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--ABSTRACT

This thesis presents a new analytical model for analyzing
creep crack initiation and propagation under static and cyclic
loading conditions. This model combines the continuum damage
constitutive relationships for creep deformation; the several
yield surfaces coupled with Mroz’'s kinematic hardening rule for
cyclic plastic response; the hybrid explicit-implicit integration
scheme for creep stress analysis; the modified breakable element
algorithm coupled with the damage criterion for simulating creep
crack initiation and propagation; and the finite element method.
This combined creep fracture model is capable of predicting
static and cyclic creep crack growth.

Numerical studies by the proposed model indicate that
plastic strains play an significant role in both static and
cyclic creep fracture. For a cracked specimen subjected to
static loadings, the instantaneous plastic strain may slow down
the stress relaxation in the vicinity of the crack tip. The
clower stress relaxation causes faster damage accumulation in the
near tip region and slower damage evolution in the area away from
the crack tip. Such confined damage results in an earlier crack

initiation but slower crack propagation.
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In the creep dominated fracture, unloading and reloading
may interrupt the stress relaxation near the crack tip and cause
a significant stress increase ahead of the crack tip and an
expansion of the plastic zone. .Consequently, the creep damage
accumulation along the crack extension line is accelerated by
the load cycling, resulting in an earlier crack initiation and

faster crack growth.



iii
ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to Dr.
T. R. Hsu for the valuable advice and guidance throughout the
course of the study. Sincere appreciation is also due to Dr. J.
Shewchuk, Dr. A. H. Shah and Dr. A. S. Kobayashi for their
valuable suggestions.

Thanks are also extended to his colleagues and friends,
Messrs. G. Pizey, N. S. Sun and Z. L. Gong for their assistance
and useful discussions.

A special acknowledgment is due to Messrs. L. Haberman and
T. Cornell of the Industrial Technology Centre, Manitoba Research
Council, for their support in the preparation of this thesis.
The author is particularly grateful to Mr. K. Bornn and Mrs. E.
Rieger for their patience in typing the manuscript.

The financial support by the Natural Science and
Engineering Research Council of canada and fellowships provided
by the University of Manitoba and the Manitoba Hydro Ltd. are
greatly acknowledged.

Above all, the author would like to thank his wife Yingzi
for her patience during the long period of study and preparation
of this dissertation. The author is indebted to his parents in

China for their sincere support and encouragement.



iv

CONTENTS
- Page
ABSTRACT e e e e e e e e e e e e s e e e e e e e s e i
ACKNOWLEDGMENTS . +« « + o o o o o « o s « o o o o = = iii
CONTENTS R iv
CHAPTER 1 INTRODUCTION 1
1.1 1Introduction . e e e e e e e e e e 1
1.2 Objective of The51s e e e e e e e e e e 3
1.3 Scope of Thesis . . . . . « « « =« = 4
CHAPTER 2 CONTINUUM DAMAGE MECHANICS OF CREEP . . . 6
2.1 Basic Mechanical Behavior of Creep . 6
2.2 Continuum Damage Mechanics of Creep 7
2.2.1 The State Variable Theory 7
2.2.2 Uniaxial Constitutive Relatlons 9
2.2.3 Multi-Dimensional Constitutive
Relations . . .« .« « « « « « o « « = 11
CHAPTER 3 ELASTIC-PLASTIC-CREEP STRESS ANALYSIS
BY FINITE ELEMENT METHOD . . . . . « - - = 14
3.1 Introduction . . e e e e e 14
3.2 Basic Matrix Formulatlon of FEM e e e e e 14
3.3 Elastic-Plastic Stress Analysis . . . . . 16
3.3.1 Yield Criterion . . e e e e e e 17
3.3.2 Prandtl-Reuss Flow Rule e e e e e e 18
3.3.3 Kinematic Hardening Rule . . . . = 19
3.3.4 Derivation of Elastic-Plastic
Element Equation . . e e e e e 20
3.3.5 Determination of Hardenlng
Parameter H' . . 24
3.4 Creep Stress Analysis by F1n1te Element
Method . . . . e e e e e e e e 26
3.5 Time Integratlon Scheme e e e e e e e e s 27
3.5.1 Explicit Algorithm . . . . . . . - 28
3.5.2 1Implicit Algorithm . . . . . . . . 29
CHAPTER 4 CREEP CRACK PROPAGATION e e & e e e o s s 33
4.1 Introduction . . . . e e e e e e e e e 33
4.2 Stress Intensity Factor K . « « « « « - 33
4.3 Net Section Stress o e e e e e e e e 34
net
4.4 Contour Integration C . . 36

4.4.1 The J-Integral Concept in Elastlc—
Plastic Fracture Mechanics . . . . 36



CHAPTER

CHAPTER

CHAPTER

[0} >
[e &}

[S200x1
N

*
4.4.2 C Parameter

(1) Definition of C* Integral
(2) Near Tip Stress Field

*
(3) Determination of C

(4) Relevance of C* to Creep
Crack Propagation
Continuum Damage Mechanics Approach
Cyclic Creep Fracture . .

FINITE ELEMENT MODEL FOR CYCLIC CREEP
FRACTURE BY CONTINUUM DAMAGE MECHANICS
APPROACH . « « ¢« o o o o =+ o o o <« o =
Introduction
Cyclic Plasticity Constltutlve Model
5.2.1 Theory of Several Yield Ssurfaces
and Mroz's Hardening Rule . .
5.2.2 Formulations of Cyclic Plast1c1ty
Model . .
Mixed Explicit- Imp11c1t Algorlthm for
Creep Stress Analysis . . .
5.3. Formulations of the Exp11c1t—
Implicit Algorithm .
5.3.2 Self-Adjusting Element PaLtltlon
of Mixed Explicit-Implicit Scheme
5.3.3 Automatic Time Step Control
rBreakable Element’ Algorithm . . . . .
Computer Code TEPSAC . . . . . . . - -« =

CREEP CRACK GROWTH UNDER STATIC LOADINGS
Introduction . . e e e e s e e e
Description of the Problem . .
Predictions of Crack Initiation and Crack
Growth . . . « « « « < « o < o .

Plastic Zone . . .
Stress Dlstrlbutlon and Damage Evolutlon
Ahead of the Crack Tip . . . « . - « =

6.5.1 Stationary Crack e e e e
6.5.2 Growing Crack . . . . . .« « . =
Crack Profile . . . .« « « « < o o . -
Brief Summary . . « « « <+ + <« o -

CREEP CRACK GROWTH UNDER CYCLIC LOADINGS
Introduction

Description of the Problem . . .
Predictions of Crack Initiation and Crack
Growth . « « o o ¢ o o e e e e e e e e e e
PlastiC ZONE . + « o o o o o o o o < =« o

Page

38

38
39

41

43
45
48

51
51
52

52
55
60
61

64
65
67
71

72
72
72

75
76

77
78
80
81
82

83
83
83

84
85



vi

Page

7.5 Stress Distribution Ahead of Crack Tip

Due to Unloading and Reloading . . . . . - 86
7.6 Stress Distributions and Damage Evolutions

Ahead of the Crack Tip in Cyclic Loading

Cases Y 87

7.6.1 Stationary Crack . . . .« « « - -« = 87

7.6.2 Growing Crack . . . « o « « « « =« - 90

7.7 Brief SUMMALY . . « « « o o o s & s s e = 91

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS e e e e e 93

8.1 Conclusions . . « « o ¢ o + o o e . e e e 93

8.2 Recommendations . . . ¢ . .« o . o 2 e . - 95

REFERENCES S T T 97
APPENDIX A MIXED EXPLICIT-IMPLICIT (EI) ALGORITHM

FOR CREEP STRESS ANALYSIS . . . « « =« - = 106




CHAPTER 1

INTRODUCTION

1.1 Introduction

The creep behavior of metals at high temperature is well
known and documented. However, almost all design analyses
against creep failure up to now.;s based on unnotched, uniaxial
laboratory test data with an objective to ensure that the creep
deformation is kept within acceptable limits and that the creep
damage accumulation in the structure will not cause premature
rupture during its service life.

Structures where failure is localized present a more
difficult problem. The criterion employed for elevated
temperature design has been that the time allowed for the crack
initiation should exceed the design life. However, due to the
complex geometries of most of these structures and the nature of
the stress history during service, crack initiation is often
difficult to predict. There are other shortcomings of this
concept. First, small crack-~like defects may exist in a machine
component before it is put into service, in particular, such
cracks may have been initiated in "heat-affected zones" during
welding. Secondly, creep and fatigue damage processes may cause
small cracks to appear very early in the component’s life, and
withdrawl from service at this point may be both unecononmical and
unnecessary. These considerations have prompted the development
of a fail-safe design philosophy, in which account is taken for

both crack initiation and crack propagation.



The current interest in the study of creep crack
propagation derives from the need for accurate design codes for
nuclear power plant and aircraft jet engine, in which the
requirements for safety and economy are obvious. A common

B service load type in these applications is a cycle which begins
with an initial start-up followed by a long operating or hold
period and then, finally, shut-down. Start-up and shut-down
cause a cyclic stress history, whereas the hold period may
involve creep deformation and stress redistribution. Cracks may

i therefore initiate and propagate under a combination of fatigue
and creep conditions.

The fracture behavior of materials under combined creep-
fatigue condition is strongly affected by frequency. Rapid
cyclic loading is associated with fatigue cracking which is in a
transgranular mode and slowly varying or static loading is
associated with creep cracking which is in an intergranular
fracture. Figure 1.1 is an example showing the dependence of the

cracking mode on frequency[losl, for A286 steel at 1100°F. The

intergranular fracture occurs when frequency is less than 10 cpm.
This frequency range is often encountered in engineering practice
and hence, is of considerable interest in the study of the
fatigue-creep interaction.

When frequency is very low, the fatigue damage can be
neglected, and the crack growth is dominated by creep. It has
been observed, however, that the creep crack growth could be
accelerated by a cyclic loading in very low frequency. The

reason for such an acceleration of crack growth is not clear at



this time. One possibility is that the cyclic plasticity
associated with the unloading and reloading has some influences
on the creep damage accumulation near the crack tip. The present
study attempts to assess the effect of the plasticity on the
creep crack initiation and propagation under static and cyclic

loadings.

1.2 Objective of Thesis

This thesis describes a research effort leading to a creep
fracture mechanics methodology designed to treat static and
cyclic creep crack propagation in structures. Based on the
theory of continuum damage mechanics, a finite element model for
static and cyclic creep fracture is developed, which has the
following unique features:

(1) the plastic hardening behavior of materials under cyclic
conditions can be described;

(2) the creep crack initiation and extension can be predicted;
and

(3) the inherent numerical instability associated with the
damage approach can be avoided.

The objective of the thesis is to investigate the effect of
the instantaneous plastic strain on the static and cyclic creep
crack propagations by using this finite element model. For creep
fracture problems, the instantaneous plasticity unavoidably
occurs near the crack tip. However, it has been omitted in most
creep fracture analyses. The role of the instantaneous plastic

strain in the creep crack growth has not yet been well



understood. However, speculation is that plasticity plays an
important role in cyclic creep fracture problems, as the stress
redistribution at the crackﬂtip may occur after unloading and
reloading due to the kinematic hardening nature of materials. By
applying the proposed finite element model to cracked panels, the
present work investigates how the instantaneous plasticity
affects the stress redistribution and the damage accumulation
ahead of the crack tip and hence, affects the creep crack
initiation and the subsequent propagation under both static and

cyclic loadings.

1.3 Scope of Thesis

The thesis is divided into eight -chapters:

Chapter 1 is an introduction, describing the objective and
scope of the thesis;

Chapter 2 is a review of the basic mechanical behavior of
creep and the corresponding mathematical formulation;

Chapter 3 describes the finite element formulation in
elastic-plastic-creep stress analysis;

Chapter 4 is a general review on the development of creep
fracture mechanics and cyclic creep fracture;

Chapter 5 presents a finite element model for cyclic creep
fracture analysis using the continuum damage approach. Haijo!
ingredients of this model include the following items:

(1) a suitable plastic hardening model for cyclic ioadings;
(2) a mixed explicit-implicit algorithm for high computational

efficiency in creep. stress analysis; and



(3) a modified breakable element algorithm for simulating creep

crack initiation and propagation.

Chapter 6 presents the results of a case study for creep
crack growth under static loadings;

Chapter 7 presents the results of the case study for creep
crack growth under cyclic loadings;

Chapter 8 is the conclusion drawn from the present research
and recommendations for further study.

A bibliography is presented at the conclusion of the

thesis.



CHAPTER 2

CONTINUUM DAMAGE MECHANICS OF CREEP

[11121(3104]

2.1 Basic Mechanical Behavior of Creep

Creep is a time-dependent deformation which occurs when a
material is loaded for a prolonged period of time. Time
dependence is the chief characteristic of creep deformation.
Figure 2.1 is a typical creep curve which describes the
development of strain with time in a solid under constant stress
vvvvv and temperature. At the time, t=0, the curve shows an
instantaneous response €4, which, depending on the magnitude of
the stress, could be elastic or elasto-plastic. Thereafter, the
creep curve is divided into three parts: the first part witﬁ a
decreasing creep strain rate called primary creep; the second
part with an approximate constant creep strain rate called
secondary or steady- state creep; and the final part with a
rapidly increasing strain rate called tertiary creep. Creep
rupture occurs at the end of the tertiary creep stage.

The creep curve shown in Figure 2.1 is strongly influenced
by stress and temperature. The influence of stress at constant
temperature is shown in Figure 2.2, while the influence of

temperature at constant stress is shown in Figure 2.3. Note that

both cases show thresholds below which no noticeable creep is

observed.
The relationship of stress and time to rupture is also
shown in Figure 2.2. It is seen that the time to rupture

increases as stress decreases. Furthermore, as indicated in



Figure 2.3, the time to rupture decreases as the temperature
increases.

If the stress is removed during the creep process, a
phenomenon of creep recovery will take place, as shown in Figure
2.4. The instantaneous response is that the elastic strain
8E=U/E ijs recovered. After that, there is a certain amount of
strain recovery that becomes asymptotic and no more strain is
recovered. In Figure 2.4, e; is the recovered creep strain and
ef is the permanent strain that is made up of irrecoverable
plastic strain (if any) and creep strain components.

Figure 2.5[5] is an example showing the material behavior
upon reloading. Clearly, the time at rest (or dwell time) has an
influence on the subsequent creep curve. If unloading and
reloading are carried-out rapidly, the material tends to ignore
the effect of load change, as shown in Figure 2.5(a). However,
as indicated in Figures 2.5(b) and (c), longer rest period at

zero load results in a higher transient creep rate upon

reloading.

2.2 Continuum Damage Mechanics of Creep

2.2.1 The state variable theory

The slow, time-dependent deformation in materials
undergoing creep deformation is actually the macroscopic
reflection of the kinetics of several different modes of
microstructural rearrangement of the polycrystalline lattice. It

is well understood that[6] the protracted initial period of



creeps is dominated by viscous modes such as dislocation glides
and climbs, flow of grain boundaries and vacancy diffusion, while
the rapid increase of the strain rate typifying the tertiary
creep is directly traceable to the accélerated microvoids growth
preceding their coalescence leading to the creep rupture. In
order to be able to predict the .material behavior under creep
conditions, a rational theory must reflect the influence of the
microstructural kinetics on the response. However, the
irregularities in the lattice and the distribution of
microdefects render such a theory unable to be used in the
macroscopic sense[7]. A promising strategy is, therefore, to
establish a macroscopic model which will broadly mirror the
salient features of the microstructural mechanisms "with moge or
less distortion and blurring of detail"[B]. The state variable
method is a widely used approach of this kind.

The basic assumptions of the state variable theory is that:
(a) the response of the material depends only on the current
state of the microstructural defects; and (b) the current state
of the microstructural defects can be described by a finite set
of internal variables. Based on these assumptions, the
constitutive relations of materials can be expressed in terms of

the state variables wj as[9]

e = £(o g, t) (2.1 a)

and



w; = 9;(0,05) i, =1,2,...n (2.1 b)

The number of the state variables, n, and the functions f and 95
are determined either on the basis of the theories of metal
physics or on the results of appropriately chosen mechanical
tests. Obviously, for the purpose of the practical engineering
applications, the number of the state variables should be as
small as possible and the forms of the functions f and 95 should

be as simple as possible.

