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"ABSTRACT

This thesis presents a new analytical model for analyzing

creep crack initiation and propagation under static and cyclic

loading conditions. This model combines the continuum damage

constitutive relationships fot creep deformation; the severa]

yield surf aces coupled with IuIroz's kinernatic hardening rule f or

cyclic plastic response; the hybrid explícit-implicit integration

scheme for creep stress analysis; the rnodified breakable element

algorithrn coupled with the damage criterion for simulating cr.eep

crack initiation and propagatio.n; and the finite element method'

This combined creep fracture model is capable of predicting

static and cyclic creep crack growth'

Numerical studies by the proposed model indicate that

plastic strains play an significant role in both static and

cyclic creep fracture. For a cracked specirnen subjected to

static loadings, the instantaneous plastic strain may slow down

the stress relaxation in the viciníty of the crack tip" The

slower stress relaxation causes faster damage accumulation in the

near tip region and slower damage evolution in the area away from

the crack tip. such confined damage results in an earlier crack

initiation but slower crack propagation'
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In the creep dominated fracture, un}oading and reloading

may interrupt the stress relaxation near the crack tip and cause

a significant stress increase ahead of the crack tip and an

expansion of the plastic zone. ,consequently, the creep damage

accumulation along the crack extension line is accelerated by

the load cycling, resulting in an earlier crack initiation and

faster crack growth.
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CHÀPTER 1

INTRODUCTION

1.1 rntroduction

The creep behavior of metals at high temperature is welI

known and documented. Howeverr,,almost aIl design analyses

against creep failure up to now is based on unnotched, uniaxial

Iaboratory test data with an objective to ensure that the creep

deformation is kept within acceptable Iimits and that the creep

damage accumulation in the structure will not cause premature

rupture during its service Iife

structures where failure is localized present a more

difficult problem. The criterion employed for elevated

temperature design has been that the time allowed for the crack

initiation should exceed the design Iife. However, due to the

complex geometries of most of these structures and the nature of

the stress history during service, crack initiation is often

difficult to predict. There are other shortcomings of Lhis

concept. First, small crack-like defects may exisL in a machine

component before it is put into service, in particular, such

cracks may have been initiated in "heat-affected zones" during

welding. Secondly, creep and fatigue damage processes may cause

small cracks to appear very early in the component's life' and

withdrawl from service at this point may be both uneconomj''::al' and

unnecessary. These considerations have prompted the development

of a fail-safe design philosophy, in which account is takerr for

both crack initiation and crack propagation'



The current interest in the study of creep crack

propagation derives from the need for accurate design codes for

nuclear power plant and aircraft jet engine, in which the

requirements for safety and economy are obvious. A common

service load type in these applications is a cycle which beqins

with an initial start-up fotlowed by a long operating or hold

period and then, finaIIy, shut-down. start-up and shut-down

cause a cyclic stress history, whereas the hold period may

involve creep deformation and stress redistribution" Cracks may

therefore initiate and propagate under a combination of fatigue

and creep conditions.

The fracture behavior of material-s under combined creep-

fatigue condition ís strongly affected by- frequency. Rapicì

cyclic loading is associated with fatigue cracking which is in a

transgranular mode and slowly varying or static loading is

associated with creep cracking which is in an intergranular

fracture " Figure l-.1 is an example showing the dependence of the

cracking mode on frequency[105], for A2B6 steet at Ll-00oF- The

intergranular fracture occurs when frequency is less than 10 cpm"

This frequency range is often encountered in engineering practice

and hence, is of considerable interest in the study of the

fatigue-creep interaction -

When frequency is very low, the fatigue damage can be

neglected, and the crack growth is dominated by creep. It has

been observed, however, that the creep crack growth could be

accelerated by a cyclic loading in very low frequency. The

reason for such an acceleration of crack growth is not clear at



this time" one possibitity is that the cyclic plasticity

associated with the unloading and reloading has some influences

on the creep damage accumul'ation near the crack tip' The present

studyattemptstoassesstheeffectoftheplasticityonthe
creep crack initiation and propagation under static and cyclic

loadings "

L.2 Objective of Thesis

This thesis describes a research effort leading to a creep

fracture mechanics methodology designed to treat static and

cycliccreepcrackpropagationinstructures.gasedonthe
theoryofcontinuumdamagemechanics,afiniteelementmodel.for
staticandcycliccreepfractureisdeveloped,whichhasthe
following unique features:

(1)theplastichardeningbehaviorofmaterialsundercyclic

conditions can be described;

(2\thecreepcrackinitiationandextensioncanbepredicted;

and

(3) the inherent numerical instability associated with the

damage aPProach can be avoided'

Theobjectiveofthethesisistoinvestigatetheeffectof

the instantaneous plastic strain on the static and cyclic creep

crack propagations by using this finite element model" For creep

fracture problems, the instantaneous plasticity unavoidably

occurs near t.he crack tip. However, it has been omitted in most

creep fracture analyses. The role of the instantaneous plastic

strain in the creep crack growth has not yet been well



understood. However, specuration is that plasticity plays an

important role in cyclic creep fracture problems, âs the stress

redistribution at the crack tip may occur after unloading and

reloading due to the kinematic hardening nature of materials' By

applyingtheproposedfiniteelementmodeltocrackedpanels,the
present work investigates how the instantaneous plasticity

affects the stress redistribution and the damage accumulation

aheadofthecracktipandhence,affectsthecreepcrack
initiation and the subsequent propagation under both static and

cyclic loadings -

l-.3 Scope of Thesis

The thesis is divided into eight"chapters:

Chapterl.isanintroduction,describingtheobjectiveand

scope of the thesis;

Chapter2isareviewofthebasicmechanicalbehaviorof

creep and the corresponding mathematical formulation;

chapter 3 describes the finite element formulation in

elastic-plastic-creep stress analysis;

chapter 4 is a general review on the development of creep

fracture mechanics and cyclic creep fracture;

chapter 5 presents a finite element model for cyclic creep

f racture analysis using the continuum damage approach ' I{¿r in r

ingredients of this model include the following items:

( 1) a suitable plastic hardening model for cyclic load j'nrJs;;

(2) a mixed explicit-implicit algorithm for high computatj onal

efficiency in creep'stress analysis; and



(3) a modified breakable element algorithm fot simulating creep

crack initiation and propagation'

chapter 6 presents the results of a case study for cleep

crack growth under static loadings;

chapter 7 presents the results of the case study for creep

crack growth under cyclic loadings;

chapter B ís the conclusion drawn from the present research

and recommendations for further study'

Abibliographyispresentedattheconclusionofthe

thesis.



CHÀPTER 2

CONTINUUH DAI'IÄ.GE I'IECHANICS OF CREEP

z.L Basic r.echanical Behavior of creep t1l t2I t31 t41

Creepisatime-dependentdeformationwhichoccurswhena

material is loaded for a prolonged period of time" Time

dependence is the chief characteristic of creep deformation'

Figure 2.L is a typical creep curve which describes the

development of strain with tirne in a solid under constant stress

and temperature- At the time, t=0' the curve shows an

instantaneous response "0, 
which, depending on the magnitude of

theStress,couldbeelasticorelasto_plastic"Thereafter,.the

creep curve is divided into three parts: the first part with a

decreasing creep strain rate called primary creep; the second

part with an approximate constant creep strain rate called

secondaryorsteady_statecreep;andthefinalpartwítha

rapidly increasing strain rate called tertiary creep' creep

rupture occurs at the end of the tertiary creep stage"

ThecreepcurveshowninFigure2.Lisstronglyinf}uenced

bystressandtemperature.Theinfluenceofstressatconstant

temperatureisshowninFigure2.2,whiletheinfluenceof

temperature at constant stress is shown in Figure 2"3" Note that

both cases show threshotds below which no noticeable creep is

obse rved.

Therelationshipofstressandtimetoruptureisalso

showninFigure2.2.ItisSeenthatthe-timetorupture

increaseS as stress decreases. Furthermore, âS indicated in



Figure 2.3, the time to rupture decreases as the temperaLure

inc reases "

If the stress is renroved during the creep process, a

phenomenon of creep recovery wíII take place, ês shown in Figure

2.4. The instantaneous response is that the elastic strain

eE=o/E is recovered. After that, there is a certain amount of

strain recovery that becomes asymptotic and no more strain is

recovered. In Figure 2.4, t; is the recovered creep strain and

"P 
is the permanent strain that is made up of irrecoverable

plastic strain (if any) and creep strain components"

Figure 2.5Í5 I i" an example showing the material behavior

upon reloading. Clearly, the time at rest (or dwell time) has an

influence on the subsequent creep curve. If unloading and

reloading are carried-out rapidly, t.he material tends to ignore

the effect of load change, as shown in Figure 2"5(a) " However,

as indicated in Figures 2.5(b) and (c), longer rest period at

zeto load results in a higher transient creep rate upon

reloading.

2.2 Continuum Damage Mechanics of Creep

2.2"L The state variable theorY

The slow, time-dependent deformation in materials

undergoing creep deformation is actuaJ.ly the macroscopic

reflection of the kinetics of several different modes of

microstructural rearrangeBent of the polycrystalline lat.tice- It

is well understood tf,at[6] the protracted initial period of



creeps is dominated by viscous modes such as dislocation glides

and climbs, flow of grain boundaries and vacancy diffusion' while

the rapid increase of the strain rate typifying the tertiary

creep is directly traceable to the accelerated microvoids growth

precedingtheircoalescenceleadingtothecreeprupture.In

order to be able to predict the,material behavior under creep

conditions, a rational theory must reflect the influence of the

microstructural kinetics on the response. However' the

irregularities in the lattice and the distribution of

microdefects render such a theory unable to be used in the

macroscopic ""rr".[ 
7 ] . A promising strategy is, therefore, Lo

establish a macroscopic model which wiIl broadly mirror the

salient features of the microstructural mechanisms "with *o" or

less distortion and blurring of detail"IB]' The state variable

method is a widely used approach of this kind'

The basic assumptions of the state variable theory is that:

(a)theresponseofthematerialdependsonlyonthecurrenL

state of the microstructural defects; and (b) the current state

of the microstructural defects can be described by a finite set

of internal variables. Based on these assumptions' the

constitutive relations of materials can be expressed in terms of

the state variable" ^j u"[9]

o

e = f(orto.rL)
J

()._1_ a)

and



irj = t,2,"'n

The number of the state var.i.ables, n, and the functions f and 9i

are determined either on the basis of the theories of metal

physicsorontheresultsofappropriatelychosenmechanical

tests" obviously, for the purpose of the practical engineering

applications, the number of the state variables should be as

small as possible and the forms of the functions f and 91 should

be as simPle as Possíble.

2.2.2 Uniaxial constitutive relations

6i = 9i(o,cot)
(2 -L b)

(2-2 a)

(2 "2 b)

st form of the state variable theory to describe

avior of creep rupture is Kachanov's damage

proposed a scalar quantity, damage parameter û)'

ate variable in the constitutive relation which

n

The simPle

the uniaxial beh

theor"[10]" He

as the single st

can be shown as:

" ( ol
E:A[;j

;="[;]'

whereA,BInandÓarematerialconstantsdeterminedby

mechanical testings. The damage paramete r cr) i s the measure of

material,s deterioration during creep. when the material is

undamaged, û)=0, then equation (2.2 a ) reduces to the well l<nown

Norton's Iaw

å=aon (2 "3)



10

for the steady-state creep. on the other hand, rupture occurs

when ô=l- . Integration of (.2 .2 b ) using the above postulati on

will lead to a relation between the rupture time t* and the

applied stress o as

(2.4)

(2 -5 b)

The values of constants B and 0 can therefore be obtained from

the rupture curve, while A and n can be obtained from the steady

state conditions as described in equation (2 "3',) "

The Kachanov's damage equatíon (2"2) was extended by

odquist[1r] and Rubot'orr[12] to include the primary creep as

shown below:

(2.5 a )e=e[;]".'

;:"[;J-
Thus, the entire creep process including primary, secondary and

tertiary creeps can be described by the modified Kachanov's

damage equation (2"5)-

Note that the coefficient A in equation (2.5 a) is

temperature-dependent. The temperature dependence of A is

usuarry expressed as[ 13 ]

[ = ¡1"-Q'lnf (2.6)
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whe re

0 activation energY;

R - universal gas constant;

T absolute temPeraLure;

K = material constant

2"2.3 MuIti-dimensional constitutive relations

A valid multi-dimensional constitutive theory for creep

must satisfy the following requirements:

a) The multiaxial formulation must reduce to the correct

uniaxial formulation when it is appropriate i

b) The model should express the constancy of volume that has

been observed experimentally during the creep process;

c) The equations should enbody the lack of influence of the

hydrostatic state of stress that has been observed

experimentallY for creeP;

d) For isotropic materials, the principal directions of stress

and strain should coincide;

e ) The model should reflect the dependence of the creep

rupture on the multi-dimensional stress state that has been

observed experimentallYt 14 I 
"

The multi-dimensional form of Kachanov's damage theory

ruhich satisf ies the above requirements, has been proposed l-ty

Leckie and Havhur"t[15] as

. 3 I ã l" s.*
Ð. = -Al-i 

rltm (2-7 a)rl 2 U-oJ i



L2

(¡) =

ró

l'l
( t-a)? + oor

1-û)

creep strain

deviatoric st

components;

ress componenLs

(2.7 b)

these formula with

iaxial stress states

I and found the

strain rate equation

whe re

e.1l
S.rl

;

or

c(

effective stress;

maximum princiPal stress

material constant ( 0

i

e

Equation (2.7 b) indicates that the damage evolution in

creep materials is dependent on the Iinear combination of t'he

effective stress and the maximum principal stress' As reported

t1A1by Hayhurst.-41, the rupture time for copper is dependent on the

maximurn principal stress so that L. For some precipitate-
t16ì

hardened materials such as aluminum aIIoys tested by JohnsonL*-'l

the rupture properties are dependent on the effective stress so

thát 0. The c values for other materials vary between 0 and

l.

Leckie[17] compared the predictions of

the experimental results of a variety of mult

for copper, aluminum alloy and stainless stee

comparison to be satisfactorY'

Murakami suggested a constant c in the

(2"1 a) as:
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(2.1 c )

to allow for better correlating the test result"[18] '

It is worth noting that the constitutive equation (2'11 is

validforprimary,secondaryu"ltertiarycreeps.Theeffectof

the rest time on the creep behavior in repeated toading is not

considered in the formulation. GeneraIIy speaking, equation

(2.7)}ossesitsvalidityforcyclicloadingcases.However'

since quick unloading and reloading does not influence the creep

behaviorn as described in the previous section, the continuum

damage modeL (2.7) can still be used to predict the creep

behavior of materials under repeated loading without rest tirne"

A number of sophisticated damage theo'y[19'20'2L'221 and

generar constitutive modetr[23'24'251 have been developed to

describe more complicated material behavior such as damage

anisotropy, cyclic hardening and softening, creep-yield

interaction,etc.Thesetheoriesusuallyinvolvemorestate

variables,morecomplicatedfunctionformsandmorematerial

constants to be determined experimentally. These complexities

render these theories difficult to be used in engineering

practice "

. 3 I ? l" si.i ,m
a. = -.å. 1 | 

- 
;1l z [t-cr¡) o
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CTIAPTER 3

ELASTIC-PIASTIC-CREEP STRESS ÀNALYSIS BY FINITE ELEHENT HETHOD

3.1- Introduction

The complexity of the elastic-plastic-creep stress analysis

is due to the fact that both plastic and creep deformations are

highlynon_Iinear.Thetime-dependentnatureofcreepfurther

increasesthedifficultiesinsolvingthistypeofproblen.In

most cases, a numerical approach' such as the finite element

method'appearstobetheon}ypracticalsolutionrnethodfor

these problems. A unified finite element procedure dealing with

plasticity and creep has been establishedl26'211 t"d wiII be

reviewed in this chaPter'

3.2 Basic Matrix Formulation of FEII

Thebasicideaofthefiniteelementmethodisto

discretize a continuum into a finite number of subdomains

(elements)whichareconnectedattheirapexesorrifisomecases'

at selected points on the edges (nodes). The unique advantage of

such a discretization is that the formulations need only to be

appliedtotheindividualelementsofcertainSpecified

geometries rather than the entire solid of complex geometry'

Thegoverningmatrixformulationsofthefiniteelement

anarysis have been werl document"d[26,211. The conventional

displacement approach is used in this analysis and hence is

br!efIy reviewed as follows:
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Element InterPolation Function:
(3.1){u} : tNl {u} 

e

where {u} is the displacement vector for any point in an elementi

tNl is the matrix containing the interpolation function;

{u}e is the corresponding.nodal displacement vector -

Strain-DisPlacement Relation :

{e} tBl{u} (3'2)

where Ie] is the strain vector;

tBl is the strain-displacement transformation matrix'

Stress-strain Relation:

{"i = tPl{e} (3.3)

where {"} is the stress vector;

tD]isthestress_Strainconstitutivematrix"

Element Stiffness:

[K]e Jv tBlr IDI tBl dv (3'4)

where IK]e is the'element stiffness matrix and v denotes the

volume of the element.

- The global stiffness matrix tKl is formed by sumrning up the

stiffness matrices of each individual element in the finite
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element mesh to give

E

lKl = x [K]e (3'5)
e=1

where E denotes the total number of elements in the struclure'

The equilibrium equations for the structure can then be obtained

ctÞ

lKl {,r}u tF} (3.6)

in which {F} is the nodal force vector'

Equations (3.6) can be used to solve for the unknown nodal

displacement Iu]u. Strain and stress components for each element

are calculated subsequently using equations (3 "2 ) and ( 3'3 ) '

3"3 Elastic-PIastic Stress Analysis

Astherelationshipbetweenstressesandstrainsin

elastic-plastic materials is non-linear, the stiffness of the

material cannot be regarded as constant. There are basicaì'ly two

kinds of approaches in the finite element analysis to deaÌ with

the varying stiffness of materials, nanely initial stress/strain

and the incremental strain methods. The latter approach is

adopted in this analysis for its relative simplicity in

computations. The derivations presented here are based on the
, "71work of Hsut o 

.

The incremental plasticity approach assumes a linear

relationship between the incremental stresses and strains' This

assumption implies that the entire non-linear Ioading process can

be divided into many piecewise Iinear loading steps. vlithin each
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loading step, the equilibrium equations can be expressed as

txli {Au}i = {Ar}i (3.7)

whe re is'the stiffness matrix;

is the incremental displacement vector; and

is the incremental nodal force vector for the

loading steP"

After each load increment, the variable stiffness matrix tKl

must be updated to account for the change in the stress-stra

relations due to the elastic-plastic effects. The formulati

the matrix tKl for the elastic-plastic analysis require the

foll-owing information :

(1) A yield criterion to establish a yíeld surface in the

(2)

stress sPace;

Aflowrulerelatingtheplasticstrainincrementstothe
yield surface; and

(3)Ahardeningruletodescribetheexpanding,shrinkingand

shiftingoftheyieldsurfacesduringthedeformation

process.

3"3"1 YieId criterion

TheVonMisesyieldcriterioniswidelyacknowledgedasan

appropriaterepresentationoftheinitialyieldsurfacebased
bothonthegoodcorrelationwithtestingdataandonits

mathematical simplicity. This criterion is derived from the

distortion energy theory whích states that plastic deformation

.th

tt<li

{Au}i

{^r}i

i
in

on of
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occurs when the distortion energy of the material reaches a

certain critical value. For an isotropic material, the yield

surf ace F, def ined by the von l'lises criterion, is expressed as

P = 12 L/3 "l
in which

(3.8)

(3.e)Jz = L/2 tij tij

is the second deviatoric stress invariant, Sij is the deviatoric

stress tensor, and o, denotes the initial yield strength of the

materíaI from a uniaxial tension test- Geometrically, equation

(3.8)representsanellipsoidinathree_dimensionalstress

space. The function F in equation (3.8) represents the yield

function (or plastic potential function) which describes plastic

yielding at current stress state during plastic deformation'

It is obvious that a plastic state is attained when F:0'

while the material is in the elastic region if F < 0'

3.3.2 Prandtl-Reuss flow rule

- The Prandtl-Reuss flow rule assumes that the plastic strain

increment is linearly related to the current stress and pr'r¡qlicts

that the plastic strain increment is normal to the assocj'at-s:cì

yield surf ace at the stress point. t'tathematically' the pl-astic

flow rule using the von Mises yield criterion can be expressed as
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deP. =1l

tii = (oij oij) L/3(op. oLk) ,tj

dÀ

of the accumulated

of the yield surface

surface becomes:

â F( o.. )

C). = S..
ô o. 1l

1l

(3.10 )

(3 - 11)

in which Orll is the components of the plastic strain increment

and dX is a positive proportionality factor"

3.3 " 3 Kinematic hardening rule'

When some materials are plastically deformed in tension,

their compressive yietd strength in the subsequent compression

reduces by the same amount of the increment in the previous

tensil-e loading. This behavior was first discovered by J-

Bauschínger in l-BBl- and is caIled the Bauschinger ef f ect' Tl"

result of this effect is a strain hysterísís observed after a

complete tension-compression l-oad cycle, as shown in Figure 3.1 '

For the multiaxial Ioading situation, the Bauschinger

effect is modelted by the translation of the yield surface in the

stress space. A number of knematic hardening rules have Ì¡een

proposed to describe the translation of the yield surface '

Introducing the translated deviatoric stress tensot t;i as

proposed by HsuÍ271 2

in which @¡+ is
LJ

translation of

space, the Von

the tensor

the centre

Mises yield

kinematic

in the stress

!. = L/2 ril rii L/3 ,2y = o (3. r_2 )
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The translation tensor oi j it equation ( 3 ' l-l- ) may be

f ?R I
computed by prager's hardening ruleL¿ÖJ. This rule assumes that

the translation of the centre of the yield surface is in the

direction of the plastic strain increment, i.e. normal to the

yield surface. ltathematicalty, it can be shown as follows:

dc¿. du. atP.----11 I 1l
(3.1_3 )

This rule, in general, cannot be satisfied in case one of the
r 101

stress components is zeroLzYl. Ziegler subsequently proposed a

modification to overcome this deficiency. His hardening

f ?o Iru1e.'-' assumes that the incrementaf translation of the yJ-e1d

surface is in the direction of the vector which connects the

centre point. of the current surface to the existing stress point'

that i s:

de. = dtt^ (o.---rl ¿ rl
(3.14)

dp. and dp. in equations (3"13) and (3"1-4) are multipliers.
'lL

Figure 3.2 shows a schematic representation of these two

hardening rules.

As the current version of the TEpsAC Progru*[ 27 ] adopts the

Ziegler,s hardening rule , zíegLer's equation (3.14) wilt be used

in the subsequent derivations"

3 .3 .4 Derivation of the elas tic-plastic element e uat i on

oi j )

Assume that the total

decomposed into an elastic

strain increment deUt

part UtÏ, and a Plastic

can be

part oul'- AS
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d"kl=O"Ïr.+U"fl,

Thus, the incremental constitutive relationshiP can

and oT 
¡ r.,

(3.]_s)

be defined bY

( 3.16 )

is thestress tensor '

6..1l

uorj = oi:or d"Ïr

where do.* is the incremental
rJ

elastic tensor expressed as

oT¡ur
E

l-+v
t j t +

[,, o
,orl ( 3.17 )

( 3.18 )

( 3.19 )

in which E is the

Now, if the

yield surface at

positive scalar

Young's modufus, and ll the Poisson's ratio'

pro j ection of Uo, j on the outward normal- to the

the stresb point is (c'dtlj ), where c is a

to be determined later, then

By substituting equation (3.10) into equation (3'l-B)' one obtains

(ddij

1
d\:-

('

By substitution

equation ( 3.19 )

drnc.dÐiì )
âo.1l

(rtlttfi) dt¡ 
_

(aF/a oti ) ( aF/ðo t1)

of equations (3"1-5),

, one obtains

(3.1-6 ) and (3.10 ) into

l- - aF
dÀ=

h âo. -
L)

(3.20)
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whe re

whe re

and

AF
'P

^ ,iikt
ad,rl

(3.21)AF AF

h=C-
âo. ðo.- rl 1l â okl

and (3.21) with

into equations (

AF

Combining equations ( 3.20 )

substitute the combined relation

( 3.l-6 ) ' one obtains

(3.l-0 ) and

3.1-5) and

oorj = (oTjo, - oliur l dtkl = oiTut detl (3.22)

(3.23)

( 3 -24)

by relating

the

olir.r
l-

h
oi:ur s;t 'i,. oT3r.r

..eP"ijkr = oTin, - * oiinr ti¡ 'i,- oT¡ur

The scalar C,

equation (3.22) to

following:

defined bY (3-18)

the uniaxial state

, is determined

which }eads to

='- 
uot, 

='-
Þr oeit- r t/Et L/E

2

- 
Í1 |

3

(3.2s)

slope of

Et is the

3.3.

where the

the flow

slope oî.

hardening Parameter H' is defined

curve of a material in the Plastic

the uniaxial 6 - Ð curve, as shown

to be the

range and

in Figure
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Themultiplierdp2isdeterminedbytheconditionthatthe

stress point remains on the yield surface duríng the plastic

flow. Thus, by employing equation (3'L2) ' one obtains

- aF
dF (do..-., dcr..;) = g (3'26)

^ r-_) L)
do. .rl

substituting equation (3.L3) into (3.26) and by using the

I

relationship S. -, = ðF/ðo;;, one gets
1l rJ

t., - do. -.

dg-'
" (oij oij) tij

(3.21 )

Inordertofacilitatethesubsequentfiniteelement

formulation, a transration of the above key equations into

appropriatematrixformsisnecessary.Theresu}tsofsucha

translation are summarízed as follows:

( 1 ) Constitutive equation (3 '22)

{do} = [D"p] {de}

(2) EIastíc-plastic matrix (3 '24).

