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ABSTRACT

A new model for the solution of the inverse problem of electromagnetic
scattering by smooth, convex—shaped, perfectly conducting, three-
dimensional scatterers has been developed. Certain geometrical as well
as physical optics approximations were used to incorporate the concepts
of the Minkowski problem of differential geometry into the space-time
integral solution of electromagnetic scattering to yield the formal
solution for the recovery of the surface profile of the scatterer from
the backscattered far-field data. Although .various efficient solutions
for target identification are available, still information contained in
polarization—depolarization characteristics of the scatterer is not yet
exploited to its full extent. Therefore, the underlying assumption in
this investigation was based on the fact that the depolarization charac-
teristics of the scattered field do necessarily contain information re-

garding the surface profile of the scatterer.

Application of this new inverse scattering model to the test case of a
perfectly conducting prolate spheroid has been undertaken. Various re-—

sults, along with error bounds and limitations are discussed.
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ZUSAMMENFASSUNG

Ein neues Model der LOsung fur das inverse Problem der elektromagnet-—
ischen Streuung an konvexen, unendlich leitenden drei-dimensionalen
Streuern wurde entwickelt. Gewisse geometrische wie auch physikalisch-
optische Approximationen wurden benutzt um das Minkowski'sche Problem
der differentiellen Geometrie in die Raum-Zeit—-Integral-1osung der
elektromagnetischen Streuung einzufuhren so, daB die formale Losung

der Zuruckgewinnung der Streuungsoberfléchengestalt von dem ruckge-
streuten Fernfeld gewshrleistet wird. Obwohl etliche wirkungsvolle
Losungen der Zielerkennung bekannt sind, so wurde Information die in
den Polarisations/Depo1arisations—Eigenschaften des Streuers enthalten
ist nicht vollig ausgenutzt. Deshalb wurde die dieser Arbeit unter-
liegenden Annahme auf die Depolarisationseigenschaften des Streufelds
gestiitzt, das notwendigerweise Eigenschaften uber die Oberflachengestalt
des Streﬁérs.enthalten muB. Die Anwendung dieses neu eingefuhrten
inversen Streuungsmodels fir den Fall eines ideal leitenden Prolaten
Spharoids wurde ausgefuhrt. Verschiedeme Ergebnisse zusammen mit

Fehlergrenzen und Anwendungsbeschrankungen werden untersucht.
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RESUME

On a developpé un nouveau modéle pour la solution du probléme inverse

de la diffraction d%ondes &lectromagnétiques; les objects diffusants

3 trois dimensions que 1%on considére sont perfaitement conducteurs et
ils ont une surface lisse de forme convexe ne présentant aucunes dis—
continuités. Certaines approximations dfoptique géométrique et d'optique
physique ont &té utilisées pour intrqduire les concepts du probléme de

- Mnkowski relatif 3 la géométrie differentielle dans la soulution
intégrale (reliant 1l%espace et le temps) de la diffusion électromag-
nétique. Ainsi, le profil de la surface de 1l%object diffusant a éte
déterminé a partir des données sur le le champs lointain de retour.
Différentes solutions efficaces permettent de reconnaftre la cible,
cependant 1l%information contenue dans les caractéristiques de polarisa—
tion ~ dépolarixation du diffuseur n'a pas encore éte entiérement
exploitée. Par coﬁsequent, llhypothése fondamentale de cette invest-
igation était basée sur le fait que les caracteristiques de dépolarisa-
tion du champs diffusé contiemnent nécessairement des renseignements sur

le profil de la surface du diffuseur.

On a considéré les applications de ce nouveau modele dans le cas d'essai
J - - P - -~
d®une sphére allongée, parfaitement conductrice. Des resultats differents,

- - . - -~
ainsi que les erreurs de troncatures et les limitations sont discutes.
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.chapter one

REVIEW OF THE LITERATURE

1.1 INTRODUCTION

The phenomena of scattering and diffraction have been known to and studied
by mankind for about three hundred years, however the research in this
field has found particular interest and application mostly in the last
quarter century. The advent of microwave technology, in particular of the
radar system during the second world war, has led to a renewed interest

in scattering and inverse scattering theories. The identification of re-
mote objects has been the goal of radar operators, designers and research-
ers since the first radar set was built. While this problem has nof been
solved for the general cése, various approximations, e.g., high frequency
limits, and restricting the class of scattering bodies, have resulted .in
formal solutions for the unknown shape [2,30]. In derivations of inverse
scattering techniques, stringent requirements were generally placed on

the nature of the scatterer; this resulted in methods which can determine
only a very narrow class of unknown shapes. Furthermore, these existing
techniques, owing to the exhaustive amount of input information require-
ments, seem increasingly unfeasible. Thus, although the inverse scatter-
ing field has generated a great deal of interest in the past decade, the
demand for new basic model theories is as strong as ever, as those model
theories are fundamental to remote sensing problems such as air traffic

control, oceanography, telemetry, satellite tracking, etc.

When radiation of any type is incident upon an object, some of the radia-

tion is scattered in all directions by the object. The direct problem



of the theory of scattering or diffraction is that of determining the
vradiation scattered in each direction when the properties of the incident
radiation as well as those of the object are known. The inverse scatter-
ing problem requires the determination of the size and shape of a scatter-
ing target from some given scattered radiation data, such as the far-field
backscattered at certain aspects and frequencies for a given incident .
field. It is evident that any approach to this problem must be based on
either the exact or some approximate theory of direct scattering. Thus

in order to establish new inverse scattering model theories which can be
applied more effectively and reliably to the recovery of targets,a simult-
aneous mathematical analysis of direct and inverse scattering theories

needs to be undertaken.

In general, two fundamental appro;ches for obtaining approximate solutions
to electromagnetic scattering problems [1] are known, i.e. estimates of
either the>fréquency—dependent bhasor response, or, the time-—dependent
impulse response can be attempted. Extensive amount of work in the fre-
quency as well as the time domain have been done in the past [3,9,12,27,
45,61,67}. The inverse solution of Bojarski [21,25,51,66,81] in.the fre-
quency domain and Cosgriff-Kennaugh-Moffatt's [44,45,61] "time domain
approach" fail to be the practical solutions because of a very large in-
put information requirement; however, they provide an excellent mathema-
tical treatment of the problem. In contrast, the polarization—-depolariza-
tion characteristics of the electromagnetic waves which appear to have

the potential to add new dimensions te inverse scattéring techniques’
[7,8,32,33] have had very little importance in the direct and the inverse

scattering investigations so far. Depolarization as understood in this



investigation, refers to the change of the polarization of an electro-
magnetic wave from one state to another, brought about by the inter-
action of the wave with the scatterer. An electromagnetic wave has four
basic characteristics: amplitude, frequency, phase and polarization;
however, the research devoted to polarization problems, whether in optics
or radio physics, has in the past represented only a small fraction of

the research in electromagnetic wave propagation. This situation is
gradually changing. Problems of polarization and depolarization have
appeared with increasing frequency in recent years: In optics, due to

the advent of the laser and coherent light; in radio physics, due to space
communications, and the more exacting requirements on theoretical predic-
tions for scattering by various classes of radar targets. In many cases
observation of change in polarization permits greater insight into physi-
cal phenomena and this should be sufficient justification for studying

the problem of polarization and depolarization in intimate detail. Thus,
the purpos; of this study is to use polarization—depolarization charact-
eristics of electromagnetic wave scattering as a basic tool in developing
improved techniques which can be applied successfully to the recovery of
radar targets under various difficult situations. Based on the fact [7,19]
that the “"depolarization characteristics" of the scattered field do
necessarily depend on the surface profile of the scatterer, the solution
of the inverse problem of electromagnetic scattering by smooth, convex
shaped, perfectly conducting, three—dimensional scatterers is analysed.

To the best of the author's knowledge, this is the first attempt to solve
the inverse prdblem of electromagnetic scattering along these lines.
Therefore the main objective of this work is to show that the polarization-

depolarization characteristics can indeed be used to recover the shape of



the surface from observation of the monostatic backscattered field data.

At present, two inverse scattering model theories have found particular
application in target recovery schemes. These are the Bojarski-Lewis
inverse scattering theory [21,51] and the Kennaugh-Moffat time domain
transient response method [45,61], both of which are based on the physical
optics approximation [51,61]. Therefore, these methods can only be applied
to ideptification of perfectly conducting shapes and furthermore, radar
frequencies must be chosen such that the high-frequency approximation is
satisfied. The objective thus is to investigate the possibility of ex-
tending the findings of the polarization-depolarization studies and thus to
add a new dimension to the Bojarski-Lewis, the Kennaugh-Moffat and other
inverse scattering theories. At this point it is appropriate to give a

brief presentation of the various existing techniques mentioned above.

1.2 THE BOJARSKI-LEWIS INVERSE SCATTERING THEORY

The theory developed here was based on the physical optics or Kirchhoff
approximation [51,61] for direct scattering. The starting point for this
inverse scattering model is a remarkable identity obtained by Bojarski
[21,22;25] and rederived by Lewis [50,51]. There,a three-dimensional
space of vectors % was introduced whose direction coincides with the
aspect direction and whose magnitude is K = [21 = 2w/cn,where w 1is the
frequency. They also defined the characteristic function 'Y(§)< of the
target and a function p(E) which can be obtained by measuring the far-
field backscattered in the direction of K at the frequency w = [EJCO/Z

See Fig.l.1l . The function Y(Ei is 1 inside the target and O outside
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of it. Then Bojarski's identity states that the functions y(x) and

_— 3
I =2/ 7 (K?ilz(‘*‘) 1.1)
K

are a Fourier—transform pair. Thus if p(E} could be measured in all

of K space one could immediately obtain Y(§3 and hence determine the

target.

In practice, p(E), and hence T'(k), can be measured only in a restricted
range of aspects and frequencies, i.e., in a certain subset of K space
and thus, the inverse Fourier transform can no longer be used to direct-
ly obtain Y(x). At this point Lewis [51] showed that if Q is the region
in which I dis known, one can choose a function N() which is zero
outside Q and nonzero inside Q , so that NI () = F(k) can be meas-
ured in Q. Furthermore, it is possible to choose N such that N@E)T ()
has an inverse Fourier transform and the convolution theorem holds. 1In
this way one obtains the convolution integral equation of the first kind
£1(x) = J k'(x-s)y(s)ds , xeR? (1.2)
R3
where f' and k' are the inverse Fourier transforms of F and N res-
pectively. If this equation can be solved, then the size and the shape

of a perfectly conducting target can be determined.

The expression for T(k) given by (1.1) indicates that the measurement
of T() in a domain Q requires measurement of p in Q and in Q',
which is the reflection of Q through the origin. Thus if Q corres-

ponds to an aspect near the "front" of the target, p must unfortumately



be measured also near the "back'". Since this would, in many applicatioms,
be a severe limitation, Lewis [51] attempted to eliminate the domain Q'.
There, a modification to the general theory is presented which, under
suitable conditions, yields the “front half' of the target using measure-
ments of p in Q. Lewis [50,51], Tabbara [81] and Bojarski, in a
multitude of reports [21,22,24,25], have obtained solutions of (1.2)

for specific apertures. However, a study of these reports reveals that

a staggering amount of data is required, and that the Bojarski—Lewis in~-
verse scattering technique, at the present time, cannot be applied in

practice.

The fundamental difficulty in obtaining a solution to the Bojarski-Lewis
inverse problem is that the available method used in solving the Bojarski
identity, that is the solution of (1.2), is an ill-posed problem [48,51,
66]. A detailed study of the shortcomings of the Bojarski-Lewis inverse
scattering‘soiution was presented by Perry [66] who not only showed that
(1.2)is illposed ,but that for stable inversion the lowest eigenfrequency

of the kernel_in(L.Z)corresponds to the value of |k| far below the high-
frequency region. This fact, however, rules out the judicious applica-
tion of the Bojarski-Lewis inverse scattering technique as it is based

on the physical optics approximation which holds iny for high-frequency

scattering.

From the large body of literature dealing with the Bojarski-Lewis problem
it is apparent that the Bojarski-Lewis inverse theory requires fundamental
improvement. For example, it does not incorporate complete polarization
information which can be made available with modern polarization doppler

radar systems. Utilization of polarization as related to inverse scattering



is discussed later in this chapter.

1.3 TIME DOMAIN APPROACH

Compared to the frequency domain and the classical approach to electro-
magnetic scattering problems, there has been relatively little work done
on scattering problems with general time variation. Yet the most dis-
tinctive radar signature of an object surely lies in the time variation
of the scattered signal. Probably the most fundamental and useful re-
sult would be the computation of the field scattered by an arbitrary
shape when the incident wave is an impulse. This scattered field is

called the electromagnetic impulse response.

For a number of reasons the electromagnetic impulse response of a scatter-—
er is one of the most interesting results to be obtained from the time
domain analysis. First, the transient scattering produced by an arbitrary
time-varying excitation field can be obtained from the impulse response

by use of the convolution integral. Second, the Fourier transform of the
impulse response leads to the spectral or frequency domain characteris-
tic. One practical use of the transient behaviour is the analysis of
radar returns wherein the impulse response can serve as a "signature" for
target identification. Thus in an inverse scattering problem, the impulse
response itself may be used as a characteristic fumction of the scatter-

ing object,

Various approaches have been used to obtain the response of different

scatterers to impulse excitation. The physical optics approximation was



evidently first employed by Kennaugh and Cosgriff [44] to calculate the
monostatic far—-field impulse response of a rectangular plate, a spheroid,
and a sphere. Further extensions of the physical optics approach were
carried out in a series of publications by Kennaugh and Moffatt [45,59-61].
They defined an impulse response transform pair [FI(t),G(jw)] for the

scattering system, i.e.

G (Gw) =[ FI(t)e-jwtdt (1.3)

0 :
Furthermore by using the power series expansion of G(jw) they obtained

a restriction on FI(t) in the form of moment conditions [61]. With
Rayleigh's law of scattering postulations, and utilizing the moment con-
ditions along with the assumption that the currents set up on the scatter-
er surface are approximated by the physical optics approximation, Kennaugh-
Cosgriff [44] obtained the approximate result that the “projected area
function", A(t), of a target is proportional to its ramp response (Fig.l.2).
This implies that the impulse response predicted by physical optics is

a waveform equal to'a multiple of the second derivative of A(t). The

exact expression given by Kemnaugh and Moffatt [45] is:

1 d*A(w)

e 3 ¢ , velocity of light (1.4)
0

F_(t) = -
I 2 0 .

dt in free space

Time domain scattering analysis has also been done in the area of acous-

tics. Sound pulse diffraction by infinite length, arbitrary cross-section

cylinders has been considered by Friedman and Shaw [35], while transient

scattering by rigid spheres has been studied by Soules and Mitzner [76].

The available published work in time domain scattering can be separated

into different classes. In one approach the calculated frequency response
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of the scatterer is used to synthesize the time domain response for a
specified excitation. Two separate catagories are contained within this
approach, one of which uses the analytical frequency domain solution
which has a very limited scope, while the other makes use of numerically
evaluated frequency domain solutions. A second approach includes those
analyses which employ approximations to the frequency domain response
such as physical and gemoetrical optics. Obviously this particular ap-
proach has its limitations; however, it does indeed show merits at high
frequencies. A third method for obtaining the impulse response of scat-
terers is one which originated from a strictly time domain view point.
This method has been applied to acoustics by Soules and Mitzner [76] and
to electromagnetic problems by Bennett agd Weeks [10] and also by Sayer
and Harrington [71]. It is this particular approach, using the time domain
integral equation, which has been followed in this investigation and used

to develop an inverse scattering model in later chapters.

A solution for the inverse scattering problem using a space-time integral
equation was reported by Bennett and co-workers [11,13]. 1In this study
the inverse scattering problem is formulated as an inversion of the space-
time integral equation. An iterative technique was developed for the
solution of the inversion equation and applied to some simple symmetrical
cases with success. The results of this work provide a sound foundation
on which a viable time domain approach to the inverse scattering problem
can be built. This technique also pointed out the fact (as expected from
the asymptotic nature of the physical optics solution) that the relation
between the impulse response and two derivatives of the projected area

function is exact only at the leading edge of the scattered field response,
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a single point in time. After the leading edge, the response is altered
by currents arriving from other space points. Therefore, the physical
optics solution must be "corrected" to account for these currents flowing
on the body. For a given object, if the incident pulse width is smdll
compared to body size (the high frequency limit), then the correction
currents will have a small effect and optical rays can be placed in one-
to—one correspondence with points on the body. Contrary to this, if the
body is comparable in size to the pulse width, then the “correction"
terms have a strong effect on the solution and the physical optics solu-
tion is degraded. In the case of small bodies, the correction terms

dominate the result and the physical optics solution is meaningless.

A second approach to time domain inverse scattering was based on the ob-
servation that the low frequency approximation of the impulse response

of the scatterer determines the waveform,shape and size, whereas the
high—frequéncy information relates to the fine structure and detail in
the waveform [61]. This fact has been used in obtaining a technique for
radar target classification by using multi-frequency radar returns [57,
63,69,83]. The time domain signature used in such a technique is the
ramp response waveform, which was first suggested for implementation

in radar identification by Kemnaugh and Moffatt [45]. As described earlier,
the ramp response is the second integral of the impulse respomse of a
target, and hence shares several of its useful properties. The ramp res-
ponse is unique with respect to target shape, orientation, and material
composition. It is the inverse Fourier transform of a target's complex
backscattered frequency spectrum multiplied by the factor 1/ Gw))%[61].

Because of this factor, Kennaugh and Moffatt predicted that a satisfactory
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aprroximate ramp response could be obtained with a comparatively narrow-
er bandwidth interrogating signal than for the impulse response. Thus,
the complex harmonic samples of the backscattered response for three
orthogonal look angles [95,96] at ten harmonic frequencies (with wo as
the fundamental frequency the tenth harmonic would be lOwo) lying in the
low resonance range of the target response spectrum,are used as input
data for this approach. A periodic famp response waveform synthesized
from these data is used to construct the surface of the scatterer. Two
general relationships which are important for target imaging have been
utilized in this method for generating the target surface. First, the
amplitude of the waveform versus time is approximately proportional to
the "target profile function" [61]. The profile function is defined as
an artificial time domain waveform equal to the target cross—sectional
area intersected by an imaginary transverse plane moving along the line
of sight at one half the velocity of the transient incident signal as
shown in Fig. 1.2. The second relationship utilized is that the integral
of the ramp response waveform is proportional to the Rayleigh coefficient.
This has also been predicted from analysis of the lower order moments

[61]. Thus an approximate volume estimate was obtained from the ramp

response waveform.

The above relationships and their applications in this techniqug indicate
that the ramp response is a promising signature for target identification
purposes. However, because of the nature of the data, i.e. three ortho—
gonal look angles, a three—dimensional image camnot be uniquely specified.
It can be proven that more than one shape satisfies any three look angle

profile function set. Thus, this method generates a "likely" image using
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simplified, rather than generalized surfaces with a few adjustable para-
meters. There are obviously many questions unanswered concerning this
technique. For example, the possibility of estimation of target orienta—
tion using the polarization properties of the Rayleigh coefficient could
be investigated. Also, in all the above mentioned techniques only the
first three terms of the power series expansion of G(jw) were consider-
ed, however it might be possible to study higher order terms which might
yield an important relationship between target wave—form response and

target polarization-~depolarization characteristics.

1.4 CLASSICAL ANALYSIS

The classical approach to electromagnetic scattering problems is an analysis
based on the differential equations for the fields, together with the bound-
ary conditions at the scatterer. A classical inverse method of portray-

ing rotationally symmetric scatterers was based on the inversion of the
scattered field matrix associated with the representation of the far scat-
terered field in terms of a series expansion in appropriate vector wave
functions. As an application of the above mentioned method, the circular
cylinder [16], the sphere [17], the elliptic cylinder [86], and the prolate
spheroid [87] have been specified uniquely in terms of associatéd expansion
coefficients. In this series of publications it has been demonstrated

that for the cases of the above mentioned rotationally symmetric scatter-
ers the electrical radii of curvature can be recovered directly from a
limited set of contiguous eipansion coefficients, which are obtained to

an accuracy dictated only by the measurement techniques if a certain spec-

ific optimization procedure [89] is employed.
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However, if the electrical radius is much larger than unity, which in-
creases the order of the scattered field matrix, or if the domain of ob-
servation is limited to a small solid angle, the inversion of the matrix
remains highly unstable and leads to partially erroneous results. Further
investigation has revealed that although this classical approach to the
recovery of the curvature results in a great saving of time in computa-
tion and rather simplified calculatioms, it suffers several limitations

in practice which require further amalysis. First of all this classical
approach [16,17,86,87] is strictly concerned with the identification of
the shape of rotationally symmetric objects, for which separation of the
wave equation into orfhonormal vector wave functions is possible. Second-
ly, in order to recover the electrical radius with a high degree of con-
fidence, tﬁe field coefficients [79] must be specified up to the first
four significant digits [18]. In practice, the accuracy and the resolution
of any measurement technique is not likely to be up to this standard,
especially if both amplitude and phase of the far-scattered field must

be measured as is required here. Thus it can be summed up by saying that
this classical inversion method is presently not applicable in practice
where other techniques demanding less accuracy are desirable. This class-—
ical approach, however, continues to be of much importance in present

theoretical and possible future practical problems.

Another classical approach to inverse scattering which makes use of the
so called concept of electromagnetic inverse boundary conditions was in-
troduced by Weston and Boerner and others [92-94]. Methods using these
inverse boundary conditions to recover both the shape and the averaged

material surface properties 1 of a closed scatterer, if the near field
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-Ean bé reéoveréd accur;tely,-were‘shown by Boerner and othersf[l8,26].
Inidirect‘pfoblems-éf scattering and.diffraction the shape énd the»matér—'—
iai constitueﬁts of thé scatterer, which are known a:priori together

With the prespécified _incident field, may be incorporated into the bound~
“ary pondifioqs.‘:Ih an inverse préblem, in génefél; no informatidn abéﬁt
the séattefer may be'a;sumed. _Theréfdre, in'this:casé-such Bdundary con-—
' ditions muét'ﬁe sougﬁt which.do not depend on the Shape or the matefiél
propertieé of the scatteriné body, buﬁ allow t§ specify those charactér—,
~'ist‘ic. parameters uniquely from the.nearvfield whidh‘needs to bé recovered

from far-field measurements.

