.1
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at a sufficientl-y high frequency (crl = ka ì fO) and the two co-polarLzed.

backscatËered fields l"rnlrlHrpl along \,rirh rheir phase difference

C0rn{rn) and also Ëhe magnitude of the cross-porarLzed component lHr"l.
have been used as the inpuÈ daËa. rn addition, the direction of'the

incidenË wave C0'0) r^rith ïespecË to an arbitrary pre-fixed coordinate

systêm Cr¿ith origírr in the ínËerior of the scatteri¡rg object) must be

specÍfied \^rith ttr-e inpuË data. rn order to start th_e iterations, the

Ínitial values of a, b, c are assumed Ëo be uníÈy, i.e., it is assgmed

that tlre specular poilt correspondí-n-g to the backscaËtered d.irection

(0r0) is situated on a r:nit. sphere" Once the required input data and

tlre ínítial values are knom, a modified value of rat is obÈained from

C6.1). This ners value of !a( along with old varues of .b. and of rcr

are- substituted ínto the righ-t-hand-side of (6.2) to obtain a modified

value of (br'. Sími1ar1y, the new values of rat and of (br are

substiÈuÈed along with the o1d value of rc. i¡rto the ríght-hand-side

of C6.3) to give a modified value of tc'. Once a nerü set of values for

â, b, c is obtalne.d, this seË is substítuted ín the left-hand-side of

C4.30), (4.31) and (4.52) ro yield rhe e¡rir parâmerers Ð(1, Ðr2 and

EYî' respe.cËively. These exit parameÈers, as shor¿n ín Fr-g. 6.1, are

Èh-e absolute values of the fracËiona1 difference beËween the left-hand-

side and tbe righË-hand-side of Èhese equations. Next, an exit criterion

was seË out by restrictíng EXl , w2 and EX3 to 0.05, i.e., the left-

hand-side. of each equaËion is rn¡ithin 5% of the ïight-hand-side. Note

Ëhat tTrese exit criteria are flexible and c:'' be changed according to

need. rf Ëhe modíJied values of â, b, c saËisfied the exit criteria,

th-en those values of â, b, c \dere- accepted as the soluËion for that

parÈicular dire.ction (0rö) of tb-e incident T¡rave, othe:trise the itera-



Ëive process

of a, b, c

138

was continued í¡r order

as shor"rn in Fig. 6.1 .

to acLieve further uodified values

Once Ëhe values of a, b

the coordínaËe (xry,z)

frou (4.33a), (4.33b) and

and c are recovered

of the corresponding

(4.33c).

from the iteration scheme¡

specular point is knor,¡n

6,3 COMPUTATIONAL RESI]LTS

-

The iteration scheme shom Ín Fig. 6.L has been applied to the test
case of a perfectly conducting prolate spheroid. Th. required input
data for the present couputaËion have already been discussed in Chapter

Five. rn order to study the frequency dependence of the inverse scaË-

terÍng model, the poÍnts on Èhe spheroid corresponding to 0 = 90" and

Ô = 0" to 180o in steps of 10", \¡lere recovered for various frequencies

ranging from o = 5.0 to o = 15.0" Results of these courputations for
üJ = 51 7"4r 70, 12.6 and 15 are shown ín Figs¡ 6.2a xo 6.2e. From these

results it appears that the rate of change of curvature as r¡el1 as the

difference- Í-n principal curvature, i.e., (Kr-K2), will play an Í_uportant

role ín the re.covery. Towards the pointed end of the prolaÈe spheroid,

wtre-re the rate of change of the curvature is quite rapid compared. to the

broad síde, tlre i¡.verse scattering model yields unsaÈisfactory results

as expe-cted (see section 3.4). Fínally, for the case of nose-on incíd-
e[rce (0 = 0" and 180"), the inverse scatteríng model fails Ëo ïecover

the specular point as at those poÍats the difference betr¿een the princi-
pal curvatures' i.e--, c\-Kr) goes to zero causíng (3.24) to break dorm.
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The i¡rverse scatterílg model does aot yield satisfactory resul-ts for
frequencies belor¡ 5.0 mainly because of two reasons. First, as has

already bee¡r mentioned in ChapÈer Five, the input d.aËa used in the com-

putation are noË reliabl-e enough for üJ < 5.0, secondly, the ínverse

scatteríng model itsel-f is based on high frequency assumptions. rt
\á?as erpected that as the frequency is í¡rcreased higher and higher, the

model will yield better results. rloweve.r, this is not Èhe case as can

be seen Ín Figs- 6.2a to 6.2e. The deterioration of the resul-Ës for
u¡ > 10.0 is explained by the fact. that as the frequency increases the

magniÈude of the cross-polarj.zed backscattered field becomes smaller

l8l (see Fig. 5.8) and finally ir falls 40 dbs compared ro Ëhe co-

polarized component.. This fact causes the íteration scheme to become

íl-1-conditione'd and e¡rtremely sensitive as is evident from (4.31) and

C4,32) and discussed ín Section 6.2, Thus because of Ëhe difficulties

at the lower 
"t1¿ 

hígher end of the frequency domain, an optfmrm range

over whícù an inverse scatËering model yields satisfacÈory results is
beËween ûJ = 5,0 and or = 10.0. rt is to be noted that at some poí_nts

Ëhe recovered shape is í¡rside the actual shape and at other points ít
is outside the acÈual shape (see Fig. 6.zb). TLis is explained by the

fact that the e,.it criteria were fixed as t'within 52", which could be
('pIust' or rbinust' 5Z (see Fig. 6.1).

