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Abstract

Wind turbine power curve modeling plays an important role in wind energy

management. Accurate estimation of power curves can help reducing power sys-

tems maintenance costs. In this thesis, we use machine learning techniques such

as clustering, spline regression as well as statistical learning approaches such as

multilevel modeling and isotonic regression to reduce bias and/or variance of fitted

power curves to improve their performance. First, we focus on reducing the effect

of outliers in the wind speed-power data. To this end, we propose to enforce the

inherent property of manufacturer power curve on fitted power curves to reduce

outliers’ impact. Manufacturer power curve is a worthy source of information about

turbines’ performance which has been ignored in the literature. So, we propose

two nonparametric techniques based on the tilting method and monotonic spline

regression methodology to preserve monotonicity on fitted power curves according

to manufacturer power curve. Another challenging issue in fitting empirical power

curve which was investigated seldom in the literature is heteroscedasticity of the

wind speed-power data set. Age of turbine, location, air density, wind direction,

and measurement errors are some of the reasons which may cause heteroscedasticity

or non-homogeneity among observed data. To overcome this problem, we propose a

novel methodology to use a hybrid estimation approach based on weighted balanced

loss functions that account for both estimation error and goodness of fit by shrink-

ing estimates toward standardized target models. Our proposed approach is very



general and can be used with any desirable weighting scheme as an effective tool

to improve the performance of existing power curve modeling approaches. Finally,

we investigate improving wind farm aggregated power curve modeling instead of

fitting power curves for individual turbines to reduce the complexity of wind farm

management analyses. To solve this issue, we propose a novel clustering feature set

based on turbines’ overall performance and utilize K-Means clustering to classify

turbines into homogeneous groups accordingly. We then apply multilevel modeling

methods, including random intercept and random slope models on turbine clusters,

to consider the hidden correlation among different clusters. We show that the

proposed method is a solution for handling the complexity-accuracy trade-off issue

since its accuracy is significantly higher than the single aggregated method alongside

an equal complexity.
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Chapter 1

Introduction

With the recent improvement of wind turbine technology and the presence

of abundant wind resources in different countries, the number of installed wind

farms for power generation has increased significantly. Although wind energy is one

of the most promising renewable energy resources, there exist many challenges in

wind farm managing. For example a major challenge is its high maintenance and

operation cost, which accounts for 20-25% of the total lifetime costs of an offshore

wind farm (Hassan, 2013). Another challenge is accurate power forecasting, which

plays an important role in power system reliability and marketing. Also, monitoring

the wind farm condition for detecting faults in the early stages facilitates wind farm

management. Efficient estimations of wind turbine and wind farm power curves

play an important role in resolving some of the aforementioned issues and perform

1
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better wind farm management. To this end, in this thesis, we develop methodologies

based on machine learning techniques to improve the accuracy of fitted wind turbine

power curves as well as reduce the impact of outliers. In addition, we study the

heteroscedasticity property of wind farm data sets and propose hybrid methods

to reduce the effect of heteroscedasticity on the wind turbine power curve fitting.

Besides, we study wind farm aggregated models, which are useful in predicting

annual power output. A novel methodology is proposed to reduce the complexity of

the aggregated model without scarifying accuracy.

In this chapter, we provide a short introduction to preliminary concepts and

outline the thesis objectives and describe our research problems. To this end,

Section 1.1 explains the recent growth of the wind power industry. Section 1.2

presents the challenges regarding wind farm and wind power prediction. Section 1.3

provides an overview of different wind turbine power curves and various procedures

to calculate them. Section 1.4 explains the need for an empirical power curve and its

applications. Section 1.5 discusses different commonly used empirical power curve

modeling techniques in the literature and defines statistical metrics to evaluate their

accuracy. Section 1.6 explains the impact of outliers on the power curve fitting

models and some outlier detection techniques available in the literature. Section

1.7 provides an overview of the heteroscedasticity property of the wind farm data

sets and the uncertainty it causes in fitting empirical power curves. Section 1.8

describes wind farm aggregated models and the impact of the wake effect on wind

farms. Section 1.9 describes the problems this thesis attempts to address and lists

the thesis objectives. Finally, Section 1.10 provides an overview of the thesis, briefly
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describing the content of each chapter.

1.1 Wind Power

Due to the future shortage of fossil fuel and its pollution, clean and renewable

energy sources are required to be used instead of fossil fuel. Clean energy may

promote the environment and human lives by reducing the use of fossil fuels. Wind

energy is one of the fastest-growing beneficial renewable sources of energy. In

the last decade, the number of wind farms is increased significantly. According

to Statistics Canada, more than 4% of electricity generation in Canada comes

from wind energy (Banitalebi et al., 2020). Canada is an ideally suited country

to capitalize on large amounts of wind energy due to its favorite environmental

conditions. In 2018, Ontario and Quebec were two provinces with the most wind

energy capacity, with 5,076 MW and 3,882 MW of power. Fig. (1.1) shows the

wind energy capacity of each province in Canada. According to the Canadian Wind

Energy Association (CWEA), among any form of renewable electricity generation,

wind energy has created the most electricity in Canada between 2009 and 2019.

In fact, 301 wind farms, operating from coast to coast, provide electricity for over

three million Canadian homes. Despite this progress, there are critical obstacles

in providing electricity from wind energy and still controlling power system in a

wind farm is a complex and challenging task due to the fluctuation of wind and its

randomness. Accurate wind information helps to better manage wind farms, control
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Figure 1.1: Wind energy capacity of each province in Canada by
2018. Source: https://www.nrcan.gc.ca/science-data/data-analysis/energy-data-
analysis/energy-facts/renewable-energy-facts/20069

system operation, and perform more accurate fault detection. Using current and

past wind information, one may utilize different wind power prediction methods

as a practical approach for turbine fault detection, power system simulation, load

analysis, and wind farms management and maintenance (Wang et al., 2020; Zhou

et al., 2019; Wang et al., 2019; Nabat et al., 2020; Lydia et al., 2014).

Wind farms consist of numerous and complicated systems. Different factors

affect wind farm performance. In recent years numerous studies pertinent to wind

farm performance monitoring have been done using different computational and/or

machine learning techniques. For an overview of such methods, see Wang et al.

(2020).
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1.2 Wind Farm Challenges

The traditional concept of wind power systems is that wind power systems

consist of a few large wind power plants. Recently, this has been substituted with

a new wind power system concept, which includes distributed small or medium

wind power plants (Association et al., 2010). This new power system concept leads

to more penetration of wind power into the power networks. However, one of the

challenges in integrating wind energy into the power network is its randomness and

wind speed fluctuation, which reduces the operating system’s stability, reliability,

and power quality (Tong, 2010).

Accurate wind speed and power prediction is required to increase the reliability

of wind power systems and help power system management by giving clear and

precise information about the future (e.g., available power, fluctuation of power and

voltage, etc.) Wind power prediction may help in decisions such as connecting a

load, utilizing battery storages, changing blade distance, and other control behaviors

(Lange and Focken, 2006). Besides, for electric power companies and the marketing

team, it is vital to extract the maximum available energy from wind speed and have

a precise prediction of available wind energy provided to customers and clients. This

can help companies to perform better management decisions. For example, their

maintenance can be done on days with the least expected available wind energy (Li

and Shi, 2010).

Below, we provide a short list of challenges and objectives pertinent to wind
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farm managing that highly depend on wind power forecasting accuracy:

� The quality of power supply must be sufficient with an acceptable level of

reliability and stability (Marinelli, 2011).

� Energy distribution companies should be able to forecast available wind power

energy accurately for future days to avoid the shortage of power for their

clients (Billinton et al., 2006).

� Evaluating available power for the long term (e.g., next year) can help managers

and marketing teams in their decision making and cost analysis (Jónsson et al.,

2010).

� Accurate wind speed and power prediction are vital for energy companies to

choose the location of new wind farms as well as select wind turbines’ models

(Oh et al., 2012).

� According to the high cost of battery storage, deciding on the sufficient storage

capacity is another challenge which wind farm managers have to deal with

(Shokrzadeh, 2014).

� Turbines maintenance should be done frequently, and managers prefer to

maintain turbines when the available wind energy is low, so that all turbines

can generate their maximum power when wind speed is high. Otherwise, the

wind farm will not perform most efficiently (Besnard et al., 2009).
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Procedure of Power System Reliability Evaluation

Figure 1.2: Four general phases of a power system reliability analysis. Phase 1:
predicts the future wind speed. Phase 2: Estimate wind power using a power curve
model. Phase 3: Combine with other power resources. Phase 4: Evaluate power
system reliability.

� Wind farm condition monitoring and early fault detection can facilitate main-

taining the wind farm. Identifying the turbines that are not working in normal

conditions in the early stages can reduce the repair cost significantly (Pandit

and Infield, 2018).

The solution to most of the aforementioned challenges depends on the accurate

estimation of wind turbine power curves. These curves are often used for the

operational management of wind farms, performance monitoring of turbines, and

effective wind energy utilization into the power systems (Lydia et al., 2014).

1.3 Wind Turbine Power Curves

A power system reliability analysis can be considered as a procedure with

four general phases as depicted in Fig (1.2). In the first phase, one needs to predict

the future wind speed at the location of wind farms. Either physical or statistical
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approaches are utilized for this purpose. In the physical approach, all the details

about the physical description of the wind farm site and its surrounding are required

to model the on-site condition (Lange and Focken, 2006). In contrast to the physical

approach, the statistical approach does work solely based on the historical data of

wind speed and corresponding generated power from the wind farm. This approach,

which is inexpensive compared to the physical approach, builds statistical models

based on historical data. However, this approach needs an acceptable amount of

historical data to train efficient statistical models. Some of the most commonly

used classical wind speed forecasting methods include time series techniques such

as Autoregressive (AR), Moving Average (MA), Autoregressive Integrated Moving

Average (ARIMA), and the Box-Jenkins approach (Akaike, 1969; Box et al., 2015).

These models are easy to formulate and are capable of providing timely forecasts.

Another approach is based on Artificial Neural Networks (ANN) and some of its

variants such as Particle Swarm Optimization - Artificial Neural Networks (PSO-

ANN), Modified Hybrid Neural Network, Complex-Valued Neural Network, and

Adaptive Wavelet Neural Network (AWNN) (Amjady et al., 2011; Kitajima and

Yasuno, 2010; Bhaskar and Singh, 2012). In addition to these methods, there exist

many more machine learning algorithms for time series prediction e.g., K-nearest

neighbor regression method (KNN) (Yesilbudak et al., 2013), CART (Classification

& Regression Trees)(Lee et al., 2006), and support vector machine (SVM) (Marvuglia

and Messineo, 2012; De Gooijer and Hyndman, 2006; Taieb et al., 2012; Jung and

Broadwater, 2014).
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In the second phase of analyzing power system reliability, one estimates the

generating power by turbines based on the predicted wind speed at the wind farms’

location. To consider the turbines’ performance, an accurate estimation of the

empirical wind turbine power curve is required. Since many different factors, such

as the turbine’s model and age, wind farm location, and its surrounding obstacles

impact the wind turbine’s performance, efficient methods of fitting power curve

models are necessary.

In the third phase, the predicted wind power would be combined with other power

resources such solar power. Finally, in the last phase of power system reliability

analysis, total amount of predicted power would be compared with the predicted

customer load. Note that phase 1 and phase 2 are combined into one phase in some

studies, and wind power is predicted directly using historical data.

The main focus of this thesis is on phase 2 of the power system reliability studies.

To this end, we have developed new techniques to provide more efficient empirical

power curves that can be used for wind farm management and other industrial

applications. The wind turbine power curve shows the wind turbine’s electrical power

output for different wind speed values (Gasch and Twele, 2011). Cut-in (Vc), rated

(Vr), and cut-out (Vs) are the three main wind speed values of a wind turbine power

curve. The cut-in point shows the wind speed threshold value that wind turbines

start generating power as wind speed reaches this threshold. Between the cut-in and

rated speeds, typical wind turbines generate power increasingly by increasing wind

speed. Wind turbines are supposed to generate their rated or maximum capacity

in the range between Vr and Vs. Wind turbines are often shut down to avoid any
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Manufacturer’s Power Curve

Figure 1.3: Manufacturer’s power curve along with the cut-in (Vc), rated (Vr) and
cut-out (Vs) points.

damage when wind speed is higher than Vs. Fig. 1.3 represents cut-in, rated, and

cut-out points for a sample wind turbine alongside the manufacturer’s power curve.

We explain the theoretical, manufacturer, and empirical power curves in more details

in the following sections.

1.3.1 Theoretical Power Curve

To better manage and maintain wind farms, it is necessary to have a clear

idea about how a wind turbine produces energy and how the wind, as the primary

resource of power in a wind farm, behaves (Marinelli, 2011). In fact, a wind turbine
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converts some portion of available energy in the moving air mass to rotational kinetic

energy. Then, a generator will produce electrical energy from the rotational kinetic

energy. The relation between available energy in the wind and produced electrical

energy is not linear. Besides, some other constraints apply to the relationship such

that there exist minimum and maximum threshold wind speed for the generator to

operate (Walker and Jenkins, 1997).

Different factors, including wind speed, time, weather, location, and obstacle

near the wind farm, impact the wind turbine’s power output. The following formula

shows the generated power from the mass flow rate of air

Pw =
1

2
ηCpρAv

3, (1.1)

where Pw is the generated electrical power in (Watt), η represents the overall

efficiency of the turbine, Cp is the dimensionless power coefficient, ρ is the air

density in kg/m3, A is the turbine rotor area in m2, and v is the wind speed in

m/s (Walker and Jenkins, 1997; Ackermann and Söder, 2000). Cp coefficient, which

shows the theoretical amount of mechanical power that can be extracted by the

turbine rotor, is a function of the turbine blade pitch angle and blade tip speed

ratio (Ackermann, 2005). Moreover, the so-called Betz limit explains that the

maximum theoretical mechanical power of wind turbines is 0.5926 (Betz, 1920).

This formula clearly explains that there exists a nonlinear relationship between wind

power and wind speed. Nonetheless, it is an oversimplification to consider that wind

turbine output would follow the theoretical power curve in reality. So, wind turbine
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manufacturers release a manufacturer’s power curve alongside the wind turbine to

represent a more realistic power curve.

1.3.2 Manufacturer Power Curve

The classic design of wind turbines in the 1990s was such that it would operate

at constant speed even in different wind speeds (Marinelli, 2011). Some advantages

of this design were mechanical simplicity, robustness, and low maintenance cost.

On the other hand, this type of design has some disadvantages (e.g., it draws more

reactive power by producing more active power). In new wind turbine designs, rotors

may rotate at variable speed to achieve maximum efficiency. New wind turbines’

mechanical designs are more complicated than constant speed turbines, but they

help capture more power energy. New designs also improve power quality and reduce

mechanical stress on the turbine.

Even in the new designs, wind turbines have a maximum limit on generating

power in the wind speed range between rated to cut-out points, and they can not

produce more than rated power in this range of wind speed. This limitation is

handled by the reduction of conversion efficiency from wind energy to rotational

kinetic energy. Pitch regulation and stall regulation are two ways that blades can

be designed to reduce the conversion efficiency (Association et al., 2012).

Pitch regulated systems have an active control system that controls the pitch

angle around its axis to reduce the rotor speed, keeping the rotor speed at a constant

level when wind speed reaches the rated point.
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On the other hand, in a stall regulated system, the rotor speed and the produced

power will decrease by incrementing wind speed after reaching a rated threshold

until it reaches a cut-out point. In stall regulated machines, blade designs are such

that they perform worse when wind speed is high, to avoid any damage to the

turbine, without requiring any active control system (Ackermann, 2005).

In both designs, wind turbine manufacturers provide specifications of their

turbine model alongside a table or graph representing the turbine’s power curve.

Fig. 1.3 shows an example of a manufacturer’s power curve for a sample pitch

regulated wind turbine. Manufacturers’ power curve defines essential factors about

the turbine model that help customers decide which turbine to select for their wind

farm. There is a standard procedure that manufacturers should follow to prepare

power curve information, which is called IEC, where more details in this regard can

be found in (Commission et al., 2005).

1.3.3 Empirical Power Curves

The IEC-based power curve prepares information about the behavior of new

wind turbines under the condition of the test site location that are designed to assure

the power curve’s accuracy. According to different atmospheric conditions (e.g., air

density, wind velocity distribution, obstacle near the wind farm, mechanical and

control issues, and so on) in the current site as well as wind turbine’s age, compared

to the test site, wind turbines may perform not the same as the expectation from the
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IEC-based power curve. Hence, wind turbine power curves are often replaced with

empirical power curves that are obtained using real data sets retained in the wind

farm. Another reason for requiring an empirical power curve is that rapid fluctuation

is often ignored in an averaging procedure done in the IEC standard. Besides, the

IEC-based curve is neither site-specific nor considering the wear and tear of turbines

of a wind farm (Kusiak et al., 2009). In conclusion, it is recommended to utilize the

empirical wind turbine power curve in practice, and estimate the generated power

using statistical methods based on real historical data from that specific wind farm

site (Trivellato et al., 2012; Shokrzadeh et al., 2015).

1.4 Modeling Applications

In the previous section, we explained that to overcome the drawbacks of the

manufacturer’s power curve, wind farm managers may build site-specific empirical

wind turbine power curves using model fitting techniques. In this context, empirical

power curve modeling is often done for one of the following reasons:

� Wind energy prediction and analysis

� Selecting appropriate wind turbines

� Condition monitoring

� Battery size estimation.

In the following sections, each of these objectives will be explained briefly.
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1.4.1 Wind Energy Prediction and Analysis

One of the critical and challenging tasks for wind farm developers is to

accurately estimate the wind farm’s future energy production. Inaccurate estimates

may cause considerable financial damage to investors. Finding an appropriate

candidate site with high meteorological potential will provide sufficient available

wind resources (Manwell et al., 2010). One can easily estimate available wind

energy that can be produced over a period of time by having enough information

about wind speed data in the candidate site and utilizing an accurate empirical

power curve. In addition, an accurate wind turbine power curve can facilitate

decisions about expanding wind farms (Norgaard and Holttinen, 2004). In Jin and

Tian (2010), an analysis of wind energy production dynamics was investigated, and

dynamic power curves were proposed. They also estimated the power uncertainty,

especially when the wind turbine generator operates between the cut-in and the

rated wind speed. In Olaofe and Folly (2013), accurate estimation and controlling

the variability of a wind farm’s power output were suggested to provide stable

wind power to the grid. The authors concluded that their proposed method would

improve the loss of load expectation and confirmed that utilizing a developed wind

farm’s empirical power curve is more accurate than the manufacturer’s power curve.

Accurate forecasting of wind power in hours or days ahead plays an essential role in

electricity markets. In Botterud et al. (2010), the effect of an inaccurate wind power

forecast was investigated and concluded that an inaccurate wind power forecast

leads to irreparable damages.
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1.4.2 Selecting Appropriate Wind Turbines

Wind farm developers can use wind distribution in wind farm locations

and the estimation of generating power based on the power curve model to choose

turbines with optimum efficiency and performance. In Simic and Mikulicic (2007),

the wind turbine power curve’s impact on the wind energy cost was studied. In

addition, the optimal system configuration was investigated in a small wind off-grid

power system. In Jangamshetti and Rau (2001), using the normalized power curves

was proposed to help choose a wind turbine generator that yields higher energy at a

higher capacity factor. The proposed generalized curves in Jangamshetti and Rau

(2001) could help wind farm developers in the process of planning and development

stages of wind power stations. In Bencherif et al. (2014), annual capacity factors

were calculated based on the Weibull distribution function and power curve models.

Also, the optimum selection of wind turbine generators from the site’s viewpoint

was investigated. Further researches studied the impact of power curve models on

wind turbine selection and selected turbines’ efficiency. For moew details see Cocina

et al. (2015), Pallabazzer (2003) and reference therein.

1.4.3 Condition Monitoring

Empirical power curve models can be considered as effective condition

monitoring tools (Pandit, 2018). They can be used as a valuable reference for
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monitoring the wind turbine’s performance. Under normal conditions, the turbine’s

generating power should not be far from the expected power from the fitted power

curve (Kusiak et al., 2009). In Marvuglia and Messineo (2012), a state model of a

wind farm in normal condition was built using a data-driven approach. According to

this state model, quality control charts were built for detecting anomalous functioning

operation and faults detection in the wind farm. In Kusiak and Verma (2012), three

different power curves were studied to monitor wind turbines’ performance at a wind

farm. In Kusiak and Li (2011), in addition to fault detection using the empirical

power curve, the severity of faults were investigated. In Pandit and Infield (2018),

an algorithm based on the Gaussian process using the Supervisory Control and

Data Acquisition (SCADA) data was proposed as a cost-effective approach to wind

turbine health monitoring. In Gill et al. (2011), early identification and detection of

faults, including blade, yaw, and pitch errors, were studied using copula model and

statistical signatures of faults or anomalies. In Kusiak and Li (2011), power curve

models based on the data mining approaches were utilized to predict specific faults

60 min before occurrence.