2.2.2 Uniaxial constitutive relations

The simplest form of the state variable theory to describe
the uniaxial behavior of creep rupture is Kachanov's damage

[10]. He proposed a scalar quantity, damage parameter w,

theory
as the single state variable in the constitutive relation which

can be shown as:

n

. o
€ A[ ] (2.2 a)
1-w

o $
B[ ] (2.2 b)
1-w

where A, B, n and ¢ are material constants determined by

s .
il

mechanical testings. The damage parameter is the measure of
material’s deterioration during creep. When the material is
undamaged, w=0, then equation (2.2 a) reduces to the well known

Norton’s law

e = Ag" (2.3)
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for the steady-state creep. On the other hand, rupture occurs
when w=1. Integration of (2.2 b) using the above postulation
will lead to a relation between the rupture time tr and the
applied stress o as
tR=———l—c;"‘j> (2.4)
B(1l+¢)

The values of constants B and ¢ can therefore be obtained from
the rupture curve, while A and n can be obtained from the steady
state conditions as described in equation (2.3).

The Kachanov'’s damage equation (2.2) was extended by
Odquist[ll] and Rabotnov[12] to inclgde the primary creep as

shown below:

- (e}
8=A[ ] ™ (2.5 a)

. [+ ¢
w=B[ } (2.5 b)

Thus, the entire creep process including primary, secondary and
tertiary creeps can be described by the modified Kachanov's
damage equation (2.5).

Note that the coefficient A in equation (2.5 a) is
temperature—dependént. The temperature dependence of A is

usually expressed as[l3]
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where
Q = activation energy;
R = universal gas constant;
T = absolute temperature;

K = material constant

2.2.3 Multi-dimensional constitutive relations

A valid multi-dimensional constitutive theory for creep

must satisfy the following requirements:

a) The multiaxial formulation must reduce to the correct
uniaxial formulation when it is appropriate;

b) The model should express the cons£ancy of volume that has
been observed experimentally during the creep process;'

c) The equations should embody the lack of influence of the
hydrostatic state of stress that has been observed
experimentally for creep;

d) For isotropic materials, the principal directions of stress

and strain should coincide;

e) The model should reflect the dependence of the creep

rupture on the multi-dimensional stress state that has been
[14]

observed experimentally

The multi-dimensional form of Kachanov’'s damage theory

which satisfies the above requirements, has been proposed by

¢ 1151

Leckie and Hayhurs as

- n
o

: _EA( )
iy~ 2 Ll—wJ

S. . :
i ¢m (2.7 a)
= ,v
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. (l-a)o + ooy ¢

®w = B (2.7 b)
1 - w ’

where

eij = creep strain components;

Sij = deviatoric stress components;

P = effective stress;

op = maximum principal stress;

o = material constant (0 £ « < 1)

Equation (2.7 b) indicates that the damage evolution in
creep materials is dependent on the linear combination of the
effective stress and the maximum principal stress. As reported

(14]

by Hayhurst the rupture time for copper is dependent on the

maximum principal stress so that o = 1. For some precipitate-
hardened materials such as aluminum alloys tested by Johnson[l6],
the rupture properties are dependent on the effective stress so
that o = 0. The o values for other materials vary between 0 and
1.

Leckie[l7] compared the predictions of these formula with
the experimental results of a variety of multiaxial stress states
for copper, aluminum alloy and stainless steel and found the
comparison to be satisfactory.

Murakami suggested a constant c in the strain rate equation

(2.7 a) as:
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] 3 P nsi. o
g, = — A 1t (2.7 ¢)
] 2 l-cw ‘

g
to allow for better correlating the test results[lsl.

It is worth noting that the constitutive e&uation (2.7) is
valid for primary, secondary and tertiary creeps. The effect of
the rest time on the creep beha&ior in repeated loading is not
considered in the formulation. Generally speaking, eguation
(2.7) losses its validity for cyclic loading cases. However,
since gquick unloading and reloading does not influence the creep
behavior, as described in the previous section, the continuun
damage model (2.7) can still be used to predict the creep
behavior of materials under repeated loading without rest time.

[19,20,21,22}

A number of sophisticated damage theory and

[23,24,25] have been developed to

general constitutive models
describe more complicated material behavior such as damage
anisotropy, cyclic hardening and softening, creep-yield
interaction, etc. These theories usually involve more state
variables, more complicated function forms and more material
constants to be determined experimentally. These complexities

render these theories difficult to be used in engineering

practice.
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CHAPTER 3

ELASTIC-PLASTIC-CREEP STRESS ANALYSIS BY FINITE ELEMENT METHOD

3.1 Introduction

The comélexity of the elastic-plastic-creep stress analysis
is due to the fact that both plastic and creep deformations are
highly non-linear. The time-dependent nature of creep further
increases the difficulties in solving this type of problem. In
most cases, a numerical approach, such as the finite element
method, appears to be the only practical solution method for
these problems. A unified finite element procedure dealing with

[26,27]

plasticity and creep has been established and will be

reviewed in this chapter.

3.2 Basic Matrix Formulation of FEM

The basic idea of the finite element method is to
discretize a continuum into a finite number of subdomains
(elements) which are connected at their apexes or, in some cases,
at selected points on the edges (nodes). The unique advantage of
such a discretization is that the formulations need only to be
applied to the individual elements of certain specified
geometries rather than the entire solid of complex geometry.

The governing matrix formulations of the finite element

d[26’27]. The conventional

analysis have been well documente
displacement approach is used in this analysis and hence is

briefly reviewed as follows:
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Element Interpolation Function:

{u} = [N]{u}® | (3.1)

where {u} is the displacement vector for any point in an element;

[N] is the matrix containing the interpolation function;

{u}e is the corresponding nodal displacement vector.

Strain-Displacement Relation:

{e} = [B]{u} (3.2)

where {e} is the strain vector;

[B] is the strain-displacement transformation matrix.

Stress—-Strain Relation:

{o} = [Dl{e} (3.3)

where {o} is the stress vector;

[D] is the stress-strain constitutive matrix.

Element Stiffness:

(k1€ = [ [B]T [D] [B] dv (3.4)

v

where [K]e is the element stiffness matrix and v denotes the

volume of the element.

The global stiffness matrix [K] is formed by summing up the

stiffness matrices of each individual element in the finite
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element mesh to give
E .
[K] = & [K]® (3.5)

where E denotes the total number of elements in the structure.
The equilibrium equations for the structure can then be obtained

as
(K] {u}® = {F} (3.6)

in which {F} is the nodal force vector.
Equations (3.6) can be used to solve for the unknown nodal
displacement {u}e. Strain and stress components for each element

are calculated subsequently using equations (3.2) and (3.3).

3.3 Elastic—Plastic Stress Analysis

As the relationship between stresses and strains in
elastic-plastic materials is non-linear, the stiffness of the
material cannot be regarded as constant. There are basically two
kinds of approaches in the finite element analysis to deal with
the varying stiffness of materials, namely initial stress/strain
and the incremental strain methods. The latter approach is
adopted in this analysis for its relative simplicity in
computations. The derivations presented here are based on the
work of Hsu[27].

The incremental plasticity approach assumes a linear
relationship between the incremental stresses and strains. This

assumption implies that the entire non-linear loading process can

be divided into many piecewise linear loading steps. Within each
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loading step, the equilibrium equations can be expressed as

(K1 {bu}, = {8F}, ' (3.7)

where [K]i ig -the stiffness mat;ix;

{A’u}i is the incremental displacement vector; and
{AF}i is the incremental nodal force vector for the ith

loading step.

After each load increment, the variable stiffness matrix {K]i
must be updated to account for the change in the stress—-strain
relations due to the elastic-plastic effects. The formulation of
the matrix [K] for the elastic-plastic analysis require the
following information:
(1) A yield criterion to establish a yield surface in the
stress space;
(2) A flow rule relating the plastic strain increments to the
yield surface; and

(3) A hardening rule to describe the expanding, shrinking and

shifting of the yield surfaces during the deformation

process.

3.3.1 Yield criterion

The Von Mises yield criterion is widely acknowledged as an

appropriate representation of the initial yield surface based
both on the good correlation with testing data and on its
mathematical simplicity. This criterion is derived from the

distortion energy theory which states that plastic deformation
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occurs when the distortion energy of the material reaches a
certain critical value. For an isotropic material, the yield

surface F, defined by the Von Mises criterion, is expressed as

2
F=J,-1/3 0 (3.8)
in which
J, = 1/2 sij sij (3.9)

is the second deviatoric stress invariant, Sij is the deviatoric
stress tensor, and Sy denotes the initial yield strength of the
material from a uniaxial tension test. Geometrically, equatibn
(3.8) represents an ellipsoid in a three-dimensional stress
space. The function F in equation (3.8) represents the yield
function (or plastic potential function) which describes plastic
yielding at current stress state during plastic deformation.

It is obvious that a plastic state is attained when F = 0,

while the material is in the elastic region if F < 0.

3.3.2 Prandtl-Reuss flow rule

- The Prandtl-Reuss flow rule assumes that the plastic strain
increment is linearly related to the current stress and prvedicts
that the plastic strain increment is normal to the associated
yield surface at the stress point. Mathematically, the plastic

flow rule using the von Mises yield criterion can be expressed as
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3 F(ci.)

degj = —21 gx = 555 A (3.10)
9 o. .
ij

in which dsgj is the components of the plastic strain increment

and d\ is a positive proportionality factor.

3.3.3 Kinematic hardening rule-

When some materials are plastically deformed in tension,
their compressive yield strength in the subsequent compression
reduces by the same amount of the increment in the previous
tensile loading. This behavior was first discovered by J.
Bauschinger in 1881 and is called the Bauschinger effect. The
result of this effect is a strain hysterisis observed after a
complete tension-compression load éycle, as shown in Figure 3.1.

For the multiaxial loading situation, the Bauschinger
effect is modelled by the translation of the yield surface in the
stress space. A number of knematic hardening rules have been
proposed to describe the translation of the yield surface.

r

Introducing the translated deviatoric stress tensor Sij as

proposed by Hsu[27]:

Sij = (oij - aij) - 1/3 (o - akk) Sij (3.11)

in which aij is the tensor of the accumulated kinematic
translation of the centre of the yield surface in the stress

space, the Von Mises yield surface becomes:

r 14 2
JF = 1/2 855 8,5 - 1/3 o) =0 _y (3.12)
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The translation tensor «,. in equation (3.11) may be

1]
[28]. This rule assumes that

computed by Prager’s hardening rule
the translation of the centre of the yield surface is in the
direction of the plastic strain increment, i.e. normal to the

yield surface. Mathematically, it can be shown as follows:

= p
daij = dul dsij (3.13)

This rule, in general, cannot be satisfied in case one of the

[29]. ziegler subsequently proposed a

stress components is zero
modification to overcome this deficiency. His hardening
rule[29] assumes that the incremental translation of the yield

surface is in the direction of the vector which connects the

centre point of the current surface to the existing stress point,

that is:
daij = duz (Gij - aij) (3.14)
dpl and d,u2 in equations (3.13) and (3.14) are multipliers.

Figure 3.2 shows a schematic representation of these two
hardening rules.

As the current version of the TEPSAC Program[27] adopts the
Zziegler’s hardening rule, Ziegler’s equation (3.14) will be used

in the subsequent derivations.

3.3.4 Derivation of the elastic-plastic element equation

Assume that the total strain increment dekl can be

decomposed into an elastic part deil and a plastic part deEl as
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de, . = deo (3.15)

kl
Thus, the incremental constitutive relationship can be defined by

do. . = De

ij ikl (3.16)

e
dekl

where doij igs the incremental stress tensor, and D?jkl is the
elastic tensor expressed as

E
e

Pijk1 T T, {8ik §50 ¢+

Sij akl} (3.17)
v

in which E is the Young's modulus, and v the Poisson’s ratio.
Now, if the projection of dcij on the outward normal to the

yield surface at the stress point is (C-dsgj), where C is a

positive scalar to be determined later, then

OF
(do.. - C-deP.) = 0 (3.18)
l] 1] 30'
ij

By substituting equation (3.10) into equation (3.18), one obtains

(3F/30,.) do, .
1] ] (3.19)

(8F/Boij)(8F/30ij)

1
dx = —
C

By substitution of equations (3.15), (3.16) and (3.10) into

equation (3.19), one obtains

. oF

dAi (3.20)

b 2

e

Disk1 98kl
0.
i
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where

oF oF aF aF

e
h =2¢C + Dijkl -a—d—'—' (3.21)

i ij %35 k1l

Combining equations (3.20) and (3.21) with (3.10) and
substitute the combined relation into equations (3.15) and

(3.16), one obtains

e

_ P ep
dojs = (Dygp1 ~ Pijka! 9%k1 T Pijkl deyy (3.22)
where
p 1 e ’ ! e
Pijkl = L Disk1 Sij Sk1 Pijkl (3.23)
and
ep _ e 1 e ! ' e
Dijk1 = Pijkl ~ h Pijk1 Pij S1 Pigk1 (3.24)

The scalar C, defined by (3.18), is determined by relating
equation (3.22) to the uniaxial state which leads to the

following:

2 do 2 1 2
c = — ;1 = — = — H' (3.25)
3 def, 3 1/E - 1/E 3

where the hardening parameter H' is defined to be the slope of
the flow curve of a material in the plastic range and E, is the

slope of the uniaxial o - & curve, as shown in Figure 3.3.
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The multiplier duz ig determined by the condition that the
stress point remains on the yield surface during the plastic
flow. Thus, by employing equation (3.12), one obtains

aF

dF = - (dcij - daij) = 0 (3.26)

i3

Substituting equation (3.13) into (3.26) and by using the

14
relationship Sij = BF/aoij, one gets

. .
du, = 1] 1) (3.27)

In order to facilitate the subsequent finite element
formulation, a translation of the above key equations into
appropriate matrix forms is necessary. The results of such a

translation are summarized as follows:
(1) Constitutive equation (3.22)

{de} = [Dy ] {de} (3.28)

(2) Elastic-plastic matrix (3.24)

’ r T
[Dgpl = [P - (1/h) [D 1 {8"} (5"} [Dg] (3.29)

where

h = c {s}T (s'} + {s'}" [p,] (5"} (3.30)



(3)

(5)

Proportionality factor (3.20)
dx = (1/h) {s7}7 [D ] (de)
The Multiplier (3.27)

| (s'}T {do}
ﬂ =1
2 ({0} - {aPT

{s"}

24

(3.31)

(3.32)

Translation of yield surface (3.14)

{da} = ({0} - {a}) duz

(3.33)

3.3.5 Determination of hardening parameter H'

In the current version of the TEPSAC Program, the elastic-

plastic effective stress—strain curve suitable for multi-

dimensional stress space is represented by a continuous function

with no distinction between the elastic and plastice regimes

as[30,31]

ta|

(3.34)

t=1]
™|
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where
_ 3E :
E = ———— , the effective modulus of elasticity
2(1+v)
_ 3E7 _
E! = ' the effective modulus of plasticity
(1-2Vv)E'

with E and E’ to be the respective moduli of elasticity and

plasticity from a uniaxial stress-strain curve, and

= a stress level at which the elastic line intersects

%
with the tangent of the plastic curve, as shown in
Figure 3.4, and

n = a factor which determines the abruptness of the

elastic-plastic transition.
By differentiating the stress in (3.34) with respect to the

strain, one may obtain a tangent modulus Ey

E € n+1
e E'
E 1 + N o -
_ [1 - :_—'] op * E'e E
do E
E, = — = — (3.35)
de E ¢ n \n+l
— n
1+ [ E'] _ o
1 - —{ o, + E'€
B k
Then the hardening parameter H' for isotropic hardening vule or C

for kinematic hardening rule can be determined by equation

(3.25).
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The advantage of this function is that the entire
stress—-strain curve, including two straight lines in the elastic
and work hardening regimes with a gradual elastic-plastic
transition, can be described by a single expression. However,
this function defines a one-to-one correspondence between the
stress and strain. In cyclic loading case, the stress and strain
are no longer one-to-one correspondent. Therefore, this approach

is not applicable to cyclic loading cases.

3.4 Creep Stress Analysis by Finite Element Method

A basic assumption involved in creep stress analysis is
that the total strain {e} can be partifioned into the elastic
{ee}, plastic {sp} and creep {ec} components, so that the total

strain increment can be expressed as[32]

{ae} = {beg} + {ag )} + {oe.] (3.36)

The separation of plastic and creep strains is clearly an
artificial device, since they are both related to the movement of

(331 that this is

dislocation. However, it has been shown by Onat
a reasonable and convenient assumption if {Asp} is associated
with high rates of loading.