( 3.28 )

(3-29)

whe re

h: c is,]T {s'i + {s,}T [D"] {s'} (3'30)
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(3)

(4)

ProportionalitY factor

dx = (I/h) i s' ]r ID"]

The Multiplier (3 "21 )

(3.20)

{de} ( 3 " 31)

Is']r {do} (3.32)¿uz =

(s) Translation of yield surface ( 3 " 14 )

( 3.33 )

3.3.5 Determination of hardening parameter H'

InthecurrentversionoftheTEPSACProgram'theelastic-

plastic effective stress-strain curve suitable for multi-

dimensional stress space is represented by a continuous function

with no distinction between the elastic and pJ-astice regimes

t 30.311
cfÞ

(3.34)eE

o=

{'+

E

Ì""

a

['

ill
- -l ;,

E)K
+ Et
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whe re

3E
E the effective modulus of elasticitY

the effective nodulus of PlasticitY

2(1+v)

3E'
ntþ

3-

with E and Et to

plasticitY fron

( 1-2v ) E'

E

be the resPective moduli

a uniaxial stress-strain

of elasticitY and

curve, and

;k = a stress level at which the elastic line

with the tangent of the plastic curve' ês

Figure 3-4, and

nafactorwhichdeterminestheabrupt'ness
elastic-Plastic transition'

Bydifferentiatingthestressin(3.34)withrespecttothe

strain, one may obtain a tangent modulus Et

EE

intersects

shown in

of the

( 3 - 3s )
];-

El'+

]t-+n'ã['l'+
for

be

['
+ E'e

".'lÌ

E.-t EE nÌ*

Then the hardening Parameter

for kinematic hardening rule

(3.2s)"

isotroPic hardening t:rr I'r' or C

determined bY equation
H'

can
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Theadvantageofthisfunctionisthattheentire

stress-strain curve, including two straight lines in the elastic

and work hardening regimes with a gradual elastic-plastic

transition, can be described by a single expression' Hota"ever '

this function defines a one-to-one correspondence between the

stress and strain. In cyclic Ioading case, the stress and strain

are no Ionger one-tO-One correspondent. Therefore, this approach

is not applicable to cyclic loading cases"

3"4 Creep Stress AnaI sis bv Finite Element I{e thod

lysis is

elastic
the total

{Ae} = {Ae"} + {Aen} + [Aec] ( 3.36 )

TheSeparationofplasticandcreepstrainsisclearlyan

artificial device, since they are both related to the movement of

dislocation. However, it has been shown by onatt33l tnut this is

a reasonable and convenienL assumption if {aÐp} is associated

with high rates of loading'

RecaII the relationship between the stress increment and

the elastic and prastic strain increments, i"e- equation (3'28):

A basic assumPtion

that the total strain ie

{e"}, Plastic {tp} and c

strain increment can be

involved in creep st

Ì can be Partitioned

reep {."} components'
. _ t 32lexpressed as'

ress ana

into the

so that

IAo] = [Dep¡ 1 1ae"] + inen] )

Substituting equation ( 3 " 36 )- into

increment can be expressed as

( 3.37 )

equation (3.31l' ' the stress
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{ Ao}

Introducing

equation ( 3

{ Ao}

where {Au} is the incremental

The equation of equilibr

take the form

Iv tBlr {^o} dv {AF}

displacement vector "

ium to be satisfied at any time t

( 3.38 )

(3 -2) ,

(3.3e )

(3.40 )

Ioad increment due

the element volume

equilibrium

the strain-displacement relation, equation

.38 ) becomes

= [Dep] (tBl {Au} - {ae.})

where {AF} is the vector

to surface traction and

By combining equations (

equation becomes

of equivalent nodal

body force, and v Ís

3"39) and (3"40)' the

Jv IB]r IDep] ( tBl {Av} - {ae.} ) dv = {AF} (3.41)

3.5 Time Integration Scheme

Sincecreepisatime-dependentdeformation,thecreep

stress analysis is in fact a transient problem. The major

difficulty involved in creep stress analysis is that the creep

constitutive equations are highly non-linear and the resulting

equations are stiff in nature. The stabitity and accuracy of the

finite element solution critically depend on the selection of a

prope r síze of tirne steps associated with an appropriate

integration scheme.
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Generally speaking, there are two common classes of

one-step integration schemes for creep analysis, i'e' explicit

and ímpIicit. The advantages of the explicit scheme suggested by

Zieckiewicz and Cormeau[34] and Cormeau[35] is that it is concise

andsimplycoded.Butthestabilityconditionisrather

stringent and very small time steps are required' The implicit

scheme was proposed by Hughes and Tayror[36] arrd *as rately

modified by Kanchi et ur[37]. rt allows the use of Iarger time

step sizes but requires more operation in every time step' This

drawback has made the implicit scheme computationally

uneconomical,especiallyforlargescaleproblemswherealarge

numberofelementsareinvolved.Theformulationsofthe

explicit and implicit algorithms are briefly revieweã as follows:

Themulti-dimensionalformofthegeneralconstitutive

relation for creep, i-€. equation (2'L) ' can be stated as

{;"} = rL ([o], {o} , t)

{or} = fZ ({o}' {t¡} )

3"5"1- ExPlicit algorithm

{a.ec¡ = {;;} ^r

{Aor} = {t.,i At

(3.42 a)

(3-42 b)

( 3.43 )

( 3.44 )

where the subscript n denotes the "th time step'

The stress increment can be expressed by substituting

equation ( 3.43 ) into equation ( 3 ' i9 ) as shown below:
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{^o} = [Dep] (tBl

The governing equation (

t'il ^t)

now becomes

.lv tBlrlDepr{;;}

(3.4s)

At dv + {AF}

( 3.46 )

(3-41 )

{Au}

3.40 )

( Ir, IB]rtDepltBl dv) {Au}

Cormeau has performed a stability analysis and derived the

explicit stability conditions for some constitutive

relationst35l. For the steady-state creep obeying Norton's Iaw

(2.3), the stability condition requires that

4(l-+v)
At t Ât"ritical

A(; )t-1' max'

where 6

3nE

is the maximum effective stress in the structure - In
max

the creep fracture probl.*" ?*u* is very high due to a high

stress concentration at the crack tip. The value of the stress

index of the creep law, n, ranges f rom 5 to 1-0 f or most metals.

A typical allowable time step size determined by equation (3'41)

in creep fracture analyses in the order of l-0-5hr., as reported

by Hsu et ar[103] and Ehrers et at[1L2] -

3.5.2 rmplicit algorithm

The increments of creep strain and state variables

occurring in a time increment At are assumed to take the form

{aec¡ : t(1 vlteil + Y{;;+1}1At ( 3.48 )
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with 0 < '( S 1. It is readily seen that the explicit scheme is

actually a special case of the above equation with f = 0 ' on the

other hand, the case of '( = 1 represents a fully implicit scheme'

The case with ^( = L/2 denotes the implicit trapezoidal scheme

which is generally known as the crank-Nicolson rule of

and

{At¡i = t(1 v){t¡rr} + v{t^rrr*1}l At

integration.
The incremental creeP strain {

fo -l in esuation (3.48) and (3.49)
' n+l
Iinited TavIor series expansion as

and

(3.49)

t . f and the state variablen+r'
can be approximated bY a

( 3.51)

t"i*rÌ tåir + tHrl{ao} + tHrJ{ao} + {H3} dt (3-s0)

f tl .I' n+r'

in which

= {rr,} + tGtl{Ao} + tGrJ{ao}

tHrl =

a { ot}

[cr] = ,
' ð{o}

a{;'}
{He} =" ât

aiorÌ

a i at]

) into ( 3.49 ) , one gets

IHz] =

I,Gzl =

(3"s2)

( 3.53 )

By substituting equation (3"51

{^to} : tgl t1t,r¡ + vlGtl{4"}) ^t
/ ? q¿ I
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in which

tgl = (trl YtGzl ^t) 
a

where tIl is the identitY matrix"

Now, if one substitutes equations (3'48), (

into (3.38) and rearranges the terms, the stress

be expressed by the following equation:

f ? 66 ì

3.50) and (3.54

increments can

{^o} = rolol (tBl{^u} - tiitot (tHzltgl{',-,} + {Hr} ) YAt2)

( 3.56 )

whe re

tD:el (trl + vatlD"nl (tHrl + rll¡tgltGllAt)l-1to"nl

(3.57 )

The governing equation can thus be derived by substituting

equation ( 3.56 ) into equation ( 3.40 ) " The final form of the

equation is given as

Jv tBlrrolpllBldv) {nu¡ =

'[v t

Although the implicit integration scheme is not

unconditionally stable, computational experiences have shown that

it is much more stable than the explicit scheme with larger time

steps. However, since the stíffness matrix úsed in this method

is a function of element stresses , Êêformulation and inversion or'

Btrrolnr( {ei}at + (tHzllsl{on} +
')

tH3Ì) .(LLo) dv + [AF]

(3 - sB )
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the stiffness matrix is necessary in every time step of

conputations- As a result, the implicit scheme requires

substantially more computer time in every time step' For large

problems involvíng a great many elements, this drawback makes the

implicit integration scheme uneconomical '
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CTIAPTER 4

CREEP CRÀCK PROPAGATION

4.L Introduction

Recognition of the fact that failure of high temperature

components can occur by the propagation of a single crack which

can nucleates from pre-existing fl-aws, weld defects or creep-

fatÍgue damage processes, has led to a significant increase in

creep crack growth study during the past 15 years" Ilost of the

research in this area tends to be on finding a proper represen-

tative parameter whích would correlate measured crack propagation

rates in aS universal a manner as possible" A number,of

parameters have been developed with different degree of success'

This chapter reviews some promising approaches wit'h an emphasis

on their applicabilities and limitations in characterizing creep

crack growth in engineering materials.

4"2 Stress IntensitY Factor K

systematic research into creep crack growth began with the

application of linear elastic fracture mechanic techniques to

high temperature components. Siverns and price[38], in a study

of 2 L/4 Cr 1 Mo ferric steel, Suggested that the creep crack

growth rate could be expressed as a power function of the el-astic

stress intensitY factor K as

da
AKN

dr
(4.1)
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where a is the crack length, and A and n are constants'

This was supported by Neat and siverr,"[ 39 ] , r'1or""r,[ 40 ] and

James[41].

It has been found that the correlation between da/dL and

K can only be observed in creep-brittle materials for a very

small range of Kt42l. rt has been pointed out by Gouch' Haigh

f¿?l
and King. --, that specimen geometry, initial notch depth and

applied Ioad alI affect correlations. The variations observed

experimentallybetweencorrelationsofcrackgrowthrateand

stress intensity factor obtained under different loading

conditions and, with varying specimen geometry' have been

rationarized in an analysis by pilkington and smithÍ44i -

ThereasonwhythestressintensityfactorKcannotbe

expectedtocharacterízethecreepcrackgrowthforawiderange

of conditions is quite understandable- The non-Iinear nature of

the creep deformation makes the extent of applicability of the

Iinear elastic fracture parameter K in high temperature fractures

to be very limited- K correlation is only valid for

creep-brittle material with low value of creep index and high

crack verocitiest 45 I 
-

4.3 Net Section Stress o

The second widely used method for studying creep crack

growth is to correlate the crack growth rate with the net section

stress.Thenetsectionstressisdefinedastheappliedload

divided by the area of the uncracked ligament' The correlations

of creep crack growth rate with onet, first made by Harrison and

et
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Sande r

(4.1))

l 46l is of a form analogous to those with K (equation

da

ot

n
=Ao net

(4.2)

material constants, though different from those

section stress method was supported by other

49'501, correlations of creep crack growth with

whereAandnare

in equation ( 4.1 ) .

Although net

researcher"[ 47 '48 '

onet have been neither more nor less successful than those with

stress intensity factor K in embracing data obtained from a

variety of testing conditions. ActuaIIy, the stress intensity

factor and the net section stress describe two extremes of stress

distribution in a specimen, whereas the true stress distribution

in most specimens probably lies between these two extremes ' In

materials in which Iittle stress relaxation can occur before a

crack extends by rupture of the material ahead of the crack tip'

the crack growth rate may correlate with a stress level related

to that modeled by the etastic stress intensity factor" In

materials in which more extensive stress relaxation can take

place before localized rupture occurs, the Stresses may relax to

a value close to the nominaf value of onet. In such casesr the

crack growth rates may correlate with onet. This argument

supports the notion that K is only applicable in "creep brittle"

material, whilst onet is only applicabte in "creep ductile"

materiat such as put f orward by EIIison and Neate [ 50 ] a,td-

Neatet5rl.
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4.4 Contour Integration C

4"4.L The J-inteqraL concept in ef asti c-plasli t-l rsglllle

me chani c s

The path independent integral Jt proposed by Ri"u[52], is

defined as

where W is the strain energy density given by

f ôu..
J=J,(wdy-Tiâ*tds)

de.rl

(4.3)

(4-4)w - ¡ oij

with Ti and ri to be the components of the respective surface

tracti'on and displacement vectors, x and y the coordinates and s

are length along a contour f surroundíng a crack tip, as shown in

Figure 4.L. The J-integral has been proven to be path

independent if the material obeys the following constitutive

relation:

e = 
"oP

(4.5)

where c and p are materíal constants. Note that the constitutive

relation (4.5) requires a one-to-one correspondence between the

strain and stress. If unloading occurs, the relation between

strain and stress wiII no longer be one-to-one correspondent'

Therefore, unloading violates the path-independence of the

J-integral. strictly speaking, J-integral is valid r.or

non-linear elastic material-
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Further, it has been shown tfrat[53] J may also be expressed

(4.6)

where U is the potential energy functional and B is the

of the plane. By equation (4.6J, J-integral may be inte

as the potential energy difference between two identical

bodies of incrementally differing crack Iengths"

rt has also been shown by Rice[52] that for Linear

materials, the J-integral is identical to G, the energy

rate per unit crack extension" Therefore

thíckness

rpreted

1y Ioaded

elastic

release

.,2!\-
IJ = Gr ---=

- Et

where Kl is the mode I stress intensity factor, and

E' E

Er=
E.

for plane stress

for plane strain1
r-v

The path-independent nature of the J-integral presents a

unique advantage that it is possible to evaluate this integral

along any region enclosing the crack tip. The paths of

integration can be chosen to include the region where the stress

and strain fields can be determined with sufficient accuracy-

Hutchi^"orr[54] and Rice and Rosengr"r,[55] have proven that

for maLerials following a power law hardening stress-strain
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relation such aS Shown in equation ( 4 " 5 ) , the stress and strain

field near the crack tip can be characterized by the J-integral

AS

oij * (J/rrL/(P+L)

"ij c¿ (J/r¡P'l(n+1 )

( 4 .1 a )

(4-1 b)

where r is the distance from the crack tip. Equation (4-1) is

known as "the HRR singularity" in the Iiterature"

Begrey and Landes[56] ".rgg.sted 
the J-integral to be the

fracture criterion in elastic-plastic situation. The measuremenL

techniques for JIC, the critical value of the J-integral for

crack initiation, have been proposed by Landes and Begl"O[ 57 ] and

Rice, paris and r[erkt"[58]. These techniques have been

documented in ASTyI standard EB13-B1t59l -

Although the path-independency of the J-integral is based

on t.he deformation theory of plasticity (equation (4"5) ) '
experimentation and computation have shown[60], despite lack of

proof, that J concept can be extended to situation involving

incremental plasLicity behavior-

4.4.2 C parameter
*

( 1 ) Definition of the C integral

Consider a material whích deforms in steady-state creep

according to the Norton's creep law (equation (2'3)):

'n
8=Ao-- (4.8)
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Comparison of equations ( 4.5 )

equations have a similar form,

replaced by strain rate. BY a

Landes and eegte"[ 62 ] suggeste

'f*'i'c*=l*-dy-Titd"
lr ' ax

and (4"8) shows that the two

with the strain of (4.5) being

nalogy, Turner and webster[61] and

d an expression for C* integral as

(4.e)

where w* is strain energy rate density given by

w = | o. de.1l tl

and u, is the displacement rate vector"
lk

By analogy with equation (4"6), C" can afso be expressed as

. Ldù (4.r1)
Bda

where u is the potential power and is analogous to the potentiaJ-

energy U in equation (4.6)"

(2) Near-tip sLress field

Gordman and Hutchirr"orr[63 ] have shown that the near-tip

stress and strain rate distribution in a cracked body undergoing

purely steady-state creep deformation are characterized by C*'

oij o' (c* /rrt/(n+L)

år, d (c*/rrn/(n+L)

( 4.10 )

(4-72 a)

(4-I2 a)
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For the case involving elastic and power law creep strains

Riedel and ni""[64] have analyzed the asymptotic solutions and

shown that the stress singularity near the crack tip is of the

order of ,-7/n+L in comparison to the inverse square root

singularity for an initial elastic stress field. From the

analysís, the creep zone síze rc is given by

l_

(.-2n tïl
f( n+1 ) 

2 rn at1 2/ (n-Ll

t-;5t-J u.'t'r (4.13)

( 4 -L4l

cracks,

stress
66 | have

rack

ng sol

the va

where Ki is the initial stress intensity factor, E is Young's

modulus, A and n are defined in equation (4.8) and *f-1i"

approximately equal to unity. Fcr(e) is a function of angl-e (O)

measured from the plane of the crack in the anticlockwise

direction and is given in Reference t6a¡. Riedel and Rice have

also defined a characteristic time for the transition from srnall-

scale creep to extensive creep of the whole Specimen given by

Kz ( t-.,2 )

t. =I E (n+l- ) C

where v is Poisson's ratio"

white the above analysis pertains to stationary

some progress has been made in analyzing the near-tip

field for a movins crack. Hui and Riedelt65l and Huil

analyzed the steady state asymptotic fields around a c

propagating at constant velocity in a power law creepi

They concluded that the stress singularity depends on

id.

lue
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of the creep exponent n' For n ( 3' inverse square root

singularity exists, while for n ) 3, stress-strain singularity is

of the form of r-L/(n-l) and depends only on crack growth rate

andnotonappliedload.Theimplicationisthatforcrack

growthratesgreaterthansomeminimumvalue,therateSare

proportional to Kn for small scale creep and for the growth rates

less than the minimum, oo stable steady-state growth is possible '

Hart's observations are simiru'[67 '6Bl ' However' these anaryses

r,¡ere based on a small scale creep assumption while neglecting the

influence of crack tip stress relaxation'

(3) Determination of C^

TheexperimentaldatareductionschemeernployedbyLandes

and eugl.y[62] is anarogous to that previously "*proy"d[57] 
in

determining J. The test procedure is summatized in Figure 4'2'

Thedataarecollectedasloadandcracklengthversustimefora
constant displacement rate, step 1-. These data are then used to

determineloadasafunctionofdisplacementrateforvarious

cracklengths,step2,andcrackgrowthrateversuscrack}ength'

Step 5. The power or energy rate input' ù' is measured as the

area under the curves in step 2. ù is plotted versus crack

length in step 3. The slope of the curves in step 3 is c* as

def ined in equation (4.l-1) . c* can be plotted as a f unct j'r-rn of

displacement rate, step 4. Combining the curves from step 4 and

step 5 gives the desired result of crack growth rate versus c*,
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Step 6

tests "

This method involves 6 steps and requires data from many

Several approxinate expressions of the C* integral have

been developed to sÍrnplify the test procedure for the

determination of C*. These approximate expressíons were derived

based on the definition of C*, equation ( 4. l-1 ) , in conjunction

with the Norton's creep law, equation ( 4 " B ) . The lirnit 10ad

analysis techniqu el12 I *u" used to give the following approximate

expressions of c* for different specimen geometries:

Nikbin, webster and Turner[69]

c
dA

( for Double Cantilever
da

Beam specimen )

( 4.]_s )
B n+1

Harper and

te rm

f 7n IEIIison' '"'

N PÀ

n+1 BW t:
(-

t:['^'

dml
" 

.(.rÐJ

dml
I for commonly used

d(a,zw)l can be found
specimen geometr

in Reference Í'lL,
i."l
12t )

(4.16 )

(4.17 )

Koterazawa and Mori [ 73 ]

PA

e(w-2a)

2PA

B(W-a)

(for Double Edge Notch specimen)(-

c ( for Compact Tension SPecimen)
(4.1_B )
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ohji, Ognia and rrrno[74]

-* 
n-L 

ttre Notcr'e¿ specimen )C" = -- onet ô ( for Cer
n+r (4'l-9)

* 2n-1
C = 

-l 
6net 6 (for Round Notched Bar specimen)

2n+1 rreE (4-20')

whe re

P = aPPIied load,"

W : width of the specimen;

^ 
- displacement rate at the load point; and

ô : crack opening displacement rate'

These expressions aIlow C* parameter to be experimentally

determined by using single specimen"

( 4 ) Relevance of c* to creep crack propagation

It appears that C*-purameter correlates the crack growth

rate better for a broader range of conditions than other

parameters such as K and onet and hence received more attention

than the other parameter"[ 75 '76 '77 | . However ' c*-p.rameter, Iike

K and onet, has its limitations. The conceptual difficulty of

* - r- ^L LL-! LL^ -^=l ^^" U 
*

c -paramete r results f rom the f act t.hat the analogy betweetr c

and J is mathematical, Dot physical. Although the potentiaì

energy U in equatíon (4"6) has definite physical significan':e

in elastic analysis, there is no corresponding interpolat i-r-rrr

of the identical function ù in the creep analysis. The quantity

which does have physical significance in the rate problem is the
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creep energy dissipation rate which is equal to the power applied

to the specimen at loading points. The approximate expressions

(4.L6 to 4.18) established the relationships between C* and the

creep energy dissipation rate PÅ. Therefore, C* may approx-

imately be defined as the rate of change of creep energy

dissipation rate with crack length" However, it must be stressed

that this cannot immediately be related to the energy release

with crack growth. Furthermore, expressions ( 4.16 ) to ( 4 - 18 )

have indicated that in different specimen geometries, the

proportion of the power input which will be expended ín crack

growth wiII differ. This fact implies that the C* correlation

may be affected by specimen geometries and initial crack

lengthstTB]. Despite extensive work using this parameter, it

remains to be proven that there exists a uníque da/ð,L c*

relation for a wide range of conditions-

rt must be emphasize that the path-independency of the C-

integral requires the strain components other than the secondary

creep to be excluded in the analysis. Strictly speaking, C* is

only applicable Lo secondary creep. NegJ.ecting the tertiary

creep impries that c* approach is valid only if the damage

accumulation is Iargely confined to the immediate crack tip area"

In other words, Co-purameter is valid under small scale damage

conditions. For materials that exhibit pronounced tertiary

creep, the widespread creep damage growth ahead of the crack will

invalidate the characterization property of C*.

ïgnoring the plastic strain Iimits C* to be valid only

under small scale yielding conditions. An instance reported by
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f an l
Sexana et altuul clearly shows the need to include plasticity in

the creep fracture analysis. They illustrated that for the 316

stainless steet at 594"C, plastic strain dominated the creep

propagation process. To remedy this, Liu and H"rr[81] proposed

* -- ,(

the C" integral which modified the C" expression by including

a pru"ti" energy rate integral term" They claimed that this

parameter can uniquely charactetíze creep crack growth behavior

from the small scale yielding to extensive yielding' However,the

creep raw used in c; is still the Norton's steady-state creep

1aw.

4.5 Continuum Damage lulechanics Approach

It is cÌear from the above review, that the correlations

between the various proposed parameters and the creep crack

growth rate are basically empirical" None of these theorj-es

has been justified by consideration of the physical mechanj-sms of

creep fracture. This is the principal deficiency of these

techniques since the purpose of developing such theories is to

extrapolate short-term laboratory data, obtained from small

specimens, to large structural components which are expected to

operate for thousands of hours. The only characteristic that can

be used to justify such extrapolation is that the same physj-cal

mechanisms operate in the short term ín the laboratory, as

operate in the long term in the reaf structure. It is

imperative, therefote, that further developments of these

theories be related to the governing physical mechanisms'
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The continuum damage mechanics approach was first

introduced by Hayhurst et aI[82]. rn this approach, a

constitutive equation of the continuum damage mechanics, equation

(2.7), was used to describe the entire creep and damage processes

under multiaxial states of stress. The boundary value problem

for cracked specimens is solved'by using the finite element

method" The method allows lreep damage to grow and Lhe local

failure occurs when the damage parameter in an element reaches

the value of unity. After element failure takes place' the

boundary value problem is redefined" In this wêfr the

advancement of a zone of damage or a crack may be modeled' The

unique advantage of the continuum damage mechanics approach is

that it is consistent, to some extent, with the physical-

mechanisms that. cause creep crack growth, âs described by

Hayhur"tI B2 '831 -

Hayhurst et al[82] studied crack growth in externar]y and

internaÌly cracked tension members under steady load in various

materials of aLurninum aIloy, copper and in 31-6 stainless steeI.

The following major conclusions were drawn from his studies:

(1) The principal effect of continuum damage is to weaken the

strength of the singular stress fields and eventually to

nullify them. The near-tip stresses are overestimated by

t(the C" approach, which ornits the growth of continuum damage

as a field quantitY; and

(2) The orientation of a growing crack propagation is dependent

on the multiaxial stress rupture criterion of the material,

the geometry of the cracked body and the loading
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conditions. This behavior can not be modeled by other

theories.

Although Hayhurst's continuum damage model appears to offer a

great promise in creep fracture research, there are certain

shortcomings in his approach. First, the instantaneous pl-astic

strain was omitted in his m.odel'. It would be expected that the

instantaneous plastic strain near the crack tip will give rise to

a pronounced crack blunting before creep crack growth takes place

and the blunt crack wÍ11 cause widespread damage. Therefore, it

is important to consider the influence of the plastic strain on

the damage evolution and crack propagation'

secondly, the Hayhurst's method necessitates the use of the

finite element analysis to solve the boundary value problem' Due

to the highfy non-linear constitutive equations involved in the

description of the creep strain and damage evolutions, the

numerical time-integration can present difficulties"

Thirdly, this model assumes that the fracture of an element

occurs when the damage parameter c,l in the element approaches the

value of unity. It is clear from equation (2.1) that both creep

strain rate and damage rate approach infinity aS o+l-' This gives

ríse to a very serious numerical stability problem in the

computations.

FinalIy, Hayhurst modeled the fracture process of the

cracked specimen in an element-by-element manner. The fracture

behavior predicted is, therefore, dependent on the shape and síze

of the elements. At this Stage, the continuum damage mechanics

method appears to be capable of predicting the rupture time of a
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cracked body rather than the crack initiation and the subsequent

growth "

4.6 Cyclic Creep Fracture

Many components operating at elevated ternperatures are

subjected to combined monotonic,and cyclic loading which can l-ead

to creep-fatigue interaction. The interaction of fatigue and

creep or the effect of hold-times in Iow-cycle high-strain

fatigue testing has been the subject of several revi"*"[84'85]

and some predictive techniques, such as Iinear damage summation

rnethod, frequency-modified strain range method and strain range

partitioning method have been developedI B6 ' B7 ' BB ] . rn gene rar,

no single method is inherently more accurate than the other,

although the linear damage summation method is the method most

widely incorporated into design procedures due to its relative

ease of application to a wide range of relevant creep-fatigue

situations. The Iinear damage summation method is based on tirne

and cycle fractions usinq a Iinear cumulative Iaw equated to

unity at failure, but it is often found that the combined effect

of creep and fatigue was more damaging than the above model

Suggested. These models for creep rupture under cyclic stress

conditions have been derived for uniform sections and the effects

of stress concentrations due to the presence of cracks havr¿ not

been taken into account"

Experimental work on crack propagation under cyclic creep

conditions is very limited" The test results on l- cr-Mo-v steef
t Âo I

by Ellison and Waltonto'J and on 0.5 Cr-I{o-V steel by Smith and
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webster[90] showed that for the creep dominated fracture' the

crack growth rate can be accelerated by the increase of loading

frequency. one typical example is given in Figure 4.3t901 -

Another ínteresting phenomenon is that the Lransient stress

redistribution ahead of the crack tip is faster in cyclic tests

than in static tests. These observations were supported by

HarPner[ 91 '92] '
Thelineardarnagesumrnationmethodhasbeenappliedto

cyclic creep crack propagation by Ellison and WaIto"[89]' They

attempted to predict the cyclic creep crack growth rate by the

linear summation of the independently assessed contributions from

creep and fatigue as

(da/dL)c-t = (daldt). + da/dn dn/dt ( 4 -2r)

They found, however, the crack propagation rate predicted by this

model was much lower than the test results' Àttempts to

correlate the cyclic creep crack growth rate with C*-ptrameter

have arso been madefgz'93'941. so far, there is no firm evidence

of a unique relationship between c* and the cyclic creep crack

growth rate. rt is doubtful that the c* approach could be used

incycliccreepfracture,âsfrequentlylargeunloadingsin

cyclic "orraitions 
seriously violate the requirements of the path-

independency of the c* integral '

The reason why load cycling accelerates the creep rjt-ar:k

propagation has not. yet been explored. one possibility i s I lrat'

,as suggested by Erri"orr[ 75 ] and webst.r[ 931 , the stress leve]-s

are ,rejuvenated' after each cycle, which implies a more damaging
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situation than in the static load case. However, this

speculation has not been verified. The present work will

investigate the stress redistribution and damage evolution near

the crack tip under cyclic loading situations and assess the

effect of the loading frequency on the creep crack growth.
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CHAPTER 5

FINITEELEHENTT'foDELFoRcYctlcCREEPFRACTURE

BYCoNTINUUHDAT'IAGEHEcHA'NIcsÀPPROACH

5.1 rntroduction

Theforegoingliteraturesurveyhasrevealedthata}Ithe

proposedcreepfractureparametersaresubjectedtoSome

restrictions from the material ductility, specimen geometry'

initial crack length and loading conditions. There is no single

parameter which is capable of correlating the creep crack growth

rate for a wide range of materials and test conditions' There is

no theoretical evidence so far that these parameters can be used

in cyclic creep fracture situations"

The continuum damage mechanics rnethod has successfulJ-y been

applied to creep crack propagation problems' The attractive

featureoftheapproachisthatthecreepcrackgrowthis

predicted by evaluating the local darnage evolution near the crack

tip. obviously, this method can be applied to the cyclic creep

fracture if the local stress-strain-damage states near the crack

tip can be determined in cyclic loading cases'

As described in chaptet 4, the major difficulties involved

in the continuum damage approach are: (a) the absence of plastic

strains; (b) numerical instabilit'y aS o+1; and (c) mesh

dependence of resuItS. To extend the continuum damage ¡r'r'lt;r¡ri'cs

method to cycle creep crack growth problerns, these obstar-:'l-r:rr have

to be elirninated -

Thischapterpresentsafiniteelementmodelforcyc|-ir;

creep fracture, which includesz
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(1)acyclicplasticitymodelforthedeterminationofthe

stress-strain variation during plastic loading, unloading'

reversed loading and reloading;

(2,)amixedexplicit_implicitintegrationschemetorhigher

comPutational ef f iciencY ;

(3)amodifiedbreakableelementmodetforsimulatingthecreep

crackinitiationandpropagation.thistechniquecanalso

elirninate the numericar instabirity associated with the

damage criterion and reduce the mesh dependence of the

resul ts .