1.4.4 Battery Size Estimation

Energy storage systems are required to integrate high penetrated wind and

solar renewables on an energy network to overcome the issue of wind and solar energy

fluctuations. To have an electric grid using 100% renewable-based intermittent
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renewables like wind and solar, an appropriate size of energy storage systems is

necessary (Alotto et al., 2014; Castillo and Gayme, 2014; Denholm and Hand,

2011). Shokrzadeh (2014) concludes that one may convert intermittent renewables

to baseload generation with sufficient size of energy storage systems by smoothing

out the intermittency. Besides, it can allow penetrations of more renewables. The

reduction in the cost of energy storage systems leads to the availability of larger-scale

energy storage systems in power systems. In Shokrzadeh and Bibeau (2012), the

authors discuss repurposing electric vehicle batteries by integrating energy storage

systems and wind energy. They define a cost formula and discuss the impact of size

and cost of storage system on the total cost of wind power production.

1.5 Empirical Power Curve Modeling and Its Ac-

curacy

In this section, we explain the details of an empirical power curve modeling.

The data set for fitting an empirical wind turbine power curve should contain wind

speed and the corresponding generated power recorded at periodic intervals over

a sufficiently long time. There exist different types of historical data sets. One of

the commonly used data sets is collected from experimental wind farms which is

used in this study. The other data set contains the Supervisory Control and Data

Acquisition (SCADA) system data set. SCADA data set is not available for many

wind farms, especially for the old ones. It causes a restriction for these wind farms
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to only use wind speed and power data for fitting the empirical power curve. In

this thesis, we focus on fitting the power curve for turbines in wind farms without

the SCADA data set. However, different wind farms may have different systems for

collecting data.

There exist different methods to estimate empirical power curves using wind

speed and corresponding power value. In general, one can classify the empirical

power curve fitting methods into parametric and non-parametric techniques.

1.5.1 Parametric Techniques

Parametric techniques define the relationship between the input and output

by a set of mathematical equations with a finite number of parameters. One can

formulate the mathematical expressions of parametric models as follows:

P (v; Θ) =



f1(v; Θ1) 0 < v ≤ v′1,

f2(v; Θ2) v′1 < v ≤ v′2,

f3(v; Θ3) v′2 < v ≤ v′3,
...

fb(v; Θb) v′b−1 < v ≤ v′b,

(1.2)

where v′i is wind speed at the ith wind speed segment. Each of fi, i = 1, . . . , b, may

have several fixed number of parameters Θi, which are usually collected together to

form a single parameter vector Θ = (Θ1,Θ2, · · · ,Θb)
>. For instance, in Khalfallah

and Koliub (2007), piecewise linear approximations are fitted using the equation of a

straight line as the empirical power curve. Different polynomial methods, including
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quadratic, binomial, and cubic polynomial methods, are proposed to fit the power

curve in Diaf et al. (2008); Giorsetto and Utsurogi (1983); Deshmukh and Deshmukh

(2008). Four- and five-parameter logistic approximations are another set of proposed

methods for fitting power curves (Villanueva and Feijóo, 2016b; Sohoni et al., 2016a;

Lydia et al., 2015). Thapar et al. (2011) proposed two different kinds of models. The

first type of model was built based on the fundamental equation of power available

in the wind, and the other model was formulated using the concept of the turbine’s

power curve. Models based on the power curve of the turbines performed more

accurately than equation-based models. Also, they concluded that equation-based

models were very cumbersome.

1.5.2 Non-Parametric Techniques

Nonparametric models make no assumption about the functional form of

the relationship between wind speed and wind power. So, these models are capable

of fitting a wide range of power curves’ shapes, compared to parametric models

(Eubank, 1988; Friedman et al., 2001; Hollander et al., 2013).

Shokrzadeh et al. (2014) introduced two nonparametric methods, cubic spline

regression and penalized spline regression model, which outperformed parametric

methods. Different modification of artificial neural network models are also proposed

in Li et al. (2001); Pelletier et al. (2016); Manobel et al. (2018). Data mining

algorithm methods are another class of commonly used methods for wind turbine
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power curve. These methods are powerful in extracting patterns in huge data sets.

In conclusion, there is no best empirical power curve modeling approach for all

types of turbines in all wind farms. For each particular data set, a specific fitted

curve might work best. So, it is critical to evaluate the performance of different

power curve fitting methods based on statistical metrics on a data set. Then, one

can decide which method performs better for a given data set.

1.5.3 Modeling Accuracy

Model accuracy is the most important criterion to use while comparing

different power curve modeling approaches. Researchers compare their proposed

methods based on different statistical metrics (Marvuglia and Messineo, 2012). The

most commonly used metrics in the literate include mean absolute error (MAE),

symmetric mean absolute percentage error (sMAPE), normalized mean absolute

percentage error (NMAPE), root mean squared error (RMSE). We explain each of

these metrics by presenting the corresponding equation of each metric. First, we

define absolute error (AE) and relative error (RE) associated with ith observation

in a data set as follow:

AE(i) = |P̂i − Pi|, (1.3)

RE(i) = | P̂i − Pi
Pi

| × 100, (1.4)

where P̂i is the predicted power value and Pi is the actual power. One can formulate
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different accuracy metrics using Eq. (1.3) and Eq. (1.4). For example,

MAE =
1

N
ΣN
i=1|P̂i − Pi| =

1

N
ΣN
i=1AE(i), (1.5)

RMSE =

√
1

N
ΣN
i=1(P̂i − Pi)2 =

√
1

N
ΣN
i=1AE

2(i), (1.6)

sMAPE =
1

N
ΣN
i=1

|P̂i − Pi|
(|P̂i + Pi|)/2

× 100 =
1

N
ΣN
i=1

2Pi

P̂i + Pi
RE(i), (1.7)

NMAPE =
1

N
ΣN
i=1

|P̂i − Pi|
maxNi=1(Pi)

× 100 =
1

N
ΣN
i=1

Pi
max (Pj)

1≤j≤N

RE(i). (1.8)

One can use any of these metrics for evaluating the goodness-of-fit for any fitted curve.

A better fit corresponds with the one with a smaller value of the underlying metric.

However, to better evaluate the performance of a method, these criteria should be

calculated on a test data or be averaged over different folds in a cross-validation

procedure.

1.6 Outlier Issues

In this section, we discuss outliers data that can highly impact the accuracy of

fitted curves. Wind farm data usually contain abnormal data that are far beyond the
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expected output of the power curve. An application of condition monitoring using

an empirical power curve is to detect anomalies or outliers. Therefore, accurate wind

power data facilitate the secure operation of wind turbines and help in optimizing

the control strategy. Accurate wind power data is dependent on the number of

outliers in the historical data set. Different reasons such as turbine shutdown, wind

speed sensor failure, load shedding, dirty or damaged turbine blades, communication

noise, and equipment failure may cause the existence of outliers in the wind farm

data set (Shen et al., 2018). Statistical analysis of wind power data will be distorted

if data contain a high portion of anomalies and outliers. Wind power characteristics

may change according to these outliers. So, it is required to overcome this issue by

removing outliers or reducing their impact. As a pre-processing stage, data cleaning

is done to improve the quality of wind farm data by removing outliers (Swapna

et al., 2016).

1.6.1 Outlier Detection and Pre-processing Data

Outlier detection is a well established topic in the literature (Ben-Gal, 2005;

Rousseeuw and Leroy, 2005; Domingues et al., 2018; Daki et al., 2017). Identification

and cleaning of wind turbine outliers became an exciting area of wind energy research,

and outstanding achievements are established in this area. In Zhao et al. (2017), a

quartile algorithm was utilized for identifying the outliers in wind turbines data.

The quartile algorithm is a commonly used method that is the most effective in
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a dataset with a small portion of outliers. In Zhao et al. (2014), in addition to

utilizing the quartile algorithm, the K-means method was applied to the data set to

find clusters of outliers. This method suffers from two points. One is the complexity

of finding the correct number of clusters, and the other is that this method may

eliminate lots of normal data by considering them as a cluster of outliers. In Lou

et al. (2016), an effective solution to detect stacked outliers below the power curve

based on the intra-group optimal variance algorithm was proposed; however, this

method was not accurate to detect outliers above the power curve. In Kusiak et al.

(2009), a novel method based on a nonlinear power curve modeling method was

proposed for filtering outliers. This method performs well for a data set with a high

portion of normal data, but it is a time-consuming method.

One may classify outlier detection methods into three types (Shen et al., 2018).

In the first class, outliers are detected based on the data density or distance from

other data points (Zhao et al., 2014; Zheng et al., 2014). This class of methods

performs poorly in the detection of densely distributed stacked outliers. The second

class of outlier detection methods is based on mathematical modeling of wind turbine

power curves. Such methods filter out outliers according to the residual of data

from the fitted power curve and are not effective when the wind farm performance

is abnormal, which cause the existence of a high number of outliers in the data set

or high variance of generated power in the data set (Kusiak et al., 2009). In the

third class (e.g., Zhao et al., 2017), outlier detection is based on the location of data

in the distribution of total data. The main idea of this class is that outliers are

beyond the acceptable range of normal data distribution (Lou et al., 2016; Zheng
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et al., 2014). This class of method is universally applicable to different types of

outliers. All of these methods try to remove outliers, and none of them are capable

of removing all outliers.

1.7 Heteroscedasticity

In addition to outliers, heteroscedasticity of wind speed-power data plays

a critical role in improving fitted power curves’ accuracy. Heteroscedasticity is a

usual issue in the wind farm data set, which means the variance of recorded wind

power is dependent on wind speed. In classic literature, this issue was considered

in the same way as outlier detection, and researchers have tried to overcome this

issue by removing lots of data; however, these data are not outliers. Sometimes

turbine’s aging may cause them not to generate their rated power even when the

wind speed is in the range between rated and cut-out points. Heteroscedasticity

causes the estimated errors of wind power to become large and sometimes have a

long tail distribution (Wang et al., 2018). One can find worthy studies in statistics

regarding heteroscedasticity as in Carroll and Ruppert (1982); Park (1966); Rao

(1970). However, considering heteroscedasticity in wind turbine power curve fitting is

a new subject, and the number of articles related to this subject is meager. In Wang

et al. (2018), the heteroscedastic spline regression model (HSRM) and robust spline

regression model (RSRM) were utilized to detect inconsistent samples, followed

by an ANN-based forecasting model to obtain power forecasts. In Rogers et al.
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(2020), probabilistic methods were proposed as a natural framework to quantify

risk for facilitating decisions. The probabilistic methods are fitted based on the

heteroscedastic Gaussian process method. The authors utilized the heteroscedastic

property of data to calculate the estimation’s uncertainty without any attempt to

overcome this issue. Overcoming the heteroscedasticity issue plays an important

role in wind farm management and fitting power curve. In Chapter 3 of this thesis,

we propose a novel approach using two different weighting schemes to take into

account target power curve models based on locally balanced loss function to reduce

the negative impact of the heteroscedasticity issue.

1.8 Wind Farm Aggregated Models

So far, we have explained power curve modeling for individual wind turbines,

but it is often necessary to study the wind farm aggregated power curve models.

One of the wind farms aggregated power curve model applications is in estimating

the annual wind power. Since the wind availability is dependent on the weather

condition, estimating the annual wind power is very challenging.

In Commission et al. (2005), according to wind speed frequency distributions,

the total energy production of a wind turbine in a test site is estimated under

specific conditions during a one-year period, assuming 100% availability. However,

energy production may vary from one year to another as well as from one wind farm

to another (Marinelli, 2011). Forecasting a wind farm’s energy production through
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predicting the energy production of each wind turbine in the wind farm increases the

computational cost. In massive wind farms with tens or hundreds of wind turbines

containing generators, turbines, transformers, cables, and control systems, detailed

modeling of the power system is very complex, and any simulation is time-consuming

(Ali et al., 2012; Fernandez et al., 2009). So, any approach to simplify the wind

farm model, which reduces the simulation time and complexity of the wind farm

model while keeping the model’s accuracy at an acceptable level, can improve the

estimation of the total energy production. To this end, one approach is to utilize the

wind farm aggregated models while maintaining their accuracy (Chowdhury et al.,

2013). Several different aggregated models are currently introduced, which can be

classified into two general classes: single aggregated model and multiple aggregated

model (e.g., Fernández et al., 2008; Li et al., 2012). Some of the commonly used

methods for the single aggregated model include artificial neural networks combined

with the wavelet transform (Catalão et al., 2011) as well as radial basis function

neural network and back-propagation neural network (Yongqian et al., 2011).

Nevertheless, a single aggregated model can be useful for a small wind farm

with one type of turbine model; otherwise, one single aggregated model will not

accurately represent the complex behavior of the entire wind farm. To this end, often

multiple aggregated models are utilized to reduce the risk associated with a single

aggregated model and the computational cost associated with separating models for

each turbine in a wind farm. In most of the multiple aggregated models, one first

clusters turbines with similar characteristics into several groups, consequently, fits a

single aggregated power curve model for each cluster. So, in multiple aggregated
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models, two components are fundamental and need to be selected carefully. One is

the clustering features and the clustering method to classify similar turbines, and the

other one is the appropriate method of fitting the wind power curve models. Several

different methods are proposed in the literature. In Zou et al. (2015), utilizing the

Fuzzy clustering method based on some indicators such as wind speed, slip ratio,

and stator voltage is proposed. In Ali et al. (2012), the Support Vector Clustering

(SVC) technique is proposed to cluster wind turbines based on features such as

the location of turbines in the wind farm and incoming wind. Consequently, a

probabilistic aggregated model is proposed by taking into account the wake effect.

We briefly explain wake effect in the following section. In Zhang and Liu (2019), a

matrix of features is built on the wake effect of turbines. To cluster turbines, the

authors proposed a singular value decomposition ( SVD) clustering algorithm.

1.8.1 Wake Effect

One of the factors which impacts wind farm efficiency is wind shadow or

wake effect (Al-Shammari et al., 2016; Shamshirband et al., 2014). The wake

effect represents the negative impact of an upper turbine on a downwind turbine,

which reduces the wind power energy. In this case, the downwind turbine energy

production will be reduced in that wind direction compared to the upper turbine

(Changshui et al., 2011). Fig. 1.4, represents an example of the wake effect in a wind

farm. The wake effect is dependent on the distance between turbines and the layout
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Wake Effect

Figure 1.4: Wake effect of an upper wind turbine on a downwind turbine which
causes the downwind turbine generates less power than expected.

of the wind farm. Consequently, the wake effect is a critical concept that should be

considered in designing the wind farm layout and estimating the annual wind energy

production. It also plays a vital role in wind turbine power curve fitting as well as

clustering wind turbines in a wind farm (Ekonomou et al., 2012; Saavedra-Moreno

et al., 2011; Eroğlu and Seçkiner, 2012; Yin and Wang, 2012).

Several different factors including the wind farm location, number of turbines in a

wind farm and their size, the terrain morphology, the distribution of wind direction,

the wind speed, and the design of blades may have impacts on the wake effect in

a wind farm (Chen et al., 2013; Petković et al., 2014; Rašuo and Bengin, 2010).

The wake effect is one of the most common reasons which reduces the efficiency of
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wind power production (Lignarolo et al., 2014; Dörenkämper et al., 2015). Wake

effect not only reduces the efficiency of downwind turbines but also may lead to

possible mechanical failure in the cases with lots of interference and should be

considered as a vital factor in fitting aggregated power curves (Subramanian et al.,

2016; Chowdhury et al., 2015).

1.9 Problem Description and Thesis Objectives

In recent years with a high increment in the number of wind farms and

the number of turbines in wind farms, solving the challenges pertinent to wind

turbines and wind farms became a priority in renewable power systems. In the

previous sections, we explained the wind turbine power curve fitting process and its

importance on wind farm management and maintenance cost. Although there have

been significant improvements in some aspects of power curve fitting models, several

challenging issues are required to be addressed to increase the efficiency of wind

turbines and wind farms’ performance. Some important challenges are studied in

this thesis that are outlined in Chapters 2, 3 and 4 of this thesis. These chapters are

based on two published papers in Renewable Energy (2020) and Energy (2021), one

conference paper presented in the 6th International Conference on Green Energy

(2018) as well as an accepted paper for publication in the IEEE Transactions on

Sustainable Energy (2021). More details regarding the content of each chapter that

addressed specific goals toward the objective of this PhD thesis are given below.
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1.9.1 Chapter 2

The first challenging issue is to reduce the effect of outliers on wind turbine power

curve modeling. Outliers may substantially change the shape of the empirical power

curves and subsequently reduce the accuracy of all analyses. A clean wind speed-

power data set will have the most similar empirical power curve to the manufacturers’

power curve. However, after a while, the turbine’s aging issue decreases the turbine’s

rated power and efficiency. Consequently, the shape of the empirical power curve

may differ from the manufacturer in a minor amount. But, it is clear that abnormal

data, which are far from other normal data points, may pull the fitted empirical

power curve toward themselves and significantly change the power curve’s shape.

This affected power curve will perform poorly in power forecasting and management

decision applications compared to the empirical power curve, which is impacted only

by turbines’ aging. There are many different methods for detecting abnormal data

and outliers in the literature; however, researchers did not pay sufficient attention

to methods that may reduce the effect of outliers on fitting empirical power curves.

As none of the outlier detection methods can identify all the outliers in a data

set, it is desirable to have fitting methods that reduce the outliers’ effect. To this

end, considering some inherent features of the manufacturer’s power curve, e.g.,

monotonicity of power curve, and applying them in fitting empirical power curves

on wind farm data set can reduce outliers’ impact. By enforcing the fitted curve to

have a similar shape to the manufacturer’s power curve, one can restrict the fitted

curve from changing majorly toward outliers, which are far from the normal data.
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By this approach, one can reduce the effect of outliers. The overall contributions

associated with this Chapter are:

� investigating the impact of enforcing inherent properties of the manufacturer’s

power curve on reducing outliers effect on fitting power curves,

� enforcing the empirical power curve to be monotone, which is one of the

manufacturer’s inherent properties,

� proposing an approach to enforce monotonicity for both parametric and

nonparametric power curve fitting methods,

� reducing the variance by keeping the bias of fitted curve unaffected,

� comparing the accuracy of monotonic power curves and other commonly used

power curves in estimating power prediction.

1.9.2 Chapter 3

In addition, we investigate the heteroscedasticity property of wind speed-power

data. The heteroscedastic property of data increases the uncertainty of estimation

according to the high variance of generated power, especially in the range of high

wind speed. So, commonly used empirical power curve models are not able to

accurately forecast the wind power. To this end, we propose an approach to take

into account other valuable information resources such as similar turbine’s power

curve for a similar turbine, manufacturer’s power curve, theoretical power curve, or
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wind farm aggregated power curve for the regions where there exists an uncertainty

in estimation. In other words, we take advantage of other resources other than just

the empirical power curve when the uncertainty of the fitted empirical power curve is

high. So, we suggest to partially use some valid and well-defined target power curves,

e.g., manufacturer’s power curve or wind farm average power curve (in this study),

in the region with high variance and uncertainty. To consider the level of uncertainty,

we propose two different weighting schemes, which are based on the variance of

data in different bins of wind speed. Using the weighting scheme, we propose an

approach to produce a hybrid power curve using both the empirical power curve

and target power curves. To have a systematic approach for combining two power

curves (empirical and target), we define a locally balanced loss function, which is

explained in this Chapter in more detail. The overall contributions associated with

this Chapter are:

� exploring the heteroscedastic property of data in wind turbine power curve

modeling,

� defining weighting schemes based on heteroscedasticity of wind speed-power

data,

� proposing a locally weighted balanced loss function which considers goodness

of fit and closeness to a target model,

� suggesting two different target models which are worthy resources for fitting

power curves,
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� reducing the bias of fitted power curve alongside keeping the variance unaf-

fected,

� introducing a general methodology to produce hybrid power curves using any

empirical power curve fitting model and target model,

� comparing hybrid methods with other commonly used method based on

statistical metrics for measuring accuracy.