Recall the relationship between the stress increment and

the elastic and plastic strain increments, i.e. equation (3.28):

{bo} = [Depl ({oe } + {ASP}) (3.37)

Substituting equation (3.36) into equation (3.37), the stress

increment can be expressed as
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(6o} = [D ] ((oe} - {88.}) (3.38)

Introducing the strain-displacement relation, equation (3.2),

equation (3.38) becomes

(ac) = [D ] ([B] {du} - {se.}) (3.39)

where {Au} is the incremental displacement vector.
The equation of equilibrium to be satisfied at any time t

take the form

T

[ [BIT {ac} dv = {OF} (3.40)

v

where {AF} is the vector of equivalent nodal load increment due
to surface traction and body force, and v is the element volume.
By combining equations (3,39) and (3.40), the equilibrium

equation becomes

T
I, [B] [Dep] ([B1 {av} - {ae_}) dv = {oF} (3.41)

3.5 Time Integration Scheme

Since creep is a time-dependent deformation, the creep

stress analysis is in fact a transient problem. The major
difficulty involved in creep stress analysis is that the creep

constitutive equations are highly non-linear and the resulting

equations are stiff in nature. The stability and accuracy of the
finite element solution critically depend on the selection of a
proper size of time steps associated with an appropriate

integration scheme.
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Generally speaking, there are two common classes of
one-step integration schemes for creep analysis, i.e. explicit
and implicit. The advantages of the explicit scheme suggested by

[34] [35] is that it is concise

Zieckiewicz and Cormeau and Cormeau
and simply coded. But the stability condition is rather
stringent and very small time steps are required. The implicit

[36] and was lately

scheme was proposed by Hughes and Taylor
modified by Kanchi et al[37]. It allows the use of larger time
step sizes but requires more operation in every time step. This
drawback has made the implicit scheme computationally
uneconomical, especially for large scale problems where a large
number of elements are involved. The formulations of the
explicit and implicit algorithms are briefly reviewed as follows:

The multi-dimensional form of the general constitutive

relation for creep, i.e. equation (2.1), can be stated as

() = £, ({o}, {0}, ) (3.42 a)
{0} = £, ({o}, {w}) (3.42 b)

3.5.1 Explicit algorithm

(8e°} = (<) ot (3.43)

{Aw} = {&n} At (3.44)

th time step.

where the subscript n denotes the n
The stress increment can be expressed by substituting

equation (3.43) into equation (3.39) as shown below:
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(8} = (D1 ([B] {ou) - (S} ot) (3.45)

The governing equation (3.40) now becomes

T T

(f, [B] [Dep][B] dv){su} = [, [B]

v

‘c
v [Dep]{en} ét dv + {AF}

(3.46)

Cormeau has performed a stability analysis and derived the

explicit stability conditions for some constitutive

[35]

relations For the steady-state creep obeying Norton’'s law

(2.3), the stability condition requires that

, 4(1+v) 1
ot < Bt = - — (3.47)
critical 3nE AT )n—l .
max
where Emax is the maximum effective stress in the structure. In

the creep fracture problens o is very high due to a high

max

stress concentration at the crack tip. The value of the stress
index of the creep law, n, ranges from 5 to 10 for most metals.

A typical allowable time step size determined by equation (3.47)

5

in creep fracture analyses in the order of 10 "hr., as reported

by Hsu et al[103] and Ehlers et al[llzl.

3.5.2 Implicit algorithm

The increments of creep strain and state variables

occurring in a time increment At are assumed to take the form

(0} = [(1 - v){éﬁ} + v{;§+l}] At (3.48)
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and

{bw}

{(1 - Y){én} + f{&n+l}] At (3.49)

with 0 < vy ¢ 1. It is readily seen that the explicit scheme is
actually a special case of the above equation with y = 0. On the
other hand, the case of y = 1 represents a fully implicit scheme.
The case with y = 1/2 denotes the implicit trapezoidal scheme
which is generally known as the Crank-Nicolson rule of
integration.

The incremental creep strain {én+l} and the state variable
{&n+l} in equation (3.48) and (3.49) can be approximated by a

limited Taylor series expansion as

(.4} = (eC) + [H1{b0} + [Hy){Aw} + {H3} dt (3.50)
and
(o1} = {&n} + 16,1(8c} + [Gy]{Bw) (3.51)
in which
3 () (&} (e}
[H,] = . [H,] = . {H,} = (3.52)
! 3{o} 2 3 {w} 3 at
3 {w) 3 {0}
3{o} 2 {w}

By substituting equation (3.51) into (3.49), one gets

(80} = [g] ({o ) + v[G 1{sc}) bt (3.54)
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in which
[g] = ([T] - v[G,1 at)™" (3.55)

where [I] is the identity matrix.
Now, if one substitutes equations (3.48), (3.50) and (3.54)
into (3.38) and rearranges the terms, the stress increments can

be expressed by the following equation:

(s} = [0 1 (1BI(au} - (53t = ([H,)(g](my} + (H3)) vat?)

ep
(3.56)
where
(b)) = (LT] + vde(D 1 ([Hy) + y[H,10g10G; 168)) T [D, ]
(3.57)

The governing equation can thus be derived by substituting
equation (3.56) into equation (3.40). The final form of the

equation is given as

T *
v (D) (BIdV) (bu} =

(J, [BI]

2

o te1Tnl 1 ((eS)ot + (1H,)gl(e ) + (H3}) yot®) dv + (oF)

\% ep
- (3.58)

Although the implicit integration scheme is not
unconditionally stable, computational experiences have shown that
it is much more stable than the explicit scheme with larger time
steps. However, since the stiffness matrix used in this method

is a function of element stresses, reformulation and inversion of
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the stiffness matrix is necessary in every time step of
computations. As a result, the implicit scheme requires
substantially more computer time in every time step. For large
problems involving a great many elements, this drawback makes the

implicit integration scheme uneconomical.
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CHAPTER 4

CREEP CRACK PROPAGATION

4.1 Introduction

Recognition of the fact that failure of high temperature
components can occur by the propagation of a single crack which
can nucleates from pre—existing flaws, weld defects or creep-
fatigue damage processes, has led to a significant increase in
creep crack growth study during the past 15 years. Most of the
research in this area tends to be on finding a proper represen-—
tative parameter which would correlate measured crack propagation
rates in as universal a manner as possible. A number of
parameters have been developed with different degree of success.
This chapter reviews some promising approaches with an emphasis
on their applicabilities and limitations in characterizing creep

crack growth in engineering materials.

4.2 Stress Intensity Factor K

Systematic research into creep crack growth began with the
application of linear elastic fracture mechanic techniques to
high temperature components. Siverns and Price[38), in a study
of 2 1/4 Cr 1 Mo ferric steel, suggested that the creep crack

growth rate could be expressed as a power function of the elastic

stress intensity factor K as

— = AK ) (4.1)
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where a 1is the crack length, and A and n are constants.

(391 [401]

This was supported by Neat and Siverns Floreen and

James[4l].
Tt has been found that the correlation between das/dt and
K can only be observed in creep-brittle materials for a very

[42]

small range of K It has been pointed out by Gouch, Haigh

[43] that specimen geometry, initial notch depth and

and King
applied load all affect correlations. The variations observed
experimentally between correlations of crack growth rate and
stress intensity factor obtained under different loading
conditions and, with varying specimen geometry, have been
rationalized in an analysis by Pilkington and Smith[44].

The reason why the stress intensity factor K can not be
expected to characterize the creep crack growth for a wide range
of conditions is quite understandable. The non-linear nature of
the creep deformation makes the extent of applicability of the
linear elastic fracture parameter K in high temperature fractures
to be very limited. K correlation is only valid for
creep-brittle material with low value of creep index and high

crack velocities[45].

4.3 Net Section Stress o

net

The second widely used method for studying creep crack
growth is to correlate the crack growth rate with the net section
stress. The net section stress is defined as the applied load
divided by the area of the uncracked ligament. The correlations

of creep crack growth rate with Shet’ first made by Harrison and
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Sander{46], is of a form analogous to those with K (equation
(4.1)):
da
n
— = A ¢ (4.2)
dt net

where A and n are material constants, though different from those
in equation (4.1).
Although net section stress method was supported by other

[47,48,49,50]

researchers correlations of creep crack growth with

Snet have been neither more nor less successful than those with
stress intensity factor K in embracing data obtained from a
variety of testing conditions. Actually, the stress intensity
factor and the net section stress describe two extremes of stress
distribution in a specimen, whereas the true stress distribution
in most specimens probably lies between these two extremes. In
materials in which little stress relaxation can occur before a
crack extends by rupture of the material ahead of the crack tip,
the crack growth rate may correlate with a stress level related
to that modeled by the elastic stress intensity factor. In
materials in which more extensive stress relaxation can take
place before localized rupture occurs, the stresses may relax to
a value close to the nominal value of Shet” In such cases, the
crack growth rates may correlate with Tnet* This argument
supports the notion that K is only applicable in "creep brittle"
material, whilst Shet is only applicable in "creep ductile”

[50]

material such as put forward by Ellison and Neate and.

Neate[51].
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*
4.4 Contour Integration C

4.4.1 The J-integral concept in elastic-plastic fracture

mechanics

The path independent integral J, proposed by-Rice[SZ], is
defined as

j du.
J = Jr (W dy - T, 3x~ ds) (4.3)
1

where W is the strain energy density given by

W= J o,. de, . , (4.4)

with Ti and u, to be the components of the respective surface
traction and displacement vectors, x and y the coordinates and s
are length along a contour T surrounding a crack tip, as shown in
Figure 4.1. The J-integral has been proven to be path

independent if the material obeys the following constitutive

relation:
e = coP (4.5)
where c and p are material constants. Note that the constitutive

relation (4.5) requires a one-to-one correspondence between the
strain and stress. If unloading occurs, the relation between
strain and stress will no longer be one-to-one correspondent.
Therefore, unloading violates the path-independence of the
J-integral. Strictly speaking, J-integral is valid for

non-linear elastic material.
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[53]

Further, it has been shown that J may also be expressed

as

1 du
J=- - — (4.6)
B da
where U is the potential energy:functional and B is the thickness
of the plane. By equation (4.6), J-integral may be interpreted
as the potential energy difference between two identically loaded
bodies of incrementally differing crack lengths.

it has also been shown by Rice[sz] that for linear elastic

materials, the J-integral is identical to G, the energy release

rate per unit crack extension. Therefore
<
J =G, = —
I B

where Ky is the mode I stress intensity factor, and

Ef = E for plane stress

E' = for plane strain
l-v
The path-independent nature of the J-integral presents a
unigque advantage that it is possible to evaluate this integral
along any region enclosing the crack tip. The paths of
integration can be chosen to include the region where the stress
and strain fields can be determined with sufficient accuracy.

[54] [55]

Hutchinson and Rice and Rosengren have proven that

for materials following a power law hardening stress-strain



38

relation such as shown in equation (4.5), the stress and strain
field near the crack tip can be characterized by the J-integral

as

o.. o (3/r)t/(P+1) (4.7 a)

eyg @ (g/r)P/(P+L) . (4.7 b)
where r is the distance from the crack tip. Equation (4.7) is
known as "the HRR singularity" in the literature.

[56] suggested the J-integral to be the

Begley and Landes
fracture criterion in elastic-plastic situation. The measurement

the critical value of the J-integral for
(571}

techniques for JIC'

crack initiation, have been proposed by Landes and Begley
(58]

and

These techniques have been

documented in ASTM standard E813—81[59].

Rice, Paris and Merkle

Although the path-independency of the J—integral is based
on the deformation theory of plasticity (equation (4.5)),

[60]  gespite lack of

experimentation and computation have shown
proof, that J concept can be extended to situation involving

incremental plasticity behavior.

4.4.2 C* parameter

(1) Definition of the C* integral
Consider a material which deforms in steady-state creep

according to the Norton’s creep law (equation (2.3)):

n (4.8)

M .
]
bl
Q
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Comparison of equations (4.5) and (4.8) shows that the two

equations have a similar form, with the strain of (4.5) being

replaced by strain rate. By analogy, Turner and Webster[6l] and
Landes and Begley[62] suggested an expression for C* integral as
* * duy
c = W dy - T, — ds - (4.9)
r 9X

where W* is strain energy rate density given by
W =[] o,. de,. (4.10)

and u, is the displacement rate vector.

By analogy with equation (4.6), C* can also be expressed as

N 1 du
C = - - — (4.11)
B da

where U is the potential power and is analogous to the potential

energy U in equation (4.6).

(2) Near-tip stress field

Goldman and Hutchinson[63] have shown that the near-tip
stress and strain rate distribution in a cracked body undergoing

purely steady-state creep deformation are characterized by C*:

6. . o (¢ ryl/(n+l) (4.12 a)

e.. o (c¥/r)yn/(n+l) (4.12 a)
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For the case involving elastic and power law creep strains,
Riedel and Rice[64] have analyzed the asymptotic solutions and
shown that the stress singularity near the crack tip is of the

-1/n+1 | . .
4 in comparison to the inverse square root

order of r
singularity for an initial elastic stress field. From the

analysis, the creep zone size L. is given by

1 (K, (n+1)2 g a2/ (n-1)
SR

2no
n

where K. is the initial stress intensity factor, E is Young's

modulus, A and n are defined in equation (4.8) and aﬁ—lis

approximately equal to unity. Fcr(e) is a function of anglei(e)

measured from the plane of the crack in the anticlockwise
direction and is given in Reference [64]). Riedel and Rice have
also defined a characteristic time for the transition from small

scale creep to extensive creep of the whole specimen given by

K2 (1-v2)
t; = . (4.14)
E (n+l) C

where v is Poisson’s ratio.
While the above analysis pertains to stationary cracks,
some progress has been made in analyzing the near-tip stress

1[65] and Hui[66] have

field for a moving crack. Hui and Riede
analyzed the steady state asymptotic fields around a crack
propagating at constant velocity in a power law creeping solid.

They concluded that the stress singularity depends on the value
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of the creep exponent n. For n < 3, inverse square root
singularity exists, while for n > 3, stress-strain siﬂgularity is
of the form of ~1/(n=-1) .nd4 depends only on crack growth rate
and not on applied load. The implication is that for crack
growth rates greater than some minimum value, the rates are
proportional to kY for small scale creep and for the growth rates
less than the minimum, no stable steady-state growth is possible.

[67.68]  yowever, these analyses

Hart's observations are similar
were based on a small scale creep assumption while neglecting the

influence of crack tip stress relaxation.

(3f Determination of C*

The experimental data reduction scheme'employed.by Landes
and Begley[62] is analogous to that previously employed[57] in
determining J. The test procedure is summarized in Figure 4.2.
The data are collected as load and crack length versus time for a
constant displacement rate, Step 1. These data are then used to
determine load as a function of displacement rate for various
crack lengths, Step 2, and crack growth rate versus crack length,
Step 5. The power or energy rate input, ﬁ, is measured as the
area under the curves in Step 2. 6 is plotted versus crack
length in Step 3. The slope of the curves in Step 3 is C* as
defined in equatioﬁ (4.11). C* can be plotted as a function of

displacement rate, Step 4. Combining the curves from Step 4 and

Step 5 gives the desired result of crack growth rate versus C*,
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Step 6. This method involves 6 steps and requires data from many
tests.

Several approximate expressions of the C* integral have
been developed to simplify the test procedure for the
determination of c*. These approximate expressions were derived
based on the definition of C*, equation (4.11), in conjunction
with the Norton’s creep law, equation (4.8). The limit load
analysis technique[72] was used to give the following approximate

k3 * 3 K3 .
expressions of C for different specimen geometries:

Nikbin, Webster and Turner[69]

P da

1 :
C* = — +« — & — (for Double Cantilever Beam specimen)
B n+l da
(4.15)
Harper and Ellison[701
* n PA 1 dm
C =- — o — |=— & — (4.16)
n+1 BW Lm d(a/wW)
1 dm
the term |— - ————| for commonly used specimen geometries
m d(a/w) can be found in Reference [71,72]
.[73]

Koterazawa and Mori

PA

C* = — (for Double Edge Notch specimen)
B(W-2a) (4.17)
N 2PA
C = — (for Compact Tension Specimen)

B(W-a) (4.18)
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ohji, Ognia and Kubo[74]
* n-1 . ’
cC = Shet 8 (for Centre Notched specimen)
n+l (4.19)
* 2n-1 .
c = Shet 8 (for Round Notched Bar specimen)
2n+l (4.20)

where

P = applied load;

W = width of the specimen;
A = displacement rate at the load point; and
§ = crack opening displacement rate.

*
These expressions allow C parameter to be experimentally

determined by using single specimen.