‘In pfinciﬁle, the invérse boundary cbnditions derived by Weston, Boerner
and othefs'[92-94] resu1t.from the inversion of_the_Leontoviéh or scalar
'impedénce b0undary'condifion [49] which is an_approximatién and thus its’
applicétion.is restricted. To poiht oﬁt the major restrictions impﬁéed
on éhe-nature'of the, scatterer which can be treated with the Leontovich
boundary cdndition, it is noted that- this boundary condition is a valid
' .approximation t§ the'true'condition.if the radii of curvatufe are large’
everYwhére_poﬁpared with the wavelehgth [iZ]. It can also be justified_
[73] even when 1n varies from boint to'point,_proviaed the variation is
sﬁfficiently slow.. Forvan open‘surfaCe the aforemenfioﬁed conditions are
.sufficient, Whereas for é closed éurface it is:requifed in addition-[lS]
that the pénetration~depth is small chpafed with the smallest radius -
of.éurvafureviﬁ questioﬂ, SO thét ihward—traveling'fields do not.reach\
the7§urfacé again, Consequently, loss-less objects sﬁch as dielectric
slabs, cyliﬁders,-spheres étc. are untreatable by the éurface impedance

- conditions regardless of their dimensions. The question- of uniqueness
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of the inverse boundary conditions derived from the Leontovich boundary
condition was studied in detail recently [20] and it was shown that for
both the perfectly as well as the imperfectly conducting cases, the
uniqueness of the inverse boundary conditions depend on polarization and
target symmetry. For example, incidence of a circularly polarized plane
wave along the invariant axis of a rotationally symmetric scatterer will
result in the fact that the inverse boundary conditions are satisfied
everywhere, thus they cannot be applied in this particular degenerate
case. Otherwise, it was shown that it is possible that the shape, the
phase and the modulus of the averaged surface impedancé of the scatterer
can be recovered uniquely. Finally, it is pointed out that although in
practice the measurements required for the aforementioned exact inverse
problem are not possible, the understanding of the exact problem gives

a better insight into the limitations and errors when approximate or as-
ymptotic techniques are employed, and can lead to further development

of these methods.

1.5 SIGNATURE COMPARISON TECHNIQUES

Two representative signature comparison techniques are discussed in this
section.
(i) 1Iterative averaging method [88]:

Based on the fact that smooth and convex—shaped scatterers of
identical curvature about the monostatic direction give rise to identical
far-scattered field magnitude in the high frequency case, an inverse
scatte:ing technique for the recovery of the local radii of curvature of

remote scatterers about the specular point was developed [88]. It was
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assumed that measured data are available for various directions of illum-—
ination covering all sets of overlapping finite domains of the scatter—

ing surface.

From the theory of geometrical optics, as applied to the problem of
high—-frequency diffraction by scatterers of slowly varying convex shape
[41,;43], it is known that the leading term in the asymptotic expansion
of the scattered field depends primarily on the local radius of cur-
vature of the illuminated area, This behaviour, in the backscatfering
direction, is the foundation of the system synthesis approach intro—
duced in this recovery technique referred to as the iterative-averaging
method. This method uses the fact that a knowledge of the field's
magnitude necessarily reflects some information on the curvature of

the scatterer. By comparing the scattering pattern of various objects
it was found that the larger’the radius of curvature, the larger is

the magnitude of the backscattered field. Notwithstanding this gen-—
eral overall behaviour, small superimposed amplitude oscillations

about a mean value of the field magnitude often arise. These second
order effects are dependent on the second term in the asymptotic ex-—
pansion [41] which includes both the local radius of curvature of

a smooth, convex shaped scatterer and its space rate of change with
respect to the surface coordinate. The iterative averaging method
however neglects these superimposed, small-field oscillations. Apply-—
ing techniques well-known in system systhesis, this iterative averaging
method compares the averaged magnitude of the backscattered field, given
~off by the unknown, with that resulting from a known rotationally symmetric

scatterer, which can be most easily calculated, Thus, from the mean
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value of the field, calculated at various backscattered directions, the
local radius of curvature of the scatterer is obtained via an iterative
comparison process, employing well established methods of system syn-
thesis. The recovery of the local radius is, hence, viewed as the syn-
thesis of the system described by the relationship between the geometry
of the remote scatterer and the measured backscattered field's magnitude
for given wave incidence. It should be observed that the suggested
iterative-averaging method is applicable only in high frequency cases
i.e., when the local radii of curvature are large enough so that creep-
ing wave effects are negligible in determining the field distribution
near the backscattering angle.

(ii) Pattern recognition technique [37]:

This technique investigates the radar target identification
problem through an approach that does not depend on obtaining radar
imagery of Optiéal quality and high resolution in range and azimuth. In-—
stead, pattern recognition techniques are applied to radar magnitude and
phase~versus—frequency data which are obtained at resonance region frequen-
cies. Furthermore it is also understood in this problem that no aspect

angle information is either known a priori or measured.

In this work, it was concluded that the solution to the problem lies in
the resonance region. If the frequency is too low (Rayleigh region)
there is no shape—dependent information in the scattering. If it is too
high, the scattering becomes highly aspect—angle dependent. If the

exact aspect angle of the target is not known, application,of the pattern
recognition technique to magnitude-versus-frequency data obtained at

high frequency may become an enormous task because of the huge amount
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of data that have to be catalogued. At resonance region frequencies,
small cﬁanges in aspect angle do not cause rapid fluctuations in the data;
yet there is shape—dependence of the data. For the objects studied in
this investigation, there appears to be enough iInformation in one or two
octaves (if the lowest frequency used is w , one octave would be ZwL)
of radar bandwidth to allow separation and classification of radar tar-
gets. Thus the design logic here is based on two constituents: the

use of lower radar frequencies as discriminants [45], and data process-
ing by pattern recognition technique to achieve target identificationm.
Based on digital spatial frequency filtering of curves of the radar
return versus the radar frequency, algorithms which optimize separation

between pairs of input data were developed.

From the results obtained by the above technique it is evident that there is
enough information in the data contained in one or two octaves of reson-
ance regiéﬁ frequencies for a radar to discriminate between targets that
are the same in size but different in shape. To achieve identification,
the wavelength need be just short enough for the differentiating features
to be at least a quarter-wavelength apart. Within the limits of this
restriction, however, the wavelength should be as long as possible to
minimize aspect angle-dependence. It is also concluded that a practical
multifrequency ¥adar system that can measure phase and cancel out polari-
zation effects by means of the method developed in this technique is
feasible. Such a system can provide data suitable for pattern recogni-
tion algorithms. For the phase measurement to be absolute rather than
relative, the phase of the backscattered field must be known

at one frequency. This can be ensured by choosing a frequency low enough
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for the targets of interest to be in the upper Rayleigh region; it has

been shown that in this region the phase shift is zero.

From the review of various available signature comparison techniques

it is realized that these methods are applicable only to a restricted
class of objects whose characteristic scattering behaviour is known a
priori. Thus such an approach to inverse scattering problems can at best
provide a partial solution. Furthermore very little insight to the

physical phenomena is provided by such approaches.

1.6 SINGULARITY EXPANSION METHOD (SEM)

SEM provides a new approach [6] to the problem of the interaction of
electromagnetic fields with bodies located in free space or in other
simple media. The basic idea involved in this technique is to expand

the solution to an electromagnetic interaction problem [scattering prob-
lem, propagation problem, or any linear problem (not necessarily electro-
magnetic)] in terms of the singularities of the response in the complex
frequency plane. Such singularities can take various forms such as
poles, branch points (and associated branch cuts), essential singulari~
ties, and singularities at infinity. For restricted classes of objects,
such as finite sizedobjects in free space, these s—plane singularities

are limited to poles and possible singularities at infinity [6,36,82].

In the singularity expansion method the electromagnetic interaction with
objects is characterized in terms of quantities directly identifiable with

various characteristics of resulting interaction waveforms. Some charac-
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teristics are associated with the object characteristics including the
presence of neighboring objects, Other characteristics are associated
with the waveform of the incident field. Yet others are associated with
the spatial distribution of the incident fields, such as specified by

the direction of incidence and polarization. What is in effect accomplish-
ed through this technique is a decomposition of the interaction problem
into various quantities which depend on different variables of the problem.
The dependence of the interaction on different variables can then be
separately considered resulting in a considerable simplification in under-
standing how the resulting electromagnetic interaction can vary over all
possible variations of the parameters of a particular problem being con-
sidered. This effectively extends the complexity of the object geometries

one may be willing to consider for detailed calculations.

Based on the fact that the electromagnetic interaction problem could be
decomposedkinto various quantities which depend on different variables

of the problem, some schemes for detection and discrimination of radar
targets have been proposed [47,63,83]. Moffatt and Mains [63] have re-
cently suggested the concept of using the cbmplex natural resonance of
objects [i.e.singularities of the object response waveform in the complex
frequency plane] as a tool in target discrimination. They make use of
the fact that the positions of the natural resonances in the complex
frequency plane are excitation invariant,i.e., they are not a function

of aspect angle, and that in general only the first few low frequency
poles are necessary to characterize an object [61]. Their identifica—
tion scheme uses a fitting technique to achieve a quantitative evaluation

of the correlation between a measured transient waveform synthesized
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frbm mul;ible fre@uenc§ scattering data [63] énd a caléulatéd difference '
v eduation*wavéfofm uging difference coefficients (thaiﬁed from.cqﬁplex
natural resonaﬁt‘frequencies) for a partiéular scatterer. Examples of -
discrimination‘fesﬁltsAobtainéd fof two wire geometfies over a Qidé range
of aspécté in_two'priﬁcipalbplénes usiné‘completé'(lo frequencies).baék—
isqaﬁter data;haé been‘rgpbrted [63]. Thg'same.procedure5~were also applied
'ﬁsing.incompleté backscatter dafa, i.e., with amplitude .and phase data
~at cextain freqﬁencies arbitrarily set to zero. With miniﬁal backscatter
datg‘tequirementslgstablishéd,.discrimin?tion_fesults were presented
'when thé minimal datalare,taken‘from.di%ferent target orientations:[SS,.v
63]. .The resulté have»demonstrated the possibility of drésfic reduction
in fhe:bandwidth'reéuirements for a multiple frequency discriminafion
rédar and also that the béckscatter data requiréd can be.obtained using

near-conventional radar systems.

‘A similar radar tafget:recognition technique that ﬁakes use of the fact
that the'complex natural frequencies of a térget'are-intrinsié only to
'lthe body'geometfy, was feﬁorted byAVan Blaricﬁm and' Mittra {83]. This
séheme makés use of a techniqﬁe which nﬁmerically extfécts the complex
,'résqpanceS’of,a target from a time éigna;ure.[84]., The rgcognitionftechf
vnidqe suggested by Van Blaricum and'Mittra.[83] applies this method ﬁo
reduce the ﬁigitizéd'backscéttered time éignature-to a collection of com-
- plex frequénciés'wﬁi§h, as‘shown;by)Méins and Moffatt [55,63], character-
.izes the ééattérér. Then these frequencies.serve as‘the input to a
"pattérn rédognition~algorithm Which coﬁpareé these egtracfea poles- to
those in a.cétalog to identify the target. The basic distinction between-

' thié'scheme and the Mains and Moffatt [55] scheme is the form iﬁ-which
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measured data are compared with target dictionary information. Mains

and Moffatt generate a given transient waveform based both on the
measured waveform and a given dictionary entry. This waveform is compared
‘with the measured waveform. The scheme reported in Van Blaricum and
Mittra [83] extracts the natural frequency content directly from the
measured waveform, and the natural frequencies themselves are compared

with dictionary entries,

Again all these targét recognition schemes based on the singularity ex-
pansion method are simply signature comparison techniques. Thus their
application is limited to a restricted class of objects whose character-
istic scattering behaviour is known a priori. Furthermore polarization-
depolarization aspect of the singularity expansion method has not been

exploited in these techniques.

1.7 ~ POLARIZATION UTILIZATION

The problem of polarization and depolarization have gained a considerable
amount of attention in recent years; in optics, due to the advent of the
laser and coherent light; in radio physics, due to space communication
and the more exacting. requirements on theoretical predictions for scatter-
ing by rough surfaces;and radar targets. The possible application-of the
phenomenon of depolarization in the inverse scattering theory for better
target identification/discrimination under various difficult situations
needs to be investigated. Rigorous equations describing the depolarized
echo of radar reflectors as a function of their physical shape and the

polarizational state of the incident wave are known [7,8,77]. These
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relations could possibly be used in recovery of target shape and mater-
ial information from known depolarization characteristics of the target.
An exhaustive treatment of the depolarization caused by flat or rough
surfaces [7,8] reveals that physical optics preédicts a cross—polarized
component in the backscattered direction whereas geometrical optics

fails to uncover it. Starting with the Stratton-Chu-Silver integral

[75] and by applying proper boundary conditions and resolving the scatter-
ed field into parallel and cross—polarized components, integral repre-
sentations for the depolarization ratio are obtained. This expression

is .a function of the shape and material composition of the scattering

object.

To the best of the author's knowledge, so far, the application of the
depolarization characteristics to the inverse scattering problem (al-
though with a limited scope) was attempted only by Erteza and Doran
[32,33]. Although they called it "application of the concept of differ-
ential reflectivity", however essential to the determination of the un-
known parameters was the measurement of the ratio of the power densities
in two cross—polarized éomponents of the scattered field. Erteza and
Doran [32,33] presented a method for the determination of the permit-
ivity and permeability of a large (compared with wavelength), smooth -
convex body, using a ray tracing technique [26] for vector fields. Im—
plementation of the method involved the measurement of the ratio of two
components of a reflected field for two distinct source-target-scattered
field point configurations, with monochromatic, linearly polarized
illumination of the target. This differential reflectivity technique

essentially circumvented the boundary—value problem and led directly to
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the integral expressions for the scattered fields. Although a large
number of simplifying assumptions were made in order to accomplikh
evaluation of these integrals [32], the resulting field and power ex-—
pressions contain as first-order terms identical expressions to those
that would be obtainable by a straightforward geometrical-optics approach}
This provides a check for the Erteza and Doran [32,33] approach and
also implies the feasibility of the use of the depolarization character-

istics for the solution of a larger class of inverse scattering problems.

A possibility of incorporating the depolarization ratio in the scatter-
ing matrix (SM) representation [15,23,34,39] has been investigated. In-
version of the scattering matrix is expected to yield target informa-
tion as function of the depolarization ratio and the aspect angle. Some
special radar target scattering matrices are listed by Huynen [39], and
their app%ication to rough surface scattering is presented. This approach
might provide a better understanding of the physical aspects of the tar-
get/clutﬁer problem. A study of depolarized backscatter by Chytil [28,
29] showed that for curved surfaces the depolarization ratio Dp »de—
creases as ka © (where k = ZH/A) with "a" as the characteristic dimen-
sion of the scatterer (i.e.,width of strip, radius of circular cylinder,
etc.) and 1 f_n-f_é. Various investigations [40,56,74] have revealed
that the polarization characteristics of the radar return signals from
the atmospheric formation (i.e., clouds or atmospheric precipitation)
contain information about the phase state of the water as well as shape
and orientation of the particles in the formation. This property of the
polarization is already in use for radio meteorological investigations

of the shape and orientation of cloud and precipitation particles and
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also to analyze their phase state [74]. Finally it is pointed out that
the targets differ from the "interference-reflectors" in the medium
through their characteristic shape and structure. Therefore the polari-
zation—traﬁsforming properties of the targets should provide an adequate
means for the identification of the said shapes buried under clutter.
This makes the study of the correlation between the depolarization power
and the shape characteristics of reflectors even more desirable when

dealing with inverse ‘scattering solutions.

1.8 WEEMENWDHEMMML%WMMINHWME%MHMM

PROBLEMS

Besidespolarization-depolarization characteristics, another aspect, i.e.,
differential geometry as related to the surface profile inversion has
been given very little importance in inverse scattering investigations.
It is to ﬂé noted that for the vector treatment of the scattering at

the surface of a convex three-dimensional object, as is the case here,
differential geometry provides additional insight to the physical phenom-
enon that éoverns the interaction between the object and the electromag-
netic fields. In differential geometry there are classical problems
concerning closed convex surfaces in three-dimensional space which can

be intimately related to the electromagnetic problem of profile inversion
of closed convex shaped scatterers. In fact one such problem, the so
called "Minkowski problem“ [38,64] is being studied in the context of

the presént investigation. It appears to be possible to combine the

mathematical concepts of the Minkowski problem with the polarization—

depolarization aspects of the electromagnetic scattering concepts to set



28
" up a system of‘equatidns for-the recoVery Qf’thé surface of the scatterer.

In this'inveéfigéﬁion the fundamental liﬁk between electromagnetic theory
and the difféféﬁtialigéometry'is provided by the Gaussianvcurvaﬁure of
..thé écétterer at the ﬁoint of_intérést (i.e., specular ﬁéint);‘ The
.‘GauSSian'cﬁrvature, Being an important'parémeter in differential geometry’
:and at the- same tiﬁe»felated to the backscattered'cfoés—section at a
.sﬁfficiéntly high frequency [41], allows one to relate the results of
‘éiffefential geométry to the electromagnetic problem of inverse scatter-
”ing.' A'defailedvdiééuséion of this aépécf of the investigatibﬁiis pfo~

: vidéd'in.Chaptgr Two.

In'summary,Athbugh there exiéts a large'bédy of 1it§rature-dealing with
thg‘direct écéttering éroblem, the ﬁuﬁber.of treatiseé dealing with the
inveréé_prbblém are relatively few. ‘This is due‘primarily to the-comﬁleﬁ—
ities»associéted’with the-inverse prdbleﬁa For one thing} it would be
a lof simﬁler_to éxtréét the quantitative information regarding the
prdpetties of.a écattering body from the scattered signéls if these
Séatteréd signéls Qefe derivable in closed fofm;' Unforfunatél&, even

v thé simplest of scattering problems tends to.yield solﬁtion in the form

- of slqwly cﬁﬁvérgingfinfiﬁite sefiéé, from which the desired information
caﬁ'héidly be obtainéd. "Secondly, ﬁaﬁy of the inﬁefse préblems,do"nbp
lend'fhemselves to é formulation in terms of linear matrix— or integral-
eqdationé; and, conéequentlf,'séphisticated techniqueé such as pélari—
zatién—dépolérization chafacteristiés and bthef‘systems appfoaches are
requited(to resolve them.A It is to be noted that even when it is

possible to describe the invérse problem in terms of a linear matrix
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equation, the resulting equation is often ill-conditioned, and its
inverse is unstable as was pointed out earlier in this chapter regard-
ing the Bojarski-Lewis inverse problem. Special techniques are again

necessary to handle these cases.



30

chapter two

.MINKOWSKI'S PROBLEM AS RELATED TO ELECTROMAGNETIC INVERSE SCATTERING

2.1 INTRODUCTION

For the vector treatment of the scattering at the surface of a convex
three—dimensional object, as is the case here, differential geometry pro-
vides additional insight to the physical phenomenon that governs the
interaction between the object and the electromagnetic fields. However,
differential geometry as related to the surface profile inversion has

been given very little importance in inverse scattering investigations.

In differential geometry there are classical problems concerning closed
convex surfaces which can be intimately related to the electromagnetic
problem of profile inversion of closed convex shaped scatterers. In the
context of the proposed investigation there are two such problems in
differential geometry concerning closed convex surfaces in three-dimensional
space, i.e., surfaces which are the full-boundaries of bounded convex sets
in three-dimensional space. 1In these cases the parameter surface is the
entire unit sphere and the surface in space is its topological image [64,
80]. These problems concerning such surfaces can be formulated as follows
[64]:

(i) Minkowski's problem: The Gaussian curvature K is given as a
positive function of the direction of the normal to the surface, i.e.,

the spherical image of the surface is arbitrarily prescribed. The exist-
ence and uniqueness of a closed convex surface having the prescribed

spherical image is required to be proved.
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(ii) Christoffel-Hurwitz's problem: This problem is the same as the
Minkowski problem except that the sum of the principal radii of curvature
(or, stated otherwise, the ratio of the mean curvature to the Gaussian
curvature), instead of the Gaussian curvature, is prescribed as a positive
function of the direction of the surface normal. The existence and
uniqueﬁess of the convex surface having this property are required to be

proved.

This chapter deals with the concepts of differential geometry and

the Minkowski problem in particular. In Section 2.2, the transformation
of the object surface onto the unit sphere via Minkowski's support func—
tion [64,80], which is an important step towards the formulation of the
Minkowski problem, has been discussed. The mathematical statement and
some curvature related formulas of the problem itself have been developed
in Section 2.3, The geometrical optics relationship [26,42] between the
scattering cross—section and the Gaussian curvature, along with its
application in linking up the Minkowski problem to the inverse scatter-
ing problem, has been pointed out in Section 2.4. Finally, an example

of a two-dimensional case, where it is possible to obtain an explicit
solution of the inverse electromagnetic problem directly from the concepts
of geometrical considerations, has beeﬁ presented in Section 2.5. At this
point it is to be noted that in the present investigation no attempt has
been made to actually solve the Minkowski problem, but the related differ-
entialvequations have been used in Chapter Four to derive a condition
which relates the surface parameter of the scatterer to the radar measure-

ables.
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2.2 MINKOWSKI'S SUPPORT FUNCTION [52,64]

In Fig. 2.1, let ﬁ(x,y,z) be a closed convex surface (Gaussian curvature
K >0)containing the origin in its interior. The inner unit normal

(€,n,L) defines the spherical image of the surface. Let p'(&,n,Z)
represent the distance from the origin to the plane tangent to the sur-
face at the point where the inner normal is (&,n,Z) (see Fig.2.1l).
p'(€,n,Z) is defined in this manner for all values of £,n,f, satisfy-

ing &% +n% +¢? =1.

The extension of this function to all variables &,n,; as a homogeneous

function of degree one is called the Minkowski support function. 1i.e.,

M(E,n,z) = (E24n2+g2)Y/2. pr—& ;
(E*+n+g2) /2

2 2 2v1/2 ? f / ] ) .1
(E*n%+g?)1? (E*m2+g%)' 2
It satisfies the Euler relations [80] for homogeneous function of

~

degree one, i.e.,

gME + nMn + cMC =M o, (2.2)
Mg ¥ Mgn ¥ Mg =0 (2.3)
gMEn + an + z;Mm: =0 s (2.4)
gM;g + nMCn + CMCC =0 s (2.5)

where the subscript denotes partial differentiation with respect to &,n,C.
The function M 1is very useful in the treatment of Minkowski's problem,

therefore some of its properties are noted next.
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Since the Gaussian curvature of the surface is positive, there corresponds
to each point on the unit sphere exactly one point on the surface ﬁaving
this point as its spherical image. So the coordinates x,y,z of the
surface may be considered as functions of §&,n,{ within the restriction
£24n%+% = 1. From the definition of M given above it is evident that
(see Fig.2.1)

T+ i = M(E,n,0) .
But since fi*dr = 0 because A is a normal to ﬁ(x,y,z) , it follows

that _
r « dfi = dM(§,n,T)

with df = (d£,dn,dg) , or, in coordinate form

z =M (2.6)

Thus, once the Minkowski support function is given over the entire umit
sphere, the corrésponding closed convex surface is known. Another im-
portant observation which follows from (2.6) is that if two support
functions differ by a linear function, the corres%onding surfaces differ

by at most a translation.

2.3 MATHEMATICAL STATEMENT OF THE MINKOWSKI PROBLEM

In this section the derivation of various formulae which yield the cur-
vature properties of the surface £ are presented. For this purpose,
the formula of Rodrigues [80] which holds along a line of curvature is
used:

”~ N

dX + Ddn = Q .
Here D is the principal radius of curvature, and fi the unit normal.