1.9.3 Chapter 4

In addition to the challenges pertinent to fitting power curve for individual

turbines, fitting wind farm aggregated models has different challenges. Fitting power

curves for each turbine individually is required for scheduled maintenance and fault

detection. On the other hand, fitting the power curve for a wind farm is required

for the overall analysis, such as estimating annual power production. As explained

earlier, regarding the high complexity of modeling each turbine separately for annual

power prediction or other applications in wind farm management, simple models are

preferred for aggregated wind farm power curves. There exists a trade-off between

complexity and accuracy. In other words, complex models suffer from their high

computation cost, although they perform accurately. On the other hand, simple

models take advantage of low complexity, making it quick in analysis and simulation,

but their accuracy may not be sufficient. Consequently, it is required to find an

appropriate approach which profits from the pros of both types of models. It means
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that the wind farm aggregated power curve model should perform accurately while

being simple. Multiple aggregated power curves can be used to balance this trade-off.

Accordingly, we propose a novel methodology for wind farm multiple aggregated

power curves that reveals the high accuracy and reduces the complexity of the fitted

model. Two important steps in fitting multiple aggregated power curves for wind

farms include selecting an appropriate clustering approach as well as an appropriate

fitting method. We study a new clustering approach to classify wind turbines in a

farm by considering turbines’ wake effect and overall performance in a wind farm.

The clustering method is based on the K-means clustering technique using the

Euclidean distance between turbine feature sets. We define a novel feature set for

turbines to take into account their overall performance in generating power. Hence,

the clustering approach’s goal is to assign turbines into different groups such that the

pattern of generating powers of turbines inside each group is homogeneous, and the

pattern of generating power for turbines from different groups is non-homogeneous.

Generally, researchers cluster wind turbines into multiple groups to reduce the

model complexity, the number of parameters and simulation time. By clustering,

one can reduce the order of fitted power curves from the number of turbines in

a wind farm to the number of clusters. Another important factor ignored in the

literature is that there is a hidden correlation between the fitted power curves for

different clusters. By considering the correlation of fitted power curves for each

cluster, one can improve the accuracy of the wind farm aggregated model and reduce

the complexity of the model as well as the number of parameters. Thus, we propose

to utilize multilevel modeling approaches to take into account the correlation of
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power curves fitted on each cluster when modeling the wind farm aggregated model.

The details of our novel clustering feature selection approach based on generated

power pattern that considers the wake effect regardless of the turbines’ location, as

well as the multilevel modeling approach for wind farm power curve modeling, are

presented in Chapter 4.

The overall contributions associated with this Chapter are:

� defining a feature set for clustering wind turbines into several homogeneous

groups which takes into account the overall performance of the turbine as well

as their wake effect,

� considering the hidden correlation of different clusters in fitting wind farm

multiple aggregated power curve by applying advance statistical models such

as mixed effect models

� utilizing statistical tests to confirm the effectiveness of proposed wind farm

multiple aggregated power curve.

1.10 Thesis Overview

This thesis represents proposed methods, the comparison of proposed methods,

and results obtained from the experiments investigated throughout the Ph.D. study.

There are 5 chapters in this thesis. In Chapter 1, we introduced the research context

and motivation, the background and challenges associated with wind turbine power

curve modeling, and the aim and objectives of this research. Chapter 2 introduces a
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monotonic regression method for wind turbine power curve modeling, with a focus

on the impact of enforcing the manufacturer’s power curve properties in reducing

the outlier effect on fitting an empirical power curve. In Chapter 3, we discuss the

heteroscedastic issue in the wind speed-power data set and define a novel weighted

locally balanced loss function that accounts for both estimation error (using observed

data) and goodness of fit that reflects the proximity to a target model. We propose

two different weighting schemes to deal with non-homogeneity and in particular high

variability of generated power of each turbine in different wind speed regions. These

weights are then used in the loss function to balance the importance of estimation

error and proximity to target values. It leads to a hybrid method for the power curve

fitting on a heteroscedastic data set. In Chapter 4, we discuss a clustering approach

using a novel feature set that is based on wind turbine performance in generating

power. We study multilevel modeling and discuss the utilization of the mixed effect

model to reduce the order of wind farm aggregated power curve. We evaluate the

performance of our methodology based on actual data sets of a wind farm in Canada.

In summary, this thesis is structured based on the grouped manuscript style (i.e.,

sandwich thesis). Mr. Mehrjoo has been the main contributor and first author of

all the manuscripts presented in this thesis. His contribution to this work includes

conception, developing the research questions, designing the studies, developing all

the codes,pre/processing data, conducting the analyses, writing up all manuscripts,

submitting all the manuscripts, and responding to reviewers’ comments. Dr. Jafari

Jozani contributed to the conception and design of the study, mathematical theory,

editing manuscripts and reviewing process. Dr. Pawlak contributed to mathematical
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theory and editing manuscripts.

Chapters 2 contains a peer-reviewed journal paper published in Renewable Energy

Journal. Chapter 3 contains a peer-reviewed journal paper published in Energy

Journal. Chapter 4 contains an under-review journal paper. These papers, in

addition to a conference paper presented at Green Energy and Expo, collectively

contribute toward the goal of this Ph.D. thesis. Following is the list of these papers:

� Chapter 2: Mehrdad Mehrjoo, Mohammad Jafari Jozani, and Miroslaw Pawlak.

“Wind turbine power curve modeling for reliable power prediction using mono-

tonic regression.” Renewable Energy 147 (2020): 214–222.

� Chapter 3: Mehrdad Mehrjoo, Mohammad Jafari Jozani, and Miroslaw Pawlak.

“Toward hybrid approaches for wind turbine power curve modeling with bal-

anced loss functions and local weighting schemes.” Energy 218 (2020).

� Chapter 3: Mehrdad Mehrjoo and Mohammad Jafari Jozani. “A weighted

hybrid wind turbine power curve modeling approach using spline regression

and theoretical power curve.” 6th International Conference on Green Energy

and Expo (2018).

� Chapter 4: Mehrdad Mehrjoo, Mohammad Jafari Jozani, Miroslaw Pawlak

and Bagen Bagen. “A multilevel modeling approach towards wind farm power

curve.” Accepted for publication in IEEE Transactions on Sustainable Energy,

2021.

Finally, in Chapter 5, we conclude the research work presented in this thesis and
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explain some suggestions for future study in this area.
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Chapter 2

Monotonic Power Curves

This chapter encloses a peer-reviewed journal paper published in Renewable Energy

Journal that consists of the author’s work during his Ph.D. study1.

Abstract : Wind turbine power curve modeling plays an important role in wind

energy management and power forecasting and it is often done based on parametric

or non-parametric methods. As wind-power data are often noisy, even after polishing

data using proper methods, fitted wind turbine power curves could be very different

from the theoretical ones that are provided by manufacturers. For example, it

might be the case that the theoretical wind turbine power curve is a non-decreasing

function of speed but the fitted statistical model does not necessarily meet this

1Mehrdad Mehrjoo, Mohammad Jafari Jozani, and Miroslaw Pawlak. “Wind turbine power
curve modeling for reliable power prediction using monotonic regression.” Renewable Energy 147
(2020): 214–222. https://doi.org/10.1016/j.renene.2019.08.060

41

https://doi.org/10.1016/j.renene.2019.08.060
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desirable property. In this paper, we present two nonparametric techniques based

on tilting method and monotonic spline regression methodology to construct wind

turbine power curves that preserve monotonicity. To measure the performance of

our proposed methods, we evaluate and compare our estimates with some commonly

used power curve fitting methods based on historical data from a wind farm in

Manitoba, Canada. Results show that monotone spline regression performs the best

while the tilting approach performs similar to the methods we studied in this paper

with the benefit of finding a curve that is more similar to the theoretical power

curve.

2.1 Introduction

U.S. effort to achieve 20% electricity of whole country supplied from wind

power by 2030 is one example to show how important are renewable energy sources

(Lindenberg et al., 2008). A great deal of effort has been devoted to wind power

forecasting over the past years and a considerable improvement in wind power

prediction is achieved by developing new methods. Despite enormous research

efforts and acquired knowledge, power reliability of wind power systems is still one of

the most demanding areas in research pertaining to sustainable energy. Evaluating

the power system reliability contains three general phases (Bagen and Billinton,

2008). First, one needs to predict the wind speed in the location of turbines using

either physical or statistical approaches. The physical approach, uses the detailed
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physical description of the wind farm to model the on-site conditions. The statistical

approach, which is rather easy and inexpensive, generally uses historical data to

train necessary statistical models for reliable wind speed prediction. This is often

done using conventional statistical approaches based on statistical time series models

or machine learning algorithms (Jung and Broadwater, 2014).

The second phase of power system reliability analysis, which is the focus of this

paper, is to accurately estimate the generated power based on the predicted speed.

Accurate estimation of the turbine power curve is required for effective integration

of wind power into the power systems (Shokrzadeh et al., 2014; Zhang et al., 2014).

To achieve an accurate estimation of generated power value, efficient methods of

fitting power curve models are needed. Statistical methods to fit the empirical power

curve of a wind turbine are abundant and can be classified into parametric and

nonparametric methods (Jung and Broadwater, 2014). Parametric methods include

segmented linear models, polynomial regression, exponential power curve, cubic

power curve and models based on probabilistic distributions such as four or five

parameters logistic distributions (Lydia et al., 2013; Carrillo et al., 2013; Villanueva

and Feijoo, 2018; Marčiukaitis et al., 2017). On the other hand, nonparametric

methods do not assume any specification for the underlying model and estimate

the power curve to be as close as possible to the observed data, hence they can

accurately model a wide range of possible shapes of power curves. Examples of these

methods include neural networks, random forest, and various forms of k-nearest

neighbor, kernel algorithms and natural cubic spline regression (Pelletier et al., 2016;

Ouyang et al., 2017; Marvuglia and Messineo, 2012; Ai et al., 2003; Diaf et al., 2007;
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Pandit et al., 2019).

Wind turbine power curves ideally correlate wind speed, measured immediately

before the rotor, with electrical power from the turbine. In practice, it is not possible

to accurately measure the wind speed at such a close distance to the rotor. This

might cause bias in the resulting power curve. The solution to this issue is either to

apply suitable time averaging on the data (Elliott and Infield, 2014; Sharpe et al.,

2013) or apply a measurement error methodology. To examine the importance of

sufficient time averaging on the data, we compared 10-Min and hourly averaged

data in our experiment.

Different turbine models may have different shapes of power curves. Fig.2.1

shows two different power curves related to wind turbines NM82 and FD8. One of

these power curves is monotone in the whole range of the wind speed till the cut-out

point, however, the other one behaves differently.

Most of the statistical approaches for wind turbine power curve modeling that

are available in the literature do not incorporate some of theses intrinsic properties

of power curves in their estimation process. The main focus of this article is to

develop methods to incorporate some inherent, physical and/or sometimes theoretical

properties of the underlying wind turbine power curves in the power curve model

fitting process. For example, if according to theory, the fitted curve needs to be

monotone in a specific region, practitioners might want to enforce this into their

estimation or optimization process. From practical point of view, sometimes finding

a model that satisfies some important features of the underlying relationship between

power and speed is of interest. In practice, it is reasonable to require that employed
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(a)

(b)

Figure 2.1: Theoretical power curve for two different wind turbine models showing
different shape properties a) Turbine model NM82, b) Turbine model FD8.
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estimates of the power curve preserve the shape property of the underlying wind

turbine. In this research, we focus on the wind turbines with monotonic power curve

e.g. NM82, however, our proposed methods can be utilized for other wind turbines

with different power curve shapes.

Fig.2.2 shows real data of a wind turbine alongside with its corresponding

manufacturer power curve as well as estimated power curve using a Nadaraya-

Watson kernel estimator method. Although the data are polished and properly

cleaned and the outliers are detected (using the polishing data method proposed in

Shokrzadeh et al. (2014) which removes all data with negative speed or power values

as well as data points that lie outside of three standard deviation of the average

power value at that speed), still we see that monotonic property of estimated power

curve is not preserved. Fig.2.2 also represents the estimated power curve using the

spline method. when the existing outliers have not been removed from the original

data. The effect of the outliers is visible as it causes the tail of the estimated power

curve to decline. Another observation is that not only outliers can cause a fitted

power curve to show a different behavior than the theoretical (manufacturer) power

curve model, but also modern nonparametric methods might not necessarily preserve

the inherent monotonicity property of the curve. One might decide to remove data

that cause non-monotonicity from the training data. However, how much data we

need to remove depends on the working data and might change from one turbine

to another one. This makes the whole process very subjective. Removing many

observations from the training data to enforce monotonicity results in a smaller

dataset to train models and sometimes it reduces the goodness of fitted curves. In
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this paper, we enforce monotonicity as an inherent part of the power curve fitting

method. This might also help to reduce the impact of outliers on estimated curves.

We show that our proposed methods do not decline the estimation accuracy of

predicted power values and sometimes they can even boost the prediction accuracy

of fitted curves. So our results can also be used toward obtaining efficient methods

for characterizing wind turbine power curves, as well as other applications such as

wind power forecasting, detecting anomalies in a wind turbine power generation

process, etc.

The outline of this paper is as follows. In Section 2.2, we briefly overview some

parametric and nonparametric power curve estimation methods. In Section 2.3,

we introduce two methods of fitting monotone regression model and explain the

theoretical basis of each method and details of their implementation. In Section

2.4, we present actual data sets of a wind farm in Canada. We also investigate the

performance of each method and explain the evaluation metrics. The results of the

proposed techniques are also presented. Section 2.5 provides concluding remarks

and future work.

2.2 Power Curve Estimation

The power curve of a wind turbine represents the amount of electrical power

output as a function of wind speeds (Gasch and Twele, 2011). Usual wind turbine

power curves have three main characteristic speeds which include the cut-in (Vc);
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Figure 2.2: Real data of a wind turbine alongside with its corresponding manufacturer
power curve as well as estimated power curves using Nadaraya-Watson kernel
estimator method and natural spline regression.

rated (Vr); and cut-out (Vs) speeds. The cut-in point is the threshold speed value

for generating power, which means wind speed should be at least equal or greater

than this value so that wind turbine starts generating electrical power. For any wind

speed value less than Vc, wind turbine is not able to produce any power. The rated

speed is a speed between the cut-in and the cut-out points, in which wind turbine

generates power at its maximum or rated capacity. To prevent damages, the power

generation is shut down when the wind speed reaches the cut-out speed (Manwell

et al., 2010). Wind turbine manufacturers release a power curve assuming ideal

meteorological and topographical conditions. However, in practice ideal conditions

do not occur and wind turbines often behave differently from what is expected

according to the theoretical power curve. Location of the turbine, air density,

wind velocity distribution, wind direction, mechanical and control issues, as well as
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uncertainties in measurements are some reasons which may cause empirical power

curves differ from theoretical ones. The theoretical wind power is obtained using

the following equation

Pw =
1

2
ρAv3, (2.1)

where Pw is the wind power in Watt, ρ is the air density in kg/m3, A is the turbine

rotor area in m2, and v is the wind speed in m/s (Manwell et al., 2010).

In practice (2.1) is not used to estimate the generated power of a wind turbine.

Instead one might want to estimate the generated power using statistical techniques

based on historical data. In the following we study some of such methods. In what

follows the symbol v is used for wind speed, whereas p stands for generated power.

2.2.1 Polynomial and Spline Regression Models

Polynomial regression is often used to estimate the power curve of a wind turbine

(Lydia et al., 2013). This method can be considered as a natural extension of the

linear regression pi = β0 + β1vi + εi, i = 1, . . . , n, where the linear dependency of p

to v is replaced by a polynomial function as follows

pi = β0 + β1vi + β2v
2
i + · · ·+ βkv

k
i + εi, i = 1, . . . , n, (2.2)

where εi is assumed to be a sequence of independent and identically distributed

random variables with zero mean and finite variance. Also, n is the number of

data points, βj, j = 0, . . . , k, are unknown parameters, and k is the degree of the
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polynomial regression. One can rewrite (2.2) in the matrix form as

P = V β + ε (2.3)

where P = (p1, p2, · · · , pn)>, β = (β0, β1, · · · , βk)>, ε = (ε1, ε2, · · · , εn)>, and V is

a matrix with its i-th row being defined as Vi = (1, vi, v
2
i , ..., v

k
i ). Using the least

squares (LS) criterion and by minimizing the residual sum of squares (RSS), we

obtain the explicit estimate of β as follows

β̂ = (V >V )−1V >P. (2.4)

Polynomial regression model uses a global approach to construct the fitted value

of the power at a given value v0, which depends strongly on generated power for

other v-values even those that are far from v0. So, one might want to use a more

local estimation process to estimate p0. A solution to this problem is to employ

piecewise polynomial regression models, often referred to as spline models. B-spline

model is one of such models which constitutes a smooth function having continuous

derivatives (Shokrzadeh et al., 2014).

A very attractive property of the B-spline model is that it can also be formulated

as P = Bβ + ε, where B is a matrix with its (i, j)-th element being

Bk
j (vi) =

(vi − ζj)
(ζj+k − ζj)

Bk−1
j (vi) +

(ζj+k+1 − vi)
(ζj+k+1 − ζj+1)

Bk−1
j+1 (vi), (2.5)

for j = −K,−K + 1, . . . , K, ζ0 = ζ−1 = . . . = ζ−K = min{vi, i = 1, . . . , n}, and

ζK+1 = max{vi, i = 1, . . . , n}. Here {ζi, i = 1, · · · , K} is a set of knots that are
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selected by the user and control the flexibility of the fitted curve. Also, B0
j (vi) are

the natural basis for piecewise constant functions. The least squares estimates of β

is then given by

β = (B>B)−1B>P, (2.6)

which is more feasible for computational purposes.

It has been observed that spline regression compared with the corresponding

global polynomial regression, tends to behave erratically beyond the boundary knots

(Friedman et al., 2001). To address this issue the natural spline regressions has been

proposed as useful tools to overcome this problem. Natural splines are analogous to

B-Spline except they are constrained to be linear beyond the boundary knots.

Several different methods are proposed in the literature to choose the number

and location of knots, see (Friedman and Silverman, 1989). In this paper, we use

10-fold cross-validation by randomly dividing our data into 10 folds (random subsets)

of approximately equal sizes. In each iteration, we take one fold as test data and

the remaining folds as training data. The 10-fold cross-validation is then performed

and the number of knots are selected such that corresponding model minimizes

CV (10) =
1

10

10∑
i=1

MSPEi, (2.7)

where MSPEi is the mean-squared prediction error rate associated with the i’th

test group.
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2.2.2 Kernel Estimators

Another approach that is widely used for wind turbine power curve modeling is based

on nonparametric kernel methods (Carrillo et al., 2013; Friedman et al., 2001; Wand

and Jones, 1994a; Greblicki and Pawlak, 2008). A classical nonparametric kernel

estimator of a regression function is the Nadaraya-Watson (NW) kernel regression

estimator (Wand and Jones, 1994a). To define this estimator, we first assume that

pi = m(vi) + εi, i = 1, · · · , n,

where εi is random error and m(·) is an unknown regression function. We do not

assume that m(·) has any parametric form. Under the squared error loss function,

the best choice for m(·) is given by

m(v) = E(P |V = v) =

∫
pf(v, p)

f(v)
dp, (2.8)

where (V, P ) denotes the random version of our variables (v, p). Hence, m(v) is the

regression function of P given V = v. Here, f(v, p) is the joint density function

of the wind speed and generated power and f(v) stands for the marginal density

function of the wind speed. A generic estimate of (2.8) is as follows

m̂(v) =

{∫ pf̂(v,p)

f̂(v)
dp ; f(v) 6= 0,

0 ; f(v) = 0,
(2.9)

where f̂(v, p) and f̂(v) are some estimates of f(v, p) and f(v), respectively. By

using the classical kernel density estimate (Wand and Jones, 1994a) for f̂(v, p) and
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f̂(v) we can derive the explicit formula for m̂(v). In fact, f̂(v) is estimated by

f̂(v) =
1

nh

n∑
i=1

Kh(v − vi), (2.10)

whereas f̂(v, p) by

f̂(v, p) =
1

nh2

n∑
i=1

Kh(v − vi)Kh(p− pi), (2.11)

where h is the so-called bandwidth and Kh(t) = K( t
h
) with K being a symmetric

probability density function (Wand and Jones, 1994a; Greblicki and Pawlak, 2008).