5.2 CycIic Plasticity Constitutive litodel

5.2;L

As described in section 3.3.5, the Hsu-Bertels plasticity

constitutive model (3.34), which is adopted in the current

version of TEPsAC program, defines a one-to-one corresponclence

between stress and strain' Under cyclic loadings' the

relationship between stress and strain is no Ionger one-to-one

correspondent. A suitable plasticity hardening modet for the

deterrnination of the stress-strain variation during plastic

Ioading, unloading, reversed Ioading and reloading is essential

forpredictionofthematerialdamageduetoloadcycling.
In this study, the plasticity model is based on the

combined translations of several yield surfaces in the stress

t95ìspacedachyietdsurfaceisdefinedbytheVonl{ises

criterion and it relates one of the piecewise linear segments
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idealizing the uniaxial stress-strain material curve to the

multiaxial stress state, âs shown in Figure 5.1' Each yield

surface is allowed to translate in the stress space up to its

bounding yield surface to which it remains connected until the

unloading stage. The translation rate is governed by the l'tltoz's

hardening rulet96l. As shown ir1 Figure 5.2, the Mroz's hardening

rule assumes that the incremental translation of the current

yield surface fl is in the direction of the vector which connecls

thestresspointponthecurrentyieldsurfacetothe
corresponding stress point R on the bounding yield surface fl*1'

The stress point R is defined by a vector ot*¡ which is parallel

to the vector O¡-

The reason why thê Mroz's hardening rule is adopted in the

present study is that the Ziegler's hardening "'Iu[29] is

inconsistent with the theory of several yield surfaces in complex

Ioading cases involving unloading and subsequent Ioading along a

different stress path" consider a two-yie1d surface system in

two-dimensional stress field, as shown in Figure 5'3' As the

material is initially isotropic, the yield surfacet f1 and f 2 are

sinilar and initially concentric, enclosing the origin 0' when

auniaxialstresso2isapplied,thestresspointmovesfrom0

along the vertical axis. By increasing the load, it reaches the

ellipse f t and make" fl moves along this axis until it srìtrl;rill-5

the ellipse f z at A. Now the specimen is partially unloaclerì l-o a

point B inside fl. Next a horizontal stress oL is appliecì ;rttrì

the stress point moves paralIeI to the horizontal axis' rear:hing

the ellipse ft at c. According to the ziegler's hardening rule'
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the instantaneous translation of ft will occur along o1c' It is

impossible in this case, because moving in this direction will

not allow the point c to make contact with the ellipse f2 without

intersectingthisellipse.MrozarguedthatCmustmovetoa
point D on f2 since these two points correspond to the same

direction of outward normal. The instantaneous translation of fL

will thus occur along CD. Mathematically, the translation of the

yield surfaces can be described as

1nì
where c¿:Ï' is the tensor of

L)

t-h
of the nt" Yield surface and

bounding YieId surface with

of the inner Yield surface,

(n+l- )
( n+l- ) ov

: oìi * _?;)
út"'
v

o*lï) = d¡,('' ,'lT*t' "fl)l (s.1)
rl

the accumulated kinematic transl-ation

oÍ1*r) is the stress of therl
the same outward vector as the stress

"f I 
) This requi res thatrl

(n+1)o,.rJ , "lT,
(5 -2)

. ( n+1)where ";"'-'and
end of the (n+1)

uniaxial stress-strain curve and dp is a multiplier"

The employment of the concept of the combination 6rf 1:"rrq¡¡¿]

yield surfaces enables both inclusion of the Bauschinger cf'Icir:t

during reversed plasticity and description of the non-lirre¿¡'

uniaxial material curve_ by several piecewise Iinear segmetìl f: '

The present model assumes that the material is of the llassing

o(t)ur. the material uniaxial stresses at the
v

th arrd rrth rinear segment of the rinearized
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type[109], namely, the stress-strain curves associated with one-

dimensional symmetrical closed hysteresis loops should be of the

same form as the initial toading curve except for an enlargement

by a f actor of two. Iviost of the engineering materials obey the

I,Iassing descriptiorr[ 11-0 ] - Also, it is assumed that the material

preserves in its memory the maximum stress values from the last

plastic Ioading stage.

5 "2.2 Formulations of the cYclic PlasticitY model

the several yield surfaces theory, the nth

, is defined by the Von l'lises criterion as

According to

yierd surface, f(n)

The Plastic flow is now defined

of the plastic strain increment to the

surface at the stress Point:

(5.3)

rq ¿\

by the normalitY condition

associated nth Yield

/tr- qì

TL
the n"" yi etd

,(n)

whi ch

where d\(t)

sur face .

I

S* *
L)

1t=s.. 3'| -l
-J

aI_n Is..rl
')(n)-

o
v

f

S. is
l'1

the translated deviatoric stress tensor defined
1n

by

(n),
-omml,Íj,, - å ,,j ( o*.

deP.1l dx(n)
^.(n)OL

t oi j

is a positive scalar associated with



56

Projecting

surface leads to:

(do. c(n' 1l

where a(n) is a Positive
BY substitution of

obtains

to the outward normal of
r-h

the n'" yield

^'(n) (s.6)
âo.1l

scalar to be determined"

equation (5.5) into equation (5'6)'í one

do.rl

) a"!, I

During the plastic Ioading dX(t)

d\(n) < 0.

By substituting equations (

equation (5"7), one gets

begins when

3.1-5, 3.16 and t\ ra ì I l.ìfl.lJ.¿ I

I
dX(n) = -rnl

C.,,,

(ar(tt)/aor.,) dor..,

,l
(s-7)

(5.8)

af(n)
(5.e)

âokr

with (5.5)' and

), one obtains

dÀ(n) = oiiol dekt

whe re

By combining equations

substituting into equations (

af(n)

âo.1l

(5"8) and (5.9)

3"15) and (3.1-6

oÏir.r

ollu, ) dettoorj = (oTiu, = oilot dtkl ( 5.10 )
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whe re

and

lo

FT oiir.roÏiu,. = 'ii'i, oT:ur ( 5.1r )

(5 -72)

(s.13)

( sum over i, j = I,2,3,

oïTnt = oT 
i r.r

I

il; oTiuroTirt tii 'i,

The scalar a(n) in equation (5.9) physically means the

stiffness of the material during the plastic deformation' As the

stress (?) versus strain (;) curve becomes anisotropic due to the

postulatedshiftoftheyietdsurfaces,thestiffnessofthe

material varies from one direction to another. Taking into

account of such an anisotropy, Hsu suggested that the value of

a(n) can be determined as forrowsl2T\ '

1l-
= 

-c(n, H.- 1l [3_]'

where )
2o"

w

8..rl
H..1l

with 
"(n)

)
= "ij 

(ort)- +

I
rn)

= wêighted H'

defined bY

"j(

o ¡jl

*(n)
E rl"'
EEùL

;1ãI"t
-l

E
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lnl -where Eù--.is the slope of the (n+t¡th l-inear segment of the

uniaxial material stress-strain curve'

Now'inordertocompletethemathematicalformulation,the
lnì

translation of the yield surf ace, d"ì.Ï' def ined by the I"lroz's

hardening rule equation (5.1), should be determined' The scalar

lnld¡1...' in equation (5.1) is determined by the condition that the

stress point remains on the yield surface during the plastic flow

df(n) = (dorj a"[j)l o
tq 1¿l

(5.1-4), one obtains

(s.ls)

into aPProPriate matrix

formul-ations which are

( 5.16 )

substituting equation (5'1) into equation

d/(n)-----tiid"iiroij 1) 'lT', tri

Translating the above equations

forms facilitates the finite element

summarized as f oIIov¡s:

(1)

(21

Consti tutive equation ( 5 ' 10 )

{d"} = [Dep] {de}

Elastic-Plastic matrix

tD.pl ID"] ID"] {s'}1

h( n,
{S'}T tD ì' e-

(s.17 )
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where 
( multiaxiar )

n(n) = a(n) {s,}T {s,} + {s'}r ID"] {s'} (5-18)

with a(n) def ined by the expression (5'l-3)'

(3) ProPortionalitY factor (5'B)

dX(.) = l- {s'}r [D"] {de} (5'1-9)

;l "T
(4) Ivlultiplier (5.15)

{s'}r {do} (5.20)tt =ffi¡lr
{s'}

whe re

( n+1- )

,o(^*1)1 ,..(.+1)¡ + 
oïr, 

(toÌ {.,(n), (5-2L)
dt"'
v

( 5 ) Transtation of yield surf aces (5 ' l- )

(5.22]

Note that the translated deviatoric stress tensor Is']

defined by equation (5.4) and quantitie" h(^), ax(t) and d¡'(n)

are alI related to the nth yierd surface- Therefore, after

completing the stress calculation for every load step, it js

necessary to check which yield surface the current stress state

is associated with. This cyclic plasticity model has been

implemented into the TEPSAC program"

dr(t)
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5.3 ltixed Explicit-Implicit Algorithm for creep stress Analysis

Proper selection of time-integration scheme is a very

importantstepinthecreepstressanalysisofso}ids.Botlr

explicit and implicit algorithns are widely used for such

purposes.Asdescribedinsection3.5.].,theexplicitschemeis

much more expedient in computations than the implicit scheme '

Unfortunately,thisschemeusuallyresultsinanunstable

situation and extremely smalI time increments have to be used'

The implicit scheme is more stable, but requires substantially

more computational effort in every step of calculations'

ThestabilityconditionaSsociatedwiththeexplicit,scheme

ofNorton's..Iawcreep,i'e"equation(3'41)'revealsthatthe

critical tirne step size ensuring stability is controlled by the

elementwherethehigheststressorhighestcreepstrainraLe

occurs"FortheportionofthestructureatalowerStreSSor

lowercreepstrainratermuchlargertimestepscanbeused

withoutcausinginstability"Accordingtoequation(3.41),fot

those elements in which the value of the effective stress is 0'6

of the maximum effective stress in the structure, the time step

couldbel.-Ttogg.ztimesthecriticalone,dependingonthe

value of the creep exponent n which ranges from 5 to 10 for most

metals"ForcreepfracLureproblems'highstressconcentratj-on

occurSatthecracktip,whilestresslevelsintheremainrng

portionsoftheSpecimenarerelativelylow.Selectingtirnestep

sizesaccordingtothecracktipstressorstrainratesis

obviously not economic,al and unnecessary. A desirabte situation'

however, is to develop a computational model which includes both
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these algorithms with the implicit algorithm being used for those

elements near the crack tip and the explicit algorithm for the

remaining Part of the specimen'

5.3.1- Formulat

weconsiderafiniteelementmodelinwhiche}ementsare

partitioned into two groups: the explicit elements and the

implicit elements. The integration schemes corresponding to

thesetwoelementgroups,whichhavebeengiveninSection3.5,

are summarízed as follows:

(1)

(2)

Explicit elements

¡- '¡
{ne'¡ : tt;} ^t

aô = ;,., At

{Ao} [Dep] ( tBl IAu]

( J., tBlrlDltBldv) {^uJ t '[t at

o lvll

dv+{

(5.23)

(î¡.24)

(s.2s)

AFI

(5.26',)

(5 -21)

(5.28 )

(5.2e)

( 5.30 )

Implicit Elements

{¡ec} : t(1 rlteil + Y{;:+1}l ^t ,

A(t) = t (1 v)^., * Yon+l_l At

."c
t Ên+1 l

år,or

= t rif + tHr I { Ao} + {Hz} at¡r + {H:} At

^r, 
+ tGtl{Ao} + GZ At¡
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in which

a{rt} a{rt} a{;"}
tnrl = 

=, 
{Hz} = , {H"} (5'31)

aioi - Ðt¡ ' 5' dt

a," êt¡: (5-32)
rcrr =,.; , G2 =;

then

{^o} = rDXpl (tBl{^u} - {;:} ^t 
(g{Hz}ir, * iHr}) 'ot2)

(5.33)

whe re
*lD"pl {tr1 + vatID"n] (tHrl + vgl|zJtGllAt)]-1 [Dup]

(5.34)

(5.3s )g=
1--'(G.At

rF*(J., IB]'tDåplleldv) {au} =

rr, * 'e-
J., tB1'tDupl (teiÌ¡t + (gt'rr,IH2] + 1Hr]):ot') dv + {AF} (5.36)

Recalt the constitutive equation (2'1)z

3 ( , ì" {s} !m (5-37 a)
{r"}=-Al-l'-t"'2 (1- c c,rj G

;:B

Ä

l--ct)o + ao'l ( s . 37 b )

1--û)

For this constitutive model which will be used in the analysis of

thecyc}iccreepcrackgrowthinthisstudy,thematricesjn
( 5.31- ) and ( 5.32 ) can be expressed explicitly as
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3

=-A
2

,m[åJ' + rar]

( s.38 )

I
I

-
o

(3(n-1)
l-- " (tal{o})
\ zo'

(t0l{o})rtHrl

{Hz} = {H¡} =
, 'c.
t enJ I

1- ct^l

ör¡

o*-ov

, 'c,{r;} (s'3e)
CN m

E

tGll =

1

-+
2

| â o.
lo-+L a { o}

âo I(1-o | (5-40)
a{o}l

For prane "u"" 
[ 97 ]

..o*+oyñ---r 
2

Hence

â o-
I

,f"l=
I

z

o*-ov

( 5.41)

(5 .42 a)

(5.42 b)a;3.
= - {s}'r

â [ "] 2o

The matrix tal in equation (5"38) is defined by the relation

tSl = tal ioÌ. These explicit expressions simplify calculation

and reduce the storage requirement during the computations'

.), ,ê
f"*-""ì + -2
f z ) *Y ['.=]'..'*,

I XY

, ,2

[ïl + 
"*,
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5.3.2 Self-ad'justing element artition of the mixed exPlicit-

implicit scheme

The unique feature of the present mixed explicit-impl-icit

scheme is that the partition of two element groups is self-

adjusting based on the rates of creep strain and damage in these

elements. Before every computation step, the definitíon of

explicit and implicit element groups is carried out according to

the following criteria:

(0)e > (o)s

(;c)s (5.43 a)

(5.43 b)

in which the subscripts e and s denote the current values in the

element and the respective specified values' If either of these

conditions is satisfied in a particular element, that element

wilI be treated as an implicit element. The contrary, of course'

would be treated as explicit elements. If-the parameters {ec)"

and (o)s are properly chosen, implicit elements wouLd take up a

relatively large area in the specimen in the early stage due to

high strain rates in the material during primary creep stage'

The number of the implicit elements will be automaticall-y reduced

with time as the creep deformation proceeds beyond the primary

stage and the creep strain rate reduces. During such time, only

a small numbe r of elements near the crack tip remains to be

treated as implicit. Since implicit elements require many more

operations than expJ-icit elements, this self-adjusting element
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partition algorithm results in a

computational effort.

siqnificant saving in the

Inordertomakethemixedexplicit-implicitscheme
'c.

effective, the parameters (et)s and (ô)s have to be properly

selected. If the values of these two parameters specified are

toosmall,theimplicitelement.groupwouldbetoo}arge,

resulting in low computational efficiency. on the other hand' if

these two values are too large, the implicit element group woul-d

be so smarr that the arrowabre time step sizes would have to

remain very small. From the author's experiences, the values

between 0.01-% - 0-1% hr-1 for (;t)= and between 0'05 - 0'1 hr-1

for tõ1" were found realistic for creep fracture problems'

5"3"

the

time

the

(1)

3 Automatic time step control

Bothconstantandvariabletimeincrementsareallowedin

presentmixedexplicit-implicitalgorithn.Forthevarialrle

stepscheme,theselectionofthetimeincrementisbasedon

following two considerations:

Restriction on the increase in creep strain' It is

suggestedthatthe'magnitudeofthetimestepbere}atedto

the ratio of incremental effective creep straÍn to the

totat effective strain. This ratio is limited by an input

parameterlL,whichcanbeusedtoevaluateanallowa'ble

time step size by the following expression:

Att = tl-
e

t;"Ìr {;'}t;
(5 - 44)
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The value of Tl used bY the author

analyses has been between 0 ' 5 and 1

instabilitY.

Restríction on the increase in the

following relation is ernPIoYed:

I
At. = T,.'

ZL
û)

where r. is an inPut Parameter
L

on the basis of the changes of

may be selected from the range

our comPutational exPeriences'

in the creep fracture

.0 with no indication of

damage Parameter - The

controlling

the damage "

0.05 to 0.1

tq ¿6'|
\ 

J 
' 

¡v 
/

the time stePs

The value of ,z

, according to

Condi t i ons

the structure -

calculations can

(5 .44) and ( 5. 45 ) are aPPl

Then the time increment for

be selected bY

ied to aII elements of

the next steP of

(5.46 )

the ti.me

previous

At = minIAtl'^t2]

Since oscillations may result from abrupt changes of

step, a limit of time step change to one hatf of the

step was adoPted.

Thepresentmixedexplicit_implicitalgorithrnhasbeen

implemented into the TEPSAC program. The details of the computer

implementations and numerical examples showing a high compttta-

tional efficiency of this algorithm can be found in the author's

t 9e I attached to this thesis as an Appendix " lfhisrecent PaPer'

algorithrnhasalsobeenappliedtocreepfractureproblemsto

provide a more realistic approachl99l '
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5.4 'Breakable Element' Algorithm

The ,breakable element' algorithm was first proposed by Hsu

and Berters to model crack growth in an erastic-prastic fracture

r 100lanarvsrs- The concept of the 'breakable element' is Ì:ased

on the successive reduction of the stiffness matrix of elements

containing crack tip during crack growth. Hsu and t<iml101'102]

further improved the computational accuracy by creating a pseudo

nodalpointintheelement.Thispseudonodalpointmoves

through the breakable element as the crack tip extends ' producing

a smooth crack growth. This numerical technique in conjunction

with the rupture strain criterion has recently been applied to a

creep crack propagation problem by Hsu and Zhait103l.

In this analysis, a modification in the 'breakable el'ement'

model has been made to incorporate the damage criterion of the

continuumdamagemechanicsasdescribedinSection4"5"Tlre

Iocal remesh of the element containing crack típ is introduced to

avoid the deterioration of the crack tip element, which may take

place when the crack tip nodes approach the nodes of the adjacent

element during crack growth. The procedure of the 'breakable

element' technique employed in this analysis is outlined as

fol Iows :

step 1 A number of 'breakable elements' are positioned al-r-rn9 the

expected crack path as shown in Figure 5'4(a) ' Upon compl-etion

of the StreSS analysis at any time step, the values of the damage

parameter ô in breakable elements are extrapolated as a smooth

curve toward the crack tip using a least sguares curve fitting
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technique"Usually,thedamagec,:changessignificantlyattlre

first four element immediately adjacent to the crack tip'

Therefore, the damage o at the crack tip is extrapolated based on

the values at the centroids of these elements, as shown in Figure

5.4(b).Thedistributionofthedamagec¡aheadofthecracktip

is thus expressed as

t¡(x) ul*3 + uz*Z + u3* + a4 rq ¿,1\

where x denotes the distance from the crack tip along the crack

path and ul-, uZ, u3 and u4 are constants derived f rom the l-east

square-'ana}ysisoftheaveragestrainsattheelementcentroj.ds

(x!,*Z,x'xn). The extrapolated damage at the crack tip can be

expressed as oext co(0) ' No crack extension is considered to

occurifôexts0.gg.Thecomputationmayproceedfurtherunti

ôext

Step 2 At the

element, crack

extension, Ax,

equation ( 5.47 )

time 6ext > 0-99 in any portion of a breakable

growth process begins and the amount of crack

is evaluated by solving for the value of x in

at which <o(x) 0"99-

Step3Theoriginalnodalpointsatthecracktipareshiftedby
the amount ax shown in Figure 5.4(b) to the positions of tl¡e

pseudonodalpoints,whichspecifythecurrentlocaLionofthe

crack tip. Figure 5.5(b) illustrates schematically the shifting

ofthecracktipnodes.Thevalueofthedamageointhenew
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crack tip element is updated by using equation (5'41) ' based on

the location of the element centroid'

Step 4 The IK]e matrices of the elements surrounding the crack

tiparere_evaluatedforthenexttimestep.AsshowninFigure

5.5(b),thenodalpointshiftchangesthegeometriesofelements

surroundingthecracktip.Thegeometrychangeintheseelements

causes a change in the tBl matrix, which in turn changes the tKl

matrix in equation (3.4)" Thus, after the crack tip nodes shift'

the IK]e matrices of the corresponding elements are evaluated

according to

lK, le = Jv, ¡e'lT tDl IB'] dv' (5.48 )

where IK']e is the re-evaluated IK]e matrix;

[8,]isthetB]matrixafterthenodalpointshift;and
v, is the changed volume of the efements surrounding the

crack tiP "

step 5 The shifting to the new pseudo nodal points at each tirne

step continues so long as ôext exceeds 0'99' If the crack tip

reaches the middle point of the originat crack tip element' this

pointbecomesthenewcracktipandthetopologyisloca}ly

modified as shown in Figure 5.5(c). The erement is then

considered to have fractured and incapable of carrying any load'

Consequently, the nodal forces carried by this element before it

breaks have to be released and the equivalent stress field near
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the crack tiP has to

with those elements

surfaces taking most

the following nodal

be redistributed to the entire structure'

immediately adjacent to the new crack

of it. This force release is simulated by

force relaxation steP.

step 6 The stiffness matrix of'the broken element is set to be

zero so it will not carry any load in the further analysis'

since relaxation occurs in the direction normal to the path

of crack growth, the equivalent forces are apptied to the

structure as illustrated in Figure 5.6. These forces applied to

each node can be calculated bY

Fl_ = î2 oyy L/4 (s.4e )

inwhicho.---isthestresscomponentnormaltothecracklinevv
before the element breaks and L is the original length of the

breakable element. In order to maintain a smooth computation'

smallloadincrementshavetobeused.Theequívalentforces

are, therefore, applied to the specimen over 1-0 equal incremental

loading steps. A stress analysis on the entire structure is

performed with these nodal forces, while the external load

remains const,ant during this process. The increments of dis-

placements and stresses so derived are added to the accuml-rl ated

displacements and stresses of the structure'

The ,breakable element' technique described above can

effectively overcome the instability problems associated with the

creep crack growth analyzed by the continuum damage approach'
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Although the extrapolated damage in the portion of the element

near the crack tip exceed 0.99 when the crack extends, the val-ue

of the damage aL the centroid of the crack tip element which is

used in the cornputations is still well below this critical value '

consequently , fêlatively large time steps can stil1 be used with-

out losing stability even when the crack starts to gro\¡I" Further-

more, by using this numerical model, the onset of the creep crack

growth can readily be predicted and the amount of the crack ex-

tensions can also be determined. Therefore, this model is cap-

able of simulating the entire process of creep crack propagation'

5"5 Computer Code 'TEPSAL

A finite element computer code TEPSAC[27] (ThermaI

Elastic-Plastic Stress Analysis with Creep) has been employed in

this investigation for the numerical modeling of cyclic creep

crack growth. The TEPSAC code was originally developed by Hsu

and his associates[104] to analyze thermal elastic-plastic stress

problems. The code, although linited to two-dimensional plane,

or three-dimensional axisymmetric Structures, can handle Iarge

classes of thermomechanical problems using a simplex element

algorithm. The fracture mechanics module has been implemented by

Kim[102] to simulate stable crack growth. As described in this

chapter, this crack growth model has been modif ied and a r:yclic

ptasticity theory and a mixed explicit-implicit integration

scheme have been irnplemented. Vüith these modif ications, the

TEPSAC code now becomes a powerful computer program dealinq with

cyclic creep crack propagation problems"
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CHAPTER 6

CREEPcRÀcKGRoWTIIUNDERSTATICLoADINGS

6.1 rntroduction

The finite element computer program TEPSAC with the numerical

modelingtechniquepresentedinChapter5isernployedinastudyof
the creep fracture behavior of a 316 stainless steel panel subjected

to static loadings. The main concern of this study is the role of

the instantaneous plasticity in the creep fracture' To the author's

knowledge, since the plastic strain is usually neglected in most of

creep fracture analysis, its effects on the creep fracture behavior

of materials are not clear yet" Thto cases' one with and the other

withoutplasticstrains,areanalyzed.Theinfluenceofhheplastic

strain on the stress redístribution ahead of the crack tip' on the

darnage evolution, and on the crack initiation and subseguent growth

are discussed.

6.2 Description of the Problem

Acentre_notchedpanelwiththedimensionsdefinedinFigure

6.lissubjectedtoaboundarystresso0:T0lrlPa.Thisplateis

assumed to be in plane stress condition'

Thematerialofthisplateisassumedtobe316stainless

steel at 650oC. The uniaxial tension stress-strain curve of this

materialat650oc,whichistestedinthethermomechanics].al.latthe

Universityofl,lanitoba,iSshowninFigure6.2.Thiscurveis

idealized by three piecewise Iinear segments depicted by dotted

Iines.Thecorrespondingelastic_plasticpropertiestakenfrom

this figure are given in Table 1"
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TABLE 1

ELASTIC-PLASTIC

Modulus of ElasticitY

PIasti c Tangent llodul i

YieId Strength

l_

11ì
t

()\
t

t1\
úys

(2)
oys

130,000 YiPa

5,000 MPa

2 ,66 7 I'lPa

120 l4Pa

165 MPa

TABLE 2

CREEP PROPERTIES OF 316 STAINLESS STEEL AT 650OC

A

n

m

B

0

c[

-151,.L4 x l-0

5"51-

-0 .41

0.7
-1 ?2.64 x i-0

4.23

0"7

(units in megapascals, absolute creep strain and ho-urs)
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Theuniaxialcreeptestsforthismaterialwerealso

carried out in the thermomechanics lab' The uniaxial creep data'

as shown in Figure 6.3, were used tO determine the material

constants involved in the creep constitutive equation (5'37) '

The parameter d¡ which determines the damage evolution under a

murti-dimensionar stress state, ,.was taken f rom Hayhurst et

ut[82]. The creep properties were determined by fitting the

curves in Figure 6.3. Table 2 Summarízes the creep properties

used in the anal-Ysis.

AfiniteelementmodelofthespecimenisshowninFigure

6.4(a),withthedetailsoftherefinedmeshsurroundingthe

crack tip given in Figure 6'4(b) ' Due to the symmetry in

geometry and boundary conditions, only one quarter of the plate

needed to be considered. A total 0f 3I2 elements were used

together with 273 nodes representing 506 degrees of freedom' In

order to minimize the possible discretization effects on crack

growth,elementsofrelativelysmaltsizeweredistributed

uniforrnly in the vicinity of the crack tip. A layer of identical

quadrilateral elements representing the breakable elements was

placed along the projected crack path' The height of each

breakable erement was 0.05mm, that is, L/200 0f the originar

crack length.

Byusingthisfiniteelementmodel,twocasesofcree[l

crack growth are studied. case l- is a fully elastic-plastj c-

creep analysis. In case 2, plasticity is excluded by settì'ng a

artificially high value of the yield strength for the material'
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6.3 Predictions of Crack rnitiation and Crack Growth

The creep crack growth histories of the specimen for the

cases with and without plastic strains are depicted Ín Figure

6.5.Thepredictedcrackinitiationtimeforthecasewith
plastic strains is LBz hours, while the Same tirne for the case

without plastic strains is 276 hours. The incubation time in the

Iater case is about 50t longer than that in the former case' on

the other hand, âS indicated in Figure 6.5, the crack grows much

slower in the case with plastic strains"

A direct correlation of the numericar predictions to test

data is not available in the present stage' However' Figure 6'6

showsacomparisonofthepresentstudywithexperimentalresults
presentedintTg].I{assandPineaucarriedoutthecreep

fracture test. for 3l-6 stainless steel at 6000c and correlated the

crack growth rate to the c* parameter. rn the present study, the

crack growth rates,;, were directly obtained from Figure 6-5 and

the corresponding values of C* were calculated by using equation

(4.]-9).ItcanbeseenfromFigure6.6thatthecrackgrowth

ratespredict'edinthecasewithplasticstrainsagreewiththe

test results very vrell. The predicted crack growth rate for the

casewit'houtplasticstrainsappeartoohighincomparisontothe

test results. Note that the test temperature is not exactly the

sameasusedinourstudy.However,sincetherelationslri.¡l

between the crack growth rate ; and the c* parameter is

temperature independent as pointed out by Taira and ohta";'[]06l'

these comparisons are still useful"
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Taira and ohtani[106] tested 304 stainress steet at 6500c.