Ï'' order to study the effect of the rate of change of curvature on the

recults yr-elded by the Ínverse scattering model, tlre lines on a prolate

sphe.roid correspondÍng to 0 = 30", 60", 9Oo and 0 = 0" to 90" (in

sÈeps of 10") were recovered and the results are shown in Fig. 6.3.

The þss¡ reco'very is obtained for the line I = 30", where the curvature
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changes most slow1-y out of all- th-e. three curves. The most unsatísfac-

tory recovery was for 0 = 90", where the curùat.ure chaoges quite rap-

idly" The results of anoËher computation undertaken to study the

effect of the rate. of change of tl¡-e curvaËuïe on the ínverse scatter-
ing model is preseated in Fígs.6.4a to 6.4c, where the profiles of the

prolaËe spheroíds of axial ratio 5 z 4 (i.e., L.zs z L), 2 z 1 and 3 :

are recovered, respectively. As expecËed from the resulÈs of the

earlier couputat,ions, the best recovery rras for the case of a 5 z 4

spheroid because. ín this case the curvatuïe changes most gently. Ilor¡-

ever, also Ín this case, the end poÍnts could not be recovered as the

differe¡rce. Ín the. príncipal curvatures at the end points goes to zero.

The recove'ry for Ëhe case of the 3 : I prolate spheroid is poor because

ín this case the curvaËure changes very rapidly around the end zone.

6.4 MODIFIED ITERATION SCHE}ÍE

From Ëhe' results of the application of the proposed j¡rverse scaËËe.ring

model in Section 6.3, it was Í-nferred thaÈ the rate of change of cur-

vature as r¿ell as the difference in príncipal curvaËure, i.e", (Kr-K2)

r,riÍl play ¿1 r'mportant role in the recovery. rt has been suggested [14]

thaË the difficulty arising due to Èhe differeÐ.ce í¡r curvatures becoming

very smel-l could be òbviated by first solwing the inverse problem

assu ing th.a.t the curvaÈures are tlre same (i.e., considering the simple

physical optics approxírnation), and Ëhen by refinilg the results by use

of the first order correction to the physical optics approxímation (i.e.,

use of the depolarizaËion ínformaÈion), In order to incorporaËe this

modification ín th-e. itera¡iea s,sheme, the expression for tb_e differerìce
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in the principal- curvatures, i.e., C\-a.), needs to be looked into.

The. oçre'ssíon for C\-\), the difference betr,reen the Ëwo príncipal
curvatures at the specular poínt with the normal- directioa given by

(Ernr6), has been obtained i¡r Appendix r in te:ms of Ëhe semi-axes of

the correspondÍng equivalent ellipsoid Ii.e., (arbrc)] as

= -1. ^2 
E2 (¡ 

2 
-c2 ) +b' rt' (r, -", ) + c2 Ç2 (^, -a, ) lK.K

72

If it i-s assume.d that the two

frorn (6"4) for real values of

fÍlrd

principal curvatures are

a, b and c (wtrich is the

(6 '4)

identical then

case here), we

^zEz(b2-"') + b'rl'(a2-c2) +
"2Ç2(^2-b") = o (6. s)

(6.6)

fi.ld-= an expression for tat

a = f (brc) = ¡
a

b2 c2 (Ttz+ez)
7t/z

t'(l-e\ - c2(E2^Ç2)

wñ-:ich is Ídentical ro (4.:f1 , when ln -l = 0. Now rhe j_nverse problem' IC'
for iderrtical curvaÈures can be solved by iterating (6.2) and (6.3) for

the values of rb' and lct with a.value of 'a' supplied by (6.6). The

solution of this iteration schese is Ëhen used as the í-nitial value of

â, b, c for the Íteration scheme described íl Fig. 6.1, wtr:ich will re-

fine. the re-sults accordíng to tb-e available depolarization ínformation

Ci,e,, E.^), The complete uodifie.d iÈeration schcme for the cases wh-ere- lc
CK--K_) is very small, is deseribed i_n_ Fig. 6.5. Ir is ro be noÈed that72

in this iËeration scheme only the ínítial values of rbr and tct need Ëo

(^'e'+Þ'nz*"zrz'rr /z
(a b c )2
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be specified, and the initial value of tat is found by usíng the functíon

f- described in C6.6). once the initíal condiËions are set,a modified0

new value of tbt is obÈaíned from (6.2). rn the next. step, this new

value of ¡bt along with the old value of tct is used to update the

correspondíng value of rat. rn the next sequence Ëhe nevr value of tbt

and the' old value of tct aresubstituted along with the updated value of
rat into th-e. right-hand-side of (6.3) to give a modifíed value of 'cl
Onee agaín w:ittt the modified value of tb r and the modified value of
rcl , tlre value of tat is update.d, The ner^7 seË of values for a, b, c

thus obtained, is subsrituted Ín the 1e.ft-hand-slde of (4.30) and (4.32)

to yield th-e. exit paramete.rs Er2 and Eú, re.spectively. Note, this

tímê¡ only Ëwo exit parameters are required because evaluation of .at

through C6.6) guaranreed thar (4.31) is sarisfied as long as l"r.l = 0.

Again the exiÈ-criterioa r4ras set by restricting Er1 and Er2 to 0.05.