Plugging the above formulas into (2.9) one can define the following Nadaraya-Watson

kernel estimate of m(v)

m̂NW (v) =

∑n
i=1Kh(v − vi)pi∑n
i=1Kh(v − vi)

. (2.12)

It is important to note that the bandwidth parameter h plays a critical role in the

performance of the kernel estimator m̂NW (v) as it controls the level of smoothing

of the estimator. There are different methods for choosing the proper value of h.

Analogously to the spline method we use 10-fold cross-validation for choosing the

bandwidth h in our all experiments.

As it can be concluded from Fig. 2.2 the Nadaraya-Watson kernel estimator

does not necessarily preserve the monotonicity property of the curve. Hence, it

is necessary to modify the kernel estimator in order to enforce the monotonicity
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property. In Section 2.3, we introduce a generic method for the monotonicity

correction of any curve estimation method. Also we describe a monotone spline

regression approach and explain how it can be used to construct monotone wind

turbine power curve estimators.

2.3 Monotone Power Curve Estimation

2.3.1 Tilting Method

As we have already argued it is desirable to obtain a monotone (non-decreasing)

smooth regression estimator for a wind turbine power curve in the regions that this

property is expected. It has been observed that common curve estimation methods

do not necessarily preserve this important property (Friedman and Tibshirani, 1984;

Bloch and Silverman, 1997; Mammen, 1991; Hall et al., 2001; Dette and Pilz, 2006).

In this section, we discuss a method for enforcing the monotonicity property for

the Nadaraya-Watson kernel estimator. Although the proposed method is very

general and applies to a larger class of kernel and orthogonal basis estimators. The

method is called tilting as it is based on the idea of adjusting the observed output

variables (power in our case) in order to impose monotonicity on a nonparametric

regression estimate. The method was originally introduced in Hall et al. (2001),

where some basic statistical properties of the estimate were established (see also

(Dette and Pilz, 2006) for some further discussion). Other existing methods that
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enforce monotonicity reveal some undesirable properties as jumps in the fitted curve

(Friedman and Tibshirani, 1984; Bloch and Silverman, 1997; Mammen, 1991).

In order to use the tilting method to monotonize the Nadaraya-Watson kernel

estimator, first note that m̂NW (v) in (2.12) can be written in the following form

m̂NW (v) =
1

n

n∑
i=1

Ai(v)pi, (2.13)

with the weight functions

Ai(v) =
K(v−vi

h
)

1
n

∑n
j=1K(

v−vj
h

)
. (2.14)

To impose monotonicity, we introduce a probability weight sequencew = (w1, . . . , wn)

to replace the factor 1/n in (2.13) and obtain a modified weighted kernel estimator

as follows

m̂(v|w) =
n∑
i=1

wiAi(v)pi, (2.15)

where the the weight vector w satisfies the following restrictions

n∑
i=1

wi = 1 and wi ≥ 0. (2.16)

The weights can be then adjusted so that the resulting estimator is monotonic. In

other words, we wish to choose the weight sequence w such that

m̂(1)(v|w) ≥ 0, (2.17)
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where m̂(1)(v|w) is the first derivative of m̂(v|w) with respect to v. It is clear that

choosing wunif = (1/n, . . . , 1/n) results in the original non-monotonic estimate. In

order to decide how to adjust the weights w we introduce the distance between w

andwunif that should be minimized with respect to v subject to the constraint (2.17).

Hence, we wish to choose the least modified version of the estimate m̂NW (v) that

meets the monotonicity constraint. Let D(w,wunif) be some distance between w

and wunif . Then our monotonized estimate is derived from the following constrained

minimization problem

minwD(w,wunif ) subject to m̂(1)(v|w) ≥ δ (2.18)

and

n∑
i=1

wi = 1 and wi ≥ 0. (2.19)

In (2.18), δ ≥ 0 reflects the fact whether we wish to enforce weak (δ = 0) or strict

(δ > 0) monotonicity.

The remaining issue is to choose the proper distance D(w,wunif) that would

reflect the aforementioned conditions and at the same time would lead to the

computationally efficient optimization problem. Following Cressie and Read (1984)

(see also (Hall et al., 2001)) we choose the following quadratic distance

D(w,wunif ) =
1

2

n∑
i=1

(nwi)
2 − n

2
. (2.20)

It is clear that the minimum of this distance subject to (2.19) is obtained by
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w = wunif . Also since for any vector w satisfying (2.19) we have

1

n
≤

n∑
i=1

w2
i ≤ 1,

therefore, we obtain the following bound for the distance D(w,wunif ):

0 ≤ D(w,wunif ) ≤
n(n− 1)

2
.

The lower bound is reached at w = wunif , whereas the upper bound at any weight

vector w that has value one on a single position and other values are zero. These

facts confirm that D(w,wunif ) can be employed as the proper distance between w

and wunif .

The optimization problem in (2.18) equipped with the distance in (2.20) takes the

form of the quadratic programming with linear constrains. In fact, the derivate

constraint in (2.18) can be evaluated by recalling the definition of m̂(v|w) in (2.15).

Hence, we have

m̂(1)(v|w) =
n∑
i=1

wiA
(1)
i (v)pi, (2.21)

where this should be evaluated on the pre-selected set of grid points over the range

of the variable v. The derivate in (2.21) is indeed a linear function of the weight

sequence w. There is also an efficient way of determining the derivative of Ai(v)

defined in (2.14). In fact, by denoting

Ki(v) = K

(
v − vi
h

)
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and after direct algebra we can show that

A
(1)
i (v) =

K
(1)
i (v)

∑n
j=1Kj(v)−Ki(v)

∑n
j=1K

(1)
j (v)

1
n
(
∑n

j=1Kj(v))2
. (2.22)

This formula can be efficiently evaluated for some smooth kernel functions. In

particular, if K(v) is the standard Gaussian density then we obtain the following

version of (2.22)

A
(1)
i (v) = Ai(v)

(
1

n

n∑
j=1

αj(v)Aj(v)− αi(v)

)
, (2.23)

where αi(v) = v−vi
h2

. This is due to the fact that for K(v) being the standard

Gaussian density we have K(1)(v) = −vK(v).

Solving the above mentioned optimization problem is straightforward and easy

to implement. We use quadratic programming for this purpose. To implement the

tilting approach we use quadprog library in R. You can find details of implementation

in Appendix.

Although we developed our proposed method using the Nadaraya-Watson kernel

estimator, the proposed monotonizing method is applicable to other general kernel

estimator methods by modifying them principally in regions where they are not

monotone. This method can also be used to impose shape constraints other than

just monotonicity, for example, if some theoretical wind turbine power curves are

decreasing in some specific regions of wind speed, this method can be used to impose

such behavior for desired regions.
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Figure 2.3: Effect of tilting method on the Nadaraya-Watson kernel estimator.
Nadaraya-Watson fitted power curve is shown with dashed line. Applied tilting
method power curve is shown with solid line. Long dashed line shows the theoretical
power curve.

Fig. 2.3 shows the Nadaraya-Watson kernel estimator and its corresponding

monotonized curve. One can notice that in monotone regions both fitted curves are

essentially the same, however, in non-monotone regions there exist some differences

between fitted curves.

2.3.2 Monotone Regression Spline

Polynomial regression spline is introduced as a piecewise polynomial with specific

continuity constraints. The continuity characteristic of the spline and the number

of independent parameters depend on the number and location of knot sequence

ζ. These knots divide the interval [L,U ] into some regions. Spline models use
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ζ and define a set of basis functions which weighted linear combination of these

basis functions can be used as spline regression. Spline regression models do not

necessarily retain the monotonicity property of the wind turbine power curves (e.g.,

Fig. 2.2). One approach to impose monotonicity for such models is to use other

basis functions such that the resulting fitted curve is monotone (e.g. I-spline).

The earliest basis function in spline regression was the simple truncated power

function as: φjk(v) = [(v − ζj)+]k where u+ = max{u, 0}. The most important

advantage of this basis function which makes it so attractive for statistical work is

its simplicity. On the other hand, its considerable rounding error for large value of

K, number of knots, is a disadvantage of this basis function. In addition, truncated

power functions do not seem to have natural interpretation in some applications.

Another basis function which is so attractive for statisticians is the M-spline basis

function, because of its properties, e.g. normalization
∫
M(vi)dv = 1 , i = 1, · · · , n,

and the fact that they are defined such that they are positive in (ζi, ζi+k), and 0

elsewhere.

For k = 1

Mi(v|1, ζ) =

{
1

ζi+1−ζi , ζi ≤ v < ζi+1

0, otherwise
(2.24)

and for k > 1, we have

Mi(v|k, ζ) =
k[(v − ζi)Mi(v|k − 1, ζ) + (ζi+k − v)Mi+1(v|k − 1, ζ)]

(k − 1)(ζi+k − ζi)
. (2.25)

The advantage of M-spline compared with truncated power is controlling rounding
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Figure 2.4: Four power curve fitting methods on real data from wind turbines in
a wind farm located in Canada a) Nadaraya-Watson Kernel Estimator (NWKE)
and Tilting Method (TM) applied to NWKE b) Natural Cubic Spline (NCS) and
Monotone Regression Spline method (MRS).

error in the computations. Since the value of mi is zero outside the interval [ζi, ζi+k]

and positive within it, non-negativity of f(v) =
∑
aiMi(v) is satisfied by assuring
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ai ≥ 0. However still using M-spline we can not satisfy the monotonicity requirement,

so we need to define a monotone basis function. An obvious approach is to use

integrated spline, I-spline, as a modification of M-spline basis function,

Ii(v|k, ζ) =

∫ v

L

Mi(u|k, ζ)du, (2.26)

which satisfying ai ≥ 0 in f(v) = ΣaiIi(v|k, ζ) will result in a monotone spline

regression curve. We should mention that if mi is a piecewise polynomial of degree

k − 1 so Ii will be a piecewise polynomial of degree k. We can rewrite Ii in the

following form:

Ii(v|k, ζ) =


0, i > j,∑j

m=i(ζm+k+1 − ζm)Mm(v|k+1,ζ)
(k+1)

, j − k + 1 ≤ i ≤ j,

1, i < j − k + 1.

(2.27)

2.4 Real Data Application

In this section, we apply our proposed methods in previous sections on proprietary

wind power data of a wind farm in North America. The wind power plant (WPP)

includes over five dozen identical wind turbines. Specification of these turbines are

as follow: the rated capacity is 1.7 MW, the hub height is 80 m spread over an

area of over 90 km2, the cut-in speed is 3.5 m/s, rated speed is 13 m/s and cut-out

speed is 20 m/s. We have selected four wind turbines (T1,...,T4) from the WPP to

analyze the performance of the presented methods. Our raw data contains 30398 of
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wind speed and generated power data points with a resolution equal to 10-minutes.

In addition, we took average of these 10-minutes data in order to evaluate our

proposed methods on hourly data.

Since there are outlier data, data preprocessing is required to filter the invalid

data points. Following Shokrzadeh et al. (2014) we polished the data using the

outlier detection process. Fig. 2.4 shows the four models proposed in this paper

applied on the filtered wind speed and the generated wind power data. Issue of

non-monotonicity of the Nadaraya-Watson kernel estimator and natural spline is

obvious in Fig. 2.4. On the other hand, Fig. 2.4 shows that the tilting method

and the monotone regression method result in curves that are more similar to

manufacturer power curve as both are monotone in all regions. Consequently, since

these two power curve estimators are similar to the manufacturer one, it makes

more sense to use these methods in practice as they are more appealing for the

interpretation and analysis of wind turbine behavior.

Root-mean-squared error (RMSE), normalized mean absolute percentage error

(NMAPE), symmetric mean absolute percentage error (sMAPE), the mean absolute

error (MAE) and the coefficient of determination (R2) are several statistical metrics

that can be used as appropriate measures of performance for the fitted power curves

(Marvuglia and Messineo, 2012). In this paper, we use RMSE and NMAPE given by

RMSE =

√√√√ 1

n

n∑
i=1

(pi − p̂i)2, (2.28)
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and

NMAPE =
1

n

n∑
i=1

|pi − p̂i|
maxnj=1 {p̂j}

× 100, (2.29)

where pi is the observed wind power and p̂i is the estimated value of the power. By

performing the error analysis, the values of RMSE and NMAPE for the Nadaraya-

Watson Kernel Estimator (NWKE), Tilting Method (TM), Natural Cubic Spline

(NCS), and Monotone Regression Spline (MRS) methods are presented here. Table

2.1 shows the results of the analysis for two data sets with different time resolution.

These two data sets contain 10-min and hourly averaged data since June 2006 till

January 2007. Table 2.1 also ranks the performance of all four methods based on the

calculated measures, where the smaller values are desirable, and also provides the

overall performance ranking of each method. Numbers in the parenthesis show the

rankings. As shown in Table 2.1, the monotone regression spline method outperforms

all other methods addressed in this study. Table 2.1 also suggests that natural

spline regression is dominating the Nadaraya-Watson kernel estimator and the

tilting method. It also shows that tilting method performs almost the same as the

Nadaraya-Watson kernel estimator, however, this method performs more similar

to the manufacturer power curve which makes it more realistic and applicable for

wind power systems and also in interpretation. It also worths to mention that we

experimented the effect of bandwidth for kernel estimator and tilting methods which

conclude that both methods will have best performance with the same bandwidth.

It means that tilting method will perform its best with the same bandwidth as the

one obtained in the kernel method.
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2.5 Concluding Remarks

Some applications of wind turbine modeling include monitoring of the turbine’s

performance, sizing the storage capacity for wind power integration, as well as power

forecasting. We have presented four regression modeling approaches for estimating

wind turbine power curves with a special focus on imposing the monotonicity on

fitted curves. We have shown that natural spline and polynomial regression models

do not necessarily preserve the monotonicity property, however their power curve

estimation could be very accurate. Tilting method and monotone spline regression

are introduced to address the issues of monotonicity in power curve estimation and

reduce the sensitivity to outliers within the observations. Tilting method, applied

to the Nadaraya-Watson kernel estimator and monotone spline regression are then

examined to achieve monotonicity property for fitted power curves. The performance

of these proposed methods are evaluated based on operational wind power data for

a wind farm in Canada. We analyzed the performance of the presented methods on

four different wind turbines. The results of this study suggest that monotone spline

regression presents a better performance over the other analyzed methods. Also

results show that using tilting method compared to kernel methods results in almost

equal accuracy but a shape similar to the manufacturer power curve. As discussed

in Elliott and Infield (2014), applying insufficient time averaging on the data reduces

the correlation between measured wind speed and measured power. This issue is

called “errors in bins”. In this study, we evaluated the 10-Min and hourly averaged

data. Similar to Elliott and Infield (2014), our experiments show that the variation
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of averaging time has little overall impact upon the general shape of the fitted power

curve. In practice, we recommend to fit constrained and unconstrained wind turbine

power curve models and decide which model to use for further analysis by using

proper performance measurements and other reasonable criteria. Some variables

other than just wind speed including turbine age, wind direction as well as location

of turbine may have relationship with the generated power at the location of the

wind turbine. Some of these variables might indeed cause the generated power to be

lower than the expected theoretical one. An interesting direction of future research

is to incorporate more covariates in wind turbine power curve modeling and extend

the proposed methodology to a multiple covariate case.

Appendix

To be more specific about details of the implementation of the tilting approach

toward monotonicity, we show the procedure in the matrix format. First, we have

a set of pairs (vi, pi), then we fit the Nadaraya-Watson kernel estimator as our

regression function. The estimated value of the fitted method is not necessarily

monotone in the whole range of the predictor. So we find the regions which contain

decreasing values of the fitted response. Meanwhile we define wi = 1/n for all

distinct values in the range of v. After finding decreasing regions we try to modify

wj, j in decreasing regions and small neighborhood around them, while keeping wi

related to monotone regions unchanged. This will lead to monotonicity in the whole
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range of v. To implement the tilting approach we use quadprog library in R by first

writing our optimization as follow:

min(
1

2
Σn
i=1(nwi)

2 − n

2
), (2.30)

subject the probability constraint on w and the monotonicity constraints imposed

on the weighted kernel estimate. This criterion function can be written in the matrix

form as

min(
1

2
w>Qw), (2.31)

with constraints ATw ≥ b, where Q = diag[n2] is the n× n diagonal matrix. Note

that to define A one can add any other constraints which might be necessary, e.g. the

constraint that maximum value of the fitted power curve should not be greater than

the maximum possible value of the generating power related to the wind turbine.

Let us now examine the required constraints. After considering all constraints,

A will be in the form: A = [a1, a2, a3, a4] where a1 is a n × 1 vector such that its

entries associated with indexes in decreasing regions are equal to 1 and the rest

are 0. a1 is related to the constraint
∑

i∈DRwi = 1−
∑

i∈NDRwi where DR is the

decreasing range and NDR is the non-decreasing range. b vector according to first

constraint contains the value of 1−
∑

i∈NDRwi. a2 is a n× n matrix related to the

constraint that wi = 1
n

for all i in monotone regions. So a2 is a diagonal matrix

with all values equal to 0 except for those indexes which are in monotone regions

and their corresponding values will be 1. The values of vector b for those indexes
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will be 1
n

and the rest 0. a3 is an n× (n+ 1) matrix

a3 =


−f1 f2 0 · · · 0

0 −f2 f3 · · · 0
...

. . . . . . · · · ...
0 0 · · · 0 fn

 ,

where fi is the fitted value of vi based on the Nadaraya-Watson estimator. Associated

value in vector b will be ε which means for all values the constraint wifi−wi−1fi−1 ≥ ε

should be satisfied. By choosing an ε > 0 one can impose the strictly monotone

property to the regression function and if ε = 0 the resulting regression function

will be non-decreasing.

a4 is also an n× n diagonal matrix which satisfies the constraint wi ≥ 0 with

their corresponding values in b vector being 0. a5 is related to the constraint that

wifi < max(p) where max(p) is the maximum possible generating power value of

the wind turbine. Consequently at the end, matrix A will be a n× (4n+ 2) matrix

and b a 1× (4n+ 2) vector.

The final result of the quadratic programming will be a set w which satisfies all

the constraints with respect to minimizing the distance of w to uniform distribution

( 1
n
, · · · , 1

n
) given that there is any valid solution. In summary, the tilting approach

in practice can be implemented using the following steps:

1. Fit any kernel estimator method based on wind-power data.

2. Find all regions which fitted model is non-monotone.

3. Define w = wuniform, matrix A and vector b as explained.
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4. Using quadratic programming, try to find w which satisfies all constraints

including the monotonicity property and minimizes the distance function.

5. If no valid w is available then expand the region around non-monotone regions

and return to 3.

6. w is selected.



Chapter 3

Hybrid Power Curves

This chapter encloses a peer-reviewed journal paper published in Energy1 Journal

that consists of the author’s work during his Ph.D. study.

Abstract : Wind turbine power curves are often used for monitoring the per-

formance of wind turbines and play an important role in wind power forecasting.

Various factors such as age of turbines, installed location, air density, wind direction

and measurement errors cause non-homogeneity among observed data, which often

influences the accuracy of fitted power curves. To overcome this problem, a hybrid

estimation approach is proposed, based on weighted balanced loss functions that

account for both estimation error and goodness of fit by shrinking estimates toward

1Mehrdad Mehrjoo, Mohammad Jafari Jozani, and Miroslaw Pawlak. “Toward hybrid ap-
proaches for wind turbine power curve modeling with balanced loss functions and local weighting
schemes.” Energy 218 (2020). https://doi.org/10.1016/j.energy.2020.119478

71

https://doi.org/10.1016/j.energy.2020.119478
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standardized target models. Two different weighting schemes are developed to

incorporate the non-homogeneity of data in the estimation process. The proposed

algorithm is compared with commonly used power curve estimation methods based

on classical least squares, natural splines, and local linear smoothing methods. The

performance of the original and proposed hybrid methods is evaluated using a

historical data set collected from a wind farm located in Canada. Results show

that hybrid methods can be used as an effective tool to improve the performance of

existing power curve modeling approaches. Consequently, proposed methods can

facilitate more robust monitoring the performance of wind turbines as well as wind

power forecasting.

3.1 Introduction

Wind power is an important source of sustainable energy that has significantly

been used in many countries to provide reliable, clean, and relatively cheap me-

chanical power and electricity. Nowadays, wind energy encompasses a large portion

of power systems in several countries (Ulazia et al., 2019). Significant penetration

of wind power causes uncertainties in stability of power systems. Wind power

fluctuation and wind speed variability have negative impacts on the reliability of

power systems (Li and Bagen, 2010; Lydia et al., 2014). In such situations, accurate

modeling of the relationship between the wind speed and the power generated by

a wind turbine can play an important role in improving the performance of power
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systems that use wind energy. Most manufacturers provide graphs or tables to

describe the underlying relationship between the wind speed and output power of

their wind turbines, known as the wind turbine power curve (WTPC) (Raj et al.,

2011).