(4) Relevance of C* to creep crack propagation
It appears that C*~parameter correlates the crack growth

rate better for a broader range of conditions than other

parameters such as K and Thet and hence received more attention

[75,76,77]

*
than the other parameters However, C —-parameter, like

K and Shet” has its limitations. The conceptual difficulty of
C*—parameter results from the fact that the analogy between c*
and J is mathematical, not physical. Although the potential
energy U in equation (4.6) has definite physical significance
in elastic analysis, there is no corresponding interpolation

of the identical function U in the creep analysis. The quantity

which does have physical significance in the rate problem is the
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creep energy dissipation rate which is equal to the power applied
to the specimen at loading points. The approximate expressions
(4.16 to 4.18) established the relationships between C* and the
creep energy dissipation rate PA. Therefore, C* may approx-
imately be defined as the rate of change of creep energy
dissipation rate with crack length. However, it must be stressed
that this cannot immediately be related to the energy release
with crack growth. Furthermore, expressions (4.16) to (4.18)
have indicated that in different specimen geometries, the
proportion of the power input which will be expended in crack
growth will differ. This fact implies that the C* correlation
may be affected by specimen geometries and initial crack

[78]. Despite extensive work using this parameter, it

lengths
remains to be proven that there exists a unique da/dt - C*
relation for a wide range of conditions.

It must be emphasize that the path-independency of the c”
integral requires the strain components other than the secondary
creep to be excluded in the analysis. Strictly speaking, C* is
only applicable to secondary creep. Neglecting the tertiary
creep implies that C* approach is valid only if the damage
accumulation is largely confined to the immediate crack tip area.
In other words, C*—parameter is valid under small scale damage
conditions. For materials that exhibit pronounced tertiary
creep, the widespread creep damage growth ahead of the crack will
invalidate the characterization property of C*.

Ignoring the plastic strain limits C* to be valid only

under small scale yielding conditions. An instance reported by
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Sexana et al[80] clearly shows the need to include plasticity in
the creep fracture analysis. They illustrated that for the 316
stainless steel at 594°C, plastic strain dominated the creep

[81] proposed

propagation process. To remedy this, Liu and Hsu
*

the Cg integral which modified the C* expression by including

a plastic energy rate integral term. They claimed that this

parameter can uniquely characterize creep crack growth behavior

from the small scale yielding to extensive yielding. However, the

*
creep law used in Cg is still the Norton’s steady-state creep

law.

4.5 Continuum Damage Mechanics Approach

It is clear from the above review, that the correlations
between the various proposed parameters and the creep crack
growth rate are basically empirical. None of these theories
has been justified by consideration of the physical mechanisms of
creep fracture. This is the principal deficiency of these
techniques since the purpose of developing such theories is to
extrapolate short-term laboratory data, obtained from small
specimens, to large structural components which are expected to
operate for thousands of hours. The only characteristic that can
be used to justify such extrapolation is that the same physical

mechanisms operate in the short term in the laboratory, as

operate in the long term in the real structure. It is
imperative, therefore, that further developments of these

theories be related to the governing physical mechanisms.



The continuum damage mechanics approach was first

introduced by Hayhurst et alp82]. In this approach, a
constitutive equation of the continuum damage mechanics, equation

(2.7), was used to describe the entire creep and damage processes

under multiaxial states of stress. The boundary value problem
for cracked specimens is solved by using the finite element
method. The method allows creep damage to grow and the local
failure occurs when the damage parameter in an element reaches

the value of unity. After element failure takes place, the

boundary value problem is redefined. 1In this way, the
advancement of a zone of damage or a crack may be modeled. The
unique advantage of the continuum damage mechanics approach is
that it is consistent, to some extent, with the physical
mechanisms that cause creep crack growth, as described by

Hayhurst[82'83].

Hayhurst et al[82] studied crack growth in externally and
internally cracked tension members under steady load in various
materials of aluminum alloy, copper and in 316 stainless steel.

The following major conclusions were drawn from his studies:

(1) The principal effect of continuum damage is to weaken the
strength of the singular stress fields and eventually to
nullify them. The near-tip stresses are overestimated by
the C* approach, which omits the growth of continuum damage
as a field quantity; and

(2) The orientation of a growing crack propagation is dependent
on the multiaxial stress rupture criterion of the material,

the geometry of the cracked body and the loading
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conditions. This behavior can not be modeled by other

theories.

Although Hayhurst’s continuum damage model appears to offer a
great promise in creep fracture research, there are certain
shortcomings in his approach. First, the instantaneous plastic
strain was omitted in his model. It would be expected that the
instantaneous plastic strain near the crack tip will give rise to
a pronounced crack blunting before creep crack growth takes place
and the blunt crack will cause widespread damage. Therefore, it
is important to consider the influence of the plastic strain on
the damage evolution and crack propagation;

Secondly, the Hayhurst’s method necessitates the use of the
finite element analysis to solve the boundary value problem. Due
to the highly non-linear constitutive equations involved in the
description of the creep strain and damage evolutions, the
numerical time-integration can present difficulties.

Thirdly, this model assumes that the fracture of an element
occurs when the damage parameter ® in the element approaches the
value of unity. It is clear from equation (2.7) that both creep
strain rate and damage rate approach infinity as w~»1. This gives
rise to a very serious numerical stability problem in the
computations.

Finally, Hayhurst modeled the fracture process of the
cracked specimen in an element-by-element manner. The fracture
behavior predicted is, therefore, dependent on the shape and size
of the elements. At this stage, the continuum damage mechanics

method appears to be capable of predicting the rupture time of a
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cracked body rather than the crack initiation and the subseguent

growth.

4.6 Cyclic Creep Fracture

Many components operating at elevated temperatures are
subjected to combined monotonic.and cyclic loading which can lead
to creep-fatigue interaction. The interaction of fatigue and

creep or the effect of hold-times in low-cycle high-strain
[84,85]

fatigue testing has been the subject of several reviews
and some predictive techniques, such as linear damage summation
method, frequency-modified strain range method and strain range
partitioning method have been developed[86’87'88]. In genergl,
no single method is inherently more accurate than the other,
although the linear damage summation method is the method most
widely incorporated into design procedures due to its relative
ease of application to a wide range of relevant creep—-fatigue
situations. The linear damage summation method is based on time
and cycle fractions using a linear cumulative law equated to
unity at failure, but it is often found that the combined effect
of creep and fatigue was more damaging than the above model
suggested. These models for creep rupture under cyclic stress
conditions have been derived for uniform sections and the effects

of stress concentrations due to the presence of cracks have not

been taken into account.
Experimental work on crack propagation under cyclic creep
conditions is very limited. The test results on 1 Cr-Mo-V steel

by Ellison and Walton[89] and on 0.5 Cr-Mo-V steel by Smith and
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Webster[gol showed that for the creep dominated fracture, the
crack growth rate can be accelerated by the increase of loading
frequency. One typical example is given in Figure 4.3[90].
Another interesting phenomenon is that the transient stress
redistribution ahead of the crack tip is faster in cyclic tests
than in static tests. These observations were supported by
Harpner[gl'gzl°

The linear damage summation method has been applied to

(891

cyclic creep crack propagation by Ellison and Walton They

attempted to predict the cyclic creep crack growth rate by the
linear summation of the independently assessed contributions from

creep and fatigue as
(da/dt)c_f = (da/dt)C + da/dn - dn/dt (4.21)

They found, however, the crack propagation rate predicted by this
model was much lower than the test results. Attempts to
correlate the cyclic creep crack growth rate with C*—parameter
[92,93,94]

have also been made So far, there is no firm evidence

of a unique relationship between C* and the cyclic creep crack
growth rate. It is doubtful that the C* approach could be used
in cyclic creep fracture, as frequently large unloadings in
cyclic coﬁditions seriouély violate the requirements of the path-
inde?endency of the C* integral.

The reason why load cycling accelerates the creep crack
propagation has not. yet been explored. One possibility is that,
[75] [93]

and Webster , the stress levels

are 'rejuvenated’ after each cycle, which implies a more damaging



50

situation than in the static load case. However, this
speculation has not been verified. The present work will
investigate the stress redistribution and damage evolution near
the crack tip under cyclic loading situations and assess the

effect of the loading frequency on the creep crack growth.
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CHAPTER 5
FINITE ELEMENT MODEL FOR CYCLIC CREEP FRACTURE
BY CONTINUUM DAMAGE MECHANICS APPROACH

5.1 introduction

The foregoing literature survey has revealed that all the
proposed creep fracture parameters are subjected to some
restrictions from the material ductility, specimen geometry.
initial crack length and loading conditions. There is no single
parameter which is capable of correlating the creep crack growth
rate for a wide range of materials and test conditions. There is
no theoretical evidence so far that these parameters can be used
in cyclic creep fracture situations.

The continuum damage mechanics method has successfully been
applied to creep crack propagation problems. The attractive
feature of the approach is that the creep crack growth is
predicted by evaluating the local damage evolution near the crack
tip. Obviously, this method can be applied to the cyclic creep
fracture if the local stress—-strain-damage states near the crack
tip can be determined in cyclic loading cases.

As described in Chapter 4, the major difficulties involved
in the continuum damage approach are: (a) the absence of plastic
strains; (b) numerical instability as w»1; and (c) mesh
dependende of results. To extend the continuum damage mechanics
method to cycle creep crack growth problems, these obstacles have
to be eliminated.

This chapter presents a finite element model for cyclic

creep fracture, which includes:
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(1) a cyclic plasticity model for the determination of the
stress—strain variation during plastic loading, unloading,
reversed loading and reloading;

(2) a mixed explicit-implicit integrétion scheme for higher
computational efficiency;

(3) a modified breakable element model for simulating the creep
crack initiation and propagation. This technique can also
eliminate the numerical instability associated with the

damage criterion and reduce the mesh dependence of the

results.

5.2 Cyclic Plasticity Constitutive Model

5.2.1 Theory of several yield surfaces and Mroz's hardening rule

As described in section 3.3.5, the Hsu-Bertels plasticity
constitutive model (3.34), which is adopted in the current
version of TEPSAC program, defines a one—-to-one correspondence
between stress and strain. Under cyclic loadings, the
relationship between stress and strain is no longer one-to-one
correspondent. A suitable plasticity hardening model for the
determination of the stress-strain variation during plastic
loading, unloading, reversed loading and reloading is essential
for prediction of the material damage due to load cycling.

in this study, the plasticity model is based on the
combined translations of several yield surfaces in the stress

(951

space Each yield surface is defined by the Von Mises

criterion and it relates one of the piecewise linear segments
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idealizing‘thé uniaxial stress—-strain material curve to the
multiaxial stress state, as shown in Figure 5.1. Each yield
surface is allowed to translate in the stress space up to its
bounding yield surface to which it remains connected until the
unloading stage. The translation rate is governed by the Mroz's
hardening rule[96]. As shown in Figure 5.2, the Mroz's hardening
rule assumes that the incremental translation of the current
yield surface fl is in the direction of the vector which connects
the stress point p on the current yield surface to the
corresponding stress point R on the bounding yield surface fl+l'

The stress point R is defined by a vector Ol+lR which is parallel

to the vector 6{?.

The reason why the Mroz's hardening rule is adopted in the
present study is that the ziegler’s hardening rulelzg] is
inconsistent with the theory of several yield surfaces in complex
loading cases involving unloading and subsequent loading along a
different stress path. Consider a two-yield surface system in
two-dimensional stress field, as shown in Figure 5.3. As: the
material is initially isotropic, the yield surfaces f1 and f2 are
similar and initially concentric, enclosing the origin 0. When
a uniaxial stress o, is applied, the stress point moves from 0
along the vertical axis. By increasing the load, it reaches the
ellipse fl and makes fl moves along this axis until it conlacts
the ellipse f2 at A. Now the specimen is partially unloaded to a
point B inside fl‘ Next a horizontal stress o4 is applied and

the stress point moves parallel to the horizontal axis, reaching

the ellipse fl at Cc. According to the Ziegler's hardening rule,
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the instantaneous translation of fl will occur along 04C. it is
impossible in this case, because moving in this direction will
not allow the point C to make contact with the ellipse f2 without
intersecting this ellipse. Mroz argued that C must move to a
point D on f2 since these two points correspond to the same
direction of outward normal. The instantaneous translation of f,
will thus occur along CD. Mathematically, the translation of the

yield surfaces can be described as

(n) _ (n) (n+l) _ (n)
daij = dy (Uij Uij ) (5.1)
where ai?) is the tensor of the accumulated kinematic‘translation
th (n+1)
0. -
1]
bounding yield surface with the same outward vector as the stress

(n)

of the inner yield surface, Uij . This requires that

is the stress of the

of the n yield surface and

U(n+l)
G+l (nel) Ty () {17 (5.2)
ij ij L(n) 1] 1]

Yy

where c(n+l)and c;n)are the material uniaxial stresses at the
end of the (n+l)th and nth linear segment of the linearized
uniaxial stress-strain curve and du is a multiplier.

The employment of the concept of the combination of =several
yield surfaces enables both inclusion of the Bauschinger e«ffect
during reversed plasticity and description of the non-linea:
uniaxial material curve by several piecewise linear segment .

The present model assumes that the material is of the Massing
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typellog], namely, the stress—strain curves associated with one-
dimensional symmetrical closed hysteresis loops should be of the
same form as the initial loading curve except for an enlargement

by a factor of two. Most of the engineering materials obey the

[110]. Also, it is assumed that the material

Massing description
preserves in its memory the maximum stress values from the last

plastic loading stage.

5.2.2 Formulations of the cyclic plasticity model

According to the several yield surfaces theory, the nth

yield surface, f(n), is defined by the Von Mises criterion as

;. 14 4 l i

I P S A (5.3)
13 1] Yy

in which Sij is the translated deviatoric stress tensor defined

by

r 1 '
S.. = (6,. — My 3 5. (o -«
ij ij ij ij mm mm

——
]
~—
~—

(5.4)

The plastic flow is now defined by the normality condition

of the plastic strain increment to the associated nth yield

surface at the stress point:

(n) agln)
deb. = ax (5.5)
J do.
1]
where dk(n) is a positive scalar associated with the nth yield

surface.
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Projecting dcij to the outward normal of the nth yield

surface leads to:

ge (™)
(n) p
(do;. - C deb.) - = 0 (5.6)
3 j 20, 5

where C(n) is a positive scalar to be determined.
By substitution of equation (5.5) into equation (5.6), one

obtains

(n)
1 (93f /acij) dcij (5.7)

(n)
y(of /8cij)

ax{®) -

(m) (n)
C (af /aoij
puring the plastic loading dx(“) > 0, unloading begins when
ax{™ < o.
By substituting equations (3.15, 3.16 and 5.5) into

equation (5.7), one gets

(n) 1 ae(™)
dx = . D. . de (5.8)
h(n) 95, . ijkl k1l
1]
where
(n) (n) ag(n) ae(m) e (M)
h = C . + Diix1 {(5.9)
0. . d0. . o0, . ] oo
ij ij ij k1l

By combining equations (5.8) and (5.9) with (5.5), and

substituting into equations (3.15) and (3.16), one obtains

DeP de

_ ne P _
doy5 = (Dygp1 ~ Pijk1) 9kl i3kl (5.10)

kl
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where
P 1 e roLT e
Pijk1 = () Disk1 Sij Sk1 Pijkl (5.11)
and
p€P . - p¢ ———i—De s . s, DS (5.12)
ijkl = Tijkl T, (n) ikl ®ij "kl “ijkl :

The scalar C(n) in equation (5.9) physically means the
stiffness of the material during the plastic deformation. As the
stress (o) versus strain (t€) curve becomes anisotropic due to the
postulated shift of the yield surfaces, the stiffness.of the
material varies from one direction to another. Taking into

account of such an anisotropy, Hsu suggested that the value of

C(n) can be determined as follows[27]:
1 1 [aij}z
= (5.13)
C(n) H. . o
ij w
where 2 2 2
Zow = Bij (cij) + aij (oij) (sum over i,]j = 1,2,3)
B.. =1
1]
_ . (n)
Hij = weighted H
with H(n) defined by
. e(n)
H(n) 1 B E Et
- - (n)
1 -1 E - Et
(n)
Et E
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where Eén)is the slope of the (n+1)th linear segment of the

uniaxial material stress-strain curve.

Now, in order to complete the mathematical formulation, the
translation of the yield surface, d“g?) defined by the Mroz's
hardening rule equation (5.1), should be determined. The scalar

au™) in equation (5.1) is determined by the condition that the

stress point remains on the yield surface during the plastic flow

g (M) (n)
- du{’) =0 (5.14)

ag(®) -

(doi.