Figure 6.7 shows the correlation between the crack growth rate

and the net section stress. As the chemical compositions and the

creep properties for 304 ss and 316 SS are quite close, it is

possible to compare our numerical resufts with their test data'

Figure 6.7 shows that the crack'growth rate predicLion for the

case with plastic strains is in good agreement with the test

results. rt seems that the case without plastic strains predicts

too high crack growth rate.

The fact that these comparisons are all in favour of the

case with plastic strains suggests that the instantaneous

plasticity should be included in the creep fracture analysis. to

obtain a realistic prediction of the creep crack initiation and

propagation. More experimental verifications of the analytical

results are necessary to confirm this point'

6 "4 Plastic zone

In finite element computations, Plasticity is defined by

the value of dÀ, determined by equation (5.19)" Areas in which

this value is greater or equal to zeto are denoted in Figure 6'B

as the plastic zone for various stages of creep in the specimen"

The initial plastic zone right after loading is relatively large'

As indicated in Figure 6.8, the plastic zone shrinks very

rapidly. After t hour of creep, the plastic zone diminishes to a

small region near the crack tip. After l-0 hours, it is confined

to only- a few elements away from the crack tip' It is

interesting to note that at that time, the crack tip element is
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no longer plastic and the plastic zone moves away from the crack

tip. The plastic zone vanishes before the crack propagation

begins. In the crack propagation staqe, the entire region of the

specimen is actual.ly in an elastic state '

The rapid diminishing of the plastic zone is due to a fast

stress relaxation in the plastic zone. The high stress level in

the plastic zone causes fast creep deformation which ís

constrained by surrounding elastic region where the creep strain

is much lower. consequently, unloading in the plastic zone

occurs and the plastic zone shrinks.

The short duration of the plastic strains in the specimen

does not mean that the influence of the instantaneous pLasticity

is insignificant. On the contrary, the instantaneous plasticity

significantly affects the entire creep fracture process" It has

been shown in the previous section that the presence of plastic

strains Ieads to a prediction of considerably earlier cracl"

initiation and slower crack propagation" Its effects on the

stress distribution and the damage evolution ahead of the crack

tip witl be discussed in the next section"

6.5 Stress Distribution and

In the present study, a crack extension is assumed to occur

when the value of the extrapolated damage at the crack tip

exceeds 0.99. The creep fracture behavior of the material is'

therefore, controlled by the damage evolution and distribution

ahead of the crack tip. According to the theory of the continuum

damage mechanics, the rate of the damage is determined by the
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linear combination of the effective stress and the maximum

principal stress (equation (2.1 b) ). As a consequence' the

redistribution of the effective stress and the maximum principal

stress ahead of the crack tip plays an important role in the

creep crack growth.

6.5.1- Stationary crack

The histories of the effective stress and the maximum

principal stress at the centroid of the element immediately ahead

of the crack tip fot both cases' with and and without pJ'astic

strains, are presented in Figure 6"9 and 6.L0 respectively' The

maximum principat stress coincides with the normaL stress to.the

crack sufaces, i.e. oyy. The effective stress and the maximum

stress decrease with time very rapidly for both cases" As

described in Chapter 4, C* approach suggests that after an

initial- transient period, the near tip stress field reaches a

stabre state characterized by c*. Figures 6-g and 6.1-0 show that

no such stable state can be found when the damage ín the material

was taken into account.

It can be seen f rom Figures 6.9 and 6.1-0 that the initial

stresses in the crack tip element for the case without plastic

strains were much higher than that for the case with plastic

strains " The initial elastic stresses in the f ormer case t:el-axed

very rapidly" Consequently, after a very short time of cI€ep,

the crack tip stresses in the former case became lower than that

in the latter case" This situation lasted for about 130 hours-
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The higher crack tip stresses for the plasticity case

resulted in a faster damage rate in the crack tip element, as

shown in Figure 6.11-. The higher damage rate in turn caused

faster damage accumulation, âs depicted in Figure 6.I2- As a

result, the crack initiation in the case with plastic strains was

considerably earlier than in the case without plastic strains-

The distributions of the effective stress ahead of the

crack tip at various times before the crack initiation are

presented in Figures 6.L3, 6.L4 and 6.1-5. At t - 0, the initial

elastic stress distribution shows much higher stress gradient

near the crack tip than the elastic-plastic stress distribution.

However, at t = 1-0 hours, due to a faster stress relaxation

occurring in the case without plastic strains, the stress

gradient ahead of the crack tip in this case became lower than

that in the case with plastic strain, as illustrated in Figure

6.L4. Figure 6.1-5 indicates that this phenomenon is more

pronounced at | = 1-00 hours. Figures 6.L6,6.Ll and 6.18 plot

the distributions of the maximum principal stress ahead of the

crack tip at various times, showing the same features"

The higher stress gradient near the crack tip in the case

with plastic strains causes the higher gradient of the damage

rate. Figure 6.L9 shows the distribution of the damage rate at

t - L00 hours for both cases. The distributions of the clamage

parameter ahead of the crack tip at | = 1-00 hours for both cases

are depicted in Figure 6"20. In the first two eLements adjacent

to the crack tip, the values of the damage parameter for the case

considering plasticity are higher than that for the case omitting



BO

plasticity. This is the reason why the crack starts to propagate

earlier in the former case. figure 6.20 also indicated that in

the subsequent elements, the values of the damage parameters for

the former case are considerably lower. It wouLd be expectecl,

therefore, that after the first two elements broke, it might talce

longer for the extrapolated damage at the crack tip to grow up

from a lower level to a critical value to cause crack extension

in the former case. This can probably be used to explain the

reason why the creep crack propagates slower in the case wj th

plastic strains than that without plastic strains.

6"5.2 Growing crack

The distributions of the effective stress and the maximum

principal stress at various crack growth stage are plottecl in

Figures 6 "2L through 6.25 and Figures 6 "26 through 6.30

respectively. It is observed from these figures that the crack

tip stress is quite low and the peak stress occurs at a location

away from the crack tip. The C* theory suggests that there j-s a

stress singularity at the crack tip, characterized by the C*

parameter" The present study indicates that this is not true'

These figures also show that the peak stress decreases wíth

crack propagation. This irnplies t.hat there is no stable stress

distribution ahead of the moving crack tip which was suggested by

*the C theory"

A comparison of the sLress distributions for the ca,ses with

and without plastic strains indicates that after the first two

elements broke, the effective stress and the maxímum princi-paI
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stress for the latter case are higher along the crack extension

line.

Figures6.31-through6.35illustratethedistributionsof

the damage rate ahead of the moving crack tip' rt can be seen

from these figures that the damage along the crack extension line

for the case without plastic strains accumulates faster' This is

obviously due to the higher effective stress and maximum princi-

pal stress for this case in the creep crack propagation process'

Thedamagedistributionsaheadofthemovingcracktipare

íIlustrated in Figures 6.36 through 6-40. These figures indicat-

ed that the case omitting plastic strains is more danaging than

thecaseconsideringplasticstrains"Thisiswhythecreep

crack growth rate in the former case is faster'

6 "6 Crack Profile

Figure6.4Lshowsthecrackprofilesforbothcasesatthe

crackinitiationtimes.Thecrackissharperinthecase

neglectingplasticstrains.Thereasonisthatthematerial

becomes Iess ductile in the absence of plastic strains'

Figures6.42through6.4Sillustratethecrackprofilesat

various stages of the crack growth" comparing these figures with

Figure6"42'onemayobservethatthegrowingcrackissha'rper

than the stationary craci.. These results confirm the observa-

tions made by Taira et ttl107]' and Hsu et ar[103]'

These figures also show that both coA (crack opening angle)

andcToA(cracktipopeningângle)arenotconst-ant,Domatter

whetherplasticityisincludedintheanalysisornot"Fora
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given crack tength, cToA for the case omitting plastic strains is

smalIer.

6.1 Brief Summary

Numerical results obtained by using the proposed algorithm ,.,., ,

agreed well with Iimited available experimental results presented

by other researchers. The case studies presented in this chapter

have reveaLed the significance of the instantaneous plasticity in 
,.,,,

the creep crack propagation under static Ioadings. For a cracked

panel-subjectedtostaticloadingS,theroleoftheplastic

strains is to slow down t.he stress relaxation at the vícini'ty of

the crack tip. The slower stress rel-axation causes the damage to

accumulate faster in the near tip region and slower in the area

away from the crack tip. such a confined damage results in an

earlier crack initiation and slower crack propagation ' If- the

instantaneous plasticity is neglected in the creep fracture

analysis, both the crack initiation time and the creep cracl<

growth rate maY be overestimated'

NumericaIresuItshaverevea1ednostresssinguIaritynear

thecracktip.ASwe1I,Dostab1estreSsdistributionaheadof
rt'tt:: rl

the growing crack. These discoveries contradict the prediction by

the popular c* parametric studies'
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CHÀPTER 7

CREEP CRACK GROWTH UNDER CYCLIC LOADINGS

7.L Introduction

Thesignificanceoftheplasticityinthecreepcrack

growth under static loadings has been discussed in Chapter 6' It

would be expected that the plasticity plays an even more

important role in the cyclic loading case. In the absence of

ptastic strains, a Iinear unloading and reloading would not

change the local stress state at the crack tip " Ho\,/ever , j'n the

presence of the plastic strains, a reverse yielding assocjated

with unloading would cause an instantaneous elastic-plastj'c

stress distribution to be superimposed upon reloading' The

stress change near the crack tip would influence the damage

evolution and hence the creep ftacture behavior of the material'

This chapter wiIl investigate the effects of the plasticity on

the cyclic creep crack growth.

7 -2 DescriPtion of the Problem

The major factors affecting the creep crack propagation

under cyclic conditions involve the frequency, the shape and

arnplitude of the Ioading cycles and the operating temperatì-tre '

Since the purpose of the present study is to investigate t-he role

of t.he plasticity associated with unloading and reloading j'n the

creep dominated crack growth, a constant temperature is assumed

in the analysis. For the sake of sirnplicity, the loading pattern

considered here is repeated loadings without a rest period, as
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showninFigureT.l.Theunloading_Letoadingisassumed
done so quickl-y that no creep recovery would take place

period. As explained in Chapter 2' the continuum damage

constitutive model, i'e' equation (2'1) ' can be used to

the creep and darnage processes in the material for this

to l:e

in that

describe

Ioadi ng

patte rn "

The computational model including the geornetry and

dimensions of the panel structure and the material properties are

thosepresentedinChapter6.Threeloadingcaseshavebeen

analyzed. In the first case' a static boundary stress o0 10

ylPaisapplied.TheothertwocasesconSidertherepeated

loadingswitht'hemaximumboundarystressoflo¡{Paandthe

minimumboundarystressof5MPa.Unloadingandreloadingare

executedevery50hoursincase2andevery20hoursincase3"

The results of the first case have been described in chapter 6

andwitlbeusedtocomparewiththatoftheothertwocases.

1.3 Predictions of Crack lnitiation and Crack Growth

Figurel.2showsthepredictedcrackgrowthhistoriesfor

aIl three loading cases. For the static loading case' the crack

initiationtimeisLBzhours,whileforthetwocyclicloading

cases'thecrackonsetispredictedtooccuratl54hoursandl35
hours respectively. This result indicated that for the clriep

dorninated fracture, Ioad cycling can shorten the crack incubation

timeandahigherloadingfrequencycanresultinanearlier

creep crack initiation and rupture '
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Figure 7 .2 also indicates that case 3, in which unloading

and reloading were done every 20 hours, predicted fastest creep

crack propagation and hence shortest Iife time, while case L, the

static Ioading case, predicted lowest crack growth rate and

longest Iife time of alI three caSes. These results are

consistent with the experimental observations reported by rllison

and Wat"or,[89] and Smith and Webster[90] showing that the crack

growth rate can be accelerated with an increase in loading

f requency "

1 .4 Plastic Zone

It has been described in Section 6.4 that for the stati.c

loading case, the plastic zone shrank very rapidly and vanished

before the crack propagation began" This is due to a fast stress

relaxation resulting from high stress concentration in the near

tip region. The variations of the plastic zone for the two

cyclic loadíng cases are depicted in Figures 7"3 and 1 -4

respectively. It can be seen from Figure 1.3 that at the time

before the first unloading, the plastic zone has diminished to a

very smal1 region" Upon unloaditg, reversed yielding occurs

around the crack tip" After reloading, a considerably expanded

plastic zone surrounding the crack tip developed" The éxpansion

of the plastic zone after unloading and reloading is due to the

stress redistribution associated with the cyclic hardening

property of the material" As witl be shown in the next section,

a process of unloading, reverse yielding and reloading raises the

stresses ahead of the crack tip, resulting in a larger yielding
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area around the crack tip. The plastic zone size increases with

the load cyclirg, as illustrated in Figure 7.3" Figure 1 -4 shows

a similar feature of the plastic zones for case 3. Comparing

Figure 7.4 with Figure 1.3 reveals that a higher frequency gives

rise to a faster expansion of the plastic zone, indicating more

influence of plastic strains in case 3 '

The shapes of the plastic zone for various stages of crack

growth in case 3 are plotted in Figure 7.5" As the crack grows'

the plastic zone spreads over a continually Iarger area, finally

reaching a state of gross plasticity" The same trend for case 2'

although to a lesser extent, can be found in Figure 1,3"

Stress Redistribution Ahead of Crack Ti Due to Unloadin

and Reloading

The variation of the maximum principal stress at the

centroid of element 1 in the first loading cycle for case 2 is

illustrated in Figure 7 .6. Point A denotes the initial maximum

principal stress at the centroid of the element immediately

adjacent to the crack tip. After 50 hours of creep, the stress

reduces to point B due to the stress relaxation; then unloading

takes place. When the applied stress drops to approximateJ-y two

thirds of the original value' reverse yietding in this element

occurs. The stress continues to drop until it reaches poì'nt D'

when reloading begins. Upon reloading, the element yields again

at point E" The stress increases with the load until the load

cycle completes at point F. The maximum principal Stress j-n

element 1 increases from point B to point F. Figure 7.1 shows
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the variation of the maximum principal stress Ín element 1 in the

first load cycle for case 3. Unloading starts at point B' which

is higher than B due to less time for creep relaxation in case 3"

After unloading and reloading, the stress increases from B' to

F'. Although the net stress increase, F'B', in case 3 is a

little less than FB in case 2, the resultant stress F' is stiII

higher than Ft owing to a higher unloading point B'. Figures 1.6

and 7 "7 clearly indicate that the stress variation associated

with load cycling is closely related to the kinematic hardening

properties of the material, the loading level and the extent of

the creep stress relaxation.

rigures 7 "B and 7.9 illustrate the redistributions of lhu
effective stress and the maximum principal stress ahead of the

crack tip due to unloading and reloading at t 50 hours in case

2" Both figures show an obvious stress increase along the crack

extension line. Consequently, a significant expansion of the

plastic zone occurs upon reì-oading.

7.6 Stress Distributions and Damage Evolutions Ahead of the

Crack Tip in Cyclic Loading Cases

7.6.1 Stationary crack

The histories of the effective

principal stress at the centroid of

of the crack tip for all three cases

7"10 and 1 "LL respectively" rt can

t.hat in t.he staLic loading case, the

stress and the maximum

the element immediateì-y ahead

are presented in Figures

be seen from these fiqures

crack tip stresses
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continually decrease due to creep stress relaxation- In the

cyclic loading cases, however, the stress relaxation at the

vicinity of the crack tip is frequently interrupted by unloading

and reloading. After every time of unloading and reloading,

crack tip stress increases significantly and then the stress

relaxation re-starts from a new stress level. AS a consequence'

the crack tip stresses in the cyclic loading cases are always

higher than that under static loading. Figures 7.10 and 7.LI

also indicate that the near tip stresses in case 3 are higher

than that in case 2, as the unloading and reloading were done

more frequentlY in case 3 -

Accordingtoequation(2-7b),thedamagerateis

proportional to the +th power of the Iinear combination of the

effective stress and the maximum principal stress (0 4-22, for

this material, see Table 2'). Hence, âD increase in the effective

stress and the maximum principal stress after unloading ancl

reloading witl result in a considerably higher rate of damage

accumuLation in the crack tip element. Figure 1 'L2 illustrates

the variations of the damage rate in the element irnnediately

ahead of'the crack tip for all three cases. After every time of

unloading and reloading, the damage rate increased significantly

in the two cyclic loading cases. Figure 7.12 also shows that

case 3 is more damaging than case 2, since the load change jn

case 3 is more frequent-

Higher damage rates in the crack tip element for cycJ ic

loading cases resulted in faster damage accumulation near the

crack tip. The damage evolutions of the crack tip element for
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the three cases are presented in Figure 7.1'3" It is observed

that the damage evolution ín the crack tip accelerates with the

loading frequency. This is the reason why toad cycling shortens

the crack incubation time and causes earlier crack initiation in

creep dominated fractures"

The distributions of the effective stress ahead of the

crack tip at various times before the crack initiation are

presented in Figures 7 .1"4, 7 .L5 and 7 .L6. AIong the crack

extension line, êffective stress increases with the frequency'

Figures 7.L7, 1.LB and 1.Lg plot the distributions of the maximum

principal stress ahead of the crack tip at various times, showing

a similar trend

It is worth noting that for all static and cyclic loading

cases considered here, the peak stress does not occur in the

crack tip element. The fact that the stress in the crack tip

element is lower than the peak stress which takes place away from

the tip implies that there is no stress singularity at the crack

tip for both static and cyclic toading cases. In other words,

for creep dominated fracture, load cycling does not change the

characteristic of the stress distribution ahead of the crack tip,

although it does influence the values of the stresses near the

tip "

The higher stresses ahead of the crack tip in cyclic

Ioading cases produce higher damage rates in these cases-

Figures 7 .20, 7.21- and 7.22 illustrate the distributions of the

damage rate along the extension line at t - 40, -80 and t20 hours

for all three cases. The distributions of the damage ahead of
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the crack tip for the three cases at various times are presented

in Figures I .23, 1 .24 and 1 .25. These figures clearly show that

the cyclic }oading cases are more damaging than the static

loading case and the case with higher frequeûcY, case 3, is more

damaging than the case with lower frequeñclr case 2'

1 .6.2 Growing crack

The distributions of the effective stress and the maximum

principal stress at various crack growth stages are plotted in

Figures 1 .26 through 1 .29 and Figures 7.30 through 1 .33

respectively. A common feature of these stress curves is that

the crack tip stress is quite low and the peak stress occurs av¡ay

from the crack tip. This fact reveals that for a growing crack,

the load cycting does not change the characteristic of the stress

distribution ahead of the crack tip'

comparing the stress distributions among three cases

indicates that the stresses along the crack extension Iine in the

static loading case is always lower than that in the two cyc-l-ic

Ioading cases. Between the two cyclic Ìoading cases, stresses in

case3areobviouslyhigherthanincase2"Asthecrack

advances, the differences in the stresses among these three cases

appear to become more Pronounced"

Figures 1.34 through 1.31 present the" distributions r-'f' the

darnage rat.e ahead of the moving crack tip. In the static I oad

case, the damage along the crack growth path accumulates

consíderably slower than in the cyclic cases. This is clearly

due to the lowe r effective stress and the maximum principal
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stress in the static case in the creep crack propagation stage'

These figures also show that the differences in the damage rates

among the three cases become larger as the crack propagates.

The damage distributions ahead of the growing crack tip are

iltustrated in Figures 7.38 through 7.4L. These figures indicate

that the damage evolution ahead'of the noving crack accelerates

with the Ioading frequency in the creep dominated crack growth'

This is the reason why case 3 predicts fastest creep crack

propagation and hence shortest Iife time, while case I, the

static case, predicts lowest crack growth and longest Iife time

among the three cases considered here

7.7 Brief Summary

Thethreecasesstudiedint.hischapterhavedemonstrated

the import.ance of the cyclic plasticity in the cyclic creep crack

growth" For a cracked panel subjected to repeated loadings,

unloading and reloading may interrupt the stress relaxation near

the crack tip and cause a significant stress increase aheacl of

thecracktipandanexpansionoftheplasticregion.Asa

consequence, the creep damage accumulation along the crack

extension rine is accelerated by roaã cyclitg, resulting in an

earlier crack initiation and faster crack propagation than the

static case" unloading and reloading more frequently, therefore'

may cause shorter crack incubation time, higher crack growth rate

and hence, shorter life time of the structure. It is clear that

thecyclicplasticityhardeningplaysanimportantroleinthe

analvsis. It would not be possibte to analyze the effects of
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loading cycles on the cyclic creep crack propagation without

suitable cyclic plasticity hardening modeI.
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CHAPTER B

CONCTUSIONS AND RECOHITIENDATIONS

B.l- Conclusions

Àn analytical procedure for prediction of creep crack

initiaLion and crack propagation under statÍc and cyclic ì-oading

conditions has been presented. This procedure includes the

following major elements: continuum damage constitutive

equations for creep deformations; the von Mises yield surfaces

concept coupled with IvIroz's kinematic hardening rul-e f or cyclic

plasticíty response; the mixed explicit-impì-icit algorithm for

creep stress analysis; the modified breakable element technique

coupled wÍth Lhe damage criterion for creep crack initiation; and

propagation and the finite eLement numerical method" This

combined procedure enables the following features:

(1) Inclusion of alI creep stages, i.e" primary, secondary and

tertiary creeps, in the creep fracture analysis;

(2, Prediction of creep crack initiation and subsequent growth

based on the damage accumulation in the vicinity of the

crack tip;

(3) Inclusion of repeated loading conditions which Leads to a

combined creep-cyclic plasticity effect on the creep

dominated fracture; and

(41 High computational efficiency.

Significant observations were made on the creep-fracture

behavior of material through case studies performed on a centre

notched plate structure subjected to a static load to study- A
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number of these observations have never been reported before in

open Iiterature. The role of the instantaneous plasticity in the

creep crack growth was also investigated" The following

conclusions can be drawn from the present research:

(1) The inherent plasticity slows down the stress reLaxation in

the vicinity of the crack tip;

(2') The slowe r stress relaxation causes f aste r danage

accumulation in the near tip region and slower damage

evolution in the areas a\^/ay f rom the crack tip;

(3) Such confined damage at the crack tip results in an earlier

crack initiation but sfower subsequent crack propagation;

and

(4) Neglecting the instantaneous plasticity in creep fracture

analysis may lead to over-estimatíons of both the crack

initiation time and the crack growth rate"

The creep crack growth in a centre-cracked panel subjected

to cyclic loadings was analyzed using the proposed finite element

model. The results of the analysis reveal that:

(1) Unloading and reloading may interrupt the stress relaxation

near the crack tip and cause a significant stress increase

ahead of the crack tip and an expansion of,the plastic

zone i

(2') Cyclic loading accelerates the damage accumulation al-read of

the crack tip and hence, results in an earlier cracl<

initiation and faster crack propagation than static

loadings; and
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(3) In creep dominated fracture, more frequent unloading and

reloading may cause shcrter crack initiation time, higher

crack growth rate and hence, shorter Iife time of

components.

It is also important to note that the present investigation

indicated that no stress singularity existed near the tip of the

crack. As weII, there was no evidence that the stress

distribution showed sign of being stable. Both of these

observations are in contradiction to the results derived bv the
*popular C approach.

8.2 Recommendations

The present study has extended the continuum damage

mechanics method to cyclic creep fracture analysis" The results

from this study has demonstrated the unique advantages of the

present approach over many existing methods. This approach

provides a good potential for further research in the area of the

combined creep-fatigue crack growth. The following

recommendations with regard to further work in this area are in

order.

(1) Experimental verification of the analytical results

produced by the present method is necessary.

(21 Although quite complicated and expensive, it would lrr-¡

desirable to implement a finite strain algorithm giverr in

1,27 ] into the present f inite element modeI, which wor.rl.d

permit more precise-computation of the near tip strain

field.
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(3) It has been reported that creep rupture may occur when the

value of the damage parameter is ]ess than unityll-111- An

in-depth study on the critical value of the damage

parameter for creep rupture woul-d provide more reliable

predictions of creep crack initiation and propagation-

( 4 ) The creep constitutive equation employed in the present

approach is valid only for simply cyclic loadin9s, i-e-

repeated loading without rest. In order to analyze creep

crack growth under more general cyclic loadings,

development of creep constitutive equations capable of

describing more complicated material behavior, such as

cyclic creep hardening and softening and rest tine effects,

i s wa r ranted "

(5) To the author's knowl-edge, the mixed mode creep fracture

has not been studied so far " The dependence of the damage

evolution on Lhe multiaxial stress state permits the

determination of the orientation of creep crack growth in

mixed mode fractures I B2 ] . A step-by-step inte ractive

analysis using the nodal grafting technique[1]'31 combined

with the multiaxial stress rupture criterion would provide

a viable approach tor mixed mode creep fracture"
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A MIXED EXPLICIT_IMPLICIT (EI) ALGORITHM FOR
CREEP STRESS ANALYSIS

G. G. CHEN AND T. R. HSU

Depørtment of Mechanical Engineering, Universitjt of Manitoba, Winnipeg, Manitoba, Canada

SUMMARY

A mixed explicit-implicit numerical integration algorithm for creep stress analysis is presented in this paper.
This method allows simultaneously use of, and thus benefit from, both these integration schemes. The
continuum damage constitutive model is also implemented in this algorithm. The present method is suitable
for the prediction ofcreep crack growth in solids using the continuum damage approach.

Numerical examples using different constitutive equations have becn included to demonstrate the high
efficiency of the proposed algorithm.

INTRODUCTION

Creep stress analysis has received increasing attention in engineering design in recent years owing
to its practical importance in applications such as electric power generation, aerospace and
petrochemical equipment. Generally, creep problems are niore difficult to handle than
elastic-plastic analyses as the.constitutive equations employed in the creep analysis of solids at
elevated temp€rature are usually very complicated. The finite element method appears to be the
only practical solution to this type of problem. One major difficulty of using this method, however,
is that the resulting equations are highly non-linear and stiffin nature. The stability and accuracy of
the finite element solution critically depend on the selection o[ a suitable size of time steps
associated with an appropriate integration scheme. This situation has motivated vigorous research
in this area.

Generally speaking there are two common classes of one-step integration schemes for creep
analysis, i.e. explicit and implicit. The explicit scheme, as suggested by Zienkiewitz and Cormeaur
and Cormeau,2 has been applied with success to a variety olengineering problems. The advantages
of this method are that it is concise and simply coded. The stiffness matrix in this case is constant
and may be factored once and for all. Unfortunately, this scheme is only conditionally stable and
the stability condition is rather stringent. For structures subjected to slowly varying loads, or when
equilibrium response is of prime interest, stability of solution requires much smaller time steps than
those necessary for accuracy- Cormeau has performed a stability analysis and derived the explicit
stability conditions for some simple constitutive relations.2 For the steady-state creep obeying
Norton's law, he presented a simple relationship between the critical time increment Ár" and the
effective stress as

¡¿-.c-L' oL;*'

where õ-., is the maximum effective stress in the region, n is the stress index of the creep law and its
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value ranges from 5 to l0 for most metals. This expression indicates that the critical time step size
ensuring the stability is controlled by the element where the highest stress or highest creep strain
rate occurs' For the part of the structure at.a lower stress or lower creep strain rate, much larger
time steps can be used without causing instability. For instance, for those elements in which the
value of the effective stress is 0'6 of the maximum effective stress, ihe time step could be 7.7 to 99.2times the critical one, depending on the value of the material constant n. since high stresses are
often limited in a small portion of the structure for many engineering problems, especially in creep
fracture mechanics' selecting time step sizes according to the maximum effective stiesses ór highest
creep strain rate is both uneconomic and unnec€ssary. On the other hand, Hughes anã taylorproposed an implicit scheme,3 which has been shown to be unconditionally statle if the scheme
patameter y) 1/2. Although stability of solution does not depend on the size ãf time step used in thecomputation, this me thod requires the use of an iteration pràcedure. The computational efficiency
thus depends on the convergence of the iterations. Kanchi et al.a presented an alternative implicit
scheme by incorporating a linear extrapolation of the creep stråin rate tensor within each timeinterval' A Taylor series expansion technique was introducæd in lieu of iteration. Although
Kanchi's method is not unconditionally stable, computational experiences have shown that it is
much more stable than the explicit scheme with largeitime incremeits. However, since the stiffnessmatrix used in this method is a function of element stresses, reformulation and inversion of thismatrix are necessary for every time step. As a result, all implicit schemes require more computationtime' For large scale engineering problems where a gìeat many elements are involved, thisshortcoming becomes a serious drawback for the implicit methoá.