Even though the manufacturer’s power curves (MPC) are often available for

wind turbines, practitioners prefer using empirical data to estimate them. This is

mostly done because MPCs are obtained in a test site with specific environmental

conditions that do not necessarily hold in wind farm environment (Commission

et al., 2007). Also, the performance of a turbine is affected by many other factors

(e.g., it declines rapidly with age), which makes the MPCs less reliable sources for

power forecasting (Staffell and Green, 2014).

Accurate WTPC modeling is a very important area in power management and

plays an important role in increasing the robustness of the power systems and,

ultimately, reducing the system’s operational costs (Chang et al., 2014). Using

accurate power curve models will also contribute to easier, more reliable and faster

forecasts of the wind generation. An accurate power curve model also is required to

more realistically size the storage capacity for wind energy integration (Shokrzadeh

et al., 2015; Nabat et al., 2020). These models also can aid in the early identification

of faults, such as blade faults and yaw and pitch system faults (Park et al., 2014).

Each type of these faults will cause the generated power differs from the expected

value from the power curve in a different way. Statistical analysis of the outlier data

can give indications of the specific reason of anomaly if the empirical power curve is
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fitted correctly (Kusiak and Li, 2011).

To obtain an empirical WTPC model based on the observed data, one can

use parametric or non-parametric methods (Shokrzadeh et al., 2014; Greblicki and

Pawlak, 2008). Parametric methods are prevalent in the literature and include

segmented linear models (Lydia et al., 2013), polynomial regression (Lydia et al.,

2014), cubic power curve, models based on probabilistic distributions such as four

or five parameters logistic distributions and neural networks (Saint-Drenan et al.,

2020; Carrillo et al., 2013; Villanueva and Feijóo, 2016a). These methods often

suffer from the inherent model misspecification error and their limited ability to

describe the dynamic nature of the power curves (Ouyang et al., 2017). On the

other hand, non-parametric methods do not need any prior knowledge about the

shape of the power curve and make minimal assumptions about the relationship

between wind speed and generated power (Pandit et al., 2019). These techniques

contain kernel smoothing algorithms, regression trees, k-nearest neighbor methods,

and spline regression procedures (Shokrzadeh et al., 2014; Mehrjoo et al., 2019;

Marvuglia and Messineo, 2012; Karamichailidou et al., 2020).

There are a number of issues that might influence the accuracy of an empirical

WTPC model. For example, the MPCs are suitable for predicting the power output

of a single turbine of a specific type. In a big wind farm, a number of turbines are

spread over a wide area Sohoni et al. (2016b). Wind energy production of each

turbine depends on wind condition at different parts of the farm, air density, turbine

condition, and location.
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Another important factor is due to possible inconsistencies in the observed data

that can cause serious problems in the WTPC model fitting process. For example,

non-homogeneity of generated power in different regions of wind speed often results

in observations that are far from what one might expect based on the MPC. Also,

one should note that wind is highly stochastic in nature and changes with height.

Most power curve model fitting methodologies use generated powers associated

with wind speeds that sometimes are not measured at turbines’ location. This will

influence the accuracy of empirical WTPC models and make some of the fitted

curves less reliable, especially for those that are far from meteorological stations

(Sohoni et al., 2016b). To solve this issue, some researchers use filtering methods to

identify and remove suspicious data before performing any model fitting approaches

(Ouyang et al., 2017; Taslimi-Renani et al., 2016; Wang et al., 2020). However, even

after filtering inconsistent data, often the variances of the estimated powers might

significantly vary with wind speed, indicating heteroscedasticity of the observed

data (Wang et al., 2018). In other words, there is no guarantee that all the outliers

will be removed from the raw wind data. Consequently, designing robust regression

models or finding a curve that is close to a robust target WTPC function may be

considered as two effective ways to obtain accurate power curves in the presence of

outliers and data non-homogeneity.

To overcome the aforementioned problems, a novel WTPC modeling approach is

proposed using weighted balanced loss functions that account for both estimation

error (using observed data) and goodness of fit that reflects the proximity to a

target model. As it is expected, turbines that are close to each other and share
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similar characteristics, such as age, model, installed location (i.e., same altitude and

latitude), should have comparable power output. Hence, one might want to find an

empirical WTPC for a specific turbine using its measured data and, at the same

time, shrink the fitted curve toward a more robust and sometimes a more reliable

target function representing the relationship between output power and wind speed.

The target function could be the MPC, the WTPC of the wind farm, or the one

obtained using empirical data associated with wind turbines in the wind farm that

are in the vicinity of the underlying turbine.

Proposed methodology results in WTPC estimates that can be represented in

the form of shrinkage estimators. They are designed to provide hybrid estimates of

WTPC models that can work with both parametric and nonparametric methods.

This reveals another application of the balanced loss functions that are mostly used

in parametric estimation problems with a target or a set of target models in mind

(Zellner, 1994). Balanced loss functions are appealing as they combine the proximity

of a given estimator to a target value as well as the unknown parameter of interest

(Marchand and Strawderman, 2020). These loss functions have captured the interest

of some researchers for regression problems (Hu and Peng, 2011), estimation and

prediction problems (Jafari Jozani et al., 2012, 2006), as well as credibility theory,

finance, sequential estimation (Baran and Stepien-Baran, 2013; Zhang and Chen,

2018).

WTPC modeling using balanced loss functions provides more reliable estimates

of the underlying relationship between wind speed and generated power of each



3.1. INTRODUCTION 77

turbine. Also, developed methodology allows to obtain estimates that are more

robust to outliers by giving more weights to more reliable target values in wind

speed regions that observed data are very noisy or measurement errors are prevalent.

To do this, two different weighting schemes are developed in this paper to deal

with non-homogeneity and, in particular high variability of generated power of each

turbine in different wind speed regions. These weights are then used to balance the

importance of estimation error and proximity to target values in the construction

of WTPCs. It is worth mentioning that proposed weighting scheme can be used

to extend the commonly used WTPC modeling methods under the least squares

methodology to a more complex one under the weighted least squares approach.

This will resolve the effect of the possible data non-homogeneity issue of generated

powers in different wind speed regions for the standard WTPC modeling methods

developed in the literature. Also, the proposed weighting scheme is very flexible,

and by taking the weight function to be zero, one can obtain the usual results under

the least squares as a special case.

The outline of this paper is as follows. Section 3.2 introduces the problem of

WTPC modeling and the proposed hybrid estimation method. It explains the need

for taking into account the proximity of a fitted WTPC to a target model and shows

how a hybrid power curve estimate can be obtained using the proposed balanced loss

function. Section 3.3 defines different weighting schemes to be used in conjunction

with the proposed loss function for WTPC modeling. Section 3.4 elaborates on

two different target models, whereas the performance of each method is assessed in

Section 3.5. Finally, Section 3.6 provides concluding remarks and future work.
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3.2 Wind Turbine Power Curve Estimation

To motivate the statistical methodology proposed in this paper a real data

set obtained from a wind farm in Canada was studied. Fig. 3.1 shows a MPC

along with real historical wind speed-power data. Also, three important points are

highlighted in Fig. 3.1: 1) Cut-in speed (Vc) being the threshold which wind turbine

starts generating power when wind speed is greater than this value; 2) Rated speed

(Vr) is the threshold which wind turbine increasingly generates power till wind

speed reaches this threshold; 3) Cut-out speed (Vs) is the threshold which turbine

operation stops when wind speed is higher than this value to avoid damages Gasch

and Twele (2011); Manwell et al. (2010). Wind turbine manufacturers release power

curves for existing machines, derived using field tests. The approximate shape of the

power curve for a given machine can also be estimated theoretically using the power

characteristics of the rotor, generator, gearbox ratio, and efficiencies of various

components. The following function is often used to represent the relationship

between theoretical wind power and wind speed (v in m/s).

P (v) =
1

2
CpρAv

3, (3.1)

where v ∈ [Vc, Vs], Cp is the efficiency of the whole wind turbine system which is

usually calculated experimentally, ρ is the air density in kg/m3, and A is the turbine

rotor area in m2 (Manwell et al., 2010; Walker and Jenkins, 1997; Ackermann and

Söder, 2000).
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Figure 3.1: Manufacturer power curve (MPC) along with the cut-in (Vc), rated (Vr)
and cut-out (Vs) thresholds as well as 10-minutes historical speed-power data.

In practice, due to several factors such as environmental conditions that are

different from those in test sites, turbine aging, air density, wind velocity distribution,

wind direction, and the existence of obstacles near turbines, generated wind power

might differ from what is expected by MPC. Thus, empirical power curve modeling

is often used instead.

Let P = f(v) represent the unknown power curve. In practice, f(v) is unknown,

but some observations of its noisy version at some given wind speed values are

available, i.e.,

Yi = f(vi) + ξi, i = 1, . . . , n, (3.2)

where Pi = f(vi) is the true value of the power at the speed level vi and ξi

is the noise process. Thus, the problem is to estimate f(v) from the data set



80 CHAPTER 3. HYBRID POWER CURVES

{(v1, Y1), . . . , (vn, Yn)}, representing the real historical power dataset, also known

as training data. Existing literature on WTPC modeling often uses the goodness

of the fitted curves to the observed data as the only optimality criterion. For

example, under the classical least squares method, a fitted power curve is obtained

by minimizing the sum of squares

P̂ = arg min
P∈M

1

n

n∑
i=1

(Yi − Pi)2, (3.3)

where P̂ = (P̂1, . . . , P̂n)> are the values of the estimated power curve, such that P̂i

is the estimated power value at the speed level vi. In (3.3), the minimization is

taken with respect to P = (P1, . . . , Pn)> that belongs to a restricted class M of

power curve models. For instance,M can represent polynomial models of degrees q,

i.e., M = {f(v)|f(v) = Σq
k=1akv

k}.

In practice, there might exist reliable estimates P ∗i of Pi obtained from other

sources. For example, P ∗i could be the estimated power curve for a turbine T ′ that

is very close to the underlying turbine T in the wind farm such that T and T ′ are

sharing similar characteristics. Another choice for P ∗i would be the value of P at

v = vi obtained through the theoretical power curve, MPC or the average value of P

generated in the wind farm at v = vi. One might also want to use the estimated Pi

obtained through robust methods after removing outliers using one of the standard

techniques for polishing data or manually polishing by some experts. This is the

motivation to define the following locally balanced loss function



3.2. WIND TURBINE POWER CURVE ESTIMATION 81

L(P) =
1

n

n∑
i=1

[
(1− α(vi))(Yi − Pi)2 + α(vi)(P

∗
i − Pi)

2] , (3.4)

where P ∗i is the target value and the weight α(vi) takes values in [0, 1]. This loss

function reflects a desire of closeness of Pi both to: (i) the observed data value

Yi in terms of the squared error loss, and (ii) the target value P ∗i in terms of the

squared distance. The weight α(vi) calibrates the relative importance of these two

components. The minimum of the loss L(P) with respect to P over a class of

models M defines the modified estimate P̂ that is able to take into account a prior

knowledge defined by the target model P ∗i (Jafari Jozani et al., 2012).

Setting α(vi) = 0 for each i results in the usual power curve models under the

sum of squared errors that totally ignores the target model in the estimation process.

On the other hand, by setting α(vi) = 1 for each i, power curve estimator will be

the same as the target model. By decreasing the value of α(vi), the impact of the

target model on the hybrid power curve estimator will be reduced.

One can employ commonly used model fitting approaches to obtain optimum

hybrid WTPCs under the balanced loss function in (3.4). Polynomial regression

and some of its generalizations such as spline regression functions are widely used

for power curve modeling. A spline regression function is a piecewise polynomial

regression with the constraints that the first K − 1 derivatives of the fitted curve be

continuous. K denotes the degree of the polynomial fitted on each piece. Spline

regression methods can be constructed using different basis functions. In this paper,
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a B-Spline regression model is utilized. In other words, suppose MB = {P ∈ Rn :

P = Bβ}, is the underlying class of B-Spline models, where B is the n× n matrix

with its (i, j)’th element being Bk
j (vi) given by

Bk
j (vi) =

(vi − ζj)
(ζj+k − ζj)

Bk−1
j (vi) +

(ζj+k+1 − vi)
(ζj+k+1 − ζj+1)

Bk−1
j+1 (vi), (3.5)

for j = −k,−k + 1, ..., K, ζ0 = ζ−1 = · · · = ζ−k = min{vi, i = 1, · · · , n}, ζK+1 =

max{vi, i = 1, · · · , n}, and {B0
j (vi)} are the natural basis functions for piecewise

constant approximation (Friedman et al., 2001).

The Observed data set contains samples {(vi, Yi), i = 1, . . . , n}, where vi is

the wind speed and Yi = Pi + ξi is the corresponding noisy version of power.

Let Y = (Y1, . . . , Yn)> be the vector of the observed powers. Consider the usual

quadratic loss function and suppose that one is interested in the solution P ∈MB

that minimizes 1
n

∑n
i=1(Yi − Pi)2. This is equivalent for finding the following estimate

of β:

β̂ = arg min
β

1

n

n∑
i=1

(Yi −B>i β)2, (3.6)

where Bi is the i−row of the matrix B. This results in the solution

β̂ = (B>B)−1B>Y , (3.7)

yielding the prediction power model P̂ = Bβ̂ (Friedman et al., 2001).

Suppose P ∗ = (P ∗1 , . . . , P
∗
n)> is a vector of given target power values. This additional
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information can be employed to obtain a modified estimate of β under the balanced

loss function resulting in power estimates that are close to both the target curve

and the observed data. Hence, one can calculate the coefficients of the spline model

by minimizing the following locally balanced loss function:

L(β) =
1

n

n∑
i=1

{(1− α(vi))(Yi −B>i β)2 + α(vi)(P
∗
i −B>i β)2}. (3.8)

The estimate β̂ that minimizes this criterion yields the modified predictive power

model P̂i = B>i β̂. In (3.8), P ∗i is the target value and the weight α(vi) ∈ [0, 1] will

be chosen based on a suitable weighting scheme. By dropping the factor 1/n, the

formula in (3.8) can be re-written in the matrix form as follows

L(β) = (Y −Bβ)>(I−α)(Y −Bβ) + (P ∗ −Bβ)>α(P ∗ −Bβ), (3.9)

where α is the diagonal matrix α = diag[α(v1), · · · , α(vn)] and I is the diagonal

unit matrix. The formula in (3.9) can be easily minimized with respect to β by first

taking the derivative of L(β) with respect to β,

dL(β)

dβ
= (I−α)(2B>Bβ − 2B>Y ) +α(2B>Bβ − 2B>P ∗). (3.10)

and then solving dL(β)
dβ

= 0, to get:

β̂ = (B>B)−1B>[(I−α)× Y +α× P ∗]. (3.11)

This leads to the following locally combined prediction of the generated powers
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P̂α = Bβ̂

= B(B>B)−1B>[(I−α)× Y +α× P ∗]. (3.12)

Consequently, using the balanced loss function L(β) in (3.8), the estimate P̂α does

not only depend on the observed data Y through the usual B-spline regression fit

P̂ = B(B>B)−1B>Y but also reflects a desire of closeness to the target value P ∗.

It is known that the B-spline method might behave erratically beyond the

boundary knots. To overcome this issue, one can use the natural spline regression

models that are similar to B-spline models except that they are constrained to be

linear beyond the boundary knots (Friedman et al., 2001). Also, the choice of the

right number of knots and their locations play important roles in spline regression

modeling. The most common degree of K for spline regression is K = 3, which

is called cubic splines regression. There exist different methods in the statistical

literature for selecting the number of knots and finding the proper location of knots

(Friedman and Silverman, 1989).

As wind turbines are expected to generate similar powers at wind speeds around

a given point, one can also use a local regression approach to obtain an estimated

power at a point v0 by giving more weights to nearby training observations. The

parameter span s defines the number of nearby training observations to be considered

for estimating the power at v = v0. Span s plays an important role in the fitting

process since it controls the flexibility of the fitted curve. A small value of s leads

to a local and wiggly fitted power curve, however large values of s cause the fit to
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be more smooth yielding a global fit.

Fitting a local regression model for WTPC includes 4 steps:

1. Selecting the portion s = k
n

of closest training data vi to target point v0.

2. Assigning a weight W (vi, v0) to each point vi in the neighborhood of v0.

Further points from v0 get less weights and the closest point to v0 gets the

highest weight. The weights of all data points other than the nearest k

points will be zero. There are number of different choices to use for the

weighting function W (vi, v0). In this study, a tricubic weighting function

W (vi, v0) = (1 − (vi−v0
rk

)3)3, where rk defines the distance from v0 to the

furthest point amongst k points in the neighborhood of v0, was used.

3. Finding local linear coefficients β̂0(v0) and β̂1(v0) that minimize the localized

least square criterion

∑n
i=1 (Yi − β0 − β1(v0 − vi))2W (vi, v0).

4. The fitted value at v0 is given by f̂(v0) = β̂0(v0). It is worth noting that the

local coefficient β̂1(v0) estimates the derivative of the regression function at

v = v0 (Fan and Gijbels, 1996).

It is worth noting that the hybrid nonparametric/parametric regression estimates

have already been examined in Burman and Chaudhuri (2012). Nevertheless, only the

global combination of nonparametric and parametric estimates have been proposed.
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Figure 3.2: A flowchart describing the process of fitting a hybrid power curve using
5-fold cross-validation, and evaluating its performance using test data.

Fig. (3.2) summarizes the whole procedure of fitting a hybrid WTPC model

using the proposed approach in this paper, based on a 5-fold Cross-Validation to

find the optimum values for hyper-parameters and evaluating the performance of

fitted model using a set aside test data.

3.3 Weighting Schemes

Thus far, the focus was on the regression function estimation for the mean

generated power as a function of the wind speed based on the observation model in
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(3.2), where the information on the noise structure was ignored. In real-life cases, the

assumption that the noise variance is constant is unrealistic. For example, consider

the power-speed data in Fig. 3.3, which shows the variability in the generated

power is much smaller when wind speed is less than 8 m/s compared with the

variability when wind speed is larger than 12 m/s. Fig. 3.4 also confirms that

noise variance (estimated unbiasedly by squared residual error) is not constant

and changes as a function of wind speed. One can observe that the variance of

residuals is low when wind speed is low and it increases as wind speed increases.

This is known as heterogeneity or heteroscedasticity, whereas constant noise variance

is known as homogeneity. There are two main reasons for trying to understand

how the variability changes with the predictor in this case. The first reason is

that considering non-constant variance in model fitting results in a more accurate

estimation. Another reason is that non-constant variance property violates the

important homogeneity assumption when using least squares to fit regression models,

hence influencing the validity of statistical inferences. In particular, constructed

confidence intervals are not reliable. Fig. 3.3 makes it clear, i.e., when trying to

draw a confidence interval for the true regression function, one should be less certain

about what will happen for large values of the wind speed than for small values

(Ruppert et al., 2003).

In order to include the non-constant variance in the regression model, the formula

in (3.2) can be re-formulated as follows

Yi = f(vi) +
√
g(vi)εi, (3.13)
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where εi is a zero mean, unit variance noise and the non-negative function g(v)

represents the lack of homogeneity of the observed data. In fact, one can define

V ar(Y |v) = g(v). The model in (3.13) is referred to as a heteroscedastic regression

model.

In order to incorporate the data heteroscedasticity represented by the function

g(v), this paper proposes the shrinkage procedure that makes the weighted estimate

in (3.2) closer to the target power curve model which is more robust in the region

with the high variance. In this paper, the MPC and wind farm average power curves

(WFAPC) are considered as target models. Two different weighting schemes which

will be used in the proposed hybrid methods for WTPC modeling are introduced in

the following sections. These methods are based on estimates of g(v) that are then

used to design suitable weighting schemes.

3.3.1 Weighting Scheme 1

Fig. 3.3 shows historical data from one turbine in a wind farm. Also, the MPC is

shown in dashed line, and the natural spline regression estimate under the squared

error loss function fitted to the data is shown in solid line. One can easily see that

the natural spline estimate provides a better fit in the range that wind speed values

are low. However, for high wind speed values, the variance of the generated power

is high, which will inversely affect the precision of the empirical WTPC fitted to the

observed data. This motivates to define a weighting scheme so that it assigns higher
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Figure 3.3: Natural spline power curve regression model compared with the MPC
shows that the difference between these two models increases as the wind speed
increases.

weights to the target power curve when wind speed is high and lower weights to the

natural spline estimator. The opposite strategy is applied when wind speed is low.