In components, this may be written in the form:



35

dx + Ddf =0 ;3 dy +Ddn=0 ; dz + DAL =

with ﬁ = (X,y,z) and @ = (§,n,C) . It is assumed that the surface is
determined by the support function M through (2.6), and hence all
quantities associated with the surface are likewise determined by M
as homogeneous functions of an appropriate degree, i.e., from (2.6)

dg + M. dn + M__dzg

d =

x = My £n £L

dy = M_,d

y g £+ Mﬁ dn + M Cd;
dz = ngg + M dn + MECdC

Thus Rodrigues' formula may be rewritten as

CM€E+D)dE +lMgndn + Mgcdc =0 (2.7a)
thdg + (Mnn+D)dn + Mﬁcdc = 0 (2.7b)
=0 (2.7¢)

+
Mcgdg MCﬂdn + (M€C+D)d§

It is to be noted that the variables &,n,C are to be treated as in-
dependent variables in the above equations and in all the subsequent

formulae involving the support function.

The homogeneous linear set of equatioms (2.7a) to (2.7¢) for the
quantities d&, dn and dC have a non-trivial solution since principal
directions exist, and the principal radii of curvature D1 and D2 are

thus roots of the following determinantal equation

M__+D M M

EE En 24
M M +0D M =0 . 2.
ng nn ng (2.8)
M M M +0D
43 n 44
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From (2.3), (2.4)vand (2.5) it is evident that the determinant of the
matrix of the‘MiE (where 1,k = g,n,l) vanishes because that system of
equations [i.e., (2.3) to (2.5)] is satisfied for at least some sets of
values of the (§,n,f) which do not all vanish simultaneously. Usiﬁg
this fact, the above determinantal equation can be written as a quad-

ratic equation, i.e.,

D2 = .
+ M 0t MCC)D +_s[M] 0

g

The quantity S[M] is the following sum of diagonal minors:

Sl = EE m En) * (MEEMCC'MEC) + (nn 4 n§> )

From this quadratic equation for D, relations for the sum D1+D and
2

the product Dl'D2 of the principal curvature of the surface as func-~

tions of the direction of the normal to the surface are obtained as

M&E + Mnn + MCC = —(D1 + Dz) , 2.9
" S[M] =D D =1/ . (2.10)
1 2

s

Here K 1is the Gaussian curvature of the surface at the point where the
surface normal is 0(£,n,z). The equations‘Q.9)and (2.10) can now be
viewed as differential equations for the support function M when the
values of (D1+D2) and D1D2 are given as functions of the wvariables

£, n and . It is evident from the statement of the Minkowski problem
and the Christoffel-Hurwitz problem given in the introduction to this
chapter that (2.9) peftains to the Christoffel-Hurwitz problem,whereas
(2.10) pertains to Minkowski's problem. Thus based on (2.10) and (2.6),
Minkowski's problem can be stated-as: Given the function K(E,n»2),

find the functions x(g,m,z) , ¥Ensl) » 2(E,n,z)
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2.4 MINKOWSKI'S PROBLEM AND THE INVERSE ELECTROMAGNETIC PROBLEM

From the statement of the Minkowski problem, given in the previous
section, it is clear that if the Gaussian curvature of a scatterer can
be related to the electromagnetic field quantities this problem of
differential geometry is exa;tly-the same as the problem of recovery

of the surface profile of a scatterer from the known far—-field data.

Tt is known [42] that in the geometrical optics region the scattering
cross—section o in the direction of any reflected ray is equal to
Re/4K. where K is the Gaussian curvature at the point of reflection and
Re is the energy reflection coefficient [26]. Making use of this re-
lationship, Minkowski®s problem can directly be used to analyze the
inverse problem. It is clear that when C and Re are known for all
values of their arguments, [i.e., 6,¢] in the geometrical optics region,
the Gaussian curvature K is determined over the hemisphere 0 <6< /2
of the unit sphere. This unit sphere, on which each point corresponds

to the direction of the normal at one point oﬂ/the scatterer's surface,
is called the spherical image of that surface. As mentioned earlier,
Minkowski®s problem is the determination of the surface when its Gaussian
curvature is given on the entire surface of the spherical image. It

has one and only one solution for amy sufficiently smooth positive func—

tion K(0,¢) which satisfies the condition [64,78]

K (0,6)n(0,0)dQ = 0 (2.11)

Here 3(9,¢) is the unit normal at the point g,y ; do 1is the differ—
ential surface of the unit sphere, and integration extends over the

whole sphere. Thus, corresponding to the Gaussian curvature K given
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by the geometrical optics approximation [42] on one half of the unit
sphere and by arbitrary [subject to (2.11)], smooth continuation over
the remainder of the sphere, there exists exactly one scatterer. The
scatterer shape is determined by the solution of an elliptic partial
differential equation involving K(8,4). Therefore, it is concluded
that the shape of all parts of the scatterer are affected by the arbit-
rary continuation of K. Consequently, the Gaussian curvatures K pro-
vided over the hemisphere 0<6<m/2, do not suffice to determine the
shape of the scatterer nor any part of if. The resulting inverse prob-
lem has too large a family of solutions. However, if two functions
q+(6,¢) and o©_(6,¢) are given, corresponding to two different incident
waves coming from opposite directions, and also if Re is known, then
geometrical optics determines K over the whole sphere. If this K
satisfies (2.11) (as it must if it actually corresponds to a surface),
then the inverse problem has a unique solution. Unfortunately the cal-
culation-bf fhis solution, in the general case, requires the solution

of an elliptic partial differential equation whose solution is extremely
difficult and does notllend itself to numerical computational techniques.
Thus, in this investigation, no attempt has been made to actually solve
the Minkowski problem, rather the differential equation of the Minkowski
problem has been used to derive a set of equations which relate the sur-
face parameters to the radar measurables.. In this context, it is pointed
out that in the case of a two-dimensional convex body of revolution,
(2.10) could be reduced to an ordinary differential equation. Thus in
the next section an example of a two—dimensional convex body of revolu-
tion is presented, where the Minkowski problem has been used directly

to yield explicit solutions to the inverse electromagnetic problem.
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2.5 SOLUTION FOR CONVEX BODIES OF REVOLUTION (TWO-DIMENSIONAL

CASE)[91]

As mentioned earlier, for a smooth, perfectly conducting, convex body
of revolution, and in the high—frequency limit, the radar cross-section
is given by the geometrical-optics approximation [42]. The monostatic
radar cross—section is given by [normalized so that the radar cross-

section of a sphere is given by o = ﬂ'(radius)z].
o(u) = 7K 1(u) , (2.11)
where, as shown in Fig. 2.2, u describes the direction of the incident

plane wave and K(u) is the Gaussian curvature at the specular point.

For an axi-symmetric body, whose geometry is shown in Fig. 2.2, two

principal radii of curvature at any point on the surface are given by

- f£(x) and _ [1+(af/ax)?]?
pl 2 de/dxz

. (2.12)

The expression for p can be obtained straight from Fig. 2.2 (by
1
virtue of the fact that it is a body of revolution), and the expression
for p is obtained by using the known definition of the radius of
2

curvature at any point of a curve in differential geometry [31,53,68].

Thus, the reciprocal of the Gaussian curvature is given by

K1 = oap = EGAIHEAL/dn)?]®

; . (2.13)
1 2 de/d}{Z

Making use of the fact that
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& 4 pdfy _d g 1o, df
dx dx ‘dx df “dx/df dx
dfy s &x
df2

Substituting this into (2.13), the reciprocal of the Gaussian curvature

can be rewritten as

g1 - £GO[1+(dx/df)?]? ) (2.14)
(dx/df) (d®x/df?)

Using (2.11) and (2.14), the expression relating the monostatic radar

cross—section to the scatterer surface parameter is

- [1+(x")?%]2

o (u) mf (x) x'(d/df) (x) ’ (2.15)

v _ dx
where X = At .
Eq.(2.15) can be solved for £

f Trar-le s 5[ x|

-} 2 T
f=o0 x'=0 [1+(x') ‘1%

With the substitution x'

in terms of the angle u

u
£u) ={—H
o

;

(o}

]
iy
L

is obtained as

o (u) tanu d(tanu)}ll2

[1+tan2u]2

o(u) sin(2u)du }1/2

tanu (see Fig. 2.2), the solution for f

(2.16)

Thus, (2.16) gives the. f coordinate of the unknown shape as a fumction
of a third parameter, u. A complete solution would require a similar
equation for =x(u). This can be accomplished by considering the alter-
nate form for the Gaussian curvature, i.e., (2.13), which along with

(2.11) gives
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o - MELLH(£4)2%)2
(d/adx) (£%) ?
where f£° =Ag£- .

Solving for dx and integrating

X f! '
f dx = x = l.f _odf’

X=0 f'=m f[1+(f‘)2]2

with the substitution, f' = 1/tanu (see Fig. 2.2) yields

x(u) = l_fu o(u) .l d(1/tanu)
Tl x@ [+ /tanu)?]?

u
'111‘{ oW in24 du (2.17)

Thus, (2.16) and (2.17) provide the circular cylindrical coordinates

of the scattering body [(2.16) must be applied first] as a function of
the parameter u. In order to recover the complete shape of the scatter-
er, the rédar cross-section must be known for the whole range of the
aspect angles O<u<m. An application [91] of this explicit solution for
computing some numerical results suggests that a large variety of body
sizes and shapes can be solved with this two-dimensional solution of the

Minkowski problem.

As mentioned earlier, the Minkowski problem and the Christoffel-Hurwitz
problem reduce to questions concerning nonlinear differential equations
of elliptic character. Consequently, various properties of (2.9) and

(2.10) including existence and uniqueness of their solutions are con—

cerned with questions related to the field of elliptic differep e,
NIVE/;

#toblem was

equations. The first uniqueness proof for the Minkowski
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given hy Minkowski himself [48], Under the assumption that the solution
is analytic, Lewy [72] gave a uniqueness proof of the relevant Minkowski
problem. His work on the existence of a solution is discussed in detail
by Stoker [78] who also gave a particularly simple proof of a uniqueness

theorem which requires merely a few derivatives of the surface.

In the context of the present investigation, where the main aim is to
incorporate in (2.9) and (2.10) as boundary conditions on the scatter—
ing surface, the mathematical details of the existence and uniqueness

of the solution of (2.9) and (2.10) are not important. Thus the  detail-
ed mathematical treatment of these problems are not included here,
However, an excellent analysis of the solutions of (2.9) and (2.10)

has been provided by Stoker [78].
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chapter three

A TIME DOMAIN APPROACH TO ELECTROMAGNETIC SCATTERING

3.1 INTRODUCTION

The classical approach to the electromagnetic scattering problem is an
analysis based on the differential equations for the fields, together
with the boundary conditions at the scatterer. In general this approach
has been confined to a single, but arbitrary, frequency. In the last
seventy years, a number of valuable results have been produced by this
method, however, only a very restricted class of canonical shapes had

been treated. Moreover, extension of this approach to other target

shapes is becoming more and more difficult.

Contrary to this, there has been relatively little work done on scafter—
ing problems with general time variation although the most common radar
signature of objects is the time variation of the scattered signal;
Therefore, a fundamental and useful method for the computation of the
field scattered by an arbitrary shape would be the treatment of an im—
pulsive incident wave. The primary conceptual time domain model, i.e.,
the impulse and related transient response waveforms of a scattering
object, first proposed by Kennaugh and Cosgriff [44], has been discuss-—
ed in Section 3.2. Furthermore, the interpretation and application

of such a primary conceptual model for electromagnetic scattering is
also presented in this section. Another efficient technique, making
use of the space-time integral equation which is known as the “Impulse

response augmentation technique" for obtaining the far-field electro-
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magnetic response of scattering objects [9,12,13] will be discussed in
Section 3.3. In this context, a brief derivation of the space-time
integral equation for induced surface currents on the scatterer will
also be presented in this section. In the impulse response augmenta-
tion technique, in order to obtain an estimate of the leading edge (or
equivalentiy, the high frequency) response of the target, the physical
optics currents have been assumed. This assumption leads to polariza-
tion independence by virtue of the fact that the impulse response which
results may be written as the second derivative of the target's project-
ed area as shown in Fig. 1.2, It is then required to determine as to
whether or not the polarization dependent effects appear as singularity
functions at the leading edge of the impulse response. It is the find-
ing of the investigation by Bennett and co-workers [12] that these effects
indeed do appear and,to a first approximation for smooth convex bodies,
are functions of the difference in the principal radii of curvature at
the spec&iar-point and have the form of the first derivative of the
projected area. These results along with their possible application in

the problem of profile inversion of smooth, convex, perfectly conduct-

ing objects will be discussed in Section 3.4.

3.2 THE CONCEPT OF THE -TIME DOMAIN MODEL IN ELECTROMAGNETIC

SCATTERING PROBLEMS

In time domain modeling, the scattering process is modeled by a passive
linear two~port with time-invariant parameters. The input is E(t), the
output F(t), and the two—port has an impulse response function FI(t).

The input and output are related through the convolution integral as



46

F(t) = I FI(T)E(t—-T)dT (3.1)

t
1

The coordinate frame, for defining the various quantities in (3.1)

and to explain the scalar treatment of the electromagnetic fields, is
shown in Fig. 3.1. With plane wave incidence of intensity E(t),
transverse components of the scattered field with intensity F(t)
(normalized) are produced at an arbitrary location in the far-field

of the scattering object. In order to remove the time delay between
scatterer and observer, a new time scale t' = t—R/co is introduced.

Here R 1is the distance of the observer from the origin of the coordin-
ate‘system and co is the free space propagation velocity. The input
E(t') is simply E(t) with t replaced by t'. For the output F(t')}
t 1is replaced by t' in F(t). The impulse response waveform FI(t')

is the response when the input E(t') is impulsive, i.e., E(t') = &(t').
The lower integration limit t; in (3.1) is the initial value of t'

at which ;he impulse response waveform FI(t') departs from zero. This
limit is, in general, not zero since the initial contribution need not
arrive at a time ¢t = R/co. The conceptual two-port model has a frequency-

dependent phasor response G(jw) which is related to the radar cross-

section of the scatterer as
ow) = 7|6Gw |2 (3.2)

The frequency-dependent phasor response G(jw) and the time-dependent

impulse response waveform FI(t') form a Laplace transform pair

«© ".thl
GG = ¢ J F (e 39 gt (3.32)
'1Q e t'jw
FI(t') = -.'_Z_TG_C—— f G(Hw)e J dw (3.3b)

0 —co
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or using s notation (s = jw)

® -stt
G(s) = <, f FI(t')e de?t (3.4a)
0
+je t's
FI(tr) = ijco f G(s)e “ds . (3.4b)
.._Joo

The impulse response waveform FI(t') is the time-—dependent electro-
magnetic field strength produced at the output terminals when the input
E(t") is an impulsive plane electromagnetic wave, i.e., E(t") = 8(Y).
This impulse response of the two-port conceptual model is dependent on
the orientation of the scattering object, the observation angle (but
not range) and the particular transverse component of the scattered
field selected. Once FI(t') is known, the response waveform for any
incident waveform is determined by (3.1). Two other particular res-
ponse waveforms of interest in the time domain study of electromagnetic
scattering are defined as follows:

the step response

o

FU(t‘) = ft' FI(T)u(t’-T)dT (3.5)
1

and the ramp response

[ t
FR(t') = J FI(T)(t'—T)u(t‘—T)dT = ft FU(T)dT (3.6)
ot !

The Laplace transform relations in (3.3) and (3.4) state that FI(t')

and G(jw) can be derived from one another. But G(Jw) 1is known
exactly for only one finite three—dimensional shape - the sphere, and
even for this shape, the transformation to obtain Ii(t‘) cannot be
achieved exactly. Thus, a study of the scattering problem in the time

domain consists mainly of the development of a reasonable estimate for
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the impulse response waveform FI(t‘). A number of distinct advantages
of the time domain approach, as well as some disadvantages have been
pointed out in recent investigations [9,12,45,61,67]. In the opinion

of the author, the following remarks justify the use of the time domain
épproach in the present investigation:

(i) The impulse and transient response waveforms of a scattering ob-—
ject must be related in a rather direct way to the geometry and to the
constitutive parameters of the object. It has been shown [44,61], for
example, that the area beneath the ramp response waveform is proportional
to the Rayleigh coefficient and hence, to the volume of the scatterer.
More fundamentally, however, as the impulsive or transient illumination
moves across the object, only that portion of the object which has been
illuminated can possibly contribute to the scattered field waveform.
Therefore, until the time when the transient illumination has passed
completely over the object, there is a direct corrélation between the
response waveform at a given time and a specific portion of the object.
Furthermore, two objects which present initially identical geometrical
and physical properties over a given region must produce identical
response waveforms up to the time corresponding to complete illumination
of this region, regardless of their geometrical and physical properties
beyond this point.

(ii) 1t is thought that, at least in principle, it is possible to
incorporate into an estimate of the waveform FI(t‘) all of the best
features of various approximate or asymptotic estimates of G(s) while
at the same‘time utilizing certain unique features of the time-dependent
waveform. If certain estimates of G(s), whose validity is restricted

to particular portions of the spectrum, are known, it is far from clear
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how a consideration of these estimates can be used to approximate a
G(s) corresponding to the remainder of the spectrum. In the time
domain, however, the estimates of G(s) become time-limited portions
of the waveform, and it is known that these pieces must combine with
other pieces to produce a single waveform. Certain conditions on this
total waveform are known from low-frequency derived moment conditions
[45,61]. Even very crude estimates of how the pieces are combined add
‘some new knowledge concerning G(s). This feature of the time domain
approach has been utilized in Chapter Five to generate input data for
testing the proposed inverse scattering model. There, an approximate
model for the impulse response waveform of a prolate spheroid has been

synthesized by mainly using the high-frequency estimates.

The low frequency scattering properties of any finite, three-dimensional
object provide interesting and useful conditions on the impulse and
transient response waveforms. At sufficiently low frequencies, the

phasor response, G(s), of a scattering object can be expanded in a

Taylor series about the origin s =0 as
(o]
G(s) = Z_ a s" . (3.7)
n
n=0

According to Rayleigh's scattering theory [4,65], the coefficients a

and a in such an expansion are zero, while the coefficient a2 is

proportional to the scatterer volume. It is to be noted that the co-

efficient a, depends upon the shape, orientation, and constitutive

parameters of the scatterer as well as the polarization of the incident
T

and scattered fields. Expanding e—St in the definition integral in

(3.4a) in a Taylor series about the origin s = 0, and comparing the
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resulting series with the series in (3.7) yields,

fm FI(t')dt' =a =20 , (3.8a)
0 ¢
r t‘FI(t:")dtt = a1 =0 ,‘ (3.8b)
Q .

2a .
f t'zFI(t')dt' =——ci . (3.8¢)

Q

(—1)nn!an
rt'nFI(t')dt' =—0 . (3.8d)
0 Q

These are known as ;he moment conditions on the impulse response ﬁave—
form FI(t'). The first three moment conditions have been used success-—
fully in various investigations [59-61] of the time domain scattering
problem. These three moment conditions have been interpreted [61] as
requiring that the net area beneath the impulse and the step response
waveforms be zero, and that the net area beneath the ramp response
waveform be proportional to the Rayleigh coefficient, a2 » of the

scatterer.

The conditions imposed on the impulse and transient response waveforms
by the high frequency scattering properties of any finite, three-
dimensional object have brought forward important relationships between
the electromagnetic field quantities and the shape profile of the
scatterer. In order to derive this relationship, the high frequency
estimate of G(s) 1is obtainéd by using the well known physical optics
approximation. In the geometry shown in Fig. 3.1, a surface current
over the surface S produces a radiated field in-

distributiqn JS

tensity Ex at a large distance R along the negative =z axis, given

by
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_ _ jop j(wt-kR) * sy —Jkz
EX ZmR € (JS ax)e ds . (3.9)
S .
In the physical-optics approximation, it is assumed that J. = 20 x H

S i

over the illuminated portion of S , JS = 0 elsewhere. Under such
an assumption, for a harmonic incident plane wave with Ei polarized
in the x direction, traveling in the positive z direction, the x

component of the backscattered field is given by

EX(ju) =.— 2% J(Wwt-kR) 4 +f x 8 e 2249 . (3.10)
s 2TRe . X 4
0 8122

where E. = 3 eJ(wt—kz)
i x

It is to be noted that in the above equations using the phasor notations,
the real part of the complex expressions are implied for the actual

time dependent fields. Thus the value of G(jw), the normalized back-

scattered phasor response defined [45] as
- Re{G(jw)er(t-R/CO)} = (2R/c°)Es(t—R/c°) oy
is obtained by using (3.10) as

G(jw) = ?]r%f J{ ime'Zszaz-ﬁds . (3.11)
0 ’S

From Fig. 3.1 it is evident that
~ A ~ - ‘
a *nds = az'dS = —dA(z) ,

where A(z) is the area of the scatterer surface between the x-y
plane and a cutting plane at 2z projected orthogenally on the x-y

plane. It follows from (3.11) that G(s) [s = jw] can be written’

+
z=L
G(s) = - f e—Zs(z/co)[ggéglﬂ dz . (3.12)

Z=0

Tc
0
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where A(z) 1is a monotonic function of z , defined as zero for =z < 0 ,
reaching a constant value A(L) at the shadow boundary and beyond,

where z > f. A(z) has been redefined as the projected area fumction
of the scatterer later in this chapter. Integration by parts of (3.12),
and the substitution of t‘=2z/co , yields

® — ts a%A(z)
e S VA
dz?

G(s) = — %1?[ dt ) (3.13)

a

In arriving at (3.13) use has been made of the fact that

dA(z)

+ -
iz =0 for z>4% ,2<0 .

2
=0 and 4°A(z)

- + 2
z=o0 ,% dz

Comparing (3.13) with (3.4a) implies that

2
F.(t) = - 1 d°A(z2) , g = 0 (3.14)
I 41 dz?

Thus the impulse response predicted by physical optics is a simple wave-
form equal to a muitiple of the second derivative of A(z), plotted with
a time scale such that the cutting plane used to determine A(z) moves
with one-half the velocity of the incident impulsive wave (see Fig. 1.2)
starting at the nearest point of the scatterer, at t = 0 , and
reaching the shadow boundary at t = ZR/CO. The multiplying factor
(1/41) on the left-hand-side of (3.14) depends on the particular norma-
lization reference followed. Thus, it may vary for different normali-
zations used although leaving the functional form of the relation (3.14)
unaltered. The main advantage of this physical optics approximation,
i.e., (3.14), is the ease with which the impulse response can be deter-
mined for any shape once the area function A(z) has been obtained.

In practice, as pointed out in the next section, substantial correctioms

must be made to the waveform predicted by physical optics; nevertheless
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the physical optics approximation serves as a good starting point.

3.3 SPACE-TIME INTEGRAL EQUATION APPROACH

In order to gain further insight into time domain scattering, a more
direct approach to the problem, based on the space—time vector integro-
differential equation for the current density on the surface of the
scatterer, is adopted in this section. In the following, first the
space—~time integral equation for the current density on the scattering
surface is discussed and then the impulse response augmentation technique

[9,13] has been outlined briefly.

3.3.1 Derivation of the Space-time Integral Equation

The general scattering problem is shown in Fig. 3.2a. 'ﬁi is the mag-
netic field incident on a perfectly conducting body which may be viewed
as the field that would exist if the scatterer were not present. This

.

incident field sets up a current JS on the surface of the scatterer
as shown in Fig. 3.2b. These currents in turn radiate and produce the

scattered magnetic field HS. Once the surface currents have been

determined, the far-field may be calculated.