If the values of a, b, c satisfiecl this criËerion, then those values of

â, b, c rrere Ëransferred to the se.cond íteration loop (see Fig. 6.5) as

th-e' ínitial values, otherw-ise the first iterat,ion loop was continued j¡r

order to aeh-ieve further refinement of ttre values of â, b, c as shor¿n

il Fig. 6'5. The second iteration loop wtrich achieves refineuent of

the solution through depolarizaËion i:rforuaÈion (i.e., ["r"[) is id-

enËical to the one described in Fig. 6.1.

Tn order to study the effectiveness of the modified iteration scheme i¡r

overcoming the difficrrl.ty encolmtered in recoveqf around the region where

CK'-IL) is very smallr Ëhe línes on a prolate spheroid correspondíng to

0 = 30", 60o and 0 = 0" to 90" (Ín steps of 10o) were recovered by

usr.B the- iteration scheme of Fig. 6.1 as well as tb-at of Fig. 6.5.



r_s3

Results of these tr,¡o iteratíon schemes are compared in Fig.6.6. The

best recovery is obtaÍned for the line 0 = 30", where the curvature

changes most slowly ouË of the t\¡ro curves. Improvement obtaíned by

usÍng the modified iteration scheme can be seen within the region ö = 0"

to 30o (0 = 30" curve), where the difference irr the príncipal curvatures

is very small. Art ínteresting observation to be made on the line corres-

pondíng to 0 = 60o is that, a1-though the modified iteration scheme

achieves ímprovement j¡r recovery in the region 0 = 50" to ô = 30o, iË

faíl-s to recover the profile for ô < 30o (with 0 = 60"). This is be-

cause there are ttro distÍnct cause.s for this conplication, i.e., the

rapíd rate of change of curvature and the difference ín the principal

cuïvaËure becomíng very small. The uodified iteration scheme of Fig. 6.5

is capable of overcomÍng Ëhe latter difficulty, however when the rapid

rate of change of the curvature is the dominant cause (which is Ëhe case

for 0 = 6O_o, ô < 30o) Ëhís modified sctreme Í-s of little help.

In another calculation the modifie.d iteration scheme of Fig. 6.5 was

applied to recoveT the points on the spheroid correspondíng to 0 = 90"

arrd ô = 0o to 180" ín steps of 10", for ttre values of o = 5,'7.4, 10,

12'6 and 15. rn all Ëhe above cases, Ëhe modífied iteration scheme

Crig. 6.5) produced identicar results to those shown in Figs. 6.2a to

6,2e, i.e., iÈ did not give any ÍmprovemenÈ over Èhe results produced by

the iteration scheme shown Ín Fig. 6.1 [for g = 90", ö = O, 180" (in

stePs of 10")1. It is though-t that th-is is d.ue to rhe fact that ín all

of the aborze cases Ci.e., Figs.6.2a to 6.2e) 0 was held at 90" (i.e.,

6 = 0) throughout, wLich- reduced the flexibiJ-ity and Èhe i-nfo:mation

conËê'rÈ of C6'6) and thus malcing the modification n-ot so. effective.
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6.s E339BS AND LIMIT4.TIOIIq OF THE INVERSE SCATTERNG MODEL

The performance of the proposed monosËatic inverse scattering model was

studied with the tesÈ case of a pe.rfectly conducËílg prolate. spheroid.

The compuÈational results ín Sectíon 6.3 Índicate thaÈ an optÍmum frequen_

cy raDge or¡er r¿hich the inverse scaËteríng model yields satisfactory re-
sulÈs is be.tr¿e.e¡r ûJ = 5 and t¡ = 10. However, when the difference be-

tw:en the two príncipal curvatures at the specular point goes to zero,

the recove.ry of Ëhat particular specular poinË is not possible as i¡r_

dicaÈed by the computational results of SecÈion 6.3 and of Sectíon 6.4-

Irr a region wl¡-ere the diffe-rence ín curvaÈure is very s-al1 , the sysÈem

of equaÈions ín iteraËion scheme of Fig. 6.1 becomes i11-conditioned

and tb-us the convergence is noË achieved. Ttris is-evident from the data

compiled in Table rr aad Table rrr. rn Table rr, the values of a, b, c

at the 
"oa 

àr eacb- ire.ration cycle (L) is shown (see, Fig. 6.1-), for
the directÍon (of i¡rcidence) 0 = 90" and ö = 40". Under normal cir_
cumsË¿mces (i.e., when arO, is not very smell), the values of â, b,

c oscíllate about a cent.ral value as is clear from Èhe daËa conpiled in
Table III, and finally, tlre iteration Loop conveïges on the soluËíon poínt

Cinta¡terrr' it is a=1.g2rb =1.01r c=1.04 for0=90",0=g0o
and a=2.O2rb =0.99r c= 0.97 f.or 0 = 90", ô= 90"). On the other

hand'for the ill-condítioned case, presented ín Table II, no such oscilla-
Ëion about a central point e>rists, rather the values of â, b, c keep

on growÍng mon-ot.onically trith the m:naber of iËeraÈion cycles (L) and go

rigb-t past the expected solutions (se.e. Table rr, values of â, b, c for
L = 14, 15, 16),
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TABLE II

OUTPUT OF IITE ITERATION LOOP I11 conditioned Case)