The mixed explicit-implicit algorithm (or EI schemè¡ can simultaneously achieve the attributes
of both classes of schemes. It can circumvent these difficulties and lead to signiñcant computational
advantages' The mixed integration algorithm which was first proposed by Belytschko anã,Mullen,
and Hughes and Liu6 for structure dynamics,.has been successfuily applied to various engineering
disciplines such as fluid mechanics and fluid-structure interactián pìoblems,7 and has"recently
been extended to linear and non-linear thermal analysis.s' e The purpose of this paper is to applythis concept to creep analysis.

We begin by describing the formulations and the implementations of the EI scheme in thecontent of the general forms of creep constitutional mà¿els. For the implicit element group,formulations of Kanchi's method are modified to include the state variables appearing in theconstitutive equations- we will then discuss solutions derived from simple test problerãs, withemphasis given to the behaviour of material following three different circumstances: von Misesviscoplastic deformation' power law creep and creep-deformation described by the continuum
damage theory.ro
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THEORETTCAL FORMULATIONS

A. Equilibrium equations

. A basic assumption involved in creep stress analysis is that the total strain e can be partitionedinto the elastic e", plastic ¿P and creep e" components, so that the total strain increment can be
expressed as I I

Áe:Âe"+Áep+Áe"
The stress increment is related to the elastic and plastic strain increments
plasticity matrix D by

(l)

through the elasto-

Âc:D(Áe"+Áep) (2)
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In general, D is a function of stresses, but in the absence of plastic strain, it reduces to a matrix of
elastic constants.

The stress increment can be expressed in terms of the incremental displacement vector Au as

follows:

Âo:D(BÂu-Âe")

in which B is the strain matrix.
The equation of equilibrium to be r takes the form

(3)

(4)

where ÂR is the vector of the equivalent nodal load increment due to surface tractions and body
forces, and u is the element volume. By combining equations (3) and (4) the equilibrium equations

becomes

B. Constitutiue Equation

The state variable descriptionr 2 is a widely used method for the prediction of creep behaviour of
materials subjected to general loadings. This method assumes that the creep strain rate is

determincd by the stress and certain well defined state variables such as ar. Mathematically, it can

be expressed as follows:

6'd(o, ar, ú) (6a)

These state variables can completely characterize the current deformation state of the material.

The evolution of these state variables is governed by equations of the lollowing form:

¡¡:fr(o, a) (6b)

The number o[state variables and the functions/, andfrare determined either by the theories of
metal physics or on the results of appropriately chosen mechanical tests. One o[ the commonly
used constitutive models is the continuum damage theory as proposed by Leckie and Hayhurst:ro

satisfied at any time

J "'ooo,:o*

f "'otuo"-Âe")du:ÂR
(s)

.:'r^(*)'*?

^:'(å)'

(7a)

(7b)

in which S is the stress deviator vector and A, B, n, m and p are experimentally determined

constants. The state variable crr is, in some sense, a measure of damage in the material induced by
creep. The value al:0 represents an undamaged state of the material whereas rupture occurs when

a¡: l. This constitutive model is considered to be capable of describing all three creep stages, i.e.

primary, secondary and tertiary creep, in the material. 1o When m: B :0, equation (7) reduces to
the well known Norton's equation which represents the steady-state creep behaviour, in the

following form:

¿:|la,-LS (8)
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C. Mixed explicit-implicit algorithm (EI scheme)

We consider a finite element model in which elements are partitioned into two groups: the

explicit elements and the implicit elements. The integration schemes corresponding to these two
element groups are given as follows.

(l) Explicit elements.
The increments of creep strain Ae" and state

tn+r-tn are defined as

variables Â<r¡ occurring in a time interval Á¿:

and
Áe": diÂr

^<l¡:to"^,
wherene[0, 1,..., N]denotesthenumberofthetimestep.Thestressincrementcanbeexpressed
by substituting equation (9) into equation (3) as shown below:

Áo: D(BÂu-ei^¡)

The element equation in equation (5) now becomes

(J "'ou 
o,)o" :J u'"èiar du + aR

(e)

(10)

(11)

(12)

(13)

(t4)

(2) Implicit elements:
The increments of creep strain and state variables occurring in a time increment Å, are assumed

to take the form

and

and

in which

Áe" : [(l -y)ei +yei*,]Ar

Âol : [(1 - y)<ir, + y<it" *,]Âr
It is readily seen that the explicit scheme is a special case of the above equations with T:0. On the

other hand, the case of y : 1 represents a fully implicit scheme. The case with 7 : 1/2 denotes the

implicit trapezoidal scheme which is generally known also as the Crank-Nicòlson rule of
integration.

Thestatevariablesè,*, andó,*, inequations(13) and(14)canbeexpressedinalimitedTaylor
series expansiona as follows:

All these matrices are evaluated at time Í: ún. For the constitutive model
and (7b), these matrices can be expressed explicitly as

(ts)

(16)

(l 7)

(l 8)

given in equations (7a)

di * r :dl + HtÂo + HrÂo + H3^t

ón+r:ón*GtÁo*GtÂar

ø,:ô#, ,r:u;:, ^_#
c,:T,G,:#

^' 
:1o 

" 
(éa)" :l+J q o) (ao)r + a] (le)
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n.-
H.:-:-8i- l-(Ð"

m--
H.:-¿i't

D@^Gr:i_ã

The matrix Q in equation (19) is defined by the relation

calculations aná reduce the storage requirement during the
--ittur, 

by substituting equation (16) into (14)' one gets

cr:31na,\s

5r5

(20)

(21)

(22)

(23)

S:Qo. These exPressions simPlifY

comPutation.

66¡:g(ó"*7GtÂo)Ar

g:(I-yGrÂt)-'

(24)

(2s)in which

where

where I is the identity matrlx'

Now,ifonesubstitutesequations(13),(15)and(24)into(3)andrearrangestheterms'thestress
incrementscanbeexpressedbythefollowingequation:

(26)

(21)

Âo : D*[BAu - s;^ú - (Hrgrrr" + Hr)YÁtz]

D* : [I *7ÂtD(H, + 7HrgG,Át)] 
-' o

The element equation can thus be derived by substituting equation (26) into equation (4)' The final

form of this equation is shown below:

/f \ f
(J,u'o.oor)4" : J,n'o*[èiar 

+(H,g<ir' + H.)7Ât2]du 4 aR (28)

IMPLEMENTATION

The implementation of the mixed explicit-implicit algorithm into the base TEPSA coder is

straightforward, as lrurtrui"à in the Âppen¿i*i itt" fo"rmations of stiffness matrix K and load

vectorÀF.*tmaybe"".,i"¿outintheuzualelement-by-elementprocedure.Inthecasewhenthe
D matrix is held constant, it is necessary only to form x" o.nce- After the displacements and

stresses are updated, u Ñ"*,on iteratio¡r metrrod is employed to evaluate {Ð.*, in the implicit

element group, us ¿"s"¡t"¿ in step l0 in the Ãpp"n¿¡* it 19*, :{Ðn +al^¿ is taken as the initial

value, the convergence-i. ,o ørt tirat satisfaci.l' t"ttlo "T 
bi givãn by only several iterations'

Bothconstantandvariabletimeincrementsareallowedinthepresentmixedexplicit-implicit
algorithm. For the uu¡"úr" time step ,"tr".",1t " 

selection of time increment is based on the

tl|ilr:,tx,::ïiÏiÏ:r:"r" 
in creep strain. rt is suggesred that the size of the time srep be

related to the ratio of incremental effective cre"p.ttuin toti" total elastic strain in explicit elements'

This ratio is limited by an input parameter f r, which 
"an 

be used to evaluate an allowable time step
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size by the following expression:

G. G. CHEN AND T. R. HSU

where E is the elastic modulus of the material. The time increment determined in equation (29) is.
applied to every explicit element. For the case of steady-state creep described by Noiton's law and
with 7:0 (fully explicit) and tr:2ln are taken, equation (29) reduces to Cormeau's stabilitv
criterion.2

(2) Restriction on the increase in state variables. The following relation is used:

Lt":r" I
- "lla¡ll-

wnere t2 ls an lnput parameter controlling the time steps on the basis of the changes of state
variables. When dealing with creep damage constitutive equations such as equations (7ã) and (7b),
the value o[ zr may be chosen between 0'05 and 0'l. Equaiion (30) is appliedto all elements o[ rhe
structure- Then the time increment for next step of computations can be selected bv

(2e)

(30)

^¿: 
Min[^f ,, Ltr] (3 t)

NUMERICAL EXAMPLE

The Ef scheme described in the foregoing sections has been implemented into the basic TEpSAC
coder I and a numerical example is presented to illustrate the cãmputational advantages of using
this approach. This example involves the creep deformation of a thick wall cylinde6ib¡."t to un
instantaneously applied internal pressure. The geometry and finite element idealizatiãn of the
cylinder are illustrated in Figure l. Of the ten quadrilateral simplex elements used, the two elements
near the inner wall were designated as 'implicit'elements whereas the remaining elements were
treat€d as 'explicit'- Three distinct constitutive equations were considered in the comoutation.

(o) Th¡d(-Wotþd Cylindef

tmpthit

(bl hlernol Ressure vs Tíme

(c) Finife Element Oiscreti¿ofion

Figure l. Finite element idealization of a thick wall cylinder

lEþmentsl E¡pl¡dt Eþments I

-
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These were:

Case (1): The von Mises elasto-viscoplastic yield function;

Case (2): Norton's law for steady-state creep;

Case (3): The continuum damage theory'

Cøse (1): von Mises elasto-viscoplastic material

The constitutive relation used in this case as defined in ReÍerence 13 takes the following form:

(32\e":a(d)S
in which

and

f0 for þ(0(q): ld ror @ >o

ó:sgn FlFl, F:olo2r-l'

In the above expressions, a and orare material constants. Equation (32) is a specific form of the

general constirutive "quatiåns 
in (6ä) and (6b) with the absence of any state variables' By taking

B:m:0, n:2 in equation (7) and also replacing o by 1aør\lozr, the following expression is

obtained: 3 /;_^z\r:;^1=4)"

The above expression has an identical form to that shown in Equation (32). Thc computational

procedurc d"sciibed in the Appendix can be directly applied by skipping steps relating to 6¡'

Parameters used in this case are given as follows:

Internal Pressure P:21 000

Elastic modulus E:3 x 106

Poisson's ratio v :0'3

A:2 x lO- z

dY:3 x lOa

Computations wcrc performed by using the.fully explicit scheme (all elements are explicit) and the

mixed EI schcme with 7 : I 12 and I respcctrvely' Timc steps sizes of Â¿:0'5' l'0' 2'0 and 5'0 were

uscd. Rcsults of effective strcss variations in the cylinder using these. three integration schemes are

shown in Figure 2. One may observe that the case using the explicit algorithm was accurate and

stable, with 
^r:0.5; 

but became less accurate at larger Â¿'s. Numerical overflow occurred on the

tenth time step using 
^f 

:5'0. On the other hand, ãll tut"t using mixed EI schemes gave stable

results. It appeared that the results associated with 7: I are better than that with ?:0'5'
No significant difference in results was detected between the radial, circumferential and axial

stress components calculated by the mixed EI scheme and those computed from the exact elastic

perfect plastic solutions.ra

Case (2): Norton's law for steady-state creep

This case study involves the deformation of ihe same thick walled cylinder under the steady-state

creep obeying Norton's constitutive equation

¿":1tro'-t g
L
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(b ) Explicif - lmplic¡l ( Z= O.5 )

gh 1.2 1.4 1.6 1.8 2.O t

(c) Expl¡cil -lmolicif (7= l.Ol

F-igurc 2. Distribution of cffcctivc stress in a thick wall cylinder using von Mises elasto-viscoplastic yield function

Thc following parameters were used in the computations

Internal pressure,

Elastic modulus,

Poisson's ratio,

Material constants,

P:100O0

E:5 x 106

v:0'3

A:)v 19-zt

,r: )
Figure 3 shows the variations of the radial displacement of the inner surface of the cylinder using

the fully explicit algorithm with different time step sizes. Results were stable and accurate with a
small time increment, e.g. 0.02.

Increasingly deviations o[ results from the exact values occurred with time increments greater
than 0'02. Instability ñnally occurred at Lt:O'12. A similar trend can be observed on the variation
of effective stress as shown in Figure4 with the exact solution derived from Reference 12.

The displacements of the inner surface computed by using the mixed EI algorithms are presented
in Figure 5 with time steps ranging from 0'02 to 0'3. The results are stable and accurate with the
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LZ

Time, t

Figure3.CreepradialdisplacementatinnersurfaceusingNorton'slawandexplicitscheme
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Figurc4'Creepeffectivestrcssdistributionatt:2'0usingNorton'slawandcxp|icitschemc

time increment Âr(0'2 for both values of 7' However' although the solutions remain stable' they

become increasingly inaccurate with Á¿ > 0'2. The distiiUutioni of circumferential' radial' axial and

effective stress at steaalstate showed-excellent correlations with those obtained from the exact

solution.

Case (3): The continuum damage theory

The continuu* a"rnug" 
"onstñutiue 

*L¿"t given in equations (7a) and (7b) was used to analyse

the creep deformation oíthe thick wall cylindeì. The damage parameter a'¡ in these equations was

taken as a single state variable and the constant rn was set to be zero' The set of equation (7) can

thus be used to describe the secondary and tertiary creeps. The following material properties were

used in the computationt r : ¡ x l0 - í8' 
P : 4 and'âll other parameters remained the same as in the

Case (2) study. Since tne Ãalytical solutìon for this problem is not available' the numerical results

calculated by the tully explicit scheme with a very small time increment 
^f 

:0'01 was used as the

reference solution. For such a small time incíement the explicit scheme and the mixed EI

;i;;;irh*t with 7: ll2and I gave virtuallv identical results'
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ãru
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Time , t
(b) Mixed Expl¡cif - lñ1pl¡cit Scheme with f = |

F-igure 5. Crcep radial displaccmcnt at inner surfacc using Norton's law and EI schcmc

The radial displaccmcnt o[thc inncr surface and the damage parameter at thc element next to the
inncr surface are plotf.ed in Figure 6 and Figure 7. The mixed EI algorithms with ] : I 12 and I gave
accurate results with large timc increments up to A¿ : 0' I, whereas the results by the explicit scheme
became unstable.

Figure 8 shows thc distribution of the damage parameter crr along the radiat direction. It is
observed that the numerical results predicted by the mixed EI schemes for large time steps are very
close to thc rcfcrence solution, whereas the explicit schemc for Â¿:0. I is clearly erroneous.

The stress distribution at, t:2'O are presented in Figure 9. For Â¿:0-1, the mixed EI solutions
correlates well with the relerence solution. Again, the explicit solution is unacceptable due to wild
scattering o[ results.

Figure l0 shows thc distribution of the effective stress at various instants. These results were
calculated by the mixed EI scheme with y: I 12 and 

^¿:0.1. 
The solid line for ¿:0 corresponds to

the initial elastic stress distribution. It is interesting to note that stress near the inner surface
decreases very rapidly due to the high value of the damage parameter rrr and high creep strain rate.
At ¿:2'0, the lowest effective stress takes place at the inner surface, and the peak stress occurs at
about r: l'2.

CONCLUSIONS

A mixed EI scheme for creep stress analysis has been developed and presented in the paper. This
method can use both explicit and implicit schemes simultaneously in different part of the structure

_ ar = o.o2
o o o 

^t=o.l. . . ôl =O.2
ô Â ^ ôt=o.25

^ ^^ ôt=o.3

6

- 

Al = O.O2
o o o at :o.l
. . . 

^l 
=O.2a ôaôt=o.25

^ ^ ^al:o.3



521
CREEP STRESS ANALYSIS

- 

at = o.ol , Explicil
. ..^1 =O.l ,EIIr=ltZl
oooôt=O.l ,EI(7=¡¡
eeeAl=O.l .ErPlicil

Time ' t

Figure 6. Creep radial displacement at inner surface using continuum damage theory and EI scheme
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Irigurc 7. Variation of crccp damage paramctcr at inncr surfacc
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and achieve a significant economy in computations- The numerical eKamples presented in this

paper have demonstrated that significant improvements in the stabitity and accuracy of results are

obrainable by using as little as tw; implicit elements. With this mixed EI scheme, much larger time

step sizes can be employed with oniy slightly more computational effort than for the explicit

scheme.

- 

ôf = O.Ol , Explicil
. . .ôt=O. l , EIV=ttZ't
o o oôt=O.l , EI(7= l)
evvAf=O.l ,ExPlicit
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The advantage of the proposed method over the fully implicit method is obvious. As described in

the Appendix, the computational procedure of using the implicit elements is much more

complicated and time consuming than that for the explicit elements. Furthermore, the element o[

the stiffness matrix associated with the explicit elements need only to be perlormed once and for all.

Therefore, a considerable cost saving can be realized by treating most elements in the structure as

explicit elements with the mixed explicit implicit method. For large scale problems where a great

many elements are involved, this advantage is even more pronounced'

This scheme is especially attractive for creep fracture analysis, in which high concentrations of

creep strains exist near the crack tip. In order to achieve aæurate and stable results, an implicit

scheme is desirable for the near tip region and the mote economical explicit scheme is usually used

in the remaining part of the structure. A mixed EI scheme such as that presented here can k
applied with considerable flexibility and efficiency.

_ ôl = o.ot , E¡pticit
o o oôt = O.l , Ef (y= l/Zl
o o oôt=O.l , EI(7=l)
veeat=o. l ,Expl¡cit

-ôr=oot 
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. . .ôf =.O.1 , EI(y:l/21
o o oôt=o.l , EI(¡=l)
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Figure 10. Distribution of cffective stress using E[ schemc (f :0'5' ¿r:0'l) using continuum damage theory

Recently, the continuum damage constitutive model has been employed in creep crack

propagation problems. r s The propoied scheme has been incorporated into this model to provide a

more realistic appro¿ìch to the study of creep crack growth'r6

APPENDIX

Procetlure of intplemenrltion oI nixed EI schente

l. Initialization: Sct n:0 and eå:0' <oo:0' form K and Fo' compute Uo:K-r Fo and

2.

tl

oo: DBUo
Ctmpute e i:./, (o" on, fn), 6,--.('r(on' to')

Select A¿

Pcrform stiffncss matrix:
Explicit elements: tç' : J,* 81'DBdD

Implicit elements: (l) form H,' Hr' H'' G' Gt' g

(2) DÍ., :Il +YÂtD(H, + HrgG,Át]-' D

(3) K,l. I : Jy, Br Df* , Bdu

5. Equivalent load vector:

Explicit elemcnts: ÂFi*, :J,"BrDÈ:^td¿'

Implicit elements: AF,l* r :1n'ntof*, [eiÂr +(H'gcir"+ H')y^r2]du

6. Assembling:
Kn+t:K"+Kl*'
aF,+ r:aFi+ r +^Fl* r +^R'* I

7. Solve: K,+ r AU,+ r : ÂFn+ r

8. Stress increment:
Explicit elements: Âon* t : D(BÂu'* t -éiÁr)
Implicit elements: Â6n* t : Df*' [BÁu'* I -s;^r-(Hzgö"-| Ht)yÂt2]

9. Update: ur+ r :un+^un4 1: 6z+ 1 
:6n*A6na 

1

Rodiol Dislonce , r
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I 0. Evaluate <rrn * , :

Explicit elements: (ùñ + I : ú)n + d)n^t
Implicit elements:

(A) t:0, @9*r:@n+ó,^¿
(B) ó; - r :-fz (o" * r, <ll)

(e) <olli :@i* r -(I-yGrÁr)-'{rl* r -on- [(1 -7)rô,+yroj*,]Ar]
(D) lf llorili-ol*rll<e, rr¡,*r*<'ri|1; orherwise i<-i*1, go to (B)

ll. n+n+ I, if l1_, Âf,. ?", go to step 2; otherwise stop.
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Â

or-2o 
O

A' B '=2 .48
B 'C '=2 'BC
C'D'=2.CD

(b)

The relationship between the material uniaxial curve
and the two dimãnsional stress field
(a) The material idealized uniaxial stress-strain
curve
(b) Schematic representation of
the initial condition and after
first surface (dotted line)

t.he yield surfaces at
translation of the

l- r-

E True Strain

\-

F.igure 5 " 1



--
...

/ 
\.1

*

F
ig

ur
e 

5.
2 

S
ch

em
at

ic
 r

ep
re

se
nt

at
io

n 
of

 t
he

 lv
iro

z'
s 

ha
rd

en
in

g 
ru

le



dq
 (

 Z
ie

sl
t )

dq
 (

t4
ro

z)

^.
/

Y
J

vt

(-
\

B ot
l

-/
^ ,/ 

rt

F
ig

ur
e 

5.
3 

Z
ie

gL
er

's
 a

nd
_ 

M
ro

z'
s 

ha
rd

en
in

g 
ru

le
s 

fo
r 

no
n-

P
ro

po
rt

io
na

l 
lo

ad
in

gs

Q
D

 //
 o

tc

C
Í¡



Ç
I
I

Line Crock

Breokoble
Elements

X

trl
C
Bre¡l¡blo Elencnts(r) Gocnetty of,

(b) ExÈrapolaclon of danagc

Ercolobh Ehm¡nfr

X o Ol¡tonc¡ lroar lh¡ Croct Tlg doog
lhl C¡ocl Polh

Figure 5 "4 The breakable elements



CRÊCK T

CRÊC<

I]RRCK

(q)

(b)

Figure 5.5 Numerical modeling of
Initial crack
Shifting of crack
Local remesh

crack growth

tip nodes
(a
(b
(c

z:-Ro srrFtrNESS (c)



E
L.

 1

O
f-

E
¡.

 r
-

rT
lC

rl 
C

-O
C

k

oc
.r

s;
tio

n

E
r*

. 
?

E
L.

 3

I

F
ig

ur
e 

5.
6 

À
pp

lic
at

io
n

rì
e\

r',
¡ 

c-
cc

k 
L 

lr:
 

oo
s 

i 
rr

 lo
n

of
 n

od
al

 r
ea

ct
io

n 
fo

rc
e



E
E
O
t-r)

r.

30 mm

Figure 6.1 A centre cracked plate



35
0

30
0

Õ 0_ ã

25
0

20
0

a a LU K t-
-

rn

15
0

10
0 50

0
n F

ig
ur

e 
6,

2 
U

ni
ax

ia
l 

st
re

ss
-s

tr
ai

n

3

S
T

R
Ê

 I
 N

A

z

cu
rv

e 
fo

r 
31

6

5
ô

S
S

 a
t 

65
0o

C

7



?0 l8 l6 14 1? l0

N z H (f E
, t- a fL U
J [ü fr L)

A
 6

 =
 z

JJ
M

P
s

4 ?

?0

F
ig

ur
e 

6.
3 

U
ni

ax
ia

l 
cr

ee
p

6 
=

19
2 

M
P

o

40
E

O

o

80

o

T
IM

E

oo
oo

t0
0 

12
0

(h
r.

 )

I 
=

16
5 

M
P

s

t4
0

t8
0

20
0



6"

\/ \,/ \,/ \,/ \,/

\/\,/ \,/\,/ V\,/ \/\,/

DETÊ ILS IN ( b )

Figure 6"4(a) Finite element mesh: overall view



\/

\/t
\/

F
ig

ur
e 

6.
4(

b)
 

fin
ite

 
el

em
en

t m
es

h:
 C

ra
ck

 ti
p 

re
gi

on

\/
\/

\/l
\/

2 
r4

 
t 

6 
7

\/

tç

\/
\

r(
 )

(
,// Itl

l_
t 

(
)(



ô
A ll

ô
) L

r t-
-

t-
D Z LU -J V T
J I x tJ

0
0

5
B

W
I 
ft-

]O
U

T
 P

i-Ê
S

T
IL

 S
fR

R
IN

5
ô

5 5
?

5
C

l

W
IT

H
 P

I_
Ê

ìS
T

IC
 S

'/R
Ê

I

0
1 
00

 2
00

 3
00

F
ig

ur
e 

6.
5 

C
ra

ck
 g

ro
w

th
 v

s.
 t

im
e 

in
 a

 þ
an

el
. 

r-
rn

de
r 
st

at
ic

 
J-

oa
di

ng

cq
nc

<
 iN

ii
Iq

T
IJ

i\I

40
0 

50
tl

T
IM

E

T
 IM

E

ô0
0 

/0
0

( 
hr

. 
)

80
0 

90
0 

10
00

 ll
00



o o

vo

o*

ñ o)-o
o ooe.

O!
o*o I

o{Ò ¡
o^to r

¡
at ¡

+¡
t

¡

o
Y

c
. ò__

r
fLoo¡, o

Â" , L 
'a' o- .

À9-ovo-s

t ol
Oo
êìeÂo
: o o- '

o

o
o
ô
a

O

DE
DE

CT

N00
Ntv
l{a
l7i 10 o
lza *
l2o3 .
1204 ¡PR=SENT S TUDY

o

o

\^/I-fHOU'I- PLFìSf IC STRÊIN

WITFI PLFìSTIC STRÊIN

å
lrnm/fU

10-t

10

10

10-

10'! 10: 10r 10'
CsrN/mhr

Figure 6.6 Comparison with l'lass's experimental autu[791



102

lCrl

t50 200 m æo 350

f'ET SBCIOt| STRESS Omt, MF¡

r0

r0

.C

E
E

E

Ð

trt
F.
é

6
F
é
o_
Y.

o-
:<
<)
é(J

r00

Y

Y

^
^

304 S5 650'c

IN Af R

Cb (Mtu) o
o 186-3
o 176.5 oo
e 156- 9 ôqo 137.3 ç,fo il7.7 # e
. 98..1 .'; üö- î ]ene-rarrG{rc ,"-f " 

". 133-4 J CRACK , {onr Q^-oe
Æðr

;,E óq
ooBof, o

oQo 
o

r'! (o
óö

ooe
&o

¿ô
OO

va'. PRESENT S fUD I
o

WITHDUT PLÊSTIC STRÊIN

WITH PLÊSTIC S|RÊIN

Figure 6"7 comparison with Taira's experimentar datatl06l



e.
5

: M
 2

-A
LL lx F Z IU U Y U tr r. U : 

1.
o

o r. II tx U
- 

*
z 

-'"
tr F

. 0 H D

.-
- 

I 
O

O

D
 T

 S
T

Ê
N

C
E

 F
R

O
M

 C
R

Ê
C

K
 C

E
N

T
E

R
 C

 M
M

 )

F
ig

ur
e 

6.
8 

V
ar

ia
tio

n 
of

 p
la

st
Íc

 
zo

ne



2ô
0

?4
0

Õ n_ :
7?

0

o¿
J.

 
/

a r^ tJ) ||l K
. F rn LU F LJ Ll
l

LL LL LU

20
0

Ê
T

 T
H

E

18
0

C
E

N
T

R
O

 I
 D

 Û
F

.

to
u

14
4

W
IT

H
 P

LR
S

T
IC

 S
T

R
Ê

IN

12
0

E
LE

M
E

N
T

 +
 1

10
0

II
?0

F
ig

ur
e 

6,
9 

V
ar

ia
tio

ns
 o

f 
ef

fe
ct

iv
e 

st
re

ss
 w

ith
 t

im
e 

in
 c

ra
ck

 t
ip

el
en

en
t

V
/lT

H
O

U
T

 P
LÊ

S
T

ID
 S

'T
R

R
IN

Á
^

ô0
80

10
0 

r2
0 

14
0 

1ô
0 

18
0

T
IM

E
 (

hr
" 

)
20

0 
??