90, J
1]

substituting equation (5.1) into equation (5.14), one obtains

14

ap'?) = %] .”dcij (5.15)
(U§Q+l) — ogg))VSf.
ij ij ij

Translating the above equations into appropriate matrix
forms facilitates the finite element formulations which are

summarized as follows:

(1) Constitutive equation (5.10)

{do} = [D.,] {de} (5.16)
(2) Elastic-plastic matrix
r (4 T 3
[Dgpl = [D ] - _1_(p,1 {s"} {8"] (D] (5.17)

h(n)



where
(multiaxial)

p(n) = (™ gy T ysry syt (b ) {S7) (5.

with C(n) defined by the expression (5.13).

(3) Proportionality factor (5.8)

ax(™ = 1 . sy I 1 (de) (5.
h(n)

(4) Multiplier (5.15)

T
{sr}” {do}
au'™) - (ne1) T (5-
({o } - {a})” {8"}
where
U(n+l)
{o_(n+l)} - {a(n'*‘l)} + Y(n) ({O’} _ {a(n>} (5
[¢)

y

(5) Translation of yield surfaces (5.1)
(@a™y = 4™ (o - (5.

Note that the translated deviatoric stress tensor {S'}
defined by equation (5.4) and guantities h(n), dx(“) and du(
are all related to the nth yield surface. Therefore, after
completing the stress calculation for every load step, it is
necessary to check which yield surface the current stress st

is associated with. This cyclic plasticity model has been

implemented into the TEPSAC program.
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5.3 Mixed Explicit-Implicit Algorithm for Creep Stress Analysis

Proper selection of time—integration scheme is a very
important step in the creep stress analysis of solids. Both
explicit and implicit algorithms are widely used for such
purposes. AS described in section 3.5.1, the explicit scheme is
much more expedient in computations than the implicit scheme.
Unfortunately, this scheme usually results in an unstable
situation and extremely small time increments have to be used.
The implicit scheme is more stable, but requires substantially
more computational effort in every step of calculations.

The stability condition associated with the explicit scheme
of Norton's‘law creep, i.e. eguation (3.47), reveals that the
critical time step size ensuring stability is controlled by the
element where the highest stress or highest creep strain rate
occurs. For the portion of the structure at a lower stress oOr
lower creep strain rate, much larger time steps can be used
without causing instability. According to equation (3.47), for
those elements in which the value of the effective stress is 0.6
of the maximum effective stress in the structure, the time step
could be 7.7 to 99.2 times the critical one, depending on the
value of the creep exponent n which ranges from 5 to 10 for most
metals. For creep fracture problems, high stress concentration
occurs at the crack tip, while stress levels in the remaining
portions of the specimen are relatively low. Selecting time step
sizes according to the crack tip stress or strain rates is
obviously not economical and unnecessary. A desirable situation,

however, is to develop a computational model which includes both
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these algorithms with the implicit algorithm being used for those
elements near the crack tip and the explicit algorithm for the

remaining part of the specimen.

5.3.1 Formulations of the mixed explicit-implicit algorithm

We consider a finite element model in which elements are
partitioned into two groups: the explicit elements and the
implicit elements. The integration schemes corresponding to
these two element groups, which have been given in Section 3.5,

are summarized as follows:

(1) Explicit elements

(aety = {éﬁ} At (5.23)
rw = o Bt (5.24)
n
e
(b0} = (D ) ([BI{&u} - [eg} ot) (5.25)
;. (e1TipiiBldv) (su} = J, [B1T(D_ 1(eS}at dv + (AF)
\ v ep n
(5.26)
(2) Implicit Elements

(8% = [(1 - v)(e5) + vleq, )] ot . 0yl (5.27)
A = [(1 - y)&n + Y&n+l] At (5.28)
{e. 4} = (e} + [H;] {80} + {Hy} bw + {H3} ot (5.29)
0, = 6 + [G)1{dc} + G, b (5.30)
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in which

3¢} 21} 3{e°)
[H,] = . {H,} = . (H,} = (5.31)
1 ey 2 36 3 dt
3& ow
[G,] = / G, = — (5.32)
17 a(ey 2 50
then
ps} = [D. Bl{A 1 ot H. o H.}) yot?)
(b0} = [Dey] ([BI{ou} = (eq} ot = (glHpluy + {Hy}) v
(5.33)
where
(ps) = (11) + ybe(D ) (L] + yg{H,}16,18t)} 70 (D)
(5.34)
1
g = (5.35)
1 - v G2 At
T *
(IV [B] [Dep][B]dV) {bu} =
1, (B1TID, 1 ({ep}at + (gug(Hp) + (1)) vot?) dv + (BF) 5 36)
Recall the constitutive equation (2.7):
] 3 s 1 (s}
(e} = — A { ] — " (5.37 a)
2 l-cw c
(l-a)o + ooy ¢
®w = B [ ] (5.37 b)
1 - w

For this constitutive model which will be used in the analysis of
the cyclic creep crack growth in this study, the matrices in

(5.31) and (5.32) can be expressed explicitly as
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3 (7 "1 (3(n-1) 0
[H;] = — A L [ ] = ["‘:5—— (1Ql{e}) (IQl{o})" + [Q]]
2 l-cw o 20
(5.38)
‘c ‘c
{H,} = _cn_ {ej} {H3} = m {e} (5.39)
l-cw £
b0 3o, 3o
[G1] = — { o + (1-0) (5.40)
[(1-a)o + adI] 3{o} 3{o}
For plane case[97]
2
) g + O crx - g 2
oz [
1 9 - 5 Xy
Hence
acI _ i . I GY i _ S cy Tgy
4] (o _—o 2 4) (o -0 5 c_—0 2
RSN A BT RS A B RS A I
2 *y 2 *Y 2 *Y
(5.42 a)
3o 3
= — (s}7 (5.42 b)
9{a} 2¢
The matrix [Q] in equation (5.38) is defined by the relation

[s] [Ql{o}.

These explicit expressions simplify cal

culation

and reduce the storage requirement during the computations.
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5.3.2 Self-adjusting element partition of the mixed explicit-

implicit scheme

The unique feature of the present mixed explicit-implicit
scheme is that the partition of two element groups is self-
adjusting based on the rates of creep strain and damage in these
elements. Before every computation step, the definition of
explicit and implicit element groups is carried out according to

the following criteria:
(%), 2 (%) (5.43 a)
(w), 2 (W) . (5.43 b)

in which the subscripts e and s denote the current values in the
element and the respective specified values. If either of these
conditions is satisfied in a particular element, that element
will be treated as an implicit element. The contrary, of course,
would be treated as explicit elements. If-the parameters (;ec)S
and ((L))S are properly chosen, implicit elements would take up a
relatively large area in the specimen in the early stage due to
high strain rates in the material during primary creep stage.

The number of the implicit elements will be automatically reduced
with time as the creep deformation proceeds beyond the primary
stage and the creep strain rate reduces. Dpuring such time, only
a small number of elements near the crack tip remains to be

treated as implicit. Since implicit elements require many more

operations than explicit elements, this self-adjusting element
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partition algorithm results in a significant saving in the
computational effort.

In order to make the mixed explicit-implicit scheme
effective, the parameters (;:C)S and (tl))S have to be properly
selected. If the values of these two parameters specified are
too small, the implicit element.group would be too large,
resulting in low computational efficiency. On the other hand, if
these two values are too large, the implicit element group would
be so small that the allowable time step sizes would have to

remain very small. From the author’s experiences, the values

1 ic) 1

between 0.01% ~ 0.1% hr - for (e ), and between 0.05 ~ 0.1 hr

for (X))S were found realistic for creep fracture problems.

5.3.3 Automatic time step control

Both constant and variable time increments are allowed in
the present mixed explicit-implicit algorithm. For the variable
time step scheme, the selection of the time increment is based on
the following two considerations:

(1) Restriction on the increase in creep strain. It is
suggested that the‘magnitude of the time step be related to
the ratio of incremental effective creep strain to the
total effective strain. This ratio is limited by an input
parameter Ty which can be used to evaluate an allowable

time step size by the following expression:

€

oy
Ul

At, = .44)

1

T
j2/3 (61T (5}
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The value of T used by the author in the creep fracture
analyses has been between 0.5 and 1.0 with no indication of
instability.
(2) Restriction on the increase in the damage parameter. The
following relation is employed:
1
At2 = Ty - (5.45)
w
where T, is an input parameter controlling the time steps
on the basis of the changes of the damage. The value of T,
may be selected from the range 0.05 to 0.1, according to

our computational experiences.

conditions (5.44) and (5.45) are applied to all elements of
the structure. Then the time increment for the next step of

calculations can be selected by
At = Mln[Atl,Atz] (5.46)

Since oscillations may result from abrupt changes of the time
step, a limit of time step change to one half of the previous
step was adopted.

The present mixed explicit—-implicit algorithm has been
implemented into the TEPSAC program. The details of the computer
implementations and numerical examples showing a high computa-
tional efficiency of this algorithm can be found in the author’s
recent paper[ggl attached to this thesis as an Appendix. This
algorithm has also been applied to creep fracture problems to

]

provide a more realistic approach[99 .
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5.4 rgBreakable Element’ Algorithm

The ’'breakable element’ algorithm was first proposed by Hsu
and Bertels to model crack growth in an elastic-plastic fracture

[100]-

analysis The concept of the 'breakable element’ 1is based

on the successive reduction of the stiffness matrix of elements
containing crack tip during crack growth. Hsu and Kim[lol’lOZ]
further improved the computational accuracy by creating a pseudo
nodal point in the element. This pseudo nodal point moves
through the breakable element as the crack tip extends, producing
a smooth crack growth. This numerical technique in conjunction
with the rupture strain criterion has recently been applied to a
creep crack propagation problem by Hsu and Zhai[103].

In this analysis, a modification in the rbreakable element’
model has been made to incorporate the damage criterion of the
continuum damage mechanics as described in Section 4.5. The
local remesh of the element containing crack tip is introduced to
avoid the deterioration of the crack tip element, which may take
place when the crack tip nodes approach the nodes of the adjacent
element during crack growth. The procedure of the 'breakable

element’ technique employed in this analysis is outlined as

follows:

Step 1 A number of 'breakable elements’ are positioned aloeng the
expected crack path as shown in Figure 5.4(a). Upon completion
of the stress analysis at any time step, the values of the damage
parameter ® in breakable elements are extrapolated as a smooth

curve toward the crack tip using a least squares curve fitting
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technique. Usually, the damage w changes significantly at the
first four element immediately adjacent to the crack tip.
Therefore, the damage w at the crack tip is extrapolated based on
the values at the centroids of these elements, as shown in Figure
5.4(b). The distribution of the damage ® ahead of the crack tip

is thus expressed as

w(x) = alx + asXx + a3x + ay (5.47)

where x denotes the distance from the crack tip along the crack
path and ajr a5, 2z and a, are constants derived from the least
square‘analysis of the average strains at the element centroids

(xl,xz,x3,x4). The extrapolated damage at the crack tip can be

expressed as Wagt = w(0). No crack extension is considered to
occur if Woxt < 0.99. The computation may proceed further until
Ooxt 0.99.

Step 2 At the time w_ . ? 0.99 in any portion of a breakable

element, crack growth process begins and the amount of crack

extension, Ax, is evaluated by solving for the value of x in

equation (5.47) at which w(x) = 0.99.

Step 3 The original nodal points at the crack tip are shifted by
the amount Ax shown in Figure 5.4(b) to the positions of the
pseudo nodal points, which specify the current location of the
crack tip. Figure 5.5(b) illustrates schematically the shifting

of the crack tip nodes. The value of the damage ® in the new
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crack tip element is updated by using equation (5.47), based on

the location of the element centroid.

Step 4 The [K]e matrices of the elements surrounding the crack
tip are re—evaluated for the next time step. As shown in Figure
5.5(b), the nodal point shift changes the geometries of elements
surrounding the crack tip. The geometry change in these elements
causes a change in the [B] matrix, which in turn changes the [K]
matrix in equation (3.4). Thus, after the crack tip nodes shift,
the [K]e matrices of the corresponding elements are evaluated

according to

T

(k1€ = [, [B’1" [D] [B'] dv’ (5.48)

Vl
where [K’]e is the re—-evaluated [K]e matrix;
[B’] is the [B] matrix after the nodal point shift; and
v’ is the changed volume of the elements surrounding the

crack tip.

Step 5 The shifting to the new pseudo nodal points at each time
step continues so long as ®_ .. exceeds 0.99. If the crack tip
reaches the middle point of the original crack tip element, this
point becomes the new crack tip and the topology is locally
modified as shown in Figure 5.5(c). The element is then
considered to have fractured and incapable of carrying any load.
Consequently, the nodal forces carried by this element before it

breaks have to be released and the equivalent stress field near
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the crack tip has to be redistributed to the entire structure,
with those elements immediately adjacent to the new crack
surfaces taking most of it. This force release is simulated by

the following nodal force relaxation step.

Step 6 The stiffness matrix of-the broken element is set to be
zero so it will not carry any load in the further analysis.

Since relaxation occurs in the direction normal to the path
of crack growth, the equivalent forces are applied to the
structure aé illustrated in Figure 5.6. These forces applied to

each node can be calculated by
F, = F, = o© - L/4 (5.49)

in which ¢ is the stress component normal to the crack line
before the element breaks and L is the original length of the
breakable element. In order to maintain a smooth computation,
small load increments have to be used. The equivalent forces
are, therefore, applied to the specimen over 10 equal incremental
loading steps. A stress analysis on the entire structure is
performed with these nodal forces, while the external load
remains constant during this process. The increments of dis-
placements and stresses SO derived are added to the accumulated
displacements and stresses of the structure.

The ’breakable element’ technique described above can
effectively overcome the instability problems associated with the

creep crack growth analyzed by the continuum damage approach.
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Although the extrapolated damage in the portion of the element
near the crack tip exceed 0.99 when the crack extends, the value
of the damage at the centroid of the crack tip element which is
used in the computations is still well below this critical value.
Consequently, relatively large time steps can still be used with-
out losing stability even when the crack starts to grow. Further-
more, by using this numerical model, the onset of the creep crack
growth can readily be predicted and the amount of the crack ex-
tensions can also be determined. Therefore, this model is cap-

able of simulating the entire process of creep crack propagation.

5.5 Computer Code 'TEPSAC’

A finite element computer code TEPSAC[27]

(Thermal
Elastic-Plastic Stress Analysis with Creep) has been employed in
this investigation for the numerical modeling of cyclic creep
crack growth. The TEPSAC code was originally developed by Hsu
and his associates[104] to analyze thermal elastic-plastic stress
problems. The code, although limited to two-dimensional plane,
or three-dimensional axisymmetric structures, can handle large
classes of thermomechanical problems using a simplex element
algorithm. The fracture mechanics module has been implemented by
Kim[lozl to simulate stable crack growth. As described in this
chapter, this crack growth model has been modified and a cyclic
plasticity theory and a mixed explicit-implicit integration
scheme have been implemented. With these modifiéations, the

TEPSAC code now becomes a powerful computer program dealing with

cyclic creep crack propagation problems.
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CHAPTER 6
CREEP CRACK GROWTH UNDER STATIC LOADINGS

6.1 Introduction

The finite element computer progran TEPSAC with the numerical
modeling technique presented in Chapter 5 is employed in a study of
the creep fracture behavior of & 316 stainless steel panel subjected
to static loadings. The main concern of this study is the role of
the instantaneous plasticity in the creep fracture. To the author's
knowledge, since the plastic strain is usually neglected in most of
creep fracture analysis, its effects on the creep fracture behavior
of haterials are not clear yet. Two cases, one with and the other
without plastic strains, are analyzed. The influence of the.plastic
strain on the stress redistribution ahead of the crack tip, on the
damage evolution, and on the crack initiation and subsequent growth

are discussed.

6.2 Description of the Problem

A centre—-notched panel with the dimensions defined in Figure
6.1 is subjected to a boundary stress o, = 70 MPa. This piate is
assumed to be in plane stress condition.