0=9oo 0=4oo

lu I = 0.011203' I c'

| 
", nl = o -372960 I ",nl = o.349844

a = 22.05

L=10
L=11
L=L2
L=13
L=L4
L=15

l
f
r
f
r
f

= 1.3215570
= 1.3826530-= 1 .4519950
- 1.5316660
= 1.6242650
= 1.7330820

AA = 1.54
AA = L.62
AA = L.72
AA = 1.82
AA = 1.95
AA = 2..09

BB = 0.93
BB = 0.94
BB = 0.96
BB = 0.98
BB = 1.00
BB = 1.02

CC = 0.88
CC = 0.90
cc = 0.93
CC = 0.95
cc = 0.98
CC = 1.02

L=16
L=17
L=18
L=19
L=20
L=2L
L=22
L'= 23
L=24
L=25
L=26
L=27
L=28
L=29
L=30

AA = 2.27
AA = 2.47
AA = 2.72
AA = 3.03
AA = 3.40
AA = 3.87
AA = 4.47
AA = 5.23
M =' 6.2I
AA = 7.50
AA = 9.19
AA =11.44
AA =14.47
AA =18.57
AA =24.19

BB = 1.05
BB = l.0B
BB = 1.12
BB = 1.17
BB = 1.23
BB = I.29
BB = 1.38
BB = L.47
BB = 1.59
BB = 1.73
BB = 1.91
BB = 2.11
BB = 2.36
BB = 2.66
BB = 3.03

CC = 1.06
CC = 1.10
cc = 1.15
CC = L,22
CC = 7.29
CC = L.37
CC = L.47
CC = 1,59
CC = L.74
CC = 1.91
CC = 2.LL
CC = 2.36
CC = 2.65
CC = 3.01
CC = 3.44

f = L.8623560
f = 2.0L75730
f = l.2059360
f - 2.4369770
r - 2.72339s0
f = 2.0822520
f = 3.5366370
f = 4.1179850
| ' 4.8694970
r = 5. Bs'08s40
f = 7.1449770
f = B.8681190
f = 11.1845400
f = L4.32770O0
f = 18.632880



OUTPUT OF THE ITERATTON LOOp (Convergíng Case)

0=90.00 0=80.00 ln l=O.gO75Z5. lp,

l"rnl = 0.927038

L57

TABLE III

lu = 4.A26764rcl

L=1
L=2
L=3
L=4

r
r
r
r

a = 55.01

= L.L45978A AA = L.47
= 1.0195230 AA = 2.16
= 1.061_1880 AA = i_.81
= 1.0448660 AA = L.9Z

CC = L.44
CC = O.92
CC = 1.11
CC = 1.04

1.01- C = 1.04

BB = 1.13
BB = 0.96
BB = l-.03
BB = 1.01

EXl = 0.00 EX2 = 0.00 EX3 = 0.03 A. = J-.92 ! =

0=90.00 0=90.00

l"rnl = L.o06794

Itr = 0.990605rpl

l"r"l = o-036732

r
r
T
r
T
r

L=1
L=2
L=3
L=4
L=5
L=6

= 7.L229L70
= 0.9258109
= 1.0360730
= 0.9730850
= 1.0069570
= 0.986371-5

a = 5L.2L

AA = 1.58
AA = 2.32
AA = 1.85
AA = 2.09
AA = 1.95
AA = 2.02

BB = 1.12
BB = 0.93
BB = l-.04
BB = 0.97
BB = 1.01-
BB = 0.99

CC = L.42
CC = 0.80
CC = L-LZ
CC = 0.93
CC = 1.03
CC = 0-97

EXI- = 0.00 EX2 = 0.00 EX3=0.04 A=2.O2 B=0.99 C=0.97



1_58

this eomplication due Ëo ill*conditioníng of the iteration schpme was

circumvented (at least Partíally) by a modified ite.ration scheme where

the i¡rverse problem is first solved by assuming that Èhe curvatures are

the sâme' and then the results are tef íned by use of polari zaxion infom-
ation. Anothe-r Iímítation of the inverse scatterí¡rg model is that when

the rate. of change of the curvatuïe is rarge around the specular point.,

the recovery be'comes ve-ry difficult and the results are rather poor. rt
is thoughË that this limitation arises because of two reaso¡rs. one, be-
cause of Èhe restrictions ímposed on the derivation of the polarization-
al correcËion te:m, i.e., (3.24), whíeh r¿as used. in a major qray to
develop th-e inverse scattering model" In the derivaËion of the poLaríza-
tional correction telcm it was assr-rmed that the difference in principal
curvatures remains Ëhe same in the vicinity of the specular point, which

Ðeans that the. rate of change of the curvature of the surface must be

very gentle. Thus, it is expected that by ìmFroving tb-e polarizational

correction- term Èfuis lí-mitation of the.model can be aË least partially
rectifíed. Anothe.r reason for the fimí¿¿¡ien is felt to be that the in-
put data used ín the computation Ìüeïe generated from an approxÍmaÈe model.

Thus, it is necessary to develop more accuraÈe i'put data.