0 
24

0 
26

0 
28

0



26
0

Õ 0-
. 3 C

N a LL
I t F Ø J C
f

0_ H (J z K 0_ _l t X C
I :

?4
0

R
O

O
 O

??
0

20
0

18
0

Ê
T

 T
H

E
 C

E
N

T
R

O
 i

 D

to
u

\,i
]T

H
 P

LÊ
S

T
IC

 S
T

R
R

IN

14
0

12
ì

I 
t-

L,

O
F

 E
LE

I4
E

N
T

 I+
 1

10
0

U
?0

W
IT

H
O

U
T

 P
LÊ

S
T

IC
 S

'T
R

Ê
IN

F
ig

ur
e 

6.
10

 v
ar

ia
tio

ns
 

of
 m

ax
im

um
 p

rin
ci

pa
l 

st
re

ss
 w

ith
 t

im
e

cr
ac

k 
tip

 
el

em
en

t

40
ô0

B
O

10
0 

12
0 

i4
0 

1ô
0 

lB
0 

20
0

T
IM

E
 (

hr
" 

)
??

0 
?4

0 
20

0 
28

0

1n



B
0

I 
Il

L - I llj

ô.
0

ñn 4.
0

Ê
T

 T
H

E
 C

E
N

T
R

O
 T

 D

||l F
. C t LU c.

-D LU E C
T n

3.
0

W
IT

H
 P

LÊ
S

T
IC

 S
T

R
Ê

IN

2.
0

1n 1.
L/

O
F

 Ë
LE

M
E

N
T

 +
 1

0.
0

n
20

F
ig

ur
e 

6.
lL

 V
ar

ia
tio

ns
 o

f 
da

m
ag

e 
ra

te
 w

ith
 t

im
e 

in
 c

ra
ck

 t
ip

e 
I e

ne
nt

40
ô0

B
O

10
0 

r2
0 

14
0 

16
0 

18
0 

20
0

T
IM

E
 (

hr
. 

)

W
IT

H
O

U
T

 P
LÊ

S
T

JC
 S

T
R

Ê
]N

??
0 

24
0 

20
0 

28
0



0.
8

0.
7

tr l-r F LU C
L K
.

C
T

0_ LU c.
_D C : C
T tl

0.
6

tt 
F

\

0.
4

R
T

 T
H

E
 C

E
N

T
R

C
 I

 J
 O

F
 E

LE
."

IE
N

T
 +

 1

ar
 

'ì
lt 

1

\,V
IT

H
 P

LÊ
S

T
T

C
 S

T
R

Ê
IN

0.
?

n1 0.
0

0
?0

 4
0 

60
 B

0 
1 
00

 I 2
û 

1 
40

 I 
ô0

 i 
B

0 
20

0 
??

0 
?4

0 
26

0 
28

0
T

IM
E

 (
hr

" 
)

F
ig

ur
e 

6.
L2

 D
am

ag
e 

ev
o.

l-u
t:i

-o
ns

 i
n 

cr
ac

k 
t 

i n
 a

l o
m

on
t

W
IT

H
O

U
T

 P
LÊ

S
IiC

 S
T

R
Ê

IN



70
0

00
0

Õ 0_ = a a u-
l

K
. F a LL
I

t-
- iJ LU LL LL LU

ñn
n

40
0

30
0

\r
./I

T
H

O
U

T
 P

LÊ
S

T
IC

 S
T

R
Ê

IN

20
0

.1
. 

- 
T

ì
!v

10
0

W
iT

H
 P

LÊ
S

T
IC

 S
T

R
Ê

iN

tl U 0.
00

0.
25

F
ig

ur
e 

6.
13

0.
50

 0
. 
75

 1 
.0

0
D

J 
S

T
R

N
C

E
 F

R
D

M

D
is

tr
ib

ut
io

ns
 

of
 e

ffe
ct

iv
e

at
 t

 
--

 0

1 
.2

5 
1 

.5
0

T
H

E
 C

R
Ê

C
K

I 
. 
/5

 2
.û

0
IIP

 (
M

M
)

st
re

ss
 

ah
ea

d 
of

 
cr

ac
l<

 ti
p

?.
?5

2.
50



20
0

10
n

18
0

17
0

ñ 0_ u a cn LU K l--
-

tr
l

t! t- rì LU LL LL LU

to
u

1t
rn

| 
\.r

\J

14
0

13
0

17
0

W
IT

H
O

U
T

 P
LÊ

S
T

]C
 s

T
R

R
IN

i1
0

10
0

W
T

T
H

 P
LÊ

S
T

IC
 S

T
R

F
IN

g0 0.
 0

0

1O
 h

r.

0.
25

 0
.5

0 
0.

/5
 l.

C
rO

 1
.2

5 
1.

50
 l.

/5
 2

.0
0

D
]S

T
Ê

N
C

E
 F

R
O

M
 T

H
E

 D
R

Ê
C

K
 T

IP
 (M

M
)

F
'ig

ur
e 

6.
14

 p
is

tr
ib

ut
io

ns
 

of
 e

ffe
ct

iv
e 

st
re

ss
 a

he
ad

 o
f 

cr
ac

k 
tip

at
t-

L0
ho

ur
s

?.
?5

2.
50



17
0

1ô
0

ñ 0_ C
N

IJ
J llJ tr F a ||l H l-- tJ t_
lt

LL LL LL
I

15
0

14
0

13
0

W
IT

H
D

U
T

 P
I-

Ê
S

T
iC

 S
T

R
Ê

IN

12
0

W
IT

H
 P

LR
S

T
iC

 S
T

R
R

iN

on 0.

+
- 

I 
rì

rì
 

L-
-

L_
 

I 
LJ

LJ
 

I 
II

00
 0

.2
5

F
ig

ur
e 

6.
 L

5 
D

is
tr

ib
ut

io
ns

 
of

 e
f 

f 
ec

tiv
e 

st
rÃ

s 
ah

ea
d 

of
 c

ra
cl

<
 ti

p
at

l=
10

0h
ou

rs

0.
50

 0
.7

5 
1.

û0
 1

.2
5 

1.
50

 1
.7

õ 
2.

C
rO

D
 I 

S
T

R
N

C
E

 F
R

Û
M

 T
H

E
 C

R
Ê

C
K

 I
 I 

P
 ( 

M
M

 )
?.

?5
2.

 5
0



70
0

õ 0_ a LU t F a J C IL t_
J z t D
. :l z H X C
f t

ô0
0

50
0

40
0

\V
IT

H
O

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
IN

30
0

20
0

10
0

W
IT

H
 P

LR
S

T
IC

 S
T

R
R

IN

0 0.
00

t-

0.
25

 0
.5

0 
0.

75
D

 T
 S

T
R

N
C

E

F
ig

ur
e 

6.
16

 D
is

tr
ib

ut
io

ns
 

of
cr

ac
k 

tip
 

at
 |

 
=

1 
.0

0 
1 
.2

5 
I 
.5

0
F

R
O

M
 T

H
E

 C
R

Ê
C

I<

m
ax

im
um

 p
rin

ci
pa

l 
st

re
ss

 a
he

ad
 o

f
n

I 
. /5

 2
.û

0
T

I: 
(M

M
)

?.
?5

2.
50



2a
î

??
0

21
0

o 0_ = a a LU t t- a _J ct 0* H U z H É
.

n_ : l H X C :

20
0

10
n

18
0

17
n

I 
l\J

1ô
0

1F
n

14
0

1.
t^ IJ
U

12
0

11
0

.W
]T

H
O

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
IN

W
IT

H
 P

LÊ
S

T
IC

 S
T

R
Ê

IN

10
0 0.

 0
0

J-
-

L_
1O

 h
r.

0.
25

 0
.5

0 
0.

75
 1

.0
0 

1.
25

 1
.5

0 
l./

5 
2.

00
D

]S
T

Ê
N

C
E

 F
R

O
M

 T
H

E
 C

R
Ê

C
K

 T
IP

 (M
M

)

F
ig

ur
e 

6.
I7

 D
is

tr
ib

ut
io

ns
 

of
 m

ax
im

un
 p

rin
ci

pa
l 

st
re

ss
 a

he
ac

ì 
of

cr
ac

k 
tip

 
at

 |
 

=
 1

0 
ho

ur
s

2.
75

 2
.5

0



20
0

19
0

18
0

õ 0_ = a cn LU r^ F a I C 0_ (J z t 0_ : l : X C :

I 
1a

\
t/u 10

0

15
0

14
0

13
0

t(
u

11
0

\¡
/I'

T
H

O
U

T
 P

LÊ
S

T
IC

 S
T

R
Ê

IN

10
0 0.

 û
0

W
IT

H
 P

LÊ
S

T
IC

 S
T

R
R

IN

t 
: 

lO
O

 h
r.

0.
25

F
ig

ur
e 

6.
18

0.
50

 0
.i5

D
 I 

S
T

Ê
N

C
E

D
is

tr
ib

ut
io

ns
cr

ac
k 

tip
 

at

1.
00

 1
.2

5 
1.

50
 l.

/5
 2

.0
0 

?.
25

F
R

O
M

 T
H

E
 C

R
Ê

C
K

 T
T

P
 (M

M
)

of
 m

ax
im

um
 p

rin
ci

pa
l 

st
re

ss
 a

he
ac

l 
of

| 
=

 1
00

 h
ou

rs

2.
 5

0



I - I

LU

3.
0

?.
5

ul F C t LU LD cf ã C tl

?.
0

W
IT

H
 P

LÊ
S

T
iC

 S
T

R
Ê

iN

1t
- ln 1^ t.u ll 

l-\

W
IT

H
O

U
T

 P
LÊ

S
T

iC
 S

T
R

Ê
IN

0.
0 0.

l-- L'
-

00

lO
O

 h
r.

0.
25

 0
.5

0 
0 
.7

5 
I 
.0

0 
I 
.2

5 
I 
.5

0 
i .

 7
5 

2.
00

D
 T

 S
T

Ê
N

C
E

 F
R

O
M

 T
H

E
 C

R
Ê

C
K

 T
 I 
P

 ( 
M

M
 )

F
ig

ur
e 

6.
19

 o
is

tr
ib

ut
io

ns
 

of
 d

am
ag

e 
ra

te
 a

he
ad

 o
f 

cr
ac

k 
tip

 
at

! 
=

 i-
00

 h
ou

rs

?.
?5

2.
50



0.
25

0.
20

t LU t-
-

LU : C t C 0_ llr c-
D C C
T tl

0.
15

V
/T

T
H

 P
LÊ

S
T

T
C

 S
T

R
Ê

IN

0.
10

0.
05

W
IT

H
O

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
IN

0.
00

+
-

L_

0.
00

1O
O

 h
r.

0.
 2

5

F
ig

ur
e 

6.
20

 D
am

ag
e 

di
st

rÍ
bu

tio
ns

 
ah

ea
d 

of
 c

ra
ck

 t
ip

 
at

 |
 

=
 1

00
ho

ur
s

0.
50

 0
. 
/5

 I
 .0

0 
I 

. 
25

 I 
.5

0 
| .

75
 2

.0
0

D
 I 

S
T

Ê
N

C
E

 F
R

D
M

 T
H

E
 C

R
Ê

C
K

 T
 I

 P
 ( 

M
M

 )
?.

?5
2.

5û



17
0

16
0

U 0_ : Lr
) a LU Y
'

F rn LU t-
-

C
J

LU LL LL LU

15
0

14
0

1Î
n

1?
î

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
1 

B
R

E
Ê

K
S

1t
n

tt\
J

10
0

W
IT

H
O

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
T

N

0n 0.
0û

 0
.2

5

IT
H

 P
LÊ

S
T

IC
 S

T
R

Ê
IN

F
ig

ur
e 

6.
2I

0.
50

 0
.7

5
D

 I 
S

T
Ê

N
C

E

D
is

tr
ib

ut
io

ns
be

fo
re

 e
le

m
en

t1.
00

 t.
?5

 1
.5

0 
t.i

5 
2.

00
F

R
O

M
 T

H
E

 C
R

Ê
C

K
 T

]P
 (M

M
)

of
 

ef
fe

ct
iv

e 
st

re
ss

 
ah

ea
d 

of
 

cr
ac

k 
tip

it1
 b

re
ak

s

?.
?5

2.
50



to
u

ñ T
L a a U
I t t-
- a LU F r'ì LU U
-

LL LU

15
0

t4
u

1î
n

12
0

W
IT

H
O

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
IN

B
E

F
O

R
E

 E
I-

E
M

E
N

T
 +

7 
B

R
E

Ê
K

S

10
0 nn vtl

C
U

R
R

E
N

T
 C

R
Ê

C
K

 T
IP

0.
00

W
IT

H
 P

LÊ
S

T
IC

 S
ÏR

Ê
IN

0.
25

 0
.5

0 
0.

 7
5

D
] 

S
T

R
N

C
E

 F
R

O
M

!ti
gu

re
 6

.2
2 

D
is

tr
ib

ut
io

ns
 

of
 e

f 
f 
ec

tiv
e

be
fo

re
 e

le
m

en
t 

#2
 b

re
ak

s

1 
.0

0 
I 
.2

5 
ì 

.5
0

O
R

 I 
G

E
N

Ê
L 

C
R

Ê
C

K

l.i
5 

2.
00

T
IP

 (M
M

)

st
re

ss
 

al
le

ad
 o

f 
cr

ac
k 

tiP?.
?5

2.
50



17
0

1ô
0

LJ 0_ U
J

U
J

LU tr
^ F U
J

LU F U L| tl LL LU

15
0

14
0

1'
ìn t(
u

1i
0

W
]T

H
O

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
iN

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
3 

B
R

E
Ê

K

10
0 90 0.

 0
0

W
]T

H
 P

LÊ
S

T
ID

 S
T

R
Ê

IN

0.
25

 0
.5

0 
0.

75

C
U

R
R

E
N

T
 C

R
Ê

C
K

 T
IP

F
ig

ur
e 

6.
23

 D
is

tr
ib

ut
io

ns
 

of
be

fo
re

 e
le

m
en

t 
#3

D
 I 

S
T

R
N

C
E

 F
R

O
M

1 
.0

0 
I 
.2

5 
1 

.5
0

IN
IT

IR
L 

C
R

Ê
C

K

ef
fe

ct
iv

e 
st

-r
es

s 
ah

ea
d 

of
 c

ra
ck

 t
ip

br
ea

ks

t./
5 

2.
û0

T
IP

 (M
M

)
2.

?5
2.

50



i0
0

1t
rn

ú 0_ a a LU tr ¡- tn LU (J LU 'L LL tU

14
0

1?
n

t(
u

11
0

B
E

F
O

R
E

 E
LE

M
E

I{
T

 +
4 

|3
R

E
Ê

K
S

10
0

W
IT

H
O

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
IN

C
R

Ê
C

¡<
 T

I
C

LJ
R

R
E

N
T

.

O
N 0.

 0
0

0.
25

Y
V

 iT
H

 P
LN

S
 T

 IC
 S

T
R

R
 iN

F
ig

ur
e 

6.
24

 D
is

tr
ib

ut
io

ns
be

fo
re

 e
le

m
en

t

0.
50

 0
./5

 1
.0

0 
1.

25
 1

.5
0 

t.i
5 

2.
00

 ?
.?

5
D

;S
T

Ê
N

C
E

 F
R

O
M

 IN
IT

IR
L 

C
R

Ê
C

K
 T

iP
 (I

V
IM

)

of
 e

ffe
ct

iv
e 

st
re

ss
 a

he
ad

 o
f 

cr
ac

k 
tip

#4
 b

re
ak

s

2.
50



15
0

14
0

ñ 0_ : a m LL
J

(Y t-
- a Ll
l l- IJ LU ll LL Ll
l

13
0

12
0

11
0

10
0

B
E

F
O

U
E

 E
LE

M
E

N
T

 +
5 

B
R

E
R

K
S

g0

W
IIH

U
U

 
LH

S
 I

IL
 

S
IK

H
J.

 I
\

I

C
U

R
R

E
N

T

C
R

R
C

K
 T

IP

xt
 I

tl U
.
00

 0
.2

5

W
IT

H
 P

;-
IÊ

S
T

iC
 S

-I
R

Ê
Ii\

F
ig

ur
e 

6,
25

0.
50

 0
.7

5 
r.

00
 1

.2
5 

1"
50

 l.
i5

 
2.

00
 ?

.?
5

D
IS

T
R

I''
JC

E
 F

R
O

M
 IN

IT
IÊ

L 
C

R
Ê

C
K

 I
 IP

 (M
M

)

D
is

tr
ib

ut
io

ns
 

of
 e

ffe
ct

iv
e 

st
re

ss
 a

he
ad

 o
f 

cr
ac

k 
tip

be
fo

re
 e

le
m

en
t 

#5
 b

re
ak

s

2.
 b

0



20
0

19
0

18
0

17
0

iô
0

tñ
t 

I

14
0

1î
n

I 
U

IJ

12
0

il0 10
0 0.

U o_ : a n I-
IJ tr l-- a I c 0_ LJ z H V
.

0_ l H X C :

B
E

F
O

R
E

 E
LE

M
E

N
T

W
IT

H
 P

LÊ
S

T
IC

 S
T

R
R

IN

+
 I 

B
R

E
Ê

K
S

00
 0

.2
5

W
IT

H
O

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
IN

E
ig

ur
e 

6.
26

0.
50

 0
.7

5 
r 
.0

0
D

 T
 S

T
Ê

N
C

E
 F

R
O

M

D
is

tr
ib

ut
io

ns
 

of
 m

ax
im

um
 p

rin
ci

pa
l 

st
re

ss
 a

he
ad

 o
f

cr
ac

k 
tip

 
be

f,o
re

 e
le

m
en

t 
1f

 b
re

ãk
s

r 
.2

5 
1 
.5

0 
I 

. 
i5

 2
.0

0
T

H
E

 C
R

Ê
C

K
 T

IP
 (M

M
)

?.
?5

2.
50



20
0

19
0

iJ 0_ a a LU t F tf) J G 0_ (J Z K 0- :l X C :

18
0

17
0

1ô
0

,r
^

I 
rt

t 
I

14
0

13
0

1?
0

11
0

B
E

F
O

R
E

 E
L 

E
M

E
N

T

W
IT

H
O

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
IN

10
0

C
U

R
R

E
N

T
 C

R
R

C
K

 T
IP

0.
 0

0

+
? 

B
R

E
Ê

K
S

0.
25

 0
.5

0 
0.

75
D

 I 
S

T
R

N
C

E

V
/IT

H
 P

LR
S

T
IC

 S
ÏR

Ê
IN

F
ig

ur
e 

6.
27

 D
is

tr
ib

ut
io

ns
 

of
cr

ac
k 

tip
 

be
fo

re1.
00

 1
.2

5 
1.

50
 I

F
R

O
M

 IN
]T

IR
L 

C
R

Ê
C

K

m
ax

im
um

 p
rin

ci
pa

l 
st

re
ss

 a
he

ad
 o

f
el

em
en

t 
#2

 b
re

ak
s

75
 2

. 
00

 ?
.?

5
T

IP
 (t

\4
M

)
2.

50



18
0

17
0

1ô
0

1 
r/

l
I 

r-
\t 

I

| 
!.r

\J

14
0

13
0

ñ n_ z a a ul V
.

l--
- a _J C
I

0_ tJ z H E
.

n_ ã l X G ã

12
0

11
0

10
0

B
E

F
O

R
E

 E
LE

M
E

N
T

W
IT

H
O

U
T

 P
LR

S
T

IC
 S

T
R

Ê
Ii\

g0 0.

C
U

R
R

E
N

T
 C

R
R

C
K

 T
IP

00

+
3 

B
R

E
Ê

K
S

\,V
IT

H
 P

LR
S

T
IC

 S
T

R
Ê

N

0.
25

 0
.5

0 
0.

75
D

 I 
S

T
Ê

N
C

E

F
ig

ur
e 

6.
28

 D
is

tr
ib

ut
io

ns
 

of
cr

ac
k 

tip
 

be
fo

re1.
00

 1
.2

5 
1.

50
 I

F
R

O
M

 IN
IT

IÊ
L 

C
R

R
C

K

m
ax

im
um

 p
rin

ci
pa

l
el

em
en

t 
#3

 b
re

ak
s

75
 2

. 
C

rO
 ?

.?
5

T
IP

 (M
M

)

st
re

ss
 a

he
ad

 o
f

2.
50



18
0

17
0

1ô
0

15
0

14
0

13
0

t(
u

11
0

ñ 0* ã a a LU x. F a I C 0_ (-
J z tr 0_ l X cf ã

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
4 

B
R

E
Ê

K
S

\/V
IT

H
O

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
IN

00 90 0.
C

rO
 0

.2
5

C
U

R
R

E
N

T
 C

R
Ê

C
K

 T
IP

W
IT

H
 P

LÊ
S

T
IC

 S
T

R
Ê

IN

F
ig

ur
e 

6.
29

0.
50

 0
. 
/5

 I
 .0

0
D

 i 
S

T
Ê

N
C

E
 F

R
Û

M

D
is

Lr
ib

ut
io

ns
 o

f
cr

ac
k 

tip
 

be
fo

re

1.
25

 1
.5

0 
|

T
N

IT
IÊ

L 
C

R
Ê

C
K

m
ax

im
um

 p
rin

ci
pa

l
el

em
en

t 
t+

4 
br

ea
ks

/5
 2

. 
00

 2
.?

5
T

I-
 (M

M
)

st
re

ss
 a

he
ad

 o
f

2.
50



17
0

O 0_ m a ul E
.

t-
- a J c 0_ H l'ì U z K
.

o- : l X c :

to
u

15
0

14
0

1 
/la

r
IJ

U l(u i1
0

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
5 

B
R

E
Ê

K
S

10
0

C
U

R
R

E
N

T

C
R

R
C

K
 T

IP

W
IT

H
D

U
T

 P
I 
R

S
T

IC
 S

T
R

Ê
IN

90 0.
00

 0
.2

5

F
ig

ur
e 

6.
30

W
IT

H
 P

LÊ
S

T
iC

 S
T

R
Ê

iN

0.
50

 0
. 
/5

 I
 . 

C
rO

 | 
.2

5 
I 
.5

0 
| .

75
 2

.0
0 

?.
?5

D
IS

T
R

N
C

E
 F

R
O

M
 IN

T
T

IR
L 

C
R

Ê
C

K
 T

IP
 (M

M
)

D
is

tr
ib

ut
io

ns
 

of
 m

ax
im

um
 p

rin
ci

pa
l 

st
re

ss
 a

he
ad

 o
f

cr
ac

k 
tip

 
be

fo
re

 e
le

m
en

t 
#5

 b
re

ak
s

2.
50



10 n a'
) ñ -a rì t-
' U 4 t_ 1 I

0 tt

L I I

LU

uu
\

\"

n 0 tl LJ

Ll
l F C t LU (_
!

C
T ã I tl

tl U

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
 1

0

W
IT

H
Û

U
T

 P
LÊ

S
T

iC
 S

T
R

Ê
iN

tl U 0

n

B
R

E
Ê

K
S

0 0.
û0

W
IT

H
 P

I_
Ê

S
T

IC
 S

T
R

Ê
IN

0.
25

 0
.5

0 
0.

 /
5

D
 T

 S
T

R
N

C
E

F
ig

ur
e 

6.
31

 D
is

tr
ib

ut
io

ns
 

of
be

fo
re

 e
le

m
en

t 
#i

.

1.
00

 1
.2

5 
r"

50
F

R
O

M
 T

H
E

 C
R

Ê
C

K

da
m

ag
e 

ra
te

 
ah

ea
d 

of
 

cr
ac

k 
tio

br
ea

ks

t.7
5 

2.
û0

T
IP

 (M
IV

l)
?.

?5
2.

50



10
.0

9.
0

R
N

7.
0

6.
0

L -c I LU LU F C E LU (¡ G C n

h 
tl

/.0 3.
0

?.
0

B
E

F
O

R
E

 E
LE

IV
E

N
T

 +
? 

B
R

E
N

K
S

V
/IT

H
O

U
T

 P
LR

S
T

IC
 5

T
R

Ê
IIN

1.
0

0.
0 0.

C
U

R
R

E
N

T

C
R

Ê
C

K
 T

IF

00

W
IT

H
 P

LÊ
S

T
iC

,S
T

R
Ê

T
N

û 
.2

5

F
ig

ur
e 

6,
32

 D
is

tr
ib

ut
io

ns
be

fo
re

 e
le

m
en

t

0.
50

 0
. 7

5

D
 I 

S
T

Ê
N

C
E

r.
00

 1
.2

5 
1

F
R

O
M

 iN
IT

IÊ
L

of
 

da
m

ag
e 

ra
te

 
ah

ea
d 

of
 

cr
ac

k 
tiP

*2
 b

re
ak

s

.5
0 

r.
75

C
R

Ê
C

K
 T

 I 
P

2.
 û

0 
?.

?5
 2

 .5
0

(M
M

)



5.
0

L I () I

LI
J

A
N

Â
\ \

3.
0

Ll
l

l-- I U
^ tx tD C
T ã C n

?.
0

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
3 

B
R

E
F

K
S

W
IT

H
O

U
T

 P
LÊ

S
ÏIC

 S
T

R
Ê

IN

1.
0

C
U

R
R

E
N

T

C
R

R
C

K
 T

IP

0.
0 n

\,V
IT

H
 P

LÊ
S

T
iC

 S
T

R
Ê

IN

00
 0

.2
5

F
ig

ur
e 

6.
33

0.
50

 0
. 

/5
D

 I 
S

T
Ê

N
C

E

D
is

tr
ib

ut
io

ns
 

of
be

fo
re

 e
le

m
en

t 
#3

1 
.0

0 
1 
.2

5
F

R
O

I'4
 IN

IT
iÊ

L

da
m

ag
e 

ra
te

 
ah

ea
d 

of
 

cr
ac

k 
tin

br
ea

ks

r 
.5

0 
I 

. 
/5

C
R

Ê
C

K
 T

 I
 P

2 
. 
00

 ?
.?

5
(M

M
)

2.
50



ñn

I c'
) I

LU

4.
0

3.
0

1'
o

LU F C E LU T
D ct (f tl

2.
0

B
E

F
O

R
E

 E
LE

IV
1E

N
T

W
IT

H
O

T
JT

 P
LÊ

S
IT

C
 S

T
R

F
iN

1.
0

C
R

Ê
C

K
 T

i

J+
Á

T
F

l

C
U

R
R

E
N

T

0.
0 0.

B
R

E
Ê

I<
S

C
rO

 0
.2

5

W
IT

H
 P

I_
Ê

S
I-

IC
 S

T
R

R
IN

F
ig

ur
e 

6.
34

 D
is

tr
ib

ut
io

ns
be

fo
re

 e
Le

m
en

t

0.
50

 0
.7

5
D

 I 
S

 IÊ
N

C
E

1 
.0

0 
1 

.2
5

F
R

O
I'/

 IN
IT

IÊ
L

of
 

da
m

ag
e 

ra
te

 
ah

ea
d 

of
 

cr
ac

k 
tir

r
#4

 b
re

ak
s

I 
.5

û 
I 

. 
/5

C
R

Ê
C

I<
 T

 I
 P

2.
 C

rO
 ?

 .?
5

( 
tv

lN
4 
)

2.
50



5.
0

I T cî I Ll
l

A
N

3.
0

LU F C t^ LU C
I

C
f I a

2.
0

B
E

F
O

R
E

 E
LE

M
E

N
T

1.
0

!V
IT

H
O

U
T

 P
LF

S
T

IC
 S

T
R

Ê
IN

C
U

R
R

E
N

T

C
R

Ê
C

K
 T

IP

+
5 

B
R

E
Ê

K
S

0.
0 n

00
 0

.2
5

W
IT

H
 P

LÊ
S

T
IC

 S
IR

Ê
IN

F
ig

ur
e 

6.
35

 D
is

tr
ib

ut
io

ns
 

of
be

fo
re

 e
le

m
en

t 
lt5

0.
50

 0
. 

/5
D

 I 
S

 T
Ê

N
C

E
r 
.0

0 
I 

.2
b

F
R

O
|'4

 I
N

iT
 L

Ê
L

da
m

ag
e 

ra
te

 
ah

ea
d 

of
 

cr
ac

k 
tì.

¡r
br

ea
ks

r 
.5

0 
r 

. 
/5

C
R

F
C

K
 T

 I
 P

2 
. 
û0

 ?
.?

5
(M

M
)

2.
50



U
B

n

t LU l-- Ll
l : C

T r. C o_ Lr
l r¡ C : C tl

U
ô

ar U
5

U

B
E

F
O

R
E

 E
LE

M
E

IlT
 +

 1

W
IT

H
Û

U
T

 P
LR

S
T

IC
 S

IR
Ê

iN

U
3

n U
?

n 0

B
R

E
Ê

K
S

0 n

W
IT

H
 P

I 
Ê

S
I-

IC
 S

T
R

Ê
IN

00
0.