One way to obtain an expression for these surface currents is to start
out with a general expression for the far—-field at an arbitrary point
in space and then move this pdint in space onto the surface of the con-
ducting body where the boundary conditions are applied. For a perfectly

conducting body, either the E-field boundary conditions can be applied
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.théh~yielé the Eafieid intégralvequatiqn (EFIE); or élternatgly, the
' H-fieldvboundary coﬁditiqn can bevapplied which yield an H-field iﬁteg—
ral equation_(MFiE).‘ However, it'WaS'found [9,10] that for‘fhe case of
solid conducting bbdies the EFIEvformulation is less'appropriate, because -
iﬁ requireé_that:the'numerical space derivative be taken on-tﬁe surface

of the body. Therefore, in this work the MFIE formulation is used.

The geometry-fbr derivation of the MFIE for the induced surface current
- is shown in Fig. 3.3. The vector potential due to any current distri-

bution on‘a surface S' is given by

dst .

L [ JSG:'-l ,t—R/CO)
st R

"~ The total‘magnefic_field T is simply the sum of the incident field

-

‘and the field prodnced by the induced current JS , i.e.,
E@,t) = H F,0) + 7 x Kp(?,t) :
Working out V x Ap [8], gives
HE,0) =H @) + = | [ —+
: i A . 2 Re
, o . : . 7’8 R 0. .
._\_;' et ; ‘ - ‘ -
CEELED L e - e .
: dt R 0

—

From‘this, jJS .may bé obtéined'by simply shriqking phe observation-
?ointAto a'point on .the surfacé'of the scattereriaﬁd theﬁ'applyiﬂg the
Boundary conditionéftovexbress ﬁ*’in terms of j}. It'is to be-ﬁoted
that altgrnativelyuaﬁ'éqhation in terms oft ff can be obtainéd, however
:’the numerical comﬁutation_of the far-scattered field from Ef takes

somewhat longer thaﬁ it does using jé [9,10] . Hence, the infegro—

differential equation was expressedJin terms of JS' Shrinking the
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observation point on the surface and carrying out the limiting procedure,

one finds — s -
J. (x*,tY) J . (x',tY)
—_— - — el .l—. S 3 1 S ) A
H(r,t) 2H, (r,t) + o fs‘ [ - + Re, A ]

x aRdSt A R/co

Finally, applying the H-field boundary condition, one obtains

—_—

JS(?,t) = fi x H(z,t)

or, o
~> A —_— 1 Js(r!’tl) 1
Js(r,t) =20 x Hi(r’t) + EE—fSr n x {[~——;;———-+-EE
0
BJS(r',t‘) )
__aF_] x aR} dst ; t' =t - R/co (3.15)

This is the space-time vector integro-differential equation for the
‘current density on the surface of the scatterer. Before proceeding to
solve for the far-scattered field from jgk;:t), it is worthwhile to
comment on some of the features (3.15) exhibits. .

—

It is evident that the equation for JS represents a system of three

-—
coupled scalar integral equations for the three components of JS s
but since
fi o JS(r,t) =0 .
it is possible to reduce the number of independent equations to two.
. ~ — —
It is also clear that the term 2n x Hi(r,t) corresponds to the usual
physical optics approximation on the illuminated portion of the scatter-
er. The integral term on the right-hand-side of the equation for

j;(?Zt) represents the influence of currents at other surface points

—
on the current at (r,t). The important characteristic here is that
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the influence of other currents on the current at (;:t) is delayed
by R/co' which makes the numerical solution of the equation feasible.
This retardation effect is especially important, since it allows the
solution of the equation for the current without inverting a matrix

as is required for the numerical solution of thé frequency domain in-
tegral equation. Actually the surface current 3; may be determined
by a “stepping on" procedure in time [9,67], since the current at time
t dis given in terms of the known incident field at that time and the
current on other portions of the scatterer at prior times which have

already been calculated. This in fact is a distinct advantage of the

time domain approach over the frequency domain approach.

For obtaining expressions for the far-scattered field from the induced
surface current density Js(r,t) » 1t is approximated that R is so
large that the contribution of the first term in the square brackets to

the integral in (3.15) is negligible. In addition the following assump-—

tion can be made (see Fig. 3.3)

1 1
——+——
R T
aR —_ ar .

With these approximations the expression for the far-scattered field

is:

5 (v —__.i_ m o dat o 41 = 3+ _
Hs(r,t) —»4chu.f [ e % X ardS 3 t' =t R/co (3.16)

st
This shows that the far-field could be considered directly without try—
ing to determine the detailed behaviour of the surface currents first,

which would greatly simplify the problem.
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3.3.2 The Impulse Response Augmentation Technique [12]

A new technique called "The impulse response augmentation technique"

for obtaining the impulse response and frequency response of an arbitrary
target over the entire spectrum was developed by Bennett and co-workers
[12]. The impulse response augmentation technique utilizes the estab-
lished computational procedure of determining the smoothed impulse
response of an arbitrary target by numerical solution of the space—~time
integral equation and the known variation of the impulse response due

to the specular return (high frequency portion). These two results
provide, respectively, low and high frequency information exactly and
are combined in a natural and rigorous manner to yield the frequency
response over the entire spectrum and total impulse response with a
minimum of uncertainty.

The spaceltiﬁe integral equation solves the scattering problem directly
in the time domain where the unit of time is the light meter. (A light
meter is defined as the time it takes an electromagnetic wave moving at
the speed of light to travel one meter. It has the effect of normaliz-
ing‘the time by tﬁe speed of the light in meters/second.) The impulse
excitation would yield the universal solution for a particular target.
However, the present day computer limitations preclude the direct numer-
ical solution of the space-time integral equation for the impulse
excitation. The most useful excitation has been found to be a regular-
ized (or smoothed) impulse of the form shown in Fig. 3.4a. The responsé
ﬁé(t) due to this excitation is known as the regularized (or smoothed)

impulse response and can be computed exactly with the space-time integral
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e(t)
A

2,,,:2
Hy (1/0)= 2z e 11

— t/a

Hi(t/a) : 1is the incident magnetic field at the
_ origin of the coordinate system.

a : is the characteristic linear dimension’
of the target.

" n ¢ 1is the parameter which controls the width

of the pulse and chosen such that the
product (na) is a constant.

Fig. 3.4a Regularized (Or Smoothed)'Impulse Excitation

(1) ~ G‘(w) r(t) = R(w)

e(t)<==E(w) | E

Linear System

h(t) % e(t)
H(w) * E(w)

A =
— —~

e
i ~— .
1] t

Fig. 3,4b Functional Diagram Of The Linear System
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equation. The regions of slow variation in the smoothed impulse res-—
ponse remain the same in the exact impulse responsé; thus, it is only
necessary to determine the structure of the singular regions and any
other regions of fast variation. But the singular portions of the

exact impulse response that results from scattering by specular points

on smooth convex targets can be computed from the physical optics approx—
imations and hence need not be computed by solving the space—time inte-

gral equation.

The impulse response augmentation techniqie has been explained [9] by
considering the basic approach to the deconvolution (or system identifi-
cation) problem. Fig. 3.4b shows the functional diagram of a linear
system (in this case electromagnetic scattering by a target) that is
characterized by its impulse requnse?EI(t) , Or equivalently, its
system function (or frequency response) G(w). In the problem being
considered here, ‘e(t) the incident Gaussian pulse is Specified analyti-
cally and r(t) is computed by solving the space-time integral equation.
It is desired to find.FI(t) and/or G(w). However, the estimate of

the system response ¥(t) that is computed contains some uncertainty

or noise. Thus, the transform of the computed or measured smoothed
impulse response R(w) also contains noise No(m) and may be written

as R@) = R@) +¥ @) r

and the corresponding system function ’&(m) is

W) = clw) + e

2
(w/2n)* | Noﬁu)

Thus, the noise at high frequencies in the estimate of the system fupc-—
tion increases exponentially, Physically this occurs because the inter—

rogation signal is a smoothed impulse and its transform decays exponent-—
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ially with frequency. Thus, this method by itself will not yield the

system function at all frequencies.

How this defect is circumvented by the impulse response augmentation
technique is displayed in the biock diagram of Fig. 3.5. This technique
first augments the smoothed impulse response to remove the contribu-
tion from singular portions (i.e., mainly the specular points) of the
impulse response that are known from physical optics approximations.

If fa(t) is a suitable augmentationlfunction that contains the known
singular portions of the impulse response, the augmented smoothed impulse

response ra(t) is given as
= - *
ra(t) r(t) - e(t) fa(t) .

Next the transform of the augmented smoothed impulse response RaGn)

is computed and divided by the transform of the incident pulse to yield’
the augmented frequency response 4H;(m). This function contains noise
which increases exponentially at frequencies above some value. However,
it is known that the augmented frequency response must go to zero with
increasing frequency. Thus, an estimate of the high frequency behaviour
of the augmented frequency response ﬁaQ») is of the form

i @ =B W W

|A

w
(o4

we

= P(w) w

|v

w
C

ve

where w, is the boundary point and P(w) is the high frequency esti-
mate of HaQ»). The inverse Fourier transform of ﬁaﬁn)v then yields
the estimate of the augmented impulse response ﬁa(t). Finally, the
inverse of the augmentation procedure is performed on ﬁa(t), which

yields the estimate of the impulse response FI(t). An estimate of the
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Fig. 3.5 Impulse Response Augmentation Technique [12]
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system function H(w) is obtained by applying the inverse of the

augmentation procedure in the frequency domain to Ha(w).

3.4 "POLARTZATION CORRECTION IN THE LEADING EDGE OF THE IMPULSE

RESPONSE

In the expression for the induced surface current density, i.e., (3.15),

the first term on the right-hand side is the physical optics current, i.e.,

E‘Po =24 x 0. illuminated side

=0 shadow side

The corresponding physical optics approximation for the far-field

impulse response, as was derived in Section 3.2, was found to be [12]

— — _ —l——azA(t) ~
rdeo(r,t) = o —g;;——-aﬁi . (3.17)

where A(t) dis the projected area function as shown in Fig. 1.2, and
aHi is the unit vector in the direction of E; . It is to be noted
that the scattered magnetic field has been weighted by L the
distance of the observer from the scatterer. Expression (3.17) is
simply the physical optics approximation to the impulse response, and

since it is only a function of the projected area, then as noted earlier,

it is polarization independent.

The first order correction to the physical -optics approximation is ob-
tained by applying the more general results of Bennett et al [12] which
provide an expression for the effects of local currents on the observer.
The validity of the consideration here is restricted to the leading

edge portion of the impulse response, i.e., this correction holds better
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towards the high frequency end of the phasor frequency response. To
derive an analytic expression for the first order correction to the
physical optics far-field, the physical optics currents are assumed on
the surface of the scatterer. These physical optics currents, in turn,
are substituted into the integral part of (3.15), which yields a first-—

order correction to the physical opties currents,

- — =l— ~ —l_ 1 _3—._> _A' . ~ '
JP01(r’t) o7 jf i x {[R2 + ﬁE;'Bt‘]Jpo(r ,ENx aR} as (3.18)
S
€

where Se is the whole surface S' of the scatterer excluding the
observation point. These first—order corrections to the physical optics
currents are then used to compute the first—order correction to the
physical optics far-field as shown in (3.16), i.e.,
— —— .
9 (r',t%)
Po1

roHPOIC?,t) - %E’[f [Pl x 3 as' | (3.19)
gt at

Next the expansion of the triple cross-product in (3.18) yields

1 — ’N —
J = - [ - &8 L@ - L(ane+J_ )] as’'
Po1 2m ff R Po) Po L
€
where the operator L represents the operation l—-+ —l;-g—y]. A
R? Re, ot

circularly shaped patch for Ss with radius p0 could be assumed, be-
cause consideration is restricted here to leading edge effects and
therefore only the current in the vicinity of the observation point need
be accounted for. Using this fact and the various geometrical interpreta-
tions of the inner product terms in the above integral [12], an analyti-

cal expression for qul was derived [12]. This is given by
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Y ' K'—Ké an aJl 0
Py 1
Jp01 1( T ) [mp J + —522“5
Kh—Ki ﬂpj anpo
+8 [ﬂpqup0 + et (3.20)
where J = -2H, .
1Po 12
J = —2H .
2Po i

pu is the radius of a circular integration patch about the observer,
and could be estimated from the mean area illuminated as a funcgion of
time.

Here 31 . 32 are unit tangent vectors to the principal lines of
curvature at the specular point respectively, with K1 and K2 repres—
enting the corresponding curvatures. Hi1 and Hiz denote the components

of the incident magnetic field in a, and a, directions respectively.

Substituting-the expression for 3;0 into (3.20) yields

K K mp?

Tp
= _ 1 2 C 0 a A A
Jp01 = 2( i )[ﬂp0-+ G?rﬁ slen x Hila1
K -K 'np‘; 5
+ 2( i )[ﬂpu + (—5—9 5{1]n x Hizaz (3.21)

The relation for the first-order correction to the physical optics far-

field is obtained by replacing j; in (3.19) with the expression in
01

(3.21), which yields

K K mp*
" =19 (2 i_2 a0y 2,
rOHP(Jl T 21 ot {al fj( 2 )[ﬂpn e 2 2 at']HildAproj
Sl
. K K ﬂpz N
+ a [J G 5 )[,npu + C—E*Q EFﬂHiszproj (3.22)
St
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where . dAprdj repiESents'the.incrémental projected area function'
defined in Fig. 1.2. As a first approximation for p0 s the surface
at the specular point is assumed to be spherical with curvature: K' ,

which gives [12] - o

p,=(t+z) = (t+2)® (3.23)
. where t and z’ afe defined in Appendix TII, and the coordinate sur-
- face is oriented so that the inci&ent wave is propagating in the mnegative
z direction and the specular pbint is located on the z axis at the
origin. The effect of the second term;in (3.23) is of second order,

and thus it will be neglected for this consideration.

Substituﬁion Qf (3.23)‘(With K' = 0) dinto (3.22), letting the incident
'fieldibe an impulse, and carryiqg out the,integration, yields for thé'
first order éorrection [123‘ | |

K -K

~ _n 1 2 . N
R (3.24)

.rloﬁp‘ol - %_ngéé—t_)'
thus froht (3.24) it is.évident that the first order "cqrféction to the
.'physidal optics approximation is proportional to~the difference_between
.the prihcipa1 curvatures at the speculér point and it has»theAfunctioﬁ~
al form of the first derivétivévof the érojected area function A(t).
It_should be noted that the vélidity of the anaiytic expression.as a'
~ total correqtibn to the'physical optics approximatioh.for the field-is
- thelfuncti§n of the validity of the apprqximation usediin.deriving it.

. One questioﬁaﬁle aSSumption duriﬁg the derivation pf.(3.24) is that the
~difference in priﬁcipai curvatu?esrremains the same.in tﬁeivicinity of
the-speéular point. But, again to a first approximapidn, this assump-—-

tion is certainly valid, Finally, it is felt that the correction terms
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presented.here are Valld to theextent of giving the functlonal form of
the correction terms the polarizational dependence ‘they 1ntroduce, aﬁd
their relationship to the difference of pr1nc1pal curvatures at the
sPecplar poinf. The inter—relationship Eetweeﬁ scatterer surface pafa—
meters and the scattered wave polarlzatlon characterlstlcs predicted by
thls correctlon term will be utlllzed in the next chapter in prop051ng
. a scﬁeme for the recovery of the surface of a smooth, convex closed,

perfectly conducting object from far;field'scattering=data.
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chapter four

A MONOSTATIC TINVERSE SCATTERING MODEL BASED ON POLARIZATION UTILIZATION

4.1 INTRODUCTION

In this chapter the solution of the inverse problem of electromagnetic
scattering by smooth, convex shaped, perfectly conducting, three-
dimensional scatterers is analyzed. Certain high frequency approximations
[27,42,47] were used in incorporating the concepts of the Minkowski
problem into the space—time integral solution of electromagnetic scatter-
ing to yield a set of equations for the recovery of the surface pro-

file of the scatterer from the scattered field data. The underlying
assumption in this investigation was based on the fact [7,8,28] that

the “depolarization characteristics™ of the scattered field do necessar-—
ily contain information regarding the surface profile of the scatterer.

It has been established [47,88] that a knowledge of the scattered field's
magnitude about the monostatic angle contains information on the curva—
ture of the scatterer at the specular point. Imn order to elaborate on
this fact, a brief derivation of the geometrical optics approximation

for the reflected fields is presented in Section 4.2. For the three-
dimensional cases, this stipulation about the scattered field's magnitude,
permits one to assume that for any smooth, slowly and uniformly varying
convex—shaped scatterer, an “equivalent ellipsoid“, centered at the origin
and of identical curvatures about the monostatic direction,gives rise to
an identical backscattered field magnitude. This equivalent ellipsoid

modeling of the scatterer®s surface is discussed in detail in Section 4.3.
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Representation of each point of the scatterer by such an equivalent
model (see Fig., 4.1) makes it possible to combine the mathematical con—
cepts of “Minkowski®s problem™ with the polarization~depolarization
aspects of the electromagnetic scattering concepts to yield a system of
equations for the recovery of the surface of the scatterer. This is

achieved in Section 4.4 through 4.6.

4.2 HIGH FREQUENCY APPROXIMATION FOR THE SCATTERED FIELDS

The consideration here will be restricted to isotropic homogeneous media;
thus, one is concerned with electric fields E (or magnetic fields iﬁ
which are solutions of
—_— —_—
VZE + K%E = Q
. —
gubject to the condition that V « E =0 .

The Luneberg-Kline asymptotic expansion for large w [46,54] is

N o 2 E®
E@w) = e ¥y T , (4.1)
m=gq

where k = w/c , with ¢ being the phase wvelocity in free space.
a 0 o

P represents the phase function and it is evident that the surfaces

Y = constant are equiphase-—surfaces or wavefronts. 1In the high

frequency limit, the asymptotic expansion (4.1) for E reduces to [47]

E(Q,,w) ‘\1 e—jwkulp(l)Eu @) (4.2)

wvhere 2
Ew -EQienl-7 [ van 4.3)

a 18 a [}

a
with ¢ defined in a way such that

"9
—— - Q4
YA V=V . (4.4)



72

"juiod upndads 40} |SPOIN prosdiis Jug|DAINDT * T'Y *314

2°Qq ‘D SIXD 1was ylim
+d D plosdi|@ jus(DAIND3

A <€

juiod upjnoadg

(9 k"3 ausod c,o:oe_u.
Yiim 9ADM aupid juapioul

muot\:m
buliaypog

— juiod Jpjnosds ay} 4o .
90D44ns ayy 0} Juabup|



73

It is to be moted that VY has a direction perpendicular to the surface
w(?) = constant, so that & specifies a position on a curve perpendicu—
—~—
lar to this surface. From (4.3) it is clear that E (&) 1is deter-
a

mined if its value at the reference point &  is known.
a

For homogeneous media, the rays are straight lines, and, for isotropic

media, the rays are perpendicular to the wavefronts; thus,
ap = |Wldh = n%dh , (4.5)

where dh is an incremental distance along the ray path and n' is

the refractive index of the medium. Integrating (4.5) yields
=19 +n'h s (4.6)
a

where ¢ 1is the reference phase function. It also follows from (4.4),
o

along with (4.5) and the fact that lvw|2.= n'? [47], that

dh = ntdg.
Introducing the Gaussian curvature of the wavefront K = 1/D D , where
12

D and D are the principal radii of curvature of the wavefront sur-
1 2

face ¢ , it can be shown [47] that

le=_2 t
dh KViy/t

Integrating this equation yields

L
K(SZ,)/K(,Q,Q) = exp[- f - VZPpdet] . 4.7)

Ly

Using (4.6) and (4.7), one may write (4.2) as

Ty ‘Em@m)e"jknwu[lc(m/K(zm)]l_/?— . KR (4.8)
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. —
where k = n‘kb,‘ This expression for E is directly related to the

geometrical optics approximation, as is shown next.

According to classical geometrical optics, the flux of light energy be-—
tween the points Pl and Ez is governed by Fermat®s principle, i.e., it

follows a ray path which satisfies

P,
§ [ f n*dh] = 0 4.9)
P
1
The wave follows a curve which makes the optical distance between P and
1

P2 (given by the above integral) stationary. Usually the ray path

minimizes this distance,

The intensity of the geometrical optics field is governed by the conser-
vation of the energy flux in a tube of rays, such as the astigmatic

tube of rays shown in Fig, 4.2. Let 12 be the intensity of the field
2

at P and I0

) the intensity at the reference point P1 , then for an

isotropic, homogeneous medium
2
I°dx = 1 dZ
e a
where dZ and qu are the cross—sections of the tube of rays at P2

and P1 , respectively. It follows from differential geometry [47]

that
i _K_
T T R hence,
a a
I=1I /K/K (4.10)
a a

with K=K@) and K =K &) .
a 18 a

From (4.9) and (4.1Q) it fs clear that classical geometrical optics
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correctly describes the path along which the high frequency field,

given by (4.8}, propagates and also the manner in which the field in-
tensity varies with position. . However, the description of the electro—
magnetic field in the limit of large w by the Luneberg-Kline asymp-
totic expansion, i.e. (4.8), is superior to the one by the classical
geometrical optics, i.e, (4.10), This is because classical geometrical
optics igﬁores the polarization and wave nature of the light, hence
while predicting the directions of reflection and refraction at a
boundary surface, it cannot account for the intensities of the reflected
and refracted waves. In order to overcome this shortcoming, most in—
vestigators have included artificially [47] polarization and phase inform—
ation so that the classical geometrical optics field is modified to the
form given by (4.8). Thus, the field represented by (4.8) has commonly

been referred to as the geometrical optics field.

The ratio K/K has been found [47] in terms of h and pl , p2 , the
0
radii of curvature of the reference wavefront shown in Fig. 4.2. When

this expression for (K/Ku) is substituted into (4.8), one obtains

Ty v F (@ ye Tk P1P; ~jkh
EQR) VE (2 300/ . (k.11
@) u( u)e (pl+h)(pz+h) © ( )
It is to be noted that, when h = —p or —p , the field becomes infinite
1 2

and the geometrical optics field is invalid. The congruence of rays at
the lines 1-2, 3-4 in Fig. 4.2 is called a caustic. As one passes
through a caustic line, the sign of (p+h)_ changes, i.e.,
- j(m/2
(o+h) 1/2 _ I(p+h)*;/2| J@m/2) ,

and thus the correct phase shift of w/2 is introduced naturally.
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In order to find the high—frequency approximation for the reflected
field TE; from the point P on a perfectly conducting, smoothly curved

surface, the following boundary condition is applied
nx (Ei + Er) =0Q . (4.12)

Here n is the outward directed unit normal vector to the scattering
—
surface at the point P , and Ei is the incident electric field. It

follows from (4.2) and (4.12) [47] that

— .._jk w _ ron AN . —
Eru(]?)e @7 = [Aff ~ Bbb] Ei(P) (4.13)

N
where b 1s a unit vector tangent to the surface and is defined by

A~ - -
b@'Ei)=vﬁx(ﬁin) .
The quantity in the bracket in (4.13) is a dyadic reflection coefficient
which changes the direction but not the magnitude of _fi(P) . It
simplifies to scalar -1 when E:,_(P) is tangent to the surface, which
is the case for backscatter. In the far zone, the quantity under the
square root in (4,11) reduces to /TI—Q?/R » where R dis the distance
from P to the observation point. Silver [75] has determined /sz-

for an incident spherical wave. For the case of plane wave incidence

vpp =VDD /2 (4.14)
1 2 172 \

where D1 and D2 are the principal radii of curvature of the reflect-
ing surface at P. It is to be noted that if D:l or D2 become infinite,
as in the case of a flat plate or cylindrical scatterers, the geometri—

cal optics approximation becomes invalid.
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Thus (4.11) along with (4.14) show that the assumption made at the begin—
ing of this chapter, namely that a know1edge of the scattered field‘'s
magnitude about the monostatic angle contains information on the curva-—
ture of the scatterer at the specular point is a valid one. This fact

is used in the next section in developing an equivalent ellipsoid model

for the surface of a smooth, convex, closed scatterer.