The material of this plate is assumed to be 316 stainless
steel at 650°C. The uniaxial tension stress-strain curve of this
material at 650°C, which is tested in the thermomechanics Lab at the
University of Manitoba, is shown in Figqure 6.2. This curve is
jdealized by three piecewise linear segments depicted by dotted
lines. The corresponding elastic- plastic properties taken from

this figure are given in Table 1.
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TABLE 1

ELASTIC-PLASTIC PROPERTIES OF 316 STAINLESS STEEL AT 650°C

Modulus of Elasticity E. 130,000 MPa
Plastic Tangent Moduli Eél) 5,000 MPa
g{?) 2,667 MPa
vield Strength ' G;i) 120 MPa
Uéi) 165 MPa

TABLE 2

CREEP PROPERTIES OF 316 STAINLESS STEEL AT 650°C

A 1.14 x 107%°
n 5.51

m -0.47

c 0.7

B 2.64 x 10743
o 4.23

o 0.7

(units in megapascals, absolute creep strain and hours)
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The uniaxial creep tests for this material were also
carried out in the thermomechanics lab. The uniaxial creep data,
as shown in Figure 6.3, were used to determine the material
constants involved in the creep constitutive equation (5.37).
The parameter «, which determines the damage evolution under a
multi-dimensional stress state,.was taken from Hayhurst et
al[82]. The creep properties were determined by fitting the
curves in Figure 6.3. Table 2 summarizes the creep properties
used in the analysis.

A finite element model of the specimen is shown in Figure
6.4(a), with the details of the refined mesh surrounding the
crack tip given in Figure 6.4(b). pue to the symmetry in
geometry and boundary conditions, only one quarter of the plate
needed to be considered. A total of 312 elements were used
together with 273 nodes representing 506 degrees of freedom. In
order to minimize the possible discretization effects on crack
growth, elements of relatively small size were distributed
uniformly in the vicinity of the crack tip. A layer of identical
gquadrilateral elements representing the breakable elements was
placed along the projected érack path. The height of each
breakable element was 0.05mm, that is, 17200 of the original
crack length.

By using this finite element model, two cases of creep
crack growth are studied. Case 1 is a fully elastic-plastic-
creep analysis. 1In case 2, plasticity is excluded by setting a

artificially high value of the yield strength for the material.
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6.3 Predictions of Crack Initiation and Crack Growth

The creep crack growth histories of the specimen for the
cases with and without plastic strains are depicted in Figure
6.5. The predicted crack initiation time for the case with
plastic strains is 182 hours, while the same time for the case
without plastic strains is 276 hours. The incubation time in the
later case is about 50% longer than that in the former case. On
the other hand, as indicated in Figure 6.5, the crack grows much
slower in the case with plastic strains.

A direct correlation of the numerical predictions to test
data is not available in the present stage. However, Figure 6.6
shows a comparison of the present study with experimental results
presented in [79]. Mass and Pineau carried out the creep
fracture test for 316 stainless steel at 600°C and correlated the
crack growth rate to the C* parameter. In the preseht study, the
crack growth rates, é, were directly obtained from Figure 6.5 and
the corresponding values of C* were calculated by using equation
(4.19). It can be seen from Fiqure 6.6 that the crack growth
rates predicted in the case with plastic strains agree with the
test results‘very well. The predicted crack growth rate for the
case without plastic strains appear too high in comparison to the
test results. Note that the test temperature is not exactly the
same as used in our study. However, since the relationship
between the crack growth rate é and the C* parameter is
temperature independent as pointed out by Taira and Ohtani[l06],

these comparisons are still useful.
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Taira and Ohtani[106] tested 304 stainless steel at 650°C.
Figure 6.7 shows the correlation between the crack growth rate
and the net section stress. As the chemical compositions and the
creep properties for 304 SS and 316 SS are quite close, it is
possible to compare our numerical results with their test data.
Figure 6.7 shows that the crack-growth rate prediction for the
case with plastic strains is in good agreement with the test
results. It seems that the case without plastic strains predicts
too high crack growth rate.

The fact that these comparisons are all in favour of the
case with plastic strains suggests that the instantaneous
plasticity should be included in the creep fracture analysis to
obtain a realistic prediction of the creep crack initiation and
propagation. More experimental verifications of the analytical

results are necessary to confirm this point.

6.4 Plastic Zone

In finite element computations, plasticity is defined by
the value of d\, determined by equation (5.19). Areas in which
this value is greater or equal to zero are denoted in Figure 6.8
as the plastic zone for various stages of creep in the specimen.
The initial plastic zone right after loading is relatively large.
As indicated in Figure 6.8, the plastic zone shrinks very
rapidly. After 1 hour of creep, the plastic zone diminishes to a
small region near the crack tip. After 10 hours, it is confined
to only a few elements away from the crack tip. It is

interesting to note that at that time, the crack tip element is
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no longer plastic and the plastic zone moves away from the crack
tip. The plastic zone vanishes before the crack propagation
begins. 1In the crack propagation stage, the entire region of the
specimen is actually in an elastic state.

The rapid diminishing of the plastic zone is due to a fast
stress relaxation in the plastic zone. The high stress level in
the plastic zone causes fast creep deformation which is
constrained by surrounding elastic region where the creep strain
is much lower. Consequently, unloading in the plastic zone
occurs and the plastic zone shrinks.

The short duration of the plastic strains in the specimen
does not mean that the influence of the instantaneous plasticity
is insignificant. On the contrary, the instantaneous plasticity
significantly affects the entire creep fracture process. It has
been shown in the previous section that the presence of plastic
strains leads to a prediction of considerably earlier crack
initiation and slower crack propagation. 1Its effects on the
stress distribution and the damage evolution ahead of the crack

tip will be discussed in the next section.

6.5 Stress Distribution and Damage Evolution Ahead of Crack Tip

In the present study, a crack extension is assumed to occur
when the value of the extrapolated damage at the crack tip
exceeds 0.99. The creep fracture behavior of the material is,
therefore, controlled by the damage evolution and distribution
ahead of the crack tip. According to the theory of the continuum

damage mechanics, the rate of the damage is determined by the
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linear combination of the effective stress and the maximum
principal stress (equation (2.7 Db)). As a consequence, the
redistribution of the effective stress and the maximum principal
stress ahead of the crack tip plays an important role in the

creep crack growth.

6.5.1 Stationary crack

The histories of the effective stress and the maximum
principal stress at the centroid of the element immediately ahead
of the crack tip for both cases, with and and without plastic
strains, are presented in Figure 6.9 and 6.10 respectively. The
maximum principai stress coincides with the normal stress to the
crack sgfaces, i.e. ny' The effective stress and the maximum
stress decrease with time very rapidly for both cases. As
described in Chapter 4, C* approach suggests that after an
initial transient period, the near tip stress field reaches a
stable state characterized by C*. Figures 6.9 and 6.10 show that
no such stable state can be found when the damage in the material
was taken into account.

It can be seen from Figures 6.9 and 6.10 that the initial
stresses in the crack tip element for the case without plastic
strains were much higher than that for the case with plastic
strains. The initial elastic stresses in the former case relaxed
very rapidly. Consequently, after a very short time of creep,

the crack tip stresses in the former case became lower than that

in the latter case. This situation lasted for about 130 hours.
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The higher crack tip stresses for the plasticity case
resulted in a faster damage rate in the crack tip element, as
shown in Figure 6.11. The higher damage rate in turn caused
faster damage accumulation, as depicted in Figure 6.12. As a
result, the crack initiation in the case with plastic strains was
considerably earlier than in the case without plastic strains.

The distributions of the effective stress ahead of the
crack tip at various times before the crack initiation are
presented in Figures 6.13, 6.14 and 6.15. At t = 0, the initial
elastic stress distribution shows much higher stress gradient
near the crack tip than the elastic-plastic stress distribution.
However, at t = 10 hours, due to a faster stress relaxation
occurring in the case without plastic strains, the stress
gradient ahead of the crack tip in this case became lower than
that in the case with plastic strain, as illustrated in Figure
6.14. Figure 6.15 indicates that this phenomenon is more
pronounced at t = 100 hours. Figures 6.16, 6.17 and 6.18 plot
the distributions of the maximum principal stress ahead of the
crack tip at various times, showing the same features.

The higher stress gradient near the crack tip in the case
with plastic strains causes the higher gradient of the damage
rate. Figure 6.19 shows the distribution of the damage rate at
t = 100 hours for both cases. The distributions of the damage
parameter ahead of the crack tip at t = 100 hours for both cases
are depicted in Figure 6.20. 1In the first two elements adjacent
to the crack tip, the values of the damage parameter for the case

considering plasticity are higher than that for the case omitting
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plasticity. This is the reason why the crack starts to propagate
earlier in the former case.  Figure 6.20 also indicated that in
the subsequent elements, the values of the damage parameters for
the former case are considerably lower. It would be expected,
therefore, that after the first two elements broke, it might take
longer for the extrapolated damage at the crack tip to grow up
from a lower level to a critical value to cause crack extension
in the former case. This can probably be used to explain the
reason why the creep crack propagates slower in the case with

plastic strains than that without plastic strains.

6.5.2 Growing crack

The distributions of the effective stress and the maximum
principal stress at various crack growth stage are plotted in
Figures 6.21 through 6.25 and Figures 6.26 through 6.30
respectively. It is observed from these figures that the crack
tip stress is quite low and the peak stress occurs at a location
away from the crack tip. The C* theory suggests that there is a
stress singularity at the crack tip, characterized by the ¢
parameter. The present study indicates that this is not true.

These figures also show that the peak stress decreases with
crack propagation. This implies that there is no stable stress
distribution ahead of the moving crack tip which was suggested by
the C* theory.

A comparison of the stress distributions for the cases with
and without plastic strains indicates that after the first two

elements broke, the effective stress and the maximum principal
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stress for the latter case are higher along the crack extension
line.

Figures 6.31 through 6.35 illustrate the distributions of
the damage rate ahead of the moving crack tip. It can be seen
from these figures that the damage along the crack extension line
for the case without plastic strains accumulates faster. This is
obviously due to the higher effective stress and maximum princi-
pal stress for this case in the creep crack propagation process.

The damage distributions ahead of the moving crack tip are
illustrated in Figures 6.36 through 6.40. These figures indicat-
ed that the case omitting plastic strains is more damaging than
the case considering plastic strains. This is why the creep

crack growth rate in the former case is faster.

6.6 Crack Profile

Figure 6.41 shows the crack profiles for both cases at the
crack initiation times. The crack is 'sharper in the case
neglecting plastic strains. The reason is that the material
becomes less ductile in the absence of plastic strains.

Figures 6.42 through 6.45 illustrate the crack profiles at
various stages of the crack growth. Comparing these figures with
Figure 6.42, one may observe that the growing crack is sharper
than the stationary crack. These results confirm the obsetva-

et al[107]. and Hsu et al[103].

tions made by Taira
These figures also show that both COA (crack opening angle)
and CTOA (crack tip opening angle) are not constant, no matter

whether plasticity is included in the analysis or not. For a
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given crack length, CTOA for the case omitting plastic strains is

smaller.

6.7 Brief Summary

Numerical results obtained by using the proposed algorithm
agreed well with limited available experimental results presented
by other researchers. The case studies presented in this chapter
have revealed the significance of the instantaneous plasticity in
the creep crack propagation under static loadings. For a cracked
panel subjected to static loadings, the role of the plastic
strains is to slow down the stress relaxation at the vicinity of
the crack tip. The slower stress relaxation causes the damage to
accumulate faster in the near tip region and slower in the afea
away from the crack tip. Such a confined damage results in an
earlier crack initiation and slower crack propagation. If the
instantaneous plasticity is neglected in the creep fracture
analysis, both the crack initiation time and the creep crack
growth rate may be overestimated.

Numerical results have revealed no stress singularity near
the crack tip. As well, no stable stress distribution ahead of
the growing crack. These discoveries contradict the prediction by

*
the popular C parametric studies.
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CHAPTER 7

CREEP CRACK GROWTH UNDER CYCLIC LOADINGS

7.1 Introduction

The significance of the plasticity in the creep crack
growth under static loadings has been discussed in Chapter 6. It
would be expected that the plasticity plays an even more
important role in the cyclic loading case. In the absence of
plastic strains, a linear unloading and reloading would not
change the local stress state at the crack tip. However, in the
presence of the plastic strains, a reverse yielding associated
with unloading would cause an instantaneous elastic-plastic
stress distribution to be superimposed upon reloading. The
stress change near the crack tip would influence the damage
evolution and hence the creep fracture behavior of the material.
This chapter will investigate the effects of the plasticity on

the cyclic creep crack growth.

7.2 Description of the Problem

The major factors affecting the creep crack propagation
under cyclic conditions involve the frequency, the shape and
amplitude of the loading cycles and the operating temperature.
Since the purpose of the present study is to investigate the role
of the plasticity associated with unloading and reloading in the
creep dominated crack growth, a constant temperature is assumed
in the analysis. For the sake of simplicity, the loading pattern

considered here is repeated loadings without a rest period, as
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shown in Figure 7.1. The unloading-reloading is assumed to be
done so quickly that no creep recovery would take place in that
period. As explained in Chapter 2, the continuum damage
constitutive model, i.e. equation (2.7), can be used to describe
the creep and damage processes in the material for this loading
pattern.

The computational model including the geometry and
dimensions of the panel structure and the material properties are
those presented in Chapter 6. Three loading cases have been
analyzed. 1In the first case, a static boundary stress o4 = 70
MPa is applied. The other two cases consider the repeated
loadings with the maximum boundary stress of 70 MPa and the
minimum boundary stress of 5 MPa. Unloading and reloading are
executed every 50 hours in case 2 and every 20 hours in case 3.
The results of the first case have been described in Chapter 6

and will be used to compare with that of the other two cases.

7.3 Predictions of Crack Initiation and Crack Growth

Figure 7.2 shows the predicted crack growth histories for
all three loading cases. For the static loading case, the crack
initiation time is 182 hours, while for the two cyclic loading
cases, the crack onset is predicted to occur at 154 hours and 135
hours respectively. This result indicated that for the creep
dominated fracture, load cycling can shorten the crack incubation
time and a higher loading fregquency can result in an earlier

creep crack initiation and rupture.
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Figure 7.2 also indicates that case 3, in which unloading
and reloading were done every 20 hours, predicted fastest creep
crack propagation and hence shortest life time, while case 1, the
static loading case, predicted lowest crack growth rate and
longest life time of all three cases. These results are
consistent with the experimental observations reported by Ellison

[89] and Smith and Webster[90]

and Watson showing that the crack
growth rate can be accelerated with an increase in loading

frequency.

7.4 Plastic Zone

it has been described in Section 6.4 that for the static
loading case, the plastic zone shrank very rapidly and vanished
before the crack propagation began. This is due to a fast stress
relaxation resulting from high stress concentration in the near
tip region. The variations of the plastic zone for the two
cyclic loading cases are depicted in Figures 7.3 and 7.4
respectively. It can be seen from Figure 7.3 that at the time
before the first unloading, the plastic zone has diminished to a
very small region. Upon unloading, reversed yielding occurs
around the crack tip. After reloading, a considerably expanded
plastic zone surrounding the crack tip developed. The expansion
of the plastic zone after unloading and reloading is due to the
stress redistribution associated with the cyclic hardening
property of the material. As will be shown in the next section,
a process of unloading, reverse yielding and reloading raises the

stresses ahead of the crack tip, resulting in a larger yielding
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area around the crack tip. The plastic zone size increases with
the load cycling, as illustrated in Figure 7.3. Figure 7.4 shows
a similar feature of the plastic zones for case 3. Comparing
Figure 7.4 with Figure 7.3 reveals that a higher frequency gives
rise to a faster expansion of the plastic zone, indicating more
influence of plastic strains in.case 3.

The shapes of the plastic zone for various stages of crack
growth in case 3 are plotted in Figure 7.5. As the crack grows,
the plastic zone spreads over a continually larger area, finally
reaching a state of gross plasticity. The same trend for case 2,

although to a lesser extent, can be found in Figure 7.3.

7.5 Stress Redistribution Ahead of Crack Tip Due to Unloading

and Reloading

The variation of the maximum principal stress at the
centroid of element 1 in the first loading cycle for case 2 is
illustrated in Figure 7.6. Point A denotes the initial maximum
principal stress at the centroid of the element immediately
adjacent to the crack tip. After 50 hours of creep, the stress
reduces to point B due to the stress relaxation; then unloading
takes place. When the applied stress drops to approximately two
thirds of the original value, reverse yielding in this element
occurs. The stress continues to drop until it reaches point D,
when reloading begins. Upon reloading, the element yields again
at point E., The stress increases with the load until the load
cycle completes at point F. The maximum principal stress in

element 1 increases from point B to point F. Figure 7.7 shows
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the variation of the maximum principal stress in element 1 in the
first load cycle for case 3. Unloading starts at point B’ which
is higher than B due to less time for creep relaxation in case 3.
After unloading and reloading, the stress increases from B’ to
F’. Although the net stress increase, F'B’, in case 3 is a
little less than FB in case 2, the resultant stress F’ is still
higher than F, owing to a higher unloading point B'. Figures 7.6
and 7.7 clearly indicate that the stress variation associated
with load cycling is closely related to the kinematic hardening
properties of the material, the loading level and the extent of
the creep stress relaxation.