25
 0

.5
0 

0.
 /5

 I
 .0

0 
I 
.2

5 
i .

50
D

 i 
S

 IÊ
N

C
E

 F
R

O
M

 T
H

E
 C

R
Ê

C
K

F
ig

ur
e 

6.
36

D
am

ag
e 

di
st

rib
ut

io
ns

 
ah

ea
d 

of
 c

ra
ck

 t
ip

 
be

fo
re

e.
le

m
en

t 
#1

 b
re

ak
s

I 
. /5

 2
.0

0
tIP

 (M
1"

1)
?.

25
2.

 5
0



0.
1

0"
ô

t LU LU : C
T Í. C 0_ tx t-
D ct : I tl

0.
4

B
E

F
O

R
E

 E
I 

E
N

4L
I\T

0.
3

V
iI 

IH
¡U

T
 P

l-Ê
S

 t'
IC

 S
 ìR

Ê
IN

0.
?

\¡
/IT

H
 P

L-
Ê

S
T

IC
 S

rR
llN

A
T

 T
-

C
U

R
R

E
N

T

C
R

Ê
C

K
 'T

 IP

0.
0

B
R

E
R

K
S

0.
00

0.
25

 0
.5

0 
0.

75
 1 

.0
0 

1 
.2

5 
r 
.5

0 
1 

. 
/b

 2
. 
Û

0 
? 

?5
 2

. 
¡0

D
IS

T
Ê

N
C

E
 F

R
O

IV
I 
IN

IT
IÊ

L 
C

R
Ê

C
K

 T
IP

 (l
\4

IV
)

F
ig

ur
e 

6.
37

D
ar

na
ge

 d
is

Lr
ib

ut
io

ns
 

ah
ea

d 
of

 c
ra

ck
 t

ip
 

be
fo

re
el

em
en

t 
+

2 
br

ea
ks



0.
7

0.
ô

v. LU F LU : ct K
.

C
f

0_ r_
u t! C
L I n

0.
5

0.
¿

B
E

F
O

R
E

 E
LE

I"
IE

N
T

nl

t,d
IT

H
O

LJ
T

 P
I-

Ê
S

T
IC

 S
IR

Ê
iN

0.
?

0.
 t

+
3 

B
R

E
Ê

I<
S

0.
0

C
U

R
R

E
N

T

C
R

F
C

K
 T

IF

0.
00

W
iT

H
 P

LR
S

IIC
 S

IR
Ê

IN

0.
25

F
ig

ur
e 

6.
38

 D
ar

na
ge

 d
is

tr
ib

ut
io

ns
 

ah
ea

d 
of

 c
ra

ck
 t

ip
 

be
fo

re
el

em
en

t 
*3

 b
re

ak
s

0.
50

 0
./5

 t
.û

0 
1.

25
 1

.5
0 

1.
75

 2
.0

0 
?.

?5
D

IS
T

Ê
N

C
E

 F
R

O
M

 IN
IT

IR
L 

C
R

R
C

K
 T

IP
 (M

I'4
)

2.
50



4.
1

0.
6

K
.

L! Li
J

C
T Í. C
L

0_ t_
it

[_
D cf I c]

0.
5

^r
lil4

B
E

F
Ü

R
E

 E
LE

M
E

N
 T

 +
A

 B
R

E
Ê

K
S

0.
3

\/V
IT

H
O

IJ
T

 P
LN

S
IIC

 S
T

R
Ê

IN

0.
?

0.
1

0.
0

\¡
ilT

H
 P

LR
S

f 
IC

 S
IR

Ê
IN

0.
 C

rO

C
U

R
R

E
N

T

C
R

Ê
D

!<
 T

IP

0.
25

F
iq

ur
e 

6.
39

0.
50

 0
. /

5 
1 

. 
û0

D
 I 

S
T

Ê
N

C
E

 F
R

O
M

D
am

ag
e 

di
st

rib
ut

io
ns

 
ah

ea
d 

of
 c

ra
ck

 t
ip

 
be

fo
re

el
cm

en
t 

{1
4 

br
ea

ks

i.2
5 

r.
50

 i.
/5

IN
lT

IÊ
L 

C
R

Ê
C

K
2.

 0
0 

?.
?5

T
IP

 (M
M

)
2.

 b
0



0 n \J
6

K
.

LU F U
I : C
f

U
. (t 0* LU C
I C z I C
I

n
6

0
4

0
-.

) ,1

B
E

F
O

R
E

 E
LE

M
E

N
T

0
) L-

W
IT

I_
IO

U
T

 P
LÊ

S
T

IC
 S

T
R

Ê
iN

0

+
5 

B
R

E
Ê

K
S

n
0 0.

W
IT

H
 P

I 
R

S
T

IC
 S

T
R

Ê
T

N

û0

C
U

R
R

E
N

C
R

F
C

I<
 T

IÞ

0.
25

 0
.5

0 
0.

 /5
 1

 .
 û

0 
i .

25
 1 

.5
0 

I 
. 7

5 
2.

 û
0 

?.
?5

 2
.5

0
D

IS
T

Ê
N

C
E

 F
R

O
|'4

 IN
IT

IF
IL

 C
R

Ê
C

I<
 T

IP
 (M

N
4)

F
ig

ur
e 

6.
40

 D
am

ag
e 

di
st

rib
ut

io
ns

 
ah

ea
d 

of
 c

ra
ck

 t
ip

 
be

fo
re

el
em

en
t 

lt5
 b

re
ak

s



0.
0ô

= F Z Ll
l : LU T
J C J o_ a n Lr
.l

T
J C II Y C
J

C
T K LJ

û.
05

0.
04

0.
03

0.
 û

2

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
1 

B
R

E
Ê

K
S

W
IT

H
O

U
T

 P
LÊ

S
T

]C
 S

T
R

Ê
]N

0.
00 -0

.2
0

W
IT

IT
 P

LÊ
S

T
IC

 S
T

R
Ê

IN

-0
.1

5 
-O

.lO
 

-0
.0

5 
0.

00
 

0.
05

D
IS

T
. 

F
R

O
M

 IN
IT

IÊ
L 

C
R

Ê
C

K
 T

IP
 (

d/
oO

)

F
ig

ur
e 

6.
4L

 C
ra

ck
 p

ro
fil

es
 

be
fo

re
 e

le
m

en
t 

+
1 

br
ea

ks

0.
10



0.
06

0.
05

Z Ll
l : tx T
J

C
T J 0_ a t] ul \J ct LL \¿ LJ cf K
. IJ

0.
04

0.
03

û.
02

B
E

F
O

R
E

 E
LE

M
E

N
T

0.
01

W
iT

H
O

U
T

 P
LN

S
IIC

 S
T

R
F

ÏN

0.
00 -0

.2
0

+
? 

B
R

E
Ê

K
S

W
IT

H
 P

LÊ
S

 I-
IC

 S
T

R
Ê

IN

-0
. 

15 D
IS

T
.

F
ig

ur
e 

6.
42

 C
ra

ck
 p

ro
fil

es

-0
. 

1 
0 

-0
.0

5
F

R
O

M
 IN

IT
IÊ

L 
C

R
Ê

C
K

be
fo

re
 e

le
m

en
t

0.
 û

0 
0.

 û
5

T
IP

 (
d/

oO
)

l+
1 

l-.
ro

:ì¿
 

c.
fr

L

0.
10



0.
 0

ô

0.
05

t-
- Z Ll
t

LU T
J I _l o_ a n LU [J C II )¿ c.
J

C
t

K
.

r.
J

0.
04

0.
03

0.
02

B
E

F
Ü

R
E

 E
LE

M
E

N
T

V
lIT

H
O

T
JT

 P
l q

S
IIC

 S
T

R
Ê

Il\

0.
01

0.
00 -0

.?
0

+
3 

B
R

E
Ê

I<
S

W
I 
iII

 P
I-

Ê
S

IIC
 S

IR
Ê

IN

-0
.

F
ig

ur
e 

6.
43

 C
ra

ck

15 D
IS

T
.

-0
.1

0 
-0

.û
5

F
R

O
M

 II
\IT

]F
L 

C
R

Ê
C

I<

or
of

ile
s 

be
fo

re
 e

le
rn

en
t 

+
3 

br
ea

ks

0.
00

 
0.

05
T

IP
 (

d/
oO

)
0.

10



Z LU LI
J

LJ (r --
J 0_ a n LJ
J IJ C LL \¿ C
J C t C
J

0.
 û

4

0.
03

0.
02

B
E

F
D

R
E

 E
LE

I'4
E

N
IT

W
I 

I-
H

 P
I 
Ê

S
T

]C
 S

T
R

Ê
IN

0.
00 -0

.2
0

+
4 

B
R

E
Ê

K
S

V
/iT

t-
lo

rjf
 P

LÊ
sT

IC
 S

T
R

F
ìtN

-0
.1

5 D
IS

I.

F
ig

ur
e 

6.
44

0.
10

 
-û

.û
5

F
R

O
M

 T
N

iT
IF

ìL
- 

C
R

Ê
C

I<

C
ra

ck
 p

ro
fil

es
 

he
fo

re
 e

le
m

en
t 

#4
 b

re
ak

s

0.
 û

0 
0.

 t5
l-I

P
 (

d/
qg

;
0.

10



0.
0ô

: = F Z t_
ll : LL
I

[J C J 0* cn n LU C
J

C
L

LL Y C
J C U
-

C
J

0.
05

0.
04

0.
03

0.
02

h/
I 
l-H

 P
r 
Ê

sr
IC

 S
IR

R
IN

ñr
-i-

.-
:-

:-
B

LT
U

H
t 

E
L_

E
lv

iE
N

-i

0.
0 

r

0.
 0

0

W
IT

H
O

T
JT

 P
LÊ

S
 I-

IC
 S

ÏR
Ê

iN

-0
.2

0

+
5 

B
R

E
Ê

ìK
S

F
ig

ur
e 

6 
.4

5 
cr

ac
k 

pr
of

i l
es

 b
ef

or
e 

el
em

en
t 

+
 5

 b
re

ak
s

-0
. 

I 
5 

-0
. 

1 
0 

-0
. 
û5

 
0.

00
 

tr
. 

û5
D

IS
I. 

F
R

O
M

 iN
IT

IÊ
r_

 C
R

F
IC

I<
 r

t:p
 (

C
/o

O
)

0.
10



v 
m

lrl

F
ig

ur
e 

':.
.1

, 
R

ep
ea

te
d 

lo
ad

in
g 

w
ith

ou
t

re
sL

 P
er

io
d



n 0

ï t-
- (¡ Z tx J Y C
J

C
I K T
J

Z
O

h 
r 
. 

I-
O

F
D

 I
 N

G
 C

'f 
C

LE

5 5

5O
hr

.
LO

Ê
D

 IN
G

 C
Y

C
LE

n
1 
00

 2
00

 3
00

F
ig

ur
e 

1 
.2

 
C

ra
ck

 q
ro

w
Lh

 v
s.

 
t i

m
e

S
T

Ê
T

IC
 L

O
Ê

D
IN

G

40
0 

50
0

T
 I 

IV
1E

ô0
0 

70
0

( 
hr

" 
)

80
0

90
0

10
00

 I 
t0

0



rl t \-
 

z-
c

.¿ r. lx l- 
a.

o
Z lx U Y U Í1

8 r. U o IY [ 
'.o

U
J fì Z tr l- 

o.
s

(, H n

5ü
 

I-
rr

. 
LO

F
D

IN
G

 
aY

C
!-

E

ññ

'ì 
-i 

-(
/-

l

S
E

F
C

-'Ë
 E

LE
M

E
N

T
 +

7 
B

R
E

F
K

S

3.
 5

 
a.

A

C
R

Ê
C

K

S
E

F
C

R
E

 Ë
LE

M
E

iIT
 +

5 
B

iR
E

F
IK

S

Z
nd

 
C

IC

F
F

 
¡ 
E

- 
-t

sL
U

-!
 

: 
I\€

F
ig

ur
e 

7.
3 

V
ar

ia
tio

n 
of

 
pl

as
tic

 
zo

ne
 in

 
ca

se
 2

\-
- I

4.
â

rr
r 

te
i 

-r
LU

-!
i.,

\e

Þ
E

F
U

Íts
 

U
|\L

U
-!

 
L:

\Þ

D
 Ï 

S
 T

Ê
N

C
E

 F
R

[]M
 C

R
Ê

C
<

 C
E

N
T

E
R

-lt
- 

rÈ
ñ 

-

5.
cJ

C
Ê

ì! 
I 

N
G

5.
5 

ê.
C

Õ
-5

7-
E

C
 I

\4
M

 )

8,
C

J



: : M
 ?

.
LL lll T Z ul U

1.
Y f'ì tr r U :1

,
o K II ix U

-
7- tr t- m H D

Z
O

fì 
rs

 -
 

L-
O

F
D

 I
 N

G
 C

Y
C

L-
E

4'
-iì

 
C

Y
C

LE
 Ê

F
T

E
R

 R
E

LO
F

ìÉ
IN

G

3r
d 

C
Y

C
LE

 F
ìF

T
E

R
 R

E
LO

Ê
D

IN
G

Z
nd

 
C

Y
C

LE
 Ê

F
T

E
R

 R
E

LO
Ê

É
IN

G

1 
s 

t 
C

Y
C

I*
E

H
F

 
ltx

 
-E

LU
-!

!tì
g

C
F

IÊ
C

K

4.
O

B
E

tr
O

R
E

 U
N

LO
Ê

D
IN

G

D
 T

 S
T

Ê
N

C
E

 F
R

O
M

 C
R

Ê
C

K
 C

E
N

T
E

R

F
ig

ur
e 

7.
4 

V
ar

ia
tio

n 
of

 p
la

st
ic

, 
ca

se
 3

4-
ê

E
-O

zo
ne

 b
ef

or
e 

cr
ac

k 
in

iti
at

io
n 

in

añ

C
M

M
)

a.
o

a-
E



:
C

tr
l

V
- lx l-- Z lx U I U tr r U o r. II tx U Z tr t-
-

U
I H fl

Z
C

nr
-s

 -
 

l-O
Ê

D
IN

G
 C

Y
C

r-
E

6.
O

4.
5

:J
 .

 L
j

C
J.

 O

5É
-U

X
È

 
È

LÈ
tY

È
l\t

 
+

/ 
E

-È
ht

<
.5

o.
o 

1.
5

IN
IT

IÊ
L 

C
R

Ê
C

K
 '

T
IP

B
E

tr
¡iì

E
 

E
L-

E
M

E
N

T
 
+

5 
B

R
E

Ê
I<

S

3E
I=

C
R

E
 E

LE
T

IE
N

T
 +

3 
B

R
E

F
ìK

S

D
IS

T
Ê

N
C

E
 F

R
O

M

B
E

F
O

R
E

 E
LE

M
E

N
-|

 +
¿

F
ig

ui
e 

'7
.5

 
V

ar
ia

tio
n 

of
 

pl
as

tic
 

zo
ne

 d
ur

in
g 

cr
ac

k 
gr

ow
th

 j
-n

 c
as

e

i5
.iJ

 
7.

5 
i

C
R

Ê
C

I<
 C

E
N

T
E

Í-
ì

' c
.5

C
M

M
)

r-
t 

5



28
0

?4
0

20
0

ü 0_ a a LU K
. t- a I

C 0_ tJ Z K 0_ : l X C

1ô
0

12
0

B
O 40

C
l

- 
A

f)
'-1

 \
_J

-8
0

U
N

LÛ
Ê

J]
N

G
 -

 R
E

I_
O

Ê
D

]N
G

 Ê
T

 I-
:5

O
N

-

R
 T

 T
H

E
 C

E
N

 T
R

i] 
I 
J

- 
12

0

-1
60

C
F

 E
I 

E
IV

E
N

 T

rig
ur

e 
7.

6 
V

ar
ia

tio
n 

of
 m

ax
im

um
 p

rin
ci

pa
l 

st
re

ss
el

em
en

t 
in

 f
irs

t 
lo

ad
 c

vc
le

 i
n 

ca
se

 2

R F B

+
i

?0
 

30

Ê
P

P
L 

I 
E

D

40
 

50

S
 T

R
E

S
S

 ( 
lV

F
o 

)

in
 

lra
îì¿

 
f 

in



28
0

?4
0

20
0

o 0_ = a a LU K F a _J I n_ T
J Z tr 0_ : f z X C
T :

Ê
T

 T
H

E
 C

E
N

T
R

O
ID

U
N

LD
R

D
IN

G
-R

E
LO

Ê
D

IN
G

 Ê
T

 t
-Z

O
hr

.

1ô
0

12
0

B
O 40

0

- 
/l) -8
0

- 
12

0

-1
60

E
'

O
F

 E
LE

M
E

N
T

 +
 1

D
'

0
t0

F
ig

ur
e

Ê
'

r't r B
'

?0
 

30
Ê

P
P

L 
I 

E
D

11
V

ar
ia

tio
n

el
em

en
t 

in
of

 m
ax

im
ur

n
fi 

rs
t 

lo
ad

40
 

50
S

T
R

E
S

S
 (

 M
P

o 
)

pr
in

ci
pa

l 
st

re
ss

cv
cl

e 
in

 c
as

e 
3

00
t0

B
O



20
0

i9
0

18
0

17
0

to
u

Õ 0_ ã ú) a LU K a LU IJ U
J

LL II LU

1E
n

14
0

1Î
n

17
0

C
Ê

S
E

 ?
 :

 L
O

Ê
D

Ê
T

t

qF
T

E
R

 R
E

LO
F

]D
 I

 N
G

B
E

F
O

R
E

 U
N

LO
Ê

D
IN

G

11
0

10
0 0.

I N
G

 C
Y

C
LE

 5
O

h 
r 

.

F
r-

I 
;-

 -

00 F
ig

ur
e 

1.
8 

In
cr

ea
se

 o
f 

ef
fe

cL
iv

e 
st

re
ss

 
ah

ea
cl

 o
f 

cr
ac

k 
tip

 
af

te
r

un
lo

ad
in

g 
an

d 
re

lo
ac

lin
g 

(c
as

e 
2)

0.
25

 
0.

50
 

0.
 7

5 
1 

. 
û0

 
1 

.2
5

D
IS

T
Ê

C
E

 F
R

O
M

 T
H

E
 C

R
Ê

C
K

 T
IP

 (M
M

)
I 

.5
0



23
0

??
0

21
0

o 0_ = cn a Ll
l

K
. F a I C g LJ z tr 0_ f =X c :

20
0

19
0

tB
0

17
0

1ô
0

15
0

C
Ê

S
E

 ?

/ 
a"

rE
R

: 
LO

Ê
D

 I
 N

G

Ê
T

r

ñ-
t 

^-
- 

1ñ
 

t-
Ì-

Í 
-L

U
-U

 
L 

I\L
J

14
0

13
0

1?
0 n

B
E

F
O

R
E

/\ /\

U
N

I_
O

Ê
D

 ]
 I\

G

C
'/C

t-
E

 5
O

h 
rs

5O
hr

.

00
0.

25
 

0.
50

D
IS

T
Ê

N
C

E
 F

:R
O

i'4

F
ig

ur
e

In
cr

ea
se

 o
f 

m
ax

im
um

{-
 ìn

 
ef

fo
r 

rr
n'

ln
¡d

ìn
n

-.
1.

0.
/5

 
1.

û0
 

t 2
5

T
H

E
 C

R
Ê

C
I<

 T
IP

 (M
I"

l)

pr
in

ci
pa

l 
st

re
ss

 a
he

ad
 o

f 
,::

r:
ac

k
¿

rn
d 

re
lo

ad
in

g 
(c

as
e 

2)

r 
.5

0



??
0

21
0

20
0

19
0

18
0

17
0

Õ 0_
. : a L| K F a LU ì c.
J tx LL LL LU

1ô
0

15
0

14
0

13
0

17
0

\

I t\ lr
\ -\

 \
.

Ê
T

 T
H

E
 C

E
I\T

R
Ü

 I
 D

 O
F

 E
LE

M
E

N
T

 +
 1

I .I '.-
t

-t -\

11
0

10
0

5O
h 

r 
. 

l-0
Ê

ü 
i N

G
 C

'lC
r 

E

Z
O

hr
. I

 O
Ê

!IN
G

 C
'rC

l ¿

S
T

R
T

IC
 L

O
flD

,'N
G

I (, t\ t\ t\\ ! 
\'

ì\ I

ì-
- 

-

0
?0

\ 'r\
.

F
ig

ur
e 

7.
L0

 V
ar

ía
tio

ns
 o

f 
ef

fe
ct

iv
e

eL
em

en
t

40
ô0

80

T
 I 

I"
lE

\'.

10
0

( 
hr

rl l' \l

st
re

ss
 w

ith

1?
0

i4
0

tim
e 

in
 c

r:
ac

k 
tip16

0
iB

0



25
0

74
0

23
0

??
0

(t
u

20
0

19
0

18
0

11
0

1ô
0

1F
n

14
0

13
0

1?
0

Õ 0_ : a a L| K t-
- a (t o_ tJ Z K n_ :l ã X cf

\

Ê
T

 T
H

E
 C

E
N

T
R

O
 i

 D
 O

F

rl !1 ì\

\ -\
>

\ ìl

- 
5O

¡r
r 

. 
l-O

ílD
 I

N
G

 C
'rC

r_
E

S
T

Ê
T

IC
 L

O
Ê

D
IN

G

?O
t-

,-
. 

I 
O

Ê
D

iN
G

 C
Y

C
r-

E

I J

E
I Ë

N
,IE

N
T

 +
 1

0

t\

?0

F
ig

ur
e 

7.
II 

V
ar

ia
tio

ns
 

of
 

m
ax

im
um

 p
rin

ci
pa

J-
cr

ac
k 

tip
 

el
_e

m
en

t

'\ \\ .\
\

40
ô0

\

B
O

T
 I

 IV
1E

\ \

I I Ir t' i\ lr rl lt I {

i0
û 

i2
0

(h
r"

 )

ì i

14
0

st
re

ss
 

w
ith

 
t.i

.m
e

r6
0

lB
0

Ìn



7

L _c
.

t-
1 I l-u

 
Ã rJ

Ê
T

 T
H

E
 C

E
N

T
R

O
 I

 D

t_
Lr C
f K tx t_
D cf u C
f n

S
T

Ê
T

IC
 I

-Ü
Ê

D
T

N
G

S
O

hr
-.

 I
-O

A
D

IN
G

 C
'lC

l 
E

?O
t-

,r
. 

l-O
Ê

D
IN

G
 C

'rC
l E

O
F

 E
I 

E
M

E
N

T
 +

 1

3 L

li/ 1,,/
l--

--
 -

" 
.)

 
,/

| 
.' 

-.
/

i, 
I 

-u
' 

"'
t\

l\ 
, 

' 
t 

''-
 

-t
'

l\ 
I 

'i-
 

,-
-"

I 
- 

l=
-l 

--
-'

0

i\

l1 It t' I

?0

F
ig

ur
e 

7.
t2

 V
ar

ia
tio

ns
el

em
en

t

40
ôO

 
B

Û

T
 i 

r\
4E

of
 d

am
ag

e 
ra

te
 w

ith
 t

im
e 

in
 c

ra
ck

 t
ip

10
û

hr
. 

)
12

0
14

0
tô

0



0 0 0

tr
" ul F LU C U
. C 0_ LU c_
D

C
f : cf n

qT
 I

qE
 C

E
N

T
R

O
iD

 ¡
F

 E
L-

E
V

IÊ
\IT

 +
i

S
O

n 
r-

 . 
L-

C
Ê

D
 I

 N
G

 C
'/C

r 
Ë

S
T

Ê
T

IC
 I

 O
Ê

D
IN

G

n

Z
O

n 
- 
. 

L-
O

Ê
D

 i 
N

G
 C

Y
'C

I 
E

0 0

I I I I

0
?0

Ir
ig

rr
r:

e 
7.

13

4a
ôû

 
B

0

T
 I 

tv
lE

D
am

aq
e 

ev
ol

ut
-r

on
s

i0
0 

17
0 

14
0

( 
hr

" 
)

i.n
 c

ra
ck

 t
-i 

¡-
r 
el

em
en

t

iô
0

tB
0

20
0



20
0

19
0

18
0

17
0

1ô
0

tc
u

Õ 0_ = m a LU Í F a LU F t.J LU LL LL LI
J

14
0

13
0

12
0

11
0

10
0 0.

Z
O

nr
-.

 L
O

Ê
D

IN
G

 C
'lC

l E

+
 

: 
/ta

 
l--

r

S
T

Ê
T

IC
 L

O
Ê

D
IN

G

00 F
ig

ur
e 

7.
74

 D
is

tr
ib

ut
io

ns
 

of
 e

ffe
ct

iv
e 

st
re

ss
 a

he
ad

 o
f 

cr
ac

k 
tip

at
t=

40
ho

ur
s

0.
25

 
0.

50
 

0.
75

 
1 
.0

0 
I 

.2
5

D
]S

T
R

N
C

E
 F

R
O

M
 T

H
E

 C
R

F
ìC

K
 T

IP
 (M

IV
)

1 
.5

0



19
0

18
0

17
0

10
0

15
0

14
0

13
0

1?
0

11
0

o 0_ = a a LU f. F m LU F C
J

LU LL LL LU

2O
h 

r-
 . 

LO
IID

 I 
N

G
 C

'r 
C

l-E

5O
hr

. 
T

O
A

D
IN

G
 C

'/D
r 

E

10
0

t 
B

O
 h

r"

0.
00

S
T

Ê
T

IC
 i_

O
N

D
IN

G

F
ig

ur
e 

7.
15

 D
is

tr
ib

ut
io

ns
 

of
 e

ffe
ct

iv
e 

st
re

ss
 a

he
ad

 o
f 

cr
ac

k 
tip

at
l=

B
0h

ou
rs

0.
25

 
0.

50
 

0.
75

 
1 

. 
û0

 
| .

25
D

T
S

T
Ê

N
C

E
 F

R
O

M
 T

H
E

 C
R

Ê
C

I<
 T

IP
 (M

M
)

I 
.5

0



20
0

19
0

18
0

17
0

1ô
0

15
0

14
0

13
0

12
0

11
0

o 0_ tr
l a l_

r-
r Í. F a U
I

r-
l -- T
J

LU LL LL LU

Z
O

hr
. 

I-
O

F
D

IN
G

 C
'IC

L-
E

5O
hr

. 
I-

O
R

D
IN

G
 C

'/C
L-

E

+
-

L-

10
0

S
T

Ê
T

IC
 L

O
Ê

D
IN

G

0.
00

1?
O

 h
r.

F
ig

ur
e 

7.
L6

 D
is

tr
ib

ut
io

ns
 

of
 e

ffe
ct

iv
e 

st
re

ss
 a

he
ad

 o
f 

cr
ac

k 
tip

at
t=

I2
0h

ou
rs

0.
25

 
0.

50
 

0.
 /5

 
1 
.0

0 
I 

.2
5

D
 ] 

S
T

F
ìN

C
E

 F
R

O
M

 T
H

E
 C

R
Ê

C
I<

 T
 I

 P
 ( 

M
M

 )
I 

.5
0



??
0

^,
la

l
LI

U

20
0

U 0_ = a a LU x F a I I 0_ IJ Z l-.
-l

ù_ 0_ :l X C ã

19
0

18
0

17
0

iô
0

15
0

14
0

Z
O

hr
. r

-O
Ê

D
IN

G
 C

'/C
LE

13
0

12
0 0.

S
T

Ê
T

IC
 L

O
Ê

D
IN

G

t 
40

 h
r.

00 F
ig

ur
e 

7.
17

 D
is

tr
ib

ut
,io

ns
 o

f 
m

ax
im

um
 p

rin
ci

pa
l 

st
re

ss
 a

he
ad

 o
f

cr
ac

k 
tip

 
at

 t
 

- 
40

 h
ou

rs

0.
25

 
0.

50
 

0.
 /5

 
1 

. 
û0

 
I 

.2
5

D
 I 

S
T

Ê
N

C
E

 F
R

O
M

 T
H

E
 C

R
Ê

C
K

 T
 I

 P
 ( 

IV
1M

 )
r 

.5
0



21
0

20
0

19
0

18
0

i7
0

1ô
0

1E
n

Õ 0_ = a a ut x. F
. ú J C
f

0_ T
J Z V
-

0_ :l =X C

I 
B

O
 h

r.