4.3 EQUIVALENT ELLIPSOID MODEL

It has been established by various investigaters that a knowledge of the
scattered field®"s magnitude about the monostatic angle contains inform-—
ation on the curvature of the scatterer at the specular point [88].

As it has been shown in Section 4.2 this dependence is dominating in the
high~frequency region, i.e., when the wavelength is much smaller than the
dimension of the target (exact bounds on the region are not defined,
primarilyibeééﬁse body shape and complexity to some extent determine
which scattering laws apply to a given situation). This stipulation for
the three—dimensional case permits one to assume that at sufficiently
high frequencies for any smooth, slowly and uniformly varying convex
shaped scatterer, an "equivalent ellipsoid", centered at a prefixed
origin and of identical principal curvature about the monostatic direc—
tion, gives rise to an identical backscattered field magnitude (see

Fig. 4.1). Representing each point of the scatterer by such an equivalent
model, changes the problem of recovery of the specular points with res—
pect to the preassigned origin, i.e,, recovery of .x, Ys z, to that of
recovery of a, b, ¢ — the semi axes of the equivalent ellipsoid for each

monostatic direction. Stating it differently, in this model it is



79

assumed that the specular point (or the point of reflection) instead of
being on the unknown obhject is on an object whose shape and orientation
is known (i.e., the ellipsoid centered at the preassigned origin) but the

size (f.e., a, b, c¢) is unkndwn,

An application of a similar “equivalent curvature™ modeling of the
specular point for two~dimensional convex, smooth scatterers has been
reported by Vandenberghe and Boerner [88]. However, they did not
develop any analytic expression, relating the curvature at the specular
point to the backscattered field, instead they applied known techniques
of system synthesis. An iterative averaging method, they had intro-
duced, compares the averaged magnitude of the backscattered field,
given off by the unknown scatterer with that resulting from a known
rotationally symmetric scatterer (e.g., a circular cylinder) which can
easily be calculated. The agreement they ébtained between the results
and the e%act values certainly validates the equivalent ellipsoid
assumption for the three-dimensional case encountered in the present

investigation,

Although there may be many different ellipsoids which will satisfy the
criteria of having identical curvature about the specular point, there
can only be one such ellipsoid which will be centeredat the prefixed
origin and oriented as shown in Fig. 4.1. In other words, for a given
monostatic direction, by fixing the origin and the orientation of the
equivalent ellipsoid, a one~to~one correspondence between the set of
unknowns (x, y, z) and (a, b, c) is obtained. Ohviously there will be

degenerate cases wheneyer the specular point corresponds to the point
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of symmetry of the equivalent ellipsoid as shown in Fig. 4.3a and Fig.
4.3b, However, the.coordiﬁates &, y, z) of the specular point, cor-
responding to these two degenerate cases, will be jidentical and thus

the uniqueness of the solution is preserved. Therefore, if a sufficient
number of equivalent ellipsoids, corresponding to the differemt mono-—
static directions and the same preassigned orientation and origin,are
recovered from the knowledge of the backscattered field data, then with
these recovered equivalent ellipsoids and known directions of incidence,
the corresponding specular points with respect to the preassigned origin
will be known uniquely, Thus, instead of solving for the coordinates

of the speculér point, (X, y, z), the ellipsoid"s equivalent semi-axes
(a, b, c) are recovered. In the following sections, the space-time
integral equation and the Minkowski problem have been utilized to obtain
three independent equations involving the unknowns a, b, c of the
equivalent ellipsoid corresponding to the unknown specular point co-
ordinate; (x, v, z) of the target and the known backscattered field

data.

4.4 UTILIZATION OF THE SPACE-TIME INTEGRAL EQUATION

The space—time integral equation for currents on the surface of a per—
fectly conducting body is given by (3.15). It is to be understood
here that all the results obtained in the time domain can simply be
converted into the frequency domain by use of Fourier transformation
and appropriate scaling [12]. As pointed out earlier, the first term
on the right<hand side of (3.15) is the physical optics current, and

this yields the physical optics approximation to the far—field impulse
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response, The integral term on the right-hand side of (3.15) gives
the first-or¥der correction to the physical optics approximation of the
backscattered far~field. Thus at sufficiently high frequencies the

total backscattered far—field may be represented as
B (r,t) = r B (r, () 4.1
r Bo(r, = r(I pa r,t) + T a1 r,t) . (4.15)

Substituting values from (3.17) and (3.24) for E;a and §;01 , yields

=L 87AC) 4 28 32y 2w 8. (4.16)
9¢2 : T 1371 1272

If the direction ﬁH  of the incident magnetic field is represented in
i .
terms of its component Hi along the 31 direction and Hi along
1 2
the 32 direction, then the expression for the backscattered far-—

field is written as

K K
EEQEN 1 92A(8) , 9A(E) ,a ~
= ——— + hY
K -K
1 (9%A(t)  BA() a1 o N _
+ o [ 1A 53] B, 8 s (4.17)

at?
where the magnitude of the incident magnetic field Iﬁil has been
assumed to be unity. It is to be noted that for amn arbitrary, linearly
polarized incident field 'ﬁ; , the polarization angle « with respect
to the 31 direction is assumed to be unknown and for the purpose of

the present investigation needs to be determined in terms of radar

measurables.

For the recovery of each specular point, the semi axes a, b, ¢ of the
corresponding equivalent ellipsoid need to be determined. Thus a system

of three independent equations involvying a, b, ¢, the direction cosines
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€, n, £ of the incident wave, and at least three independent radar

measurables are required.

Consider a mopostatic situation, where the incident wave and the normal
to the surface at the specular point have the same direction cosines
¢,n,t). Then, if E; is of unit magnitude and makes an angle 0 with
31 at the specular point, the unit vector in the direction of the in-

cident magnetic vector may be written as
& =H 4 +H 2 ~ . (4.18a)
n 13 2 iz 2

A unit vector perpendicular to QH. and in the plane of & and § is
. 1 2

a., = Hiza1 - Hila2 . (4.18b)

Now the magnitude of the co-polarized component of the backscattered
far-field (i.e., the component which is parallel to the incident wave

polarization) results from (4.17) and (4.18a) as

[rQHiP(r,t)I = ruHS(r,t) . aHi

K K )
_ 1 %) 1 232 2 y OA(E)

Similarly, the magnitude of the cross—polarized component (i.e., the

component which is perpendicular to the incident wave polarization) is

K K
T (r -+ 7 (5 ~ 1,1 > . 9A(t)
[rach(r,t)l = ruHS(r,t) a,_ =z ( 5 )(Hil H, ) . (4.20)

cr i2 at

Next, consider another incident wave with the same direction of incidence,
but tHe incident magnetic field now encloses an angle (g—y/2) with the

i . . - -
a, direction. The corresponding co—polarized component of the scattered

field is
. K X

- 2
[ruHép(r’t)[ = %E‘IB ggg) ~ C 12 Z)CHii—Hiz) @%%El.] , (4.21)
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and the cross—polarized component is

KK .
B Gual =5 Gy e ) 2E %.22)

Since H, = [H,lcosa ‘and H, = [H_[sind , hence from (4.19), (4.20)
ia i iz i

and (4.21), one finds that

| rciflpc?,t) BN roﬁlp(}—\,t) |

De= — —
lroHic(r,t)l
_ 1
= Tono tano. . (4.23)

Eq.(4.23) expresses the polarization angle o in terms of the back-

scattered field as desired for the purpose of the present investigation,

D D
o = tan‘l[--zii / (z—e) +1 ] (4.24)

152

i.e.,

Two values of o are complimentary to each other and the choice
of d\'pZus’ or 'minus' sign in (4.24) does not affect the final
system of equations for the profile inversion as will be shown

later.

An interesting outcome of this analysis is that the crossfpolarized
component of the backscattered far-field, i.e., (4.20) and (4.22), are
identical for the incident polarization of o and o - m/2. This is to
be expected and can easily be verified from the theory of reciprocity
[70]. 1In Fig. 4.4, let fl be the polarization direction of the inci-
dent wave and 32 be the polarization direction of the response wave-
form (in the present case cross-polarized backscattered waye). The

reciprocity theorem then implies that by retaining the above conditions
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and by~changiﬁg.the'paiarizatiop difectién of the.incident wave from

fl to iz ,.thé corresponding response waveform (with polariZatioﬁ
d]".recti('m--i2 ) will reﬁain idéntical to the previous response wave-
form.  However, énce the creeping wave considerations~ére intfoduCed in
.(4.20) andv(4.22L~the two cfoss‘polarized componenté Tﬁ;c.and ﬁ;c will
differ'from on@tanother congidefably. This i$ mainly beéause the creep—
ing wave path‘in the shadow zone of the scatterer will be different for
Qifferent:polarizatiéns. Thus, it is‘concluded'thatbtﬁe'cross—polériza
ationvterms, i.e., (4.20) and (4.22); are identiéal in the‘highffrequency

. limits iny_and they.will differ from each other as the low'frequency>

region is approached.

Usiﬁg (4,19)‘to (4.21), the expression for the first and second deriva—

tives of the projected area function are obtained as

TAL) Mle® Gl + |t G0l - (4.25)
" 5¢2 S0 1P 7 0 2P - ' :
 and '
"1 2y 0A(E) m T (3
. ( 2 7 ot cosa*sing Iroch(r’t)i : (4.26)

If'is to be noted that the right-hand-side of (4.25) and (4.26) both
contain only the backscattered field data since & can be represented

in terms of the séattéred field as given in (4(24).'

4.5 © UTILIZATION OF MINKOWSKI'S PROBLEM

As.discussed'earlier in Chapter Two, the problem of determining a sur—
face, when its Gaussian curvature K(ﬁ) is given on the entire surface

of the spherical image,‘is known as Minkowski's problem. Geometrical
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optics predicts that if O , the monostatic scattering cross-section,

is known all over a perfectly conducting, smooth, convex, three-—
dimensional surface, then K(1) is determined over the entire surface

of the unit sphere (i.e., the spherical image of the scatterer). In

the present investigation all the points on the surface of the equiva-
lent ellipsoid (corresponding to the specular point of interest on the
scattering surface) are transformed onto the unit sphere using Minkowski's
support function M which satisfies the partial differential equations
(2.9) and (2.10).' The support function M of this equivalent ellip-

soid, with semi axes a, b, ¢ was obtained in Appendix I as
M(En,D) = [@D)2 + (bn)? + @021/ 4.27)

where -1<g,n,z<1 .. The substitution of this expressioﬁ for M into
(2.9) and (2.10) yields two equations involving a, b and ¢ for known
values of the direction cosines (£,n,Z). It is to be noted that the
right—hané side of (2.10) could be related to radar measurables, and
therefore (2.10) constitutes one equation involving a, b and ¢ as the un-
knowns. The other two independent equations, i.e., (4.25) and (4.26) were

obtained by analyzing the space-time integral equation for scattering

in Section 4.4,

From the above discussion it is now clear that no attempt has been made
here to actually solve the Minkowski problem, but (2.10) has been used

as a condition which must be satisfied by the surface parameters of the
object in order to have a given value of the backscattered radar-cross-—
section. In the next section, (4.27) along with (4.25) and (4.26) will

be used in proposing a system of equations for the recovery of the sur-
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Al

'Vface profile ofda»perfectly conducting, closed convex; smooth'object

from the knowledge of the far scattered field.

4.6 SYSTEM-OF'EQUATIONSFDR THE RECOVERY OF SURFACE PROFILE

If the projected area-function A(t), and the'differenCe hetween the
pr1nc1pal curvatures at the specular p01nt (K -K ), are expressed 1n terms'
of the unknown semi axes a,; b,.c of the equivalent ellipsoid and the
known direction cosines (E,n L) of the 1nc1dent wave, then (4.25) and
'(4 26) will represent ‘two 1ndependent equatlons of the- de81red system
. of'equatlons for the recovery of the specular point.> Furthermore, from
(4.26):it-ls:evident that-the.choice of the sign in (4.24) is not im-
portantffor'the recovery as (cosa sina) has:the'séme Valne for o = a-

1
and o = ocl—_ﬂ/z,

-The‘difference between the.principal curvatures at- the specular point,
.(K —K ), has been expressed in the desired form in Appendix I, and A(t)
has been obtained in terms of (a b v¢)s (E,n,0) and time t in Appendix
:Ili The.thlrd and the final relatlon for the system of equatlons is

~ obtained by substltuting the value of M(E,n L) into (2.10) as shown in
Appendix I, and by relatlng the Gaussian curvature 'K ‘at the specular
p01nt to the backscattered radar—cross—sectlon u31ng the geometrlcal
optics approximation [27 42 ,47]. As mentloned earlier, thls approy1ma—>
»tlon 1mp11es that the dlfferential scatterlng cross—section in the
‘dlrectlon of any reflected ray is equal to Re/4K s Where Re 'is the
-reflection coefficrent. vFinally, by transforming the expressions from

" the time (t) to theffrequency (w) domain by appropriate scaling and
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Fourier transformation [12] as discussed in (3.3) and (3.4), the follow-
ing system of equations for the recovery of the equivalent ellipsoid,

and hence the coordinates of the specular point, is arrived at

K -K
3A
S Al - et 1 @ (4.28)
%A(E) 4y
[ 71 "> 1] = TlrE @ + rH, @] (4.29)
2 perfectly
" (a : c) 7, 1/K = 40 ; conducting (4.30)
[ (a&)*+(bn) *+(cT)?]1/ 2 case

Here, "# represents the Fourier transform and o is the backscattered

radar cross-section. Substituting the expression for the magnitude of

52
[BA(‘:)] in (4.28) and for 75 gég)] in (4.29) from Appendix II,
gives
» 2IGy271/2 _ IH cl
IK —K I[C—z) + ( ) 2] = Eggaézaa- (4.31)

2 271/2 _ 2 2 .
2[(2TG)2 + (G/w)?] = [IHIP[ +]H2p| +2[H1pl IHZPI
. cos(¢1p—¢2p)] . (4.32)

Here, (¢1P-¢2P) is the relative phase of H1P compared to that of

Hzp’ and ' and G are defined in Appendix II. Weighting of the field
magnitudes with respect to r is understood in (4.31) and (4.32). The
left-hand-side of (4.28), (4.29) and (4.30) consist of the unknowns

a, b, ¢ and their right-hand-sides consist of only the backscattered
far-field data. Thus, as mentioned earlier, the final system of equa-

tions for the profile inversion consists of (4.28), (4.29) and (4.30).

Once the semi axes a, b, ¢ are recovered from the above system of
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equations, using expressions for M in (4.27) with known (&,n,z),
the coordinates (x,y,2) of the specular point are determined by (2.6)
as

ga?

X = 7 s (4.33a)
[ (ag) 2+(bn) 2+(cg) 212/ 2

y = b2 ; , (4.33Db)
[ (ag)2+(bp)2+(cg)2]1’2

z = cg? . (4.33c)

[ (ag) 2+ () 2+ (cg) 2]/ 2

Application of the inverse scattering model developed here to various
test cases will be undertaken in Chapter Six .. There, as an example

of the application of the proposed inverse scattering model, the test
case of a perfectly con&ucting prolate spheroid will be presented. The
major difficulty in performing this test is that the kind of input

data needed is not readily available for most of the scatterer shapes.
To circumvent this difficulty, an approximate solution for the back-
scattered co- and cross— polarized field given off by a prolate spheroid

is developed in the next chapter.
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chapter five

APPROXIMATE CO— AND CROSS—~ POLARIZED BACKSCATTERED FIELD OF A CONDUCTING

PROLATE SPHEROID

5.1 INTRODUCTION

In order to utilize (4.28) and (4.29) for the recovery of the prolate
spheroid, the scattered field quantities on the right-hand-side of these
equations must be known. However, to the best of the author's knowledge
these input data required for the proposed inverse scattering model are
not readily available for most of the scatterer shapes. To circumvent
this difficulty, an approximate solution for the backscattered field
given off by a prolate spheroid is developed in this chapter. Starting
with the vector integro-differential equation for the induced current

on the surface of the scatterer, and applying the physical optics approx—
imations [45], the time domain representation for the co—- and cross—

polarized backscattered far-field has been obtained.

The frequency domain treatments of electromagnetic scattering by a con-
ducting prolate spheroid have been reported by Andreasen [5], Oshiro [65],
and Waterman [90]. However, most of these solutions do not cover the
entire frequency spectrum and also do not take into account the depolar-
ization of the electromagnetic wave after the scattering from the surface.
The approach to the problem via the application of the time domain con-
cepts have been undertéken successfully by Moffatt and co-workers [59,60,
62] and by Bennett and co-workers [9,10,121. Although these solutions

do cover the entire frequency domain, they do not account for the depolar-

ization effects of electromagnetic waves at the surface of the scatterer.
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Compared to the above mentioned results, computational results based on
the model derived in this chapter are elementary, neve?theless they do
yield data for the co- and cross- polarized component of the backscatter—
ed field and are quite reliable towards the high frequency end of the
spectrum (which is the region of interest as far as this investigation

is concerned).

In Section 5.2 certain features of the time domain concepts, which have
been exploited in developing the model here; are discussed. 1In order to
get better insight into these features of the time domain concept, an
impulse response model synthesized with these concepts by Moffatt [61,
62] has been discussed in Section 5.3. TIn Section 5.4 the impulse res-
ponse model developed for the purpose of the present investigation is
discussed and finally the computational results based on this model are
presented in Section 5.5.

5.2 SOME RELEVANT BASIC FEATURES OF TIME DOMAIN CONCEPTS

The convolution integral in (3.1), relating the response waveform to the
interrogating signal, provides an understanding of the relationship
between the contributions to G(s) from various portions of the spectrum
and the response waveform FI(t'). If the input signal is a monochromatic
continuous wave, then the graphical interpretation of convolution is that
of reversing one of the signals with respect to time and then sliding one
over the other. At any given time, the response is given by the integ-
ral of the product of the two waveforms over that time interval where

they coincide. For the monochromatic input, this consists of sliding

a sinusoid of a given period across the reverse waveform FI(-t'). It
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follows that at relatively low frequencies, the response can be influenced
little by the minute»details of the waveform. Therefore, the response
at low frequencies is basically dependent on the general size and shape
of the waveform. As the input frequency increases, more and more of the
waveform details become important whereas slowly varying portions of
the waveform become less important since the contributions from these
are effectively cancelled by the positive and negative portions of the
sinusoid. Two conclusions were drawn from these observations:
(i) The general shape and the size of the impulse response wave-
form FI(t') is dictated by the low-frequency respomse of
the object.
(ii) The fine structure and detail of the waveform is controlled

by the high-frequency response of the object.

The impulse response as predicted by physical optics has been discussed
for the génefal case in Chapter Three. There, the physical optics
approximation to the time-function is simply derived from the cross—
sectional area as a function of distance along the line of wave travel.
It has been experienced [44] that the impulse response predicted by
physical optics is very simple and it is possible to improve on these

approximations with a little effort.

In order to correct the physical optics impulse approximation to yield
the Rayleigh limit (i.e., the low frequency limit), it has been suggest—
ed that an additionai time-function may be added to the impulse response
so as to give the proper value for the first three moments of the result-—

ant corrected impulse response. This correction function may be formed
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in many ways, but two simple methods, which have been found useful [44],
are the "staircase" and the "polynomial" approximations.
In the "staircase approximation", as shown in Fig. 5.1a, two rec—
tangular pulses are added to the physical optics respénse. The
amplitude of the first pulse is the same as the final value of the
physical optics pulse, while the amplitude of the second pulse and
the duration of both pulses are determined from the first three
moment equations, i.e.,(3.8a),(3.8b) and (3.8c).
A second method of correcting the'physical optics impulse response
consists of adding a polymonial function of time, starting at the
final value of the physical optics time response, choosing the poly-
monial coefficients and its duration from the three moment equa-
tions. This results in a quadratic correction function as shown
in Fig. 5.1b.
It is obvious that these two methods for correcting the physical optics
impulse £ésponse are crude and empirical. These methods have been ex—
tended and médified [61] to make use of higher order appfoximations to
the low-frequency scattering properties as well as improved approxima-
tions [61] to the high-frequency response. However, these simple
examples clearly demonstrate that a first order approximation to the
impulse response can be made, using only the Rayleigh scattering co~

efficient and the physical optics approximation.

To sum up, in general, the physical optics approximation is used to
predict the short time behaviour of the response waveform. Latter por-
tions of the waveform are selected either from a knowledge of the charac-

ter of the response corresponding to specific geometrical features of
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‘the object or simply from a rough guess of its probable form. These
various pieces of the waveform are then joined with sufficiently un-
determined parameters to permit the known moment conditions to be sat-
isfied. As an example, in the next séction an approximate general
solution for the electromagnetic backscattering by a perfectly conduct-
ing prolate spheroid is presented [61], without taking depolarization

effects into account.

5.3 IMPULSE RESPONSE MODEL FOR ELECTROMAGNETIC BACKSCATTERING BY

A PROLATE SPHEROID [61,62]

The prolate spheroid and the coordinates for this problem are shown in
Fig. 5.2. Without loss of generality the direction of ﬁfopagation of
the incident plane wave is restricted to the y -~z plane, and the in- -
cident direction is specified by the angle © . Two principal polar-
izations defined for the incident wave are:
TE, where the incident electric—field vector is normal to the y-
z plane, and
TM, where the incident electric—field vector lies in the y -z
plane.
With each of these principal polarizations a path length is associated
which corresponds to the line of sight up to the shadow boundary and a
geodesic in the shadow region (see Fig. 5.2). It is to be noted that
these paths are measured from an initial reference plane perpendicular

to the line of sight.