The- re.sults ín ttr-is chapter índicaËe the potentiality of this inverse

scaËtering model il recoverílg target shape parâmeËers wíth a relaËive_

1y smalle.r âmotln-t of data thao required by other available target ident-
ification techniques such as Bojarskits inverse identity, Ëhe concept of
Ínverse boundary conditionsr etc. Moreover, Ëhis meËhod is guite success-

ful Ín providÍng partial recovery of tlre Èaïget profiles, as j_n this

metbod eacb- specular poÍnt is recovered separately from data aË one. poÍ_nt.
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chøptez, se'ùen

CONCLUSIONS

SUMMARY OF TIIE CONTRIBUTIONS

-

This dissertation has clearly demonstraËed that polarLzatLon information

can Índeed be util-ized íl the profile ínversíon of scattering objects,
wfuich was the main objective of the present írivestigation. one of the

most conplicated and negl-ected problems connected r¿Íth electromagnetÍc

Ëheory is the questíon of what happeas to the original poLarLzation of
the Íncident r¡7ave after the wave has been scatüered. This is a problem

whÍch, even in the case of simple scatterers, has not yet been solved

completely (perhaps not even seriously aËtacked). rn the light of the

above facts, it can hardly be expected thaÈ a complete generål and

rÍgorous soluËion of the inverse electromagnetic problem may be found

Ín the near future which is based on. depolarization characÈeristícs of
Ëhe scattered field. Nevertheless, ín the opínion of the auÈhor, the

work repre-serited in this dissertation constitutes an ímportant funda-

ment,al step towards achÍevíng the above objective.

Besides polarization-depolarization characteristícs, dífferential geometry

as related to the surface profile i-nversíon has been given very 1itt1e
Ímportance in inverse scaËtering investigaÈioos in the past. rt is to
be noted that for the vector treatme[t of scattering at the surface of
a convêr. three-d:imensional- object, as ís the case here, differential
geonetry provides additioaal insight to the physical phenouenon that
governs the ÍnËeraction beÈween the object and. the electromagnetic fields.

7.L
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Although many ínvestígaËors [4zrgzr93] have pointed out the simíJ-¿¡i¿,
between the Minkowski probr-em of differential geometry and the pr:ofi1_e

Ínversion probl-ern of el-ectromagnetic theory, no serious attempt (accord-
Íng to the literature available to the author) at í'tegratíng the werr_

establÍshe'd concepts of Èhe MÍnkowski problem into Ëhe profile Í¡rversion
problem of electromagneÈic theory has been reported. ïherefore, to Ëhe

best of Èhe author¡s knowled.ge, ín the present ÍavesËÍgation the con-
cepts of the Minkor,rski problem have been uÈilízed successfully for the
first time Ín solrring the probrem of recovery of the surface profíle of
Ëhe scatterer from the far-fie1d scattered data.

rt ís well establ-íshed that at sufficiently hígh frequencies Ëhe scaËter-
ed fieldts magnitude about Ëhe uonosËatic direction contains information
on the curvature of the scatterer aË the specular point. on Ëhe basis
of this approxímaËion it qras assumed that for any three-d.imensíonâ1,

smooth, slowly and unifornly varyÍng convex shaped scatterer, an ,requiv.-

al-ent ellipsoídrr centeïed at the origín and of identical curvatures about

the rnonostatic direction gives rise to an ídentical backscatËered fiel_d
magnitude. RepresentaÈion of each poÍnt of the scattereï by such an

equivalent model- made it possible to conbíne the mathematical concepËs

of the lfi'nkowski problem with the polarization-depolarization aspects

of the electromagnetic scatteri¡g concepts and yÍelded a¡ system of equations

for the recovery of the surface of the scaÈterer.

The perfor¡tran'ce of the proposed monostatic ínverse. scaÈÈeríng model was

studÍed with the test case of a perfectry conducting prolate spheroid.
Eowever' to the best of the authorrs knorsledge Ëhe input data required
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for this purPose are not readily avaíl-able for most of the scatterer

shapes. To círcumvenË this difficultyr an approxjmete solutl_on for Ëhe

backscattered fields given off by a prolate spheroid was developed in
the course of the present investígation. Starting wiËh the space-time

vector íntegro-differentiaL equation for the induced current on the sur-
face of Ëhe scatterer, and by applying the physical optics approxima-

tions, the tíme domain representation for the co- and cross-polarLzed

backscattered far-field r,¡ere obtained. The símplicity of the various

approximations used in constructing the different seguenËs of the time

domaïn response and the reliability of the resulting scattered. fÍeld
daËa have' definiÈe1y brought into light the relaËive ad.vanËages of the

time domaín approach over the frequency domein approach Ëo Ëhe electro-
magnetic scatËerÍng problens for more complicated structures.

The computational resulÈs obËained from Ëhe appl-ication of the proposed

Ínverse scatte-ring model to the tesË case of a perfectly conducting

prolate spheroid indícate that an optímum frequency ïange over which the

inverse scaËtering model yíelds satisfact,ory results is betweea o = 5

and o = 10- From these conputational resul-ts it was also j¡rferred that

the rate of change of curvaËure as ¡¡el1 as the difference ín principal

curvaËure, i.e., (Kr-K2), will p1-ay an irrÍFortant role in the recovery.

In a region where the rate of change of the curvaËure is large around

Ëhe specular poÍnt, the recovery becomes very diffícult and the resulÈs

are rather inaccurate. It is felt that ¿|¡is fímít.aËion arises because

of Ëwo reasons. One is due to the resÈricËions im¡losed. on the derivation

of the first-order correction

wfrich was used in a major lray

the physÍcal optics approxÍmation,

develop tb-e ínverse scatteriug model.

to

to
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rn the d.erivation of the first-order correction term, it was assumed

Ëhat the difference ín principal cuïvatures remains the same in the

vicinity of the specular point, which means that the rate of change of

the curvature of the surface must be very gent,l-e. The other reason for
the limitation is felt to be due to the input data used in the computation,

which vrere generated f.rom an approxímate mode1.