In order to introduce a data-driven weighting scheme, the natural spline method

was utilized to estimate the conditional variance function g(v). The proposed

method can also be extended to other methods discussed in Section II. To this

end, the natural spline regression estimator was fitted to the training data, and

the squared error between the observed values {Yi} of generated power and the

predicted values {P̂i} was calculated (Uyanto, 2019), i.e.,

e2i = (Yi − P̂i)2, i = 1, . . . , n. (3.14)
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Figure 3.4: Squared errors of the fitted power curve show an exponential relationship
between the variance of the squared error and wind speed.

In other words, e2i estimates the variance of the noise associated with the power

generated at a given wind speed vi. Fig. 3.4 shows the values of {e2i }, the estimated

residuals variances of the fitted natural spline regression model with respect to

wind speeds for one of the turbines in the data set. It is clear that e2i is changing

exponentially with vi. Fig. 3.4 also represents high variance of generated power

when wind speed is high. Owing to (3.13), one can write

E[e2i ] = E[P̂i − Pi]2 + g(vi), (3.15)

where Pi = f(vi). It should be noted that the prediction error E[P̂i− Pi]2 is at least

of order O(n−4/5) for most parametric/nonparametric estimation methods (Li and

Racine, 2007). Hence, one can approximately write

e2i = g(vi) + ui, (3.16)

for ui being a zero-mean noise process, i.e., E[e2i ] = g(vi). By virtue of some prior
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information, see Fig. 3.4, one can make use of the following parametric model for

g(vi):

g(vi) = γ0v
γ
i , (3.17)

for some positive constants γ0, γ.

To recover the coefficients γ0 and γ, one can write

e2i = γ0v
γ
i

[
1 +

ui
E[e2i ]

]
.

Then

log(e2i ) = log(γ0) + γ log(vi) + log

[
1 +

ui
E[e2i ]

]
.

Since the assumption that ui is small and the fact that log(1 + x) ≈ x for small x

implies that one can obtain the following linearized regression model

e′i = log(γ0) + γ log(vi) + ηi, (3.18)

where e′i = log(e2i ) and ηi ≈ ui
E[e2i ]

is the zero-mean noise process (Wasserman, 2006;

Wand and Jones, 1994b).

Thus, the estimates γ̂0 and γ̂ of γ0 and γ, respectively, are obtained by minimizing

the sum of squares criterion

(γ̂0, γ̂) = arg min
(γ0,γ)

n∑
i=1

(e′i − log(γ0)− γ log(vi))
2. (3.19)
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(a) (b)

Figure 3.5: a) Log transformation of squared error and the fitted linear regression
model. b) Weights α(vj) for each wind speed value vj.

Fig. 3.5a shows the log transformation and the fitted linear regression model. Using

γ̂0 and γ̂ in (3.17) one can define

wj = γ̂0v
γ̂
j , (3.20)

where wj is the weight of the hybrid method for each value of vj. As wj may be

larger than 1, it is required to scale them to be in the range [0,m] by defining the

corrected weights α(vj)

α(vj) = m× wj
max (wj)

, (3.21)

where 0 < m < 1 is a constant that controls the maximum value of α(vj). Fig.

3.5b shows α(vj) for different vj. m = 0 leads to α(vj) = 0 for all j, which makes

the hybrid method to be the same as the original estimation method. In other

words, the contribution of the target model to the aggregated estimator will be
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Figure 3.6: Hybrid power curves based on natural spline and MPC for different
values of m using weighting scheme 1.

null. Fig. 3.6 shows different power curves for different values of m. It shows that

by increasing m, the weights α(vj) increase which leads to having hybrid curves

that are more close to target values in those regions with high weights. To find the

proper value of m, different values for m ranging from 0 to 1 by an increment of 0.1

were evaluated.

3.3.2 Weighting Scheme 2

In the second approach, the weight associated with each wind speed range was

defined using the standard deviation of the generated power in that speed range.

To this end, the whole speed range is divided into R bins. In each bin, the standard
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Figure 3.7: Standard deviation of generated power in R bins for a sample turbine
and weighting scheme for a sample turbine. Standard deviations are shown with
the points alongside with the fitted curve showing the weights.

deviation of the generated power is calculated as follows

SDr =

√
Σvi∈binr(Yi − Ȳr)2

|nr|
, r ∈ 1, . . . , R, (3.22)

where nr is the number of data in bin r, SDr is the standard deviation of generated

power in bin r, and Ȳr is mean of the generated powers corresponding to wind speed

values in bin r. Fig. 3.7 shows values of SDr and the mid-point of each bin for

the one of the examined wind turbines. A natural spline model was fitted on pairs

(vr, SDr) where vr is the middle value of each wind speed bin. In this approach,

scaling the weights is required to be in the range [0,m] so that m < 1. Fig. 3.7
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shows weights {α(vr)} by a fitted line on SDr points, as an example of the weighting

scheme for one of the sample turbines.

3.4 Target Models

In most WTPC modeling methodologies, the focus of study is on fitting a curve

that provides the goodness of fit with respect to the classical least squares criterion

defined in (3.3). However, for non-homogeneous data, like wind data case in this

study, emphasizing the goodness of fit may not be sufficient, especially in those

regions with high variance in the data. In this situation, one may want to rely

on some robust estimates of power for a given wind speed. Using a balanced loss

function (3.4), one can define a general framework to make locally weighted hybrid

methods to focus more on the goodness of fit in areas with low variance as well as

closeness to robust target models in regions with high variance. The ultimate goal

is to improve the robustness and accuracy of the fitted curve. In this paper, two

different target models based on MPC and WFAPC are utilized.

3.4.1 Manufacturer Power Curve

The International Standard IEC 61400-12-1 is prepared by the International

Electrotechnical Commission (IEC) technical committee as a standard methodol-

ogy for measuring the power performance characteristics of a single wind turbine.
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According to this standard, simultaneous measurements of wind speed and power

output are recorded at a test site for a sufficiently long duration to provide a

significant database. The IEC-based power curve is determined by applying the

“method of bins” (Commission et al., 2007).

Wind turbine manufacturers provide a table of pairs data set, which shows the

amount of electrical power output according to the wind speed value based on the

IEC procedure. For example, in this research, a data set containing 20 pairs of

(vi, pi) is available, which shows the expected value of output power pi when the

wind speed is equal to vi. One can calculate the power curve for the whole range of

wind speed between cut-in and cut-out points, by interpolation using a polynomial

regression on the data set of 20 pairs.

Although the generated power is usually different from the MPC value, still

the MPC may contain worthy information about the general performance of the

wind turbine. For example, one may consider it a reliable resource when empirical

estimation is not robust, e.g., in regions with high variance data.

3.4.2 Wind Farm Average Power Curve

Another target model that can be utilized in the proposed hybrid modeling of

WTPC is the WFAPC. Each wind farm contains a different number of wind turbines.

Although the performance of the same model of wind turbines is similar to each

other, it also depends on different properties such as the location, turbines’ age, and

maintenance history of the turbine.



3.4. TARGET MODELS 97

Figure 3.8: WTPC of each 63 wind turbines in a farm located in Canada, alongside
with theWFAPC, highlighted one, which calculated by taking average of all 63
power curves.

Generally, one can estimate the average power curve of wind turbines in a wind

farm by taking the average of estimated power curves of wind turbines in the farm.

To this end, the power curve of each turbine is estimated one by one, using one

of the commonly used power curve estimators, following standard data polishing

techniques such as three standard deviation around the mean (Shokrzadeh et al.,

2014). Then, by taking the average of estimated power curves one can get the

WFAPC to be used as a target model for the hybrid method. For example, in this

research, the WTPC for each 63 wind turbine in the wind farm is estimated using

the natural spline method. Fig. 3.8 shows 63 power curves related to wind turbines

in the farm alongside with the highlighted one, which is the WFAPC. The WFAPC

contains virtuous information about the general performance of turbines in the farm
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so that it can be considered as a trustworthy resource.

3.5 Results

In this section, the proposed hybrid methods on proprietary wind power data of

a wind farm are evaluated. The wind power plant (WPP) includes 63 identical wind

turbines with the rated capacity of 1.7 MW, and the hub height of 80 m spread over

an area of over 90 km2. The cut-in speed, rated speed, and cut-out speed of the

turbines are 3.5, 13, and 20 m/s, respectively. Four wind turbines (T1,· · · ,T4) of

the WPP are selected to analyze the performance of the proposed methods. Raw

data contains 30398 samples of wind speed and generated power with a resolution

equal to 10-minutes from June 2006 to January 2007. To polish the data, the outlier

detection process described in Shokrzadeh et al. (2014) is used. To do so, after

removing data with negative values of wind speed or wind power, data points with

power values that are at least three standard deviation away from the average power

value at that speed were removed.

Statistical metrics that can be used for evaluating the performance of the fitted

power consist the root-mean-squared error (RMSE), normalized mean absolute

percentage error (NMAPE), symmetric mean absolute percentage error (sMAPE),

the mean absolute error (MAE), and the coefficient of determination (R2) (Kusiak

et al., 2012; Marvuglia and Messineo, 2012). In this paper, MAE index was evaluated
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by the following formula

MAE =
1

n

n∑
i=1

|Yi − P̂i|, (3.23)

where Yi is the observed wind power and P̂i is the predicted value of the power.

To compare the MAE value of different methods, data set was divided into

3 different subsets: training set (50%), validation set (25%) and test set (25%).

Training data and validation set were utilized to find the best model. Then, the

performance of fitted model was evaluated on the test data. The process was

repeated 5 times and the average and standard deviation of MAE for each model

are reported. This process is represented for comparison purposes.

3.5.1 Experiment 1

In this section, the performance of polynomial regression, natural spline regres-

sion, and local regression as commonly used power curve estimation methods are

investigated when MPC and WFAPC are used as target models.

Table 3.1 shows the mean of MAE values of each method on 4 different turbines.

Table 3.1 also shows rankings of methods, where (1) is the best and (5) is the worst

rank. The last column of Table 3.1 shows the overall performance ranking of each

method. As expected, it shows that the performance of target models (MPC and

WFAPC) individually is worse than the other three empirical estimation methods

(PR, NS, and LR). It is also clear that natural spline outperforms other methods.
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In the following sections, the effect of hybrid approaches using natural spline and

local regression are investigated when MPC and WFAPC are used as target models

and when 2 different weighting schemes are utilized.

Method
Turbine T1 Turbine T2 Turbine T3 Turbine T4

Rank
MAE MAE MAE MAE

PR
74.71 (3) 65.94 (3) 67.77 (3) 69.64 (3)

(3)
[±1.3] [±1.22] [±0.99] [±1.51]

NS
73.38 (1) 63.51 (1) 66.57 (2) 68.56 (2)

(1)
[±1.5] [±1.27] [±0.87] [±1.73]

LR
73.95 (2) 64.03 (2) 66.44 (1) 68.03 (1)

(2)
[±1.41] [±1.17] [±0.92] [±1.56]

MPC
217.46 (5) 193.52 (5) 150.85(5) 198.46 (5)

(5)
[±1.36] [±1.79] [±1.81] [±1.53]

WFAPC
88.84 (4) 67.49 (4) 73.29 (4) 77.5 (4)

(4)
[±1.41] [±1.27] [±1.39] [±1.4]

Table 3.1: Mean and standard deviation (in [ ]) of MAE for 10-MIN Data from
Turbines T1, T2, T3 and T4 using the Methods Including: Polynomial Regression
(PR), Natural Spline (NS), Local Regression (LR), Manufacturer’s Power Curve
(MPC) and Wind Farm Average Power Curve (WFAPC)

3.5.2 Experiment 2

In this experiment, hybrid models using natural spline as an empirical estimator

were evaluated. Four different hybrid methods using two different target models

(MPC and WFAPC) based on two various weighting schemes were implemented. In

this experiment, the same data and turbines were used as in Experiment 1. Table

3.2 shows the results of this experiment. It also shows that the best hybrid method

is the combination of natural spline and WFAPC using the weighting scheme 2.
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Method
Turbine T1 Turbine T2 Turbine T3 Turbine T4

Rank
MAE MAE MAE MAE

NS
73.38 (5) 63.51 (5) 66.57 (5) 68.56 (5)

(5)
[±1.5] [±1.27] [±0.87] [±1.73]

NS-MPC-1
71.71 (3) 62.16 (2) 65.21 (3) 66.56 (3)

(3)
[±1.43] [±1.26] [±1.1] [±1.57]

NS-MPC-2
69.73 (2) 62.96 (4) 63.99 (2) 64.34 (2)

(2)
[±1.31] [±1.31] [±1.7] [±2.75]

NS-WFAPC-1
71.95 (4) 62.32 (3) 65.49 (4) 66.82 (4)

(4)
[±1.44] [±1.25] [±1.12] [±1.51]

NS-WFAPC-2
68.13 (1) 60.51 (1) 62.99 (1) 63.61 (1)

(1)
[±1.43] [±1.51] [±1.35] [±1.76]

Table 3.2: Mean and standard deviation (in [ ]) of MAE for 10-MIN Data from
Turbines T1, T2, T3 and T4 using the Methods Including: Natural Spline (NS),
Natural Spline Combined with MPC based on Weighting Scheme 1 (NS-MPC-1),
Natural Spline Combined with MPC based on Weightin Scheme 2 (NS-MPC-2),
Natural Spline Combined with WFAPC based on Weighting Scheme 1 (NS-WFAPC-
1) and Natural Spline Combined with WFAPC based on Weighting Scheme 2
(NS-WFAPC-2)

However, one can figure out all different combinations of hybrid methods outperform

the original method. One can conclude that hybrid method performs better than

original estimators since hybrid method gives more weights to target models when

the variance of data is high.

3.5.3 Experiment 3

In this section, the previous experiment was repeated except that a local

regression power curve modeling was used to form an empirical estimator. To this

end, four different hybrid methods were implemented using two different target
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Method
Turbine T1 Turbine T2 Turbine T3 Turbine T4

Rank
MAE MAE MAE MAE

LR
73.95 (5) 64.03 (5) 66.44 (5) 68.03 (5)

(5)
[±1.41] [±1.17] [±0.92] [±1.56]

LR-MPC-1
69.96 (3) 63.5 (4) 66.07 (4) 65.3 (3)

(4)
[±1.31] [±1.4] [±1.6] [±1.9]

LR-MPC-2
69.68 (2) 63.41 (3) 63.94 (2) 64.14 (2)

(2)
[±1.34] [±1.36] [±1.7] [±2.6]

LR-WFAPC-1
72.53 (4) 62.76 (2) 65.24 (3) 66.33 (4)

(3)
[±1.34] [±1.15] [±1.07] [±1.46]

LR-WFAPC-2
68.04 (1) 60.62 (1) 62.96 (1) 63.43 (1)

(1)
[±1.48] [±1.6] [±1.38] [±1.76]

Table 3.3: Mean and standard deviation (in [ ]) of MAE for 10-MIN Data from
Turbines T1, T2, T3 and T4 using the Methods Including: Local Regression (LR),
Local Regression Combined with MPC based on Weighting Scheme 1 (LR-MPC-1),
Local Regression Combined with MPC based on Weightin Scheme 2 (LR-MPC-2),
Local Regression Combined with WFAPC based on Weighting Scheme 1 (LR-
WFAPC-1), Local Regression Combined with WFAPC based on Weighting Scheme
2 (LR-WFAPC-2)

models based on two different weighting schemes discussed in Section 3.3. Table 3.3

shows the results of this experiment. It also confirms that the hybrid method using

WFAPC as the target model outperforms the original methods.

To sum up all the results, the four best methods are presented in Table 3.4. It

shows that the hybrid method using local regression and WFAPC using the second

weighting scheme based on variance performs the best on almost all turbines studied

in this paper. Also, it shows using the second weighting scheme results in hybrid

methods that improve the performance of fitted power curve. One can conclude

that using WFAPC is a better option to be used as target model according to the

results. It worth mentioning that there is no unique best method for all different
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Method
Turbine T1 Turbine T2 Turbine T3 Turbine T4

Rank
MAE MAE MAE MAE

NS-WFAPC-2
68.13 (2) 60.51 (1) 62.99 (2) 63.61 (2)

(2)
[±1.43] [±1.51] [±1.35] [±1.76]

NS-MPC-2
69.73 (4) 62.96 (3) 63.99 (4) 64.34 (4)

(4)
[±1.31] [±1.31] [±1.7] [±2.75]

LR-MPC-2
69.68 (3) 63.41 (4) 63.94 (3) 64.14 (3)

(3)
[±1.34] [±1.36] [±1.7] [±2.6]

LR-WFAPC-2
68.04 (1) 60.62 (2) 62.96 (1) 63.43 (1)

(1)
[±1.48] [±1.6] [±1.38] [±1.76]

Table 3.4: Mean and standard deviation (in [ ]) of MAE for 10-MIN Data from
Turbines T1, T2, T3 and T4 for the Best Methods in the Previous Experiments

data sets, but one can conclude that hybrid methods perform better than classic

methods in power curve modeling.

3.6 Concluding remarks

WTPC modeling is not only an important part of wind power forecasting

but also wind energy power system management. Heteroscedasticity of data is one

of the important issues to deal with in power curve modeling which impacts the

quality and robustness of the fitted power curves. In this paper, two different locally

defined weighting schemes were proposed to make hybrid nonparametric/parametric

methods for WTPC modeling and increase the goodness of fitted curve as well

as its closeness to some target models. A balanced loss function was defined to

achieve this goal, and a WTPC model was constructed for its minimization. The

proposed approach is very general and can be used for any target power curve model.
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However, results were presented when WFAPC and MPC were used as target power

curves. Experimental results in this paper confirm that although these target models

may not perform accurate enough to be utilized individually, they contain worthy

properties such as robustness which causes hybrid methods to perform better in

terms of accuracy and robustness than classical power curve estimators. Results

show that the local regression method combined with the WFAPC using a local

weighting scheme based on the variance of real data in different bins of the wind

speed value, outperforms other methods. Results also show that hybrid methods

improved the MAE values alongside keeping the standard deviation of MAE at

the same level. It confirms that using hybrid methods, the bias will be reduced

by keeping the variance at the same level. The outcome of this study can be

used in wind farms data sets which suffer from heteroscedasticity issue in different

applications including turbine performance monitoring, power forecasting, fault

detection, and estimating the required storage capacity for integrating to power

system.



Chapter 4

Multilevel Modeling

This chapter encloses a section of the author’s PhD work that is accepted to published

at IEEE Transaction on Sustainable Energy1. In previous chapters, we discussed

how one can improve the accuracy of fitted power curve for each wind turbine. In

this chapter, we focus on improving the wind farm aggregated power curves instead

of just one wind turbine power curve.

1© 2021 IEEE. Reprinted, with permission, from
M. Mehrjoo, M. Jafari Jozani, M. Pawlak and B. Bagen, ”A Multilevel Modeling Approach
towards Wind Farm Aggregated Power Curve,” in IEEE Transactions on Sustainable Energy,
https://doi.org/10.1109/TSTE.2021.3087018

“In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of University of Manitoba’s products or services. Internal or personal use of
this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution,
please go to http://www.ieee.org/publications_standards/publications/rights/rights_

link.html to learn how to obtain a License from RightsLink. If applicable, University Microfilms
and/or ProQuest Library, or the Archives of Canada may supply single copies of the dissertation.”
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Abstract : Wind farm multiple aggregated power curve modeling plays an im-

portant role in reducing the complexity of analyses in wind farm management and

annual power prediction. There is a trade-off between the complexity and accuracy

of aggregated power curves. In this paper, K-Means clustering is utilized to classify

turbines in a wind farm into homogeneous groups according to a new set of features

based on the overall performance of turbines. We apply multilevel modeling methods,

including random intercept and random slope models on turbine clusters, to take

into account the hidden correlation among different clusters. Results show that the

accuracy of our proposed methods are higher than the single aggregated method

alongside an equal complexity. The proposed multiple aggregated power curve model

can be utilized to analyze wind farm behavior and wind farm power simulations to

forecast wind power.

4.1 Introduction

The shortage of fossil fuels and their associated problems such as pollution have

forced countries to replace them with clean and renewable energies such as wind

Lindenberg et al. (2008). Rapid growth in wind farms’ size has helped wind energy

to cover a massive portion of electricity production sources. However, the stochastic

nature of wind and its volatility have raised important challenges pertinent to wind

farms and power system stability. Therefore, it is necessary to analyze wind farms’

behavior by accurately modeling the wind farm power function and accordingly
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monitoring power system stability Mehrjoo et al. (2020). Modeling power curves

of tens or hundreds of individual wind turbines make the mathematical model of

the power system very complex and increase the overall time and effort required to

simulate and evaluate the performance of the underlying power system Ghaedi et al.