At this point, certain useful simplifying approximations, made in the
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INITIAL TANGENT INCIDENT PLANE
(REFERENCE) PLANE WAVE —,

SHADOW |
BOUNDARY TM PATH

/

APPROXIMATION
/" TO THE SHADOW
/ BOUNDARY

(PLANE OF MAX.
CROSS- SECTION)

Fig. 5.2 Coordinates Of A Prolate Spheroid For
Impulse Response Waveform [61]
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course of development of the impulse response model, need to be dis-
cussed. The first of these simplifications involves the poinf of termin-
ation in time and the influence of the shadow boundary on the physical
optics approximation. For the sphere the shadow boundary is always
normal to the direction of propagation of the incident field. However,
for a spheroid this only occurs for axial and broadside incidence.
Moffatt [61,62] simplified this situation byvignoring the inclination

of the shadow boundary and terminating the physical optics approxima-
tion at the point corresponding to the peak transverse cross—section
encountered by the cutting plane. A second approximation was made in the
measurement of path lengths on the shadow side of the spheroid. For
either one of the principal polarizations, this distance should be eval-
uated along the perimeter of am ellipse, i.e., by an incomplete elliptic
integral. These integrals are tabulated, but to obtain a simple closed-
form expression, the creeping wave path length on the spheroid was calcu—

lated with the assumption that an ellipse of semi-major axis 'a' and semi-

minor axis 'b' has a circumference given by

/a2 2
cirgzﬂ- _a;_tb_.

2

The impulse response waveform of the spheroid for arbitrary orientation

and linear polarization (TE or TM) was written as the sum of two terms
y — t t .
FI(t ) FI1 "y + FIz(t ) G.1)

where FII(t') is used to enforce the desired character of the waveform
and F; (t') 1is used to satisfy the known moment conditions [45,61].

2
With the knowledge of the character of the axial incidence model [60,

61], the high frequency portion of the basic impulse response waveform
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[i.e., the portion of the impulse response which contributes most to the
high frequency end of the phasor response (see discussion in Section 5.2)]

for the spheroid was assumed to be of the form[61,62]

Fo(£) = -A 8(t") + (A -A e ©)[u(t")~u(e'-Tt )
1 1 2 3 1]

[P B
+ A e o't

. . u(t'—Ttu)] , (5.2)

where

A = ab (5.3a)

1 2(a%cos?8 + b%sin?6)

2
A = ab (5.3b)

2(a’cos?8 + bzsinzﬁ)a/2

1 : -BAi 1 1/2
2A2
at = | - g2 (5.3c)
-A® K A2
1 r 5
3A2 2 2BA
N 2 2 J
: _ m/2
and t = 2b/c , B=go .

[y

Here, Kr is the Rayleigh coefficient and u denétes the unit step.
The quantity T depends on the principal polarization. It is deter—
mined from the geometry of the spheroid and as explained earlier corres—
ponds to the line of sight up to the point of maximum cross-section for
the cutting plane,and a geodesic creeping wave path length in the shadow
region of the spheroid. Two conditions are imposed on the waveform in

(5.2), they are,
A «< A

3 2

and

o'Tt -0'Tt
e 0

(A2 - A3 ) =Ae 0 =P ; a constant.
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‘This giVeé

1.

A =ilpa -2y
4 A3 [ 12 1]
and l A A‘A )
I . b 2
ol =g e L G- 1
0 - a1

Froﬁ this, it i§ cleaf that; P1 and A;’ areAnot specified. Thus, with
these two éafaﬁeters,~it is poésible to. achieve a degree of conﬁfpl oﬁ_
the character of the creeping wave contribution. For:example, with the
'peak creeping wave.confribution _P1 fixéd, A3 controls the slope of

: the’waveform pfior-to the peak. It is to be noted that no attempf has
Béen made to ﬁtilize the low—ffequenc??derivéd moment.condition to
'.determine th¢ qonstants Pl and .Aa or, for that mattef, incluae'add—
itiﬁnal parametefstn satiSfy_highef_order moments. Such-an approach
‘was found [6l] té be ineffective because it is diffiéult to maintaiﬁ
simultaneously the desired cha?acterbof fhe impﬁlse wavefofm; Even
for.the simﬁle‘cése, the moment condition mayllead to alvery complicated’

'set of simultaneous nonlinear integral equations.

Next Moffatt [61] proposed to superimposeva second waveform eénsuring
the correct low-frequency behaviour of the response. This is an exponent—

. ially damped sinusoid which is written in the form
: : kgt - ' .
FI (t') = Ele e’ _ e ¢2t,] u(t!) . (5.4)

where E; ¢1 and ¢2 can Bé.compléx.v Let the first three moments of
FIl(t'); the high frequency portion of the waveform, be 11; 12 and_I;,
i.e.
f F_o(t') dt' =1 ‘ . (5.5a)
: IS 1 . . .

0
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(=]

f t'F. (£") dt' =1
. I : 2

o0
f £"2F_ (£') dt' =T .
I 3

0

(5.5b)

(5.5¢)

Imposing the zero, first and second moment conditions on the total impulse

response waveform of the spheroid, i.e., FI(t‘), yields the following

set of simultaneous non-linear equations

E[¢2-¢1] -Il¢1¢2 ’

-I ¢2¢2 ’

2 2
E[¢2_¢1] 21 2
(03921 = (R -T)4%0° .

It has been shown[61,62] that if

12
4 2

<
(I /I)2+ (R-I)/21 ~— 124 (I/I)2%+ K ~-TI )/21
2~1 " . r 3 1 1 2 1 r 3 1

then ¢1, ¢2, E are real and given by

I/1
21

2 2[@ /1)% + (R.-1)/21 ]
2 1 r 3 1

2
(1, /1) 4

(5.6a)
(5.6b)

(5.6c)

}1/2

1
+ E'{ -

[T /T )%+ -I )/21 1> [(I /I )*+(K -I )/2I ]
2 1 r 3 1 2 1 r 3 1

_ 1

* ¢ [(T /T)? + (R -I)/21 ] ’
2 2 1 r 3 b

= 14,9, .

! %, = ¢,
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If the above cited inequality is not satisfied, ¢ and ¢2 become
1

complex conjugates

I
¢1r=¢r= 2 ’
2 2T [(T /I )2+(K ~T )/21 ]
1 2 1 r g3 1
I? 1/2
S A %'{ : B - }
t 2 (T /1 )%+ -1 )/21 I24(1 /1 )%+(X -1 )/21
2 1 ¥ 3 1 1 2 1 r s 1
J 11
E="2{ } >

2
¢4l /T )"+ (& -1 )/2L ]

where I , I and I were found to be
1 2 3

1 ¢

A ea T A e—a T

I =-A +AT -3+ — ¢ 2 ,
1 1 2 o o
' t 1 P
A T2 A3Tea T Asea T AuTe_a T Ake-a T
IL==5—-—5 2+ = + s
\AzTa T2 -a'T a'T 2T a'T Q'
g 4+ 12 _ 2T .
13 3 3 [Aqe Aae 1+ 0L,Z[Aae + Aue ]
2 —-'T o'T
+ o3 [Aue - A3e 1 .

Thus, except for A3 and P1 the remainder of the parameters of the
impulse response waveform are known. It has been felt [61] that very
little is gained by introducing sophisticated procedures and techniques
for establishing the two parameters A.3 and P1 above, particularly

when they are expected to change with aspect angle. Also such sophisti-
cation would be achieved at the expense of a much more complicated model.
The purpose here is to develop a simple model and, hopefully, -one whose
constant parameters are invariant for a given axial spheroid ratio regard-

less of orientation and incident polarization. Thus, a rough estimate

of the parameter A- was-obtained from the axial waveform results [60,61],
3
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and the invariance of the creeping wave peak with respect to the axial

ratio, obtained in [60], was accepted.

It has been shown [61,62] that the impulse response model described in
this section is in reasonable agreement with measured data for a spheroid
of 2 : 1 axial ratio. The minor disagreement between calculated and
measured data has been attributed to the enforced simplicity of the

model, achieved at the expense of numerous approximations and estimates,
thch possibly could be corrected with a more completed model. Based

on the insight gained from this example, in the next section, in a some-
what similar fashion, an impulse response model for the co- and the cross-
polarized components of the backscattered field (at least for the high

frequency case) off a prolate spheroid is developed.

5.4 APPROXIMATE IMPULSE RESPONSE MODEL FOR CO- AND CROSS-

POLARIZED BACKSCATTERED FIELD

Since the main aim is to generate input data for the inverse scattering
model of Chapter Four at sufficiently high frequencies, the waveform
synthesized here is deliberately made as simple as possible. This im—
pulse response model is merely the physical optics approximation for
short times and a creeping wave contribution consisting of the extension
of the physical optics approximation beyond the shadow boundary (with a
time scale stretching to account for the fact that the wave travels
along the surface of the scatterer beyond the shadowlboundary) and an

exponential decay beyond the object.
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In order to derive a general expression for the initial time portion

of the prolate spheroid impulse response, an expression for the area
function A(t) for arbitrary direction of incidence needs to be known.
For a general direction of incidence, ¢ (the value of 6 does not
matter because this is a two-dimensional case), on a prolate spheroid,
Bennett and co-workers [12] obtained an expression for the area func-
tion. The calculations needed are identical to that presented in
Appendix II, except thét here only one coordinate transformation (two-
dimensional case) is required. Consider a prolate spheroid with semi-
major axis 'a' and semi-minor axis 'b' which are centered at the origin
of the coordinate system. With x' representing the distance from the
origin along the direction of incidence(see Fig.AJI.1),A(x"')gives the projected
area of the scatterer as delineated by the incident impulse as it moves
across the scatterer at one-half the free space velocity of light (this
has been discussed in detail in Chapter Three). For a given direction of
incidence‘ ¢ , A(x') is given as [12]

2

AGY = 22— 1) - x?] u 1) - x'] (5.7)
INE())
where 2.2
_ a’d B1(¢) 1/2
I =1 " ] (5.8)
Bl(¢)E1(¢) - C1(¢)
with
Bl(¢) = azcosz¢ + bzsin2¢ s
C1(¢) = (az—bz)sin¢cos¢ ,
E1(¢) = azsin2¢+ bzcosz¢ .

In this case, as discussed in (3.14)

c t

x' = - g = -t/2
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which, on substitution into (5.7), yields the expression

ZoAG) = S5 [4T2(9) ~t2] u [t + 20 ()] (5.9)
where G' = _ﬁﬂii_ .
I (¢)

It has been shown in Chapter Three that the ramp response is given by

the projected area function, i.e.,
1
ramp response = 5= A(t) .

This is a physical optics approximation and conventionally holds true
only up to the shadow boundary. However, in the present model, this
approximation has been extended beyond the shadow boundary and has been
modified in a manner such that the time beyond the shadow boundary is
calculated according to the distances measured along the surface of the

scatterer rather than along line-of-sight in free space, i.e.,

ramp response = A(t)[u(t+2l) - u(t)]

+ A(% t)[u(t) - u(t-T )] (5.10)
Cc
where

T =Tt - 2T
c 0

with T being the total path length as discussed in Section 5.2. Tt is
to be noted that in (5.10) the consideration of the path length beyond
the shadow boundary has been simplified by just scaling the time t by
a factor (2F/Tc), i.e., by assuming a linegr deformation of the path
length beyond the shadow boundary. In the present consideration, the
location of the shadow boundary has been simplified in a manner similar

to Moffatt [61], where the inclination of the shadow boundary was ignored



107

and, instead, the shadow boundary was located at the point corresponding
to the peak transverse cross-section encountered by the cutting plane
(see Fig. 5.2). With this definition of the shadow boundary, for a pro-
late spheroid centered at the origin (as is the case here), (5.9) indi-
cates that the shadow boundary is always located at t = 0 on the time
scale, and the distance between the shadow boundary and the specular
point along the direction of the incident wave is given by T(¢) (see
Fig. 5.2). Using (5.9) and (5.10), the expression for the projected
area function of the scatterer is obtained as |

Zoa@) = & [412() - 2] [u(es2D) -

o > u(t+2I") u(t)]
42 (9)

TZ
(o4

+ & @) - 2 1[u(e) - u(e-T)] . (5.11)

A sketch of the projected area function given by (5.11) is shown in

Fig. 5.3. There, the stretching of the time scale beyond the shadow

boundary, in order to take care of creeping—wave path length (at least
to a first approximation), has been clearly demonstrated. Taking the
derivative of (5.11) with respect to time yields
112
5 B - el {uenD-u®] - ¢ lu)-ute-1 )}

2T ot T2
c

+ 2—' [(4T2-t2)§(t+2r) - (4T%-t2)8(t)

2 2
+(ar2- 2 2y 8 ()2 - 4_1"_2_ €)8(e-1 )] . (5.12a)

T2 T
.C

Using the properties of the delta functiom, it can easily be shown that

the quantity inside the second square bracket of (5.12a) is zero, thus

, |
L8O | sepfueen - uw) - i% fu®-ut-T)H  (5.12b)
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Differentiating (5.12b) with respect to time and using the properties

of the delta function again, yields

2 2
L 37AC) _ prgracetary - 45 grse-t )
21 a¢2 T c
ot c
' 412 :
—G'[{u(t+2D)-u(e)} - ——;-{u(t)—u(t—Tc)}] (5.13)
T
2
Now, substituting the values of 2%551- and é—%é%l- from (5.12%) and

(5.13) into (4.19), the high frequency approximation to the backscatter—

ed co-polarized field yields

— S 2
|x B, G,0)| = 2re*s(etan) - ég;-G'G(t—Tc)
K -K
—6'[1+t (cos2a) (5B T [u(t42T) -u(t) ]
2 2 K -K
6 145 + 45 ¢ (cos20) LD u(e)u(e-T )] . (5.14)
c Cc

Here, it has been assumed that the incident magnetic field Hi is of
unit magnitude and its polarization angle is o (see Chapter Four for
the definition of the polarization angle). Thus H11 and Hi2 were

replaced by cos0 and sino respectively in (5.14).

A sketch of the approximate impulse response model is shown in Fig. 5.4.
From a knowledge of the axial impulse response waveform [60,61] and
the experience of the previous investigators [9,12,45,61,67], it is clear
that the impulse response waveform in (5.14) has two primary faults:
Firstly, the erroneous jump occuring at the shadow boundary
(t = 0), and secondly, the form of the response waveform at
the creeping wave peak (t = Tc)'

In the first case, there is no evidence that in the neighborhood of the
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| A(ZI‘G')
~|-2r 0 | Te .
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Fig. 5.4 TImpulse Response Waveform Corresponding To (5.14)
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shadow boundary a discontinuity should occur in the waveform. In the
second case, although a sharp creeping wave peak is expected at t = Tc’
this peak cannot be impulsive in nature. For the case of a smooth object,
the delta function contribution to the impulse response waveform can

only come from the specular point. In a similar approach to the problem
(i.e., using the ramp response as the starting point) Moffatt [61,62]

also encountered similar defects, and concluded that these defects arise
because of the assumption made in calculating the creeping wave path
length and in locating the shadow bbundary on the surface. There, it

was also pointed out that, in principle, it should be possible to correct
the ramp-response-derived model. However, the additional parameters re-
quired would exceed the known conditions on the waveform. This is the
type of problem one encounters when starting with an analytic approxima-
tion of the ramp response waveform. Since this waveform is smoother

than its first or second derivatives, it can be estimated with fewer para—
meters. But in the impulse response waveform, i.e., when differentiated

twice, the type of functional dependence assumed is extremely critical.

In order to overcome the above mentioned defects of the impulse response
waveform of (5.14), a direct model of the impulse response waveform is
proposed. In this model all the desired properties of (5.14) have been
retained and the erroneous jump at the shadow boundary is simply
eliminated. Although this elimination of the jump is based on somewhat
empirical reasoning, it is expected to be valid for the high frequency
end of the spectrum, which is the region of interest as far as this
investigation is concerned. The creeping wave peak term (i.e., delta

function at t = Té) is not included for the time being and it will
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be considered with the terminating term which will be added later. With
these above mentioned adjustments to (5.14), the approximate model for

the impulse response waveform for the co-polarized backscattered field

is
|t E_(r,t)] = 2TG's(c+2r)
¢ Co
K -K
6" [1+t (cos20) (5B T [u(e+2I) ~u(t) ]
412 Ki—Kz
-G'[1+ T2 t(cos2a) ( 5 )][u(t)—u(t—Tc)] . (5.15)
c
. . dA(t) . .
Substitution of the value of 5 from (5.12b) into (4.20) along with
Hi1 = cos0 , Hiz = sina yields an expression for the impulse response

waveform corresponding to the cross-polarized backscattered field as

K -K
1roﬁcr (r,t)]| = ~6't (5B sin2a[u(t+2T) ~u(t)]
K -K

_ 46t o L 2)sinzafu(®)-u(t-T )] . (5.16)

T2
c

An undesirabié‘characteristic of the model presented in (5.15) and (5.16)
is the abrupt termination of the waveform at t = Tc. From a physical
point of view the time domain backscattered field should die out smooth-
ly after the incident impulse has passed beyond the scattering object
[9,61]. Thus, for the times after the plane moves beyond the spheroid,
the waveforms in (5.15) and (5.16) are extended continuously and multi-
plied by an exponentially damped term. As mentioned earlier, the damp-
ing factor could be chosen in such a manner that the resulting waveform
is forced to satisfy the secpnd moment condition. However, it has been
shown [61] that such an approach might prove>quite cumbersome, and even
for very simple waveforms, the integration indicated by the moment con-

ditions can lead to a very complicated set of simultaneous nonlinear
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equations. Since here the interest is restricted to the high frequency
end of the spectrum, the impulse response waveform is kept simple by
choosing the same damping factor o! as given in (5.3c) and derived
by Moffatt [61]. Thus, with the new termination term added, the impulse

response model is given as

|t B (r,t)| = 2IG'§(t+2T)
0 Co

K -K
=G [1+t (cos20) ( 12 2) 1 {u(t+2T) ~u(t) ]

6" 1+ 4L ¢ Ccos20) (o2) ] [u(e) et ) ]
- Tz cos 5 [u(t) —u(e~ c
4T? K K a' (T -t)
-G'[1+ - (cos2a) 12 2)]e ¢ u(t—Tc) (5.17)
C
N K K
erHcr(r,t)l = —G't( 12 2y sin20[u(t+2T)-u(t) ]
21 K -K
- 455 e L2y sin2a[u(t)-u(t-T )]
Cc
= 2 K -K o' (T -t)
- o' (A Y (sin20)e  © u(e-T ) (5.18)
C

The sketch of the impulse response wave corresponding to (5.17) is
given in Fig, 5.5 for the cases where the incident wave polarization is
close to the TE and TM cases. Comparison of these two sketches with
the impulse response waveform reported by Bennett and co-workers [12]
brings out the fact that the basic nature of the singularities in both
cases are identical. It is to be noted that these are the portions of
an impulse response waveform which contribute to the high frequency
end of the phasor response in a major way. In the next section, using
(5.17) and (5.18), computational results for the phasor response of a

prolate spheroid of axial ratio of 2 : 1 are presented.
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a ~ TE CASE

AHp('{)
A
-2 0 W
- t/b
O~ 1@
a ~ TM CASE
: Hp(t)
A p
4

(1) PHYSICAL OPTICS APPROX.
() POLARIZATION CORRECTION [ BENNETT et al ; 1973 ]

(3 ACCOUNTS FOR THE FACT THAT WAVE TRAVELS ALONG
THE SURFACE OF THE OBJECT BEYOND THE SHADOW
BOUNDARY (ie. POINT OF MAX.CROSS SEC. )

(49) EXPONENTIAL DECAY BEYOND T*

*T;CORRESPONDS TO LINE OF SIGHT TO THE POINT OF
MAX. CROSS SEC. & A GEODESIC CREEPING WAVE PATH
LENGTH BEYOND [MOF FATT ;1969 ]

Fig. 5.5 Approimate model for the input data.
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5.5 - . COMPUTATIONAL RESULTS

The‘frgquenéy-depéndent co— and ‘cross- polarized phasor responses éan '
be obtained?directiy:ffom (5.17) and (5.18) by making use of fhe Fourier
traﬁsfo?mation‘pairé defined in AppéndivaII. ‘However, before fhié .
trénsfofmatioh'could be'performed,‘vaiues of varioué paraﬁeters in (5:175‘
and (5;185 must be knéwn-fqr arﬁitrary'poiérizatibn»of'the incident |
V wéve. .Except for Tc~a@d d' ,_éll_other.parameters are inaependent'of -
,the"incidént1Wa§e polariéation and cOuld.easily be calculated froﬁ the‘v
A,.known'siZe of the prolate spheroid and the known direction of incidence
¢{. TC , the creepiﬁg wave patﬁ'length is direétly'depegdent on the
'inCident“wave polarization as can bé easily seen from Fig. 5.2. The
.factof at , as défiﬁed in (5.3c), is polarizatioﬁ;dependent as it.iﬁ—,

" volves the Rayleigh coefficient Kr'

" An approximate analytical expreésioﬂ.fér the total path length T

: (which correspoﬁds'to thé iine—of—sight up. to thévpoint of. maximum

éross¥section for the cutting plane'and a geodesic creeping wave path .

‘  length in the shadow region), for tWO'e#treme cases of tﬁelinéidenf wavé
vpolafizatiOn.(ife.; TE_and TM);»has been reported by Moffa?t [61,62].
Based oﬁ.the apprgximétion.that the circumfe;ence of an ellipse of

,semi4méjor axis 'a"and:sémi—minorlaxis }E' is given by .WVPETEE;ETY ;r

the path'length 'T ‘éorreSponding to the two principal polarizacipns,

has been obtained [62] as fdllows '
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sindcos¢(a®-b?) 1

T(TM) = + o va?cos2¢+b2sin2¢
2bvaZsin?¢+b2cos¢
2 2 . 2 42 :
+ gg'/ é—%b—- + %E- singcosp(a =b7) _ va2cos2¢+b2sin2¢
va2sin2¢+b2cosZ¢
(5.19)
T(TE) = sin®¢cos?¢(a®-b?)?2
b/ézcosz¢+bzsin2¢(azsin2¢+b2cosz¢)
va2cos2¢+b2sin?d , W cite?
* b 2/ "2 G.20)
where
. 2 2,02 122
c2 = p2 {1 - sin ¢cos P (a“—b*)
1 a2p2?
+ sin®¢cos?¢(b2-a®) (a®-b?) 12 }
ab(a2cos2¢+b2sin2¢)
and
o2 o7 azbz—sin2¢é5é2¢(a2—b2)2
2 a?sin?¢+b2cos2¢
+ sin2¢cosz¢(a2—b2)(52—a2) 12

vaZcos?¢+bZsinl¢ (a®sin?¢+b2cos?¢)

As O wvaries from one extreme to the other (i.e., 0 to m/2) the creep~-
ing wave path length T must vary from T(TE) to T(TM). An empirical-

1& suggested analytic expression for this variation is
T(a) = T(TE)cos?a + T(TM)sin?a (5.21)

This expression was arrived at mainly from two considerations. First,
when o =0 , T(a) should become T(TE); and when o = 7/2, T(c) should
represent T(TM). Secondly, in case of a sphere, where the creeping

wave path length is identical for the TE and the TM polarization (see
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Fig. 5.2), the path length T(a) is independent of the polarization of
the incident wave and, therefore, in this degenerate case T(d) should
remain constant for an arbitrary value of & . Although the approxima-
tion in (5.21) appears to be unsophisticated, it certainly is a valid
first order approximation from the physical surface geometry point'of
view (especially for a 2 : 1 prolate spheroid).