In a region w-here the difference in curvature is very small, the computa-

tional resulËs indicate that the system of equations in .the iteration
scheme becomes ill condítÍoned and rhus the convergence is not achieved.

Thus, the difficulty arising in a region where (r--n^) is very small ist2
not due to a limitation of the inverse scattering model itself; rather it
is due to the lirnitatíon of the computing.scheme. ln fact the inverse

scatËering model holds true even when (r -r ) vanishes.l2

The computational resulËs presented in Èhis work ,clearly índicat,e the

capabilíty of this ínverse scattering rnodel l-n recovering target shape

parameters with a relatively smaller amount of data than required by

other available target idenÈifícation techniques such as Bojarskits in-
verse identíty, apþ1ícation of inverse boundary conditíons, etc. ìbre-
over âs indicaEed by the test case of the prolate spherofd, Ëhe proposed

inverse scatt.erÍng rnethod is quite successful in províding partial re-
covery of the target profiles', because in this method each specular point
is recoÚered separately from data at one point. Thusrthere is no minfmum

líInit on the required input data, like in some other inverse scattering

schemes t24,gL-g4l .
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To sum up, in thi-s work the mechanÍsm (at least to a first approxí:natíon)

responsible for the depol arLzation of the íncídent wave at a scattereSË
surface has been used to develop a set of conditions (whích may be view_
ed as a set of í¡rverse boundary conditions). These conditions uusÊ be

satisfied by the- profile parameteïs of an object in order to have a cer-
tain given Pattern of co- and cross-pol-arized backscattered far-fíeld
components. Thus, Ëhe scheme proposed here is i¡r no l^ray a pattern re_
cognition technique I57 163r83rBB], where the far-field features of Ëhe

unknor,m scatterers are compared wíth a catalogue or dictíonary entry
whích is availabl_e to the observer a priorL.

SUGGESTI.ON FOR FIJTT]RE STIIDIES

A very useful topig for fuËure investigaÈion r,¡ould be an extension of
the ¡¿ork presented here to the r-o\,r frequency region, i.e., to incorpor-
ate some low frequency characterisÈics (such as the uomenË conditíons)
of the response wave forrn into Èhe i¡verse scatterÍng model. rt ís
felË that ín order to achieve thís objective, the polarization dependence

and the information content of the Rayleigh coefficient K, must be

sËudied Èhoroughly- rt should be possible to relate the surface para-
meters of the scatteri-¡rg objecË üo the rad.ar rneasurabl-es via the second

moment conditíon arid Èhe Rayleigh coeffícient, and thus, addiËional con-
ditioas on the inverse scattering model could be Ímposed. ![ith Ëhe

addition of this feature the Ínverse scatÈering uodel would be ready to
exËract info::mation from arr th-e s.gmenÈs (i.e., leadíng edge as ¡¿ell

as traiJ.íng edge,) of the- impulse response waveform.
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Another interesting related problern for future studíes is to investígate
the possibility of l-mproving the first ord.er correction to the physical
opticsapproxímation provided by Bennett and.co-workers [12]. A good

qtartÍng point wourd be the gxpression for o; (the radius of the cir_
cular patch about trrg specurar poinL) given in (3.23). There instead
of neglecting the square term one could retain it and ob.serve the re-
sulting modificaËíon of the expression for {-, in (3.24) via the

relation (3.22). rr should be possibre ro ,r::i" 
"o*. o.n", *ourrr""-

tion to (3,22¡ [and th.erefor:e to {3 .24)],which would rake ínro account

the fact that the radíus of'curvaËure around the .specular poínt is not
'necessaÏÍly constant. Ït is the ôpíníon of Ehe author, that not only the

cross-polaxLzed component of the scattered field but the rate of change

(wiÈh respecË to the configuration space) of the cross-polarized. com-

ponent also contains information regarding the scatterer and this factor
should.somehow appear in the pí.cture whÍle considering the "iorrect.ioi¡,,
Èo the physical optics approxÍmation.

tsefore the proposed inverse scatt.erirg model could be c.ongidered from

the practical point of view, íts performance under noíisy input data con-

ditions shoutrd be checked computationally. To start with, thís could

be studied only when a very reriable and accurate set of input daËa is
available. Therefore a more rigorous (than the one presented in Chapter

Fíve) analysis of the dírect problem of depolarization of elecËromagneÈic

I¡Iaves from smooth, closed convex objects mus! be undertaken.