Z
O

h 
r-

 . 
LO

Ê
D

 I
 N

G
 C

'lC
l-E

'i 
40 i3
0

5O
hr

. 
I 

O
Ê

D
IN

G
 C

'IC
LE

1?
A

S
T

Ê
T

]C
 I

 O
F

D
IN

G

0.
00 F

ig
ur

e 
7.

 L
B

 D
is

t-
rib

ut
io

ns
 o

f 
m

ax
im

um
 p

rin
ci

pa
l 

st
re

ss
 a

he
ad

 o
f

cr
ai

:k
 t

ip
 

at
 t

 -
 B

0 
ho

ur
s

0.
25

 
0.

50
 

0.
 /5

 
1 
.0

0 
I 

.2
5

D
 T

 S
T

Ê
N

C
E

 F
R

O
M

 T
H

E
 C

R
Ê

C
K

 T
 I

 P
 ( 

M
M

 )
! 

.5
0



23
0

??
0

21
0

20
0

1s
0

18
0

17
0

1ô
0

15
0

14
0

13
0

o 0_ a a LU x. a -J CL o_ LJ Z K 0_ :l : X ct u

Z
O

hr
. r

 O
Ê

D
IN

G
 C

'lC
t-

Et 
: 

12
O

 h
r.

17
0

S
ÏÊ

T
IC

 L
O

Ê
D

IN
G

0.
 0

0

5O
hr

. 
I-

O
Ê

D
IN

G
 C

'/C
I-

E

F
ig

ur
e 

7.
19

 D
is

t,r
ib

ut
io

ns
 o

f 
m

ax
im

um
 p

rin
ci

pa
l 

st
re

ss
 a

he
ad

 o
f

cr
ac

k 
tip

 
at

 t
 =

 I
20

 h
ou

rs

0.
 2

5 
0.

 5
0 

tl.
 /5

 
1 

. 
tr

O
 

I 
.2

5
D

 I 
S

T
Ê

N
C

E
 F

R
D

M
 T

H
E

 C
R

Ê
C

K
 T

 I
 P

 ( 
M

M
 )

1.
50



I
ô

?
À ¿
I

L L I

LU

?
,2

7
tl B U

U
I F C Í. LU c-
D cf C il

A ?

Z
O

hr
. 

Lû
Ê

D
IN

G
 C

Y
C

LE

0

n 0 0

B

-f
^f

 
f 

- 
| 

--
-1

À
r-

5¡
l-1

 I
IL

 
LU

f1
!ll

\t)

Ê

0
/'\ L

tl
0

| 
À

^
L 

- 
lL

J 
Itl

0.
 0

0

F
ig

ur
e 

7.
20

 o
is

tr
ib

ut
io

ns
 

of
 

da
m

as
e 

ra
te

 
ah

ea
d 

of
 

cr
ac

k
t 

=
 4

0 
ho

ur
s

0.
25

 
0.

50
 

0.
 /5

 
1 
.0

0 
L 

25

D
 i 

S
T

Ê
N

C
E

 F
R

Û
M

 T
H

E
 C

R
Ê

C
K

 I 
I 
P

 ( 
M

M
 )

fìn

1 
.5

0

ac



ra

L I c) I LL LU F C K
. L! t-

D C : (f tl

Z
O

hr
. 

I 
O

Ê
D

IN
G

 C
'IC

LE

5O
hr

. 
r-

0Ê
D

IN
G

 C
'/C

I-
E

t 
: 

B
O

 h
r.

S
I'Ê

T
]C

 L
O

R
D

IN
G

0.
0 0.

 û
0 F
ig

ur
e 

7.
2L

 D
is

tr
ib

ut
io

ns
 

of
 d

am
ag

e 
ra

te
 a

he
ad

 o
f 

cr
ac

k 
tip

 
at

| 
=

 8
0 

ho
ur

s

0.
25

 
0.

50
 

0.
 7

5 
I 

. 
û0

 
I 

.2
5

D
 I 

S
T

Ê
N

C
E

 F
R

O
I'4

 T
H

E
 C

R
Ê

C
K

 T
 I

 P
 ( 

M
M

 )
I 

.5
0



1n IU
0

L,
]

a L -c
.

af
) I ul

II

B
tl U

7
0 0

0 tr

LU F C t LU c5 G : C
t n

0

Z
O

hr
. L

ûF
D

IN
G

 C
Y

C
LE

4
0

a)
U

ô L
0

5O
hr

. 
LO

F
D

IN
G

 C
Y

C
LE

il

J.
- L_

0.
0

S
T

R
T

IC
 L

O
N

Ü
IN

G

0.
 0

0

1?
A

 h
r.

F
ig

ur
e 

7.
22

 O
is

tr
ib

ut
io

ns
 

of
 d

am
ag

e 
ra

te
 a

he
ad

 o
f 

cr
ac

k 
tip

 
at

| 
- 

12
0 

ho
ur

s

0.
25

 
0.

50
 

0.
 /5

 
1 

. 
û0

 
I 

.2
5

D
 I 

S
T

R
N

C
E

 F
R

Û
M

 T
H

E
 D

R
Ê

C
K

 T
 I

 P
 ( 

I'4
M

 )
1 

.5
0



n n 0 n
tv Ll

l F Ll
l n

>
U

C E
- In LU LU c-
D

 n
C

U

C O
n U

.1 .t .( .( .( .( .l t. ).

0

no O
B 07 00 û5

Z
O

hr
. 

Lû
Ê

D
IN

G
 C

Y
C

LE

04 n?

0

A
f^

ff 
^ 

| 
ô^

-f
 

ñl
^

5I
H

IIL
 

LU
ñU

II\
If

0?

0
0l

0

t 
: 

40
 h

r.

00 0.
00

0.
25

 
0.

50
 

0.
 /5

 
I 

. 
Û

0 
I 

.2
5

D
T

S
T

F
N

C
E

 F
R

O
M

 T
H

E
 C

R
Ê

C
K

 Ii
P

 (M
M

)

F
ig

ur
e 

7.
23

 D
am

ag
e 

di
sL

rib
ut

io
ns

 
ah

ea
d 

of
 c

ra
ck

 t
ip

 
at

 t
 

- 
40

ho
ur

s

1 
.5

0



0
2D 1B to 14 11

1 IL 10 C
|B 00

n 0

r. LU F LU : C
L Í. ct 0_ LL
I

c_
D C C cl

0 tl \J n 0

Z
O

h 
r 
- 

l-O
Ê

D
 I

 N
G

 C
'f 

C
r 

E

n n

5O
n 

r 
. 

l-O
Ê

D
 I

 N
G

 C
'f 

C
l E

04 0? 00 0.

0

S
T

Ê
T

T
' I

 N
A

N
T

N
G

0

| 
: 

B
O

 h
r-

00 F
ig

ur
e 

1.
24

 D
am

ag
e 

di
st

rib
ut

io
ns

 
ah

ea
d 

of
 c

ra
ck

 t
ip

 
at

ho
ur

s

0.
 2

5
0.

50
 

0.
 /5

 
1 
.0

0
D

 T
 S

T
Ê

N
C

E
 F

R
O

M
 T

H
E

 C
R

Ê
C

K
 (

 M
M

 )
I 

.2
5

|. 
- 

o^

1 
.5

0



0
/1

tr
,

40
0 0.

35

0.
30

0.
25

0.
20 1r

¡t
 

tñ

t Ll
l F LU t C tr C
T 0* LU c5 C
t : C
T O

Z
O

hr
. 

I 
O

Ê
D

IN
G

 C
Y

C
LE

5O
h 

r-
 . 

l-O
nD

 I 
N

G
 C

Y
C

LE

0.
10

0.
05

t

S
T

Ê
T

IC
 L

O
A

D
IN

G

0.
00

1?
O

 h
r.

0.
00

0.
25

 
0.

50
 

0"
/5

 
l.û

0 
1.

25
D

 T
 S

T
Ê

N
C

E
 F

R
O

M
 T

H
E

 C
R

R
C

K
 T

 I 
P

 ( 
I\4

M
 )

F
ig

ur
e 

1.
25

 D
am

ag
e

ho
ur

s
di

st
rib

ut
io

ns
 

ah
ea

d 
of

cr
ac

k 
tip

 
at

 |
 

=
 I

20

1 
.5

0



'/t
 l

t 
I

LI
./\

J

1ô
aì

tu
t 

I

C
I

0_ a a Ll
t x. t-
- a LU F ('J I 
rl

LL
I

LL LL LU

18
0

17
0

1ô
0

1E
n

14
0

13
0

1?
0

11
0

10
0

B
E

F
O

R
E

 E
LE

I'4
E

N
T

 +
 1

Z
O

hr
. L

O
F

D
IN

G
 C

Y
C

LE

5O
hr

. 
l-O

Ê
D

IN
G

 C
'/C

I-
E

B
R

E
Ê

K
S

g0 0.
00

S
T

Ê
T

IC
 L

O
F

D
IN

G

0.
25

 0
.5

0 
0.

75
 1 

.0
0 

I 
.2

5 
I 
.5

0 
I 

. 
/5

 2
.0

0
D

IS
T

R
N

D
E

 F
R

O
M

 T
H

E
 C

R
Ê

C
K

 T
IP

 (M
M

)

F
ig

ur
e 

1.
26

 D
is

tr
ib

ut
io

ns
 

of
 e

ffe
ct

iv
e 

st
re

ss
 a

he
ad

 o
f 

cr
ac

k 
tip

be
fo

re
 e

le
m

en
t 

#1
 b

re
ak

s

?.
?5

2.
50



20
0

19
0

18
0

o 0, = a a lll tr F a LU H F tJ Ll
l

LL LL LI
J

17
0

1ô
0

15
0

14
0

13
0

Z
O

hr
-.

 l-
O

aD
IN

G
 C

'/C
LE

1?
0

11
0

10
0

B
E

F
O

R
E

 E
I*

E
M

E
N

T
 +

3 
B

R
E

Ê
K

S

S
O

hr
-.

 r
-û

Ê
D

IN
G

 C
'/C

l 
E

90 0.
 û

0

r 
-^

ñ 
1N

 
lÔ

5I
H

I:L
 

LU
ñ!

Il\
tf

0.
25

 0
.5

0 
0.

 /5
D

 I 
S

T
Ê

N
C

E

C
U

R
R

E
N

T
 D

R
Ê

C
K

 T
IP

F
ig

ur
e 

1.
21

 D
is

tr
ib

ut
io

ns
 

of
be

fo
re

 e
le

m
en

t 
{1

3

1 
.û

0 
1.

25
F

R
O

M
 IN

IT
IR

L

ef
fe

ct
iv

e 
st

re
ss

 a
he

ad
 o

f 
cr

ac
k 

tip
br

ea
k 

s

1 
.5

0 
1 

. 7
5 

2.
00

C
R

R
C

K
 T

IP
 O

4M
)

?.
?5

 2
. 

50



17
0

10
0

ü 0- = t0 a LU K
. F a LU F LJ Ll
l II LL I-

IJ

tc
u

14
0

13
0

1?
0

11
0

10
0 0n

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
5 

B
R

E
Ê

K
S

Z
O

hr
-.

 l-
O

Ê
D

IN
G

 C
'/C

LE

C
U

R
R

E
N

T

C
R

Ê
C

K
 T

IP

B
O

S
O

hr
-.

 I 
O

R
D

IN
G

 C
'/C

LE

0.
 0

0
0.

25
 0

.5
0 

0.
 /5

D
 I 

S
T

R
N

C
E

S
T

Ê
T

]C
 I

_O
Ê

D
IN

G

F
ig

ur
e 

7.
28

D
is

tr
ib

ut
io

ns
be

fo
re

 e
le

m
en

t1 
.0

0 
I 

.2
b

F
R

O
M

 IN
IT

IR
L

of
 

ef
fe

ct
iv

e
+

5 
br

ea
ks

I 
.5

0 
I 

. 
/5

C
R

Ê
C

K
 T

 IP

st
 r

es
s 

ah
ea

d

2.
 0

0 
?.

75
( 

1.
4N

4 
)

nf
 

1r
^c

ì¿
 

{-
ìn

2.
50



21
0

20
0

1s
0

18
0

17
0

to
u

15
0

14
0

13
0

1?
0

1i
0

10
0 g0 B
O 70

o 0_ a ('N l_
Il tr F rô LU F
.

l-- T
J

LU U
-

U
-

LJ
J

B
E

F
O

R
E

 E
LE

M
E

N
T

+
7 

B
R

E
Ê

K
S

?O
l¡r

. 
I-

O
R

D
IN

G
 C

Y
C

LE

ô0 0.
00

C
U

R
R

E
N

T

C
R

Ê
C

K
 T

IP

0.
 2

5

5O
hr

. 
T

O
Ê

D
IN

G
 C

'IC
LE

F
ig

ur
e 

7.
29

0.
50

 0
. 

/5
D

 I 
S

T
Ê

N
C

E

S
T

Ê
T

IC
 L

O
Ê

D
IN

G

D
is

tr
ib

ut
io

ns
be

fo
re

 e
le

m
en

t

1 
.0

0 
i .

25
F

R
O

M
 IN

IT
IÊ

L

of
 

ef
fe

ct
iv

e
+

7 
br

ea
ks

1.
50

 l"
/5

C
R

Ê
C

K
 T

 I 
P

st
 r

es
s 

ah
ea

d

2.
 û

0 
?.

?5
(M

M
)

of
 c

ra
ck

 t
ip

2.
 5

0



2a
,n

??
0

21
0

20
0

1O
n

18
0

17
0

1ô
0

15
0

14
0

13
0

1?
0

11
0

o 0_ a cn LU tr F
.

rn J (I 0_ tJ Z K
.

o_ l : X C :

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
1 

B
R

E
Ê

I<
S

Z
O

hr
-.

 l-
O

Ê
D

IN
G

 C
'/C

LE

5O
h 

r 
. 

r-
O

Ê
D

 I
 N

G
 C

Y
C

I 
E

10
0 0.

00

S
T

Ê
T

IC
 L

Û
Ê

D
IN

G

0.
25

 0
 .5

0 
0.

 /5
D

 T
 S

 T
Ê

N
C

E

F
ig

ur
e 

7.
30

 D
is

tr
ib

ut
io

ns
 

of
cr

ac
k 

tip
 

be
fo

re1 
.0

0 
1 
.2

5 
1 

.5
0

F
R

Û
M

 T
H

E
 D

R
R

C
K

m
ax

im
um

 p
rin

ci
pa

l 
st

re
ss

 a
he

ad
 o

f
el

em
en

t 
#1

 b
re

ak
s

1.
 /5

 ?
.0

0
T

IP
 (I

V
lM

)
?.

?5
2.

5t
J



23
0

??
0

21
0

o 0_ = a tfl LU tr F a J cf 0_ O Z K D
- :l : X C :

20
0

19
0

18
0

17
0

1ô
0

15
0

1-
10

13
0

1?
0

B
E

F
O

R
E

 E
LE

N
4E

N
T

 +
3 

B
R

E
Ê

I<
S

Z
O

hr
. 

r-
O

Ê
D

IN
G

 C
'/C

LE

11
0

10
0 n

5O
hr

. 
I-

O
F

D
IN

G
 C

'/C
LE

00
 0

.2
5

ô-
^T

T
- 

| 
-^

-T
À

l^
J 

ll-
1 

I 
lL

 
LU

I-
1U

rt
\tl

C
U

R
R

E
N

T
 C

R
Ê

C
K

 T
IP

F
ig

ur
e 

7.
3I

 D
is

tr
ib

ut
io

ns
 

of
cr

ac
k 

tip
 

be
fo

re

0.
50

 0
. 

/5
D

 I 
S

T
Ê

N
C

E
1 
.0

0 
| "

25
F

R
O

I/ 
IN

IT
IÊ

L

m
ax

im
um

 p
rin

ci
pa

l
el

em
en

t 
#3

 b
re

ak
s

I 
.5

0 
| .

75
C

R
Ê

C
I<

 T
 I

 F
2 

. 
û0

 ?
.?

õ
(M

M
)

st
re

ss
 a

he
ad

 o
f

2.
 5

0



19
0

18
0

17
0

1ô
0

15
0

14
0

13
0

1?
0

11
0

10
0

o 0_ a cn Li
l

v. m I C n* (J Z t- L l X C
T

B
E

F
O

R
E

 E
LE

M
E

N
T

+
5 

B
R

E
Ê

I<
S

Z
O

hr
. 

I-
O

F
D

IN
G

 C
Y

C
LE

g0 0.
00

5O
hr

. 
l*

O
Ê

D
IN

G
 C

'IC
LE

0.
25

 0
.5

0 
0.

75
 1

.0
0 

1.
25

 1
"5

0 
1.

75
 2

.0
0 

?.
?5

 2
.5

0
D

IS
T

Ê
N

C
E

 F
R

Û
M

 IN
IT

IN
L 

C
R

Ê
C

K
 T

IP
 (M

M
)

F
ig

ur
e 

7.
32

 D
is

tr
ib

ut
ío

ns
 

of
 m

ax
im

um
 p

rin
ci

pa
l 

st
re

ss
 a

he
ad

 o
f

cr
ac

k 
tip

 
be

fo
re

 e
le

m
en

t 
#5

 b
re

ak
s

C
U

R
R

E
N

T
 C

R
Ê

C
K

 T
IP

S
T

F
T

IC
 I

-O
F

ìD
IN

G



23
0

??
0

21
0

20
0

19
0

18
0

17
4

1ô
0

15
0

14
0

13
0

1?
A

11
0

10
0 g0 B
O 7A

O 0_ = a a L! r. t-
- tfl _l C 0_ T
J Z tr o_ l z X I :

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
7

B
R

E
Ê

K
S

0.
00

Z
O

t-
,r

. 
I-

U
F

D
IN

G
 C

'IC
LE

C
U

R
R

E
N

T

C
R

F
C

K
 T

IP

0.
 2

5

F
ig

ur
e 

7.
33

 D
is

tr
ib

ut
io

ns
 

of
cr

ac
k 

tiP
 

be
fo

re

5O
hr

. 
l-O

Ê
D

IN
G

 C
'/C

LE

0.
50

 0
. 

/5
D

 I 
S

 IÊ
N

C
E

1 
.0

0 
1 

.2
b

F
R

Û
M

 IN
IT

IÊ
L

S
fR

T
IC

 I-
O

F
ìD

IN
G

m
ax

rm
um

 p
r1

nc
lp

a.
[

el
em

en
t 

1+
7 

br
ea

ks

1.
50

 1
./5

C
R

Ê
C

K
 T

 I
 P

2 
. 
00

 ?
.?

5
( 

t\4
1v

1)

st
re

ss
 

ah
ea

d 
of

2.
50



I I r) I

t_
lt

I
85

\ ' 
37

0

LU t-
- C f. l]J c-
D I C tl

Z
O

hr
. |

-O
Ê

D
IN

G
 C

'/C
l 

E

t\

'1
ô

B
E

F
O

R
E

 E
LE

I"
IE

N
T

5O
h 

r 
. 

LO
ñD

 I
 N

G
 C

'/C
r 

E

lrl

S
ÏÊ

T
ÏC

 I-
O

R
D

IN
G

B
R

E
Ê

K
S

0.
25

 0
.5

0 
0.

 7
5 

1 
. 
û0

D
 I 

S
T

Ê
N

C
E

 F
R

O
M

F
ig

ur
e 

7.
34

 o
is

tr
ib

ut
io

ns
be

fo
re

 e
le

m
en

t

1 
"2

5 
"5

0
C

R
R

C
K

 T
 T

 P

of
 

da
m

ag
e 

ra
te

#1
 b

re
ak

s

I 
. /5

 2
.0

0
(M

M
)

ah
ea

d 
of

 
cr

ac
k 

tiP

?.
?5

2.
50



L fr !r
l

\q
J

||l g

n \J

I t
4

4

LI F C x. L| tD C
f z I n

Z
O

h 
r 
. 

r-
O

Ê
D

 I
 N

G
 C

Y
C

I 
E

B
E

F
O

R
E

 E
I 

E
N

4E
N

T
 +

3 
B

R
E

Ê
K

S

5O
h 

r 
. 

l-O
Ê

D
 IN

G
 C

Y
C

I-
E

n

C
U

R
R

E
N

T

C
R

R
C

K
 'T

 T
 P

0.
00

-f
 

ô1
1-

 
| 

-^
- 

1ñ
 

l-
bI

-1
 

IIL
 

I 
U

T
IU

II\
L]

0.
25

 0
.5

0 
0.

 7
5

D
 I 

S
T

Ê
N

C
E

F
ig

ur
e 

7.
35

 D
is

tr
ib

ut
io

ns
be

fo
re

 e
le

m
en

t1 
.0

0 
I 
.2

5
F

R
O

M
 IN

IT
IÊ

L

of
 d

am
ag

e 
ra

te
 a

he
ad

 o
f 

cr
ac

k 
tiP

#3
 b

re
ak

s

1 
.5

0 
I 

. /
5

C
R

Ê
C

K
 T

 I
 P

2 
. 
û0

 ?
.?

5
(M

M
)

2.
 5

0



Ã U

I _C f)
/l II tx LU F C
t

K
. ul
?

t_
D ct (f o

I

B
E

F
O

R
E

 E
LE

N
4E

N
T

 +
5 

B
R

E
F

]K
S

?O
âr

 . 
l-O

Ê
D

 I
 N

G
 C

'/C
I-

E

C
U

R
R

E
N

T
 C

R
Ê

C
I<

 T
IP

0

5O
nr

. 
LO

Ê
D

IN
G

 C
Y

C
I-

E

0.
00

0.
25

 0
.5

0 
0.

75
D

 I 
S

T
Ê

N
C

E

F
ig

ur
e 

7.
36

 D
is

tr
ib

ut
io

ns
be

fo
re

 e
le

m
en

t

S
T

Ê
T

IC
 L

O
Ê

D
iN

G

1.
û0

 t.
2b

F
R

O
M

 I
N

IT
IÊ

I_

of
 

da
m

ag
e 

ra
te

 
ah

ea
d 

of
 

cr
ac

k 
tip

#5
 b

re
ak

s

1 
.5

0 
I 

. 
/5

C
R

Ê
C

K
 T

 I
 P

2 
. 
û0

 ?
.?

5
( 

t\4
lv

l)

2.
50



Â

L _c
. r) Ll
l

5 t I

Ll
l

t-
-

C
T f. Li
t

c-
! C C o

3 ?

{ 1'
--

5C
nr

.
r-

0Ê
D

iN
G

 C
'/C

l E

'B
E

F
Ü

R
E

 E
LE

M
E

N
T

 +
7

B
R

E
R

K
S

C
U

R
R

E
N

T
 C

R
Ê

C
K

 T
IP

0 0.
00

S
T

Ê
T

IC
 I

_O
Ê

D
IN

G

Z
O

hr
-.

 l-
Û

Ê
D

IN
G

 C
Y

C
LE

0.
25

F
ig

ur
e 

7.
37

0.
50

 û
 "

 7
5

D
 I 

S
T

Ê
N

C
E

D
is

tr
ib

ut
io

ns
 

of
be

fo
re

 e
le

m
en

t 
#7r.
û0

 1
.2

5
F

R
Û

[4
 IN

IT
IÊ

L

da
m

ag
e 

ra
te

 
ah

ea
d 

of
 

cr
ac

k 
tiP

br
ea

ks

1 
.5

0 
1 
.7

5
C

R
Ê

C
I<

 T
 I

 P

2 
. 
00

 ?
.?

5
(M

M
)

2.
50



0.
7

0.
ô

r. LU F
. L| cf Í. C 0_ LU C
I

C
L : I O

0.
4

Z
O

hr
. 

l-O
Ê

D
IN

G
 C

'/C
LE

0.
3

B
E

F
O

R
E

 E
LE

M
E

N
T

 +
 1

0.
?

5O
hr

. 
LO

Ê
D

IN
G

 C
'/C

LE

S
T

Ê
T

iC
 L

O
Ê

D
IN

G

0.
0 0.

00

B
R

E
F

ìK
S

0.
25

 0
.5

0 
0.

 7
5 

1 
.0

0 
I 
.2

5 
1 
.5

0 
I 

. /5
 2

.0
0

D
 I 

S
T

Ê
N

C
E

 F
R

O
M

 D
R

Ê
C

K
 I-

 ] 
P

 
( 

IV
1N

4 
)

F
ig

ur
e 

7.
38

 D
an

ag
e 

di
st

rib
uL

io
ns

 
ah

ea
d 

of
 c

ra
ck

 t
ip

 
be

fo
re

el
em

en
t 

*1
 b

re
ak

s

? 
"?

5
2.

50



0.
7

0.
6

U
.

LU F L]
J ã C
t r. I 0_ Lr
l

C
.D cf ã C t:ì

0.
5

0.
4

B
E

F
O

R
E

 E
LE

I.4
E

N
T

0.
3

0.
?

Z
O

h 
r-

 . 
l_

O
Ê

D
 IN

G
 C

yC
LE

0.
1

+
3 

B
R

E
Ê

I<
S

0.
0

Lu
r-

(l.
ÍÈ

t\ 
I

C
R

R
C

K
 T

 I 
F

]

0.
 0

0

I 
O

nl
l I

 N
G

0.
25

F
ig

ur
e 

7.
39

 D
am

ag
e 

di
st

rib
ut

io
ns

el
em

en
t 

#3
 b

re
ak

s

û.
50

 0
. /

5
D

 I 
S

 IÊ
N

C
E

S
T

F
ìÏI

C
 I

 O
Ê

D
IN

G

C
'r 

C
l_

E

I 
.0

0 
I 
.2

5 
I 
.5

0
F

R
O

I\4
 IN

IT
IÊ

T
 C

R
qC

K

ah
ea

d 
of

 
cr

ac
k 

tip
 

be
fo

re

| .
75 T
IP

2.
50



0.
7

0.
ô

U
. lx F
-

l_
Ll : C
L K I 0_ L| (-

-D C C n

0.
5

0.
4

0.
3

B
E

F
O

R
E

 E
I E

M
E

N
 I 

+
5 

B
R

E
Ê

I<
S

0.
?

0.
 t

Z
O

nr
-.

 I
 O

Ê
D

IN
G

 C
y'

C
r 

E

0.
ü 0.

 0
0

-Q
O

'Ø
 

T
T

D

5O
h 

¡-
 . 

I 
O

Ê
D

 I
 N

G
 C

./C
!_

E

0.
25

 0
.5

0 
0.

 /5
 1

 .0
0

D
 I 

S
T

R
N

C
E

 F
R

rll
'/

F
ig

ur
e 

7 
.4

0 
D

am
ag

e 
di

st
rib

ut
io

ns
 

ah
ea

d 
of

 
cr

ac
k 

tip
 

be
fo

re
el

em
en

t 
#5

 b
re

ak
s

I 
.2

5 
1 
.5

0 
I 
.7

5 
?.

a0
T

H
E

 C
R

R
C

I<
 T

IE
 (\

4V
)

?.
?5

2.
50



0.
1

U
.

LL
J F t_
u

C
T K
. C 0_ LU [_

D I I n

O
,A

0.
3

a.
?

B
E

F
C

R
E

 E
I_

E
M

E
N

 T
 +

7 
B

R
E

Ê
K

S

'7
ll-

 -
 

| 
¡í

l- 
r 
N

IG
 -

'la
l 

Ë
Le

¡ 
I 

. 
_U

l 
lU

_.
'\U

 
U

 
I 

U
-_

L

0.
0 0.

00
 0

.2
5

t-
JT

\f 
È

,\ 
|

C
R

Ê
C

K
 '

Î 
T

 P

5O
h 

- 
. 

I_
O

F
ìD

 iN
G

 C
.r

C
l 

E

F
'ig

ur
e 

7.
41

, 
D

am
ag

e 
di

st
rib

ut
io

ns
 

ah
ea

d 
of

el
_e

m
en

t 
lt7

 b
re

ak
s

0.
50

 0
. 

75

D
 I 

S
 I-

F
ìii

IC
E

S
IR

T
IC

 I_
O

R
D

IN
G

1.
û0

 1
.2

5
F

R
Ü

i'4
 I

N
LT

]1
r

r 
"5

0 
I 

. /
5

C
R

q¡
1<

 T
 I

 P

r-
râ

r-
k 

f 
ìn

 
hp

fo
re

2.
û0

 ?
 ?

5
(M

M
)

2.
50