Next, in prder to obtain a value of the damping factor o' from (5.3¢)
for an arbitrary value of the polarization angle 0 , an expression for
the value of the Rayleigh coefficient for an arbitrary value of o was
developed. Moffatt [61] has presented values of the Rayleigh coefficient
for TE and TM cases for various axial ratios of the prolate spheroid.
There, a genéral solution for the coefficients in a power series expansion
of the scattered field in terms of the wave number (ka) [61] has been
utilized to obtain the Rayleigh term for the case of prolate énd oblate
spheroid;. The Rayleigh coefficient Kr(a) is defined in a manner such
that

E (@) = K () (ka) 2 (5.22)

where Es(a) denotes the normalized scattered field for am incident polar-

ization angle o. For TE and T cases, (5.22) will yield

E_(TE) = K_(TE) (ka)? (5.23a)

and

Eg(TM) = K_(TM) (ka)” . (5.23b)

For an arbitrary linearly polarized, incident wave, where the incident
magnetic field ﬁ; makes an angle o with the QI(TM) direction (see
Fig. 5.6), the magnitude of the component of the electric field in the

a direction is Eicosa 3 and the component in the & direction is
2 ‘ 1
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Eisina . From (5.23a) and (5.23b) the corresponding components of

the scattered field are

]

‘ 2
E52(TE) Kr(TE)cosa(ka) and

ESl (TM) K_(TM)sina(ka) 2 .

Therefore, the total scattered field is

|E_(@)] = K_(0) (ka)? = {[Kr(TE)cosa]2+(Kr(TM)s:i110L]2}1/2 (ka)? .

(5.24)

Thus, from (5.24), the expression for the Rayleigh coefficient for an

arbitrary value of o is given by
K (@) = {[K_(TE)cosa]® + [Kr(m)sma]2}1/2 . (5.25)

With the values of Kr(TE) and Kr(TM) for arbitrary direction of in-
cidence ¢ for a prolate spheroid as documented in [61], (5.25) pro-
vides the value of the Rayleigh coefficient for arbitrary direction of

incidence ¢ with arbitrary polarization «.

Now, with all the parameters in (5.17) and (5.18) specified for the
arbitrary linearly polarized incident wave and for an arbitrary direc-—
tion of incidence, the frequency-dependent phasor response has been
computed using the Fourier transformation pair given in (3.3). For the
two extreme cases (TE and TM) of the incident wave polarization (i.e.,
when the cross—-polarized return vanishes), the frequency—-domain results
are available in the published literature [12]. Therefore, for the
quasi TE and quasi TM (i.e., almost TE and almost TM)cases, the approxi-

mate solutions developed here were converted to the frequency domain by
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Fourier transformatlen, and compared with the available published
- results (see Flgs. 5. 7a to 5. 7f) As expected; the agreement. in nature\
of varlatlon and general ‘shape between the two sets of results was good
towards the hlgh frequency end (i. e., W % 5.0). Towards the low frequency
' end the approx1mate solution differs much from the established solutions .
'_publlshed in the literature f123. This was‘to be expected, as very
little iew frequency‘infetmatidnvwas'included in the time domain te—
presentatlons in Flg..S 5. Note, that exact vaZues'of.the'fiéZdlcannot
be compared as the y axzsnof [Z2]ie the total field and ﬁot the co-
poZarzzed'fieZd. (4lso, note thdt.Fig, 5.7 provides approximations for
thelquaéiiTE'(q = 5°) and quasi. THM (o = 85°) cases, but not for the

exact TEdand'TM solhtions.) It is toﬁbe noted that‘even at the low
freqnency7end; the nosition of maxima and minima of the emplitude of the
dfredueney response were.found to be identical'to-those_giyen in the 1lit-
- ereture. jThe disagteement tewards the low freduency end, however, does

: not preVent the.use of thisiepproximate solution as input data for the‘:‘”
- proposed inverse scattering'model gf Chapter Four. This is because the:
-proposed inverse 3cattering model is expected to.be good at the,relative—
ly>high ftequency tegionlonly. -In order to give avhetter ineight into
“the behevidut of the'impdlse scattering medel'propoéed in (5;17); valﬁes.
of f, T, and a"dfor polarization angle of o = 30° ‘and —60? (i.e., .'

o --m/2) arevcompiled,in:the Table I.

The cross—polarized frequency responsefobtained from the approximate
'solution was compared with another published approximate result [28]
(which, to the best of the'author's.knowledge3'is the only such result

availableAin literature) and a gobd agreemeént for the basic nature and
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TABLE 1

PARAMETER VALUES FOR IMPULSE RESPONSE WAVEFORM

(i) POLARIZATION ANGLE o = 30° , 6 = 90°

¢ (deg.) 2T Tc ol
0 4.0000 4.9648 3.2366
10 3.9546 4.9094 3.2697
20 3.8206 4.7670 3.2971
30 , 3.6060 ' 4.5751 3.2154
4Q " 3,3236 4.3570 3.0091
50 2.9938 4.1300 2.7271
60 2.6468 3.9160 2.4273
70 2.3256 _ 3.7419 2.1578
80 2.0892 3.6321 1.9635
90 2.0000 3.5958 1.8906

(ii) POLARIZATION ANGLE o = -60° , 0 = 90°
¢ (deg.) 2T Tc a'

0 4.0000 4.9648 3.2366
10 3.9546 4.9463 3.1479
20 3.8206 4.8987 2.8936
30 3.6060 4.8347 2.5351
40 3.3236 4.7619 2.1602
50 2.9938 4.6861 1.8282
60 2.6468 4.6147 1.5614
70 2.3256 4.5565 1.3641
80 2.0892 4.5199 1.2392
90 2.0000 4.5077 1.1953
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shape of the curves was obtained (see Figs5.8a-5.8c). Absolute values could
not be compared because of different normalization used in [28]. Further-
more, sufficiently accurate numerical values could not be obtained from
the plots given in [28]. 1In [28,p.27] it has been clearly pointed out
that the results presented therein are accurate as far as the shape is

concerned and the absolute values could be about three times too low.

To sum up, although the solutions (5.17) and (5.18), obtaingd for the
backécattered fields, were based on certain liberal engineering approxi-
mations, it is evident that they are reliable enough to be used as in-
put data in (4.28) and (4.29) for w > 5.0. TIn the next chapter, (4.28),
(4.29) and (4.30) have been used to express a, b, ¢ as functions of

a, b, ¢ as well as of the input data (i.e., the backscattered far-field)

and thus an iteration scheme for computation is made possible.
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Fig. 5.8c Frequency Domain Depolarization Ratio For The .

Backscattered Field Of A 2:1 Prolate Spheroid,
Obtained From [28], With Broad-Side Plane Wave
Incidence
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chapter siz

APPLICATION OF THE PROPOSED INVERSE SCATTERING MODEL IN PROFILE INVERSION

OF A PERFECTLY CONDUCTING PROLATE SPHEROID

6.1 INTRODUCTION

Once the formal solution to the problem has been set in Chaptef Four,

the next obvious step is to check its validity numerically. The system
of equations proposed in Chapter Four for the recovery of the surface
profile utilizes certain physical as well as geometrical optics approxi-
mations. Therefore, the solution is expected to be good in the high-
frequency region only. The frequency range over which this system yields
best results needs to be investigated. Furthermore (3.14) and (3.24),

- used in a major way to develop the'formal solution, have been derived by
liberal application of engineering approximations. Their validity and

accuracy under various different situations needs to be checked.

Application of the inverse scattering model, developed in Chapter Four,
to the test case of a perfectly conducting prolate spheroid has been
undertaken in this chapter. The major difficulty in this direction is
that the kind of input data needed is not readily available for most of
the scatterer shapes. It is to be noted that although a complete set of
the required data is available for the sphere, the sphere cannot be a
test case. This is because the two principal radii of curvature are

the same at all points on the sphere causing (3.24) to break down. To
circumvent this difficulty an approximate solution of the backscatter—

ing by a perfectly conducting prolate spheroid has been developed in
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Chapter Five and this solution has been used to generate all the input

data required in the present chapter.

In Section 6.2, the iteration scheme for the actual computational re- °
covery of the surface of a perfectly conducting prolate spheroid is
developed. Various numerical results showing frequency dependence and
the limitations of the proposed inverse scattering model are presented

in Section 6.3. A possible modification of the iteration scheme has
been considered in Section 6.4. Furthermore, comparison of the results
obtained from the modified iteration scheme with those obtained from the
original iteration scheme are also presented in this section. Finally,
in Section 6.5, shortcomings of the inverse scattering model, as verified

by numerical calculations are discussed.

6.2 ITERATTON SCHEME

Egs. (4.30), (4.31) and (4.32) have been used to express implicitly

a, b, ¢ as functions of a, b, ¢ as well as of the input data (i.e.,
backscattered far—field) and thus an iteration scheme for computation

was made possible. The expression for (Kl_Ké)’ the difference between
two principal curvatures at the specular point, where the normal direc-
tion of incidence is given by (€,n,2), was obtained in terms of the semi—
axes of the corresponding equivalent ellipsoid (a,b,c) in (I-9) of

Appendix I. Substitution of this expression for (K}_Ké) into (4.31)

Tt

yields an expression for a as
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IHICI/cos(a)sin(a)

_b2c2 (n2+C2) + ' /
K12 ]| (G/w?)%+(2TG/w) % |22

a = f(a,b,c) = (6.1)
c®(8%-¢%) - b2 - 2)
where.
- (azgz + b2n2 ¥ czcz)l/z .
12 (a b C)2

The sign before the second term on the right-hand-side of (6.1) is

taken to be either positive or negative depending on whether
>
Iazcz(gz_gz) - a2b2 (1-22) + bzcz(n2+C2)l 20 ,

respectively. This criterion arises because of the fact that the ab—

solute value of (Kl—Ké) is to be considered in (4.31).

From (4.32), an expression for *b' as a function of a, b, ¢ and the

scattered field data was obtained as

2 2 . 1/2
{IH1PI'+lHépl +2lHiP’ IHZPICOS(¢1P_¢2P)} ]

b =g(a,b,c) = b : 7 6.2)
2{(2IG)% + (G/w)2}*/? J
Similarly from (4.30), an expression for 'c' is obtained as
2 2 2 4o 11/2
c = h(a,b,0) = [@D)? + (bn)? + (D)2 —2Z] : (6.3)

The development of these expressions for a, b and ¢ was mainly guided

by the requirement that the resulting set of equations, i.e., (6.1),

(6.2) and (6.3), for the iteration scheme should not become ill-condition-—
ed. The particular set of functions f(a,b,c), g(a,b,c) and h(a,b,c)

were arrived ét by performing trials on various other sets of functions.

To elaborate on this point note that if (6.1), (6.2) and (6.3) are
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chosen in such a manner that the numerical values of the right-hand-
sides of these equatiohs are comparable during the iteration cycles,

then the hyperplanes corresponding to these equations will intersect at
nearly 90°. In such a system, the intersection point (or solution) is
relatively insensitive to a slight movement of these hyperplanes and to
round-off errors, Such a system of equations is called a well-condition-
ed system. On the other hand, if the hyperplanes intersect at small
angles, the round-off errors and slight movement of the hyperplanes

- cause appreciable motion of the intersection point with a low degree of
accuracy of the resulting solution. Such systems are termed ill—

conditioned.

In the above set of equations, i.e.,-(6.1) to (6.3), it appears for the
iteration scheme that the process could be simplified by using (4.30)
to éolve for one of the wvariables (say c) and then to just iterate over
the -remaining two variables (i.e., a and b). However, the fact remains
that this simplification cannot be incorporated into the iteration
scheme. This is because (4.30) gives a fourth—order equation for any of
the variables a, b or ¢ , and it is not possible to discriminate the
proper value of the variable from the four roots of this equation since
very frequently two of the four roots are positive real numbers. This
- multivalued nature-of the analytical roots prevents the convergence of
the iteration scheme and therefore this modification of the iteration

scheme is not possible.

The flow chart for the numerical solution process on the computer is

shown in Fig, 6.1, In this scheme the backscattered radar cross—section
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INPUT

¢ ,0,SCAT. FIELD DATA |
|

INITIAL VALUE
a=10,b=10,c=1.0

L=L+I

. '1L=| j
a(L+1)=f|a(L), b(L ),c(L)]
| '
blL-+1)= g alL+), b(L ),c(L)]

Y

le(L+D=hlalL +1), b(L +1); c(L)]

o LHI=RHI"
E X |}- ABS | =g
LH2 —RH2
L RH2

[LH3~RH3 ]
. RH3 A

EX2=ABS

1EX3-=ABS

Y
IS EXI,EX2,EX3<0.05

| ' QUTPUT
@ @—' a=a(L+),b=b(L+1),c=c(L+1)

rig. 6.1 Flow chart for-iteration scheme.
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at a sufficiently high frequency (W = ka e 10) and the two co-polarized
backscattered fields lHlP[ ’lepl along with théir phase difference
(¢1P—¢2P) and also the magnitude of the cross—polarized component Ichl
have been used as the input data. In addition, the direction of the
incident wave (8,4) with respect to an arbitrary pre—fixed coordinate
system (with origin in the interior of the scattering object) must be
specified with the input data, In order to start the iterations, the
initial values of a, b, c are assumed to be unity, i.e., it is assumed
"that the specular point corresponding to the backscattered direction
(0,9) 1is situated on a unit sphere. Once the required input data and

the initial values are known, a modified value of %a' is obtained from

L |

(6.1). This new value of ‘at along with old values of 'b' and of 'e

are substituted into the right-hand-side of (6.2) to obtain a modified
4

value of "b*. Similarly, the new values of %a® and of '“b' are

suﬁstituted along with the old value of f®c' into the right-hand-side
of (6.3) ;o éiﬁé a modified value of ‘ec'. Once a new set of values for
a, b, ¢ 1is obtained, this set is substituted in the left-hand-side of
(4.30), (4.31) and (4.32) to yield the exit parameters EX1, EX2 and
EX3, respectively. These exit parameters, as shown in Fig. 6.1, are

the absolute values of the fractional difference between the left—hand—
side and the right-hand-side of these equations. Next, an exit criterion
was set out by restricting EX1, EX2 and EX3 to 0.05, i.e., the left—
hand-side of each equation is within 5% of the right-hand-side. Note
that these exit criteria are flexible and can be changed according to
need, If the modified values of a, b, ¢ satisfied the exit criteria,

then those values of a, b, ¢ were accepted as the solution for that

particular direction (8,¢) of the incident wave, otherwise the itera—
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tive process was continued in order to achieve further modified values

of a, b, ¢ as shown in Fig. 6.1.
Once the values of a, b and ¢ are recovered from the iteration scheme,
the coordinate (x,v,z) of the corresponding specular point is known

from (4.33a), (4.33b) and (4.33c).

6.3 COMPUTATIONAL RESULTS

The iteration scheme shown in Fig. 6.1 has been applied to the tesf

case of a perfectly conducting prolate spheroid. The required input
data for the present computation have already been discussed in Chapter
Five. In order to study the frequency dependence of the inverse scat-
tering model, the points on the spheroid corresponding to 6 = 90° and
¢ =0° to 180° in steps of 10°, were recovered for various frequencies
ranging £¥oﬁ W= 5.0 to w=15.0, Results of these computations for
w= 35, 7.4, 10, 12.6 and 15 are shown in Figs,.6.2a to 6.2e. From these
results it appears that the rate of change of curvature as well as the
difference in principal curvature, i.e., (Ki—Ké)’ will play an important
role in the recovery. Towards the pointed end of the prolate spheroid,
where the rate of change of the curvature is quite rapid compared to the
broad side, the inverse scattering model yields unsatisfactory results
as expected (see Section 3.4). Finally, for the case of nose—on incid-—
ence (¢ = 0° and 180°), the inverse scattering model fails to recover

the specular point as at those points the difference between the princi-

pal curyvatures, i.e., (Ki—Ki) goes to zero causing (3.24) to break down.
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Thé inverse scattering model does not yield satisfactory results for
frequencies below 5,0 mainly because of two reasons. First, as has
already been mentioned in Chapter Five, the input data used in the com—
putation are not reliable enough for w < 3.0, secondly, the inverse
scattering model itself is based on high frequency assumptions. It
was expected that as the frequency is increased higher and higher, the
model will yield better results. However, this is not the case as can
be seen in Figs. 6.2a to 6.2e. The deterioration of the results for
W > 10.0 is explained by the fact that as the frequency increases the
magnitude of the cross-polarized backscattered field becomes smaller
[8] (see Fig. 5.8) and finally it falls 40 dbs compared to the co-
polarized component. This fact causes the iteration scheme to become
ill~conditioned and extremely sensitive as is evident from (4.31) and
(4.32) and discussed in Section 6.2. Thus because of the difficulties
at the lower and higher end of the frequency domain, an optimum range
over whici tﬁe inverse scattering model yields satisfactory results is
between ® = 5,0 and w = 10.0. It is to be noted that at some points
the recovered shape is inside the actual shape and at other points it
is outside the actual shape (see Fig. 6.2b). This is explained by the
fact that the exit criteria were fixed as "within 5Z", which could be

“plus" or "minus" 5% (see Fig. 6.1).

In order to study the effect of the rate of change of curvature on the
results yielded by the inverse scattering model, the lines on a prolate
spheroid-corresponding to 6 = 30°, 60°, 90° and ¢ = 0° to 90° (in
steps of 10°) were recovered and the results are shown in Fig. 6;3.

The best recovery is obtained for the line © = 30°, where the curvature
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changes most slowly out of all the three curves. The most unsatisfac—
tory recovery was for 6 = 90°, where the curtature changes quite rap-
idly. The results of another computation undertaken to study the
effect of the rate of change of the curvature on the inverse scatter—
ing model is presented in Figs.6.4a to 6.4c, where the profiles of the
prolate spheroids of axial ratio 5 : 4 (i.e., 1.25 : 1), 2 : 1 and 3 ; 1
are recovered, respectively. As expected from the results of the
earlier computations, the best recovery was for the case of a 5 : 4
spheroid because in this case the curvature changes most gently. How—
ever, also in this case, the end points could not be recovered as the
difference in the principal curvatures at the end points goes to zero.
The recovery for the case of the 3 : 1 prolate spheroid is poor because

in this case the curvature changes very rapidly around the end zone.

6.4 MODIFIED ITERATION SCHEME

Ffom the results of the application of the proposed inverse scattering
model in Section 6.3, it was inferred that the rate of change of cur-
vature as well as the difference in principal curvature, i.e., (KJ_Ké)
will play an important role-in the recovery. It has been suggested [14]
that the difficulty arising due to the difference in curvatures becoming
very small could be obviated by first solving the inverse problem
assuming that the curvatures are the same (i.e., considering the simple
physical optics approximation), and then by refining the results by use
of the first order correctionvto the physical optics approximation (i.e.,
use of the depolarization information). In order to incorporate this

modification in the iteration scheme, the expression for the difference
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in the principal curvatures, i.e., (K K ), needs to be looked into.
102

The expression for (Kﬁ“Kh)’ the difference between the two principal
curvatures at the specular point with the normal direction given by
(£,n,C), has been obtained in Appendix I in terms of the semi-axes of

the corresponding equivalent ellipsoid [i.e., (a,b,c)] as

KJ_KZ = _[aZEZ (bZ_c2)+b2n2 (32_c2)+c2c2 (aZ_bZ)]

(a252+b2n2+c2;2)1/2
(abc )?

(6.4)

If it is assumed that the two principal curvatures are identical then
from (6.4) for real values of a, b and ¢ (which is the case here), we

find
‘aZEZ(bZ_CZ) + b2n2(a2_c2) + CZCZ(aZ_bZ) =0 . (6.5)

This yields an expression for ta® as

a=f (b,e) = [ bzcsz2+C2) ]1/2 (6.6)
¢ b* (1-2?) - c*(E2-¢?)
which is identical to (4.31), when lch[ = 0. Now the inverse problem
for identical curvatures can be solved by iterating (6.2) and (6.3) for
the values of 'b' and 'c¢' with a .value of ‘a' supplied by (6.6). The
solution of this iteration scheme is then used as the initial value of
a, b, ¢ for the iteration scheme described in Fig. 6.1, which will re-
fine the results according to the available depolarization information
(H.e., Hic)’ The complete modified iteration scheme for the cases where
CKj‘Ké) is very small, is described in Fig. 6.5. It is to be noted that

in this iteration scheme only the initial values of 'b' and ‘¢! need to
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be specified, and the initial value of 'a' is found by using the function
fa described in (6.6). Once the initial conditions are set, a modified

new value of 'b' is obtained from (6.2). In the next step, this new

t

value of 'b' along with the old value of %c¢' is used to update the

L P ¢

corresponding value of fa'. 1In the next sequence the new value of 'b'

and the old value of 'c' aresubstituted along with the updated value of

*a' into the right-hand-side of (6.3) to give a modified value of 'c®

Once again with the modified value of 'b* and the modified value of

1 Tt

c¢' , the value of a is updated. The new set of values for a, b, c
thus obtained, is substituted in the left-hand-side of (4.30) and (4.32)
to yield the exit parameters EI2 and EI3, respectively, Note, this

Tt

time, only two exit parameters are required because evaluation of a

through (6.6) guaranteed that (4.31) is satisfied as long as [H1 I = 0.

c
Again the exit-criterion was set by restricting EI1 and EI2 to 0.05.

If the values of a, b, c satisfied this criterion, then those values of
a, b, ¢ wefé fransferred to the second iteration loop (see Fig. 6.5) as
the initial values, otherwise the first iteration loop was continued in
order to achieve further refinement of the values of a, b, ¢ as shown
in Fig. 6.5. The second iteration loop which achieves refinement of

the solution through depolarization information (i.e., [H c,) is id-
1

entical to the one described in Fig. 6.1,

In order to study the effectiveness of the modified iteration scheme in
overcoming the difficulty encountered in recovery around the region where
(KivKé). is very small, the lines on a prolate spheroid corresponding to
6 =-30°, 60° and ¢ = 0° to 90° (in steps of 10°) were recovered by

using the itefation scheme of Fig. 6.1 as well as that of Fig. 6.5.
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Results of these two iteration schemes are compared in Fig. 6.6. The
best recovery is obtained for the line 0 = 30°, where the curvature
changes most slowly out of the two curves. Improvement obtained by

using the modified iteration scheme can be seen within the region ¢ = 0°
to 30° (6 = 30° curve), where the difference in the principal curvatures
is very small. An interesting observation to be made on the line corres—
ponding to © = 60° is that, although the modified iteration scheme
achieves improvement in recovery in the region ¢ = 50° to ¢ = 30°, it
fails to recover the préfile for ¢ < 30° (with © = 60°). This is be-
cause there are two distinct causes for this complication, i.e., the
rapid rate of change of curvature and the difference in the principal
curvature becoming very small. The modified iteration scheme of Fig. 6.5
is capable of overcoming the latter difficulty, however when the rapid
rate of change of the curvature is the dominant cause (which is the case
for 6 = 60°, ¢ < 30°) this modified scheme is of little help. |

In another calculation the modified iteration scheme of Fig. 6.5 was
applied to recover the points on the spheroid corresponding to 6 = 90°
and ¢ = 0° to 180° in steps of 10°, for the values of w = 5, 7.4, 10,
12,6 and 15. TIn all the above cases, the modified iteration scheme

(Fig. 6.5) produced identical results to those shown in Figs. 6.2a to
6.2e, i.e., it did not give any improvement over the results produced by
the iteration scheme shown in Fig. 6.1 [for @ = 90°, ¢ = 0, 180° (in
steps of 10°)]. It is thought that this is due to the fact that in all
of the above cases (i.e.,.Figsqﬁ.Za to 6.2e) 6 was held at 90° (i.e.,

z = Q) throughout, which reduced the flexibility and the information

content of (6.6) and thus making the modification not so effective.
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6.5 ERRORS AND LIMITATIONS OF THE INVERSE SCATTERING MODEL

The performance of the proposed monostatic inverse scattering model was
studied with the test case of a perfectly conducting prolate spheroid.