To sur4 up, tltis dissertation

identification systems based

establishes the potentials of detection and

on pol-arization phenomena. Aside from
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applicational vier4rpoínts, it ís hoped that the thoughts, coneepts and

ideas brought forth ín this work wi1-r provide the reader with betËer
insight ínto the mechanism responsible for the depolarízation phenomena

in electromagnetic reflectors and thus help Ëo Ímprove the understand-
íng of Ëhe underlying prínciples.
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APPENDIX

The functíonal- represenËation of an ellipsoid with semi-axes ê, b, c

is given as

r(x,y,4 =#.#-5- 1= o

Thus the unit normal â at a poínt (xryrz) on the

ellipsoíd Ís

= Vf (x,y, ù / IVt(x,y,ùl

_ C?1./ t? ) â;P (zv / a2 ) a"+ Q" / "' ) a,

2[(x/ a2)'+(y/t')2+(z/ c2)z1r/ z

anð, â, are the unit vectors j¡ x,

Fron (I-2), the dÍrectíon cosines

obtained as

-xE=ãzõ-, rt =
v

b2Q

where â . âx'y
respectively.

normal â are

these values of

. lez:t- p'
-t. nb-
P

¿2
-+9a-- p

xandyin

and therefore

(r-1)

surface of the

(I-4a)

(r-4b)

(I-4c)

Q = [ (*/ a2)2 + (y/ar), + (=/cz)zy / z

Fron (I-3) it can be shown directly that

E^2 nb2x=ftãz , Y=þ:z

r+here

SubstitutÍng

(T-2)

y and z directions

ErTl,Ç of the unit

r- zç=;re- , (I-3)

(I-1), yields
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where p = [( erE)z + (bn)2 + (c6)zy/z

Minkor¿skirs support functÍon M(E,nr6) of the equivalent e1_ripsoid, as

shown in Fig. 4.1, is given by

M(E,n,6) = r . â = (x[+yr¡+26)

Substituting values of X, y¡ z from (I_4)

M(E,n,6) = t (at)2 + (bn)z + (c6) zylz (r_5)

using thís expression for t"t(trn,Ç), one obtains

"g 
= # = ^'E¡urE)2 +(un) 2 + (cÇ)21,

tn = # = b2r1LGÇ)2+ (bn)2 + (eÇ)21, .

", = # = c2Çl(aE)2 + (¡n)' + (cÇ)'1,

"gt = # = ^'ÍGE)2 + (¡n)2 + (c6) z;tlz
(^zE)'l.Gl)2 + (¡n)2 + (c6) z;tlz 

,

tn, = #= ¡2[("t)2 + (bn)2 + (cÇ)21-t/z

-(b2n)t[{"6¡2 + (¡n)2 + (c6)z;tlz ,

MÇÇ=#=.t[("8)2 + (bn)2 + (c6)z;tlz

-(czÇ),[{"g¡2 + (un)2 + (c6)z;z/z ,

"tn = # =-"'b'gn( aE)2 + (bn)2 + (c6) z:-t/z 
,

"t6 = #- =-^'"2E4(aE)2 a (bn)2 + (c6) z1-z/z 
,

M-, = s-=-b2c2n6(af)2 + (Un), + (c6) z1-t/zn6 ânâ6

Thus
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M--M -M2_ - (abcÇ)z
gg nn qn p'+

"tt"çç -*'Er=q#r

M M -M2 = 
(abc6)2

-nn -66 -' n6 ph

Now (2.10) yields

a2bz c2=Ë=- (Et + n2 + Ç2) = D-D^ = LlKt2

Sínce (82+rf +Ç2)=I ,

,4s 'tìz-) = oro, = LlK (r_6,)

By substituting the expression for M fron (r-5) into (z.g) one obtains

["'E'(b2+c2¡ +bzrf(az+cz) +"'Ç,(a2+¡2)]lps = -(D-+D) . (r-7)t2

Furthermore_,

(Dr-D2)' = l_(Dr+D2), - 4DrDrl ,

therefore fron (I-6) and (f-Z)

L^'E'(u2-c2) * b'rf ("2-^2) * 
"rÇr(a2-u2) f /p3 = (D -D )t2

The difference between two prÍncipal curvaÈures at Èhe specular point is

(K-K)=!-I=-o'-o' -r 2. o, ,, oro, ,

which, when varues of oro, and or-o, are substituted fron (r-6) and

(I-8), yields

(Kr-K2) = -lazlz(b2-c2) + b2n2(c2-¿z¡ * 
"rÇr(az-62¡l . GIEI,- (r_9)
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APPENDIX II

For obËainí¡g the expression for the projected area function A(t) the

coordinate systemr"" 
"horo ín Fig. A.rr.l-, ís rotated around the z a,.ò.

y axes such that ín the new coordinate system the x-axis ís along the

direcËion of the incident wave. The transformed equation of Ëhe surface

of Èhe equivalent ellipsoid is then used to obt.ain the ex¡rression for
Ëhe projected area as function of â, b, c, (Ernr6) and tÍme t.

In Êhe carËesian coordinate system the equation of the equival-enË e1lip-
soid is

4***4=',a. F-7: t (rr-1)

In the first transformation the coordinate systern is rotated about the

z axis by 0 as shown in FÍg. A.II.1. Thus

1¡=-yrsinþ*xrcosQ

y=ytcosþ*xrsinQ

subsÈítuting x and y in (rr-1), the transformed equation of the

eJ-1-ipsoid becomes

c- (0)
Ç:t-r Bi (ô)

(f-xt+ylf E 22

G¡trl';zç¡firry= r

Br (O) = b2sinzô+ azcos2q

cr (O) = (a2-bz)sinþcosQ

Er (O) = a2sin2û+ b2coszQ

(rr-2)

where

vrith

^ _ qzb z .c'(ô) E1 (O) 
,' 81 =ry1 , and ht = tr'þ- rþlr
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the second transformation the coordinate

axis by 0 as shovrn in Fíg. A.II.I_.