(2013); Hur (2018). Any reasonable reduction in the mathematical model of each

component of the power system may reduce the computational cost and simulation

time. One solution is to present the wind turbine power curve models of the wind

farm by a single or multiple aggregated models while maintaining a sufficient level

of accuracy Ni et al. (2016); Liu et al. (2019).

A single aggregated model may be suitable for small wind farms as it can retain

the accuracy requirements, but it often suffers from significant errors when there

exist a large number of wind turbines of different types or control parameters Liu

et al. (2019); Kim et al. (2012); Perdana et al. (2008). For such situations, multiple

aggregated wind farm power curves are suggested at the cost of an increase in the

complexity of the fitted models Zha et al. (2019); Ghosh and Senroy (2013).

In Fernandez et al. (2006), an aggregation model by clustering based on the

similarity of wind speed has been proposed. In this approach one needs to choose

an appropriate number of clusters and divide wind turbines into different clusters

(i.e., homogeneous groups) based on the similarity of wind speed recorded at each

turbine’s location. However, in most wind farms (including the data set in this

paper), the number of meteorological masts in the farm is much less than the

number of wind turbines, which makes wind speed not accurate enough to be used

as a suitable feature in the clustering process. Later on, in González-Longatt et al.
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(2012); Dou et al. (2019); Gao et al. (2019); Ali et al. (2012); Zhang and Liu (2019),

wake effect and wind farm layout were added to the clustering process. However,

taking the wake effect into account for clustering turbines is challenging and raises

complex issues.

As the wake effect changes by wind direction and impacts turbines’ performance

and their generated power, one should always consider wind direction as an important

feature. To take into account the impact of the wake effect and avoid different

clustering groups for different wind direction values, and to reduce the complexity

of the wind farm aggregated model, this paper develops a clustering approach based

on a set of features derived from wind turbines’ generating power performance in

a long term duration. Since the wake effect impacts wind turbines’ performance,

clustering based on wind turbines’ performance inherently considers the wake effect.

So, clustering based on statistical metrics of historical data, especially generated

power performance, would be the proper option to partially resolve the issue of

wind direction impact on wake effect. In addition, the proposed feature selection

not only considers the wake effect from other turbines indirectly but also the effects

pertinent to turbines’ age, capacity, and model, among many others.

The mean of generated power in different wind speed bins was used as a reasonable

feature for clustering turbines into several groups with similar performance, and

this can be used even in the absence of turbines’ exact location. K-means clustering

based on the Euclidean distance was used to assign turbines in a wind farm to

different groups such that in each group generating powers are homogeneous, and

between groups, they are non-homogeneous.
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An appropriate clustering approach allows multiple aggregated power curves

to reduce the order of fitted power curves from the number of turbines in a wind

farm to the number of clusters and accordingly reduce the model complexity, the

number of parameters, and simulation time. In this paper, multilevel models are

also developed to take into account the correlation among fitted power curves for

each cluster and improve the accuracy of the wind farm aggregated model Grajeda

et al. (2016); Chen et al. (2020). Random intercept and random slope B-spline

aggregated models are developed as competitors to a single aggregated model.

This study aims to:

� cluster a relatively large number of turbines in a wind farm into a small number

of homogeneous groups by introducing a novel set of features based on the

performance of turbines in generating power,

� proposing a solution for handling the important trade-off between complexity

and accuracy in developing wind farm multiple aggregated power curve models,

� incorporating the hidden correlation that exists between turbines in different

clusters for fitting wind farm multiple aggregated power curves using advance

statistical tools based on mixed effect models,

� utilizing statistical tests to confirm the effectiveness of our proposed wind

farm multiple aggregated power curve.

The outline of the paper is as follows. In Section 4.2, the proposed clustering

method and the statistical metrics used for choosing the correct number of clusters
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are discussed. Section 4.3 introduces multilevel modeling and shows how this can be

used to reduce the order of wind farm aggregated power curve. In Section 4.4, the

proposed methodology is implemented on an actual data set retained from a wind

farm in Canada. Also, using different criteria, the performance of the aggregation

method is evaluated. Section 4.5 is devoted to concluding remarks and future work.

4.2 Clustering Methods

Clustering methods are utilized to assign wind turbines into homogeneous groups.

Features that affect the turbines’ performance can be classified into those inherent

to the turbine itself (e.g., turbine’s model, height, etc.) or to environmental effects

(e.g., wake effect, the direction of the turbine, terrain condition). In practice, it is

desirable to develop an algorithm that accurately simulates turbine’s performance.

Our proposed approach below uses a set of features based on the average turbine’s

generated power in different wind speed intervals (bins) that represents those two

classes in order to perform the necessary clustering before developing the proposed

multilevel models to construct a wind farm aggregated model.

4.2.1 Clustering Features

Different clustering features with different separability powers were investigated

in the literature, such as wind speed, wind direction, and turbines’ location. In
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Liu et al. (2014), the mean and standard deviation of generated power for each

turbine were considered as clustering features. However, they do not contain enough

information about the performance of turbines and ignore the wake effects in the

clustering procedure. This paper uses the whole turbines’ semi-empirical power curve

model as the underlying feature for clustering. To evaluate the semi-empirical power

curve for each turbine, the wind speed range between the cut-in and rated points is

divided into M regions [Rm, Rm+1],m = 1, . . . ,M and the mean of generated power

in each region is calculated, where {Ri} denotes the speed knot point of the i-th

partition. For turbine t, t = 1, . . . , T , this results in a set of M features describing

the mean of generated power in that wind speed range, given by

pt,m =

∑
k pt(vk)1(Rm ≤ vk < Rm+1)∑

k 1(Rm ≤ vk < Rm+1)
, m = 1, . . . ,M, (4.1)

where 1(A) is the indicator function of the set A. Also pt(vk) is the generated

power by the t-th turbine at the wind speed vk. The equation in (4.1) defines the

M -dimensional feature vector pt = (pt,1, . . . , pt,M )> that characterizes the generated

power of the t-th turbine over the assumed range of wind speed. Fig. 4.1 shows

clustering features for three sample turbines. Fig. 4.1(a) represents generated power

by three different turbines in three different colors. Fig 4.1(b) represents the mean

of generated powers in each bin for these turbines, which are considered as clustering

features. So, for each turbine, the empirical turbine’s power curve in the range

between the cut-in and rated speeds are simulated by a set of M numbers equal

to means of generated powers. To avoid any bias in wind power curve modeling,
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(a)

(b)

Figure 4.1: a) Speed-Power pairs of data from 3 different turbines in the wind farm
represented by 3 different colors b) Average of generated power in different bins
(M=8) of speed values for each turbine.
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a portion of data (one month) was used for clustering and the rest was used for

training and validity of fitted wind power curve models.

4.2.2 K-Means Clustering Method

This is a commonly used clustering method that clusters data into K groups

based on some distance measures. In this paper, the distance between two M -

dimensional feature vectors pi and pj is determined by the classical Euclidean

distance

d(pi,pj) =

(
M∑
m=1

|pi,m − pj,m|2
)1/2

. (4.2)

Prior to performing the clustering method, it is necessary to specify the desired

number of clusters K. Upon deciding the number of clusters, K-means clustering

approach will assign each data to an appropriate cluster. Section 4.2.3 describes

how to find K in practice. The K-means clustering algorithm is as follow:

1) Choose an initial set of K centers and assign each turbine feature vector to a

cluster with the nearest center.

2) Repeat the following steps continuously until there is no change in the cluster

assignments:

� For each cluster, compute the cluster centers by taking the average of each

turbine’s feature set assigned to this cluster.

� Assign turbines to the clusters with closest center.
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The K-means criterion is based on minimizing the pairwise distance of data points

within the same cluster. Formally, the K-means criterion with respect to the

partition {c1, . . . , cK}, such that
⋃K
r=1 cr = {p1, . . . ,pT}, is defined as follows

K∑
r=1

1

|cr|
∑
i,j∈cr

d2(pi,pj), (4.3)

where |cr| is the size of the cluster cr and the notation i, j ∈ cr denotes that the

feature vectors pi,pj fall into the cluster cr. The optimal partition is the one that

minimizes (4.3); however the algorithm may return its local minimum. To avoid

that, it is required to repeat the K-means algorithm multiple times with different

random initial cluster assignments.

4.2.3 Elbow Method

Selecting the correct number of K clusters plays an essential role in clustering

methods as well as in validating the results of the wind farm aggregate model. One

of the most commonly used methods to determine the optimal number of clusters is

the elbow method that evaluates the within-cluster dissimilarity Wk as a function

of the number of clusters K (Friedman et al., 2001).

Let {p1, . . . ,pT} be data set representing the M−dimensional feature vectors corre-

sponding to T turbines and suppose the data is partition into K clusters {c1, . . . , cK}.
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The total distances Dr for all turbines in the group cr is defined as

Dr =
∑
i,j∈cr

d(pi,pj). (4.4)

There are αr = (|cr| − 1)|cr|/2 non-zero different distances d(pi,pj) for the group

cr, where |cr| is the size of the group cr. Let Wk be the mean within-cluster sum of

distances :

WK =
K∑
r=1

1

αr
Dr. (4.5)

Different values will be obtained for K ∈ {1, 2, · · · , Kmax}. Generally, WK decreases

by increasing K. A simple mathematical derivation shows that WK is monotonically

decreasing with K. Hence, WK is not informative in choosing the optimal number

of clusters by itself.

Considering that the actual distinct number of turbine clusters is K∗, the

intuition underlying the approach is that for K < K∗, there exists a subset of the

true underlying groups in each or some of the K groups returned by the algorithm.

Consequently, the solution criterion value tends to decrease substantially with each

successive increase in the number of clusters and WK+1 < WK . In other words for

K < K∗, it is expected to have a fast reduction in consecutive differences in the

criterion values WK−WK+1 and {WK−WK+1|K < K∗} >> {WK−WK+1|K > K∗}.

An estimate of K∗ is obtained by specifying the point that there will be a sharp

elbow in the graph of WK versus the number of clusters (Friedman et al., 2001). A

more formal method is proposed in Tibshirani et al. (2001) using the GAP statistic.
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Figure 4.2: Elbow method for finding the optimal number of clusters for 63 turbines
in a wind farm in Canada. K = 3 is selected as the optimal number of clusters
according to the sharp decreases prior to K = 3 and smooth decrease after K = 3.

Table 4.1: Number of turbines in each cluster

Cluster C1 C2 C3
#Turbines 18 18 27
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Fig. 4.2 shows the elbow metric for T = 63 turbines in a wind farm in Canada

based on clustering feature set explained in Section 4.2.1. It is clear that the optimal

number of clusters based on the elbow method is 3 since the sharp decreasing

condition is not satisfied after K = 3 number of clusters. Table 4.1 shows the

number of turbines in each cluster.

4.3 Multilevel Modeling

Multilevel models are commonly used for problems with multilevel, hierarchical,

or longitudinal data structures. They are also called mixed models since they contain

fixed effects and random effects. One should expect that utilization of information

pertinent to turbines within and between clusters would be beneficial in developing

a more accurate wind farm aggregated power curve. Multilevel models enable us

to study the effect of wind speed on generated power in each level and account

for common characteristics of observations on turbines such as irregularly spaced

observations, time-varying variability and correlated errors within clusters.

Three different approaches are developed for wind farm aggregated model fitting

in this study, including 1- Single level model, which fits just one power curve on the

whole data from all turbines in the wind farm, 2- Random intercept model, which is

the simplest multilevel model, 3- Random slope model.



118 CHAPTER 4. MULTILEVEL MODELING

4.3.1 Single level B-spline wind farm aggregated model

The wind farm’s power curve shows the electrical power output ratings of the

turbines in a wind farm for different wind speeds (Gasch and Twele, 2011). Each

turbine’s manufacturer provides a table or graph showing the relationship between

generated power and wind speed under some specific conditions (Commission et al.,

2007). Manufacturers’ power curve has three main characteristic speeds: 1) cut-in

(Vc); 2) rated (Vr), and 3) cut-out (Vs) speeds. For wind speed less than Vc, a

wind turbine can not generate power. The turbine generates power increasingly

by incrementing wind speed in (Vc, Vr) until wind speed reaches the rated power.

To avoid damages, wind turbine stops generating power as wind speed reaches Vs

(Manwell et al., 2010).

Various parametric and nonparametric statistical models can be used to obtain

a single level aggregated empirical power curve of a wind farm (Mehrjoo et al.,

2019; Carrillo et al., 2013; Shokrzadeh et al., 2014). One of such methods is the

polynomial regression (Lydia et al., 2013). Under a single level model, the observed

power pit at the wind speed vi for the t-th turbine is written as

pit = f(vi) + εit, i = 1, . . . , N ; t = 1, . . . , T, (4.6)

when f(v) represents the single power curve for all turbines. Let pi. = 1
T

ΣT
t=1pit,

and εi. = 1
T

ΣT
t=1εit and write

pi. = f(vi) + εi., i = 1, . . . , N. (4.7)
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Using a polynomial regression model f(vi) = Σl
j=0βjv

j
i , the least squares (LS)

estimate of the aggregated wind farm power curve is given by

p̂i. = β̂0 + β̂>Vi, (4.8)

where

β̂ = (V >V )−1V >P̃ and β̂0 = p.. − β̂>V . (4.9)

Here p.. = 1
N

ΣN
i=1pi. and P̃ = (p1., . . . , pN.)

> , β = (β1, β2, · · · , βl)>, and V is a

matrix with its i-th row being defined as Vi = (vi, v
2
i , ..., v

l
i).

Polynomial regression models are global in nature and are not robust against the

presence of outliers. Piecewise polynomial regression models such as B-splines

are often used to resolve this issue by fitting smooth functions with continuous

derivatives on different wind speed ranges (Shokrzadeh et al., 2014). A B-spline

model is represented as

P̃ = Bβ + ε, (4.10)

where B is a matrix with its (i, j)-th element being

Bl
j(vi) =

(vi − ζj)
(ζj+l − ζj)

Bl−1
j (vi) +

(ζj+l+1 − vi)
(ζj+l+1 − ζj+1)

Bl−1
j+1(vi), (4.11)

for j = −L,−L + 1, . . . , L, ζ0 = ζ−1 = . . . = ζ−L = min{vi, i = 1, . . . , N}, and

ζL+1 = max{vi, i = 1, . . . , N}. Here {ζi, i = 1, · · · , Q} is a set of knots that controls

the flexibility of the fitted curve. Also, B0
j (vi) are the natural basis for piecewise



120 CHAPTER 4. MULTILEVEL MODELING

constant functions. One can estimate β using the LS criterion as

β̂ = (B>B)−1B>P̃ . (4.12)

In our experiments, we utilized the B-spline method for fitting the wind farm

aggregated power curve in the range of wind speed between the cut-in and rated

points. To this end, we aggregated all the data from each turbine in the farm

(after separating the portion of data used for clustering), divided the remaining

data into training and test data using a 10-fold cross-validation approach. We then

fitted one B-spline model on all turbines’ data, called single aggregated model. Fig.

4.3(a) shows the B-spline single aggregated model curve fitted to our data set. We

compared the results of the single aggregated model with our proposed models using

different accuracy and complexity metrics.

4.3.2 Random intercept B-spline wind farm aggregated

model

To construct a wind farm aggregated power curve using B-spline models when there

are clusters of turbines, multilevel models can be used in order to take into account

two sources of variabilities at the turbine-level (level 1) and cluster-level (level

2). From this point of view, a multilevel model can be considered as a variance

components model since the total variance can be decomposed into a between-cluster

and within-cluster variance components and account for the correlation on within-

and between-cluster effects.
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(a)

(b)

(c)

Figure 4.3: (a) A single B-spline wind farm aggregated model (b) A random intercept
B-spline wind farm aggregated model and (c) a random slope B-spline wind farm
aggregated mode fitted to the wind farm data set shown for the wind speeds between
10 and 13 m/s.
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Let pitk be the observed generated power at wind speed vi for turbine t which

belongs to cluster k. Note that T = ΣK
k=1|ck|, where |ck| is the number of turbines

in cluster k. Let

pik =
1

|ck|
Σt∈ckpitk, (4.13)

be the average value of the power generated by turbines in cluster k at the wind

speed vi, i = 1, . . . , N and k = 1, . . . , K.

In a random intercept aggregated model piks are models as follows

pik = β0 + U0k + β>Bi + εik, (4.14)

for i = 1, .., N , where U0k is a random variable and β is the l-dimensional vector of

parameters. The model in (4.14) is often referred to as the random intercept model

as U0k plays the role of a random intercept along with its deterministic counterpart

β0. U0k are assumed to follow Gaussian distribution N(0, σ2
U) with a noise process

εik distributed as N(0, σ2
ε ). Furthermore, the random variables {U0k} and {εik} are

independent. In (4.14) the term β0 + β>Bi is the same for all clusters, whereas the

random intercept U0k varies from cluster to cluster. Thus, the random intercept

aggregated model predictor is obtained as

p̂ik. = β̂0 + Û0k + β̂>Bi, (4.15)

for some estimates β̂0, β̂ of β0, β and the predictor Û0k of U0k. Besides finding the

estimates β̂0 and β̂, one also needs to evaluate the uncertainty of the model by

estimating σ2
U and σ2

ε , the variances of U0k and εik, respectively.
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To simplify the model fitting problem and reduce the number of unknown

parameters, the B-spline basis functions are assumed to be the same for all clusters.

Fig 4.3(b) shows the plot of an estimated random intercept aggregated power curve

consisting of a set of parallel curves, one for each cluster.

4.3.3 Random slope B-spline wind farm aggregated model

In a wind farm aggregated model fitting, one can use a more complex model than a

random intercept B-spline aggregated model by using different slopes for models

fitted inside each cluster. A random slope B-spline aggregated model is more flexible

than the one with random intercept and is defined as

pik = β0 + U0k + β>Bi +U>k Bi + εik, (4.16)

for i = 1, . . . , N . Here besides the random intercept U0k, one has the random slope

component Uk being the l-dimensional vector distributed as an l−variate Gaussian

process Nl(0,ΣU) with mean 0 and covariance matrix Σ.

The model in (4.16) has the fixed part β0 +β>Bi that is universal for all clusters

and the corresponding random effect part U0k +U>k Bi represented by the random

vector (U0k , Uk) that specifies the given cluster. Hence, the model can be re-written

as

pik = β0 + β>Bi + U0k +U>k Bi + εik, i = 1, . . . , N. (4.17)
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The equivalent matrix form of (4.17) is as follows

pk = Bβ +BUk + εk, (4.18)

where pk = (p1k, p2k, . . . , pNk)
> and with some abuse of the notation β stands now

for the augmented l + 1-dimensional vector (β0,β
>)>. Also Uk denotes (U0k,U

>
k )>.

The N × (l + 1)-dimensional matrix B has the row structure such that the i-row is

(1,B>i ). One needs to estimate the unknown parameters β, σ2
U , ΣU , σ2

ε and predict

the random effect Uk. This is done by using the joint distribution of (Uk,pk)> given

by an (l + 1 +N)-dimensional Gaussian distribution (4.18),

Nl+1+N

([
0
Bβ

]
,

[
ΣU ΣUB

>

BΣU F

])
, (4.19)

where

F = BΣUB
> + Σε, (4.20)

denotes the covariance of the data vector pk, and

ΣU =

[
σ2
U 0
0 ΣU

]
, (4.21)

is the covariance of the augmented vector (U0k,U
>
k )>. The form of the covariance

in (4.19) can be confirmed by observing first that

cov[pk] = E[pkp
>
k ]−Bββ>B>.
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Then, owing to (4.18), one can write p>k = β>B> + U>k B> + ε>k , and by a simple

algebra obtain

cov[pk] = BΣUB
> + Σε,

where Σε = diag(σ2
ε , . . . , σ

2
ε ) is the covariance matrix of the noise process and ΣU is

the covariance matrix of the augmented random vector (U0k,U
>
k )>. Finally note

that

cov[Uk,pk] = cov[Uk,Bβ +BUk + εk] = ΣUB
>,

whereas cov[pk,Uk] = BΣU , while ΣUB
> is the (l + 1)×N matrix. The result in

(4.19) is used to find the marginal distribution of pk as a Gaussian distribution of

the following form

pk ∼ NN(Bβ,F). (4.22)

Specializing this to the individual component of pk, i.e., pik, results in pik ∼

N(β0+β>Bi, σ
2
U+B>i ΣUBi+σ

2
ε ), where now the original (not-augmented) notations

(β0,β
>)> and (U0k,U

>
k )> are employed.