The computational results in Section 6.3 indicate that an optimum frequen-
cy range over which the inverse scattering model yields satisfactory re-
sults is between W =5 and w = 10. However, when the difference be-
tween the two principal curvatures at the specular point goes to zero,

the recovery of that particular specular point is not possible as in-

dicated by the computational results of Section 6.3 and of Section 6.4.

In a region where the difference in curvature is very small, the system
of equations in iteration scheme of Fig. 6.1 becomes ill—conditioned

and thus the convergence is not achieved. This is evident from the data
compiled in Table II and Table III. 1In Table IT, the values of a, b, ¢

at the end ;f ééch iteration cycle (L} is shown (see Fig. 6.1), for

the direction (of incidence) 6 = 90° and ¢ = 40°. Under normal cir—
cumstances (i.e., when K.l--K2 is not very small), the values of a, b,

c oscillate about a central value as is clear from the data compiled in
Table III, and finally, the iteration loop converges on the solution point
(in Table III, it is a = 1.92, b = 1.01, ¢ = 1.04 for 6 = 90°, ¢ = 80°
and a = 2.02, b = 0.99, ¢ = 0.97 for 6 = 90°, ¢ = 90°). On the other
hand, for the ill-conditioned case, presented in Table II, no such oscilla-
tion about a central point exists, rather the values of a, b, ¢ keep

on growing monotonically with the number of iteration cycles (L) ané g0

right past the expected solutions (see Table II, values of a, b, ¢ for

L = 14, 15, 16).
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TABLE TII

OUTPUT OF THE ITERATION LOOP (I1l conditioned Case) -
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TABLE IIT

OUTPUT OF THE ITERATION LOOP (Converging Case)

o Bar M Mo |

6= 90.00 ¢ = 80.00 [Hlp[ = 0.907525
|2 | = 0.927038 [E | = 0.026764
2p 1cC
o = 55.01
= 1.1459780 AA = 1,47 BB =
= 1.0195230 AA =2.16 BB =
= 1.0611880 AA =1.81 BB =
= 1.0448660 AA=1.92 BB =
EX2 = 0.00  EX3 = 0.03 A =1.92
8 = 90.00 ¢ = 90.00 [Hlp] = 0.990605
|E [ = 1.006794 |E | = 0.036732
2p 1C
o = 51.21
= 1.1229170 AA = 1.58 BB =
= 0.9258109 AA =2.32 BB =
= 1.0360730 AA =1.85 BB =
= 0.9730850 AA =2.09 BB =
= 1.0069570 AA =1.95 BB =
= 0.9863715 AA = 2,02 BB =
EX2 = 0.00 EX3 = 0.04 A= 2.02

i R e B M B

1.13 cc
0.96 cc
1.03 cc
1.01 cc
B =1.01
1.12 cc
0.93 cC
1.04 cC
0.97 cc
1.01 cc
0.99 cc
B = 0.99

[ TR T T}

0.92
1.11

C=1.04
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This complication due to ill-conditioning of the iteration scheme was
circumvented (at least partially) by a modified iteration scheme where
the inverse problem is first solved by assuming that the curvatures are
the same, and then the results are refined by use of polarization inform—
ation. Another limitation of the inverse scattering model is that when
the rate of change of the curvature is large around the specular point,
the recovery becomes very difficult and the results are rather poor. It
is thought that this limitation arises because of two reasons. One, be-—
cause of the restrictions imposed on the derivation of tﬁe polarization—-
al correction term, i.e., (3.24), which was used in a major way to
develop the inverse scattering model. In the derivation of the polariza-
tional correction term it was assumed that the difference in principal
curvatures remains the same in the vicinity of the specular point, which
means that the rate of change of the curvature of the surface must be
very gentle. Thus, it is expected that by improving the polarizatiomnal
correction ferm this limitation of the model can be at least partially
rectified. Another reason for the limitation is felt to be that the in-

put data used in the computation were generated from an approximate model.

Thus, it is necessary to develop more accurate input data.

The results in this chapter indicate the potentiality of this inverse
scattering model in recovering target shape parameters with a relative-

ly smaller amount of data than required by other available target ident-—
ification techniques such as Bojarski®s inverse identity, the concept of
inverse boundary conditions, etc. Morebver, this method is quite success-
ful in providing partial recovery of the target profiles, as in this

method each specular point is recovered separately from data at onme point.
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chapter seven

CONCLUSIONS

7.1 SUMMARY OF THE CONTRIBUTIONS

This dissertation has clearly demonstrated that polarization information
can indeed be utilized in the profile inversion of scattering objects,
which was the main objective of the present investigation. One of the
most complicated and neglected problems connected with electromagnetic
theory is the question of what happens to the original polarization of
the incident wave after the wave has been scattered. This is a problem
which, even in the case of simple scatterers, has not yet been solved
completely (perhaps not even seriously attacked). In the light of the
above facts, it can hardly be expected that a complete general and
rigorous solution of the inverse electromagnetic problem may be found
in the né;r future which is based on depolarization characteristics of
the scattered field. Nevertheless, in the opinion of the author, the

work represented in this dissertation constitutes an important funda-

mental step towards achieving the above objective.

Besides polarization-depolarization characteristics, differential geometry
as related to the surface profile inversion has been given very little
importance in inverse scattering investigations in the past. It is to

be noted that for the vector treatment of scattering at the surface of

a convex three~dimensional object, as is.the case here, differential
geometry provides additional insight to the physical phenomenon that

governs the interaction between the object and the electromagnetic fields.
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Although many investigators [42,92,93] have pointed out the similarity
between the Minkowski problem of differential geometry and the profile
inversion problem of electromagnetic theory, no serious attempt (accord--
ing to the literature available to the author) at integrating the well
established concepts of the Minkowski problem into the profile inversion
problem of electromagnetic theory has been reported. Therefore, to the
best of the author's knowledge, in the present investigation the con-
cepts of the Minkowski problem have been utilized successfully for the
first time in solving the problem of recovery of the surface profile of

the scatterer from the far-field scattered data.

It is well established that at sufficiently high frequencies the scatter—
ed field's magnitude about the monostatic direction contains information
on the curvature of the scatterer at the specular point. On the basis

of this approximation it was assumed that for any three-dimensional,
smooth, siﬁwij”and uniformly varying convex shaped scatterer, an "equiw-
alent ellipsoid" centered at the origin and of identical curvatures about
the monostatic direction gives rise to an identical backscattered field
magnitude. Representation of each point of the scatterer by such an
equivalent model made it possible to combine the mathematical concepts

of the Mnkowski problem with the polarization—depolarization aspects

of the electromagnetic scattering concepts and yielded ar system of equations

for the recovery of the surface of the scatterer.

The performance of the proposed monostatic inverse scattering model was
studied with the test case of a perfectly conducting prolate spheroid.

However, to the best of the author's knowledge the input data required
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for this purpose are not readily available for most of the scatterer
shapes. To circumvent this difficulty, an approximate solution for the
backscattered fields given off by a prolate spheroid was developed in
the course of the present investigation. Starting with the space-time
vector integro—differential equation for the induced current on the sur—
face of the scatterer, and by applying the physical optics approxima-
tions, the time domain representation for the co- and cross-polarized
backscattered far-field were obtained. The simplicity of the various
approximations used in constructing the different segments of the time
domain response and the reliability of the resulting scattered field
data have definitely brought into light the relative advantages of the
time domain approach over the frequency domain approach to the electro-

magnetic scattering problems for more complicated structures.

The computational results obtained from the application of the proposed
inverse séatfering model to the test case of a perfectly conducting
prolate spheroid indicate that an opfimum frequency range over which the
inverse scattering model yields satisfactory results is between ® = 5
and w = 10. From these computational results it was also inferred that
the rate of change of curvature as well as the difference in principal
curvature, i.e., (K1_K2)’ will play an important role in the récovery.
In a region where the rate of change of the curvature is large around
the specular point, the recovery becomes very difficult and the results
are rather inaccurate. It is felt that this limitation arises because
of two reasons. One is due to the restrictions imposed on the derivation
of the first-order correction to the physical optics approximation,

which was used in a major way to develop the inverse scattering model.
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In fhe'defi?atton of the first-order correction term, it was”assﬁmed
'that the-ﬂiffetence in’principal curvatures remains’the-seme-in the
vicinity of the specular point, which means thetvthe rate of change of
the curvature of.the sufface must be very gentle. The other reason for
the llmltatlon 1s felt to be due to the input data used in the computatlon, '

fwhlch were generated from an approx1mate model

Ih‘a reéion where the difference invcurvature‘is'very small, the computa;'
tiqnal results indicate that the systeﬁ of eqhatiohs‘in the iteration
scheme becomes 1llcond1t10ned and thus the convergence is not.achleved
‘Thus, the dlfflculty arising in a region where (K ~K ) is very small is
not due to a llmltatlon of the inverse scattering model itself' rather it
is due to the llmltatlon of the computlng scheme. In fact the inverse

nscatterlng model holds true even when (K ~K ) vanishes.

The computatlonal results presented in this work clearly 1nd1cate the
capablllty of thlS inverse scatterlng model ih recovering target shape.
parameters,with,a relatively smaller amount of data than required by

other available target identification techniques such as Bojarshi's in-
Vverse iaentity,.applicatioh qf inverse boundary conditions,.etc{ }hre—
over as inéicated'by the test case of the ptolate‘spheroid, the ptoposed:
inverse scattering method is quite'successful in providing partial re-
covery Of'thestarget profiles;_because in this method each specular point‘
is.recdvered separately from data at one point. Thﬁs,there is no minimum
limit on the.requited inhut data, like in some.other inverse scattering

. schemes [24,91-94].
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To sum up, in this work the mechanism (at least to a first approximation)
responsible for the depolarization of the incident wave at a scattere;%
surface has been used to develop a set of conditions (which may be view—
ed as a set of inverse boundary conditions). These conditions must be
satisfied by the profile parameters of an object in order to have a cer-
tain given pattern of co- and cross—polarized backscattered far-field
components. Thus, the scheme proposed here is in no way a pattern re-
cognition technique-[57,63,83,88], where the far-field features of the
unknown scatterers are compared with a catalogue or dictionary entry

which is available to the observer a priori.

7.2 SUGGESTION FOR FUTURE STUDIES

A very useful topic for future investigation would be an extension of
the work presented here to the low frequency region, i.e., to incorpér—
ate some iﬁwhfrequency characteristics (such as the moment conditions)
of the response wave form into the inverse scattering model. It is

felt that in order to achieve this objective, the polarization dependence
and the information content of the Rayleigh coefficient Kr must be
studied thoroughly. It should be possible to relate the surface para-
meters of the scattering object to the radar measurables via the second
moment condition and the Rayleigh coefficient, and thus, additional con~
ditions on the inverse scattering model could be imposed. With the
addition of this feature the inverse scattering model would be ready to

extract information from all the segments (i.e., leading edge as well -

as trailing edge) of the impulse response waveform.
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Another interesting‘related problem‘for future studies is to investigate
‘the possibility of improving the first order correction to the thSical
opticsapprOXimation provided by Bennett and.co-workers [12]. A good -
starting point would be - the expreSSion for p6 (the radius of the cir—-
cular patch about the specular pOint) given in t3 23). There instead
of neglecting the square term one could retain it and observe the re-"
sulting modification of the expreSSion for del in (3 24) via the
relation.(3.22). It should be possible to obtain some other modifica-
tion to (3. 23) [and therefore to. {3. 24)],which would take into account
‘the fact that the radius'of'curvature‘around the_specular point.is not -
'necessarily'constant. It is the opinion of the~author that not only the
'cross—polariaed component of the scattered field but the rate of change
(with respect to the configuration space) of the cross~polarized com-—
ponent also contains information regarding the scatterer and this factor
:should;somehow appear in the picture while considering the "correction"

to the physical optics approximation;

Before the proposed inverse scattering model could be conéideredvfrom-
the practical pOint of view, its performance under nOisy input data con-
ditions should be checked computationally. To start with, this could

‘be studied only when a very reliable and accurate set of input data is
available. Thererore a more rigorous (than the one presented in Chapter
Five) analysis of the direct problem of depolarization of electromagnetic

waves from smooth, closed convex obJects must be undertaken.

To sum up, this dissertation establishes the potentials ‘of detection and

‘identification systems based on polarization phenomena. Aside from o
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applicational viewpoints, it is hoped that the thoughts, concepts and
ideas brought forth in this wofk.will provide the reader with better
insight into the mechanism responsible for the depolarization phenomena
in electromagnetic reflectors and thus help to improve the understand-

ing of the underlying principles.
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APPENDIX I

The functional representation of an ellipsoid with semi-axes

is given as

2 2

2
£(x,y,2) =§2—+%2—+§2—— 1=0

at a point

Thus the unit normal A (x,y,z)

ellipsoid is

a, b, ¢

(I-1)

on the surface of the

i = Vi(x,y,2)/|VE(x,y,2)|
(2x/a’)8+(2y/b%)8 +(22/c?)3,
= — (1-2)
2[(x/az)2+(y/b2)2+(z/c2)2]1/2
where QX, Qy and Qz are the unit vectors in x, y and z directions
respectively. From (I-2), the direction cosines £,N,C of the unit
normal fi are obtained as
ro X = Y - Z _
g aZQ s n bZQ H C CZQ (I 3)
where
Q = [(/a®)? + (3/b2)2 + (z/c2)2]M/2 |
From (I-3) it can be shown directly that
_ &a? _ nb?
X cCZ z > y = Ezf-z .
Substituting these values of x and y in (I-1), yields
zc?
z =% —5—- s and therefore (I-4a)
2 .
y =z B (I-4b)
P .
2
3 (I-4c)

K
]
I+

*U,m
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where  p = [(aE)? + (bm)? + (c)2]'/2
Minkowski's support function M(€,n,Z) of the equivalent ellipsoid, as
shown in Fig. 4.1, is given by
M(E,N,8) = r * A = (xE+yn+zl)
Substituting values of x, y, z from (I-4)
ME,N,D) = [(aB)? + (n)? + (cr)2]!/2 (1-5)

using this expression for M(Z,n,Z), one obtains

M, = g-g= a?E[(ag)? +(®bn)? + (cr)?] ,
M - 3%= b’nl@@E)? + o2 + (cn)?]
oM 2 2 2 2
Mo =37 = ctl@)* + on)? + (er)?) ,
2 —
M = gz - @LGED? + Gn)? + (2] /2
) -2 (aE)2 + (bm)? + (erd?17%/2 |
2 . —_
= B = PPLGD) + (en)? + (ep)?] Y2
~G2)2[(a)? + )2 + (ep)?1732
2 —
M, = -g-g= [ (aE)? + (bm)? + (cr)?] /2
~(@20)?[(@E)?2 + (Bbn)? + (ep)?]7H2
2 —
M, = g =-atbRENGD)? + (M2 + (ep)2] 2
2 —
Mg, = gEI:C =—a2c?g(ag)? + (Bm)? + (ecr)?]7¥/2 |
Moo= _p2e2nranz & 2 4 (epy2yel2
Nt 9ndr °n ¢

Thus



2
- M2 : (abei)
MEEMnn En p*
M_.M —p2 o (abem)?
EE T gt p*
2
- M2 = (abcg) .
MnnMCC ng p*
Now (2.10) yields
2.2 2
fil%ﬁi— E*+n>+z3) =DD =1/K .
b 12
Since (B2 +n2+z2) =1 ;
@4% ipp -1 : (1-6)
P 1 2

By substituting the expression for M from (I-5) into (2.9) one obtains
[2%E% (b%+c?) + b2n2(a+c?) + c?z? (a24b2)1/p? = —(D1+D2) . (I-7)

Furthermorg,
2 _ 2 _
(D1 Dz) = [(D1+D2) 4D1D2] s
therefore from (I-6) and (I-7)

[a®g% (b%-c?) + b2n2(c2-a®) + c272(a2-b2)]/p? = (DI-DZ) .

The difference between two principal curvatures at the specular point is

D -D
12

which, when values of D1D2 and Dl—D2 are substituted from (I-6) and
(1I-8), yields

(K K ) = -[a2£2(b2-c2) + b2n2(c2-a?) + c2r2(a2-b2)] . (1-9)
1 2

P
(abc)?
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APPENDIX 1IT

For obtaining the expression for the projected area function A(t) the
coordinate system,as shown in Fig. A.TI.1, is rotated around the 2z and
y axes such that in the new coordinate system the x-axis is along the
direction of the incident wave. The transformed equation of the surface
of the equivalent ellipsoid is then used to obtain the expression for

the projected area as function of a, b, c, (€,n,C) and time ¢t.

In the cartesian coordinate system the equation of the equivalent ellip-

soid is ) ) ,
+ bL2+ :— =1 (I1-1)

NNI M

In the first transformation the coordinate system is rotated about the

z axis by ¢ as shown in Fig. A.II.1. Thus

X = -y'sind + x'cosd

y'cosd + x'sing

y

Substituting x and y in (II-1), the transformed equation of the

ellipsoid becomes

(£ x'4y') g2
(e #hx'?) (g =) ! (11-2)
1 1 1 1
where
c, @) 2 HOREAO)
DTR® AT @ = b Eegy 5]
with '
B1(¢) = bzsin2¢+ azcosz¢
c (4 = (a®-b?)sindcosd

azsin2¢+ b2c0s2¢

E (9
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In the second transformation the coordinate system is rotated about the
y' axis by © as shown in Fig. A.TI.1.

X!

[

-z'"cosf + x"sinb .

z"sinbd + x"cosH .

z
Substitution of these expressions for x' and z into (II-2) yields the
final transformed equations of the ellipsoid, i.e.,

y"2—2(f1cos6z" - tlx“)y“

+ [£ (2"t x"™)? - (f p —t%x"2)] =0 (1I-3)
2 2 2°2 1
g sin?6
where t =fsinb , f =32, 4 (£f%-h Ycos?08
1 1 2 c 101
(f h +g?)
t = g /f . P = g /f + 2 2 2 Xll2
2 2 2 2 172 £2
& 2 :
with g = [+ (b —£%)]sinBcosh .
2 c 11
g cos?@
h =h sin? - L — .
2 1 2
c
If x" = constant, then (II-3) represents the equation of the curve en-

closing the cross-section of the ellipsoid delineated by the plane
x" = constant. Using this fact aiong with the indefinite integral [4]
expression

f (Az—xz)l/zdx = %{X(Az—xz) + A%sin”! 1iﬁ*] s
the cross—sectional area of the equivalent ellipsoid as delineated by a
plane wave moving along the x" axis is obtained as a function of a, b, c,

(¢,6) and x" as

1 C

g
( E‘%‘sinze—hlcosze)za/2

gl xuz
- e SJ’-nze—h1 (cos?p- prarll

AE") =1 « (I1-4)

Since x"™ is the direction of plane wave incidence, the distance along
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this axis may directly be related to the time t (by scaling with respect
to the half free-space velocity of light) as

x" = ~t/2 [scaling factor c0 understood]

which, on substitution into (II-4), yields the expression

g c
57 A = —1 [4T2(8,4)~t2Tul t+2T' (6,9)] (11-5)
8h ?(8,9)

where
a®b?B () sin?0
F®,¢) =1 L - c2cos?0 ] .
CX($) - B (DE (4)

Expression (II-5) has been multiplied by the unit step function in order
to take care of the fact that the projected area function A(t) is

zero until the incident plane»wave reaches the specular point. It is to
be noted that in case of backscattering the direction cosines &, N, C
of the unit normal to the surface of the ellipsoid at the specular point

are related to the direction (8,¢) of the incident wave as
£ = cos¢psinbd s n = sin¢sind , L = cosH .

Taking the first derivative of A(t) with respect to time t gives

a—ggﬂ = 2mtGu (t+2T) (II-6)

where the factor (glc/4hi/2P3) has been replaced by G.
Differentiating (II-6) again, yields

92A(t)

—ez— = 2TG8(t+2T) ~ Gu(t+2r) (I1-7)

Converting the expression in (II-6) and (II-7) from the time domain ¢t
to the frequency domain w by appropriate Fourier transformation (see

Section 3.2) yields
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F[ dA(t) 1 = —2ma( 1 i 2{) o2Jul

ot B w2 w
2 .
F[ é—%%%l- = 216 (2T - j/w) o230l

where F represents the Fourier transform.

(11-8)

(1I1-9) -
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APPENDIX  IIT

It is of interest to document the relationships between the time domain

'resppnse.and the frequency domain response described in'Chapter Five.

Using the normalized variables t and w = kb , one obtains the fre-

‘quency domain phasor response as

| r Ho(Gw) = G(jw) + bH, (jw)

and the time domain response as

r Hg(t) = bF () Hi(t)_
- where b denotes the characteristip dimension of~thé scatterer (i;e,,
semi axis, diameter, length etc.). . When the incident magnetic. field is
,impulsive,rife. ‘

bHi(t)_= S(t) and

| bHi(Jw) = 1, .

Thus 'G(jw)‘vs w and ’FI(t) vs t yields a mapping between the time

domain amd the frequency domain governed. by the Fourier transformation pair

| oo . - |
"vG(jw)» = ";{FI-(t)} = . { FI(t)e‘J‘”tdt o (AIILLL)
F(6) = F M eGw)) =-§—1;f c(iweaw . (A.II1.2)

Now using the initial. value theorem of the Fourier transform theory i.e.,

Lim F () = lim juG(w)
t>o : oo :
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it is evident that the leading edge of the response in time domain con-
tributes most to the final values (i.e, large values of W ) of the res-
ponse in the frequency domain. Hence the segment (1) of the time domain

response in Fig,S(Sscorreéponds to the steady state value in Fig. 5.7.

. Next, by making use of the final Valuevtheorem of Fourier transform
_theory i.e.,

lim jwG(jw) = lim F.(t)
jwre Eoo

-it‘is seéen that thevtrailing-edge of the response in.the time domain con-
tribﬁtes most toltﬂe initial values (i.e., small values éf w.) of the
response'in‘frequeﬁcy domain. Thus the'segment (4) of the time domain
responsé in Fig. 5.5 éorresponds to the initial values in Fig.v5.7‘
Finally, the ﬁélues of fhe frequency reSponse'for inﬁe;mediate values 
of ‘w' . in Fig. 5,7 receive contributions mosfly‘from segments‘(Z) and

(3) in Fig. 5.5.
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