Figures 7.8 and 7.9 illustrate the redistributions of the
"effective stress and the maximum principal stress ahead of the
crack tip due to unloading and reloading at t = 50 hours in case
2. Both figures show an obvious stress increase along the crack
extension line. Consequently, a significant expansion of the

plastic zone occurs upon reloading.

7.6 Stress Distributions and Damage Evolutions Ahead of the

Crack Tip in Cyclic Loading Cases

7.6.1 Stationary crack

The histories of the effective stress and the maximum
principal stress at the centroid of the element immediately ahead
of the crack tip for all three cases are presented in Figures
7.10 and 7.11 respectively. It can be seen from these figures

that in the static loading case, the crack tip stresses
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continually decrease due to creep stress relaxation. 1In the
cyclic loading cases, however, the stress relaxation at the
vicinity of the crack tip is frequently interrupted by unloading
and reloading. After every time of unloading and reloading,
crack tip stress increases significantly and then the stress
relaxation re-starts from a new stress level. As a consequence,
the crack tip stresses in the cyclic loading cases are always
higher than that under static loading. Figures 7.10 and 7.11
also indicate that the near tip stresses in case 3 are higher
than that in case 2, as the unloading and reloading were done
more frequently in case 3.

According to equation (2.7 b), the damage rate is
proportional to the ¢th power of the linear combination of tﬁe

effective stress and the maximum principal stress (¢ = 4.22 for

this material, see Table 2). Hence, an increase in the effective

stress and the maximum principal stress after unloading and
reloading will result in a considerably higher rate of damage
accumulation in the crack tip element. Figure 7.12 illustrates
the variations of the damage rate in the element immediately
ahead of the crack tip for all three cases. After every time of
unloading and reloading, the damage rate increased significantly
in the two cyclic loading cases. Figure 7.12 also shows that
case 3 is more damaging than case 2, since the load change in-
case 3 is more frequent. .

Higher damage rates in the crack tip element for cyclic
loading cases resulted in faster damage accumulation near the

crack tip. The damage evolutions of the crack tip element for
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the three cases are presented in Figure 7.13. It is observed
that the damage evolution in the crack tip accelerates with the
loading frequency. This is the reason why load cycling shortens
the crack incubation time and causes earlier crack initiation in
creep dominated fractures.

The distributions of the effective stress ahead of the
crack tip at various times before the crack initiation are
presented in Figqures 7.14, 7.15 and 7.16. Along the crack
extension line, effective stress increases with the frequency.
Figures 7.17, 7.18 and 7.19 plot the distributions of the ﬁaximum
principal stress ahead of the crack tip at various times, showing
a similar trend.

It is worth noting that for all static and cyclic loading
cases considered here, the peak stress does not occur in the
crack tip element. The fact that the stress in the crack tip
element is lower than the peak stress which takes place away from
the tip implies that there is no stress singularity at the crack
tip for both static and cyclic loading cases. In other words,
for creep dominated fracture, load cycling does not change the
characteristic of the stress distribution ahead of the crack tip,
although it does influence the values of the stresses near the
tip.

The higher stresses ahead of the crack tip in cyclic
loading cases produce higher damage rates in these cases.

Figures 7.20, 7.21 and 7.22 illustrate the distributions of the
damage rate along the extension line at t = 40, 80 and 120 hours

for all three cases. The distributions of the damage ahead of
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the crack tip for the three cases at various times are presented
in Figures 7.23, 7.24 and 7.25. These figqures clearly show that
the cyclic loading cases are more damaging than the static

loading case and the case with higher frequency, case 3, is more

damaging than the case with lower frequency, case 2.

7.6.2 Growing crack

The distributions of the effective stress and the maximum
principal stress at various crack growth stages are plotted in
Figures 7.26 through 7.29 and Figures 7.30 through 7.33
respectively. A common feature of these stress curves is that
the crack tip stress is quite low and the peak stress occurs away
from the crack tip. This fact reveals that for a growing créck,
the load cycling does not change the characteristic of the stress
distribution ahead of the crack tip.

Comparing the stress distributions among three cases
indicates that the stresses along the crack extension line in the
static loading case is always lower than that in the two cyclic
loading cases. Between the two cyclic loading cases, stresses in
case 3 are obviously higher than in case 2. As the crack
advances, the differences in the stresses among these three cases
appear to become éore pronounced.

Figures 7.34 through 7.37 present the’ distributions of the
damage rate ahead of the moving crack tip. 1In the static load
case, the damage along the crack growth path accumulates
considerably slower than in the cyclic cases. This is clearly

due to the lower effective stress and the maximum principal
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stress in the static case in the creep crack probagation stage.
These figures also show that the differences in the damage rates
among the three cases become larger as the crack propagates.

The damage distributions ahead of the growing crack tip are
illustrated in Fiqures 7.38 through 7.41. These figures indicate
that the damage evolution ahead: of the moving crack accelerates
with the loading frequency in the creep dominated crack growth.
This is the reason why case 3 predicts fastest creep crack
propagation and hence shortest life time, while case 1, the
static case, predicts lowest crack growth and longest life time

among the three cases considered here.

7.7 Brief Summary

The three cases studied in this chapter have demonstrated
the importance of the cyclic plasticity in the cyclic creep crack
growth. For a cracked panel subjected to repeated loadings,
unloading and reloading may interrupt the stress relaxation near
the crack tip and cause a significant stress increase ahead of
the crack tip and an expansion of the plastic region. As a
consequence, the creep damage accumulation along the crack
extension line is accelerated by loé& cycling, resulting in an
earlier crack initiation and faster crack propagation than the
static case. Unloading and reloading more frequently, therefore,
may cause shorter crack incubation time, higher crack growth rate
and hence, shorter life time of the structure. It is clear that
the cyclic plasticity hardening plays an important role in the

analysis. It would not be possible to analyze the effects of
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loading cycles on the cyclic creep crack propagation without a

suitable cyclic plasticity hardening model.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

An analytical procedure for prediction of creep crack
initiation and crack propagation under static and cyclic loading
conditions has been presented. This procedure includes the
following major elements: continuum damage constitutive
equations for creep deformations; the von Mises yield surfaces
concept coupled with Mroz’s kinematic hardening rule for cyclic
plasticity response; the mixed explicit-implicit algorithm for
creep stress analysis; the modified breakable element technique
coupled with the damage criterion for creep crack initiation; and
propagation and the finite element numerical method. This
combined procedure enables the following features:

(1) 1Inclusion of all creep stages, i.e. primary, secondary and
tertiary creeps, in the creep fracture analysis;

(2) Prediction of creep crack initiation and subsequent growth
based on the damage accumulation in the vicinity of the
crack tip;

(3) Inclusion of repeated loading conditions which leads to a
combined creep-cyclic plasticity effect on the creep
dominated fracture; and

(4) High computational efficiency.

Significant observations were made on the creep-fracture
behavior of material through case studies performed on a centre’

notched plate structure subjected to a static load to study. A
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number of these observations have never been reported before in

open literature. The role of the instantaneous plasticity in the

creep

crack growth was also investigated. The following

conclusions can be drawn from the present research:

(1)

(3)

(4)

The inherent plasticity slows down the stress relaxation in
the vicinity of the crack: tip;

The slower stress relaxation causes faster damage
accumulation in the near tip region and slower damage
evolution in the areas away from the crack tip;

Such confined damage at the crack tip results in an earlier
crack initiation but slower subsequent crack prqpagation;
and

Neglecting the instantaneous plasticity in creep fracture
analysis may lead to over-estimations of both the crack
initiation time and the crack growth rate.

The creep crack growth in a centre-cracked panel subjected

to cyclic loadings was analyzed using the proposed finite element

model.

(1)

(2)

The results of the analysis reveal that:
Unloading and reloading may interrupt the stress relaxation
near the crack tip and cause a significant stress increase
ahead of the crack tip and an expansion of, the plastic
zone;
Cyclic loading accelerates the damage accumulation ahead of
the crack tip and hence, results in an earlier crack
initiation and faster crack propagation than static

loadings; and




95

(3) 1In creep dominated fracture, more frequent unloading and
reloading may cause shorter crack initiation time, higher
crack growth rate and hence, shorter life time of
components.

It is also important to note that the present investigation :
indicated that no stress singularity existed near the tip of the
crack. As well, there was no evidence that the stress
distribution showed sign of being stable. Both of these
observations are in contradiction to the results derived by the

popular C* approach.

8.2 Recommendations

The present study has extended the continuum damage
mechanics method to cyclic creep fracture analysis. The results
from this study has demonstrated the unique advantages of the
present approach over many existing methods. This approach
provides a good potential for further research in the area of the
combined creep-fatiqgue crack growth. The following
recommendations with regard to further work in this area are in
order.

(1) Experimental verification of the analytical results
produced by the present method is necessary.

(2) Although quite complicated and expensive, it would bhe
desirable to implement a finite strain algorithm given in

[27] into the present finite element model, which would

permit more precise computation of the near tip strain

field.
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(5)
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It has been reported that creep rupture may occur when the

[lll]_

value of the damage parameter is less than unity An

in-depth study on the critical value of the damage
parameter for creep rupture would provide more reliable
predictions of creep crack initiation and propagation.

The creep constitutive equation employed in the present
approach is valid only for simply cyclic loadings, i.e.
repeated loading without rest. 1In order to analyze creep
crack growth under more general cyclic loadings,
development of creep constitutive equations capable of
describing more complicated material behavior, such as
cyclic creep hardening and softening and rest time effects,
is warranted.

To the author’s knowledge, the mixed mode creep fracture
has not been studied so far. The dependence of the damage
evolution on the multiaxial stress state permits the
determination of the orientation of creep crack growth in

(82]

mixed mode fractures A step-by-step interactive

[113] combined

analysis using the nodal grafting technique
with the multiaxial stress rupture criterion would provide

a viable approach for mixed mode creep fracture.
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A MIXED EXPLICIT-IMPLICIT (EI) ALGORITHM FOR
CREEP STRESS ANALYSIS

G. G. CHEN AND T. R. HSU

Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada

SUMMARY

A mixed explicit-implicit numerical integration algorithm for creep stress analysis is presented in this paper.
This method allows simultaneously use of, and thus benefit from, both these integration schemes. The
continuum damage constitutive model is also implemented in this algorithm. The present method is suitable
for the prediction of creep crack growth in solids using the continuum damage approach.

Numerical examples using different constitutive equations have been included to demonstrate the high

efficiency of the proposed algorithm.

INTRODUCTION

Creep stress analysis has received increasing attention in engineering design in recent years owing
to its practical importance in applications such as electric power generation, aerospace and
petrochemical equipment. Generally, creep problems are more difficult to handle than
elastic—plastic analyses as the constitutive equations employed in the creep analysis of solids at
elevated temperature are usually very complicated. The finite element method appears to be the
only practical solution to this type of problem. One major difficulty of using this method, however,
is that the resulting equations are highly non-linear and stiff in nature. The stability and accuracy of
the finite element solution critically depend on the selection of a suitable size of time steps
associated with an appropriate integration scheme. This situation has motivated vigorous research
in this area.

Generally speaking there are two common classes of one-step integration schemes for creep
analysis, i.e. explicit and implicit. The explicit scheme, as suggested by Zienkiewitz and Cormeau’
and Cormeau,? has been applied with success to a variety of engineering problems. The advantages
of this method are that it is concise and simply coded. The stiffness matrix in this case is constant
and may be factored once and for all. Unfortunately, this scheme is only conditionally stable and
the stability condition is rather stringent. For structures subjected to slowly varying loads, or when
equilibrium response is of prime interest, stability of solution requires much smaller time steps than
those necessary for accuracy. Cormeau has performed a stability analysis and derived the explicit
stability conditions for some simple constitutive relations.? For the steady-state creep obeying
Norton’s law, he presented a simple relationship between the critical time increment At, and the
effective stress as

1
1

max

At oc

where 6, is the maximum effective stress in the region, n is the stress index of the creep law and its
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value ranges from 5 to 10 for most metals. This expression indicates that the critical time step size
ensuring the stability is controlled by the element where the highest stress or highest creep strain
rate occurs. For the part of the structure at a lower stress or lower creep strain rate, much larger
time steps can be used without causing instability. For instance, for those elements in which the
value of the effective stress is 0-6 of the maximum effective stress, the time step could be 7-7 to 99-2
times the critical one, depending on the value of the material constant n. Since high stresses are
often limited in a small portion of the structure for many engineering problems, especially in creep
fracture mechanics, selecting time step sizes according to the maximum effective stresses or highest
creep strain rate is both uneconomic and unnecessary. On the other hand, Hughes and Taylor
proposed an implicit scheme,® which has been shown to be unconditionally stable if the scheme
parameter y > 1/2. Although stability of solution does not depend on the size of time step used in the
computation, this method requires the use of an iteration procedure. The computational efficiency
thus depends on the convergence of the iterations. Kanchi et al.* presented an alternative implicit
scheme by incorporating a linear extrapolation of the creep strain rate tensor within each time
interval. A Taylor series expansion technique was introduced in lieu of iteration. Although
Kanchi’s method is not unconditionally stable, computational experiences have shown that it is
much more stable than the explicit scheme with larger time increments. However, since the stiffness
matrix used in this method is a function of element stresses, reformulation and inversion of this
matrix are necessary for every time step. As a result, all implicit schemes require more computation
time. For large scale engineering problems where a great many elements are involved, this
shortcoming becomes a serious drawback for the implicit method. :

The mixed explicit-implicit algorithm (or EI scheme) can simultaneously achieve the attributes
of both classes of schemes. It can circumvent these difficulties and lead to significant computational
advantages. The mixed integration algorithm which was first proposed by Belytschko and Mullen®
and Hughes and Liu® for structure dynamics, has been successfully applied to various engineering
disciplines such as fluid mechanics and fluid-structure interaction problems,” and has recently
been extended to linear and non-linear thermal analysis.® ° The purpose of this paper is to apply
this concept to creep analysis.

We begin by describing the formulations and the implementations of the EI scheme in the
content of the general forms of creep constitutional models. For the implicit element group,
formulations of Kanchi’s method are modified to include the state variables appearing in the
constitutive equations. We will then discuss solutions derived from simple test problems, with
emphasis given to the behaviour of material following three different circumstances: von Mises
viscoplastic deformation, power law creep and creep deformation described by the continuum
damage theory.!°

THEORETICAL FORMULATIONS

A. Equilibrium equations

A basic assumption involved in creep stress analysis is that the total strain & can be partitioned
into the elastic ¢, plastic ¢” and creep & components, so that the total strain increment can be

expressed as*!
Ae=Ag"+ AP + Ag® (N
The stress increment is related to the elastic and plastic strain increments through the elasto-
plasticity matrix D by
Ac=D(Ae" + AeP) 2




CREEP STRESS ANALYSIS 513

In general, D is a function of stresses, but in the absence of plastic strain, it reduces to a matrix of

elastic constants. :
The stress increment can be expressed in terms of the incremental displacement vector Au as

follows:
Ac=D(BAu—As®) 3)

in which B is the strain matrix.
The equation of equilibrium to be satisfied at any time ¢ takes the form

J‘ BTAsdv=AR @)

where AR is the vector of the equivalent nodal load increment due to surface tractions and body
forces, and v is the element volume. By combining equations (3) and (4) the equilibrium equations
becomes

J BTD(BAu—Ac%)dv=AR 5)

B. Constitutive Equations

The state variable description'? is a widely used method for the prediction of creep behaviour of
materials subjected to general loadings. This method assumes that the creep strain rate is
determined by the stress and certain well defined state variables such as ©. Mathematically, it can
be expressed as follows:

£=f,(o, ®, t) (62)

These state variables can completely characterize the current deformation state of the material.
The evolution of these state variables is governed by equations of the following form:

o =f,(0, ) (6b)

The number of state variables and the functions f; and f, are determined either by the theories of
metal physics or on the results of appropriately chosen mechanical tests. One of the commonly
used constitutive models is the continuum damage theory as proposed by Leckie and Hayhurst:'°

. 3 G \",.S
,8 _EA(I—a)>t d (72)

VA
o-5(;%;) (7b)

in which S is the stress deviator vector and A4, B, n, m and p are experimentally determined
constants. The state variable @ is, in some sense, a measure of damage in the material induced by
creep. The value w =0 represents an undamaged state of the material whereas rupture occurs when
w=1. This constitutive model is considered to be capable of describing all three creep stages, i.e.
primary, secondary and tertiary creep, in the material.'® When m= B=0, equation (7) reduces to
the well known. Norton’s equation which represents the steady-state creep behaviour, in the
following form:

§=346""1S ®)
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C. Mixed explicit—implicit algorithm (EI scheme)

We consider a finite element model in which elements are partitioned into two groups: the
explicit elements and the implicit elements. The integration scliemes corresponding to these two
element groups are given as follows.