Predicting the random effects Uk from the observed data pk needs the projection

distribution of Uk onto pk. Owing to the standard multivariate normal theory (Rao

and Toutenburg, 1995), it is known this is the normal distribution characterized by

the conditional mean

E[Uk|pk] = ΣUB
>F−1(pk −Bβ), (4.23)

and the conditional covariance

cov[Uk|pk] = ΣU −ΣUB
>F−1BΣU .
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Hence the conditional mean represents the optimal predictor of Uk from the observed

data pk. However, to use this in practice, one needs to estimate β , F , σ2
U , and ΣU .

The latter, i.e., σ2
U and ΣU uniquely define the matrix ΣU in (4.21). The maximum

likelihood estimators of these parameters will be presented in the following section.

Fig 4.3(c) shows the random slope B-spline aggregated model fitted to our real

data set. Although it is expected to achieve more accurate power curves using

random slope models, such models are more complex. So, it is suggested to compare

both the accuracy and complexity of models in any experiment and decide to choose

the best model.

4.3.4 Parameter Estimation

The distribution theory developed in the previous section plays a critical role in

obtaining estimates of the unknown model parameters. Using (4.22) one can form

the likelihood function L(pk;β,F) = f(pk;β,F), where f(pk;β,F) stands for the

N -dimensional Gaussian density with the parameters β,F defined in (4.22). Then,

the maximum log-likelihood estimates of β and F are obtained by maximizing

l(pk;β,F) = log |F−1| − (pk −Bβ)>F−1(pk −Bβ), (4.24)

where the constant terms are dropped. The direct maximization of l(pk;β,F) in

(4.24) with respect to β,F can be a complex task and one can divide this into

the two steps by employing the concept of the profiled log-likelihood. The profiled
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log-likelihood for the parameter F is the maximized value of l(pk;β,F) with respect

to β, i.e.,

l(pk;F) = max
β

l(pk;β,F). (4.25)

The result of this maximization is the value of β = β(F) being the maximum likeli-

hood estimate of β for fixed F . The solution of (4.25) is equivalent to minimization

of the second term in (4.24)

(pk −Bβ)>F−1(pk −Bβ).

This represents the weighted least squared criterion for which the minimum is

achieved (Ruppert et al., 2003) by

β̂(F) = (B>F−1B)−1B>F−1pk. (4.26)

This plugged back into (4.24) would give the profile log-likelihood function depending

merely on F , i.e., the formula in (4.25) becomes

l(pk;F) = log |F−1| − (pk −Bβ̂(F))>F−1(pk −Bβ̂(F)), (4.27)

where β̂(F) is defined in (4.26). Maximization of this with respect to F would be

rather involved as l(pk;F) in (4.27), is a highly nonlinear function of F . To ease

the computational complexity on the obtained nonlinear optimization problem, an

iterative method using the semi-likelihood strategy can be implemented. Hence,

let F̂0 be an initial estimate of F . Then from (4.26), one can get the preliminary

estimate of β
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β̂0 = β̂(F̂0) = (B>F̂
−1
0 B)−1B>F̂

−1
0 pk. (4.28)

The semi-likelihood strategy is to form the following version of (4.27)

l(pk;F ; F̂0) = log |F−1| − (pk −Bβ̂0))
>F−1(pk −Bβ̂0). (4.29)

Hence, only the regression part in (4.27), i.e., β̂(F) is fixed, whereas the remaining

part of the criterion is still a function of F . As a result, it suffices to find F that

maximizes the semi-likelihood criterion in (4.29). The following lemma plays the

important role here.

Lemma 1 The criterion l(pk;F ; F̂0) in (4.29) is maximized by

F̂1 = (pk −Bβ̂0)(pk −Bβ̂0)
>. (4.30)

You can find the proof in the Appendix.

The aforementioned result reveals that the next value of the estimate of F is

F̂1 given in (4.30). This updates the estimate of β in (4.28) to the new value β̂1 ,

where F̂0 is replaced by F̂1. With the updated β̂1, we return back to the criterion

in (4.29) and find the new version F̂2 of F̂1 that maximizes l(pk;F ; F̂1). This

iterative process can continue till some stopping rule is met. The above profiled

likelihood iterative procedure produces the maximum likelihood estimates β̂, F̂ ,

of β and F , respectively. This can be in turn use in (4.23) to form the empirical

counterpart of the linear predictor of the random effect. Hence, one can write

Ûk = Σ̂UB
>F̂

−1
(pk −Bβ̂),
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where Σ̂U is an estimate of the matrix ΣU given in (4.21). The estimate of ΣU can

be obtained by recalling that, see (4.20), F = BΣUB
> + Σε. First of all, the noise

variance σ2
ε defining the diagonal matrix Σε can be estimated by the residual process

or any method being independent on a regression function form (Dette et al., 1998).

This leads to the model free estimate Σ̂ε of Σε.

Next, the aforementioned estimates F̂ and Σ̂ε can form the estimating equation

F̂ = BΣUB
> + Σ̂ε. The solution of this yields the required estimate of ΣU .

4.4 Real Data Application

In this section, the empirical data on a wind farm in Canada was used to evaluate

the performance of random intercept and random slope B-spline aggregated wind

farm models compared with a single level model. The complexity of fitted models is

also studied. The wind farm includes 63 wind turbines the rated capacity equals

of 1.7 MW, the hub height of 80 m spread over an area of over 90 km2, the cut-in

speed of 3.5 m/s, rated speed of 13 m/s, and cut-out speed of 20 m/s, respectively.

The data set contains more than 1.2 million pairs of wind speed and generated

power data points with a resolution equal to 10-minutes from June 2006 to January

2007. The data set for June was only used for the clustering purpose and not the

power curve fitting process to avoid adding bias in estimating wind farm aggregated

models. Features for each turbine were obtained using the data in June and were

used for clustering turbines into three different groups. Finally, single level, random
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Table 4.2: Results for 10-min data from a wind farm for Single level, Random
Intercept, and Random Slopes B-spline wind farm aggregated models

Model MAE (±SD) RMSE (±SD) Rank
Single Model 64.9 (±0.08) (3) 88.87 (±0.22) (3) (3)

Random Intercept 60.83 (±0.05) (2) 83.43 (±0.19) (2) (2)
Random Slopes 59.9 (±0.06) (1) 82.42 (±0.19) (1) (1)

Table 4.3: Degree of Freedom and likelihood ratio tests for testing Random Intercept,
and Random Slopes B-spline wind farm aggregated models against a single level
model

Model Degree of Freedom ChiSq DF Pr(>ChiSq)
Single Model 7

Random Intercept 8 56625 1 < 2.2e−16

Random Slopes 28 67409 21 < 2.2e−16

intercept, and random slope B-spline aggregated models were developed using the

remaining portion of the data set.

Mean absolute error (MAE) and root mean squared error (RMSE) were used as

two statistical metrics to evaluate the accuracy of fitted models:

RMSE =

√
1

n

∑∑
(pik − p̂ik)2, (4.31)

MAE =
1

n

∑∑
|pik − p̂ik|, (4.32)

where pik and p̂ik are defined as in Section 4.3. Table 4.2 shows the results of the

analysis as well as the rank of each method in the parenthesis, where the smaller

values are desirable. As shown in Table 4.2, the random slope B-spline aggregated

model is the most accurate one with 7.2% RMSE improvement over the single model.

Random intercept model also improves the RMSE metric by 6.2%. According to



4.4. REAL DATA APPLICATION 131

Table 4.2, one can conclude that all mixed effect models outperform the single level

model. The complexity of each model is shown based on its degree of freedom in

Table 4.3. Note that the random intercept model’s degree of freedom is just one

more than the single level model. However, the accuracy of the random intercept

model is significantly more than the single model. It is worth mentioning that the

degree of freedom for fitting separate models for each turbine will be equal to the

number of turbines in the farm times fitted model’s degree of freedom, which equals

to 63× 7 = 441 in our data set.

To investigate the significance of the improvement of mixed effect models, these

models were tested against a single level model using the ANOVA as well as

likelihood ratio tests. The values represented under Chisq in Table 4.3 show the

difference between the log-likelihood for each mixed effect model and the single

model. The DF column shows the difference between the number of parameters

in mixed effect models and the single model. According to Table 4.3, one can

conclude that the removal of the random intercept parameter for clusters is not

justified (ChiSquare : 56625; p-value:< 2.2e−16). The likelihood ratio tests show

that the random intercept has the right level of complexity and accuracy for this

data set. Consequently, the ANOVA test shows that the random intercept model

is outperforming the single level model. The same p-value resulted in the random

slope model as well, which shows mixed effect models outperform the single level

model. However, the random slope model’s complexity is much more than the

random intercept models. One can conclude that utilizing the mixed effect models,

especially the random intercept model, for wind farm aggregated model can be
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beneficial for power forecasting, maintenance management, power system reliability

assessment, and sizing the storage capacity for wind power integration since the

accuracy improves with the negligible increase of model’s complexity.

4.5 Concluding Remarks

A significant challenge in managing wind farms is simulating the wind farm power

curve to forecast power in the future. Using a separate wind power curve for each

turbine will make the model complex and causes a substantial computation cost.

On the other hand, considering just one wind farm aggregated power curve is not

accurate enough. In this paper, a novel clustering method was proposed to assign

wind turbines into several similar groups and then develop mixed effect models for

wind farms to take into account the correlation between different groups. To this

end, a clustering method was developed based on the turbines’ performance in terms

of generating power. The feature set, which is based on the turbines’ performance,

takes into account not only the turbine’s age and location but also considers the wake

effect of other surrounding turbines in the wind farm. In addition to the clustering

method, mixed effect models were used to develop wind farm aggregate models

and improve the accuracy of power forecasting. The performance of the presented

methods was evaluated on a wind farm located in Canada. Experimental results

show that utilizing the random intercept model on clustered turbines significantly

outperforms a single model by keeping the model’s complexity at the same level. The
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proposed methods in this paper can be used for wind farms with different layouts and

diverse wake effects, operation conditions, or geographical characteristics of terrain.

It can also be used in power system reliability assessment Bagen and Billinton

(2008). Results show that such aggregated models provide better representations

of the power generated by the wind farm studied in this paper. Results also show

that the random intercept model reduces the time-computing cost more than 90%

comparing to fitting separate wind turbine power curves for each turbine in the

wind farm.

Appendix

Proof of Lemma 1: The proof is based on the standard matrix calculus. First let

us substitute Q = F−1. Then, (4.27) becomes

l(pk;Q; F̂0) = log |Q| − Tr[Q(pk −Bβ̂0)(pk −Bβ̂0)
>], (4.33)

where the second term in (4.29) was represented in terms of the trace operator. This

is based on the known fact that x>Qx = Tr[Qxx>] for any vector x. Next, we use

the following facts (Rao and Toutenburg, 1995) that

∂ log |Q|
∂Q

= 2Q−1 − diag[Q−1]

and ∂Tr[Q(pk−Bβ̂0)(pk−Bβ̂0)>]
∂Q

given by

2(pk −Bβ̂0)(pk −Bβ̂0)
> − diag[(pk −Bβ̂0)(pk −Bβ̂0)

>]
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where diag[A] denotes the diagonal matrix consisting of the diagonal elements of

the matrix A. The above facts combined with Eq. (4.33) and Q = F−1 show that

∂l(pk;Q; F̂0)

∂Q
= 2Λ− diag[Λ],

where Λ = F − (pk −Bβ̂0)(pk −Bβ̂0)
>. The proof is completed by noting that

∂l(pk;Q;F̂0)
∂Q

= 0 is equivalent to 2Λ− diag[Λ] = 0 and this holds if Λ = 0.



Chapter 5

Conclusions and Future Work

This chapter represents the accomplishments of the research work studied in

the thesis. In addition to concluding remarks from each chapter, suggested future

works will also be presented.

5.1 Summary of Accomplishments

Several approaches were proposed to improve wind turbine power curve

modeling, and consequently increase the reliability of wind power integrated into

the power system. First, we proposed two different types of power curves estimators

that preserve the monotonicity constraint. We compared them with other commonly

used power curves with a special focus on the similarity of the shape of fitted curves

135
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to the manufacturer’s power curve. We proposed the tilting method and monotone

spline regression to address the non-monotonicity issue of the fitted power curve

and reduce the sensitivity of the fitted curves to outliers. The proposed tilting

method is a generic approach that can be used to enforce the monotonicity on any

kernel estimator, such as the Nadaraya-Watson kernel estimator. In addition to

the tilting method, we developed a monotone spline regression and compared the

tilting method’s performance, monotone spline regression, Nadaraya-Watson kernel

estimator, and natural spline regression on data obtained from four different wind

turbines. We concluded that monotone spline regression performs the best since it

preserves the monotonicity and is an accurate power curve estimator compared to

other analyzed methods. Also, our results confirm that using the tilting method

compared to kernel methods performs almost the same in terms of accuracy, whereas

its shape is similar to the manufacturer’s power curve, which makes it less sensitive

to anomalies within the set of observations. We also concluded that both proposed

methods are robust to outliers which make them accurate models to be used as

reference power curve in the development of algorithms to detect anomalies. Since

monotone power curves are not sensitive to outliers, one can easily detect all data

which are further than a threshold as anomalies. This early detection is helpful

to reduce unscheduled downtime and operational costs. We also conclude that, in

contrast to most of other studies which manually remove a high portion of data as

outliers, it is not required to do so for monotone empirical power curve. However, it

is recommended to just remove outliers which are obvious such as data with negative

wind power or speed, or data with wind power equal to almost zero at high wind
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speed.

Furthermore, we developed a statistical algorithm to calculate the uncertainty

of a fitted power curve on the data according to wind power variance in different

wind speed ranges. The developed algorithm contributes to the goal of handling

the heteroscedasticity issue of wind data. The heteroscedasticity effect of wind data

causes a high variance in fitted power curves. The introduced algorithm presents a

hybrid method to combine an empirical power curve fitted on the data and a target

power curve selected as a reliable resource. Two different weighting schemes are

defined according to the wind power variance to give appropriate weights to the

contribution of empirical and target power curves on the resulted hybrid method.

The results show that utilizing target models in hybrid methods can reduce the

variance of the hybrid fitted curve. It is effective since the target models shrink the

hybrid method toward itself in the regions where the variance of data is high. High

variance of data occurs more for those turbines which are far from meteorological

masts and have more outliers in their speed-power data set. We concluded that

hybrid methods is an effective solution to handle the high variance issue for these

turbines. Also, hybrid methods are capable of reducing the effect of outliers. To

summarize, hybrid methods reduce both estimation bias and variance compared to

commonly used regression methods such as the spline method and local regression

method.

So, it is suggested to take advantage of hybrid methods in those wind farms

which suffer from non-homogeneous data set.

Finally, a novel feature selection is proposed to consider turbines’ overall per-
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formance for clustering turbines into similar groups. Using this clustering method,

turbines with similar power production would be clustered into the same group.

Applying the elbow method, which is a well accepted approach for selecting the

appropriate number of clusters, turbines were clustered into three groups. Conse-

quently, a novel multiple aggregated model was proposed for wind farm power curve

modeling. Multiple aggregated models studied in the literature have ignored the

hidden correlation between fitted curves in each cluster of turbines. To consider

the correlation between the aggregated power curve in each cluster, we applied a

multilevel modeling approach by considering cluster as the parent level and turbines

as the child level. Random intercept and random slope approaches were compared

on a data set containing 63 turbines. The random slope model performed better in

terms of accuracy; however, its complexity was higher than the random intercept. It

was concluded that random intercept, which reduces the complexity in terms of the

degree of freedom by 71%, compared to random slope, and with accuracy, almost

the same, would be a better option for wind farm power curve modeling. It is worth

mentioning that both random intercept and random slope methods outperform the

single aggregated method by at least 6.7% in terms of MAE and RMSE accuracy

metrics. Also, ANOVA tests confirmed that mixed effect models would significantly

outperform the single aggregated model for this wind farm. In conclusion, it is

recommended to utilize clustering methods based on the power output performance

of turbines and applying multilevel modeling for multiple aggregated models to

not only reduce the complexity of the model but also take into account the hidden

correlation between power curves of each cluster. Finally, it is concluded to utilize
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multilevel modeling approach as an accurate and fast multiple aggregate model for

fitting wind farm power curve in applications such as annual wind energy prediction.

5.2 Future Work

The suggested future works in this thesis are presented in the following

directions:

5.2.1 Monotonic Power Curve with Multiple Auxiliary In-

formation for Fault Detection

Available methods in the literature for wind turbine power curve modeling

primarily focus on parametric and nonparametric approaches using wind speed as

the only auxiliary information. However, with the new system such as SCADA data,

more auxiliary information is available to consider in fitting empirical power curves.

Recently, some approaches in the literature were proposed to take into account

this auxiliary information. As an extension to this work, we suggest to consider

multiple auxiliary information and enforce manufacturer power curve shape in fitting

empirical power curves by including some other environmental factors such as air

density, humidity, wind direction, and turbulence intensity in the estimation process

to more realistically capture the nonlinear relationships between these environmental

factors and the generated wind power. As we showed in chapter 2, enforcing shape
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properties of the manufacturer’s power curve in fitting the empirical power curve

can reduce outliers impact. Since the monotone power curve is similar to the

manufacturer’s power curve, it is expected that the turbine normal generating power

would not be far from the monotone power curve. When any fault occurs, the

generated power differs from the expectation based on the empirical power curve.

An interesting future research direction is to use monotonic fitted power curves for

fault detection and condition monitoring. Fault detection and condition monitoring

has direct impact on power system reliability evaluation. Consequently, one can

evaluate the effectiveness of utilizing monotonic wind power curve modeling for

power system reliability as a future research.

5.2.2 Cross-Cluster Multilevel Modeling

An immediate future work regarding our proposed multilevel modeling ap-

proach is to cluster turbines based on multiple feature sets and clustering models.

This will lead to a situation that one turbine belongs to a cluster based on a feature

set, and that turbine belongs to a different cluster based on another feature set.

In this case, there would be a cross-cluster multilevel structure. In other words,

turbines t1 and t2 may be inside the same cluster according to one feature set (e.g.,

wind direction) and be in a different cluster according to another feature set (e.g.,

wind turbine location). Fig 5.1 represents such a case where turbines may belong to

different clusters based on different features. Cross-cluster multilevel models can be

investigated as wind farm multiple aggregated model for improving the accuracy of
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Figure 5.1: Cross-cluster shows how a turbine belongs to multiple clusters based on
different features such as direction and air density in this example.

the aggregated power curve by taking into account the hidden correlation of power

curves in different clusters.

5.2.3 Asymmetric Loss Function for Power Curve Modeling

The reliability associated with a power system is a measure of the system’s

ability to perform its intended function. The main goal of a power system is to sup-

ply its customers with electrical energy with an acceptable degree of reliability and

economic costs. One can elaborate on different penalties for over and under predict-

ing the available power in the future. The risk of underestimating the power is that

it can imperil the property of supplying energy as economically as possible. On the

other hand, over predicting will jeopardize the whole reliability of the system. So it is

clear that different penalties should be used for over prediction as opposed to under
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prediction. A possible future research direction is to use an asymmetric prediction er-

ror function to deal with different penalties for under or over prediction of generated

power at a specific wind speed. New methodologies need to be developed to study the

performance of the fitted power curve under an asymmetric prediction error function.
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impact of stable atmospheric boundary layers on wind-turbine wakes within off-

shore wind farms. Journal of Wind Engineering and Industrial Aerodynamics 144,

146–153. (Cited on page 30.)

Dou, B., M. Guala, L. Lei, and P. Zeng (2019). Experimental investigation of

the performance and wake effect of a small-scale wind turbine in a wind tunnel.

Energy 166, 819–833. (Cited on page 108.)

Ekonomou, L., S. Lazarou, G. E. Chatzarakis, and V. Vita (2012). Estimation

of wind turbines optimal number and produced power in a wind farm using an

artificial neural network model. Simulation Modelling Practice and Theory 21 (1),

21–25. (Cited on page 29.)

Elliott, D. and D. Infield (2014). An assessment of the impact of reduced averaging

time on small wind turbine power curves, energy capture predictions and turbu-



BIBLIOGRAPHY 151

lence intensity measurements. Wind Energy 17 (2), 337–342. (Cited on pages 44

and 66.)
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