system is rotated about the

(rr-3)

xt = -zttcosO * xr,sinO ,

z 
'- 

zttsinO * xt,cosO

subsËitution of these expressions for xr and z inËo (TT-2) yields the
fÍnal transformed equations of Ëhe ellípsoid, i.e.,

y"2 -2(f, cos0zrt - a, *,,)yrt

+ lf ,(2.Þrrx,')z - (f 
zpz_ai*"r)l = o

g sin20
a, = frsinO , f, =lã-+ (f2-hl)cos20where

v¡:Lth

= gr/f , ,

oð
= I"+ * (n,

t
2

(f h +s2)
P, = gr/fr* 2 2 2 *n2

f2
2

-f2) I sinOcos0
I

e
2

h =hsin2o-grcos2o21 
"2

rf xtt = consÈantr then (rr-3) represenËs the equation of the curve en-
c1-osing the cross-sectíon of the ellipsoid delineated by the p1_ane

x" = consËant. Using this fact along r.rith the indefinite inËegral t4]
expressíon r^

J ce'-*')t/z* = f*{ar-*2¡ + A2sin-t 
Tfo I ,

the cross-sectional area of the eguivalent ellipsoid as delineated by a

pl-ane wave morring along Èhe x" axis is obtained as a function of a, b, c,
(0r0) and x" as

c

A(x.,) = T . 
grt ä "io'o-t'r("o""g- #) l

oÒ
( lz sin2o-hrcos2g¡3/2

sínce xtt is the direction of plane r¿ave incid,ence,

(rr-4)

the di.stance along



this axis rnay directly

to the half free-space

xn = -t/2

which, on subsËitution

180

be related to the

velocity of lighË)

I scalíag factoï c
0

ínro (u-4), yields

tíme t (by scaling with respecÈ

as

understood]

the expression

h-o,', =
Bhr /2r3 (o,o)

gc
I

[4r2 (e,o) -t2] u[ t+2f (0,0) ] (rr-s)

(rr-6)

where

f (0,9¡ = I
^2b2B r(ô) sin2o

- "2.o"20 1crz(ô) - Br (o)Er (o)

Expression (II-5) has been multiplied by the unit step function in order

to take care of the fact that the projected area function A(t) is

zero r¡ntíl the incident plane Ìlave reaches the specular poÍaË. IË is to

be noËed that ín case of backscattering the direction cosines E, fl, Ç

of the unÍt normal to the surface of the ellipsoid. aË the specular point

are relaËed to the direction (0rô) of the incident r¡/ave as

t=cosþsinO ¡ e=sinQsfn0 , 6=cosO

Takíng the firsË derivative of A(t) with respect to tj¡e t gives

â+(t) 
= -arr€u(tr2t)ât

where the factor (e.c/4¡r/zyz¡ has been replaced by G.ll

DifferentiatÍng (II-6) again, yields

++ = 2rG6 (r+zr) - Gu(r+2r) (rr-7)

converting the expressíon in (rr-6) and (rr-7) from rhe rime. donaÍn t
to the frequency domain üJ by appropriaËe Fourier trensformaÈion (see

Section 3.2) yields
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ttSP)=-2nc(i- j#)ezjurr (rr-B)

and

FI +9 j = 2nG(2r - j/r) ".irt
r¿here F represents the Fouríer transform.

(rr-e)
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APPENDIX III

LË is of interest to document the relat.ionships betv¡een the tíme domain

response and the frequency domaÍn response described in Chapter Five.

using the normalized variables t and o = kb , one obtains the fre-

'quency domain phasor response as

rottr(jo) = G(jtrr) . bHr(jur)

and the time donain response as

r H^(t) = bF-(t) * H. (t)
.0ùl

where b denotes the charact.eristic dímension of. the scatterer (í.e ,, ,

semí axis, diameter, length etc.). I¡Ihen the íncídent magnetíc. field ís

impulsive, i.e

bI{' (t) = ô(t) and

bHr(jo) = 1.
,

Thus G(jr¡) vs t¡ and Fr(t) vs t yields a mapping between the time

d.omaín and the frequency domain governed by the Fourier transformat,íon pair
't-.o

c(jo)=Y{rr(t)}= I rrlt¡e-jot¿r (A.rrr.1)
_ó

Now usí.ng the initial value theorerrr of the Fourier transform theory i.e.,

+co

rr(t)=?-t{c(jo)}=hf .Crrt"j"d, (A.rrr.2)

líIn Fr(r) = lím joc(jtri)
t+O üJ+.o



183

it is evidenc that the leading edge of:the response in time domain con--

tributes most to the final. values (i.e. large values of ur ) of the res-
ponse in the frequency domain. Hence the segment (1) of the time domain

response ín Fig..S.5 corresponds to the steady state value in Fig. 5.7.

Next, by making use of the fína1 value'th"o."r of Fourier transform

theory i.e.,

lírn jutG(jo) = lim F.(t)
j t¡*o t-+.o r

l-t is seen that Lhe trailing edge of the response in the t.íme domain con-

tributes most to the initial values (i.e., sma11 values of t¡ ) of the

response in frequency domain. Thus the segment (4) of the time domain

response in Fig. 5.5 oorresponds to the initial values in Fig. 5.7.

Finally, the values of the frequency response for ín,termediate values

of t¡ in Fig . 5,7 r'eceive contributions mostly from segments (2) and

(3) in FÍg. 5.5.
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