(1) Explicit elements.
The increments of creep strain Az® and state variables A@ occurring in a time interval At=
t,+1—1t, are defined as .
Ag®=§At 9)
and
Ao =a,At (10)

wherene[0, 1, . . ., N]denotes the number of the time step. The stress increment can be expressed
by substituting equation (9) into equation (3) as shown below:

Ao =D(BAu—At) (11)

The element equation in equation (5) now becomes
(J BTDB dv)AU =J BTDéAt dv+ AR (12)

(2) Implicit elements:
The increments of creep strain and state variables occurring in a time increment At are assumed
to take the form

At =[(1 —y)es+vyEr, JA (13)
and
Ao =[(1 —y)®,+yd,, ]AL (14)

It is readily seen that the explicit scheme is a special case of the above equations with y=0. On the
other hand, the case of y =1 represents a fully implicit scheme. The case with y=1/2 denotes the
implicit trapezoidal scheme which is generally known also as the Crank-Nicolson rule of
integration.

The state variables &, , , and @, ., in equations (13) and (14) can be expressed in a limited Taylor
series expansion* as follows:

£, ,=6£+H,Ac +H,A0 + H;At (15)
and
B, =0,+GAc+ G Ae (16)
in which
OE° 0¢° 0g°
=— H,=— H.,=— 7
HI 66’ 2 ama 3 at (1 )
G, oo o (18)

~ %75
All these matrices are evaluated at time £ =t,. For the constitutive model given in equations (7a)
and (7b), these matrices can be expressed explicitly as

H, =3Az;~( d )";:[3("_ 1)’Qc)(Q6)T+Q] (19)

2 1—w, 262
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noo. \
Hz = 1 —(D,,En (2OI
H, =—% @y

301
GFEP%&—ZS (22)

pWy

g 2

G, ey (23)

The matrix Q in equation (19) is defined by the relation S=Qo. These expressions simplify
calculations and reduce the storage requirement during the computation.
Thus, by substituting equation (16) into (14), one gets

Ao =g(o,+7G (Ao)At (24)
in which
g=(I—yG,A)™" (25)

where I is the identity matrix.
Now, if one substitutes equations (13), (15) and (24) into (3) and rearranges the terms, the stress
increments can be expressed by the following equation:

Ao =D*[BAu—éAL— H,gn, + H3)yAt2] (26)
where
D* =[1+yAtD(H, +9H,gG,AN]" D @n

The element equation can thus be derived by substituting equation (26) into equation (4). The final
form of this equation is shown below:

( J BTD*Bdu>Au = J BTD*[£SAt + (H, g0, + Hy)yAr*Jdo+ AR (28)

IMPLEMENTATION

The implementation of the mixed explicit-implicit algorithm into the base TEPSA code' is
straightforward, as illustrated in the Appendix. The formations of stiffness matrix K and load
vector AF, , , may be carried out in the usual element-by-element procedure. In the case when the
D matrix is held constant, it is necessary only to form K° once. After the displacements and
stresses are updated, a Newton iteration method is employed to evaluate @, in the implicit
element group, as described in step 10 in the Appendix. If @ =@, +®At is taken as the initial
value, the convergence is so fast that satisfactory results can be given by only several iterations.

Both constant and variable time increments are allowed in the present mixed explicit-implicit
algorithm. For the variable time step scheme, the selection of time increment is based on the
following two considerations.

(1) Restriction on the increase in creep strain. It is suggested that the size of the time step be
related to the ratio of incremental effective creep strain to the total elastic strain in explicit elements.
This ratio is limited by an input parameter 7y, which can be used to evaluate an allowable time step
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size by the following expression:
A 6/E '
Aty = lE_ (29)
\/%écéc
where E is the elastic modulus of the material. The time increment determined in equation (29) is,
applied to every explicit element. For the case of steady-state creep described by Norton’s law and
with y=0 (fully explicit) and t, =2/n are taken, equation (29} reduces to Cormeau’s stability
criterion.?
(2) Restriction on the increase in state variables. The following relation is used:

1
A[Z = T2“—03”— (30)

where 1, is an input parameter controlling the time steps on the basis of the changes of state
variables. When dealing with creep damage constitutive equations such as equations (7a) and (7b),
the value of 7, may be chosen between 0-05 and 0-1. Equation (30) is applied to all elements of the
structure. Then the time increment for next step of computations can be selected by

At=Min[At,, At,] 31

NUMERICAL EXAMPLE

The EI scheme described in the foregoing sections has been implemented into the basic TEPSAC
code!! and a numerical example is presented to illustrate the computational advantages of using
this approach. This example involves the creep deformation of a thick wall cylinder subject to an
instantaneously applied internal pressure. The geometry and finite element idealization of the
cylinder are illustrated in Figure 1. Of the ten quadrilateral simplex elements used, the two elements
near the inner wall were designated as ‘implicit’ elements whereas the remaining elements were
treated as ‘explicit’. Three distinct constitutive equations were considered in the computation.

L o
— {
{a) Thick-Walled Cylinder (b) infernal Pressure vs Time
Implicit
[Elements| Explicit Elements |
{ ™ A
] ho MR o SR o M o R o R o S ¢ R ¢ 1
=
r=| r=2

(c) Finite Element Discretization

Figure 1. Finite element idealization of a thick wall cylinder
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These were:

Case (1): The von Mises elasto-viscoplastic yield function;
Case (2): Norton’s law for steady-state creep;
Case (3): The continuum damage theory.

Case (1): von Mises elasto-viscoplastic material
The constitutive relation used in this case as defined in Reference 13 takes the following form:

£=al$>S (32)
in which '
_fo for $ <0
(9r= {(,b for >0
and

$=sgn F|F|, F=6/o;—1.

In the above expressions, a and g, are material constants. Equation (32) is a specific form of the

general constitutive equations in (6a) and (6b) with the absence of any state variables. By taking
B=m=0, n=2 in equation (7) and also replacing ¢ by (60,)/0}, the following expression is

obtained: ,
. 3 [0—0
& ='2—A< 0_2 y >S

y

The above expression has an identical form to that shown in Equation (32). The computaﬁonal
procedure described in the Appendix can be directly applied by skipping steps relating to .
Parameters used in this case are given as follows:

Internal pressure P=21000
Elastic modulus E=3 x 10°
Poisson’s ratio v =0-3
A=2x10"7?
o,=3x10*

Computations were performed by using the fully explicit scheme (all elements are explicit) and the
mixed El scheme with y=1/2 and 1 respectively. Time steps sizes of At =05, 1-0, 20 and 50 were
used. Results of effective stress variations in the cylinder using these three integration schemes are
shown in Figure 2. One may observe that the case using the explicit algorithm was accurate and
stable, with At =0-5; but became less accurate at larger At’s. Numerical overflow occurred on the
tenth time step using At=50. On the other hand, all cases using mixed EI schemes gave stable
results. It appeared that the results associated with y=1 are better than that with y=05.

No significant difference in results was detected between the radial, circumferential and axial
stress components calculated by the mixed EI scheme and those computed from the exact elastic
perfect plastic solutions.'* '

Case (2): Norton’s law for steady-state creep
This case study involves the deformation of the same thick walled cylinder under the steady-state

creep obeying Norton’s constitutive equation

3
é°=§A6"" S
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LEGEND:
At =05
0 00 At=10
XXX At=20
e e A1=50
th { 3 x x X
\A x x X X
{o
0 L | ! ) |
1.O 1.2 1.4 1.6 1.8 20r
(a) Explicit

2

|

0]
1.0 1.2 L4 1.6 1.8 20r

(b} Explicit - implicit (y=0.5)

i { L i ]
q.O 1.2 t.4 1.6 1.8 20 r

(c) Explicit - Implicit (Y= (.0)

Figure 2. Distribution of effective stress in a thick wall cylinder using von Mises elasto-viscoplastic yield function

The following parameters were used in the computations
Internal pressure, P=10000

Elastic modulus, E=5x10°

Poisson’s ratio, v=03
Material constants, A=2x10"2!
n= 5

Figure 3 shows the variations of the radial displacement of the inner surface of the cylinder using
the fully explicit algorithm with different time step sizes. Results were stable and accurate with a
small time increment, e.g. 0-02.

Increasingly deviations of results from the exact values occurred with time increments greater
than 0-02. Instability finally occurred at At=0-12. A similar trend can be observed on the variation
of effective stress as shown in Figure 4 with the exact solution derived from Reference 12.

The displacements of the inner surface computed by using the mixed El algorithms are presented
in Figure 5 with time steps ranging from 0-02 to 0-3. The results are stable and accurate with the
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Figure 3. Creep radial displacement at inner surface using Norton’s law and explicit scheme
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Figure 4. Creep effective stress distribution at t =20 using Norton’s law and explicit scheme

time increment At <0-2 for both values of y. However, although the solutions remain stable, they
become increasingly inaccurate with At> 0-2. The distributions of circumferential, radial, axial and
effective stress at steady state showed.excellent correlations with those obtained from the exact

solution.

Case (3): The continuum damage theory

The continuum damage constitutive model given in equations (7a) and (7b) was used to analyse
the creep deformation of the thick wall cylinder. The damage parameter @ in these equations was
taken as a single state variable and the constant m was set to be zero. The set of equation (7) can
thus be used to describe the secondary and tertiary creeps. The following material properties were
used in the computation: B=3x 10~ 18 p=4 and all other parameters remained the same as in the
Case (2) study. Since the analytical solution for this problem is not available, the numerical results
calculated by the fully explicit scheme with a very small time increment At =0-01 was used as the
reference solution. For such a small time increment the explicit scheme and the mixed EI
algorithms with y=1/2 and 1 gave virtually identical results.
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Figure 5. Creep radial displacement at inner surface using Norton's law and EI scheme

The radial displacement of the inner surface and the damage parameter at the element next to the
inner surface are plotted in Figure 6 and Figure 7. The mixed El algorithms with y=1/2 and 1 gave
accurate results with large time increments up to At =01, whereas the results by the explicit scheme
became unstable.

Figure 8 shows the distribution of the damage parameter w along the radial direction. It is
observed that the numerical results predicted by the mixed EI schemes for large time steps are very
close to the reference solution, whereas the explicit scheme for At=0-1 is clearly erroneous.

The stress distribution at t =20 are presented in Figure 9. For At =01, the mixed EI solutions
correlates well with the reference solution. Again, the explicit solution is unacceptable due to wild
scattering of results.

Figure 10 shows the distribution of the effective stress at various instants. These results were
calculated by the mixed EI scheme with y=1/2 and At =0-1. The solid line for t =0 corresponds to
the initial elastic stress distribution. It is interesting to note that stress near the inner surface
decreases very rapidly due to the high value of the damage parameter w and high creep strain rate.
At =20, the lowest effective stress takes place at the inner surface, and the peak stress occurs at
about r=1-2.

CONCLUSIONS

A mixed EI scheme for creep stress analysis has been developed and presented in the paper. This
method can use both explicit and implicit schemes simultaneously in different part of the structure
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Figure 6. Creep radial displacement at inner surface using continuum damage theory and EI scheme
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Figure 7. Variation of creep damage parameter at inner surface
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Figure 8. Distribution of creep damage parameter at t =20

and achieve a significant economy in computations. The numerical examples presented in this
paper have demonstrated that significant improvements in the stability and accuracy of results are

obtainable by using as little as two imp

step sizes can be employed with only slightly more computational effort than

scheme.

licit elements. With this mixed EI scheme, much larger time

for the explicit




522 G.G. CHEN AND T. R HSU

v v
Lar- v o O06F
~
& & osp
o
1.2+
g - 0.4}
- a
©» @ 0.3F
" -
@ 10 D 6ok
& T
x 0.l |-
& < v
o 08 o ol ..
et > At = 001, Explicit
- S e o oAt=0l ,EL(y=1/2)
@ RN . .
N g o 0 0ft=01 , EI{y=1)}
5 06 v s -02| ici
= S g v 9 vAt=01 , Explicit
5 v < .03 | 1 | 1 |
z 04 | \ ) | | 1o 1.2 1.4 1.6 1.8 2.0
1.0 1.2 1.4 1.6 1.8 2.0 Radial Distance , r
Radial Disonce , r (b} Axigl Stress
{a) Circumferential Stress
O ——
A
o a 15
o .
_-02 - oy s
b ~ 14 —
wn
- vy
@ 2 13 s
04 |- -~ 3 -
g 0] & ® &
[ 14 (2 a
S -o6| 9 s
& £ oLk
- at = 00! , Explicit w
2 —08 |- e o opt=0l , El(y=1/2) T o
=5 o 0 oAt=01 , EL(y=1} =
£ v v vAt=01 |, Explicit g oo
o A
Z -0 ! ! L 1 — g | L8 a 1
1.0 12 1.4 16 18 20 0.8 5 12 1 a 6 |8 20
Rodial Distance , Radial Distance , r
(c) Radial Stress (d) Effective Stress

Figure 9. Distribution of creep stresses in cylinder at £=2:0 using continuum damage theory

The advantage of the proposed method over the fully implicit method is obvious. As described in
the Appendix, the computational procedure of using the implicit elements is much more
complicated and time consuming than that for the explicit elements. Furthermore, the element of
the stiffness matrix associated with the explicit elements need only to be performed once and for all.
Therefore, a considerable cost saving can be realized by treating most elements in the structure as
explicit elements with the mixed explicit implicit method. For large scale problems where a great
many elements are involved, this advantage is even more pronounced.

This scheme is especially attractive for creep fracture analysis, in which high concentrations of
creep strains exist near the crack tip. In order to achieve accurate and stable results, an implicit
scheme is desirable for the near tip region and the more economical explicit scheme is usually used
in the remaining part of the structure. A mixed EI scheme such as that presented here can be
applied with considerable flexibility and efficiency.
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Figure 10. Distribution of effective stress using EI scheme (7 =0-5, At =0-1) using continuum damage theory

eep crack
15 The proposed scheme has been incorporated into this model to provide a

more realistic approach to the study of creep crack growth.'®

APPENDIX

Procedure of implementation o mixed EI scheme

1.

[

Initialization: Set n=0 and £5=0, 0,=0, form K and F,, compute U,=K ™ 'F, and
c,=DBU,
Compute £5=/, (65, @, n), @0 =2 (G @n)
Select At
Perform stiffness matrix:
Explicit elements: K¢ = {,. BTDBdv
[mplicit elements: (1) form H, H,, H;, G Gy 2
(2) D*, , =[1+yAtD(H, +H,eG,At]7'D
(3)K!,, =JBD, Bdv .

. Equivalent load vector:

Explicit elements: AFy ={,-BTDé;Atdv
Implicit elements: AF, ={,BTD},  [£3A¢ +(H,go,+H;)yAr* 1dv

. Assembling:

Kn+1:Kc+K:‘-+1
AFn+1=AF5+1+AF,‘.+x+ARn+1

. Solve: K, AU, =AF, 4,
. Stress increment:

Explicit elements: A6, . = D(BAu,,, —£,4t)
Implicit elements: A6, = D, ,[BAu,,  —£;At —(H,g0,+ H,)yAt?]

. Update: u,,, =4, + AU, , 6,41=0,+406,4
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10. Evaluate ®,,,:

11.

Explicit elements: @, , , =0, +o,At

Implicit elements: :
(A)i=0, 0%, | =0, +0,At
(B) (b:-l+l=f2(°-n+l, )
©) oii=wi, 1 —(I—yGZAt)_l{O)f,+  —o,—[(1 ""Y)(bn‘*'?mii-l]A[}
(D) If o1} —ol, ll<é @, «0it!; otherwise i—i+1, go to (B)
nen+1, if Z;'ﬂ At;< T, go to step 2; otherwise stop.
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Figure 3.2 Schematic representation of the Prager and Ziegler's
hardening rules
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Figure 4.1 Path of integration for J-integral
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the initial condition and after translation of the
first surface (dotted line)

Figure 5.1
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Figure 6.4(a) Finite element mesh: Overall view
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